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ABSTRACT

Automated vehicles (AVs) are promising to have the potential to reduce driving-related

injuries and deaths. However, autonomous driving technology is currently limited in its

scope and reliability, giving rise to the semi-autonomous driving model, where the auton-

omy and the human share the control of the vehicle. Workload, despite being an important

human factor, has not yet been considered when designing adaptive shared control.

Workload is a critical human factor in human-automation interaction. Researchers

have shown an inverted-U relationship between workload and human performance. When

a person’s workload is too low, s/he may experience vigilance decrement, leading to sub-

optimal task performance. On the contrary, when a person is overloaded, s/he may not have

enough resources to complete a task successfully. When a person experiences moderate

workload, s/he achieves optimal performance. However, the effects of adapting to the

human workload in the haptic shared control of ground vehicles remain unclear.

Human workload can be measured offline or online. Offline measures are assessed

after a human operator finishes a task, typically by using a questionnaire or post-hoc anal-

yses. However, offline measures are not applicable for designing real-time adaptive sys-

tems. There are different ways to measure human workload online, including using behav-

ioral measures, secondary task performance, and physiological measures. Using behav-

ioral measures and secondary tasks to measure workload online usually relies on real-time

behavioral data and task performance, which is sometimes unavailable. Therefore, re-

searchers have developed methods to assess workload using physiological measurements,

including heart rate variability and pupil size. Among these measures, some are intrusive,

xii



such as electroencephalography (EEG). Eye-tracking devices, as a non-intrusive (or less-

intrusive) technology, have been increasingly used to assess operators’ workloads. Studies

unitizing eye trackers to examine workload can be broadly categorized into two groups.

Previous studies largely adopted statistical methods to show the relationships between cer-

tain eye-related measurements and workload. For example, greater pupil dilation indicates

higher mental workload.

Recently, researchers have started to apply machine learning techniques to classify

mental workload into different levels. However, most of these studies have adopted ei-

ther a single-model-single-feature approach or a single-model-all-features approach. In

the single-model-single-feature approach, researchers developed a single machine learn-

ing model for a single feature (i.e., the Hidden Markov Model for gaze trajectory). As

the single-model-single-feature approach only uses one type of measurement, useful in-

formation from other measurements is missed. In the single-model-all-features approach,

researchers attempt to utilize information from different measurements and apply a single

machine learning model for different features by concatenating different features into one

feature vector. However, different machine learning models are suitable for different fea-

tures (e.g., the Hidden Markov Model works for gaze trajectory, whereas support-vector

machines work for changes in pupil size). Therefore, combining these features with a

single-model-all-features approach can lead to sub-optimal performance for workload es-

timation.

To address these shortcomings and research gaps, the goals of this dissertation were

to (1) examine whether and to what extent haptic shared control performance can be

improved by incorporating operators’ workload; (2) develop a computational model for

workload estimation, and the model should be able to leverage different machine learning

models that work best for different features; and (3) investigate the generalizability of the

xiii



workload estimation model. To address these research goals, this dissertation was com-

posed of four research phases with two pilot studies and four human subject experiments.

The four phases were as follows:

(1) Collaborating with Yifan Weng, Dr. Tulga Ersal, and Prof. Jeffrey Stein from the

Department of Mechanical Engineering at the University of Michigan, we developed a

teleoperated dual-task shared control simulation platform where the human shared control

of a ground vehicle with autonomy while performing a surveillance task simultaneously.

In addition, we developed a real-time eye-tracking system based on Tobii Pro Glasses 2

to measure the human gaze points in a world frame and pupil sizes. We conducted two

pilot studies with 16 participants. Pilot Study 1 selected tracks with similar difficulties

to be used in the simulation platform. We determined the surveillance task urgency to

impose different human workload levels in Pilot Study 2. We used this dual-task platform

to represent a human-automation interaction system.

(2) We proposed a workload-adaptive haptic shared control scheme together with our

collaborators. We conducted two human subject experiments during this phase. We col-

lected the human eye-related data to a build workload estimation model in Experiment 1,

which was conducted with 12 participants. In Experiment 2, we examined the effects of the

workload-adaptive haptic shared control scheme. The results indicated that the proposed

workload-adaptive haptic shared control scheme can reduce human workload, increase hu-

man trust in the system, increase driving performance, and reduce human effort without

sacrificing surveillance task performance.

(3) We proposed a Bayesian inference model for workload estimation that can lever-

age the different machine learning models that work best for different features. Specifi-

cally, we used support-vector machines (SVMs) for pupil size change, the Hidden Markov

Model (HMM) for gaze trajectory, SVMs for fixation feature, and Gaussian Mixture Mod-

xiv



els (GMMs) for fixation trajectory. Using the data from Experiment 1 and an additional

12 participants, the empirical results indicated that our proposed model achieved a 0.82 F1

score for workload imposed by varying surveillance task urgency.

(4) We investigated the generalizability of our proposed Bayesian inference model for

workload estimation by conducting two human subject experiments with 24 participants

and using different factors to impose human workload. In Experiment 3, we introduced

obstacles to the driving task and manipulated the obstacle headway to impose human

workload. The results indicated that our proposed model achieved a 0.68 F1 score for

the workload imposed by obstacle avoidance. In Experiment 4, we manipulated driving

speed to impose human workload. The results showed that the personalized version of our

proposed model can distinguish the workload imposed by different driving speeds under

high surveillance task urgency.
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CHAPTER I

Introduction

1.1 Shared Control for Semi-autonomous Vehicles

Automated vehicles (AVs) are promising to provide fuel-efficient driving (Chen et al.,

2019) and have the potential to reduce driving-related injuries and deaths (Eby et al.,

2016). However, autonomous driving technology is currently limited in its scope and

reliability, giving rise to the semi-autonomous driving mode. In this mode, the autonomy

and a human share control of the driving task. Therefore, properly allocating the control

authority between these two agents is critical for safety and team performance.

In cooperative shared control, both agents can affect the final control input. One type

of co-operative shared control directly blends the steering angle inputs from both the hu-

man and the autonomy through a designed arbitrator (Anderson et al., 2011). This scheme

closes the loop between the human and the autonomy after the steering wheel (i.e., the

human will be able to feel the impact of the autonomy input only after the resultant steer-

ing command takes effect and through the response of the vehicle). The other type of

cooperative shared control is haptic shared control, in which the human and autonomy can

negotiate the steering angle through the torques they apply to the steering wheel (Griffiths

and Gillespie, 2005; Petermeijer et al., 2015; Nguyen et al., 2018). In this scheme, the

human operator can directly feel the torque from the autonomy and can choose to yield

1



to or fight it by exerting extra torque on the steering wheel. Researchers have developed

and tested a haptic shared control framework, and the results showed that haptic control

improved driving performance while reducing visual demand or shortening the reaction

time of the secondary task (Griffiths and Gillespie, 2005). Others have used the haptic

control framework with a bandwidth guidance version and a continuous guidance version,

and the results showed that both helped reduce driver errors (Petermeijer et al., 2015).

The impedance of autonomy in a haptic shared control scheme can be considered a nat-

ural tuning parameter through which adaptability can be introduced. Indeed, even though

earlier haptic shared control schemes used a fixed impedance (Griffiths and Gillespie,

2005; Mulder et al., 2008), later works started investigating adaptive impedance schemes.

Some schemes adopt vehicle-performance-based switching rules as adaptation mecha-

nisms, such as turning shared control on when the lateral error of the vehicle exceeds a

designed threshold (Petermeijer et al., 2015). Others consider human-performance-based

metrics, such as the human input torque and attention, as guidelines for designing control

authority allocation to adapt to impedance continuously (Nguyen et al., 2018). However,

workload, an important human factor, has not yet been considered for adaptation purposes.

1.2 Workload in Human-automation Interaction

The concept of workload can be most intuitively understood in terms of the ratio of the

time required to do tasks to the time available to do them (Hendy et al., 1997; Parks and

Boucek, 1989). More generally, mental workload can be defined as the ratio of the mental

resources required to the resources available (Lee et al., 2017). Similarly, Parasuraman

et al. (2008) defined mental workload as “the relation between the function relating the

mental resources demanded by a task and those resources available to be supplied by the

human operator.”
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Workload is a critical human factor in human-automation interaction. Automation is

often introduced to reduce a human operator’s workload. For example, an automated lane-

keeping system reduces the driver’s workload (Hancock et al., 1996). However, improp-

erly using automation may increase human workload, which is against its aim. Recently,

researchers found that a driver’s self-reported workload increased when using Tesla’s as-

sistance driving system, which was designed to reduce the driver’s workload (Stapel et al.,

2019). Human workload may also influence the joint performance of the human and au-

tomation. For example, a high workload led to lower takeover readiness and worse perfor-

mance when drivers were operating a conditionally automated vehicle (Du et al., 2020b).

Researchers have shown an inverted-U relationship between human performance and

workload based on Yerkes Dodson’s law, as shown in Figure 1.1 (Samms and Mitchell,

2010; Seong et al., 2013; Schutte, 2015; Zenati et al., 2020). When a person’s work-

load is too low, s/he may experience vigilance decrement, leading to sub-optimal task

performance (Lee et al., 2017). When a person is overloaded, s/he may not have enough

resources to achieve the task, resulting in sub-optimal performance and even task failures

(Lu et al., 2019). For example, driving under a high workload can lead to more driver

errors (Hancock et al., 1990; Briggs et al., 2011), which are the main cause of 45% to 75%

of all crashes (Wierwille et al., 2002). When a person experiences moderate workload,

s/he achieves optimal performance (De Waard, 1996).

Specifically, in the context of transportation, drivers’ workload can be affected by dif-

ferent factors, such as driver’s behaviors and surrounding environment. Ma and Kaber

(2005) found that different activities affected driver workload, i.e., usage of adaptive cruise

control reduced driver workload, however, cell phone conversation increased driver work-

load. In addition, driver workload increased while performing turn maneuvers (Hancock

et al., 1990), driving on road with small curve radius (Tsimhoni and Green, 1999), and ex-
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Figure 1.1: Relationship between human performance and workload (Samms and
Mitchell, 2010; Seong et al., 2013; Schutte, 2015; Zenati et al., 2020).

periencing demanding surrounding traffic (Jahn et al., 2005; Patten et al., 2006; Teh et al.,

2014). Researchers also found relationships between weather and driver workload, i.e.,

wind gust (Hicks and Wierwille, 1979) at the front of the vehicle and fog (Hoogendoorn

et al., 2011) increased driver workload.

1.3 Workload Measurement

There are different ways to measure human workload, such as behavioral measures,

secondary tasks, subjective measures, and physiological measures.

1.3.1 Behavioral Measures

In many manual driving tasks, researchers have used control behaviors and driving per-

formance to estimate human workload. For example, Zhang et al. (2008) used the means

and standard deviations of vehicle velocity, vehicle lane position, steering angle, and ve-

hicle acceleration to estimate human workload via decision trees in a simulation study.

Similarly, other researchers have used longitudinal performance measures (e.g., standard

deviations of speed and acceleration) and lateral performance measures (e.g., standard de-

viations of lateral position and steering wheel angle) to measure drivers’ workload (Hicks
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and Wierwille, 1979; Lansdown et al., 2004; Liu, 2019). In a field study, Xing et al. (2018)

used the signals (e.g. latitude, longitude, altitude, and speed) from a global positioning

system (GPS) to estimate human workload.

Theoretically, behavioral measures can be online but require real-time behavioral data,

which is sometimes unavailable. Therefore, previous studies have mainly used behavioral

measures as offline measures by post-hoc analyses (Xing et al., 2018). Due to their offline

nature, offline measures are not applicable to designing real-time adaptive automation sys-

tems (Wickens et al., 2015).

1.3.2 Secondary Tasks

Another way to measure human workload is by introducing a secondary task and mea-

suring its performance. The logic behind this is that if a human performs the primary task

at an adequate level, how well s/he performs the secondary task indicates how much resid-

ual capacity is available. Various secondary tasks have been used in previous literature,

such as the n-back memory task (Owen et al., 2005; Herff et al., 2014; Lu et al., 2019) and

the Detection Response Task (DRT) (ISO/TC 22/SC 39, 2016; Chang et al., 2017; Miller

et al., 2018).

In the n-back memory task, a human operator is presented with a series of stimuli

and must identify if the current stimuli are the same as the stimuli presented n trials ago.

The stimuli can be either auditory or visual. Different types of stimuli have been used,

including the sounds of letters (Lu et al., 2019), shapes (Cohen et al., 1994), pictures (Kim

et al., 2002), and the locations of pictures (Du et al., 2020d,c).

The DRT is a standard workload assessment method in ground transportation (ISO/TC

22/SC 39, 2016). A human operator receives a sequence of stimuli (visual or tactile) and

responds (i.e., clicks a micro switch) immediately after receiving the stimuli. The hit rate
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and response time can indicate human workload (Chang et al., 2017).

If designed well, secondary tasks can have high fidelity (Lee et al., 2017). However,

secondary tasks are designed to probe the residual capacity for the human and are not used

for a primary task (Wickens, 2008). In addition, people can pay different levels of atten-

tion to secondary tasks (Verwey, 2000) and, hence, influence primary task performance.

Therefore, secondary tasks are not applicable for adaptive automation systems.

1.3.3 Subjective Measures

Subjective measures are usually offline and are widely used for workload assessment

to evaluate systems. The measurement is commonly done via questionnaires after a hu-

man operator finishes a task. Subjective measures can be multidimensional (e.g., NASA

Task Load Index (NASA TLX) (Hart and Staveland, 1988) and Subjective Workload As-

sessment Technique (SWAT) (Reid and Nygren, 1988) ) and unidimensional (e.g., Rating

Scale Mental Effort (RSME) (Zijlstra and Van Doorn, 1985), activation scale (De Waard,

1996), and anchored rating (Schweitzer and Green, 2006)). The SWAT contains three di-

mensions: time load, mental effort load, and physiological stress load (Reid and Nygren,

1988). The NASA TLX asks human operators to provide separate subjective ratings on six

subscales of mental demand, physical demand, temporal demand, performance, effort, and

frustration (Hart and Staveland, 1988). The NASA TLX has been widely used in previous

studies. For example, researchers used the NASA TLX to measure a driver’s workload

during left-turn maneuvers (Hancock et al., 1990) and when answering mobile phone calls

(Alm and Nilsson, 1995). Due to their offline nature, subjective measures are usually not

applicable to adaptive automation systems.
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Table 1.1: Summary of physiological sensors
Physiological Measures Physiological Sensors Intrusiveness

Brain signals
Electroencephalogram (EEG) Intrusive
Functional near-infrared spec-
troscopy (fNIRS)

Intrusive

Galvanic skin responses
(GSR)

GSR Intrusive

Heart rate indices
Electrocardiogram (ECG or EKG) Intrusive
Optical sensors (PPG) - fin-
ger/earlobe

Intrusive

Optical sensors (PPG) - wrist Nonintrusive
Eye-related measures Eye-trackers Nonintrusive

1.3.4 Physiological Measures

Physiological measures rely on changes in human physiological signals (Lee et al.,

2017). Researchers have found that various types of physiological signals indicate human

workload changes, such as brain signals, galvanic skin response (GSR), heart rate indices,

and eye-related measures (Heard et al., 2018). Table 1.1 summarizes the physiological

sensors for different physiological measurements and their intrusiveness.

Brain Signals

Researchers have used different brain signals to measure human workload, such as

electroencephalogram (EEG) (Sterman and Mann, 1995; Hankins and Wilson, 1998; Borgh-

ini et al., 2014; Diaz-Piedra et al., 2020) and functional near-infrared spectroscopy (fNIRS)

(Hirshfield et al., 2009; Ayaz et al., 2012). EEG measures electrical activity in the human

brain by attaching electrodes to the scalp. Diaz-Piedra et al. (2020) measured army combat

drivers’ mental workload on different terrains. Borghini et al. (2014) reviewed previous

studies of using EEG to assess aircraft pilots’ and vehicle drivers’ mental workload and

showed that the increment of EEG power in the theta band and decrement in the alpha band

indicated high mental workload. Ayaz et al. (2012) used fNIRS, which measures brain
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activity, to obtain functional neuroimaging to assess human operators’ mental workload

while performing air traffic control tasks. Both EEG and fNIRS are considered intrusive

measurements, as they require connecting many wires to the head. Therefore, they are

sometimes not acceptable for adaptive automation systems.

Galvanic Skin Response

Galvanic skin response (GSR), also known as electrodermal activity (EDA), reflects

variations in the electrical characteristics of the skin (e.g., skin conductance). Raw GSR

signals contain two types of skin conductance: tonic and phasic. Tonic skin conductance,

also referred to as skin conductance level (SCL), is the baseline level of skin conduc-

tance. Phasic skin conductance, referred to as skin conductance response (SCR), changes

as humans perform tasks. GSR has been used to assess human workload (Shi et al., 2007;

Reimer et al., 2009; Nourbakhsh et al., 2012; Schneegass et al., 2013). For example,

Reimer et al. (2009) manipulated drivers’ workload by different levels of auditory n-back

memory tasks and showed that skin conductance increased dramatically when a 0-back

memory task was first performed. Schneegass et al. (2013) measured drivers’ SCR in real-

world driving under different traffic conditions and measured subjective workload using

a post-hoc video rating. They found that both the workload and SCR were high in the

30 km/h zone. Nourbakhsh et al. (2012) measured human cognitive load in arithmetic and

reading tasks using both the temporal and spectral features of GSR. As GSR is usually

measured by skin surface electrodes attached to the fingers, hands, and feet, it is also con-

sidered an intrusive measurement. Hence, GSR not acceptable for adaptive automation

systems.
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Heart Rate Indices

Heart rate and heart rate variability (HRV) are sensitive measures of human workload

(Aasman et al., 1987; Vicente et al., 1987; Jorna, 1993; Hankins and Wilson, 1998; Backs

et al., 2003; Reimer et al., 2009). For instance, Jorna (1993) assessed pilots’ workload

using heart rate and heart rate variability. In addition, Backs et al. (2003) showed that heart

rate had a consistently significant association with visual demand, an indicator of visual

mental workload (Tsimhoni et al., 1999), when driving a simulated vehicle. They found

that heart rate increased when visual mental workload increased. These studies showed the

pattern that heart rate increased and heart rate variability decreased when human workload

increased (Heard et al., 2018). However, this pattern did not hold for all people. Reimer

et al. (2011) studied the impact of a naturalistic hands-free mobile phone call task on

heart rate and driving performance in two age groups: young adults (19–23) and late

middle-aged adults (51–66). They found that for young adults, heart rate accelerated when

answering the phone. However, the late middle-aged adults did not illustrate this pattern.

Heart rate can be measured using different types of sensors, such as electrocardiogram

(ECG or EKG) and optical sensors (PPG). ECG records the electrical signals of the heart

and is intrusive, as the electrodes are normally attached to the torso. PPG records blood

volume changes to track heart rate. PPG can be both intrusive (attached to fingers and

earlobes) and non-intrusive (attached to wrist). However, the PPG on the wrist can be

easily affected by hand movement and, therefore, is not suitable for the driving task (Chen

et al., 2015).

Eye-related Measures

Eye-tracking devices, as a non-intrusive (or less-intrusive) technology, have been in-

creasingly used to assess operators’ workload (Moacdieh et al., 2020). Previous stud-
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ies have largely focused on statistical analysis to show that certain physiological signals

significantly change under different workload conditions (Palinko et al., 2010; Demberg,

2013; Kun et al., 2013). Different types of eye-related measurements have been investi-

gated in the previous literature, as shown in Table 1.2. These eye-related measurements

can be categorized into three groups: 1) pupil-related measures, 2) blink-related measures,

and 3) gaze-related measures.

1) Pupil-related measures. Pupil diameters are widely used to assess human work-

load (Palinko et al., 2010; Demberg, 2013; van der Wel and van Steenbergen, 2018).

Researchers have found that pupil diameter, pupil diameter change, and pupil diameter

change rate increased under high workload in different scenarios (van der Wel and van

Steenbergen, 2018; Palinko et al., 2010). Pupil diameter change is the difference between

people’s pupil diameter and the baseline pupil diameter, and pupil diameter change rate is

the first order derivative of pupil diameter over time. In an air traffic control task, Ahlstrom

and Friedman-Berg (2006) found that the operators’ mean pupil diameter was significantly

larger when using a static storm forecast tool than when using a dynamic storm forecast

tool, which indicated a higher workload with static storm forecast tools. Furthermore, Kun

et al. (2013) found that a driver’s pupil diameter change increased when first preparing to

answer a question when driving on both straight and curvy roads. Similarly, Klingner et al.

(2008) found that pupil diameter change increased under high workload during three dif-

ferent standard tasks: mental arithmetic tasks, short-term memory tasks (memorizing and

repeating a sequence of digits), and aural vigilance task (identifying the misspoken digit in

a sequence of numbers). These results were consistent with Ahern and Beatty (1979) and

Kahneman and Beatty (1966). Palinko et al. (2010) found that the mean pupil diameter

change rate was sensitive to cognitive load changes due to engaging in a dialogue during

the driving task.
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Table 1.2: Eye-related measures indicate workload
Metric Reference

Pupil diameter

Recarte and Nunes (2000, 2003); Ahlstrom
and Friedman-Berg (2006); Recarte et al.
(2008); Vogels et al. (2018); Kahneman and
Beatty (1966)

Pupil diameter change

Ahern and Beatty (1979); Backs and Walrath
(1992); Klingner et al. (2008); Palinko et al.
(2010); Benedetto et al. (2011); Palinko and
Kun (2011); Kun et al. (2013)

Pupil diameter change rate Palinko et al. (2010)
ICA (frequency of rapid pupil dila-
tion)

Marshall (2000, 2002); Demberg (2013);
Rerhaye et al. (2018); Vogels et al. (2018)

Blink duration
De Waard (1996); Van Orden et al. (2001);
Ahlstrom and Friedman-Berg (2006);
Benedetto et al. (2011)

Blink rate
De Waard (1996); Van Orden et al. (2001);
Tsai et al. (2007); Recarte et al. (2008);
Benedetto et al. (2011)

Blink latency Eggemeier et al. (1990); Carmody (1994)

Fixation frequency
Backs and Walrath (1992); Van Orden et al.
(2001)

Fixation duration
Rayner and Morris (1990); Backs and Wal-
rath (1992); Recarte and Nunes (2000); Li
et al. (2012); Marquart et al. (2015)

Variability of fixation duration Recarte and Nunes (2000)
Variability of fixation position Recarte and Nunes (2000); Reimer (2009)
Percentage of fixations in area of in-
terest (AOI)

Recarte and Nunes (2000)

Saccadic extent
May et al. (1990); Recarte and Nunes (2000);
Van Orden et al. (2001)

Saccadic amplitude Moacdieh et al. (2020)
NNI (Nearest Neighbor Index) Di Nocera et al. (2007)
Spatial density Moacdieh et al. (2020)
Stationary entropy Moacdieh et al. (2020)
Scanpath length Moacdieh et al. (2020)
Transition rate Moacdieh et al. (2020)

Instead of directly using pupil diameter, pupil diameter change, and pupil diameter

change rate, researchers have developed the Index of Cognitive Activity (ICA) by apply-

ing a wavelet decomposition to the pupil diameter signal to calculate the frequency of
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rapid pupil dilations (i.e., average number of abrupt discontinuities in pupil diameter per

second) (Marshall, 2000, 2002). The ICA has been used as a general index for human

workload, and higher ICA indicates higher cognitive workload (Demberg, 2013; Rerhaye

et al., 2018; Vogels et al., 2018). Vogels et al. (2018) compared the ICA and pupil diameter

of 32 participants during two dual-task scenarios: a language comprehension task with a

memory task and a driving task with a memory task. In the language comprehension task,

participants responded to comprehension questions after listening to some sentences. In

the driving task, participants controlled the steering wheel to trace a moving target. In the

memory task, participants were asked to recall the speed limit signs they had just passed.

The results showed that people have higher ICA when performing more difficult language

comprehension tasks. However, the results for the memory task were contradictory; with

the more difficult memory task, ICA significantly decreased, where as pupil size signifi-

cantly increased. This indicated that pupil diameter and ICA reflected different cognitive

and neuronal processing in dual-task scenarios.

