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ABSTRACT

The perception system of Autonomous Vehicles (AVs), consisting of various on-

board sensors including cameras and Light Detection and Ranging (LiDAR) scanners,

is crucial to perceiving the environment, localizing the vehicle, and recognizing the

semantics of traffic scenes. Despite recent advances in computer vision, the perception

of AVs has remained challenging, especially in urban environments. One of the rea-

sons is that multiple types of dynamic agents usually coexist in an urban area. The

interactions between agents and surroundings are complicated to explicitly model,

and the agents’ unpredictable behaviors also increase the problem complexity. More-

over, ground truth data with a rich set of labels is not sufficient to cover diverse

scenarios, and it is challenging to get data from real scenes.

This dissertation presents research contributions to overcome the challenges of

AV perception in urban traffic environments, from data collection and labeling to 3D

reconstruction and analysis of intrinsic properties. Mainly focusing on unsignalized

urban intersections, we discuss (1) how to obtain valuable data from real urban traffic

scenes, (2) how to efficiently process the raw data to produce meaningful labels for

the dynamic road agents, (3) how to augment the data with semantic labels to the

scenes, and (4) what factors make the reconstruction more realistic.

We first built a data capture system with a multi-modal sensor suite to simu-

late actual AV perception. We then introduced a 3D model-fitting algorithm to fit

parametrized human mesh models to the pedestrians in a scene. The generated 3D

models provide free labels, such as human pose and trajectories, with no cost of

manual labeling. We proposed performing the entire scene modeling through densely

reconstructing the scene and expanding the scope of automatic labeling to scene ele-

ments. These include dynamic vehicles and static components, such as roads, build-

ings, and traffic signs. To do this, we built a simulator that can generate a rich set

of labels using virtual sensors. Finally, we tackled the problem of estimating intrinsic

properties and discuss ways to achieve realistic 3D reconstruction.

xi



This dissertation understands the AV perception pipeline, explores data prepa-

rations at urban traffic scenes, and discusses relevant experiments and applications

critical for tackling other problems. We conclude the dissertation with future re-

search directions for further augmenting the data and improving the realism of the

reconstructed scene models.
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CHAPTER I

Introduction

1.1 Background: Perception in Driving

The perception process of human driving typically follows three steps. A driver

observes surroundings using sensory systems, a brain processes sensor inputs into

meaningful information, and the driver responds with specific actions. Human driv-

ing is the repetition of these steps while maximizing safety. Of the human sensory

systems, vision is inarguably the most crucial one. The majority of information nec-

essary to perceive surroundings and to identify potential risks is acquired through

human eyes.

Many current AV systems [6,7] are designed to involve perception mechanisms sim-

ilar to human drivers. Various onboard sensors, such as cameras, LiDAR sensors, Ra-

dio Detection and Ranging (RADAR) sensors, Global Positioning System (GPS), and

Inertial Measurement Unit (IMU), replace the role of human vision in self-localizing,

sensing the environment, and recognizing the semantics of traffic scenes. In particular,

LiDAR sensors and cameras have been equipped with most AVs to support real-time

computer vision algorithms for higher-dimensional recognition and reasoning.

For example, AV perception systems need lane detection to position vehicles within

lanes or plan paths for the later planning stage. Many recently proposed lane detec-

tion algorithms use learning-based approaches based on deep neural networks by

taking camera images or LiDAR remission maps [8–11] as inputs. Traffic signaliza-

tion detection algorithms also rely heavily on camera sensor inputs to recognize traffic

lights [12] or to detect traffic signs [13,14]. As one of the core components of AV per-

ception systems, object detectors are exploited to perceive environments using camera

images or LiDAR points. Detectors for static obstacles, such as curbs, signposts, and

lampposts, are used to build offline obstacle maps. Dynamic objects, such as vehicles

and pedestrians, need to be detected and tracked as well to avoid collisions.

1



Figure 1.1: Typical AV engineering pipeline.

Perception results can be taken as inputs to other components of AV pipelines.

In a typical AV pipeline (Figure 1.1), the perception module (detector and tracker) is

followed by prediction and planning modules. Predicting the future states of traffic

agents helps understand the future uncertainty of traffic agents and improves the

safety and efficiency of navigation during planning.

1.2 Challenges of AV Perception

Perception tasks that involve dynamic objects in a traffic scene notably cause

many challenges due to the increased complexity and unpredictable behaviors. To be

specific, the motion of agents is stochastic, trajectories are dependent on each agent’s

goal, and multiple agents are involved with interactions with other agents and scene

context. Non-rigid objects such as pedestrians are even more challenging to model

and to fully understand their attributes.

Many state-of-the-art perception algorithms are implemented in a data-driven way

using learning-based approaches. The key to learning quality models is the availabil-

ity of unbiased, large-scale, high-quality data with task-specific labels. Gathering

data in urban driving scenes, however, is very challenging. Driving scenes gener-

ally cover broad areas that can barely be controlled in reality. For example, varying

light conditions depending on different times of day and weather conditions may af-

fect algorithm performance, but collecting data under varying conditions is costly

and time-consuming. The complexity of dynamic object behaviors also addresses the

challenges in labeling.

Once any perception algorithms are developed, it is challenging to test the algo-

rithms in actual end-to-end AV pipelines due to the lack of safe testing environments

and the cost of building an AV system. The hardware components and the algorithms

for the remaining parts of AV pipelines (Figure 1.1) need to be developed as well to

make the pipeline work.

2



1.3 Problem Statement

1.3.1 Data Collection in Urban Traffic Scenes

The underlying motivation of this dissertation is to learn from the visual percep-

tions of human drivers in order for AVs to achieve human-like perceptions with a

main focus on urban traffic scenes. An essential prerequisite to achieving this goal is

collecting meaningful data of real traffic scenarios. However, it is not a simple task

to capture real traffic data in an uncontrolled setting, especially in complex urban

areas. Configuring a multi-modal sensor suite and collecting data, as in general AV

setups, are challenging and require several different engineering efforts. Moreover,

most of the existing traffic data capture systems are not designed to observe the de-

tailed motions of dynamic road agents. In Chapter II, we describe our data capture

system and the details of the capturing process used for unsignalized intersections

in a complex urban area where many dynamic objects interact with surroundings in

complicated ways. The sensor suite of our capture system consists of high-resolution

stereo camera pairs and multiple spinning LiDAR sensors.

1.3.2 Labeling of Pedestrians at Urban Intersections

The raw captured data can be extensively used with meaningful annotations. In

general, the labeling process to obtain annotations is costly and time-consuming.

Moreover, the types of annotations needed vary depending on different tasks. In

Chapter III, we explore a way to efficiently process the raw data to produce meaningful

pedestrian labels. The semi-automatic labeling pipeline introduced is based on a 3D

model fitting to generate a rich set of annotations.

1.3.3 Dense Reconstruction of Urban Intersections

We consider the problem of dense 3D reconstruction of real-world urban intersec-

tions in Chapter IV. We aim to achieve two major outcomes by reconstruction. First,

the reconstructed scene models can produce a rich set of semantic 2D/3D annotations

covering various object categories. Second, we can further generate simulated data

with free labels configuring virtual sensors to the dense reconstructed scene models.

We present the model-based dense reconstruction in Chapter IV and explore potential

usages and applications of the reconstructed scene models.

3



1.3.4 Towards Realistic 3D Scene Models

The 3D mesh models used to perform the model fitting and reconstruction in

Chapter III and Chapter IV are texture-less with no materials applied. Therefore,

photo-realistic images cannot be rendered, and virtual sensors cannot simulate the

color cameras. In Chapter V, we aim to discuss how to overcome this limitation.

In particular, we explore one of the factors that can achieve photo-realistic recon-

struction. We address the intrinsic image decomposition problem given the stream

of images using a probabilistic framework. The experiment with 3D intrinsic models

shows that scenes can be relighted by synthetic lighting effects and can be rendered

into realistic images with proper reflectance and shading.

1.4 Contributions

The major contributions of this dissertation are as follows:

• A data capture system has been designed and built to capture motions of pedes-

trians and vehicles at unsignalized urban intersections. Two pairs of high-

resolution stereo cameras and four spinning LiDAR sensors have been equipped

onto the capture vehicle and configured to observe scenes from a driver’s per-

spective. All the sensors are time-synchronized and are intrinsically and ex-

trinsically calibrated. The collected data using the multi-modal sensor suite

contains the natural behaviors of pedestrians and vehicles. (Chapter II)

• A publicly available multi-modal pedestrian dataset has been constructed with

a rich set of 2D and 3D annotations. We presented a semi-automatic labeling

process to obtain full 3D labels from 2D data. The approach was based on fitting

the dense pedestrian mesh models parametrized in high-dimensional pose and

shape parameters. The proposed 3D labeling method was validated using a

MoCap system in a controlled outdoor environment simulating pedestrians in

urban intersections. (Chapter III)

• We performed a model-based dense 3D reconstruction of the entire urban in-

tersection areas. The scope of model-fitting has been extended to other object

categories, including vehicles and static obstacles. Using the reconstructed syn-

thetic 3D scene models, we have produced a rich set of semantic 2D and 3D

annotations covering various objects in traffic scenes. Furthermore, we have

generated simulated sensor data with free labels by configuring virtual sensors
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to the reconstructed scene model space. Throughout the experiments, which

included simulating virtual sensors and predicting ego-vehicle trajectories, we

discussed the validation of the simulated data and potential applications of the

reconstructed scene models. (Chapter IV)

• To overcome the limitations of texture-less mesh models and achieve more real-

istic reconstruction, we tackled the intrinsic image decomposition problem for a

stream of images using a probabilistic framework. The proposed intrinsic image

prediction system contributed to the reduced amount of computation and run-

ning time to perform the image decomposition while maintaining the temporal

consistency of the resulting decomposed images. The framework was integrated

into a real-time Simultaneous Localization And Mapping (SLAM) system to

reconstruct 3D intrinsic models of a scene. The experiments showed the possi-

bility of rendering realistic images with varying lighting effects. (Chapter V)

1.5 Dissertation Organization

The rest of this dissertation is organized as follows:

• In Chapter II, we present our data acquisition system at complex urban inter-

sections and describe the details of data collection.

• Chapter III discusses the 3D model-fitting-based labeling of pedestrians at real-

world urban intersections.

• In Chapter IV, we present the dense 3D reconstruction of the intersections.

• Chapter V discusses the factors towards realistic 3D scene models.

• Finally, Chapter VI presents conclusions of this dissertation and discusses the

future directions.
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CHAPTER II

Data Acquisition in Complex Urban Intersections

2.1 Introduction

Autonomous driving has been one of the most popular topics in recent years. Many

challenges related to AVs have been introduced and extensively studied, especially

in robotics and computer vision communities. Despite rapid development of AV

technologies, driving in urban environments has remained challenging mainly due to

the complexity and the safety of pedestrians. For AVs to be fully automated and to

safely operate in urban areas crowded with pedestrians, it is essential to understand

the details of scenes and the attributes of dynamic agents.

One of the key prerequisites to understand the behaviors of road agents, par-

ticularly to apply data-driven algorithms, is to prepare large-scale real-world data.

To develop data-driven perception algorithms, constructing a wide range dataset is

critical. However, gathering meaningful data at urban traffic scenes is challenging in

practice. To collect data, including road agents with complex patterns and interac-

tions, we focused on unsignalized urban intersections. We aimed to collect data at

urban traffic scenes specifically. In this chapter, we present the details of our data

capturing system from scene selection to sensor setup and calibration.

2.2 Related Work

Before capturing data, many questions had to be answered:

• Where to install sensors?

• From which perspective to capture data?

• How to observe diverse behaviors of road agents?

• How to obtain labels?
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(a) (b) (c)

Figure 2.1: Example ways to install sensors to capture data in traffic scenes. (a)
NGSIM Interstate 80 Freeway Dataset [1]. (b) The Intersection Drone
(inD) Dataset [2]. (c) nuScenes Dataset [3].

