
Sample-efficient Learning and Generalization
with Text Representations

by

Lajanugen Logeswaran

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Associate Professor Honglak Lee, Chair
Professor Qiaozhu Mei
Professor Rada Mihalcea
Professor Dragomir Radev

Lajanugen Logeswaran

llajan@umich.edu

ORCID iD: 0000-0002-1665-475X

© Lajanugen Logeswaran 2021

ACKNOWLEDGEMENTS

I will start by thanking my advisor, Professor Honglak Lee. You took a chance on me 6
years ago when you hired me as a PhD student, and I couldn’t be happier about my decision
to come to Michigan and work with you. I have learned a lot from you about doing good
research over the course of my PhD. Thank you for creating opportunities for me to grow
professionally. I am also extremely thankful for the academic freedom to work on topics
that I was passionate about. And most of all, thank you for supporting me through the many
ups and downs in my graduate school life.

I wish to thank my industry collaborators with whom I had a chance to work with during
my internships. I thank Samy Bengio, Kristina Toutanova, Ming-Wei Chang, Kenton Lee,
Jacob Devlin, Marc’Aurelio Ranzato and Arthur Szlam for their mentoring and advice as
well as their influence on my approach to research.

My labmates and visiting researchers in my group were a big part of my PhD journey.
Thank you for inspiring me to always push harder. I learned a lot from all of you and I will
cherish the friendships I have formed with you. I thank Scott Reed, Ruben Villegas, Junhyuk
Oh, Xinchen Yan, Yuting Zhang, Seunghoon Hong, Kibok Lee, Jongwook Choi, Yunseok
Jang, Sungryull Sohn, Wilka Carvalho, Yijie Guo, Kimin Lee and Anthony Liu.

I want to thank my committee members Dragomir Radev, Rada Mihalcea, Qiaozhu Mei
and Honglak Lee for helping me with my thesis. Thank you for your valuable feedback and
advice and for helping me in various other ways during my PhD.

Finally, I thank my family and friends for their incredible support. I would not be where I
am today if not for my parents, you have always enabled me to do the things I am passionate
about. I thank my wife for putting up with me all these years - It must not have been easy
for you when I worked long hours, and the long-distance relationship on top of that. Your
love and continued support has enabled me to reach this milestone.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . viii

LIST OF APPENDICES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Motivation . 2
1.1.1 Unsupervised learning of text representations 2
1.1.2 Models and algorithms to learn from limited supervision 3

1.2 Thesis Statement . 4
1.3 Impact of thesis . 5
1.4 Thesis Outline . 5

II. Background . 7

2.1 Representation Learning . 7
2.1.1 Representation learning approaches 7
2.1.2 Representation usage in downstream tasks 9

2.2 Learning from limited supervision 10

III. An Efficient Framework for Learning Sentence Representations 13

3.1 Introduction . 13
3.2 Related Work . 15
3.3 Proposed Framework . 16
3.4 Experimental Results . 19

3.4.1 Comparison against unsupervised methods 20

iii

3.4.2 Comparison against supervised methods 22
3.4.3 Image-Sentence Ranking 24
3.4.4 Training Efficiency . 25
3.4.5 Representation size, training efficiency and performance 26

3.5 Conclusion . 27

IV. Representation Learning and Coherence Modeling via Text Ordering . 28

4.1 Introduction . 28
4.2 Related Work . 30
4.3 Approach . 32
4.4 Experimental Results . 34

4.4.1 Order Discrimination 35
4.4.2 Sentence Ordering . 35
4.4.3 Sentence Ordering and Summarization 39
4.4.4 Learned Sentence Representations 39
4.4.5 Word Influence . 41

4.5 Conclusion . 42

V. Few-shot Sequence Learning with Transformers 43

5.1 Introduction . 43
5.2 Problem Definition . 44
5.3 Approach . 45

5.3.1 Architecture . 45
5.3.2 Training and Inference Algorithm 45

5.4 Related work . 46
5.5 Experiments . 47

5.5.1 Model and Training Details 47
5.5.2 Baselines . 48
5.5.3 Sequence Classification and Transduction 49
5.5.4 Compositional Task Representations 51
5.5.5 Ablation experiments 53
5.5.6 Discussion . 54

5.6 Conclusion . 55

VI. Zero-shot Entity Linking by Reading Entity Descriptions 56

6.1 Introduction . 56
6.2 Zero-shot Entity Linking . 58

6.2.1 Review: Entity linking 58
6.2.2 Task Definition . 59
6.2.3 Relationship to other EL tasks 60

6.3 Dataset Construction . 61
6.4 Models for Entity Linking . 62

iv

6.4.1 Candidate generation 62
6.4.2 Candidate ranking . 63

6.5 Adapting to the Target World . 64
6.6 Experiments . 65

6.6.1 Generalization to Unseen Entities and New Worlds . . . 67
6.6.2 Impact of Domain Adaptive Pre-training 67
6.6.3 Test results and performance analysis 68

6.7 Related Work . 69
6.8 Conclusion . 70

VII. Learning Zero-shot Compositional Tasks from Language Instructions . 72

7.1 Introduction . 72
7.2 Related work . 74
7.3 Problem . 75
7.4 Approach . 76

7.4.1 Text subgoal inference 76
7.4.2 Cross-modal reasoning 77
7.4.3 Policy learning . 77

7.5 Experiments . 79
7.5.1 Tasks . 79
7.5.2 Baselines and hyperparameters 80
7.5.3 Results . 81
7.5.4 Ablations . 83

7.6 Conclusion . 84

VIII. Conclusion and Future Work . 85

APPENDICES . 88
A.1 Nearest neighbors . 89
B.1 Examining model errors and predictions 91
C.1 Sample agent trajectories . 95
C.2 Collecting task descriptions from Mechanical Turk 96

BIBLIOGRAPHY . 97

v

LIST OF FIGURES

Figure

3.1 Overview. (a) The approach adopted by most prior work where given an
input sentence the model attempts to generate a context sentence. (b) Our
approach replaces the decoder with a classifier which chooses the target
sentence from a set of candidate sentences. 17

3.2 Same encoder architecture trained using our objective and Skip-thought
(ST) objective and performance on downstream tasks is compared after a
given number of hours. 25

4.1 Model Overview: The input set of sentences are represented as vectors
using a sentence encoder. At each time step, attention weights are com-
puted for the sentence embeddings based on the current hidden state. The
encoder uses the attention probabilities to compute the input for the next
time-step and the decoder uses them for prediction. 32

4.2 t-SNE embeddings of representations learned by the model for sentences
from the test set. Embeddings are color coded by the position of the
sentence in the document it appears. 38

5.1 2D PCA projections of task embeddings learned by our algorithm for the
gridworld domain. Tasks visualized here have the same start position (4,4).
Points are color coded based on horizontal (left plot) and vertical (right
plot) coordinates of the end positional corresponding to each task. 54

6.1 Zero-shot entity linking. Multiple training and test domains (worlds) are
shown. The task has two key properties: (1) It is zero-shot, as no mentions
have been observed for any of the test world entities during training. (2)
Only textual (non-structured) information is available. 57

6.2 Relationship between MLM accuracy of pre-trained model and Entity-
Linking performance of the fine-tuned model, evaluated on target domains. 69

7.1 Zero-shot generalization to an unseen task of slicing an apple. The test task
is composed of known primitive subtasks – picking up a knife and slicing
the apple – each of which were encountered in training tasks. Our agent
learns to decompose a natural language task description into subtasks
using attention and executes them using low-level actions. 73

vi

7.2 Approach Overview: We perform attention over the text instruction to
construct an embedding tsg that represents the current subgoal. The text
embedding subgoal tsg attends to scene object embeddings to construct an
object subgoal representation vsg. An MLP takes tsg, vsg and observation
features eobs as input and predicts state-action values Q(s, a). The entire
model is trained end-to-end using Q-learning. See text for details. 76

7.3 Learning progress of agent trained from scratch and pre-trained agent on
place tasks. 82

7.4 Agent’s observation at different time-steps while performing a place task
and a slice task. The attention distribution in the text goal inference com-
ponent while executing each subgoal is also given below the agent obser-
vations. 83

C.1 Agent’s observation at different time-steps while performing place and
slice tasks. The attention distribution in the text goal inference component
while executing each subgoal is also given below the agent observations. 95

C.2 Example of a HIT (Human Intelligence Task) shown to Turkers in Amazon
Mechanical Turk. 96

vii

LIST OF TABLES

Table

1.1 Training time of popular representation learning approaches in the litera-
ture (SkipThoughts and BERT) and our proposed QuickThoughts approach
(chapter III). 2

2.1 (Non-exhaustive) Summary of representation learning approaches cat-
egorized based on whether they use labelled data for training (super-
vised/unsupervised) and how the trained representations are used in down-
stream tasks (as feature representations/model initialization). 8

2.2 Overview of meta-learning and few-shot learning approaches. 11
2.3 Overview of zero-shot learning approaches. 11
3.1 Comparison of sentence representations on downstream tasks. The base-

line methods are GloVe bag-of-words representation, De-noising auto-
encoders and FastSent from Hill et al. (2016), the paragraph vector dis-
tributed memory model (Le and Mikolov, 2014), skip-thought vectors
(Kiros et al., 2015) and the CNN model of Gan et al. (2016). Training
times indicated using * refers to CPU trained models and † assumes con-
catenated representations are trained independently. Performance figures
for SDAE, FastSent and ParagraphVec were obtained from Hill et al.
(2016). Higher numbers are better in all columns except for the last (MSE).
The table is divided into different sections. The bold-face numbers indicate
the best performance values among models in the current and all previous
sections. Best overall values in each column are underlined. 20

3.2 Comparison against supervised representation learning methods on down-
stream tasks. 22

3.3 Comparison against task-specific supervised models. The models are
AdaSent (Zhao et al., 2015), CNN (Kim, 2014), TF-KLD (Ji and Eisen-
stein, 2013) and Dependency-Tree LSTM (Tai et al., 2015). Note that our
performance values correspond to a linear classifier trained on fixed pre-
trained embeddings, while the task-specific methods are tuned end-to-end.

. 23
3.4 Image-caption retrieval. The purely supervised models are respectively

from Karpathy and Fei-Fei (2015), Klein et al. (2015), Mao et al. (2014)
and Vendrov et al. (2015). Best pre-trained representations and best task-
specific methods are highlighted. 24

viii

3.5 Training time and performance for different embedding sizes. The reported
performance is the mean accuracy over the classification benchmarks
(MSRP, TREC, MR, CR, SUBJ, MPQA). 26

4.1 Mean Accuracy comparison on the Accidents and Earthquakes data for the
order discrimination task. The reference models are Entity-Grid (Barzilay
and Lapata, 2008), HMM (Louis and Nenkova, 2012), Graph (Guinaudeau
and Strube, 2013), Window network (Li and Hovy, 2014) and sequence-
to-sequence (Li and Jurafsky, 2016), respectively. 35

4.2 Comparison against prior methods on the abstracts data. Entity Grid,
Seq2seq (Uni) and Window network are from Barzilay and Lapata (2008),
Li and Jurafsky (2016), Li and Hovy (2014) respectively. 38

4.3 Comparison on extractive summarization between models trained from
scratch and models pre-trained with the ordering task. 39

4.4 Performance comparison for semantic similarity and paraphrase detection.
The first row shows the best performing purely supervised methods. The
last section shows our models. 40

4.5 Visualizing salient words (Abstracts are from the AAN corpus). 41
5.1 k-shot sequence classification and sequence transduction experiments on

our three benchmarks for k ∈ {1, 5, 10, 20}. The metric for sequence
classification is average accuracy on test tasks (higher is better). On the
transduction tasks, the performance metric is average perplexity on test
tasks (lower is better). Random performance is at 25% accuracy (clas-
sification) and 12 perplexity points (other two tasks). Entries in smaller
font are error bars, and they are estimated on 4 trials varying the model
initialization. 50

5.2 Compositional models for few-shot sequence classification and sequence
transduction. All models (except non-compositional TAM) get information
on the primitives present in the tasks via extra tokens appended to the
input sequence, except that one such primitive is unseen at test time.
Non-compositional TAM is not given information about primitives, and
estimates a single task embedding instead. 52

5.3 k-shot classification accuracy when plugging the task embedding in vari-
ous ways for different values of k. 53

5.4 k-shot accuracy for different architectures with multitask and the proposed
training algorithms. 53

5.5 Training efficiency: Time taken by each training algorithm to reach the
best model (identified using validation tasks) and corresponding model per-
formance (non-compositional setting). Performance and time are averaged
across k ∈ {1, 5, 10, 20} shots. 54

ix

6.1 Assumptions and resources for entity linking task definitions. We classify
task definitions based on whether (i) the system is tested on mentions
from the training domain (In-Domain), (ii) linked mentions from the
target entity set are seen during training (Seen Entity Set), (iii) a small
high-coverage candidate set can be derived using alias tables or strict
token overlap constraints (Small Candidate Set) and the availability of
(iv) Frequency statistics, (v) Structured Data, and (vi) textual descriptions
(Entity dictionary). 59

6.2 Zero-shot entity linking dataset based on Wikia. 62
6.3 Example mention and entity candidates from Coronation Street and Star

Wars. Note that the language usage is very different across different Worlds. 63
6.4 Baseline results for Zero-shot Entity Linking. Averaged normalized Entity-

Linking accuracy on all validation domains. Usrc+tgt refers to masked
language model pre-training on unlabeled data from training and validation
worlds. 66

6.5 Performance of the Full-Transformer (UWB) model evaluated on seen and
unseen entities from the training and validation worlds. 66

6.6 Impact of using Domain Adaptive Pre-training. We fine-tune all the models
on the source labeled data after pretraining. Note: src represents the union
of all 8 training worlds and we adapt to one tgt world at a time. The target
worlds areW1

tgt: Coronation street,W2
tgt: Muppets,W3

tgt: Ice hockey,W4
tgt:

Elder scrolls. †We refer to Glorot et al. (2011) for the idea of training a
denoising autoencoder on source and target data together rather than the
actual implementation. See text for more details. 68

6.7 Performance on test domains with Full-Transformer. N. Acc represents
the normalized accuracy. U. Acc represents the unnormalized accuracy.
The unnormalized accuracy is upper-bounded by 68%, the top-64 recall of
the candidate generation stage. 69

6.8 Performance on test domains categorized by mention categories. Re-
call@64 indicates top-64 performance of candidate generation. N. Acc.
and U. Acc. are respectively the normalized and unnormalized accuracies. 69

7.1 Example task types and corresponding task descriptions. Note that the
task descriptions are used for training and testing agents. The task types
are not known to the agents. 78

7.2 Task types used for training and testing on place and slice tasks. The
obj-obj setting considers test tasks composed of unseen combinations of
objects. The task-obj setting considers generalization to unseen combina-
tions of tasks and objects (e.g. learning to slice lettuce when taught how
to slice objects and how to pickup lettuce). 80

7.3 Visualizing task attention for pickup tasks. Words in darker shades received
higher attention probabilities. 81

x

7.4 Task success rates (and standard deviation) of models under different
generalization settings. Models are evaluated on seen/unseen descriptions
of seen tasks and on unseen descriptions of unseen tasks. For unseen
tasks, we further evaluate under unseen combinations of objects as well as
unseen combinations of tasks and objects. Best numbers are boldfaced. . . 82

A.1 Nearest neighbors retrieved by the skip-thought model (ST) and our model
(QT). 90

B.1 Mention and entity candidates from Coronation Street. 92
B.2 Mention and entity candidates from Muppets. 92
B.3 Mention and entity candidates from Ice Hockey. 93
B.4 Mention and entity candidates from Elder Scrolls. 93

xi

LIST OF APPENDICES

Appendix

A. Quick Thought vectors - Nearest neighbors 89

B. Zero-shot Entity Linking - Model predictions and errors 91

C. Compositional task generalization . 94

xii

ABSTRACT

Humans have a remarkable ability to learn without much supervision. Often, a few
labelled instances or a single demonstration is enough for us to learn a new concept. Most
of our knowledge is acquired in a weakly unsupervised manner, via reading, perception, and
active interaction with the world. Machine learning models, on the other hand, struggle to
learn from limited supervision and often need large amounts of labelled data to learn. In
many practical instances, however, such supervision is not available. Furthermore, collecting
labeled instances for training may be expensive or infeasible due to privacy reasons. This
calls for approaches that can adapt to new tasks or new domains without needing a lot of
labelled data.

In this thesis, I address the limited supervision problem from two perspectives. First,
I examine methods that exploit large amounts of unlabelled data to learn useful feature
representations in a self-supervised manner. Such representations capture rich prior knowl-
edge about the data, allowing them to be useful across many tasks, and enable data-efficient
learning of new tasks. In particular, my work is concerned with the following key questions
pertaining to text representations - (i) How do we learn representations of larger units of
text, beyond words? (ii) How do we design training objectives that can efficiently learn
such representations? (iii) How do we come up with representations that allow efficient
knowledge transfer to downstream language understanding tasks?

Second, I explore models and algorithms capable of learning from limited supervision.
My work studies weakly supervised, few-shot and zero-shot learning settings with appli-
cations to text generation, sequence modeling, entity understanding and embodied control.
My work demonstrates that text descriptions are an effective means of building models that
generalize to new domains and new tasks without needing to experience supervised data for
the new domain/task. I believe that the next generation of AI technologies will be driven by
models that read and understand text to perform tasks.

xiii

CHAPTER I

Introduction

Language understanding is one of the hallmarks of human intelligence. Natural language
is a fundamental means of human communication and has played an important role in the
development of the human race. It is a rich and complex signal, and yet we are able to
comprehend and use language in our day to day activities almost effortlessly, an ability we
struggle to replicate in our machines.

Machine comprehension of human languages has become an increasingly critical need
in our times. Machine translation systems such as Google Translate, conversational systems
such as Alexa and Google Home and text auto-complete features such as Smart Reply are a
few of the tools we use on a daily basis which are powered by AI. Despite the impressive
progress made on such problems, modern machine learning methods have not achieved a
level of maturity where a system could conduct a coherent conversation with a human.

Deep Neural Networks have given rise to many of the systems described previously.
The Deep Learning revolution began early this decade, driven by the growing amount of
compute and data. Advances in model architectures and optimization algorithms have acted
as building blocks in many of these successes. But these advances have largely relied on the
availability of large labelled datasets. Such datasets are often not available in many practical
scenarios.

Consider an example where we want to build an entity recognition system for legal
documents. If we examine how traditional Entity Linking systems are built, they tend to rely
quite heavily on structured annotated resources. However, such resources are not readily
available for practical domains of interest such as legal documents or internal documents
of a company. As a result, models and algorithms designed for the scenario where such
resources are available fail to be applicable to these practical settings. This calls for methods
that are capable of generalizing to new settings with limited supervision.

My work tackles the limited supervision problem from two perspectives. First, I examine

1

methods for using large scale unlabelled text to learn useful text representations. Such general
purpose representations improve the sample efficiency of text understanding methods to
learn new tasks. Second, I propose models and algorithms that are able to learn tasks and
generalize to new settings with limited supervision.

1.1 Motivation

1.1.1 Unsupervised learning of text representations
Unsupervised text representations have had a transformative impact on Natural Language
Processing. Training representations of words (Mikolov et al., 2013), sentences (Kiros et al.,
2015), paragraphs (Le and Mikolov, 2014) and entire spans of text (Devlin et al., 2019) have
driven progress across many tasks in NLP. Training these representations in an unsupervised
manner is especially attractive due to the availability of unlabelled data in abundance. It is
thus imperative to explore methods that enable us to train data representations from large
scale unlabelled corpora in an effective manner.

Prior work on learning text representations typically use reconstruction based training
objectives. Prominent types of training objectives include context prediction (Kiros et al.,
2015), de-noising (Hill et al., 2015) and language modeling (Devlin et al., 2019). While
such reconstruction based training objectives have been quite successful, they have some
limitations. Reconstructing words can be computationally expensive due to auto-regressive
decoding or large output softmaxes when using large word vocabularies. A more subtle
issue with reconstruction is that model capacity is spent on learning to predict unimportant
aspects of text that do not contribute to it’s semantics.

Approach Training Dataset Training Time
SkipThoughts Books corpus (4G) 9 days (GTX 1080)
BERT Books corpus + Wikipedia (17G) 4 days (4-16 Cloud TPUs)
QuickThoughts Books corpus (4G) 12 hrs (1 TitanX GPU)
QuickThoughts Books corpus + UMBC corpus (12G) 1 day (1 TitanX GPU)

Table 1.1: Training time of popular representation learning approaches in the literature
(SkipThoughts and BERT) and our proposed QuickThoughts approach (chapter III).

Table 1.1 shows the training time for two popular representation learning approaches on
commonly used unlabelled corpora. We see that these methods can be fairly expensive to
train, sometimes requiring specialized hardware such as TPUs. The size of these unlabelled
corpora are also modest by today’s standards. Unlabelled data is available in large quantities
and recent work have used as much as 170G of unlabelled data for training models (Liu
et al., 2019). Exploring scalable alternatives to these methods is imperative for the following

2

reasons. First, representations generally improve with more data, and we need efficient
methods to be able to exploit such data. Second, to explore novel training objectives, we
need to be able to iterate efficiently. Waiting for several days to assess the representations
makes these iterations expensive and prohibits new advances. And finally, the significant
carbon footprint and environmental impact of training these models cannot be ignored.

As a departure from prior work, my work considers self-supervised classification training
objectives (chapters III, IV). I consider discourse signals such as sentence order information
available in large unlabelled corpora to train representations. In addition to producing useful
representations, such methods are also computationally more efficient to train compared
to their generative counterparts and lead to models that train in under a day. One of my
key contributions is the development of contrastive learning methods to train high quality
sentence representations efficiently from large scale unlabelled text.

1.1.2 Models and algorithms to learn from limited supervision
While unsupervised text representations have enabled progress in many tasks, they typically
assume that adequate labelled data exists to learn a particular target task. In many practical
scenarios such labels are scarce and it is important to think about how these representation
models can be exploited in data-starved settings.

In this thesis, I approach learning in data-starved settings from two perspectives. First,
I explore training algorithms for adapting the transformer architecture, which has been
widely successful for transfer learning using pre-trained text representations, to the few-shot
learning setting. Second, I pursue a learning paradigm where models learn to adapt to new
tasks or new domains by exploiting pre-trained text representations.

Few-shot learning with transformers Transformers (Vaswani et al., 2017a) have been
very successful at modeling discrete sequences (Barrault et al., 2019; Devlin et al., 2019;
Parisotto et al., 2019). A strong prerequisite for learning in these settings is the availability
of large labelled datasets, which is often not available in practice. I explore the applicability
of the transformer architecture in the limited data setting.

In this thesis, I am interested in two interesting questions pertinent to transformer models
in the limited data regime.

• How do we adapt the transformer architecture to the few-shot regime?

• How do we exploit the text understanding capabilities of pre-trained transformer models
to perform few-shot learning?

I propose an optimization based meta-learning algorithm to address the first question where
transformer models learn a new task by predicting an appropriate task embedding vector

3

(chapter V). In relation to the second question, I exploit the reading comprehension abilities
of pre-trained transformer language models to perform zero-shot learning (chapter VI).

Zero-shot generalization with text descriptions While the previous two research thrusts
explore representation learning and learning from limited supervision, here we examine
how strong pre-trained representations can help build models that can learn and generalize
better with limited supervision. I focus on a learning paradigm where models rely on text
descriptions to learn and generalize, drawing inspiration from how humans are able to learn
to perform new tasks by reading instructions in the form of text. For instance, we can cook a
meal just by reading a recipe or assemble furniture by reading an instruction manual. Even
if we have no prior experience with cooking or assembling furniture, we still manage to
complete these tasks.

Recent advances in text understanding provide strong motivation for exploiting this
type of natural language supervision. Pre-trained transformer models have boosted the
performance on language understanding problems such as reading comprehension in the
recent years. Remarkably, models like GPT-3 exhibit few-shot generalization when provided
with a natural language prompt of a task. This shows that we now have models that can read
and understand text to a much greater extent than we were able to until few years ago. This
provides a compelling reason to think about building AI that acquires better generalization
capabilities by reading text.

One of the key questions I try to answer in this thesis is, how can we use text and text
representations to expand the generalization abilities of AI? Specifically, I demonstrate how
generalization capabilities of entity linking systems can be improved by framing it as a
reading comprehension task and exploiting strong models from the reading comprehension
literature. I also present embodied agents that learn from text instructions and generalize to
unseen tasks by making use of task descriptions.

1.2 Thesis Statement
This thesis establishes that the sample efficiency and generalization properties of machine

learning models can be improved with text representations.
Towards this end, I make the following contributions in this thesis

• Efficient discriminative self-supervised training objectives to learn representations from
large scale unlabelled text. I present QuickThought vectors in chapter III and representa-
tions based on text order reconstruction in chapter IV.

• Models and algorithms capable of learning sequence tasks from limited supervision
(chapter V).

4

• Models that generalize to new domains (chapter VI) and tasks (chapter VII) in a zero-shot
manner by exploiting text representations.

1.3 Impact of thesis
My work on sentence representations has led to a renewed interest in learning text repre-
sentations based on contrastive training objectives (Rethmeier and Augenstein, 2021). It
has served as an inspiration for incorporating discriminative training objectives in modern
pre-training methods such as BERT (Devlin et al., 2019). My work on zero-shot entity
linking is the first of its kind to study the entity linking problem in a zero-shot setting by
posing it as a reading comprehension task. This work received a nomination for best paper
at ACL 2021. My work has inspired subsequent work such as BLINK (Wu et al., 2019) to
apply pre-trained transformer methods to recognize unseen entities in Wikipedia. In addition,
I introduced a multi-stage pre-training approach for unsupervised domain adaptation and it
was shown by subsequent influential work (Gururangan et al., 2019) that the same approach
is effective for other tasks and data domains.

1.4 Thesis Outline
My main contributions are presented in chapters III-VII and I conclude with future directions
in chapter VIII. A brief overview of the chapters and the respective publications discussed is
given below.

In chapters III, IV I explore self-supervised training objectives based on discourse signals
to learn general purpose text representations. I show that learning to recover the order of
sentences that appear in a document and learning to predict the next sentence given the
current sentence from a document leads to useful representations. In addition to producing
high quality representations, I show that this leads to more efficient training and scales better
to large datasets than prior methods.

• Lajanugen Logeswaran, Honglak Lee. An efficient framework for learning sentence
representations. ICLR 2018.

• Lajanugen Logeswaran, Honglak Lee, Dragomir Radev. Sentence Ordering and Coherence
Modeling using Recurrent Neural Networks. AAAI 2018.

In chapters V, VI, VII I explore how text representations can enable machine learning
models that generalize to new domains and tasks without needing to experience a lot of
supervision. Chapter V examines sequence classification and transduction problems in the
few shot setting, where I present transformer models that can be adapted to new tasks

5

by inferring an appropriate task embedding vector. Chapter VI describes an approach to
entity linking where I assume that text descriptions of entities are available and show that
pre-trained representation models help generalize to unseen entities in unseen domains in a
zero-shot manner. Chapter VII presents embodied agents that generalize to unseen tasks by
exploiting the compositional nature of task descriptions.

• Lajanugen Logeswaran, Ann Lee, Myle Ott, Honglak Lee, Marc’Aurelio Ranzato, Arthur
Szlam. Few-shot Sequence Learning with Transformers. NeurIPS Workshop on Meta-

Learning (MetaLearn 2020).

• Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin,
Honglak Lee. Zero-Shot Entity Linking by Reading Entity Descriptions. ACL 2019.

• Lajanugen Logeswaran, Wilka Carvalho, Honglak Lee. Learning Compositional Tasks
from Text Instructions. In submission.

6

CHAPTER II

Background

This chapter discusses background and preliminaries for subsequent chapters. Section 2.1
presents background on text representation learning. In section 2.2 I will discuss approaches
to learning from limited supervision including meta-learning, few-shot learning and zero-
shot learning.

2.1 Representation Learning
Pre-deep learning AI systems were dominated by feature-based approaches. These features
were generally handcrafted for each task. While engineering these features is a hard task
on its own, such features have restricted applicability. Features designed for one particular
problem domain may be sub-optimal for another. It is more favorable to let the learning
algorithm figure out these features on its own. This eliminates human effort and more
importantly, learned features have the potential to apply across many different problems.

Much of the progress made in language and vision, and perhaps other data modalities,
can be attributable to models and algorithms that learn good feature representations from raw
data. The Word2vec (Mikolov et al., 2013) algorithm is a fundamental method for learning
representations of words, which laid the foundations for modern deep learning based NLP.
Similarly, in the vision domain, CNNs trained on the ImageNet classification dataset have
been demonstrated to be useful for many vision tasks (Krizhevsky et al., 2012).