2) Blink-related measures. Different blink-related measures have been investigated

in the previous literature, such as blink duration, blink rate, and blink latency (De Waard,

1996; Marquart et al., 2015; Heard et al., 2018). Blink duration is the length of a blink,

and it decreases under high workload (Ahlstrom and Friedman-Berg, 2006). Blink rate,

also called blink frequency, is the number of blinks per minute. Recarte et al. (2008)

investigated human blink duration and blink rate under different cognitive tasks (listening,

talking, and calculating) and visual demand (with visual search or without visual search).

The results indicated that blink duration decreased as cognitive workload increased or

visual demand increased. However, blink rate decreased for higher visual workload and

increased for higher mental workload. Benedetto et al. (2011) found that blink duration

is more sensitive and reliable than blink rate for measuring a driver’s visual workload in a
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simulated driving experiment. Blink latency is the time between consecutive blinks, which

increases as cognitive and visual workload increases (Eggemeier et al., 1990; Carmody,

1994).

3) Gaze-related measures. Gaze-related measures are mainly based on fixation and

saccades, the two phases of human eye movement. Fixations are the phases when humans

maintain their gaze points at a location for a time period and gather new information from

the area they are examining (Jacob, 1995; Rayner, 1995, 2009). Saccades are the rapid

eye movements between fixations (Jacob, 1995; Salvucci and Goldberg, 2000; Jacob and

Karn, 2003). The metrics computed from fixation and saccades can be roughly categorized

into two groups: temporal information and spatial information (Marquart et al., 2015). The

temporal information group includes fixation duration and fixation frequency (i.e., num-

ber of fixations in one minute). Both fixation duration and fixation frequency increase

when a person experiences a high workload (Rayner and Morris, 1990; Backs and Wal-

rath, 1992; Recarte and Nunes, 2000; Van Orden et al., 2001; Marquart et al., 2015). For

instance, Backs and Walrath (1992) found that when searching for information on a sym-

bolic display, people had longer fixation duration and a higher number of fixations when

using a color-coded display instead of a monochrome display. The spatial information

group includes different measures to describe gaze distribution. For example, Recarte and

Nunes (2000) investigated different fixation-related measurements when drivers perform

mental tasks (verbal or spatial imagery) while driving on highways or roads. They found

that gaze distribution decreased when mental tasks were performed, and they used metrics

like variability of fixation position, percentage of fixations in an area of interest (AOI),

and saccadic size (i.e., range of saccadic extent). Similarly, Moacdieh et al. (2020) also

found gaze distribution decreased under high workload, and they used metrics like spatial

density, stationary entropy, saccadic amplitude, scanpath length per second, and transition
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rate. Di Nocera et al. (2007) proposed the Nearest Neighbor Index (NNI) to measure the

spatial dispersion of eye fixations, which is the ratio between the average of the minimum

distances between fixation points and the mean random distance, if one would expect the

distribution to be random. In a simulated flight, Di Nocera et al. (2007) showed pilots had

larger NNI when landing and departure than when cruising.

Researchers recently started to use machine learning techniques to estimate human

workload by modeling the workload estimation problem as a supervised classification

problem (Heard et al., 2018). Given a sequence of physiological signals from a human

operator, they first extract a feature vector from the signals and then classify this feature

vector into different classifiers representing different workload levels. Previous studies

have investigated different machine learning models for different eye-related features, as

shown in Table 1.3. The last column of Table 1.3 shows the different evaluation methods

in the previous studies. “Within-participants” means that the results are evaluated using

the training data and testing data from the same participant. “Cross-participants” means

that the training data and testing data are from different participants.

Kosch et al. (2018a) used SVMs with a linear kernel for pupil dilation to classify work-

load while performing a math task into two levels. Instead of using pupil diameters in a

time domain, Yokoyama et al. (2018) used high- and low-frequency power of pupil size

variations with linear SVMs to estimate human workload while driving. In addition to

pupil-related measures, researchers have investigated other eye-related features. For in-

stance, Halverson et al. (2012) used SVMs with different kernels (i.e., linear, quadratic,

polynomial, multilayer perceptron [mlp], and Gaussian radial basis function [RBF]) to es-

timate human workload with features extracted from different time windows (1, 5, 10, and

30 seconds). Among the different features (i.e., blink duration, blink frequency, closure,

fixation duration, NNI, percentage of eye closure [PERCLOS], pupil diameter, saccade
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Table 1.3: Machine learning for workload estimation using eye-related features
Reference Model Feature Evaluation method

Chen and Epps (2013)
Gaussian Mix-
ture Models
(GMMs)

Pupil diameter, sac-
cadic amplitude, fixa-
tion duration

Within-
participants

Liang et al. (2007)
SVM(RBF ker-
nel), Logistic
Regression

Fixation duration,
mean and standard
deviation of fixation
positions, mean of
blink frequency, other
driving-related feature

Within-
participants

Halverson et al.
(2012)

SVM (linear,
RBF, quadratic,
polynomial,
mlp kernel)

Pupil diameter, fixation
duration, saccade du-
ration, blink duration,
blink frequency, NNI,
saccade frequency, sac-
cade velocity, percent-
age eye closure

Within-
participants

Yokoyama et al.
(2018)

SVM (linear
kernel)

High and low Fre-
quency power of pupil
size variation

Within-
participants

Kosch et al. (2018a)
SVM (linear
kernel)

Pupil dilation
Within-
participants

Kosch et al. (2018b) SVM
Gaze deviation from
reference track

Within- and
cross-participants

Zhang et al. (2008) Decision Tree

Mean and standard de-
viation of pupil size,
number of gazes in
AOI, portion of time in
AOI, mean visit time of
AOI, other driving re-
lated features

Within- and
cross-participants

Fridman et al. (2018)
HMM, Convo-
lutional neural
network (CNN)

Gaze trajectory, eye
image

Cross-
participants

Hogervorst et al.
(2014)

SVM (linear
kernel), Elastic
net

Pupil size, blink rate,
blink duration, other
EEG and ECG features

Within-
participants

duration, saccade frequency, and saccade velocity), they found that pupil diameter from

five-second time window with a linear kernel achieved the best performance.

Unlike the above previous studies, which focused on a single machine learning model
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for a single feature, researchers have also used a single machine learning model for multi-

ple features by concatenating different features into one feature vector (Liang et al., 2007;

Zhang et al., 2008; Chen and Epps, 2013). For example, Liang et al. (2007) combined

eye-related measurements (i.e., fixation duration, mean and standard deviation of fixation

positions, and mean of blink frequency) and driving-related measurements into one feature

vector for SVMs with an RBF kernel. Similarly, Zhang et al. (2008) used decision trees

to combine gaze-related measurements (i.e., number of gazes in AOI, portion of time in

AOI, and mean visit time of AOI), pupil-related measurements (i.e., mean and standard

deviation of pupil size), and driving-related measurements. Instead of concatenating all

measurements together, Chen and Epps (2013) selected top candidate measurements based

on multiple regression analysis and used GMMs to classify human workload into different

levels. Recently, Fridman et al. (2018) used a novel convolutional neural network (CNN)

with raw eye images and the HMM with gaze trajectories to estimate a driver’s workload.

The majority of previous studies have focused on a single machine learning model for

a single feature or a single machine learning model for multiple features by concatenating

them into one feature vector; however, there have been a few exceptions. For example,

Hogervorst et al. (2014) trained multiple elastic nets using different types of features (i.e.,

eye-related features, EEG features, and ECG features) and combined these three models

by averaging their probability outputs.

1.4 Research Aim

According to the above literature review on shared control for semi-autonomous vehi-

cles and human workload measurement, the following research gaps exist:

First, existing studies have developed haptic shared control schemes for semi-autonomous

vehicles that adapt to different factors. However, workload, as an important human fac-
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tor for human-automation interaction (Lee et al., 2017), has not yet been considered for

adaptation purposes.

Second, different physiological measurements have been used to estimate human work-

load. Among them, we are interested in non-intrusive physiological measures, such as

eye-related measures using eye trackers. However, the existing studies mainly focused

on single machine learning models for single features and showed that different machine

learning models work best for different features. Therefore, it is unclear how to leverage

different machine learning models that work best for different features to improve overall

performance.

Third, the generalizability of the workload estimation is also critical for workload-

adaptive human-automation interaction systems. However, the existing studies evaluated

their workload estimation models using data collected from a user study, in which different

workload levels were controlled by a single factor. Thus, it is unclear whether those models

can be generalized to other scenarios.

To fill these research gaps, collaborating closely with Yifan Weng, Dr. Tulga Ersal,

and Prof. Jeffrey Stein from the Department of Mechanical Engineering at the University

of Michigan, we address the following specific research aims in this dissertation:

(1) We proposed, together with our collaborators from the Department of Mechani-

cal Engineering, a workload-adaptive haptic shared control scheme for semi-autonomous

vehicles and examined the effects of workload adaptation on haptic shared control perfor-

mance.

(2) We explored different eye-related features to estimate human workload. We pro-

posed a computational model to leverage the different machine learning models that work

best for different features to improve workload estimation performance.

(3) We investigated the generalizability of our proposed workload estimation model
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through different human subject experiments where the workload levels are manipulated

by different factors.

1.5 Dissertation Structure

This dissertation is presented in six chapters. Chapter I provides an introduction to the

dissertation’s research problem, related work, and research aims. Chapter II introduces our

developed teleoperated dual-task shared control simulation platform and two pilot studies

to determine the design parameters for the platform. Chapter III shows the two human

subject experiments used to collect data for building the workload estimation model and

investigating the effects of the workload-adaptive haptic shared control scheme on human

performance. Chapter IV introduces our proposed Bayesian inference model for work-

load estimation that leverages different machine learning models for different features.

Chapter V illustrates the generalizability of our proposed Bayesian inference model in

two human subject experiments. Chapter VI summarizes this dissertation and presents its

intellectual merit and broad impact before making recommendations for future work.
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CHAPTER II

Teleoperated Dual-task Shared Control Platform

2.1 Introduction

Together with our collaborators - Yifan Weng, Dr. Tulga Ersal, and Prof. Jeffrey

Stein from the Department of Mechanical Engineering at the University of Michigan -

we developed a teleoperated dual-task shared control simulation platform where human

operators perform a driving task and a surveillance task simultaneously.

This chapter describes the design of the teleoperated dual-task shared control simula-

tion platform and the selection of design parameters using two pilot studies with 16 partic-

ipants. The simulation platform consisted of two tasks: a driving task and a surveillance

task. In the driving task, participants shared the control of a ground vehicle together with

autonomy. In the surveillance task, participants identified potential threats in the image

feedings.

Pilot Study 1 was meant to develop the tracks used in the simulation platform. Pilot

Study 2 was meant to determine the parameters in the surveillance task.

2.2 Dual Task Shared Control Simulation Platform

Collaborating with researchers from the Department of Mechanical Engineering at

the University of Michigan, we developed a dual-task shared control simulation plat-
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(a) Driving task (right screen) and surveil-
lance task (left screen).

(b) Red and green paddles used to perform
the surveillance task.

Figure 2.1: Dual-task shared control simulation platform.

form for teleoperation of a simulated notional high mobility multipurpose wheeled vehicle

(HMMWV). The platform has been used throughout this dissertation.

In this testbed, participants performed two tasks simultaneously, a driving task and a

surveillance task, as shown in Fig. 2.1. In the driving task, a participant and the autonomy

shared the control of the HMMWV at a fixed speed of 15 m/s (around 34 mph) to drive as

close to the centerline as possible. In the surveillance task, the participant received image

feeds and needed to identify potential threats (Figure 2.2). If the participant identified

a threat, s/he pressed the red paddle at the steering wheel to report “danger.” Otherwise,

the participant pressed the green paddle to report “clear” (Figure 2.1b). As the steering

wheel can only rotate from -90 degrees to 90 degrees, participants would not need to cross

their hands and could always keep the hands on the steering wheel. The potential threat

will appear in only one of the four images. The screenshots are selected with the same

difficulty as in (Yang et al., 2017; Du et al., 2018).

Figure 2.3 shows the pipeline for the surveillance task. There was a transition period

with a white screen between two sets of image feeds. Participants needed to identify the

potential threats within a certain time limit. The fixed time limit was varied to manipulate

the workload level. In Pilot Study 2, we investigated the effects of different fixed time
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Figure 2.2: Illustration of the surveillance task. Lower left: threat.

limits on human operators’ workloads.

2.3 Real-time Gaze Points in World Frame

We used a novel eye tracker, Tobii Pro Glasses 2 (Tobii Pro AB, 2014), to measure

human pupil sizes and gaze points in real time. The Tobii Pro Glasses 2 only provided

real-time gaze points in the Tobii front camera frame. However, we required human gaze

points in the world frame to estimate human workload (see Chapter IV). Let OF represent

the Tobii front camera frame, as shown in Figure 2.4a. We captured a photo of the entire

workspace, as shown in Figure 2.4b, and used its coordinate system as the world frame.

Let OW represent the coordinate system of this world image. Let pF represent the gaze

point in the Tobii front camera OF , which could be directly obtained from the Tobii Pro

Glasses 2. Therefore, our goal is to compute pW , which is the gaze point mapped to the

fixed world image OW .

To transform pF to pW in real time, we need to compute the homography matrix be-
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Figure 2.3: Pipeline for surveillance task. Participants received image feeds and needed to
identify potential threats within the time limit. There was a transition period
with a white screen between two sets of image feeds. The transition period
lasted for one second.

tween OF and OW in real time. Thus we attached four AprilTags (Wang and Olson, 2016)

on top of the monitors, as shown in Figure 2.4b. As we could not obtain real-time image

feeds from the Tobii front camera, we introduced an additional camera on top of the Tobii

Pro Glasses 2 that was mounted with a 3D printed frame, as shown in Figure 2.4a. Let OC

represent the coordinate system of the additional camera. We usedOC as a bridge between

OF and OW .

First, let pF = [xFp , y
F
p , z

F
p , 1]T represent the 3D gaze point in the Tobii front camera.

Let RC
F represent the rigid body transformation matrix between OF and OC (i.e., the ho-

mogenous transformation matrix). Thus, we have pC = RC
F p

F , where pC represents the

3D gaze point in OC .

Second, we transformed 3D point pC to the pixel point qC = [uC , vC , 1]T in the ad-

ditional camera, where uC , vC represents the pixel location of the gaze point in the addi-

tional camera plane. Let KC ∈ R3×4 represent the intrinsic camera parameter. We have

qC ∼ KCpC , where we normalized the third dimension of qC to 1. Note that both the RC
F

and KC are fixed; therefore, we can obtain these two matrices beforehand by a calibration

procedure. Specifically, we used the multiple camera calibration tool with a pinhole cam-
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era model from the open-source package Kalibr (Kannala and Brandt, 2006; Maye et al.,

2013).

Finally, we transformed the pixel location of the gaze point qC from OC to OW . Let

HW
C represent the homography matrix between OC and OW . We have qW ∼ HW

C q
C ,

where qW represents the pixel location of the gaze point in the world image (Figure 2.4b).

We normalized the third dimension of qW to 1.

Note that HW
C is not fixed; it will change when human operators move their heads

during the experiment. First, we obtained the corner points’ locations of the AprilTags in

both the world image and the real-time image feed from the additional camera. Then, we

used Random Sample Consensus (RANSAC) algorithm to compute the homography ma-

trix OC and OW (Fischler and Bolles, 1981). Specifically, we used the OpenCV package

to compute the homography matrix (Bradski, 2000).

The Tobii Pro Glasses 2 provide gaze points and pupil sizes at 50 Hz. However, the

additional camera captures and processes images at 30 Hz. Therefore, we down-sampled

the Tobii Pro Glasses 2 to 30 Hz.

2.4 Pilot Study 1: Track Selection

In Pilot Study 1, we developed and selected six driving tracks with two considerations.

First, the driving tracks should have the same difficulty. Second, along each track, the dif-

ficulty at every point should be roughly the same. The two considerations ensured that the

difficulty of the dual-task mission can be easily manipulated by varying the surveillance

task urgency because the difficulty of the driving task is fairly constant.
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(a) Tobii front camera (OF ) and additional camera (OC) frames

(b) World image frame (OW )

Figure 2.4: Coordinate systems for the Tobii front camera (OF ), additional camera (OC),
and world image (OW ).

2.4.1 Method

Participants

Ten participants (age: mean = 21.8 years, SD = 2.7 years; two females, eight males)

took part in Pilot Study 1. All participants had normal or corrected-to-normal vision and

hearing, with an average of 4.1 years of driving experience (SD = 1.7 years).
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Figure 2.5: Illustration of offset between autonomy perceived lane (orange solid line) and
centerline (white dashed line). The offset is 1 m and could be on either the left
side or the right side of the centerline.

Experimental Apparatus and Stimuli

Pilot Study 1 used the simulation platform shown in Section 2.2. To emulate degraded

localization due to sensor uncertainty, we introduced an offset such that the autonomy

tracked a line that deviated from the centerline by 1 m in the two pilot studies and two ex-

periments in this chapter. Figure 2.5 illustrates this offset. The orange solid line indicates

the autonomy perceived lane, whereas the white dashed line is the centerline. Note that

the offset could be on either the left side or the right side of the centerline.

In Pilot Study 1, participants only performed the driving task with the non-adaptive

haptic shared control scheme (see Section 3.3.1 in Chapter III for details). We did not

present the surveillance task to the participants, as we only wanted to evaluate the difficulty

of the driving task.

Experimental Design

Pilot Study 1 used a within-subjects design with 10 different candidate tracks (Fig-

ure 2.6). The presentation of tracks followed a 10 × 10 Latin square design to eliminate

potential order effects.
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(a) Track ID: 1 (b) Track ID: 2 (c) Track ID: 3

(d) Track ID: 4 (e) Track ID: 5 (f) Track ID: 6

(g) Track ID: 7 (h) Track ID: 8 (i) Track ID: 9

(j) Track ID: 10

Figure 2.6: Candidate tracks. Magenta dots indicate the locations where the participants
reported the difficulty of driving.

Measures

Along each track, participants reported the difficulty of driving at 11 locations using a

7-point Likert scale (1: easiest; 7: most difficult). The magenta dots in Figure 2.6 indicate
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the locations where the participants reported the difficulty of driving. After completing

each track, participants also evaluated to what extent the track had the same difficulty any-

where along it using another 7-point Likert scale (1: the same; 7: significantly different).

We named it the “uniformity score.” For each track, we calculated the average of the 11

reported difficulty scores as the “overall difficulty score” of the track.

Experimental Procedure

Participants provided signed informed consent and filled in a demographic survey.

During the training session, the participants performed two trials on the training tracks,

and each trial took approximately 1.5 minutes. In the first trial, the participants only drove

on the track and did not report difficulty. However, in the second trial, the participants

drove on the track and reported difficulties at the four designed locations, indicated by a

sign on the side of the road in the driving simulator.

In the official pilot study, the participants drove on 10 different tracks and reported

difficulties at the 11 designed locations. After each track, the participants were asked to

evaluate whether driving was the same or significantly different at any location of the track

using a 7-point Likert scale.

After finishing all 10 trials, the subjects were required to fill out a debriefing survey

about any outstanding questions and their opinions of or suggestions for the experiment

they had just completed.

2.4.2 Results

One-way repeated measures analysis of variance (ANOVA) was conducted for the driv-

ing tracks as the within-subjects variable. The results showed a non-significant difference

between the 10 tracks in their overall difficulty scores (F (9, 81) = 1.161, p = 0.331) and

in their uniformity score (F (9, 81) = 0.557, p = 0.828). Based on the results, we selected
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tracks 2, 3, 5, 6, 8, and 9 to be used in Pilot Study 2 and Experiment 1, and tracks 2, 3, 6,

and 9 to be used in Experiment 2.

2.5 Pilot Study 2: Surveillance Task Parameter Selection

In this chapter, we aimed to manipulate the difficulty of the dual-task mission and,

hence, the human operators’ workload by varying the surveillance task urgency. In Pilot

Study 2, we selected a fixed time limit for the detection period of the surveillance task so

that the difficulty and workload of the dual-task mission could be manipulated.

2.5.1 Method

Participants

Seven participants took part in Pilot Study 2. The data from one participant were dis-

carded due to an equipment malfunction. The remaining six participants were on average

25.3 years old (SD = 1.6 years) and had an average of 2.7 years of driving experience (SD

= 1.6 years). There were two females and four males in the remaining six participants. All

participants had normal or corrected-to-normal vision.

Experimental Apparatus and Stimuli

Pilot Study 2 used the testbed mentioned in Section 2.2 with the tracks selected in

Pilot Study 1. The dual-task mission was presented to the participants. A non-adaptive

haptic shared control scheme was applied. The offset of the autonomy perceived lane was

applied as well. We also used the non-adaptive shared control scheme (see Section 3.3.1

in Chapter III for details) in Pilot Study 2.

Experimental Design

The pilot study used a within-subjects design with six different time limits for the

detection period of the surveillance task: 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5 seconds (i.e., par-
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ticipants had to complete the detection task within the given time limit). The six time

limits were selected based on the results from our previous study (Luo et al., 2019). Fig-

ure 2.7 shows the histogram of the response time of the participants during the surveillance

task. Participants performed both the driving task and the surveillance task on six different

tracks, each with a constant different time limit for the detection period. The presentation

of surveillance task conditions followed a 6× 6 Latin square design to eliminate potential

order effects.
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Figure 2.7: Histogram of response time for surveillance task from previous study. Red
dash lines indicate 1.5, 2.5, and 6.5 seconds respectively.

Measures

Participants reported their workload of the dual-task mission using the NASA TLX

survey (Hart and Staveland, 1988), and their perceived difficulty of the dual-task mission.

Experimental Procedure

Participants provided signed informed consent and filled out a demographic survey.

After that, they were provided with instructions and training. Participants were first trained

on the driving task alone, followed by the surveillance task alone. After that, they per-

formed both the driving and surveillance tasks on three different tracks. Each track had a
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different time limit for the surveillance task: 5.5, 3.5, and 1.5 seconds.

During the official pilot study, participants performed the driving task and surveillance

task on six different tracks with six different surveillance task fixed time limits. Each track

took approximately three minutes. After each trial, the participants were asked to fill out

a survey regarding their workload and difficulty during each track.

After finishing all six trials, the subjects were required to fill out a debriefing survey re-

garding any outstanding questions and their opinions of or suggestions for the experiment

they had just completed.

2.5.2 Results

One-way repeated measures ANOVA were conducted with the detection time limits

for the surveillance task as the within-subjects variable. The results showed a signifi-

cant difference of time limit on workload (F (5, 25) = 10.458, p < 0.001) and difficulty

(F (5, 25) = 13.423, p < 0.001). We then performed a series of t tests between different

pairs of time limits. The results revealed significant differences in workload and difficulty

between 1.5 s and 2.5 s (workload: p < .001, difficulty: p = .006), between 1.5 s and 3.5 s

(workload: p = .005, difficulty: p = .012), between 1.5 s and 4.5 s (workload: p = .004,

difficulty: p = .006), between 1.5 s and 5.5 s (workload: p = .001, difficulty: p < .001),

and between 1.5 s and 6.5 s (workload: p = .004, difficulty: p < .001). The differences

between any other pairs of time limits were non-significant.

Based on the results, we selected 1.5 s and 6.5 s time limits to be used in Experi-

ment 1 and Experiment 2 in Chapter III to induce varying levels of workload. Note that

in Experiment 1, we also included the 2.5 s time limit, as we were interested in exploring

participants’ performance with a slightly larger time limit compared to the 1.5 s time limit.
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2.6 Conclusion

In this chapter, we developed a teleoperated dual-task shared control simulation plat-

form as an example of a human-automation interaction system. The human operators

shared the control of an HMMWV together with autonomy while completing a surveil-

lance task simultaneously. We introduced how to obtain real-time pupil sizes and gaze

points in a world frame using Tobii Pro Glasses 2. We conducted two pilot studies to de-

termine the tracks used in the driving task and the time limits of the detection period in the

surveillance task. The selected tracks have similar difficulty, and the difficulty along each

track is consistent. The selected time limits of the detection period in the surveillance task

can manipulate human workload into different levels.

The findings should be viewed in light of the following limitations. First, due to the

limitation of image processing speed, we had to down-sample the data from Tobii Pro

Glasses 2 to 30 Hz. This may introduce some errors due to the imperfect synchronization

between the eye tracker and the additional camera, particularly when the humans moved

their heads quickly.