The sensors can be placed in many different ways, and accordingly data can be

observed from different perspectives. For example, the sensors can be mounted onto a

road fixture at height (Figure 2.1a), or the sensors can be carried by drones to capture

bird’s-eye view data (Figure 2.1b). The most common way is to install all the sensors

onto moving vehicles. Cameras and LiDAR sensors are generally placed around the

roof of vehicles, which capture perspective-view data frames. (Figure 2.1c)

Different perspective data has distinct features. For the data captured from a

bird’s-eye view, the sensors are not in the way of any road agents, so it is less

likely to intervene with the road agents’ trajectories. The sensors normally look

down toward the entire scene, so the captured data can have less occlusion. Addi-

tionally, bird’s-eye view data is relatively simpler to annotate than first-person view

data because of the reduced dimensionality. The top-down bird’s-eye views, however,

are unrealistic for real-world mobile robot applications such as autonomous vehicles.

Moreover, while bird’s-eye view data can provide good quality trajectory data and

High-Definition (HD) maps, it provides very limited modality data due to the reduced

dimensionality. The data usually lacks variations in object appearance and cannot

obtain high resolution data due to large distance. On the other hand, first-person

view data is a more realistic form of data for mobile robots. Since less limitations

exist on configuring different types of sensors, multi-modality data can be possibly

captured. Also, details of scene components can be observed and captured such as

appearance of pedestrians. However, the biggest challenge comes from incomplete

observation of a scene caused by partial occlusions for the LiDAR points and limited

view frustum of camera images. Also, it is likely that the data capturing affects to
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the road agents. The labeling process is costly as well, because of the complexity and

diversity of scene appearance.

The data from a bird’s-eye view is usually captured statically, which has ad-

vantages when observing diverse movement patterns of road agents. The data in a

first-person view is generally obtained from a driving vehicle. In many existing urban

traffic datasets, for instance, vehicles pass through an intersection while collecting

data. While it cannot observe and record diverse agent patterns at a static spot, it

can capture various backgrounds with different scene components while traveling.

With the growing significance and popularity of autonomous driving, many in-

teresting datasets have been published. Many trajectory datasets are captured from

bird’s-eye views [2, 2, 15–18]. Most of recent autonomous driving datasets provide

first-person view data with varying camera configurations [3, 19–24]. To overcome

challenges of building large-scale real datasets, synthetic datasets from simulation

have been released [25–28]. Various types of these datasets have expedited technol-

ogy development in relevant fields.

2.3 Scene Selection

We have considered several factors when deciding the capture location. The cap-

ture sites and times were selected to maximize the amount of traffic, complexity of

crossing patterns, and lighting and weather variation. To capture complex interac-

tions between pedestrians and vehicles, we focused on 4-way stop intersections without

any traffic signals. At unsignalized intersections, agents make decisions by heavily

relying on interactions with others. To pick the intersections, we also considered the

specs of our sensors, such as measurement range of the LiDAR sensors and resolution

and field-of-view of the cameras. For example, measurement range the measurement

range of Velodyne HDL-32E LiDAR is upto 100 m. To get at least a few LiDAR

points returned for each agent, we avoided selecting areas that were too wide. To

reduce the intervention of our capture vehicle to the movement of other road agents,

a parking spot was also required. Finally, the following unsignalized intersections

were selected in downtown Ann Arbor, Michigan:

• E William St - Maynard St, Ann Arbor, MI

• S University Ave - Church St, Ann Arbor, MI

• Catherine St - N 4th Ave, Ann Arbor, MI

where the pedestrian-camera distance ranges between 5–45 m. We picked the busiest

times of the day in the afternoon when many pedestrians and drivers pass through
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the intersections to commute. Lighting conditions varied based on cloud cover and

shadows cast by the buildings.

Our vehicle was parked at one side of the intersection while capturing the data.

Cameras were oriented toward different areas of each intersection to cover the entire

region. The cameras captured perspective view images, which can simulate drivers’

perspective in real driving scenarios. Figure 2.2 shows an example image and the

point cloud captured at one of the intersections.

9



(a)

(b)

Figure 2.2: An example image and point cloud captured at the S University Ave -
Church St intersection. Our capture vehicle is shown as a blue 3D model
in the point cloud.
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Figure 2.3: A diagram showing the sensor setup of our capturing vehicle. The global
coordinate frame is defined at the origin of the INS system. The Li-
DAR returns from the individual LiDAR sensors are transformed into
this global frame and accumulated.

2.4 Sensor Setup

Our data capturing platform was equipped with the following sensors:

• 4 Laserscanners: Velodyne HDL-32E

• 4 Color cameras, 12 Megapixels: Allied Vision Manta G-1236C

• 4 Lenses, 12 mm: V1228-MPY

The vehicle was equipped with four spinning LiDAR scanners (600 rpm, 32 laser

beams, 700, 000 points per second, range: 100 m), two at each side of the roof with

a roll angle of 45◦ between them. The cameras (6Hz, resolution: 4112× 3008 pixels,

opening: 90◦ × 60◦) were mounted on top of our vehicle in two stereo pairs. The left

pair was mounted on an independent bar rotated by 30◦ to capture the incoming road

from the left and the right pair facing directly forward. We arranged the cameras

with a baseline of 0.33 m and 0.27 m for the left and right stereo pairs, respectively.

We triggered the cameras via a trigger signal emitted when the second camera from

the left started exposing its sensor. We recorded the timestamp of each image using

the cameras’ internal clock and these clocks were synchronized via the IEEE1588-2008

PTP protocol. We also synchronized the computer timestamp to the camera clocks

using the same method. Using this timestamp, we computed LiDAR returns within

a given camera frame. Figure 2.3 and Figure 2.4 show our sensor setup.
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Figure 2.4: A real picture of our Ford Fusion vehicle with sensors installed.

2.5 Sensor Calibration

To be able to transform all the captured data into a unified coordinate frame, we

performed sensor calibrations. We defined the global coordinate frame using the axes

depicted in Figure 2.3 where the origin is defined to align with the Inertial Navigation

System (INS) system. The accumulated LiDAR returns are already defined in this

global coordinate frame. The calibrations were performed following the fundamen-

tal principles of multiview geometry [29] and using the tools provided by publicly

available libraries [30,31].

2.5.1 Camera Calibration

To use the cameras on the camera rig, we first calibrated intrinsic parameters

of each camera and performed the stereo camera calibration for each pair of stereo

cameras to find the SE3 pose of a right camera relative to a left camera. Although

we tried to make left and right cameras parallel when installing the cameras onto the

rig, they are not perfectly parallel. To make two cameras of the same stereo pair

share the same image plane, we additionally computed the transformation onto the

rectified image plane as part of the results.
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Figure 2.5: An example image captured at an intersection containing many pedestri-
ans and vehicles passing through the intersection.

2.5.2 Camera-LiDAR Calibration

For determining the camera to LiDAR calibration, we used 50 manually selected

constraints between 3D LiDAR points and 2D pixel locations in both the left and

right images and used the Levenberg-Marquardt algorithm to minimize projection

error. The geometry of the sensor setup was used to compute the initial guess for

the rigid body transformation. Prominent edges, such as building corners, stop sign

poles, and electric poles can be easily identified in the point cloud as well as the image

which are used for manually choosing the correspondences.

2.5.3 MoCap-LiDAR Calibration

We used a weighted Iterative Closest Point (ICP) algorithm to determine the rigid

body transformation between the MoCap coordinate frame and our world coordinate

frame which is defined with respect to the capture vehicle. In further detail, we

placed a large planar board with eight LED markers in the capture volume. The

LED marker locations are linearly interpolated to sample more points from the planar

board. The corresponding point clouds of the LiDAR returns from the planar board

were manually segmented. We placed the board in multiple positions to accurately

determine the rigid body transformation. Finally, the time-synchronization between

the MoCap frames and camera frames were manually determined as well.
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Figure 2.6: Example images with MoCap setup from our evaluation set.

2.6 Raw Image Processing

The raw Bayer 12-bit images were converted into compressed PNG/JPEG image

formats. We compressed the raw images into 16-bit PNG files to keep the high

dynamic ranges (HDR). To apply any detectors to the images, we further compressed

the HDR images into 8-bit images using Durand’s tone mapping algorithm [32], and

rectified all the images for each stereo pair.

2.7 Conclusion

In this chapter, we built a data capture system and described the steps to collect

data at real urban intersections. The captured data consists of high-resolution (≈
12 MegaPixels) RGB images from two stereo pairs and time-synchronized point clouds

accumulated from four spinning LiDAR sensors. Collected during the busy time of

the day, the data includes pedestrians and vehicles communicating and interacting

to make safe decisions at the selected intersections. To make this data more useful,

however, semantic labels need to be annotated. In the upcoming chapters, we explore

processing and labeling of the data.
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CHAPTER III

3D Model Fitting to Pedestrians at Real-World

Urban Intersections

3.1 Introduction

In computer vision, estimating human pose has been a long standing problem.

The recent application of deep neural networks has generated state-of-the-art results

for 2D body pose estimation [33], which has inspired extensions to the 3D pose esti-

mation [34–38]. However, gathering ground truth 3D pose data is challenging. Motion

Capture (MoCap) systems have been the primary generator of ground truth 3D pose

data, but have restricted the variety and complexity of the 3D scenes that can be

captured [39, 40]. For example, with mocap systems it is difficult to capture natu-

ralistic in-the-wild scenes with groups of people who are moving and interacting. To

overcome those technical limitations, this dissertation developed both a dataset and

a ground truth generation approach to facilitate generating 3D poses on in-the-wild

images without relying on MoCap.

Most AVs have cameras installed, so this data can serve as a primary source for

human pose estimation using computer vision algorithms. In addition to cameras,

LiDAR sensors have become an essential component for AVs due to its precise depth

measurements. This motivated the importance of capturing both modalities for this

benchmark set of complex urban intersections.

Our dataset has the three unique properties. First, the data were gathered out-

doors with real challenges, such as varied lighting and weather conditions and the

presence of occlusions. Second, the pedestrian data were collected at intersection

length scales of up to a 45 m range, which is relevant for the deployment of pose

estimation systems at application relevant scales. The captured scenes are also natu-

ralistic. The pedestrians in our dataset are not actors, so they move and interact in
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a myriad of realistic ways. In addition, our dataset includes images capturing crowds

of people. Lastly, we released multimodal pedestrian data, including high resolution

images and point clouds, that are synchronously captured from stereo cameras and

LiDAR sensors.

Annotations of our dataset also have distinctive features. All the annotated 3D

pedestrians lie in a global metric-space coordinate frame as opposed to many existing

datasets that operate in hip joint or camera center relative coordinate frames. We

stress the importance of determining where a person is in the 3D world so one can

plan actions around them. In addition, our multimodal data frames are captured

in minutes long sequences with unique tracking IDs for each pedestrian, enabling

temporal reasoning.

The contributions in this section are summarized as follows:

1. We release a publicly-available large-scale multimodal pedestrian dataset with

a rich set of 2D and 3D annotations. The dataset captures the real world

challenges that AVs are likely to face at urban intersections.

2. We present an automatic method to obtain full 3D labels from 2D data, enabling

labeling of in-the-wild images without MoCap. Our proposed approach allows

generating 3D data in a completely unsupervised manner using state of the art

algorithms for 2D annotations.

3. Our automatic 3D labeling method is validated using a MoCap system in a con-

trolled outdoor environment that simulates pedestrians in urban intersections.

We present this dataset to enable the study of 3D pose estimation while reasoning

about pedestrian behavior around vehicles, particularly in crowded urban areas as

depicted in Figure 3.1. We see this as one of the first areas where human pose

estimation can have a tremendous impact on safety and intelligence of mobile robot

systems. Understanding the pose of road users affords information about activity,

attention, and predictions of future position, which are critical to safely navigate

around humans.

