
Design and Analytic Considerations for Sequential,
Multiple-Assignment Randomized Trials with Longitudinal

Outcomes

by

Nicholas J. Seewald

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Statistics)

in the University of Michigan
2021

Doctoral Committee:

Research Associate Professor Daniel Almirall, Co-Chair
Professor Kerby Shedden, Co-Chair
Associate Professor Kelley M. Kidwell
Professor Naisyin Wang



Nicholas J. Seewald

nseewald@umich.edu

ORCID iD: 0000-0002-8367-0522

© Nicholas J. Seewald 2021



To Jeremy.

ii



ACKNOWLEDGMENTS

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and
Human Development [grant number R01HD073975]; the National Institute of Biomedical Imaging
and Bioengineering [grant number U54EB020404]; the National Institute of Mental Health [grant
number R03MH097954]; the National Institute on Alcohol Abuse and Alcoholism [grant numbers
P01AA016821, RC1AA019092]; and the National Institute on Drug Abuse [grant numbers
R01DA039901, P50DA039838]. The content of this dissertation is solely the responsibility of the
authors and does not necessarily represent the official views of the National Institutes of Health.

There is a long list of people who helped get this dissertation across the finish line, and I
am tremendously grateful to all of them for their encouragement and support throughout this long
process. I especially need to thank my advisor, Danny Almirall, who never failed to pull me out of
the weeds and taught me to think more like a scientist than a statistician. Danny, your mentorship,
encouragement, and vision have been invaluable.

To Kerby Shedden, my co-Chair, I am grateful for the opportunity to learn from you and the
rest of the team at CSCAR, as well for your always-insightful questions. And to Naisyin Wang, a
tremendous cheerleader, thank you for your wisdom and encouragement over these many years.

I would not have written this dissertation without Kelley Kidwell, who introduced me to
SMARTs and DTRs and built my biostatistical intuition from the ground up. Kelley, you showed
me how fun, interesting, and impactful statistics can be, and generously treated me more as a
collaborator than a student. I am forever grateful for your kindness, clarity of vision, and support.

To my fiancé Jeremy, thank you for keeping me focused on what’s important, and providing an
island of calm when I lose sight of that. Thank you for your companionship, unwavering support,
and patience. I am especially grateful for your nodding along whenever I start rambling about
statistics.

To my family, especially my parents Brian and Terry, my brother Andrew, and my sister-in-law
Lexi: thank you for your love and support, from first grade to twenty-fourth. You have given me so
much strength and encouragement, and I’m so lucky to have you all. You’re all also quite good at
nodding along when I talk about statistics, but I believe Jeremy offers lessons if you’re interested.

I owe a deep debt of gratitude to Lane Kelemen, for perspective and sparkling conversation.

iii



Brenda Gunderson, Jack Miller, and Elaine Hembree taught me how to teach and trusted me to
design parts of their courses, for which I will always be grateful. Susan Murphy saw something in
me that I am not sure I saw in myself, and has opened so many doors for me because of that. Susan,
I am humbled to call you a mentor. Liza Levina expertly guided me along my non-traditional path
through the department, providing encouragement and laughing at my jokes along the way. Judy
McDonald, Gina Cornacchia, and Jean McKee were so generous as to let me distract them with
my chattiness for far too long. Shawna Smith and Walter Dempsey are incredible friends, mentors,
and lab partners.

My years in graduate school were made immeasurably better through friendships I have
grown to cherish. Among the Stats folks, I need to thank Charlotte, Laura, Zoe, Vincenzo, Yujia,
Sanjana, Kali, Ajanae, and the whole of the GS-JEDI crew for your support, vulnerability, and
friendship over the years. To my Biostats family, in particular, I owe my sanity and so much
joy. Evan, Riley, Marco, Julie, Allison, Joe, Jed, Emma, Krithika, Anagha, Lauren B., Lauren
Z., Megan, and Conrad, I feel like we’ve known each other for a lifetime. It is rare to meet
even a handful of people in one’s life who will become lifelong friends; I somehow met 14 in
one semester. I remain sorry about theKolmogorov-SmirnoffTest, butwill never repent for the puns.

This is for all of you.

iv



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter

1 An Introduction to Dynamic Treatment Regimens and Sequential, Multiple-
Assignment, Randomized Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Dynamic Treatment Regimens (DTRs) . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sequential Multiple-Assignment Randomized Trials (SMARTs) . . . . . . . . . . 5

1.2.1 Considerations for Designing SMARTs . . . . . . . . . . . . . . . . . . 10

2 Estimation and Sample Size for SMARTs with Continuous Longitudinal Outcomes . 12
2.1 Marginal Mean Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Observed Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Estimating Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Estimation of the Working Covariance Matrix . . . . . . . . . . . . . . . 18
2.2.4 Iterated Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Sample Size Formulae for End-of-Study Comparisons of Embedded DTRs in
Two-Stage SMARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Data Generative Process . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Balancing Sample Size and Measurement Occasions in Longitudinal SMARTs . . . . 34
3.1 Modeling and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.2 Sample Size Formulae for End of Study Comparisons . . . . . . . . . . . . . . . 38
3.2.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Cost Considerations for Longitudinal SMARTs . . . . . . . . . . . . . . . . . . 46
3.3.1 Minimizing Recruitment Costs . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Minimizing Per-Patient Costs . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Practical Implications for Designing Longitudinal SMARTs . . . . . . . . . . . . 55

4 Software for Designing Longitudinal SMARTs . . . . . . . . . . . . . . . . . . . . . . 59
4.1 A Data-Generative Procedure for Longitudinal SMARTs . . . . . . . . . . . . . 59

4.1.1 Simulation of Potential Outcomes . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 “Observing” Potential Outcomes . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Threshold-Based Response Status . . . . . . . . . . . . . . . . . . . . . 66

4.2 The longsmart R Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.1 Tools for Designing SMARTs . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 Tools for Simulating Longitudinal SMARTs . . . . . . . . . . . . . . . . 71

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



LIST OF FIGURES

1.1 Three commonly-used two-stage SMART designs . . . . . . . . . . . . . . . . . . . . 6
1.2 The ENGAGE SMART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Empirical power under misspecified within-person correlation . . . . . . . . . . . . . 30

3.1 Depiction of clocks for time in the first and second stages of a longitudinal SMART . . 37
3.2 Within-person deflation factor 𝜔

(
𝜌, 𝑇, 𝑇2

)
. . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Optimal allocation of equally-spaced measurement occasions in stage 2 to minimize
sample size for various within-person correlations 𝜌 . . . . . . . . . . . . . . . . . . 49

3.4 Scaled objective function 𝜔
(
𝜌, 𝑇, 𝑇2

)
·𝐶 (𝑛, 𝑇, 𝑇2) for minimizing per-participant trial

costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.1 Within-person deflation factor 𝜔(𝜌, 𝒖, 𝑇2) when working assumption A3.3 is violated . 94

vii



LIST OF TABLES

1.1 Embedded DTRs in the ENGAGE SMART . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Design-specific indicators for consistency with a given DTR 𝑑 ∈ D . . . . . . . . . . 17
2.2 Correlation estimators for selected working correlation structures . . . . . . . . . . . 19
2.3 SMART-specific design effects for sample size formula 2.13 . . . . . . . . . . . . . . 24
2.4 Sample sizes and empirical power results for an end-of-study comparison of the DTR

recommending only treatments indexed by 1 and that which recommends only treat-
ments indicated by −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Example sample sizes for design II SMARTs with more than three measurement
occasions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Sample sizes and empirical power results for design II SMARTs with three or more
measurement occasions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Total number of measurement occasions 𝑇cost and number of second-stage measure-
ments 𝑇cost2 (in parentheses) which minimize trial cost for a design II SMART. . . . . . 54

4.1 Target and estimated marginal variance matrices from the data generative model de-
scribed in section 4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Design-specific consistency assumptions . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



LIST OF PROGRAMS

4.1 Use of the smart_size() function to compute sample size for a longitudinal SMART . 69
4.2 Use of the optimize_cost() function to find the number and allocation of measurement

occasions which minimize per-participant trial costs . . . . . . . . . . . . . . . . . . 70
4.3 Creation of a longsmartDesign object . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Simulation of data from a longitudinal SMART. . . . . . . . . . . . . . . . . . . . . . 73

ix



LIST OF APPENDICES

A Identifiability Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B Proofs and Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C Further Exploration of the Within-Person Deflation Factor . . . . . . . . . . . . . . . 93

x



ABSTRACT

Clinicians and researchers alike are increasingly interested in how best to personalize interventions.

A dynamic treatment regimen (DTR) is a sequence of pre-specified decision rules which can be

used to guide the delivery of a sequence of treatments or interventions that are tailored to the

changing needs of the individual. The sequential multiple-assignment randomized trial (SMART)

is a research tool which allows for the construction of effective DTRs. SMARTs are multi-stage

randomized trials in which some or all participants are randomized more than once, with each

randomization corresponding to an open scientific question which will aid in the development of

a high-quality DTR. In this dissertation, we develop a suite of tools which aid investigators in

the design and analysis of SMARTs with continuous, longitudinal outcomes which are collected

throughout the multiple stages of the trial.

We begin by deriving easy-to-use formulae for computing the total sample size for three

common two-stage SMART designs in which the primary aim is to compare mean end-of-study

outcomes for two embedded DTRs which recommend different first-stage treatments. The formulae

are derived in the context of a regression model which leverages information from a longitudinal

outcome collected over the entire study. We show that the sample size formula for a SMART can be

written as the product of the sample size formula for a standard two-arm randomized trial, a deflation

factor that accounts for the increased statistical efficiency resulting from a longitudinal analysis, and

an inflation factor that accounts for the design of a SMART. The SMART design inflation factor is

typically a function of the anticipated probability of response to first-stage treatment. We review

modeling and estimation for DTR effect analyses using a longitudinal outcome from a SMART, as

well as the estimation of standard errors. We also present estimators for the covariance matrix for

a variety of common working correlation structures. Methods are motivated using the ENGAGE

xi



study, a SMART aimed at developing a DTR for increasing motivation to attend treatments among

alcohol- and cocaine-dependent patients.

Randomized trials are often constrained by limited financial resources; SMARTs are no differ-

ent. The longitudinal deflation factor we develop allows for reduction in sample size requirements

via both within-person correlation and the repeated measurements of the outcome over time. We

provide guidance on how to balance sample size and the number of measurement occasions to

minimize total cost of recruitment and measurement while achieving a target power. Finally, we

introduce a procedure to generate data from a longitudinal SMART that will achieve an arbitrary

desired covariance structure on potential outcomes, averaged over response status. This procedure,

as well as user-friendly sample size tools which solve the cost optimization problems, are available

in an R package called longsmart.

xii



CHAPTER 1

An Introduction to Dynamic Treatment Regimens
and Sequential, Multiple-Assignment, Randomized

Trials

In practice, interventions often involve sequences of treatments that are adapted to an individual’s

changing needs. A single, fixed treatment may or may not be adequately effective for all individuals

at all times; indeed, heterogeneity of treatment effects across people often exists (Longford 1999;

Gail and Simon 1985). Chronic conditions which wax and wane in severity may require an

intervention strategy which adjusts treatment according to changing severity over time.

Clinical practice typically involves the provision of treatment, some follow-up period, then

modification of treatment to better suit the individual’s needs, if necessary. However, open questions

often remain as to the protocolization of this sequence. For example, “[i]gnorance of whether or

how to change psychotherapies is a major and persisting gap in psychiatric knowledge” (Markowitz

and Milrod 2015).

Dynamic treatment regimens (DTRs) operationalize clinical decision-making by recommend-

ing particular treatments to certain subsets of patients at specific times (Chakraborty and Moodie

2013). DTRs are sequences of pre-specified decision rules leading to courses of treatment which

adapt to a patient’s changing needs (Kosorok and Moodie 2015). Consider the following example

DTR which was designed to increase engagement with an intensive outpatient rehabilitation pro-

gram (IOP) for patients with alcohol and/or cocaine dependence: “Within a week of the participant

becoming non-engaged in the IOP, provide two phone-based sessions focused on helping the patient

re-engage in the IOP. At week 8, look back at the participant’s engagement pattern over the past

eight weeks. If the participant continued to not engage (i.e., did not respond to the intervention),
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provide a second pair of phone-based sessions, this time focused on facilitating personal choice (i.e.,

highlighting various treatment options the patient can choose from in addition to IOP). Otherwise,

for those who did engage with the intervention, provide no further contact” (McKay et al. 2015).

Notice that the DTR recommends intervention strategies for both engaged and non-engaged partic-

ipants at week 8. Alternative names for DTRs include adaptive treatment strategies (Wallace and

Moodie 2014; Ogbagaber, Karp, andWahed 2016) and adaptive interventions (Almirall et al. 2014;

Nahum-Shani et al. 2012a), among others.

Scientists often have questions about how best to sequence and individualize interventions in

the context of a DTR. Sequential, multiple-assignment, randomized trials (SMARTs) are one type of

randomized trial design that can be used to answer questions at multiple stages of the development

of high-quality DTRs (Lavori and Dawson 2000, 2004; Murphy 2005). The characteristic feature

of a SMART is that some or all participants are randomized more than once, often based on

previously-observed covariates. Each randomization corresponds to a critical question regarding

the development of a high-quality DTR, typically related to the type, timing, or intensity of

treatment. SMARTs have been employed in a variety of fields, including oncology (Auyeung et

al. 2009; Kidwell 2014; Thall 2015), surgery (Diegidio et al. 2017; Hibbard et al. 2018), substance

abuse (Murphy et al. 2007), and autism (Kasari et al. 2014).

In this chapter, we introduce and motivate the study of DTRs and SMARTs. We begin by

formally defining DTRs, then discuss how they can be studied using a SMART.We present a variety

of SMART designs, and discuss motivations for each.

1.1 Dynamic Treatment Regimens (DTRs)

A DTR is a sequence of functions (“decision rules”), each of which takes as inputs a person’s

history up to the time of the current decision (including baseline covariates, adherence, responses

to previous treatments, etc.) and outputs a recommendation for the next treatment (Murphy 2005).

Formally, suppose we wish to construct a DTR which recommends 𝑀 treatments, 𝑎1, . . . , 𝑎𝑀 , to
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each individual. After the 𝑗 th treatment, the DTR will have recommended the sequence 𝑎̄ 𝑗 ={
𝑎1, 𝑎2, . . . , 𝑎 𝑗

}
. Let 𝑆 𝑗 (𝑎̄ 𝑗−1) denote information collected in the period after providing treatment

𝑎 𝑗−1 until immediately prior to the provision of treatment 𝑎 𝑗 . This includes any outcomes and

covariates which may be observed, as well as previous treatment assignments. 𝑆1 contains pre-

treatment information. Note that 𝑆 𝑗 (𝑎̄ 𝑗−1) is indexed by the history of treatment assignments

made up to, but not including, the time at which 𝑎 𝑗 is assigned, reflecting the fact that different

values of the covariates may be observed depending on the assigned sequence of treatments. We

use 𝑆 𝑗 (𝑎̄ 𝑗−1) = {𝑆1, 𝑆2(𝑎1), . . . , 𝑆 𝑗−1(𝑎̄ 𝑗−2), 𝑆 𝑗 (𝑎̄ 𝑗−1)} to represent the “history” until the time at

which 𝑎 𝑗 is provided.

A decision rule 𝜑 𝑗 is a function of 𝑆 𝑗 (𝑎̄ 𝑗−1) which outputs a recommendation for subse-

quent treatment 𝑎 𝑗 . An 𝑀-stage dynamic treatment regimen is a sequence of 𝑀 decision rules

{𝜑1, . . . , 𝜑𝑀} (Murphy 2005). The times in a patient’s care when a decision is made is called a

decision point. These can occur at scheduled intervals, after a specific number of clinic visits, or

be event-based, such as the point at which a patient fails to respond or adhere to a treatment. The

timing of decision points should be based on scientific or practical considerations which inform

when treatment may need to be modified.

The information 𝑆 𝑗 (𝑎̄ 𝑗−1) often contains covariates which inform the recommendation to

subsequent treatment 𝑎 𝑗 . These covariates are called “tailoring variables.” These could be static

characteristics (e.g., demographic factors, history of prior treatment, etc.) or time-varying partici-

pant information, such as disease severity, which may vary based on 𝑎̄ 𝑗−1.

Consider the example two-stageDTRabove. The clinician experiences twodecision points: the

first is at treatment initiation and the second occurs after eight weeks, at which point the individual

is identified as a “responder” or “non-responder” based on their engagement. There is a single

treatment option at the first decision point, and two options at the second decision point (motivational

interviewing focused on facilitating personal choice, or no further contact). The recommended first-

stage treatment for all patients is a phone-based session with a focus on re-engagement with the IOP;

𝜙1(𝑆1) is constant in 𝑆1. At week 8, each participant’s history of engagement is assessed, and an

3



appropriate second-stage treatment is recommended. For participants who have shown a pattern of

continued non-engagement (non-responders), the recommended second-stage treatment is a second

phone-based session focusing on personal choice. For all other participants (responders), the DTR

recommends no further contact. Here, the tailoring variable contained in 𝑆2(𝑎1) is an indicator

as to whether or nor the participant demonstrated a pattern of continued non-engagement prior to

week 8.

In this dissertation, we will consider only two-stage DTRs. Further, we focus on binary

tailoring variables, which we will abbreviate to “response” or “non-response”. Since a DTR

recommends treatments to both responders and non-responders, we can denote a DTR with a triple

of the form (𝑎1, 𝑎2R, 𝑎2NR), where 𝑎1 is an indicator for the recommended first-stage treatment, 𝑎2R

an indicator for the second-stage treatment recommended for responders, and 𝑎2NR the second-stage

treatment recommended for non-responders.

Researchers interested in developing high-quality DTRs often have unanswered questions that

cannot necessarily be answered based on existing literature, or expert clinical opinion. These

questions typically concern the relative effectiveness of different DTRs, the relative effectiveness of

different DTR components at specific stages, how the intervention components at different stages

work with (or against) each other, and questions related to how best to tailor treatment at different

stages of intervention. Common questions are about which treatment option the DTR should

begin with, how to modify the initial treatment for non-responders, how to best define or monitor

individuals for response/non-response, and the timing of decision points and thus interventions.

These questions can be addressed using a sequential, multiple-assignment randomized trial, or

SMART.
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1.2 Sequential Multiple-Assignment Randomized Trials

(SMARTs)

A SMART is a type of randomized trial in which some or all participants are randomized more than

once, the goal of which is typically to develop a high-quality DTR. In a SMART, all participants

move through multiple stages of treatment. At each stage, participants may be randomized to a set

of feasible treatment options. These randomizations correspond to scientific questions about the

development of an effective DTR. The treatment options to which a participant is randomized at

each stage may depend on participant characteristics via a tailoring variable or prior treatment. We

consider two-stage SMARTs in which the primary outcome is continuous and repeatedly measured

in participants over the course of the study.

Most SMARTs contain “embedded” DTRs; that is, by design, participants in a SMART may

be assigned to treatments which are consistent with recommendations made by one or more DTRs.

Often, subsequent randomizations in a SMART are restricted to particular groups of participants

based on an embedded tailoring variable, which is chosen based on scientific, ethical, or practical

considerations. For example, in oncology, it would be unethical to randomize patients who do not

respond to a high dose of chemotherapy to an intervention which would increase the dose beyond a

known toxicity threshold. Instead, investigators may choose to not re-randomize these individuals

to a higher dose.

We consider SMARTs in which each randomization is between two possible interventions,

and where the tailoring variable is binary. In Figure 1.1, we introduce three common two-stage

SMART designs which vary in the subsets of participants who are re-randomized after the first

stage. To our knowledge, these designs are representative of the majority of the SMARTs in the

field to date.

In design I, all participants are re-randomized. There are eight DTRs embedded in this design:

for example, the DTR which starts by recommending A, then recommends C for responders and

F for non-responders. Using the notation above and the indices in figure 1.1, this DTR would
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Stage 1 Stage 2

C
𝑎2R = 1

R
D

𝑎2R = −1
A

𝑎1 = 1
E

𝑎2NR = 1
R

F
𝑎2NR = −1

R
G

𝑎2R = 1
R

H
𝑎2R = −1

B
𝑎1 = −1

I
𝑎2NR = 1

R
J

𝑎2NR = −1

Time 0 Time 1 Time 2

Responders

Non-Responders

Responders

Non-Responders

(I) All participants are re-randomized, regardless of response status.

Stage 1 Stage 2

C
𝑎2R = 0

D
𝑎2NR = 1

R
E

𝑎2NR = −1

F
𝑎2R = 0

G
𝑎2NR = 1

R
H

𝑎2NR = −1

Time 0 Time 1 Time 2

A
𝑎1 = 1

B
𝑎1 = −1

R

Responders

Non-Responders

Responders

Non-Responders

(II) The second randomization is restricted to only non-responders.

Stage 1 Stage 2

C
𝑎2R = 0

A
D

𝑎2NR = 1
R

E
𝑎2NR = −1

F
𝑎2R = 0

B
𝑎1 = −1

G
𝑎2NR = 0

Time 0 Time 1 Time 2

A
𝑎1 = 1

R

Responders

Non-Responders

Responders

Non-Responders

(III) The second randomization is restricted to only non-responders to
treatment A.

Figure 1.1: Three commonly-used two-stage SMART designs. Each design varies in choice of which subsets of
participants are re-randomized. Circled R indicates randomization, capital letters indicate (potentially non-unique)
treatments, and 𝑎– provides a coding system used to index embedded DTRs.
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be written (1, 1, -1). SMARTs of this form have been run in the fields of drug dependence

(Oslin 2005; Fitzsimons et al. 2015), smoking cessation (Fu et al. 2017), and childhood depression

(Eckshtain 2013), among others. Often, motivation for re-randomizing all participants arises out

of open scientific questions regarding both a maintenance therapy for responders and a “rescue”

intervention for non-responders.

SMARTs using design II restrict the second randomization to only non-responders; that is,

only participants who have a certain value of the tailoring variable (here, “non-response”) are re-

randomized. This might be motivated by an open question regarding second-stage treatment only

among non-responders (i.e., the follow-up intervention for responders may be well-established).

Design II is perhaps the most common SMART design, and is often referred to as the “prototypical”

SMART (NeCamp, Kilbourne, and Almirall 2017). It has been utilized in the study of ADHD

(Pelham et al. 2016), adolescent marijuana use (Budney 2014), alcohol and cocaine dependence

(McKay et al. 2015), and more. There are four embedded DTRs in this design. Because responders

are not re-randomized, 𝑎2R is set to zero for all embedded DTRs.

In design III, re-randomization is restricted to only non-responders who receive a particular

first-stage treatment. This design might be used when one of the first-stage interventions involves

a top-of-the-line treatment that, for practical reasons, cannot be intensified in the second stage. For

the individuals randomized to this first-stage treatment, there may only be one option for subsequent

intervention, regardless of their value of the tailoring variable. SMARTs of this type have been used

to investigate cognition in children with autism spectrum disorder (Kasari et al. 2014; Almirall

et al. 2016) and implementation of a re-engagement program for patients with mental illness

(Kilbourne et al. 2013). There are three DTRs embedded in this design. Note that, as in design II,

responders are not re-randomized, so 𝑎2R is set to zero for all embedded DTRs. Furthermore, 𝑎2NR

is set to zero when 𝑎1 = −1, as non-responders to treatment B are not re-randomized.

As stated before, the goal of SMART designs is to aid the development of DTRs. Data

collected in a SMART can be used to answer questions concerning which intervention option

to provide at critical decision points during care. Common primary aims for SMARTs include a

7



comparison of first-stage treatment options averaged over subsequent interventions, or a comparison

of second-stage intervention options among responders, averaged over the first-stage definition of

non-response; similarly for non-responders. Questions can also focus on comparisons of the DTRs

embedded in a SMART. An example would be to compare the DTR shown in Figure 1 (embedded

DTR 2) to embedded DTR 5 based on proportion of days abstinent from alcohol at the end of the

study. This type of comparison may be used to investigate the difference between, say, the most

and least intensive DTRs, or the most and least expensive.

Each of the SMART designs discussed above is motivated by a different set of scientific

questions at multiple stages of a DTR. Data collected in a SMART can be used to answer questions

concerning which intervention option to provide at critical decision points during care. Questions

can also focus on comparisons of the DTRs embedded in a SMART. Because each randomization

in a SMART corresponds to an open question about subsequent treatment recommendations, and

the defining characteristic of a SMART is that some or all participants are randomized more than

once, questions that do not involve multiple stages of treatment do not, by themselves, motivate a

SMART. Almirall et al. (2018) describe several “singly-randomized” alternatives to SMARTs in

the context of research on DTRs.

To illustrate ideas, we use ENGAGE, illustrated in figure 1.2. ENGAGE is a SMART designed

to study the effects of offering cocaine- and/or alcohol-dependent patients who did not engage in an

IOP phone-based sessions either geared toward re-engaging them in an IOP or offering a choice of

treatment options (McKay et al. 2015). The study recruited 500 cocaine- and/or alcohol-dependent

adults who were enrolled in an IOP and failed to attend two or more sessions in the first two

weeks. ENGAGE is modeled on design II. In the context of figure 1.1, treatment A was two phone-

based motivational interviews focused on reengaging the participant with the IOP (“MI-IOP”);

treatment B was two phone-based motivational interviews geared towards helping the participant

choose and engage with an intervention of their choice (“MI-PC”). Participants who exhibited

a pattern of continued non-engagement after eight weeks were considered non-responders, and

re-randomized to receive either MI-PC (treatments D and G) or no further contact (treatments E
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Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B

R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E

R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

Figure 1.2: The ENGAGE SMART. Circled R indicates randomization with probability 0.5. “MI-IOP” refers to
motivational interviewing with focus on intensive outpatient program; “MI-PC” to motivational interviewing with
focus on patient choice; “NFC” to no further contact. Subgroups identify particular treatment paths which participants
may follow.

and H). Responders were provided no further contact (treatments C and F). Following the coding

in figure 1.1, the example DTR on page 1 is labeled (1, 0, 1). The other embedded DTRs are given

in table 1.1.

An important continuous outcome in ENGAGE is “treatment readiness”. This is a measure of

a patient’s willingness and ability to commit to active participation in a substance abuse treatment

program. The score ranges from 8 to 40 and is coded so that higher scores indicate greater treatment

readiness. Measurements are taken at baseline, and 4, 8, 12, and 24 weeks after program entry.
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Table 1.1: Embedded DTRs in the ENGAGE SMART. ENGAGE is depicted in figure 1.2. “MI-IOP” refers to
motivational interviewing with focus on intensive outpatient program; “MI-PC” to motivational interviewing with
focus on patient choice; “NFC” to no further contact. “Subgroups” are in reference to figure 1.2. The final column
writes each embedded DTR as a triple (𝑎1, 𝑎2R, 𝑎2NR).