Second, the number of participants in the pilot studies is limited. More participants

were required for Pilot Study 1 to receive non-significant results between the tracks. How-

ever, when we designed the candidate tracks, we tried to keep the track curvatures consis-

tent and similar to each other. In addition, some tracks were mirrored with other tracks

(i.e., Track 1 and Track 2).

Third, we tried to manipulate the human operators’ workload by varying the time limit

of the detection period in the surveillance task, and we tried to keep the difficulty of the

driving task the same. However, human workload could also be imposed by the driving

task, for example, by the driving speed and headway required to avoid an obstacle. We
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addressed these issues in Chapter V.

Finally, the visualization system for the driving task in the proposed simulation plat-

form was not realistic. We updated the visualization system to a high-fidelity visualization

system and investigated human performance under the high-fidelity visualization system

in Chapter V.
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CHAPTER III

Workload-adaptive Haptic Shared Control

3.1 Introduction

To investigate the effects of real-time workload estimation in the human-automation

interaction system, we utilized semi-autonomous vehicles as an example. Together with

our collaborators - Yifan Weng, Dr. Tulga Ersal, and Prof. Jeffrey Stein from the Depart-

ment of Mechanical Engineering at the University of Michigan, we proposed a heuristic

design for the control consolidation that adapts to the human workload, which builds the

adaptive haptic shared control scheme.

In this chapter, we conducted two human subject experiments. Experiment 1 recorded

the eye-related measurements of human operators under different surveillance task con-

ditions to collect a data set to build the workload estimation model. We used the Hid-

den Markov Model to analyze the human operators’ gaze trajectory, based on which their

workload was estimated. In Experiment 2, we evaluated the performance of the proposed

workload-adaptive haptic shared control scheme.

3.2 Experiment 1: Data Collection for Workload Estimation

In Experiment 1, we collected a data set of human eye-related measurements (i.e.,

pupil sizes and gaze points) under different surveillance task urgency. We used the Hidden
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Markov Model (HMM) to estimate the human workload by analyzing 4 s gaze trajectory

data.

3.2.1 Workload Estimation with HMM

An HMM is a probabilistic model of the joint probability of a collection of random

variables {O1, O2, ..., OT , S1, S2, ..., ST}. St is a discrete variable that represents the hid-

den state at time step t. St can take values from {1, 2, ..., N}, where N is the number of

hidden states. Ot represents the observations at time step t. T represents the termination

time step. An HMM also contains a tuple of parameters as Θ = (π,A,B). π ∈ RN

is the prior distribution of P (S1). A ∈ RN×N is the stochastic transition matrix, where

A = {ai,j} = P (St = j|St−1 = i). B = {bj(·)} is a set of observation model for every

hidden state j ∈ {1, 2, ..., N}, where bj(ot) = P (Ot = ot|St = j) and ot is a given

observation at time step t.

In the present study, the observations ot are the gaze points, i.e., locations of where

the human is looking at relative to the external world coordinate shown as the magenta

dots in Figure 3.1. The observation models are a set of multivariate distributions over the

gaze points, i.e., bj(ot) = P (Ot = ot|St = j) ∼ N (µj,Σj), shown as the ellipsoids in

Figure 3.1. Thus B = {µj,Σj}.

We trained two HMMs, one for the high workload and one for the moderate workload.

For each workload level w, we collected a set of L gaze trajectories Dw = {Ol|Ol =

{ol1,ol2, ...,olT}}, where l = {1, 2, ..., L}. Thus, the learning process learns two sets of

HMM parameters Θw = (π,A,B), one for each workload level using data Dw. The

parameters of the HMMs were learned by the Expectation Maximization(EM) algorithm

using the open source implementations from Rozo et al. (2016) and Calinon (2016). To

learn the parameters, we defined four important probabilities:
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Figure 3.1: Example of using the Hidden Markov Model to model gaze trajectory to es-
timate workload. Magenta dots: gaze points. Ellipsoids: Multivariate normal
distributions.

αli(t)
k = P (O1 = ol1, ..., Ot = olt, St = i|Θk)

βli(t)
k = P (Ot+1 = olt+1, ..., OT = olT |St = i,Θk)

γli(t)
k = P (St = i|Ol,Θk)

ξli,j(t)
k = P (St = i, St+1 = j|Ol,Θk)

(3.1)

where k represents the kth iteration in the EM algorithm. The EM algorithm is then:
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E-step:

Recursively update α:

αli(1)k+1 = πkiN (ol1;µki ,Σ
k
i )

αlj(t+ 1)k+1 = [
∑N

i=1 α
l
i(t)

k+1aki,j]N (olt+1;µkj ,Σ
k
j )

Recursively update β:

βli(T )k+1 = 1

βli(t)
k+1 =

∑N
j=1 a

k
i,jβ

l
j(t+ 1)k+1N (olt+1;µkj ,Σ

k
j )

Update γ:

γli(t)
k+1 =

αli(t)
k+1βli(t)

k+1∑N
j=1 α

l
j(t)

k+1βlj(t)
k+1

Update ξ:

ξli,j(t)
k+1 =

γli(t)
k+1aki,jβ

l
j(t+1)k+1N (olt+1;µkj ,Σ

k
j )

βli(t)
k+1

M-step:

µk+1
i =

∑L
l=1

∑T
t=1 γ

l
i(t)

k+1olt∑L
l=1

∑T
t=1 γ

l
i(t)

k+1

Σk+1
i =

∑L
l=1

∑T
t=1 γ

l
i(t)

k+1(olt−µ
k+1
i )(olt−µ

k+1
i )T∑L

l=1

∑T
t=1 γ

l
i(t)

k+1

πk+1
i =

∑L
l=1 γ

l
i(1)

L

k+1

ak+1
i,j =

∑L
l=1

∑T
t=1 ξ

l
i,j(t)

k+1∑L
l=1

∑T
t=1 γ

l
i(t)

k+1

The two steps iterate until convergence. The number of hidden states was determined

by the Bayesian Information Criterion (BIC) (Calinon and Billard, 2005; Schwarz et al.,

1978).

Given a gaze trajectoryO = {o1,o2, ...,oT}, we computed the likelihood of P (O|Θ̃w)

via the forward algorithm, where Θ̃w represents parameters for different learned HMMs

for the high workload and moderate workload. The forward algorithm is similar to the re-

cursive update of α in the E-step of the EM algorithm. We have P (O|Θ̃w) =
∑N

i=1 α̃i(T ).

To estimate the workload of O, we found the HMM with the maximum likelihood, i.e.,
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arg max
w

P (O|Θ̃w).

Our adaptive shared control scheme is based on the human operator’s real-time work-

load, eyes on road, and input torque (see Section 3.3 for details). We used the gaze point

data from a 4 s time window captured by the Tobii eye tracker (30 Hz sampling rate as men-

tioned in Section 2.3) to estimate participants’ workload and eyes on road. Thus, T = 120.

Let wt represent a human operator’s workload at time t, wt = c1 arg max
w

p(Ot|Θ̃w) + c2,

where c1, c2 are scaling and offset factors such that wt = 50 represents moderate work-

load, and wt = 100 represents high workload. A human operator’s eye on road is defined

as the percentage of time that s/he is looking at the driving task. Let et denote the human

operator’s eyes on road. et is calculated as the average number of times that a participant’s

gaze points fall on the driving screen within the time window T .

Due to the large mass and high center of gravity of the simulated HMMWV, a rapid

change of control commands resulting from a rapid change of wt and et could trigger

a rollover. Therefore, we applied a moving average filter with a 1 s time window and

downsampled wt and et to 10 Hz.

3.2.2 Method

Participants

A total of 13 university students participated in the experiment. Data from one partici-

pant were discarded due to equipment malfunction. The remaining 12 participants were on

average 26.7 years old (SD = 3.0 years) and had an average of 8.3 years of driving experi-

ence (SD = 4.4 years). There were 6 females and 6 males in the remaining 12 participants.

All participants had a normal or corrected-to-normal vision.

37



Experimental Apparatus and Stimuli

Experiment 1 used the same testbed as mentioned in Section 2.2 with the tracks se-

lected in Pilot Study 1. The dual-task mission was presented to the participants. Similar to

Pilot Study 1 and Pilot Study 2, we applied the autonomy’s perception offset for the cen-

terline to emulate the sensor uncertainty as shown in Figure 2.5. The non-adaptive haptic

shared control scheme was applied (see Section 3.3.1 for details).

Experiment Design

We manipulated the workload of the experimental tasks (the driving and the surveil-

lance task) by varying the time limits for the detection period of the surveillance task.

During the experiment, the participants drove on six different tracks, each lasting for ap-

proximately 3 min. Every track was equally segmented into three portions, and each por-

tion had a different time limit for the detection period for the surveillance task, 1.5, or 2.5,

or 6.5 s. The order of presentation for the time limits on each track is balanced by two

3× 3 Latin squares.

Measures

Participants wore a pair of the Tobii Pro Glasses 2, and their gaze points and pupil

sizes were recorded at 30Hz as mentioned in Section 2.3.

Experiment Procedure

Participants provided a signed informed consent and filled in a demographic survey.

After that, they received a training session. In the training session, participants first per-

formed a driving only task to get familiar with driving with the non-adaptive haptic shared

control autonomy, which takes approximately 1.5 minutes and then performed three tri-

als of surveillance task with 6.5, 2.5, 1.5 second fixed time limit for the detection period
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where each trial takes approximately 60 seconds. After that, the participants performed

driving and surveillance task together on 3 different tracks with different surveillance task

fixed time limits - 6.5, 2.5, 1.5 second. Each track takes approximately 1.5 minutes. The

order of the surveillance task fixed time limits (6.5, 2.5, 1.5 seconds) is designed to help

the participants to build capability to perform surveillance task with different difficulties

gradually.

After the training session, participants were assisted to wear the eye tracker and un-

derwent the calibration. With the normal room light and without any specific tasks, the

experimenter measured each participant’s baseline pupil diameters twice, each about 30 s.

Participants were asked to sit down, look at the white wall, relax, and clear their minds

during the measurement of the baseline pupil diameters. During the formal experiment,

participants performed the driving task and the surveillance task on six different tracks,

each lasting approximately 3 min.

3.2.3 Results

In Experiment 1, we used Hidden Markov Models to model gaze trajectories as a

benchmark for workload estimation for the collected dataset.

Data Processing

Participants drove on six different tracks in this experiment as shown in Figure 3.2. As

mentioned above, each track was segmented into three portions, and each portion had a

different time limit for the detection period of the surveillance task as shown in Figure 3.3.

We treated the portion with 1.5 s time limit as the high workload portion and the portion

with 6.5 s time limit as the moderate workload portion. The ground truth labels were

determined in Pilot Study 2. For each track, we randomly selected five sequences of data

in each portion, and each sequence lasted 4 s, shown as the blue/yellow boxes in Figure 3.3.
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(f) Track 6 (ID: 9)

Figure 3.2: Six selected tracks in Experiment 1.

Evaluation of Workload Estimation Performance

Due to the small dataset of 12 participants, we used the holdout method (Kim, 2009)

for cross-validation and tested the performance of our proposed method. In each run of the
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Figure 3.3: Illustration of track segmentation. Black curve indicates the track. Blue boxes
indicate 5 randomly selected sequences of data in moderate workload portion.
Yellow boxes indicate 5 randomly selected sequences of data in high workload
portion. Each sequence lasted for 4 s.

Table 3.1: Performance of the HMM
F1 Precision Recall

HMM 0.664± 0.005 0.668± 0.005 0.660± 0.005

holdout, we randomly selected data of 3 participants as the testing dataset and data of the

remaining 9 participants as the training dataset. To find the best number of hidden states,

we varied the number of hidden states from 2 to 10 for the HMM and ran 100 holdouts for

each number of hidden states. We used the Bayesian Information Criterion (BIC) (Calinon

and Billard, 2005; Schwarz et al., 1978) to determine the best number of hidden states. The

results indicated that 2 was the best number of hidden states.

We then ran another 100 holdouts to evaluate the performance of the HMM for work-

load estimation. Precision, recall and F1 score were used as performance metrics, where

precision = #true positives
#true positives+#false positives and recall = #true positives

#true positives+#false negatives . For our multi-

classification problem, the precision is the mean precision of all classes and the recall is

the mean recall of all classes. F1 = 2 precision·recall
(precision+recall) . Table 3.1 shows the mean and standard

error of each performance metric. The results show that the HMM model achieved a 0.66

F1 score, 0.67 precision, and 0.66 recall.
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3.2.4 Discussion

In this experiment, we recorded human gaze trajectories and pupil sizes while com-

pleting a teleoperated dual-task mission under different workload levels. The different

workload levels were imposed by varying different surveillance task urgency (i.e., differ-

ent time limits for the detection period in the surveillance task). Using a baseline method,

Hidden Markov Models for gaze trajectory, we achieved 0.66 F1 score to classify human

workload into high workload level and moderate workload level.

The findings should be viewed in light of the following limitations. First, we only

used gaze trajectory to estimate human workload. Other eye-related features could be

extracted and other machine learning models could be used to estimate human workload.

For example, researchers have used support-vector machine for human pupil size change

to estimate human workload (Hogervorst et al., 2014; Halverson et al., 2012; Kosch et al.,

2018a). It is unclear how to leverage these different features to estimate human workload.

In Chapter IV, we discussed our proposed Bayesian inference model that can leverage

different machine learning models that work best for different features.

Second, we introduced different workload levels by varying the surveillance task ur-

gency. However, it is unclear if we can distinguish workload induced by other factors,

such as driving speed. In Chapter V, we investigateed the generalizability for our pro-

posed model.

Third, we only recruited 12 participants to evaluate the workload estimation perfor-

mance in this experiment. We recruited more participants to evaluate the workload esti-

mation performance in Chapter IV.
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Figure 3.4: Block diagram for haptic shared control. τh and τa represent the torque from
human and autonomy, respectively. τc and δc are the actual control torque and
actual control steering angle. β is the assistance level, which is always 1 in
the baseline non-adaptive scheme, whereas it varies in the proposed adaptive
scheme.

3.3 Experiment 2: Workload-adaptive Shared Control Scheme

In Experiment 2, we tested whether by considering the drivers’ workload, haptic shared

control performance could be improved. Two haptic shared control schemes were used:

the adaptive haptic shared control and the non-adaptive haptic shared control schemes.

The adaptive haptic shared control scheme adapted to the estimated real-time workload,

and the participant’s eyes on road and torque input. We used the HMM learned with the

data from all the 12 participants to estimate the participant’s workload in real time.

3.3.1 Non-adaptive Haptic Shared Control

Haptic shared control combines the torques applied by the autonomy and human op-

erator. It creates a smooth control authority transfer between the human operator and

autonomy. The implementation is visualized in Figure 3.4, where β = 1 for the baseline

non-adaptive case.
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When there is no input from the human operator, the autonomy follows the reference

centerline it perceives. The perceived reference centerline may be different from the actual

centerline. When there is an input from the human operator that deviates the vehicle from

the centerline autonomy perceives, the autonomy applies extra torque to bring the vehicle

back to the perceived centerline. Hence, the human operator can feel the intention of the

autonomy and decide whether s/he would agree with it and let autonomy have more control

authority (yield) or claim more control authority (fight). The resultant torque applied on

the steering wheel, which is the summation of the torques from the human operator and

autonomy, determines the final steering angle applied to the vehicle.

3.3.2 Adaptive Haptic Shared Control

The adaptive haptic shared control scheme was designed by the interdisciplinary team.

The adaptive was designed based on three different factors: human workload, human

torque on the steering wheel, and human eyes-on-road. The eyes-on-road is the percentage

of time that a human is looking at the driving screen, i.e., the human is focusing on driv-

ing. The team introduced this factor since human is performing a dual-task. The resultant

torque τc in the adaptive scheme is τc = τh + β(wt, et, τ̂h)τa, where the term β is referred

to as assistance level and it determines the strength of assistance torque from autonomy.

τ̂h is the normalized human torque calculated by dividing the input torque from the human

operator by the maximum torque a human operator can apply. Figure 3.4 shows the im-

plementation of the adaptive scheme. This scheme contrasts with the direct blending of

the input torques from both the human operator and autonomy as in the non-adaptive hap-

tic shared control scheme. Specifically, β is always 1 in the baseline non-adaptive haptic

shared control scheme, whereas it varies in the proposed adaptive scheme.

In the heuristic design for the assistance level, β was separated into two parts: base
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Figure 3.5: Illustration of base assistance level β̄ design principles

assistance level β̄ and assistance level increment ∆β; i.e., β = β̄(wt, τ̂h) + ∆β(wt, et).

The base assistance level β̄ considers the impact from workload and input torque from the

human operator, while the assistance level increment ∆β considers the combined effect of

eyes on road and workload due to the dual task nature of our experiment setup.

The base assistance level β̄ was designed according to the principles illustrated in

Figure 3.5. On the one hand, when the torque from the human operator is constant, the

relationship between the base assistance level β̄ and workload wt is shown in Figure 3.5a.

When a human experiences a moderate workload, the human is more capable of perform-

ing the task. Thus the base assistance level should be lower (i.e., when wt is around 50

in Figure 3.5a). However, when a human is underloaded or overloaded, the human may

either have vigilance decrement or lack of mental resources to achieve the task. In either

cases, human control of driving may not be reliable, thus the base assistance level should

be larger (i.e., when wt < 20 or wt > 80 in Figure 3.5a). On the other hand, the human

input torque may indicate the human’s intention to control the vehicle. Therefore, when

the normalized human torque τ̂h increases, the base assistance level β̄ should decrease as

human are more willing to take control as shown in Figure 3.5b. Moreover, when the hu-
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Figure 3.6: Illustration of assistance level increment design principles

man experiences moderate workload, the β̄ should decrease more, shown as the blue curve

in Figure 3.5b.

The assistance level increment ∆β was designed according to the principles illustrated

in Figure 3.6. On the one hand, when the human eye-on-road decreases (i.e., moving from

right to left in Figure 3.6a), the human is less focusing on the driving task. Therefore, the

assistance level increment ∆β should increase. Moreover, when the human is overloaded,

∆β should increase more, shown as the orange dotted curve in Figure 3.6a. On the other

hand, keeping the eyes-on-road constant, when the workload is high, the increment ∆β is

large, while when the workload is moderate, the increment ∆β is small, which is shown

in Figure 3.6b.

By line fitting with some designed points in above curves, we have:

β̄(wt, τ̂h) = 1−
[
1− (

0.9e0.3(|wt−50|−25)

e0.3(|wt−50|−25) + 1
+ 0.1)

][ e
72τ̂h−36.6−15(

wt
50 −1)2

5.9−2.5(
wt
50 −1)2

e
72τ̂h−36.6−15(

wt
50 −1)2

5.9−2.5(
wt
50 −1)2 + 1

]
(3.2)

∆β(wt, et) = 0.1(0.1|wt − 50|+ 5)1−et − 0.1 (3.3)

Figure 3.7 shows the 3D plot for the base assistance level β̄, workload wt and normal-
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Figure 3.7: Relationship between base assistance level β̄, workload wt, and normalized
human input torque τ̂h.

ized human input torque τ̂h. Figure 3.8 shows the 3D plot for the assistance level increment

∆β, workload wt, and eyes on road et.

3.3.3 Method

Participants

A total of 13 students participated in the experiment. Data of 1 participant were dis-

carded due to the wrong experiment setup. The remaining 12 participants were on average

22.3 years old (SD = 3.7 years) and had an average of 5.7 years of driving experience (SD

= 3.9 years). There were 5 females and 7 males in the remaining 12 participants. All

participants had a normal or corrected-to-normal vision.

Experimental Apparatus and Stimuli

The same teleoperated dual-task shared control simulation platform was used in this

experiment as in Experiment 1. We also applied the autonomy’s perception offset for the

centerline to emulate the sensor uncertainty as shown in Figure 2.5. Both the adaptive hap-

tic shared control and the non-adaptive haptic shared control were used in this experiment.
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Figure 3.8: Relationship between assistance level increment ∆β, workload wt, and eyes
on road et.

Table 3.2: Four Test Conditions
Condition

Surveillance task urgency
Haptic Shared Control Scheme

First half of the track Second half of the track
1 1.5 s 6.5 s Non-adaptive
2 1.5 s 6.5 s Adaptive
3 6.5 s 1.5 s Non-adaptive
4 6.5 s 1.5 s Adaptive

Experimental Design

The experiment used a within-subjects design with two independent variables. The

first independent variable was the haptic shared control scheme (adaptive haptic shared

control vs. non-adaptive haptic shared control). The second independent variable was the

surveillance task urgency (1.5 s vs. 6.5 s). Each participant experienced four tracks in the

experiment. On each track, one type of haptic shared control scheme was used. Each track

was segmented into two portions, one portion with high urgency surveillance task (1.5 s)

and the other with low urgency surveillance task (6.5 s). The resulting four test conditions

are shown in Table 3.2. The presentation of test conditions followed a 4 × 4 Latin square

design to eliminate potential order effects.
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Measures

Five dependent variables were collected in the experiment: participants’ self-reported

workload and trust in the shared control autonomy, participants’ control effort, driving task

performance, and surveillance task performance. After each track, participants reported

their workload and trust for the first and second half of the track using two uni-dimensional

scales. The NASA TLX survey (Hart and Staveland, 1988) and the Jian’s trust survey (Jian

et al., 2000) were presented to the participants such that they understood the meaning

of workload and trust. Participants’ control effort was calculated as the average torque

that a participant applied on the steering wheel. Driving task performance was evaluated

by lane-keeping error. The lane-keeping error is calculated as the mean of the absolute

deviation of the vehicle’s position from the centerline. The surveillance task performance

was measured using the detection accuracy.

Experimental Procedure

Participants provided a signed informed consent and filled in a demographic survey.

After that, they were assisted to wear the eye tracker with calibration. The experimenter

measured each participants’ baseline pupil diameter twice each about 30 s before the train-

ing with the normal room light and without any specific tasks.

During the training session, the participants first performed two trials of driving task

only, one with the non-adaptive haptic shared control and one with the adaptive haptic

shared control. Each trial took approximately 1.5 min. Then the participants performed

three trials of the surveillance task only. Each trial took approximately 60 s. After that,

the participants performed four trials of the combined driving and surveillance task.

During the official experiment, participants performed the driving task and the surveil-

lance task on four different tracks with different test cases as described in Table 3.2. Each
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Table 3.3: Mean and Standard Error (SE) of workload, trust, lane keeping error, detection
accuracy and torque

Metrics N
Surveillance task urgency

1.5 s 6.5 s
Adaptive Non-adaptive Adaptive Non-adaptive

Workload 12 13.96± 0.82 14.08± 0.87 7.83± 0.81 8.71± 0.97
Trust 12 4.04± 0.37 3.63± 0.30 3.92± 0.32 3.29± 0.38

Lane keeping error (m) 12 0.28± 0.033 0.36± 0.045 0.21± 0.03 0.26± 0.04
Detection accuracy (%) 12 93.43± 1.38 91.86± 1.13 94.30± 1.77 96.54± 1.18

Torque (Nm) 12 0.36± 0.03 0.73± 0.03 0.30± 0.02 0.79± 0.01

trial took approximately 3 min. After each trial, participants filled a post-survey about the

workload and trust during each portion of the track.

3.3.4 Results

Two-way repeated measures Analysis of Variance (ANOVAs) were conducted with the

shared control scheme and the surveillance task urgency as the within-subjects variables.

Results are reported as significant for α < .05. Table 3.3 summarizes the mean and

standard error (SE) values of the participants’ self-reported workload and trust as well as

driving task performance, surveillance task performance and their exerted torque.

Participants’ Workload

Both control scheme and surveillance task urgency influence participants’ self-reported

workload. With the adaptive shared control, participants reported lower workload (F (1, 11) =

5.18, p = .044). When the surveillance task was less urgent, participants reported lower

workload (F (1, 11) = 20.26, p < .001). See Figure 3.9.

Trust in Automation

Participants trusted the shared control autonomy more when the autonomy was adap-

tive (F (1, 11) = 12.76, p = .004). The effect of surveillance task urgency on trust was not

significant. See Figure 3.10.
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Figure 3.9: Mean and standard error (SE) values of self-reported workload.

Figure 3.10: Mean and standard error (SE) values of self-reported trust.