3.2 Related Work

3.2.1 3D Human Pose Estimation

In many papers, 3D human pose estimation has been formulated as a problem

of regressing 3D joint locations by directly extracting visual features from an image
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Figure 3.1: An example image from the PedX dataset with bounding boxes around
the pedestrians (left) and a rendered image with the 3D human mesh
models in metric space (right).

Figure 3.2: Visualization of our annotations. For each pedestrian, we provide 2D
segmentation, 2D joint locations with visibility of 18 body joints, tracking
ID, time-synced LiDAR points, and 3D mesh model localized into the
global coordinate frame.

[34–37,41–44], or by lifting 2D joint detector outputs to 3D joints in a camera relative

frame [38,45,46]. To reduce the inherent ambiguity of 3D human pose estimation from

a 2D image, prior knowledge about feasible human poses has been considered [45,47],

or a deformable 3D human model, such as Skinned Multi-Person Linear (SMPL) [48]

was used to be fit to known 2D joint locations [46].

More recently, 3D poses have been estimated as part of a richer and denser mesh

representations. SMPL model parameters are estimated from given dense 2D anno-
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tations [49], or the parameters are directly predicted from a single RGB image in an

end-to-end manner using an adversarial learning framework [50]. Güler et al. [51] use a

variant of SMPL parameterization by transforming it into part-based UV coordinates

that specify a bijective mapping between mesh surface and an image. The proposed

DensePose network assigns a body part to each pixel and regresses the correspond-

ing surface coordinates. As a model-free approach, Rematas et al. [52] reconstruct

3D point clouds by estimating a per-pixel depth map for each soccer player from a

monocular video using a neural network trained on synthetic data.

Most approaches take as input an image with a single person or a cropped image

patch centered around a person and return 3D pose in a root-relative coordinate

frame as the output where the camera is facing toward the person. While the joint

estimation of 3D pose and virtual camera parameters have been proposed [37, 45],

the outputs still suffer from the scale ambiguity. Without knowledge of exactly how

far away a person is, controlling a mobile robot safely will be challenging. Most

approaches are also unable to handle multi-person images with a single pass of an

algorithm. While the multi-person 3D pose estimation problem has recently been

addressed [51, 53], the output 3D poses are root-relative and still reliable up to a

scale.

A major impediment to predicting metric space pose for multiple people in a

scene is the lack of a suitable dataset with reliable 3D annotations. Addressing this

limitation is the focus of this paper.

3.2.2 3D Human Pose Datasets

Large scale datasets have played an essential role in fueling recent progress in

a variety of computer vision tasks. However, building a ground truth 3D human

pose dataset in metric space is challenging since annotation in 3D is far more time

consuming than the same task in 2D. To avoid manual labeling in 3D, MoCap systems

are typically used to obtain the ground truth 3D human pose [39,40,54–56].

The data captured with traditional MoCap systems has many limitations. For

instance, markers must be attached to subjects, which makes images look unnatural.

Moreover, since MoCap is typically restricted to constrained, mostly indoor areas, im-

age backgrounds for MoCap datasets have limited variability. The number of markers

that can be tracked by MoCap systems is also limited, which limits the number of

subjects. The recent development of a commercial, markerless MoCap system [57]

allowed the data capture with natural-looking subjects [56], but it still suffers from

the limited number of subjects and the size of capturing volume. Additional sensors,
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Table 3.1: Statistics and characteristics of related datasets.

num.

images

num.

instances

num.

pixels

points from

depth sensor
video

multi-

person
real scene type

H36M [40] 3.6M 0.9M ≈1M X X X MoCap indoor

HumanEva [39] ≈80K ≈80K 1-1.3M X X MoCap indoor

MPI-INF-3DHP [56] >1.3M ≈93K ≈3M X X MoCap in/outdoor

SURREAL [62] 6M 6M ≈80K X indoor

UP-3D [49] 8.5K 8.5K ≈300K X in/outdoor

DensePose-COCO [51] 34K 130K ≈300K X X X in/outdoor

Ours 10,152 14,091 ≈10M X X X X outdoor

such as IMUs [58, 59], have been used to obtain ground truth 3D human poses of

in-the-wild images, but the number of subjects per image is small and the data is

limited to humans.

To counter the limited variability in subject appearance, camera viewpoints, light-

ing conditions, and image backgrounds, synthetic 3D datasets have been proposed [60,

61]. While there have been attempts to improve the photo-realism of these synthetic

data generation pipelines [56, 62, 63], state-of-the-art synthetic images are still easy

to distinguish from real images. Others have explored techniques to automatically

do 3D labeling with limited human intervention [49, 64, 65]. For instance, some have

taken advantage of a multiview camera setup to obtain reliable 3D annotations using

optimization [64]. Others explore fitting parameterized mesh models [46] to monoc-

ular images or multiview images to collect ground truth 3D labels [49, 65]. However,

these methods provide 3D scale models for a virtual camera with a relative frame and

for images from various 2D pose datasets cropped around a single detection. This

limits the potential utility of these methods while performing mobile robotic tasks

safely. In contrast, we construct 3D human pose models in metric space for crowded

urban street intersections that include as many as 15 pedestrians in a single image at

distances as far as 45 m from the camera.

3.3 3D Model Fitting: Pedestrians

We performed 3D model fitting on pedestrians in a stereo-LiDAR sequence. In

contrast to the previous work [46] that fits a 3D model to a single frame at a time, our

approach optimizes over a sequence of stereo images and LiDAR points. We begin
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Figure 3.3: PedX labeling pipeline.

by per-instance model fitting, which is then extended to optimize over a sequence

of instances using an iterative method. We also propose multi-modal and temporal

priors. Note that we use a gender-neutral model for model fitting. Before initiating

the model fitting pipeline, we preprocess the LiDAR data to identify regions contain-

ing potential pedestrians in 3D space. The points that are projected out of images

or those that belong to the static objects are ignored. Using 2D segmentation labels

for stereo images with known transformation between LiDAR and camera coordinate

frames, we performed the point cloud labeling of each pedestrian instance.

3.3.1 Fitting To A Single Instance

We begin by performing 3D model fitting to a single instance at a single time

step. For each pedestrian instance, we are given 2D joint locations xl and xr, and

2D segmentations Sl and Sr for each stereo image. We also have sparse 3D points

corresponding to the instance. To find the pose θ, shape β, and 3D global position t

that best fit to the instance, we formulate the problem as:

minimize
θ,β,t

EI (θ,β, t) (3.1)

where EI = EJ+E3d+EP +ET +ED represents the sum of multiple energy terms. We

verify the effectiveness of each energy term through ablative experiments described

in Sec. 3.4.2. EJ is the sum of robust 2D reprojection errors [46] for both left and

right images, EP is the prior term, E3d is the 3D Euclidean distance term between

visible SMPL vertices and the LiDAR points, ET is the translation term to constrain

the 3D model location, and ED is the heading direction term to constrain the body

orientation:
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ET (t) = ‖t− t0‖2
2 (3.2)

ED(θ) = ‖f(θ)− d‖2
2 (3.3)

E3d = 1
Nv

∑Nv

i min
j
‖Xi − Vj‖2

2 (3.4)

where t0 is the mean of 3D points, f is a function to convert the axis-angle represen-

tation of body orientation to xyz- directional vector, d is a known heading direction

vector, Xi is the i-th LiDAR point, Nv is the total number of 3D points that belong

to the instance, and Vj is the j-th point of SMPL model vertices.

3.3.2 Fitting To A Sequence Of Single Instances

To fit 3D models to a sequence of detections, we developed shape and temporal

consistency constraints across frames in addition to the per-frame constraints.

3.3.2.1 Global Shape Consistency

Suppose one pedestrian appears in N consecutive frames with full 2D labels. In

this instance, while pose parameters and translations change, the shape parameters

should remain unchanged across the sequence. To find the pose, shape parameters,

and translations, we formulate the problem as:

minimize
θ,β,T

Eseq (Θ,β,T ) (3.5)

where Θ = {θ1, . . . ,θN} and T = {t1, . . . , tN} are the set of pose parameters and the

set of translations for all N frames. β is the shape parameters shared by all frames

where β = β1 = · · · = βN . Optimizing over the entire sequence is challenging due

to the high dimension of the decision variables. Since the objective Eseq is separable

in terms of a per-frame objective, we decomposed this large problem into a set of

smaller problems. We rewrote the unconstrained minimization problem over the

entire sequence by introducing the consensus variable β:

minimize
θ1:N ,β1:N ,t1:N ,β

∑N
k=1EI,k (θk,βk, tk)

subject to βk − β = 0, k ∈ {1, . . . , N} (3.6)
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where k denotes the frame ranging from 1 to N frames in a sequence. This optimiza-

tion is a constrained minimization problem with a separable objective function and

multiple constraints requiring per-frame shape parameters βk to be equal. The ad-

vantage of introducing a consensus variable β is that we can enforce all the frames to

have common shape parameters while exploiting parallelism. We solve the problem by

using the alternating direction method of multipliers (ADMM) [66]. The augmented

Lagrangian to be minimized is:

Lρ (β,βk; Θ,T ) =
N∑
k=1

EI,k (θk,βk, tk) + yTk (βk − β) +
ρ

2
‖βk − β‖2

2 (3.7)

yk is the dual variable for βk and ρ is a positive constant that is experimentally

selected. ρ=2 was used for the results reported in this chapter. The objective Lρ is

optimized using an alternating optimization for the local and global shape parameters

with variables {uk}Nk=1 where uk = yk
ρ

. The updated equations from each iteration

are as follows:

βt+1
k := argminβk

EI,k(θk,βk,tk)+
ρ
2
‖βk − βt + utk‖

2
2 (3.8)

βt+1 := 1
N

∑N
k=1

(
βt+1
k + utk

)
(3.9)

ut+1
k := utk + βt+1

k − βt+1 (3.10)

We perform the synchronous update for the global shape parameters. The iteration is

stopped when ‖βt+1
k −βt+1‖2 < 0.05 and ρ‖βt−βt+1‖2 < 0.05 or the maximum itera-

tion is reached. (3.8) is similar to per-frame minimization in (3.1) with an additional

term in the objective function.

3.3.2.2 Temporal Pose Prior

In addition to enforcing per-frame shape parameters to share the common values

across the sequential frames, we penalized unlikely sequences of poses by using a

temporal pose prior.

A 72-dimensional pose vector consists of the x, y, and z rotation angles of 23

body joints relative to each of their parent nodes, plus the orientation of the root hip

in a 3D angle-axis representation. We observed that pose transitions between two

consecutive frames are close to periodic for most body joints. In particular, since

most pedestrians at the intersections involve in walking motion, there exist certain

patterns for each body joint. Inspired by that, we define the pose transition vector
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and fit a Gaussian Mixture Model (GMM) with K multivariate distributions to the

pose transition vectors of known walking sequences. We selected the sequences that

were related to walking motion from the CMU mocap dataset [55].

x = [t;θpose] (3.11)

∆x = xt − xt−1 ∼
∑K

i φi N (∆x;µi,Σi) (3.12)

A GMM with K distributions can be written in terms of K sets of mean and

covariance matrix, and the probability density function (pdf) of the Gaussian mixture

distributions evaluated at ∆x is as follows:

f(∆x) =
∑K

i=1 φi N (∆x;µi,Σi) (3.13)

where
∑K

i=1 φi = 1. If the GMM is correctly trained to represent the true pose

transition vectors, the pose transition vector from the positive set (Spos) will have a

large probability density value while the one from the negative set (Sneg) will have

a small probability density value. Note that maximizing this probability density can

be rewritten as the following equivalent minimization problem so that the temporal

pose prior can be easily incorporated into the objective function:

maximize
∆x

f(∆x) ≡ minimize
∆x

− log f(∆x) (3.14)

The negative log of the multivariate normal probability distribution is approximated

as follows:

− log f(∆x) ≈ max
i∈{1,...,K}

− log (φi N (∆x;µi,Σi))

= max
i∈{1,...,K}

− log φi +
1

2
(∆x− µi)TΣ−1

i (∆x− µi) + log
(
(2π)K |Σi|

) 1
2

(3.15)

The final temporal pose prior that will be added to the objective function is:

Etp(tk,θk; tk-1,θk-1) = − log
∑K

i φiN (∆xt;µi,Σi) (3.16)

where µi, Σi are the mean and covariance of the pose difference vector ∆x and φi is

the weight for the i-th Gaussian mixture component. More details about extracting

pose transition vectors from CMU mocap dataset is presented in the following section.
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(a) (b) (c) (d)

Figure 3.4: (a) Initial SMPL template model for the neutral gender where all the
pose and shape parameters are set as zero. (b) Joints from the initial
SMPL template model. (c) Transformed joints. (d) Joints from the CMU
MoCap template in BVH conversions.