DTR Stage 1
Treatment

Stage 2 Treatment
for Responders

Stage-2 Treatment
for Non-Responders

Subgroups consis-
tent with DTR

Coding

1 MI-IOP NFC MI-PC A, B (1, 0, 1)
2 MI-IOP NFC NFC A, C (1, 0,−1)
3 MI-PC NFC MI-PC D, E (−1, 0, 1)
4 MI-PC NFC NFC D, F (−1, 0,−1)

1.2.1 Considerations for Designing SMARTs

ENGAGE contains four embedded DTRs. Notice that responders to a particular first-stage inter-

vention are consistent with both embedded DTRs which recommend that intervention. ENGAGE

is conceptually similar to a 2 × 2 (fractional) factorial design (Murphy and Almirall 2009; Collins,

Nahum-Shani, and Almirall 2014; Vock and Almirall 2018). The first factor is MI-IOP vs. MI-PC;

the second factor is restricted to non-responders and is MI-PC vs. no further contact.

Two key differences from factorial designs are the sequential nature of treatment delivery in

a SMART, as well as the possible restriction of certain treatment options to participants based on

their response status. Scientific questions which motivate a SMART are asked in the context of a

sequence of treatments which are delivered at multiple points in time: this is not typically captured

by a standard factorial design. Additionally, SMARTswhich contain an embedded tailoring variable

usually offer different sets of treatment options to responders and non-responders. Similarly, first-

stage treatment assignment may determine whether individuals are re-randomized, as in design III

SMARTs. These SMARTs are therefore not fully crossed designs (Nahum-Shani et al. 2012a).

SMARTs often include standard-of-care control groups. Most commonly, this is done by

embedding a standard-of-care intervention as one of the DTRs. For instance, in design II, one

of the embedded DTRs may be a DTR that is commonly used in practice or could recommend

standard-of-care throughout. This type of SMART would allow for comparisons of the other

embedded DTRs against this standard-of-care DTR.

An important consideration in the design of a SMART is the choice of embedded tailoring
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variable, if included. Embedding a tailoring variable into the trial also embeds it into any DTRs

the trial is able to study, so its inclusion should be well-justified based on scientific, ethical, or

practical considerations. The tailoring variable is a component of the DTR. As such, its operating

characteristics are part of the intervention aswell as the trial. Therefore, tailoring variables should be

relatively easily measured in a clinical setting and reliably identify responders and non-responders.

A variable which may “misclassify” individuals is not a good choice of tailoring variable, as it may

make assignment to subsequent treatment unsystematic. This is an issue that should be anticipated

and designed around, rather than corrected post hoc.

In a SMART, the same cohort of individuals participates in all stages of treatment and a

single study consent process is used for all these individuals (prior to the first stage randomization).

SMARTs should not employ multiple consents (e.g., one at each randomization point); doing so

could severely limit the ability to make inferences about the relative effects of the DTRs embedded

in a SMART. Rather, the single consent process should inform participants of all possible treatment

sequences to which they may be assigned during the study. Because the goal of a SMART is

to develop a high-quality DTR, participants in the trial should experience the DTR as close to a

real-world implementation as possible; a re-consent process would detract from this goal. Should

they wish, investigators could randomize participants to DTRs at the start of the trial, though this

should be carefully blinded to avoid expectancy effects: participants should not have knowledge of

their future treatment assignments.

Importantly, SMARTs are typically not adaptive trial designs despite using similar terminology

(e.g., adaptive interventions, etc.) (Meurer, Lewis, and Berry 2012). An adaptive trial is a multi-

stage study in which ongoing patient information is used to modify the design of the trial as data

are collected (Dragalin 2006). By contrast, SMARTs are usually fixed designs in which the goal

is to identify a sequence of treatments which adapt to the participant’s changing needs. Recently,

statisticians have begun to develop SMARTs with adaptive randomization (Cheung, Chakraborty,

and Davidson 2015).
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CHAPTER 2

Estimation and Sample Size for SMARTs with
Continuous Longitudinal Outcomes

This work originally appeared as Seewald et al. (2020).

The comparison of two embedded DTRs which recommend different first-stage treatments is a

common primary aim for a SMART (Nahum-Shani et al. 2012a). There exist data analytic methods

for addressing this aim when the outcome is continuous (Nahum-Shani et al. 2012a), survival (Li

and Murphy 2011), binary (Kidwell et al. 2018), cluster-level (NeCamp, Kilbourne, and Almirall

2017), and longitudinal (Lu et al. 2016; Li 2017). A key step in designing a SMART, as with any

randomized trial, is determining the sample size needed to be able detect a desired effect with given

power. However, there is no existing method for determining sample size for such a comparison

when the outcome is continuous and longitudinal.

Often, SMARTs involve repeated measurements of a continuous outcome spaced throughout

the trial. This might involve a measurement at baseline, one or more measurements in the first stage

of the trial (before assessment of the tailoring variable and subsequent re-randomization), and one

or more measurements in the second stage. In this chapter, we begin by reviewing the work of Lu

et al. (2016), which developed models and an estimation procedure for SMARTs with longitudinal

outcomes. We then extend that work by offering more detailed guidance on the estimation of model

parameters used in computing quantities of interest on which to compare two embedded DTRs.

Finally, we present sample size formulae for SMARTs in which the primary aim is to compare

the mean end-of-study outcomes for two embedded DTRs which recommend different first-stage

treatments and which satisfy certain design constraints.
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Our primary contribution is tractable sample size formulae for SMARTs with a continuous

longitudinal outcome in which the primary aim is an end-of-study comparison of two DTRs which

recommend different first-stage treatments. Additionally, we present estimators for parameters in

the working covariance matrix used in the analysis methods developed by Lu et al. (2016).

Sections 2.1 and 2.2 review the modeling and estimation procedures introduced by Lu et

al. (2016) and extends it by developing estimators for various working covariance structures in

section 2.2.3. In section 2.3, we develop and present sample size formulae for SMARTs in which

the primary aim is a comparison of two embedded DTRs which recommend different first-stage

treatments using a continuous longitudinal outcome. The sample size formulae are evaluated via

simulation in section 2.4.

2.1 Marginal Mean Model

Consider a SMART design with embedded DTRs labeled by (𝑎1, 𝑎2R, 𝑎2NR). Suppose we have a

longitudinal outcome𝒀 𝑖 = (𝑌𝑖,1, . . . , 𝑌𝑖,𝑇 ), 𝑖 = 1, . . . , 𝑛, observed such that𝑌𝑖, 𝑗 is measured for each

of 𝑛 participants at each of 𝑗 = 1, . . . , 𝑇 measurement occasions
{
𝑡 𝑗 : 𝑗 = 1, . . . , 𝑇 ; 𝑡1 < . . . < 𝑡𝑇

}
.

We do not require that these measurements be equally-spaced, though they must be common to

all participants in the study. In ENGAGE, for example, 𝑇 = 5,
{
𝑡 𝑗
}
= {0, 4, 8, 12, 24}. There are

𝑇1 = 3 measurements in stage 1 (note that this includes baseline) and 𝑇2 = 2 in stage 2. Define

𝑡∗ = 𝑡𝑇1 to be the time of the measurement taken immediately before the assessment of response

status and second randomization. In ENGAGE, 𝑡∗ = 𝑡3 = 8. Let 𝑿𝑖 be a vector of mean-centered

baseline covariates, such as age at baseline, sex, etc., for the 𝑖th individual.

We are interested in E[𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

| 𝑿], the marginal mean outcome at time 𝑡 𝑗 under DTR

(𝑎1, 𝑎2R, 𝑎2NR) conditional on 𝑿. This is the mean outcome at the 𝑗 th measurement occasion

had all individuals with characteristics 𝑿 been offered DTR (𝑎1, 𝑎2R, 𝑎2NR). Recall that a DTR

recommends treatments for both responders and non-responders; therefore, E[𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑡 | 𝑿] is

marginal over response status. Note that 𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑖, 𝑗

is a potential outcome, the value of 𝑌𝑖, 𝑗 that
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would be observed at time 𝑡 𝑗 had participant 𝑖 been treated according to the DTR (𝑎1, 𝑎2R, 𝑎2NR).

We impose amodeling assumption on E[𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

| 𝑿]; namely, that E[𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

| 𝑿] =

𝜇
(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑿; 𝜽), where 𝜇(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑿; 𝜽) is a marginal structural mean model with unknown

parameters 𝜽 = (𝜼>, 𝜷>)>. We use 𝜼 to represent a column vector of parameters indexing baseline

covariates, and 𝜷 is a column vector of coefficients on terms involving treatment effects; we discuss

in more detail below. As noted by Lu et al. (2016), the sequential nature of treatment delivery

in SMARTs may suggest constraints on the form of 𝜇(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑿; 𝜽) which depend, in part, on

the design of the SMART. For instance, in ENGAGE, at time 𝑡 = 0, no treatments have been

assigned, so all DTRs share a common mean. At times 𝑡 = 4 and 𝑡 = 8, the four embedded DTRs

differ only by recommended first-stage treatment; thus there are two means of 𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

at each

measurement occasion 2 < 𝑗 ≤ 𝑇1. Finally, for times 𝑡 > 𝑡∗ = 8 (𝑇1 < 𝑗 ≤ 𝑇), each DTR has a

different mean 𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

.

An example marginal structural mean model for ENGAGE (and, more generally, design II),

assuming one baseline covariate 𝑋1, is

𝜇
(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑋1; 𝜽) = 𝜂1𝑋1 + 𝛽0 + 1{𝑡 𝑗≤𝑡∗}
(
𝛽1𝑡 𝑗 + 𝛽2𝑎1𝑡 𝑗

)
+ 1{𝑡 𝑗>𝑡∗}

(
𝛽1𝑡

∗ + 𝛽2𝑡
∗𝑎1 + 𝛽3(𝑡 𝑗 − 𝑡∗) + 𝛽4(𝑡 𝑗 − 𝑡∗)𝑎1

+𝛽5(𝑡 𝑗 − 𝑡∗)𝑎2NR + 𝛽6(𝑡 𝑗 − 𝑡∗)𝑎1𝑎2NR
)
,

(2.1)

where 1{𝐸} is the indicator function for the event 𝐸 . Similarly, for design I, a saturated marginal

structural mean model is of the form

𝜇
(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑿; 𝜽) = 𝜼>𝑿 + 𝛽0 + 1{𝑡 𝑗≤𝑡∗}
(
𝛽1𝑡 𝑗 + 𝛽2𝑡 𝑗𝑎1

)
+ 1{𝑡 𝑗>𝑡∗}

(
𝛽1𝑡

∗ + 𝛽2𝑡
∗𝑎1 + 𝛽3(𝑡 𝑗 − 𝑡∗) + 𝛽4(𝑡 𝑗 − 𝑡∗)𝑎1 + 𝛽5(𝑡 𝑗 − 𝑡∗)𝑎2R

+𝛽6(𝑡 𝑗 − 𝑡∗)𝑎2NR + 𝛽7(𝑡 𝑗 − 𝑡∗)𝑎1𝑎2R + 𝛽8(𝑡 𝑗 − 𝑡∗)𝑎1𝑎2NR
)
;

(2.2)
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for design III, a saturated marginal structural mean model is

𝜇
(𝑎1,𝑎2R,𝑎2NR)
𝑗

(𝑿; 𝜽) = 𝜼>𝑿 + 𝛽0 + 1{𝑡 𝑗≤𝑡∗}
(
𝛽1𝑡 𝑗 + 𝛽2𝑎1𝑡 𝑗

)
+ 1{𝑡 𝑗>𝑡∗}

(
𝛽1𝑡

∗ + 𝛽2𝑡
∗𝑎1 + 𝛽3(𝑡 𝑗 − 𝑡∗) + 𝛽4(𝑡 𝑗 − 𝑡∗)𝑎1 + 𝛽5(𝑡 𝑗 − 𝑡∗)1{𝑎1=1}𝑎2𝑁𝑅

)
. (2.3)

In model (2.1), using contrast coding, i.e., {𝑎1, 𝑎2NR} ∈ {−1, 1}2, we can write

2𝛽2 = 𝐸


𝑌
(1,0,·)
𝑗

− 𝑌
(1,0,·)
𝑘

𝑡 𝑗 − 𝑡𝑘
−
𝑌
(−1,0,·)
𝑗

− 𝑌
(−1,0,·)
𝑘

𝑡 𝑗 − 𝑡𝑘
| 𝑿

 , 𝑗 , 𝑘 ≤ 𝑇1, 𝑗 ≠ 𝑘. (2.4)

This represents the difference in slopes of expected treatment readiness in the first stage of the

SMART between DTRs starting with different first-stage treatments (second-stage treatment is

arbitrary, as 𝑡 < 𝑡∗). Also, we can interpret 𝜂1 as the difference in expected outcome 𝑌 (𝑎1,𝑎2R,𝑎2NR)
𝑗

associated with a one-unit difference in baseline covariate 𝑋1, marginal over all embedded DTRs.

2.2 Estimation

2.2.1 Observed Data

Suppose we have data arising from a SMART with 𝑛 participants. Let 𝐴𝑖,1 ∈ {−1, 1} be a random

variable which indicates first-stage treatment randomly assigned to participant 𝑖 (𝑖 = 1, . . . , 𝑛), and

let 𝑅𝑖 ∈ {0, 1} indicate whether the 𝑖th participant responded to 𝐴𝑖,1, in which case 𝑅𝑖 = 1, or not, so

𝑅𝑖 = 0. Define 𝐴𝑖,2 ∈ {−1, 1} to be the randomly-assigned second-stage treatment. Throughout, we

use uppercase 𝐴 to denote random treatment assignments; lowercase 𝑎’s are non-random indices

used to denote embedded DTRs.

In design II, since only non-responders are re-randomized, we set 𝐴𝑖,2 = 0 for responders;

similarly for design III. We observe a continuous outcome𝑌𝑖, 𝑗 for each participant at each measure-

ment occasion 𝑡 𝑗 , 𝑗 = 1, . . . , 𝑇 . In general, the data collected on the 𝑖th individual over the course
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of the study are of the form

(
𝑿𝑖, 𝑌𝑖,0, 𝐴𝑖,1,𝒀 𝑖,1:𝑇1 , 𝑅𝑖, 𝐴𝑖,2,𝒀 𝑖,𝑇1+1:𝑇

)
,

where 𝒀 𝑖, 𝑗 :𝑘 is a vector consisting of all values of the outcome observed for the 𝑖th participant at

measurement occasions 𝑗 through 𝑘 .

2.2.2 Estimating Equations

Our goal is to estimate and make inferences on 𝜽 , the length-𝑝 column vector of mean parameters

in the marginal structural mean model of interest. For notational convenience, let D be the set of

DTRs embedded in the SMART under study; for instance, in design II,

D =
{
(𝑎1, 𝑎2R, 𝑎2NR) : 𝑎1 ∈ {−1, 1} , 𝑎2R = 0, 𝑎2NR ∈ {−1, 1}

}
.

We will write 𝒀 (𝑑) := 𝒀 (𝑎1,𝑎2R,𝑎2NR) .

Let𝑊 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) be a weight associated with participant 𝑖 and DTR 𝑑 ∈ D defined as

𝑊 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) =
𝐼 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2)

𝑃(𝐴𝑖,1 = 𝑎1)𝑃(𝐴𝑖,2 = 𝑎2 | 𝐴𝑖,1 = 𝑎1, 𝑅𝑖)
, (2.5)

where 𝐼 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) is an indicator of whether participant 𝑖 is consistent with DTR 𝑑. The

form of 𝐼 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) depends on the particular SMART design under study; for each of the

designs in figure 1.1, these expressions are shown in table 2.1.

We use 𝑊 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) to account for the facts that, in some SMARTs (e.g., designs II

and III) there is known imbalance in the proportion of responders and non-responders consistentwith

eachDTR, and that that some (or all) participants are consistent withmore than one embeddedDTR.

This imbalance can be corrected using inverse-probability weighting (Nahum-Shani et al. 2012a;

Cole and Hernán 2008; Chakraborty and Moodie 2013).

In design II, for example, only non-responders to first-stage treatment are re-randomized; if
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Table 2.1: Design-specific indicators for consistency with a given DTR 𝑑 ∈ D.

Design 𝐼 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2)

I 1{𝐴𝑖,1=𝑎1}
(
1{𝐴𝑖,2=𝑎2R}𝑅𝑖 + 1{𝐴𝑖,2=𝑎2NR} (1 − 𝑅𝑖)

)
II 1{𝐴𝑖,1=𝑎1}

(
𝑅𝑖 + 1{𝐴𝑖,2=𝑎2NR} (1 − 𝑅𝑖)

)
III 1{𝐴𝑖,1=𝑎1}

(
1{𝑎1=−1} + 1{𝑎1=1}

(
𝑅𝑖 + 1{𝐴𝑖,2=𝑎2NR} (1 − 𝑅𝑖)

))
all randomizations are with probability 0.5,𝑊 (1,0,1) (1, 1, 0) = (.5×1)−1 = 2 and𝑊 (1,0,1) (1, 0, 1) =

(.5 × .5)−1 = 4. Note that in design I, all participants are re-randomized; hence, all participants

receive a weight of 4. The analyst may freely substitute𝑊 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) = 𝐼 (𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2) in

this case.

Define 𝑫 (𝑑) (𝑿𝑖) ∈ R𝑇×𝑝 to be the Jacobian of 𝝁(𝑑) (𝑿𝑖; 𝜽) with respect to 𝜽; i.e., 𝑫 (𝑑) (𝑿𝑖) =

𝜕𝝁(𝑑) (𝑿𝑖; 𝜽)/𝜕𝜽𝑇 . Let 𝑽 (𝑑) (𝑿𝑖; 𝝉) ∈ R𝑇×𝑇 be a working covariance matrix for 𝒀 (𝑑) , conditional

on baseline covariates 𝑿, under DTR 𝑑 ∈ D. Here, 𝝉 = (𝝈>, 𝝆>)> is a vector of parameters

indexing variance (𝝈) and correlation (𝝆) components of the working covariance structure. We

discuss 𝑽 (𝑑) (𝑿𝑖; 𝝉) in detail in section 2.2.3. We estimate 𝜽 by solving the estimating equations

0 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑑∈D

[
𝑊 (𝑑) (

𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2
)
· 𝑫 (𝑑) (𝑿𝑖)>𝑽 (𝑑) (𝑿𝑖; 𝝉)−1

(
𝒀 𝑖 − 𝝁(𝑑) (𝑿𝑖; 𝜽)

)]
. (2.6)

We call the solution to equation (2.6) 𝜽̂𝑛, and investigate its asymptotic properties in the following

propositions; see appendix B for proofs.

Proposition 2.1. Suppose 𝝁(𝑑) (𝑿; 𝜽) is a correctly-specified model for E
[
𝒀 (𝑑) | 𝑿

]
. Then 𝜽𝑛 is

consistent for 𝜽∗, the true parameter value.

Proposition 2.2.
√
𝑛

(
𝜽̂𝑛 − 𝜽

)
converges in distribution to N

(
0, 𝑩−1𝑴𝑩−1

)
, where

𝑩 := E

∑︁
𝑑∈D

𝑊 (𝑑) (
𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2

)
𝑫 (𝑑) (𝑿𝑖)>𝑽 (𝑑) (𝑿𝑖; 𝝉)−1𝑫 (𝑑) (𝑿𝑖)

 ∈ R𝑝×𝑝 (2.7)
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and

𝑴 := E


©­«
∑︁
𝑑∈D

𝑊 (𝑑) (
𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2

)
𝑫 (𝑑) (𝑿𝑖)>𝑽 (𝑑) (𝑿𝑖; 𝝉)−1

(
𝒀 𝑖 − 𝝁(𝑑) (𝑿𝑖; 𝜽)

)ª®¬
⊗2 ∈ R𝑝×𝑝,

(2.8)

with 𝒁⊗2 = 𝒁𝒁>.

Note that 𝜽̂𝑛 is consistent for 𝜽 regardless of the chosen structure of 𝑽 (𝑑) (𝑿; 𝝉); however, we

conjecture that choices of𝑽 (𝑑) (𝑿; 𝝉) closer to the true covariance matrix Var(𝒀 (𝑑)) will yield more

efficient estimates.

2.2.3 Estimation of the Working Covariance Matrix

In general, for an embedded DTR 𝑑 ∈ D, 𝑽 (𝑑) (𝑿𝑖;𝝈, 𝝆) takes the form

𝑽 (𝑑) (𝑿𝑖;𝝈, 𝝆) = 𝑺 (𝝈)1/2 𝑹(𝑑) (𝝆)𝑺 (𝝈)1/2 , (2.9)

where 𝑺(𝝈)1/2 ∈ R𝑇×𝑇 is a diagonal matrix with diagonal entries 𝜎1, . . . , 𝜎𝑇 , and 𝑹(𝑑) (𝝆) is a

working correlation matrix for𝒀 (𝑑) . Note that this notation allows for different working correlation

structures for each DTR, as well as non-constant variances in the repeated-measures outcome.

We propose the following procedure to estimate 𝑽 (𝑑) (𝑿𝑖; 𝝉), where 𝝉 = (𝝈>, 𝝆>)>. First,

estimate 𝜽 by solving equation (2.6) using the 𝑇 × 𝑇 identity matrix as 𝑽 (𝑑) (𝑿𝑖; 𝝉) for all 𝑑 ∈ D.

Call the solution 𝜽̂ (0) . Next, use 𝜽̂ (0) to estimate 𝜎
(𝑑)
𝑡 as follows

𝜎̂
(𝑑)
𝑡 =

∑𝑛
𝑖=1𝑊

(𝑑) (𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2
) (
𝑌𝑖,𝑡 − 𝜇

(𝑑)
𝑡

(
𝑿𝑖; 𝜽̂ (0)

))2
∑𝑛

𝑖=1𝑊
(𝑑) (

𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2
)
− 𝑝

, (2.10)

where 𝑝 is the dimension of 𝜽 . If the scientist believes that this variance is constant over time

for each DTR, the estimate in equation (2.10) can be averaged over time; one can also average

over DTR if one believes the variance is constant across all embedded DTRs. Estimators for 𝝆(𝑑)
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Table 2.2: Correlation estimators for selectedworking correlation structures. The top entries define estimators under the
assumption of constant within-person variance over time; the bottom entries allow for time-varying variances. 𝑑 ∈ D is
an embedded DTR,𝑊 (𝑑)

𝑖
is shorthand for𝑊 (𝑑) (𝐴𝑖,1, 𝑅𝑖 , 𝐴𝑖,2), and 𝑒 (𝑑)𝑖,𝑡

(𝜽̂) is the estimated residual 𝑌𝑖,𝑡 − 𝜇̂
(𝑑)
𝑡 (𝑿𝑖; 𝜽̂).

Cor. structure Cor(𝑌 (𝑑)
𝑗

, 𝑌
(𝑑)
𝑘

) Estimator

AR(1)

1 𝑗 = 𝑘(
𝜌(𝑑)

) | 𝑗−𝑘 |
𝑗 ≠ 𝑘

𝜌̂(𝑑) =
∑𝑛

𝑖=1𝑊
(𝑑)
𝑖

∑𝑇 −1
𝑚=1 𝑒

(𝑑)
𝑖,𝑚

(𝜽̂)𝑒 (𝑑)
𝑖,𝑚+1 (𝜽̂)

(𝜎̂ (𝑑))2·𝑛·(𝑇−1)

Exchangeable

{
1 𝑗 = 𝑘

𝜌(𝑑) 𝑗 ≠ 𝑘
𝜌̂(𝑑) =

∑𝑛
𝑖=1𝑊

(𝑑)
𝑖

∑
𝑙<𝑚 𝑒

(𝑑)
𝑖,𝑙

(𝜽̂)𝑒 (𝑑)
𝑖,𝑚

(𝜽̂)

(𝜎̂ (𝑑))2·𝑛·𝑇 (𝑇−1)/2

Unstructured

{
1 𝑗 = 𝑘

𝜌
(𝑑)
𝑗 ,𝑘

𝑗 ≠ 𝑘
𝜌̂
(𝑑)
𝑗 ,𝑘

=

∑𝑛
𝑖=1𝑊

(𝑑)
𝑖

𝑒
(𝑑)
𝑖, 𝑗

(𝜽̂)𝑒 (𝑑)
𝑖,𝑘

(𝜽̂)

(𝜎̂ (𝑑))2·𝑛

vary with choice of correlation structure 𝑹(𝑑) (𝝆); we present estimators for selected structures in

table 2.2 which assume variance is constant in time.

We estimate𝑽 (𝑑) (𝑿𝑖; 𝝉) by plugging appropriately-pooled estimates of𝝈 from equation (2.10)

and of 𝝆 from table 2.2 into equation (2.9). The form of 𝑹(𝑑) (𝝆) can be chosen according to existing

domain knowledge for primary analyses; secondary analyses might use exploratory methods to

discover an appropriate working correlation structure.

2.2.4 Iterated Estimation Procedure

After estimating 𝑽 (𝑑) (𝑿𝑖; 𝝉), we again solve equation (2.6), this time using 𝑽̂
(𝑑) (𝑿𝑖; 𝝉̂(𝑑)) =

𝑺(𝝈̂ (𝑑))1/2𝑹(𝑑) ( 𝝆̂(𝑑))𝑺(𝝈̂ (𝑑))1/2 as the working covariance matrix. This yields a “one-step” esti-

mator of 𝜽 , which we denote by 𝜽̂ (1) . This process can be further iterated, as suggested by Liang

and Zeger (1986); that is, we can use 𝜽̂ (1) in equation (2.10) to obtain a new estimate for the

working covariance structure, and so on until convergence. We call the final estimate of the model

parameters 𝜽̂ .

Work by Lipsitz et al. (2017) indicates that the one-step estimator is asymptotically equivalent

to the “fully-iterated” estimator and is much less computationally intensive when the number

of repeated measures is large. Anecdotally, we have found in reasonable simulation models for

SMARTs with five or fewer measurement occasions that fully-iterated estimates tend to converge
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in 𝐿2-norm within a tolerance of 10−8 after about six iterations and do not represent significant

computational burden.