Driving Task Performance

Results revealed that the haptic shared control scheme and the surveillance task ur-

gency significantly affected the driving task performance. Participants had smaller lane

keeping errors when using the adaptive shared control autonomy (F (1, 11) = 7.593,

p = .019), and when the surveillance task was less urgent (F (1, 11) = 96.33, p < 0.001)

(Figurge 3.11). There was also an interactive effect between the control scheme and

surveillance task urgency (F (1, 11) = 6.141, p = .031). Using adaptive shared control led

to a large reduction in lane keeping error when the surveillance task was more urgent.
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Figure 3.11: Mean and standard error (SE) values of lane keeping error (m).

Figure 3.12: Mean and standard error (SE) values of surveillance task detection accuracy
(%).

Surveillance Task Performance

For the surveillance task, task urgency significantly influenced the detection accuracy

(F (1, 11) = 6.73, p = .025). Detection accuracy was higher when the task was less

urgent. The effect of the shared control scheme was non-significant (Figure 3.12).

Participants’ Control Effort

There was a significant effect of shared control scheme on participants’ control effort

(F (1, 11) = 217.66, p < .001). With adaptive shared control, participants exerted signif-
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Figure 3.13: Mean and standard error (SE) values of participants’ torque (Nm)

icantly less control effort. The effect of surveillance task urgency on participants’ control

effort was non-significant. In addition, results revealed a significant interaction effect be-

tween control scheme and surveillance task urgency (F (1, 11) = 11.42, p = .006). When

the surveillance task was less urgent (6.5 s), the adaptive shared control scheme led to a

larger drop in torque. See Figure 3.13.

3.3.5 Discussion

Participants’ Workload

Participants’ self-reported workload decreased when using the adaptive shared con-

trol scheme and when the surveillance task became less urgent. The results could have

resulted from the following reasons. First, the 6.5 s surveillance task urgency imposed a

smaller temporal demand on participants than 1.5 s surveillance task urgency. Second, the

participants’ control effort was smaller with the adaptive control scheme. Third, partic-

ipants’ driving task performance was higher with the adaptive control scheme and when

the surveillance task was less urgent.
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Trust in Automation

Our result is consistent with prior research that human operators’ trust in automation

is determined by the autonomy’s performance (Yang et al., 2017; Du et al., 2020a; Guo

and Yang, 2020). Human operators perceived both the driving and the surveillance task

performance continuously, based on which they adjusted their trust in automation. As

the driving task performance increased with the adaptive control scheme, trust increased

accordingly.

Driving Task Performance

The results showed that the adaptive shared control scheme benefited the driving task

performance, especially when participants were under a high workload. Based on the

design of the adaptive haptic shared control scheme, with the same input torque, when the

human operator has a high workload and focuses on the surveillance task, the assistance

level is increased (average β = 1.03 with adaptive shared control scheme compared with

β = 1 with non-adaptive shared control scheme when surveillance task is more urgent).

The increment in the assistance level is expected to aid the driving task and reduce the lane

keeping error. This design principle was supported by the experimental results.

Surveillance Task Performance

As the surveillance task became more urgent and more demanding, the surveillance

task performance decreased significantly. This result is consistent with prior research that

when workload increased from moderate to high level, task performance would decrease

(Lu et al., 2019).
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Participants’ Control Effort

Our results indicate that with adaptive shared control participants exerted significantly

less amount of control effort in both low and high workload conditions. The results can

be explained as follows: First, as the participants’ trust toward the adaptive shared control

scheme is significantly higher than the non-adaptive control scheme, participants had a

higher tendency to yield to the autonomy, resulting in smaller input torque. Second, ac-

cording to the design of the adaptive shared control scheme, with the same input torque,

when the human operator experiences moderate workload and focuses on the driving task,

the assistance level is reduced (average β = 0.82 with adaptive shared control scheme

compared with β = 1 with non-adaptive shared control scheme when surveillance task is

less urgent). With a reduced assistance level, regardless of whether the human yields to or

fights with the autonomy, the human operator’s torque is expected to be smaller.

3.4 Conclusion

In this chapter, we conducted two human subject experiments with 24 participants in

total. In Experiment 1, we collected a dataset with human gaze trajectories and pupil sizes

under different workload levels imposed by different surveillance task urgency. We used

the Hidden Markov Model for gaze trajectory feature to estimate human workload and

achieved 0.66 F1 score. In Experiment 2, we proposed a workload-adaptive haptic shared

control scheme together with our collaborators. The human subject experiment indicated

that the workload-adaptive haptic shared control scheme can reduce human workload, in-

crease their trust in the system, improve driving performance, and reduce human control

effort without sacrificing surveillance task performance. The results indicated that the

human-automation interaction system can benefit from adapting to real-time human work-

load.
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The findings should be viewed in light of the following limitations. First, we only

used Hidden Markov Model for gaze trajectory to estimate human workload. It is unclear

about the performance of other machine learning models with different eye-related fea-

tures to estimate human workload. In addition, it is unclear how to combine the different

machine learning models that work best for different features. We addressed these issues

in Chapter IV.

Second, we tried to manipulate human workload levels by varying surveillance task

urgency. However, there are other factors that could impose different workload levels.

We investigated the performance of our proposed workload estimation model on these

different factors could impose different workload levels.
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CHAPTER IV

Bayesian Inference Model for Workload Estimation

4.1 Introduction

In Experiment 1, we used the Hidden Markov Model (HMM) for gaze trajectory to

estimate human workload and showed that adapting to the estimated workload can help

the design of a haptic shared control scheme. In this chapter, we explored other eye-

related features for workload estimation and propose a Bayesian inference model that can

leverage the different machine learning models that work best for different features (i.e.,

support-vector machines (SVMs) for pupil size change, HMM for gaze trajectory, SVMs

for fixation feature, and Gaussian mixture models (GMMs) for fixation trajectory). We

evaluated our proposed Bayesian inference model using data collected from 24 partici-

pants. The first 12 participants were from Experiment 1, and the second 12 participants

were newly recruited.

4.2 Bayesian Inference Model for Workload Estimation

In Experiment 1, we considered only human gaze trajectory to estimate human work-

load. However, while other eye-related features have been shown to be useful for workload

estimation, they work with different machine learning models. For example, previous stud-

ies showed that SVMs could be used with human pupil dilation (Kosch et al., 2018a) and
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fixation features (i.e., fixation duration) (Liang et al., 2007) to estimate human workload.

In addition, different kernels are suitable for different features (i.e., the linear kernel for

pupil dilation (Kosch et al., 2018a) and the radial basis function (RBF) kernel for fixa-

tion duration (Liang et al., 2007)). Therefore, we proposed a Bayesian inference model

that can leverage the different machine learning models that work best for different fea-

tures. Figure 4.1 shows the graphical representation of our proposed Bayesian inference

model, where WL is human workload; M1,M2, ...,Mn represent the workload estimated

by different machine learning models; and X1, X2, ..., Xn represent the different features

for different machine learning models. The shaded circles represent the observed data,

and the unshaded circles represent the hidden states. WL,M1,M2, ...,Mn are discrete ran-

dom variables, representing different workload levels. The maximum a posteriori (MAP)

estimate of workload is used to compute arg max
WL

p(WL|X1, X2, ..., Xn). Given the proba-

bilistic graphical model, we had the following equations based on the Bayes’ rule and the

law of total probability:

p(WL|X1, X2, ..., Xn)

∝ p(X1, X2, ..., Xn|WL)p(WL)

= p(WL)
∑

M1,M2,...,Mn

p(X1, X2, ..., Xn,M1,M2, ...,Mn|WL)

= p(WL)
∑

M1,M2,...,Mn

p(X1, X2, ..., Xn|M1,M2, ...,Mn,WL)P (M1,M2, ...,Mn|WL)

= p(WL)
∑

M1,M2,...,Mn

{
∏
Mi

p(Mi|WL)p(Xi|Mi)}

= p(WL)
∏
Mi

{
∑
Mi

p(Mi|WL)p(Xi|Mi)}

(4.1)

p(WL) is the prior distribution of the human workload. p(Mi|WL) is the prior knowl-

edge of the performance of the machine learning model Mi. p(Xi|Mi) is the likelihood of

58



Figure 4.1: A graphical representation of the Bayesian inference model. WL is the hu-
man’s workload. Mi represents the workload estimated by different machine
learning models. Xi is the feature for the different machine learning models.

each feature Xi given the machine learning model Mi. Both p(WL) and p(Mi|WL) could

be obtained by manual design based on prior knowledge or from the training data. We

used the frequency in the training data to determine p(WL). For p(Mi|WL), we segmented

the training data into a validation set and a training set and used the performance of Mi on

the validation set as p(Mi|WL).

In this chapter, we investigated four different eye-related features. We selected three

features from the existing literature, including gaze trajectory (Fridman et al., 2018), pupil

size change (Halverson et al., 2012), and fixation feature (Halverson et al., 2012). In

addition, we proposed a new feature – the fixation trajectory feature. For each feature,

we selected a machine learning model that has been shown to work well for this feature.

Details are in the following sections.

4.2.1 Support-vector Machines (SVMs) for Pupil Size Change

In Experiment 1, we used the Tobii Pro Glasses to measure a human pupil size. Upon

each participant’s arrival, we measured their baseline pupil size DB. We asked the par-

ticipants to relax while looking at a white wall and then measured their pupil sizes for 30

seconds twice. The baseline pupil size DB is the average pupil size during this time period
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for each participant.

The pupil size change feature is the relative changes in the human pupil size. Given

a sequence of pupil sizes D = {D1, ..., DT}, the pupil size change feature vector is

X1 = {Dt−DB
DB
}t=1,2,...,T . Previous literature used SVMs to estimate human workload

using the pupil size change feature (Halverson et al., 2012; Hogervorst et al., 2014; Kosch

et al., 2018a). The SVMs is a supervised learning algorithm that aims to find the optimal

hyperplane that separates data points into different clusters. We found that using a radial

basis function (RBF) kernel can achieve better performance for the pupil size change fea-

ture. We can use pairwise coupling to estimate probability p(X1|M1) for a multi-class

classification problem, where each class represents each workload level (Wu et al., 2004).

4.2.2 Hidden Markov Model (HMM) for Gaze Trajectory

Gaze trajectory X2 is a time series of gaze points, and X2 = {(gtx, gty)}t=1,2,...,T , where

(gtx, g
t
y) is the human gaze point location mapped to the world frame at time t captured

by the eye tracker. Previous literature used the HMM to model human gaze trajectory to

estimate human workload (Fridman et al., 2018). We need to learn an HMM for each level

of human workload using the expectation-maximization algorithm. Thus, we can compute

the likelihood p(X2|M2) by the standard forward algorithm. See Section 3.2.1 for more

details.

As p(X2|M2) is the probability density of the gaze trajectory, the longer the trajectory

is, the smaller this value is. To eliminate the influence of trajectory length, one can use

a geometric mean of the probability density of a trajectory (Luo et al., 2018), shown as

follows:

p̂(X2|M2 = w) =
T

√
P (O|Θ̃w) (4.2)
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Figure 4.2: Fixation definition. The gaze points are constrained in a circle with a 60-pixel
diameter. The fixation center is the common mean location of the gaze points.

4.2.3 Support-vector Machines (SVMs) for Fixation Feature

Human eye movement can be modeled as two types of phases: fixations and saccades.

Fixations are the phases, in which humans maintain their gaze points at a location for

a time period and gather new information from the area they are examing (Jacob, 1995;

Rayner, 1995, 2009). Saccades are the rapid eye movements between fixations (Jacob,

1995; Salvucci and Goldberg, 2000; Jacob and Karn, 2003). Given a sequence of gaze

points, researchers have proposed different criteria to determine a fixation. The center of

a fixation is typically within 2 − 3◦ (Robinson, 1979), and the fixations last at least 100 -

150 ms. We used the criterion that the fixations were constrained in a 3◦ spatial area and

lasted at least 100 ms, in line with Goldberg and Kotval (1999). As we mapped our gaze

points to the world image (as in Figure 2.4b), a 3◦ spatial area from the eyes is roughly

a circle with a 60-pixel diameter in the world image. Figure 4.2 shows the definition of

fixation. The fixation center is the common mean location of the gaze points, and all gaze

points are within the circle with a 60-pixel diameter. As we down-sampled the gaze points

to 30 Hz, 100 ms contained roughly four gaze points. Therefore, each fixation should

contain at least four gaze points in the present study. Figure 4.3 illustrates the fixations
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Figure 4.3: Illustration of fixations and saccades mapped on the world image. Red dots
are gaze points. Red dashed circles are fixations. Yellow arrows are saccades.

and saccades mapped on the world image. The red dots are the gaze points. The red

dashed circles are the fixations. The yellow arrows are the saccades between fixations. We

used the same fixation-clustering algorithm as in Goldberg and Kotval (1999) to determine

fixations and saccades given a sequence of gaze points, as shown in Algorithm 1.

Algorithm 1: Fixation cluster algorithm
Input: G: Sequence of gaze points
Initialization: cluster := { first gaze point p }
for gaze point p in G do

µ←ComputeCommonMeanLocation(cluster, p);
if Distance(µ, p) ≤ 30 then

cluster← p;
else

n← Size(cluster); // number of points in cluster
if n ≥ 4 then

cluster is classified as a FIXATION of n × 33.33 ms duration;
else

cluster is classified as a SACCADE of n × 33.33 ms duration;
end
cluster := {p };

end
end
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Researchers have found that different measurements related to fixations and saccades

can indicate human workload (Recarte and Nunes, 2000; Moacdieh et al., 2020). Fixa-

tion feature X3 is a vector of these measurements. In our experiment, we defined X3 =

(nf , tf , r, l), where nf is the number of fixations within the time window T ; tf is the total

fixation duration in the time window T ; r =
tf
ts

is the ratio between fixation duration and

saccade duration; and l is the mean saccadic amplitude. The mean saccadic amplitude is

the sum of the distances between consecutive fixations divided by the number of fixations

minus one within the time window T .

Previous studies have used SVMs for the fixation feature to estimate human workload

(Liang et al., 2007). We found that using a linear kernel can achieve better performance

for the fixation feature. Similar to pupil size change, we can use the pairwise coupling

method to estimate p(X3|M3).

4.2.4 Gaussian Mixture Models (GMMs) for Fixation Trajectory

The fixation feature X3 ignores the spatial information of the fixations. Therefore, we

proposed a new feature: fixation trajectory. Fixation trajectory X4 is a series of fixation

centers and their durations, such as X4 = {(f lx, f ly, dtl)}l=1,2,...,L, where (f lx, f
l
y) is the

center of a fixation, dtl is the duration for this fixation, and L is the length of the fixation

trajectory, which is the number of fixations within the time window T = 4 s. As the

number of fixations L during a time window varies, the length of each feature vector

varies. Also, the order of the fixations does not matter. Therefore, we can use GMMs to

model the fixation trajectory. Similar to the HMM, we need to learn a GMMs for each level

of workload Mw
4 , where w represents different workload levels. Given an observation X4,

the output of a GMMs is the likelihood p(X4|Mw
4 ).

Each GMMsMw
4 is a combination ofK multivariate Gaussians gck for k = 1, 2, 3, ..., K.

63



Let ξl = (f lx, f
l
y, dt

l)T be the l th fixation in the fixation trajectory X4. The probability of

ξl in GMMs Mw
4 represented by K multivariate Gaussians is given by:

p(ξl|Mw
4 ) =

K∑
k=1

p(gck|Mw
4 )p(ξl|gck,Mw

4 ) (4.3)

where ξl is the l th fixation in the fixation trajectory X4, and p(gck|Mw
4 ) = πk is the prior

probability of component gck in Mw
4 . The probability of ξl given gck and Mw

4 is defined

as follows:

p(ξl|gck,Mw
4 ) = N (µk,Σk)

= 1√
(2π)D|Σk|

e−
1
2

(ξl−µk)TΣ−1
k (ξl−µk)

(4.4)

where {µk,Σk} are the mean and covariance parameters of the Gaussian component gck,

and D is the dimension of ξl, which is 3 in the present study. Thus, the probability of

trajectory X4 in Mw
4 is defined as follows:

p̂(X4|Mw
4 ) =

L∏
l=1

p(ξl|Mw
4 ) (4.5)

Similar to the HMM, p(X4|Mw
4 ) is the probability density of the fixation trajectory.

Therefore, to eliminate the influence of trajectory length, we also used the geometric mean

of the probability density of a trajectory (Luo et al., 2018), shown as follows:

p(X4|Mw
4 ) = L

√√√√ L∏
l=1

p(ξl|Mw
4 ) (4.6)

Similar to the HMM, we also used the Bayesian information criterion (BIC) (Schwarz

et al., 1978; Calinon and Billard, 2005) to determine the best number of Gaussians K, and

we found that K = 3 is the best fit. The parameters of GMMs {π, µk,Σk}w were trained

using the expectation–maximization (EM) algorithm.
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4.3 Results

4.3.1 Data Processing

In this chapter, we made use of the data collected in Experiment 1. In addition, we

recruited another 12 participants (age: mean = 25.1 years, SD = 3.7 years; females: 4,

males: 8) for the same experiment. The 12 participants had normal or corrected-to-normal

vision and hearing and an average of 4.8 years of driving experience (SD = 2.3 years).

Therefore, we evaluated our proposed Bayesian inference model (BI) with 24 participants

(age: mean = 25.9 years, SD = 3.4 years; females: 10, males: 14). All participants had an

average of 6.5 years of driving experience (SD = 3.9 years).

We used the same data processing method described in Experiment 1, except that we

extracted the four features from each data sequence. Each participant experienced high

and low workload portions in six trials. We evaluated our proposed Bayesian inference

model against other single models in two different evaluation methods: cross-participants

evaluation and within-participants evaluation. For the cross-participants evaluation, we

randomly selected five sequences of data from each portion in each trial, with each se-

quence lasting 4 s. For the within-participants evaluation, we randomly selected 20 se-

quences of data from each portion in each trial. Figure 4.4 shows an example of sequences

of data selected in one example portion of a track using cross-participants evaluation and

within-participants evaluation. The blue boxes represent for the selected sequences of

data. Note that, as we selected more sequences of data for within-participants evaluation,

the probability of overlapping between the randomly selected sequences of data is higher.

4.3.2 Cross-participants Evaluation

The cross-participants evaluation separates the training data and testing data across

the participants (i.e., data from some participants are treated as training data and data
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(a) Cross-participants evaluation: 5 sequences of data from each portion

(b) Within-participants evaluation: 20 sequences of data from each portion

Figure 4.4: An example for sequences of data selected from a portion. Blue boxes repre-
sents the randomly selected sequences of data, each lasts 4 s. (a) 5 sequences
of data were selected for each portion using cross-participants evaluation. (b)
20 sequences of data were selected for each portion using within-participants
evaluation.

from other participants are treated as testing data). We used the leave-one-out evaluation

method for cross-participants evaluation. Specifically, we randomly selected the data of

six participants as the testing dataset and the data of the remaining 18 participants as the

training dataset in each run of the holdout. We ran 50 holdouts to evaluate the performance

of our proposed Bayesian inference model (BI) and the four single models. In each round

of holdouts, we computed the means (µi) and standard deviations (σi) for every feature

(Xi) using the training dataset, and then normalized all the data using these means and

standard deviations, i.e., X̂i = Xi−µi
σi

. To obtain the prior knowledge p(Mi|WL) of each

machine learning modelMi, we ran 10 rounds of leave-one-out evaluation over the training

dataset with 18 participants. In each round, we randomly selected 12 participants from the

18 participants as prior training data and the remaining six participants as validation data.

We then computed the confusion matrix of each machine learning model on the validation
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data to obtain the estimated prior knowledge p(Mi|WL).

For cross-participants evaluation, we computed two types of performance, overall per-

formance and individual performance, for our proposed Bayesian inference model and

other single models. For overall performance, we computed the performance (i.e., F1

score, precision, and recall) for the entire testing dataset in each round of holdouts and

the overall performance shown in Table 4.1 is the mean and standard error over the 50

rounds of holdouts. For individual performance, we computed the performance for each

individual participant in the testing dataset in each round of holdouts and the individual

performance shown in Table 4.3 is the mean and standard error for every participant when

they were in the testing dataset. As we randomly determine the training dataset and testing

dataset in each round, the numbers of times when each participant was in the testing dataset

were different. For the individual performance, we also computed the average individual

performance over all participants at the end of Table 4.3. Table 4.2 shows the pairwise

t-test results for the overall performance between our proposed Bayesian inference model

(BI) and other single models for cross-participants evaluation.

The results indicated that our proposed Bayesian inference model significantly out-

performs the single models alone for both overall performance and average individual

performance using cross-participants evaluation. Our proposed Bayesian inference model

achieved 0.823 ± 0.004 and 0.83 ± 0.02 F1 scores for overall performance and average

individual performance using cross-participants, respectively. Note that not every partic-

ipant had a similar performance as shown in Figure 4.3. For example, participant 9 only

had a 0.65 F1 score; however, participant 4 achieved an F1 score as high as 0.95.
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Table 4.1: Overall performance of the Bayesian inference model and other single models
for cross-participants evaluation.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.823± 0.004 0.772± 0.006 0.653± 0.005 0.745± 0.003 0.674± 0.005
Precision 0.824± 0.004 0.773± 0.006 0.656± 0.005 0.749± 0.003 0.679± 0.006

Recall 0.821± 0.004 0.771± 0.006 0.650± 0.005 0.741± 0.003 0.668± 0.005

Table 4.2: Pairwise t-tests between Bayesian inference model (BI) and other single mod-
els.

