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ABSTRACT

This thesis consists of two problems on time inconsistency and one problem on

mean field games, all featuring the study of equilibrium and applications in economics

and finance.

In Chapter II, we deal with time inconsistency in the infinite horizon mean-

variance stopping problem under discrete time setting. In order to determine a

proper time-consistent plan, we investigate subgame perfect Nash equilibria among

three different types of strategies, pure stopping times, randomized stopping times

and liquidation strategies. We show that equilibria among pure stopping times or

randomized stopping times may not exist, while an equilibrium liquidation strategy

always exists. Furthermore, we argue that the mean-standard deviation variant of

this problem makes more sense for this type of strategies in terms of time consistency.

The existence and uniqueness of optimal equilibrium liquidation strategies are also

analyzed.

In Chapter III, we delve into equilibrium concepts for time inconsistent stopping

problems in continuous time. We point out that the two existing notions of equi-

librium in the literature, which we call mild equilibrium and weak equilibrium, are

inadequate to capture the idea of subgame perfect Nash equilibrium. To characterize

it more accurately, we introduce a new notion, strong equilibrium. It is proved that

an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a

new iteration method that can directly construct an optimal mild equilibrium and

thus also guarantees its existence.

xi



In Chapter IV, we adopt a mean field game (MFG) approach to analyze a costly

job search model with incomplete credit and insurance markets. The MFG approach

enables us to quantify the impact of a class of countercyclical unemployment benefit

policies on labor supply in general equilibrium. Our model provides two interesting

predictions. First, the difference between unemployment rates under a countercyclical

policy and an acyclical policy is positive and increases rapidly with the size of the

aggregate shock. Second, compared with a baseline policy without means test, a

means-tested policy which is targeted to provide more generous benefits to liquidity

constrained individuals turns out to provide improved consumption insurance to all

individuals as well as results in a lower equilibrium unemployment rate relative to a

comparable non-targeted policy.
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CHAPTER I

Introduction

This thesis is devoted to three problems in mathematical finance that are related

to time inconsistency and mean field games. The concept of Nash equilibrium plays

a pivotal role in all of them. The first two problems focus on finding no-regret strate-

gies in the sense of subgame perfect Nash equilibria, for time inconsistent stopping

problems with infinite horizon; see Chapter II for discrete time mean-variance stop-

ping problems and see Chapter III for continuous time non-exponential discounting

stopping problems. The third problem features a costly job search model with in-

complete credit and insurance markets. This model is built and numerically solved

using tools developed in mean field game theory and reveals the impact of a class of

countercyclical unemployment benefit policies on labor supply in general equilibrium;

see Chapter IV.

Dynamic programming is a powerful tool to tackle a wide class of stochastic opti-

mal stopping/optimal control problems. It is based on the famous Bellman’s principle

of optimality [8], which postulates that an optimal policy computed at the initial stage

remains optimal at the later stages 1. This is also the central idea of time consis-

tency. However such property may fail to hold in many scenarios; see [10, Chap1]

for essential factors of time consistency and time inconsistent examples from financial

1As in his book, principle of optimality is interpreted as “ Any optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.”
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economics. Among various strategies to deal with time-inconsistency, only the equi-

librium strategy, which is also called “consistent plan”, takes the time inconsistency

seriously. Thus this is also the approach we adopt in this thesis.

Dating back to the seminal work of Strotz [56], game theoretic approach to time

inconsistent control problem has a long history. See [53, 21, 11, 12, 34] and reference

therein for more recent development. Time inconsistent stopping problems under

different settings have also been discussed in several papers; see [50, 31, 35, 30, 33,

17, 18]. In Chapter II, we study mean-standard deviation stopping problem in discrete

time with an infinite time horizon. The main novelty of this study is the determination

of the right type of “mixed” equilibrium strategies after we show that the existence

of a Markov equilibrium in the class of pure stopping times is not guaranteed in

general. The obvious choice of mixing, i.e., a randomized stopping strategy, does

not work because when an equilibrium in this class exists it coincides with the pure

equilibrium strategy. The right notion of strategies turns out to be the liquidation

strategies (see Definition 2.2.9), among which an equilibrium always exists. Moreover,

instead of the mean-variance benchmark, the mean-standard deviation criterion plays

along well with liquidation strategies and makes more sense in terms of consistent

planning. In addition, we show that an optimal equilibrium liquidation strategy in

the sense of pointwise dominance may not exist, and may not be unique if it exists.

We also establish the existence of a Pareto optimal equilibrium. This chapter is based

on [6]. Part of the work has been presented in the Financial/Actuarial Mathematics

Seminar at the University of Michigan (March 27, 2018).

While the definition of equilibrium stopping time in discrete time setting is natural

with a clear game theoretic interpretation, a direct analogy in continuous time fails to

capture the idea of equilibrium for a wide range of state processes. The formulation

of equilibrium stopping time is highly nontrivial in continuous time. There are two

general notions of equilibrium stopping strategies in continuous time in the literature.

2



The first notion, which we will call mild equilibrium is proposed in [31] and further

studied in [35, 33, 32]. The second notion, which we will call weak equilibrium is

proposed in [17] and further studied in [18]. In Chapter III, we first analyze existing

notions of equilibrium and their inadequacy in continuous time. A new notion of

equilibrium, strong equilibrium is introduced as a more accurate characterization

of the equilibrium concept. Next the relations between these different notions are

examined thoroughly. In particular, when the state process is a continuous-time

Markov chain and the discount function is log sub-additive, we show that an optimal

mild equilibrium is also a strong equilibrium, which is far from obvious. Moreover, we

provide a new iteration method which directly constructs an optimal mild equilibrium

and is much more implementable than the existing method in [30, 33]. Thus it also

proves the existence of an optimal mild equilibrium. This chapter is based on [7].

Part of the work has been presented in the Workshop on Optimal Stopping and Free

Boundary Problems at the University of Leeds, UK (January 15, 2020) and Student

Math Finance Seminar at the University of Michigan (October 19, 2020 ).

Mean field game (MFG) theory is the study of large systems with infinitely many

indistinguishable rational players. It arose around 2005 independently in the mathe-

matical community by Lasry and Lions [40, 41, 42, 43] and in the engineering commu-

nity by P. Caines, Minyi Huang and Roland Malhamé [28, 29]. Featuring the interac-

tion between individual players and the distribution of the whole population, MFG

provides a suitable approach to investigating heterogeneous agent models (HAMs)

in continuous time, which starts in discrete-time setting in the work of Aiyagari [3],

Bewley [9] and Huggett [36], in contrast to the classical representative agent models.

In recent years, applications of MFG theory in economic models have gained increas-

ing interest and attention in the literature; see [1, 2, 23, 14]. In Chapter IV, we

expand Aiyagari’s model by introducing a costly job-search mechanism, which leads

to endogenous job-finding rate in equilibrium. On top of that, we add a one-time,

3



unanticipated, negative shock in which a fraction of individuals experience job loss

at time t = 0. Our goal is to analyze the impact of a class of countercyclical unem-

ployment benefit policies on labor supply. Numerical method for MFG models makes

it possible to examine general equilibria of this economy under different unemploy-

ment benefit policies. Our model makes two non-trivial predictions. First, it predicts

the additional unemployment from countercyclical policies to be a rapidly increas-

ing, non-linear function of the size of the aggregate shock. Second, it predicts that,

in equilibrium, countercyclical policies which are targeted to provide more generous

benefits to liquidity constrained individuals provide improved consumption insurance

to all individuals (even those who are not liquidity constrained) relative to a com-

parable non-targeted policy. Such a targeted policy costs less and is associated with

lower unemployment rate than the comparable non-targeted policy. Part of the work

has been presented in Mean Field Games and Related Topics Conference at Levico

Terme Italy (September 10, 2019).

4



CHAPTER II

Time Consistent Stopping for the Mean-Standard

Deviation Problem — The Discrete Time Case

In this chapter, we formulate the infinite horizon mean-variance stopping problem

as a subgame perfect Nash equilibrium in order to determine time consistent strategies

with no regret. Equilibria among stopping times or randomized stopping times may

not exist. This motivates us to consider the notion of liquidation strategies, which

allows the stopping right to be divisible. We then argue that the mean-standard

deviation variant of this problem makes more sense for this type of strategies in

terms of time consistency. It turns out that an equilibrium liquidation strategy always

exists. We then analyze whether optimal equilibrium liquidation strategies exist and

whether they are unique and observe that neither may hold.

2.1 Introduction

Consider an optimal stopping problem with an infinite time horizon

sup
τ

Ex[g(Xτ )], (2.1)

where X is a Markov process starting from state x, and the stopping time τ is

chosen to maximize the expectation of the payoff function g. A classical approach to

5



solving this optimal stopping problem is to use dynamic programming. Thanks to

the particular form of (2.1), this problem is known to be time-consistent in the sense

that its optimal stopping strategy does not depend on the initial state x. However,

such property may fail to hold in some seemingly quite natural problems where the

objective function is in a different form. In those cases, a stopping strategy that is

optimal from “today’s” point of view may not be optimal anymore from “tomorrow’s”

point of view. Optimal stopping, more generally, optimal control problems with such

property are said to be time-inconsistent. Typical examples include non-exponential

discounting, the optimization criteria used in cumulative prospect theory (e.g. rank

based utility), and the mean-variance criterion, which is the focus of this chapter.

There are three ways one could deal with time-inconsistency, dating back to the

seminal work of Strotz [56]. The first is to formulate an optimal stopping problem

with a given initial state x. The optimal stopping time τx is then parametrized by the

initial state x. Once the state starts at x, and optimal policy τx is determined, the

player is precommitted to implementing this strategy. This strategy simply does not

take the change of future preferences into account. The second is to have the agent

repeatedly solve this problem, hence allow for changes in future preferences. [56]

called this strategy naive and further repercussions about this strategy are discussed

in [19]. [51] discusses these two formulations under the labels static optimality and

dynamic optimality.

The third way is to formulate the problem in game theoretic terms by viewing

each state x as a player in a game regarding when to stop the process X and look

for equilibrium strategies. Roughly speaking, an equilibrium strategy, which is also

called a consistent plan, can be viewed as a no-regret strategy since the agent has

no incentive to deviate from the strategy at any current state x. The third way is

the formulation we will follow here to analyze this problem in an infinite-horizon

discrete-time setting. In discrete time, infinite horizon is much more challenging than

6



finite horizon because [53]’s backward sequential optimization approach to obtain the

consistent plans no longer works.

Recently, there has been a lot of effort in determining the equilibrium strategies

in stochastic control problems, see e.g. [11] and the references therein. There are also

several papers on the equilibrium strategies for stopping problems. Among them, [50]

analyzes the case in discrete time with a finite time horizon, and [24] investigates a

particular model in continuous time with an infinite-time horizon. A general treat-

ment for stopping problems in continuous time is considered in [31] in the context of

hyperbolic discounting. In particular, [31] proposes a definition of equilibrium in con-

tinuous time which avoids using the “first order criteria” as in control problems in the

literature. [31] also formulates equilibrium stopping policies as fixed points of an op-

erator and constructs a large class of equilibria by iterating this operator. This effort

is continued in [35] when the agents use probability distortions to calculate their cri-

teria. As for the study of how to choose an equilibrium, [30] considers a discrete-time

infinite-horizon problem with non-exponential discounting, and investigates optimal

equilibria in the sense of pointwise dominance. Apart from establishing the existence

of a pure stopping equilibrium, [30] also obtains the existence and uniqueness of an

optimal equilibrium. Also see [33] which is a continuous-time extension of [30]. Let

us also mention the recent work of [17], where the authors consider the equilibrium

stopping strategies under the definition associated with first order criteria. They

point out that the mean-variance problem is out of the scope of their approach. In

another recent paper [18] by the same authors, a continuous time general framework

for time-inconsistent stopping problems covering the mean-variance criterion is devel-

oped, and a continuous time mean-variance problem is studied, and a mixed stopping

strategy for the time-inconsistent stopping problem in continuous time is defined as

the first jumping time of a Cox-process associated to the state process.

In this chapter we study time-consistent mean-standard deviation stopping prob-

7



lems in discrete time with an infinite time horizon. We show that while a Markov

equilibrium in the class of pure or randomized stopping times may not exist in gen-

eral, there always exists an equilibrium liquidation strategy. In addition, we show

that an optimal equilibrium in the sense of pointwise dominance may not exist, and

may not be unique if it exists. We also establish the existence of a Pareto optimal

equilibrium.

The main novelty in this project is the determination of the right type of “mixed”

equilibrium strategies and the appropriate modification of the criteria to make sense

of the consistent planning problem. In particular, we show that the obvious choice

of mixing, i.e., a randomized stopping strategy, does not work because when an

equilibrium in this class exists it coincides with a pure equilibrium strategy. (One

should contrast this to Example 2.6 of [17], where they show that there exists an

equilibrium randomized stopping strategy which is not a pure stopping time.) The

right notion of strategies turns out to be the liquidation strategies that were introduced

by [4] (see also [5]) in the context of subhedging American options. The stopping

right is taken to be divisible, or rather as a finite resource/fuel that the agent can

consume continuously. The differences between randomized and liquidation strategies

are highlighted in Remark 2.2.11.

Instead of the mean-variance benchmark, we propose using the mean-standard

deviation criterion. We think it is more meaningful in the context of consistent

planning. One reason is that the mean and standard deviation are associated with the

same units. Moreover, the scaling property of this new objective function plays along

well with liquidation strategies — no matter what the history liquidation strategy

is, we will face the same problem as soon as we are in the same state, because

we can factor out the proportion of the stopping right remaining in the objective

function. (For comparison, we also define equilibrium liquidation strategies for the

mean-variance problem in a similar way. The consequent results reinforce our concerns

8



about its properness in terms of consistent planning.)

Unlike examples in [50], the method of backward construction for equilibria fails

in our setup because the time horizon is infinite. The fixed point approach used in [30]

(see e.g., (2.5) in [30]) does not work for our problem either, due to the non-linearity

of the criterion. Instead, we provide a characterization of equilibria, from which we

are able to calculate explicitly all the equilibria for many examples in this chapter.

The rest of the chapter is organized as follows. In Section 2.2 we introduce the

mean-standard deviation problem. We first analyze the equilibrium stopping time,

and provide an example to show such equilibrium may not exist. Then we introduce

the concepts of randomized stopping strategies and liquidation strategies and analyze

the equilibria in these classes. In Section 2.3 we consider the similar concepts for

mean-variance problems. In Section 2.4 we compare equilibrium liquidation strategies

with statically optimal ones. Some computational details can be found in Appendix

A.

2.2 Mean-standard deviation problem

Consider a probability space (Ω,F ,P) that supports a time-homogeneous discrete-

time Markov chain X = (Xn)n∈N, taking values in a finite state space X ⊂ R. For

each x ∈ X, if X0 = x, we will write X as Xx. The probability, expectation, and

variance associated with Xx will be denoted by Px[·], Ex[·] and Varx[·], respectively.

We assume that the limit X∞ := limn→∞Xn exists almost surely1.

2.2.1 Equilibrium stopping times

For any x ∈ X and τ ∈ T (where T is the set of stopping times w.r.t. the

filtration generated by the Markov chain), consider the following objective function

1This implies there is at least one absorbing state.
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in mean-standard deviation problem

Kp(x, τ) := Ex[Xτ ]− c(Varx[Xτ ])
1/2, (2.2)

where c > 0 is a constant and the subscript “p” in Kp(x, τ) stands for “pure Markov

stopping time”.

As we have discussed in the introduction part, this mean-standard deviation prob-

lem is time-inconsistent due to the non-linear term (Varx[Xτ ])
1/2. We treat it as an

intra-personal game regarding when to stop the process X between current and fu-

ture selves whose preferences, identified with the objective function Kp, change as the

initial state x changes. A reasonable equilibrium strategy should be such that once

the agent chooses to follow the equilibrium strategy he will never regret no matter

which state he comes into. Furthermore, we only consider the pure Markov stopping

times commonly used in game theory; see e.g. [17] and [47].

Definition 2.2.1. A stopping time τ is said to be a pure Markov stopping time, or

pure stopping time for short, if τ = inf{t ≥ 0 : Xt ∈ S} for some measurable set

S ⊂ X and S is called the stopping region.

Remark 2.2.2. Obviously for any stopping region S, the value will not change if we

add or remove an absorbing state from S.2Therefore, without loss of generality we

may assume a stopping region always contains all the absorbing states. The similar

argument applies to the cases when we discuss randomized stopping and liquidation

strategies later on.

A pure stopping time governs when the agent should stop. The decision whether

to stop or not depends directly on the current state x and not on the past path of

process X. A corresponding subgame perfect Nash equilibrium based on pure Markov

2Consider any fixed path of (Xn)n>0, and two stopping regions S which does not contain any
absorbing state and S ∪ a where a is an absorbing state). If X jumps to S first, then XτS = XτS∪a

in this situation. If X jumps to a first, then τS =∞, thus XτS = XτS∪a
= a in this situation.
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stopping time is defined as the following.

Definition 2.2.3. A pure Markov stopping time τ with stopping region S is said to

be an equilibrium stopping time for (2.2) if

x ≥ Kp(x, ρ(x, S)), ∀x ∈ S and x ≤ Kp(x, ρ(x, S)), ∀x /∈ S, (2.3)

where ρ(x, S) := inf{n ≥ 1 : Xx
n ∈ S} ∈ T .

The next result shows that an equilibrium stopping time may not exist.

Proposition 2.2.4. An equilibrium stopping time does not always exist.

Proof. We will prove this by giving a counterexample. Let c = 1. X has state space

X = {0, 1, 3, 6, 10} and the following transition matrix.

0 1 3 6 10

0 1 0 0 0 0

1 0.2 0 0.4 0.2 0.2

3 0 0 1 0 0

6 0 0.2 0 0 0.8

10 0 0 0 0 1

For this Markov chain, {0, 3, 10} are absorbing states and {1, 6} are transient. Sup-

pose there exists an equilibrium stopping time with stopping region S ⊂ {0, 1, 3, 6, 10}

and consider the following four cases.

Case 1: S = {0, 1, 3, 6, 10}. We have that

P1(Xρ(1,S) = 0) = P1(Xρ(1,S) = 6) = P1(Xρ(1,S) = 10) = 0.2, P1(Xρ(1,S) = 3) = 0.4,
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then

E1[Xρ(1,S)] = 4.4, E1[X
2
ρ(1,S)] = 30.8⇒ Kp(1, ρ(1, S)) = 1.0177 > 1,

which yields a contradiction.

Case 2: S = {0, 3, 6, 10}. We have that

P6(Xρ(6,S) = 0) = P6(Xρ(6,S) = 6) = 0.04,

P6(Xρ(6,S) = 3) = 0.08,

P6(Xρ(6,S) = 10) = 0.84,

then

E6[Xρ(6,S)] = 8.88, E6[X
2
ρ(6,S)] = 86.16⇒ Kp(6, ρ(6, S)) = 6.1771 > 6,

which yields a contradiction.

Case 3: S = {0, 1, 3, 10}. We have that

P6(Xρ(6,S) = 1) = 0.2, P6(Xρ(6,S) = 10) = 0.8,

then

E6[Xρ(6,S)] = 8.2, E6[X
2
ρ(6,S)] = 80.2⇒ Kp(6, ρ(6, S)) = 4.6 < 6,

which yields a contradiction.

Case 4: S = {0, 3, 10}. We have that

P1(Xρ(1,S) = 0) =
5

24
, P1(Xρ(1,S) = 3) =

5

12
, P1(Xρ(1,S) = 10) =

3

8
,
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then

E1[Xρ(1,S)] = 5, E1[X
2
ρ(1,S)] =

165

4
⇒ Kp(1, ρ(1, S)) = 0.9689 < 1,

which yields a contradiction.

2.2.2 Randomized stopping times

In the last section, we observed that there is no guarantee that an equilibrium

stopping time exists. Therefore we will now seek an equilibrium among randomized

stopping times.

Let us first briefly recall some facts of randomized stopping times, and we refer to

[20] for more details. A randomized stopping time (w.r.t. the original space (Ω,F))

is defined to be a stopping time w.r.t. the extended space (Ω× [0, 1],F ⊗ B([0, 1])).

For a randomized stopping time γ : Ω× [0, 1] 7→ N, its ω-distribution is defined by

Mk(ω) := Leb{v : γ(ω, v) ≤ k}, k ∈ N, ω ∈ Ω,

where Leb is Lebesgue measure. Intuitively, Mk(ω) represents the probability that

the underlying process has stopped by time k along the path ω. Moreover, there is a

one-to-one correspondence (up to a rearrangement) between γ and M ; see [20]. For

the Markov chain X and any randomized stopping time γ with the ω-distribution M ,

denote

E[Xγ] = E

[
M0X0 +

∞∑
k=1

Xk(Mk −Mk−1) + (1−M∞)X∞

]
,

and

Var[Xγ] = E[X2
γ ]− (E[Xγ])

2,

M∞ := limn→∞Mn.

Definition 2.2.5. We say γ is a time-homogeneous randomized stopping time, if

13



there exists p : X→ [0, 1], such that the ω-distribution of γ satisfies

Mk(·) = 1−
k∏

n=0

(1− p(Xk(·))).

Here p(x) represents the probability to stop at state x, given the underlying process

has not stopped yet. We call p : X → [0, 1] a randomized stopping strategy, and

denote the set of all of them by P .

Intuitively, given a function p : X → [0, 1], we can design n biased coins, where

n is the number of states in X. When we are at state Xk = x, we will flip the

coin with probability p(x) it comes up heads. If it comes up heads, we will stop.

Otherwise, we will continue. In general, we can design more complicated strategies

about flipping coins, which will fit in with general randomized stopping times, not

just time-homogeneous randomized stopping times.

For any p,q ∈ P , denote γq⊗p as the randomized stopping time with the ω-

distribution

M0 = q(X0), and Mk = 1− (1− q(X0))
k∏

n=1

(1− p(Xk)), k = 1, 2, . . . .

We sometimes also write γp instead of γp⊗p for short. With a bit abuse of notation,

we use E[Xq⊗p] to represent E[Xγq⊗p ], and Var[Xq⊗p] to represent Var[Xγq⊗p ].

In Definition 2.2.3, an equilibrium stopping time is a subgame perfect Nash equi-

librium in which all players use pure Markov stopping times. Now we propose to

consider an equilibrium randomized stopping strategy which is a subgame perfect

Nash equilibrium in the game where all players use time-homogeneous randomized

stopping times and their preferences are identified with the following objective func-

tion

Kr(x,p) := Ex[Xp]− c(Varx[Xp])1/2, (2.4)

14



where p is a randomized stopping strategy and the subscript “r” in Kr stands for

“randomized stopping strategy”.

Definition 2.2.6. p ∈ P is said to be an equilibrium randomized stopping strategy

for (2.4), if for any mapping q : X→ [0, 1],

Kr(x,q⊗ p) ≤ Kr(x,p⊗ p), ∀x ∈ X, (2.5)

where Kr(x,q⊗ p) is from (2.4) by replacing p with p⊗ q.

The randomized strategy is also called “mixed strategy” in game theory, i.e., an

assignment of a probability to each pure strategy. In our context, we assign probability

p(x) to the pure strategy “to stop at state x” and probability 1 − p(x) to the pure

strategy “not to stop at state x”.