We categorize text representation learning approaches along the following dimensions
based on how the representations are trained and how the representations are used in other
tasks. Table 2.1 provides an overview of prior work along these dimensions of categorization.

2.1.1 Representation learning approaches
Both supervised and unsupervised approaches have been studied for training text representa-
tions. We review these approaches in this section.

7

Supervised

SBERT (Reimers and Gurevych, 2019)
USE (Cer et al., 2018)
GenSen (Subramanian et al., 2018) MT-DNN (Liu et al., 2019)
InferSent (Conneau et al., 2017)
CoVe (McCann et al., 2017)

Unsupervised

QuickThought (Logeswaran and Lee, 2018) T5 (Raffel et al., 2019)
Sentence Ordering (Logeswaran et al., 2018) GPT (Radford et al., 2019)
SDAE (Hill et al., 2016) BERT (Devlin et al., 2019)
SkipThoughts (Kiros et al., 2015) ELMo (Peters et al., 2018b)
ParagraphVec (Le and Mikolov, 2014) SA-LSTM (Dai and Le, 2015)

Text encoder Pre-trained model

Table 2.1: (Non-exhaustive) Summary of representation learning approaches categorized
based on whether they use labelled data for training (supervised/unsupervised) and how
the trained representations are used in downstream tasks (as feature representations/model
initialization).

Supervised representation learning Prior work have trained representations from human-
annotated data. InferSent (Conneau et al., 2017) and CoVe (McCann et al., 2017) are popular
approaches which respectively use datasets for Natural Language Inference (NLI) and
Machine Translation (MT) to train representations. Multitask training on both labelled and
unlabelled text has been used in GenSen (Subramanian et al., 2018) and Universal Sentence
Encoder (USE) (Cer et al., 2018) where models are trained on a combination of supervised
and unsupervised training losses. Yet another class of approaches take a model that has
been pre-trained using unlabelled text and further fine-tune them on labelled data. SBERT
(Reimers and Gurevych, 2019) takes a pre-trained BERT model and fine-tunes it using NLI
data. MT-DNN (Liu et al., 2019) fine-tunes a BERT model on annotated data from multiple
tasks.

Unsupervised representation learning Unsupervised representation learning refers to
learning representations solely based on unlabelled data, which are usually available in abun-
dance. A particular variant of unsupervised representation learning called self-supervised

learning has recently become popular, where the idea is to use labels that are naturally avail-
able as part of the data for supervision. For instance, language modeling is a self-supervised
task where models learn to predict a word given its context. The label to be predicted in
this case is a word, which occurs naturally in the data, and doesn’t require any external
supervision. Being able to exploit abundant unlabelled data is an attractive property of these
methods.

A range of self-supervised training objectives have appeared in the literature. Many

8

early representation learning work were based on the distributional hypothesis - the idea
that the meaning of words, phrases or sentences is determined by the context in which
they appear. Such methods assign a vector representation to units of text such that text
that appears in similar contexts have similar embedding vectors. Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and SkipThought vectors (Kiros et al., 2015) are
prominent examples of work based on the distributional hypothesis.

Another prominent class of algorithms based on text reconstruction have received more
attention in the recent years. These methods can be broadly classified under language
modeling and de-noising approaches. De-noising approaches introduce noise to a given
piece of text and reconstruct the original text, typically with an encoder-decoder model
(Glorot et al., 2011; Hill et al., 2015).

ELMo (Peters et al., 2018a) ignited the popularity of language modeling as a self-
supervised task for training representations. With the advent of the transformer architecture
(Vaswani et al., 2017b), language modeling on unlabelled text with a transformer (Radford
et al., 2018) proved to be much more successful than with other sequence models like RNNs.
Scaling up these methods using bigger models and large unlabelled corpora continues to
produce models and representations highly useful for language understanding (Brown et al.,
2020). A limitation of language modeling that makes it suboptimal for text understanding
applications is the lack of bi-directional context modeling.

BERT (Devlin et al., 2019) considers a hybrid training objective called masked language
modeling inspired by language modeling and de-noising. It’s ability to model bi-directional
context resulted in strong performance across NLP benchmarks and spurred a significant
interested in transformer models trained as masked language models (Lewis et al., 2019;
Joshi et al., 2020; Song et al., 2019).

2.1.2 Representation usage in downstream tasks
We can also categorize text representation models based on how they are used in downstream
tasks. We review these approaches below.

Representations as features vectors A straightforward way in which trained representa-
tions can be used is as feature representations in downstream tasks. Models that produce
such feature representations are called text encoders. Text encoders attempt to produce a
concise fixed-length representation of a given span of text. We can then apply traditional
feature based Machine Learning algorithms and train models with supervised learning.
Supervised and unsupervised approaches to train text encoders have been considered in
prior work (See first column of table 2.1).

Text encoders are particularly useful in applications where supervision is limited or

9

computational efficiency is a priority. Training a classifier with few parameters on top
of feature vectors is an effective way to learn tasks with few labelled data (Kiros et al.,
2015). Large scale retrieval applications is another instance where text encoders are highly
beneficial. Query and candidate texts can be embedded in feature space and can be efficiently
compared using inner product or cosine distance (Reimers and Gurevych, 2019).

Representation learning as pre-training Another paradigm of transfer learning that has
enjoyed a lot of success is pre-training. Compared to training a text encoder to extract feature
representations, the text encoder itself can be further fine-tuned to adapt representations to
the target task. In addition to the text encoder, task specific architectures and parameters can
be introduced and the overall model trained end-to-end for the given task. Training the text
encoder can be thought of as finding a good initialization for this part of the model (hence the
term pre-training). Pre-training models with unsupervised learning has become the standard
approach to NLP due to the significant benefits offered by unsupervised pre-training (See
second column of table 2.1). In contrast to the text encoder approach, pre-training tends to
be much more successful when sufficient labelled data exists for the target task to fine-tune
the model.

2.2 Learning from limited supervision
The advances in deep learning have been accompanied by the need for large, carefully
curated, labelled datasets. This limits the applicability of these models in practical situations.
In many cases, collecting labelled data can be infeasible due to cost, security or privacy
reasons. On the other hand, models which rely on annotated resources have limited general-
ization properties. If the task, the data domain or the label space changes, the model is either
no longer applicable or needs to be re-trained using data from the new setup. This raises two
important questions about machine learning models in practical applications.

• How do we get models to learn in settings where labelled data is scarce?

• How do we improve the generalization properties of machine learning models so that they
are applicable outside the tasks or domains for which they are trained?

Limited supervision The limited supervision problem manifests in different ways in
practice. In the simplest setting, we might have a few labels to learn a desired task. This
problem is typically addressed in the semi-supervised, meta-learning and few-shot learning
literature. In many cases, we may not have supervision for the target task, but we might have
supervision for a different, but related task. In such cases, weakly supervised methods are
applicable. Finally, we might have supervision for the desired task, but in a data domain

10

Similarity based
- Prototypical Networks (Snell et al., 2017)
- Matching Networks (Vinyals et al., 2015a)

Memory based
- GPT-3 (Brown et al., 2020)
- SNAIL (Mishra et al., 2018)
- MANN (Santoro et al., 2016)

Optimization based
- TAM (Logeswaran and Lee, 2018)
- CAVIA (Zintgraf et al., 2019)
- MAML (Finn et al., 2017)

Table 2.2: Overview of meta-learning and
few-shot learning approaches.

Attribute information
- ESZSL (Romera-Paredes and Torr, 2015)
- SJE (Akata et al., 2015)

Word embedding
- Socher et al. (2013a)
- CoSE (Norouzi et al., 2013)

Text descriptions
- Zeshel (Logeswaran et al., 2019)
- Elhoseiny et al. (2013)
- Branavan et al. (2012)

Table 2.3: Overview of zero-shot learning
approaches.

different from the domain of interest. Depending on the problem, this can be a domain
adaptation and/or zero-shot learning problem. We briefly review some of these learning
paradigms relevant to this thesis below.

Meta Learning In the traditional training paradigm, models learn a task from a set of
training instances and are expected to perform well on unseen instances from the distribution
of training instances. In contrast, meta learning or learning-to-learn (Schmidhuber, 1987;
Hochreiter et al., 2001; Andrychowicz et al., 2016; Finn et al., 2017; Nichol and Schulman,
2018) seeks to learn how to learn a new task given data for that task. In this setup, we are
given a set of training tasks, each of which are composed of labelled instances. Models are
expected to do well on instances of an unseen task at test time.

Meta-gradient approaches to meta learning are popular in the deep-learning literature.
In meta-learning, we seek to determine a set of parameters for which optimizing a model
based on the training loss for a new task (typically with a small number of training instances)
produces a model that performs well on heldout instances of the same task. Meta-gradient
approaches operationalize precisely this notion with a bi-level optimization problem where
the inner loop corresponds to updating model parameters on training instances and the outer
loop is defined based on the performance of the updated parameters on unseen instances.

Prior approaches differ based on what parameters are being optimized in the outer
loop. MAML (Finn et al., 2017) consider the model parameters to be the parameters being
optimized in the outer loop. This essentially means that we are trying to find a model
initialization which can be easily adapted to a new task using a few parameter updates
on training instances of that task. Other variants such as CAVIA (Zintgraf et al., 2019)
consider a subset of model parameters for the outer loop. Similarly Ravi and Larochelle

11

(2016) perform outer loop updates on parameters of an optimizer, i.e., we learn an optimizer
capable of effectively learning new tasks.

Few-shot Learning Few-shot learning refers to learning a task from a handful of training
examples. In a k-shot learning setup, k represents the number of training examples available
to learn a task at test time, where k is typically less than 20. Few-shot learning is closely
related to meta learning and these two terms are often used interchangeably. Meta learning
approaches are often evaluated on few-shot problems since meta-learned skills are most
useful when the new task has limited supervision.

Few-shot learning has received a lot of interest in the computer vision domain. They
can broadly be classified under similarity based methods, memory based methods and
optimization based approaches (See table 2.2 for an overview). Similarity based methods
are applicable to classification problems and rely on training a similarity function between
instance pairs (Vinyals et al., 2016; Snell et al., 2017). A query instance can then be classified
based on it’s similarity to instances belonging to a particular class label. Memory based
models construct a memory consisting of training instances of a task and learn to exploit the
memory to perform prediction on query instances of that task (Santoro et al., 2016; Mishra
et al., 2018; Brown et al., 2020).

Adapting these methods to the NLP literature can be non trivial due to the sequential
nature of language and the class of problems we care about in NLP. In this thesis we present
approaches to adapt transformer models that have been quite successful in NLP problems to
the few-shot setting.

Zero-shot Learning An extreme version of few-shot learning where no labelled examples
are available for a test task is called zero-shot learning. To make learning feasible in this
setup, it is typically assumed that some additional metadata is available for the target task of
interest (See table 2.3 for an overview of prior work). For example, in a classification setting
where the model is required to generalize to unseen class labels, metadata such as attribute
information (Romera-Paredes and Torr, 2015; Akata et al., 2015) or word descriptions
(Socher et al., 2013a; Norouzi et al., 2013) of the class labels are assumed to be available.

In particular, we focus on how to exploit rich text information to drive zero-shot gen-
eralization to new domains and tasks. Early work have explored building visual classifiers
from text descriptions (Elhoseiny et al., 2013) and learning to play games from text manuals
(Branavan et al., 2012). More recently, large pre-trained language models have been used to
exploit text descriptions for zero-shot learning (Radford et al., 2021).

12

CHAPTER III

An Efficient Framework for Learning Sentence
Representations

This chapter presents a simple and efficient framework for learning sentence representations
from unlabelled data. Drawing inspiration from the distributional hypothesis and recent
work on learning sentence representations, we reformulate the problem of predicting the
context in which a sentence appears as a classification problem. Given a sentence and its
context, a classifier distinguishes context sentences from other contrastive sentences based
on their vector representations. This allows us to efficiently learn different types of encoding
functions, and we show that the model learns high-quality sentence representations. We
demonstrate that our sentence representations outperform state-of-the-art unsupervised and
supervised representation learning methods on several downstream NLP tasks that involve
understanding sentence semantics while achieving an order of magnitude speedup in training
time.

3.1 Introduction
Methods for learning meaningful representations of data have received widespread attention
in recent years. It has become common practice to exploit these representations trained
on large corpora for downstream tasks since they capture a lot of prior knowlege about
the domain of interest and lead to improved performance. This is especially attractive
in a transfer learning setting where only a small amount of labelled data is available for
supervision.

Unsupervised learning allows us to learn useful representations from large unlabelled
corpora. The idea of self-supervision has recently become popular where representations are
learned by designing learning objectives that exploit labels that are freely available with the
data. Tasks such as predicting the relative spatial location of nearby image patches (Doersch

13

et al., 2015), inpainting (Pathak et al., 2016) and solving image jigsaw puzzles (Noroozi
and Favaro, 2016) have been successfully used for learning visual feature representations.
In the language domain, the distributional hypothesis has been integral in the development
of learning methods for obtaining semantic vector representations of words (Mikolov
et al., 2013). This is the assumption that the meaning of a word is characterized by the
word-contexts in which it appears. Neural approaches based on this assumption have been
successful at learning high quality representations from large text corpora.

Recent methods have applied similar ideas for learning sentence representations (Kiros
et al., 2015; Hill et al., 2016; Gan et al., 2016). These are encoder-decoder models that
learn to predict/re-construct the context sentences of a given sentence. Despite their success,
several modelling issues exist in these methods. There are numerous ways of expressing an
idea in the form of a sentence. The ideal semantic representation is insensitive to the form in
which meaning is expressed. Existing models are trained to reconstruct the surface form
of a sentence, which forces the model to not only predict its semantics, but aspects that are
irrelevant to the meaning of the sentence as well.

The other problem associated with these models is computational cost. These methods
have a word level reconstruction objective that involves sequentially decoding the words
of target sentences. Training with an output softmax layer over the entire vocabulary is a
significant source of slowdown in the training process. This further limits the size of the
vocabulary and the model (Variations of the softmax layer such as hierarchical softmax (Mnih
and Hinton, 2009), sampling based softmax (Jean et al., 2014) and sub-word representations
(Sennrich et al., 2015) can help alleviate this issue).

We circumvent these problems by proposing an objective that operates directly in the
space of sentence embeddings. The generation objective is replaced by a discriminative
approximation where the model attempts to identify the embedding of a correct target
sentence given a set of sentence candidates. In this context, we interpret the ‘meaning’ of a
sentence as the information in a sentence that allows it to predict and be predictable from the
information in context sentences. We name our approach quick thoughts (QT), to mean
efficient learning of thought vectors.

Our key contributions in this work are the following:

• We propose a simple and general framework for learning sentence representations
efficiently. We train widely used encoder architectures an order of magnitude faster
than previous methods, achieving better performance at the same time.

• We establish a new state-of-the-art for unsupervised sentence representation learning
across several downstream tasks that involve understanding sentence semantics.

14

3.2 Related Work
We discuss prior approaches to learning sentence representations from labelled and unla-
belled data.

Learning from Unlabelled corpora. Le and Mikolov (2014) proposed the paragraph
vector (PV) model to embed variable-length text. Models are trained to predict a word given
its context or words appearing in a small window based on a vector representation of the
source document. Unlike most other methods, in this work sentences are considered as
atomic units instead of as a compositional function of its words.

Encoder-decoder models have been successful at learning semantic representations.
Kiros et al. (2015) proposed the skip-thought vectors model, which consists of an encoder
RNN that produces a vector representation of the source sentence and a decoder RNN that
sequentially predicts the words of adjacent sentences. Drawing inspiration from this model,
Gan et al. (2016) explore the use of convolutional neural network (CNN) encoders. The
base model uses a CNN encoder and reconstructs the input sentence as well as neighboring
sentences using an RNN. They also consider a hierarchical version of the model which
sequentially reconstructs sentences within a larger context.

Autoencoder models have been explored for representation learning in a wide variety
of data domains. An advantage of autoencoders over context prediction models is that
they do not require ordered sentences for learning. Socher et al. (2011) proposed recursive
autoencoders which encode an input sentence using a recursive encoder and a decoder
reconstructs the hidden states of the encoder. Hill et al. (2016) considered a de-noising
autoencoder model (SDAE) where noise is introduced in a sentence by deleting words and
swapping bigrams and the decoder is required to reconstruct the original sentence. Bowman
et al. (2015) proposed a generative model of sentences based on a variational autoencoder.

Kenter et al. (2016) learn bag-of-words (BoW) representations of sentences by con-
sidering a conceptually similar task of identifying context sentences from candidates and
evaluate their representations on sentence similarity tasks. Hill et al. (2016) introduced
the FastSent model which uses a BoW representation of the input sentence and predicts
the words appearing in context (and optionally, the source) sentences. The model is trained
to predict whether a word appears in the target sentences. Arora et al. (2016) consider a
weighted BoW model followed by simple post-processing and show that it performs better
than BoW models trained on paraphrase data.

Jernite et al. (2017) use paragraph level coherence as a learning signal to learn rep-
resentations. The following related task is considered in their work. Given the first three
sentences of a paragraph, choose the next sentence from five sentences later in the paragraph.

15

Related to our objective is the local coherence model of Li and Hovy (2014) where a binary
classifier is trained to identify coherent/incoherent sentence windows. In contrast, we only
encourage observed contexts to be more plausible than contrastive ones and formulate it as
a multi-class classification problem. We experimentally found that this relaxed constraint
helps learn better representations.

Encoder-decoder based sequence models are known to work well, but they are slow to
train on large amounts of data. On the other hand, bag-of-words models train efficiently by
ignoring word order. We incorporate the best of both worlds by retaining flexibility of the
encoder architecture, while still being able to to train efficiently.

Structured Resources. There have been attempts to use labeled/structured data to learn
sentence representations. Hill et al. (2016) learn to map words to their dictionary definitions
using a max margin loss that encourages the encoded representation of a definition to
be similar to the corresponding word. Wieting et al. (2015) and Wieting and Gimpel
(2017) use paraphrase data to learn an encoder that maps synonymous phrases to similar
embeddings using a margin loss. Hermann and Blunsom (2013) consider a similar objective
of minimizing the inner product between paired sentences in different languages. Wieting
et al. (2017) explore the use of machine translation to obtain more paraphrase data via
back-translation and use it for learning paraphrastic embeddings.

Conneau et al. (2017) consider the supervised task of Natural language inference (NLI)
as a means of learning generic sentence representations. The task involves identifying one
of three relationships between two given sentences - entailment, neutral and contradiction.
The training strategy consists of learning a classifier on top of the embeddings of the input
pair of sentences. The authors show that sentence encoders trained for this task perform
strongly on downstream transfer tasks.

3.3 Proposed Framework
The distributional hypothesis has been operationalized by prior work in different ways. A
common approach is illustrated in Figure 3.1a, where an encoding function computes a
vector representation of an input sentence, and then a decoding function attempts to generate
the words of a target sentence conditioned on this representation. In the skip-thought model,
the target sentences are those that appear in the neighborhood of the input sentence. There
have been variations on the decoder such as autoencoder models which predict the input
sentence instead of neighboring sentences (Hill et al., 2016) and predicting properties of a
window of words in the input sentence (Le and Mikolov, 2014).

Instead of training a model to reconstruct the surface form of the input sentence or its
neighbors, we take the following approach. Use the meaning of the current sentence to

16

Spring had come. Enc Dec And yet his crops didn’t grow.

(a) Conventional approach

Spring had come. Enc (f)

They were so black. Enc (g)

And yet his crops didn’t grow. Enc (g)

He had blue eyes. Enc (g) C
la

ss
ifi

er1

2

3

2

(b) Proposed approach

Figure 3.1: Overview. (a) The approach adopted by most prior work where given an input
sentence the model attempts to generate a context sentence. (b) Our approach replaces the
decoder with a classifier which chooses the target sentence from a set of candidate sentences.

predict the meanings of adjacent sentences, where meaning is represented by an embedding
of the sentence computed from an encoding function. Despite the simplicity of the modeling
approach, we show that it facilitates learning rich representations.

Our approach is illustrated in figure 3.1. Given an input sentence, it is encoded as before
using some function. But instead of generating the target sentence, the model chooses the
correct target sentence from a set of candidate sentences. Viewing generation as choosing a
sentence from all possible sentences, this can be seen as a discriminative approximation to
the generation problem.

A key difference between these two approaches is that in figure 3.1, the model can choose
to ignore aspects of the sentence that are irrelevant in constructing a semantic embedding
space. Loss functions defined in a feature space instead of raw data space have been found
to be attractive in recent work for similar reasons (Larsen et al., 2015; Pathak et al., 2017).

Formally described, let f and g be parametrized functions that take a sentence as input
and encode it into a fixed length vector. Let s be a given sentence. Let Sctxt be the set of
sentences appearing in the context of s (for a particular context size) in the training data. Let
Scand be the set of candidate sentences considered for a given context sentence sctxt ∈ Sctxt.
In other words, Scand contains a valid context sentence sctxt (ground truth) and many other
non-context sentences, and is used for the classification objective as described below.

For a given sentence position in the context of s (e.g., the next sentence), the probability
that a candidate sentence scand ∈ Scand is the correct sentence (i.e., appearing in the context
of s) for that position is given by

p(scand|s, Scand) =
exp[c(f(s), g(scand))]∑
s′∈Scand

exp[c(f(s), g(s′))]
(3.1)

17

where c is a scoring function/classifier.
The training objective maximizes the probability of identifying the correct context

sentences for each sentence in the training data D.∑
s∈D

∑
sctxt∈Sctxt

log p(sctxt|s, Scand) (3.2)

The modeling approach encapsulates the Skip-gram approach of Mikolov et al. (2013)
when words play the role of sentences. In this case the encoding functions are simple
lookup tables considering words to be atomic units, and the training objective maximizes the
similarity between the source word and a target word in its context given a set of negative
samples.

Alternatively, we considered an objective function similar to the negative sampling
approach of Mikolov et al. (2013). This takes the form of a binary classifier which takes a
sentence window as input and classifies them as plausible and implausible context windows.
We found objective (3.2) to work better, presumably due to the relaxed constraint it imposes.
Instead of requiring context windows to be classified as positive/negative, it only requires
ground-truth contexts to be more plausible than contrastive contexts. This objective also
performed empirically better than a max-margin loss.

In our experiments, c is simply defined to be an inner product c(u, v) = uTv. This
was motivated by considering pathological solutions where the model learns poor sentence
encoders and a rich classifier to compensate for it. This is undesirable since the classifier will
be discarded and only the sentence encoders will be used to extract features for downstream
tasks. Minimizing the number of parameters in the classifier encourages the encoders to
learn disentangled and useful representations.

We consider f , g to have different parameters, although they were motivated from
the perspective of modeling sentence meaning. Another motivation comes from word
representation learning methods which use different sets of input and output parameters.
Parameter sharing is further not a significant concern since these models are trained on
large corpora. At test time, for a given sentence s we consider its representation to be the
concatenation of the outputs of the two encoders [f(s) g(s)].

Our framework allows flexible encoding functions to be used. We use RNNs as f and
g as they have been widely used in recent sentence representation learning methods. The
words of the sentence are sequentially fed as input to the RNN and the final hidden state is
interpreted as a representation of the sentence. We use gated recurrent units (GRU) (Chung
et al., 2015) as the RNN cell similar to Kiros et al. (2015).

18

3.4 Experimental Results
Evaluating sentence embeddings We evaluate our sentence representations by using
them as feature representations for downstream NLP tasks. Alternative fine-grained evalua-
tion tasks such as identifying word appearance and word order were proposed in Adi et al.
(2017). Although this provides some useful insight about the representations, these tasks
focus on the syntactic aspects of a sentence. We are more interested in assessing how well
representations capture sentence semantics. Although limitations of these evaluations have
been pointed out, we stick to the traditional approach of evaluating using downstream tasks.

Data Models were trained on the 7000 novels of the BookCorpus dataset (Kiros et al.,
2015). The dataset consists of about 45M ordered sentences. We also consider a larger
corpus for training: the UMBC corpus (Han et al., 2013), a dataset of 100M web pages
crawled from the internet, preprocessed and tokenized into paragraphs. The dataset has
129M sentences, about three times larger than BookCorpus. For models trained from scratch,
we used case-sensitive vocabularies of sizes 50k and 100k for the two datasets respectively.

Training A minibatch is constructed using a contiguous sets of sentences in the corpus.
For each sentence, all the sentences in the minibatch are considered to be the candidate pool
Scand of sentences for classification. This simple scheme for picking contrastive sentences
performed as well as other schemes such as random sampling and picking nearest neighbors
of the input sentence. Hyperparameters including batch size, learning rate, prediction context
size were obtained using prediction accuracies (accuracy of predicting context sentences)
on the validation set. A context size of 3 was used, i.e., predicting the previous and next
sentences given the current sentence. We used a batch size of 400 and learning rate of 5e-4
with the Adam optimizer for all experiments. All our RNN-based models are single-layered
and use GRU cells. Weights of the GRU are initialized using uniform Xavier initialization
and gate biases are initialized to 1. Word embeddings are initialized from U [−0.1, 0.1].

Tasks We evaluate the sentence representations on tasks that require understanding sen-
tence semantics. The following classification benchmarks are commonly used: movie review
sentiment (MR) (Pang and Lee, 2005), product reviews (CR) (Hu and Liu, 2004), subjectivity
classification (SUBJ) (Pang and Lee, 2004), opinion polarity (MPQA) (Wiebe et al., 2005),
question type classification (TREC) (Voorhees and Buckland, 2003) and paraphrase identi-
fication (MSRP) (Dolan et al., 2004). The semantic relatedness task on the SICK dataset
(Marelli et al., 2014) involves predicting relatedness scores for a given pair of sentences that
correlate well with human judgements.

The MR, CR, SUBJ, MPQA tasks are binary classification tasks. 10-fold cross validation

19

Model Dim Training MR CR SUBJ MPQA TREC MSRP SICK

time (h) (Acc) (F1) r ρ MSE

GloVe BoW 300 - 78.1 80.4 91.9 87.8 85.2 72.5 81.1 0.764 0.687 0.425

Trained from scratch on BookCorpus data

SDAE 2400 192 67.6 74.0 89.3 81.3 77.6 76.4 83.4 N/A N/A N/A
FastSent <500 2* 71.8 78.4 88.7 81.5 76.8 72.2 80.3 N/A N/A N/A
ParagraphVec <500 4* 61.5 68.6 76.4 78.1 55.8 73.6 81.9 N/A N/A N/A
uni-skip 2400 336 75.5 79.3 92.1 86.9 91.4 73.0 81.9 0.848 0.778 0.287
bi-skip 2400 336 73.9 77.9 92.5 83.3 89.4 71.2 81.2 0.841 0.770 0.300
combine-skip 4800 336† 76.5 80.1 93.6 87.1 92.2 73.0 82.0 0.858 0.792 0.269
combine-cnn 4800 - 77.2 80.9 93.1 89.1 91.8 75.5 82.6 0.853 0.789 0.279
uni-QT 2400 11 77.2 82.8 92.4 87.2 90.6 74.7 82.7 0.844 0.778 0.293
bi-QT 2400 9 77.0 83.5 92.3 87.5 89.4 74.8 82.9 0.855 0.787 0.274
combine-QT 4800 11† 78.2 84.4 93.3 88.0 90.8 76.2 83.5 0.860 0.796 0.267

Trained on BookCorpus, pre-trained word vectors are used

combine-cnn 4800 - 77.8 82.1 93.6 89.4 92.6 76.5 83.8 0.862 0.798 0.267
MC-QT 4800 11 80.4 85.2 93.9 89.4 92.8 76.9 84.0 0.868 0.801 0.256

Trained on (BookCorpus + UMBC) data, from scratch and using pre-trained word vectors

combine-QT 4800 28 81.3 84.5 94.6 89.5 92.4 75.9 83.3 0.871 0.807 0.247
MC-QT 4800 28 82.4 86.0 94.8 90.2 92.4 76.9 84.0 0.874 0.811 0.243

Table 3.1: Comparison of sentence representations on downstream tasks. The baseline
methods are GloVe bag-of-words representation, De-noising auto-encoders and FastSent
from Hill et al. (2016), the paragraph vector distributed memory model (Le and Mikolov,
2014), skip-thought vectors (Kiros et al., 2015) and the CNN model of Gan et al. (2016).
Training times indicated using * refers to CPU trained models and † assumes concatenated
representations are trained independently. Performance figures for SDAE, FastSent and
ParagraphVec were obtained from Hill et al. (2016). Higher numbers are better in all columns
except for the last (MSE). The table is divided into different sections. The bold-face numbers
indicate the best performance values among models in the current and all previous sections.
Best overall values in each column are underlined.

is used in reporting test performance for these tasks. The other tasks come with train/dev/test
splits and the dev set is used for choosing the regularization parameter. We follow the
evaluation scheme of Kiros et al. (2015) where feature representations of sentences are
obtained from the trained encoders and a logistic/softmax classifier is trained on top of the
embeddings for each task while keeping the sentence embeddings fixed. Kiros et al.’s scripts
are used for evaluation.