BI vs. SVM
pupil size change

BI vs. HMM
gaze trajectory

BI vs. SVM
fixation feature

BI vs. GMMs
fixation trajectory

F1 score t(49) = 10.66, p < .001 t(49) = 37.85, p < .001 t(49) = 22.99, p < .001 t(49) = 32.17, p < .001
Precision t(49) = 10.95, p < .001 t(49) = 35.24, p < .001 t(49) = 21.41, p < .001 t(49) = 29.97, p < .001

Recall t(49) = 10.34, p < .001 t(49) = 39.38, p < .001 t(49) = 24.12, p < .001 t(49) = 32.70, p < .001

Table 4.3: Individual performance (F1 score, precision, and recall) of the Bayesian infer-
ence model (BI) and other single models for cross-participants evaluation.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.81± 0.00 0.78± 0.00 0.60± 0.00 0.74± 0.01 0.67± 0.00
0.81± 0.01 0.78± 0.00 0.60± 0.00 0.75± 0.01 0.69± 0.01
0.80± 0.00 0.78± 0.00 0.60± 0.00 0.72± 0.01 0.65± 0.00

P2
0.86± 0.01 0.92± 0.01 0.71± 0.00 0.72± 0.00 0.72± 0.01
0.88± 0.00 0.92± 0.01 0.75± 0.00 0.75± 0.00 0.74± 0.01
0.85± 0.01 0.92± 0.01 0.68± 0.01 0.69± 0.00 0.71± 0.01

P3
0.74± 0.01 0.68± 0.01 0.53± 0.01 0.69± 0.01 0.58± 0.01
0.75± 0.01 0.68± 0.01 0.55± 0.01 0.69± 0.01 0.59± 0.02
0.73± 0.01 0.68± 0.01 0.52± 0.01 0.69± 0.01 0.58± 0.01

P4
0.95± 0.00 0.94± 0.00 0.69± 0.00 0.80± 0.01 0.81± 0.01
0.96± 0.00 0.94± 0.00 0.69± 0.01 0.81± 0.00 0.82± 0.01
0.95± 0.00 0.94± 0.01 0.69± 0.00 0.80± 0.01 0.79± 0.01

P5
0.88± 0.01 0.85± 0.01 0.76± 0.01 0.80± 0.00 0.74± 0.02
0.89± 0.01 0.85± 0.01 0.76± 0.01 0.81± 0.00 0.80± 0.01
0.88± 0.01 0.85± 0.01 0.76± 0.01 0.79± 0.01 0.69± 0.02

P6
0.81± 0.01 0.78± 0.01 0.58± 0.01 0.72± 0.01 0.52± 0.02
0.82± 0.01 0.83± 0.00 0.59± 0.01 0.72± 0.01 0.52± 0.03
0.79± 0.01 0.74± 0.01 0.57± 0.01 0.72± 0.01 0.52± 0.02

P7
0.74± 0.01 0.56± 0.01 0.76± 0.00 0.71± 0.01 0.70± 0.01
0.75± 0.01 0.56± 0.01 0.77± 0.01 0.71± 0.01 0.71± 0.01
0.74± 0.01 0.56± 0.01 0.75± 0.00 0.71± 0.01 0.69± 0.01

P8
0.83± 0.02 0.75± 0.03 0.74± 0.01 0.74± 0.00 0.77± 0.01
0.83± 0.02 0.75± 0.03 0.74± 0.01 0.74± 0.00 0.78± 0.01

Continued on next page
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Table 4.3 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

0.82± 0.02 0.75± 0.03 0.73± 0.01 0.74± 0.00 0.77± 0.01

P9
0.65± 0.01 0.56± 0.01 0.65± 0.01 0.67± 0.00 0.58± 0.02
0.65± 0.01 0.56± 0.01 0.66± 0.01 0.68± 0.00 0.59± 0.02
0.65± 0.01 0.56± 0.01 0.65± 0.01 0.66± 0.00 0.58± 0.02

P10
0.81± 0.01 0.77± 0.01 0.70± 0.00 0.74± 0.00 0.61± 0.01
0.83± 0.01 0.78± 0.01 0.78± 0.01 0.80± 0.00 0.65± 0.02
0.79± 0.01 0.75± 0.01 0.63± 0.00 0.68± 0.00 0.58± 0.01

P11
0.79± 0.00 0.73± 0.01 0.55± 0.01 0.78± 0.00 0.60± 0.03
0.81± 0.00 0.73± 0.01 0.56± 0.01 0.79± 0.00 0.61± 0.03
0.78± 0.00 0.72± 0.01 0.55± 0.01 0.78± 0.00 0.60± 0.03

P12
0.81± 0.01 0.85± 0.01 0.63± 0.01 0.73± 0.00 0.65± 0.01
0.84± 0.01 0.85± 0.01 0.67± 0.01 0.77± 0.00 0.66± 0.01
0.79± 0.01 0.84± 0.01 0.59± 0.01 0.68± 0.00 0.63± 0.01

P13
0.93± 0.01 0.80± 0.01 0.73± 0.00 0.76± 0.01 0.67± 0.01
0.93± 0.01 0.80± 0.01 0.73± 0.00 0.79± 0.01 0.71± 0.01
0.92± 0.01 0.79± 0.01 0.73± 0.00 0.74± 0.01 0.63± 0.01

P14
0.79± 0.01 0.81± 0.01 0.68± 0.01 0.66± 0.00 0.67± 0.01
0.79± 0.01 0.81± 0.01 0.70± 0.01 0.67± 0.00 0.69± 0.01
0.78± 0.01 0.80± 0.02 0.67± 0.01 0.66± 0.00 0.65± 0.01

P15
0.87± 0.01 0.81± 0.01 0.70± 0.01 0.81± 0.00 0.78± 0.01
0.87± 0.01 0.81± 0.01 0.70± 0.01 0.81± 0.00 0.80± 0.01
0.87± 0.01 0.81± 0.01 0.69± 0.01 0.80± 0.00 0.77± 0.01

P16
0.91± 0.01 0.85± 0.01 0.66± 0.01 0.88± 0.01 0.63± 0.02
0.92± 0.01 0.86± 0.01 0.68± 0.01 0.88± 0.01 0.63± 0.02
0.91± 0.01 0.85± 0.01 0.63± 0.01 0.88± 0.01 0.62± 0.02

P17
0.81± 0.01 0.87± 0.01 0.53± 0.04 0.69± 0.00 0.58± 0.02
0.83± 0.01 0.88± 0.01 0.60± 0.07 0.70± 0.00 0.59± 0.02
0.80± 0.01 0.86± 0.01 0.51± 0.00 0.68± 0.00 0.58± 0.02

P18
0.90± 0.01 0.80± 0.01 0.71± 0.00 0.90± 0.00 0.80± 0.01
0.91± 0.01 0.80± 0.01 0.78± 0.01 0.91± 0.00 0.81± 0.01
0.90± 0.01 0.80± 0.01 0.65± 0.01 0.89± 0.00 0.80± 0.01

P19
0.92± 0.01 0.87± 0.00 0.83± 0.01 0.85± 0.01 0.78± 0.01
0.92± 0.01 0.87± 0.00 0.83± 0.01 0.86± 0.00 0.78± 0.01
0.92± 0.01 0.86± 0.00 0.82± 0.01 0.85± 0.01 0.78± 0.01

P20
0.85± 0.01 0.68± 0.02 0.71± 0.01 0.82± 0.01 0.79± 0.02
0.85± 0.01 0.68± 0.02 0.71± 0.01 0.83± 0.01 0.80± 0.02
0.84± 0.01 0.67± 0.03 0.71± 0.01 0.82± 0.01 0.78± 0.02

P21
0.81± 0.01 0.79± 0.01 0.67± 0.01 0.71± 0.00 0.75± 0.01
0.81± 0.01 0.79± 0.01 0.75± 0.01 0.71± 0.00 0.76± 0.01
0.80± 0.01 0.79± 0.01 0.61± 0.00 0.71± 0.00 0.74± 0.02

Continued on next page
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Table 4.3 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P22
0.95± 0.00 0.87± 0.02 0.83± 0.01 0.91± 0.00 0.75± 0.01
0.95± 0.00 0.87± 0.02 0.86± 0.01 0.91± 0.00 0.75± 0.02
0.95± 0.00 0.87± 0.02 0.81± 0.01 0.91± 0.00 0.74± 0.01

P23
0.83± 0.01 0.77± 0.01 0.59± 0.03 0.75± 0.00 0.69± 0.01
0.86± 0.01 0.77± 0.01 0.70± 0.05 0.77± 0.01 0.74± 0.01
0.81± 0.01 0.77± 0.01 0.52± 0.00 0.73± 0.00 0.64± 0.01

P24
0.70± 0.01 0.60± 0.01 0.60± 0.02 0.64± 0.00 0.54± 0.02
0.72± 0.01 0.60± 0.01 0.70± 0.03 0.68± 0.00 0.56± 0.03
0.68± 0.01 0.60± 0.01 0.52± 0.00 0.60± 0.00 0.52± 0.02

Avg
0.83± 0.02 0.78± 0.02 0.67± 0.02 0.76± 0.02 0.68± 0.02
0.84± 0.02 0.78± 0.02 0.70± 0.02 0.77± 0.01 0.70± 0.02
0.82± 0.02 0.77± 0.02 0.65± 0.02 0.75± 0.02 0.67± 0.02

4.3.3 Within-participants Evaluation

The within-participants evaluation evaluates the performance for each participant (i.e.,

a personalized model), and it separates the training data and testing data across the trials

for each participant (i.e., data from some trials are treated as training data and data from

other trials are treated as testing data). We used k-fold cross validation for the within-

participants evaluation, where k equals 6 as there was 6 trials for each workload level.

Specifically, we used data from one of the six trials as testing data and data from the other

trials as training data. Similar to the cross-participants evaluation, we used the training

data to obtain the estimated prior knowledge p(Mi|WL), except that we used five-fold

cross validation over the five training trials.

Table 4.4 shows the performance (i.e., F1 score, precision and recall) of our proposed

Bayesian inference model and other single models for each participant and the average

performance. The results indicated that our proposed Bayesian inference model achieved

a 0.85 F1 score on average using within-participants evaluation.
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Table 4.4: Performance (F1 score, precision, and recall) of the Bayesian inference model
(BI) and other single models for within-participants evaluation.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.78± 0.03 0.77± 0.02 0.69± 0.07 0.67± 0.05 0.67± 0.04
0.79± 0.03 0.77± 0.02 0.70± 0.07 0.69± 0.05 0.68± 0.04
0.77± 0.03 0.76± 0.03 0.67± 0.07 0.66± 0.05 0.65± 0.04

P2
0.95± 0.02 0.95± 0.02 0.62± 0.07 0.72± 0.03 0.67± 0.03
0.95± 0.02 0.95± 0.02 0.62± 0.08 0.74± 0.03 0.69± 0.03
0.95± 0.02 0.95± 0.02 0.62± 0.07 0.70± 0.03 0.66± 0.03

P3
0.82± 0.05 0.81± 0.04 0.74± 0.07 0.75± 0.05 0.73± 0.07
0.83± 0.04 0.83± 0.04 0.78± 0.07 0.76± 0.04 0.74± 0.07
0.80± 0.05 0.80± 0.05 0.71± 0.07 0.73± 0.05 0.71± 0.07

P4
0.94± 0.01 0.93± 0.01 0.75± 0.05 0.87± 0.02 0.81± 0.03
0.94± 0.01 0.93± 0.01 0.76± 0.05 0.88± 0.02 0.82± 0.04
0.94± 0.01 0.92± 0.01 0.74± 0.05 0.86± 0.03 0.81± 0.03

P5
0.90± 0.02 0.86± 0.02 0.68± 0.05 0.86± 0.03 0.81± 0.02
0.90± 0.02 0.87± 0.03 0.69± 0.06 0.86± 0.03 0.82± 0.02
0.89± 0.02 0.86± 0.02 0.67± 0.05 0.85± 0.03 0.80± 0.03

P6
0.80± 0.02 0.76± 0.02 0.52± 0.04 0.73± 0.03 0.60± 0.05
0.80± 0.02 0.77± 0.02 0.52± 0.04 0.74± 0.03 0.61± 0.05
0.79± 0.02 0.76± 0.02 0.52± 0.04 0.72± 0.03 0.60± 0.05

P7
0.78± 0.04 0.59± 0.05 0.69± 0.07 0.77± 0.03 0.68± 0.07
0.78± 0.04 0.59± 0.05 0.69± 0.07 0.79± 0.03 0.68± 0.07
0.77± 0.03 0.59± 0.05 0.69± 0.07 0.76± 0.04 0.67± 0.07

P8
0.82± 0.03 0.82± 0.03 0.71± 0.04 0.76± 0.08 0.76± 0.06
0.83± 0.03 0.83± 0.03 0.76± 0.04 0.78± 0.08 0.78± 0.06
0.81± 0.03 0.82± 0.03 0.68± 0.04 0.75± 0.08 0.74± 0.06

P9
0.74± 0.07 0.65± 0.02 0.69± 0.05 0.67± 0.06 0.70± 0.04
0.75± 0.07 0.65± 0.02 0.70± 0.06 0.67± 0.06 0.71± 0.04
0.74± 0.07 0.65± 0.02 0.67± 0.05 0.66± 0.05 0.69± 0.04

P10
0.90± 0.02 0.85± 0.01 0.78± 0.04 0.75± 0.03 0.86± 0.04
0.90± 0.02 0.86± 0.01 0.79± 0.04 0.75± 0.03 0.86± 0.04
0.90± 0.02 0.84± 0.02 0.77± 0.05 0.74± 0.03 0.86± 0.04

P11
0.84± 0.06 0.66± 0.06 0.69± 0.06 0.81± 0.05 0.77± 0.05
0.85± 0.06 0.67± 0.06 0.70± 0.05 0.81± 0.05 0.78± 0.05
0.84± 0.06 0.66± 0.05 0.67± 0.06 0.80± 0.05 0.75± 0.05

P12
0.94± 0.03 0.93± 0.02 0.76± 0.04 0.76± 0.03 0.83± 0.06
0.94± 0.03 0.93± 0.02 0.78± 0.04 0.78± 0.03 0.84± 0.06
0.94± 0.03 0.93± 0.02 0.74± 0.04 0.75± 0.03 0.82± 0.06

P13
0.86± 0.03 0.75± 0.05 0.67± 0.03 0.85± 0.03 0.61± 0.04
0.87± 0.03 0.76± 0.05 0.68± 0.03 0.86± 0.03 0.61± 0.04

Continued on next page
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Table 4.4 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

0.86± 0.03 0.75± 0.06 0.66± 0.03 0.84± 0.03 0.60± 0.04

P14
0.79± 0.04 0.74± 0.06 0.64± 0.05 0.58± 0.05 0.76± 0.05
0.80± 0.04 0.74± 0.06 0.65± 0.05 0.58± 0.05 0.76± 0.05
0.79± 0.04 0.73± 0.06 0.62± 0.04 0.58± 0.05 0.76± 0.05

P15
0.88± 0.03 0.76± 0.04 0.60± 0.04 0.84± 0.03 0.73± 0.05
0.89± 0.03 0.76± 0.04 0.64± 0.05 0.84± 0.03 0.74± 0.05
0.88± 0.03 0.75± 0.04 0.57± 0.03 0.83± 0.02 0.72± 0.05

P16
0.84± 0.03 0.79± 0.05 0.73± 0.05 0.81± 0.03 0.75± 0.05
0.84± 0.03 0.80± 0.05 0.74± 0.04 0.82± 0.03 0.75± 0.05
0.83± 0.03 0.79± 0.05 0.72± 0.05 0.80± 0.03 0.75± 0.05

P17
0.88± 0.03 0.85± 0.03 0.67± 0.06 0.73± 0.06 0.67± 0.04
0.88± 0.03 0.86± 0.03 0.67± 0.06 0.74± 0.06 0.68± 0.04
0.87± 0.03 0.85± 0.04 0.67± 0.06 0.72± 0.06 0.67± 0.04

P18
0.88± 0.02 0.86± 0.01 0.66± 0.06 0.82± 0.03 0.76± 0.04
0.89± 0.02 0.87± 0.01 0.67± 0.06 0.82± 0.03 0.76± 0.04
0.88± 0.02 0.86± 0.01 0.66± 0.06 0.82± 0.03 0.75± 0.04

P19
0.86± 0.03 0.77± 0.04 0.64± 0.04 0.80± 0.01 0.75± 0.02
0.87± 0.03 0.78± 0.04 0.65± 0.04 0.81± 0.01 0.76± 0.03
0.86± 0.03 0.76± 0.04 0.63± 0.04 0.80± 0.01 0.74± 0.02

P20
0.85± 0.02 0.69± 0.03 0.77± 0.04 0.82± 0.02 0.80± 0.02
0.85± 0.02 0.70± 0.03 0.79± 0.04 0.83± 0.02 0.81± 0.02
0.84± 0.03 0.68± 0.03 0.75± 0.05 0.80± 0.02 0.78± 0.02

P21
0.90± 0.03 0.88± 0.03 0.70± 0.05 0.76± 0.04 0.66± 0.04
0.90± 0.03 0.88± 0.03 0.72± 0.05 0.77± 0.03 0.68± 0.05
0.90± 0.03 0.88± 0.03 0.68± 0.05 0.75± 0.04 0.65± 0.04

P22
0.92± 0.03 0.83± 0.04 0.66± 0.07 0.89± 0.02 0.80± 0.03
0.92± 0.03 0.84± 0.04 0.67± 0.09 0.90± 0.02 0.81± 0.03
0.92± 0.03 0.82± 0.04 0.67± 0.05 0.89± 0.02 0.80± 0.03

P23
0.86± 0.02 0.80± 0.02 0.68± 0.10 0.81± 0.04 0.81± 0.05
0.87± 0.02 0.80± 0.02 0.67± 0.11 0.82± 0.04 0.82± 0.05
0.85± 0.02 0.80± 0.02 0.70± 0.08 0.80± 0.04 0.80± 0.05

P24
0.69± 0.08 0.69± 0.06 0.64± 0.05 0.70± 0.08 0.68± 0.04
0.69± 0.09 0.70± 0.07 0.64± 0.05 0.70± 0.08 0.68± 0.04
0.69± 0.08 0.69± 0.06 0.63± 0.05 0.69± 0.08 0.67± 0.04

Avg
0.85± 0.01 0.79± 0.02 0.68± 0.01 0.77± 0.01 0.74± 0.01
0.86± 0.01 0.80± 0.02 0.69± 0.01 0.78± 0.01 0.74± 0.01
0.85± 0.01 0.79± 0.02 0.67± 0.01 0.76± 0.01 0.73± 0.01
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4.4 Discussion

As shown in the results, our proposed Bayesian inference model outperforms other

single models alone in both the cross-participants evaluation and the within-participants

evaluation.

In the cross-participants evaluation, the overall performance of SVMs for pupil size

change is better than other single models (i.e., the HMM for gaze trajectory, SVMs for

fixation feature, and GMMs for fixation trajectory, as shown in Table 4.1). However, this

may not hold for each individual participant. For example, for participant 20, the SVMs for

pupil size change had an F1 score of 0.68±0.02, which is lower than the SVMs for fixation

features (0.82±0.01) and the GMMs for fixation trajectory (0.79±0.02) in Table 4.3 for the

individual performance using cross-participants evaluation. This indicates the necessity

of leveraging different machine learning models for different features. Therefore, our

proposed Bayesian inference model is useful for achieving reliable workload estimation

for different people.

The performance for SVMs for pupil size change, HMM for gaze trajectory, and SVMs

for fixation feature using cross-participants evaluation is similar with those using within-

participants evaluation as shown in Table 4.3, Table 4.1, and Table 4.4. However, the

performance for GMMs for fixation trajectory using within-participants evaluation (0.74±

0.01 F1 score) is better than using cross-participants evaluation (0.68 ± 0.02 F1 score).

This finding indicates that analyzing fixation trajectory may not work well for the cross-

participants evaluation. This may be due to the different ways people use to acquire and

process information on the screen, i.e., balancing driving task and surveillance task as well

as finding potential threats in the four images in the surveillance task. Different ways to

acquire and process information may lead to different patterns of fixations and saccades.
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The cross-participants evaluation and the within-participants evaluation have its ad-

vantages and disadvantages, and therefore are particularly suitable for certain contexts.

The cross-participants evaluation can be considered a “population-based” model. Its un-

derlying premise is that a “population” model is generalizable to any human operator.

This approach, on one hand, is convenient to use. On the other hand, it requires another

set of data for training the model. For instance, Experiment 1 was conducted first to

train the workload estimation model, which was used later in Experiment 2. The within-

participants evaluation can be considered a “personalized” model. Using this approach,

a portion of data collected from one participant was used to train a model that work well

for this particular participant. On average, within-participants evaluation provides better

performance than cross-participants evaluation. In addition, within-participants evaluation

does not need an extra experiment beforehand to collect data to train the build. However,

this approach requires more trials for each participant and hence much longer experiment

time.

Table 4.3 shows that the performance for Bayesian inference model is worse than at

least one single model alone for six participants using the cross-participants evaluation,

i.e., P2, P7, P9, P12, P14, and P17. However, the performance for Bayesian inference

model is equal or better than all single models alone for all participants using the within-

participants evaluation. This indicates that using within-participants evaluation, we could

acquire more accurate prior distribution p(Mi|WL), resulting in higher chance to outper-

form other single models. We speculate that the performance increment using within-

participants is because of the more accurate prior distribution and better single model

performance (GMMs for fixation trajectory).

Although the results indicated that our proposed Bayesian inference model can achieve

an overall 0.82 F1 score using cross-participants evaluation and an average 0.85 F1 score
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using within-participants evaluation for workload estimation, there are still limitations to

the study. In this chapter, the different levels of human workload is induced by manip-

ulating the surveillance task urgency. The results indicated that our proposed Bayesian

inference model is able to distinguish the different workload levels caused by different

surveillance task urgencies. However, it is unclear if the proposed Bayesian inference

model can classify different workload levels caused by other factors, such as different

driving task conditions. We address this research question in Chapter V.
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CHAPTER V

Generalizability for Bayesian Inference Model for
Workload estimation

5.1 Introduction

In Chapter IV, we evaluated the proposed Bayesian inference model for workload es-

timation using data collected in Experiment 1 in Chapter III, and the different workload

levels were induced by manipulating the surveillance task urgency. In this chapter, we

investigate the generalizability of the proposed Bayesian inference model for workload

estimation by conducting two more experiments: Experiment 3 and Experiment 4. In Ex-

periment 3, we introduce obstacle avoidance to the driving task to investigate the effects

of different obstacle parameters (i.e., headway and size) on workload estimation perfor-

mance. In Experiment 4, we investigate the effects of a vehicle’s speed on workload

estimation performance in the driving task.

5.2 Experiment 3: Effects of Obstacle Avoidance on Workload Esti-
mation Performance

5.2.1 Method

Participants

A total of 20 students participated in the experiment. Data of eight participants were

discarded due to an equipment malfunction. The remaining 12 participants were on aver-
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age 22.7 years old (SD = 2.6) and had an average of 4.5 years of driving experience (SD =

2.2). There were 5 females and 7 males in the remaining 12 participants. All participants

had normal or corrected-to-normal vision.

Experimental Apparatus and Stimuli

We used a similar dual-task platform as the one mentioned in Section 2.2 except for

the following changes:

1) In the surveillance task, we changed the fixed time limits for the detection period

to a combined pace design: If the participant responded within 8 seconds, there would be

a gap until the display of the next set of four images; if the participant responded after 8

seconds, the next set of images would be displayed immediately. There was an auditory

alert every 3 seconds to remind the participant of the secondary task. Figure 5.1 illustrates

the combined pace design of the surveillance task, where Rt denotes the human operator’s

response time, At = 3 s is the alert time, a = 8 s is a parameter that limits the participant’s

pace on the visual search task, and Wt is the gap between the display of the current set of

images and the display of the next set of images. We define that Wt = max (a−Rt, 0).

Thus, if the human operator’s response time Rt is smaller than a = 8 s, a white image

will be shown for a− Rt seconds; if the human operator’s response time Rt is larger than

a = 8 s, the next set of images will appear immediately. We modified the surveillance

task from fixed time limits for the detection period to the combined pace design as we

aimed to manipulate human workload in the driving task and gave human the control of

the surveillance task pace.

2) In the driving task, we introduced some obstacles. We disabled the obstacle avoid-

ance function in the shared control autonomy to simulate the perception difficulties that

autonomy has and therefore the human operator was responsible for the obstacle avoid-
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Figure 5.1: Illustration of the combined pace design for the surveillance task.

Figure 5.2: Example of an obstacle in the driving task.

ance task. We removed the localization offset for the autonomy mentioned in Figure 2.5

from Section 2.4.1. The obstacles were cylinders in the center of the road, as shown in

Figure 5.2. The non-adaptive shared control scheme was applied to control the speed of

the vehicle at 10 m/s (around 22 mph). The human operator and the autonomy shared the

control of the steering wheel.

Experimental Design

The experiment used a within-subjects design. Each participant drove on four different

tracks, and each track was 1,000 m long. There were six different obstacles on the track,

with varying obstacle sizes (1, 3, 5 meters in diameter diameter) and headways (2.5 and
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8 seconds). The headway indicates how far away the participant can see the obstacle and

perform obstacle avoidance. To eliminate potential order effects, the presentation order

of the six obstacles followed a 6×6 Latin square. Figure 5.3 shows the four tracks and

the obstacle locations in the experiment. The blue curves are the tracks, and the red dots

indicate the locations of the obstacles.
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(d) Track 4

Figure 5.3: Four tracks in the formal experiment (blue curves). Red dots indicate the lo-
cations of the obstacles.

Measures

During the experiment, the participants wore the Tobii Pro Glasses 2 to gather their

eye-related data (i.e., gaze points and pupil sizes). After avoiding each obstacle, partici-

pants reported perceived difficulty on a 7-point Likert scale.
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Experimental Procedure

The participants provided informed consent and filled in a demographic survey prior to

the experiment. The participants’ baseline pupil sizes were then collected by asking them

to look at a white wall twice, each time for 30 seconds. Four training trials were provided

to them before the real experiment: (1) driving on a track without obstacles; (2) driving

on a track with obstacles; (3) performing the surveillance task; (4) performing the driving

task and the surveillance task on a track with obstacles. Participants then performed the

formal experiment on four different tracks. A debriefing survey was completed at the end

of the experiment.

5.2.2 Results

Effects of Obstacle Types on Perceived Difficulty

Two-way repeated measures analysis of variance (ANOVAs) were conducted with the

obstacle headway and the obstacle size as the within-subjects variables. Results are re-

ported as significant for α < .05.

The results revealed a significant effect of obstacle headway (F (1, 11) = 101.928, p <

.001) and obstacle size (F (2, 22) = 17.025, p < .001) on perceived difficulty. Figure 5.4

shows the mean and standard error (SE) values of perceived difficulty. We then performed

a series of t tests between different pairs of obstacles. The results revealed significant

differences between each pair of obstacles except for the obstacle with 8 s headway/1 m

diameter and the obstacle with 8 s headway/3 m diameter.