If the randomized stopping strategy p ∈ P satisfies that p(x) ∈ {0, 1} for any

x ∈ X, then it is actually a pure strategy, which is to stop at state x if p(x) = 1

and not to stop at state x if p(x) = 0. In this case, it simply gives us a pure

stopping time with stopping region {x ∈ X : p(x) = 1}. We have the following

result, which together with Proposition 2.2.4 implies that an equilibrium randomized

stopping strategy does not always exist.

Proposition 2.2.7. If p ∈ P is an equilibrium randomized stopping strategy for

(2.4), then p(x) = 0 or 1 for any (transient state) x ∈ X. Conversely, if there is an

equilibrium stopping time with stopping region S, then p ∈ P defined by

p(x) =


1, x ∈ S,

0, x /∈ S,
(2.6)

is an equilibrium randomized stopping strategy. Consequently, an equilibrium ran-

domized stopping strategy does not always exist.
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For the proof of this proposition we will need the following result:

Lemma 2.2.8. Let γ1, γ2, γ be randomized stopping times and λ ∈ (0, 1), such that

P(γ = γ1) = 1− P(γ = γ2) = λ.

(Denote γ = λγ1 ⊕ (1− λ)γ2.) Then

Var[Xλγ1⊕(1−λ)γ2 ] ≥λVar[Xγ1 ] + (1− λ)Var[Xγ2 ]

≥
(
λ(Var[Xγ1 ])

1/2 + (1− λ)(Var[Xγ2 ])
1/2
)2
.

Moreover, the first equality holds if and only if E[Xγ1 ] = E[Xγ2 ], and the second

equality holds if and only if Var[Xγ1 ] = Var[Xγ2 ].

Proof. We have that

Var[Xλγ1⊕(1−λ)γ2 ] = E[X2
λγ1⊕(1−λ)γ2 ]− (E[Xλγ1⊕(1−λ)γ2 ])

2

= λE[X2
γ1

] + (1− λ)E[X2
γ2

]− (λE[Xγ1 ] + (1− λ)E[Xγ2 ])
2

≥ λE[X2
γ1

] + (1− λ)E[X2
γ2

]−
(
λ(E[Xγ1 ])

2 + (1− λ)(E[Xγ2 ])
2
)

= λVar[Xγ1 ] + (1− λ)Var[Xγ2 ].

We obtain the inequality using Jensen’s inequality. The rest of the result is easy to

check.

Proof of Proposition 2.2.7. Let p ∈ P be an equilibrium randomized stopping strat-

egy for (2.4). Suppose there exists a transient state x ∈ X such that 0 < λ := p(x) <

1. Denote

α := 1⊗ p and β := 0⊗ p, (2.7)

where 1 ∈ P (resp. 0 ∈ P) is the strategy with all components 1 (resp. 0). We have
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the following.

Kr(x,p⊗ p) = Kr(x, λα⊕ (1− λ)β)

= E
[
Xλα⊕(1−λ)β

]
− c

(
Var[Xλα⊕(1−λ)β]

)1/2
≤ λE[Xα] + (1− λ)E[Xβ]− c

(
λ (Var[Xα])1/2 + (1− λ) (Var[Xβ])1/2

)
(2.8)

= λKr(x, α) + (1− λ)Kr(x, β)

≤ Kr(x,p⊗ p), (2.9)

where (3.9) follows from Lemma 2.2.8 and (2.9) follows from (3.3). This implies that

equality holds for (3.9). By Lemma 2.2.8

x = Xα = Xβ.

Since the state x is transient, there is a positive probability that the Markov chain

never returns back to x. As a result, it is not possible that Xβ = x with probability

1.

Conversely, assume there is an equilibrium stopping time with stopping region S,

and define p ∈ P as in (2.6). Let q ∈ P and x ∈ X. Denote λ′ := q(x), and define α

and β as in (2.7). We consider two cases:

(i) p(x) = 1: Then

Kr(x, β) = Kp(x, ρ(x, S)) ≤ x = Kr(x, α).

Then by a similar argument as above, we have that

Kr(x,q⊗ p) ≤ λ′Kr(x, α) + (1− λ′)Kr(x, β) ≤ Kr(x, α) = Kr(x,p⊗ p).
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(ii) p(x) = 0: Kr(x, β) = Kr(x,p ⊗ p) ≥ Kr(x, α) = x, and thus Kr(x,q ⊗ p) ≤

Kr(x, β) = Kr(x,p⊗ p).

2.2.3 Equilibrium liquidation strategies

Definition 2.2.9. An adapted nondecreasing process θ = (θn)n∈N is said to be a

liquidation strategy, if θ0 ≥ 0, and

lim
n→∞

θn ≤ 1, a.s..

A liquidation strategy θ is said to be time homogeneous, if there exists η : X 7→ [0, 1],

such that along any path (xn)n∈N ∈ X∞,

θn(x0, . . . , xn) = 1−
n∏
i=0

(1− η(xi)).

Denote by L the collection of all time-homogeneous liquidation strategies.

Consider the objective function

Kl(x, θ) := Ex[θ(X)]− c(Varx[θ(X)])1/2, (2.10)

where the subscript “l” in Kl(x, θ) stands for “liquidation strategy” and θ(X) is the

payoff under liquidation strategy θ

θ(X) = X0θ0 +
∞∑
n=1

Xn(θn − θn−1) +X∞(1− θ∞).
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If θ = θη ∈ L is a time-homogeneous liquidation strategy, then

θη(X) = η(X0)X0 + (1− η(X0))

[
η(X1)X1

+
∞∑
k=2

(1− η(X1)) · · · (1− η(Xk−1))η(Xk)Xk +
∞∏
k=1

(1− η(Xk))X∞

]
.

(2.11)

Intuitively liquidation strategy means to liquidate the asset at several periods

instead of at one time. Such strategy is very common in practice. For instance,

when an investor has a large amount of identical asset, e.g., 10000 shares of American

option, she may excise these shares at different times instead of once. In the following,

we use an example to illustrate the motivation to consider liquidation strategies. In

particular, we will show that if X is divisible, then it is possible that the optimal value

for pure stopping time supτ Kp(x, τ) is strictly less than Kl(x, θ) for some liquidation

strategy θ and some x ∈ X.

Example 2.2.10. Let c = 1/(
√

44− 5). X has the following transition matrix.

0 1 2 3

0 1 0 0 0

1 1
6

0 1
2

1
3

2 1
5

0 0 4
5

3 0 0 0 1

Then it is easy to see that the optimal stopping value for Kp(x, τ) is given by

sup
τ
Kp(1, τ) = Kp(1, τ

′) = Kp(1, τ
′′) = 2− c = 1.3877,

where

τ ′ := inf{n ≥ 0 : Xn = 0, 2, 3},
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and

τ ′′ := inf{n ≥ 0 : Xn = 0, 3}.

Now consider the liquidation strategy θ′ given by

θ′0(·) = 0, θ′1(·, 2) = 1/2, and θ′n = 0 for all other cases.

Then it is easy to see that

θ′(X1) =
1

2
X1
τ ′ +

1

2
X1
τ ′′ .

Then the distribution of θ(X1) is given by

P(θ′(X1) = 0) =
1

6
, P(θ′(X1) = 1) =

1

10
,

P(θ′(X1) = 5/2) =
2

5
, P(θ′(X1) = 3) =

1

3
.

Therefore, we have that

sup
θ
Kl(1, θ) ≥ Kl(1, θ

′) =
21

10
−
√

119

10
c = 1.4321 > sup

τ
Kp(1, τ).

Remark 2.2.11. As discussed in Remark 3.1 in Bayraktar and Zhou’s paper [4], there is

a one-to-one correspondence between the set of time-homogeneous liquidation strate-

gies L and the set of time-homogeneous randomized stopping times P . But the paths

of a liquidation strategy and a randomized stopping time are quite different. First of

all, in terms of behavior, when using a randomized stopping time, we flip a coin at

each period to decide whether we stop or not, and we still liquidate the whole unit

asset over a single period. Second, in terms of variance, randomized stopping time

will result in a larger variance, since the overall variance will include the part from

randomization of the stopping time, while liquidation strategy results in a smaller
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variance, since averaging random variable leads to a smaller variance. This can also

be seen from Lemma 2.2.8 and the following result.

Lemma 2.2.12. Let θ1, θ2 be two liquidation strategies and λ ∈ (0, 1). Then λθ1 +

(1− λ)θ2 is also a liquidation strategy and

Var[(λθ1 + (1− λ)θ2)(X)] ≤
(
λ(Var[θ1(X)])1/2 + (1− λ)(Var[θ2(X)])1/2

)2
≤ λVar[θ1(X)] + (1− λ)Var[θ2(X)].

Proof. We have that

Var[(λθ1 + (1− λ)θ2)(X)] = Var[λθ1(X) + (1− λ)θ2(X)]

= λ2Var[θ1(X)] + (1− λ)2Var[θ2(X)] + 2λ(1− λ)Cov[θ1(X), θ2(X)]

≤ λ2Var[θ1(X)] + (1− λ)2Var[θ2(X)] + 2λ(1− λ)(Var[θ1(X)])1/2(Var[θ1(X)])1/2

=
(
λ(Var[θ1(X)])1/2 + (1− λ)(Var[θ2(X)])1/2

)2
.

The second inequality is easy to check.

Our next goal is to analyze the subgame perfect Nash equilibrium in the game

where all players use time-homogeneous liquidation strategies. Notice that each time-

homogeneous liquidation strategy is characterized by a function η(x) that represents

the proportion of the remaining asset we will liquidate when the Markov chain moves

to position x. η(x) is independent of time and the history of the paths. For simplicity

of notation, we use Kl(x, η) instead of Kl(x, θ
η) for θ = θη ∈ L.

Definition 2.2.13. A liquidation strategy θ = θη ∈ L is said to be an equilibrium

liquidation strategy for (2.10) if for any mapping ξ : X→ [0, 1], we have

Kl(x, ξ ⊗ η) ≤ Kl(x, η ⊗ η), ∀x ∈ X,
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where θξ⊗η is a perturbation of strategy θη in which we liquidate ξ(·) at time 0 and

then from time 1 we liquidate η(·) proportion of the remaining asset at each period.

Remark 2.2.14. Notice that this definition looks similar to the definition of equilibrium

randomized stopping time. But as we mentioned earlier, unlike selling the whole unit

of asset in one period which is random, the liquidation strategy will leave us with

different proportions of asset at different periods, so the objective function might

change as time goes on. Thanks to the square root term in (2.10), mean-standard

deviation problem has the scaling effect which allows Definition 2.2.13 to make perfect

sense since we essentially face the same problem (with the same parameter c) at

every period. However, we will see in Section 2.3, a similar definition of equilibrium

liquidation strategy in mean-variance problem is not a proper definition.

Also note that a liquidation strategy should be considered as a pure strategy from

the game theory point of view, with the added assumption that partial selling the

asset over time is possible. In contrast, a randomized stopping strategy should be

considered as a mixed strategy.

2.2.4 Existence of an equilibrium liquidation strategy

In this section we will prove that in contrast to the equilibrium stopping time for

(2.2) and equilibrium randomized stopping strategy for (2.4), an equilibrium liquida-

tion strategy for (2.10) always exists.

Lemma 2.2.15. For ηn, η ∈ L, n ∈ N, if ηn → η as n→∞, then

θηn(X)→ θη(X), a.s..

Proof. For a.e. ω ∈ Ω, there exists N = N(ω) such that for any k ≥ N , XN(ω) =
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X∞(ω). Then along ω, we have that

θηn(X) =
∞∑
k=0

((1− ηn(X0)) . . . (1− ηn(Xk−1))) ηn(Xk)Xk +
∞∏
k=0

(1− ηn(Xk))X∞

=
N∑
k=0

((1− ηn(X0)) . . . (1− ηn(Xk−1))) ηn(Xk)Xk +
N∏
k=0

(1− ηn(Xk))X∞

n→∞−−−→
N∑
k=0

((1− η(X0)) . . . (1− η(Xk−1))) η(Xk)Xk +
N∏
k=0

(1− η(Xk))X∞

=
∞∑
k=0

((1− η(X0)) . . . (1− η(Xk−1))) η(Xk)Xk +
∞∏
k=0

(1− η(Xk))X∞

= θη(X).

Lemma 2.2.16. For ξn, ηn, ξ, η ∈ L, n ∈ N, if ξn → ξ and ηn → η as n→∞, then

Kl(x, ξn ⊗ ηn)→ Kl(x, ξ ⊗ η), ∀x ∈ X.

Proof. As

|Kl(x, ξn⊗ηn)−Kl(x, ξ⊗η)| ≤ |Kl(x, ξn⊗ηn)−Kl(x, ξ⊗ηn)|+|Kl(x, ξ⊗ηn)−Kl(x, ξ⊗η)|,

it suffices to show that

∣∣Ex [θξn⊗ηn(X)
]
− Ex

[
θξ⊗ηn(X)

]∣∣→ 0, n→∞; (2.12)∣∣∣Ex [(θξn⊗ηn(X)
)2]− Ex

[(
θξ⊗ηn(X)

)2]∣∣∣→ 0, n→∞; (2.13)∣∣Ex [θξ⊗ηn(X)
]
− Ex

[
θξ⊗η(X)

]∣∣→ 0, n→∞; (2.14)∣∣∣Ex [(θξ⊗ηn(X)
)2]− Ex

[(
θξ⊗η(X)

)2]∣∣∣→ 0, n→∞. (2.15)
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We have that

∣∣Ex [θξn⊗ηn(X)
]
− Ex

[
θξ⊗ηn(X)

]∣∣
=

∣∣∣∣∣
(
ξn(x)x+ (1− ξn(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

)

−

(
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

)∣∣∣∣∣
≤|x| · |ξn(x)− ξ(x)|+

∣∣∣∣∣∑
y∈X

p(x, y)Ey [θηn(X)]

∣∣∣∣∣ · |ξn(x)− ξ(x)|

≤(α + |x|)|ξn(x)− ξ(x)| → 0, as n→∞,

where α := sup{|y| : y ∈ X}. Hence, we have (3.12) holds.

Noticing that

θξn⊗ηn(X) = ξn(x)x+ (1− ξn(x))θηn(X·+1),

we have that

∣∣∣Ex [(θξn⊗ηn(X)
)2]− Ex

[(
θξ⊗ηn(X)

)2]∣∣∣
=
∣∣∣Ex [(ξn(x))2x2 + 2ξn(x)x(1− ξn(x))θηn(X·+1) + (1− ξn(x))2(θηn(X·+1))

2
]

− Ex
[
(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θηn(X·+1) + (1− ξ(x))2(θηn(X·+1))

2
] ∣∣∣

≤
∣∣(ξn(x))2x2 − (ξ(x))2x2

∣∣+ 2|ξn(x)x(1− ξn(x))− ξ(x)x(1− ξ(x))| · |Ex [θηn(X·+1)]|

+
∣∣(1− ξn(x))2 − (1− ξ(x))2

∣∣ · ∣∣Ex [(θηn(X·+1))
2
]∣∣

≤
∣∣(ξn(x))2x2 − (ξ(x))2x2

∣∣+ 2|ξn(x)x(1− ξn(x))− ξ(x)x(1− ξ(x))| · α

+
∣∣(1− ξn(x))2 − (1− ξ(x))2

∣∣ · α2 → 0, as n→∞,

and thus (3.11) follows.
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Moreover,

∣∣Ex [θξ⊗ηn(X)
]
− Ex

[
θξ⊗η(X)

]∣∣
=

∣∣∣∣∣
(
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θηn(X)]

)

−

(
ξ(x)x+ (1− ξ(x))

∑
y∈X

p(x, y)Ey [θη(X)]

)∣∣∣∣∣
≤(1− ξ(x))

∑
y∈X

p(x, y) |Ey [θηn(X)]− Ey [θη(X)]| → 0, as n→∞,

where the last line follows from Lemma 2.2.15, and thus (3.14) holds.

Finally,

∣∣∣Ex [(θξ⊗ηn(X)
)2]− Ex

[(
θξ⊗η(X)

)2]∣∣∣
=
∣∣∣Ex [(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θηn(X·+1) + (1− ξ(x))2(θηn(X·+1))

2
]

− Ex
[
(ξ(x))2x2 + 2ξ(x)x(1− ξ(x))θη(X·+1) + (1− ξ(x))2(θη(X·+1))

2
] ∣∣∣

≤ 2ξ(x)|x|(1− ξ(x)) |Ex [θηn(X·+1)]− Ex [θη(X·+1)]|

+ (1− ξ(x))2
∣∣Ex [(θηn(X·+1))

2
]
− Ex

[
(θη(X·+1))

2
]∣∣→ 0, as n→∞,

which implies (3.15).

Theorem 2.2.17. There exists an equilibrium liquidation strategy for the mean-

standard deviation problem (2.10).

Proof. For η ∈ L, define the set valued map

Φ(η) := {ξ∗ ∈ L : Kl(x, ξ
∗ ⊗ η) ≥ Kl(x, ξ ⊗ η), ∀x ∈ X,∀ ξ ∈ L}.

First, we have that for any η ∈ L, Φ(η) is not empty. Indeed, since Kl(x, ξ ⊗ η)

depends on ξ only through ξ(x), we can choose ξ∗(x) to be a maximizer for each x

25



fixed.

For ξ1, ξ2, η ∈ L and λ ∈ (0, 1), we have that θη⊗η = θη and

θ(λξ1+(1−λ)ξ2)⊗η = λθξ1⊗η + (1− λ)θξ2⊗η.

Moreover, thanks to Lemma 2.2.12, we obtain that Φ(η) is a convex set for any η ∈ L.

In addition, by Lemma 2.2.16, the map Φ is u.s.c.. That is, for ηn, ξ
∗
n, η, ξ

∗ ∈ L with

ηn → η and ξ∗n → ξ∗, if ξ∗n ∈ Φ(ηn), then ξ∗ ∈ Φ(η).

Applying [22, Theorem 1], we obtain the desired result.

Remark 2.2.18. As we can see in this proof, the assumption that X have finite state

space and the limit X∞ exists a.s. is necessary to obtain some key estimations which

are hard to achieve when the state space is infinite. Despite this, the concepts intro-

duced in this chapter do not rely on this assumption and a future work can focus on

extending certain results to the case with infinite state space.

2.2.5 Optimal equilibrium liquidation strategies

According to consistent planning in Strotz [56], finding equilibria is only the first

step and the agent should choose the best one among all equilibria. We then formulate

the definition of optimal equilibrium liquidation strategy as the following.

Definition 2.2.19. Let E ⊂ L be the collection of equilibrium liquidation strategies.

We say an equilibrium liquidation strategy η∗ ∈ E is optimal if

Kl(x, η
∗) ≥ Kl(x, η), ∀x ∈ X,∀ η ∈ E .

To find an optimal equilibrium liquidation strategy, we need to study the set E .

We will provide a characterization of equilibrium liquidation strategies in the following

proposition.
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Proposition 2.2.20. η is an equilibrium liquidation strategy if and only if the fol-

lowing holds:

(i) η(x) = 0 for all x ∈ X such that Ex[Yη]− c(Varx[Yη])
1/2 > x, and

(ii) η(x) = 1 for all x ∈ X such that Ex[Yη]− c(Varx[Yη])
1/2 < x,

where Yη = θη(X·+1) := η(X1)X1 +
∑∞

k=2(1 − η(X1)) · · · (1 − η(Xk−1))η(Xk)Xk +∏∞
k=1(1− η(Xk))X∞.

Remark 2.2.21. The term Ex[Yη] − c(Varx[Yη])
1/2 is interpreted as the continuation

value, i.e., the value we expect to get if we choose not to stop at the current state x.

Then (i) and (ii) tell us whether we should liquidate the whole unit or not liquidate

at all by comparing the current value x and the continuation value. This is in fact in

the same vein as (2.3).

Proof of Proposition 2.2.20. By (2.11), we have

θη(X) =η(X0)X0 + (1− η(X0))Yη,

θξ⊗η(X) =ξ(X0)X0 + (1− ξ(X0))Yη,

and

Kl(x, ξ ⊗ η) = xξ(x) + (1− ξ(x))Ex[Yη]− c(1− ξ(x))(Varx[Yη])
1/2

= (x− (Ex[Yη]− c(Varx[Yη])
1/2))ξ(x) + Ex[Yη]− c(Varx[Yη])

1/2, (2.16)

which implies that when η is fixed, Kl(x, ξ ⊗ η) is a linear function of ξ(x).

If η is an equilibrium liquidation strategy, then according to Definition 2.2.13,

Kl(x, η) = sup
ξ∈L

Kl(x, ξ ⊗ η).

Therefore, if x − (Ex[Yη] − c(Varx[Yη])
1/2) > 0, then η(x) = 1. If x − (Ex[Yη] −
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c(Varx[Yη])
1/2) < 0, then η(x) = 0. η(x) ∈ (0, 1) only when η(x) is a solution to the

equation x− (Ex[Yη]− c(Varx[Yη])
1/2) = 0.

Corollary 2.2.22. If there exists an equilibrium stopping time τ with stopping region

S, then η(x) = 1S(x), x ∈ X is an equilibrium liquidation strategy.

By Proposition 2.2.20, we can find an equilibrium liquidation strategy by solving a

system of equations Ex[Yη]− c(Varx[Yη])
1/2 = x, ∀x ∈ X. The solution {η(x) ∈ [0, 1] :

x ∈ X} must be an equilibrium liquidation strategy if it exists. Other candidates of

equilibrium liquidation strategies can be found by checking conditions (i) and (ii) in

Proposition 2.2.20 when Ex[Yη] − c(Varx[Yη])
1/2 = x does not hold for some x ∈ X.

Here are some examples of mean-standard deviation problems with different sets of

equilibrium liquidation strategies E .

Example 2.2.23. In this example, a unique equilibrium liquidation strategy exists,

which is also an equilibrium stopping time.

Let c = 1/4. X has state space X = {0, 1, 2} and the following transition matrix.

0 1 2

0 1 0 0

1 0.2 0.4 0.4

2 0 0 1

Note that {0, 2} are absorbing states. For any pure stopping time, its stopping

region must contain the absorbing states {0, 2}. Likewise, any liquidation strategy

must satisfy η(0) = η(2) = 1.

One can easily check that the pure stopping time with stopping region S = {0, 2}

is an equilibrium stopping time with

E1[Xρ(1,S)]− c(Varx[Xρ(1,S)])
1/2 =

4

3
−
√

2

6
> 1.
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Moreover, this is the only equilibrium stopping time. If S = {0, 1, 2}, then

E1[Xρ(1,S)]− c(Varx[Xρ(1,S)])
1/2 =

6

5
−
√

14

20
> 1,

which means the pure stopping time with stopping region {0, 1, 2} is not an equilib-

rium stopping time.

Now we want to find all equilibrium liquidation strategies for this problem. The

only parameter remains to be determined is a := η(1).

By analyzing the behavior of this Markov chain we have

P1(X1 = 0 = Xn, n ≥ 1) = 0.2,

P1(X1 = 2 = Xn, n ≥ 1) = 0.4,

P1(X1 = 1, X2 = 0 = Xn, n ≥ 2) = 0.4 · 0.2,

P1(X1 = 1, X2 = 2 = Xn, n ≥ 2) = 0.4 · 0.4,

· · ·

P1(Xk = 1, k = 1, 2, · · · ,m,Xn = 0, n > m) = 0.4m · 0.2,

P1(Xk = 1, k = 1, 2, · · · ,m,Xn = 2, n > m) = 0.4m · 0.4,

and

Xk =


1, k = 1, 2, · · · ,m,

0, k ≥ m+ 1,

⇒ Yη = η(1)(
m−1∑
i=0

(1− η(1))i),

Xk =


1, k = 1, 2, · · · ,m,

2, n ≥ m+ 1,

⇒ Yη = η(1)(
m−1∑
i=0

(1− η(1))i) + 2(1− η(1))m.
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In conclusion, the random variable Yη has the following distribution

P1(Yη = 1− (1− η(1))n) = 0.4n · 0.2, n = 0, 1, 2, · · · ,

P1(Yη = 1 + (1− η(1))n) = 0.4n · 0.4, n = 0, 1, 2, · · · .