2.3 Sample Size Formulae for End-of-Study Comparisons of

Embedded DTRs in Two-Stage SMARTs

The estimation procedure presented in section 2.2 is general. The marginal structural mean model

𝝁(𝑑) (𝑿𝑖; 𝜽) can take any form appropriate for the SMART under analysis, data can be observed

at any number of measurement occasions, and the working covariance matrix can have arbitrary

structure (Lu et al. 2016).

We now develop sample size formulae for SMARTs in which the primary aim is to compare

the mean end-of-study outcomes for two embedded DTRs that recommend different first-stage

treatments and which satisfy certain design constraints. For a variety of reasons, there is an

interest in collecting repeated-measures outcomes even in settings in which the primary aim is

an end-of-study comparison. Because repeated measurements within the same person are often

positively correlated, analyses which leverage this information can be more efficient than those

which do not (Cook and Ware 1983). This can be especially beneficial in situations with small

signal-to-noise ratios. Furthermore, longitudinal data allows investigators to examine trajectories

over time, regardless of the primary comparison. This can help tell a fuller story about change over

time.

For the sample size methods developed here, we restrict our focus to two-stage SMARTs

in which the outcome is observed at three equally-spaced measurement occasions — baseline,

just prior to assessment of the tailoring variable and subsequent randomization, and at the end

of the study — and in which all randomizations occur with probability 0.5. For simplicity, we

ignore baseline covariates; this is a conservative assumption, since it will inflate the variance of

the estimates from equation (2.6). Additionally, we consider a saturated, piecewise-linear mean

structure 𝝁(𝑑) (𝜽) similar to models (2.1) to (2.3).
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Let 𝒄 be some contrast vector so that the primary aim null hypothesis takes the form

𝐻0 : 𝒄>𝜽 = 0,

which we will test against an alternative of the form 𝐻1: 𝒄>𝜽 = Δ. To compare mean end-of-study

outcomes between two embedded DTRs which recommend different first-stage treatments, the

estimand of interest is

𝒄>𝜽 = E
[
𝑌
(1,𝑎2R,𝑎2NR)
3 − 𝑌

(−1,𝑎′2R,𝑎
′
2NR)

3

]
, (2.11)

for some choice of 𝑎2R, 𝑎′2R, 𝑎2NR, and 𝑎′2NR. For example, to test equality of mean end-of-study

outcomes for DTRs (1, 0, 1) and (-1, 0, -1) in design II under model (2.1) (assuming no 𝑿,{
𝑡 𝑗
}
= {0, 1, 2}, 𝑡∗ = 1), the estimand (2.11) can be written as the linear combination 𝒄>𝜷, where

𝒄> = (0, 0, 2, 0, 2, 2, 0).

Because we are interested in a single contrast (i.e., 𝒄 is a vector, not a matrix) we employ a

1-degree of freedom Wald test. The test statistic is

𝑍 =

√
𝑛𝒄>𝜽̂

𝜎𝑐

,

where 𝜎𝑐 =
√︁
𝒄>𝑩−1𝑴𝑩−1𝒄. Under the null hypothesis, by asymptotic normality of

√
𝑛

(
𝜽̂ − 𝜽∗

)
,

the test statistic follows a standard normal distribution.

Define 𝛿 to be the standardized effect size as described by Cohen (1988) for an end-of-study

comparison, i.e.,

𝛿 =
Δ

𝜎
, (2.12)

where 𝜎 = Var(𝑌 (𝑑)
𝑗

) for arbitrary 𝑗 (see working assumption A2.2 below).

The sample size formulae will require the response rate 𝑃(𝑅(𝑎1) = 1) = 𝑟𝑎1 , where 𝑅(𝑎1) is

the potential response to first-stage treatment 𝑎1. In order to simplify the form of 𝜎𝑐 and obtain

tractable, intepretable sample size formulae, we make the following working assumptions:

A2.1 Constrained conditional covariance matrices for DTRs under comparison.
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(a) The variability of 𝑌 (𝑑)
𝑡 around the DTR mean 𝜇

(𝑑)
𝑡 (𝜽) among responders and non-

responders is no more than the variance of 𝑌 (𝑑)
𝑡 unconditional on response, i.e.,

E
[(
𝑌
(𝑑)
𝑡 − 𝜇

(𝑑)
𝑡 (𝜽)

)2
| 𝑅(𝑎 (𝑑)

1 )
]
≤ E

[(
𝑌
(𝑑)
𝑡 − 𝜇

(𝑑)
𝑡 (𝜽)

)2]
,

for all 𝑡 > 𝑡∗ and DTRs 𝑑 ∈ D under study.

(b) For times 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡∗, response status is uncorrelated with products of residuals of 𝑌𝑡𝑖 ,

i.e,

Cov
(
𝑅(𝑎 (𝑑)

1 ) ,
(
𝑌
(𝑑)
𝑡𝑖

− 𝜇
(𝑑)
𝑡𝑖

(𝜽)
) (

𝑌
(𝑑)
𝑡 𝑗

− 𝜇
(𝑑)
𝑡 𝑗

(𝜽)
))

= 0.

for DTRs 𝑑 ∈ D under study.

(c) The covariance between the end-of-study measurement and the measurements prior to

the second stage among responders is less than or equal to the same quantity among

non-responders:

Cov
(
𝑌
(𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 1
)
≤ Cov

(
𝑌
(𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 0
)

for DTRs 𝑑 ∈ D under study and 𝑡 = 0, 1. An additional, related assumption is given in

appendix B.2.

A2.2 Exchangeable marginal covariance structure. The marginal variance of 𝒀 (𝑑) is constant

across time and DTR, and has an exchangeable correlation structure with correlation 𝜌, i.e.,

Var
(
𝒀 (𝑑)

)
= 𝚺 = 𝜎2


1 𝜌 𝜌

𝜌 1 𝜌

𝜌 𝜌 1


for all 𝑑 ∈ D.

These working assumptions may be seen as overly simplifying; however, we will see in sec-
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tions 2.4.2 and 2.5 that formula (2.13) is robust to moderate violations of working assumption A2.1

and that inputs to the formula can be adjusted in a way to accommodate violations of working

assumption A2.2. A working assumption similar to A2.1(a) is commonly made in developing

sample-size formulae for SMARTs using end-of-study outcomes (Oetting et al. 2011; Kidwell

et al. 2018; NeCamp, Kilbourne, and Almirall 2017). Working assumptions A2.1(b) and A2.1(c),

as well as A2.2, are necessary for the extension to the setting of a repeated-measures outcome with

our proposed estimator.

Working assumption A2.1 arises specifically as a consequence of unequal weights in equa-

tion (2.6) (i.e., when there exists imbalance between responders and non-responders, by design);

therefore, the assumption is not necessary in design I, and can be relaxed to apply to only the two

DTRs in which non-responders are re-randomized in design III. Furthermore, working assump-

tion A2.2 cannot be satisfied in design I if all eight embedded DTRs have unique means.

Under working assumptions A2.1 and A2.2, the minimum-required sample size to detect a

standardized effect size 𝛿 with power at least 1 − 𝛾 and two-sided type-I error 𝛼 is

𝑛 ≥
4
(
𝑧1−𝛼/2 + 𝑧1−𝛾

)2
𝛿2

· (1 − 𝜌2) · DE, (2.13)

where DE is a SMART-specific “design effect” for an end-of-study comparison (see table 2.3).

Note that the first term in formula (2.13) is the typical sample size formula for a traditional two-arm

randomized trial with a continuous end-of-study outcome and equal randomization probability.

The middle term is due to the within-person correlation in the outcome, and is identical to the

corresponding correction term for GEE analyses sized to detect a group-by-time interaction when

there is no baseline group effect (see, e.g, Fitzmaurice, Laird, and Ware 2011, ch. 20)

The sample size formula presented in formula (2.13) is conservative. It becomes more

conservative as 𝜌 approaches (1 +
√
5)/2 ≈ 0.62. A sharper formula is available in appendix B.2;

however, we emphasize formula (2.13) as it is more immediately intepretable.
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Table 2.3: SMART-specific design effects for sample size formula 2.13. 𝑟𝑎1 = 𝑃(𝑅 (𝑎1) = 1) is the response rate to
first-stage treatment 𝑎1. The conservative design effect maximizes the sample size requirement by assuming 𝑟𝑎1 = 0.

Design Design effect Conservative design effect

I 2 2
II 1

2 (2 − 𝑟1) + 12 (2 − 𝑟−1) 2
III 1

2 (3 − 𝑟1) 3
2

2.4 Simulation Study

We conducted a variety of simulations to assess the performance of sample size formula (2.13).

We are interested in the empirical power for a comparison of the DTR which recommends only

treatments indicated by 1 and the DTR which recommends only treatments indicated by −1 when

the study is sized to detect an effect size of 𝛿. In ENGAGE, this might correspond to a comparison

of mean end-of-study outcomes under the DTR which recommends MI-IOP in the first stage, no

further contact for engagers, and MI-PC in the second stage for continued non-engagers versus the

mean end-of-study outcomes under the regimen which recommends MI-PC in the first-stage, then

no further contact for both engagers and non-engagers.

We consider four types of scenarios: first, when no assumptions are violated; second, when

each of working assumptions A2.1(a) to A2.1(c) are violated; finally, when the working correlation

structure is misspecified, in violation of working assumption A2.2. In each scenario, sample sizes

are computed based on nominal power 1 − 𝛾 = 0.8 and two-sided type-I error 𝛼 = 0.05.

We believe sample sizes from formula (2.13) will be slightly conservative when all assump-

tions are satisfied, as formula (2.13) is an interpretable upper bound on a sharper formula given

in appendix B.2 and the supplement. For design I, we do not expect power to be affected by

violations of working assumption A2.1, as the assumption arises as a consequence of over- or

under-representation of responders and non-responders consistent with a particular DTR (see

appendix B.2). Since there is no such imbalance in design I, working assumption A2.1 is not appli-

cable. Similarly, in design III, only non-responders to one first-stage treatment are re-randomized,

so we expect that empirical power will decrease slightly, but not seriously, when violating working
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assumption A2.1. We expect empirical power to suffer most severely when violating this working

assumption in design II.

We further conjecture that scenarios in which the true within-person correlation structure of

𝒀 (𝑑) is autoregressive, sample sizes from formula (2.13) will be very anti-conservative. Under

an AR(1) correlation structure, less information about the end-of-study outcome is provided by

the baseline measure than would be under an exchangeable correlation structure. Since, by using

formula (2.13), we have assumed more information is available from earlier measurements than

is actually the case, we will be underpowered. Similarly, we expect over-estimation of 𝜌 in

formula (2.13) to lead to anti-conservative sample sizes.

2.4.1 Data Generative Process

For each simulation, the true marginal mean model is as in models (2.1) to (2.3) for designs I

to III, respectively. We do not include baseline covariates 𝑿; this is a conservative approach, as

we believe that adjustment for prognostic covariates typically will increase power: see, eg., Kahan

et al. (2014). Estimates of marginal means from ENGAGE were used to inform a reasonable range

of “true” means from which to simulate, though the scenarios presented here are not designed to

mimic ENGAGE exactly. All simulations take 𝑇 = 3 and values of 𝜷 and 𝜎 are chosen to achieve

𝛿 = 0.3 or 𝛿 = 0.5 (“small” and “moderate” effect sizes, respectively).

Data were generated according to a conditional mean model which, when averaged over

response, yields the marginal model of interest. Potential outcomes 𝑌 (𝑑)
𝑖, 𝑗
were simulated from

appropriately-parameterized normal distributions (see section 4.1 for details); data were “observed”

by selecting the potential outcome corresponding to treatment assignment as generated from a

Bernoulli(0.5) distribution.

We consider three mechanisms for generating response status. In the first, “𝑅⊥⊥”, response

is generated from a Bernoulli(𝑟𝑎1) distribution, where 𝑟𝑎1 = 𝑃(𝑅(𝑎1) = 1), independently of all

previously-observed data. In the second and third scenarios (“𝑅+” and “𝑅−”, respectively), response

status is still generated from a Bernoulli distribution, but each individual is assigned a beta-
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distributed probability of response correlated with their observed value of 𝑌1. These correlations

are either positive or negative, depending on the responsemodel. This is intended tomimic different

coding choices for 𝒀 , in the sense of responders tending to have higher or lower values of 𝑌1 than

non-responders.

For each simulation scenario, we compute upper and lower bounds on allowable values of

Var(𝑌 (𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 1), beyond which it is not possible to either achieve the desired marginal

variance, or which induces violation of working assumption A2.1(a). The results shown in the

corresponding column of table 2.4 were generated when responders’ variances were set to 75% of

the lower bound beyond which the fixed marginal variance forces E[(𝑌 (𝑑)
𝑡 − 𝜇

(𝑑)
𝑡 (𝜽))2 | 𝑅(𝑎 (𝑑)

1 ) =

0] ≥ 𝜎2.

Violation of working assumption A2.1(b) was induced by defining response status as

𝑅(𝑎 (𝑑)
1 ) = 1{

𝑌
(𝑑)
1 ∈

(
−∞,𝜅low𝑎1

]
∪
[
𝜅
high
𝑎1 ,∞

)} , (2.14)

where 𝜅low and 𝜅high are chosen to be the 𝑟/2 and (1 − 𝑟/2)th quantiles of the N
(
𝜇
(𝑑)
1 , 𝜎2

)
distribution, respectively. This ensures control on response probability while also inducing large

positive correlation between 𝑅(𝑎1) (𝑑) and (𝑌 (𝑑)
1 − 𝜇

(𝑑)
1 )2.

Violation of working assumption A2.1(c) was induced by choosing Cor(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎1) =

1) > Cor(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅 = 0) while keeping respective variances fixed. In our generative model,

it was difficult to exert precise control over these quantities when response was related to prior

outcomes; as such, these violations were induced under the 𝑅⊥⊥ response model.

There exist natural constraints on howmuch larger thanCov(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅 = 0) the responders’

covariance can be while ensuring that (1) all conditional covariance matrices are positive definite

and (2) Cov(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 0) ≥ 0 for 𝑡 = 0, 1. These constraints vary with 𝜌. We choose

Cor(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 1) such that Cov(𝑌 (𝑑)
𝑡 , 𝑌

(𝑑)
2 | 𝑅(𝑎 (𝑑)

1 ) = 1) is the midpoint between the

minimum covariance for which the assumption is violated and the maximum covariance allowed

by the aforementioned constraints.
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2.4.2 Simulation Results

Simulation results based on 3,000 simulated data sets are compiled in table 2.4. We find that sample

size formula (2.13) performs as expected when all assumptions are satisfied. Empirical power is

not significantly less than the target power of 0.8, per a one-sided binomial test with level 0.05.

The sample size is, as expected, often conservative, particularly when within-person correlation is

high.

Table 2.4: Sample sizes and empirical power results for an end-of-study comparison of the DTR recommending only
treatments indexed by 1 and that which recommends only treatments indicated by −1. 𝛿 is the true standardized effect
size as defined in equation (2.12), 𝑟 is the common probability of response to first-stage treatment, and 𝜌 is the true
exchangeable within-person correlation. 𝑛 is computed using formula (2.13) with 𝛼 = 0.05 and 𝛾 = 0.2. 𝑅⊥⊥ refers to a
generative model in which response status is independent of all prior outcomes; 𝑅+ and 𝑅− refer to generative models
in which response is positively or negatively correlated with 𝑌1, respectively. All violation scenarios assume the 𝑅+
generative model, except working assumption A2.1(c). Results are the proportion of 3000 Monte Carlo simulations in
which we reject 𝐻0 : 𝒄>𝜽 = 0 at the 5% level.

Empirical power

A2.1 and A2.2 satisfied Violation of A2.1 Violation of A2.2

Design 𝛿 𝑟 𝜌 𝑛 𝑅⊥⊥ 𝑅+ 𝑅− A2.1(a) A2.1(b) A2.1(c) True AR(1)

I 0.3 0.4 0.0 698 0.798 0.807 0.803 0.798 0.796 ‡ ‡
0.3 635 0.819 0.817 0.800 0.820 0.804 0.815 0.780∗
0.6 447 0.815 0.862 0.773∗ 0.865 0.817 0.827 0.728∗
0.8 252 0.835 0.925 0.733∗ † † 0.840 0.721∗

0.6 0.0 698 0.796 0.799 0.806 0.800 0.791 ‡ ‡
0.3 635 0.808 0.813 0.792 0.824 0.805 0.807 0.775∗
0.6 447 0.833 0.856 0.798 0.859 0.831 0.838 0.727∗
0.8 252 0.827 0.901 0.758∗ † † 0.835 †

0.5 0.4 0.0 252 0.799 0.801 0.798 0.798 0.801 ‡ ‡
0.3 229 0.813 0.815 0.797 0.814 0.811 0.814 0.771∗
0.6 161 0.824 0.872 0.789 0.868 0.833 0.843 0.742∗
0.8 91 0.843 0.931 0.734∗§ 0.926 † 0.839§ 0.725∗

0.6 0.0 252 0.796 0.797 0.810 0.792 0.802 ‡ ‡
0.3 229 0.817 0.815 0.808 0.811 0.823 0.823 0.771∗
0.6 161 0.838 0.859 0.790 0.861 0.832 0.837 0.749∗
0.8 91 0.835§ 0.896 0.765∗§ 0.896 † 0.859 †

II 0.3 0.4 0.0 559 0.801 0.801 0.808 0.778∗ 0.803 ‡ ‡
0.3 508 0.804 0.813 0.831 0.800 0.797 0.798 0.795
0.6 358 0.817 0.819 0.834 0.807 0.759∗ 0.788 0.811
0.8 201 0.836 0.814 0.836 0.809 † 0.792 0.806

0.6 0.0 489 0.804 0.796 0.793 0.736∗ 0.810 ‡ ‡
0.3 445 0.797 0.804 0.818 0.758∗ 0.795 0.780∗ 0.804
0.6 313 0.824 0.831 0.844 0.793 0.752∗ 0.770∗ 0.824
0.8 176 0.845 † † 0.754∗ † 0.776∗ 0.842

0.5 0.4 0.0 201 0.801 0.800 0.802 0.768∗ 0.794 ‡ ‡

continued
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Empirical power

A2.1 and A2.2 satisfied Violation of A2.1 Violation of A2.2

Design 𝛿 𝑟 𝜌 𝑛 𝑅⊥⊥ 𝑅+ 𝑅− A2.1(a) A2.1(b) A2.1(c) True AR(1)

0.3 183 0.813 0.800 0.819 0.790 0.813 0.796 0.803
0.6 129 0.814 0.828 0.833 0.810 0.763∗ 0.799 0.815
0.8 73 0.839 0.841 0.852 0.829 † 0.795 0.804

0.6 0.0 176 0.807 0.799 0.796 0.733∗ 0.808 ‡ ‡
0.3 160 0.816 0.815 0.821 0.767∗ 0.808 0.802 0.812
0.6 113 0.829 0.830 0.837 0.792 0.765∗ 0.770∗ 0.817
0.8 64 0.845§ † † 0.783∗§ † 0.789§ †

III 0.3 0.4 0.0 454 0.806 0.813 0.806 0.782∗ 0.794 ‡ ‡
0.3 413 0.815 0.809 0.814 0.789 0.800 0.800 0.775∗
0.6 291 0.821 0.811 0.818 0.794 0.783∗ 0.787∗ 0.687∗
0.8 164 0.824 0.812 0.839 0.812 † 0.802 0.637∗

0.6 0.0 419 0.813 0.814 0.817 0.781∗ 0.769∗ ‡ ‡
0.3 381 0.823 0.812 0.808 0.776∗ 0.791 0.795 0.771∗
0.6 268 0.823 0.817 0.844 0.807 0.750∗ 0.754∗ 0.709∗
0.8 151 0.820 † † 0.803 † 0.784∗ †

0.5 0.4 0.0 164 0.808 0.804 0.795 0.776∗ 0.802 ‡ ‡
0.3 149 0.822 0.815 0.827 0.811 0.791 0.805 0.789
0.6 105 0.811 0.810 0.812 0.810 0.798 0.785∗ 0.698∗
0.8 59 0.838 † 0.823 0.845 † 0.817§ 0.684∗

0.6 0.0 151 0.798 0.809 0.803 0.778∗ 0.772∗ ‡ ‡
0.3 138 0.812 0.809 0.814 0.800 0.782∗ 0.799 0.778∗
0.6 97 0.803§ 0.812 0.826§ 0.826§ 0.762∗ 0.774∗§ 0.705∗§
0.8 55 0.826§ † † 0.837§ † 0.797§ †

∗ Statistically significantly less than 0.8 at the 5% level.
† Our data generative model could not accommodate this scenario.
‡ Violation of this working assumption is not applicable when 𝜌 = 0.
§ Fewer than 3000 simulations generated data in which all treatment sequences were observed.

There may be some concern that, for high within-person correlation, formula (2.13) is overly

conservative; should this concern arise, we recommend use of the sharper formulae presented in the

supplement. The difference between the sharper formulae and formula (2.13) is maximized when

𝜌 = (1+
√
5)/2 ≈ 0.62, so we expect to see the largest differences in power between formula (2.13)

and the sharp formula when we set 𝜌 = 0.6.

When all working assumptions are satisfied, we see that empirical power for 𝑅+ and 𝑅−

scenarios are similar or slightly higher than under the 𝑅⊥⊥ model. In general, there do not appear to

be practical differences in empirical power between the response models.

As conjectured, violating working assumption A2.1(a) does not impact empirical power in

design I (compare the results to column “𝑅+”). For design II, empirical power is consistently
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less than the nominal value when working assumption A2.1(a) is violated. However, while the

empirical power is often statistically significantly less than 0.8, for practical purposes the loss of

power is relatively small. For design III, we notice small reductions in power relative to scenarios

in which both working assumptions A2.1 and A2.2 are satisfied, though the conservative nature of

formula (2.13) appears to protect against more severe loss of power. This suggests that our sample

size formula is moderately robust to reasonable violations of A2.1(a).

For small 𝜌, we see nomeaningful change in empirical power when violating working assump-

tion A2.1(b). However, as 𝜌 increases, this also leads to increased correlation between response

and the other products of first-stage residuals, which increases the severity of the violation. For

𝜌 = 0.6, we see noticeable, but not extreme, departures from nominal power. When 𝜌 = 0.8,

our generative model was not able to violate working assumption A2.1(b) without also violating

working assumption A2.1(a); as such, we omit those results.

Interestingly, as can be seen in the supplement, defining non-response as in equation (2.14)

(i.e., replacing 𝑅(𝑎1) with 1−𝑅(𝑎1)) leads to higher-than-nominal power. When there exists negative

correlation between response and products of squared first-stage residuals, the form of 𝜎2𝑐 derived

in appendix B.2 is more conservative, leading to increased power.

Simulation results show that our sample size formula is quite robust to violations of working

assumption A2.1(c) for low-to-moderate within-person correlations; at high correlations, the empir-

ical power is statistically significantly less than 0.8. However, as with working assumption A2.1(a),

the practical reduction in power is relatively small.

The final column of table 2.4 suggests that formula (2.13) is highly sensitive to violations of

working assumption A2.2 in regards to the true correlation structure. In particular, when the true

correlation structure is not exchangeable with correlation 𝜌 and is instead AR(1) with correlation

𝜌, empirical power is substantially lower than the target of 0.8, particularly as 𝜌 increases. This

is unsurprising: as our assumed exchangeable 𝜌 increases, the difference between the assumed

and actual correlation between the end-of-study measurement and earlier measurements increases,

leading to more severe loss of power.
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Figure 2.1: Empirical power under misspecified within-person correlation. Simulated power is plotted against the
difference between the true within-person correlation 𝜌 and hypothesized correlation 𝜌guess used to compute sample
size. Results are shown for design II with a hypothesized response rate of 0.4, and sample size was chosen to detect
standardized effect size 𝛿 = 0.3 for the comparison of DTRs (1, 0, 1) and (-1, 0, -1). Each point is based on 3000
simulations with target power 0.8 and significance level 0.05. Results are similar for designs I and III and different
values of 𝛿 and 𝑟.

Note that when within-person correlation is high, sample size becomes rather small. Since the

method presented here is based on asymptotic normality, we caution the reader that small sample

sizes (e.g., 𝑛 < 100) provided by formula (2.13) may be quite sensitive to violation of the working

assumptions.

In figure 2.1, we examine the effect on empirical power of misspecifying the within-person

correlation. Analytically, we see from formula (2.13) that if the assumed 𝜌 is smaller than the

true within-person correlation, the sample size will be conservative. On the other hand, when

the assumed 𝜌 in formula (2.13) is larger than the true correlation, the sample size will be anti-

conservative. Figure 2.1 shows plots of empirical power against the difference between the assumed

within-person correlation 𝜌guess and the true 𝜌. For small 𝜌guess, formula (2.13) appears to be quite

robust to misspecification of 𝜌; however, as 𝜌guess increases, the formula becomes highly sensitive

to such a violation of working assumption A2.2. This is supported analytically, since formula (2.13)

30



is a function of 𝜌2guess.

2.5 Discussion

Wehave derived sample size formulae for SMARTdesigns inwhich the primary aim is a comparison

of two embedded DTRs that begin with different first-stage treatments on a continuous, longitudinal

outcome observed at three measurement occasions. We derived the formulae for three common

SMART designs.

The sample size formula is the product of three components: (1) the formula for the minimum

sample size for the comparison of two means in a standard two-arm trial (see, e.g., Friedman,

Furberg, and DeMets (2010) page 147), (2) a deflation factor of 1 − 𝜌2 that accounts for the use of

a longitudinal outcome, and (3) a SMART-specific “design effect”, an inflation factor that accounts

for the SMART design.

The SMART design effect can be interpreted as the cost of conducting the SMART relative

to conducting a standard two-arm randomized trial of the two DTRs which comprise the primary

aim. The benefit of conducting a SMART (relative to the standard two-arm randomized trial) is the

ability to answer additional, secondary questions that are useful for constructing effective DTRs.

For example, such questions may focus on one or more of the other pairwise comparisons between

DTRs, on whether the first- and second-stage treatments work synergistically to impact outcomes

(e.g., a test of the null that 𝛽6 = 0 in model (2.1)), or may focus on hypothesis-generating analyses

that seek to estimate more deeply-tailored DTRs (Watkins 1989; Nahum-Shani et al. 2012b; Zhang

et al. 2015).

The formulae are expected to be easy-to-use for both applied statistical workers and clinicians.

Indeed, inputs 𝛼, 𝛾, and Δ are as in the sample size formula for a standard 𝑧-test. Furthermore,

estimates of 𝜌, 𝑟𝑎1 , and 𝜎 are often readily available from the literature or can be estimated using

data from prior studies (e.g., prior randomized trials, or external pilot studies).