3.4.1 Comparison against unsupervised methods
Table 3.1 compares our work against representations from prior methods that learn from
unlabelled data. The dimensionality of sentence representations and training time are also

20

indicated. For our RNN based encoder we consider variations that are analogous to the
skip-thought model. The uni-QT model uses uni-directional RNNs as the sentence encoders
f and g. In the bi-QT model, the concatenation of the final hidden states of two RNNs
represent f and g, each processing the sentence in a different (forward/backward) direction.
The combine-QT model concatenates the representations (at test time) learned by the uni-QT
and bi-QT models.

Models trained from scratch on BookCorpus While the FastSent model is efficient to
train (training time of 2h), this efficiency stems from using a bag-of-words encoder. Bag of
words provides a strong baseline because of its ability to preserves word identity information.
However, the model performs poorly compared to most of the other methods. Bag-of-words
is also conceptually less attractive as a representation scheme since it ignores word order,
which is a key aspect of meaning.

The de-noising autoencoder (SDAE) performs strongly on the paraphrase detection task
(MSRP). This is attributable to the reconstruction (autoencoding) loss which encourages
word identity and order information to be encoded in the representation. However, it fails
to perform well in other tasks that require higher level sentence understanding and is also
inefficient to train.

Our uni/bi/combine-QT variations perform comparably (and in most cases, better) to the
skip-thought model and the CNN-based variation of Gan et al. (2016) in all tasks despite
requiring much less training time. Since these models were trained from scratch, this also
shows that the model learns good word representations as well.

MultiChannel-QT Next, we consider using pre-trained word vectors to train the model.
The MultiChannel-QT model (MC-QT) is defined as the concatenation of two bi-directional
RNNs. One of these uses fixed pre-trained word embeddings coming from a large vocabulary
(∼ 3M) as input. While the other uses tunable word embeddings trained from scratch (from
a smaller vocabulary ∼ 50k). This model was inspired by the multi-channel CNN model of
Kim (2014) which considered two sets of embeddings. With different input representations,
the two models discover less redundant features, as opposed to the uni and bi variations
suggested in Kiros et al. (2015). We use GloVe vectors (Pennington et al., 2014) as pre-
trained word embeddings. The MC-QT model outperforms all previous methods, including
the variation of Gan et al. (2016) which uses pre-trained word embeddings.

UMBC data Because our framework is efficient to train, we also experimented on a
larger dataset of documents. Results for models trained on BookCorpus and UMBC corpus
pooled together (∼ 174M sentences) are shown at the bottom of the table. We observe strict
improvements on a majority of the tasks compared to our BookCorpus models. This shows

21

that we can exploit huge corpora to obtain better models while keeping the training time
practically feasible.

Computational efficiency Our models are implemented in Tensorflow. Experiments were
performed using cuda 8.0 and cuDNN 6.0 libraries on a GTX Titan X GPU. Our best
BookCorpus model (MC-QT) trains in just under 11hrs (On both the Titan X and GTX
1080). Training time for the skip-thoughts model is mentioned as 2 weeks in Kiros et al.
(2015) and a more recent Tensorflow implementation1 reports a training time of 9 days
on a GTX 1080. On the augmented dataset our models take about a day to train, and we
observe monotonic improvements in all tasks except the TREC task. Our framework allows
training with much larger vocabulary sizes than most previous models. Our approach is also
memory efficient. The paragraph vector model has a big memory footprint since it has to
store vectors of documents used for training. Softmax computations over the vocabulary in
the skip-thought and other models with word-level reconstruction objectives incur heavy
memory consumption. Our RNN based implementation (with the indicated hyperparamters
and batch size) fits within 3GB of GPU memory, a majority of it consumed by the word
embeddings.

3.4.2 Comparison against supervised methods

Model MR CR SUBJ MPQA SST TREC MSRP SICK
CaptionRep 61.9 69.3 77.4 70.8 - 72.2 - - -
DictRep 76.7 78.7 90.7 87.2 - 81.0 68.4 76.8 -
NMT
En-to-Fr

64.7 70.1 84.9 81.5 - 82.8 - - -

InferSent 81.1 86.3 92.4 90.2 84.6 88.2 76.2 83.1 0.884
MC-QT 82.4 86.0 94.8 90.2 87.6 92.4 76.9 84.0 0.874

Table 3.2: Comparison against supervised representation learning methods on downstream
tasks.

Table 3.2 compares our approach against methods that learn from labelled/structured
data. The CaptionRep, DictRep and NMT models are from Hill et al. (2016) which are
trained respectively on the tasks of matching images and captions, mapping words to their
dictionary definitions and machine translation. The InferSent model of Conneau et al. (2017)
is trained on the NLI task. In addition to the benchmarks considered before, we additionally
also include the sentiment analysis binary classification task on Stanford Sentiment Treebank
(SST) (Socher et al., 2013b).

1https://github.com/tensorflow/models/tree/master/research/skip_thoughts

22

https://github.com/tensorflow/models/tree/master/research/skip_thoughts

Model MR CR SUBJ MPQA SST TREC MSRP SICK
Ensemble 82.7 86.7 95.5 90.3 88.2 93.4 78.5 85.1 0.881

Task specific methods
AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - -
CNN 81.5 85.0 93.4 89.6 88.1 93.6 - - -
TF-KLD - - - - - - 80.4 85.9 -
DT-LSTM - - - - - - - - 0.868

Table 3.3: Comparison against task-specific supervised models. The models are AdaSent
(Zhao et al., 2015), CNN (Kim, 2014), TF-KLD (Ji and Eisenstein, 2013) and Dependency-
Tree LSTM (Tai et al., 2015). Note that our performance values correspond to a linear
classifier trained on fixed pre-trained embeddings, while the task-specific methods are tuned
end-to-end.

The Infersent model has strong performance on the tasks. Our multichannel model
trained on the (BookCorpus + UMBC) data outperforms InferSent in most of the tasks,
with most significant margins in the SST and TREC tasks. Infersent is strong in the SICK
task presumably due to the following reasons. The model gets to observes near paraphrases
(entailment relationship) and sentences that are not-paraphrases (contradiction relationship)
at training time. Furthermore, it considers difference features (|u− v|) and multiplicative
features (u ∗ v) of the input pair of sentences u, v during training. This is identical to the
feature transformations used in the SICK evaluation as well.

Ensemble We consider ensembling to exploit the strengths of different types of encoders.
Since our models are efficient to train, we are able to feasibly train many models. We
consider a subset of the following model variations for the ensemble.

• Model type - Uni/Bi-directional RNN

• Word embeddings - Trained from scratch/Pre-trained

• Dataset - BookCorpus/UMBC
Models are combined using a weighted average of the predicted log-probabilities of

individual models, the weights being normalized validation set performance scores. Results
are presented in table 3.3. Performance of the best purely supervised task-specific methods
are shown at the bottom for reference. Note that these numbers are not directly comparable
with the unsupervised methods since the sentence embeddings are not fine-tuned. We
observe that the ensemble model closely approaches the performance of the best supervised
task-specific methods, outperforming them in 3 out of the 8 tasks.

23

COCO Retrieval
Image Annotation Image Search

Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r
Pre-trained unsupervised sentence representations
Combine-skip 33.8 67.7 82.1 3 25.9 60.0 74.6 4
Combine-cnn 34.4 - - 3 26.6 - - 4
MC-QT 37.1 72.0 84.7 2 27.9 63.3 78.3 3
Direct supervision of sentence representations
DVSA 38.4 69.6 80.5 1 27.4 60.2 74.8 3
GMM+HGLMM 39.4 67.9 80.9 2 25.1 59.8 76.6 4
m-RNN 41.0 73.0 83.5 2 29.0 42.2 77.0 3
Order 46.7 88.9 - 2 37.9 85.9 - 2

Table 3.4: Image-caption retrieval. The purely supervised models are respectively from
Karpathy and Fei-Fei (2015), Klein et al. (2015), Mao et al. (2014) and Vendrov et al. (2015).
Best pre-trained representations and best task-specific methods are highlighted.

3.4.3 Image-Sentence Ranking
The image-to-caption and caption-to-image retrieval tasks have been commonly used to
evaluate sentence representations in a multi-modal setting. The task requires retrieving an
image matching a given text description and vice versa. The evaluation setting is identical to
Kiros et al. (2015). Images and captions are represented as vectors. Given a matching image-
caption pair (I, C) a scoring function f determines the compatibility of the corresponding
vector representations vI , vC . The scoring function is trained using a margin loss which
encourages matching pairs to have higher compatibility than mismatching pairs.∑
(I,C)

∑
I′

max{0, α−f(vI , vC)+f(vI , vC′)}+
∑
(I,C)

∑
C′

max{0, α−f(vI , vC)+f(vI′ , vC)} (3.3)

As in prior work, we use VGG-Net features (4096-dimensional) as the image representa-
tion. Sentences are represented as vectors using the representation learning method to be
evaluated. These representations are held fixed during training. The scoring function used in
prior work is f(x, y) = (Ux)T (V y) where U, V are projection matrices which project down
the image and sentence vectors to the same dimensionality.

The MSCOCO dataset (Lin et al., 2014) has been traditionally used for this task. We use
the train/val/test split proposed in Karpathy and Fei-Fei (2015). The training, validation and
test sets respectively consist of 113,287, 5000, 5000 images, each annotated with 5 captions.
Performance is reported as an average over 5 splits of 1000 image-caption pairs each from
the test set. Results are presented in table 3.4. We outperform previous unsupervised pre-
training methods by a significant margin, strictly improving the median retrieval rank for

24

0 10 20 300
.6
5

0
.7

0
.7
5

0
.8

Time (h)

Pe
ar

so
n

sc
or

e

SICK

Ours
ST

0 10 20 30

0
.6
8

0
.7

0
.7
2

Time (h)

A
cc

ur
ac

y

MSRP

Ours
ST

0 10 20 30

0
.6
5

0
.7

0
.7
5

Time (h)

A
cc

ur
ac

y

MR

Ours
ST

0 10 20 30

0
.7

0
.7
5

0
.8

Time (h)

A
cc

ur
ac

y

CR

Ours
ST

0 10 20 30

0
.8

0
.8
5

0
.9

Time (h)

A
cc

ur
ac

y

SUBJ

Ours
ST

0 10 20 30

0
.7
5

0
.8

0
.8
5

Time (h)

A
cc

ur
ac

y

MPQA

Ours
ST

Figure 3.2: Same encoder architecture trained using our objective and Skip-thought (ST)
objective and performance on downstream tasks is compared after a given number of hours.

both the annotation and search tasks. We also outperform some of the purely supervised task
specific methods by some metrics.

3.4.4 Training Efficiency
To better assess the training efficiency of our models, we perform the following experiment.
We train the same encoder architecture using our objective and the skip-thought (ST)
objective and compare the performance after a certain number of hours of training. Since
training the ST objective with large embedding sizes takes many days, we consider a lower
dimensional sentence encoder for this experiment. We chose the encoder architecture to
be a single-layer GRU Recurrent neural net with hidden state size H = 1000. The word
embedding size was set to W = 300 and a vocabulary size of V = 20, 000 words was used.
Both models are initialized randomly from the same distribution. The models are trained on
the same data for 1 epoch using the Adam optimizer with learning rate 5e-4 and batch size
400. For the low dimensional model considered, the model trained with our objective and
ST objective take 6.5 hrs and 31 hrs, respectively.

The number of parameters for the two objectives are
• Ours: 6H(H +W + 1) + 2VW ≈ 19.8M parameters

• ST: 9H(H +W + 1) + VW + 2HV ≈ 57.7M parameters

25

Only the input side encoder parameters (≈ 9.9M parameters) are used for the evaluation.
The 1000-dimensional sentence embeddings are used for evaluation. Figure 3.2 compares

the performance of the two models on downstream tasks after x number of training hours.
The speed benefits of our training objective is apparent from these comparisons.

The overall training speedup observed for our objective is 4.8x. Note that the output
encoder was discarded for our model, unlike the experiments in the main text where the
representations from the input and output encoders are concatenated. Further speedups can
be achieved by training with encoders half the size and concatenating them (This is also
parameter efficient).

Embedding size Training time (h) Performance
1600 4 84.57
2400 4.7 85.12
3200 6 85.74
4000 7.15 86.09
4800 8.5 86.43
5600 10.15 86.72

Table 3.5: Training time and performance for different embedding sizes. The reported
performance is the mean accuracy over the classification benchmarks (MSRP, TREC, MR,
CR, SUBJ, MPQA).

3.4.5 Representation size, training efficiency and performance
We explore the trade-off between training efficiency and the quality of representations by
varying the representation size. We trained models with different representation sizes and
evaluate them on the downstream tasks. The multi-channel model (MC-QT) was used for
these experiments. Models were trained on the BookCorpus dataset.

Table 3.5 shows the training time and the performance corresponding to different
embedding sizes. The training times listed here assume that the two component models
in MC-QT are trained in parallel. The reported performance is an average over all the
classification benchmarks (MSRP, TREC, MR, CR, SUBJ, MPQA). We note that the
classifiers trained on top of the embeddings for downstream tasks differ in size for each
embedding size. So it is difficult to make any strong conclusions about the quality of
embeddings for the different sizes. However, we are able to reduce the embedding size and
train the models more efficiently, at the expense of marginal loss in performance in most
cases.

The 4800-dimensional Skip-thought model (Kiros et al., 2015) and Combine-CNN
model (Gan et al., 2016) achieve mean accuracies of 83.75 and 85.33 respectively. We note

26

that our 1600-dimensional model and 3200-dimensional model are respectively better than
these models, in terms of the mean performance across the benchmarks (We acknowledge
that the Skip-thought model did not use pre-trained word embeddings). This suggests that
high-quality models can be obtained even more efficiently by training lower-dimensional
models on large amounts of data using our objective.

3.5 Conclusion
This chapter proposed a framework to learn generic sentence representations efficiently
from large unlabelled text corpora. This simple approach learns richer representations
than prior unsupervised and supervised methods, consuming an order of magnitude less
training time. We establish a new state-of-the-art for unsupervised sentence representation
learning methods on several downstream tasks. Exploring scalable approaches to learn data
representations is key to exploit unlabelled data available in abundance.

The next sentence prediction task discussed in this chapter exploits a property of text
called coherence to train representations. Coherence is the property that causes sentences
to appear in a particular order. If the order is scrambled, the text is not readable anymore.
In the next chapter I will present a more general version of the next sentence prediction
problem that exploits this coherence signal naturally available in human authored text to
train text representations.

27

CHAPTER IV

Representation Learning and Coherence
Modeling via Text Ordering

Modeling the structure of coherent texts is a key NLP problem. The task of coherently
organizing a given set of sentences has been commonly used to build and evaluate models
that understand such structure. We propose an end-to-end unsupervised deep learning
approach based on the set-to-sequence framework to address this problem. Our model
strongly outperforms prior methods in the order discrimination task and a novel task of
ordering abstracts from scientific articles. Furthermore, our work shows that useful text
representations can be obtained by learning to order sentences. Visualizing the learned
sentence representations shows that the model captures high-level logical structure in
paragraphs. Our representations perform comparably to state-of-the-art pre-training methods
on sentence similarity and paraphrase detection tasks.

4.1 Introduction
Modeling the structure of coherent texts is an important problem in NLP. A well-written
text has a particular high-level logical and topical structure. The actual word and sentence
choices and their transitions come together to convey the purpose of the text. Our primary
goal is to build models that can learn such structure by arranging a given set of sentences to
make coherent text.

Multi-document Summarization (MDS) and retrieval-based Question Answering (QA)
involve extracting information from multiple documents and organizing it into a coherent
summary. Since the relative ordering of sentences from different sources can be unclear,
being able to automatically evaluate a particular order is essential. Barzilay and Elhadad
(2002) discuss the importance of an ordering component in MDS and show that finding
acceptable orderings can enhance user comprehension.

28

More importantly, by learning to order sentences we can model text coherence. It is
difficult to explicitly characterize the properties of text that make it coherent. Ordering
models attempt to understand these properties by learning high-level structure that causes
sentences to appear in a specific order in human-authored texts. Automatic methods for
evaluating human/machine generated text have great importance, with applications in essay
scoring (Miltsakaki and Kukich, 2004; Burstein et al., 2010) and text generation (Park and
Kim, 2015; Kiddon et al., 2016). Coherence models aid the better design of these systems.

Exploiting unlabelled corpora to learn semantic representations of data has become an
active area of investigation. Self-supervised learning is a typical approach that uses informa-
tion naturally available as part of the data as supervisory signals (Wang and Gupta, 2015;
Doersch et al., 2015). Noroozi and Favaro (2016) attempt to learn visual representations
by solving image jigsaw puzzles. Sentence ordering can be considered as a jigsaw puzzle
in the language domain and an interesting question is whether we can learn useful textual
representations by performing this task.

Our approach to coherence modeling is driven by recent success in capturing semantics
using distributed representations and modeling sequences using Recurrent Neural Nets
(RNN). RNNs are now the dominant approach to sequence learning and mapping problems.
The Sequence-to-sequence (Seq2seq) framework (Sutskever et al., 2014) and its variants
have fueled RNN based approaches to a range of problems such as language modeling, text
generation, MT, QA, and many others.

In this work we propose an RNN-based approach to the sentence ordering problem
which exploits the set-to-sequence framework of Vinyals et al. (2015a). A word-level RNN
encoder produces sentence embeddings, and a sentence-level set encoder RNN iteratively
attends to these embeddings and constructs a context representation. Initialized with this
representation, a sentence-level pointer network selects the sentences sequentially.

The most widely studied task relevant to sentence ordering and coherence modeling
is the order discrimination task. Given a document and a permuted version of it, the task
involves identifying the more coherent ordering. Our proposed model achieves state-of-the-
art performance on two benchmark datasets for this task, outperforming several classical
approaches and recent data-driven approaches.

Addressing the more challenging task of ordering a given collection of sentences, we
consider the novel and interesting task of ordering sentences from abstracts of scientific
articles. Our model strongly outperforms previous work on this task. We visualize the
learned sentence representations and show that our model captures high-level discourse
structure. We provide visualizations that help understand what information in the sentences
the model uses to identify the next sentence.

29

Finally, we demonstrate that our ordering model learns coherence properties and text rep-
resentations that are useful for several downstream tasks including summarization, sentence
similarity and paraphrase detection. In summary, our key contributions are as follows:

• We propose an end-to-end trainable model based on the set-to-sequence framework to
address the problem of coherently ordering a collection of sentences.

• We consider the novel task of understanding structure in abstract paragraphs and demon-
strate state-of-the-art results in order discrimination and sentence ordering tasks.

• We show that our model learns sentence representations that perform comparably to recent
unsupervised pre-training methods on downstream tasks.

4.2 Related Work
Coherence modeling & sentence ordering. Coherence modeling and sentence ordering
have been approached by closely related techniques. Many approaches propose a measure of
coherence and formulate the ordering problem as finding an order with maximal coherence.
Recurring themes from prior work include linguistic features, centering theory, local and
global coherence.

Local coherence has been modeled by considering properties of local windows of
sentences such as sentence similarity and transition structure. Lapata (2003) represent
sentences by vectors of linguistic features and learn the transition probabilities between
features of adjacent sentences. The Entity-Grid model (Barzilay and Lapata, 2008) captures
local coherence by modeling patterns of entity distributions. Sentences are represented by
the syntactic roles of entities appearing in the document. Features extracted from the entity
grid are used to train a ranking SVM. These two methods are motivated from centering
theory (Grosz et al., 1995), which states that nouns and entities in coherent discourses
exhibit certain patterns.

Global models of coherence typically use HMMs to model document structure. The
content model (Barzilay and Lee, 2004) represents topics in a particular domain as states in
an HMM. State transitions capture possible presentation orderings within the domain. Words
of a sentence are modeled using a topic-specific language model. The content model inspired
several subsequent work to combine the strengths of local and global models. Elsner et al.
(2007) combine the entity grid and the content model using a non-parametric HMM. Soricut
and Marcu (2006) use several models as feature functions and define a log-linear model to
assign probability to a text. Louis and Nenkova (2012) model the intentional structure in
documents using syntax features.

30

Unlike previous approaches, we do not use any handcrafted features and adopt an
embedding-based approach. Local coherence is taken into account by a next-sentence
prediction component in our model, and global dependencies are naturally captured by an
RNN. We demonstrate that our model can capture both logical and topical structure by
several evaluation benchmarks.

Data-driven approaches Neural approaches have gained attention recently. Li and Hovy
(2014) model sentences as embeddings derived from recurrent neural nets and train a
feed-forward neural network that takes an input window of sentence embeddings and
outputs a probability which represents the coherence of the sentence window. Coherence
evaluation is performed by sliding the window over the text and aggregating the score. Li
and Jurafsky (2016) study the same model in a larger scale task and also use a sequence-to-
sequence approach in which the model is trained to generate the next sentence given the
current sentence and vice versa. Nguyen and Joty (2017) learn to model coherence using a
convolutional network that operates on the Entity-Grid representation of an input document.
These models are limited by their local nature; our experiments show that considering larger
contexts is beneficial.

Hierarchical RNNs for document modeling Word-level and sentence-level RNNs have
been used in a hierarchical fashion for modeling documents in prior work. Li et al. (2015b)
proposed a hierarchical autoencoder for generation and summarization. More relevant to our
work is a similar model from Lin et al. (2015). A sentence-level RNN predicts the bag of
words in the next sentence given the previous sentences and a word-level RNN predicts the
word sequence conditioned on the sentence RNN hidden state. Our model has a hierarchical
structure similar to these models, but takes a discriminative approach.

Combinatorial optimization with RNNs Vinyals et al. (2015a) equip sequence-to-sequence
models with the ability to handle input and output sets, and discuss experiments on sorting,
language modeling and parsing. This is called the read, process, write (or set-to-sequence)
model. The read block maps input tokens to a fixed length vector representation. The process

block is an RNN encoder which, at each time-step, attends to the input token embeddings
and computes an attention readout, appending it to the current hidden state. The write block
is an RNN which produces the target sequence conditioned on the representation produced
by the process block. Their goal is to show that input and output orderings can matter in
these tasks, which is demonstrated using small scale experiments. Our work exploits this
framework to address the challenging problem of modeling logical and hierarchical structure
in text. Vinyals et al. (2015b) proposed pointer-networks for combinatorial optimization
problems where the output dictionary size depends on the number of input elements. We use

31

LSTM LSTM LSTM…

𝑎1
𝑖 𝑠𝑖 𝑎𝑚−1

𝑖 𝑠𝑖

𝑎𝑚

<start>

Set Encoder

LSTM LSTM LSTM…

<start>

ො𝑦1 ~ 𝑎1
′

𝑠 ො𝑦1

Pointer Network Decoder

𝑎1
′ 𝑎2

′ 𝑎𝑛
′

𝑠 ො𝑦𝑛−1

ො𝑦2 ~ 𝑎2
′ ො𝑦𝑛 ~ 𝑎𝑛

′

1) This is preliminary information, ...
2) Any errors in this report will be ...
3) On March 7, 2000, at 1020 hrs …

…

n) The aircraft sustained substantial ..

Sentence Encoder

𝑎1 𝑎2

Figure 4.1: Model Overview: The input set of sentences are represented as vectors using
a sentence encoder. At each time step, attention weights are computed for the sentence
embeddings based on the current hidden state. The encoder uses the attention probabilities
to compute the input for the next time-step and the decoder uses them for prediction.

a pointer-network as the decoder to sequentially pick the next sentence.

4.3 Approach
Our proposed model is inspired by the way a human would solve this task. First, the model
reads the sentences to capture their meaning and the general context of the paragraph. Given
this knowledge, the model tries to pick the sentences one by one sequentially till exhaustion.

Our model is based on the read, process and write framework of Vinyals et al. (2015a)
briefly discussed in the previous section. We use the encoder-decoder terminology that is
more common in the following discussion.

The model is comprised of a sentence encoder RNN, an encoder RNN and a decoder
RNN (Fig. 4.1). The sentence encoder takes as input the words of a sentence s and computes
an embedding representation of the sentence. Henceforth, we use s to refer to a sentence or
its embedding interchangeably. The embeddings {s1, s2, ..., sn} of a given set of n sentences
constitute the sentence memory, available to be accessed by subsequent components.

The encoder LSTM is identical to the originally proposed process block, defined by Eqs
4.1-4.4. At each time step the input to the LSTM is computed by taking a weighted sum over
the memory elements, the weights being attention probabilities obtained using the previous
hidden state as query (Eqs. 4.1, 4.2). This is iterated for a fixed number of times called the
read cycles. Intuitively, the model identifies a soft input order to read the sentences. As
described in Vinyals et al. (2015a) the encoder has the desirable property of being invariant
to the order in which the sentence embeddings reside in the memory.

32

et,ienc = f(si, h
t
enc); i ∈ {1, ..., n} (4.1)

atenc = Softmax(etenc) (4.2)

statt =
n∑
i=1

at,iencsi (4.3)

ht+1
enc , c

t+1
enc = LSTM(htenc, c

t
enc, s

t
att) (4.4)

The decoder is a pointer network that takes a similar form with a few differences (Eqs. 4.5-
4.7). The LSTM takes the embedding of the previous sentence as input instead of the attention
readout. At training time the correct order of sentences (so1 , so2 , ..., son) = (x1, x2, ..., xn) is
known (o represents the correct order) and xt−1 is used as the input. At test time the predicted
assignment x̂t−1 is used instead. The attention computation is identical to that of the encoder,
but now at,idec is interpreted as the probability for si being the correct sentence choice at
position t, conditioned on the previous sentence assignments p(St = si|S1, ..., St−1). The
initial state of the decoder LSTM is initialized with the final hidden state of the encoder. x0

is a vector of zeros.

htdec, c
t
dec = LSTM(ht−1dec , c

t−1
dec , x

t−1) (4.5)

et,idec = f(si, h
t
dec); i ∈ {1, ..., n} (4.6)

atdec = Softmax(etdec) (4.7)

Scoring Function We consider two choices for the scoring function f in Eqs. 4.1, 4.6. The
first (Eq. 4.8) is a single hidden layer feed-forward net that takes s, h as inputs (W, b,W ′, b′

are learnable parameters). The structure of f is similar to the window network of Li and
Hovy (2014). While they used a local window of sentences to capture context, this scoring
function exploits the entire history of sentences encoded in the RNN hidden state to score
candidates for the next sentence.

f(s, h) = W ′tanh(W [s ; h] + b) + b′ (4.8)

We also consider a bilinear scoring function (Eq. 4.9). Compared to the previous scoring
function, this takes a generative approach to regress the next sentence given the current
hidden state (Wh + b), enforcing that it be most similar to the correct next sentence. We
observed that this scoring function led to better sentence representations (Sec. 4.4.4).

f(s, h) = sT (Wh+ b) (4.9)

Contrastive Sentences In its vanilla form, we found that the set-to-sequence model tends
to rely on certain word clues to perform the ordering task. To encourage holistic sentence

33

understanding, we add a random set of sentences to the sentence memory when the decoder
makes classification decisions. This makes the problem more challenging for the decoder
since now it has to distinguish between sentences that are relevant and irrelevant to the
current context in identifying the correct sentence.

Coherence modeling We define the coherence score of an arbitrary partial/complete
assignment (sp1 , ..., spk) to the first k sentence positions as∑k

i=1log p(Si = spi |S1,...,i−1 = sp1,...,pi−1
) (4.10)

where S1, .., Sk are random variables representing the sentence assignment to positions 1

through k. The conditional probabilities are derived from the network. This is our measure of
comparing the coherence of different renderings of a document. It is also used as a heuristic
during decoding.

Training Objective The model is trained using the maximum likelihood objective

max
∑

x∈D
∑|x|

t=1log p(xt|x1, ..., xt−1) (4.11)

where D denotes the training set and each training instance is given by an ordered document
of sentences x = (x1, ..., x|x|).