It can be derived that

E1[Yη] =
0.8 + 0.4a

0.6 + 0.4a
,

Var1[Yη] =
0.112a2 + 0.256a+ 0.192

(1− 0.4(1− a)2)(0.6 + 0.4a)2
.

Let h(a) := E1[Yη]− 1
4
(Var1[Yη])

1/2. By computation we have h(a) > 1 for all a ∈ [0, 1].

So there is only one equilibrium liquidation strategy, η(1) = 0, which also coincides

with the unique equilibrium stopping time mentioned above.

Example 2.2.24. In this example, a unique equilibrium liquidation strategy exists,

which is not a pure stopping time.

Consider the example in the proof of Proposition 2.2.4. Since {0, 3, 10} are ab-

sorbing states, we have η(0) = η(3) = η(10) = 1. The only parameters remain to be

determined are a := η(1) and b := η(6). By the proof of Proposition 2.2.4. we know

that there is no equilibrium stopping time in this example. However we will see that

it does have an equilibrium liquidation strategy.

Let gi(a, b) := Ei[Yη] − (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 1, 6. They have explicit

expressions as shown in Appendix A.1. We obtain the graph of sets {(a, b) ∈ [0, 1]×

[0, 1] : g1(a, b) = 1} and {(a, b) ∈ [0, 1]× [0, 1] : g6(a, b) = 6} as following.

From Figure 2.1 we observe that there exists a unique intersection of the curve

g1(a, b) = 1 and g6(a, b) = 6, denoted by (a0, b0). Then η(1) = a0, η(6) = b0 is an

equilibrium liquidation strategy which is not a pure stopping time. There could be

other equilibrium liquidation strategies in the following cases.
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Figure 2.1: Graph for Example 2.2.24

(i) If g1(a, 0) = 1 and g6(a, 0) > 6, then η(1) = a, η(6) = 0 is an equilibrium

liquidation strategy;

(ii) If g1(a, 1) = 1 and g6(a, 1) < 6, then η(1) = a, η(6) = 1 is an equilibrium

liquidation strategy;

(iii) If g6(0, b) = 6 and g1(0, b) > 1, then η(1) = 0, η(6) = b is an equilibrium

liquidation strategy;

(iv) If g6(1, b) = 6 and g1(1, b) < 1, then η(1) = 1, η(6) = b is an equilibrium

liquidation strategy.

However, from the above graph, we conclude that there are no solutions for

g1(a, 0) = 1, g1(a, 1) = 1, g6(0, b) = 6 or g6(1, b) = 6. So there is only one equi-

librium liquidation strategy in this example.

The above two examples illustrate that an equilibrium liquidation strategy exists

regardless of the existence of equilibrium stopping times. Since the equilibrium liq-

uidation strategies are unique in Example 2.2.23 and Example 2.2.24, they are also
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optimal. However, uniqueness of an equilibrium liquidation strategy and existence of

an optimal equilibrium liquidation strategy are not guaranteed in general as we will

show later.

From Proposition 2.2.20 and (2.16), we have that

Kl(x, η) = max{x, Ex[Yη]− cVarx[Yη]} =


x, 0 < η(x) ≤ 1,

Ex[Yη]− cVarx[Yη], 0 ≤ η(x) < 1.

(2.17)

A necessary condition for η∗ ∈ E to be an optimal equilibrium liquidation strategy is

given in the following proposition.

Proposition 2.2.25. If an equilibrium liquidation strategy η∗ ∈ E is optimal then

C(η∗) =
⋃
η∈E

C(η),

where C(η) := {x ∈ X : x < Ex[Yη]− c(Varx[Yη])
1/2}.

Proof. Suppose C(η∗) =
⋃
η∈E C(η) does not hold. Then there exists some η ∈ E and

some x ∈ X such that x ∈ C(η) and x /∈ C(η∗). Then by (2.17) we have that

Kl(x, η
∗) = x < Ex[Yη]− C(Varx[Yη])

1/2 = Kl(x, η),

which contradicts that η∗ is optimal.

Corollary 2.2.26. If
⋃
η∈E C(η) = ∅, then any η ∈ E is an optimal equilibrium

liquidation strategy.

Proof. If
⋃
η∈E C(η) = ∅, then for all η ∈ E and all x ∈ X, we have Kl(x, η) = x. By

definition, they are all optimal.

The next proposition shows that the existence and uniqueness of an optimal equi-

librium liquidation strategy are not guaranteed.
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Proposition 2.2.27. The optimal equilibrium liquidation strategy may not exist.

When it does exist, it may not be unique.

Proof. (i) We will give an example in which there exist multiple equilibrium liquida-

tion strategies and one of them is optimal.

Let c = 0.4. X has state space X = {0, 1, 2, 7, 9} and the following transition

matrix.

0 1 2 7 9

0 1 0 0 0 0

1 0.2 0 0.4 0.2 0.2

2 0 0 1 0 0

7 0 0.2 0 0 0.8

9 0 0 0 0 1

Since {0, 2, 9} are absorbing states, we have η(0) = η(2) = η(9) = 1 for all η ∈ L.

Let a = η(1) and b = η(7). Let gi(a, b) := Ei[Yη] − (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 1, 7.

By analysis shown in Appendix A.2, we obtain the following results.

(1) g1(a, b) > 1 for all (a, b) ∈ [0, 1]× [0, 1].

(2) There exists a unique b0 ∈ (0, 1) such that g7(0, b0) = 7.

(3) g7(0, 0) > 7 and g7(0, 1) < 7.

So there are three equilibrium liquidation strategies in total: (a, b) = (0, 0), (a, b) =

(0, b0) and (a, b) = (0, 1). By graphs of g1(0, b) and g7(0, b) in Appendix A.2, we

observe that g1(0, 0) > g1(0, b0) > g1(0, 1) and g7(0, 0) > g7(0, b0) > g7(0, 1), which

implies that K(x, (0, 0)) = maxη∈E K(x, η) for all x ∈ X. By Definition 2.2.19 (a, b) =

(0, 0) is the optimal equilibrium liquidation strategy.

(ii) We will give an example in which there exist multiple equilibrium liquidation

strategies but none of them are optimal.

Let c = 0.1. X has state space X = {0, 11, 17, 18} and the following transition
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matrix.

0 11 17 18

0 1 0 0 0

11 0.1 0.7 0 0.2

17 0 0.1 0.1 0.8

18 0 0 0 1

Since {0, 18} are absorbing states, we have η(0) = η(18) = 1 for all η ∈ L. Let

a = η(11) and b = η(17). Let gi(a, b) := Ei[Yη]− (Ei[Y 2
η ] − Ei[Yη]2)1/2 for i = 11, 17.

By analysis shown in Appendix A.3, we obtain the following results.

(1) There is not intersection of the curve g11(a, b) = 11 and g17(a, b) = 17.

(2) There exist 0 < a1 < a2 < a3 < a4 < 1 and 0 < b0 < 1 such that g17(a1, 0) =

17, g17(a2, 1) = 17, g17(a4, 1) = 17, g11(a3, 0) = g11(a3, 1) = 11, and g17(1, b0) = 17.

(3) g11(a1, 0) 6= 11, g11(a2, 1) 6= 11 and g11(a4, 1) 6= 11.

(4) g17(a3, 0) > 17, g17(a3, 1) > 17 and g11(1, b0) < 11.

So there are five equilibrium liquidation strategies in total. The following table

2.1summarises the values of objective functions under these equilibrium liquidation

strategies.

η : (a, b) Kl(11, η) Kl(17, η)
(1, 1) 11 17
(0, 1) 11.1515 17
(1, 0) 11 17.0022
(a3, 0) 11 ≈ 17.0212
(1, b0) 11 17

Table 2.1: An example of multiple equilibrium liquidation strategies without an op-
timal one

The table shows that there is no optimal equilibrium liquidation strategy.

(iii) We will give an example in which there are two equilibrium liquidation strate-

gies and both are optimal.
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Let c = 0.5. X has state space X = {0, 1, 4} and the following transition matrix.

0 1 4

0 1 0 0

1 0.1 0.8 0.1

4 0 0 1

Since {0, 4} are absorbing states, we have η(0) = η(4) = 1 for all η. Let a = η(1)

and we obtain function h(a) = E1[Yη] − cVarx[Yη] as shown in Appendix A.4. h(a)

is decreasing on the interval [0, 1] and h(0) = 1, h(1) = 0.7101 < 1. By definition,

there are two equilibrium liquidation strategies in total η(1) = 0 and η(1) = 1. By

Corollary 2.2.26, Kl(1, η) = 1 for both equilibrium liquidation strategies, so they are

both optimal.

Since the existence of optimal equilibrium liquidation strategy is not guaranteed,

we naturally turn to the concept of Pareto optimality.

Definition 2.2.28. η∗ ∈ E is called a Pareto optimal equilibrium liquidation strategy

if there is no η ∈ E such that

(i) ∀x ∈ X, Kl(x, η) ≥ Kl(x, η
∗);

(ii) ∃x ∈ X, Kl(x, η) > Kl(x, η
∗)

Remark 2.2.29. In the second example in proof of Proposition 2.2.27, the optimal

equilibrium liquidation strategy does not exist, but (0, 1) and (a3, 0) are both Pareto

optimal equilibrium liquidation strategies.

Proposition 2.2.30. A Pareto optimal equilibrium liquidation strategy always exists.

Proof. Consider the following optimization problem

sup
η∈E

∑
x∈X

Kl(x, η). (2.18)
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Then any maximizer η∗ of this problem is a Pareto optimal equilibrium liquidation

strategy. Otherwise, there exists η′ ∈ E such that

Kl(x, η
′) ≥ Kl(x, η

∗),∀x ∈ X; Kl(x0, η
′) > Kl(x0, η

∗),∃x0 ∈ X;

then
∑

x∈XKl(x, η
′) >

∑
x∈XKl(x, η

∗), which contradicts that η∗ is the maximizer of

the problem.

Next we will show such maximizer exists and is in E . Let ηn be the 1
n
-optimizer

of (2.18). Then there exists η∗ ∈ L such that up to a subsequence ηn → η∗. Since

{ηn}n∈N are all equilibrium liquidation strategies, Kl(x, ξ ⊗ ηn) ≤ Kl(x, η
n) holds for

all x ∈ X and all ξ ∈ L. By the continuity of the mappings η → Kl(x, ξ ⊗ η) and

η → Kl(x, η), Kl(x, ξ ⊗ η∗) ≤ Kl(x, η) also holds for all x ∈ X and all ξ ∈ L, i.e.,

η∗ is also an equilibrium liquidation strategy. Again by the continuity of mapping

η → Kl(x, η), η∗ is the maximizer of (2.18).

2.3 Mean-variance problem

As what we have done in mean-standard deviation problem, we will analyze dif-

ferent types of subgame perfect Nash equilibrium in mean-variance problems. More

specifically, we define equilibrium stopping time, equilibrium randomized stopping

strategy and equilibrium liquidation strategy for mean-variance problems as the fol-

lowing.

Definition 2.3.1. A pure Markov stopping time τ with stopping region S is said to

be an equilibrium stopping time for the mean-variance problem if

x ≥ Jp(x, ρ(x, S)), ∀x ∈ S and x ≤ Jp(x, ρ(x, S)), ∀x /∈ S,

where ρ(x, S) := inf{n ≥ 1 : Xx
n ∈ S} and Jp(x, ρ(x, S)) := Ex[Xρ(x,S)]−cVarx[Xρ(x,S)].
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Definition 2.3.2. A randomized stopping time p ∈ P is said to be an equilibrium

randomized stopping time for the mean-variance problem, if for any mapping q : X→

[0, 1],

Jr(x,q⊗ p) ≤ Jr(x,p⊗ p), ∀x ∈ X,

where Jr(x,q⊗ p) := Ex[Xq⊗p]− cVarx[Xq⊗p].

Definition 2.3.3. A liquidation strategy θ = θη ∈ L is said to be an equilibrium

liquidation strategy for the mean-variance problem if for any mapping ξ : X→ [0, 1],

we have

Jl(x, ξ ⊗ η) ≤ Jl(x, η ⊗ η), ∀x ∈ X,

where Jl(x, ξ ⊗ η) := Ex[θξ⊗η(X)]− cVarx[θ
ξ⊗η(X)].

Proposition 2.3.4. An equilibrium stopping time for mean-variance problem may

not exist.

Proof. We will prove this by giving a counterexample. Let c = 21
50

and X has the

following transition matrix.

0 1 2 3

0 1 0 0 0

1 1
3

0 1
3

1
3

2 0 1
3

0 2
3

3 0 0 0 1

Suppose there exists an equilibrium stopping time with stopping region S ⊂ {0, 1, 2, 3}.

Denote H(·, S) = Jp(·, ρ(·, S)). We consider the following four cases.

Case 1: 1, 2 ∈ S. We have

P1(Xρ(1,S) = 0) = P1(Xρ(1,S) = 2) = P1(Xρ(1,S) = 3) =
1

3
,
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and

E1

[
Xρ(1,S)

]
=

5

3
, E1

[
X2
ρ(1,S)

]
=

13

3
, and thus H(1, S) =

76

75
> 1,

that yields a contradiction.

Case 2: 1 /∈ S and 2 ∈ S. We have

P2(Xρ(2,S) = 0) = P2(Xρ(2,S) = 2) =
1

9
, P2(Xρ(2,S) = 3) =

7

9
,

and

E2

[
Xρ(2,S)

]
=

23

9
,E2

[
X2
ρ(2,S)

]
=

67

9
,

and thus H(2, S) = 1466
675

> 2, that yields a contradiction.

Case 3: 1 ∈ S and 2 /∈ S. We have that

P2(Xρ(2,S) = 1) =
1

3
, P2(Xρ(2,S) = 3) =

2

3
,

and

E2

[
Xρ(2,S)

]
=

7

3
, E2

[
X2
ρ(2,S)

]
=

19

3
, and thus H(2, S) =

147

75
< 2,

that yields a contradiction.

Case 4: 1, 2 /∈ S. We have that

P1(Xρ(1,S) = 0) =
3

8
, P1(Xρ(1,S) = 3) =

5

8
,

and

E1

[
Xρ(1,S)

]
=

15

8
, E1

[
X2
ρ(1,S)

]
=

45

8
, and thus H(1, S) =

633

640
< 1,
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that yields a contradiction.

Besides, using a proof similar to the case of mean-standard deviation problem, we

can show that an equilibrium randomized stopping time for mean-variance problem

exists if and only if it is an equilibrium stopping time.

Now we will focus on the equilibrium liquidation strategy for mean-variance prob-

lem as defined in Definition 2.3.3, although it is not a proper definition as pointed out

in Remark 2.3.6. Following an argument similar to the one in the proof of Theorem

2.2.17, we can prove that there exists an equilibrium liquidation strategy in mean-

variance problem. The next proposition shows that in contrast to mean-standard

deviation problem, the equilibrium liquidation strategy is not a generalization of

equilibrium stopping time in mean-variance problem, although equilibrium liquida-

tion strategies can be thought of as a relaxation of equilibrium stopping times.

Proposition 2.3.5. An equilibrium stopping time may not be an equilibrium liqui-

dation strategy.

Proof. Consider the Markov process in Example 2.2.23 and let c = 0.25. It can be

shown that there is only one equilibrium stopping time with stopping region S =

{0, 2} and Ex[XS] − cVarx[XS] = 10
9

. Next we will show that the corresponding

liquidation strategy η(1) = 0 is not an equilibrium liquidation strategy. Since E1[Yη] =

4
3

and Var1[Yη] = 8
9
, we have

Jl(1, ξ ⊗ η) = ξ(1) +
4

3
(1− ξ(1))− 2

9
(1− ξ(1))2.

It is easy to check that maxξ Jl(1, ξ ⊗ η) = 9
8
> 10

9
and the maximum is attained at

ξ(1) = 1
4

instead of 0. By definition η is not an equilibrium liquidation strategy.

This result illustrates that the equilibrium liquidation strategy for mean-variance

problem is not a proper definition as we briefly discuss next.
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Remark 2.3.6. Definition 2.3.3 seems to be reasonable as an analogy of Definition

2.2.13. However, since there is no scaling effect in the mean-variance problem, this

definition has deviated from the concept of subgame perfect Nash equilibrium. For

example, at time t = 0, the objective function is

EX0 [θ(X)]− cVarX0 [θ(X)].

If we liquidate 1−α proportion of the asset, then the objective function at time t = 1

would become

EX1 [αθ(X)]− cVarX1 [αθ(X)] = α(EX1 [θ(X)]− cαVarX1 [θ(X)]),

i.e., the preference of player “X1” becomes EX1 [θ(X)] − cαVarX1 [θ(X)] instead of

EX1 [θ(X)] − cVarX1 [θ(X)]. Generally, the proportion of asset remaining, α, is de-

creasing as time goes on, therefore we are faced with different problems with different

parameter c at different time, even if the initial state remains the same. Definitions of

equilibrium liquidation strategies in Definition 2.3.3 and Definition 2.2.13 only make

sense when the objective function remains the same for the same initial state x.

A possible improved definition is incorporating the remaining component, i.e., to

enlarge the strategy set such that it depends on the state as well as the remaining

component of the asset. However, this expansion makes the set of players an un-

countable set (instead of identifying the players with the states of the Markov chain,

we will need to use an additional variable which is not discrete). This is an intergen-

erational problem with exhaustible resources. Such a problem is beyond the scope

of this project and will be left for future research. But we should emphasize that

one of the main messages of this chapter is that mean-standard deviation problem

is more appropriate and for this criterion such an extension of the state space is not

necessary.
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2.4 Comparison with static optimal stopping time

In this section, we want to compare the pre-commitment strategy with the equi-

librium liquidation strategy. It is obvious that given any current state x, the static

optimality from pre-commitment strategy is no less than the value of Kp(x, τ) where τ

is an equilibrium stopping time. However this may not be the case when we compare

static optimal stopping times with equilibrium liquidation strategies. As we have

discussed in Example 2.2.10, a liquidation strategy may produce larger value than

the static optimal stopping time does. However in Example 2.2.10, the liquidation

strategy is not an equilibrium. The following examples show that an equilibrium

liquidation strategy may produce larger value than the static optimal stopping time

does in both mean-standard deviation problem and mean-variance problem. The in-

tuitive reason is that a liquidation strategy allows for selling parts of an asset over

time, while the static optimal stopping time problem relies on the assumption that

the whole asset must be sold at exactly one point in time.

Example 2.4.1. Consider the first example in the proof of Proposition 2.2.27.

For mean-standard deviation problem,

sup
τ∈T

Kp(1, τ) = Kp(1, τ
′) = 2.6940, sup

τ∈T
Kp(7, τ) = Kp(7, τ

′) = 7.0187.

where τ ′ = inf{n ≥ 0 : X1
n ∈ {0, 2, 9}}.

The optimal equilibrium liquidation strategy η is the same as τ ′. We have

Kl(1, η) = sup
τ∈T

Kp(1, τ), Kl(7, η) = sup
τ∈T

Kp(7, τ).

For mean-variance problem,

sup
τ
Jp(1, τ) = Jp(1, τ

′′) = 1, sup
τ
Jp(7, τ) = Jp(7, τ

′′) = 7.
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where τ ′′ = 0.

The unique equilibrium liquidation strategy is η(1) = a′ ∈ (0, 1), η(7) = b′ ∈ (0, 1)

where a′ ≈ 0.6778 and b′ ≈ 0.9089. Details on finding the equilibrium liquidation

strategy can be found in Appendix A.5. We have

Jl(1, η) = 2.6438 > sup
τ∈T

Jp(1, τ), Jl(7, η) = 6.4521 < sup
τ∈T

Jp(7, τ).

Example 2.4.2. Consider the second example in the proof of Proposition 2.2.27.

For mean-standard deviation problem,

sup
τ∈T

Kp(11, τ) = Kp(11, τ ′) = Kp(11, τ ′′) = 11.1515,

where τ ′ = inf{n ≥ 0 : X1
n ∈ {0, 18}}, τ ′′ = inf{n ≥ 0 : X1

n ∈ {0, 17, 18}}, and

sup
τ∈T

Kp(17, τ) = Kp(17, τ ′′′) = 17.0022,

where τ ′′′ = inf{n ≥ 0 : X1
n ∈ {0, 11, 18}}.

There is an equilibrium liquidation strategy η(11) = a3 ∈ (0, 1), η(17) = 0. We

have

Kl(11, η) = 11 < sup
τ∈T

Kp(11, τ), Kl(17, η) = 17.0212 > sup
τ∈T

Kp(17, τ).

For mean-variance problem,

sup
τ∈T

Jp(11, τ) = Jp(11, τ ′) = 11, sup
τ∈T

Jp(17, τ) = Jp(17, τ ′) = 17,

where τ ′ = 0.

The unique equilibrium liquidation strategy is η(11) = a′ ∈ (0, 1), η(17) = b′ ∈

(0, 1) where a′ ≈ 0.9312 and b′ ≈ 0.7629. Details on finding the equilibrium liquida-
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tion strategy can be found in Appendix A.5. We have

Jl(11, η) = 10.8365 < sup
τ∈T

Jp(11, τ), Jl(17, η) = 16.9981 < sup
τ∈T

Jp(17, τ).
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CHAPTER III

Equilibrium Concepts for Time-inconsistent

Stopping Problems in Continuous Time

In this chapter, a new notion of equilibrium, which we call strong equilibrium, is

introduced for time-inconsistent stopping problems in continuous time. Compared to

the existing notions introduced in [31] and [17], which in this chapter are called mild

equilibrium and weak equilibrium respectively, a strong equilibrium captures the idea

of subgame perfect Nash equilibrium more accurately. When the state process is a

continuous-time Markov chain and the discount function is log sub-additive, we show

that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide

a new iteration method that can directly construct an optimal mild equilibrium and

thus also prove its existence.

3.1 Introduction

On a filtered probability space (Ω,F , (Ft)t∈[0,∞),P) consider an optimal stopping

problem in continuous time

sup
τ∈T

Ex[δ(τ)Xτ ], (3.1)

where X = (Xt)t∈[0,∞) is a time-homogeneous Markov process taking values in some

space X ⊂ R, T is a set of stopping times, δ is a discount function, and Ex is the
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expectation given X0 = x. It is well known that when δ is not exponential, the

problem (3.1) may be time-inconsistent. That is, the optimal stopping strategy ob-

tained today may not be optimal in the eyes of future selves. There are mainly three

ways to approach such time inconsistency: pre-committed strategy, naive strategy

and consistent planning strategy, dating back to [56]. Our project focuses on con-

sistent planning, which is formulated as a subgame perfect Nash equilibrium: once

an equilibrium strategy is enforced over the planning horizon, the current self has no

incentive to deviate from it, given all future selves will follow the equilibrium strategy.