We make a number of recommendations concerning the use of the formulae; in particular,
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how best to use the formulae conservatively in the absence of certainty concerning prior estimates

of 𝜌, 𝑟𝑎1 , and/or the structure of the variance of the repeated measures outcome. First, in designs II

and III, if there is uncertainty concerning the response rate (e.g., response rate estimates are based

on data from smaller prior studies), one approach is to err conservatively by assuming a smaller-

than-estimated response rate. In both designs, the most conservative approach is to assume a

response rate of zero.

Second, as in standard randomized trials in which the primary aim is a pre-post comparison,

the required sample size decreases as the hypothesized within-person correlation increases (Zhang,

Cao, and Ahn 2014). Therefore, if the hypothesized 𝜌 is larger than the true 𝜌, the computed

sample size will be anti-conservative, resulting in an under-powered study. Indeed, we see this

in the results of the simulation experiment (see figure 2.1). Here, again, one approach is to err

conservatively towards smaller values of 𝜌.

Finally, working assumption A2.2 (concerning the variance of the repeatedmeasures outcome)

may be seen as overly restrictive in the imposition of an exchangeable correlation structure. For

example, studies with a continuous repeated measures outcome may observe an autoregressive cor-

relation structure. However, the exchangeable working assumption can be employed conservatively

in the following way: if the hypothesized structure is not exchangeable, one approach is to set 𝜌

in formula (2.13) to the smallest plausible value (e.g., the within-person correlation between the

baseline and end-of-study measurements for an autoregressive structure). Because this approach

utilizes a lower bound on the value of the true within-person correlations, it is expected to yield a

larger than needed (more conservative) sample size. Similarly, if the true within-person correlation

is expected to differ by DTR, one approach is to employ the smallest plausible 𝜌. As with the third

recommendation, these recommendations are not unique to SMARTs; indeed, these strategies may

also be used to size standard two-arm randomized trials with repeated measures outcome.

In the case where Var(𝑌 (𝑑)
𝑗

) varies with time and/or DTR, we conjecture that power will suffer

if a pooled estimate of 𝜎2 is used when the variance decreases with time. To see this, consider that

the standardized effect size 𝛿 defined in equation (2.12) has as a denominator the pooled standard
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deviation of 𝑌 (𝑑)
2 across the groups under comparison. Should the estimate of pooled standard

deviation be larger than the true value, the variance of 𝒄>𝜽̂ will increase; since the estimate will be

less efficient than hypothesized, power will be lower than expected. Conversely, we also conjecture

that when Var(𝑌 (𝑑)
𝑗

) increases with 𝑡, the sample size will be conservative using similar reasoning.
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CHAPTER 3

Balancing Sample Size and Measurement Occasions
in Longitudinal SMARTs

Monetary costs are a key consideration of any study; clinical trials are no exception. Martin

et al. (2017) found that “much of the variability in [trial] costs is related to trial protocol design

choices and factors such as the number of [participants], sites, and visits”. Myers et al. (2019)

discuss costs and challenges associted with recruiting participants for a study of major depressive

disorder in adults with type 2 diabetes mellitus, reporting an average of $1358 spent per patient

recruited. Strategies for recruitment included outreach to physicians, pharmacists, and community

diabetes education programs, as well as direct advertising on Facebook, radio, and television.

Sertkaya et al. (2016) found, in a systematic review of multi-site clinical trials in medical research,

that while per-patient costs represent less than half of the total costs associated with these large

trials, recruitment, retention, and intervention expenditures represent an important component of

trial costs.

Longitudinal between-groups analyses have the advantage of reduced sample size requirements

compared to a cross-sectional analysis due to within-person correlation (Hedeker, Gibbons, and

Waternaux 1999). It therefore stands to reason that sample size requirements can be further reduced

with more frequent measurement of the outcome. There is a broad literature exploring the selection

of sample size and number of measurement occasions in randomized trials. To our knowledge,

however, this problem has not been addressed in the context of a SMART.

Overall and Doyle (1994) provided a variety of sample size formulae for “[ANOVA] tests

of significance in a two-group repeated measurements design”, considering a variety of possible

comparisons with and without adjustment for baseline covariates. They discovered that, for the
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these comparisons, the total number of repeatedmeasurements is less meaningful for power than the

number of individuals enrolled in the study. In particular, at least for ANOVA tests, “the analysis of

simple difference scores at endpoint is blind to the number of intervening repeated measurements”

(Overall and Doyle 1994).

Maxwell (1998) showed that two-arm longitudinal trials in which the outcome is measured

five or more times, sized for a comparison of slopes using ANOVA, yield important sample size

reductions relative to a pretest-posttest design with analyzed via analysis of covariance. This was

confirmed and extended by Arndt et al. (2000), who explored the problem in terms of “precision”;

specifically, the relative contributions of additional sample size versusmoremeasurement occasions

to the standard error of the estimate for mean change over time. The idea of optimizing for the

standard error of estimates is interesting; although, for a fixed effect size, target power, and type-I

error, this can be equivalent to optimizing for power.

Raudenbush and Xiao-Feng (2001) considered this problem in two-level hierarchical models,

representing power for a detecting a treatment effect as a function of study duration, measurement

frequency, and sample size. The authors focused primarily on “group differences in polynomial

change”, modeling individual trajectories as polynomial functions in time. Furthermore, they

conceptualized the effect size as a standardized mean difference in polynomial trend. This is a

useful framework to consider, as linear trends may be overly restrictive.

Zhang and Ahn (2011a) consider tradeoffs between adding participants or measurements in

the context of a test for a group-by-time interaction using a GEE estimator under a cost constraint.

Their results are useful for two-arm randomized trials in which the primary aim is a comparison

of slopes. Further work by the same authors extended the results of Overall and Doyle (1994) by

considering a regression model for time-averaged outcomes across groups (Zhang and Ahn 2011b).

The sample size formula presented in Chapter 2 focuses specifically on SMARTs in which the

longitudinal outcome is measured three times. This allowed us to narrow our focus to a saturated

model, which greatly simplified computations. However, such an approach is overly simplistic.

Consider the ENGAGE trial (Figure 1.2) in which outcomes were collected 4, 8, 12, and 24 weeks
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after the baseline assessment (McKay et al. 2015). We conjectured in Chapter 2 that the three-

timepoint simplification would yield a conservative sample size for designs which measure the

outcome more than three times; here, we investigate that conjecture further.

In this chapter, we extend the method in chapter 2 to accommodate a general number of

measurement occasions, with the goal of investigating relationships between the frequency and

timing of measurements and sample size. We present a more general sample size formula in

section 3.2, then discuss balancing sample size and repeated measurements subject to monetary

considerations in section 3.3 .We introduce a simple cost function to describe per-participant

expenditures like recruitment andmeasurement costs, and explore how to allocate resources between

sample size and number of measurement occasions to both minimize cost and achieve a desired

target power. We implement this optimization in an R package, described in chapter 4. Our primary

contribution is a reframing of conversations about sample size between clinicians and statisticians

by accounting for budget considerations in the design stages of the trial, discussed in detail in

section 3.4

3.1 Modeling and Estimation

As in section 2.3, we wish to develop sample size formulae for longitudinal SMARTs in which the

primary aim is the end-of-study comparison of two embedded DTRs which recommend different

first-stage treatments. As before, we consider piecewise-linear models which respect the sequential

randomization in a SMART, as in models (2.1) to (2.3). With three measurement occasions, these

models are fully saturated: the model simply estimates 𝑛DTR + 3 means, where 𝑛DTR is the number

of dynamic treatment regimens embedded in the SMART.

Consider a SMART in which the outcome is measured at 𝑇 occasions 𝑡1 < 𝑡2 < · · · < 𝑡𝑇 .

Define 𝑡∗ as the time of the last measurement prior to re-randomization, 𝑇1 as the number of

measurements in the first stage, from baseline (𝑡1) through 𝑡∗ := 𝑡𝑇1 , and 𝑇2 as the number of

measurements after 𝑡∗ (i.e., in the second stage of the SMART), such that 𝑇1 + 𝑇2 = 𝑇 .
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Figure 3.1: Depiction of clocks for time in the first and second stages of a longitudinal SMART. The dotted line labeled
Stage 1 shows 𝑢1 and the dashed line labeled Stage 2 shows 𝑢2.

Consider model (2.1), a simplified version of which (i.e., without baseline covariates) is

reproduced below:

𝜇
(𝑑)
𝑗

(𝜷) = 𝛽0 + 1{𝑡 𝑗≤𝑡∗}
(
𝛽1𝑡 𝑗 + 𝛽2𝑎1𝑡 𝑗

)
+ 1{𝑡 𝑗>𝑡∗}

(
𝑡∗𝛽1 + 𝑡∗𝛽2𝑎1 + 𝛽3(𝑡 𝑗 − 𝑡∗) + 𝛽4(𝑡 𝑗 − 𝑡∗)𝑎1

+𝛽5(𝑡 𝑗 − 𝑡∗)𝑎2𝑁𝑅 + 𝛽6(𝑡 𝑗 − 𝑡∗)𝑎1𝑎2𝑁𝑅

)
,

(2.1 revisited)

where 𝜇(𝑑)
𝑗
is a marginal structural mean model for E[𝑌 (𝑑)

𝑗
], the expected value of the outcome 𝑌

at time 𝑡 𝑗 had an individual been treated according to DTR 𝑑 ∈ D.

It will be helpful to consider the notion of separate “clocks” for each stage. Define 𝑢1 𝑗 =

min
(
𝑡 𝑗 , 𝑡

∗) and 𝑢2 𝑗 = max (
𝑡 𝑗 − 𝑡∗, 0

)
. 𝑢1 𝑗 is the clock for the first stage of the trial, starting at

𝑡1 and continuing until 𝑡∗, at which point it remains 𝑡∗ for the remainder of the trial time. The

second-stage clock, 𝑢2 𝑗 , is zero through the first stage, then counts time since 𝑡∗ through the end of

the trial. A visual depiction of the clocks is given in figure 3.1.
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Using the clock notation, we can easily re-write this model in terms of 𝑢1 𝑗 and 𝑢2 𝑗 :

𝜇
(𝑑)
𝑗

(𝜷) = 𝛽0 + 𝛽1𝑢1 𝑗 + 𝛽2𝑢1 𝑗𝑎
(𝑑)
1 + 𝛽3𝑢2 𝑗 + 𝛽4𝑢2 𝑗𝑎

(𝑑)
1 + 𝛽5𝑢2 𝑗𝑎

(𝑑)
2NR + 𝛽6𝑢2 𝑗𝑎

(𝑑)
1 𝑎

(𝑑)
2NR. (3.1)

We can similarly re-write models (2.2) and (2.3) as

𝜇
(𝑑)
𝑗

(𝜷) = 𝛽0 + 𝛽1𝑢1 𝑗 + 𝛽2𝑢1 𝑗𝑎
(𝑑)
1 + 𝛽3𝑢2 𝑗 + 𝛽4𝑢2 𝑗𝑎

(𝑑)
1

+ 𝛽5𝑢2 𝑗𝑎
(𝑑)
2R + 𝛽6𝑢2 𝑗𝑎

(𝑑)
2NR + 𝛽7𝑢2 𝑗𝑎

(𝑑)
1 𝑎

(𝑑)
2R + 𝛽8𝑢2 𝑗𝑎

(𝑑)
1 𝑎

(𝑑)
2NR, (3.2)

and

𝜇
(𝑑)
𝑗

(𝜷) = 𝛽0 + 𝛽1𝑢1 𝑗 + 𝛽2𝑢1 𝑗𝑎
(𝑑)
1 + 𝛽3𝑢2 𝑗 + 𝛽4𝑢2 𝑗𝑎

(𝑑)
1 + 𝛽5𝑢2 𝑗1{

𝑎
(𝑑)
1 =1

}𝑎 (𝑑)2NR, (3.3)

respectively.

As in chapter 2, we estimate 𝜷 by solving equation (2.6):

0 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑑∈D

[
𝑊 (𝑑) (

𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2
)
·
(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1 (
𝒀 𝑖 − 𝝁(𝑑) (𝜷)

)]
. (2.6 revisited)

The (robust or sandwich) variance of 𝜷̂ is given by 𝑩−1𝑴𝑩−1, where 𝑩 and 𝑴 are as defined in

equations (2.7) and (2.8), respectively. Following proposition 2.1, the solution 𝜷̂ to the estimating

equations is consistent for 𝜷∗, the true, causal parameter vector, provided that the model is correctly

specified (along with usual regularity conditions). Proposition 2.2 also still applies;
√
𝑛

(
𝜷̂ − 𝜷

)
converges in distribution to N

(
0, 𝑩−1𝑴𝑩−1

)
.

3.2 Sample Size Formulae for End of Study Comparisons

We remain interested in an end-of-study comparison of two embedded DTRs which recommend

different first-stage treatments. Using the potential outcomes notation developed in section 2.1, the
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estimand of interest is

E
[
𝑌
(1,𝑎2R,𝑎2NR)
𝑇

− 𝑌
(−1,𝑎′2R,𝑎

′
2NR)

𝑇

]
. (3.4)

Under model (3.1), we can write this estimand as a linear combination of regression parameters

𝒄>𝜷, where

𝒄> =

(
0, 0, 2𝑢1𝑇 , 0, 2𝑢2𝑇 , 𝑢2𝑇

(
𝑎2NR − 𝑎′2NR

)
, 𝑢2𝑇

(
𝑎2NR + 𝑎′2NR

))
. (3.5)

Notice that the contrast involves the stage-1 clock 𝑢1, despite the estimand being a comparison

of mean end-of-study outcomes. This is a consequence of the DTRs under study recommending

different first-stage treatments. It highlights the fact that our regression-based approach to estimating

quantity (3.4) uses information collected throughout the SMART: when the contrast is applied to

Var
(
𝜷̂
)
= 𝑩−1𝑴𝑩−1, the 2𝑢1𝑇 component will “pick up” variability from the first-stage of the

study. We will see that this is important for understanding the behavior of the sample size formula

in section 3.3.

As in chapter 2, we wish to size the SMART for a test of the null hypothesis

H0 : 𝒄>𝜷 = 0

to detect the alternative H1 : 𝒄>𝜷 = Δ with power 1 − 𝛾. The test statistic is, again,

𝑍 =

√
𝑛𝒄>𝜷√︁

𝒄>𝑩−1𝑴𝑩−1𝒄
;

developing a useful sample size formula depends on obtaining a tractable expression for

𝒄>𝑩−1𝑴𝑩−1𝒄, the variance of the contrast 𝒄> 𝜷̂.

We make the following working assumptions to aid in the development of the formulae:

A3.1 Constrained conditional variability.

(a) For all DTRs 𝑑 ∈ D, the element-wise difference between the matrix of variability of
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responders’ outcomes around the DTR mean and the marginal covariance matrix of the

outcome is positive semi-definite,

E
[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2

| 𝑅(𝑎 (𝑑)
1 )

𝑖
= 1

]
− E

[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2] 𝐿

≥ 0,

where 𝐴
𝐿
≥ 𝐵 implies that 𝐴−𝐵 is positive semi-definite; 𝐿 refers to the Loewner partial

order (see appendix B.3).

(b) For all DTRs 𝑑 ∈ D, the element-wise difference between the marginal covariance

matrix of the outcome, inflated by response probability, and the matrix of variability of

responders’ outcomes around the DTR mean is positive semi-definite,

1

𝑃

(
𝑅
(𝑎 (𝑑)
1 )

𝑖
= 1

) E [(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2]

− E
[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2

| 𝑅(𝑎 (𝑑)
1 )

𝑖
= 1

]
𝐿
≥ 0.

A3.2 Constrained conditional means. For everyDTR 𝑑 ∈ D and all DTRs 𝑑′ ≠ 𝑑 with 𝑎 (𝑑)1 = 𝑎
(𝑑 ′)
1 ,(

E
[
𝒀 (𝑑) | 𝑅(𝑎 (𝑑)

1 ) = 1
]
− 𝝁(𝑑)

) (
𝝁(𝑑) − 𝝁(𝑑 ′)

)>
is “small”.

A3.3 Equal spacing. Measurement occasions are equally-spaced in both stages, which are of fixed

duration 𝑡∗ and 𝑡𝑇 − 𝑡∗, respectively. More specifically, we write

𝑡 𝑗 =


𝑡∗ · 𝑗−1

𝑇1−1 𝑗 = 1, 2, . . . , 𝑇1

𝑡∗ + (𝑡𝑇 − 𝑡∗) · 𝑗−𝑇1
𝑇2

𝑗 = 𝑇1 + 1, . . . , 𝑇
.

We continue to make working assumption A2.2, which assumes an exchangeable within-person

correlation structure marginal over response status, and constant marginal variances across time

and DTR. We also restrict 𝜌 ∈ [0, 1].
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Working assumption A3.1 is a generalization of working assumption A2.1. Indeed, A2.1 is

an interpretable way to describe A3.1 in the three timepoint setting. Unfortunately, A3.1 is not

particularly interpretable and may be difficult to assess intuitively. It is currently unclear what

“small” means in working assumption A3.2; however, the idea is that the mean outcomes for

responders are relatively close to marginal mean trajectories.

We claim that working assumption A3.3 is a realistic simplification. In appendix C, we inves-

tigate the behavior of 𝜔
(
𝜌, 𝑇, 𝑇2

)
without equally-spaced measurements and show that, generally,

the trends discussed below are maintained, though the function is noticeably less smooth. Finally,

under working assumption A2.2, a negative within-person correlation would imply that individuals

experience noticeable fluctuation in the outcome over time, which is typically not the case in be-

havioral science settings. In appendix C, we present a more general version of equation (3.7) which

does not require working assumption A3.3 and is implemented in software described in chapter 4.

Under working assumptions A3.1 and A2.2, the minimum-required sample size to detect a

standardized effect size 𝛿 with power at least 1 − 𝛾 with a two-sided level-𝛼 test is

𝑛 ≥
4
(
𝑧1−𝛼/2 + 𝑧1−𝛾

)2
𝛿2

· DE · 𝜔
(
𝜌, 𝑇, 𝑇2

)
, (3.6)

where 𝑧𝑝 is the 𝑝th quantile of the standard normal distribution, DE is the design effect from

table 2.3, and 𝜔
(
𝜌, 𝑇, 𝑇2

)
is a deflation factor which accounts for longitudinal measurements and

within-person correlation. See appendix B for more details, including a derivation.

Aswith formula (2.13), formula (3.6) can be decomposed into the standard sample size formula

for a two-group comparison of means, a SMART-specific inflation factor DE, and a longitudinal

deflation factor. 𝜔
(
𝜌, 𝑇, 𝑇2

)
depends on the exchangeable within-person correlation, 𝑇 , the total

number of measurement times, and 𝑇2, the number of measurements in the second stage of the

SMART. Under working assumption A3.3, we can write

𝜔
(
𝜌, 𝑇, 𝑇2

)
=

𝑓 (𝜌, 𝑇, 𝑇2)
𝑔(𝜌, 𝑇, 𝑇2)

, (3.7)
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where

𝑓 (𝜌, 𝑇, 𝑇2) = 6(1 − 𝜌) (𝑇 − 1)
(
𝜌(𝑇 − 1)

(
(𝑇 − 1)𝑇2 − 𝑇22 + 2

)
+ 4𝑇2(𝑇 − 𝑇2 − 1) + 2

)
and

𝑔(𝜌, 𝑇, 𝑇2) = (𝑇2 + 1)
(
2
(
𝑇2 (4𝑇2 + 2) − 𝑇

(
𝑇2(5𝑇2 + 9) + 1

)
+ 𝑇2 (𝑇2 + 2)2

)
+

𝜌(𝑇 − 1) (𝑇 − 𝑇2 − 2)
(
2𝑇𝑇2 + 𝑇 − 2𝑇2(𝑇2 + 2)

) )
A key challenge in understanding formula (3.6) is understanding the behavior of equation (3.7)

as 𝜌 and the number and timing of measurement occasions change. Note that, under working as-

sumptionA3.3, neither the numerator nor the denominator of equation (3.7) depend on the durations

of each of the stages i.e., the expression is free of 𝑡∗ and 𝑡𝑇 . The time at which re-randomization

occurs, 𝑡∗, and 𝑡𝑇 , the full duration of the study, are dictated by scientific considerations. In

particular, 𝑡∗ is determined by the length of time needed to identify individuals as responders or

non-responders to first stage treatment. When measurement occasions are equally spaced, these

scientific factors do not have an impact on the sample size requirement, nor does the choice of how

time is coded (for example, the study duration could be normalized to 1 without consequence for

sample size).

Discovery of a more interpretable upper bound on equation (3.7) has proven intractable. In-

stead, we investigate the behavior of 𝜔
(
𝜌, 𝑇, 𝑇2

)
numerically. In figure 3.2, we plot 𝜔

(
𝜌, 𝑇, 𝑇2

)
against 𝑇 and 𝑇2 for various exchangeable within-person correlations 𝜌. We consider 𝑇 ∈

{3, . . . , 15} and 𝑇2 ∈ {1, . . . , 𝑇 − 2}. Possible values 𝑇2 are constrained so that there are al-

ways a minimum of two measurements in the first stage of the trial: one at baseline, and a second

immediately prior to re-randomization at time 𝑡∗.

As expected, 𝜔
(
𝜌, 𝑇, 𝑇2

)
is in fact a deflation factor and is bounded above by 1 on its domain.

There is no deflation when 𝜌 = 0 and 𝑇2 = 1, i.e., 𝜔 (0, 𝑇, 1) = 1 for any choice of 𝑇 . In this case,
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Figure 3.2: Within-person deflation factor 𝜔
(
𝜌, 𝑇, 𝑇2

)
. 𝑇 is the total number of measurement occasions, 𝑇2 of which

are in stage 2 of the SMART, with 𝑇 ∈ {3, . . . , 15} and 𝑇2 ∈ {1, . . . , 𝑇 − 2}. The function is bounded above by 1
for all 𝜌, 𝑇 , and 𝑇2, demonstrating that it is in fact a deflation factor. The function tends to decrease with 𝑇 , and is
increasingly non-monotone in 𝑇2 for higher within-person correlations 𝜌.
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Table 3.1: Example sample sizes for design II SMARTs with more than three measurement occasions. Provided sample
sizes are chosen to detect an effect size 𝛿 with 80% power with a two-sided type-I error rate of 0.05, assuming an
(exchangeable) within-person correlation 𝜌, and total number of measurement occasions 𝑇 in a design II SMART. For
each 𝑇 , we set 𝑇2 = b𝑇/2c. Response rate is 0.4 for both first-stage treatments.

Sample Size

𝛿 𝑇 𝜌 = 0 𝜌 = 0.3 𝜌 = 0.6 𝜌 = 0.8

0.3 3 559 508 358 201
5 462 427 296 164
7 382 358 245 134
9 323 307 208 113

0.5 3 201 183 129 73
5 167 154 107 59
7 138 129 89 49
9 116 111 75 41

the primary aim is a comparison of two means estimated by simple weighted averaging, so we do

not expect to benefit from repeated measurements in any way. This is easily shown analytically;

see appendix C for details. If 𝜌 = 1, the deflation factor is zero, as 𝑓 (1, 𝑇, 𝑇2) = 0 for any choice of

𝑇 and 𝑇2. Furthermore, in the three-timepoint setting, we have 𝜔(𝜌, 3, 1) = (1 − 𝜌2), the deflation

factor found in formula (2.13).

For a given 𝜌 ∈ [0, 1),𝜔 tends to decrease with𝑇 , though with diminishing returns. In settings

with high 𝜌 (say, 𝜌 ≥ 0.5) and large 𝑇 (say, 𝑇 ≥ 7), 𝜔 becomes increasingly concave in 𝑇2: for a

fixed 𝑇 , 𝜔 achieves a minimum over 𝑇2 in the interior of the domain, rather than on the boundary.

This is discussed in greater detail in section 3.3.1.

We provide example sample sizes in table 3.1 for design II SMARTs in which 𝑇2 = b𝑇/2c

and where the probability of response is equal across both first-stage treatments, 𝑟1 = 𝑟−1 = 0.4.

This choice of 𝑇2 achieves balance across the stages; if 𝑇 is odd, we slightly favor stage 1 because

we count baseline in stage 1. As expected, the sample sizes for SMARTs with three measurement

occasions correspond to those given in table 2.4. As within-person correlation and the total number

of measurement occasions increase, the sample size requirement decreases, though at a decreasing

rate. For fixed 𝜌, the benefits of adding 𝑇 diminish for higher values of 𝑇 .

This pattern, in which higher within-person correlation and more measurement occasions
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decreases sample size requirements, is a well-established phenomenon. Raudenbush and Xiao-

Feng (2001) found that the sample size requirement for detecting a between-group polynomial effect

decreases as the frequency of measurement occasions increases. Zhang and Ahn (2011b) found

similar results for the comparison of time-averaged responses in a two-arm randomized trial, noting

especially that the reduction in sample size achieved by adding measurement occasions diminishes

as 𝑇 increases. As in chapter 2, larger values of 𝜌 are generally associated with smaller sample size

requirements as well: because the correlation is within-person and the analysis is between groups,

efficiency improves with larger 𝜌 (Hedeker, Gibbons, and Waternaux 1999).

3.2.1 Simulation Study

We investigate performance of formula (3.6) using a simulation study. We hypothesize that the

formula achieve nominal power or greater (i.e., be conservative) when working assumptions A3.1

to A2.2 are satisfied.

Data were generated using the longsmart R package as described in chapter 4. We focus on

a design II SMART with either 3 or 5 measurement occasions. As in section 2.4, results from

ENGAGE informed the parameter selections for the marginal mean and variance model, but the

results are not representative of that trial. Potential response status was generated using a threshold-

based criterion such that simulated individuals with potential outcomes𝑌 (𝑑)
𝑇1
greater than some fixed

value 𝜅
𝑎
(𝑑)
1
were identified as potential responders; otherwise the individual was a non-responder.

For each 𝑑 ∈ D, 𝜅
𝑎
(𝑑)
1
was chosen to achieve the specified response probability. All errors are

assumed to be normally-distributed.

Results of 1000 Monte Carlo simulations are given in table 3.2. In general, we achieve

80% target power or higher for 𝑇 = 3 and 𝑇 = 5 for small response rates. When one or more

response rates is 0.6 and 𝑇 = 5, empirical power tends to be significantly less than 0.8, but not

worryingly so. In these scenarios, it is non-trivial to find parameters which do not violate working

assumption A3.1(a); the results show reduced power as a result of this assumption being violated.