4.4 Experimental Results
We first consider the order discrmination task that has been widely used in the literature
for evaluating coherence models. We then consider the more challenging ordering problem
where a coherent order of a given collection of sentences needs to be determined. We then
demonstrate that our ordering model learns coherence properties useful for summariza-
tion. Finally, we show that our model learns sentence representations that are useful for
downstream applications.

For all tasks discussed in this section we train the model with the maximum likelihood
objective on the training data relevant to the task. We used the single hidden layer MLP
scoring function for the order discrimination and sentence ordering tasks. Models are trained
end-to-end. We use pre-trained 300 dimensional GloVe word embeddings (Pennington et al.,
2014) to initialize word vectors. All LSTMs use a hidden layer size of 1000 and the MLP in
Eq. 4.8 has a hidden layer size of 500. The number of read cycles in the encoder is set to 10.
The same model architecture is used across all experiments. We used the Adam optimizer
(Kingma and Ba, 2015) with batch size 10 and learning rate 5e-4 for learning. The model is
regularized using early stopping. Hyperparameters were chosen using the validation set.

34

Entity-Grid HMM Graph Window Seq2seq Ours
(Recurrent) (Recursive)

Accidents 0.904 0.842 0.846 0.840 0.864 0.930 0.944
Earthquakes 0.872 0.957 0.635 0.951 0.976 0.992 0.997

Table 4.1: Mean Accuracy comparison on the Accidents and Earthquakes data for the order
discrimination task. The reference models are Entity-Grid (Barzilay and Lapata, 2008),
HMM (Louis and Nenkova, 2012), Graph (Guinaudeau and Strube, 2013), Window network
(Li and Hovy, 2014) and sequence-to-sequence (Li and Jurafsky, 2016), respectively.

4.4.1 Order Discrimination
The ordering problem is traditionally formulated as a binary classification task: Given a
reference paragraph and its permuted version, identify the more coherent one (Barzilay and
Lapata, 2008).

The datasets widely used for this task in previous work are the Accidents and Earthquakes
news reports. In each of these datasets the training and test sets include 100 articles and
approximately 20 permutations of each article.

In Table 4.1 we compare our results with traditional approaches and recent data-driven
approaches. The entity grid model provides a strong baseline on the Accidents dataset, only
outperformed by our model and Li and Jurafsky (2016). On the Earthquakes data the window
approach of Li and Jurafsky (2016) performs strongly. Our approach outperforms prior
models on both datasets, achieving near perfect performance on the Earthquakes dataset.

While these datasets have been widely used, they are quite formulaic in nature and are
no longer challenging. We hence turn to the more challenging task of ordering a given
collection of sentences to make a coherent document.

4.4.2 Sentence Ordering
In this task we directly address the ordering problem. We do not assume the availability of a
set of candidate orderings to choose from and instead find a good ordering from all possible
permutations of the sentences.

The difficulty of the ordering problem depends on the nature of the text, as well as the
length of paragraphs considered. Evaluation on text from arbitrary text sources makes it
difficult to interpret the results, since it may not be clear whether to attribute the observed
performance to a deficient model or ambiguity in next sentence choices due to many plausible
orderings.

Text summaries are a suitable source of data for this task. They often exhibit a clear flow
of ideas and have little redundancy. We specifically look at abstracts of conference papers

35

and research proposals. This data has several favorable properties. Abstracts usually have
a particular high-level format - They begin with a brief introduction, a description of the
problem and proposed approach and conclude with performance remarks. This would allow
us to identify if the model can capture high-level logical structure. Second, abstracts have an
average length of about 10, making the ordering task more accessible. This also gives us a
significant amount of data to train and test our models.

We use the following sources of abstracts for this task.

• NIPS Abstracts. We consider abstracts from NIPS papers in the past 10 years. We
parsed 3280 abstracts from paper pdfs and obtained 3259 abstracts after omitting
erroneous extracts. The dataset was split into years 2005-2013 for training and 2014,
2015 respectively for validation, testing.

• ACL Abstracts. A second source of abstracts are papers from the ACL Anthology
Network (AAN) corpus (Radev et al., 2009). We extracted 12,157 abstracts from the
text parses using simple keyword matching for the strings ‘Abstract’ and ‘Introduction’.
We use all extracts of papers published up to year 2010 for training, year 2011 for
validation and years 2012-2013 for testing.

• NSF Abstracts. We also used the NSF Research Award Abstracts dataset (Lichman,
2013). It comprises abstracts from a diverse set of scientific areas in contrast to the
previous two sources of data and the abstracts are also lengthier, making this dataset
more challenging. Years 1990-1999 were used for training, 2000 for validation and
2001-2003 for testing. We capped the parses of the abstracts to a maximum length of
40 sentences. Unsuccessful parses and parses of excessive length were discarded.

Further details about the data are provided in the supplement.
The following metrics are used to evaluate performance. Accuracy measures how often

the absolute position of a sentence was correctly predicted. Kendall’s tau (τ) is computed
as 1− 2 ·N/

(
n
2

)
, where N is the number of pairs in the predicted sequence with incorrect

relative order and n is the sequence length. Lapata (2006) discusses that this metric reliably
correlates with human judgements.

The following baselines are used for comparison:

• Entity Grid. Our first baseline is the Entity Grid model of Barzilay and Lapata
(2008). We use the Stanford parser (Klein and Manning, 2003) and Brown Coherence
Toolkit1 to derive Entity grid representations. A ranking SVM is trained to score

1bitbucket.org/melsner/browncoherence

36

bitbucket.org/melsner/browncoherence

correct orderings higher than incorrect orderings as in the original work. We used
20 permutations per document as training data. Since the entity grid only provides a
means of feature extraction we evaluate the model in the ordering setting as follows.
We choose 1000 random permutations for each document, one of them being the
correct order, and pick the order with maximum coherence. We experimented with
transitions of length at most 3 in the entity-grid.

• Seq2seq. The second baseline we consider is a sequence-to-sequence model which is
trained to predict the next sentence given the current sentence. Li and Jurafsky (2016)
consider similar methods and our model is the same as their uni-directional model.
These methods were shown to yield sentence embeddings that have competitive
performance in several semantic tasks in Kiros et al. (2015).

• Window Network. We consider the window approach of Li and Hovy (2014) and Li
and Jurafsky (2016) which demonstrated strong performance in the order discrimi-
nation task as our third baseline. We adopt the same coherence score interpretation
considered by the authors. In both the above models we consider a special embedding
vector which is padded at the beginning of a paragraph and learned during training.
This vector allows us to identify the initial few sentences during greedy decoding.

• RNN Decoder. Another baseline is our proposed model without the encoder. The
decoder hidden state is initialized with zeros. We observed that using a special start
symbol as for the other baselines helped obtain better performance with this model.
However, a start symbol did not help when the model is equipped with an encoder as
the hidden state initialization alone was good enough.

We do not place emphasis on the particular search algorithm in this work and thus use
beam search with the coherence score heuristic for all models. A beam size of 100 was
used. During decoding, sentence candidates that have been already chosen are pruned from
the beam. All RNNs use a hidden layer size of 1000. For the window network we used a
window size of 3 and a hidden layer size of 2000. We initialize all models with pre-trained
GloVe word embeddings.

We assess the performance of our model against baseline methods in Table 4.2. The
window network performs strongly compared to the other baselines. Our model does better
by a significant margin by exploiting global context, demonstrating that global context is
important in this task.

While the Entity-Grid model has been fairly successful for the order discrimination task
in the past we observe that it fails to discriminate between a large number of candidates. One

37

NIPS Abstracts AAN Abstracts NSF Abstracts

Accuracy τ Accuracy τ Accuracy τ

Random 15.59 0 19.36 0 9.46 0

Entity Grid 20.10 0.09 21.82 0.10 - -
Seq2seq (Uni) 27.18 0.27 36.62 0.40 13.68 0.10
Window network 41.76 0.59 50.87 0.65 18.67 0.28
RNN Decoder 48.22 0.67 52.06 0.66 25.79 0.48
Proposed model 51.55 0.72 58.06 0.73 28.33 0.51

Table 4.2: Comparison against prior methods on the abstracts data. Entity Grid, Seq2seq
(Uni) and Window network are from Barzilay and Lapata (2008), Li and Jurafsky (2016), Li
and Hovy (2014) respectively.

(a) NIPS Abstracts (b) AAN Abstracts (c) NSF Abstracts

First
Sentence

Last
Sentence

Figure 4.2: t-SNE embeddings of representations learned by the model for sentences from
the test set. Embeddings are color coded by the position of the sentence in the document it
appears.

reason could be that the feature representation is less sensitive to local changes in sentence
order (such as swapping adjacent sentences). The computational expense of obtaining parse
trees and constructing grids on a large amount of data prohibited experimenting with this
model on the NSF abstracts data.

The Seq2seq model performs worse than the window network. Interestingly, Li and
Jurafsky (2016) observe that the Seq2seq model outperforms the window network in an order
discrimination task on Wikipedia data. However, the Wikipedia data considered in their
work is an order of magnitude larger than the datasets considered here, and that could have
potentially helped the generative model. These models are also expensive during inference
since they involve computing and sampling from word distributions.

Fig. 4.2 shows t-SNE embeddings of sentence representations learned by our sentence
encoder. These are sentences from test sets, color coded by their positions in the source
abstract. This shows that our model learns high-level structure in the documents, generalizing
well to unseen text. The structure is less apparent in the NSF dataset due to its data diversity
and longer documents. While approaches based on the Barzilay and Lee (2004) model

38

Model ROUGE-1 ROUGE-2 ROUGE-L
Summary length = 75b

From scratch 18.29 47.56 12.79
Pre-train ordering model 18.77 50.32 13.25

Summary length = 275b
From scratch 35.82 10.67 33.69
Pre-train ordering model 36.47 10.99 34.27

Table 4.3: Comparison on extractive summarization between models trained from scratch
and models pre-trained with the ordering task.

explicitly capture topics by discovering clusters in sentences, our neural approach implicitly
discovers such structure.

4.4.3 Sentence Ordering and Summarization
In this section we show that sentence ordering models learn coherence properties useful
for summarization. We consider a variation of our model where the model takes a set of
sentences from several documents as input and sequentially picks summary sentences until
it predicts a special ‘stop’ symbol. A key distinction between this model and recent work
(Cheng and Lapata, 2016; Nallapati et al., 2016) is that the input order of sentences is
assumed to be unknown, making it applicable to multi-document summarization.

We train a model from scratch to perform extractive summarization in the above fashion.
We then consider a model that is pre-trained on the ordering task and is fine-tuned on the
above task. The DailyMail and CNN datasets (Cheng and Lapata, 2016) were used for
experimentation. We use DailyMail for pre-training purposes and CNN for fine-tuning and
evaluation. The labels in DailyMail are not used. We compare ROUGE scores of the two
models in Table 4.3 under standard evaluation settings.

We observe that the model pre-trained with the ordering task scores consistently better
than the model trained from scratch. The results can be improved further by using larger
news corpora. This shows that sentence ordering is an attractive unsupervised objective for
exploiting large unlabelled corpora to improve summarization systems. It further shows
that the coherence scores obtained from the ordering model correlates well with summary
quality.

4.4.4 Learned Sentence Representations
One of the original motivations for this work is the question of whether we can learn
high-quality sentence representations by learning to model text coherence. To address this

39

Model SICK MSRP
r ρ MSE (Acc) (F1)

Supervised 0.868 0.808 0.253 80.4 86.0
Uni-ST (Kiros et al., 2015) 0.848 0.778 0.287 73.0 81.9
Ordering model 0.807 0.742 0.356 72.3 81.1
+ BoW 0.842 0.775 0.299 74.0 81.9
+ Uni-ST 0.860 0.795 0.270 74.9 82.5

Table 4.4: Performance comparison for semantic similarity and paraphrase detection. The
first row shows the best performing purely supervised methods. The last section shows our
models.

question we trained our model on a large number of paragraphs using the BookCorpus
dataset (Kiros et al., 2015).

To evaluate the quality of sentence embeddings derived from the model, we use the eval-
uation pipeline of Kiros et al. (2015) for tasks that involve understanding sentence semantics.
These evaluations are performed by training a classifier on top of the embeddings derived
from the model (holding the embeddings fixed) so that the performance is indicative of the
quality of sentence representations. We present a comparison for the semantic relatedness
and paraphrase detection tasks in Table 4.4. Results for only uni-directional versions of
models are discussed here for a fair comparison. Similar to the skip-thought (ST) paper,
we train two models - one predicting the correct order in the forward direction and another
in the backward direction. The numbers shown for the ordering model were obtained by
concatenating the representations from the two models.

Concatenating the above representation with the bag-of-words representation (using the
fine-tuned word embeddings) of the sentence further improves performance. This is because
the ordering model can choose to pay less attention to specific lexical information and focus
on high-level document structure. Hence, the two representations capture complementary
semantics. Adding ST features improves performance further. We observed that the bilinear
scoring function and introducing contrastive sentences to the decoder improved the quality
of learned representations significantly.

Our model has several key advantages over ST. ST has a word-level reconstruction
objective and is trained with large softmax output layers. This limits the vocabulary size and
slows down training (they use a vocabulary size of 20k and report two weeks of training).
Our model achieves comparable performance and does not have such a word reconstruction
component. We train with a vocabulary of 400k words; the above results are based on a
training time of two days on a GTX Titan X GPU.

40

In this paper , we propose a new method for semantic class induction .
First , we introduce a generative model of sentences , based on dependency trees and
which takes into account homonymy .
Our model can thus be seen as a generalization of Brown clustering .
Second , we describe an efficient algorithm to perform inference and learning in this
model .
Third , we apply our proposed method on two large datasets (108 tokens , 105 words
types) , and demonstrate that classes induced by our algorithm improve performance
over Brown clustering on the task of semisupervised supersense tagging and named entity
recognition .

Representation learning is a promising technique for discovering features that allow
supervised classifiers to generalize from a source domain dataset to arbitrary new domains
.
We present a novel , formal statement of the representation learning task .
We argue that because the task is computationally intractable in general , it is important
for a representation learner to be able to incorporate expert knowledge during its search
for helpful features .
Leveraging the Posterior Regularization framework , we develop an architecture for
incorporating biases into representation learning .
We investigate three types of biases , and experiments on two domain adaptation tasks
show that our biased learners identify significantly better sets of features than unbiased
learners , resulting in a relative reduction in error of more than 16% for both tasks , with
respect to state-of-the-art representation learning techniques.

Table 4.5: Visualizing salient words (Abstracts are from the AAN corpus).

4.4.5 Word Influence
We attempt to understand what text-level clues the model uses to perform the ordering task.
Inspired by Li et al. (2015a), we use gradients of prediction decisions with respect to words
of the correct sentence as a proxy for the salience of each word. We feed sentences to the
decoder in the correct order and at each time step compute the derivative of the score e
(Eq. 4.6) of the correct next sentence s = (w1, .., wn) with respect to its word embeddings.
The importance of word wi in correctly predicting s as the next sentence is defined as ‖ ∂e

∂wi
‖.

We assume the hidden states of the decoder to be fixed and only back-propagate gradients
through the sentence encoder.

Table 4.5 shows visualizations of two abstracts. Darker shades correspond to higher
gradient norms. In the first example the model appears to be using the word clues ‘first’,
‘second’ and ‘third’. A similar observation was made by Chen et al. (2016). In the second
example we observe that the model pays attention to phrases such as ‘We present’, ‘We
argue’, which are typical of abstract texts. It also focuses on the word ‘representation’

41

appearing in the first two sentences. These observations link to centering theory which states
that entity distributions in coherent discourses exhibit certain patterns. The model implicitly
learns these patterns with no syntax annotations or handcrafted features.

4.5 Conclusion
This work investigated the challenging problem of coherently organizing a set of sentences.
Our RNN-based model performs strongly compared to baselines and prior work on sentence
ordering and order discrimination tasks. We further demonstrated that it captures high-
level document structure and learns useful sentence representations when trained on large
amounts of data. Our approach to the ordering problem deviates from most prior work
that use handcrafted features. However, exploiting linguistic features for next sentence
classification can potentially further improve performance. Entity distribution patterns can
provide useful features about named entities that are treated as out-of-vocabulary words. The
ordering problem can be further studied at higher-level discourse units such as paragraphs,
sections and chapters.

The previous and current chapters discussed methods to train text representations from
large scale unlabelled text. Given these pre-trained representation models, the next three
chapters explore how to train models for new tasks and domains with limited supervision. In
the next chapter, I present a meta-learning algorithm to adapt the transformer architecture,
which has been widely successful for training representations, to the few-shot setting.

42

CHAPTER V

Few-shot Sequence Learning with Transformers

Few-shot algorithms aim at learning new tasks provided only a handful of training examples.
In this work we investigate few-shot learning in the setting where the data points are
sequences of tokens and propose an efficient learning algorithm based on Transformers. In
the simplest setting, we append a token to an input sequence which represents the particular
task to be undertaken, and show that the embedding of this token can be optimized on the
fly given few labeled examples. Our approach does not require complicated changes to
the model architecture such as adapter layers nor computing second order derivatives as is
currently popular in the meta-learning and few-shot learning literature. We demonstrate our
approach on a variety of tasks, and analyze the generalization properties of several model
variants and baseline approaches. In particular, we show that compositional task descriptors
can improve performance. Experiments show that our approach works at least as well as
other methods, while being more computationally efficient.

5.1 Introduction
The problem of learning a classifier from a handful examples has received considerable
attention in the vision domain under the name of few-shot learning (Fink, 2005; Fei-Fei
et al., 2006). However, less work exists in the space of few-shot problems involving discrete

sequences, such as sequences of discrete actions in reinforcement learning or sequences
of words in natural language processing. In this work, we study the problem of sequence
classification and modeling in the few-shot regime. Specifically, we assume there are several
training tasks available for learning and, at test time, we are interested in performing few-shot
adaptation to a given new task.

Transformers (Vaswani et al., 2017a) have been very successful at modeling discrete
sequences (Barrault et al., 2019; Devlin et al., 2019; Parisotto et al., 2019). Further, they
have been shown to use context tokens appended to an input to adapt their generations or to

43

switch between different tasks (Lample et al., 2019; Shen et al., 2019; Zellers et al., 2019;
Keskar et al., 2019). Thus, one might hope that such context tokens could be effectively
used in the meta-learning setting for discrete sequences.

In this work, we show that this is indeed the case. Our approach to few-shot learning
introduces a set of task specific parameters (a task embedding), in addition to the parameters
of the model that are shared among all tasks. Unlike other approaches that require archi-
tectural changes (Houlsby et al., 2019), task embeddings are simply fed to the input of the
transformer. Learning a new task consists of inferring an appropriate task embedding for the
task, leaving the shared model parameters intact. Towards this end, we propose a simple
training algorithm where the task embedding is found via gradient based optimization, which
is simpler and computationally less expensive than second order optimization methods (Finn
et al., 2017; Zintgraf et al., 2019).

To summarize, our contributions in this work are as follows. First, we show that a simple
alternating-minimization approach for few-shot learning works well in combination with the
transformer architecture. Second, we show that a simple yet effective way to condition the
transformer with task information is via input conditioning (i.e., feeding task information as
input to the transformer); this naturally extends to compositional task information. Third, we
introduce a battery of synthetic sequence classification and modeling tasks to benchmark in
a controlled setting various baseline approaches and model variants for few shot learning of
discrete sequences. And finally, we demonstrate that the proposed approach offers a better
trade-off between few-shot performance and run time cost compared to other baselines,
including meta-learning approaches.

5.2 Problem Definition
We assume a distribution pdata(T) over tasks from which disjoint sets of training, validation
and test sets of tasks are drawn. The set of training tasks is denoted by {T train

i }Ni=1, where
each task T train

i has an associated set of training examples {(xij, yij)
Ni
j=1}. Validation and test

tasks are defined similarly, except each test task only has k training examples.
We focus on two types of tasks that involve discrete sequences as inputs and outputs:

sequence classification and transduction. In sequence classification, the inputs x are se-
quences and the output y is a discrete categorical label. In sequence transduction, each
task consists of modeling the joint distribution of a sequence y, conditioned on some input
context sequence x. The performance metrics for these settings are respectively accuracy
and perplexity, averaged across the test tasks.

Our training and inference protocol is as follows. We use the training tasks to learn the
model parameters and the validation tasks to determine hyperparameters. The optimal pa-

44

rameters and hyperparameters identified are used for evaluating average model performance
on test tasks. This involves first (optionally) training on the small set of training examples
accompanied by a test task, followed by testing on the corresponding test set.

5.3 Approach

5.3.1 Architecture
In this work, we explore an adaptation of transformers to the few-shot regime. Previous
works have shown that the behavior of a transformer model can be conditioned by appending
special tokens describing the task to be performed on the input sequence (Lample et al.,
2019; Zellers et al., 2019). We append a task embedding vector which represents information
about the task of interest to the input sequence of token embeddings. We intend to control
the overall behavior of the model for a particular task by altering the task embeddings while
keeping the rest of the model parameters intact.

For classification tasks, we use a transformer encoder similar to the BERT model (Devlin
et al., 2019). A classification head sits on the final layer representation of a special token at
the beginning of the sequence. We replace this special token with the task embedding vector
z in our model. We use a transformer decoder architecture for the transduction tasks and
append the task embedding vector to the input sequence similar to the classification setting.

In both settings we compute a log-likelihood of the form log p(y|x, z; θ), where x is the
input sequence, z is the task embedding and θ the model parameters. In the classification
setting y is a single categorical value. In the sequence transduction setting, y is a sequence
and the log likelihood decomposes as the sum of the conditional log-likelihood terms via
the chain rule of probability theory: log p(y|x, z; θ) =

∑
i log p(yi|yi−1, · · · , y1, x, z; θ).

Note that in practical applications θ can be high-dimensional, in the order of hundreds
of millions. Our goal is to alleviate overfitting in the few-shot regime by adapting only z to
learn a new task, where z is a small vector with at most a few hundred components. Next,
we describe how we learn the model parameters θ and how we estimate the task embedding
z for a given task.

5.3.2 Training and Inference Algorithm
We train our models with an alternating-minimization scheme similar to Maurer et al. (2013)
and Kumar and Daume III (2012), that can be considered a simplification of the CAVIA
approach in Zintgraf et al. (2019) (or as a refinement of the “first-order” method in that
work). See Algorithm 1 for pseudo-code. We separate the weights of the network defining
the model into shared weights θ, and per-task weights, as in CAVIA. In our case, the per-task

45

Algorithm 1: TAM for k-shot Learning
Input :Training tasks T train

1 , ..., T train
N

Output :Model parameters θ
1 repeat
2 Sample a training task: T train

i ;
3 Sample Ni ≥ k training examples from the task {(xj, yj)j=1,··· ,Ni

} ∼ T train
i ;

4 Initialize: zT train
i

= 0,∆θ = 0;
5 while loss improves and max number of updates not reached do
6 zT train

i
←zT train

i
−∇zT train

i

∑
j − log p(yj|xj, zT train

i
; θ) ;

7 ∆θ ← ∆θ −∇θ

∑Ni

j=1 − log p(yj|xj, zT train
i

; θ)

8 θ ← θ + ∆θ

9 until max training iterations;

weights form the embedding z, one for each task; while all other parameters θ are shared.
Given a few examples from the training task T train

i (line 3), we alternate training zT train
i

(the task embedding of the T train
i task) for a few gradient descent steps keeping θ fixed (see

line 5 and 6), and then update θ based on the optimal task embedding. In practice, however,
we found it helpful to update θ based on gradients accumulated for the intermediate values
of the task embedding encountered in the inner loop optimization (line 7). We surmise
that this optimization choice helps the model finding better task embeddings as the whole
parameter vector θ is updated to account for this search. Task embedding gradient updates
(line 6) are performed until the loss no longer improves or the maximum number of update
steps has been reached. Note that unlike prior methods such as MAML or CAVIA we do not
backpropagate gradients through an optimization process, which simplifies and speeds up our
optimization. We call our method, transformer trained with Alternating Minimization (TAM)
– although the alternating minimization algorithm could be applied to other architectures as
well. At test time, given a new task T test, zT test is trained with a few steps of gradient descent
(similar to line 6), with all other parameters held fixed. Since TAM is trained to optimize
task embeddings on the fly, we expect it to find good embeddings of the new task at test
time as well.

5.4 Related work
Few-shot learning and meta-learning There is now a vast literature on learning meth-
ods designed for quickly adapting to new settings. At a coarse level, one can consider
classes of methods that adapt the learning algorithm based on the task (and so are “meta-
learners”) (Schmidhuber, 1987; Hochreiter et al., 2001; Andrychowicz et al., 2016; Finn

46

et al., 2017; Nichol and Schulman, 2018), or describe model architectures that can adapt
to learn sample-efficiently over a task distribution (Vinyals et al., 2016; Snell et al., 2017).
Many methods have elements of both of these, e.g. Mishra et al. (2018); Rusu et al. (2019);
Zintgraf et al. (2019).

The method we describe in this work can be considered squarely in the class of model
architectures for sample efficient learning. It is a descendant of Hinton and Plaut (1987);
Schmidhuber (1992); Ba et al. (2016) and is closely related to Rusu et al. (2019); Zintgraf
et al. (2019) in that we pick a subset of the weights of the model that are task specific
(the “fast” weights), and update them using the training examples for a specific task; but
update the other (“slow”) weights on all training examples for all tasks. Our approach is
closest to Zintgraf et al. (2019), but differs in the way the fast weights are used by the model,
and because we do not use higher-order gradients for the slow weights, instead we use an
alternating minimization type update.

Task transfer for transformers Our approach is also related to other recent work in
natural language processing. We leverage the particular structure of the transformer architec-
ture (Vaswani et al., 2017a), which has been successful in many NLP tasks. Several works
have shown that adding a token to an input can be used to switch between different tasks
(Lample et al., 2019; Shen et al., 2019; Zellers et al., 2019; Keskar et al., 2019). Transformer
language models trained on large corpora have also been recently shown to have impressive
few-shot learning capabilities (Brown et al., 2020).

More generally, with the success of methods based on pretraining transformer mod-
els (Devlin et al., 2019), and finetuning on target tasks, there have been several works
discussing how to adapt a pre-trained model without full finetuning (Houlsby et al., 2019;
Stickland and Murray, 2019) but their focus has been on reducing the number of parameters
subject to optimization at finetuning time as opposed to reducing the number of examples as
in this study.

5.5 Experiments

5.5.1 Model and Training Details
In the classification setting, TAM is a bidirectional transformer that takes the input sequence
x and the task embedding z as input, and outputs a distribution over classes. In the sequence
transduction setting, TAM is a transformer decoder with a causal attention mechanism and
takes as additional input the output sequence y up to the token before the last. In this case
the model is trained to predicted the sequence y at the last |y| (length of sequence y) time
steps. Since model parameters are shared across tasks, TAM needs to leverage the task

47

embedding to perform the tasks well. Both classification and transduction models are trained
with cross-entropy loss.

Unless otherwise specified our transformer has 4 layers with an embedding size of
128. We use the Adam optimizer (Kingma and Ba, 2015) for both outer and inner loop
optimization. The maximum number of task embedding optimization steps is set to 25
during training. We train a single model using N samples at training time, treating N as a
hyperparameter and apply it to k-shot problems with different values of k at test time. The
size of the task embedding was set to match the embedding dimension of the transformer
(128). We discuss more details about hyperparameter choices and how they influence model
performance in section 5.5.6.

5.5.2 Baselines
Task-Agnostic transformer This baseline uses the same architecture as TAM but is not
informed about the existence of different tasks at training time, i.e., no task embedding is
fed at the input. At test time, the model is fine-tuned on the k training examples from the
test task.

Multitask transformer This is a transformer that is conditioned on the current task both
in the classification and transduction settings. It is identical to TAM except all parameters
including task embeddings are trained by standard back-propagation, without any alternating
minimization.

Matching Networks (Vinyals et al., 2016) We consider Matching Networks only in
our classification setting, as it is not straightforward to use it for transduction. We use a
transformer to model the similarity between a query instance and support set instance which
takes the concatenation of the two sequences as input and outputs a similarity score.

SNAIL (Mishra et al., 2018) This model is similar to the task-agnostic transformer except
the input is augmented with the concatenation of all input-output training pairs. For both
Matching Networks and SNAIL, we construct training episodes by sampling k training
examples to define a task, to match the test scenario. We train different models for each k-
shot problem. Both Matching networks and SNAIL are trained using the multi-task training
loss and applied to test tasks without any finetuning.

MAML (Finn et al., 2017) All model parameters are trained using MAML, with the same
model architecture as TAM. The entire model is fine-tuned on test tasks.