Data Preparation

Given the results above, we considered the event of avoiding obstacles with a 2.5-

second headway as imposing a high workload on human operators and the event of avoid-

ing obstacles with an 8-second headway as imposing a low workload. We defined the
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Figure 5.4: Mean and standard error (SE) values of perceived difficulty.

period of the obstacle-avoidance event as from 2 seconds prior to revealing an obstacle

to 2 seconds after the vehicle passed the obstacle and crossed the centerline, as shown in

Figure 5.5. Black curve represents the track and blue dotted line represents the vehicle tra-

jectory. Yellow cross mark indicates when the obstacle is first revealed to the participants.

Yellow circle represents 2 seconds before obstacle revealed. Green cross mark indicates

the first time that the vehicle passed the centerline after obstacle avoidance. Green circle

represents 2 seconds after vehicle passed the obstacle and the centerline. The obstacle

avoidance event is the period between the yellow circle and the green circle.

The sampling rate for the Tobii Pro Glasses 2 is 50 Hz. In the case of data dropout, we

down-sampled the data to a 30 Hz sampling rate. We used data of 4 seconds in the middle

of each obstacle avoidance event (shown as the blue box in Figure 5.5) and had 288 data

points (12 participants × 4 tracks × 6 obstacles).

Workload Estimation Performance

As each participant only has 12 data points for each workload level, we only used

cross-participants evaluation in this experiment. Due to the small dataset (12 participants),

we used the holdout method (Kim, 2009) for cross-validation to test the performance of
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Figure 5.5: An example of obstacle avoidance event. Black curve: track. Grey circle:
obstacle. Blue dotted curve: vehicle trajectory. The region between the yellow
circle and the green circle indicates the obstacle avoidance event. Blue box:
selected sequence of data.

Table 5.1: Performance of the Bayesian inference model and other single models for dif-
ferent obstacle headways

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.683± 0.011 0.601± 0.007 0.687± 0.008 0.609± 0.010 0.626± 0.009
Precision 0.688± 0.011 0.604± 0.007 0.691± 0.008 0.613± 0.011 0.631± 0.009

Recall 0.679± 0.011 0.598± 0.007 0.683± 0.008 0.606± 0.010 0.621± 0.008

our proposed method.

We randomly selected the data of three participants as the testing dataset and the data

of the remaining nine participants as the training dataset in each run of the holdout. We

ran 50 holdouts to evaluate the performance of our proposed Bayesian inference model

(BI) and the four single models, and Table 4.1 shows the results. Our proposed Bayesian

inference model achieved a 0.696± 0.012 F1 score for the workload imposed by different

obstacle headways.

5.2.3 Discussion

In this experiment, we tried to manipulate human workload by varying driving task

difficulty. The results showed that our proposed Bayesian inference model can achieve an

F1 score of 0.683 ± 0.011 when estimating the workload imposed by different obstacle

headways. When comparing these results with the workload induced by surveillance task

urgency (Table 4.1 in Chapter IV), in which we achieved a 0.823 ± 0.004 F1 score, our

82



proposed Bayesian inference model performed worse when distinguishing workload im-

posed by different obstacle headways. The main reason for this result is the performance

decrement for SVMs for pupil size change (F1 score decreased from 0.772 ± 0.006 to

0.611 ± 0.007) and SVMs for fixation feature (F1 score decreased from 0.745 ± 0.003 to

0.603 ± 0.011). One potential explanation for this performance decrement is due to the

different workload dimensions used by the surveillance task and obstacle avoidance in the

driving task. In the surveillance task, participants tried to identify potential threats in the

image feeds, which contributed to mental demand. Therefore, when varying surveillance

task urgency, the mental demand changed substantially. However, avoiding obstacles with

a shorter headway may trigger more temporal demand and physical demand, as the hu-

man must steer the vehicle harder and faster. Previous literature showed that pupil dilation

and fixation duration are sensitive, diagnostic, and selective to cognitive workload (Heard

et al., 2018). Thus, SVMs for pupil size change and SVMs for fixation feature had better

performance when workload was imposed by varying surveillance task urgency.

The findings from this experiment should also be viewed in light of the following

limitations.

First, we only manipulated the driving task by varying the obstacle headways. How-

ever, there are different factors for the driving task that may affect human workload, for

example driving speed. We addressed this issue in Experiment 4.

Second, in this experiment, we utilized a combined pace surveillance task. It is un-

clear the performance of our proposed Bayesian inference model for workload estimation

when varying both the surveillance task urgency and the driving task conditions. In Ex-

periment 4, we manipulated both the surveillance task urgency and the driving speed for

the driving task.
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5.3 Experiment 4: Effects of Driving Speed on Workload Estimation
Performance

5.3.1 Method

Participants

A total of 12 students participated in Experiment 4. The 12 participants were on aver-

age 25.4 years old (SD = 3.1) and had an average of 5.9 years of driving experience (SD =

3.7). There were 1 female and 11 males in the 12 participants. All participants had normal

or corrected-to-normal vision.

Experimental Apparatus and Stimuli

We used an updated version of the dual-task shared control simulation platform, with

a high-fidelity visualization system as shown in Figure 5.6. The high-fidelity visualiza-

tion system depicted a more realistic off-road driving scenario. The goal for the driving

task was to drive as close to the reference line as possible. The green dots in Figure 5.6

indicated the reference line. The red gasoline barrel in the middle of the road indicated

the obstacle in Figure 5.6. Similar to Experiment 3, we disabled the obstacle avoidance

capability in the autonomy. The obstacle headway was 20 s.

Experimental Design

The experiment used a within-subjects design with two independent variables: vehicle

speed (low speed 12.5 m/s vs. high speed 22.5 m/s) and surveillance task urgency (low

urgency 6.5 s vs. high urgency 1.5 s). Therefore, there were four different cases, as shown

in Table 5.2. Each participant drove on four different tracks (each track was 2,700 m long)

and with one of the four cases. The four tracks were Track ID 1, 7, 8, and 9, as shown in

Figure 2.6 in Section 2.4. There were two obstacles on each track, and each obstacle had

a 20 s headway and 1 m diameter. Figure 5.7 shows the four tracks and the locations of
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Figure 5.6: High-fidelity visualization system for the driving task.

the obstacles. To eliminate potential order effects, the presentation order of the cases was

determined by using 4× 4 Latin square.

Table 5.2: Four different cases.
Case ID Case

1 Low urgency + low speed
2 Low urgency + high speed
3 High urgency + low speed
4 High urgency + high speed

Measures

The participants’ gaze points and pupil sizes were recorded by the Tobii Pro Glasses

2 at 30 Hz. After each track, the participants reported their perceived workload using the

NASA TLX survey.

Experimental Procedure

Participants provided signed informed consent and filled out a demographic survey.

Then, they received an instruction session. After that, they were assisted to wear the

eye tracker (Tobii Pro Glasses 2) and underwent a calibration before the training session.
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(b) Track 2 (ID: 7)
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(c) Track 3 (ID: 8)
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(d) Track 4 (ID: 9)

Figure 5.7: Four tracks in the formal experiment. Red dots indicate the locations of the
obstacles.

With the normal room light and without any specific tasks, the experimenter measured

each participant’s baseline pupil diameter twice, each for about 120 s. During the training

session, participants first performed the driving task alone on two different tracks, with

low speed and high speed. Then, each participant performed the surveillance task alone,

with low urgency first and then high urgency. In the end, each participant performed the

dual-task scenario on two tracks, with low speed and high speed. Both tracks contain two

portions: the first portion is for the low-urgency surveillance task, and the second portion

is for the high-urgency surveillance task. After the training session, participants performed

on four different tracks with different cases in the formal experiment. After each track, the

participants reported their perceived workload using the NASA TLX survey. A debriefing
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survey was completed after the experiment.

5.3.2 Results

Effects of Driving Speed on Human Workload

Two-way repeated measures Analysis of Variance (ANOVAs) were conducted with

driving speed and surveillance task urgency as the within-subjects variables. The results

indicated significant main effects of driving speed (F (1, 33) = 10.226, p = .003) and

surveillance task urgency (F (1, 33) = 81.12, p < .001) on self-reported workload (see

Figure 5.8). The interaction effect was non-significant.

Figure 5.8: Mean and standard error (SE) values of self-reported workload.

We then performed a series of t tests between each pair of different cases. The results

revealed significant differences between each pair of different cases.

Data Preparation

We prepared the dataset for the cross-participants evaluation and the within-participants

evaluation separately. For the cross-participants evaluation, the participants experienced

each case (low/high speed × low/high urgency) on one track. We randomly selected 30

sequences of data in each track, and each had a 4-second length. We then extracted differ-
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ent features, as in Chapter IV. For within-participants evaluation, as each participant only

performed each case on one track, we needed to segment each track into four portions

equally. In each portion, we randomly selected 20 sequences of data. Therefore, when

we performed the within-participants evaluation, we could use data from one portion as

testing data and data from the remaining portions as training data.

Given the four different cases, we applied three different ground truth labeling criteria:

1) each case represents one workload level (four levels in total); 2) using driving speed as

ground truth labels (two levels) under two conditions (low urgency and high urgency); 3)

using surveillance task urgency as ground truth labels (two levels) under two conditions

(low speed and high speed).

Four Different Cases as Ground Truth Labels

Table 5.3 and Table 5.5 show the performance of our proposed Bayesian inference

model and other single models for workload estimation using four different cases as

ground truth labels using cross-participants and within-participants evaluation methods,

respectively. Table 5.4 shows the individual performance using cross-participants evalua-

tion, i.e., for each participant, we used the performance of s/he when s/he was selected as

testing data to compute the individual performance of her/him.

Note that the random guess for the four-category classification problem is 0.25. The

results indicated that for cross-participants evaluation, all methods cannot estimate work-

load well. Our proposed Bayesian inference model achieved a 0.396 ± 0.006 F1 score

using cross-participants evaluation. However, within-participants evaluation can estimate

workload at four different levels with a 0.56 ± 0.03 F1 score on average, which is much

better than the random guess but still not good enough.
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Table 5.3: Overall performance for cross-participants evaluation for four different cases as
ground truth labels.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.396± 0.006 0.339± 0.004 0.327± 0.004 0.389± 0.005 0.386± 0.004
Precision 0.381± 0.008 0.341± 0.005 0.328± 0.006 0.388± 0.005 0.388± 0.004

Recall 0.416± 0.005 0.337± 0.004 0.328± 0.004 0.390± 0.005 0.385± 0.004

Table 5.4: Individual performance for cross-participants evaluation (F1 score, precision,
recall) for four different cases as ground truth labels.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.42± 0.02 0.40± 0.02 0.20± 0.01 0.41± 0.01 0.26± 0.01
0.41± 0.03 0.42± 0.02 0.17± 0.01 0.40± 0.01 0.27± 0.01
0.43± 0.01 0.38± 0.02 0.22± 0.00 0.41± 0.01 0.26± 0.01

P2
0.38± 0.02 0.32± 0.01 0.35± 0.01 0.35± 0.00 0.37± 0.01
0.37± 0.03 0.32± 0.01 0.33± 0.01 0.36± 0.01 0.37± 0.01
0.40± 0.01 0.32± 0.01 0.37± 0.00 0.34± 0.00 0.36± 0.01

P3
0.29± 0.01 0.24± 0.01 0.27± 0.01 0.40± 0.01 0.29± 0.01
0.30± 0.03 0.26± 0.01 0.25± 0.01 0.47± 0.02 0.27± 0.01
0.29± 0.00 0.22± 0.01 0.29± 0.00 0.35± 0.01 0.32± 0.01

P4
0.35± 0.01 0.33± 0.01 0.33± 0.01 0.39± 0.01 0.40± 0.01
0.31± 0.01 0.34± 0.01 0.29± 0.01 0.39± 0.01 0.40± 0.01
0.39± 0.00 0.33± 0.00 0.38± 0.01 0.38± 0.01 0.41± 0.01

P5
0.42± 0.02 0.27± 0.02 0.23± 0.01 0.40± 0.01 0.39± 0.02
0.39± 0.02 0.26± 0.02 0.22± 0.02 0.42± 0.01 0.38± 0.03
0.45± 0.01 0.28± 0.02 0.23± 0.01 0.37± 0.01 0.40± 0.02

P6
0.47± 0.02 0.23± 0.01 0.25± 0.04 0.47± 0.02 0.40± 0.02
0.49± 0.03 0.20± 0.01 0.29± 0.07 0.44± 0.02 0.42± 0.03
0.46± 0.01 0.27± 0.01 0.26± 0.01 0.49± 0.01 0.40± 0.01

P7
0.46± 0.02 0.38± 0.01 0.38± 0.02 0.49± 0.01 0.39± 0.01
0.46± 0.03 0.37± 0.01 0.38± 0.02 0.49± 0.01 0.40± 0.01
0.47± 0.01 0.39± 0.01 0.38± 0.01 0.49± 0.01 0.38± 0.01

P8
0.35± 0.01 0.38± 0.01 0.30± 0.01 0.29± 0.01 0.37± 0.01
0.33± 0.01 0.38± 0.01 0.29± 0.01 0.29± 0.01 0.36± 0.01
0.38± 0.01 0.37± 0.01 0.32± 0.00 0.29± 0.01 0.38± 0.01

P9
0.36± 0.02 0.36± 0.01 0.31± 0.00 0.35± 0.01 0.38± 0.02
0.34± 0.03 0.38± 0.01 0.28± 0.00 0.38± 0.01 0.40± 0.03
0.39± 0.01 0.35± 0.01 0.35± 0.01 0.33± 0.01 0.36± 0.01

P10
0.44± 0.01 0.40± 0.00 0.22± 0.01 0.39± 0.01 0.35± 0.01
0.43± 0.02 0.40± 0.00 0.20± 0.01 0.37± 0.01 0.36± 0.02
0.45± 0.01 0.40± 0.00 0.23± 0.01 0.41± 0.01 0.35± 0.01

Continued on next page
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Table 5.4 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P11
0.46± 0.02 0.33± 0.01 0.35± 0.02 0.41± 0.01 0.50± 0.02
0.43± 0.03 0.34± 0.01 0.38± 0.02 0.39± 0.02 0.50± 0.02
0.50± 0.01 0.33± 0.01 0.34± 0.01 0.44± 0.01 0.49± 0.02

P12
0.39± 0.01 0.34± 0.01 0.38± 0.01 0.43± 0.01 0.42± 0.01
0.36± 0.02 0.34± 0.01 0.37± 0.02 0.43± 0.01 0.43± 0.01
0.42± 0.01 0.34± 0.01 0.39± 0.01 0.42± 0.01 0.42± 0.01

Avg
0.40± 0.02 0.33± 0.02 0.30± 0.02 0.40± 0.02 0.38± 0.02
0.39± 0.02 0.33± 0.02 0.29± 0.02 0.40± 0.02 0.38± 0.02
0.42± 0.02 0.33± 0.02 0.31± 0.02 0.39± 0.02 0.38± 0.02

Table 5.5: Within-participants evaluation (F1 score, precision, recall) for four different
cases as ground truth labels.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.53± 0.06 0.40± 0.02 0.38± 0.04 0.43± 0.01 0.37± 0.02
0.51± 0.07 0.41± 0.02 0.38± 0.07 0.43± 0.01 0.37± 0.02
0.55± 0.05 0.40± 0.03 0.40± 0.01 0.44± 0.01 0.37± 0.02

P2
0.61± 0.02 0.41± 0.03 0.52± 0.05 0.54± 0.04 0.55± 0.06
0.61± 0.01 0.42± 0.03 0.55± 0.04 0.53± 0.04 0.55± 0.05
0.62± 0.02 0.40± 0.04 0.51± 0.06 0.54± 0.04 0.55± 0.06

P3
0.42± 0.05 0.32± 0.03 0.39± 0.05 0.30± 0.05 0.47± 0.04
0.45± 0.05 0.31± 0.03 0.37± 0.06 0.30± 0.05 0.48± 0.04
0.40± 0.05 0.33± 0.03 0.42± 0.02 0.30± 0.04 0.47± 0.04

P4
0.54± 0.03 0.36± 0.04 0.56± 0.03 0.42± 0.01 0.58± 0.03
0.56± 0.03 0.36± 0.04 0.57± 0.03 0.41± 0.01 0.58± 0.03
0.53± 0.04 0.36± 0.03 0.55± 0.04 0.43± 0.01 0.58± 0.02

P5
0.40± 0.04 0.41± 0.05 0.42± 0.07 0.40± 0.02 0.43± 0.02
0.39± 0.05 0.41± 0.06 0.44± 0.08 0.39± 0.02 0.44± 0.03
0.42± 0.03 0.42± 0.04 0.41± 0.06 0.40± 0.02 0.42± 0.02

P6
0.47± 0.03 0.32± 0.04 0.47± 0.04 0.51± 0.05 0.45± 0.04
0.47± 0.04 0.32± 0.04 0.49± 0.04 0.51± 0.06 0.45± 0.04
0.49± 0.03 0.32± 0.04 0.46± 0.05 0.51± 0.05 0.46± 0.04

P7
0.70± 0.05 0.56± 0.02 0.64± 0.05 0.44± 0.05 0.54± 0.04
0.71± 0.05 0.57± 0.02 0.65± 0.05 0.43± 0.05 0.54± 0.04
0.69± 0.05 0.55± 0.02 0.63± 0.05 0.44± 0.04 0.54± 0.04

Continued on next page
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Table 5.5 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P8
0.65± 0.04 0.37± 0.03 0.58± 0.03 0.37± 0.03 0.59± 0.07
0.67± 0.04 0.37± 0.03 0.58± 0.03 0.38± 0.03 0.60± 0.09
0.64± 0.03 0.38± 0.03 0.58± 0.04 0.37± 0.04 0.58± 0.06

P9
0.59± 0.04 0.52± 0.04 0.41± 0.05 0.54± 0.03 0.54± 0.01
0.60± 0.05 0.52± 0.05 0.41± 0.06 0.55± 0.03 0.55± 0.02
0.58± 0.04 0.52± 0.04 0.41± 0.05 0.54± 0.02 0.53± 0.01

P10
0.56± 0.04 0.41± 0.03 0.42± 0.05 0.41± 0.06 0.50± 0.02
0.58± 0.05 0.41± 0.03 0.42± 0.05 0.39± 0.06 0.51± 0.02
0.54± 0.03 0.40± 0.03 0.42± 0.05 0.43± 0.06 0.49± 0.02

P11
0.76± 0.02 0.52± 0.01 0.54± 0.04 0.54± 0.02 0.58± 0.03
0.77± 0.01 0.52± 0.01 0.55± 0.04 0.54± 0.03 0.60± 0.03
0.75± 0.03 0.51± 0.01 0.53± 0.04 0.53± 0.02 0.56± 0.04

P12
0.47± 0.04 0.34± 0.02 0.37± 0.05 0.39± 0.05 0.51± 0.05
0.48± 0.04 0.34± 0.03 0.36± 0.06 0.38± 0.04 0.51± 0.05
0.46± 0.03 0.33± 0.02 0.38± 0.05 0.41± 0.05 0.51± 0.04

Avg
0.56± 0.03 0.41± 0.02 0.47± 0.03 0.44± 0.02 0.51± 0.02
0.57± 0.03 0.41± 0.02 0.48± 0.03 0.44± 0.02 0.51± 0.02
0.55± 0.03 0.41± 0.02 0.47± 0.02 0.44± 0.02 0.51± 0.02

Driving Speed as Ground Truth Labels

When using driving speed as ground truth labels, we must evaluate the performance of

workload estimation models conditioning on high urgency and low urgency. For example,

when conditioning on low urgency, we are trying to classify the data from low urgency

into two categories: low urgency + low speed (Case ID 1) and low urgency + high speed

(Case ID 2). When conditioning on high urgency, we are trying to classify the data from

high surveillance task urgency into two categories: high urgency + low speed (Case ID 3)

and high urgency + high speed (Case ID 4).

When conditioning on low urgency, Table 5.6 and Table 5.8 show the performance of

our proposed Bayesian inference model and other single models using cross-participants

evaluation and within-participants evaluation, respectively. Table 5.7 shows the individual
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performance using cross-participants evaluation.

The results indicated that both models cannot distinguish workload imposed by driving

speed under low surveillance task urgency using cross-participants evaluation. Our pro-

posed Bayesian inference model achieved an overall 0.512±0.007 F1 score and an average

individual performance with 0.52± 0.02 F1 score using cross-participants evaluation.

For the within-participants evaluation, the estimation was able to reach a reasonable

performance for a few participants (i.e., participants 4, 7, 10, and 11). On average, our

proposed Bayesian inference model achieved a 0.62 ± 0.04 F1 score using the within-

participants evaluation under low surveillance task urgency.

Table 5.6: Overall performance for cross-participants evaluation for driving speed as
ground truth labels conditioned on low surveillance task urgency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.512± 0.007 0.529± 0.004 0.521± 0.007 0.535± 0.005 0.517± 0.007
Precision 0.517± 0.009 0.529± 0.004 0.524± 0.008 0.537± 0.006 0.517± 0.007

Recall 0.510± 0.004 0.528± 0.004 0.518± 0.006 0.533± 0.005 0.517± 0.007

Table 5.7: Individual performance for cross-participants evaluation (F1 score, precision,
recall) for driving speed as ground truth labels conditioned on low surveillance task ur-
gency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.56± 0.03 0.49± 0.02 0.37± 0.04 0.54± 0.01 0.51± 0.01
0.59± 0.04 0.49± 0.02 0.32± 0.05 0.54± 0.01 0.51± 0.02
0.54± 0.02 0.49± 0.02 0.46± 0.01 0.54± 0.01 0.51± 0.01

P2
0.53± 0.02 0.57± 0.01 0.59± 0.01 0.57± 0.01 0.56± 0.02
0.53± 0.03 0.57± 0.01 0.61± 0.01 0.58± 0.01 0.56± 0.02
0.54± 0.01 0.57± 0.01 0.58± 0.01 0.56± 0.00 0.55± 0.02

P3
0.42± 0.03 0.53± 0.01 0.45± 0.01 0.51± 0.02 0.42± 0.03
0.39± 0.05 0.53± 0.01 0.44± 0.01 0.54± 0.04 0.40± 0.04
0.48± 0.01 0.53± 0.01 0.46± 0.01 0.50± 0.00 0.45± 0.02

Continued on next page
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Table 5.7 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P4
0.49± 0.02 0.50± 0.01 0.39± 0.03 0.49± 0.01 0.52± 0.02
0.48± 0.02 0.50± 0.01 0.35± 0.05 0.49± 0.01 0.52± 0.02
0.51± 0.01 0.50± 0.01 0.51± 0.00 0.49± 0.00 0.51± 0.02

P5
0.54± 0.02 0.57± 0.01 0.47± 0.03 0.59± 0.02 0.53± 0.03
0.56± 0.04 0.58± 0.01 0.47± 0.04 0.59± 0.02 0.55± 0.05
0.53± 0.02 0.57± 0.01 0.47± 0.02 0.58± 0.02 0.51± 0.02

P6
0.59± 0.03 0.51± 0.02 0.45± 0.02 0.61± 0.02 0.52± 0.05
0.63± 0.04 0.51± 0.02 0.43± 0.03 0.62± 0.02 0.53± 0.06
0.56± 0.02 0.51± 0.02 0.48± 0.01 0.60± 0.01 0.52± 0.04

P7
0.51± 0.02 0.56± 0.02 0.64± 0.02 0.54± 0.01 0.48± 0.01
0.52± 0.03 0.56± 0.02 0.66± 0.02 0.55± 0.01 0.48± 0.02
0.50± 0.01 0.56± 0.02 0.62± 0.02 0.53± 0.01 0.48± 0.01

P8
0.42± 0.02 0.61± 0.02 0.46± 0.01 0.45± 0.01 0.40± 0.02
0.42± 0.02 0.61± 0.02 0.46± 0.01 0.44± 0.01 0.40± 0.02
0.43± 0.02 0.60± 0.02 0.47± 0.00 0.45± 0.01 0.40± 0.02

P9
0.57± 0.04 0.49± 0.02 0.54± 0.04 0.60± 0.01 0.58± 0.03
0.57± 0.04 0.49± 0.02 0.59± 0.07 0.61± 0.01 0.59± 0.03
0.56± 0.03 0.49± 0.02 0.53± 0.01 0.60± 0.01 0.58± 0.03