Further investigation is required to evaluate the performance of the sample size method under a
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Table 3.2: Sample sizes and empirical power results for ?? SMARTs with three or more measurement occasions.
Sample sizes were chosen for an end-of-study comparison of DTRs (1, 0, 1) and (−1, 0,−1) in a design II SMART
with three or five measurement occasions. 𝛿 is the true standardized effect size as defined in equation (2.12), 𝑟 is the
common probability of response to first-stage treatment, and 𝜌 is the true exchangeable within-person correlation. 𝑛 is
computed using formula (2.13) with 𝛼 = 0.05 and 𝛾 = 0.2. Results are the proportion of 1000Monte Carlo simulations
in which we reject 𝐻0 : 𝒄>𝜽 = 0 at the 5% level.

𝑇 = 3 𝑇 = 5, 𝑇2 = 2

𝛿 𝜌 𝑟1 𝑟−1 𝑛 Power 𝑛 Power

0.3 0 0.4 0.4 559 0.804 462 0.788
0.4 0.6 524 0.813 434 0.767∗
0.6 0.4 524 0.804 434 0.760∗
0.6 0.6 489 0.825 405 0.758∗

0.3 0.4 0.4 508 0.803 427 0.804
0.4 0.6 477 0.809 400 0.770∗
0.6 0.4 477 0.790 400 0.794
0.6 0.6 445 0.810 373 0.770∗

0.6 0.4 0.4 358 0.833∗ 296 0.818
0.4 0.6 335 0.799 278 0.788
0.6 0.4 335 0.825 278 0.736∗
0.6 0.6 313 0.818 259 0.738∗

0.8 0.4 0.4 201 0.858∗ 164 0.842∗
0.4 0.6 189 0.860∗ 154 0.789
0.6 0.4 189 0.862∗ 154 0.817
0.6 0.6 176 0.815 144 †

∗ Statistically significantly different from 0.8 at the 5% level.
† Our data generative model could not accommodate this sce-
nario.

variety of scenarios, including when assumptions are violated in a principled way.

3.3 Cost Considerations for Longitudinal SMARTs

Managing trial costs are a key reality of designing experiments, and this is no different for SMARTs.

Here, we develop tools which can aid clinicians and applied statisticians in choosing both sample

size and the number ofmeasurement occasions to achieveminimum total cost, subject to a constraint

on statistical power.

There are a variety of costs involved in conducting any study, including personnel and staffing
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costs, costs of administering the interventions, data management costs, etc. For our purposes, we

consider only costs related to recruiting individuals into the trial and measuring their outcomes.

Note that we consider only costs directly related to participants: overhead and other costs (e.g.,

data management, salaries, etc.) are taken as sunk.

We examine this problemgiven a specific scientific context; that is, we consider the intervention

options in the SMART, as well as the desired type-I error rate, target power, and target standardized

effect size, to be fixed a priori. This also fixes 𝜌 and the response rates 𝑟1 and 𝑟−1, as these are

characteristics of the interventions in the trial and not design choices.

3.3.1 Minimizing Recruitment Costs

Suppose an investigator is interested primarily in minimizing the cost of recruiting individuals into

a longitudinal SMART, or, equivalently, minimizing the sample size requirement. This may be of

particular interest when the target population is hard to reach, for example. As seen in figure 3.2,

the sample size computed by formula (3.6) decreases with the number of measurement occasions

𝑇 ; the most naive strategy for minimizing sample size is to measure the outcome as many times as

is feasible. This is not a very practical recommendation, however: a large number of measurement

occasions may be quite burdensome to participants, potentially leading to dropout. We therefore

proceed assuming that the investigator has chosen 𝑇 a priori.

The multi-stage nature of SMARTs introduces a question of how best to allocate measurement

occasions across stages. For instance, formula (3.6) is for an end-of-study comparison; because of

this, we expect that adding measurement occasions in the second stage of the trial will yield greater

reductions in sample size requirements than will adding measurements in the first stage. Here, we

investigate the allocation of measurement occasions in the first and second stages of a SMART

which produces the smallest sample size requirement (and therefore the smallest total recruitment
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cost) for a fixed 𝑇 . Specifically, we solve the following integer optimization problem:

minimize
𝑇2

4
(
𝑧1−𝛼/2 + 𝑧1−𝛾

)2
𝛿2

· DE · 𝜔
(
𝜌, 𝑇, 𝑇2

)
subject to 𝑇2 ∈ {1, . . . , 𝑇 − 2} .

(3.8)

As above, we require at least two measurements in stage 1. Minimizing the sample size

requirement for a fixed design is therefore equivalent to minimizing 𝜔
(
𝜌, 𝑇, 𝑇2

)
, so optimization

problem (3.8) becomes

minimize
𝑇2

𝜔
(
𝜌, 𝑇, 𝑇2

)
subject to 𝑇2 ∈ {1, . . . , 𝑇 − 2} .

(3.9)

We call the solution to optimization problem (3.9) 𝑇n2 . Since equation (3.7) is free of stage duration

under working assumption A3.3, we set 𝑡1 = 0, 𝑡∗ = 1, and 𝑡𝑇 = 2 without loss of generality.

Optimization problem (3.9) is difficult to solve analytically. However, the feasible set of 𝑇2 is

relatively small, so solutions can be quickly and easily obtained using grid search. For a given 𝜌,

𝑇 , and 𝑇2, we generate equally-spaced measurement occasions 𝒕, compute 𝜔
(
𝜌, 𝑇, 𝑇2

)
, and find 𝑇n2

as the choice of 𝑇2 which yields the smallest value.

Our exploration of𝜔
(
𝜌, 𝑇, 𝑇2

)
in section 3.2 provides evidence for our earlier conjecture about

𝑇n2 : as 𝑇2 increases toward 𝑇 − 2 (i.e., as more of the total measurement occasions in the trial are

placed in the second stage) 𝜔 tends to decrease. However, careful inspection of figure 3.2 reveals

that, for larger 𝜌 and 𝑇 , the deflation factor 𝜔
(
𝜌, 𝑇, 𝑇2

)
achieves a minimum at 𝑇2 < 𝑇 − 2. This

suggests that it is sub-optimal to measure the outcome as many times as possible in the second

stage: some balance across stages is favored.

In figure 3.3, we plot 𝑇n2 against 𝑇 for various choices of 𝜌. In each plot, we include the lines

𝑇n2 = 𝑇 − 2 (upward-facing triangles) and 𝑇n2 = b𝑇/2c (downward-facing triangles). Recall that 𝑇

is fixed a priori. The former line represents the design strategy of including as many measurement

occasions in stage 2 as possible; the latter corresponds to balancing measurements across stages.

For smaller 𝜌 and/or smaller 𝑇 , 𝑇n2 = 𝑇 − 2: the optimal allocation strategy is to maximize the
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Figure 3.3: Optimal allocation of equally-spaced measurement occasions in stage 2 to minimize sample size for various
within-person correlations 𝜌. The trajectory with filled circles represents 𝑇n2 , the optimal allocation, for a given 𝑇 . The
trajectory with upward-facing triangles is the line 𝑇2 = 𝑇 − 2, the maximum number of measurements allowed in stage
2. The trajectory with downward-facing triangles is 𝑇2 = b𝑇/2c, representing balanced allocation of measurements
across stages. For 𝑇 > 4, it is optimal to allocate more measurements to stage 1 than to stage 2.
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number of measurement occasions in the second stage of the trial. For 𝜌 = 0, it is easy to show

that the partial derivatives of 𝜔 in 𝑇 and 𝑇2 are strictly negative for 𝑇 ≥ 3 and 𝑇 ≤ 𝑇 − 2, implying

that it is always better to add measurements in stage 2. This remains true for small, nonzero values

of 𝜌.

Recall that model (3.1) is unsaturated for 𝑇 > 3 and 𝑇2 > 1. For an end-of-study comparison,

we believe that gains in power relative to the three-measurement setting are achieved primarily

through smoothing the mean model in the second stage. The sample size requirement is directly

proportional to the variance of the contrast (see appendix B). When 𝜌 = 0, any efficiency gain

in estimating the contrast (meaning, any reduction in the sample size requirement) cannot be

attributed to repeated measurements on the same individual; instead, the reduction must be derived

from improved model fit. As the number of measurement occasions in stage 2 increases, we are

able to estimate the mean end-of-study difference with greater precision. We believe this is driven

primarily by increased effective sample size: each additional measurement occasion provides more

data with which to estimate regression parameters.

For higher values of 𝜌, it becomes sub-optimal to maximize the number of measurements

in stage 2 as the total number of measurements 𝑇 increases. This is reflected in the concavity

seen in figure 3.2, as well as the deviation of the filled circles from the 𝑇 = 𝑇 − 2 trajectory in

figure 3.3. For larger 𝜌, each additionalmeasurement of an individual yieldsmore information about

that individual’s outcome trajectory, which in turn lowers the variance of the model parameters.

Therefore, we expect diminishing returns of adding (exchangeable) measurements in the second

stage of the SMART for moderate to large 𝜌. Because the contrast (3.5) involves first-stage

quantities, it becomes advantageous to also smooth the model in the first stage of the SMART for

large 𝜌 and large 𝑇 .

3.3.2 Minimizing Per-Patient Costs

Often, concerns about large sample sizes for trials are related to overall study costs: recruitment of

participants can be expensive, and so larger sample sizes correspond to more expensive trials. As
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we have seen, the repeated measures in a longitudinal SMART allow for gains in efficiency which

can reduce the sample size requirement. If an investigator’s interest is in reducing overall study

expenditures, we may be able to trade off between sample size and the number of measurement

occasions in order to achieve a minimum cost.

Suppose the cost of recruiting one individual into the study is 𝐶𝑅, and let 𝐶1 and 𝐶2 be the

costs of measuring their outcomes in the first and second stages of the SMART, respectively. For

a SMART with 𝑛 participants and 𝑇 total measurement occasions, 𝑇2 of which are in stage 2, the

total per-participant cost of the trial is

𝐶 (𝑛, 𝑇, 𝑇2) = 𝑛
(
𝐶𝑅 + (𝑇 − 𝑇2)𝐶1 + 𝑇2𝐶2

)
. (3.10)

𝐶𝑅, 𝐶1, and 𝐶2 can include a variety of participant-specific costs, including those related to adver-

tising for recruitment and incentives for measuring the research outcome. While equation (3.10)

does not directly accommodate variable incentives within each stage, investigators could average

these costs across measurement occasions.

Our goal is to solve the optimization problem

minimize
𝑛,𝑇,𝑇2

𝐶 (𝑛, 𝑇, 𝑇2)

subject to 1 − 𝛾 ≥ 0.8

subject to 𝑇 ∈
{
3, 4, . . . , 𝑇max

}
,

𝑇2 ∈ {1, 2, . . . , 𝑇 − 2}

(3.11)

where 1−𝛾 is the power of the end-of-study comparison of embedded DTRs for which the SMART

is sized. The power constraint is satisfied by choosing 𝑛 according to formula (3.6). Therefore, we
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can re-write optimization problem (3.11) as

minimize
𝑇,𝑇2


4
(
𝑧1−𝛼/2 + 𝑧0.8

)2
𝛿2

· DE · 𝜔(𝜌, 𝑇, 𝑇2)


(
𝐶𝑅 + (𝑇 − 𝑇2)𝐶1 + 𝑇2𝐶2

)
subject to 𝑇 ∈

{
3, 4, . . . , 𝑇max

}
,

𝑇2 ∈
{
1, 2, . . . , 𝑇max − 2

}
.

(3.12)

This is a nonlinear integer program for which it is difficult to find a general solution. As in sec-

tion 3.3.1, we investigate numerically across a variety of scenarios. We also make the simplification

of equally-spaced measurement occasions in both stages, as per working assumption A3.3.

Notice first that the objective function in optimization problem (3.12) involves a number

of terms which are constant in 𝑇 and 𝑇2. The cost-optimal number of measurement occasions,

therefore, does not depend on features of the hypothesis test (significance level, target power), the

target effect size, response rate, or even the design of the SMART (through the design effect DE).

Certainly the total costs required will change based on these quantities since they change the sample

size requirement; however, in order to understand the behavior of the objective function with regard

to the solutions of optimization problem (3.12), we need only consider 𝜌, 𝑇 , and 𝑇2. Because the

objective function uses the form of 𝑛 from formula (3.6), the power constraint is guaranteed to be

satisfied under working assumptions A3.1 to A3.3.

The feasible set for optimization problem (3.12) is theoretically unbounded; practically, it

is not. Most SMARTs with longitudinal outcomes, to our knowledge, employ a relatively small

number of measurement occasions. Three measurement occasions are common (Naar-King et

al. 2016), as are five (McKay et al. 2015; Kilbourne et al. 2018). To our knowledge, SMARTs with

more than 15 measurement occasions are rare, and often driven by questions about the effects of

interventions on relatively fine time scales. Typically, end-of-study comparisons do not motivate

this type of (intensive longitudinal) data collection, so we restrict our focus to SMARTs in which

the outcome is measured 15 times or fewer (Walls and Schafer 2006).
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In table 3.3, we compile the total number of measurement occasions 𝑇cost and the number

of occasions in stage 2, 𝑇cost2 , which solve optimization problem (3.12) for a variety of costs and

within-person correlations 𝜌. We consider 𝑇 ∈ {3, . . . , 15}. Because the objective function is

linear in𝐶𝑅, 𝐶1, and𝐶2, their exact values only affect the value of the minimum cost, not the values

of the minimizers. We therefore focus on the costs of recruiting one individual relative to that of

measuring an individual once by considering the ratios 𝐶𝑅/𝐶1 and 𝐶𝑅/𝐶2.

When it is relatively cheap to recruit, meaning that 𝐶𝑅 is similar to 𝐶1 and 𝐶2, the objective

function strongly favors recruiting more individuals in favor of adding measurement occasions.

When 𝐶𝑅, 𝐶1, and 𝐶2 are similar, 𝑇cost is often 3: the most cost-effective way to achieve the

target power in a longitudinal SMART is to measure the outcome infrequently in a larger number

of participants. When 𝜌 = 0, 𝑇cost and 𝑇cost2 are the maxima of their domains when recruitment

becomes even slightly more expensive than second-stage measurements. For even small non-zero

values of 𝜌, the preference for 𝑇cost = 3 is maintained generally, except when 𝐶𝑅 is two to four

times 𝐶2 and similar to 𝐶1. The majority of remaining settings examined favor maximizing the

total number of measurement occasions.

The solutions in table 3.3 suggest that there is little middle ground in the trade-off between

sample size and number of measurement occasions when optimizing for cost. In most situations,

the solution to optimization problem (3.12) is either 𝑇cost = 3, the minimum, or 𝑇cost = 15, the

maximum number of measurements we are willing to consider. For small-to-moderate non-zero

within-person correlations 𝜌 in which𝐶𝑅 is not too much larger than𝐶1 or𝐶2, the trade-off is more

balanced between 𝑛 and 𝑇 : 𝑇cost is neither the maximum nor minimum of its domain.

Curiously, the allocation of measurement occasions across stages, i.e., 𝑇cost2 exhibits more

variability than does 𝑇cost. Note that, in general, 𝑇cost2 ≠ 𝑇n2 ; i.e., the solutions to optimization

problems (3.9) and (3.12) do not always coincide. Recall that 𝑇n2 minimizes the sample size

requirement given equal spacing as in working assumption A3.3 and fixed 𝜌 and 𝑇 . The fact that

𝑇cost ≠ 𝑇n for 𝜌 ≠ 0 makes the 𝑛-versus-𝑇 trade-off more apparent: it is not always cost-optimal to

minimize sample size, even when recruitment is much more expensive than measurement. This is
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Table 3.3: Total number of measurement occasions 𝑇cost and number of second-stage measurements 𝑇cost2 (in parenthe-
ses) which minimize trial cost for a design II SMART. Solutions are obtained by solvingoptimization problem (3.12)
for 𝑇 ∈ {3, . . . , 15} and 𝑇2 ∈ {1, . . . , 𝑇 − 2}. 𝐶𝑅 is the cost of recruiting one participant into the SMART, 𝐶1 the cost
of measuring one participant once in stage 1, and 𝐶2 the cost of measuring one participant once in stage 2. As 𝐶𝑅

becomes large relative to 𝐶1 and, particularly, 𝐶2, costs are minimized by measuring the outcome as many times as is
feasible.

𝑇cost (𝑇cost2 )
𝐶𝑅 𝐶1 𝐶2 𝜌 = 0 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7

1 1 1 3 (1) 3 (1) 3 (1) 3 (1)
1 0.75 15 (13) 3 (1) 3 (1) 3 (1)
1 0.5 15 (13) 5 (3) 3 (1) 3 (1)
0.75 1 3 (1) 3 (1) 3 (1) 3 (1)
0.5 1 3 (1) 3 (1) 3 (1) 3 (1)

2 1 1 15 (13) 3 (1) 3 (1) 3 (1)
1 0.75 15 (13) 3 (1) 3 (1) 3 (1)
1 0.5 15 (13) 7 (5) 6 (4) 3 (1)
0.75 1 15 (13) 3 (1) 3 (1) 3 (1)
0.5 1 3 (1) 3 (1) 3 (1) 3 (1)

5 1 1 15 (13) 7 (5) 5 (3) 15 (7)
1 0.75 15 (13) 8 (6) 15 (9) 15 (8)
1 0.5 15 (13) 12 (10) 15 (10) 15 (9)
0.75 1 15 (13) 6 (4) 15 (8) 15 (7)
0.5 1 15 (13) 15 (8) 15 (7) 15 (6)

10 1 1 15 (13) 15 (10) 15 (8) 15 (7)
1 0.75 15 (13) 15 (11) 15 (9) 15 (8)
1 0.5 15 (13) 15 (12) 15 (10) 15 (9)
0.75 1 15 (13) 15 (9) 15 (8) 15 (7)
0.5 1 15 (13) 15 (8) 15 (7) 15 (7)

100 1 1 15 (13) 15 (10) 15 (8) 15 (7)
1 0.75 15 (13) 15 (10) 15 (8) 15 (8)
1 0.5 15 (13) 15 (10) 15 (8) 15 (8)
0.75 1 15 (13) 15 (10) 15 (8) 15 (7)
0.5 1 15 (13) 15 (10) 15 (8) 15 (7)
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evident in figure 3.4: as 𝐶𝑅 grows relative to 𝐶1 and 𝐶2, or for higher within-person correlation,

the objective function becomes increasingly concave.

Recall that our intuition around the results in section 3.3.1 and figure 3.3 is that the benefit of

allocating more measurements in the second stage is primarily related to smoothing: the efficiency

gained by better estimating the second-stage trajectory is important for reducing the sample size

requirement for small 𝜌. For larger 𝜌, we favor more balanced allocation of measurements across

stages, presumably due to the within-person correlation providing more information about the

trajectories in each stage. In table 3.3, the benefits of the within-person correlation become

apparent at lower 𝜌 as well: the cost optimization favors balance across stages.

3.4 Practical Implications for Designing Longitudinal SMARTs

Conversations between statisticians and investigators about sample size can be challenging, for a

variety of reasons. Boen and Zahn (1982), in describing their experiences as statistical consultants,

remark that investigators typically have firm upper (and sometimes lower) bounds on sample size

which are often dictated by personal experience, disciplinary traditions, or budget constraints.

Financial considerations are often of particular importance At the same time, that a study is sized

to detect a relevant effect with at least 80% power is often an implicit or explicit requirement for

many funding agencies.

The methods presented in section 3.3 allow for a reframing of conversations about sample

size for longitudinal SMARTs by introducing the ability to balance sample size and the number of

measurement occasions to achieve specified power while minimizing cost. This requires elicitation

of more parameters on the part of the statistician, which is often nontrivial but opens the door to

more collaborative discussions of trial design (Lenth 2001).

Consider an investigator who wishes to design a longitudinal SMART powered for the primary

aim of comparing two embedded DTRs which recommend different first-stage treatments. As a

secondary aim, the investigator wishes to use the longitudinal outcome to examinemean trajectories
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Figure 3.4: Scaled objective function 𝜔
(
𝜌, 𝑇, 𝑇2

)
· 𝐶 (𝑛, 𝑇, 𝑇2) for minimizing per-participant trial costs. Each plot is

of the (scaled) objective function in optimization problem (3.12) for various choices of within-person correlation 𝜌 and
recruitment cost 𝐶𝑅. For all scenarios, stage-1 and stage-2 measurement costs are set to 1: 𝐶1 = 𝐶2 = 1. For larger 𝜌,
the objective function becomes increasingly concave over the optimization domain (much more so than in figure 3.2).
𝑇cost2 tends to be smaller than 𝑇n2 from figure 3.3.
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over time for each of the DTRs, perhaps to investigate delayed effects of treatments (Nahum-Shani

et al. 2020). Their initial plan is to measure the outcome four times: once at baseline, once at the

end of the first stage, and twice in the second stage.

Formula (3.6) was designed to involve only quantities which are relatively easy to find from

existing literature or domain knowledge, so the statistician’s work with this investigator may begin

fairly typically. The statistician will need to elicit a target effect size, estimated probability of

response to first-stage treatments, and within-person correlation. Formula (3.6) enables easy

computation of sample size given these quantities. However, the result may be practically infeasible

due to budget constraints or other realities of running a trial.

The trade-offs discussed in section 3.3 allow the statistician to work collaboratively with the

investigator to modify the number and timing of measurement occasions to minimize trial costs.

By eliciting additional information such as the maximum number of times the investigator would

be willing to measure the outcome, approximate costs of those measurements, and the cost of

recruitment, the statistician can shift the conversation from one about sample size to one about trial

design more broadly.

Table 3.3 and figure 3.4 suggest that, for most realistic scenarios in which recruitment is much

more expensive than measurement, overall costs are lower in trials with more measurement occa-

sions. By working with the investigator to identify the largest number of measurement occasions

they would consider, the statistician can address the investigator’s feasibility concerns with regard

to sample size and total cost of the trial, while still maintaining target power. This will allow the

statistician and investigator to collaboratively maximize what can be done with the trial’s finite

resources.

This is explicitly a different framing of the cost problem than that considered by, for example,

Bloch (1986), Liu and Colditz (2017), and Zhang and Ahn (2011a). These authors all examine

financial considerations in randomized trials, but with an eye towards maximizing statistical power

given a fixed budget. This approach has the advantage of recognizing and working within monetary

constraints provided by the investigator, but may under-power the trial. Our approach acknowledges
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the reality that achieving 80% power is an important convention in trial design and imposes that as

the primary constraint. We do not guarantee that the solutions to optimization problem (3.12) will

yield a total cost that is lower than a given budget.

The cost function equation (3.10) is easily extensible. 𝐶1 and 𝐶2 might, for instance, incorpo-

rate some notion of burden on behalf of the participant or clinical staff. The function could also be

designed to incorporate non-constant costs of measurement within stages, which might be the case

if incentives for participants change over time. Furthermore, while an investigator may be willing

to measure the outcome 𝑇max times, they may have a strong preference against including more than

𝑇pref < 𝑇max occasions. This preference can be incorporated by imposing a penalty on 𝑇 > 𝑇pref in

the cost function. In chapter 4, we describe how alternative cost functions can be accommodated

via software.
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CHAPTER 4

Software for Designing Longitudinal SMARTs

As interest in SMARTs grows, and as the design is extended to accommodate more complex

scientific settings, there is a clear need for the development of software that would allow domain

scientists and applied statisticians to perform simulation-based sample size and power calculations.

An important challenge here is to make the software general enough to be used across a number of

different types of SMART designs (e.g., three stages of randomization), yet not so flexible that it is

difficult to use. The benefit of this is the ability to examine the power for various different scientific

questions given a single data generative model and for many other types of SMARTs.

In this chapter, we develop a framework for simulating data from a SMART with a continuous

longitudinal outcome and introduce the R package longsmart, which implements the data generative

model as well as the analytic methods described in chapter 3. We discuss the specifics of the

generative model in section 4.1, then illustrate how longsmart can be used to design and simulate

longitudinal SMARTs in section 4.2

4.1 A Data-Generative Procedure for Longitudinal SMARTs

The analytic methods for SMARTs described in chapters 2 and 3 allow for inference marginal

over the tailoring variable. Models (2.1) to (2.3) can be used to estimate mean potential outcomes

E[𝑌 (𝑎1,𝑎2R,𝑎2NR)] for a DTR (𝑎1, 𝑎2R, 𝑎2NR) averaging over response status. However, data are

observed conditionally on response: a single participant can only be a responder or a non-responder.

This is a key challenge in developing data-generative models for SMARTs.
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When a continuous outcome is observed once at the end of a SMART, this challenge is easily

overcome using the laws of total probability and variance; similarly for other types of outcomes

(Ogbagaber, Karp, and Wahed 2016; Kidwell et al. 2018). Generating longitudinal data presents

a more complex challenge: the outcome is observed across stages, the tailoring variable is likely

related to previously-observed outcome measurements, and it may be necessary to precisely control

the marginal covariance structure of the outcomes. The challenge related to the tailoring variable,

in particular, is non-trivial.

The primary goal of the data generative procedure described here is to enable simulation

of longitudinal SMARTs with known marginal means and covariances for each embedded DTR.

Because the sample size methods described in chapters 2 and 3 assume a particular marginal

covariance structure, it is important for testing these methods that the data generative model satisfies

this assumption. The procedure requires a mean model 𝝁(𝑑) (𝜷) for each embedded DTR 𝑑, a target

marginal variance structure 𝚺(𝑑) for each embedded DTR, as well as second-stage means and

covariance “components” (see below) for responders to each first-stage treatment. The procedure

also requires methods for identifying responders and non-responders, and for computing means and

covariances of stage-1 outcomes conditional on response. We write 𝜈(𝑑)
𝑗

(𝑟) = E[𝑌 (𝑑)
𝑗

| 𝑅(𝑎 (𝑑)
1 ) = 𝑟]

and 𝚵(𝑑) (𝑟) = Var
(
𝒀 (𝑑) | 𝑅(𝑎 (𝑑)

1 ) = 𝑟

)
, with ( 𝑗 , 𝑘)th element 𝜉 (𝑑)

𝑗 𝑘
.