For discussions on different approaches, see [53], [21], [11], [12], [17], [35], [31] and

references therein.

There are two general notions of equilibrium stopping strategies in continuous time

in the literature. The first notion is proposed in [31] and further studied in [35, 33, 32],

which we will call mild equilibrium in this chapter. Following [31, Definition 3.3] and

[33, Definition 2.2], we have the following definition of mild equilibrium.

Definition 3.1.1. A measurable set S ⊂ X is said to be a mild equilibrium, if

{
x ≤ Ex[δ(τS)XτS ], ∀x /∈ S, (3.2)

x ≥ Ex[δ(τ+S )XτS ], ∀x ∈ S, (3.3)

where

τS := inf{t ≥ 0 : Xt ∈ S}, and τ+S := inf{t > 0 : Xt ∈ S}. (3.4)

and S is the stopping region. The economic interpretation for Definition 3.1.1 is

clear – there is no incentive to deviate from an equilibrium stopping strategy. That

is, in (3.2) when x /∈ S, it is better to continue and get Ex[δ(τS)XτS ], rather than to

stop and get x; on the surface a similar statement applies to (3.3). However, when

the time of return for X is 0 (i.e., P(τ+{x} = 0 |X0 = x) = 1 ), which is satisfied for

continuous-time Markov chains and many one-dimension diffusion processes, τS = τ+S

and thus (3.3) trivially holds. In other words, when the time of return is 0, there
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is no actual deviation captured by (3.3) from stopping to continuing, and Definition

3.1.1 is equivalent to the following.

Definition 3.1.2. A measurable set S ⊂ X is said to be a mild equilibrium, if

x ≤ Ex[δ(τS)XτS ] =: J(x, S), ∀x /∈ S. (3.5)

Consequently, with the time of return being 0 the notion of mild equilibrium

cannot fully capture the economic meaning of equilibrium. It is easy to see that S = X

is always a mild equilibrium, and it is not clear why always stopping immediately is

a reasonable strategy. Notice that in discrete time there is no such degeneration

issue for equilibrium since τ+S = inf{t ≥ 1 : Xt ∈ S} in discrete time setting. See [30,

Remark 2.3] and [6, Definition 2.2].

As can be seen from [31, 35, 33, 32], there is often a continuum of mild equilibria in

many natural models, which naturally leads to the question of equilibrium selection.

In [33], optimal mild equilibrium in the sense of point-wise dominance is considered.

In particular, from [33, Definition 2.3] we have the following definition.

Definition 3.1.3. A mild equilibrium S∗ is said to be optimal, if for any other mild

equilibrium S,

x ∨ J(x, S∗) ≥ x ∨ J(x, S)(⇐⇒ J(x, S∗) ≥ J(x, S)), ∀x ∈ X.

Note that x∨J(x, S) represents the value associated with the stopping region/strategy

S. In [33] the existence of optimal equilibrium is established. A discrete-time version

is in [30].

The second notion of equilibrium, which we call weak equilibrium in this chapter is

proposed in [17] and further investigated in [18]. Following [17], we have the definition

of weak equilibrium (we adapt the definition slightly for our setting).
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Definition 3.1.4. A measurable set S ⊂ X is said to be a weak equilibrium, if


x ≤ Ex[δ(τS)XτS ], ∀x /∈ S,

lim inf
ε↘0

x− Ex[δ(τ εS)XτεS
]

ε
≥ 0, ∀x ∈ S, (3.6)

where

τ εS = inf{t ≥ ε : Xt ∈ S}. (3.7)

Compared to (3.3), the first-order condition (3.6) does capture the deviation from

stopping to continuing. However, similar to that for time-inconsistent control (see

e.g., [12, Remark 3.5] and [34]), the first-order criterion does not correspond to the

equilibrium concept perfectly: when the limit in (3.6) equals zero, it is possible that

for all ε > 0, x < Ex[δ(τ εS)XτεS
], in which case there is an incentive to deviate.

To sum up, the economic interpretation of being “equilibrium” for mild and weak

ones is inadequate. There are similar issues in continuous-time time-inconsistent

stochastic control problems as mentioned in [12, Remark 3.5]. In response to [12,

Remark 3.5], a new definition of continuous-time equilibrium control is introduced

in [34]. In time-inconsistent optimal stopping problems, we introduce the following

concept of strong equilibrium, which is inspired by [34].

Definition 3.1.5. A measurable set S ⊂ X is said to be a strong equilibrium, if


x ≤ Ex[δ(τS)XτS ], ∀x /∈ S,

∃ ε = ε(x) > 0, s.t. ∀ ε′ ∈ (0, ε), x ≥ Ex[δ(τ ε
′

S )Xτε
′
S

], ∀x ∈ S. (3.8)

Compared to (3.3) and (3.6), condition (3.8) not only captures the deviation from

stopping to continuing, but also more precisely indicates the disincentive of such

deviation. Consequently, a strong equilibrium delivers better economic meaning as

being an “equilibrium”.

In this project, when X is a Markov chain we show that an optimal mild equilib-
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rium is a strong equilibrium (see Theorem 3.2.4). (Obviously, a strong equilibrium is

also weak, and a weak equilibrium is also mild.) We also provide examples showing

that a strong equilibrium may not be an optimal mild equilibrium, and a weak equilib-

rium may not be strong. Therefore, we thoroughly obtain the relation between mild,

weak, strong, and optimal mild (and thus optimal weak, optimal strong) equilibria.

Moreover, we provide a new iteration method which directly constructs an optimal

mild equilibrium and thus also establish its existence (see Thoerem 3.2.5). In [30, 33],

an optimal equilibrium is constructed by the intersection of all (mild) equilibriums.

In principle, this requires us to first find all (mild) equilibria in order to get the opti-

mal one, which may not be implementable in many cases. The new iteration method

proposed in this chaper is much easier and more efficient to implement. Examples

are provided to demonstrate the application of the new iteration method (see Exam-

ple 3.1 and Example 3.2). It would be interesting to see whether such results can be

extended to diffusion models, which we will leave for future research.

As in reality people often discount non-exponentially (see Remark 3.2.3), our

results can be applied to stopping problems in finance ad economics. Generally we

can use X = f(Y ) for some nonnegative measurable payoff function f and some price

process of underlying asset Y . Our results still hold and the proofs still work when

replacing X with f(Y ). For instance, in Example 3.2, Y is a stock price process and

X = f(Y ) is the payoff of an American put option. This can be viewed as an example

of exercising an American option when the investor tries to maximize the expected

payoff yet subject to hyperbolic discounting. We refer to [30, Section 5] and [33,

Section 6.3] for more examples that satisfy this condition. The two-state example

provided in Section 4 of this chapter can also be thought of as an application of

stopping (e.g., selling a house) when the economy (e.g., property market) is good/bad.

Our project is inline with the work [24], where equilibrium stopping strategies are

considered in an entrepreneur’s investment-timing problem under time-inconsistent
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preferences due to quasi-hyperbolic discounting.

People have considered incorporating non-exponential discounting into decision

making including optimal stopping. However, this leads to time inconsistency as

argued by Grenafier and Wang in [24]. They proposed the time-consistent model-

ing framework and our result can be seen as making advances on proposing bet-

ter equilibrium concepts in this line of work. Our notion of strong equilibria also

applies to other types of time-inconsistent stopping, such as mean-variance stop-

ping problems and stopping under probability distortion. Consider G(x, τ), where

x is the initial position for the underlying process X, and G is payoff utility. For

example, G(x, τ) = Ex[δ(τ)f(Xτ )] for stopping with non-exponential discounting;

G(x, τ) = Ex[f(Xτ )] − cVarx[f(Xτ )] for mean-variance stopping; and G(x, τ) =∫∞
0
w(P[f(Xx

τ ) > y])dy for stopping under probability distortion. Note that G(x, 0) =

f(x). Then in general strong equilibria can be formulated accordingly as: S ⊂ X is

said to be a strong equilibrium, if

{
f(x) ≤ G(x, τS), ∀x /∈ S,

∃ ε = ε(x) > 0, s.t. ∀ ε′ ∈ (0, ε), f(x) ≥ G(x, τ ε
′

S ), ∀x ∈ S.

The mild and weak equilibria can also be defined accordingly, and they still suffer

from being short of economic meaning.

This chapter provides novel and conceptual contributions in the topic of time-

inconsistent stopping. First, we analyze existing notions of equilibrium and their

inadequacy in continuous time. A new notion of equilibrium, strong equilibrium is

introduced. It captures the economic meaning of being an “equilibrium” more accu-

rately. Second, we show that an optimal mild equilibrium is also a strong equilibrium,

which is far from obvious. This result together with the examples in this chapter com-

pletely shows the relations between mild, weak, strong, optimal mild/weak/strong

equilibria. No such result has been obtained before. Moreover, we completely obtain
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the existence and (non)uniqueness results of these equilibria. Third, we provide an

iteration method, which directly constructs an optimal equilibrium and is much more

implementable than the existing method in [30, 33]. Moreover, the key ideas in these

proofs provide some novel proof approaches in the literature of time-inconsistent con-

trol/stopping. The recent work of [26] discusses notions of equilibrium control based

on condition (1.3) in [34]. The focus of their paper is to distinguish between weak and

strong (and regular) equilibrium controls. It is intuitively like distinguishing between

local maxima and critical points. In our results we not only distinguish between

strong, weak and mild equilibrium stopping times, but also obtain the property that

an optimal mild equilibrium is a strong equilibrium. The notions of mild equilibrium

and optimal mild equilibrium only make sense for stopping problems not control

problems. Thus the focus of our project is different from [26] and our intuitively

unexpected result makes a novel contribution to the literature.

The rest of the chapter is organized as follows. Section 2 collects the main results

of the chapter. An optimal mild equilibrium is proved to be a strong equilibrium, and

can be directly constructed via a new iteration method. Section 3 provides examples

to illustrate the iteration method in Theorem 3.2.5. Section 4 focuses on a concrete

two-state model, which demonstrates the differences between these equilibria.

3.2 The Main Results

In this section, we apply the concepts in Section 1 to a continuous-time Markov

chain and present our main results under this setting. Let X = (Xt)t≥0 be a time-

homogeneous continuous-time Markov chain. It has a finite or countably infinite state

space X ⊂ [0,∞). Let λx be the transition rate out of the state x ∈ X, and qxy be

the transition rate from state x to y for y 6= x. Then we have that λx =
∑

y 6=x qxy.

The discount function t 7→ δ(t) is assumed to be non-exponential and decreasing,

with δ(0) = 1 and limt→∞ δ(t) = 0. Let the filtration (Ft)t∈[0,∞) be generated by X.
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Furthermore, we make the following assumptions on X and δ(·).

Assumption 3.2.1. (i) C := supX <∞ and λ := supx∈X λx <∞.

(ii) X is irreducible, i.e., for any x, y ∈ X, inf{t ≥ 0 : Xt = y |X0 = x} <∞, a.s..

Assumption 3.2.2. (i) δ is log-subadditive, i.e.,

δ(s)δ(t) ≤ δ(s+ t), ∀ s, t > 0. (3.9)

(ii) t 7→ δ(t) is differentiable at t = 0, and δ′(0) < 0.

Remark 3.2.3. Assumption A.2 (i) is closely related to decreasing impatience (DI)

in Behavioral Finance and Economics. 1 Following [54, Definition 1] and [49], the

discount function δ induces DI if

s 7→ δ(s+ t)

δ(s)
is strictly increasing, ∀ t > 0. (3.10)

Observe that (3.10) implies (3.9), since δ(s+t)/δ(s) ≥ δ(t)/δ(0) = δ(t) for all s, t ≥ 0.

Note that hyperbolic, generalized hyperbolic, quasi-hyperboic, pseudo-exponential

discount functions all induce DI, and thus satisfy Assumption A.2 (i). Consequently,

(3.9) is often used when studying problems involving non-exponential discounting;

see e.g., [31, 30, 33].

The following is the first main result of this project which shows that an optimal

mild equilibrium is a strong equilibrium. The proof is provided in Section 2.1.

Theorem 3.2.4. Let Assumptions A.1 and A.2 hold. If S is an optimal mild equi-

librium, then it is a strong equilibrium.

1As mentioned in [31]: “It is well-documented in empirical studies, e.g. [45, 46, 57], that people
admit DI: when choosing between two rewards, people are more willing to wait for the larger reward
(more patient) when these two rewards are further away in time. For instance, in the two scenarios
(i) getting $100 today or $110 tomorrow, and (ii) getting $100 in 100 days or $110 in 101 days,
people tend to choose $100 in (i), but $110 in (ii).”
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Since all strong equilibria are mild equilibria, an optimal mild equilibrium will

generate larger values than any strong equilibrium as well. With Theorem 3.2.4, we

can conclude that any optimal mild equilibrium is a strong equilibrium and in fact is

an optimal strong equilibrium.

The following is the second main result of this chapter. It provides an iteration

method which directly constructs an optimal mild equilibrium, and thus also estab-

lishes the existence of weak, strong, and optimal mild equilibria. The proof of this

result is presented in Section 2.2.

Theorem 3.2.5. Let S0 := ∅, and

Sn+1 := Sn ∪

{
x ∈ X \ Sn : x > sup

S:Sn⊂S⊂X\{x}
J(x, S)

}
. (3.11)

Let

S∞ := ∪∞n=0Sn. (3.12)

If Assumptions A.1 (i) and A.2 (i) hold, then S∞ is an optimal mild equilibrium. If

in addition Assumption A.2 (ii) holds, then S∞ is a strong equilibrium.

3.2.1 Proof of Theorem 3.2.4

Recall τS, τ
ε
S, J(·, ·) defined in (3.4),(3.7),(3.5) respectively. We have the following

characterization of (3.6) in Definition 3.1.2.

Proposition 3.2.6. Let Assumptions A.1 and A.2 (ii) hold. Then S ⊂ X is a weak

equilibrium if and only if S is a mild equilibrium and for all x ∈ S,

x(λx − δ′(0)) ≥
∑

y∈S\{x}

yqxy +
∑
y∈Sc

J(y, S)qxy.

Proof. By definition, we only need to check condition (3.6) in Definition 3.1.2 is

equivalent to the above inequality.
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Denote Tx := inf{t ≥ 0 : Xt 6= x,X0 = x} as the holding time at state x, which

has exponential distribution with parameter λx. Then for all ε > 0

Ex[δ(τ εS)XτεS
] = Ex[δ(τ εS)XτεS

1{Tx>ε}] +
∑

y∈X\{x}

Ex[δ(τ εS)XτεS
1{Tx≤ε,XTx=y,Ty+Tx>ε}] +O(ε2)

= δ(ε)xe−λxε

+

 ∑
y∈S\{x}

δ(ε)y
qxy
λx

+
∑
y∈Sc

Ey[δ(ε+ τS)XτS ]
qxy
λx

 (λxε+O(ε2))

+O(ε2).

Notice that δ(ε) = 1 + δ′(0)ε+ o(ε). Therefore we have

Ex[δ(τ εS)XτεS
] = x+

−x(λx − δ′(0)) +
∑

y∈S\{x}

yqxy +
∑
y∈Sc

qxyEy[δ(ε+ τS)XτS ]

 ε+o(ε).

Therefore, (3.6) is equivalent to

x(λx − δ′(0)) ≥
∑

y∈S\{x}

yqxy +
∑
y∈Sc

Ey[δ(τS)XτS ]qxy.

Corollary 3.2.7. Let Assumptions A.1 and A.2 (ii) hold. If S is a mild equilibrium

and satisfies

x(λx − δ′(0)) >
∑

y∈S\{x}

yqxy +
∑
y∈Sc

Ey[δ(τS)XτS ]qxy,

then it is a strong equilibrium.

For the rest of the chapter we will sometimes use the notation

ρ(x, S) := inf{t ≥ 0 : Xx
t ∈ S}
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in the place of τS to emphasize the initial state X0 = x (Xx here is the Markov chain

starting at x).

Lemma 3.2.8. Let Assumption A.2 (i) hold. For x ∈ S, denote Ŝ = S\{x}. If S is

an optimal mild equilibrium, then for any y /∈ S,

J(y, Ŝ)− J(y, S) ≥ Ey[δ(τS)1{XτS=x}](J(x, Ŝ)− x).

Proof. Since Ŝ ⊂ S, we have ρ(y, S) ≤ ρ(y, Ŝ). Then

J(y, Ŝ)− J(y, S)

= Ey[δ(ρ(y, Ŝ))Xρ(y,Ŝ)1{Xρ(y,S)=x}] + Ey[δ(ρ(y, Ŝ))Xρ(y,Ŝ)1{Xρ(y,S)∈Ŝ}]

− Ey[δ(ρ(y, S))Xρ(y,S)]

= Ey[δ(ρ(y, Ŝ))Xρ(y,Ŝ)1{Xρ(y,S)=x}] + Ey[δ(ρ(y, S))Xρ(y,S)1{Xρ(y,S)∈Ŝ}]

− Ey[δ(ρ(y, S))Xρ(y,S)]

= Ey[δ(ρ(y, Ŝ))Xρ(y,Ŝ)1{Xρ(y,S)=x}]− xEy[δ(ρ(y, S))1{Xρ(y,S)=x}]

≥ Ey[δ(ρ(y, S))1{Xρ(y,S)=x}E[δ(ρ(y, Ŝ)− ρ(y, S))Xρ(x,Ŝ)|Fρ(y,S)]]

− xEy[δ(ρ(y, S))1{Xρ(y,S)=x}]

= Ey[δ(τS)1{XτS=x}](Ex[δ(τŜ)XτŜ
]− x),

where we use (3.9) for the inequality above.

Lemma 3.2.9. Let Assumption A.2 (i) hold. If S is an optimal mild equilibrium,

then for any x ∈ S we have that

x ≥ J(x, Ŝ), where Ŝ = S\{x}.

As a result, 0 /∈ S and J(y, S) > 0 for all y ∈ X.
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Proof. If Ŝ is also a mild equilibrium, then

x ≤ J(x, Ŝ) ≤ J(x, S) = x,

and thus x = J(x, Ŝ).

If Ŝ is not a mild equilibrium, then there exists y /∈ Ŝ such that J(y, Ŝ) < y ≤

J(y, S). By Lemma 3.2.8,

0 > J(y, Ŝ)− J(y, S) ≥ Ey[δ(τS)I{XτS=x}](J(x, Ŝ)− x),

which implies that

x > J(x, Ŝ). (3.13)

Now suppose 0 ∈ S. By the above result, we have 0 ≥ J(0, S\{0}). SinceXτS\{0} >

0, J(0, S\{0}) > 0, which is a contraction. As a result, 0 /∈ S and J(y, S) > 0 for all

y ∈ X.

Proof of Theorem 3.2.4. By Assumption A.2, δ(t) ≥ eδ
′(0)t for all t ≥ 0. More-

over, there exist t0 > 0 such that for t > t0, δ(t) > eδ
′(0)t since δ is non-exponential.

As a result, for any x ∈ X,

Ex[δ(Tx)] =

∞∫
0

λxδ(t)e
−λxtdt >

∞∫
0

λxe
(δ′(0)−λx)tdt =

λx
λx − δ′(0)

.

Denote cx := λx
λx−δ′(0) .

If S = {x}, then as x 6= 0 by Lemma 3.2.9 we have that

∑
y 6=x

J(y, S)qxy ≤ x
∑
y 6=x

Ey[δ(Ty)]qxy < xλx < x(λx − δ′(0)),

which implies that S is a strong equilibrium.
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For the rest of the proof, we assume S contains at least two points. Fix any x ∈ S,

we have

J(x, Ŝ) =
∑

y∈S\{x}

qxy
λx

Ex[δ(τŜ)XτŜ
|XTx = y] +

∑
y/∈S

qxy
λx

Ex[δ(τŜ)XτŜ
|XTx = y].

Since for y ∈ S \ {x},

Ex[δ(τŜ)XτŜ
|XTx = y] = yEx[δ(τŜ)|XTx = y] = yEx[δ(Tx)|XTx = y] = yEx[δ(Tx)],

and for y ∈ Sc,

Ex[δ(τŜ)XτŜ
|XTx = y]

≥Ex[δ(Tx)δ(τŜ − Tx)XτŜ
|XTx = y]

=Ex[δ(Tx)|XTx = y] · Ex[δ(τŜ − Tx)XτŜ
|XTx = y] = Ex[δ(Tx)] · J(y, Ŝ),

we have that

J(x, Ŝ) ≥

 ∑
y∈S\{x}

qxy
λx
y +

∑
y/∈S

qxy
λx
J(y, Ŝ)

 · Ex[δ(Tx)]. (3.14)

Denote

I :=
∑

y∈S\{x}

qxy
λx
y, II :=

∑
y/∈S

qxy
λx
J(y, S), ÎI :=

∑
y/∈S

qxy
λx
J(y, Ŝ).

By Lemma 3.2.9, y > 0 for all y ∈ Ŝ and J(y, Ŝ) > 0 for all y /∈ Ŝ, thus I + ÎI > 0.

This together with Ex[δ(Tx)] > cx implies that

J(x, Ŝ) > (I + ÎI)cx.
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Then

x− J(x, Ŝ) < x− (I + ÎI)cx

= x− (I + II)cx + (II− ÎI)cx

= x− (I + II)cx + cx
∑
y/∈S

qxy
λx

(J(y, S)− J(y, Ŝ))

≤ x− (I + II)cx + cx
∑
y/∈S

qxy
λx

(Ey[δ(τS)1{XτS=x}](x− J(x, Ŝ)),

where the last line follows from Lemma 3.2.8. Thus1− cx
∑
y/∈S

qxy
λx

(Ey[δ(τS)1{XτS=x}])

 (x− J(x, Ŝ)) < x− (I + II)cx. (3.15)

Notice that

cx
∑
y/∈S

qxy
λx

(Ey[δ(τS)1{XτS=x}] ≤ cx
∑
y/∈S

qxy
λx
≤ cx < 1.

Then by Lemma 3.2.9,

x− (I + II)cx > 0, ∀x ∈ X,

which implies S is a strong equilibrium.

3.2.2 Proof of Theorem 3.2.5

We start with the following lemma, which in particular indicates that a mild

equilibrium with smaller stopping region generates larger values.

Lemma 3.2.10. Let Assumption A.2 (i) hold. If S is a mild equilibrium, then for

any subset R ⊂ X with S ⊂ R, we have

J(x, S) ≥ J(x,R), ∀x ∈ X.
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Proof. Since S ⊂ R, ρ(x, S) ≥ ρ(x,R) for all x ∈ X.

J(x, S) = Ex[δ(ρ(x, S))Xρ(x,S)]

= Ex[Ex[δ(ρ(x, S))Xρ(x,S)|Fρ(x,R)]]

≥ Ex[δ(ρ(x,R))Ex[δ(ρ(x, S)− ρ(x,R))Xρ(x,S)|Fρ(x,R)]]

= Ex[δ(ρ(x,R))EXρ(x,R)
[δ(ρ(Xρ(x,R), S))Xρ(x,S)]]

≥ Ex[δ(ρ(x,R))Xρ(x,R)] = J(x,R).

The last inequality holds because S is a mild equilibrium and by definition,

EXρ(x,R)
[δ(ρ(Xρ(x,R), S))Xρ(x,S)] ≥ Xρ(x,R).

Corollary 3.2.11. Let Assumption A.2 (i) hold. If S is the smallest mild equilibrium,

i.e. S ⊂ S̃ for any mild equilibrium S̃, then S is an optimal mild equilibrium.