3.3.2.3 CMU MoCap To SMPL Conversion

To define pose transition vectors (3.12) from the CMU MoCap data sequences,

we needed to convert the data into SMPL parameters. We first selected the motions

from the CMU MoCap dataset that were related to the pedestrians, such as walking

and running, and used the BVH conversions of the data [67].

72-dimensional SMPL pose parameters encode the information about how to de-

form the initial template model. For each joint, the transformation is represented as

a three-dimensional vector using the axis-angle representation. Figure 3.4b shows 24

joints defined in the initial SMPL template model. In the BVH conversions of the

CMU MoCap dataset, however, the initial pose of the skeleton is defined in a different

way (Figure 3.4d). We first transformed the initial SMPL joints similar to the BVH

template. Figure 3.4c shows the transformed SMPL joints. Starting from this trans-

formed template model (Figure 3.4c), we converted BVH data into 72-dimensional

SMPL parameter vectors.

In both BVH format and the SMPL parametrization, body joints are represented

as a tree structure with the hip as a root. For the BVH data, three-dimensional

Euler angles are stored per joint from which a 3 × 3 rotation matrix relative to its

parent joint can be computed. The tree defined for the SMPL parameters has similar

structure to the one of BVH data but with a fewer amount of nodes. For each joint,

a transformation relative to its parent can be computed using a three-dimensional

parameter vector in an axis-angle representation. For each of the 24 SMPL joints,

we obtained a rotation matrix relative to its parent, which can be converted into a

three-dimensional SMPL parameters in an axis-angle representation using Rodrigues’
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(a) (b) (c)

Figure 3.5: Example results of converting CMU MoCap BVH data into SMPL pose
parameters. (a) CMU MoCap skeletons in BVH format data. (b) Skele-
tons obtained from the corresponding SMPL parameters. (c) SMPL mesh
visualization with zero shape parameters.

Figure 3.6: Two consecutive frames from PedX dataset.

rotation formula [68]. Figure 3.5 shows example results of converting BVH data into

SMPL parameters. For the 3D mesh visualization in the figure, we used zero shape

parameters.

MoSh can be another way to obtain the SMPL parameters corresponding to the

CMU MoCap sequences. Since we are interested in the difference between two neigh-

boring pose parameter vectors, we performed a simple conversion of poses without

considering the shape parameters.

After converting CMU MoCap sequences into SMPL parameter vectors, we gen-

erated samples to train the GMM for temporal pose prior. Note that the frequency of

CMU MoCap sequences are 120Hz while our camera frequency was 6Hz. We selected

two neighboring CMU MoCap frames which have 20 frames in between to compute

the pose difference vector ∆x = (∆t,∆θ).

Regarding the temporal prior, we considered using low-D DCT basis vectors [65]

that do not require a training process. They use the Human3.6M dataset [40] where

the data was captured with 50Hz frame rate. On the other hand, the frame rate

of our dataset is lower than that, and the pedestrian’s pose can have more changes

between two consecutive frames. (See Figure 3.6.)
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Figure 3.7: (a) Overhead view of the point cloud trajectories of pedestrians in the
global frame. (b) Initialized body orientation based on heading direction,
and the final 3D models after the iterations.

3.3.3 Initialization

One of the challenges while fitting a 3D model is estimating a body orientation

with the incorrect sign [65]. To avoid getting a flipped model, we computed the

heading direction of each pedestrian from a sequence of LiDAR points and use it to

initialize the body orientation via a three-dimensional angle-axis representation. We

assumed that pedestrians never walk backwards, which held true in our data capture.

Figure 3.7a shows some example trajectories from LiDAR points, and Figure 3.7b

shows the projected 3D model onto the left images at four sequential time frames

after the initialization. When a sequence is only a single frame, we found the initial

body orientation with the template pose by minimizing the stereo reprojection error

EJ only using torso body joints and the translation error ET around the mean LiDAR

points.

3.4 Experiments

The data in our dataset is captured at complex outdoor urban intersections where

pedestrian-to-camera distances are large (5–45 m), with multiple subjects who are

often heavily occluded. In contrast, publicly available 3D datasets rely on MoCap

systems [39, 40, 54] and guarantee less than a few millimeters accuracy for a single

subject appearing within a controlled indoor capture volume of a few meters in radius.

Given these distinctions, the accuracy of our dataset needs to be evaluated under

these realistic conditions. While comparing the accuracy of our proposed approach

with a MoCap system would reliably validate our dataset, MoCap systems cannot be

practically setup at urban intersections.

We address this challenge by leveraging the fact that our proposed approach only

requires 2D labels and LiDAR data without using image features. The key factors

affecting our approach include the density of the LiDAR returns due to the large

distance from the capture vehicle, occlusions by other objects that affect the LiDAR
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segmentation, the precision of the manual annotation when the pedestrian occupies

a small portion of the image and the calibration between LiDAR and camera. The

lighting conditions, background appearance, clothing and weather conditions do not

affect our approach as we operate on manually labeled joint locations. Therefore, we

collect and annotate an evaluation dataset in a controlled outdoor environment with

a MoCap system and get manual 2D labels while replicating the vehicle to target

distances and the clutter and occlusion of the intersection data. By showing that the

3D labels generated by our method are comparable to the MoCap ground truth, we

verify the fitting approach and the annotation process against a traditional MoCap

source.

3.4.1 Data Verification

3.4.1.1 Evaluation Dataset

We use the PhaseSpace MoCap system with active LED markers. which can be

used in outdoor environments. The subject wears a suit with markers placed around

body parts and repeats actions such as walking, jogging, and waving that are common

for pedestrians. The capture vehicle was parked about 20 m away from the MoCap

setup. To replicate typical occlusions, we parked another car between the capture

vehicle and the MoCap setup as well as having groups of pedestrians walking. We

selected 626 frames and obtained manual 2D labels for the images. Since the visual

appearance does not affect the evaluation, we restrict the evaluation to a single subject

with a single background and focus more on variation in poses and occlusions.

3.4.1.2 Evaluation metric

The 3D Mean Per Joint Position Error (MPJPE) is a standard metric to evaluate

pose estimation algorithms, which is a mean over all joints of the Euclidean distance

between ground truth and prediction. In cases where the prediction is not in metric

space, the error is computed for a root-relative coordinate frame after allowing a

similarity transform to register the prediction to the ground truth. In cases where

the prediction is in metric space, we computed MPJPE in global coordinate frame

without any registration. We reported the per joint position errors for both frames.

Note that, given the geometry of capture, markers can get completely occluded from

the MoCap system. Consequently, not all joints are visible in all frames. Moreover,

some methods may not predict invisible joints. Therefore, we take the weighted mean

while computing the MPJPE where the weight is equal to the number of frames in
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Table 3.2: 3D MPJPE in root-relative coordinate frames.

Relative

(mm)
rknee lknee rankl lankl rsho lsho relb lelb rwri lwri head neck hip mean

[35] 113 153 203 184 141 120 130 132 203 194 134 96 88 147

[38] 107 116 172 159 159 160 142 127 197 178 84 88 87 137

[46] 103 89 139 158 77 59 74 71 144 145 85 35 87 97

Ours 104 71 126 136 62 50 83 67 118 130 66 29 106 88

Table 3.3: 3D MPJPE in global coordinate frames.

Global

(mm)
rknee lknee rankl lankl rsho lsho relb lelb rwri lwri head neck hip mean

Triangulation 1178 1307 1617 1489 1205 1164 1130 1168 1206 1111 842 1029 1111 1194

Left+disp 766 977 1229 1018 702 648 756 766 825 789 482 437 972 794

[46]+disp 535 576 627 591 620 574 561 570 652 594 588 587 598 593

Ours 205 179 250 255 183 177 187 182 221 204 169 155 161 194

which the joint was visible in the ground truth and was predicted.

3.4.1.3 Baseline Methods

We consider three different families of baseline methods. First, we consider a

method that predicts 3D joint coordinates (up to scale) directly from 2D images [35].

Second, we consider methods that take manual 2D joint annotations as inputs [38,46].

We evaluate these methods in the root relative frame alone. Third, we consider three

naive baselines that use stereo geometry information. As we have 2D joint locations

for a calibrated rectified stereo pair of images, we directly triangulate these 2D joint

locations for visible joints. We refer to this method as Triangulation. For the second

naive baseline, we use disparity values and 2D joint locations in the left image for the

visible joints and the previous triangulation result for invisible joints. We refer to this

as Left+disp. Finally, we consider a baseline that modifies an existing technique [46],

this approach uses the calibrated camera parameters and the estimated skeletons,

which are scaled to metric space by using the average disparity values at the visible

joint locations. We refer to this as SMPLify [46]+disp.
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3.4.1.4 Accuracy

Table 3.2 and Table 3.3 summarize the results for root-relative and global frames

respectively. Although fair comparisons can only be done between methods separated

by horizontal lines, the objective of these tables is to highlight that the current state-

of-the-art still has room for improvement and the utility of the proposed dataset in

closing this gap. The proposed approach achieves lower MPJPE for the majority of

joints in the root-relative frame. This is expected as our approach leverages additional

information, including LiDAR returns, temporal priors as well as stereo annotations.

The gains while using this additional data are most prominent in the global coordinate

frame as no registration is involved and consequently global translation, orientation

and scale errors can be seen in the global MPJPE. While naive baselines such as

triangulation and left+disp perform poorly because they do not leverage any prior

about proportions of a typical human skeleton, SMPLify+disp which leverages priors

about human skeletons still suffers from large errors. In contrast, our proposed ap-

proach achieves an MPJPE of 194 mm for an average camera-to-pedestrian distance

of 20× 103 mm.

3.4.2 Ablation Study

Table 3.4 summarizes the results for using different subsets of energy terms in

the optimization. Note that EJ,l and EJ,r represents the reprojection error on left

and right images. ET , E3D and Etp are defined in Sec. 3.3. Each column shows per-

joint errors in root-relative frame except the last column, which shows the MPJPE

in global frame.

3.4.2.1 Effect of Stereo

To see how using a stereo reprojection error affects the resulting 3D models, we

computed reprojection errors for only the left images (i.e., row 4 of Table 3.4) and

for both stereo images (i.e., row 5 of Table 3.4). Stereo imagery reduced both global

translation error and root-relative pose error as it reduces the depth ambiguities that

exist for the monocular approach. The second row of Figure 3.9 shows the results

from monocular approach, which estimates 3D models from the left images. Notice

that in several frames, the legs are swapped or the body orientation is estimated

incorrectly. Figure 3.8 presents additional results with occlusions, and illustrates

similar limitations of the existing approach. We can see that the projection of the

estimated 3D models onto the right image does not align exactly. Estimating 3D
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pose from 2D joints is an inherently ill-posed problem because many feasible body

configurations exist. Using stereo information provides more constraints during the

optimization and reduces such ambiguities overall. Furthermore, when some joints

are occluded in a single image, when using stereo pairs, the second image of the pair

may observe these joints, which can reduce the uncertainty and produce better 3D

models.