In order to develop a realistic data generative model, we attempt to follow as closely as possible

the way in which data is accumulated in a SMART. Let 𝒀 𝑖, 𝑗 :𝑘 be the vector of the 𝑖th individual’s

outcomes at measurement occasions 𝑗 , 𝑗 + 1, . . . , 𝑘 , for 𝑘 > 𝑗 . Recall from section 2.2.1 that the

data collected from the 𝑖th participant in the SMART is of the form

(
𝑿𝑖, 𝑌𝑖,1, 𝐴𝑖,1,𝒀 𝑖,2:𝑇1 , 𝑅𝑖, 𝐴𝑖,2,𝒀 𝑖,𝑇1+1:𝑇

)
,

where 𝑇1 = 𝑇 −𝑇2 is the number of measurement occasions in stage 1. For simplicity, we currently

ignore baseline covariates 𝑿; future work will extend the generative model described below to

accommodate baseline covariates.
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4.1.1 Simulation of Potential Outcomes

To guarantee that consistency (identifiability assumption I2; see appendix A) is satisfied, we

generate potential outcomes for each “participant” in the trial. Consider a marginal mean model

𝜇
(𝑑)
𝑡 = E[𝑌 (𝑑)

𝑡 ] for some DTR 𝑑 ∈ D (D as defined in section 2.2.2). Suppose we wish to

generate data with an arbitrary covariance structure 𝚺(𝑑) such that 𝚺(𝑑)
𝑗 , 𝑗

= Var(𝑌 (𝑑)
𝑖, 𝑗

) = (𝜎 (𝑑)
𝑗

)2 and

𝚺(𝑑)
𝑗 ,𝑘

= Cov(𝑌 (𝑑)
𝑖, 𝑗

, 𝑌
(𝑑)
𝑖,𝑘

) = 𝜌
(𝑑)
𝑗 𝑘
𝜎

(𝑑)
𝑗

𝜎
(𝑑)
𝑘
for 𝑗 ≠ 𝑘 .

In the first stage, we can express the 𝑖th individual’s potential outcome under DTR 𝑑 at time 𝑗

as

𝑌
(𝑑)
𝑖, 𝑗

= 𝜇
(𝑑)
𝑗

+
𝑗−1∑︁
𝑘=1

𝑏
(𝑑)
𝑗 𝑘

(
𝑌
(𝑑)
𝑖,𝑘

− 𝜇
(𝑑)
𝑘

)
+ 𝜖

(𝑑)
𝑖, 𝑗

, 𝑗 = 1, . . . , 𝑇1, (4.1)

where 𝑏 (𝑑)
𝑗 𝑘
are constants chosen to achieve the desired marginal covariance structure and 𝜖 𝑗 ,𝑖 is

mean-zero noise with variance

Var
(
𝜖
(𝑑)
𝑖, 𝑗

)
=

(
𝜎

(𝑑)
𝑗

)2
−

(
𝒃 (𝑑)
𝑗

)>
𝚺(𝑑)
1: 𝑗−1,1: 𝑗−1𝒃

(𝑑)
𝑗
. (4.2)

Note that for the baseline measurement ( 𝑗 = 1), we set the sum from 𝑘 = 1 to 0 to zero.

Equation (4.1) induces within-person correlation by explicitly making each potential outcome

a function of previous potential outcomes. We choose 𝒃 (𝑑)
𝑗

=

(
𝑏
(𝑑)
𝑗 ,1 , . . . , 𝑏

(𝑑)
𝑗 , 𝑗−1

)>
to achieve the

desired correlation structure; we discuss this in more detail below. Note that the choice of 𝒄(𝑑)
𝑗
does

not affect the mean of 𝑌 (𝑑)
𝑖, 𝑗
, as the summand in equation (4.1) is mean-zero.

Potential response status is generated as 𝑅(𝑎1)
𝑖

= 𝑔𝑎1 (𝒀
(𝑑)
𝑖,1:𝑇1

), where 𝑔𝑎1 : R𝑇1 → {0, 1} is any

function of stage-1 outcomes that returns 1 if the individual is a responder and 0 otherwise. As an

example, consider a “threshold”-based response function, such that

𝑅
(𝑎 (𝑑)
1 )

𝑖
= 𝑔𝑎1 (𝒀

(𝑑)
𝑖,1:𝑇1

) = 1{
𝑌
(𝑑)
𝑖,𝑇1

>𝜅𝑎1

} . (4.3)

Here, an individual is a (potential) responder to first-stage treatment 𝑎1 if their (potential) outcome

at time 𝑡𝑇1 = 𝑡∗ exceeds some threshold 𝜅𝑎1 and a non-responder otherwise. We discuss this in more
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detail in section 4.1.3.

In the second stage, we generate data condtitionally on response status, such that, for 𝑗 =

𝑇1 + 1, . . . , 𝑇 ,

𝑌
(𝑑)
𝑖, 𝑗

= 𝜈
(𝑑)
𝑗

(𝑅(𝑎 (𝑑)
1 )

𝑖
) +

𝑗−1∑︁
𝑘=1

𝑏
(𝑑)
𝑗 𝑘

(
𝑌
(𝑑)
𝑖,𝑘

− 𝜈
(𝑑)
𝑘

(𝑅(𝑎 (𝑑)
1 )

𝑖
)
)
+ 𝜁

(𝑑)
𝑖, 𝑗

(
𝑟 (𝑎

(𝑑)
1 )

)
, (4.4)

where 𝜁 (𝑑)
𝑖, 𝑗

(𝑅(𝑎 (𝑑)
1 )

𝑖
) has mean zero and variance

Var
(
𝜁
(𝑑)
𝑖, 𝑗

(𝑟)
)
=

(
𝜉
(𝑑)
𝑗 , 𝑗

(𝑟)
)2

−
(
𝒃 (𝑑)
𝑗

)>
𝚵(𝑑) (𝑟)1: 𝑗−1,1: 𝑗−1𝒃 (𝑑)𝑗

. (4.5)

Note that, given the marginal mean model 𝝁(𝑑) , we need only specify either 𝝂(𝑑) (1) or 𝝂(𝑑) (0) for

each first-stage treatment; the other is fixed by the law of total expectation:

𝝁(𝑑) = 𝑃

(
𝑅(𝑎 (𝑑)

1 ) = 1
)
𝝂(𝑑) (1)

(
1 − 𝑃

(
𝑅(𝑎 (𝑑)

1 ) = 1
))

𝝂(𝑑) (0). (4.6)

It remains to show how to choose 𝒃 (𝑑)
𝑗
to achieve the desired marginal covariance structure.

We do this in stage 1 (i.e., 𝑗 = 1, . . . , 𝑇1) by solving

𝚺(𝑑)
1: 𝑗−1,1: 𝑗−1𝒃

(𝑑)
𝑗

= 𝚺(𝑑)
1: 𝑗−1, 𝑗 . (4.7)

As an example, if 𝚺(𝑑) = (𝜎 (𝑑))2Exch𝑇 (𝜌(𝑑)), i.e., the true correlation structure is exchangeable

with correlation 𝜌(𝑑) , then

𝑏
(𝑑)
𝑗 ,𝑘

=
𝜌(𝑑)(

1 + 𝜌(𝑑)
) (
1 + ( 𝑗 − 1)𝜌(𝑑)

)
for all 𝑘 = 1, . . . , 𝑗 − 1.

In the second stage of the SMART, data is generated conditionally on response status, so

equation (4.7) becomes, for 𝑗 = 𝑇1 + 1, . . . , 𝑇 ,

𝚵(𝑑) (𝑟)1: 𝑗−1,1: 𝑗−1𝒃 (𝑑)𝑗
= 𝚵(𝑑) (𝑟)1: 𝑗−1, 𝑗 (4.8)
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for all 𝑑 ∈ D and 𝑟 ∈ {0, 1}. As we discuss below, there is not a closed-form expression for𝚵(𝑟)−1,

so we cannot give an expression for 𝑐(𝑑)
𝑗 ,𝑘
; however, equation (4.8) is easy to solve computationally.

We now describe how the generative model elicits and computes variances for second-stage

potential outcomes. We begin by partitioning 𝚵(𝑑) (𝑟) as

𝚵(𝑑) (𝑟) =


𝚵(𝑑)
11 (𝑟) 𝚵(𝑑)

12 (𝑟)(
𝚵(𝑑)
12 (𝑟)

)>
𝚵(𝑑)
22 (𝑟)

𝑇×𝑇 , (4.9)

where 𝚵(𝑑)
11 (𝑟) ∈ R𝑇1×𝑇1 and 𝚵(𝑑)

22 (𝑟) ∈ R𝑇2×𝑇2 . Note that 𝚵(𝑑)
11 (𝑟) = Var(𝒀 (𝑑)

1: 𝑗−1 | 𝑅(𝑑) = 𝑟) is

determined by the choice of response status and is therefore fixed. In general, 𝚵(𝑑) (𝑟) does not

respect the marginal covariance structure, and is typically unstructured.

Both 𝚵(𝑑)
12 (𝑟) and 𝚵(𝑑)

22 (𝑟) need to be specified for either 𝑟 = 1 or 𝑟 = 0. This involves

identifying stage-2 and “cross-stage” covariances, both conditional on response. By design, the

re-randomizations in SMARTs produce subsets of participants consistent with more than one DTR;

recall that, for example, responders in design II are consistent with both embedded DTRs which

recommend the same first-stage treatment. This means that we need only specify 𝚵(𝑑)
12 (𝑟) and

𝚵(𝑑)
22 (𝑟) for one DTR which recommends each first-stage treatment; all others are fixed by the law

of total variance:

𝚺(𝑑) = 𝑃(𝑅(𝑎 (𝑑)
1 ) = 1)𝚵(𝑑) (1) +

(
1 − 𝑃(𝑅(𝑎 (𝑑)

1 ) = 1)
)
𝚵(𝑑) (0)

+ 𝑃(𝑅(𝑎 (𝑑)
1 ) = 1)

(
1 − 𝑃(𝑅(𝑎 (𝑑)

1 ) = 1)
) (

𝝂(𝒅) (1) − 𝝂(𝑑) (0)
)⊗2

. (4.10)

In sum, the process of generating potential outcomes in a longitudinal SMART involves the

following steps:

1. For each embedded DTR 𝑑, specify 𝝁(𝑑) , the marginal mean outcome at all measurement

occasions and 𝚺(𝑑) , the marginal variance of the outcome.

2. Specify a response function 𝑔𝑎1 (𝒀
(𝑑)
1:𝑇1

) which assigns (potential) response status based on
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potential outcomes in the first stage of the SMART.

3. For one DTR that recommends each first-stage treatment and one response status 𝑟, specify

𝚵(𝑑)
12 (𝑟) and 𝚵

(𝑑)
22 (𝑟).

4. For the 𝑗 thmeasurement occasion in stage 1, 𝑗 = 1, . . . , 𝑇1, find 𝒄(𝑑)𝑗
by solving equation (4.7).

Simulate mean-zero noise 𝜖 (𝑑)
𝑗
with variance (4.2) (using, e.g., a normal distribution), then

generate potential outcomes 𝑌 (𝑑)
𝑖, 𝑗
using equation (4.1).

5. For each first-stage treatment option, compute potential response status 𝑅(𝑎1) (𝑑)
𝑖

= 𝑔𝑎1 (𝒀
(𝑑)
𝑖,1:𝑇1

)

for each simulated individual.

6. For each treatment path, find 𝝂(𝑑) (𝑟) and 𝚵(𝑑) (𝑟) using equations (4.6) and (4.10). For

each 𝑗 = 𝑇1 + 1, . . . , 𝑇 , compute 𝒃 (𝑑)𝑗
by solving equation (4.8). Simulate mean-zero noise

𝜁
(𝑑)
𝑖, 𝑗

(𝑅(𝑎 (𝑑)
1 )

𝑖
) with variance as in equation (4.5) and generate second-stage potential outcomes

using equation (4.4).

In table 4.1, we show that the target marginal variance structures are achieved using this data

generative model for three measurement occasions with an exchangeable marginal correlation

structure.

4.1.2 “Observing” Potential Outcomes

Once the potential outcomes data is generated following the procedure in section 4.1.1, we will

“observe” a subset of those outcomes for each participant in the SMART according to simulated

treatment assignment. Recall that the potential baseline measure, 𝑌 (𝑑)
𝑖,1 , is the same for all DTRs 𝑑,
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Table 4.1: Target and estimated marginal variance matrices from the data generative model described in section 4.1.1.
The “unstructured estimate” is produced by estimating the variance at each timepoint and for each DTR, and correlation
for each DTR using the unstructured estimate in table 2.2, then averaging over DTRs. The “exchangeable estimate”
is computed by assuming variance is constant over time and DTR, and using the exchangeable estimate of 𝜌 from
table 2.2, averaged over DTRs. The exchangeable estimate is used in simulations assuming working assumption A2.2
is satisifed.

Design Target Structure Unstructured Estimate Exchangeable Estimate

I
©­­«
64 19.2 19.2
19.2 64 19.2
19.2 19.2 64

ª®®¬
©­­«
63.9 19.3 19.1
19.3 63.8 18.7
19.1 18.7 62.5

ª®®¬
©­­«
63.4 18.9 18.9
18.9 63.4 18.9
18.9 18.9 63.4

ª®®¬
II

©­­«
36 10.8 10.8
10.8 36 10.8
10.8 10.8 36

ª®®¬
©­­«
35.9 10.9 11.0
10.9 35.9 11.1
11.0 11.1 35.8

ª®®¬
©­­«
35.9 10.9 10.9
10.9 35.9 10.9
10.9 10.9 35.9

ª®®¬
III

©­­«
64 19.2 19.2
19.2 64 19.2
19.2 19.2 64

ª®®¬
©­­«
63.9 19.4 19.9
19.4 63.7 21.3
19.9 21.3 63.6

ª®®¬
©­­«
63.8 20.0 20.0
20.0 63.8 20.0
20.0 20.0 63.8

ª®®¬
since it is pre-treatment. The observed data

𝑌𝑖,1 = 𝑌
(𝑑)
𝑖,1

𝐴𝑖,1 | 𝑌𝑖,1 ∼ 2 ∗ Bernoulli(𝜋1) − 1

𝒀 𝑖,2:𝑇1 | 𝐴𝑖,1, 𝑌𝑖,1 = 𝑍1

(
𝐴𝑖,1,𝒀

(𝑑)
𝑖

)
𝑅𝑖 | 𝐴𝑖,1,𝒀 𝑖,1:𝑇1 = 1{𝐴𝑖,1=1}𝑅

(1)
𝑖

+ 1{𝐴𝑖,1=−1}𝑅
(−1)
𝑖

𝐴𝑖,2 | 𝑅𝑖, 𝐴𝑖,1,𝒀 𝑖,1:𝑇1 ∼ 2 ∗ Bernoulli(𝜋2) − 1

𝒀 𝑖,𝑇1+1:𝑇 | 𝐴𝑖,2, 𝑅𝑖, 𝐴𝑖,1,𝒀 𝑖,1:𝑇1 = 𝑍2(𝐴𝑖,1, 𝑅𝑖, 𝐴𝑖,2,𝒀
(𝑑)
𝑖

),

where 𝑍𝑘 is a function which maps observed treatment history and (if applicable) response status

to the potential outcome 𝒀 (𝑑)
𝒕,𝑖 consistent with that history. The form of 𝑍𝑘 is given in table A.1, and

varies by SMART design.
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4.1.3 Threshold-Based Response Status

A challenging aspect of generating data for longitudinal SMARTs is the fact that analyses are

(typically) conducted marginally over response status. When generating data, however, it necessary

to understand means and variances of stage-1 outcomes conditional on response status. This is non-

trivial, as it is, in some sense, conditioning on “the future”: response status is often a function of

stage-1 outcomes. Our need for this is driven primarily by a need to ensure that the correct marginal

variance structure is achieved, and because working assumption A3.1 depends on these quantities.

Here, we discuss how these conditional means and variances are computed for a “threshold-based”

response status, as defined in equation (4.3). Here, we assume errors 𝜖 (𝑑)
𝑗
are jointly normally

distributed in the first stage.

At 𝑡∗ = 𝑡𝑇1 , the measurement time to which the threshold is applied, the potential outcomes

follow a truncated normal distribution conditional on response, with density

𝑓
𝑌
(𝑑)
𝑇1

|𝑅 (𝑑) (𝑦 | 𝑟) =
𝜙

(
𝑦−𝜇 (𝑑)

𝑇1

𝜎
(𝑑)
𝑇1

)
1 −Φ

(
𝜅𝑎1−𝜇

(𝑑)
𝑇1

𝜎
(𝑑)
𝑇1

) , (4.11)

where 𝜙 is the standard normal density and Φ is the standard normal cumulative distribution

function.

For times 𝑡 𝑗 < 𝑡∗, we rely on joint normality of the errors, so that


𝑌
(𝑑)
𝑖, 𝑗

𝑌
(𝑑)
𝑖,𝑇1

 ∼ N
©­­­«

𝜇
(𝑑)
𝑗

𝜇
(𝑑)
𝑇1

 ,


(
𝜎

(𝑑)
𝑗

)2
𝜌
(𝑑)
𝑗 ,𝑇1

𝜎
(𝑑)
𝑗

𝜎
(𝑑)
𝑇1

𝜌
(𝑑)
𝑗 ,𝑇1

𝜎
(𝑑)
𝑗

𝜎
(𝑑)
𝑇1

(
𝜎

(𝑑)
𝑇1

)2 
ª®®®¬ .

By properties of the bivariate normal distribution,

𝜇
(𝑑)
𝑇1 | 𝑗 (𝑦 𝑗 ) := E

[
𝑌
(𝑑)
𝑇1

| 𝑌 (𝑑)
𝑗

= 𝑦 𝑗

]
= 𝜇

(𝑑)
𝑇1

+
𝜌
(𝑑)
𝑗 ,𝑇1

(
𝜎

(𝑑)
𝑇1

)2(
𝜎𝑑
𝑗

)2 (
𝑦 𝑗 − 𝜇

(𝑑)
𝑗

)
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and Bayes’ theorem,

𝑓
𝑌
(𝑑)
𝑗

|𝑅 (𝑑) (𝑦 | 𝑟) =

𝜙

(
𝑦−𝜇 (𝑑)

𝑗

𝜎
(𝑑)
𝑗

) ©­­­«1 −Φ
©­­«

𝜅𝑎1−𝜇
(𝑑)
𝑇1 | 𝑗

(𝑦)(
1−

(
𝜌
(𝑑)
𝑇1 , 𝑗

)2) (
𝜎

(𝑑)
𝑇1

)2 ª®®¬
ª®®®¬

1 −Φ

(
𝑘𝑎1−𝜇

(𝑑)
𝑇1

𝜎
(𝑑)
𝑇1

) (4.12)

For 𝑗 = 1, . . . , 𝑇2, we can find themean and variance of the potential outcoems under each first-stage

treatment conditional on response using equation (4.12).

Using similar ideas, we can find the conditional density of products of first-stage potential

outcomes 𝑌 (𝑑)
𝑗

𝑌
(𝑑)
𝑘
given response status, which is necessary to compute conditional covariances.

The details of this computation are not particularly illuminating; we refer the interested reader to

the documentation for the companion R package longsmart. Similar derivations are required for

other definitions of response to ensure that working assumption A3.1 is satsified.

4.2 The longsmart R Package

The longsmart package for R (available at https://github.com/nseewald1/longsmart) implements the

generative model described in section 4.1 as well as the methods for sample size described in

chapter 3. The package enables relatively easy, customizable simulation of data arising from

longitudinal SMARTs and provides users with tools to design such trials by choosing sample size

and the number and timing of measurement occasions, keeping trial budget in mind.

A key idea that runs throughout the package is the identification of a SMART design via

randomization probabilities. We assert that a SMART design can be uniquely identified by a set of

randomization probabilities 𝜋. In a two-stage SMART with at most two treatment options at each

randomization, 𝜋 = {𝜋1, 𝝅2R, 𝝅2NR}, where 𝜋1 = 𝑃(𝐴1 = 1),

𝝅2R =
(
𝑃(𝐴2R = 1 | 𝐴1 = 1, 𝑅 = 1), 𝑃(𝐴2R = 1 | 𝐴1 = −1, 𝑅 = 1)

)>
,
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and

𝝅2NR =
(
𝑃(𝐴2NR = 1 | 𝐴1 = 1, 𝑅 = 0), 𝑃(𝐴2NR = 1 | 𝐴1 = −1, 𝑅 = 0)

)>
.

We will say that 𝑃(𝐴2NR = 1 | 𝐴1 = 1, 𝑅 = 0) = 0 if responders to first-stage treatment 𝐴1 = 1 are

not re-randomized; similarly with other elements of 𝝅2R and 𝝅2NR. For example, we could identify

a design II SMART with equal randomizations wiht 𝜋 =
{
0.5, (0, 0)>, (0.5, 0.5)>

}
.

We first discuss longsmart’s implementation of the design methods from chapter 3, then how it

can be used to simulate data.

4.2.1 Tools for Designing SMARTs

An important function available in longsmart is the smart_size() function, which implements the

general sample size formula for longitudinal SMARTs in formula (3.6). The package implements a

version of the within-person deflation factor 𝜔 which allows for measurement occasions which are

not equally spaced, given as equation (B.26) in appendix B.3.

The smart_size() function takes a variety of inputs which describe the SMART for which

sample size is desired. Users specify the design of the SMART using the randomization argument,

which encodes 𝜋 as discussed above. The function uses this to compute the appropriate design effect

DE in formula (3.6). Other design-related inputs include mTimes, the vector of measurement times,

and tStar, the time measurement time immediately after which participants are re-randomized.

smart_size() also elicits information about the interventions under study through rho, the within-

person correlation, and pR, a vector of probabilities of response.

Results from smart_size() are of class power.htest, so the output is presented to the user

in a familiar way, similar to built-in power functions such as power.t.test(). An example is in

program 4.1. As with other power functions in base R, the user can alternatively specify power =

NULL or sig.level = NULL to have the function compute power or significance level given a sample

size n. The default randomization argument yields a prototypical SMARTwith equal randomization

throughout.
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Program 4.1: Use of the smart_size() function to compute sample size for a longitudinal SMART. The target
standardized effect size is 𝛿 = 0.3, the outcome ismeasured at times 0-4, and re-randomization occurs aftermeasurement
time 2. We assume 𝜌 = 0.3, and 40% response rates to both first-stage treatments. The minimum-required sample size
to compare two embedded DTRs with different first-stage treatments is 427.

library(longsmart)
smart_size(n = NULL, delta = 0.3, mTimes = c(0, 1, 2, 3, 4),

tStar = 2, power = 0.8, pR = c(0.4, 0.4), rho = .3)

# Longitudinal SMART power calculation
#
# n = 427
# delta = 0.3
# sig.level = 0.05
# power = 0.8
# alternative = two.sided
# meas.times = 0, 1, 2, 3, 4
# t.star = 2
# rho = 0
# pR = 0.4, 0.4
#
# NOTE: Power for a SMART in which the probability of
# randomization to first-stage treatment A1 = 1 is 0.5;
# responders are not re-randomized; non-responders are
# re-randomized to second-stage treatment A2 = 1 with
# probability 0.5.
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Program 4.2: Use of the optimize_cost() function to find the number and allocation of measurement occasions
which minimize per-participant trial costs. The investigator wishes to detect an effect size 𝛿 = 0.4 and is planning a
16-week study in which each stage is 8 weeks long. They will consider at most 8 measurement occasions.

optimize_cost(delta = 0.4, tStar = 8, tMax = 16, numTimesMax = 8,
rho = 0.36, pR = c(0.4, 0.5), cost_recruit = 300,
cost_meas = 20)

# Cost-optimal measurement allocation for longitudinal SMART
#
# Call:
# optimize_cost(delta = 0.4, tStar = 8, tMax = 16, numTimesMax = 8,
# rho = 0.36, pR = c(0.4, 0.5), cost_recruit = 300,
# cost_meas = 20)
#
# Optimal total number of measurements: 8
# Optimal number of measurements in stage 2: 5
# Sample size required: 160
# Total cost: 73,600

A second useful design tool in longsmart is the optimize_cost() function, which implements

grid search to solve optimization problem (3.12). Given the same SMARTdesign-related arguments

as sample_size() (i.e., delta, rho, pR, and randomization), the maximum number of measurement

occasions the user is willing to consider in in the SMART (numTimesMax), and costs of recruitment

(cost_recruit) and measurement (cost_meas), optimize_cost() will identify the combination of 𝑇

and 𝑇2 which minimize total cost of the trial.

Consider an example in which an investigator will run a 16-week design II SMART with

re-randomization after week 8. They are willing to consider at most 8 measurement occasions.

The hypothesized response rate to first-stage treatments 𝐴1 = 1 and 𝐴1 = −1 are 0.4 and 0.5,

respectively, and previous literature suggests an exchangeable within-person correlation of 0.36.

The cost of recruiting one participant is expected to be $300; the cost of eachmeasurement is $20 for

both stages. The study should be sized to detect an effect size of 0.4 with at least 80% power using

a two-sided level-0.05 test. The solution to optimization problem (3.12), shown in program 4.2, is

to use 𝑇cost = 8 total measurements, placing 𝑇cost2 = 5 in the second stage. The investigator should

measure the outcomes at 𝒕 = {0, 4, 8, 9.6, 11.2, 12.8, 14.4, 16} weeks. The required sample size is
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160 participants. This is the cheapest of all possible configurations of 𝑇cost and 𝑇cost2 that achieves

80% power; the total cost of recruitment and measurement is $73,600.

Note that if the investigator is interested solely in minimizing the sample size requirement, as

in section 3.3.1, they can simply set cost_meas to 0 in optimize_cost().

4.2.2 Tools for Simulating Longitudinal SMARTs

The longsmart package is designed with a particular eye towards simplifying the process of simu-

lating data from longitudinal SMARTs. Working with the generative model in section 4.1 can be

challenging; longsmart attempts to meet that challenge by creating user-friendly interfaces.

The primary function used for simulating data from a longitudinal SMART is design_smart().

This function creates an object of class longsmartDesign, and is the foundation of all simulation-

related functions in longsmart. A longsmartDesign object is a list which completely describes the

SMART the user wishes to simulate. These properties include the randomization set 𝜋, the times

at which the outcome is measured, and marginal and conditional means and variances for all

embedded DTRs and treatment paths at all measurement occasions. By default, design_smart() is

to use the threshold-based response status described in section 4.1.3, but the user can specify any

function with appropriate inputs and returned objects (see below).