P10
0.54± 0.02 0.52± 0.01 0.44± 0.01 0.52± 0.01 0.57± 0.02
0.56± 0.02 0.52± 0.01 0.41± 0.02 0.52± 0.01 0.59± 0.02
0.53± 0.01 0.52± 0.01 0.48± 0.00 0.52± 0.01 0.56± 0.02

P11
0.54± 0.03 0.44± 0.01 0.72± 0.02 0.61± 0.01 0.66± 0.04
0.57± 0.04 0.44± 0.01 0.80± 0.01 0.64± 0.02 0.66± 0.04
0.53± 0.03 0.44± 0.01 0.66± 0.02 0.58± 0.01 0.65± 0.04

P12
0.49± 0.02 0.55± 0.02 0.43± 0.02 0.58± 0.01 0.50± 0.02
0.48± 0.03 0.55± 0.02 0.41± 0.02 0.58± 0.01 0.50± 0.02
0.51± 0.01 0.55± 0.02 0.44± 0.01 0.58± 0.01 0.50± 0.02

Avg
0.52± 0.02 0.53± 0.01 0.50± 0.03 0.55± 0.02 0.52± 0.02
0.52± 0.02 0.53± 0.01 0.50± 0.04 0.56± 0.02 0.52± 0.02
0.52± 0.01 0.53± 0.01 0.51± 0.02 0.54± 0.01 0.52± 0.02
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Table 5.8: Within-participants evaluation (F1 score, precision, recall) for driving speed as
ground truth labels conditioned on low surveillance task urgency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.60± 0.08 0.47± 0.06 0.40± 0.07 0.49± 0.04 0.37± 0.02
0.61± 0.09 0.46± 0.06 0.39± 0.08 0.49± 0.04 0.34± 0.04
0.58± 0.06 0.47± 0.05 0.42± 0.05 0.49± 0.04 0.41± 0.01

P2
0.54± 0.03 0.54± 0.01 0.63± 0.09 0.65± 0.07 0.56± 0.08
0.54± 0.03 0.54± 0.01 0.63± 0.09 0.65± 0.07 0.56± 0.08
0.54± 0.03 0.54± 0.01 0.63± 0.09 0.64± 0.07 0.56± 0.08

P3
0.57± 0.10 0.46± 0.05 0.56± 0.04 0.38± 0.06 0.61± 0.05
0.57± 0.12 0.46± 0.05 0.57± 0.05 0.36± 0.06 0.62± 0.06
0.59± 0.07 0.46± 0.05 0.56± 0.04 0.39± 0.05 0.60± 0.05

P4
0.72± 0.03 0.49± 0.02 0.79± 0.05 0.48± 0.02 0.72± 0.03
0.75± 0.03 0.49± 0.02 0.79± 0.05 0.47± 0.02 0.74± 0.03
0.70± 0.04 0.49± 0.02 0.78± 0.05 0.48± 0.01 0.71± 0.04

P5
0.52± 0.07 0.51± 0.06 0.47± 0.07 0.46± 0.11 0.53± 0.05
0.53± 0.11 0.50± 0.07 0.45± 0.08 0.45± 0.11 0.53± 0.05
0.54± 0.02 0.51± 0.06 0.50± 0.04 0.46± 0.10 0.53± 0.04

P6
0.44± 0.06 0.59± 0.10 0.64± 0.02 0.45± 0.07 0.53± 0.07
0.43± 0.07 0.59± 0.10 0.65± 0.03 0.44± 0.08 0.52± 0.07
0.46± 0.06 0.59± 0.10 0.63± 0.01 0.46± 0.06 0.53± 0.06

P7
0.75± 0.09 0.56± 0.03 0.78± 0.07 0.49± 0.03 0.76± 0.09
0.76± 0.10 0.56± 0.03 0.79± 0.07 0.49± 0.03 0.76± 0.09
0.74± 0.09 0.56± 0.03 0.78± 0.07 0.49± 0.03 0.76± 0.09

P8
0.62± 0.05 0.45± 0.05 0.70± 0.03 0.49± 0.10 0.69± 0.03
0.65± 0.06 0.45± 0.05 0.73± 0.04 0.49± 0.11 0.71± 0.01
0.60± 0.04 0.45± 0.05 0.68± 0.04 0.49± 0.10 0.68± 0.03

P9
0.62± 0.02 0.58± 0.04 0.67± 0.05 0.65± 0.04 0.60± 0.02
0.62± 0.02 0.58± 0.04 0.68± 0.05 0.66± 0.04 0.60± 0.02
0.62± 0.02 0.57± 0.04 0.66± 0.05 0.64± 0.04 0.60± 0.02

P10
0.71± 0.04 0.71± 0.04 0.60± 0.02 0.56± 0.05 0.67± 0.03
0.73± 0.04 0.71± 0.04 0.61± 0.02 0.56± 0.05 0.68± 0.03
0.70± 0.04 0.71± 0.04 0.59± 0.02 0.56± 0.05 0.67± 0.03

P11
0.86± 0.03 0.55± 0.04 0.85± 0.02 0.61± 0.03 0.74± 0.05
0.86± 0.03 0.55± 0.05 0.86± 0.02 0.62± 0.03 0.75± 0.05
0.86± 0.03 0.54± 0.04 0.84± 0.02 0.61± 0.03 0.74± 0.05

P12
0.48± 0.06 0.51± 0.06 0.57± 0.03 0.42± 0.03 0.45± 0.07
0.47± 0.09 0.51± 0.06 0.58± 0.04 0.41± 0.03 0.46± 0.08
0.51± 0.04 0.51± 0.05 0.56± 0.03 0.43± 0.03 0.44± 0.06

Avg
0.62± 0.04 0.53± 0.02 0.64± 0.04 0.51± 0.03 0.60± 0.04
0.63± 0.04 0.53± 0.02 0.64± 0.04 0.51± 0.03 0.61± 0.04

Continued on next page
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Table 5.8 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

0.62± 0.03 0.53± 0.02 0.63± 0.04 0.51± 0.02 0.60± 0.03

When conditioning on high surveillance task urgency, Table 5.9 and Table 5.11 show

the performance of our proposed Bayesian inference model and other single models using

cross-participants evaluation and within-participants evaluation, respectively. Table 5.10

shows the individual performance using cross-participants evaluation.

The results indicated that using the cross-participants evaluation cannot distinguish the

workload imposed by the driving speed under high surveillance task urgency (a 0.526 ±

0.010 F1 score for overall performance and a 0.50 ± 0.01 F1 score for average individual

performance). However, using the within-participants evaluation can achieve a 0.70±0.03

F1 score on average to distinguish human workload imposed by a driving speed under high

surveillance task urgency.

Table 5.9: Overall performance for cross-participants evaluation for driving speed as
ground truth labels conditioned on high surveillance task urgency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.526± 0.010 0.483± 0.006 0.574± 0.006 0.492± 0.006 0.547± 0.005
Precision 0.535± 0.015 0.483± 0.006 0.580± 0.007 0.493± 0.006 0.548± 0.005

Recall 0.528± 0.005 0.484± 0.005 0.569± 0.006 0.492± 0.006 0.546± 0.005
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Table 5.10: Individual performance for cross-participants evaluation (F1 score, precision,
recall) for driving speed as ground truth labels conditioned on high surveillance task ur-
gency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.50± 0.02 0.47± 0.03 0.50± 0.01 0.53± 0.01 0.48± 0.01
0.50± 0.02 0.47± 0.03 0.50± 0.01 0.53± 0.01 0.49± 0.01
0.49± 0.02 0.47± 0.03 0.50± 0.01 0.53± 0.01 0.48± 0.01

P2
0.60± 0.03 0.52± 0.02 0.59± 0.01 0.48± 0.01 0.55± 0.02
0.61± 0.03 0.52± 0.02 0.60± 0.01 0.48± 0.01 0.56± 0.02
0.58± 0.02 0.52± 0.01 0.57± 0.01 0.48± 0.01 0.55± 0.02

P3
0.50± 0.02 0.44± 0.03 0.45± 0.04 0.50± 0.02 0.53± 0.03
0.51± 0.04 0.44± 0.03 0.45± 0.07 0.50± 0.03 0.56± 0.05
0.51± 0.01 0.44± 0.03 0.51± 0.00 0.50± 0.02 0.53± 0.02

P4
0.54± 0.02 0.49± 0.01 0.59± 0.01 0.49± 0.02 0.56± 0.01
0.55± 0.03 0.49± 0.01 0.60± 0.01 0.49± 0.02 0.56± 0.01
0.54± 0.01 0.49± 0.01 0.58± 0.01 0.49± 0.02 0.56± 0.01

P5
0.41± 0.03 0.50± 0.02 0.45± 0.01 0.33± 0.01 0.49± 0.03
0.39± 0.04 0.50± 0.02 0.43± 0.02 0.33± 0.01 0.50± 0.04
0.46± 0.02 0.50± 0.02 0.47± 0.01 0.33± 0.01 0.49± 0.02

P6
0.49± 0.05 0.38± 0.01 0.52± 0.03 0.47± 0.03 0.51± 0.04
0.51± 0.07 0.34± 0.01 0.54± 0.04 0.47± 0.03 0.51± 0.04
0.48± 0.03 0.44± 0.01 0.51± 0.02 0.47± 0.02 0.51± 0.04

P7
0.51± 0.02 0.44± 0.02 0.56± 0.01 0.49± 0.01 0.50± 0.02
0.50± 0.03 0.44± 0.02 0.57± 0.01 0.49± 0.01 0.50± 0.02
0.53± 0.01 0.44± 0.02 0.56± 0.01 0.49± 0.01 0.50± 0.01

P8
0.50± 0.03 0.49± 0.01 0.46± 0.01 0.53± 0.02 0.59± 0.01
0.51± 0.04 0.49± 0.01 0.45± 0.01 0.55± 0.02 0.59± 0.01
0.53± 0.01 0.49± 0.01 0.47± 0.01 0.52± 0.01 0.59± 0.01

P9
0.46± 0.03 0.48± 0.02 0.58± 0.02 0.40± 0.03 0.50± 0.01
0.44± 0.04 0.48± 0.02 0.60± 0.02 0.40± 0.03 0.50± 0.01
0.50± 0.01 0.48± 0.02 0.57± 0.02 0.41± 0.03 0.50± 0.01

P10
0.46± 0.04 0.52± 0.01 0.69± 0.02 0.49± 0.01 0.56± 0.02
0.42± 0.05 0.52± 0.01 0.71± 0.02 0.49± 0.02 0.56± 0.03
0.55± 0.02 0.52± 0.01 0.67± 0.02 0.49± 0.01 0.55± 0.02

P11
0.47± 0.04 0.52± 0.02 0.50± 0.02 0.52± 0.01 0.61± 0.02
0.47± 0.06 0.52± 0.02 0.50± 0.02 0.54± 0.03 0.64± 0.03
0.52± 0.01 0.52± 0.02 0.51± 0.01 0.51± 0.01 0.59± 0.02

P12
0.52± 0.04 0.47± 0.01 0.75± 0.02 0.53± 0.01 0.57± 0.01
0.51± 0.05 0.47± 0.01 0.76± 0.02 0.53± 0.01 0.57± 0.01
0.55± 0.02 0.47± 0.01 0.74± 0.02 0.53± 0.01 0.56± 0.01

Avg
0.50± 0.01 0.48± 0.01 0.55± 0.03 0.48± 0.02 0.54± 0.01

Continued on next page
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Table 5.10 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

0.49± 0.02 0.47± 0.01 0.56± 0.03 0.48± 0.02 0.54± 0.01
0.52± 0.01 0.48± 0.01 0.55± 0.02 0.48± 0.02 0.53± 0.01

Table 5.11: Within-participants evaluation (F1 score) for driving speed as ground truth
labels conditioned on high surveillance task urgency.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.72± 0.05 0.72± 0.04 0.54± 0.03 0.60± 0.03 0.56± 0.06
0.73± 0.05 0.73± 0.04 0.54± 0.03 0.60± 0.03 0.57± 0.07
0.71± 0.05 0.70± 0.04 0.53± 0.03 0.59± 0.03 0.55± 0.05

P2
0.87± 0.03 0.53± 0.03 0.81± 0.06 0.64± 0.01 0.85± 0.07
0.88± 0.02 0.53± 0.03 0.84± 0.05 0.64± 0.01 0.85± 0.07
0.86± 0.03 0.53± 0.03 0.79± 0.08 0.64± 0.01 0.84± 0.06

P3
0.75± 0.04 0.68± 0.02 0.64± 0.05 0.68± 0.04 0.59± 0.08
0.76± 0.04 0.68± 0.01 0.65± 0.05 0.70± 0.04 0.59± 0.09
0.74± 0.04 0.68± 0.02 0.63± 0.05 0.66± 0.04 0.59± 0.07

P4
0.72± 0.07 0.45± 0.02 0.73± 0.06 0.62± 0.05 0.66± 0.04
0.73± 0.07 0.45± 0.02 0.74± 0.06 0.62± 0.05 0.67± 0.05
0.71± 0.07 0.45± 0.02 0.72± 0.07 0.61± 0.05 0.65± 0.04

P5
0.45± 0.09 0.57± 0.09 0.65± 0.04 0.51± 0.08 0.51± 0.07
0.42± 0.10 0.55± 0.11 0.68± 0.06 0.51± 0.09 0.52± 0.08
0.50± 0.07 0.60± 0.06 0.63± 0.03 0.51± 0.08 0.51± 0.07

P6
0.68± 0.06 0.49± 0.03 0.69± 0.05 0.68± 0.08 0.67± 0.07
0.68± 0.06 0.49± 0.03 0.69± 0.05 0.69± 0.08 0.68± 0.07
0.68± 0.06 0.49± 0.03 0.68± 0.05 0.68± 0.07 0.66± 0.06

P7
0.77± 0.04 0.76± 0.04 0.65± 0.04 0.56± 0.05 0.46± 0.04
0.78± 0.03 0.77± 0.04 0.66± 0.05 0.56± 0.05 0.46± 0.04
0.76± 0.04 0.76± 0.04 0.65± 0.04 0.56± 0.05 0.46± 0.04

P8
0.80± 0.09 0.40± 0.03 0.83± 0.08 0.47± 0.07 0.78± 0.09
0.81± 0.09 0.40± 0.03 0.84± 0.08 0.46± 0.07 0.78± 0.09
0.80± 0.09 0.41± 0.03 0.83± 0.08 0.47± 0.06 0.78± 0.09

P9
0.76± 0.04 0.70± 0.05 0.64± 0.03 0.69± 0.03 0.69± 0.03
0.77± 0.04 0.70± 0.04 0.69± 0.05 0.70± 0.03 0.70± 0.03
0.76± 0.04 0.69± 0.05 0.60± 0.03 0.69± 0.03 0.68± 0.04

Continued on next page
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Table 5.11 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P10
0.52± 0.08 0.48± 0.06 0.74± 0.08 0.47± 0.06 0.70± 0.05
0.49± 0.09 0.48± 0.06 0.74± 0.08 0.48± 0.06 0.71± 0.05
0.56± 0.05 0.48± 0.05 0.73± 0.08 0.47± 0.06 0.68± 0.05

P11
0.67± 0.11 0.52± 0.02 0.71± 0.14 0.61± 0.01 0.64± 0.06
0.66± 0.14 0.52± 0.02 0.70± 0.16 0.61± 0.01 0.64± 0.07
0.69± 0.06 0.52± 0.02 0.74± 0.10 0.61± 0.01 0.63± 0.06

P12
0.71± 0.06 0.52± 0.08 0.68± 0.08 0.66± 0.06 0.73± 0.07
0.71± 0.06 0.52± 0.09 0.69± 0.08 0.67± 0.06 0.74± 0.06
0.70± 0.06 0.52± 0.07 0.67± 0.07 0.66± 0.06 0.72± 0.07

Avg
0.70± 0.03 0.57± 0.03 0.69± 0.02 0.60± 0.02 0.65± 0.03
0.70± 0.04 0.57± 0.03 0.71± 0.02 0.60± 0.02 0.66± 0.03
0.71± 0.03 0.57± 0.03 0.68± 0.02 0.60± 0.02 0.65± 0.03

Surveillance Task Urgency as Ground Truth Labels

Similar to using driving speed as ground truth labels, when using surveillance task

urgency as ground truth labels, we evaluated the performance conditioning on different

driving speeds (i.e., low speed and high speed). Specifically, under low driving speed, we

are trying to classify the data from low driving speed into two categories: low urgency +

low speed (Case ID 1) and high urgency + low speed (Case ID 3). Table 5.12 and Table5.14

show the performance of our proposed Bayesian inference model and other single models

using cross-participants evaluation and within-participants evaluation, respectively. Ta-

ble 5.13 shows the individual performance using cross-participants evaluation.

The results indicated that our proposed Bayesian inference model achieved an overall

0.765± 0.007 F1 score and an average individual performance with 0.77± 0.02 F1 score

using cross-participants evaluation, as well as a 0.87 ± 0.02 F1 score on average using

within-participants evaluation under the low driving speed condition. In addition, our

proposed Bayesian inference model outperforms other single models alone when using
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both cross-participants and within-participants evaluation methods.

Table 5.12: Overall performance for cross-participants evaluation for surveillance task ur-
gency as ground truth labels conditioned on low driving speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.765± 0.007 0.653± 0.007 0.663± 0.009 0.745± 0.006 0.711± 0.005
Precision 0.770± 0.006 0.658± 0.008 0.678± 0.009 0.752± 0.006 0.717± 0.005

Recall 0.759± 0.007 0.649± 0.008 0.650± 0.009 0.739± 0.006 0.705± 0.006

Table 5.13: Individual performance for cross-participants evaluation (F1 score, precision,
recall) for surveillance task urgency as ground truth labels conditioned on low driving
speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.78± 0.01 0.72± 0.01 0.46± 0.03 0.83± 0.00 0.70± 0.04
0.80± 0.01 0.74± 0.01 0.45± 0.03 0.86± 0.00 0.71± 0.04
0.76± 0.01 0.70± 0.01 0.47± 0.03 0.81± 0.01 0.69± 0.04

P2
0.66± 0.01 0.58± 0.01 0.64± 0.00 0.66± 0.01 0.63± 0.01
0.68± 0.01 0.58± 0.01 0.73± 0.01 0.69± 0.00 0.63± 0.01
0.64± 0.01 0.58± 0.01 0.56± 0.01 0.64± 0.01 0.62± 0.01

P3
0.69± 0.00 0.57± 0.01 0.66± 0.01 0.68± 0.00 0.66± 0.01
0.78± 0.00 0.58± 0.01 0.72± 0.01 0.78± 0.00 0.68± 0.02
0.62± 0.00 0.56± 0.01 0.61± 0.01 0.61± 0.01 0.64± 0.01

P4
0.81± 0.00 0.55± 0.01 0.74± 0.02 0.79± 0.00 0.79± 0.01
0.83± 0.00 0.56± 0.01 0.79± 0.01 0.80± 0.01 0.79± 0.01
0.80± 0.00 0.54± 0.00 0.70± 0.02 0.78± 0.00 0.79± 0.01

P5
0.71± 0.01 0.59± 0.02 0.78± 0.01 0.75± 0.01 0.64± 0.04
0.72± 0.01 0.61± 0.02 0.78± 0.01 0.75± 0.01 0.65± 0.04
0.71± 0.01 0.57± 0.02 0.78± 0.01 0.75± 0.01 0.64± 0.04

P6
0.81± 0.01 0.64± 0.01 0.53± 0.06 0.83± 0.01 0.80± 0.02
0.81± 0.01 0.73± 0.02 0.58± 0.10 0.83± 0.01 0.81± 0.02
0.81± 0.01 0.57± 0.01 0.53± 0.01 0.83± 0.01 0.79± 0.02

P7
0.89± 0.01 0.69± 0.01 0.64± 0.01 0.86± 0.00 0.78± 0.01
0.89± 0.00 0.69± 0.01 0.64± 0.01 0.86± 0.00 0.79± 0.01
0.88± 0.01 0.69± 0.01 0.64± 0.01 0.86± 0.00 0.77± 0.01

P8
0.71± 0.01 0.73± 0.01 0.78± 0.03 0.66± 0.01 0.72± 0.01
0.71± 0.01 0.76± 0.01 0.80± 0.03 0.67± 0.01 0.73± 0.01
0.70± 0.01 0.70± 0.01 0.78± 0.02 0.65± 0.01 0.71± 0.01

Continued on next page
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Table 5.13 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P9
0.72± 0.01 0.75± 0.01 0.67± 0.01 0.69± 0.01 0.58± 0.02
0.77± 0.01 0.77± 0.01 0.68± 0.01 0.74± 0.00 0.60± 0.02
0.68± 0.01 0.73± 0.01 0.66± 0.01 0.64± 0.01 0.57± 0.02

P10
0.84± 0.01 0.74± 0.01 0.51± 0.02 0.82± 0.01 0.69± 0.01
0.84± 0.01 0.74± 0.01 0.51± 0.02 0.83± 0.01 0.70± 0.01
0.84± 0.01 0.74± 0.01 0.50± 0.01 0.82± 0.00 0.69± 0.01

P11
0.83± 0.01 0.79± 0.01 0.61± 0.02 0.73± 0.01 0.72± 0.01
0.84± 0.01 0.81± 0.01 0.62± 0.03 0.73± 0.01 0.74± 0.01
0.82± 0.01 0.78± 0.01 0.61± 0.01 0.72± 0.01 0.71± 0.01

P12
0.76± 0.01 0.58± 0.01 0.82± 0.01 0.78± 0.01 0.74± 0.01
0.76± 0.01 0.59± 0.01 0.83± 0.01 0.78± 0.01 0.75± 0.01
0.76± 0.01 0.58± 0.01 0.81± 0.01 0.77± 0.01 0.74± 0.01

Avg
0.77± 0.02 0.66± 0.02 0.65± 0.03 0.76± 0.02 0.70± 0.02
0.78± 0.02 0.68± 0.03 0.68± 0.03 0.78± 0.02 0.71± 0.02
0.75± 0.02 0.64± 0.02 0.64± 0.03 0.74± 0.02 0.69± 0.02

Table 5.14: Within-participants evaluation (F1 score, precision, recall) for surveillance
task urgency as ground truth labels conditioned on low driving speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.91± 0.02 0.74± 0.06 0.68± 0.06 0.89± 0.01 0.80± 0.03
0.92± 0.02 0.74± 0.06 0.73± 0.05 0.89± 0.01 0.81± 0.03
0.91± 0.02 0.73± 0.06 0.65± 0.07 0.89± 0.02 0.79± 0.03

P2
0.84± 0.03 0.73± 0.05 0.74± 0.04 0.78± 0.02 0.83± 0.04
0.84± 0.03 0.73± 0.05 0.79± 0.02 0.78± 0.02 0.83± 0.04
0.83± 0.03 0.72± 0.05 0.71± 0.06 0.77± 0.02 0.83± 0.04

P3
0.71± 0.04 0.75± 0.04 0.65± 0.12 0.58± 0.04 0.55± 0.12
0.75± 0.03 0.75± 0.04 0.66± 0.14 0.58± 0.04 0.54± 0.13
0.68± 0.06 0.74± 0.04 0.66± 0.09 0.57± 0.04 0.58± 0.09

P4
0.93± 0.01 0.67± 0.02 0.79± 0.02 0.88± 0.02 0.87± 0.04
0.93± 0.01 0.68± 0.02 0.80± 0.02 0.88± 0.01 0.87± 0.04
0.93± 0.01 0.67± 0.02 0.78± 0.02 0.88± 0.02 0.87± 0.04

P5
0.80± 0.05 0.63± 0.09 0.72± 0.06 0.80± 0.03 0.73± 0.02
0.81± 0.05 0.63± 0.09 0.73± 0.07 0.81± 0.04 0.74± 0.02
0.79± 0.05 0.63± 0.09 0.70± 0.06 0.79± 0.03 0.72± 0.02

Continued on next page
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Table 5.14 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P6
0.89± 0.03 0.62± 0.05 0.79± 0.02 0.87± 0.02 0.86± 0.03
0.90± 0.03 0.63± 0.05 0.79± 0.02 0.87± 0.02 0.86± 0.03
0.89± 0.03 0.62± 0.05 0.78± 0.02 0.86± 0.02 0.85± 0.03

P7
0.93± 0.03 0.79± 0.04 0.93± 0.02 0.89± 0.02 0.90± 0.04
0.93± 0.03 0.80± 0.04 0.94± 0.02 0.90± 0.02 0.90± 0.04
0.93± 0.03 0.78± 0.04 0.92± 0.02 0.89± 0.02 0.89± 0.04

P8
0.92± 0.01 0.88± 0.01 0.88± 0.03 0.70± 0.02 0.88± 0.04
0.93± 0.01 0.89± 0.01 0.88± 0.03 0.71± 0.03 0.88± 0.04
0.92± 0.01 0.87± 0.02 0.88± 0.03 0.69± 0.03 0.88± 0.04

P9
0.94± 0.01 0.88± 0.01 0.67± 0.06 0.78± 0.01 0.83± 0.03
0.94± 0.01 0.88± 0.01 0.69± 0.07 0.79± 0.01 0.84± 0.03
0.94± 0.01 0.88± 0.01 0.64± 0.06 0.77± 0.01 0.82± 0.03

P10
0.85± 0.02 0.67± 0.04 0.57± 0.06 0.86± 0.01 0.61± 0.03
0.85± 0.02 0.67± 0.04 0.59± 0.06 0.87± 0.01 0.62± 0.03
0.84± 0.02 0.67± 0.04 0.56± 0.05 0.85± 0.02 0.61± 0.03

P11
0.85± 0.04 0.80± 0.06 0.73± 0.03 0.83± 0.03 0.78± 0.02
0.86± 0.04 0.81± 0.06 0.74± 0.03 0.85± 0.02 0.79± 0.02
0.84± 0.05 0.80± 0.07 0.72± 0.03 0.81± 0.03 0.77± 0.03

P12
0.92± 0.04 0.62± 0.02 0.83± 0.04 0.69± 0.05 0.88± 0.03
0.92± 0.04 0.63± 0.02 0.85± 0.03 0.71± 0.06 0.89± 0.03
0.91± 0.04 0.62± 0.02 0.82± 0.04 0.68± 0.04 0.88± 0.03

Avg
0.87± 0.02 0.73± 0.03 0.75± 0.03 0.80± 0.03 0.79± 0.03
0.88± 0.02 0.74± 0.03 0.77± 0.03 0.80± 0.03 0.80± 0.03
0.87± 0.02 0.73± 0.03 0.74± 0.03 0.79± 0.03 0.79± 0.03

When conditioning on high driving speed, we are trying to classify the data from high

driving speed into two categories: low urgency + high speed (Case ID 2) and high urgency

+ high speed (Case ID 4). Table 5.15 and Table 5.17 show the performance of our proposed

Bayesian inference model and other single models using cross-participants evaluation and

within-participants evaluation, respectively. Table 5.16 shows the individual performance

using cross-participants evaluation.