3.4.2.2 Effect of Using LiDAR Points

Although stereo images provide reasonable depth estimation in a global coordinate

frame, the translation error may be too large since an error of a few pixels during

labeling may create a large resulting error in fit. To place 3D models at the correct

location in metric space, we included LiDAR information as a form of the translation

prior ET . The translation prior term localizes the 3D models at the distance observed

by the LiDAR. As shown in the first two rows in Table 3.4, adding this translation

prior provides an improvement in estimating global 3D pose.

The translation prior only constrains the location of the root joint (hip) in the 3D

metric space. Therefore, depth ambiguities in other parts of the body may still exist,

especially when the subject appears sideways with respect to the camera. Adding

the 3D distance term E3D helps to adjust the pose or body orientation to fit to the

observed LiDAR points. Consequently the mean column in the root-relative frame

significantly reduces from row 2 to row 4.

3.4.2.3 Temporal Prior

The temporal prior term, Etp, penalizes unlikely transitions of poses and trans-

lations between consecutive frames. It also makes the resulting 3D pose between

consecutive frames appear smooth. In Table 3.4, row 2 and row 3, and row 4 and row

5 show the errors without and with the temporal prior, respectively. By adding this

term, we obtain similar values for the root-relative errors, and achieve lower global

error. Another advantage of the temporal prior is that it makes the model robust to

2D labeling noise for the occluded joints. Figure 3.8 illustrates examples with severe

occlusions. It is likely that the 2D body joint labels are inconsistent across the frames

under severe occlusion, and that affects the estimated pose. As seen in rows 4 and 6

of Figure 3.8, the resulting 3D poses are smoother when this temporal prior term is

included. However, if the weight of the temporal prior is set too high, the transition

of poses between the frames can become too restricted.
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Table 3.4: Ablation study on energy terms. Each column shows per-joint errors in
mm in root-relative frames. The last column shows the MPJPE in global
frame.

EJ,lEJ,rETE3DEtprknee lknee rankl lankl rsho lsho relb lelb rwri lwri head neck hip mean global

1 X X 100 79 128 145 66 54 85 66 147 165 72 38 134 98 1050

2 X X X 98 76 124 143 68 55 84 66 141 157 73 37 121 95 277

3 X X X X 117 76 126 138 64 50 81 64 123 137 68 34 116 91 248

4 X X X X 104 72 125 135 62 49 83 67 122 134 65 29 107 88 250

5 X X X X 89 84 132 146 68 57 74 65 143 158 80 38 122 97 240

6 X X X X X 104 71 126 136 63 50 83 67 118 130 66 30 106 88 194

Table 3.5: Comparison of 3D MPJPE in root-relative coordinate frame for automatic
and manual 2D labels. The last column is the MPJPE (mm) in global
coordinate frame.

2D labels rknee lknee rankl lankl rsho lsho relb lelb rwri lwri head neck hip mean global

[33]+ [69] 104 89 143 156 81 61 89 75 143 134 112 45 59 99 224

GT 2D joints 104 71 126 136 62 50 83 67 118 130 66 29 106 88 194

3.4.2.4 Global Shape Consistency

Figure 3.9 compares the results from SMPLify [46] with those from our method,

which enforces consistency of the global shape parameters across multiple frames.

As expected, using the global shape consistency constraint produces more consistent

shapes across the frames, while the resulting 3D models from SMPLify, which only

uses per-frame information, looks inconsistent. Moreover, the models are too skinny

especially when the desired pose is far from the template pose.

3.4.3 Effect of Noisy 2D Labels

The size of manually labeled datasets is always limited by the time-consuming and

costly annotation process. Luckily, recent methods have made great progress in 2D

visual recognition tasks. Using pre-trained networks [33, 69], we computed instance-

level segmentation masks and 2D joint detections on our evaluation dataset in place

of manual labels. Since only a single subject exists in a scene wearing the MoCap

suit, the tracking ID is trivially obtained.
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Table 3.5 shows that the 3D MPJPE error for using the 2D estimates is larger

than that for using manual labels. For the hip joint, manual labels by annotators can

be less consistent across frames than the 2D algorithm outputs, which might result in

a large error. Although using manual labels produced higher accuracy than that of

using 2D estimates, the method still achieved greater accuracy than ad-hoc versions of

monocular methods shown in Table 3.3. This illustrates that our proposed approach

is robust to noisy 2D labels and could potentially be scaled for larger datasets using

state-of-the-art 2D visual recognition algorithms.

3.4.4 Qualitative Results

Figure 3.10 shows some representative examples from PedX that illustrate the

uniqueness and variety of our dataset. Our dataset covers various actions and poses

that are frequently encountered at intersections. Examples include walking, jogging,

waving, using a phone, cycling, carrying objects, and talking. Occlusions are another

challenge in estimating 3D pose. Our dataset contains many pedestrian instances

where they are severely occluded by surrounding objects or by other pedestrians. In

addition, most frames of the dataset contain more than one pedestrian at a time.

Our dataset also contains different weather conditions and rare occurrences, such as

people in wheelchairs or pedestrians jaywalking.

3.4.5 Runtime and Sequence Length

Our 3D model fitting approach involves the high-dimensional parameter optimiza-

tion. The runtime of fitting 3D models per sequence goes up as the number of frames

per sequence increases. The number of frames per sequence of a pedestrian vary, and

it is more than a hundred frames for most sequences. To keep the runtime feasible,

we use up to ten neighboring frames per sequence. It takes less than five minutes to

process a single sequence.

3.5 Conclusion

This chapter presented a novel large-scale multimodal dataset of pedestrians at

complex urban intersections with a rich set of 2D/3D annotations. The PedX dataset

provides a platform for understanding pedestrian behaviors at intersections with real-

life challenges. This dataset can be used to solve 3D human pose estimation, pedes-

trian detection, and tracking in the wild, as well as used to further expand the research

on other problems.
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Figure 3.8: Results from using different cost terms. The resulting 3D models in the
temporal walking sequence were projected and overlaid onto the images.

Figure 3.9: Results from monocular SMPLify and from our method.
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Figure 3.10: Representative samples from our dataset. 3D models are rendered onto
the images.
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CHAPTER IV

3D Model Fitting to the Real-World Urban

Intersections

4.1 Introduction

Despite the rapid development of AV technologies in recent years, urban intersec-

tions have remained challenging for AVs to be fully automated mainly because of the

large complexity of urban intersection scenes, which results in a large uncertainty in

the motions of road agents. For further improvements in many data-driven perception

algorithms or testing beds of AV simulations, constructing a wide range of datasets is

critical; however, capturing multimodal data at urban intersections is challenging in

practice. In many urban traffic datasets [3,20–24], for instance, vehicles pass through

an intersection while gathering data. Due to the occlusions and limited view frus-

tum of cameras, the vehicles can only capture data of the partial scene. Moreover,

a limited variety of agent behaviors can be collected during a limited duration of

time. Using bird’s-eye view sensors attached to drones is one of the workarounds

to capture complete intersection data with reduced occlusions and little influence on

road agents [2, 70–73]. However, view frustum and the camera perspective are far

apart from real AVs, so such data might not be appropriate to simulate actual AV

perception sensors.

The PedX dataset [74] provides multimodal data captured at urban intersections

in an AV’s perspective. The capture vehicle was static while collecting data; thus,

the sensors observed diverse behaviors of road agents. In this paper, we extend the

pedestrian-only dataset to include full-scene data. We expand the scope of automatic

labeling to broader scenes, including moving vehicles and static components such as

lanes, buildings, and traffic signs. Given prior knowledge about the map of a static

scene and 3D template models of the rigid objects, we aimed to fit 3D models to all
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Figure 4.1: A reconstructed dense 3D scene rendered from a top-down perspective.
Objects in different categories are shown in distinct colors.

the scene components and reconstruct the entire scene in dense 3D mesh models.

One of the benefits of reconstructing a whole 3D scene is that we can overcome the

challenge of our real data capturing process. During the data capturing process [74],

the capture vehicle was parked at a curb of the intersections. Our captured data

has limited camera perspective images and LiDAR point clouds, lacking variability in

image appearance. Moreover, it is practically challenging to capture real data cover-

ing the entire region of the intersection due to the limited number of sensors placed

concurrently around wide intersections. By placing virtual cameras at arbitrary posi-

tions in a reconstructed scene, we can generate the simulated data, such as semantic

maps, depth images, and LiDAR point clouds. The key difference from the existing

synthetic datasets [25, 75, 76] is that our simulated data is generated using the real

trajectories of dynamic agents in real scene structures.

The contributions of this chapter are: (1) reconstructing urban intersection scenes

using dense 3D models, (2) proposing a distance metric between 3D mesh and a set of

points, (3) simulating real sensors placed at reconstructed scenes, and (4) proposing an

application to solving ego-vehicle trajectory prediction problem using the simulated

data from the reconstructed scenes.
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Figure 4.2: A reconstructed dense 3D scene rendered from varying perspectives.

4.2 Related Work

4.2.1 Real Urban Traffic Datasets

As AVs expand the scope of automated driving to complex urban areas, the impor-

tance of large-scale datasets in natural urban driving scenes increases. Despite many

challenges, there has been extensive research on building urban driving datasets in

recent years.

The KITTI dataset [77, 78] provides a rich set of labels for various perception

tasks of autonomous driving. The data was captured from a moving vehicle equipped

with stereo cameras and a LiDAR sensor. The Cityscape dataset [79] contains stereo

images of a wide urban area with semantic labels. The ApolloScape dataset [20]

also provides sequences of LiDAR points and RGB images captured from a moving

vehicle along with labels for perception tasks. The dataset covers various traffic

conditions with large complexity. The Oxford RobotCar dataset [21] offers data

captured from a vehicle traveling around a city in various weather conditions. The

data was captured while revisiting the same location at different times for evaluating

localization. The BDD100K dataset [22] is a large-scale driving video dataset for

various image recognition tasks.

Datasets more recently released were used as well. The Honda 3D (H3D) dataset [23]

is a large-scale dataset consisting of dense LiDAR point clouds captured at highly
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interactive urban scenes. The dataset provides 3D labels for object detection and

tracking. The Waymo Open dataset [24] contains large-scale multimodal data cap-

tured by a vehicle traveling around a wide range of areas across multiple urban cities.

The dataset provides a rich set of 2D and 3D labels. The nuScenes dataset [3] is a

multimodal dataset captured while a vehicle was operating in dense urban areas. The

dataset provides labels for many tasks, including 3D detection and tracking.

4.2.2 Synthetic Traffic Datasets

In order to reduce the cost of manual labeling, large-scale synthetic datasets have

been publicly released. An automated system based on deep learning algorithms was

proposed [25] to generate synthetic data from the video game. A real-to-virtual world

cloning method is proposed to construct a Virtual KITTI dataset [75] automatically

labeled for many computer vision tasks. The SYNTHIA dataset [76] consists of

synthetic data and semantic scene labels in the context of driving scenarios generated

using the Unity game engine.

4.2.3 Intersection Datasets with Vehicles and Pedestrians

Urban intersection scenes are captured as part of the aforementioned real urban

traffic datasets. Since data is captured from a non-static vehicle traveling in urban

areas, the datasets usually lack the frames to observe interesting behaviors of dynamic

agents at urban intersections. At some frames, vehicles stay static at an intersection,

waiting for the traffic signals. However, in such cases, vehicle motions are likely to

be more dependent on traffic signals rather than other agents.

Capturing multimodal data covering an entire intersection is challenging in prac-

tice. A vehicle traveling an intersection can only capture partial data during a limited

duration of time. Moreover, urban intersections are usually too wide to cover with a

limited number of sensors. Even if many sensors are available to use, calibrating and

time-synchronizing all the sensors is troublesome.