Thanks to this corollary, in order to show S∞ defined in (3.12) is an optimal mild

equilibrium, it suffices to show that S∞ is the smallest one. 2

Recall Sn defined in (3.11). We have the following lemma.

Lemma 3.2.12. For any mild equilibrium R, we have that Sn ⊂ R for all n ∈ N.

Proof. We prove this lemma by induction. First S0 ⊂ R. Suppose Sn ⊂ R for n ≥ 0.

Since R is a mild equilibrium, for any x /∈ R,

x ≤ J(x,R) ≤ sup
S:Sn⊂S⊂X\{x}

J(x, S).

2This implies the uniqueness of optimal mild equilibrium. If S∗ is an optimal mild equilibrium,
then S∗ is a mild equilibrium, thus contains the smallest mild equilibrium. By Lemma 3.2.10, opti-
mality of S* implies S* is contained in any mild equilibrium. So S* is the smallest mild equilibrium,
which is unique.
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Therefore x /∈ Sn+1. As a result, Sn+1 ⊂ R for all n ∈ N.

Lemma 3.2.13. Let Assumption A.1 (i) hold. For y /∈ S∞, denote

Vn := sup
S:Sn⊂S⊂X\{y}

J(y, S), V∞ := sup
S:S∞⊂S⊂X\{y}

J(y, S),

then we have Vn ↘ V∞, n→∞.

Proof. Since S∞ =
⋃
n≥1 Sn, we have ρ(y, S∞\Sn)→∞, n→∞. Then for any ε > 0,

there existsN = N(ε, y) such that for n > N , Ey[δ(τS∞\Sn)] < ε since limt→∞ δ(t) = 0.

For any Rn such that Sn ⊂ Rn ⊂ X\{y}, denote Rn := Rn

⋃
S∞, then we have,

J(y,Rn)− J(y,Rn) = Ey[(δ(τRn)XτRn
− δ(τRn)XτRn

)1{Xτ
Rn
∈S∞\Rn}]

≤ CEy[δ(τRn)1{Xτ
Rn
∈S∞\Rn}]

≤ CEy[δ(τS∞\Rn)1{Xτ
Rn
∈S∞\Rn}]

≤ Cε

Since S∞ ⊂ Rn ⊂ X\{y}, by definition, J(y,Rn) ≤ V∞. Therefore we have that

for any ε > 0, there exists N such that for any n ≥ N ,

Vn = sup
Rn:Sn⊂Rn⊂X\{y}

J(y,Rn) ≤ V∞ + Cε.

Clearly Sn ⊂ Sn+1 implies that Vn is non-increasing and Vn ≥ V∞ for all n. This

completes the proof that Vn ↘ V∞, n→∞.

Proof of Theorem 3.2.5. By Corollary 3.2.11 and Lemma 3.2.12, to show that

S∞ is an optimal mild equilibrium, it suffices to show S∞ is a mild equilibrium.

Suppose S∞ is not a mild equilibrium. Then

α := sup
x∈X
{x− J(x, S∞)} > 0.
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For any ε > 0, there exists y /∈ S∞ such that y − J(y, S∞) ≥ α− ε. Since y /∈ Sn for

all n ≥ 0, we have

y ≤ sup
S:Sn⊂S⊂X\{y}

J(y, S), ∀n ≥ 0.

By Lemma 3.2.13,

y ≤ sup
S:S∞⊂S⊂X\{y}

J(y, S).

Thus, there exists subset R with S∞ ⊂ R ⊂ X\{y} such that

y ≤ J(y,R) + ε.

Then we have J(y,R) − J(y, S∞) ≥ y − ε + α − ε − y = α − 2ε. Since S∞ ⊂ R,

ρ(y, S∞) ≥ ρ(y,R). It follows that

J(y,R)− J(y, S∞) = Ey[δ(ρ(y,R))Xρ(y,R)]− Ey[Ey[δ(ρ(y, S∞))Xρ(y,S∞)|Fρ(y,R)]]

≤ Ey[δ(ρ(y,R))Xρ(y,R)]

− Ey[δ(ρ(y,R))Ey[δ(ρ(y, S∞)− ρ(y,R))Xρ(y,S∞)|Fρ(y,R)]]

= Ey[δ(ρ(y,R))(Xρ(y,R) − EXρ(y,R)
[δ(ρ(Xρ(y,R), S∞))Xρ(Xρ(y,R),S∞)])

≤ Ey[δ(ρ(y,R))]α

≤ Ey[δ(Ty)]α.

By Assumption A.2 (i), λ = supx∈X λx <∞ and since y /∈ R, we have 0 < Ey[δ(Ty)] <

c < 1 where c =
∫∞
0
δ(t)λe−λtdt. By choosing 0 < ε ≤ α(1−c)

2
, we obtain a contradic-

tion.

Next let us prove S∞ is a strong equilibrium. If X is irreducible, then S∞ is a

strong equilibrium by Theorem 3.2.4. In general, following the proof for Proposition

3.2.6, to show S∞ is a strong equilibrium, it suffices to show that for any x ∈ S∞ with
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λx > 0,

x(λx − δ′(0)) >
∑

y∈S∞\{x}

yqxy +
∑
y∈Sc∞

Ey[δ(τS)XτS ]qxy. (3.16)

Take x ∈ S∞ with λx > 0. Following the argument for (3.14), we have that

J(x, Ŝ∞) ≥

 ∑
y∈S∞\{x}

qxy
λx
y +

∑
y/∈S∞

qxy
λx
J(y, Ŝ∞)

 · Ex[δ(Tx)],
where Ŝ∞ = S∞ \ {x}. Using an argument similar to that for (3.15), we have that

1− cx
∑
y/∈S∞

qxy
λx

(Ey[δ(τS∞)1{XτS∞=x}])

 (x− J(x, Ŝ∞)) ≤ x− (I∞ + II∞)cx,

where

I∞ :=
∑

y∈S∞\{x}

qxy
λx
y and II∞ :=

∑
y/∈S∞

qxy
λx
J(y, S∞).

Since S∞ is the smallest mild equilibrium, Ŝ∞ is not a mild equilibrium. Then x >

J(x, Ŝ∞) by (3.13). Therefore,

x− (I∞ + II∞)cx > 0,

which implies (3.16).

3.3 Examples illustrating the iteration method in Theorem

3.2.5

In this section, we provide examples to demonstrate the iteration method in The-

orem 3.2.5.

The next proposition shows that the iteration method in Theorem 3.2.5 will termi-

nate within one step in the case of time consistency and leads to an optimal stopping
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time.

Proposition 3.3.1. If δ(s)δ(t) = δ(s + t) for all t, s ≥ 0 and Assumptions A.1 (i)

holds, then S1 = Sn for all n ≥ 2 and S1 is an optimal stopping strategy.

Proof. By definition, S0 = ∅ and

S1 = {x ∈ X : x > sup
S⊂X\{x}

J(x, S)}.

We show that for any x /∈ S1 and any set R ⊂ X\{x}, we have J(x,R) ≤ J(x, R̃)

where R̃ = R ∪ S1 = R ∪ (S1\R).

For S1 ⊂ R, R = R̃ and J(x,R) ≤ J(x, R̃) holds trivially.

For S1 6⊂ R, denote γ = τR and γ̃ = τR̃. Then a.s. γ ≥ γ̃. We have

J(x,R)− J(x, R̃) = Ex[δ(γ)Xγ]− Ex[δ(γ̃)Xγ̃]

= Ex[δ(γ)Xγ(1{Xγ̃∈R} + 1{Xγ̃ /∈R})]− Ex[δ(γ̃)Xγ̃]

= Ex[(δ(γ)Xγ − δ(γ̃)Xγ̃)1{Xγ̃ /∈R}]

= Ex[E[(δ(γ)Xγ − δ(γ̃)Xγ̃)1{Xγ̃ /∈R}|Fγ̃]]

= Ex[EXγ̃ [δ(γ)Xγ]δ(γ̃)1{Xγ̃ /∈R} − δ(γ̃)Xγ̃1{Xγ̃ /∈R}]

= Ex[δ(γ̃)1{Xγ̃ /∈R}(EXγ̃ [δ(γ)Xγ]−Xγ̃)]

≤ 0,

since on {Xγ̃ /∈ R}, Xγ̃ ∈ S1 and Xγ̃ > EXγ̃ [δ(γ)Xγ].

As a result, J(x,R) ≤ supS:S1⊂S⊂X\{x} J(x, S) for all R ⊂ X\{x}. Thus for any

x 6∈ S1, x ≤ supR:R⊂X\{x} J(x,R) ≤ supS:S1⊂S⊂X\{x} J(x, S), which implies S1 = S2 =

S∞.

Next we show that for all x ∈ X,

J(x, S1) ≥ J(x, S), ∀S ⊂ X.
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For x ∈ S1, by definition of S1, x > supS⊂X\{x} J(x, S). Therefore x ≥ supS⊂X J(x, S).

For x 6∈ S1, for any S ⊂ X, let S̃ = S ∪ S1. Since S ⊂ S̃ and S1 ⊂ S̃, we have a.s.

τS ≥ τS̃ and τS1 ≥ τS̃. By similar arguments as above, we obtain

J(x, S̃)− J(x, S) = Ex[δ(τS̃)1{XS̃ /∈S}(XτS̃
− EXτ

S̃
[δ(τS)XτS ])] ≥ 0,

and

J(x, S1)− J(x, S̃) = Ex[δ(τS̃)1{XS̃ /∈S1}(EXτ
S̃
[δ(τS1)XτS1

]−XτS̃
)] ≥ 0.

Therefore J(x, S1) ≥ J(x, S̃) ≥ J(x, S).

In the case of time inconsistency, the above result generally does not hold. The

next example demonstrates an application of the iteration method in Theorem 3.2.5.

Example 3.3.2. Consider hyperbolic discount function δ(t) = 1
1+βt

for β > 0 and

X = {x1, x2, x3, x4}, whose generator is given by

Q =



−λ1 q12 q13 q14

q21 −λ2 q23 q24

q31 q23 −λ3 q34

q41 q42 q43 −λ4


=



−3 1 1 1

0 −1 0 1

0 0.4 −2 1.6

1 1 1 −3


.

Let β = 3, x1 = 10, x2 = 40, x3 = 46, x4 = 100.

Next we show that by applying the iteration method, we have S0 = ∅, S1 =

{x2, x4}, S2 = {x2, x3, x4} = S∞.

Denote Ti := inf{t ≥ 0 : Xt 6= xi|X0 = xi}.

(i) Since 100 = x4 > x3 = 46 ≥ supS⊂X\{x4} J(x4, S), we have that x4 ∈ S1.
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(ii) For x3, consider S = {x4}.

J(x3, {x4}) = Ex3 [δ(τ{x4})Xτ{x4}
]

= x4(
q34
λ3

Ex3 [δ(T3)] +
q32
λ3

Ex3 [E[δ(T2 + T3)|XT3 = x2]])

= 100(0.8

∞∫
0

2

1 + 3t
e−2tdt+ 0.2

∞∫
0

∞∫
0

2

1 + 3(t+ s)
e−t−2sdtds)

.
= 100(0.8× 0.5173 + 0.2× 0.2539) = 46.46.

Therefore x3 = 46 < J(x3, {x4}) ≤ supS⊂X\{x3} J(x3, S) and x3 /∈ S1.

(iii) Note that supS⊂X\{x2} J(x2, S) ≤ x4Ex2 [δ(T2)]. We have

Ex2 [δ(T2)] =

∞∫
0

1

1 + 3t
e−tdt

.
= 0.3856.

Therefore x2 = 40 > 0.3856× 100 = x4Ex2 [δ(T2)] ≥ supS⊂X\{x2} J(x2, S) and x2 ∈ S1.

(iv) For x1, consider S = {x2, x3, x4}.

J(x1, {x2, x3, x4}) = Ex1 [δ(T1)Xτ{x2,x3,x4}
]

=
1

3
(x2 + x3 + x4)Ex1 [δ(T1)]

= 62×
∞∫
0

3

1 + 3t
e−3tdt

.
= 62× 0.5963.

Thus x1 = 10 ≤ J(x1, {x2, x3, x4}) ≤ supS⊂X\{x1} J(x1, S) and x1 /∈ S1.

(v) By (iv), x1 /∈ S2 given that S1 = {x2, x4}.

(vi) To show that x3 ∈ S2, we only need to show that J(x3, {x2, x4}) < x3 since
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S1 = {x2, x4} and q31 = 0.

J(x3, {x2, x4}) = (
q32
λ3
x2 +

q34
λ3
x4)Ex3 [δ(T3)]

= (0.2× 40 + 0.8× 100)

∞∫
0

2

1 + 3t
e−2tdt

.
= 88× 0.5173 = 45.52

Thus x3 ∈ S2.

(vii) Again by (iv), x1 /∈ S3 given that S2 = {x2, x3, x4}. Therefore Sn = S2 =

{x2, x3, x4} for n ≥ 2.

3.3.1 Example 3.2

In this example, process X has infinite state space and can be viewed as the

payoff of some American option. Consider a stock price process Y that takes values

in Y := {ui : i ∈ Z} for some fixed u > 1. There exists λ > 0 and p ∈ [ 1
1+u

, 1) such

that

quiui+1 = pλ, quiui−1 = (1− p)λ, ∀i ∈ Z.

Let the discount function be δ(t) = 1
1+βt

for some constant β > 0 and let the

payoff process be X = f(Y ) for some payoff function f(y) = (K − y)+, where K is a

positive constant. Since f is bounded and nonnegative, our results still holds when

we have X = f(Y ). Next we will show how to use the iteration method to find an

optimal mild equilibrium in this problem.

Lemma 3.3.3. S1 = {ui ∈ (0, K) : K − ui > J(ui, {um}),∀m < i,m ∈ Z, i ∈ Z}.

Proof. Since for any ui ≥ K, f(ui) = (K − ui)+ = 0 ≤ J(ui, (0, K) ∩ Y), we obtain

that S1 ⊂ (0, K). Thus we only consider ui ∈ (0, K) and we show that ui ∈ S1 if and

only if ui ∈ (0, K) and K − ui > J(ui, {ul}) for all l < i.
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“=⇒”: Take ui ∈ S1. Then obviously K − ui > J(ui, {ul}) for all l < i.

“⇐=”: Take ui ∈ (0, K). For any nonempty set S ⊂ Y\{ui}, there are three

cases.

Case 1: S ∈ A := {S̃ ⊂ Y\{ui} : S̃ ∩ (0, ui) = ∅ and S̃ ∩ (ui,∞) 6= ∅}. Let

ur = min(S ∩ (ui,∞)). Then J(ui, S) = J(ui, ur). Since ur > ui, we have f(ui) =

K − ui > J(ui, {ur}) = (K − ur)+Eui [δ(τ{ur})]. Then obviously we have that

f(ui) > sup
S∈A

J(ui, S).

Case 2: S ∈ B := {S̃ ⊂ Y\{ui} : S̃ ∩ (0, ui) 6= ∅ and S̃ ∩ (ui,∞) = ∅}. Note that

for any n ∈ Z such that n < i,

K − ui > sup
n≤k≤i−1

J(ui, {uk}).

Moreover, limn→∞ J(ui, {un}) = 0. Thus

K − ui > sup
k≤i−1

J(ui, {uk}). (3.17)

Now let ul = max(S ∩ (0, ui)). Then J(ui, S) = J(ui, {ul}). Thus by (3.17),

f(ui) > sup
S∈B

J(ui, S).

Case 3: S ∈ C := {S̃ ⊂ Y\{ui} : S̃ ∩ (0, ui) 6= ∅ and S̃ ∩ (ui,∞) 6= ∅}. Let

ul = max(S ∩ (0, ui)) and ur = min(S ∩ (ui,∞)).

If ur ≤ K, observe that Y is a submartingale, so ui ≤ Eui [Yτ{ul,ur} ] = Eui [YτS ].

Thus f(ui) = K−ui ≥ Eui [(K−YτS)+] = Eui [(K−YτS)+] > Eui [δ(τ{ul,ur})(K−YτS)+].
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If ur > K, then

J(ui, S) = Eui [δ(τ{ul})(K − ul)+1{τ{ul}<τ{ur}}] + Eui [δ(τ{ur})(K − ur)+1{τ{ur}<τ{ul}}]

= Eui [δ(τ{ul})(K − ul)1{τ{ul}<τ{ur}}]

≤ Eui [δ(τ{ul})(K − ul)]

= J(ui, {ul})

≤ sup
S∈B

J(ui, S).

Therefore,

f(ui) > sup
S∈C

J(ui, S).

This completes the proof.

Fix m, i ∈ Z such that m < i < loguK. J(ui, {um}) = (K − um)Eui [δ(τ{um})].

Since (quiuj)j 6=i are the same for each i ∈ Z, we have Eui [δ(τ{um})] = Eui−k [δ(τ{um−k})]

for any k ∈ N. Therefore denote αi−m := Eui [δ(τ{um})]. Note that αn, n ∈ N can be

computed explicitly. For example,

α1 =
∞∑
k=1

(
2k−1
k

)
pk−1(1− p)k

2k − 1
·
∞∫
0

1

1 + βt
g(t, 2k − 1)dt,

where g(t, n) = λn

(n−1)!t
n−1e−λt is the density function of gamma distribution with

shape parameter n and rate parameter λ.

Proposition 3.3.4. S∞ = {ui : i ≤ n0} where n0 = dlogu(
1−α1

u−α1
K)e.

Proof. Since for any ui ≥ K and any S ⊂ Y\{ui}, f(ui) = 0 ≤ sup J(ui, S), S∞ ⊂

(0, K)∩Y. In the following we only consider ui with i ≤ bloguKc. Consider sequence

{K−um
K
}m≤bloguKc. It is easy to check that

K − um−1

K
>
K − um

K
> 0, ∀m ≤ bloguKc,
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and limm→−∞
K−um
K

= 1. Then there exists m0 ≤ bloguKc such that

K − um0

K
> α1 ≥

K − um0+1

K
.

Then K − um0 > Kα1 > (K − um)αm0−m, ∀m < m0. By Lemma 3.3.3, um0 ∈ S1.

Since K−um > K−um0 > Kα1 for all m < m0, by similar argument, um ∈ S1,∀m <

m0. Therefore

{um : m ≤ m0} ⊂ S1.

Consider the sequence { K−un
K−un−1}n≤bloguKc. It is easy to check that

K − un−1

K − un−2
>

K − un

K − un−1
≥ 0, ∀n ≤ bloguKc,

and limn→−∞
K−un
K−un−1 = 1. Then there exists n0 ≤ bloguKc such that

K − un0

K − un0−1
> α1 ≥

K − un0+1

K − un0
. (3.18)

Then for any n ≥ n0 + 1, (K−un)+ ≤ (K−un−1)+α1. Thus un 6∈ S1, ∀n > n0. That

is

{um : m ≤ m0} ⊂ S1 ⊂ {um : m ≤ n0}

Next we claim that for all n ∈ N, Sn ⊂ {um : m ≤ n0}. We will prove this

claim by induction. By the above discussion, this claim holds for n = 1. Suppose

Sn ⊂ {um : m ≤ n0} for n ≥ 1. Then for any m > n0,

(K − um)+ ≤ (K − um−1)+α1 ≤ sup
S:Sn⊂S⊂Y\{um}

J(um, S),

which implies um 6∈ Sn+1 for all m > n0 and Sn+1 ⊂ {um : m ≤ n0}. As a result,

S∞ ⊂ {um : m ≤ n0}.

If m0 = n0, then we have S1 = {um : m ≤ n0} ⊂ S∞. Thus S∞ = {um : m ≤ n0}.
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If m0 < n0, let k = n0 −m0. Consider um0+i, i ∈ {0, 1, 2, · · · , k}. We claim that

um0+i ∈ Si+1. Then we obtain {um : m ≤ n0} ⊂ S∞.

Next we will prove this claim by induction. The claim holds for i = 0. Suppose

um0+i ∈ Si+1. Then {um : m ≤ m0 + i} ⊂ Si+1. Consider the case when um0+i+1 6∈

Si+1. Note that supS:Si+1⊂S⊂Y\{um0+i+1} J(um0+i+1, S) ≤

max
m0+i+2≤k≤n0

J(um0+i+1, {um0+i, uk}) ∨ J(um0+i+1, {um0+i})

As Y is a submartingale, K − um0+i+1 > J(um0+i+1, {um0+i, uk}) for any k satisfying

m0 + i+ 2 ≤ k ≤ n0. This together with (3.18) implies that

K − um0+i+1 > sup
S:Si+1⊂S⊂Y\{um0+i+1}

J(um0+i+1, S).

Thus, um0+i+1 ∈ Si+2.

Therefore the iteration method will terminate within n0 − m0 + 1 steps and we

obtain S∞ = {um : m ≤ n0} where n0 satisfies K−un0
K−un0−1 > α1 ≥ K−un0+1

K−un0 . Equivalently,

S∞ =

{
ui : i ≤

⌈
logu

(
1− α1

u− α1

K

)⌉}
.

3.3.1.1 Discussion on how non-standard discounting affects the value of

the option

Consider the optimal stopping problem

U(y) := sup
τ∈T

Ey
[

1

1 + βτ
(K − Yτ )+

]
. (3.19)
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Let

τ ∗ := inf

{
t ≥ 0 : δ(t)Yt ≥ sup

τ∈Tt
E
[
δ(τ)(K − Yτ )+

∣∣∣Ft]} , (3.20)

where Tt is the set of stopping times taking values in [t,∞]. From the classical theory

of optimal stopping we know that τ ∗ is an optimal solution for the problem (3.19).

Recall that

τS∞ := inf{t ≥ 0 : Yt ∈ S∞}

is the stopping time corresponding to the optimal mild equilibrium S∞, where S∞ is

obtained from the iteration in Proposition 3.3.4. We have the following.

Proposition 3.3.5. Suppose logu(
1−α1

u−α1
K) is not an integer. Then

τS∞ ≤ τ ∗. (3.21)

Note that τ ∗ is an optimal pre-commitment strategy. That is, it is a strategy which

is carried out based on the initial preference, and the agent commits to this strategy

over the whole planning horizon and ignores the change of her future preference.

On the other hand, τS∞ is an equilibrium strategy (sophisticated strategy) which

incorporates the change of preference. To be more specific, by using strategy τS∞ the

agent seriously takes the possible change of her future preference into consideration,

and works on consistent planning: a strategy such that once it is enforced over time, all

her future selves have no incentive to deviate from it. Proposition 3.3.5 indicates that

with the recognition of the change of preference, the agent would actually expedite

the exercise of the American put option.

As τS∞ may not be optimal for the problem (3.19), the use of the equilibrium

strategy τS∞ will lower the expected payoff, if such evaluation is based on the initial

preference. However, when the change of future preference is considered, there is no

unique/proper way to define the dynamically optimal expected payoff over time. In
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this case, the equilibrium strategy is carried out such that the agent’s future selves

will not regret the decision.

Proof of Proposition 3.3.5. By the Markov property of Y , we can rewrite (3.20)

as

τ ∗ = inf{t ≥ 0 : Yt ∈ At}, (3.22)

where

At :=

{
y ∈ Y : y ≥ sup

τ∈T
Ey
[

1 + βt

1 + β(t+ τ)
(K − Yτ )+

]}
.

It is easy to see that At ⊂ A0 for any t ≥ 0. We claim that A0 ⊂ S∞, which further

implies that At ⊂ S∞ for t ≥ 0 and thus (3.21).