The results indicated that our proposed Bayesian inference model achieved an overall

0.808±0.008 F1 score and an average individual performance with a 0.82±0.02 F1 score
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using cross-participants evaluation as well as a 0.86 ± 0.02 F1 score on average using

within-participants evaluation under the high driving speed condition. In addition, our

proposed Bayesian inference model outperforms other single models alone when using

both cross-participants and within-participants evaluation methods.

Table 5.15: Overall cross-participants evaluation for surveillance task urgency as ground
truth labels conditioned on high driving speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

F1 score 0.808± 0.008 0.679± 0.007 0.593± 0.008 0.777± 0.009 0.720± 0.007
Precision 0.815± 0.008 0.682± 0.007 0.601± 0.009 0.783± 0.009 0.725± 0.007

Recall 0.801± 0.008 0.676± 0.007 0.586± 0.008 0.772± 0.009 0.714± 0.007

Table 5.16: Individual performance for cross-participants evaluation (F1 score, precision,
recall) for surveillance task urgency as ground truth labels conditioned on high driving
speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.81± 0.02 0.68± 0.01 0.39± 0.01 0.88± 0.01 0.52± 0.02
0.81± 0.02 0.71± 0.01 0.36± 0.01 0.89± 0.01 0.53± 0.03
0.81± 0.02 0.66± 0.01 0.42± 0.01 0.88± 0.01 0.52± 0.02

P2
0.71± 0.01 0.64± 0.01 0.71± 0.01 0.70± 0.01 0.67± 0.01
0.73± 0.01 0.64± 0.01 0.76± 0.01 0.73± 0.01 0.67± 0.01
0.69± 0.01 0.64± 0.01 0.67± 0.01 0.68± 0.02 0.67± 0.01

P3
0.68± 0.00 0.48± 0.01 0.49± 0.03 0.68± 0.00 0.51± 0.01
0.78± 0.00 0.48± 0.01 0.52± 0.05 0.78± 0.00 0.52± 0.01
0.60± 0.01 0.48± 0.01 0.47± 0.02 0.61± 0.00 0.51± 0.01

P4
0.79± 0.01 0.70± 0.01 0.71± 0.02 0.73± 0.01 0.78± 0.00
0.79± 0.01 0.71± 0.01 0.74± 0.01 0.74± 0.01 0.78± 0.00
0.79± 0.01 0.70± 0.01 0.68± 0.02 0.73± 0.01 0.77± 0.01

P5
0.90± 0.00 0.53± 0.02 0.55± 0.02 0.89± 0.01 0.80± 0.02
0.90± 0.01 0.55± 0.02 0.55± 0.03 0.90± 0.01 0.80± 0.02
0.90± 0.00 0.52± 0.01 0.54± 0.02 0.88± 0.02 0.79± 0.02

P6
0.87± 0.00 0.52± 0.01 0.45± 0.02 0.86± 0.00 0.71± 0.01
0.87± 0.00 0.53± 0.01 0.45± 0.02 0.86± 0.00 0.73± 0.02
0.86± 0.00 0.52± 0.00 0.45± 0.02 0.86± 0.00 0.69± 0.02

Continued on next page
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Table 5.16 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P7
0.93± 0.00 0.80± 0.01 0.74± 0.01 0.91± 0.00 0.83± 0.01
0.93± 0.00 0.81± 0.01 0.75± 0.01 0.91± 0.00 0.84± 0.01
0.93± 0.00 0.79± 0.01 0.72± 0.01 0.90± 0.00 0.81± 0.01

P8
0.72± 0.02 0.74± 0.01 0.68± 0.01 0.63± 0.02 0.74± 0.01
0.72± 0.02 0.75± 0.01 0.69± 0.01 0.63± 0.02 0.75± 0.01
0.71± 0.02 0.74± 0.01 0.67± 0.01 0.62± 0.02 0.72± 0.01

P9
0.82± 0.00 0.70± 0.01 0.65± 0.01 0.84± 0.00 0.73± 0.01
0.85± 0.00 0.71± 0.01 0.68± 0.01 0.86± 0.00 0.77± 0.01
0.79± 0.00 0.68± 0.01 0.63± 0.02 0.81± 0.00 0.69± 0.02

P10
0.89± 0.01 0.72± 0.01 0.60± 0.02 0.89± 0.00 0.66± 0.01
0.89± 0.01 0.72± 0.01 0.61± 0.02 0.89± 0.00 0.67± 0.02
0.89± 0.01 0.72± 0.01 0.59± 0.02 0.89± 0.00 0.65± 0.01

P11
0.88± 0.01 0.72± 0.00 0.53± 0.01 0.80± 0.01 0.80± 0.01
0.89± 0.01 0.76± 0.01 0.56± 0.02 0.83± 0.01 0.81± 0.01
0.87± 0.01 0.68± 0.01 0.51± 0.00 0.78± 0.02 0.80± 0.01

P12
0.84± 0.00 0.71± 0.01 0.45± 0.03 0.80± 0.01 0.80± 0.01
0.85± 0.00 0.71± 0.01 0.46± 0.03 0.81± 0.01 0.81± 0.01
0.83± 0.00 0.70± 0.01 0.44± 0.02 0.80± 0.01 0.79± 0.01

Avg
0.82± 0.02 0.66± 0.03 0.58± 0.03 0.80± 0.03 0.71± 0.03
0.83± 0.02 0.67± 0.03 0.59± 0.04 0.82± 0.03 0.72± 0.03
0.81± 0.03 0.65± 0.03 0.57± 0.03 0.79± 0.03 0.70± 0.03

Table 5.17: Within-participants evaluation (F1 score, precision, recall) for surveillance
task urgency as ground truth labels conditioned on high driving speed.

Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P1
0.88± 0.01 0.59± 0.04 0.83± 0.05 0.83± 0.04 0.82± 0.03
0.89± 0.01 0.59± 0.04 0.84± 0.05 0.84± 0.04 0.83± 0.03
0.87± 0.02 0.59± 0.04 0.82± 0.06 0.83± 0.04 0.81± 0.03

P2
0.92± 0.03 0.77± 0.02 0.71± 0.07 0.87± 0.04 0.87± 0.03
0.93± 0.03 0.78± 0.02 0.72± 0.08 0.88± 0.04 0.88± 0.03
0.92± 0.03 0.76± 0.02 0.71± 0.07 0.86± 0.05 0.87± 0.03

P3
0.76± 0.04 0.62± 0.02 0.81± 0.03 0.64± 0.06 0.78± 0.06
0.77± 0.04 0.62± 0.02 0.82± 0.03 0.65± 0.06 0.79± 0.06
0.76± 0.04 0.61± 0.02 0.80± 0.04 0.63± 0.05 0.77± 0.05

Continued on next page
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Table 5.17 – continued from previous page
Bayesian
inference

SVMs
pupil size change

HMM
gaze trajectory

SVMs
fixation feature

GMMs
fixation trajectory

P4
0.82± 0.04 0.62± 0.05 0.72± 0.04 0.82± 0.04 0.74± 0.05
0.84± 0.03 0.62± 0.05 0.74± 0.04 0.84± 0.04 0.75± 0.05
0.80± 0.04 0.61± 0.05 0.71± 0.04 0.81± 0.05 0.74± 0.05

P5
0.90± 0.02 0.71± 0.04 0.74± 0.04 0.91± 0.01 0.74± 0.06
0.91± 0.02 0.71± 0.04 0.76± 0.05 0.92± 0.01 0.75± 0.06
0.90± 0.02 0.71± 0.04 0.72± 0.04 0.91± 0.01 0.73± 0.06

P6
0.85± 0.04 0.65± 0.07 0.70± 0.07 0.86± 0.05 0.68± 0.03
0.87± 0.03 0.66± 0.07 0.71± 0.07 0.86± 0.04 0.68± 0.03
0.84± 0.05 0.64± 0.07 0.69± 0.07 0.85± 0.05 0.68± 0.03

P7
0.90± 0.04 0.85± 0.02 0.82± 0.03 0.89± 0.04 0.83± 0.04
0.90± 0.04 0.86± 0.02 0.82± 0.03 0.89± 0.04 0.83± 0.05
0.89± 0.04 0.84± 0.03 0.81± 0.03 0.89± 0.04 0.82± 0.04

P8
0.85± 0.04 0.82± 0.02 0.58± 0.05 0.71± 0.05 0.70± 0.04
0.85± 0.03 0.83± 0.02 0.58± 0.05 0.71± 0.05 0.74± 0.04
0.84± 0.04 0.81± 0.02 0.57± 0.05 0.71± 0.05 0.68± 0.05

P9
0.84± 0.05 0.76± 0.05 0.57± 0.10 0.83± 0.02 0.76± 0.08
0.84± 0.05 0.76± 0.05 0.59± 0.13 0.85± 0.02 0.76± 0.08
0.84± 0.05 0.75± 0.05 0.58± 0.07 0.81± 0.03 0.76± 0.08

P10
0.91± 0.04 0.73± 0.03 0.69± 0.05 0.88± 0.04 0.82± 0.04
0.91± 0.04 0.73± 0.03 0.71± 0.06 0.88± 0.04 0.82± 0.04
0.91± 0.04 0.72± 0.03 0.67± 0.05 0.88± 0.04 0.81± 0.04

P11
0.93± 0.01 0.92± 0.01 0.61± 0.03 0.88± 0.04 0.86± 0.05
0.93± 0.01 0.92± 0.01 0.62± 0.03 0.90± 0.03 0.87± 0.05
0.93± 0.01 0.91± 0.01 0.59± 0.02 0.86± 0.05 0.84± 0.06

P12
0.80± 0.04 0.69± 0.05 0.56± 0.03 0.80± 0.05 0.84± 0.04
0.81± 0.04 0.70± 0.05 0.57± 0.03 0.81± 0.04 0.86± 0.04
0.79± 0.04 0.69± 0.05 0.56± 0.03 0.79± 0.05 0.82± 0.04

Avg
0.86± 0.02 0.73± 0.03 0.70± 0.03 0.83± 0.02 0.79± 0.02
0.87± 0.01 0.73± 0.03 0.71± 0.03 0.84± 0.02 0.80± 0.02
0.86± 0.02 0.72± 0.03 0.69± 0.03 0.82± 0.02 0.78± 0.02

5.3.3 Discussion

In Experiment 4, we investigated the effects of driving speed and surveillance task

urgency on workload estimation performance. Table 5.18 summarizes the F1 scores for

our proposed Bayesian inference model using different ground truth labels when using
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Table 5.18: Summary of F1 score for Bayesian inference model.

Ground Truth Label Condition
Cross-participants

Evaluation
Within-participants

Evaluation
Four different cases (4 levels) N/A 0.396± 0.006 0.56± 0.03

Driving speed
(2 levels)

Low urgency 0.512± 0.007 0.62± 0.04
High urgency 0.526± 0.010 0.70± 0.03

Surveillance task urgency
(2 levels)

Low speed 0.765± 0.007 0.87± 0.02
High speed 0.808± 0.008 0.86± 0.02

cross-participants and within-participants evaluation methods. On average, the within-

participant evaluation method outperforms the cross-participants evaluation method for

every conditions. Cross-participants evaluation cannot distinguish workload imposed by

driving speed. However, within-participants evaluation can distinguish the human work-

load imposed by different driving speeds under high surveillance task urgency but not low

surveillance task urgency. One potential reason for this is that a human operator has more

resources to deal with the additional workload imposed by high driving speed under low

surveillance task urgency than under high surveillance task urgency. Therefore, under low

surveillance task urgency, the effects of different driving speeds on physiological mea-

surements are too small to be modeled by the machine learning models. However, human

operators can still feel the differences in driving speed and report a higher workload for

high speed.

When using surveillance task urgency as the ground truth label, both cross-participants

evaluation and within-participants evaluation can achieve F1 scores greater than 0.8, ex-

cept for cross-participants evaluation under low driving speed, which achieved 0.765 ±

0.007. This is consistent with Chapter IV, even though the visualization systems are to-

tally different and obstacle avoidance is introduced in the driving task.

Both the cross-participants and within-participants evaluation methods did not perform

well in classifying workload into four different levels. Note that the F1 score should be
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around 0.25 for random guess to classify workload into four different levels. We spec-

ulate that the imperfect performance for four different levels is due to the challenges to

distinguish workload introduced by driving speed.

5.4 Conclusion

In this chapter, we investigated whether our proposed Bayesian inference model for

workload estimation can generalize to different factors to impose human workload and

to different scenarios. In Experiment 3, we introduced obstacle avoidance to the driving

task. The results indicated that our proposed Bayesian inference model can distinguish

the workload imposed by different obstacle headways. In Experiment 4, we updated the

visualization system to a high-fidelity visualization system. Our proposed Bayesian infer-

ence model could still distinguish the workload imposed by surveillance task urgency even

with the high-fidelity visualization system. However, estimating the workload imposed by

driving speed is a challenging problem. Our proposed Bayesian inference model can still

distinguish the different workload levels introduced by different driving speeds under high

surveillance task urgency.
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CHAPTER VI

Conclusion

6.1 Summary

Automated vehicles (AVs) have the potential to reduce driving-related injuries and

deaths. However, autonomous driving technology is currently limited in its scope and

reliability, giving rise to the semi-autonomous driving model, in which the autonomy and

the human shared control of the vehicle. Existing studies have developed haptic shared

control schemes for semi-autonomous vehicles that adapt to different factors. Workload, as

an important human factor for human-automation interaction, has not yet been considered

for adaptation in the shared control.

Different physiological measurements have been used to estimate human workload

including brain signals, galvanic skin responses, heart rate-related measures, and eye-

related measures. However, existing studies primarily adopted either a single-model-

single-feature or a single-model-all-feature approach. It is unclear how to leverage the

different machine learning models that work best for different features to improve overall

performance.

To address real-time workload estimation problem, as well as its application in the

haptic shared control of ground vehicles, this dissertation research was focused on using

non-intrusive physiological measures, in particular, eye-related measures. The aims of this
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dissertation were to:

(1) Investigate whether and to what extent haptic shared control performance can be

improved by incorporating drivers’ workload.

(2) Explore different eye-related features for workload estimation and their corre-

sponding machine learning models. Propose a computational model to leverage different

machine learning models for these features to improve the workload estimation perfor-

mance.

(3) Investigate the generalizability of the proposed method for workload estimation in

different scenarios and different factors that impose human workload.

For Aim 1, together with our collaborators from the Department of Mechanical En-

gineering - Yifan Weng, Dr. Tulga Ersal, and Prof. Jeffrey Stein, we developed a tele-

operated dual-task shared control platform, where the human operator shares control of a

ground vehicle with autonomy while performing a surveillance task alone. We conducted

two pilot studies and two human subject experiments with 10, 6, 12, and 12 participants,

respectively. In Pilot Study 1, we selected the tracks with similar difficulties to be used

in the platform. In Pilot Study 2, we determined the time limits for the detection period

in the surveillance task to impose human workload. In Experiment 1, we collected par-

ticipants’ pupil sizes and gaze points when they performed the dual tasks under different

surveillance task urgencies. We used the Hidden Markov Model to model human gaze

trajectory for workload estimation, which achieved a 0.66 F1 score. In Experiment 2, we

investigated the effects of the proposed workload-adaptive haptic shared control scheme

on human performance in the dual-task scenarios. The results indicated that our pro-

posed real-time workload-adaptive shared control scheme can reduce human workload,

path tracking errors, and control effort while increasing human trust in the system without

sacrificing surveillance task performance.
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For Aim 2, we explored pupil size change, gaze trajectory, and fixation features for

workload estimation. In addition, we proposed a new feature: fixation trajectory, which

contains spatial information for the fixations. We proposed a Bayesian inference model

that can leverage the different machine learning models for different features: SVMs for

pupil size change, the HMM for gaze trajectory, SVMs for fixation feature, and GMMs

for fixation trajectory. We used both cross-participants and within-participants evaluation

methods to evaluate the performance of our proposed Bayesian inference model. The

training data and testing data in the cross-participants evaluation method are from differ-

ent participants. However, the training data and testing data are from the same participants

but different trials in the within-participants evaluation method. On the data set collected

in Experiment 1 and additional 12 participants, our proposed Bayesian inference model

achieved 0.82 and 0.85 F1 scores using cross-participants and within-participants evalua-

tion methods, respectively.

For Aim 3, we conducted another two human subject experiments to investigate the

generalizability of our proposed Bayesian inference model. In Experiment 3, we intro-

duced obstacle avoidance to the driving task and varied human workload by manipulating

the obstacle headway. Our proposed Bayesian inference model was able to distinguish

the workload induced by different obstacle headways with a 0.68 F1 score using cross-

participants evaluation method. In Experiment 4, we used a higher-fidelity simulator and

varied the human workload by both surveillance task urgency and driving speed. The

results indicated that our proposed Bayesian inference model were still able to distin-

guish the workload induced by the surveillance task urgency with 0.77 (cross-participants)

and 0.87 (within-participants) F1 scores under low driving speed, as well as 0.81 (cross-

participants) and 0.86 F1 (within-participants) scores under high driving speed. However,

estimating the human workload induced by driving speed was less promising. Our pro-
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posed Bayesian inference model obtained a 0.51 F1 scores under low surveillance task

urgency and a 0.53 F1 score under high surveillance task urgency when using cross-

participants evaluation. In addition, when using the within-participants evaluation, our

proposed Bayesian inference model achieved a 0.62 F1 score under low surveillance task

urgency and a 0.70 F1 score under high surveillance task urgency.

6.2 Intellectual Merit and Broad Impact

The proposed research will contribute to the knowledge in real-time human workload

estimation and its application in the haptic shared control of a ground vehicle.

First, we showed that adapting to human operators’ workload led to better driving

performance, lower workload, higher trust in the automation, and smaller control effort

from the human. Our research is beneficial for the automotive industry and can help it

build adaptive Guardian systems for semi-autonomous vehicles. For example, Toyota’s

Guardian systems can safely blend the vehicle control between the driver and the auton-

omy to take best advantage of their individual skills (Toyota, 2020). With an in-vehicle

camera, the driver’s pupil diameters and gaze directions can be obtained to estimate driver

workload. Therefore, Guardian system can use estimated workload to determine the con-

trol authority from the driver.

Second, our proposed Bayesian inference model can leverage the different machine

learning models that work best for different features. Although this dissertation research

was focused on eye-related measurements, the model could be generalized to incorporate

other physiological measurements.

Third, we showed that our proposed Bayesian inference can be generalized to different

scenarios with different factors to manipulate human workload. The results indicated that

workload induced by certain factors can be easily distinguished, but others not. Our re-
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search suggested that we should be careful about the factors that induce human workload

for applying real-time workload estimation to other human-machine systems.

Finally, although our Bayesian inference model was developed using the teleoperated

dual-task shared control platform, it can be applied to other human-machine systems.

For example, it can be applied to control centers for monitoring multiple unmanned au-

tonomous vehicles or automated vehicles for package delivery.

6.3 Limitations and Future Work

Through a series of human subject experiments, this dissertation can enhance people’s

understanding of real-time workload estimation and its benefits for haptic shared control

of ground vehicles. However, it is subjective to the following limitations, and a few future

research directions are suggested to address them.

First, in this dissertation, we focused on the estimating human overall workload using

non-intrusive physiological measurements. However, workload has different dimensions

(i.e., mental demand, physical demand, temporal demand, performance, effort, and frus-

tration according to the NASA TLX scale). Future research can focus on estimating human

workload in different dimensions (i.e., using electromyography (EMG) to measure physi-

cal demand and Galvanic Skin Response (GSR) to measure temporal demand). Then, our

proposed Bayesian inference model could be helpful in combining them.

Second, we did not factor in the workload dynamics in workload estimation. In this

dissertation, we treated the workload estimation problem as a classification problem and

segmented the time series physiological signals into sequences of data (i.e., each sequence

of data lasts for 4 s time window). Therefore, we treated each sequence of data as one

data point and extract feature vectors for classifiers. Future work can take the workload

dynamics into account to improve the workload estimation performance. As our proposed
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Bayesian inference model is based on the graphical model, it can be naturally extended to

graphical model with time series data by connecting the hidden state of workload, with the

workload dynamics modeled as the transition between the hidden states.

Third, we manipulated surveillance task urgency, obstacle headway, and driving speed

to impose different levels of workload. However, there are other factors that can influence

human workload (i.e., road curvature, surrounding traffic, weather, etc.). Future work can

investigate the generalizability of our proposed Bayesian inference model for the workload

imposed by these factors.

Fourth, we measured people’s pupil sizes and gaze points by using an eye tracker under

normal room light conditions in all our experiments. However, for outdoor driving under

natural light conditions, collecting reliable pupil sizes is challenging. For instance, when

it is too bright or too dark, pupil diameter can be extremely small or big, which may lead

to the floor effect or ceiling effect. Therefore, the performance of our proposed Bayesian

inference model in outdoor conditions is unclear.

Fifth, we showed that the performance of the within-participants evaluation was mostly

better than cross-participants evaluation. However, within-participants evaluation requires

a larger set of training data and trials to obtain better performance. In the future, we can use

semi-supervised techniques to build a personalized model for workload estimation (i.e.,

build a baseline model first with some participants and fine tune the model parameters for

each individual). In this way, we may reduce the number of trials for each new participant

while maintaining a good within-participants performance.

Sixth, as we only manipulated the surveillance task urgency in the dual-task mission,

the participants could not experience high workload and high eyes on road in Experiment 2

when we examined the effects of adapting to workload on the performance of haptic shared

control scheme. In the future, we will adjust the experiment design to manipulate the
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driving task difficulty to trigger the high workload and high eyes on road experience for

the human.

Finally, the population of participants in our experiments were young adults. Existing

studies have shown that different age groups have different patterns for certain physio-

logical signals under different workload conditions. Future work should investigate the

generalizability of the findings using other populations.
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