One of the most common ways to gather meaningful intersection data is to cap-

ture bird’s-eye view data using drones or installing sensors at a fixed height. The

inD dataset [2] provides video recordings of unsignalized real urban intersections cap-

tured from a camera-equipped drone. The trajectories of road users are labeled using

deep learning algorithms. CITR and DUT datasets [70] were constructed to capture

vehicle-crowd interaction (VCI). The CITR dataset was captured with controlled

VCI scenarios, while the DUT dataset consists of natural VCIs in crowded university
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campus. While a little different from intersections, several roundabouts datasets exist

with vehicles and pedestrians in real driving scenes [71–73].

By capturing top-down view data, the influence of capturing process on the be-

havior of road agents can be reduced, and the occlusion of target objects can be

minimized. Nevertheless, one downside of collecting bird’s-eye view data is that view

frustum and perspective are far apart from those of real AVs. Most AVs have per-

ception sensors such as rotating LiDAR sensors and cameras on their roofs.

4.2.4 Pedestrian Trajectory Prediction

The problem of predicting future pedestrians’ trajectories has been explored in

many recent studies with a growing number of applications, from social robot navi-

gation to autonomous driving. However, predicting the trajectories of pedestrians is

a challenging problem, especially in crowded environments, because complex interac-

tions cause high uncertainty of future pedestrians’ motions. One of the most recent

breakthroughs to tackle the trajectory prediction problem has been made by formu-

lating the problem as a sequence generation task using recurrent neural networks. In

recent studies, various types of observations have been considered for prediction: the

past spatial coordinates, contextual information about agents’ surroundings, and the

information about their destinations.

Social Interactions: As one of the most important contextual cues, social inter-

actions between pedestrians have been considered in multiple recent works [80–84].

To model the social intersections, social pooling layers have been widely used [80–82]

to capture dependencies between sequences of other nearby pedestrians. The so-

cial pooling mechanisms enable networks to learn human-to-human interactions and

jointly predict all the pedestrians’ trajectories in a scene. As another way of mod-

eling human-to-human interactions, attention layers have been introduced to predict

future trajectories where pedestrians in a sequence are modeled as a spatio-temporal

graph [83–89]. While the social pooling-based architectures uniformly weigh other

pedestrians, modeling pedestrians using a spatio-temporal graph with attention lay-

ers puts different weights on other pedestrians.

Static Scene Context: As another type of contextual information, static scene

context has been incorporated as additional inputs [82, 83, 90–93]. Pedestrians’ tra-

jectories can be affected by scene components, from static obstacles to background

scene information. For example, pedestrians can change their trajectories to avoid
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static obstacles or non-reachable areas. Scene characteristics can also affect the tra-

jectories. To incorporate scene context, scene-scale information was directly extracted

from input images [82, 90, 92]. Instead of raw images, simplified images, such as HD

maps, have been used to extract scene context [88,94] for predicting future trajecto-

ries.

Other Context: In addition to social interactions and the scene context, some

other forms of information have been explored. For example, considering pedestrians’

view frustum was proved effective for trajectory prediction to simulate the limited

visibility of pedestrians in actual scenarios [95]. First-person view images rendered

using a synthetic simulator FvSim were proved effective to improve the trajectory

prediction [96]. Pedestrians’ long-term destination or vehicle’s ego-agent motion plans

have been recently considered [88, 97, 98] to explain the inherent multi-modality of

human trajectories.

4.2.5 Vehicle Trajectory Prediction

There exist a few notable differences between vehicle and pedestrian trajectory

prediction. Vehicle trajectory prediction algorithms usually produce predictions in

longer time horizons than pedestrian ones due to faster speeds. Also, vehicle trajec-

tory is generally considered more straightforward than pedestrian due to less uncer-

tainty and complexity. That is because vehicles have limited maneuvers in practice,

which limit their short-term motions. Also, the vehicles without any traffic viola-

tions stay on lanes or drivable areas. Despite the differences, the vehicle trajectory

prediction can be tackled using approaches similar to the pedestrian trajectory pre-

diction with vehicle scene datasets [94,99–105]. Alternatively, there has been work to

jointly predict trajectories for heterogeneous traffic agents, including vehicles as well

as pedestrians [85,106].

As one of the key features for vehicle trajectory prediction, many recent works

have focused on the multimodality of vehicle trajectories. For example, vehicle motion

is classified into semantically interpretable maneuver classes to predict future vehicle

trajectories conditioned on each maneuver class [99, 102, 107, 108]. Destination or

planning have been coupled to predict future vehicle motions [105].
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Table 4.1: A list of scene components in our selected intersections.

Background Static objects Dynamic objects

Ground

Lanes

Sidewalks

Crosswalks

Parking lots

Buildings

Trees

Lampposts

Road poles

Traffic signs

Trash bins

Bike racks

Pedestrians

Vehicles

4.2.6 Ego-vehicle Trajectory Prediction

The trajectory prediction problem has been formulated in a slightly different set-

ting with ego-vehicle [109] perspectives. Instead of predicting future trajectories of

observed road agents, the problem aims to predict short-term future trajectories of

the ego-vehicle. It is beneficial to compute the probabilities of ego vehicle trajec-

tories for collision avoidance and also for short-term driver assistance. It can be a

meaningful signal to AV planning.

4.2.7 Datasets for Trajectory Prediction

Common benchmark datasets for pedestrian trajectory prediction consist of 2-

dimensional spatial coordinates of agents from a Bird’s-Eye View (BEV) along with

RGB images [110], Traffic datasets exist that contain multiple object categories, in-

cluding pedestrians and vehicles [2, 3, 20, 106]. The BEV images [2] or perspective

view images [3, 20] are provided for those datasets.

4.3 Dense 3D Reconstruction

Urban intersections consist of many objects, from static objects such as buildings

and traffic signs, to dynamic objects, including pedestrians and vehicles. In addition

to volumetric objects, other components comprise the background of the scene, such

as the ground and crosswalks. We have selected the objects observed from our urban

intersections and are likely to affect the actions of dynamic agents. Table 4.1 shows

the list of scene components.

In this section, we summarize the characteristics of each scene component and

present the process of our dense 3D reconstruction based on model fitting.
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Figure 4.3: Ground plane fitting. Points on the ground (black), points not on the
ground (gray).

4.3.1 Scene Background

4.3.1.1 Ground Fitting

Our data covers a wide area at an intersection. We fit a single plane to the

ground for simplicity while the actual ground plane has an uneven surface. We

manually segment the 3D points on the ground plane and find the plane parameters

that minimize the root mean squares (RMS) error:

a∗, b∗ = argmin
a,b

N∑
i=1

(
xTi a+ b

)2
(4.1)

P =
{
z ∈ R3 | aT z + b = 0

}
(4.2)

where N is the number of points in the segmented point cloud, xi is the coordinate of

the ith point, and a and b define the 3D ground plane P . The least-squares solution

gives the plane parameters.

4.3.1.2 Lanes, Sidewalks and Crosswalks

Non-volumetric objects, such as lanes, sidewalks, and crosswalks, do not occupy

3D space. We represent these planar objects as plane segments on the ground plane.

For each of our intersections, we fit two lanes, four sidewalks, and four crosswalks.

(Figure 4.4)

Priors on lanes, sidewalks, and crosswalks encode reachable areas for dynamic

agents in a scene. These planar components can be one of the critical signals for
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Figure 4.4: An example rendered view of a scene from the camera placed 500m away
from the ground and heading towards +z direction of the global coordi-
nate frame. Lanes, sidewalks, and crosswalks are shown in orange, blue,
and green.

vehicles or pedestrians to decide their trajectories. For example, sidewalks are not

for driving; thus, vehicles do not pass on them. Pedestrians and vehicles usually slow

down their speed before crosswalks to check their safety.

4.3.2 Static Objects

Our intersection scenes contain multiple types of static objects. For the objects

with a rigid shape, such as lampposts, road poles, traffic signs, and trash bins, we

collected the template 3D mesh models from the existing dataset [111]. Since the 3D

models from the dataset are normalized to fit into a unit sphere, we scaled the models

to fit into the real-world metric space.

For the buildings and other objects that are not supported by the existing datasets,

we created our own triangulated mesh models using one of the open-source computer

graphics softwares [112].
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Figure 4.5: Before (green) and after (purple) the refinement

4.3.3 Dynamic Objects

4.3.3.1 Pedestrians

We use 3D pedestrian mesh models from the PedX dataset [74]. To make the

models consistent with the reconstructed scene, we adjusted the models by enforcing

a few constraints given by the known scene structure.

Assuming that no pedestrians jump in the air or stay floated above the ground,

we enforce the bottom-most vertex of a pedestrian mesh to be right above the ground

plane with added translation. The bottom-most vertex vb is determined as follows:

vb = argmin
v∈Mesh

(v− v)T n̂ (4.3)

where v is the centroid of all the vertices on the mesh surface and n̂ is the unit normal

vector of the ground plane P towards the sky. To snap the model to the ground, we

shifted the mesh model by the following amount:

∆v = vb,P − vb = −(vb − xP)Tn (4.4)

where the vb,P is the bottom-most vertex snapped to the ground plane P . (Figure 4.5)

To ensure the pedestrians do not overlap with the reconstructed scene, we generate

the ground-level occupancy map and check the occupancy. The map encodes whether

any static object occupies the ground surface. Note that the shape of most objects is

not uniform. For example, trees only take up a small area on the ground plane while

occupying a large area from the top-down perspective. To make the map encode

only the ground-level occupancy, we slightly shift the ground plane along the normal

direction to slice the meshes of all the static scene components. Projecting the sliced

44



Figure 4.6: An example ground-level binary occupancy map.

mesh onto the ground plane gives the occupancy map. (Figure 4.6)

4.3.3.2 Vehicles

We make several assumptions on vehicle motions at our unsignalized intersections.

We assume that vehicles do not move backward while passing through the intersec-

tions. All the vehicles are assumed to follow the traffic rules and standard norms such

that they follow the driving lanes, temporarily stop before the stop sign and avoid

hitting other objects. The vehicles are also assumed to move parallel to the ground

plane. We ignore the vehicles parked alongside curbs.

Many subcategories exist for vehicles. Following the subcategories defined in sev-

eral existing 3D object benchmark datasets [111, 113], we consider the vehicle sub-

categories shown in Figure 4.7. We present the details of the vehicle model fitting

process in Section 4.4.

4.4 3D Vehicle Fitting

Given a sequence of data frames consisting of stereo images and LiDAR point

clouds, our vehicle fitting process aims to localize moving vehicles in a scene, estimate

their pose, and fit 3D template models. We perform the vehicle fitting in the following

steps: point cloud segmentation, global trajectory fitting, pose estimation, and 3D

model fitting. The entire pipeline for the 3D vehicle fitting is depicted in Figure 4.8.
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Figure 4.7: Template 3D vehicle models

Figure 4.8: Pipeline of fitting 3D vehicle mesh models.

The pose of a vehicle is represented in terms of translation and heading orienta-

tion. 3D template models are fitted to the instances of moving vehicles with addi-

tionally knowing vehicle subcategories. The translation and heading orientation are

represented as three-dimensional unit vectors defined in the PedX global coordinate

frame. Note that the LiDAR point clouds reside in the same coordinate frame.

4.4.1 Point Cloud Segmentation

We begin with segmenting distinct vehicle instances from LiDAR point clouds.

With the known geometry of a scene from the reconstructed 3D scene models, we

first remove the points that belong to the scene backgrounds. For example, the points

below the ground plane or the points whose height is larger than the vehicle height can

be discarded. Using the known positions of static objects from the reconstructed 3D

scene models, the points projected onto the sidewalk or other static objects from the

top-down perspective can also be deleted because vehicles do not pass the sidewalks

and are unable to share the space with other objects. To finally identify the points

that belong to each instance, the points are projected onto the image planes and are

compared with instance-level 2D polygon labels on camera images.
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Figure 4.9: Point cloud segments (blue) show smooth trajectory over time.