CAVIA (Zintgraf et al., 2019) Similar to TAM, CAVIA has a set of task-specific param-
eters and shared parameters. The training algorithm is similar to MAML, but inner loop
updates are performed on the task-specific parameters as opposed to the entire model.

48

5.5.3 Sequence Classification and Transduction
Most prior work on few-shot learning have focused on computer vision benchmarks such as
Omniglot Lake (2019) and Mini-ImageNet Vinyals et al. (2016); Ravi and Larochelle (2016).
In the sequential data setting, Bao et al. (2019) recently constructed synthetic benchmarks
from existing text datasets but the number of tasks is rather limited. In this work we construct
a new set of benchmarks involving synthetic sequential data, allowing us to evaluate models
in a more controlled setting after training on a larger number of tasks.

Synthetic Benchmarks We construct a synthetic few-shot classification benchmark as
follows. The benchmark consists of tasks that involve a non-negative integer sequence
as input and a discrete label as output. A task is constructed by applying a sequence of
mathematical transformations to input sequences as follows: Element-wise transform (T1)
→ Subsequence extraction (T2)→ Labeling function (T3). The arrows indicate function
composition and the sequence of transformations maps an input sequence to a single integer.
The transformations are defined as T1 ∈ S1, T2 ∈ S2, T3 ∈ S3 where, S1 = {mul v, add

v, div v, mod v}; S2 = {(not) multiple of v, (not) greater than v, (do not) have exactly

v divisors}; S3 = {count, min, max, mean, median, mode, first, last, max-min, middle},
where v ∈ {1 · · ·n} for some integer n. We randomly generate a large number of sequences
X of integers from {0 · · ·N}. We apply the transformation sequence T1, T2, T3 to these
sequences x ∈ X and get the corresponding outputs T3(T2(T1(x))). The C most frequent
outputs are then defined to be the C classes of interest. We obtain a uniform amount of
data from each class and discard input sequences for which the output does not belong to
one of the chosen C classes. Cases where at least C distinct outputs cannot be obtained
are discarded. These C classes then constitute a C-way classification task. An example
task is mul 2 → less than 5 → count, where the goal is to count the number of input
elements which, when multiplied by 2, are less than 5 (i.e., count number of input integers
less than 3). The semantics of each of the transforms are defined in the appendix. We set
C = 4 in our experiments. Vocabulary size and input sequence length are set to 12 and
5, respectively. Combinations of transforms that have identical input-output relationship
are identified and removed during task construction. All tasks are thus unique in terms of
input-output mapping.

We also construct two sequence transduction benchmarks. The first benchmark is con-
structed in a way similar to the classification tasks where we consider a sequence of
transformations mapping an input sequence to an output sequence T1 → T2 → T3, where
T1 ∈ S1, T2 ∈ S2, T3 ∈ S3; S1 = {mul v, add v, div v, mod v}; S2 = {replace v with v′, re-

place xi with f(xi, xj) }; S3 = {sort ascending, sort descending, reverse, swap(xi, xj), shift

49

Model
Sequence Classification Sequence Transduction Path Finding
1 5 10 20 1 5 10 20 1 5 10 20

Task 40.50 64.75 74.25 82.50 6.27 5.26 4.71 4.01 3.17 1.75 1.55 1.39
Agnostic ±1.73 ±1.29 ±1.29 ±1.58 ±0.17 ±0.04 ±0.05 ±0.07 ±0.27 ±0.03 ±0.02 ±0.01

Multitask 38.75 66.00 77.50 87.50 13.80 6.80 5.18 2.91 6.39 1.98 1.64 1.44
±0.96 ±0.82 ±1.29 ±0.58 ±3.36 ±0.26 ±1.01 ±0.49 ±1.96 ±0.12 ±0.05 ±0.02

Matching 43.00 58.75 64.50 67.00
– –Network ±1.15 ±2.45 ±1.83 ±1.41

SNAIL 43.00 44.00 68.25 67.50 2.48 3.80 4.98 4.11 2.63 1.95 3.47 3.04
±1.41 ±2.00 ±1.26 ±4.43 ±0.38 ±0.38 ±0.03 ±2.94 ±0.27 ±0.25 ±1.56 ±1.01

MAML 39.60 63.40 71.80 78.80 6.73 5.84 5.19 4.20 5.49 2.05 1.65 1.44
±0.55 ±0.89 ±0.84 ±0.84 ±0.16 ±0.2 ±0.08 ±0.10 ±0.85 ±0.03 ±0.01 ±0.01

CAVIA 43.00 78.00 87.00 91.00 11.05 2.75 1.78 1.53 2.21 1.31 1.25 1.21
±0.58 ±1.26 ±0.50 ±0.58 ±2.94 ±0.51 ±0.14 ±0.06 ±0.21 ±0.03 ±0.03 ±0.02

TAM 40.50 75.50 89.50 94.50 8.47 2.92 1.47 1.15 1.82 1.27 1.22 1.17
±0.82 ±0.50 ±0.58 ±0.82 ±1.42 ±0.67 ±0.18 ±0.03 ±0.08 ±0.01 ±0.01 ±0.01

Table 5.1: k-shot sequence classification and sequence transduction experiments on our
three benchmarks for k ∈ {1, 5, 10, 20}. The metric for sequence classification is average
accuracy on test tasks (higher is better). On the transduction tasks, the performance metric
is average perplexity on test tasks (lower is better). Random performance is at 25% accuracy
(classification) and 12 perplexity points (other two tasks). Entries in smaller font are error
bars, and they are estimated on 4 trials varying the model initialization.

right v}, and v, v′, i, j are integers chosen at random, xp represents the element at position p
in the input sequence, f is a mathematical function (Eg: f(a, b) ∈ {a+b, abs(a−b), b, · · · }).
An example task is add 2 → replace 2 with 1 → reverse, and an (input, output)
sample drawn from this task is: ([0, 5, 0, 3, 6], [8, 5, 1, 7, 1]).

Our second transduction benchmark is a path finding task in a grid world. A task is
defined by start and end positions in a square grid of size N ×N . Given the locations of
obstacles in this grid, the objective of the task is to find the shortest path connecting start
and end positions that avoids the obstacles. The source and target sequences correspond to
the locations of obstacles and optimal path from start to end position avoiding the obstacles,
respectively.

We use 500, 16, 64 tasks respectively for training, validation and testing for all three
setups. Tasks are unique and randomly assigned to these sets, in other words we test
generalization under the condition of distributional match between the training and the test
set. Each training task has 500 examples.

Results Table 5.1 reports the results on this benchmark. In the extreme few-shot setting
(k = 1), all methods perform poorly, although memory based methods such as matching
networks and SNAIL fare the best. However, they start performing relatively worse when

50

more labelled data is available, where fine-tuning part or all of the model parameters could
be beneficial. Both SNAIL and matching networks sometimes perform absolutely worse
when more labeled examples are present, suggesting they are failing to effectively use their
memory when confronted with longer sequences. Fine-tuning the whole model, particularly
in the multitask setting, works remarkably well for larger values of k, although the best
performance is achieved by TAM, suggesting the need for sample efficient task adaptation
methods. For k > 1, TAM performs comparably or better than all baselines, including
MAML and CAVIA. Furthermore, TAM is more efficient to train than CAVIA (see section
5.5.6).

5.5.4 Compositional Task Representations
Compositional reasoning is arguably an important skill for few-shot learning (Lake, 2019;
Purushwalkam et al., 2019). The underlying assumption is that there exist primitive skills
which can be learned and combined together to solve new tasks. If a learner can leverage the
compositional structure of the learning task, it may learn with even less labeled data.

In this section we assess how much better TAM works when we expose the compositional
structure of the tasks described in §5.5.3. Specifically, we assess the ability to learn new tasks
which are composed of primitives, some of which were unseen during training. To present
an example from the classification setting, assume the models know that tasks are composed
of three transforms T1 ∈ S1, T2 ∈ S2, T3 ∈ S3. We henceforth refer to the elements of
S1 ∪ S2 ∪ S3 as primitives. Further assume the model never saw the add k primitive during
training. Given a new test task for which T1 = add 3 (and T2, T3 are known primitives seen
during training), we expect the model to infer the concept of add from the few training
examples of the test task.

Task Construction In the compositional setting, we provide models with information
about the primitives used to construct the task. For the classification and transduction tasks,
the training and test tasks are constructed as follows. Assume the set of primitives available
for the three transforms to be S1, S2, S3. We hold out a subset of primitives S ′1, S

′
2, S

′
3

respectively from each of these three sets, which shall constitute the unseen primitives. The
training tasks are made up of primitives from S1 − S ′1, S2 − S ′2, S3 − S ′3, which we will
refer to as seen primitives. The test tasks are made up of seen and unseen primitives where
exactly one primitive is unseen (For instance, T1 ∈ S1 − S ′1, T2 ∈ S ′2, T3 ∈ S3 − S ′3). Model
performance is averaged over multiple (8) different choices of S ′1, S

′
2, S

′
3.

We also define a compositional path-finding task as follows. In addition to finding the
optimal path from start, end positions while avoiding obstacles, we now require the path to
lie on a specified way-point. The locations of the start, end and way points thus define the

51

Model
Sequence Classification Sequence Transduction Path Finding
1 5 10 20 1 5 10 20 1 5 10 20

Multitask 57.50 74.00 81.00 88.5 43.32 7.50 3.48 2.16 3.08 1.62 1.32 1.23
±3.51 ±5.48 ±4.24 ±2.08 ±10.87 ±0.43 ±0.12 ±0.05 ±0.61 ±0.33 ±0.05 ±0.02

Matching 61.25 69.50 72.25 67.5
– –Network ±4.35 ±5.45 ±6.08 ±5.92

SNAIL 63.5 71.75 76.25 80.25 7.00 6.24 6.93 17.10 1.53 1.71 3.36 4.22
±4.80 ±4.86 ±2.75 ±2.87 ±2.03 ±0.27 ±3.25 ±9.66 ±0.29 ±0.09 ±0.57 ±0.79

CAVIA 57.25 66.25 67.50 68.50 36.72 6.01 3.99 3.27 1.99 1.27 1.21 1.17
±12.09 ±14.73 ±15.67 ±16.42 ±8.83 ±0.88 ±0.50 ±0.24 ±0.11 ±0.01 ±0.00 ±0.00

TAM 63.00 76.50 82.75 88.5 6.15 3.43 2.69 2.13 2.33 1.30 1.23 1.19
(Comp) ±5.35 ±4.65 ±3.86 ±2.65 ±0.91 ±0.05 ±0.04 ±0.02 ±0.18 ±0.02 ±0.01 ±0.01

TAM 45.25 72.5 81.5 89.75 7.80 5.08 3.60 2.42 4.37 1.27 1.17 1.11
(Non-comp) ±3.59 ±3.70 ±2.89 ±0.96 ±0.09 ±0.24 ±0.15 ±0.08 ±3.59 ±0.01 ±0.00 ±0.00

Table 5.2: Compositional models for few-shot sequence classification and sequence trans-
duction. All models (except non-compositional TAM) get information on the primitives
present in the tasks via extra tokens appended to the input sequence, except that one such
primitive is unseen at test time. Non-compositional TAM is not given information about
primitives, and estimates a single task embedding instead.

primitives that make up a task. Similar to the previous settings, we hold out sets of values
for each of these points and construct the train/test tasks in an analogous manner.

Training For all the models, a sequence of primitive ids representing the primitives that
make up the task is appended to the input sequence. These primitive embeddings θe are
learned along with the other model parameters. To simulate the testing conditions, at training
time we pretend some primitives are unknown. For the multitask, matching network and
SNAIL baselines we learn an unknown primitive embedding, which is used to initialize
embeddings of unknown primitives encountered at test time. Although the tasks themselves
are harder (because entire primitives are unseen), modeling them is easier because the
primitive information is given to the model. For CAVIA and TAM, we infer embeddings
for unknown primitives on the fly using gradient descent during train and test. We use 5000
training tasks, and 100 validation and test tasks each. Each training task has 500 examples.

Results Table 5.2 summarizes the results in the compositional setting. We observe similar
trends as before for the non-compositional case. Multitask learning becomes competitive
only for larger values of k. Vice versa, matching networks and SNAIL suffer with long
sequences (larger values of k). TAM performs at least comparably if not better than methods
relying on second order derivatives like CAVIA. In fact, CAVIA sometimes fail to converge
as shown by the rather large error bars. Finally, the compositional version of TAM often
yields higher accuracy than the corresponding non-compositional version, showing that the

52

Model
Sequence Classification (Acc)

1-shot 5-shot 10-shot 20-shot

Input token 0.41 0.76 0.89 0.94
Adapters 0.43 0.75 0.88 0.94
LayerNorm 0.42 0.64 0.78 0.88

Table 5.3: k-shot classification accuracy
when plugging the task embedding in var-
ious ways for different values of k.

Arch Training
Sequence Classification (Acc.)

1-shot 5-shot 10-shot 20-shot

LSTM
Multi 0.38 0.57 0.72 0.87
Alt 0.35 0.78 0.83 0.85

Transf
Multi 0.39 0.68 0.80 0.88
Alt 0.41 0.76 0.89 0.94

Table 5.4: k-shot accuracy for different archi-
tectures with multitask and the proposed train-
ing algorithms.

model is able to cleverly leverage the additional knowledge about a subset of primitives
(two out of three) that compose the new task. Compositionality is particularly helpful with
fewer shots (e.g., 1-shot) – with sufficient training examples (e.g., 20-shot) models benefit
less from compositionality.

5.5.5 Ablation experiments
Where To Plug Task Embeddings The experiments in the paper so far consider a simple
conditioning scheme where the task embedding appears as an additional embedding in the
input sequence of token embeddings. We compare this against other ways of incorporating
task-specific parameters into the model.

Following Houlsby et al. (2019), we insert adapter layers in the transformer and consider
the parameters in the adapter layers as the task embedding. An adapter layer down-projects
a representation to a small dimensionality, applies a non-linearity, and up-projects the
representation back to the original size. Such layers are added after the self-attention and
feed-forward layers in the transformer as residual layers. Houlsby et al. (2019) add adapter
layers to a pre-trained BERT model and show that training just the adapter layers works
well on downstream tasks. Here the adapter layers are trained using the proposed iterative
algorithm, and fine-tuned on test tasks.

Another popular method for adapting pre-trained networks to new tasks is adapting
parameters in normalization layers (Perez et al., 2018; Ghiasi et al., 2017). We also consider
the scale and bias parameters in the Layer Normalization layers of the transformer as the
task embedding.

The results in Table 5.3 on non-compositional classification tasks show that using adapter
layer parameters as task embedding yields similar results to the simplest conditioning scheme
where the task embedding is fed as an additional input. Using normalization parameters as
the task embedding instead performs slightly worse. This shows that our input conditioning
scheme is simple yet effective.

53

Figure 5.1: 2D PCA projections of task
embeddings learned by our algorithm for
the gridworld domain. Tasks visualized
here have the same start position (4,4).
Points are color coded based on horizon-
tal (left plot) and vertical (right plot) coor-
dinates of the end positional correspond-
ing to each task.

Model
Classification Transduction Path-finding
Acc., Time Ppl., Time Ppl., Time

Multitask 67.4, 30min 7.2, 23min 2.9, 20min
CAVIA 74.8, 3h 4.5, 5.3h 1.5, 3.7h
TAM 75.0, 2h 1.5, 2.3h 1.3, 2.7h

Table 5.5: Training efficiency: Time taken
by each training algorithm to reach the
best model (identified using validation tasks)
and corresponding model performance (non-
compositional setting). Performance and time
are averaged across k ∈ {1, 5, 10, 20} shots.

Importance of Transformer Architecture The experiments presented in this paper so far
have used a transformer architecture. Although transformers are a natural choice for problems
involving sequences owing to their recent success, the proposed training algorithm applies
equally well to other architectures. We study the impact of swapping out the transformer with
a recurrent model in Table 5.4 on non-compositional tasks. We use a bidirectional LSTM
with a comparable number of parameters to our transformer model. The classifier head acts
on the final representation of the final layer of the LSTM. We examine the performance of
the two architectures when trained using both multitasking and the proposed alternating
minimization training algorithm. First, we observe that the transformer generally performs
better than the recurrent model. Second, the proposed training algorithm yields consistent
improvements over the multitask baseline for the transformer. This shows that the proposed
algorithm is general, but particularly effective when used in conjunction with the transformer
architecture.

Visualizing learned task embeddings In Figure 5.1 we visualize task embeddings learned
by the non-compositional TAM model in our gridworld task. We visualize the first two
principal components of task embeddings corresponding to tasks which have the same start
position. The projections are color coded by the horizontal and vertical coordinates of the
end position for each task. This shows that the task embeddings have learned the structure
of the tasks.

5.5.6 Discussion
Optimizing Task Embeddings We observed that both CAVIA and TAM generally attain
better performance when trained with a larger number of inner loop updates. In this work,
we use a maximum of 25 inner loop updates for TAM because it strikes a good balance
between finding an optimal task embedding and containing training time. CAVIA performed
best with 10 inner loop updates, beyond which we hit the computational limitations of our

54

hardware. We also found that TAM works better when trained with a number of examples
per task much greater than k, in our case 300. All these empirical findings suggest that
optimizing for the task embedding and replacing the second order optimization with TAM’s
first order is an intrinsically difficult problem that requires more iterations and a larger
number of examples.

Training Efficiency We discuss the training efficiency of different models in Table 5.5.
The multitask baseline is not expensive to train, but it doesn’t perform well on few-shot
scenarios. CAVIA does well especially in the extreme few-shot scenarios, but has stability
issues. TAM is simple, easy to implement, performs comparably or better than the baselines
and trains more efficiently than CAVIA.

First vs. Second Order Gradients Double backprop to optimize the test optimization
has become a standard method of meta-learning. In the appendix of Finn et al. (2017), and
in Zintgraf et al. (2019) (the “first order” variant), similar approaches to TAM were shown
to perform relatively worse than the methods with second order gradients.

In contrast, in our settings, we have found that first order gradients (via alternating
minimization) are sufficient if done correctly, despite being simpler and more efficient.
Although Zintgraf et al. (2019) sometimes outperforms TAM, especially for very small
numbers of test examples, TAM is always competitive; with more test examples, TAM is
usually superior. TAM always outperforms Finn et al. (2017).

5.6 Conclusion
In this work we have shown how task embeddings naturally fit with Transformers for few-
shot learning. In our settings, this approach yields comparable or superior performance to
approaches relying on second order derivatives while being computationally more efficient.
While we considered synthetic tasks in this work, we expect the proposed idea to be
applicable to real-world tasks and large pre-trained transformer models, which can be
explored in future work.

This chapter presented a new optimization algorithm to adapt transformer models to the
few-shot setting. The remaining chapters explore a different paradigm for learning from
limited supervision, where models read a text description in order to learn a new task or
adapt models to a new domain. We show that this learning paradigm, when combined with
powerful pre-trained text representations, enables zero-shot generalization to new tasks and
new domains.

55

CHAPTER VI

Zero-shot Entity Linking by Reading Entity
Descriptions

Traditional methods for Entity Linking focus on linking entities to general databases such
as Wikipedia. However, there is a practical need for linking entities in specialized domains
such as the internal documents of a company or the characters of a novel. We present the
zero-shot entity linking task, where mentions must be linked to unseen entities without
in-domain labeled data. The goal is to enable robust transfer to highly specialized domains,
and so no metadata or alias tables are assumed. In this setting, entities are only identified by
text descriptions, and models must rely strictly on language understanding to resolve the
new entities. First, we show that strong reading comprehension models pre-trained on large
unlabeled data can be used to generalize to unseen entities. Second, we propose a simple
and effective adaptive pre-training strategy, which we term domain-adaptive pre-training

(DAP), to address the domain shift problem associated with linking unseen entities in a new
domain. We present experiments on a new dataset that we construct for this task and show
that DAP improves over strong pre-training baselines, including BERT. The data and code
are available at https://github.com/lajanugen/zeshel.1

6.1 Introduction
Entity linking systems have achieved high performance in settings where a large set of
disambiguated mentions of entities in a target entity dictionary is available for training. Such
systems typically use powerful resources such as a high-coverage alias table, structured data,
and linking frequency statistics. For example, Milne and Witten (2008) show that by only
using the prior probability gathered from hyperlink statistics on Wikipedia training articles,
one can achieve 90% accuracy on the task of predicting links in Wikipedia test articles.

1zeshel stands for zero-shot entity linking.

56

https://github.com/lajanugen/zeshel

 Military
 Star Wars

 Elder Scrolls

Burden (Oblivion)
Burden is an
Alteration spell that
temporarily adds ..

Burden (Effect)
Burden is a spell
effect that temporarily
increases the weight..

Coronation Street
 Lego

Mention

All entities
In the entity
dictionary

....

Orient Expedition
Orient Expedition
was one of the
various subthemes...

Orient Expedition Wallet
Orient Expedition Wallet
was a wallet themed
around Orient Expedition..

....

Train

Orient expedition is a train ride named after the
theme of the same name. The train itself is ..

Entity Linking Model

Mention

All entities
In the entity
dictionary

Test

The Burden spell is the opposite of Feather ,
increasing a character ' s encumbrance ...

Figure 6.1: Zero-shot entity linking. Multiple training and test domains (worlds) are shown.
The task has two key properties: (1) It is zero-shot, as no mentions have been observed for
any of the test world entities during training. (2) Only textual (non-structured) information
is available.

While most prior works focus on linking to general entity databases, it is often desirable
to link to specialized entity dictionaries such as legal cases, company project descriptions,
the set of characters in a novel, or a terminology glossary. Unfortunately, labeled data
are not readily available and are often expensive to obtain for these specialized entity
dictionaries. Therefore, we need to develop entity linking systems that can generalize to
unseen specialized entities. Without frequency statistics and meta-data, the task becomes
substantially more challenging. Some prior works have pointed out the importance of
building entity linking systems that can generalize to unseen entity sets (Sil et al., 2012;
Wang et al., 2015), but adopt an additional set of assumptions.

In this work, we propose a new zero-shot entity linking task, and construct a new dataset

57

for it.2 The target dictionary is simply defined as a set of entities, each with a text description
(from a canonical entity page, for example). We do not constrain mentions to named entities,
unlike some prior work, which makes the task harder due to large number of candidate
entities. In our dataset, multiple entity dictionaries are available for training, with task
performance measured on a disjoint set of test entity dictionaries for which no labeled data
is available. Figure 6.1 illustrates the task setup. We construct the dataset using multiple
sub-domains in Wikia and automatically extract labeled mentions using hyper-links.

Zero-shot entity linking poses two challenges for entity linking models. First, without the
availability of powerful alias tables or frequency priors, models must read entity descriptions
and reason about the correspondence with the mention in context. We show that a strong
reading comprehension model is crucial. Second, since labeled mentions for test entities are
not available, models must adapt to new mention contexts and entity descriptions. We focus
on both of these challenges.

The contributions of this paper are as follows:

• We propose a new zero-shot entity linking task that aims to challenge the generalization
ability of entity linking systems with minimal assumptions. We construct a dataset for this
task, which will be made publicly available.

• We build a strong baseline by using state-of-the-art reading comprehension models. We
show that attention between mention in context and entity descriptions, which has not
been used in prior entity linking work, is critical for this task.

• We propose a simple yet novel adaptation strategy called domain-adaptive pre-training
(DAP) and show that it can further improve entity linking performance.

6.2 Zero-shot Entity Linking
We first review standard entity linking task definitions and discuss assumptions made by
prior systems. We then define the zero-shot entity linking task and discuss its relationship to
prior work.

6.2.1 Review: Entity linking
Entity linking (EL) is the task of grounding entity mentions by linking them to entries in
a given database or dictionary of entities. Formally, given a mention m and its context, an
entity linking system links m to the corresponding entity in an entity set E = {ei}i=1,...,K ,
where K is the number of entities. The standard definition of EL (Bunescu and Pasca, 2006;
Roth et al., 2014; Sil et al., 2018) assumes that mention boundaries are provided by users or

2Existing datasets are either unsuitable or would have to be artificially partitioned to construct a dataset for
this task.

58

Task In-Domain
Seen Small

Statistics
Structured Entity

Entity Set Candidate Set Data dictionary

Standard EL 3 3 3 3 3

Cross-Domain EL 3 3 3 3

Linking to Any DB 3 3 3

Zero-Shot EL 3

Table 6.1: Assumptions and resources for entity linking task definitions. We classify task
definitions based on whether (i) the system is tested on mentions from the training domain
(In-Domain), (ii) linked mentions from the target entity set are seen during training (Seen
Entity Set), (iii) a small high-coverage candidate set can be derived using alias tables or
strict token overlap constraints (Small Candidate Set) and the availability of (iv) Frequency
statistics, (v) Structured Data, and (vi) textual descriptions (Entity dictionary).

a mention detection system. The entity set E can contain tens of thousands or even millions
of entities, making this a challenging task. In practice, many entity linking systems rely on
the following resources or assumptions:

Single entity set This assumes that there is a single comprehensive set of entities E shared
between training and test examples.

Alias table An alias table contains entity candidates for a given mention string and limits
the possibilities to a relatively small set. Such tables are often compiled from a labeled
training set and domain-specific heuristics.

Frequency statistics Many systems use frequency statistics obtained from a large labeled
corpus to estimate entity popularity and the probability of a mention string linking to an
entity. These statistics are very powerful when available.

Structured data Some systems assume access to structured data such as relationship
tuples (e.g., (Barack Obama, Spouse, Michelle Obama)) or a type hierarchy to aid disam-
biguation.

6.2.2 Task Definition
The main motivation for this task is to expand the scope of entity linking systems and make
them generalizable to unseen entity sets for which none of the powerful resources listed
above are readily available. Therefore, we drop the above assumptions and make one weak
assumption: the existence of an entity dictionary E = {(ei, di)}i=1,..,K , where di is a text
description of entity ei.

Our goal is to build entity linking systems that can generalize to new domains and entity
dictionaries, which we term worlds. We define a world as W = (MW ,UW , EW), where

59

MW and UW are distributions over mentions and documents from the world, respectively,
and EW is an entity dictionary associated withW . Mentions m fromMW are defined as
mention spans in documents from UW . We assume the availability of labelled mention, entity
pairs from one or more source worldsW1

src . . .Wn
src for training. At test time we need to be

able to label mentions in a new worldWtgt. Note that the entity sets EW1
src
, . . . , EWn

src
, EWtgt

are disjoint. See Figure 6.1 for an illustration of several training and test worlds.
We additionally assume that samples from the document distribution UWtgt and the entity

descriptions EWtgt are available for training. These samples can be used for unsupervised
adaptation to the target world. During training, mention boundaries for mentions inWtgt are
not available. At test time, mention boundaries are provided as input.

6.2.3 Relationship to other EL tasks
We summarize the relationship between the newly introduced zero-shot entity linking task
and prior EL task definitions in Table 6.1.

Standard EL While there are numerous differences between EL datasets (Bunescu and
Pasca, 2006; Ling et al., 2015), most focus on a standard setting where mentions from a
comprehensive test entity dictionary (often Wikipedia) are seen during training, and rich
statistics and meta-data can be utilized (Roth et al., 2014). Labeled in-domain documents
with mentions are also assumed to be available.

Cross-Domain EL Recent work has also generalized to a cross-domain setting, linking
entity mentions in different types of text, such as blogposts and news articles to the Wikipedia
KB, while only using labeled mentions in Wikipedia for training (e.g., Gupta et al. (2017a);
Le and Titov (2018), inter alia).

Linking to Any DB Sil et al. (2012) proposed a task setup very similar to ours, and
later work (Wang et al., 2015) has followed a similar setting. The main difference between
zero-shot EL and these works is that they assumed either a high-coverage alias table or
high-precision token overlap heuristics to reduce the size of the entity candidate set (i.e., to
less than four in Sil et al. (2012)) and relied on structured data to help disambiguation. By
compiling and releasing a multi-world dataset focused on learning from textual information,
we hope to help drive progress in linking entities for a broader set of applications.

Work on word sense disambiguation based on dictionary definitions of words is related
as well (Chaplot and Salakhutdinov, 2018), but this task exhibits lower ambiguity and
existing formulations have not focused on domain generalization.

60

6.3 Dataset Construction
We construct a new dataset to study the zero-shot entity linking problem using documents
from Wikia.3 Wikias are community-written encyclopedias, each specializing in a particular
subject or theme such as a fictional universe from a book or film series. Wikias have
many interesting properties suitable for our task. Labeled mentions can be automatically
extracted based on hyperlinks. Mentions and entities have rich document context that can be
exploited by reading comprehension approaches. Each Wikia has a large number of unique
entities relevant to a specific theme, making it a useful benchmark for evaluating domain
generalization of entity linking systems.