Consider an investigator wishing to run a design II SMART in which the outcome is measured

five times, two of which are in the second stage of the trial. They might begin the simulation

process by using mean_model_prototypical() to identify the marginal means at each measurement

time from regression parameters 𝜷 as in model (3.1), which they have stored in R as a length-7

vector called betas.

means <- mean_model_prototypical(mTimes = 0:4, tStar = 2,
marginalCoefs = betas)

This returns a list containing marginal means 𝝁(𝑑) for all embedded DTRs 𝑑 as well as a data frame

identifying those embedded DTRs by first- and second-stage treatment recommendations.

The use of design_smart() requires the user specify 𝚵(𝑎1,0,1)
12 (1) and 𝚵(𝑎1,0,1)

22 (1) for both
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Program 4.3: Creation of a longsmartDesign object.

smart <- design_smart(
mTimes = 0:4,
tStar = 2,
marginalMeans = means,
marginalVariances = 36 *

cormat(rho = 0.3, p = 5,
corstr = "exchangeable"),

responderMeans = list(c(33, 32), c(35, 34)),
responderVariances = list(

list(matrix(rep(10.8, 6), nrow = 3),
36 * cormat(0.3, 2, "exch")),

list(matrix(rep(10.8, 6), nrow = 3),
36 * cormat(0.3, 2, "exch"))),

threshold = c(32, 33)
)

first-stage treatments 𝑎1. The cormat() function can be of use for specifying 𝚵(𝑎1,0,1)
22 (1): given a

correlation and dimension p = 𝑇2, cormat()will return a correlation matrix with the given structure:

36 * cormat(rho = 0.3, p = 2, corstr = "exchangeable")

# [,1] [,2]
# [1,] 36.0 10.8
# [2,] 10.8 36.0

Putting everything together, the user create a longsmartDesign object following the example in

program 4.3. The responderMeans argument takes a list of vectors 𝝂(𝑎1,0,1)
𝑇1+1:𝑇 (1), one element per first-

stage treatment, and responderVariances is a list of lists, where the first list contains 𝚵(1,0,1)
12 (1) and

𝚵(1,0,1)
22 (1) for DTRs which recommend 𝑎1 = 1, and the second is similar for 𝑎1 = −1. By default,

design_smart() uses threshold-based tailoring (see section 4.1.3); the thresholds for first-stage

treatments 𝑎1 = 1 and 𝑎1 = −1 are specified in the threshold argument.

design_smart() is highly flexible with regard to specification of a tailoring variable. The

optional responseFun argument allows the user to specify a functionwhich describes response status,

taking, at minimum, three arguments: stage1Data, a data frame containing the baseline outcome

measurement as well as potential outcomes for both first-stage treatments at all measurement

times prior to 𝑡∗; meanModel, an object describing measurement occasions and marginal means
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Program 4.4: Simulation of data from a longitudinal SMART.

d <- generate_smart(n = 300, smart = smart)
head(d$obsData, 5)

# id Y0 A1 Y1 Y2 R A2 Y3 Y4
# 1 1 35.54661 -1 29.26066 24.89015 0 -1 37.34615 45.55055
# 2 2 26.11318 1 26.04476 36.76698 1 0 42.73083 33.07181
# 3 3 34.70027 -1 40.37163 29.46754 0 -1 28.96139 41.86827
# 4 4 38.06908 -1 31.93310 24.99966 0 1 43.43282 32.37043
# 5 5 25.60596 -1 36.09325 38.32931 1 0 23.78595 39.34885
# weight dtr1 dtr2 dtr3 dtr4
# 1 4 FALSE FALSE FALSE TRUE
# 2 2 TRUE TRUE FALSE FALSE
# 3 4 FALSE FALSE FALSE TRUE
# 4 4 FALSE FALSE TRUE FALSE
# 5 2 FALSE FALSE TRUE TRUE

for all embedded DTRs at all measurement occasions; and marginalVariance, a list of marginal

variance matrices. The function then must return a data frame with potential response statuses for

each observation in stage1Data, as well as probabilities of response to each first-stage treatment.

When specifying a custom responseFun, the arguments conditionalMeanFun and conditionalVarFun

must also be provided. These return conditional means and variances, respectively, for first-stage

outcomes given response status. For threshold-based tailoring, these functions work by integrating

over the densities given in section 4.1.3.

Once a longsmartDesign object is created using design_smart(), the user can generate data

for n participants from the designed SMART using generate_smart(). An example is shown in

program 4.4. The returned object is of class longsmart, and contains all potential outcomes, the

observed data, and information about the SMART design from which the data were generated as

a longsmartDesign object. The observed data is shown above in wide format and includes both

weights and indicators for consistency with each embedded DTR (see table 2.1). d$obsData is ready

to use with the analysis method of the user’s choice.
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CHAPTER 5

Conclusions and Future Work

In this dissertation, we have developed a variety of tools for designing and analyzing sequential,

multiple-assignment randomized trials with continuous longitudinal outcomes. We pay particular

attention to the case in which the trial is designed to compare two embedded dynamic treatment

regimens which recommend different first-stage treatments. A key goal is to reduce barriers to

implementing SMARTs among clinicians and applied statisticians. To that end, we have been

keenly interested in ease-of-use.

Formulae (2.13) and (3.6) have been designed to require relatively few parameters. Those

required inputs are, we believe, relatively easy to estimate from the literature or pilot studies.

Indeed, our method requires only one additional input (𝜌) relative to formulae for SMARTs in

which the outcome is measured once at the end of the study. We described in section 2.5 that

formula (2.13) is conservative when 𝜌 is underrestimated; similarly for formula (3.6). In this way,

the methods are able to accommodate uncertainty in the investigator’s guess of the exchangeable

within-person correlation by selecting the lowest of the possible values of 𝜌.

We acknowledge and accommodate the practical realities of clinical trial design by incorporat-

ing financial considerations into the methods developed in chapter 3. We describe a search-based

approach to minimizing the total cost of recruiting participants and measuring the outcome. The

approach is based on a simple cost function, but could easily be extended to accommodate more

complex situations like incentives that change over time. The method is implemented in an easy-

to-use function in the R package longsmart. A future goal is to build a web-based sample size tool as

a companion to longsmart, which will allow us to better guide clinicians through the planning stages

of a longitudinal SMART.
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The main contribution of this dissertation is the development of sample size formulae for

SMARTs in which the primary aim is an end-of-study comparison of two embedded DTRs which

recommend different first-stage treatments (so-called “separate-path” DTRs; Kidwell and Wahed

(2013)). It is possible, though, that some trialists may have interest in sizing a SMART for an

end-of-study comparison of “shared-path” DTRs; that is, two DTRs which recommend the same

first-stage treatment. We believe that, for the comparison of shared-path DTRs, investigators

are better set to use a standard sample size calculation to compare the second-stage treatments

(conditional on response) which differ between the DTRs, then upweighting the result by the

proportion of participants expected to be in these groups.

It is important to note that while the methods described in this dissertation allow for a more

varied conversation about the design of longitudinal SMARTs, the focus of this conversation must

always be on the science. SMARTs, like other randomized trials, should be designed to address

particular scientific questions: the trial’s design should be chosen based on those questions, not the

other way around. Sample size calculations should be similarly principled. Target effect sizes, for

example, should be specified prior to choosing a sample size. This is reinforced in the design of

design_smart() in longsmart: unlike base R functions like power.t.test(), we do not allow the user

to find a detectable effect size given a sample size and power.

Statisticians should be careful to use the optimization approaches in section 3.3 in a way

that serves the investigator’s scientific interests, and not cherry-pick components of the sample

size formulae which minimize cost and/or sample size. Effort should be made to pre-specify

reasonable ranges of values for 𝜌 and response rates based on either pre-existing evidence about

the interventions under study in the SMART, or domain knowledge. Uncertainty in the choices of

these values are of course to be expected, and power curves over a range of choices are a valuable

tool; the ranges of these parameters, as well as the maximum number of measurement occasions

under consideration, should be determined by scientific, ethical, or practical considerations.

There are a number of interesting ways to build on this dissertation in future methodological

work. First, some scientists may be interested in a primary aim comparison that involves other
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features of the marginal mean trajectory, such as the area under the curve (AUC). Future work

could develop formulae for these other primary aim comparisons. An important challenge here is in

whether and how to define the standardized effect size 𝛿. We believe this would be best implemented

through software tools with graphical user interfaces that allow investigators to interactively build

and explore models for AUC. The extension of, say, formula (3.6) to other estimands is a matter of

specifying a new contrast of regression parameters, meaning we can rely on most of the derivation

in appendix B.

A second extension would be to build methods for SMARTs with intensive longitudinal

outcomes. In contrast to more traditional repeated-measures data, intensive longitudinal data (ILD)

is observed (potentially much) more frequently and can provide more detailed information on an

individual’s trajectory over time. This allows researchers to study the dynamics of behavioral or

disease processes on a much finer scale compared to a more conventional setting in which relatively

few observations are made (Hamaker and Wichers 2017).

Because of the SMART’s usefulness in constructing DTRs, which are decision rules leading

to a sequence of treatments tailored to an individual’s changing needs over time, there is increasing

interest in collecting intensive longitudinal data throughout a SMART. This would enable more

detailed assessment of the impact of treatment over time, as well as any delayed effects of treatment

that may arise as a consequence of the sequencing of interventions within a DTR. In some settings,

these effects may be quite proximal; ILD can potentially capture brief changes. An example of the

use of ILD in SMARTs is given in section 5.3 of Lu et al. (2016), in which the authors model the

outcome using regression splines. This work, particularly the details of how to incorporate design

features of a SMART into the model, is discussed only briefly, and could serve as a starting point

for meaningful future projects.

This work has been largely guided by a focus on the investigator. Ultimately, the design of a

trial is driven by the scientific questions it seeks to address. The methods in this dissertation aim to

help reduce barriers for investigators seeking to design appropriate, efficient SMARTs to address

pressing questions in their field.
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APPENDIX A

Identifiability Assumptions

We make the following assumptions in order to show that equation (2.6) has mean zero.

I1 Positivity. The probabilities 𝑃(𝐴1 = 1) and 𝑃(𝐴2 = 1 | 𝐴1, 𝑅) are non-zero.

I2 Consistency (Robins 1997). A participant’s observed responder status is consistent with the

participant’s corresponding potential responder status under the assigned first-stage treatment;

i.e.,

𝑅𝑖 = 1{𝐴1,𝑖=1}𝑅
(1) + 1{𝐴1,𝑖=−1}𝑅

(−1) .

And a participant’s observed repeated measures outcomes are consistent with the participant’s

corresponding potential repeated measures outcomes under the assigned treatment sequence.

For observations at measurement occasion 𝑗 in stage 𝑘 , we write 𝑌 𝑗 ,𝑖 = 𝑍𝑘 ( 𝐴̄𝑘 , 𝑅𝑖,𝒀
(𝑑)
𝑖

) see

table A.1. Here, “stage 𝑘” is defined such that measurement occasions 𝑗 = 1, . . . , 𝑇1 are in stage

𝑘 = 1; occasions 𝑗 = 𝑇1 + 1, . . . , 𝑇 are in stage 𝑘 = 2.

I3 Sequential randomization. At each stage in the SMART, observed treatments 𝐴1 and 𝐴2 are

assigned independently of future potential outcomes, given the participant’s history up to that

point. That is,

{𝒀 (𝑑)
𝑡≤𝑡∗ , 𝑅(𝑎1)} ⊥⊥ 𝐴1

{𝒀 (𝑑)
𝑡>𝑡∗} ⊥⊥ 𝐴2 | 𝐴1, 𝑅

Identifiability assumptions I1 and I3 are satisfied by design in a SMART (see, e.g., Lavori
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Table A.1: Design-specific consistency assumptions. 𝑑 ∈ D indexes embedded DTRs
(𝑎1, 𝑎2𝑅, 𝑎2𝑁𝑅).

Design Time 𝑡 𝑍𝑘 ( 𝐴̄𝑘 , 𝑅𝑖 ,𝒀
(𝑑)
𝑖

)

I 𝑡0 𝑌
(𝑑)
𝑡 ,𝑖

𝑡0 < 𝑡 ≤ 𝑡∗
1
4

∑︁
𝑑∈D

1{
𝐴1,𝑖=𝑎

(𝑑)
1

}𝑌 (𝑑)
𝑡 ,𝑖

𝑡 > 𝑡∗
∑︁
𝑑∈D

1
2
1{

𝐴1,𝑖=𝑎
(𝑑)
1

} (
𝑅𝑖1

{
𝐴2,𝑖=𝑎

(𝑑)
2𝑅

} + (1 − 𝑅𝑖)1{
𝐴2,𝑖=𝑎

(𝑑)
2𝑁𝑅

}) 𝑌 (𝑑)
𝑡 ,𝑖

II 𝑡0 𝑌
(𝑑)
𝑡 ,𝑖

𝑡0 < 𝑡 ≤ 𝑡∗
1
2

∑
𝑑∈D 1{

𝐴1,𝑖=𝑎
(𝑑)
1

}𝑌 (𝑑)
𝑡 ,𝑖

𝑡 > 𝑡∗
∑︁
𝑑∈D

1{
𝐴1,𝑖=𝑎

(𝑑)
1

} (
1
2
𝑅𝑖 + (1 − 𝑅𝑖)1{𝐴2,𝑖=𝑎2}

)
𝑌
(𝑑)
𝑡 ,𝑖

III 𝑡0 𝑌
(𝑑)
𝑡 ,𝑖

𝑡0 < 𝑡 ≤ 𝑡∗
∑︁
𝑑∈D

1{
𝐴1,𝑖=𝑎

(𝑑)
1

} (
1
2
1{

𝑎
(𝑑)
1 =1

}) 𝑌 (𝑑)
𝑡 ,𝑖

𝑡 > 𝑡∗

∑︁
𝑑∈D

1{
𝐴1,𝑖=𝑎

(𝑑)
1

} (1{
𝑎
(𝑑)
1 =−1

}
+ 1{

𝑎
(𝑑)
1 =1

} (
1
2
𝑅𝑖 + (1 − 𝑅𝑖)1{

𝐴2,𝑖=𝑎
(𝑑)
2

}) )
𝑌
(𝑑)
𝑡 ,𝑖

The factor of 1/2 applied to some (or all) participants when 𝑡 > 𝑡∗ accounts for the
fact that these participants are consistent with two DTRs. In design I, all participants
are consistent with two DTRs. In design II, only responders are consistent with two
DTRs, so, if 𝑅𝑖 = 1 for some 𝑖, 𝑌 (𝑎1,0,1)

𝑡>𝑡∗,𝑖 = 𝑌
(𝑎1,0,−1)
𝑡>𝑡∗,𝑖 := 𝑌

(𝑎1,0,0)
𝑡>𝑡∗,𝑖 . Similarly for

responders to 𝑎1 = 1 in design III.
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and Dawson (2014)); identifiability assumption I2 is connects the potential outcomes and observed

data, and is typically accepted in the analysis of randomized trials.
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APPENDIX B

Proofs and Derivations

B.1 Proofs of Propositions 2.1 and 2.2

We first prove proposition 2.1, that 𝜽̂ , the solution to equation (2.6) over 𝜽 , is asymptotically

consistent for 𝜽∗, the true regression parameter.

Define 𝜽̂𝑛 to be the solution of the estimating equations

0 =
1
𝑛

𝑛∑︁
𝑖=1

∑︁
𝑑∈D

[
𝑊 (𝑑) (

𝐴1,𝑖, 𝑅𝑖, 𝐴2,𝑖
)
· 𝑫 (𝑑) (𝑿𝑖)>𝑽 (𝑑) (𝑿𝑖; 𝝉)−1

(
𝒀 𝑖 − 𝝁(𝑑) (𝑿𝑖; 𝜽)

)]
((2.6) revisited)

using data from 𝑛 individuals. Let 𝒁𝑖 contain the 𝑖th individual’s observed covariates (including

outcome, treatment assignments, etc.). We can re-write equation (2.6) as

0 = Ψ𝑛 (𝜽) =
1
𝑛

𝑛∑︁
𝑖=1

𝜓𝜽 (𝒁𝑖), (B.1)

where

𝜓𝜽 (𝒁𝑖) =
∑︁
𝑑∈D

𝑊 (𝑑) (
𝐴1,𝑖, 𝑅𝑖, 𝐴2,𝑖

)
· 𝑫 (𝑑) (𝑿𝑖)>𝑽 (𝑑) (𝑿𝑖; 𝝉)−1

(
𝒀 𝑖 − 𝝁(𝑑) (𝑿𝑖; 𝜽)

)
. (B.2)

Let 𝜽̂𝑛 be a solution to equation (B.2) for given 𝑛, and define 𝜽∗ as the true parameter value, such

that 𝜽∗ is a zero of Ψ(𝜽) = E[𝜓𝜽 (𝒁)].

Assuming the parameter space Θ is compact, sup𝜽∈Θ‖Ψ𝑛 (𝜽) − Ψ(𝜽)‖
𝑝
→ 0 by the weak law

of large numbers for random functions. If the model 𝝁(𝑑) (𝑿𝑖; 𝜽) is correctly specified and 𝜽∗
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is the unique solution of Ψ(𝜽) = E[𝜓𝜽 (𝒁)], then consistency follows from standard results for

𝑀-estimation of a location parameter (see, e.g., Keener (2010) Theorems 9.2, 9.4, and 9.33).

To prove proposition 2.2, consider a first-order Taylor expansion of the estimating equations

(2.6) about 𝜽∗, assuming continuous differentiability of 𝜓𝜽 :

0 = Ψ𝑛 (𝜽̂𝑛) = Ψ𝑛

(
𝜽∗

)
+ Ψ′

𝑛

(
𝜽̃
) (

𝜽̂𝑛 − 𝜽∗
)
, (B.3)

where 𝜽̃ is some intermediate value between 𝜽̂𝑛 and 𝜽∗. Note that Ψ′
𝑛

(
𝜽̃
)
is a 𝑝 × 𝑝 matrix, where

𝑝 is the dimension of 𝜽 . If Ψ′
𝑛

(
𝜽̃
)
is non-singular, equation (B.3) can be re-written as

√
𝑛

(
𝜽̂𝑛 − 𝜽∗

)
= −

√
𝑛Ψ′

𝑛

(
𝜽̃
)−1

Ψ𝑛

(
𝜽∗

)
. (B.4)

By the central limit theorem,
√
𝑛Ψ𝑛

(
𝜽∗

)
⇒ N

(
0,Var(𝜓𝜽 (𝒁))

)
.

Under sufficient regularity conditions (see, e.g., van der Vaart (1998) theorem 5.41), and

because 𝜽̃
𝑝
→ 𝜽∗, we have −Ψ′

𝑛 (𝜽̃)
𝑝
→ −E

[
𝜓′
𝜽 (𝒁)

]
.

Define 𝑩 = E
[
𝜓′
𝜽 (𝒁)

]
and 𝑴 = Var(𝜓𝜽 (𝒁)) = E

[
𝜓𝜽 (𝒁)⊗2

]
. By Slutsky’s theorem and the

delta method, we have
√
𝑛

(
𝜽̂𝑛 − 𝜽∗

)
⇒ N

(
0, 𝑩−1𝑴𝑩−1

)
. (B.5)

This completes the proof.

B.2 Derivation of Sample Size Formulae for Three Measure-

ments

We derive the sample size formulae for comparing two DTRs which recommend different first-stage

treatments that are embedded in a SMART in which a continuous repeated-measures outcome is

collected throughout the study. These formulae are based on the regression analyses described

in section 2.2 and a Wald test.
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We consider a SMART in which the outcome is collected three timepoints: at baseline (𝑡 = 0),

immediately before assessing response/non-response (𝑡 = 1), and at the end of the study (𝑡 = 2).

We ignore the presence of baseline covariates 𝑿 and assume 𝝁(𝑑) (𝜽) is piecewise-linear in 𝜽 (see,

for example, model (2.1)).

Recall from section 2.3 that we wish to the null hypothesis 𝐻0 : 𝒄>𝜽 = 0. In particular, we

are interested in contrasts 𝒄 which yield an end-of-study comparison between two embedded DTRs

which recommend different first-stage treatments. Since a comparison of two embedded DTRs will

yield a 1-degree of freedom Wald test, we use a 𝑍 statistic:

𝑍 =

√
𝑛𝒄>𝜽̂

𝜎𝑐

,

where 𝜎𝑐 =
√︁
𝒄>𝑩−1𝑴𝑩−1𝒄. Under 𝐻0, by asymptotic normality of

√
𝑛(𝜽̂ − 𝜽), the test statistic

follows an asymptotic standard normal distribution. Suppose we wish to size the SMART to detect

the alternative hypothesis 𝒄>𝜽 = Δ. By the definition of type-II error, we have

𝛽 = 𝑃

(�����√𝑛𝒄>𝜽̂𝜎𝑐

����� ≤ 𝑧1−𝛼/2 | 𝒄>𝜽 = Δ

)
= 𝑃

(
−𝑧1−𝛼/2 ≤

√
𝑛

𝜎𝑐

𝒄>𝜽̂ ≤ 𝑧1−𝛼/2 | 𝒄>𝜽 = Δ

)
= 𝑃

(
−𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

𝒄>𝜽 ≤
√
𝑛

𝜎𝑐

𝒄>
(
𝜽̂ − 𝜽

)
≤ 𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

𝒄>𝜽 | 𝒄>𝜽 = Δ

)
= 𝑃

(
−𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

Δ ≤
√
𝑛

𝜎𝑐

𝒄>
(
𝜽̂ − 𝜽

)
≤ 𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

Δ

)
= Φ

(
𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

Δ

)
−Φ

(
−𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

Δ

)
≤ Φ

(
𝑧1−𝛼/2 −

√
𝑛

𝜎𝑐

Δ

)
,
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we arrive at the following form for the minimum-required sample size:

𝑛 ≥
(
𝑧1−𝛼/2 + 𝑧1−𝛽

)2 𝜎2𝑐
Δ2

, (B.6)

where 𝑧𝑝 is the 𝑝th quantile of the standard normal distribution. Formula (B.6) is a fairly standard

result in the clinical trials literature (Lachin 1981; Friedman, Furberg, and DeMets 2010); however,

because of the dependence on 𝜎𝑐, the formula is not useful as written. The goal of this appendix is

to derive a closed-form upper bound on𝜎𝑐 so as to obtain a sample size formula in terms of marginal

quantities which can be more easily elicited from clinicians, or estimated from the literature.

Recall the definitions of 𝑩 and 𝑴 in equations (2.7) and (2.8), respectively. These quantities

depend on 𝑫 (𝑑) , the partial derivativematrix of 𝝁(𝑑) (𝜽) and𝑽 (𝑑) (𝝉), the working covariancematrix

for 𝒀 . By assumed linearity of 𝝁(𝑑) (𝜽), 𝑫 (𝑑) is a fixed, constant matrix for all 𝑑. Furthermore,

we assume that the working covariance matrix 𝑽 (𝑑) (𝝉) is correctly specified and satisfies working

assumption A2.2 so that 𝑽 (𝑑) (𝝉) = 𝚺 for all 𝑑 ∈ D. Note that 𝚺 is non-random.

The estimand in equation (2.11) is a function of potential outcomes; as written in equa-

tions (2.7) and (2.8), 𝑩 and 𝑴 are functions of observed data. We begin by expressing 𝑩 in terms

of potential outcomes. Under the positivity, consistency, and sequential ignorability conditions

(identifiability assumptions I1 to I3) and assuming that 𝑽 (𝑑) (𝝉) is correctly specified and equal to

𝚺, we can apply lemma 4.1 of Murphy et al. (2001) so that

𝑩 =
∑︁
𝑑∈D

E
𝐴1,𝑅,𝐴2

[
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)𝑫 (𝑑)

(
𝑽 (𝑑) (𝝉)

)−1 (
𝑫 (𝑑)

)>]
=

∑︁
𝑑∈D

𝑫 (𝑑)𝚺−1
(
𝑫 (𝑑)

)>
, (B.7)

since 𝑫 (𝑑) and 𝚺 are non-random and E[𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)] = 1.
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We now turn our attention to 𝑴. Expanding the outer product inside the expectation, we have

𝑴 = E
𝐴1,𝑅,𝐴2,𝒀


©­«
∑︁
𝑑∈D

𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)𝑫 (𝑑)
(
𝑽 (𝑑) (𝝉)

)−1 (
𝒀 − 𝝁(𝑑) (𝜽)

)ª®¬
⊗2

=
∑︁
𝑑∈D

E
𝐴1,𝑅,𝐴2,𝒀

[(
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)

)2 (
𝑫 (𝑑)𝚺−1

(
𝒀 − 𝝁(𝑑) (𝜽)

))⊗2]
+

∑︁
𝑑≠𝑑 ′

E
𝐴1,𝑅,𝐴2,𝒀

[
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)𝑊 (𝑑 ′) (𝐴1, 𝑅, 𝐴2)𝑫 (𝑑)𝚺−1

(
𝒀 − 𝝁(𝑑) (𝜽)

) (
𝒀 − 𝝁(𝑑 ′) (𝜽)

)>
𝚺−1

(
𝑫 (𝑑 ′)

)>]
.

(B.8)

Consider a single summand of the first term in equation (B.8). We can write this as

𝑫 (𝑑)𝚺−1 E
𝐴1,𝑅,𝐴2,𝒀

[
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)2

(
𝒀 − 𝝁(𝑑) (𝜽)

)⊗2]
𝚺−1

(
𝑫 (𝑑)

)>
The inner expectation is a 𝑇 × 𝑇 matrix, the (𝑖, 𝑗)th element of which is

E
𝐴1,𝑅,𝐴2,𝒀

[
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)2

(
𝑌𝑡𝑖 − 𝜇

(𝑑)
𝑡𝑖

(𝜽)
) (

𝑌𝑡 𝑗 − 𝜇
(𝑑)
𝑡 𝑗

(𝜽)
)]

. (B.9)

Notice that the work above is design-independent: 𝑩 and 𝑴 have the same form as

equations (B.7) and (B.8), respectively, for all designs. Below, we proceed only for de-

sign II, but derivations for designs I and III are analogous, substituting appropriate definitions

of 𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2). Recall that, for design II, when all randomization probabilities are 0.5,

𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2) = 21{
𝐴1=𝑎

(𝑑)
1

} (𝑅 + 2(1 − 𝑅)1{
𝐴2=𝑎

(𝑑)
2

}). Further, we restrict our focus to three
timepoints, denoted 𝑡0 (baseline), 𝑡1 = 𝑡∗, and 𝑡2 > 𝑡∗.