Indeed, take un ∈ A0. Obviously un ∈ (0, K). Then we have that

K − un = U(un) ≥ J(un, {un−1}) = α1(K − un−1),

which implies that

n ≤ logu

(
1− α1

u− α1

K

)
+ 1.

By assumption, we have that

n ≤ n0,

which implies un ∈ S∞.

Remark 3.3.6. The assumption in Proposition 3.3.5, i.e., logu

(
1−α1

u−α1
K
)

not being an

integer, is very weak, since for it holds for a.e. u and K.

Remark 3.3.7. Here τ ∗ considered in (3.20) is the smallest optimal solution for the

problem (3.19). If it is replaced by the largest optimal solution, then the assumption

in Proposition 3.3.5 is not needed.
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3.4 Exact Containment of Equilibria: Optimal Mild $ Strong

$ Weak $ Mild

In this section, we will use an example to illustrate that a mild equilibrium may

not be a weak equilibrium, a weak equilibrium may not be a strong equilibrium and

a strong equilibrium may not be an optimal mild equilibrium.

Consider a two-state continuous-time Markov chain Xt ∈ {a, b} for t ≥ 0. Assume

a > 0, b > 0 and without loss of generality we assume a > b. The generator is

Q =

−λa λa

λb −λb

 ,
where λa > 0 and λb > 0.

There are four subsets of {a, b}. Clearly S = ∅ and S = {b} cannot be mild

equilibria and S = {a, b} is a mild equilibrium. Next, let’s check when S = {a} is a

mild equilibrium.

By definition S = {a} is a mild equilibrium if and only if

b ≤ aEb[δ(Tb)] = a

∞∫
0

δ(t)λbe
−λbtdt.

Consider the following cases.

(i) If b
a

=
∫∞
0
δ(t)λbe

−λbtdt < 1, then both {a} and {a, b} are optimal mild equi-

libria and thus both are strong equilibria.

(ii) If b
a
<
∫∞
0
δ(t)λbe

−λbtdt < 1, then {a} is the only optimal mild equilibrium,

which is also a strong equilibrium. But the mild equilibrium {a, b} may not be a

weak equilibrium. For example, when b
a
< λb

λb−δ′(0)
< 1, the second condition for weak

equilibrium is violated at state b, thus it is not a weak equilibrium.

(iii) λa
λa−δ′(0) < 1 < a

b
holds automatically since a > b and δ′(0) < 0. If λb

λb−δ′(0)
<
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b
a
<
∫∞
0
δ(t)λbe

−λbtdt < 1, then {a, b} is not an optimal mild equilibrium, but it is a

weak equilibrium and also a strong equilibrium.

(iv) If λb
λb−δ′(0)

= b
a
< 1, {a, b} is a weak equilibrium, but it may not be a strong

equilibrium, i.e. condition (3.8) on strong equilibrium may not hold at state b. This

can be shown by computing the related term of order ε2.

Since

P(Xε = a|X0 = b) = λbε−
λ2b + λaλb

2
ε2 + o(ε2),

and

P(Xε = b|X0 = b) = 1− λbε+
λ2b + λaλb

2
ε2 + o(ε2),

we have b− Eb[δ(ε)Xε]

= b− δ(ε)[aP(Xε = a|X0 = b) + bP(Xε = b|X0 = b)]

= b− (1 + δ′(0)ε+
δ′′(0)

2
ε2 + o(ε2))[a(λbε−

λ2b + λaλb
2

ε2 + o(ε2))

+ b(1− λbε+
λ2b + λaλb

2
ε2 + o(ε2))]

= (bλb − aλb − bδ′(0))ε

+ [b(λbδ
′(0)− λ2b + λaλb

2
− δ′′(0)

2
)− a(δ′(0)λb −

λ2b + λaλb
2

)]ε2 + o(ε2)

Therefore when the first order term and the second order term respectively satisfy

b(λb − δ′(0))− aλb = 0, (3.23)

and

b(λbδ
′(0)− λ2b + λaλb

2
− δ′′(0)

2
)− a(δ′(0)λb −

λ2b + λaλb
2

) < 0, (3.24)

{a, b} is a weak equilibrium but not a strong equilibrium. Using (3.23), (3.24) can be
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simplified to

λa + λb <
δ′′(0)− 2(δ′(0)2)

−δ′(0)
. (3.25)

An interesting case is when δ(t) = 1
1+βt

. Then (3.25) does not hold: δ′(0) = −β

and δ′′(0) = 2β2. In this case δ′′(0)−2(δ′(0)2)
−δ′(0) = 0, which contradicts λa + λb > 0. That

means if we have hyperbolic discount function, a weak equilibrium is always a strong

equilibrium in the two-state setting.

But when δ(t) = (1 + βt)−
1
2 , then it can easily be seen that (3.25) holds: δ′(0) =

−β
2
, δ′′(0) = 3

4
β2 implies that when 0 < λa + λb <

β
2

and b
a

= 2λb
2λb+β

, {a, b} is a weak

equilibrium but not a strong equilibrium. In this case, {a, b} is not an optimal mild

equilibrium.
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CHAPTER IV

Countercyclical Unemployment Benefits in

Disasters: A Quantitative General Equilibrium

Analysis

4.1 Introduction

Unemployment insurance (UI) in the United States increases in recessions. It takes

the form of either an increase in the level of benefits or an extension of the duration

for which an unemployed individual receives benefits.1 Historically, the size of the

increase in UI benefits has been positively related to the level of the unemployment

rate prevailing at the time the policy is implemented. The increase in benefits over

the past two recessions has been substantial. The CARES Act added $600 per week

to the regular UI benefits received (the maximum regular benefits varied from $200

per week to $600 per week across states) and extended the duration of benefits by

13 weeks (the usual duration for most states is 26 weeks); while UI benefits following

the Great Recession were extended by 99 weeks from the usual 26 weeks. Since

such increases in the generosity of benefits involve an enormous expansion of total UI

1More recently, in response to the Coronavirus pandemic of 2020, a third form of increase in
benefits was implemented. Namely, UI benefits were extended to include individuals who were
ineligible for regular UI benefits. In fact, the Coronavirus Aid, Relief, and Economic Security
(CARES) Act of 2020 featured all of the three types of increases mentioned above.
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expenditures, they are usually accompanied by a debate on whether the benefits of

such UI expansion outweighs its costs. A key argument for increasing benefits in a

crisis is that it prevents large consumption declines of individuals who suffer job loss

during the crisis. A key argument against such UI expansion is that it reduces the

incentives for unemployed individuals to seek employment, which therefore reduces

labor supply.2

In this paper we analyze and quantify the general equilibrium implications of UI

policy changes following an aggregate shock. This shock increases the unemployment

rate in the economy. We consider two types of UI policy changes both of which

feature an increase in UI benefit payments following the shock. Under the first type

of policy, all unemployed individuals experience the same increase in benefits. We call

this our baseline policy (BL). Our key finding for this policy is that the additional

unemployment rate under a countercyclical UI policy relative to an acyclical policy

(for which UI benefits do not increase following the shock) is a sharply increasing,

nonlinear function of the size of the aggregate shock. The second type of policy

that we consider is one in which UI payments increase for individuals with capital

below a threshold, with the magnitude of the increase being larger for individuals

with lower capital. We call this a “means tested” policy (MT), since, in our model,

this policy results in higher UI payments for individuals with lower total income. We

compare the effects of the MT and the BL policies. In making this comparison, we

choose the two policies such that they have the same time-0 cost. Our key finding

is that the MT policy provides substantially better consumption insurance against

income loss to its intended beneficiaries (i.e., individuals who experience an increase

in UI payments following the aggregate shock), without a substantial increase in the

equilibrium unemployment rate.

Our setting features an incomplete market with a continuum of individuals, that

2“. . . paying people not to work is dampening what should be a stronger jobs market.” Neil
Bradley, Chief Policy Officer, U.S. Chamber of Commerce, Wall Street Journal, May 8, 2021.
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are either employed or unemployed. They make saving decisions and earn a return on

their savings. In addition to capital gains, employed individuals earn wages and the

unemployed receive UI benefits. Employed individuals face idiosyncratic unemploy-

ment risk. They are unable to hedge this risk due to incomplete credit and insurance

markets. Unemployed individuals choose their intensity of finding jobs; this search is

costly. In addition to the constant idiosyncratic unemployment risk, we add a one-

time unanticipated aggregate shock at time t = 0 that causes job loss to a fraction

of individuals in the economy. At the same time, an unanticipated policy change in

UI benefits (either BL or MT) is implemented. We use the numerical method from

mean field game theory to compute the transition dynamics of this economy. We ex-

amine the effect of countercyclical policies in the cross-section as well as on aggregate

quantities such as the unemployment rate.

Our first result is that the excess unemployment rate, defined as the difference

between the equilibrium unemployment rates under a countercyclical policy and that

under an acyclical policy, is positive and increases nonlinearly with the size of the

aggregate shock. The excess unemployment rate is positive because unemployed in-

dividuals optimally exert less effort at finding a job under a countercyclical policy

than under an acyclical policy, since the level of benefits are higher under the for-

mer policy. The nonlinear dependence on the size of the aggregate shock is mainly

explained by two feedback effects in general equilibrium. First, the excess unemploy-

ment rate at some small time ∆t is approximately proportional to the product of the

size of aggregate shock and the difference between aggregate job finding rates under

a countercyclical policy and an acyclical policy. The latter is an increasing function

of the size of the aggregate shock, since individuals search harder to find a job un-

der an acyclical policy relative to a countercyclical policy (since benefits under the

countercyclical policy is an increasing function of the unemployment rate). As a re-

sult, the approximated excess unemployment rate at ∆t increases superlinearly with
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the size of aggregate shock. Second, this superlinearity is further enhanced as time

advances since the flow rate out of unemployment under the countercyclical policy is

dampened by the larger stock of unemployed workers relative to the acyclical policy.

Taken together, these two effects generate a path of the excess unemployment rate

that is a super linear function of the size of the aggregate shock.

Next, we quantify the effectiveness of the MT policy, and in particular, we com-

pare this policy with the BL policy. We find that the MT policy provides substantially

better consumption insurance against income loss for individuals who experience an

increase in UI payments following the aggregate shock. While this result is perhaps

expected (since higher payments allow individuals with relatively lower k to better

smooth consumption), our quantitative analysis establishes that this benefit is not

associated with a noticeably slower recovery in labor markets. Quantitatively, the

time-0 consumption decline following job loss of low income individuals is more than

12% smaller under the MT policy than under the BL policy. However, the unemploy-

ment rate under the MT is less than 0.7% higher than that under the BL policies.

We contribute to the literature that uses dynamic stochastic general equilibrium

models to quantify the effect of UI policies on welfare and on dynamics of aggregate

quantities. Within this class of models, our paper is most closely related to [25]

(HI) who explicitly account for the role of individual’s asset accumulation as a means

to self-insure. There are two key differences between our paper and HI. First, we

analyze the effect of means-tested UI policies. In contrast, the analysis in HI does not

examine the effect of allowing for benefits to depend on individual income. Second,

we consider the transition dynamics following an (unanticipated) aggregate shock,

while the analysis in HI is in steady-state without any aggregate shocks.

Our general equilibrium model builds on the partial equilibrium models that an-

alyze the trade-off between consumption insurance and the provision of sufficient in-

centives for the unemployed to search for jobs. Recent examples include [44, 16, 37].
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In contrast to the partial equilibrium analysis in these papers, our general equilibrium

model captures the externality of changes in job search intensity of one individual on

another (through level and duration of benefits and wages).

While we take the UI policy as given and analyze its implications, there is an

important strand of the literature that addresses the optimal design of UI policies by

taking a contract theory approach. The classical paper by [55] examining the optimal

time-schedule of UI benefits and the important extension to allow for a wage tax upon

employment by [27] are important examples. The analyses in this literature are in

partial equilibrium and are qualitative.

There is also a recent literature that uses dynamic, general equilibrium models to

examine the effect of UI on welfare and the dynamics of aggregate quantities in the

presence of aggregate shocks. Examples include [48, 39, 52]. In contrast to our paper,

these papers do not allow for self-insurance by individuals through savings.

4.2 The Model

We construct a general equilibrium model to analyze the effects of a class of

counter-cyclical unemployment insurance (UI) benefit policies in an economy with

imperfect risk-sharing. Our model features the classical trade-off between consump-

tion smoothing and moral hazard due to unobservable job-search effort. The focus of

our analysis is the transitional dynamics following an unanticipated, transitory, neg-

ative shock at t = 0 which increases the unemployment rate, and an unanticipated

policy response following this shock. We analyze different forms of such UI policies.
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The Environment

The economy is populated by a continuum of infinitely lived individuals of measure

one with identical preferences:

Et

∞∫
t

e−ρ(τ−t)u(cτ )dτ . (4.1)

where u(c) is the individual’s running utility function, cτ is her/his consumption

trajectory, and ρ is her/his time preference parameter. At any point in time, an

individual is in one of two possible employment states ε = {ε1, ε2}, where ε1 and ε2

are the unemployment and employment states, respectively.

Each individual owns capital and is endowed with a single, indivisible unit of

labor. Individuals rent capital to a representative firm and earn rental income at a

rate rtkt, where rt is the market-wide rental rate for capital, and kt is the individual’s

time-t capital stock. They also earn labor income yt = {y1t, y2t}, that is either equal

to unemployment insurance (UI) benefit y1t (for unemployed individuals), or after-tax

wages y2t = (1 − θt)wt (for employed individuals) where wt is the market-wide wage

and θt is the tax rate. We describe UI benefits in detail below.

Each individual uses her/his total income partly for consumption and saves the

remainder:

it = rtkt + yt − ct, (4.2)

where it is the savings (investment) rate. The law of motion for an individual’s capital

kt is:

dkt = −δktdt+ itdt , (4.3)

where δ is the depreciation rate. Individuals face a liquidity limit on capital

kt ≥ k, (4.4)
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for some constant k ≥ 0.

We assume that the transition intensity from employment to unemployment λ1

is an exogenously specified constant. The transition intensity from unemployment

to employment λ2(s), on the other hand, depends on the search intensity s of an

unemployed individual. We model the tradeoffs faced by an unemployed individual

using an off-the-shelf costly job-search model (see e.g., [15], [44], [13], [16], and [38]).

Increasing search intensity s results in a linear increase in the transition intensity

from unemployment to employment:

λ2(s) = s , (4.5)

where we have normalized the proportionality constant between λ2 and s to one.

Searching is costly, incurring a flow cost

ψ(s) =
φs1+κ

1 + κ
, (4.6)

where φ > 0 and κ > 0 are constant.

We will denote the distributions of capital of unemployed and employed indi-

viduals by g1(k, t) and g2(k, t), respectively. These densities satisfy
∫∞
k
g1(k, t)dk +∫∞

k
g2(k, t)dk = 1 for all t. The first term on the left-hand side of this equation

corresponds to the aggregate unemployment rate, that is: Ut =
∫∞
k
g1(k, t)dk.

The production side of the economy consists of a representative firm which pro-

duces output with a Cobb-Douglas technology: Yt = Kα
t L

1−α
t , where Kt and Lt are

capital and labor inputs, respectively, and 0 < α < 1 is the capital share parame-

ter. For simplicity, we assume that total factor productivity stays constant, and we

normalize this to one. The firm rents capital and labor in competitive spot markets,

taking the rental rate for capital r and the wage w as given. There are no adjustment

costs for factor inputs and the firm chooses Kt and Lt to maximize the profit flow
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Πt = Yt − rtKt − wtLt. According to the first order optimality considiton, the rental

rate rt = α
(
Kt/Lt

)α−1
and the wage wt = (1− α)

(
Kt/Lt

)α
.

Finally, the income-tax rate θt is determined by requiring total UI expenditure

equal total tax collected from employed individuals:

∞∫
k

g1(k, t)y1tdk = θt

∞∫
k

wtg2(k, t)dk,

where y1t, in general, depends on k.

The Shock. For the period t < 0, the economy is in the steady-state with time-

invariant density functions g?1(k) and g?2(k) of unemployed and employed individuals,

respectively, and a constant unemployment rate U? =
∫∞
k
g?1(k)dk. We call this the

precrisis period. At t = 0, an unanticipated negative shock is realized. This results in

a fraction of employed individuals becoming unemployed, that is, the distributions g1

and g2 change discontinuously at t = 0. The size of the aggregate shock is character-

ized by the change in the unemployment rate U0 − U?, where U0 =
∫∞
k
g1(k, 0)dk is

the time-0 unemployment rate immediately after the shock is realized. For simplicity

we assume that the probability of job loss is independent of individual characteristics.

This implies that: g1(k, 0) = U0

U?
g?1(k).

The policy response. We focus on UI payments y1t of the form:

y1t = min (a+ b(kt − k), y) + η (Ut − U?)h(kt) , (4.7)

where a, b, y, and η ≥ 0 are four constants which represent the minimum UI benefit,

the sensitivity of UI benefits to k, the maximum UI benefit, and the sensitivity of

changes in UI benefits to the unemployment rate, respectively. The function h(·)

allows for this change in benefits to depend on the agent’s total income by allowing
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for h to depend on k. This is because, an unemployed individual’s total income

rtkt + y1t depends on kt.

We assume that in the precrisis period, η = 0. During this period, the UI payments

are a piece-wise linear function of k, increasing linearly with slope b for individuals

with k ≤ kH = k + y−a
b

. All unemployed individuals with k ≥ kH , receive the same

amount y.

When the shock is realized at t = 0, policy-makers announce a change in the UI

policy. Throughout the paper, we assume that all policy changes are unanticipated

by agents in the economy. Policies which continue to adopt η = 0 are acyclical, since

changes in the aggregate unemployment rate Ut are not accompanied by changes in UI

benefits (see equation (4.7)). In contrast, η > 0 provide countercyclical UI benefits,

since UI payments are a (weakly) increasing function of Ut. In this paper we focus

on two types of countercyclical policies:

i. Baseline: These are policies for which h(k) = 1. Under this set of policies, all

unemployed agents experience the same increase in UI benefits when Ut > U?.

ii. Means-tested: Under this set of policies, unemployed individuals with lower k

experience a (weakly) greater increase in UI benefits when Ut > U?. In order

to preserve the piece-wise linear form of UI payments as a function of k in the

precrisis state, we choose h(k) = max
(

1− b
y−a(k − k), 0

)
.3 We call this class of

policies “means-tested”, since the increase in UI benefits following an increase

in the unemployment rate Ut > U?, depends on total income.

The individual’s problem. Each individual chooses consumption ct and, if un-

employed, job search intensity s(k, t) to maximize (4.1) subject to: the constraints

(4.3) and (4.4), the benefit and cost of job search (4.5) and (4.6), and taking prices

rt and wt, the UI policy y1t, the evolution of g1 and g2, and the value from future

3Note that this specification of h(k) does not introduce any additional parameters.
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potential employment v2, as given.

An unemployed individual’s Hamilton-Jacobi-Bellman (HJB) equation is

ρv1(k, t) = max
c1,s

u
(
c1
)

+
(
y1t + (r(t)− δ)k − c1

)
∂kv1(k, t)

+
(
v2(k, t)− v1(k, t)

)
λ2(s)− ψ(s) + ∂tv1(k, t) , (4.8)

where c1 is the consumption of an unemployed individual, v1 and v2 are the individual

value functions in the unemployed and employed states, respectively. The first order

condition for job-search effort s = s(k, t) is

ψ′(s(k, t)) = λ′2(s(k, t))
(
v2(k, t)− v1(k, t)

)
. (4.9)

Note that the optimal s depends on individuals’ current savings and the aggregate

conditions. The envelope condition is

u′
(
c1(k, t)

)
=

d

dk
v1(k, t) (4.10)

An employed individual’s HJB equation is

ρv2(k, t) = max
c2

u
(
c2
)

+
(
y2t + (r(t)− δ)k − c2

)
∂kv2(k, t)

+
(
v1(k, t)− v2(k, t)

)
λ1 + ∂tv2(k, t) . (4.11)

where c2 is the consumption of an employed individual. The envelope condition is

u′
(
c2(k, t)

)
=

d

dk
v2(k, t) (4.12)

The Kolmogorov forward equation for the evolution of the distributions g1 and g2
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are:

∂tg1(k, t) =− d

dk

(
g1(k, t)(y1t + (rt − δ)k − c1(k, t))

)
− λ2(s(k, t))g1(k, t) + λ1g2(k, t)

∂tg2(k, t) =− d

dk

(
g2(k, t)(y2t + (rt − δ)k − c2(k, t))

)
− λ1g2(k, t) + λ2(s(k, t))g1(k, t) . (4.13)

Equilibrium. The competitive equilibrium consists of consumption and job search

policies of unemployed individuals c1(k, t) and s(k, t), respectively, the consumption

policy of employed individuals c2(k, t), the densities of capital for the unemployed

and employed g1(k, t) and g2(k, t), aggregate capital Kt and labor Lt, the rental rate

rt and the wage wt, and the UI policy y1t, given the initial distributions g1(k, 0) and

g2(k, 0) immediately after realization of the shock, such that: (i) unemployed individ-

uals choose consumption and job search to maximize (4.8), (ii) employed individuals

choose consumption to maximize (4.11), (iii) the densities g1(k, t) and g2(k, t) satisfy

(4.13), (iv) the firm chooses capital K and labor L to maximize firm profit Πt, (v)

the capital market clears: Kt =
∫∞
k
k
(
g1(k, t) + g2(k, t)

)
dk, (vi) the labor market

clears: Lt =
∫∞
k
g2(k, t)dk, and (vii) the goods market clears: Ct = Yt− It, where the

aggregate investment It =
∫∞
k

(i1(k, t)g1(k, t) + i2(k, t)g2(k, t)) dk.

4.3 Quantitative Results

4.3.1 Calibration

We use the parameters in Table 4.1. All values are annual. We describe our

computational approach in solving for the steady-state equilibrium in section B.1

and in solving for the transition path following the shock in section B.2.

We choose commonly-used values for the preference and technology parameters.
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Table 4.1: Parameter values.All values are annual.

Parameter Symbol Model

Capital share α 0.36
Depreciation rate δ 0.10
Time-preference parameter ρ 0.03
Risk aversion γ 2
Job-separation intensity λ1 0.035
Job-search cost parameters φ 4.5

κ 0.3
UI benefit parameters a 0.06

kH 4.3
y 0.3

We choose the capital share parameter α = 0.36, the depreciation rate δ = 0.10, and

the liquidity limit k = 0. We choose the time preference parameter ρ = 0.03, and

we assume that individuals have a constant relative risk aversion u(c) = c1−γ

1−γ , with

relative risk aversion γ = 2.

We choose the job loss intensity λ1 = 0.035 to match the job-separation rate of

non-farm payroll workers between 2000M1 - 2019M12 as reported by the U.S. Bureau

of Labor Statistics.4

We calibrate the UI benefit function (see equation (4.7)) in the precrisis state.

We choose the values of the 3 parameters: the minimum and maximum benefits

a = 0.06 and y = 0.3, respectively, and the threshold level of capital kH = 4.3

at which the UI benefit reaches its maximum value relative to the cross-sectional

mean of k to approximately match: (i) the slope of the UI schedule with respect to

income (over the increasing part of the UI payment schedule), (ii) the location of

the threshold income in the income distribution at which the UI benefit reaches its

maximum value, and (iii) the ratio of the maximum to minimum UI benefits. To

this end we rely on recent estimates of UI insurance payments documented by ? ]

4We retrieved this series from the Federal Reserve Economic Data (FRED) series.
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Table 4.2: Aggregate Quantities and Prices in pre-crisis state. Steady state
values for t < 0. We use the parameter values shown in Table 4.1.