We use data from 16 Wikias, and use 8 of them for training and 4 each for validation
and testing. To construct data for training and evaluation, we first extract a large number of
mentions from the Wikias. Many of these mentions can be easily linked by string matching
between mention string and the title of entity documents. These mentions are downsampled
during dataset construction, and occupy a small percentage (5%) of the final dataset. While
not completely representative of the natural distribution of mentions, this data construction
method follows recent work that focuses on evaluating performance on the challenging
aspects of the entity linking problem (e.g., Gupta et al. (2017a) selected mentions with
multiple possible entity candidates for assessing in-domain unseen entity performance).
Each Wikia document corresponds to an entity, represented by the title and contents of the
document. These entities, paired with their text descriptions, comprise the entity dictionary.

Since the task is already quite challenging, we assume that the target entity exists in the
entity dictionary and leave NIL recognition or clustering (NIL mentions/entities refer to
entities non-existent in the knowledge-base) to future editions of the task and dataset.

We categorize the mentions based on token overlap between mentions and the corre-
sponding entity title as follows. High Overlap: title is identical to mention text, Multiple

Categories: title is mention text followed by a disambiguation phrase (e.g., mention string:
‘Batman’, title: ‘Batman (Lego)’), Ambiguous substring: mention is a substring of title (e.g.,
mention string: ‘Agent’, title: ‘The Agent’). All other mentions are categorized as Low

Overlap. These mentions respectively constitute approximately 5%, 28%, 8% and 59% of
the mentions in the dataset.

Table 6.2 shows some statistics of the dataset. Each domain has a large number of entities
ranging from 10,000 to 100,000. The training set has 49,275 labeled mentions. To examine
the in-domain generalization performance, we construct heldout sets seen and unseen of
5,000 mentions each, composed of mentions that link to only entities that were seen or

3https://www.wikia.com.

61

https://www.wikia.com

Split World Entities Mentions
Train Evaluation

Seen Unseen

Training

American Football 31929 3898 410 333
Doctor Who 40281 8334 819 702
Fallout 16992 3286 337 256
Final Fantasy 14044 6041 629 527
Military 104520 13063 1356 1408
Pro Wrestling 10133 1392 151 111
StarWars 87056 11824 1143 1563
World of Warcraft 27677 1437 155 100

Validation

Coronation Street 17809 0 0 1464
Muppets 21344 0 0 2028
Ice Hockey 28684 0 0 2233
Elder Scrolls 21712 0 0 4275

Test

Forgotten Realms 15603 0 0 1200
Lego 10076 0 0 1199
Star Trek 34430 0 0 4227
YuGiOh 10031 0 0 3374

Table 6.2: Zero-shot entity linking dataset based on Wikia.

unseen during training, respectively. The validation and test sets have 10,000 mentions each
(all of which are unseen).

Table 6.3 shows examples of mentions and entities in the dataset. The vocabulary
and language used in mentions and entity descriptions differs drastically between the
different domains. In addition to acquiring domain specific knowledge, understanding entity
descriptions and performing reasoning is required in order to resolve mentions.

6.4 Models for Entity Linking
We adopt a two-stage pipeline consisting of a fast candidate generation stage, followed by a
more expensive but powerful candidate ranking stage.

6.4.1 Candidate generation
Without alias tables for standard entity linking, a natural substitute is to use an IR approach
for candidate generation. We use BM25, a variant of TF-IDF to measure similarity between
mention string and candidate documents.4 Top-k entities retrieved by BM25 scoring with

4We also experimented with using the mention+context text but this variant performs substantially worse.

62

Coronation Street

Mention She told ray that Dickie and Audrey had met up again and tried to give their marriage another
go . . . I don’t want to see her face again . . . ”

Dickie Fleming Richard “Dickie” Fleming lived in coronation street with his wife Audrey
from 1968 to 1970.

Audrey Fleming Audrey Fleming (neé bright) was a resident of 3 coronation street from
1968 to 1970 . Audrey married Dickie Fleming . . .

Zeedan Nazir Zeedan Nazir is the son of the Late Kal and Jamila Nazir . . .

Star Wars

Mention The droid acted as Moff Kilran’s representative on board the Black Talon, an Imperial
transport ship.

Gage-class trans-
port

The Gage-class transport was a transport design used by the reconstituted
Sith Empire of the Great Galactic War.

Imperial Armored
Transport

The Kuat Drive Yards Imperial Armored Transport was fifty meters long
and carried ten crewmen and twenty soldiers.

M-class Imperial
Attack Transport

The M-class Imperial Attack Transport was a type of starship which saw
service in the Imperial Military during the Galactic War.

Table 6.3: Example mention and entity candidates from Coronation Street and Star Wars.
Note that the language usage is very different across different Worlds.

Lucene5 are used for training and evaluation. In our experiments k is set to 64. The coverage
of the top-64 candidates is less than 77% on average, indicating the difficulty of the task and
leaving substantial room for improvement in the candidate generation phase.

6.4.2 Candidate ranking
Since comparing two texts—a mention in context and a candidate entity description—is
a task similar to reading comprehension and natural language inference tasks, we use an
architecture based on a deep Transformer (Vaswani et al., 2017b) which has achieved
state-of-the-art performance on such tasks (Radford et al., 2018; Devlin et al., 2019).

As in BERT (Devlin et al., 2019), the mention in context m and candidate entity descrip-
tion e, each represented by 128 word-piece tokens, are concatenated and input to the model
as a sequence pair together with special start and separator tokens: ([CLS] m [SEP] e [SEP]).
Mention words are signaled by a special embedding vector that is added to the mention word
embeddings. The Transformer encoder produces a vector representation hm,e of the input
pair, which is the output of the last hidden layer at the special pooling token [CLS]. Entities
in a given candidate set are scored as w>hm,e where w is a learned parameter vector, and
the model is trained using a softmax loss. An architecture with 12 layers, hidden dimension
size 768 and 12 attention heads was used in our experiments. We refer to this model as

5 http://lucene.apache.org/

63

http://lucene.apache.org/

Full-Transformer. By jointly encoding the entity description and the mention in context
with a Transformer, they can attend to each other at every layer.

Note that prior neural approaches for entity linking have not explored such architectures
with deep cross-attention. To assess the value of this departure from prior work, we imple-
ment the following two variants: (i) Pool-Transformer: a siamese-like network which uses
two deep Transformers to separately derive single-vector representations of the mention
in context, hm, and the candidate entity, he; they take as input the mention in context and
entity description respectively, together with special tokens indicating the boundaries of
the texts: ([CLS] m [SEP]) and ([CLS] e [SEP]), and output the last hidden layer encoding
at the special start token. The scoring function is h>mhe. Single vector representations for
the two components have been used in many prior works, e.g., Gupta et al. (2017a). (ii)
Cand-Pool-Transformer: a variant which uses single vector entity representations but can
attend to individual tokens of the mention and its context as in Ganea and Hofmann (2017).
This architecture also uses two Transformer encoders, but introduces an additional attention
module which allows he to attend to individual token representations of the mention in
context.

In the experiments section, we also compare to re-implementations of Gupta et al.
(2017a) and Ganea and Hofmann (2017), which are similar to Pool-Transformer and Cand-
Pool-Transformer respectively but with different neural architectures for encoding.

6.5 Adapting to the Target World
We focus on using unsupervised pre-training to ensure that downstream models are robust
to target domain data. There exist two general strategies for pre-training: (1) task-adaptive
pre-training, and (2) open-corpus pre-training. We describe these below, and also propose
a new strategy: domain-adaptive pre-training (DAP), which is complementary to the two
existing approaches.

Task-adaptive pre-training Glorot et al. (2011); Chen et al. (2012); Yang and Eisenstein
(2015), inter alia, pre-trained on the source and target domain unlabeled data jointly with the
goal of discovering features that generalize across domains. After pre-training, the model is
fine-tuned on the source-domain labeled data.6

Open-corpus pre-training Instead of explicitly adapting to a target domain, this approach
simply applies unsupervised pre-training to large corpora before fine-tuning on the source-
domain labeled data. Examples of this approach include ELMo (Peters et al., 2018a), OpenAI
GPT (Radford et al., 2018), and BERT (Devlin et al., 2019). Intuitively, the target-domain

6In many works, the learned representations are kept fixed and only higher layers are updated.

64

distribution is likely to be partially captured by pre-training if the open corpus is sufficiently
large and diverse. Indeed, open-corpus pre-training has been shown to benefit out-of-domain
performance far more than in-domain performance (He et al., 2018).

Domain-adaptive pre-training In addition to pre-training stages from other approaches,
we propose to insert a penultimate domain adaptive pre-training (DAP) stage, where the
model is pre-trained only on the target-domain data. As usual, DAP is followed by a
final fine-tuning stage on the source-domain labeled data. The intuition for DAP is that
representational capacity is limited, so models should prioritize the quality of target domain
representations above all else.

We introduce notation to describe various ways in which pre-training stages can be
composed.

• Usrc denotes text segments from the union of source world document distributions
UW1

src
. . .UWn

src
.

• Utgt denotes text segments from the document distribution of a target worldWtgt.

• Usrc+tgt denotes randomly interleaved text segments from both Usrc and Utgt.

• UWB denotes text segments from open corpora, which in our experiments are Wikipedia
and the BookCorpus datasets used in BERT.

We can chain together a series of pre-training stages. For example, UWB → Usrc+tgt →
Utgt indicates that the model is first pre-trained on the open corpus, then pre-trained on the
combined source and target domains, then pre-trained on only the target domain, and finally
fine-tuned on the source-domain labeled data.7 We show that chaining together different
pre-training strategies provides additive gains.

6.6 Experiments
Pre-training We use the BERT-Base model architecture in all our experiments. The
Masked LM objective (Devlin et al., 2019) is used for unsupervised pre-training. For fine-
tuning language models (in the case of multi-stage pre-training) and fine-tuning on the
Entity-Linking task, we use a small learning rate of 2e-5, following the recommendations
from Devlin et al. (2019). For models trained from scratch we use a learning rate of 1e-4.

7We use the notation Ux interchangeably to mean both the unsupervised data x and the strategy to pre-train
on x.

65

Model Resources Avg Acc

Edit-distance ∅ 16.49
TF-IDF (BM25) ∅ 26.06
Ganea and Hofmann (2017) GloVe 26.96
Gupta et al. (2017a) GloVe 27.03

Full-Transformer ∅ 19.17
Full-Transformer (Pre-trained) Usrc 66.55
Full-Transformer (Pre-trained) Utgt 67.87
Full-Transformer (Pre-trained) Usrc+tgt 67.91

Pool-Transformer (Pre-trained) UWB 57.61
Cand-Pool-Trans. (Pre-trained) UWB 52.62
Full-Transformer (Pre-trained) UWB 76.06

Table 6.4: Baseline results for Zero-shot Entity Linking. Averaged normalized Entity-Linking
accuracy on all validation domains. Usrc+tgt refers to masked language model pre-training on
unlabeled data from training and validation worlds.

Evaluation Accuracy

Training worlds, seen 87.74
Training worlds, unseen 82.96
Validation worlds, unseen 76.06

Table 6.5: Performance of the Full-Transformer (UWB) model evaluated on seen and unseen
entities from the training and validation worlds.

Evaluation We define the normalized entity-linking performance as the performance eval-
uated on the subset of test instances for which the gold entity is among the top-k candidates
retrieved during candidate generation. The unnormalized performance is computed on the
entire test set. Our IR-based candidate generation has a top-64 recall of 76% and 68% on the
validation and test sets, respectively. The unnormalized performance is thus upper-bounded
by these numbers. Strengthening the candidate generation stage improves the unnormalized
performance, but this is outside the scope of our work. Average performance across a set
of worlds is computed by macro-averaging. Performance is defined as the accuracy of the
single-best identified entity (top-1 accuracy).

Baselines We first examine some baselines for zero-shot entity linking in Table 6.4. We
include naive baselines such as Levenshtein edit-distance and TF-IDF, which compare the
mention string against candidate entity title and full document description, respectively, to
rank candidate entities.

We re-implemented recent neural models designed for entity linking (Ganea and Hof-

66

mann, 2017; Gupta et al., 2017a), but did not expect them to perform well since the original
systems were designed for settings where labeled mentions or meta-data for the target
entities were available. The poor performance of these models validates the necessity of
using strong reading comprehension models for zero-shot entity linking.

When using the Full-Transformer model, pre-training is necessary to achieve reasonable
performance. We present results for models pre-trained on different subsets of our task
corpus (Usrc, Utgt, Usrc+tgt) as well as pre-training on an external large corpus (UWB). We
observe that the choice of data used for pre-training is important.

In Table 6.4 we also compare the Pool-Transformer, Candidate-Pool-Transformer and
Full-Transformer. The significant gap between Full-Transformer and the other variants
shows the importance of allowing fine-grained comparisons between the two inputs via
the cross attention mechanism embedded in the Transformer. We hypothesize that prior
entity linking systems did not need such powerful reading comprehension models due to the
availability of strong additional meta information. The remaining experiments in the paper
use the Full-Transformer model, unless mentioned otherwise.

6.6.1 Generalization to Unseen Entities and New Worlds
To analyze the impact of unseen entities and domain shift in zero-shot entity linking,
we evaluate performance on a more standard in-domain entity linking setting by making
predictions on held out mentions from the training worlds. Table 6.5 compares entity
linking performance for different entity splits. Seen entities from the training worlds are
unsurprisingly the easiest to link to. For unseen entities from the training world, we observe
a 5-point drop in performance. Entities from new worlds (which are by definition unseen
and are mentioned in out-of-domain text) prove to be the most difficult. Due to the shift in
both the language distribution and entity sets, we observe a 11-point drop in performance.
This large generalization gap demonstrates the importance of adaptation to new worlds.

6.6.2 Impact of Domain Adaptive Pre-training
Our experiments demonstrate that DAP improves on three state-of-the-art pre-training
strategies:

• Usrc+tgt: task-adaptive pre-training, which combines source and target data for pre-
training (Glorot et al., 2011).8

• UWB: open-corpus pre-training, which uses Wikipedia and the BookCorpus for pre-
training (We use a pre-trained BERT model (Devlin et al., 2019)).

8We use Masked LM and Transformer encoder, which are more powerful than the instantiation in Glorot
et al. (2011).

67

Pretraining W1
tgt W2

tgt W3
tgt W4

tgt Avg

Usrc+tgt Glorot et al. (2011)† 73.19 71.61 62.16 64.69 67.91
Usrc+tgt→ Utgt (DAP) 79.20 75.55 66.85 66.72 72.08

UWB Devlin et al. (2019) 83.40 79.00 73.03 68.82 76.06
UWB → Utgt (DAP) 81.68 81.34 73.17 71.97 77.04

UWB → Usrc+tgt 82.92 79.00 72.62 69.55 76.02
UWB → Usrc+tgt → Utgt (DAP) 82.82 81.59 75.34 72.52 78.07

Table 6.6: Impact of using Domain Adaptive Pre-training. We fine-tune all the models on the
source labeled data after pretraining. Note: src represents the union of all 8 training worlds
and we adapt to one tgt world at a time. The target worlds areW1

tgt: Coronation street,W2
tgt:

Muppets,W3
tgt: Ice hockey,W4

tgt: Elder scrolls. †We refer to Glorot et al. (2011) for the idea
of training a denoising autoencoder on source and target data together rather than the actual
implementation. See text for more details.

• UWB → Usrc+tgt: the previous two strategies chained together. While no prior work
has applied this approach to domain adaptation, a similar approach for task adaptation
was proposed by Howard and Ruder (2018).

The results are in Table 6.6. DAP improves all pre-training strategies with an additional
pre-training stage on only target-domain data. The best setting, UWB → Usrc+tgt → Utgt,
chains together all existing strategies. DAP improves the performance over a strong pre-
trained model (Devlin et al., 2019) by 2%.

To further analyze the results of DAP, we plot the relationships between the accuracy
of Masked LM (MLM accuracy) on target unlabeled data and the final target normalized
accuracy (after fine-tuning on the source labeled data) in Figure 6.2. Adding an additional
pre-training stage on the target unlabeled data unsurprisingly improves the MLM accuracy.
More interestingly, we find that improvements in MLM accuracy are consistently followed
by improvements in entity linking accuracy. It is intuitive that performance on unsupervised
objectives reflect the quality of learned representations and correlate well with downstream
performance. We show empirically that this trend holds for a variety of pre-training strategies.

6.6.3 Test results and performance analysis
Table 6.7 shows the normalized and unnormalized Entity Linking performance on test
worlds. Our best model that chains together all pre-training strategies achieves normalized
accuracy of 77.05% and unnormalized accuracy of 56.58%. Note that the unnormalized
accuracy corresponds to identifying the correct entity from tens of thousands of candidate
entities.

68

40 50 60 70
60

65

70

75

80

Usrc+tgt

UWB UWB → Usrc+tgt

Target domain MLM accuracy

E
nt

ity
-L

in
ki

ng
ac

cu
ra

cy

Figure 6.2: Relationship between
MLM accuracy of pre-trained model
and Entity-Linking performance of
the fine-tuned model, evaluated on
target domains.

Pre-training EL Accuracy
N. Acc. U. Acc.

UWB Devlin et al. (2019) 75.06 55.08

UWB → Utgt (DAP) 76.17 55.88
UWB → Usrc+tgt → Utgt (DAP) 77.05 56.58

Table 6.7: Performance on test domains with Full-
Transformer. N. Acc represents the normalized ac-
curacy. U. Acc represents the unnormalized accu-
racy. The unnormalized accuracy is upper-bounded
by 68%, the top-64 recall of the candidate genera-
tion stage.

Mention Category Recall@64 EL Accuracy
N. Acc. U. Acc.

High Overlap 99.28 87.64 87.00
Ambiguous Substring 88.03 75.89 66.81
Multiple categories 84.88 77.27 65.59
Low Overlap 54.37 71.46 38.85

Table 6.8: Performance on test domains categorized by mention categories. Recall@64
indicates top-64 performance of candidate generation. N. Acc. and U. Acc. are respectively
the normalized and unnormalized accuracies.

To analyze the mistakes made by the model, we compare EL accuracy across different
mention categories in Table 6.8. Candidate generation (Recall@64) is poor in the Low
Overlap category. However, the ranking model performs in par with other hard categories
for these mentions. Overall EL accuracy can thus be improved significantly by strengthening
candidate generation.

6.7 Related Work
We discussed prior entity linking task definitions and compared them to our task in section
6.2. Here, we briefly overview related entity linking models and unsupervised domain
adaptation methods.

Entity linking models Entity linking given mention boundaries as input can be broken
into the tasks of candidate generation and candidate ranking. When frequency information or
alias tables are unavailable, prior work has used measures of similarity of the mention string
to entity names for candidate generation (Sil et al., 2012; Murty et al., 2018). For candidate

69

ranking, recent work employed distributed representations of mentions in context and entity
candidates and neural models to score their compatibility. Mentions in context have been
represented using e.g., CNN (Murty et al., 2018), LSTM (Gupta et al., 2017a), or bag-of-
word embeddings (Ganea and Hofmann, 2017). Entity descriptions have been represented
using similar architectures. To the best of our knowledge, while some models allow for
cross-attention between single-vector entity embeddings and mention-in-context token
representations, no prior works have used full cross-attention between mention+context and
entity descriptions.

Prior work on entity linking tasks most similar to ours used a linear model comparing a
mention in context to an entity description and associated structured data (Sil et al., 2012).
Sil et al. (2012) also proposed a distant supervision approach which could use first-pass
predictions for mentions in the target domain as noisy supervision for re-training an in-
domain model. We believe this approach is complementary to unsupervised representation
learning and could bring additional benefits. In another task similar to ours, Wang et al.
(2015) used collective inference and target database relations to obtain good performance
without (domain, target database)-specific labeled training data. Collective inference is
another promising direction, but could have limited success when no metadata is available.

Unsupervised domain adaptation There is a large body of work on methods for unsu-
pervised domain adaptation, where a labeled training set is available for a source domain
and unlabeled data is available for the target domain. The majority of work in this direction
assume that training and test examples consist of (x, y) pairs, where y is in a fixed shared
label set Y . This assumption holds for classification and sequence labeling, but not for
zero-shot entity linking, since the source and target domains have disjoint labels.

Most state-of-the-art methods learn non-linear shared representations of source and
target domain instances, through denoising training objectives (Eisenstein, 2018). In Section
6.5, we overviewed such work and proposed an improved domain adaptive pre-training
method.

Adversarial training methods (Ganin et al., 2016), which have also been applied to
tasks where the space Y is not shared between source and target domains (Cohen et al.,
2018), and multi-source domain adaptation methods (Zhao et al., 2018; Guo et al., 2018)
are complementary to our work and can contribute to higher performance.

6.8 Conclusion
We introduce a new task for zero-shot entity linking, and construct a multi-world dataset
for it. The dataset can be used as a shared benchmark for entity linking research focused
on specialized domains where labeled mentions are not available, and entities are defined

70

through descriptions alone. A strong baseline is proposed by combining powerful neural
reading comprehension with domain-adaptive pre-training.

Future variations of the task could incorporate NIL recognition and mention detection
(instead of mention boundaries being provided). The candidate generation phase leaves
significant room for improvement. We also expect models that jointly resolve mentions in a
document would perform better than resolving them in isolation.

In this chapter we showed how models can learn to recognize entities in unknown
domains by exploiting text descriptions of those entities. The next chapter applies this
principle to learn new tasks where text descriptions of tasks are assumed to be available. We
show that intelligent agents can be trained to perform unseen tasks by combining skills they
learned during training based on task descriptions.

71

CHAPTER VII

Learning Zero-shot Compositional Tasks from
Language Instructions

Systematic compositionality – the ability to combine learned knowledge and skills to solve
novel tasks – is a key aspect of generalization in humans that allows us to understand
and perform tasks described by novel language utterances. While progress has been made
in supervised learning settings, no work has yet studied compositional generalization of
a reinforcement learning agent following natural language instructions in an embodied
environment. We develop a set of tasks in a photo-realistic simulated kitchen environment
that allow us to study the degree to which a behavioral policy captures the systematicity in
language by studying its zero-shot generalization performance on held out natural language
instructions. We show that our agent which leverages a novel additive action-value decom-
position in tandem with attention-based subgoal prediction is able to exploit composition in
text instructions to generalize to unseen tasks.

7.1 Introduction
Human language is characterized by systematic compositionality: one can combine known
components – such as words or phrases – to produce novel linguistic combinations (Chomsky,
2009). This is a key aspect of generalization in humans and enables us to understand and
perform tasks specified by novel language utterances over familiar words or phrases. If you
know what a “laptop” and a “fridge” are, you can easily understand how to perform the task
“place the laptop in the fridge” even if you have never placed a laptop in a fridge.

Prior work studying the linguistic “systematicity” of neural networks have focused on
sequence mapping tasks in a supervised learning setting (Lake and Baroni, 2018; Lake,
2019; Andreas, 2019). In this work, we are interested in compositional generalization of
a reinforcement learning agent following natural language instructions in an embodied

72

Pick up the knife and use it to chop the bread on
the counter.

Pick up the butter knife near the sink and cut the
yellow apple on the white table.

Move the knife near the table and slice the apple.

Training

Test

Move the knife near the
table and slice the apple.

Move the knife near the
table and slice the apple.

… …

look down pickup knife turn left slice apple

Figure 7.1: Zero-shot generalization to an unseen task of slicing an apple. The test task is
composed of known primitive subtasks – picking up a knife and slicing the apple – each of
which were encountered in training tasks. Our agent learns to decompose a natural language
task description into subtasks using attention and executes them using low-level actions.

environment. In particular, we explore the hypothesis that a language-conditioned reinforce-
ment learning agent with a compositional inductive bias in its behavioral policy will exhibit
systematic generalization to unobserved natural language instructions.

There has been a flurry of recent work on embodied learning tasks such as question
answering (Gupta et al., 2017b), navigation (Anderson et al., 2018) and object interaction
(Shridhar et al., 2020; Carvalho et al., 2020) in embodied settings. In particular, the ALFRED
task (Shridhar et al., 2020) studies agents that exploit detailed natural language instructions to
generalize to novel instructions in novel environments at test time. Such existing benchmarks
offer limited flexibility to study systematic generalization since (i) the benchmarks were
not built for this purpose and it is unclear to what extent systematic generalization skills are
required to solve the tasks and (ii) the tasks demand challenging reasoning skills such as
visual recognition and planning over large number of time-steps which makes it difficult to
study compositional generalization ability in isolation.

In this work we develop a set of tasks in the AI2Thor virtual home environment (Kolve
et al., 2017) which test the compositionality of embodied agents. In order to make progress
in systematic generalization, we make two simplifying assumptions: we assume access to an
oracle object recognizer and we study generalization in a single kitchen layout. This allows
us to study the degree to which a policy captures the systematicity in language by studying
its zero-shot generalization performance on held out natural language instructions.

Despite these simplifications, agents still need to understand the instruction to figure out
the sequence of object interactions that need to be performed and act over many time-steps

73

with limited guidance. In order to succesfully generalize at test time, an agent needs to learn
to ground natural language instructions to temporally extended goal-oriented behaviors
or “skills” in a compositional manner to perform novel tasks that are compositions of the
tasks presented at train time. We leverage this setting to develop and study a policy with
an inductive bias for compositionality and show that this enables systematic generalization
in the context of combining behavioral skills learned purely from reward without expert
demonstrations.

We present an attention-based agent that learns to predict subgoals from language
instructions via a learned attention mechanism. Our agent uses these subgoals with a novel
policy parametrization which decomposes the action-value function in an additive fashion
that enables estimating the action-value for novel object-interactions composed of objects
and interactions experienced during training.

We show evidence that this parametrization facilitates exploiting the compositional
nature of text instructions by showing systematic generalization to both unseek task de-
scriptions and unseen tasks. We present an example in Fig. 7.1, where the agent is able to
systematically generalize the behavior “pickup up the knife” to “move the knife” and “cut
the yellow apple” to “slice the apple”. Thanks to the additive inductive bias afforded by our
action-value parametrization, it is able to compose these behaviors to perform the novel task
“move the knife near the table and slice the apple” at test time.

7.2 Related work
Compositional generalization Prior work has studied compositional generalization in
sequence mapping tasks. Benchmarks such as SCAN (Lake and Baroni, 2018) and gSCAN
(Ruis et al., 2020) study translating synthetic text descriptions to an action sequence (e.g.
jump twice → JUMP JUMP). gSCAN couples SCAN instances with entities in a grid
environment and solving a task requires grounding the text and entities similar to our work.
Prior approaches for these benchmarks impose compositional inductive biases in models by
augmenting models with memory (Lake, 2019) and data augmentation (Andreas, 2019). In
this work we use attention mechanisms and introduce a novel poilcy parameterization to
impose compositional inductive biases.

Text based embodied control Advances in photo-realistic simulation environments such
as DeepMind Lab (Beattie et al., 2016) and AI2Thor (Kolve et al., 2017) have driven
recent progress in embodied agents that learn from text instructions. Chaplot et al. (2018)
consider a simple navigation task where an agent has to move to an object specified by
a set of attributes such as shape and color. They propose the gated attention model to
generalize compositionally in the attribute space. Hill et al. (2019) consider systematic

74

generalization in 2D and 3D environments with synthetic text instructions. Compared to
these work, we consider object interaction tasks in a photo realistic simulated environment
with human-authored language instructions.

ALFRED Shridhar et al. (2020) couples tasks in the AI2Thor environment with detailed
text descriptions of tasks. In contrast, we consider a simplified setup of learning composi-
tional skills from high-level task descriptions. We further do not assume access to expert
task demonstrations. These assumptions allows us to focus on compositional generalization
to zero-shot tasks, which is not the main goal of the ALFRED benchmark. However, the
approach presented here can potentially be applicable to ALFRED when combined with
learning from demonstrations.

Hierarchical Reinforcement Learning Learning to directly map percepts to low-level
action sequences can be challenging. An alternative hierarchical approach is to first come up
with a sequence of subtasks, which can be considered as high-level actions (Andreas et al.,
2017; Zhu et al., 2017). Each of those subtasks can then be realized using low-level actions.
Our policy has an implicit hierarchical structure where latent subgoals are represented as
text embeddings using attention. Language was used as an abstraction for the high-level
policy in Jiang et al. (2019a) for object rearrangement tasks based on the CLEVR engine
(Johnson et al., 2017).

Finally, generalization to unseen instructions has been considered in prior work such as
Oh et al. (2017); Lynch and Sermanet (2020), although compositional generalization is not
their main focus.