4.4.2 Global Trajectory Fitting

After obtaining instance-level point cloud segments for all the frames in a se-

quence, we fit a polynomial to find the long-term global trajectory of a vehicle. The

fitted global trajectory is used to initialize the heading orientation of vehicle instances

in a sequence. Unlike the pedestrians, vehicles do not change their heading orienta-

tion rapidly due to their faster speed and rigid object shape. Therefore, heading

orientations tend to be consistent with the global trajectory, as shown in Figure 4.9.

Based on the fitted global trajectory, we initialize both heading orientation and

translation vectors of a vehicle by interpolation, which we denote by h0 and x0.

4.4.3 3D Model Fitting as Optimization

The previous steps of segmenting point clouds and fitting global trajectories in-

volve some errors due to the noise in 2D polygons and partially observed LiDAR

points. To find the heading orientation and translation vectors of a consistent vehicle

to the LiDAR points and the reconstructed scene models, we fit 3D vehicle mesh

models to the sequence.

Since vehicles move parallel to the ground plane, we enforce heading orientation

vectors and the difference in two consecutive translation vectors parallel to the ground
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Figure 4.10: An instance-level 3D vehicle fitting by snapping the model to the point
cloud segment. The vehicle in gray represents our capture vehicle where
the origin of global coordinate frame is located. The red and green
vehicles show the fitting results before and after snapping to the point
cloud segment.

plane. By enforcing the ground plane constraint, we can reduce the 3D model fit-

ting problem as an optimization problem in 2-dimensional translation and heading

orientation vectors. In this subsection, we propose multiple prior terms to formulate

the optimization problem over the translation and heading vectors of a vehicle in a

sequence.

4.4.3.1 Notation

We represent the translation and heading vectors in the world coordinate frame

as xW
t and hW

t at time t. Note that the z-axis of the world coordinate frame does

not perfectly align with the ground normal. Using the rigid body transformation in

SE(3), we transform the vectors to the coordinate frame where the z-axis is parallel

to the ground normal and its origin is on the ground plane:

xG t = G
WR
(

xW
t − O

W
G

)
∈ R3 (4.5)

where W and G denote the world coordinate frame and the coordinate frame whose

z-axis is aligned to the ground plane normal, respectively. xG t is the position of the

vehicle center in the frame G and G
WR ∈ SO(3) is the rotation matrix that converts

the coordinates from the initial world frame W to the frame G. O
W

G represents the

origin of the frame G observed in the frame W . We use O
W

G = [0, 0, z]T which is a

point on the ground plane.

We can obtain the 2-dimensional vector projected onto the ground plane by taking
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the first two components of xG t:

xP t =

[
1 0 0

0 1 0

]
xG t ∈ R2 (4.6)

Conversely, the 2-dimensional vector xP t can be converted back into the three-

dimensional vector in the world frame using known height z of the vehicle center

from the ground plane:

xW
t = W

GR

[
xP t

z

]
+ O

W
G (4.7)

Similarly, the 2-dimensional heading vector hP t projected onto the ground plane can

be converted into the three-dimensional vector in the world frame. Since the heading

vectors are parallel to the ground plane, we can ignore the z component by setting

z = 0 in (4.7):

hW
t = W

GR hG t = W
GR

[
hP t

0

]
(4.8)

A sequence consists of T continuous frames. For simplicity, we represent the

concatenation of T continuous translation and heading vectors as:

x1:T =


x1

x2

...

xT

 , h1:T =


h1

h2

...

hT

 (4.9)

In the following sections, we introduce the constraints on translation and heading

vectors used to formulate the optimization problem over x1:T and h1:T−1. Note that

we skip optimizing the heading vector of the last frame at time t = T by assuming

hT−1 = hT .

4.4.3.2 Vehicles Never Heading Backwards

Since our captured data does not contain any traffic violations, we assume all the

vehicles do not move backward. The constraint can be written as (4.10). To enforce
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this constraint, we minimize the term in (4.11):

hTt (xt+1 − xt) ≥ 0 (4.10)

Eforward(x1:T ,h1:T−1) =
T−1∑
t=1

(
−hTt (xt+1 − xt)

)
+

where (x)+ = max{x, 0} (4.11)

The gradient vectors of Eforward can be evaluated as follows:

∂Eforward
∂xt

=


ht · 1t if t = 1

ht · 1t − ht−1 · 1t−1 if 1 < t < T

−ht−1 · 1t−1 if t = T

(4.12)

∂Eforward
∂ht

= −(xt+1 − xt) · 1t

where 1t =

1 if − hTt (xt+1 − xt) > 0

0 otherwise
for 1 ≤ t < T (4.13)

4.4.3.3 Consistency between heading and translation vectors

To enforce a vehicle to translate parallel to its heading direction, we correlated

translation and heading vectors as the following relation:

ht || (xt+1 − xt) (4.14)

where ht is a heading vector at frame t with ‖ht‖2 = 1. We can rewrite this constraint

in a quadratic form by relaxing it:

0 ≤ (xt+1 − xt)
Tht ≤ ‖xt+1 − xt‖2 (4.15)

(xt+1 − xt)
THt (xt+1 − xt) ≥ 0 (4.16)

Ht = I2 − hth
T
t (4.17)

for ∀t ∈ {1, . . . , T − 1}. I2 is a 2 × 2 identity matrix. For all the translation and

heading vectors in a sequence, we can further simplify the constraint:

Eparallel(x1:T ,h1:T−1) = xT1:T Hparallel x1:T (4.18)
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which has a quadratic form in terms of x1:T . The term (4.18) becomes zero when

(4.14) holds for all t. The matrix Hparallel is defined as follows:

Hparallel =



H1 −H1 0 · · · 0 0 0

−H1 H1 +H2 −H2 · · · 0 0 0

0 −H2 H2 +H3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 −HT−2 0

0 0 0 · · · −HT−2 HT−2 +HT−1 −HT−1

0 0 0 · · · 0 −HT−1 HT−1


(4.19)

The gradient vector of Eparallel can be evaluated as follows:

∂Eparallel
∂x1:T

= 2Hparallelx1:T (4.20)

4.4.3.4 Distance Between Point Cloud and Mesh

To make the fitted 3D vehicle models close to the point cloud segments from

LiDAR sensors, we define the distance between a point cloud and a vehicle mesh in

three-dimensional space as follows:

E3D(x1:T ,h1:T ) =
T∑
t=1

d(St,M(xt,ht)) (4.21)

d(St,M(xt,ht)) =
1

|St|
∑
p∈St

‖vp(xt,ht)− p‖2
2 (4.22)

vp(xt,ht) = argmin
v∈M(xt,ht)

[
1− (v − xt)

T (p− xt)

‖v − xt‖2‖p− xt‖2

]
(4.23)

whereM(x,h) is a vehicle mesh transformed with heading h and translation x ∈ R3,

and v ∈M is a point on the mesh surface. vp returns the point on the mesh surface

M that corresponds to the point p ∈ St. The corresponding point on the mesh is

computed in (4.23) by extending the point p ∈ St along the ray from xt, and finding

the point on the mesh that intersects with the ray.

In (4.21), the three-dimensional vectors in the world coordinate frame can be
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computed as follows:

xWt = W
GR∗,1:2 xt + z W

GR∗,3 +OW
G (4.24)

hWt = W
GR∗,1:2 ht +OW

G (4.25)

where z is the height of the vehicle center from the ground plane, which is a single

constant for each template mesh model since we use a single vehicle model across a

sequence, and the fitted vehicles are assumed to be on the ground plane.

4.4.3.5 Heading Smoothness Prior

Since vehicles do not rapidly change the heading orientation between frames, two

neighboring heading vectors are close. We minimize the following term to enforce

neighboring heading vectors to be similar:

Esmooth(h) =
T−1∑
t=1

‖ht+1 − ht‖2
2 = hTAsmoothh (4.26)

where Asmooth =



I −I 0 · · · 0 0

−I 2I −I · · · 0 0

0 −I 2I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2I −I
0 0 0 · · · −I I


∈ R2T×2T (4.27)

h =


h1

...

hT

 ∈ R2T (4.28)

4.4.3.6 Optimization Solver

We minimize the sum of aforementioned objective terms to find the optimal trans-

lation and heading vectors:

minimize
x1:T ,h1:T−1

E (x1:T ,h1:T−1) (4.29)

E = wpEparallel + wfEforward + wrEraytrace + wsEsmooth (4.30)
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(a) (b)

Figure 4.11: (a) An object-centered coordinate frame of the 3D vehicle models from
the ObjectNet3D dataset (b) The world coordinate frame of the PedX
dataset shown with our capture vehicle.

where we used wf = 100, wp = 10−2, wr = 10−4 and ws = 10−3. We used larger

weights for the Eforward and Eparallel terms than the others. We enforced the first two

constraints harder because the movement looks less natural and smooth when the

vehicle poses violate those terms. For the Eraytrace term, LiDAR point clouds often

contain outliers, so we use smaller weights for this term.

We use one of the first-order gradient-based solvers (BFGS algorithm) to optimize

all the pose vectors in a sequence jointly. The solver converges to reasonable solutions

with good initial poses from the fitted global trajectories.

4.4.3.7 3D Model Alignment

Once we compute the transition and heading orientation vectors, the final step

is to align one of the template 3D mesh models according to the estimated vehicle

poses. The coordinate frame of the ObjectNet3D template models are depicted in

Figure 4.11a. We apply the following transformation to the vertices of template mesh

models to align the model to the estimated translation and heading vectors Gh and
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Gx:

A =
[

Gx̂ Gŷ Gẑ
]

(4.31)

B =
[
− Gh× Gẑ − Gh Gẑ

]
(4.32)

O
GR = A BT (4.33)

O
GH =

[
O
GR − O

GR
Gx

O1×3 1

]
(4.34)

4.5 Experiments

4.5.1 Verification of The Vehicle Models

To validate our model-fitting pipeline, we projected the estimated 3D models onto

the image planes and computed the distance between the 2D segmentation masks and

the projected models. The 2D segmentation masks are obtained from the manually

labeled 2D polygons. As a distance metric between the 2D segmentation masks and

the projected 3D models, we used an Intersection-over-Union (IoU). Table 4.2 shows

the results.

Due to the constraints enforced when fitting models, the IoU computed using 2D

segmentation masks was low. The degraded IoU mainly comes from several assump-

tions that we made. To make the densely reconstructed 3D scene models consistent,

we snapped the vehicle models onto the ground plane. This makes a slight devia-

tion from the actual vehicle poses. Moreover, we used one of the template vehicle

models for fitting, which cannot represent the actual vehicles with various shapes and

sizes. As a slightly relaxed metric, we computed the IoU using 2D bounding boxes

around the vehicles’ visible pixels, which resulted in a higher value than the IoU with

segmentation masks.

To validate the estimated vehicles poses in sequences, we compute the amount of

violations for the constraints (4.10) and (4.14). Table 4.3 shows the values close to 1,

which means the constraints have been mostly met.

4.5.2 Verification of The Reconstructed Scene Models

To validate the densely reconstructed 3D scene models, we simulated the LiDAR

sensors to generate point clouds and compare the structure with the point clouds cap-

tured by real LiDAR sensors. The two sets of point clouds are aligned and visualized

in Figure 4.12. The simulated point clouds are aligned well with the captured data
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Table 4.2: IoUs computed using 2D segmentation masks and 2D bounding box labels.

IoU with segmentation masks IoU with 2D bounding boxes

0.67 0.8

Table 4.3: The amount of violations for the constraints.

Eforward (4.10) Eparallel (4.14)

0.95 0.97

from real LiDAR sensors. In contrast, the simulated data looks slightly denser and

cleaner due to fewer disturbances from external noise sources such as sunlight and

reflective surfaces.