Consider, for example, 𝑡 = 𝑡1. By repeated use of iterated expectation and application of
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identifiability assumptions I2 and I3, equation (B.9) becomes

E
𝑌𝑡0 ,𝐴1,𝑌𝑡1 ,𝑅,𝐴2,𝑌𝑡2

[
𝑊 (𝑑) (𝐴1, 𝑅, 𝐴2)2

(
𝑌𝑡1 − 𝜇

(𝑑)
𝑡1

(𝜽)
)2]

= E
𝑌𝑡0 ,𝐴1,𝑌𝑡1 ,𝑅,𝐴2

41{
𝐴1=𝑎

(𝑑)
1

} (
𝑅 + 4(1 − 𝑅)1{

𝐴2=𝑎
(𝑑)
2

}) (
𝑌𝑡1 − 𝜇

(𝑑)
𝑡1

(𝜽)
)2

= E
𝑌
(𝑑)
𝑡0

,𝐴1,𝑌𝑡1 ,𝑅
(𝑎1) ,𝐴(𝑑)

2

41{
𝐴1=𝑎

(𝑑)
1

} (
𝑅(𝑎1) + 4(1 − 𝑅(𝑎1))1{

𝐴2=𝑎
(𝑑)
2

}) (
𝑌
(𝑑)
𝑡1

− 𝜇
(𝑑)
𝑡1

(𝜽)
)2

= E
𝑆2 ( 𝐴̄1)

41{
𝐴1=𝑎

(𝑑)
1

} ©­«𝑅(𝑎1) + 4(1 − 𝑅(𝑎1)) E
𝐴2 |𝑆2 ( 𝐴̄1)

[
1{

𝐴2=𝑎
(𝑑)
2

}]ª®¬
(
𝑌
(𝑑)
𝑡1

− 𝜇
(𝑑)
𝑡1

(𝜽)
)2

= E
𝑌
(𝑑)
𝑡0

,𝐴1,𝑌
(𝑑)
𝑡1

,𝑅 (𝑎1)

[
41{

𝐴1=𝑎
(𝑑)
1

} (
2 − 𝑅(𝑎1)

) (
𝑌
(𝑑)
𝑡1

− 𝜇
(𝑑)
𝑡1

(𝜽)
)2]

. (B.10)

= 4 E
𝑌
(𝑑)
1

[(
𝑌1 − 𝜇

(𝑑)
1

)2]
− 2 E

𝑌
(𝑑)
1 ,𝑅 (𝑎1)

[(
𝑌1 − 𝜇

(𝑑)
1

)2
𝑅(𝑎1)

]
(B.11)

= 4𝜎2 − 2Cov
((
𝑌1 − 𝜇

(𝑑)
1

)2
, 𝑅(𝑎1)

)
− 2 E

[
𝑅(𝑎1)

]
E

[(
𝑌1 − 𝜇

(𝑑)
1

)2]
(B.12)

= 2(2 − 𝑟𝑎1)𝜎2. (B.13)

Equation (B.11) follows from equation (B.10) by identifiability assumption I3 and smoothing over

𝑌
(𝑑)
𝑡0
, equation (B.12) arises from the definition of covariance, and equation (B.13) is a consequence

of working assumption A2.1(b).

Similar derivations and applications of the remaining working assumptions allow us to bound

𝒄>𝑩−1𝑴𝑩−1𝒄 above by

𝒄>𝑩−1𝑴𝑩−1𝒄 ≤ 2 · 1
2

(
(2 − 𝑟1) + (2 − 𝑟−1)

)
𝒄>𝑩−1 ©­«

∑︁
𝑑∈D

𝑫 (𝑑)𝚺−1ª®¬
⊗2

𝑩−1𝒄

=

4𝜎2(1 − 𝜌)
(
𝜌2 + 4𝜌 − 12 (𝑟1 + 𝑟−1) (2𝜌 + 1) + 2

)
1 + 𝜌

. (B.14)

Plugging equation (B.14) into formula (B.6) leads to the aforementioned “sharp” sample size
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formula for design II. Some algebra shows that

𝜎2𝑐 ≤ 4𝜎2 ·
(
1 − 𝜌2

)
· 1
2

(
(2 − 𝑟1) + (2 − 𝑟−1)

)
, (B.15)

which allows for an easy-to-understand sample size formula. Plugging this result into formula (B.6),

we arrive at formula (2.13).

B.3 Derivation of Sample Size Formulae for Arbitrary Mea-

surements

We first establish two definitions and a lemma which will be useful for constructing an upper bound

on the variance of estimand of interest for sample size calculations.

Definition B.1 (Positive semi-definite). Let 𝑨 ∈ R𝑝×𝑝 be a 𝑝 × 𝑝 symmetric real-valued matrix.

We say 𝑨 is positive semi-definite if for any vector 𝒙 ∈ R𝑝, 𝒙>𝑨𝒙 ≥ 0.

Definition B.2 (Loewner partial order). Let 𝑨 and 𝑩 be two symmetric matrices. We say that

𝑨
𝐿
≥ 𝑩 if 𝑨 − 𝑩 is positive semi-definite.

Lemma B.1. Let 𝑨, 𝑩 be symmetric matrices. If 𝑩
𝐿
≥ 𝑨, then 𝑪>𝑩𝑪

𝐿
≥ 𝑪>𝑨𝑪 for any matrix 𝑪

of suitable dimension.

Proof. By definition B.2, 𝑩 − 𝑨 is positive semi-definite; i.e., for any vector 𝒙 of appropriate

length, 𝒙>(𝑩 − 𝑨)𝒙 ≥ 0. Let 𝒛 = 𝑪𝒙 for a suitably-sized 𝑪. Then

𝒛>(𝑩 − 𝑨)𝒛 ≥ 0

𝒙>𝑪>(𝑩 − 𝑨)𝑪𝒙 ≥ 0.

Since 𝑥 is arbitrary, 𝑪>(𝑩 − 𝑨)𝑪 is positive semi-definite by definition, completing the proof. �
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Consider a SMART in which the outcome is measured at 𝑇 occasions, labeled{
𝑡1, . . . , 𝑡𝑇−𝑇2 , . . . , 𝑡𝑇

}
, where 𝑇2 ∈ {1, . . . , 𝑇 − 2} is the number of measurements in the sec-

ond stage. As above, we can express the estimand of interest as a contrast of regression parameters

in the marginal mean models described in Section 3.1, omitting baseline covariates 𝑿𝑖. As above,

we write the estimand as a contrast of regression parameters.

Consider model (2.1), a simplified version of which is reproduced below:

𝜇
(𝑎1,𝑎2𝑅 ,𝑎2𝑁𝑅)
𝑗

(𝜷) = 𝛽0 + 1{𝑡 𝑗≤𝑡∗}
(
𝛽1𝑡 𝑗 + 𝛽2𝑎1𝑡 𝑗

)
+ 1{𝑡 𝑗>𝑡∗}

(
𝑡∗𝛽1 + 𝑡∗𝛽2𝑎1 + 𝛽3(𝑡 𝑗 − 𝑡∗) + 𝛽4(𝑡 𝑗 − 𝑡∗)𝑎1

+𝛽5(𝑡 𝑗 − 𝑡∗)𝑎2𝑁𝑅 + 𝛽6(𝑡 𝑗 − 𝑡∗)𝑎1𝑎2𝑁𝑅

)
.

(2.1 revisited)

We can write the end-of-study estimand as

E
[
𝑌
(1,𝑎2R,𝑎2NR)
𝑖,𝑇

− 𝑌
(−1,𝑎′2R,𝑎

′
2NR)

𝑖,𝑇

]
= 𝒄>𝜷,

where

𝒄> =

(
0, 0, 2𝑡∗, 0, 2(𝑡𝑇 − 𝑡∗), (𝑡𝑇 − 𝑡∗)

(
𝑎2NR − 𝑎′2NR

)
, (𝑡𝑇 − 𝑡∗)

(
𝑎2NR + 𝑎′2NR

))
.

As before, we wish to size the study for the hypothesis test

H0 : 𝒄>𝜷 = 0 vs. H1 : 𝒄>𝜷 = Δ,

where Δ is a fixed alternative value, with power 1 − 𝛾. The test statistic is

𝑍 =

√
𝑛𝒄> 𝜷̂√︁

𝒄>𝑩−1𝑴𝑩−1𝒄
,

which follows an asymptotic standard normal distribution under H0 by the results in Appendix B.1.

As in appendix B.2, developing a useful sample size formula depends on obtaining a tractable
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expression for 𝒄>𝑩−1𝑴𝑩−1𝒄. With a general number of measurement occasions, the expression

for 𝑩 given in equation (B.7) holds. We now consider a more general expansion of 𝑴 which

will accommodate more than three measurement occasions. For a given 𝑑 ∈ D, define C(𝑑) ={
𝑑′ ∈ D : 𝑑′ ≠ 𝑑, 𝑎

(𝑑 ′)
1 = 𝑎

(𝑑)
1

}
to be the set of DTRs which “share a path” with 𝑑. We can write

𝑴 as the sum of DTR-specific components 𝑴𝑑 and “cross-DTR” products 𝑴𝑑,𝑑 ′ for 𝑑′ ∈ C(𝑑):

𝑴 : = E


©­«
∑︁
𝑑∈D

𝑊
(𝑑)
𝑖

(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1 (
𝒀 𝑖 − 𝜇(𝑑)

)ª®¬
⊗2

=
∑︁
𝑑∈D
E

[(
𝑊

(𝑑)
𝑖

)2 (
𝑫 (𝑑)

)> (
𝑉 (𝑑)

)−1 (
𝒀 𝑖 − 𝜇(𝑑)

)⊗2 (
𝑉 (𝑑)

)−1
𝑫 (𝑑)

]
+

∑︁
𝑑∈D

∑︁
𝑑 ′∈C(𝑑)

E

[
𝑊

(𝑑)
𝑖

𝑊
(𝑑 ′)
𝑖

(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1 (
𝒀 𝑖 − 𝝁(𝑑)

)
(
𝒀 𝑖 − 𝝁(𝑑 ′)

)> (
𝑽−1

) (𝑑 ′)
𝑫 (𝑑 ′)

]
=

∑︁
𝑑∈D

𝑴𝑑 +
∑︁
𝑑∈D

∑︁
𝑑 ′∈C(𝑑)

𝑴𝑑,𝑑 ′

Individuals in a SMART cannot experience treatments consistent with DTRs which do not share a

path; we will see that the definition of the weights in equation (2.5) and the identifiability indicators

in table A.1 imply that we do not need to consider cross-DTR products 𝑴𝑑,𝑑 ′ for 𝑑′ ∉ C(𝑑) as in

such situations the products𝑊 (𝑑)
𝑖

𝑊
(𝑑 ′)
𝑖

= 0.

We now consider Design II SMARTs and examine 𝑴𝑑 for any 𝑑 ∈ D:

𝑴𝑑 = E

[
41{

𝐴1𝑖=𝑎
(𝑑)
1

} (
𝑅
(𝑎1)
𝑖

+ 4
(
1 − 𝑅

(𝑎1)
𝑖

)
1{

𝐴2𝑖=𝑎
(𝑑)
2NR

}) (
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1
(
𝒀 𝑖 − 𝜇(𝑑)

)⊗2 (
𝑽 (𝑑)

)−1
𝑫 (𝑑)

] (B.16)

=

(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1
E

[
41{

𝐴1𝑖=𝑎
(𝑑)
1

} (
𝑅
(𝑎1)
𝑖

+ 4
(
1 − 𝑅

(𝑎1)
𝑖

)
1{

𝐴2𝑖=𝑎
(𝑑)
2

})
(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2 ] (

𝑽 (𝑑)
)−1

𝑫 (𝑑) ,

(B.17)
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where equation (B.17) follows from equation (B.16) by identifiability assumption I2 and the fact

that 𝑫 (𝑑) is fixed when there are no baseline covariates in the model.

We now consider just the inner expectation. Recall from section 1.1 that we use 𝑆 𝑗 (𝑎 𝑗−1) to

denote information collected in the period after providing treatment 𝑎 𝑗−1 until immediately prior

to providing subsequent treatment 𝑎 𝑗 , and 𝑆 𝑗 (𝑎̄ 𝑗−1) = {𝑆1, 𝑆2(𝑎1), . . . , 𝑆 𝑗−1(𝑎̄ 𝑗−2), 𝑆 𝑗 (𝑎̄ 𝑗 − 1)}

represents the “history” of observed data until the time at which 𝑎 𝑗 is recommended. Under

identifiability assumption I3, the inner expectation in equation (B.17) becomes

E
𝑆3 ( 𝐴̄2)

41{
𝐴1𝑖=𝑎

(𝑑)
1

} (
𝑅
(𝑎1)
𝑖

+ 4
(
1 − 𝑅(𝑎 (𝑑)

1 )
)
1{

𝐴2𝑖=𝑎
(𝑑)
2

}) (
𝒀 (𝑑) − 𝝁(𝑑)

)⊗2
= E

𝑆2 ( 𝐴̄1)

41{
𝐴1𝑖=𝑎

(𝑑)
1

} E
𝑆3 ( 𝐴̄2)


(
𝑅(𝑎 (𝑑)

1 ) + 4
(
1 − 𝑅(𝑎 (𝑑)

1 )
)
1{

𝐴2𝑖=𝑎
(𝑑)
2

}) (
𝒀 (𝑑) − 𝝁(𝑑)

)⊗2
| 𝑆2( 𝐴̄1)




= E
𝑆2 ( 𝐴̄1),𝑆3 (𝑎 (𝑑)

2 )

41{
𝐴1𝑖=𝑎

(𝑑)
1

} (
𝑅(𝑎 (𝑑)

1 ) + 2
(
1 − 𝑅(𝑎 (𝑑)

1 )
)) (

𝒀 (𝑑) − 𝝁(𝑑)
)⊗2

= E
𝑆3 (𝑎̄ (𝑑)

2 )

[
2
(
2 − 𝑅(𝑎 (𝑑)

1 )
) (

𝒀 (𝑑) − 𝝁(𝑑)
)⊗2]

= 4 E
𝑆3 (𝑎̄ (𝑑)

2 )

[(
𝒀 (𝑑) − 𝝁(𝑑)

)⊗2]
− 2 E

𝑆3 (𝑎̄ (𝑑)
2 )

[
𝑅(𝑎 (𝑑)

1 )
(
𝒀 (𝑑) − 𝝁(𝑑)

)⊗2]
= 4𝚺(𝑑) − 2𝑃

(
𝑅
(𝑎1)
𝑖

= 1
)
E

𝑆3 (𝑎̄ (𝑑)
2 )

[(
𝒀 (𝑑) − 𝝁(𝑑)

)⊗2
| 𝑅(𝑎1)

𝑖
= 1

]
𝑎𝑠 (B.18)

We would like to construct a simple upper bound on 𝒄>𝑩−1𝑴𝑩−1. Under working as-

sumption A3.1, equation (B.18) is bounded above (in the Loewner sense; see definition B.2) by

2
(
2 − 𝑃(𝑅(𝑎 (𝑑)

1 ) = 1)
)
𝚺𝑑 . By constructing an upper bound on 𝑴, we will arrive at an upper bound

on 𝒄>𝑩−1𝑴𝑩−1𝒄 by lemma B.1.

Now, assuming that 𝑽 (𝑑) is correctly specified (i.e., 𝑽 (𝑑) = 𝚺(𝑑) = 𝚺 under working assump-

tion A2.2), we have

𝑴𝑑

𝐿
≤ 2

(
2 − 𝑃(𝑅(𝑎 (𝑑)

1 ) = 1)
) (

𝑫 (𝑑)
)> (

𝚺(𝑑)
)−1

𝑫 (𝑑) (B.19)

89



We now construct an upper bound in the Loewner sense on 𝑴𝑑,𝑑 ′ for 𝑑′ ∈ C(𝑑). For a

design II SMART, therefore,

𝑊
(𝑑)
𝑖

𝑊
(𝑑 ′)
𝑖

= 21{
𝐴1𝑖=𝑎

(𝑑)
1

} (
𝑅𝑖 + 2 (1 − 𝑅𝑖) 1{

𝐴2𝑖=𝑎
(𝑑)
2

})
× 21{

𝐴1𝑖=𝑎
(𝑑′)
1

} (
𝑅𝑖 + 2 (1 − 𝑅𝑖) 1{

𝐴2𝑖=𝑎
(𝑑′)
2

})
= 41{

𝐴1𝑖=𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

}𝑅(𝑎1)
𝑖

.

Thus, we have

𝑴𝑑,𝑑 ′ = E
[
𝑊

(𝑑)
𝑖

𝑊
(𝑑 ′)
𝑖

(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1 (
𝒀 𝑖 − 𝝁(𝑑)

) (
𝒀 𝑖 − 𝝁(𝑑 ′)

)> (
𝑽−1

) (𝑑 ′)
𝑫 (𝑑 ′)

]
=

(
𝑫 (𝑑)

)> (
𝑽 (𝑑)

)−1
E

[
41{

𝐴1𝑖=𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

}𝑅𝑖

(
𝒀 𝑖 − 𝝁(𝑑)

) (
𝒀 𝑖 − 𝝁(𝑑 ′)

)>]
(
𝑽−1

) (𝑑 ′)
𝑫 (𝑑 ′) .

(B.20)

We focus, as above, on the inner expectation in equation (B.20). Following the above applica-
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tion of identifiability assumptions I2 and I3, we have

E

[
41{

𝐴1𝑖=𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

}𝑅𝑖

(
𝒀 𝑖 − 𝝁(𝑑)

) (
𝒀 𝑖 − 𝝁(𝑑 ′)

)>]
= 21{

𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

} E [
𝑅
(𝑎1)
𝑖

(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
) (

𝒀 (𝑑 ′)
𝑖

− 𝝁(𝑑 ′)
)>]

= 21{
𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

}𝑃 (
𝑅
(𝑎1)
𝑖

= 1
)
E

[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
) (

𝒀 (𝑑 ′)
𝑖

− 𝝁(𝑑) + 𝝁(𝑑) − 𝝁(𝑑 ′)
)>

| 𝑅(𝑎1)
𝑖

= 1
]

= 21{
𝑎
(𝑑)
1 =𝑎

(𝑑′)
1

}𝑃 (
𝑅
(𝑎1)
𝑖

= 1
) (
E

[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
) (

𝒀 (𝑑 ′)
𝑖

− 𝝁(𝑑)
)>

| 𝑅(𝑎1)
𝑖

= 1
]

+ E
[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
) (

𝝁(𝑑) − 𝝁(𝑑 ′)
)>

| 𝑅(𝑎1)
𝑖

= 1
] ) (B.21)

= 2𝑃
(
𝑅
(𝑎1)
𝑖

= 1
) (
E

[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
)⊗2

| 𝑅(𝑎1)
𝑖

= 1
]

+ E
[(
𝒀 (𝑑)
𝑖

− 𝝁(𝑑)
) (

𝝁(𝑑) − 𝝁(𝑑 ′)
)>

| 𝑅(𝑎1)
𝑖

= 1
] )

,

(B.22)

where equation (B.22) follows from equation (B.21) by recognizing the fact that, for responders,

DTRs 𝑑 and 𝑑′ ∈ C(𝑑) make identical treatment recommendations 𝑎1 and 𝑎2𝑅. Therefore,

responders experience these DTRs in the same way, so the potential outcomes under both should

be identical. We also drop the indicator since it evaluates to one for 𝑑 and 𝑑′ by definition of 𝑑′.

Again, assuming 𝑽 (𝑑) = 𝚺(𝑑) = 𝚺, we have, by working assumption A3.1,

𝑴𝑑,𝑑 ′
𝐿
≤ 2

(
𝑫 (𝑑)

)>
𝚺−1𝑫 (𝑑 ′) + 2

(
𝑫 (𝑑)

)>
𝚺−1

(
𝝂(𝑑) − 𝝁(𝑑)

) (
𝝁(𝑑) − 𝝁(𝑑 ′)

)>
𝑫 (𝑑 ′)

≈ 2
(
𝑫 (𝑑)

)>
𝚺−1𝑫 (𝑑 ′) . (B.23)

Combining equations (B.23) and (B.19), we have

𝒄>𝑩−1𝑴𝑩−1𝒄 ≤ 2𝒄>𝑩−1 ©­«
∑︁
𝑑∈D

𝚺−1(2 − 𝑃

(
𝑅(𝑎 (𝑑)

1 ) = 1)
)
𝑫 (𝑑) + 𝑫 (𝑑 ′)ª®¬ 𝑩−1𝒄. (B.24)

Recall the “clock-time” parametrization of measurement times described in section 3.1, so
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that we may refer to measurement times 𝒖. After tedious algebra, we can write the right-hand side

of equation (B.24) as

𝜎2(1 − 𝜌) (1 + (𝑇 − 1)𝜌)
(4(2 − 𝑟)𝑢22𝑇

(
𝑔1(𝜌)𝑔2(𝜌) − 𝑠22ℎ

2
1(𝜌)

)
𝑔2(𝜌)

(
𝑔1(𝜌)𝑔2(𝜌) − 𝑠22ℎ

2
1(𝜌)

)
+
(6 − 𝑟1 − 𝑟−1)

(
𝑢1𝑇𝑔2(𝜌) − 𝑢2𝑇 𝑠2ℎ1(𝜌)

)2
𝑔2(𝜌)

(
𝑔1(𝜌)𝑔2(𝜌) − 𝑠22ℎ

2
1(𝜌)

) )
≤ 4(2 − 𝑟)𝜎2𝜔

(
𝜌, 𝒖, 𝑇2

)
, (B.25)

where 𝑟𝑎1 = 𝑃(𝑅(𝑎1) = 1), 𝑟 = (𝑟1+𝑟−1)/2, 𝑠𝑘 =
∑𝑇

𝑗=1 𝑢𝑘 𝑗 , ℎ𝑘 (𝜌) = (1+ (𝑇−1)𝜌)𝑢𝑘𝑇 −𝜌
∑𝑇

𝑗=1 𝑢𝑘𝑇 ,

𝑔𝑘 (𝜌) =
(
1 + (𝑇 − 1)𝜌

) 𝑇∑︁
𝑗=1

𝑢2𝑘 𝑗 − 𝜌
©­«

𝑇∑︁
𝑗=1

𝑢𝑘 𝑗
ª®¬
2

,

and

𝜔
(
𝜌, 𝒖, 𝑇2

)
= (1 − 𝜌) (1 + (𝑇 − 1)𝜌) ·

𝑢22𝑇𝑔1(𝜌) + 𝑢21𝑇𝑔2(𝜌) − 2𝑢1𝑇𝑢2𝑇 𝑠2ℎ1(𝜌)
𝑔1(𝜌)𝑔2(𝜌) − 𝑠22ℎ

2
1(𝜌)

. (B.26)

Equation (B.26) simplifies to equation (3.7) under working assumption A3.3. We arrive at

formula (3.6) by plugging equation (B.25) into formula (B.6).
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APPENDIX C

Further Exploration of the Within-Person Deflation
Factor

Recall the within-person deflation factor

𝜔
(
𝜌, 𝒖, 𝑇2

)
= (1 − 𝜌) (1 + (𝑇 − 1)𝜌)

×
𝑢22𝑇𝑔1(𝜌) + 𝑢21𝑇𝑔2(𝜌) − 2𝑢1𝑇𝑢2𝑇 𝑠2ℎ1(𝜌)

𝑔1(𝜌)𝑔2(𝜌) − 𝑠22ℎ
2
1(𝜌)

. ((B.26) revisited)

where 𝑟𝑎1 = 𝑃(𝑅(𝑎1) = 1), 𝑟 = (𝑟1+𝑟−1)/2, 𝑠𝑘 =
∑𝑇

𝑗=1 𝑢𝑘 𝑗 , ℎ𝑘 (𝜌) = (1+ (𝑇−1)𝜌)𝑢𝑘𝑇 −𝜌
∑𝑇

𝑗=1 𝑢𝑘𝑇 ,

𝑔𝑘 (𝜌) =
(
1 + (𝑇 − 1)𝜌

) 𝑇∑︁
𝑗=1

𝑢2𝑘 𝑗 − 𝜌
©­«

𝑇∑︁
𝑗=1

𝑢𝑘 𝑗
ª®¬
2

. (B.3 revisited)

We show that 𝜔 (0, 𝒖, 1) = 1 for any measurement times 𝒕. Here, note that ℎ1(0) = 𝑢1𝑇 , 𝑠2 =∑𝑇
𝑗=1 𝑢2 𝑗 = 𝑢2𝑇 , 𝑔1(0) =

∑𝑇
𝑗=1 𝑢

2
1 𝑗 , and 𝑔2(0) =

∑𝑇
𝑗=1 𝑢

2
2 𝑗 = 𝑢22𝑇 . Plugging in to equation (B.26),

we have

𝜔 (0, 𝒖, 1) =
𝑢22𝑇

∑𝑇
𝑗=1 𝑢

2
1 𝑗 + 𝑢21𝑇𝑢

2
2𝑇 − 2𝑢21𝑇𝑢

2
2𝑇

𝑢22𝑇
∑𝑇

𝑗=1 𝑢
2
1 𝑗 − 𝑢22𝑇𝑢

2
1𝑇

= 1.

We next explore the behavior of 𝜔
(
𝜌, 𝒖, 𝑇2

)
when we do not make working assumption A3.3,

i.e., whenmeasurement times are not equally spaced in each stage. To do this, we recreate figure 3.2,

this time adding noise to the measurement times 𝒕. We keep 𝑡1, 𝑡𝑇1 = 𝑡∗, and 𝑡𝑇 fixed. For other

measurements, we add uniformly-distributed noise to the equally-spaced times so that the 𝑡 𝑗 take

values in non-overlapping windows. The resulting values of 𝜔
(
𝜌, 𝒖, 𝑇2

)
are depicted in figure C.1.

We see that the deflation factor is noticeably less “well-behaved” when measurement times
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Figure C.1: Within-person deflation factor 𝜔
(
𝜌, 𝒖, 𝑇2

)
when working assumption A3.3 is violated. The function is

bounded above by 1 for all 𝜌, 𝑇 , and 𝑇2, demonstrating that it is in fact a deflation factor. The function tends to decrease
with 𝑇 , but is quite jagged when 𝑇 is large relative to 𝑇2.
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are not equally-spaced. Generally, we still see the trends discussed in section 3.2; namely, as 𝜌,

𝑇 and 𝑇2 increase, the deflation factor tends to decrease, with 𝜔 still obtaining a minimum on the

interior of the domain of 𝑇2 for large values of 𝑇 . We conjecture that some or all of the jaggedness

in figure C.1 arises from the fact that we are not “adding” measurement occasions to the SMART:

each point in each plot is for a different set of measurement times 𝒕.
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