L? K? Y ? C? w? r?

Pre-crisis values 0.949 4.796 1.701 1.221 1.147 0.128

(GNV). In particular, GNV find that the slope of the UI schedule with respect to

income is 0.5. In comparison, our model-implied estimate is 0.44. GNV find that UI

benefits reach the maximum value for individuals whose income is close to the mean

of the income distribution.5 In our calibration, UI benefits reach their maximum for

individuals with total income (rent from capital plus wages) equal to 1.70, while the

mean income is equal to 1.68. Finally, ? ] find the average value of the ratio of the

maximum to minimum UI benefits across states to be 0.2. Our model-implied value

for a/y is also 0.2.

We choose the values of the job-search cost parameters κ = 0.3 and φ = 3 to

approximately match the unemployment rate and the elasticity of unemployment du-

ration with respect to the benefit level for the median k individual. Our model-implied

unemployment rate in the precrisis state is 5.5% compared to the U.S. unemployment

rate of 5.7% over the period 1948M1—2019M12, where the latter is computed from

the seasonally adjusted monthly rate series. Our model-implied average elasticity

of unemployment duration with respect to unemployment benefits is 0.4, while [16]

estimates this value to be 0.5 in the data.

Table 4.2 shows the values of aggregate quantities and prices in the pre-crisis state.

The solid lines in panels A and B of Figure 4.1 show the pre-crisis state stationary

distributions g?1(k) and g?2(k) of the unemployed and employed, respectively.

5For instance, ? ] report that, in Nevada, weekly UI benefits reach their maximum for individuals
with weekly income above $902. This is close to the mean income of $886 per week in that state.
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Figure 4.1: The Shock and UI policy. Panels A and B show the distributions of the
unemployed and the employed, respectively, before the shock t < 0, and immediately after
the shock is realized at t = 0. Panel C shows the UI payments y1 as a function of individual
capital k. The dot-dash line in panel C shows UI payments in equation (4.7) with η = 3.

4.3.2 Baseline Policy

In this subsection we consider a shock which increases the unemployment rate from

its steady-state value U? = 5.5% to U0 = 20% at t = 0. Panels A and B of Figure 4.1

show the distributions of the unemployed g1 and the employed g2, respectively, before

the shock t < 0, and immediately after the shock is realized at t = 0. For our baseline

analysis, we assume that h(k) = 1 in equation (4.7). With this choice, all unemployed

individuals experience the same increase in UI benefits for Ut > U?.

We begin by comparing the effect of two policies: an acyclical UI benefit policy

(η = 0) with that of a countercyclical policy (η = 3). Under the acyclical policy, the

wage-replacement ratio does not change after the shock. Under the countercyclical

policy, UI benefits increase for all unemployed individuals by the same amount; as

shown in Panel C of Figure 4.1, at t = 0, this increase is equal to 0.44. Thereafter, its

future evolution is determined by the equilibrium path of Ut though equation (4.7),

reverting back to its steady-state value as t→∞.
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4.3.2.1 Individual utilities

In this section we quantify the cost and benefit of the UI policies as measured by

their effects on the job-search intensity and consumption smoothing, respectively.

Panel A of Figure 4.2 compares the time-0 job-search intensity s for the acyclical

UI policy (solid line) and the countercyclical policy (dot-dash line). We see that,

in equilibrium, higher UI benefits under the countercyclical policy result in lower

effort compared to that under the acyclical policy. The magnitude of the reduction in

job-search intensity under the countercyclical policy compared to the acyclical one is

large. For instance, an individual in the 50th percentile of the distribution of gu(k, 0)

(with k = 4.2) chooses s = 0.56 under the acyclical UI policy, but s = 0.36 under the

countercyclical policy. As a result, there is a substantial reduction in the equilibrium

transition intensity from unemployment to employment λ2 under the countercyclical

policy compared to that under the acyclical policy.6

While Panel A shows the cost of higher benefits under the countercyclical policy,

Panel B shows its benefit. In this figure, we plot the fractional drop in consumption

∆c/c of individuals who become unemployed at t = 0. We focus on individuals in the

bottom 25% of gu(k, 0), since they suffer the largest decline in ∆c/c . We see that

the countercyclical UI policy provides substantially more consumption smoothing to

individuals who lose their job at t = 0, especially those with low k. Consider, for ex-

ample, an individual who suffers job-loss at t = 0 and with k in the lowest 1-percentile

of gu(k, 0) (with k = 0.7). This individual’s fractional drop in consumption ∆c/c is

33% under the acyclical policy but is only 19% under the countercyclical policy. The

consumption smoothing benefit is smaller for relatively wealthier individuals. For an

individual with k in the 10th percentile of gu(k, 0) (with k = 2.1), ∆c/c is 15% under

the acyclical policy but is 13% under the countercyclical policy.

In Panel C, we compare the value functions of unemployed individuals in the

6The search intensity s is equal to λ2 in our specification (4.5).
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Figure 4.2: Costs and benefits of acyclical and countercyclical UI policies.
Panel A shows the time-0 job-search intensity s under the acyclical and countercyclical UI
policies, in response to an unanticipated aggregate shock followed by the UI policy response
with h(k) = 1 in (4.7). Panel B compares the fractional drop in consumption of those
individuals who become unemployed at t = 0 following the shock for these two UI policies.
Panel C compares the time-0 value functions for these two policies (measured in certainty
equivalents (C.E.)). Both panels B and C show results for unemployed individuals in the
bottom 25 percentile of gu.

bottom 25% of gu(k, 0) under the two UI policies. While Panel B compared the

immediate effect of these policies following the shock, the value functions compare the

long-run effect of these policies. In presenting results, we convert the value function

to consumption units using the utility function (i.e., we plot u−1 (vu) on the y-axis

of the figure). We see that unemployed individuals have higher welfare under the

countercyclical policy compared to the acyclical policy.7 However, we see that the

difference in the value function across the two policies is relatively small. In other

words, a countercyclical UI policy’s benefit is front-loaded in that the biggest benefit

of this policy is that it prevents a large decline in consumption immediately when the

shock is realized. This result suggests a role for short-lived countercyclical policies

with a high level of benefits in the initial period following a negative shock, but which

decline more rapidly compared to the policy in equation (4.7).

7Employed individuals are worse off under the countercyclical policy compared to the acyclical
policy (not shown in the figure) because they pay higher taxes necessary to fund the more generous
countercyclical UI policy.
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Figure 4.3: Aggregate results. Panel A shows the path of the aggregate unemployment
rate. Panels B and C show the growth in output and consumption, respectively, from their
values immediately after realization of the shock at t = 0. In these figures, time is measured
in years.

4.3.2.2 Response of Aggregate Quantities

In this section, we compare the response of the aggregate unemployment rate,

output, and consumption, under the two UI policies. Our key finding in this section

is that aggregate quantities, especially the unemployment rate, recovers substantially

slower under the countercyclical policy than under the acyclical policy.

In Panel A of Figure 4.3, we compare the paths of the unemployment rate under

the two UI policies. We see that the unemployment rate is slower to revert to its pre-

crisis level under the countercyclical policy (dot-dash line) than under the acyclical

policy (solid line). We quantify this slowdown by through the excess unemployment

rate under a given countercyclical UI policy. We define this quantity at time t as the

time-t difference between the unemployment rate under the countercyclical policy

and the unemployment rate under an acyclical policy. From panel A of Figure 4.3,

we see that the maximum excess unemployment rate in this figure is 2.8%, occurring

at t = 1.7 years.

Labor markets recover more slowly under the countercyclical policy because higher

UI benefits reduce the incentives for job-search effort, so that unemployed individuals

optimally choose lower job-search effort relative to that under an acyclical policy.
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There is a general equilibrium feedback effect here. Lower job-search effort under a

countercyclical policy relative to an acyclical policy, results in a higher equilibrium

unemployment rate (both current and future). This, in turn, leads to higher current

and future benefits according to equation (4.7), which increases the value of unem-

ployment. This further reduces equilibrium job-search effort (see equation (4.9)).

The lower employment level in response to the countercylical benefit policy results

in slower recovery of output and aggregate consumption. Panel B shows that under

the acyclical policy, output increases by 4.3% from its value at the trough (at t = 0)

in one year. The corresponding growth is only 2.3% under the countercyclical policy.

The difference in the growth rate of aggregate consumption under the two UI policies

is smaller, and it shows up with a lag. Panel C shows that in the one year following the

shock, aggregate consumption declines by 0.4% and 0.2% under the countercyclical

and acyclical policies, respectively.

4.3.2.3 Countercyclical policy and shock size

In this section we show that the severity of the effect of countercyclical UI policies

on labor supply is a rapidly increasing, non-linear function of the size of the aggregate

shock u0. We establish this result through a comparative static exercise in which we

vary u0 while holding all other model parameters fixed. Throughout this section, we

fix η = 3 for countercyclical policies.

Panel A of Figure 4.4 shows the time-0 total UI expenditure normalized by output

as a function of u0. The dashed line corresponds to the acyclical policy η = 0. This

line is linear because individual UI payments do not change with U0, but the measure

of recipients increase linearly with U0. The solid line corresponds to the countercycli-

cal policy η = 3. Total UI expenses increase faster than under the acyclical policy

because individual payments are higher under the policy with η = 3. The difference

is quantitatively large when unemployment U0 is high. For U0 = 20%, the difference
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is 5.66% of GDP.

Panel B of Figure 4.4 shows the excess unemployment rate as a function of U0, two

years following the realization of the aggregate shock. We see the excess unemploy-

ment rate increases non-linearly with the shock size U0. For instance, this rate is only

0.4% if U0 = 10% (the maximum unemployment rate following the Great Recession),

but it is seven times higher at 2.8% if U0 = 20%. Recent findings in the empirical

literature suggest that the adoption of extended unemployment benefits following the

Great Recession likely had a small effect on the unemployment rate ([? ] estimate a

0.3% increase in the unemployment rate). Our result of a non-linear increase in the

excess unemployment rate as a function of u0 implies that naively extrapolating these

estimates to large disasters could significantly understate the effect.

The super-linear dependence of excess unemployment on the size of the aggre-

gate shock is mainly explained by two feedback effects in general equilibrium: (i)

the interplay between job search intensity and unemployment rate and (ii) the time

aggregation on the stock of unemployed individuals.

Notice that the unemployment rate U can be viewed as a function of time t,

shock size U0 and UI policy parameter η. What we are interested in is how different

policies and the size of aggregate shock affect U . The answer to this question lies in

our first result: (a) with a fixed aggregate shock U0, the unemployment rate under

a countercyclical policy is larger than that under an acyclical policy (i.e., the excess

unemployment rate is positive); (b) the excess unemployment rate increases super-

linearly with respect to the size of aggregate shock.

To see this, denote the unemployment rate at time t under countercylical policy

and acyclical policy as UC
t and UA

t respectively, and denote the excess unemployment

as

Ūt = UC
t − UA

t .

Since the employment/unemployment state of each individual is a continuous time
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Markov chain with two states, we have that

dUt
dt

= λ1(1− Ut)−
∞∫
k

λ2(k, t)g1(k, t)dk

= λ1 −
∞∫
k

[λ1 + λ2(k, t)]g1(k, t)dk.

Thus

dŪt
dt

= −λ1Ūt −
∞∫
k

[λC2 (k, t)gC1 (k, t)− λA2 (k, t)gA1 (k, t)]dk.

First consider some fixed small time t and the linear approximation of Ūt as

Ūt ≈ Ū0 + Ū ′(0)t.

Since Ū0 = 0, we only need to consider

Ū ′(0) = −
∞∫
k

[λC2 (k, 0)gC1 (k, 0)− λA2 (k, 0)gA1 (k, 0)]dk.

Since the initial distribution gC1 (k, 0) = gA1 (k, 0) = g1(k, 0) are the same under these

two policies,

Ū ′(0) = −
∞∫
k

[λC2 (k, 0)− λA2 (k, 0)]g1(k, 0)]dk. (4.14)

Intuitively, under a countercyclical policy, unemployed individuals are less motivated

to search a job due to the higher level of benefits. Then λC2 (k, 0)− λA2 (k, 0) < 0 and

Ū ′(0) > 0, which is consistent with the positiveness of excess unemployment rate.

Next we examine how the difference in job search intensities change with respect

to the size of aggregate shock. Using the assumption that the job loss happens with

uniform distribution to individuals with different total income, we derive that for

each k, g1(k, 0) = U0

U?
g?1(k) is a linear increasing function of the size of aggregate
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shock. Moreover, we obtain that the total capital does not change at initial time

: K0 = K?. In equilibrium the wage increases at time 0: w? < w0. Intuitively,

unemployed individuals choose their optimal job serach intensity based on how much

extra utility value they will gain if they are employed rather than unemployed. This

extra utility value is positively related to the extra income from wage rather than

benifits (i.e., y2 − y1 = (1 − θ)w − y1). That is, the difference between job search

intensities under an acyclical policy and a countercyclical policy λA2 (k, 0) − λC2 (k, 0)

is an increasing function of

(1− θA(0))w(0)− yA1 (k, 0)− (1− θC(0))w(0) + yC1 (k, 0)

=yC1 (k, 0)− yA1 (k, 0) + θC(0)w(0)− θA(0)w(0)

=yC1 (k, 0)− yA1 (k, 0) +
1

1− U0

∞∫
k

(yC1 (k, 0)− yA1 (k, 0))g(k, 0)dk

=η(U0 − U?)

(
1 +

U0

1− U0

)
=η

U0 − U?

1− U0

which is an increasing function of the size of aggregate shock. Therefore the approx-

imated excess unemployment Ū ′(0)t as in (4.14) is a superlinear increasing function

of the size of aggregate shock. This is consistent with the nonlinear dependence of

the excess unemployment rate on the size of aggregate shock.

To see the time aggregation effect, consider a simplified setting where job search

intensity is independent of individuals’ total income and is just a decreasing function

of the level of benefits at time 0, thus it is a decreasing function of shock size U0.

Then

dŪt
dt

= −(λ1 + λ2(U0))Ūt, Ū0 = 0
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Figure 4.4: Countercyclical policies and shock size. Panels A through C compare
total UI expense normalized by output, the excess unemployment rate at t = 2 years, and
the output relative to its precrisis level also at t = 2 years for the baseline policy with η = 3.

implies

Ūt = e−(λ1+λ2(U0))t − 1.

Therefore for any t, Ūt is a non-linear function of U0.

Panel C of Figure 4.4 shows aggregate output two years following the shock relative

to its pre-crisis level. The solid and dash lines refer to countercyclical and acyclical

policies, respectively. This figure also highlights the non-linear effect of countercyclical

UI policies on the economic recovery. For instance, for U0 = 10%, output growth is

quite similar under the countercyclical and acyclical policies—output is 1.54% and

1.25% below pre-crisis levels under these policies, respectively. However, the difference

in output growth is significantly large under the two policies for U0 = 20%; they are

6.1% and 4% under the countercyclical and acyclical policies, respectively.

4.3.3 Means-tested countercyclical policies

In this section we quantitatively analyze a form of “means-tested” (MT) policy.

Under this policy, lower income individuals experience a greater increase in UI benefit

following the realization of the aggregate at t = 0. In particular, we analyze “means-
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Figure 4.5: Means-tested UI policy. Panel A shows UI benefit paid as a function of
the recipient’s capital k. The heavy, dash line shows this policy in the precrisis period t < 0.
The thin, dot-dash line corresponds to the baseline policy (BL) with h(k) = 1 in (4.7), and
the thin, solid line corresponds to the means-tested (MT) policy shown in equation (4.15);
both at t = 0. The range of the x-axis is over the 5th to 95th percentiles of g1(k, 0).
Panel B shows total UI benefits paid as a fraction of output for the MT policy (solid line)
and the baseline policy BL (dot-dash line). Panel C shows the path of the equilibrium
unemployment rate under the two policies.

tested” (MT) policies with

h(k) = max

(
1− b

y − a
(k − k), 0

)
(4.15)

and η = 8, in equation (4.7).

We compare the equilibrium under this policy to that under the baseline policy

(BL) that we analyzed in Section 4.3.2 for which h(k) = 1. For this comparison,

we choose η = 0.8 for the BL policy because this choice equates the time-0 total

UI expenditures under the MT and BL policies. The aggregate shock is the same

as in Section 4.3.2, namely, U0 = 20%, and the likelihood of job loss at t = 0 is

independent of the individual’s capital k. Our key finding in this section is that the

MT policy provides substantially better consumption insurance against income loss

to its intended beneficiaries (i.e. individuals with k < kH), without a substantial

increase in the equilibrium unemployment rate.

Panel A of Figure 4.5 shows the time-0 total UI expense under the two policies.
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The heavy, dashed line corresponds to the UI payments in the precrisis state. The

thin, dot-dash line corresponds to the BL policy. We see that the increase in UI

payments from the precrisis state is the same for all individuals. The thin, solid

line corresponds to the MT policy. We see that UI payments increase for individuals

with k < kH , with this increase being larger for lower k individuals. In comparing

the UI payments under the two policies, we see that individuals with time-0 capital

k < 3.9 receive higher UI benefit under the MT policy than under the BL policy.

This threshold corresponds to the 30th percentile of g1(k, 0). Panel B of Figure 4.5

shows the total UI payments. By construction, the total time-0 UI payments are

the same under both policies. However, the total payments under the BL policy

declines faster than under the MT policy; at t = 2 years, the UI expenditure under

the MT policy costs 0.5% of GDP more than the BL policy. This is because, in

equilibrium, the unemployment rate under the MT policy declines slower than under

the BL policy (see panel C). However, this difference is quantitatively small—along

the transition path, the maximum difference in the unemployment rate under the MT

and BL policies is only 0.7%.

Labor markets recover slower under the MT policy because of relatively lower job-

search effort for most individuals in comparison to that under the BL policy. We show

this in panel A of Figure 4.6. The difference in job-search intensity is especially large

for low income individuals. This is because the MT policy is associated with more

generous UI benefits for relatively low income individuals. Part of the higher benefits

is due to the choice of the UI benefit function at t = 0. Part of it is also due to the

following general equilibrium feedback effect. Lower job-search effort under the MT

policy relative to the BL policy, results in a higher equilibrium unemployment rate

(both current and future). This, in turn, leads to higher current and future benefits

according to equation (4.7), which increases the value of unemployment. This further

reduces equilibrium job-search effort (see equation (4.9)).
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Figure 4.6: Cross-sectional effects. Panels A and B show the job-search intensity
and consumption insurance (as measured by the fractional drop in consumption of those
individuals who become unemployed at t = 0) under the means-tested counterycyclical
policy (MT) and the baseline countercyclical policy (BL), respectively. The range of the
x-axis in these figures is over the 5th to 95th percentiles of g1(k, 0).

Panel B of Figure 4.6 shows that the MT policy provides substantially better

consumption insurance for individuals with k < kH . The time-0 fractional decline in

consumption ∆c/c for individuals who becomes unemployed from the aggregate shock

and with capital k < kH is more than 12% smaller under the MT policy relative to

the BL policy.

4.4 Conclusion

In this paper we quantify the impact of countercyclical UI policies on labor supply

when general equilibrium effect is taken into consideration. A baseline countercyclical

policy without means test and a means-tested countercyclical policy are incorporated

into our costly job search model. By employing numerical method from mean field

game theory, we are able to examine their impact quantitatively. Firstly, from our

baseline model, we find that the additional unemployment generated by countercycli-

cal policies relative to an acyclical policy is a sharply increasing, nonlinear function of

the size of the aggregate shock. Secondly, we find that the means-tested policy pro-
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vides substantially better consumption insurance against income loss to low income

individuals, without a substantial increase in the equilibrium unemployment rate.

In addition to the above non-trivial findings, our novel model provides some highly

interesting problems to investigate, including the existence and uniqueness of equilib-

rium solution, the convergence of the numerical algorithm, etc. Moreover, the setting

and methodology in this paper are promising for quantifying and comparing the ef-

fect of other policies. For instance, it would be interesting to ask if extending UI

is more or less effective than a one-time stimulus payment, where the total stimulus

expenditure is equal to the present discounted value of UI payments. Another useful

exercise would be to study UI benefits with finite life which would allow the model

to make closer contact with the data and therefore provide more informed inferences

about the tradeoffs of consumption insurance against insufficient job search effort by

the unemployed. We leave them as future projects.
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APPENDIX A

Computation details in Chapter II

A.1 Example 2.2.24

We first analyze all the possible trajectories of Markov chain X when starting

from 1 and 6.

Case 1: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 0.

⇒ Yη = 0 for k = 0 and Yη = a
∑k

i=1(1 − a)i−1(1 − b)i + 6b
∑k−1

i=0 (1 − a)i(1 − b)i

for k ≥ 1. Then Yη = c(1− (1− a)k(1− b)k) with probability 0.22k+1 for k ≥ 0 where

c = a+6b−ab
1−(1−a)(1−b) .

Case 2: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 3.

⇒ Yη = 3 for k = 0 and Yη = a
∑k

i=1(1− a)i−1(1− b)i + 6b
∑k−1

i=0 (1− a)i(1− b)i +

3(1− a)k(1− b)k for k ≥ 1. Then Yη = c(1− (1− a)k(1− b)k) + 3(1− a)k(1− b)k with

probability 2× 0.22k+1 for k ≥ 0.

Case 3: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 1→ 10.

⇒ Yη = 10 for k = 0 and Yη = a
∑k

i=1(1−a)i−1(1− b)i + 6b
∑k−1

i=0 (1−a)i(1− b)i +

10(1− a)k(1− b)k for k ≥ 1. Then Yη = c(1− (1− a)k(1− b)k) + 10(1− a)k(1− b)k

with probability 0.22k+1 for k ≥ 0.

Case 4: X : 1→ 6→ 1→ 6→ 1→ · · · → 6→ 10.

⇒ Yη = a
∑k

i=1(1−a)i−1(1− b)i+6b
∑k

i=0(1−a)i(1− b)i+10(1−a)k(1− b)k+1 for

k ≥ 0. Then Yη = c(1− (1− a)k(1− b)k) + (10− 4b)(1− a)k(1− b)k with probability
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0.8× 0.22k+1 for k ≥ 0.

Case 5: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 0 for k ≥ 0.

⇒ Yη = a for k = 0 and Yη = a
∑k

i=0(1−a)i(1− b)i+ 6b
∑k−1

i=0 (1−a)i+1(1− b)i for

k ≥ 1. Then Yη = d(1− (1− a)k(1− b)k) + a(1− a)k(1− b)k with probability 0.22k+2

for k ≥ 0 where d = a+6b−6ab
1−(1−a)(1−b) .

Case 6: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 3.

⇒ Yη = a + 3(1 − a) for k = 0 and Yη = a
∑k

i=0(1 − a)i(1 − b)i + 6b
∑k−1

i=0 (1 −

a)i+1(1− b)i + 3(1− a)k+1(1− b)k for k ≥ 1. Then Yη = d(1− (1− a)k(1− b)k) + (3−

2a)(1− a)k(1− b)k with probability 2× 0.22k+2 for k ≥ 0.

Case 7: X : 6→ 1→ 6→ 1→ · · · → 6→ 1→ 10.