7.3 Problem
We consider an embodied agent acting in a kitchen environment to solve basic tasks from
language instructions (See Fig. 7.4 for an example task). At the beginning of an episode the
agent receives a text instruction τ . Our goal is to learn a policy π(a|s, τ); a ∈ A, s ∈ S that
predicts actions in order to complete tasks.

The agent state s is partially observable – it receives an egocentric observation obs of
the scene. We further assume that an oracle object recognition model provides the object ids
for objects in the egocentric observation.

The action space consists of navigation and object interaction actions A = Anav ∪ Aint.
There are 8 navigation actions Anav = {move forward, move back, move left, move right,

turn left, turn right, look up, look down}. Interaction actions Aint = B × I are specified
using an interaction b ∈ B and an object id o ∈ I where B = {pickup, place, slice, toggle

on, toggle off, turn on, turn off} and I is a pre-defined set of identifiers of objects that are
available to the agent for interaction in the current observation.

75

…

Get spoon on counter
near salt shaker and put it
away in pan near stove

RNN AttentionTask description Text subgoal

Attention Object subgoal

CNN

MLP

Q(s, move forward)

object embeddings
Text subgoal

object id
sObservation

Q(s, turn left)

Q(s, (pickup, o1))

…
Q(s, (slice, o2))

…

Observation features

Q(s, (pickup, on))

Q(s, (slice, on))
…

of completed subgoals
Vector representation of number

vsg

tsg

eobs

tsg

o1
e

o2
e

on
e

o
no-obj
e

Ne
sg

Figure 7.2: Approach Overview: We perform attention over the text instruction to construct
an embedding tsg that represents the current subgoal. The text embedding subgoal tsg attends
to scene object embeddings to construct an object subgoal representation vsg. An MLP takes
tsg, vsg and observation features eobs as input and predicts state-action values Q(s, a). The
entire model is trained end-to-end using Q-learning. See text for details.

The agent receives a positive reward for successfully completing a task. It also receives
a small negative reward for every time-step. In addition, we also assume that every correct
object interaction receives a positive reward. In addition to providing a denser learning
signal, the rewards are also used to identify subgoals as described in section 7.4.1. In practice
such dense rewards may be unavailable, but this is outside the scope of our study and left as
future work.

7.4 Approach
We approach the problem by considering a task τ to be composed of subgoals g1, ..., gn,
where each subgoal gi involves navigating to a particular object an interacting with it. For
example, the task place an apple on the table involves finding the apple and picking it up,
followed by navigating to the table and putting down the apple, which can be considered
to be the two subgoals for executing the task. Each object interaction required to complete
the task thus corresponds to a subgoal. Since every subgoal completion receives a positive
reward, the number of subgoals completed at every time-step Nsg is known to the agent. The
subgoals themselves are not known to the agent – we use attention on the text instruction to
compute a latent subgoal representation.

7.4.1 Text subgoal inference
Given instruction τ composed of the tokens (w1, ..., wn), we obtain the corresponding token
embeddings E = (e1, ..., en) and use an RNN to encode the instruction to obtain a sequence

76

of contextualized token representations H = (h1, ..., hn). We compute a text subgoal tsg for
a given time-step by computing attention on the instruction using N e

sg as query where N e
sg is

a vector representation of Nsg. This is shown in Eq. (7.1) (Q,K, V are learnable parameter
matrices).

tsg = Attention(query = N e
sg, keys = values = H)

=
∑
h∈H

exp((Qs)>(Kh))∑
h′∈H

exp((Qs)>(Kh′))
V h (7.1)

We expect the attention to focus on words in the instruction relevant to executing the current
subgoal. For instance, if the agent is expected to interact with an apple, the attention module
could learn to focus on the word ‘apple’.

7.4.2 Cross-modal reasoning
Given the text subgoal tsg, we use an attention mechanism to reason about objects in the
scene within some distance to the agent. This helps the agent understand if objects of
interest relevant to the subgoal are present nearby. Let the set of nearby scene objects be
O = {o1, ..., on}, where the oi ∈ I are object ids provided by an oracle. The oi’s can
thus be treated as indexes into an embedding table that produces object embeddings Oe =

{o1e, ..., one}. The cross-modal attention is given by Eq. (7.2) where the text subgoal attends
to the scene object embeddings (Q′, K ′, V ′ are learnable parameter matrices). We augment
the scene objects embeddings Oe with an additional learned embedding ono−obje which is
expected to absorb any probability mass not assigned to scene objects O′e = Oe ∪ ono−obje .
The attention produces an object subgoal embedding vsg.

vsg = Attention(query = tsg, keys = values = O′e)

=
∑
oe∈O′e

exp((Q′tsg)
>(K ′oe))∑

o′e∈O′e
exp((Q′tsg)>(K ′o′e))

V ′oe (7.2)

7.4.3 Policy learning
We use a deep Q-learning algorithm to train a policy (Mnih et al., 2013), where a neural
network is trained to approximate the state-action value function Q(s, a). Given the current
observation, text subgoal and object subgoal, the state-action value for a navigation action
a ∈ Anav is given by Eq. (7.3), where fnav is an MLP (multi-layer perceptron) and eobs =

fCNN(obs) is a feature vector of the observation image computed using a CNN encoder.

Qnav(s, a) = fnav(a|eobs, tsg, vsg) (7.3)

77

Task type Task description

pick up pot
Go to the stove and pick up the pot.
Pick up the pot on the bottom right burner on the stove.
Take the cooking pot from the stove.

place spoon in pan

get spoon on counter near salt shaker and put it away in pan near
stove.
Pick up the spoon from the table near the salt shaker and move it to
the pan on the counter by the sink.
Move spoon from the counter and into the pan.

slice bread with knife

Pick the knife and slice the bread.
Take the knife with the yellow handle from the counter by the sink
and use it to cut horizontal slices out of the loaf of bread on the white
table.
Pick up the sharp knife with a yellow handle, and slice the bread on
the white table.

Table 7.1: Example task types and corresponding task descriptions. Note that the task
descriptions are used for training and testing agents. The task types are not known to the
agents.

The state-action values for interaction actions a = (b, o) ∈ B × I can be analogously
modeled as in Eq. (7.4). We found it helpful to decompose the state-action value in an additive
fashion over an action score faint and an object score f oint as in Eq. (7.5). Intuitively, faint learns
to model action preferences, whereas f oint learns to ground text goals to physical objects. In
addition to sharing parameters across actions and objects, this decomposition allows us to
model state-action values of object interactions not experienced during training, as long as
the specific interaction and the object were encountered. Unless specified otherwise we use
the decomposed value function Qadd

int in our experiments.

Qfull
int (s, a) = fint(a|eobs, tsg, vsg) (7.4)

Qadd
int (s, a) = faint(b|eobs, tsg, vsg) + f oint(o|tsg) where a = (b, o) ∈ B × I (7.5)

In summary, the state-action value function is modeled as in Eq. (7.6).

Q(s, a) =

Qnav(s, a); a ∈ Anav

Qadd
int (s, a); a ∈ Aint

(7.6)

The overall model (see Fig. 7.2 for an illustration) including parameters of the subgoal
inference (Eq. 7.1) and cross-modal reasoning (Eq. 7.2) components, as well as the MLPs
in Eqs. (7.3) and (7.5) are trained end-to-end using a double-DQN algorithm (Van Hasselt
et al., 2016). Once the model has been trained we construct a greedy policy by choosing
actions with the highest state-action values for inference.

78

7.5 Experiments

7.5.1 Tasks
We use the AI2Thor (Kolve et al., 2017) environment as a testbed for our experiments. While
there exist prior benchmarks that couple language instructions with embodied environments
such as ALFRED Shridhar et al. (2020), they were not designed to study compositional
generalization. We thus construct a new task setup that allows us to flexibly vary tasks and
object arguments. We consider the following task types in our experiments,

• pickup x: Find and pick up object x

• place x in y: Find and pick up object x, followed by navigating to y and placing it.

• slice x with y: Secure cutting instrument y, find object x and slice it.

We use Amazon Mechanical Turk to collect natural language descriptions of tasks for
training and evaluation. A turker is shown key observation frames during the execution of a
particular task and is asked to describe in a sentence how they would describe the task to a
robot. Turkers were instructed to do their best to correctly identify task relevant objects. But
often descriptions from the turkers incorrectly identify objects such as identifying a potato
as an avocado. Such descriptions were manually fixed so that the correct object identities are
mentioned in the instructions. We collected 5 natural language descriptions each for 35 tasks
that include pickup, place and slice tasks. The descriptions consist of 170 unique tokens
and have an average length of 12 tokens. Table 7.1 shows example descriptions collected for
some tasks. See appendix C.2 for instructions given to Turkers in the data collection process.

The pickup tasks are used for evaluating multi-task and zero-shot generalization with
seen and unseen descriptions of tasks. We use 10 pickup tasks - pickup X where X ∈
{apple, bread, tomato, potato, lettuce, spoon, bread, butter knife, plate, pot}.
These tasks are used for evaluating generalization to seen and unseen descriptions of known
short-horizon tasks. They are also used in generalization to longer horizon tasks as described
later in this section.

The place and slice tasks are used for evaluating generalization to longer-horizon
unseen tasks. Table 7.2 shows tasks used for training and evaluation. In addition to multitask
generalization, we use these tasks to study zero-shot compositional generalization to unseen
task descriptions. The unseen descriptions can correspond to tasks that were encountered
during training, similar to the pickup tasks. A more challenging generalization scenario is
to generalize to text descriptions of unseen tasks.

We consider two types of tasks in the latter scenario. The obj-obj setting examines the
ability of the agent to generalize to tasks composed of unseen combinations of objects. For

79

place tasks slice tasks

Training tasks

place apple in plate slice apple with knife
place butterknife in plate slice tomato with knife
place spoon in plate slice bread with knife
place butterknife in pan slice apple with butterknife
place potato in pan slice potato with butterknife
place spoon in pan slice bread with butterknife
place apple in pot
place butterknife in pot
place potato in pot

Test tasks place potato in plate slice potato with knife
(obj-obj setting) place apple in pan slice tomato with butterknife

place spoon in pot
Test tasks place knife in plate slice lettuce with knife
(task-obj setting) place knife in pan slice lettuce with butterknife

place knife in pot

Table 7.2: Task types used for training and testing on place and slice tasks. The obj-obj
setting considers test tasks composed of unseen combinations of objects. The task-obj setting
considers generalization to unseen combinations of tasks and objects (e.g. learning to slice
lettuce when taught how to slice objects and how to pickup lettuce).

instance, in the test task place potato in plate, the relevant objects potato, plate
were encountered during training in tasks such as place potato in pan and place
apple in plate.

The task-obj setting is a harder generalization problem where the agent is expected to
generalize to unseen combinations of tasks and objects. For the test task slice lettuce
with knife, the object lettuce was never observed in the context of a slice task during
training. However, the agent has access to pickup tasks and is expected to learn to interact
with lettuce by using the pickup lettuce task. This can be challenging because the agent
was only taught how to pick up lettuce, and did not learn to associate lettuce with slice tasks.

The training tasks in Table 7.2 were designed in a way that each object argument appears
in multiple tasks. Furthermore, when choosing object arguments for a given task type, we
prioritized objects that appear in as many tasks as possible. For instance, in the pickup and
place tasks setup, the objects were plate, pan, pot, spoon, etc. where each object appears in
at least three of the training tasks. This ensures that there are enough occurrences of each
object type for the agent to understand and ground the object type. It also helps the agent
disentangle the notion of an object versus a task in a given text instruction.

7.5.2 Baselines and hyperparameters
Baselines We compare the proposed approach against the following baselines.

• RNN In this baseline we replace the attentional model with an RNN that produces an
embedding of the text instruction. While this model can potentially work for unseen in-

80

structions, we examine if the encoding effectively captures the compositional information
present in the instructions.

• Gated Attention This architecture (Chaplot et al., 2018) combines the instruction rep-
resentation with the visual observation using a gated attention operation. The fused
representation is fed to an MLP which models the state-action values. All models and
baselines are trained using the DDQN Q-learning algorithm.

Hyperparameters Word embeddings and the RNN have representation size 32. Objects
are represented by embeddings of size 32 from an embedding table. The CNN observation
features have size 512 and the CNN encoder has 1.7M parameters, which constitues 90%
of the overall model parameters. The MLPs in Eqs. (7.3) and (7.4) are single hidden layer
MLPs with 256 hidden units and ReLU activation.

7.5.3 Results
Short-horizon tasks We first consider pickup tasks that involve a single object interaction.
In these tasks the agent has to identify the object reference mentioned in the text description
and then find and pick up the relevant object. We train and evaluate on 10 pickup task
types. Four text descriptions of each task type are part of the training set and the remaining
descriptions (i.e., 1 per task type) are part of the test set.

On the training and test descriptions, our agent trained from scratch achieves success
rates of 0.9± 0.3, 0.92± 0.18 respectively. Identifying the correct subgoal for these tasks
involves paying attention to the verbs and nouns in the task description as well as the overall
context. Table 7.3 visualizes the task attention in the subgoal inference component for a
subset of test tasks, from which it is clear that the agent learns to focus on the relevant parts
of the instruction.

pick up the silver butter knife closest to the edge of the counter .
the spoon is between the spatula and the fork on the left countertop ; pick it up .
move to the table , pick up the tomato .
pick up the lettuce from the table .
pick up the potato between the lettuce and the tomato .

Table 7.3: Visualizing task attention for pickup tasks. Words in darker shades received higher
attention probabilities.

Longer-horizon Tasks We now consider tasks that involve two subgoals, which includes
the place and slice tasks in Table 7.2. Jointly learning text grounding and subgoal in-
ference for long horizon tasks can be challenging. We thus consider a curriculum learn-
ing strategy where an agent is gradually trained on tasks of increasingly longer horizon.

81

Tasks Training tasks Test tasks
Descriptions seen unseen unseen unseen

obj-obj task-obj

Model

RNN 0.65 ± 0.50 0.65 ± 0.24 0.26 ± 0.30 0.13 ± 0.20
Gated Attention 0.92 ± 0.20 0.85 ± 0.25 0.66 ± 0.30 0.34 ± 0.25
Ours
(a) Qadd

int (no cross modal) 0.89 ± 0.31 0.76 ± 0.35 0.84 ± 0.21 0.77 ± 0.30
(b) Qfull

int + cross modal 0.93 ± 0.26 0.85 ± 0.30 0.44 ± 0.34 0.34 ± 0.28
(c) Qadd

int + cross modal 0.95 ± 0.23 0.87 ± 0.27 0.94 ± 0.11 0.91 ± 0.23

Table 7.4: Task success rates (and standard deviation) of models under different general-
ization settings. Models are evaluated on seen/unseen descriptions of seen tasks and on
unseen descriptions of unseen tasks. For unseen tasks, we further evaluate under unseen
combinations of objects as well as unseen combinations of tasks and objects. Best numbers
are boldfaced.

0.0 0.2 0.4 0.6 0.8 1.0
Training episodes 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

Train from scratch
Pre-train on pickup tasks

Figure 7.3: Learning progress of
agent trained from scratch and
pre-trained agent on place tasks.

The agent is first pre-trained on the pickup tasks as de-
scribed in the previous section, and then fine-tuned on
the training tasks in Table 7.2.

Fig. 7.3 compares the learning progress of agents
trained from scratch and an agent that has been pre-
trained on the pickup tasks. The plot shows the success
rate on training tasks during the course of training. The
pre-trained agent learns twice as fast compared to the
agent trained from scratch and achieves perfect success
rate on training tasks.

Generalization Table 7.4 shows the average task completion success rate of models under
different generalization scenarios. The RNN and Gated Attention baselines are limited by
the fact that the text instruction is represented using the same encoding across all time-steps,
which has limited ability to capture compositional information. The inductive bias of Gated
Attention enables better performance, but it has difficulty generalizing to unseen tasks.
The attention based model outperforms these baselines, which indicates that the attention
mechanism helps exploit compositional information in the instruction better than a fixed
encoding.

In addition to better performance, the attention model has the advantage of being more
interpretable. Fig. 7.4 shows the agent’s actions and the attention pattern over time for an
example task. The agent learns to identify object references in the instruction and uses
attention as a sub-goal representation. This mimics a hierarchical policy where a high-level
controller provides a sub-goal and a low-level controller executes it Jiang et al. (2019b). The

82

Instruction Subgoal 1 bring the potato from the table to the plate on the right of the oven .
attention Subgoal 2 bring the potato from the table to the plate on the right of the oven .

Instruction Subgoal 1 pick up the butter knife on the counter , and horizontally slice the lettuce .
attention Subgoal 2 pick up the butter knife on the counter , and horizontally slice the lettuce .

Figure 7.4: Agent’s observation at different time-steps while performing a place task and a
slice task. The attention distribution in the text goal inference component while executing
each subgoal is also given below the agent observations.

agent further learns to ground object references in the text instruction to objects in the scene.
Notably, these attention patterns and grounding are learned from the reward signal alone
without any other supervision. More example of agent trajectories are given in appendix
C.1.

7.5.4 Ablations
We perform ablations to study the impact of cross-modal reasoning and decomposing the
value function in an additive fashion.

Cross modal reasoning We examine model performance without the cross modal reason-
ing component. In this case the MLPs in Eqs. (7.3) and (7.5) only receive the text subgoal
and observation encoding as inputs and the visual subgoal vsg is omitted. From rows (a) and
(c) in table Table 7.4 it is clear that the cross-modal reasoning components helps ground text
in scene objects and enables better generalization across all settings.

Interaction Q-values We examine the benefit of decomposing the value function approxi-
mation of interaction actions in an additive fashion in Qadd

int (Eq. (7.5)). We compare it against
Qfull

int (Eq. (7.4)), which treats each (interaction, object) pair as a separate atomic action.

83

Comparing rows (b), (c) in Table 7.4 we see that the additive decomposition is crucial for
generalization to unseen tasks.

7.6 Conclusion
In this work we proposed attention based agents that can exploit the compositional nature of
language instructions to generalize to unseen tasks. The policy mimics a hierarchical process
where a text embedding obtained via attention represents the subgoal to be executed and
the policy network executes the low level actions. The proposed method performs strongly
against baselines on a testbed we created based on a photorealistic simulated environment
and provides some interpretability.

Compared to existing benchmarks such as ALFRED we made simplifying assumptions
such as oracle visual recognition, relatively short horizon tasks and generalization within
single kitchen layout which allows us to focus on compositional generalization in embodied
settings. However, the ideas presented here can potentially be combined with curriculum
learning and learning from human demonstrations to perform complex tasks that require
planning over hundreds of time-steps such as in the ALFRED setting, and we leave this to
future work.

84

CHAPTER VIII

Conclusion and Future Work

Machine learning has seen incredible progress in the recent years. Despite this progress,
machine learning models today are brittle and have fairly limited ability to generalize to new
settings. They struggle to learn from limited supervision and often require large amounts of
labelled training data.

This thesis addresses the limited supervision problem from two perspectives. First, I
examine methods that exploit large amounts of unlabelled data to learn useful feature repre-
sentations in a self-supervised manner. Such representations capture rich prior knowledge
about the data, allowing them to be useful across many tasks, and enable data-efficient
learning of new tasks. In the first part of this thesis (chapters III, IV), I presented methods to
learn representations useful for a wide variety of text understanding tasks from unlabelled
text. In particular, I show that contrastive learning can be effective to learn high quality
sentence representations in an efficient manner compared to prior generative pre-training
approaches.

In the second part of my thesis, I explore models and algorithms capable of learning from
limited supervision. My work studies weakly supervised, few-shot and zero-shot learning
settings with applications to text generation, sequence modeling, entity understanding
and embodied control. I proposed methods to adapt transformer models to the few-shot
regime (chapter V) and also explored how pre-trained transformer language models can
be exploited to achieve strong zero-shot generalization capabilities (chapter VI). My work
demonstrates that text descriptions are an effective means of building models that generalize
to new domains and new tasks without needing to experience supervised data for the
new domain/task. In particular, I considered a learning paradigm where models read and
understand text in order to generalize to new domains and tasks and demonstrated these
techniques for entity linking (chapter VI) and embodied control (chapter VII).

Below I discuss some interesting future directions building off of my work - The appli-

85

cability of my representation learning work to modern pre-trainig methods and leveraging
text understanding models to build better AI.

Efficient self-supervised text representations with contrastive learning My Quick-
Thoughts work shows that rich representations can be learned using contrastive training
objectives in an efficient manner. Contrastive representation learning has further gained trac-
tion in other domains such as speech (Oord et al., 2018), vision (Chen et al., 2020) and RL
(Srinivas et al., 2020). I believe that contrastive learning holds significant promise in building
efficient algorithms for representation learning. The ideas in my work are complementary to,
and can be combined with recent advances in language model based representations to learn
constant-length text representations highly beneficial for fast retrieval applications. Further,
recent unsupervised objectives for learning contextualized representations can also be cast
under the contrastive learning framework (Kong et al., 2019). The contrastive learning
framework thus offers considerable flexibility in the design of unsupervised representation
learning algorithms while being a less expensive alternative to generative training.

Pre-training representations that can be easily adapted to new tasks My work on
zero-shot Entity Linking is an instance of designing pre-training tasks with a certain target
task or data domain in mind. Recent work have demonstrated that this approach is more
widely applicable to other tasks and domains as well (Gururangan et al., 2019). I envision
a more unified approach which avoids pre-training in multiple stages and instead exploits
clusters of data that are naturally available in large unlabelled corpora to learn domain/task-
aware representations. A mixture model of representations can then be easily adapted to new
tasks by modulating the experts based on relevance/similarity to the target task or domain.

Acquiring strong generalization capabilities via text understanding Zeshel shows
how Entity Linking systems can be made to generalize to unseen entities in unseen domains
by forcing them to rely only on text descriptions of entities. More generally, I am excited
about leveraging rich text information to expand the generalization capabilities of intelligent
agents. I envision personal assistants that take commands in the form of text instructions and
perform many practically useful tasks such as booking a flight ticket, reserving a restaurant
or creating a calendar invite to meet someone.

I presented embodied agents that learn from text instructions in this thesis. Such sequen-
tial decision making problems are a good intermediate step towards the long term goal of
realizing AI that acts intelligently based on text commands. They have many desiderata
relevant to making progress on the long term goal - task requires reasoning across data from
multiple modalities, sequential decision making is involved and there is a substantial gap
between human performance and machine performance on these tasks.

86

It would be interesting to explore the use of pre-trained transformer models in this
context and analyze whether the benefits seen in popular text understanding benchmarks
such as GLUE are also applicable in this setting. Second, it is important to devise self-
supervised objectives that enable learning of shared representations between text, images
and actions. Finally, I would like to see if high level reasoning capabilities can be acquired
by exploiting the compositional nature of text instructions such as generalizing to unseen
combinations of skills acquired during training.

87

APPENDICES

88

APPENDIX A

Quick Thought vectors - Nearest neighbors

A.1 Nearest neighbors
Our model and the skip-thought model have conceptually similar objective functions. This
suggests examining properties of the embedding spaces to better understand how they encode
semantics. We consider a nearest neighbor retrieval experiment to compare the embedding
spaces. We use a pool of 1M sentences from a Wikipedia dump for this experiment. For a
given query sentence, the best neighbor determined by cosine distance in the embedding
space is retrieved.

Table A.1 shows a random sample of query sentences from the dataset and the corre-
sponding retrieved sentences. These examples show that our retrievals are often more related
to the query sentence compared to the skip-thought model. It is interesting to see in the first
example that the model identifies a sentence with similar meaning even though the main
clause and conditional clause are in a different order. This is in line with our goal of learning
representations that are less sensitive to the form in which meaning is expressed.

89

QuerySeizures may occur as the glucose falls further .
ST It may also occur during an excessively rapid entry into autorotation .
QT When brain glucose levels are sufficiently low , seizures may result .
QueryThis evidence was only made public after both enquiries were completed .
ST This visa was provided for under Republic Act No .
QT These evidence were made public by the United States but concealed the names

of sources .
QueryHe kept both medals in a biscuit tin .
ST He kept wicket for Middlesex in two first-class cricket matches during the 1891

County Championship .
QT He won a three medals at four Winter Olympics .
QueryThe American alligator is the only known natural predator of the panther .
ST Their mascot is the panther .
QT The American alligator is a fairly large species of crocodilian .
QuerySeveral of them died prematurely : Carmen and Toms very young , while Carlos

and Pablo both died .
ST At the age of 13 , Ahmed Sher died .
QT Many of them died in prison .
QueryMusic for “ Expo 2068 ” originated from the same studio session .
ST His 1994 work “ Dialogue ” was premiered at the Merkin Concert Hall in New

York City .
QT Music from “ Korra ” and “ Avatar ” was also played in concert at the PlayFest

festival in Mlaga , Spain in September 2014 .
QueryMohammad Ali Jinnah yielded to the demands of refugees from the Indian

states of Bihar and Uttar Pradesh , who insisted that Urdu be Pakistan ’s official
language .

ST Georges Charachidz , a historian and linguist of Georgian origin under Dumzil ’s
tutelage , became a noted specialist of the Caucasian cultures and aided Dumzil
in the reconstruction of the Ubykh language .

QT Wali Mohammed Wali ’s visit thus stimulated the growth and development of
Urdu Ghazal in Delhi .

QueryThe PCC , together with the retrosplenial cortex , forms the retrosplenial gyrus .
ST The Macro domain from human , macroH2A1.1 , binds an NAD metabolite

O-acetyl-ADP-ribose .
QT The PCC forms a part of the posteromedial cortex , along with the retrosplenial

cortex (Brodmann areas 29 and 30) and precuneus (located posterior and
superior to the PCC) .

Table A.1: Nearest neighbors retrieved by the skip-thought model (ST) and our model (QT).

90

APPENDIX B

Zero-shot Entity Linking - Model predictions and errors

B.1 Examining model errors and predictions
In tables B.1, B.2, B.3, B.4 we show some example mentions and model predictions. For
each instance, the examples show the correct gold entity and the top-5 predictions from the
model. Examples show 32 token contexts centered around mentions and the first 32 tokens
of candidate entity documents.

91

Coronation Street

Mention Robbie pulled over the ambulance with a van and used a gun to get the Prison Officer with
Tony to release him . He integrated himself with the Street residents , finding

Gold Entity
Prison Officer
(Episode 7351) The unnamed Prison Officer was on duty during May 2010 in the Highfield

Prison dining room when Tony Gordon provoked a fight with a fellow
inmate

Top-5 predictions

Prison Officer
(Episode 7351) The unnamed Prison Officer was on duty during May 2010 in the Highfield

Prison dining room when Tony Gordon provoked a fight with a fellow
inmate

Inmate (Episode
7351) The Inmate was an unnamed fellow prisoner of Tony Gordon in Highfield

Prison . Tony provoked a fight in the dining room with the inmate by
staring

Police Officer
(Simon Willmont) The unnamed Police Officer was on duty at Weatherfield Police Station in

March 2010 when Peter Barlow was released from custody following his
arrest as he

Prison Officer
(Bill Armstrong) The Prison Officer looked after the incarceration of three Coronation

Street residents : In November 2000 he was on duty at Strangeways Jail
when Jim McDonald

Robbie Sloane Quietly spoken Robbie Sloane was Tony Gordon ’ s henchman and a
convicted murderer , who he met while sharing a cell at Highfield Prison
in 2010 . When Robbie

Table B.1: Mention and entity candidates from Coronation Street.

Muppets

Mention Bean Bunny was introduced during the seventh season of ” Muppet Babies ” , and a pre -
teen Bean would later be featured as part of the Muppet Kids series . Bean was active

Gold Entity
Bean Bunny
(Muppet Kids) A young version of Bean Bunny made a few appearances in the Muppet

Kids books and video games . Young Bean moves to the Muppet Kids

Top-5 predictions

Baby Bean Bunny Baby Bean Bunny appeared in the late 1989 / 1990 seasons of ” Muppet
Babies ” as a baby version of Bean Bunny . He joined the other babies

Bean Bunny
(Muppet Kids) A young version of Bean Bunny made a few appearances in the Muppet

Kids books and video games . Young Bean moves to the Muppet Kids
Bean Bunny Bean Bunny first appeared in 1986 as the star of the TV special ” The

Tale of the Bunny Picnic ” . The cute bunny was part of a family
Piggy (Muppet
Kids) A pre - teen version of Miss Piggy , as seen in the ” Muppet Kids ” books

and video games . Piggy lives in a fancy
Muppet Kids Muppet Kids was a series of books and educational software made in the

1990s , featuring young , pre - teen versions of the principal franchise
characters . Characters included

Table B.2: Mention and entity candidates from Muppets.