⇒ Yη = a + 10(1 − a) for k = 0 and Yη = a
∑k

i=0(1 − a)i(1 − b)i + 6b
∑k−1

i=0 (1 −

a)i+1(1 − b)i + 10(1 − a)k+1(1 − b)k for k ≥ 1. Then Yη = d(1 − (1 − a)k(1 − b)k) +

(10− 9a)(1− a)k(1− b)k with probability 0.22k+2 for k ≥ 0.

Case 8: X : 6→ 1→ 6→ 1→ · · · → 6→ 10.

⇒ Yη = 10 for k = 0 and Yη = a
∑k−1

i=0 (1−a)i(1− b)i+6b
∑k−1

i=0 (1−a)i+1(1− b)i+

10(1− a)k(1− b)k for k ≥ 1. Then Yη = d(1− (1− a)k(1− b)k) + 10(1− a)k(1− b)k

with probability 0.8× 0.22k for k ≥ 0.

From the above, we can conclude that

(1) When X0 = 1,

P1(Yη = c− ctk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (3− c)tk) = 2× 0.22k+1, k ≥ 0,

P1(Yη = c+ (10− c)tk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (10− 4b− c)tk) = 0.8× 0.22k+1, k ≥ 0,
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where t = (1− a)(1− b), and

E1[Yη] = c+
4.8− 0.96c− 0.64b

1− 0.04t
,

E1[Y
2
η ] = c2 +

−1.92c2 + 9.6c− 1.28cb

1− 0.04t

+
0.96c2 − 9.6c+ 39.6− 12.8b+ 1.28bc+ 2.56b2

1− 0.04t2
.

(2) When X0 = 6,

P6(Yη = d+ (a− d)tk) = 0.22k+2, k ≥ 0,

P6(Yη = d+ (3− 2a− d)tk) = 2× 0.22k+2, k ≥ 0,

P6(Yη = d+ (10− 9a− d)tk) = 0.22k+2, k ≥ 0,

P6(Yη = d+ (10− d)tk) = 0.8× 0.22k, k ≥ 0,

where t = (1− a)(1− b), and

E6[Yη] = d+
8.64− 0.96d− 0.48a

1− 0.04t
,

E6[Y
2
η ] = d2 +

−1.92d2 + 17.28d− 0.96ad

1− 0.04t

+
0.96d2 − 17.28d+ 84.72 + 3.6a2 + 0.96ad− 8.16a

1− 0.04t2
.

Then we will obtain the result in Example 2.2.24.

A.2 The first example in Proposition 2.2.27

Since the transition matrix in this example is the same as Example 2.2.24, by

following a similar analysis of X’s trajectories, we have
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(1) When X0 = 1,

P1(Yη = c− ctk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (2− c)tk) = 2 · 0.22k+1, k ≥ 0,

P1(Yη = c+ (9− c)tk) = 0.22k+1, k ≥ 0,

P1(Yη = c+ (9− 2b− c)tk) = 0.8 · 0.22k+1, k ≥ 0,

where c = a+7b−ab
1−(1−a)(1−b) and t = (1− a)(1− b). Then we have

E1[Yη] = c+
0.2(20.2− 4.8c− 1.6b)

1− 0.04t
,

E1[Y
2
η ] = c2 +

0.4(−4.8c2 + 20.2c− 1.6cb)

1− 0.04t

+
0.2(c2 + 2(2− c)2 + (9− c)2 + 0.8(9− 2b− c)2)

1− 0.04t2
.

(2) When X0 = 7,

P7(Yη = d+ (a− d)tk) = 0.22k+2, k ≥ 0,

P7(Yη = d+ (2− a− d)tk) = 2× 0.22k+2, k ≥ 0,

P7(Yη = d+ (9− 8a− d)tk) = 0.22k+2, k ≥ 0,

P7(Yη = d+ (9− d)tk) = 0.8× 0.22k, k ≥ 0,

where d = a+7b−7ab
1−(1−a)(1−b) and t = (1− a)(1− b). Then we have

E7[Yη] = d+
0.04(193− 24d− 9a)

1− 0.04t
,

E7[Y
2
η ] = d2 +

0.08(−24d2 + 193d− 9ad)

1− 0.04t
+

0.04((a− d)2 + 2(2− a− d)2 + (9− 8a− d)2 + 20(9− d)2)

1− 0.04t2
.

Furthermore, we can find that for any a, b ∈ [0, 1], g1(a, b) > 1, which implies that
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Figure A.1: Graphs for the first example in Proposition 2.2.27

a = 0. By plotting the graphs of g1(0, b) and g7(0, b) as functions of b ∈ [0, 1], we

obtain Figure A.1, which follows the discussion in part (i) of the proof of Proposition

2.2.27.

A.3 The second example in Proposition 2.2.27

It can be computed directly that there are three equilibrium stopping times. They

can be written in the form of liquidation strategies: (a, b) = (1, 1), (a, b) = (0, 1), and

(a, b) = (1, 0). To check they are indeed equilibria, compute

g11(1, 1) = 10.8330 < 11, g17(1, 1) = 16.9912 < 17,

g11(0, 1) = 11.1515 > 11, g17(0, 1) = 16.9774 < 17,

g11(1, 0) = 10.8330 < 11, g17(1, 0) = 17.0022 > 17,

where g11(a, b) = E11[Yη]−0.1(E11[Y
2
η ]−E11[Yη]

2)1/2 and g17(a, b) = E17[Yη]−0.1(E17[Y
2
η ]−

E17[Yη]
2)1/2.

Also notice that (a, b) = (0, 0) is not a equilibrium liquidation strategy since
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g17(0, 0) = 16.9934 < 17.

To find all equilibrium liquidation strategies, we need to analyze all the possible

trajectories of this Markov chain when starting from 11 and 17.

Case 1: X : 11→ 11→ · · · → 11→ 0.

Then Yη = 0 with probability 0.1 and Yη = 11a
∑k−1

i=0 (1 − a)i with probability

0.1 · 0.7k for k ≥ 1.

Case 2: X : 11→ 11→ · · · → 11→ 18.

Then Yη = 18 with probability 0.2 and Yη = 11a
∑k−1

i=0 (1 − a)i + 18(1 − a)k with

probability 0.2 · 0.7k for k ≥ 1.

Case 3: X : 17→ 17→ · · · → 17→ 18.

Then Yη = 18 with probability 0.8 and Yη = 17b
∑k−1

i=0 (1 − b)i + 18(1 − b)k with

probability 0.8 · 0.1k for k ≥ 1.

Case 4: X : 17→ 17→ · · · → 17→ 11→ 11→ · · · → 11→ 0.

Then Yη = 11a
∑m

j=0(1 − a)j with probability 0.01 · 0.7m for m ≥ 0 and Yη =

17b
∑k−1

i=0 (1 − b)i + (1 − b)k11a
∑m

j=0(1 − a)j with probability 0.01 · 0.7m · 0.1k for

k ≥ 1,m ≥ 0.

Case 5: X : 17→ 17→ · · · → 17→ 11→ 11→ · · · → 11→ 18.

Then Yη = 11a
∑m

j=0(1− a)j + 18(1− a)m+1 with probability 0.02 · 0.7m for m ≥ 0

and Yη = 17b
∑k−1

i=0 (1−b)i+(1−b)k(11a
∑m

j=0(1−a)j+18(1−a)m+1) with probability

0.02 · 0.7m · 0.1k for k ≥ 1,m ≥ 0.

From the above, we can conclude that

(1) When X0 = 11,

P11(Yη = 11− 11(1− a)k) = 0.1 · 0.7k, k ≥ 0,

P11(Yη = 11 + 7(1− a)k) = 0.2 · 0.7k, k ≥ 0,
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and

E11[Yη] = 11 +
0.3

0.3 + 0.7a
,

E11[Y
2
η ] = 112 +

6.6

0.3 + 0.7a
+

21.9

1− 0.7(1− a)2
.

(2) When X0 = 17,

P17(Yη = 17 + (1− b)k) = 0.8 · 0.1k, k ≥ 0

P17(Yη = 17− (6 + 11(1− a)m+1)(1− b)k) = 0.01 · 0.7m · 0.1k, k ≥ 0,m ≥ 0,

P17(Yη = 17− (6− 7(1− a)m+1)(1− b)k) = 0.02 · 0.7m · 0.1k, k ≥ 0,m ≥ 0,

and

E17[Yη] = 17 + (0.2 +
0.03(1− a)

0.3 + 0.7a
)

1

0.9 + 0.1b
,

E17[Y
2
η ] = 172 + (0.2 +

0.03(1− a)

0.3 + 0.7a
)

34

0.9 + 0.1b
+

(4.4− 0.36(1− a)

0.3 + 0.7a
+

2.19(1− a)2

1− 0.7(1− a)2
)

1

1− 0.1(1− b)2
.

The sets {(a, b) ∈ [0, 1] × [0, 1] : g11(a, b) = 11} and {(a, b) ∈ [0, 1] × [0, 1] :

g17(a, b) = 17} are shown as the following. Figure A.2 shows that the curves g11(a, b) =

11 and g17(a, b) = 17 do not intersect. So the candidates for equilibrium liquidation

strategies only lie on the boundary of [0, 1]× [0, 1]. From Figure A.2 we can observe

that there exist 0 < a1 < a2 < a3 < a4 < 1 and 0 < b0 < 1 such that

g17(a1, 0) = 17, g17(a2, 1) = 17, g17(a4, 1) = 17;

g11(a3, 0) = g11(a3, 1) = 11;

g17(1, b0) = 17.
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Figure A.2: Graphs for the second example in Proposition 2.2.27: curves g11(a, b) = 11
and g17(a, b) = 17

Also from Figure A.2 we know that g11(a1, 0) 6= 11, g11(a2, 1) 6= 11 and g11(a4, 1) 6=

11, so they cannot be equilibrium liquidation strategies. To find out whether (a3, 0), (a3, 1)

and (1, b0) are equilibrium liquidation strategies. We plot the graphs of g11(a, b0), g17(a, 0)

and g17(a, 1) as functions of a ∈ [0, 1].

These graphs show that g11(1, b0) < 11, g17(a3, 0) > 17, and g17(a3, 1) > 17. So

there are five equilibrium liquidation strategies as discussed in part (ii) of the proof

of Proposition 2.2.27.

A.4 The third example in Proposition 2.2.27

We first analyze all the possible trajectories of Markov chain X when starting

from 1.

Case 1: X : 1→ 1→ · · · → 1→ 1→ 0.

⇒ Yη = 0 for k = 0 and Yη = a
∑k−1

i=1 (1 − a)i for k ≥ 1. Then Yη = 1 − (1 − a)k

with probability 0.1× 0.8k for k ≥ 0.
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Figure A.3: Graphs for the second example in Proposition 2.2.27: g11(a, b0), g17(a, 0)
and g17(a, 1) as functions of a ∈ [0, 1]

Case 2: X : 1→ 1→ · · · → 1→ 1→ 4.

⇒ Yη = 4 for k = 0 and Yη = a
∑k−1

i=1 (1 − a)i + 4(1 − a)k for k ≥ 1. Then

Yη = 1 + 3(1− a)k with probability 0.1× 0.8k for k ≥ 0.

By computation, we have

E1[Yη] = 1 +
0.2

0.2 + 0.8a
, E1[Y

2
η ] = 1 +

0.4

0.2 + 0.8a
+

1

1− 0.8(1− a)2

Then the explicit expression for h(a) = E1[Yη] − cVarx[Yη] can be obtained and

we have the results in part (iii) of the proof of Proposition 2.2.27.

A.5 Equilibrium liquidation strategies for the mean-variance

problems in Examples 2.4.1 and 2.4.2

If η is an equilibrium liquidation strategy in the mean-variance problem, then

Jl(x, η) = sup
ξ∈L

Jl(x, ξ ⊗ η), ∀x ∈ X.
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Recall that Ex[θξ⊗η(X)] = xξ(x) + (1 − ξ(x))Ex[Yη] and Varx[θ
ξ⊗η(X)] = (1 −

ξ(x))2Varx[Yη]. Therefore,

Jl(x, ξ ⊗ η) = −cVarx[Yη]ξ(x)2 + (2cVarx[Yη]− Ex[Yη] + x)ξ(x) + Ex[Yη]− cVarx[Yη],

is a quadratic function of ξ(x) when η is fixed. We then have

η(x) =


1, if hx(η) ∈ [1,∞);

hx(η), if hx(η) ∈ (0, 1);

0, if hx(η) ∈ (−∞, 0].

where hx(η) = 2cVar[Yη ]−Ex[Yη ]+x
2cVarx[Yη ]

.

In Example 2.4.1, Ei[Yη] and Ei[Y 2
η ] for i = 1, 7 have been computed in Appendix

A.2, so we obtain the explicit expressions of h1(η) and h7(η) as functions of a := η(1)

and b =: η(7). Then we observe that hi(a, b) ∈ (0, 1), for all (a, b) ∈ [0, 1] × [0, 1],

i = 1, 7, and there is exactly one intersection of the curve {(a, b) : h1(a, b) = a}

and the curve {(a, b) : h7(a, b) = 7}, which is the equilibrium liquidation strategy

for mean-variance problem in Example 2.4.1. Similarly we can find the equilibrium

liquidation strategy for mean-variance problem in Example 2.4.2. The corresponding

graphs are shown below.
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Figure A.4: Equilibrium liquidation strategy for mean-variance problem in Example
2.4.2
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APPENDIX B

Algorithms in Chapter IV

In the following two sections, we take the model with a baseline countercyclical

policy as an example to describe algorithms for computing the equilibrium solutions

in steady state and transitional dynamics respectively. The algorithm for models with

a means-tested policy is very similar.

B.1 Algorithm for stationary equilibrium

For the infinite horizon model with a constant level of UI benefits b?, we con-

sider the stationary equilibrium, which can be summarized with a coupled HJB-KF

equation system. For k ∈ [k,∞),

ρv1(k) = max
c1s

u(c1) + (b?w? + (r? − δ)k − c1) v̇1(k) + (v2(k)− v1(k))λ2(s)− φ(s)

(B.1)

ρv2(k) = max
c2

u(c2) + ((1− τ ?)w? + (r? − δ)k − c2) v̇2(k) + (v1(k)− v2(k))λ1 (B.2)

0 = − d

dk
(g1(k) (b?w? + (r? − δ)k − c?1))− g1(k)λ2(s

?) + g2(k)λ1 (B.3)

0 = − d

dk
(g2(k) ((1− τ ?)w? + (r? − δ)k − c?2))− g2(k)λ1 + g1(k)λ2(s

?) (B.4)

113



where c?1, s
? are such that the right hand side of (B.1) attains maximum, c?2 is such

that the right hand side of (B.2) attains maximum, more specifically,

c?1(k) = (v̇1(k))−1/γ

c?2(k) = (v̇2(k))−1/γ

s?(k) =

(
v2(k)− v1(k)

φ

)1/κ

and r?, w?, τ ? satisfy

r? = α (K?/L?)α−1

w? = (1− α) (K?/L?)α

τ ? = b?(1− L?)/L?

with K? =
∫∞
k
k(g1(k) + g2(k))dk and L? =

∫∞
k
g2(k)dk.

Suppose we have a solution of equation system (B.1, B.2, B.3, B.4), and denote

it as v?1, v
?
2, g

?
1, g

?
2. Then if we start from the stationary distribution with density

function g?1, g
?
2, the distribution will remain the same as each individual uses the

optimal c?2, c
?
1, s

?.

Thanks to the work of [2], for fixed r?, L?, thus fixed w?, τ ?, if λ2(s) is a constant,

we can use finite difference method to solve HJB equations (B.1, B.2). Then given

the solution of (B.1, B.2), we are able to obtain all coefficients in KF equations (B.3,

B.4) and the solution of (B.3, B.4) will be obtained by solving a linear equation

system. [2] uses a so-called ”upwind-scheme” and the discretized equation system

can be conveniently written in matrix notation.

Instead of finding a fixed point of r? in [2], we need to find a fixed point of (r?, L?)

in order to solve for the equilibrium in our problem. Here is the sketched algorithm

for solving (B.1, B.2, B.3, B.4).
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Algorithm 1: Algorithms for stationary equilibrium

Data: α, b?, γ, φ, λ1, κ, ε, N, rmax, rmin

Result: v?1, v
?
2, g

?
1, g

?
2, c

?
2, c

?
1, s

?, r?, L?, w?, K?

1 Take an initial guess of r? := r(0) ∈ [rmax, rmin];

2 Let ∆
(0)
K =∞, n = 0;

3 while n < N do
4 Compute the corresponding w? = w(r(n));

5 Take an initial guess of L? := L(0). Let ∆
(0)
L =∞,m = 0;

6 while ∆
(m)
L > ε do

7 Compute the corresponding τ ? := τ(L(m)) ;

8 Use r(n), w(r(n)), L(m), τ(L(m)) as given coefficients in (B.1, B.2);

9 Take an initial guess of v
(0)
2 , v

(0)
1 ;

10 Let ∆
(0)
v =∞, l = 0;

11 while ∆
(l)
v > ε do

12 Compute the optimal c?2, c
?
1, s

? using v
(l)
2 , v

(l)
1 ;

13 Solve for v
(l+1)
2 , v

(l+1)
1 using by solving a system of matrix

equations;

14 Compute ∆
(l+1)
v = ‖(v(l)2 , v

(l)
1 )− (v

(l+1)
2 , v

(l+1)
1 )‖;

15 Update v
(l+1)
2 = v

(l)
2 , v

(l+1)
1 = v

(l)
1 , l = l + 1;

16 With the above solution v?2, v
?
1 for the current r(n), L(m), solve for the

linear differential equation (B.3, B.4) and denote the solution as
g?2, g

?
1;

17 Compute L(m+1) =
∫
k
g?2(k)dk and ∆

(m+1)
L = ‖L(m+1) − L(m)‖;

18 Update L(m) = L(m+1);

19 Compute Kdemand = L(m)
(
αA?/r(n)

)1/(1−α)
;

20 Compute Ksupply =
∫
k
k (g?2(k) + g?1(k)) dk;

21 if Ksupply −Kdemand > ε then
22 rmax = r(n), r(n+1) = 1

2
(rmin + r(n)), n = n+ 1;

23 else
24 if Ksupply −Kdemand < −ε then
25 rmin = r(n), r(n+1) = 1

2
(rmax + r(n)), n = n+ 1;

26 else
27 Return current values of

r(n), L(m), w(r(n)), v?u, v
?
2, g

?
1, g

?
2, c

?
2, c

?
1, s

?, Kdemand;

28 Print: “No equilibrium founded”;
29 Return
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B.2 Algorithm for time dependent equilibrium

Although we have infinite horizon in our problem, we do not start from the steady

state due to the unanticipated shock at time t = 0. Therefore we need solve for a time-

dependent equilibrium. For the convenience of numerical computation, we assign a

large time T as the terminal time and assume that with this long enough time T , the

economy has converged to the steady state with constant b?. We use the equilibrium

of this finite horizon problem to approximate the time-dependent equilibrium of the

original infinite horizon problem, which can be summarized with a coupled HJB-KF

equation system. For k ∈ [k,∞), t ∈ [0, T ],

ρv1(k, t) = max
c1,s

u(c1) + (btwt + (rt − δ)k − c1) ∂kv1(k, t)

+ (v2(k, t)− v1(k, t))λ2(s)− φ(s) + ∂tv1(k, t) (B.5)

ρv2(k, t) = max
c2

u(c2) + ((1− τt)wt + (rt − δ)k − c2) ∂kv2(k, t)

+ (v1(k, t)− v2(k, t))λ1 + ∂tv2(k, t) (B.6)

∂tg1(k, t) = −∂k (g1(k, t) (btwt + (rt − δ)k − c1(k, t)))

− g1(k, t)λ2(s(k, t)) + g2(k, t)λ1 (B.7)

∂tg2(k, t) = −∂k (g2(k, t) ((1− τt)wt + (rt − δ)k − c2(k, t)))

− g2(k, t)λ1 + g1(k, t)λ2(s(k, t)) (B.8)

where in (B.7, B.8)

c1(k, t) = (∂kv1(k, t))
−1/γ

c2(k, t) = (∂kv2(k, t))
−1/γ

s(k, t) =

(
v2(k, t)− v1(k, t)

φ

)1/κ
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and rt, wt, τt satisfy

rt = α (Kt/Lt)
α−1

wt = (1− α) (Kt/Lt)
α

τt = bt(1− Lt)/Lt where bt = b? + η(Lt − L?)

with Kt =
∫∞
k
k(g1(k, t) + g2(k, t))dk and Lt =

∫∞
k
g2(k, t)dk.

The terminal condition is that v2(k, T ) = v?2(k), v1(k, T ) = v?1(k) where v?2(k), v?1(k)

are the solution of the stationary equilibrium (B.1,B.2,B.3,B.4). To obtain the initial

condition g1(k, 0), g2(k, 0), we make some adjustment on the density function in the

stationary equilibrium g?1(k), g?2(k) such that the employment rate drops from L? to

an exogenous constant L0. The initial distributions right after the aggregate shock

g1(k, 0), g2(k, 0)are given.

With the above initial and terminal conditions, we have the following sketched
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algorithm for solving (B.5,B.6, B.7, B.8).

Algorithm 2: Algorithms for time dependent equilibrium

Data: α, γ, φ, λ1, κ, η, bη, ε, N, T, g1(·, 0), g2(·, 0), v?1(·), v?2(·)

Result: {v1(·, t), v2(·, t), g1(·, t), g2(·, t), c2(·, t), c1(·, t), s(·, t), rtLt, wt, Kt}t∈[0,T ]

1 Take an initial guess of K
(0)
t , L

(0)
t for t ∈ [0, T ];

2 Let ∆(0) =∞, n = 0;

3 while n < N do

4 Using
{
K

(0)
t , L

(0)
t

}
t∈[0,T ]

, compute the corresponding r
(n)
t , w

(n)
t , b

(n)
t , τ (n)

for t ∈ [0, T ];

5 Using the terminal condition v?1(·), v?2(·), apply finite difference method to

compute (v
(n)
u , v

(n)
2 ) backward in time;

6

{
c
(n)
e (·, t), c(n)u (·, t), s(n)(·, t)

}
t∈[0,T ]

are obtained when computing{
v
(n)
e (·, t), v(n)u (·, t)

}
t∈[0,T ]

;

7 Using the initial condition g1(·, 0), g2(·, 0) and{
c
(n)
e (·, t), c(n)u (·, t), s(n)(·, t)

}
t∈[0,T ]

to solve the linear equation system

(B.7, B.8) forward in time and denote the results as (g
(n)
u , g

(n)
2 );

8 Compute K
(n+1)
t =

∫∞
k
k
(
g
(n)
1 (k) + g

(n)
2 (k)

)
dk, L

(n+1)
t =

∫∞
k
g
(n)
2 (k)dk;

9 if max
{
‖K(n+1)(·)−K(n)(·)‖, ‖L(n+1)(·)− L(n)(·)‖

}
< ε then

10 Return

{v1(·, t), v2(·, t), g1(·, t), g2(·, t), c2(·, t), c1(·, t), s(·, t), rtLt, wt, Kt}t∈[0,T ];

11 else

12 Update K
(n)
t = K

(n+1)
t , L

(n)
t = L

(n+1)
t for t ∈ [0, T ];

13 n = n+ 1;

14 Print: “No equilibrium founded”;

15 Return
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