92

Ice Hockey

Mention 1979 - 80 PCJHL Season This is a list of Peace - Cariboo Junior Hockey League Standings
for the 1979 - 80 season . This was the PCJHL ’ s final

Gold Entity
Rocky Mountain
Junior Hockey League The Rocky Mountain Junior Hockey League was a Canadian Junior ”

A ” ice hockey league in British Columbia . History . Promoted to”

Top-5 predictions

Peace Junior Hockey
League Hockey League Peace Junior Hockey League is a League that started

in the 1960 ’ s and ended in 1975 . Then change its name to Peace
Cariboo junior Hockey

Cariboo Hockey
League The Cariboo Hockey League was a Senior and Intermediate hockey

league in the Cariboo District of British Columbia , Canada . History
. The league began in the 1955

Cariboo Junior League The Cariboo Junior League operated in northern British Columbia
in the 1963 - 64 season . Its champion was eligible for the British
Columbia Junior Playoffs . The league

Rocky Mountain
Junior Hockey League The Rocky Mountain Junior Hockey League was a Canadian Junior ”

A ” ice hockey league in British Columbia . History . Promoted to”
North West Junior
Hockey League The North West Junior Hockey League is a Junior ” B ” ice hockey

league operating in the Peace River region of Alberta and British
Columbia ,

Table B.3: Mention and entity candidates from Ice Hockey.

Elder Scrolls

Mention to get everyone to safety . Rolunda ’ s brother is one of those people . The Frozen Man .
Rolunda ’ s brother Eiman has ventured into Orkey ’ s Hollow to find

Gold Entity
The Frozen Man
(Quest) The Frozen Man is a quest available in The Elder Scrolls Online. It

involves finding a Nord who has been trapped in ice by a mysterious
” Frozen Man

Top-5 predictions

The Frozen Man
(Quest) The Frozen Man is a quest available in The Elder Scrolls Online. It

involves finding a Nord who has been trapped in ice by a mysterious
” Frozen Man

The Frozen Man The Frozen Man is an insane Bosmer ghost found in Orkey ’ s Hollow
. He says he was in a group of people inside the cave when it

Kewan Kewan is a Redguard worshipper of the Daedric Prince Peryite . He
is frozen in a trance that relates to the Daedric quest , but can be
unfrozen in completion the

Stromgruf the Steady Stromgruf the Steady is the Nord who is found in the Grazelands of
Vvardenfell , west of Pulk and east of Vassamsi Grotto (Online) .
He is

Maren the Seal Maren the Seal is a Nord hunter and worshipper of the Daedric Prince
Peryite . She is frozen in a trance that relates to the Daedric Prince ’ s

Table B.4: Mention and entity candidates from Elder Scrolls.

93

APPENDIX C

Compositional task generalization

94

C.1 Sample agent trajectories

Subgoal 1 bring the apple from the counter to the pan on the counter by the microwave .
Subgoal 2 bring the apple from the counter to the pan on the counter by the microwave .

Subgoal 1 take the knife from the counter by the trash can and put it on the plate on the counter to the right of the oven .
Subgoal 2 take the knife from the counter by the trash can and put it on the plate on the counter to the right of the oven .

Subgoal 1 pick up the yellow knife on the counter in the kitchen and cut the potato that is located on the white table
Subgoal 2 pick up the yellow knife on the counter in the kitchen and cut the potato that is located on the white table

Subgoal 1 pick up the silver butter knife from the counter by the sink and bring it to the white table to slice lettuce into
thin horizontal slices .

Subgoal 2 pick up the silver butter knife from the counter by the sink and bring it to the white table to slice lettuce into
thin horizontal slices .

Figure C.1: Agent’s observation at different time-steps while performing place and slice
tasks. The attention distribution in the text goal inference component while executing each
subgoal is also given below the agent observations.

95

C.2 Collecting task descriptions from Mechanical Turk
Fig. C.2 shows an example image and instructions shown to Mechanical Turkers to collect
natural language task descriptions.

Figure C.2: Example of a HIT (Human Intelligence Task) shown to Turkers in Amazon
Mechanical Turk.

96

BIBLIOGRAPHY

97

BIBLIOGRAPHY

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., and Goldberg, Y. (2017). Fine-grained analysis
of sentence embeddings using auxiliary prediction tasks. In ICLR.

Akata, Z., Reed, S., Walter, D., Lee, H., and Schiele, B. (2015). Evaluation of output
embeddings for fine-grained image classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2927–2936.

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid, I., Gould, S.,
and Van Den Hengel, A. (2018). Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3674–3683.

Andreas, J. (2019). Good-enough compositional data augmentation. arXiv preprint
arXiv:1904.09545.

Andreas, J., Klein, D., and Levine, S. (2017). Modular Multitask Reinforcement Learning
with Policy Sketches. arXiv:1611.01796 [cs]. arXiv: 1611.01796.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford,
B., and De Freitas, N. (2016). Learning to learn by gradient descent by gradient descent.
In Advances in neural information processing systems, pages 3981–3989.

Arora, S., Liang, Y., and Ma, T. (2016). A simple but tough-to-beat baseline for sentence
embeddings.(2016).

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C. (2016). Using fast weights to
attend to the recent past. In Advances in Neural Information Processing Systems, pages
4331–4339.

Bao, Y., Wu, M., Chang, S., and Barzilay, R. (2019). Few-shot text classification with
distributional signatures. arXiv preprint arXiv:1908.06039.

Barrault, L., Bojar, O., Costa-jussà, M. R., Federmann, C., Fishel, M., Graham, Y., Haddow,
B., Huck, M., Koehn, P., Malmasi, S., Monz, C., Müller, M., Pal, S., Post, M., and
Zampieri, M. (2019). Findings of the 2019 conference on machine translation (WMT19).
In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task
Papers, Day 1), pages 1–61, Florence, Italy. Association for Computational Linguistics.

Barzilay, R. and Elhadad, N. (2002). Inferring strategies for sentence ordering in multidocu-
ment news summarization. Journal of Artificial Intelligence Research, pages 35–55.

98

Barzilay, R. and Lapata, M. (2008). Modeling local coherence: An entity-based approach.
Computational Linguistics, 34(1):1–34.

Barzilay, R. and Lee, L. (2004). Catching the drift: Probabilistic content models, with
applications to generation and summarization. arXiv preprint cs/0405039.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq,
A., Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab. arXiv preprint
arXiv:1612.03801.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2015).
Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Branavan, S., Silver, D., and Barzilay, R. (2012). Learning to win by reading manuals in a
monte-carlo framework. Journal of Artificial Intelligence Research, 43:661–704.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.

Bunescu, R. and Pasca, M. (2006). Using encyclopedic knowledge for named entity
disambiguation. In 11th Conference of the European Chapter of the Association for
Computational Linguistics.

Burstein, J., Tetreault, J., and Andreyev, S. (2010). Using entity-based features to model co-
herence in student essays. In Human language technologies: The 2010 annual conference
of the North American chapter of the Association for Computational Linguistics, pages
681–684. Association for Computational Linguistics.

Carvalho, W., Liang, A., Lee, K., Sohn, S., Lee, H., Lewis, R. L., and Singh, S. (2020).
Reinforcement learning for sparse-reward object-interaction tasks in first-person simulated
3d environments. arXiv preprint arXiv:2010.15195.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Constant, N., Guajardo-
Céspedes, M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint
arXiv:1803.11175.

Chaplot, D. S. and Salakhutdinov, R. (2018). Knowledge-based word sense disambiguation
using topic models. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence.

Chaplot, D. S., Sathyendra, K. M., Pasumarthi, R. K., Rajagopal, D., and Salakhutdinov, R.
(2018). Gated-attention architectures for task-oriented language grounding. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32.

Chen, M., Xu, Z., Weinberger, K., and Sha, F. (2012). Marginalized denoising autoencoders
for domain adaptation. In Proceedings of the 29th International Conference on Machine
Learning.

99

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In International Conference on Machine
Learning.

Chen, X., Qiu, X., and Huang, X. (2016). Neural sentence ordering. arXiv preprint
arXiv:1607.06952.

Cheng, J. and Lapata, M. (2016). Neural summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252.

Chomsky, N. (2009). Syntactic structures. De Gruyter Mouton.

Chung, J., Gül10031cehre, C., Cho, K., and Bengio, Y. (2015). Gated feedback recurrent
neural networks. In ICML, pages 2067–2075.

Cohen, D., Mitra, B., Hofmann, K., and Croft, W. B. (2018). Cross domain regularization
for neural ranking models using adversarial learning. In The 41st International ACM
SIGIR Conference on Research; Development in Information Retrieval.

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). Supervised
learning of universal sentence representations from natural language inference data. arXiv
preprint arXiv:1705.02364.

Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence learning. arXiv preprint
arXiv:1511.01432.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding.

Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual representation learning
by context prediction. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1422–1430.

Dolan, B., Quirk, C., and Brockett, C. (2004). Unsupervised construction of large paraphrase
corpora: Exploiting massively parallel news sources. In Proceedings of the 20th interna-
tional conference on Computational Linguistics, page 350. Association for Computational
Linguistics.

Eisenstein, J. (2018). Natural Language Processing. MIT Press.

Elhoseiny, M., Saleh, B., and Elgammal, A. (2013). Write a classifier: Zero-shot learning
using purely textual descriptions. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2584–2591.

Elsner, M., Austerweil, J. L., and Charniak, E. (2007). A unified local and global model for
discourse coherence. In HLT-NAACL, pages 436–443.

Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories. IEEE
transactions on pattern analysis and machine intelligence, 28(4).

100

Fink, M. (2005). Object classification from a single example utilizing class relevance metrics.
In In Advances in Neural Information Processing Systems, pages 449––456.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org.

Gan, Z., Pu, Y., Henao, R., Li, C., He, X., and Carin, L. (2016). Unsupervised learn-
ing of sentence representations using convolutional neural networks. arXiv preprint
arXiv:1611.07897.

Ganea, O.-E. and Hofmann, T. (2017). Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand,
M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks. The
Journal of Machine Learning Research, 17(1):2096–2030.

Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., and Shlens, J. (2017). Exploring the
structure of a real-time, arbitrary neural artistic stylization network. arXiv preprint
arXiv:1705.06830.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th International
Conference on Machine Learning.

Grosz, B. J., Weinstein, S., and Joshi, A. K. (1995). Centering: A framework for modeling
the local coherence of discourse. Computational linguistics, 21(2):203–225.

Guinaudeau, C. and Strube, M. (2013). Graph-based local coherence modeling. In ACL (1),
pages 93–103.

Guo, J., Shah, D., and Barzilay, R. (2018). Multi-source domain adaptation with mixture
of experts. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing.

Gupta, N., Singh, S., and Roth, D. (2017a). Entity linking via joint encoding of types,
descriptions, and context. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017b). Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2616–2625.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., and Smith,
N. A. (2019). Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

101

Han, L., Kashyap, A. L., Finin, T., Mayfield, J., and Weese, J. (2013). UMBC EBIQUITY-
CORE: Semantic Textual Similarity Systems. In Proceedings of the Second Joint Confer-
ence on Lexical and Computational Semantics. Association for Computational Linguistics.

He, L., Lee, K., Levy, O., and Zettlemoyer, L. (2018). Jointly predicting predicates and
arguments in neural semantic role labeling. arXiv preprint arXiv:1805.04787.

Hermann, K. M. and Blunsom, P. (2013). Multilingual distributed representations without
word alignment. arXiv preprint arXiv:1312.6173.

Hill, F., Cho, K., and Korhonen, A. (2016). Learning distributed representations of sentences
from unlabelled data. arXiv preprint arXiv:1602.03483.

Hill, F., Cho, K., Korhonen, A., and Bengio, Y. (2015). Learning to understand phrases by
embedding the dictionary. arXiv preprint arXiv:1504.00548.

Hill, F., Lampinen, A., Schneider, R., Clark, S., Botvinick, M., McClelland, J. L., and
Santoro, A. (2019). Environmental drivers of systematicity and generalization in a
situated agent. arXiv preprint arXiv:1910.00571.

Hinton, G. E. and Plaut, D. C. (1987). Using fast weights to deblur old memories. In
Proceedings of the ninth annual conference of the Cognitive Science Society, pages
177–186.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn using gradi-
ent descent. In International Conference on Artificial Neural Networks, pages 87–94.
Springer.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A.,
Attariyan, M., and Gelly, S. (2019). Parameter-efficient transfer learning for nlp.

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classifica-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics.

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 168–177. ACM.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). On using very large target
vocabulary for neural machine translation. arXiv preprint arXiv:1412.2007.

Jernite, Y., Bowman, S. R., and Sontag, D. (2017). Discourse-based objectives for fast
unsupervised sentence representation learning. arXiv preprint arXiv:1705.00557.

Ji, Y. and Eisenstein, J. (2013). Discriminative improvements to distributional sentence
similarity. In EMNLP, pages 891–896.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. (2019a). Language as an abstraction for
hierarchical deep reinforcement learning. arXiv preprint arXiv:1906.07343.

102

Jiang, Y., Gu, S. S., Murphy, K. P., and Finn, C. (2019b). Language as an Abstraction for
Hierarchical Deep Reinforcement Learning. In Wallach, H., Larochelle, H., Beygelzimer,
A., AlchÃ©-Buc, F. d., Fox, E., and Garnett, R., editors, Advances in Neural Information
Processing Systems 32, pages 9419–9431. Curran Associates, Inc.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., and Gir-
shick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2901–2910.

Joshi, M., Chen, D., Liu, Y., Weld, D. S., Zettlemoyer, L., and Levy, O. (2020). Span-
bert: Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics, 8:64–77.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3128–3137.

Kenter, T., Borisov, A., and de Rijke, M. (2016). Siamese cbow: Optimizing word embed-
dings for sentence representations. arXiv preprint arXiv:1606.04640.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C., and Socher, R. (2019). Ctrl: A
conditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858.

Kiddon, C., Zettlemoyer, L., and Choi, Y. (2016). Globally coherent text generation with
neural checklist models. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Torralba, A., and Fidler, S.
(2015). Skip-thought vectors. In Advances in neural information processing systems.

Klein, B., Lev, G., Sadeh, G., and Wolf, L. (2015). Associating neural word embeddings with
deep image representations using fisher vectors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4437–4446.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, pages
423–430. Association for Computational Linguistics.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon, D., Zhu,
Y., Gupta, A., and Farhadi, A. (2017). AI2-THOR: An Interactive 3D Environment for
Visual AI. arXiv.

103

Kong, L., d’Autume, C. d. M., Ling, W., Yu, L., Dai, Z., and Yogatama, D. (2019). A
mutual information maximization perspective of language representation learning. In
International Conference on Learning Representations.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

Kumar, A. and Daume III, H. (2012). Learning task grouping and overlap in multi-task
learning. In International Conference on Machine Learning.

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on
Machine Learning, pages 2873–2882. PMLR.

Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence
learning. arXiv preprint arXiv:1906.05381.

Lample, G., Subramanian, S., Smith, E., Denoyer, L., Ranzato, M., and Boureau, Y.-L.
(2019). Multiple-attribute text rewriting. In International Conference on Learning
Representations.

Lapata, M. (2003). Probabilistic text structuring: Experiments with sentence ordering. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics-
Volume 1, pages 545–552. Association for Computational Linguistics.

Lapata, M. (2006). Automatic evaluation of information ordering: Kendall’s tau. Computa-
tional Linguistics, 32(4):471–484.

Larsen, A. B. L., Sønderby, S. K., Larochelle, H., and Winther, O. (2015). Autoencoding
beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300.

Le, P. and Titov, I. (2018). Improving entity linking by modeling latent relations between
mentions. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics.

Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and documents.
In ICML, volume 14, pages 1188–1196.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.

Li, J., Chen, X., Hovy, E., and Jurafsky, D. (2015a). Visualizing and understanding neural
models in nlp. arXiv preprint arXiv:1506.01066.

Li, J. and Hovy, E. H. (2014). A model of coherence based on distributed sentence represen-
tation. In EMNLP, pages 2039–2048.

104

Li, J. and Jurafsky, D. (2016). Neural net models for open-domain discourse coherence.
arXiv preprint arXiv:1606.01545.

Li, J., Luong, M.-T., and Jurafsky, D. (2015b). A hierarchical neural autoencoder for
paragraphs and documents. arXiv preprint arXiv:1506.01057.

Lichman, M. (2013). UCI machine learning repository.

Lin, R., Liu, S., Yang, M., Li, M., Zhou, M., and Li, S. (2015). Hierarchical recurrent neural
network for document modeling. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 899–907.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740–755. Springer.

Ling, X., Singh, S., and Weld, D. S. (2015). Design challenges for entity linking. Transac-
tions of the Association for Computational Linguistics.

Liu, X., He, P., Chen, W., and Gao, J. (2019). Multi-task deep neural networks for natural
language understanding. arXiv preprint arXiv:1901.11504.

Logeswaran, L., Chang, M.-W., Lee, K., Toutanova, K., Devlin, J., and Lee, H. (2019).
Zero-shot entity linking by reading entity descriptions. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics.

Logeswaran, L. and Lee, H. (2018). An efficient framework for learning sentence represen-
tations. arXiv preprint arXiv:1803.02893.

Logeswaran, L., Lee, H., and Radev, D. (2018). Sentence ordering and coherence mod-
eling using recurrent neural networks. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Louis, A. and Nenkova, A. (2012). A coherence model based on syntactic patterns. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learning, pages 1157–1168. Association
for Computational Linguistics.

Lynch, C. and Sermanet, P. (2020). Grounding Language in Play. arXiv:2005.07648 [cs].
arXiv: 2005.07648.

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2014). Deep captioning with
multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632.

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R. (2014).
A sick cure for the evaluation of compositional distributional semantic models. In LREC,
pages 216–223.

Maurer, A., Pontil, M., and Romera-Paredes, B. (2013). Sparse coding for multitask and
transfer learning. In International conference on machine learning, pages 343–351.

105

McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in translation:
Contextualized word vectors. arXiv preprint arXiv:1708.00107.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems.

Milne, D. and Witten, I. H. (2008). Learning to link with wikipedia. In Proceedings of the
17th ACM Conference on Information and Knowledge Management.

Miltsakaki, E. and Kukich, K. (2004). Evaluation of text coherence for electronic essay
scoring systems. Natural Language Engineering, 10(01):25–55.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. (2018). A simple neural attentive
meta-learner. In International Conference on Learning Representations.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language model. In
Advances in neural information processing systems, pages 1081–1088.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Ried-
miller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Murty, S., Verga, P., Vilnis, L., Radovanovic, I., and McCallum, A. (2018). Hierarchical
losses and new resources for fine-grained entity typing and linking. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics.

Nallapati, R., Zhou, B., and Ma, M. (2016). Classify or select: Neural architectures for
extractive document summarization. arXiv preprint arXiv:1611.04244.

Nguyen, D. T. and Joty, S. (2017). A neural local coherence model. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1320–1330.

Nichol, A. and Schulman, J. (2018). Reptile: a scalable metalearning algorithm. arXiv
preprint arXiv:1803.02999, 2.

Noroozi, M. and Favaro, P. (2016). Unsupervised learning of visual representations by
solving jigsaw puzzles. In European Conference on Computer Vision, pages 69–84.
Springer.

Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G. S., and
Dean, J. (2013). Zero-shot learning by convex combination of semantic embeddings.
arXiv preprint arXiv:1312.5650.

Oh, J., Singh, S., Lee, H., and Kohli, P. (2017). Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. arXiv:1706.05064 [cs]. arXiv: 1706.05064.

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748.

106

Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of the 42nd annual meeting
on Association for Computational Linguistics, page 271. Association for Computational
Linguistics.

Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the 43rd annual meeting on
association for computational linguistics, pages 115–124. Association for Computational
Linguistics.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg, M.,
Kaufman, R. L., Clark, A., Noury, S., Botvinick, M., Heess, N., and Hadsell, R. (2019).
Stabilizing transformers for reinforcement learning. arXiv:1910.06764.

Park, C. C. and Kim, G. (2015). Expressing an image stream with a sequence of natural
sentences. In Advances in Neural Information Processing Systems, pages 73–81.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration
by self-supervised prediction. arXiv preprint arXiv:1705.05363.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2536–2544.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–1543.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film: Visual
reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018a). Deep contextualized word representations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.
(2018b). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Purushwalkam, S., Nickel, M., Gupta, A., and Ranzato, M. (2019). Task-driven modular
networks for zero-shot compositional learning. arXiv preprint arXiv:1905.05908.

Radev, D. R., Joseph, M. T., Gibson, B., and Muthukrishnan, P. (2009). A Bibliometric and
Network Analysis of the field of Computational Linguistics. Journal of the American
Society for Information Science and Technology.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020.

107

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language
understanding with unsupervised learning. Technical report, OpenAI.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.

Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot learning.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084.

Rethmeier, N. and Augenstein, I. (2021). A primer on contrastive pretraining in language
processing: Methods, lessons learned and perspectives. arXiv preprint arXiv:2102.12982.

Romera-Paredes, B. and Torr, P. (2015). An embarrassingly simple approach to zero-shot
learning. In International conference on machine learning, pages 2152–2161. PMLR.

Roth, D., Ji, H., Chang, M.-W., and Cassidy, T. (2014). Wikification and beyond: The
challenges of entity and concept grounding. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics: Tutorials.

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and Lake, B. M. (2020). A Benchmark
for Systematic Generalization in Grounded Language Understanding. arXiv:2003.05161
[cs]. arXiv: 2003.05161.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell, R.
(2019). Meta-learning with latent embedding optimization. In International Conference
on Learning Representations.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lillicrap, T. (2016). One-shot
learning with memory-augmented neural networks. arXiv preprint arXiv:1605.06065.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning, or on learning
how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München.

Schmidhuber, J. (1992). Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. Neural Computation, 4(1):131–139.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909.

Shen, T., Ott, M., Auli, M., and Ranzato, M. (2019). Mixture models for diverse machine
translation: Tricks of the trade. In International Conference on Machine Learning.

108

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L.,
and Fox, D. (2020). ALFRED: A Benchmark for Interpreting Grounded Instructions for
Everyday Tasks. arXiv:1912.01734 [cs]. arXiv: 1912.01734.

Sil, A., Cronin, E., Nie, P., Yang, Y., Popescu, A.-M., and Yates, A. (2012). Linking
named entities to any database. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning.

Sil, A., Ji, H., Roth, D., and Cucerzan, S.-P. (2018). Multi-lingual entity discovery and
linking. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics, Tutorial Abstracts.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot learning.
In Advances in Neural Information Processing Systems, pages 4077–4087.

Socher, R., Ganjoo, M., Sridhar, H., Bastani, O., Manning, C. D., and Ng, A. Y. (2013a).
Zero-shot learning through cross-modal transfer. arXiv preprint arXiv:1301.3666.

Socher, R., Huang, E. H., Pennington, J., Ng, A. Y., and Manning, C. D. (2011). Dy-
namic pooling and unfolding recursive autoencoders for paraphrase detection. In NIPS,
volume 24, pages 801–809.

Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., Potts, C., et al.
(2013b). Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the conference on empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. (2019). Mass: Masked sequence to sequence
pre-training for language generation. arXiv preprint arXiv:1905.02450.

Soricut, R. and Marcu, D. (2006). Discourse generation using utility-trained coherence
models. In Proceedings of the COLING/ACL on Main conference poster sessions, pages
803–810. Association for Computational Linguistics.

Srinivas, A., Laskin, M., and Abbeel, P. (2020). Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning.

Stickland, A. C. and Murray, I. (2019). Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning.

Subramanian, S., Trischler, A., Bengio, Y., and Pal, C. J. (2018). Learning general purpose
distributed sentence representations via large scale multi-task learning. arXiv preprint
arXiv:1804.00079.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112.

109

Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017a). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017b). Attention is all you need. In Advances in Neural Information
Processing Systems.

Vendrov, I., Kiros, R., Fidler, S., and Urtasun, R. (2015). Order-embeddings of images and
language. arXiv preprint arXiv:1511.06361.

Vinyals, O., Bengio, S., and Kudlur, M. (2015a). Order matters: Sequence to sequence for
sets. arXiv preprint arXiv:1511.06391.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for one
shot learning. In Advances in neural information processing systems, pages 3630–3638.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015b). Pointer networks. In Advances in Neural
Information Processing Systems, pages 2674–2682.

Voorhees, E. M. and Buckland, L. (2003). Overview of the trec 2003 question answering
track. In TREC, volume 2003, pages 54–68.

Wang, H., Zheng, J. G., Ma, X., Fox, P., and Ji, H. (2015). Language and domain independent
entity linking with quantified collective validation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing.

Wang, X. and Gupta, A. (2015). Unsupervised learning of visual representations using
videos. In Proceedings of the IEEE International Conference on Computer Vision, pages
2794–2802.

Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating expressions of opinions and
emotions in language. Language resources and evaluation, 39(2):165–210.

Wieting, J., Bansal, M., Gimpel, K., and Livescu, K. (2015). Towards universal paraphrastic
sentence embeddings. arXiv preprint arXiv:1511.08198.

Wieting, J. and Gimpel, K. (2017). Revisiting recurrent networks for paraphrastic sentence
embeddings. arXiv preprint arXiv:1705.00364.

Wieting, J., Mallinson, J., and Gimpel, K. (2017). Learning paraphrastic sentence embed-
dings from back-translated bitext. arXiv preprint arXiv:1706.01847.

110

Wu, L., Petroni, F., Josifoski, M., Riedel, S., and Zettlemoyer, L. (2019). Scalable zero-shot
entity linking with dense entity retrieval. arXiv preprint arXiv:1911.03814.

Yang, Y. and Eisenstein, J. (2015). Unsupervised multi-domain adaptation with feature
embeddings. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies.

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., and Choi, Y.
(2019). Defending against neural fake news. In Neural Information Processing Systems.

Zhao, H., Lu, Z., and Poupart, P. (2015). Self-adaptive hierarchical sentence model. In
IJCAI, pages 4069–4076.

Zhao, H., Zhang, S., Wu, G., Moura, J. M., Costeira, J. P., and Gordon, G. J. (2018).
Adversarial multiple source domain adaptation. In Advances in Neural Information
Processing Systems.

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A., Mottaghi, R., and Farhadi, A.
(2017). Visual semantic planning using deep successor representations. In Proceedings
of the IEEE international conference on computer vision, pages 483–492.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and Whiteson, S. (2019). Fast context
adaptation via meta-learning. In International Conference on Machine Learning.

111

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Motivation
	Unsupervised learning of text representations
	Models and algorithms to learn from limited supervision

	Thesis Statement
	Impact of thesis
	Thesis Outline

	Background
	Representation Learning
	Representation learning approaches
	Representation usage in downstream tasks

	Learning from limited supervision

	An Efficient Framework for Learning Sentence Representations
	Introduction
	Related Work
	Proposed Framework
	Experimental Results
	Comparison against unsupervised methods
	Comparison against supervised methods
	Image-Sentence Ranking
	Training Efficiency
	Representation size, training efficiency and performance

	Conclusion

	Representation Learning and Coherence Modeling via Text Ordering
	Introduction
	Related Work
	Approach
	Experimental Results
	Order Discrimination
	Sentence Ordering
	Sentence Ordering and Summarization
	Learned Sentence Representations
	Word Influence

	Conclusion

	Few-shot Sequence Learning with Transformers
	Introduction
	Problem Definition
	Approach
	Architecture
	Training and Inference Algorithm

	Related work
	Experiments
	Model and Training Details
	Baselines
	Sequence Classification and Transduction
	Compositional Task Representations
	Ablation experiments
	Discussion

	Conclusion

	Zero-shot Entity Linking by Reading Entity Descriptions
	Introduction
	Zero-shot Entity Linking
	Review: Entity linking
	Task Definition
	Relationship to other EL tasks

	Dataset Construction
	Models for Entity Linking
	Candidate generation
	Candidate ranking

	Adapting to the Target World
	Experiments
	Generalization to Unseen Entities and New Worlds
	Impact of Domain Adaptive Pre-training
	Test results and performance analysis

	Related Work
	Conclusion

	Learning Zero-shot Compositional Tasks from Language Instructions
	Introduction
	Related work
	Problem
	Approach
	Text subgoal inference
	Cross-modal reasoning
	Policy learning

	Experiments
	Tasks
	Baselines and hyperparameters
	Results
	Ablations

	Conclusion

	Conclusion and Future Work
	APPENDICES
	Nearest neighbors
	Examining model errors and predictions
	Sample agent trajectories
	Collecting task descriptions from Mechanical Turk

	BIBLIOGRAPHY