4.5.3 Simulating Data From an Agent’s Perspective

One of the weaknesses of the PedX dataset is that the data was captured from a

static view. The LiDAR returns thereby do not cover the full 3D scene information

due to the occlusions. To overcome those restrictions, we implemented a system that

can generate simulated data using virtual sensors. Given our 3D scene models, we

can place cameras at any arbitrary location in the real metric space. Since we do not

consider textures and materials for our 3D meshes, we placed virtual depth cameras

in a scene.

Figure 4.13 shows example results when we placed a virtual camera inside one

of the moving vehicle models with known trajectory. Since we are given object tra-

jectories from real scenarios, our simulated data is more realistic compared to other

synthetic datasets. By rendering the 3D mesh models, we can obtain dense depth

maps. Also, by rendering each distinct instance and finding the depth ordering, we

can determine the semantic label images.

To simulate LiDAR point clouds, we uniformly generated vertices on the sphere

within the vertical FOV range. Figure 4.14 shows the process of simulating a Velodyne

HDL-32 LiDAR sensor, which consists of 32 vertical rings within a 40◦ vertical FOV

and has a maximum range of 100 m. Among the vertices on the sphere surface, we

first found the points within the camera’s view frustum. Those vertices were projected

onto the camera image plane. Note that not all the points reach to the image planes

due to the occlusions by 3D object meshes. To simulate a 360◦ rotating LiDAR sensor,

we repeated the same process while rotating the virtual camera around the rotating
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Figure 4.12: Comparison of real and simulated point clouds. Points from real LiDAR
sensors are shown in black, and the simulated points are colored-coded
based on the distance from the LiDAR origin.

axis.

4.5.4 Ego-Vehicle Trajectory Prediction

Predicting future trajectories of road agents is one of the critical components in

many AV systems. Given the sensor inputs or perception results as inputs, future

prediction can help improve safety and assist planning. However, predicting future

states is challenging, especially in urban scenarios where multi-agents coexist with

complex interactions.

There has been much progress in solving the trajectory prediction problem, partic-

ularly in scenes with pedestrians. Vehicle trajectory prediction has also been explored

using approaches similar to the pedestrians. The underlying assumptions in the most

recent work are that the trajectories of all the road agents are observable. To be
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Figure 4.13: Instance-level label images and depth maps captured by a virtual camera
placed at one of the moving vehicles.

Figure 4.14: Simulating a 32-beam LiDAR sensor. Points that belong to different
rings are shown in distinct colors.
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specific, most trajectory prediction datasets consist of 2-dimensional spatial trajec-

tories, BEV images of the entire scene, or top-down view HD maps. For example,

some trajectory datasets were collected using drones [2, 18] to acquire trajectories

with complete visibility and reduced influence by road agents. For the datasets col-

lected using a running vehicle, the trajectories are manually labeled in LiDAR point

space [3, 20].

Thinking of AVs in reality, however, BEV images are not readily available because

sensors are generally equipped around the roof of vehicles. Even if we can obtain the

track annotations by applying the perception algorithms to raw sensor data, the

ultimate goal of future predictions might be to assist drivers or AVs in reducing

potential risks while following the long-term route produced by the planning system.

This section introduces the ego-vehicle trajectory prediction problem as one po-

tential application of our generated data. We experimented with a simple recurrent

model to predict future trajectories using perspective images. Since there is no ex-

plicit modeling of the complex interactions with surrounding objects or tracking all

the surrounding road agents, we suggest an approach to predict potential short-term

future risks.

Figure 4.15 describes our proposed first-person trajectory prediction network.

Given a sequence of past spatial coordinates and first-person view images, we aimed

to predict the potential future trajectory in terms of spatial coordinates. As first-

person view images, we propose using pixel-level segmentation label maps instead

of RGB images due to the lack of RGB images in our ParametricX dataset. The

network has an encoder-decoder structure. For the encoder to process and encode

the observed past information, we used two separate LSTMs, one for encoding the

observed spatial trajectory and the other for processing the observed scene images in

terms of depth maps and pixel-level segmentation maps. The hidden states from the

encoder were concatenated and fed into the decoder. An additional LSTM was used

for the decoder to produce future predictions.

As a baseline, we also trained the Trajectron++ [88] model to solve multi-agent

trajectory prediction problems. We trained the basic model by using spatial trajec-

tories of all the road agents in a scene. Prior global maps are assumed to be not

given.

The Waymo Open dataset [24] was used to train the networks because it provides

a large number of ego-vehicle trajectories with semantic frame data. We sampled the

data in 2Hz and formulated the problem to predict the future trajectories for the sub-

sequent 6 frames given the maximum 8 past frames. Since the Trajectron++ model
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Table 4.4: Comparison of the ego-vehicle trajectory prediction results with Waymo
Open dataset.

Dataset Trajectron++ Ours
ADE 0.65 1.07
FDE 1.71 1.94

Figure 4.15: Ego vehicle trajectory prediction network overview.

outputs future trajectories for all the existing road agents, we take the predictions

for the ego vehicle when evaluating.

Table 4.4 shows the results. We report two metrics as in many prior works:

Average Displacement Error (ADE) and Final Displacement Error (FDE). ADE is

the average Euclidean distance between the predicted trajectory and the ground truth.

FDE is the Euclidean distance between the final positions of the predicted and the

ground truth trajectories.

4.6 Conclusion

We have presented an urban intersection dataset with dense 3D mesh models

fitted to the entire scene. The data was captured at real unsignalized urban intersec-

tions using LiDAR and camera sensors from a static perspective. To overcome the

challenges of gathering large-scale data at complex urban intersections, we propose

ways to augment the raw capture data from reconstructed synthetic 3D scene mod-

els. Sensor data, such as LiDAR points, depth images, and semantic maps, can be

generated by placing sensors at arbitrary locations within an intersection area.

While many urban traffic datasets for AVs have been recently released, not all the

datasets are usable since configurations and specifications of sensors vary on different
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AV platforms. The realistically simulated data that was generated based on real scene

geometries and trajectories can be one initial step to build cross-platform datasets.

We also show a simple application to predict future trajectories of an ego vehicle.

By predicting short-term future trajectories of a vehicle itself, the ego-vehicle trajec-

tory prediction problem can aid human drivers or self-driving cars by detecting any

abnormal short-term movement of the vehicles. Similar approaches can be applied in

other domains if data becomes available. For example, it can be extended to navigate

short-term paths for blind individuals with holding sensors.
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CHAPTER V

Towards Realistic 3D Scene Models

5.1 Introduction

In Chapter IV, we performed the dense 3D reconstruction of urban intersections

by fitting mesh models. The reconstructed scene models can generate simulated

data to augment the dataset and overcome the cost of capturing and labeling real

data. However, the mesh models used were texture-less with no materials applied.

LiDAR points and labels can be easily simulated, but RGB cameras cannot be mocked

using incomplete mesh models. To explore any solution to overcome this limitation,

we looked into understanding the intrinsic properties of a scene. Many factors are

required to achieve realistic and natural rendering from 3D models, from lighting and

illumination to texture and material. This chapter can be a preliminary step towards

a more realistic reconstruction of 3D scene models.

Understanding the intrinsic properties of a scene, such as illumination, lighting,

material, texture, and reflectance, is critical for many vision-based robotic applica-

tions. The ability to estimate these properties is of great benefit for navigation,

grasping, segmentation, and classification. The inability to disambiguate these prop-

erties may hamper robot performance in feature matching, object recognition, and

3D reconstruction. However, inferring the underlying intrinsic properties of a scene

from an image is an ill-posed problem because many possible combinations of such

properties can explain an image. Moreover, it is challenging to gather ground truth

because measuring reflectance and shading from real-world data requires carefully

calibrated laboratory equipment.

Prior work has mostly explored this problem from a single image using generative

learning frameworks [4, 5]. They typically address the problem as an energy mini-

mization task with constraints on reflectance and shading. The approaches in the

literature are not real-time, taking upwards of one minute per frame. There have
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been attempts to estimate intrinsic image sequences from video [114, 115] in which

the authors consider additional temporal constraints to improve consistency between

frames. These methods are not suitable for robotic deployment as the processing re-

quires forward and backward traversal through the video stream instead of the frame

by frame processing. Additionally, the computation time is too high for practical use

in a robotic system. In general, little prior research has directly addressed intrinsic

image decomposition for robots.

This chapter aims to recover the intrinsic properties from a stream of RGB-D im-

ages that could come from a mobile robot or another moving platform. We propose

a novel pipeline to tackle the intrinsic image decomposition problem by formulat-

ing it as an estimation problem. Rather than attempting to solve complete image

decomposition at every frame, our proposed framework accumulates and propagates

evidence on intrinsic properties over time to make use of the knowledge from past

frames. We integrate state-of-the-art features into a Bayesian estimation pipeline to

produce competitive results in a fraction of the time of a single-shot intrinsic image

estimation technique. The contributions of this chapter are as follows: 1) we propose

a novel architecture for recursive intrinsic estimation; 2) we reduce the running time

of RGB-D stream image decomposition by order of magnitude from the state-of-the-

art; 3) using a novel quiver of features to measure the similarity of the intrinsic of

different image regions, we enforce much greater temporal consistency across frames;

and 4) we provide a quantitative and qualitative evaluation of the proposed technique

on real data and simulated data with ground truth.

This chapter is organized as follows: In Section 5.3, we first describe the proposed

system. In Section 5.4, we discuss details about how we formulate the intrinsic image

decomposition as an estimation problem. We present our resulting images and com-

pare the results with other baseline methods in Section 5.5. Section 5.6 discusses the

conclusions drawn and addresses future work.

5.2 Related Work

5.2.1 Intrinsic image decomposition

The intrinsic image decomposition problem aims to separate an image into shading

and reflectance layers. The reflectance map shows how light is reflected by the object’s

surface, irrespective of viewpoint, geometry, and illumination. The shading map

encodes the shading effects due to geometry, shadows, inter-reflections, etc. The most

common intrinsic image model states that an image I is the element-wise product of
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the reflectance map R and the shading map S as follows:

Ii = Ri × Si for all pixels i (5.1)

While the intrinsic image decomposition problem has long been studied, it still

remains one of the most challenging problems in the field. Most related papers are

based on a generative learning framework, formulated as a Conditional Random Field

(CRF), with priors on the piecewise-constancy of the reflectance map, the smoothly

varying nature of the shading map [4], and relative reflectance prior learned through a

data-driven approach [5]. Narihira et al. [116] recently presented a novel framework to

perform the pixel-wise prediction of intrinsic images by relying on a fully convolutional

neural network trained with synthetic dataset. However, due to the lack of sufficient

non-synthetic training data, it does not show competitive results with real images.

5.2.2 Decomposition from RGB-D image or video

To tackle the intrinsic image decomposition task, several papers have attempted

to consider additional cues such as 3D scene geometry [117–120] and temporal con-

straints [114,115,121] for processing RGB video data. They leverage these additional

cues as means of further constraining the ill-posed image decomposition problem.

Noisy depth maps have demonstrated utility for joint estimation of many intrinsic

factors [117,118]. Chen et al. [119] incorporate depth cues by separating the shading

term further into direct irradiance, indirect irradiance, and illumination color maps.

Surface normal has been also shown to improve the quality of resulting decomposi-

tions as incorporated in the shading prior. [120, 122]. Lee et al. [114] suggest novel

constraints for estimating intrinsic image sequences from RGB-D video which take

advantage of 3D geometry and temporal cues from RGB-D video [115]. An intrinsic

video method [121] has been proposed to extract temporally coherent albedo and

shading by exploiting optical flow. However, all these methods require an order of

minutes making them inapplicable for real-time robotic systems.

5.2.3 Real-time Vision Processing

Several prior works have used a probabilistic framework to solve vision tasks in

real-time. We drew on the rich body of literature in this domain to build our approach.

Held et al. [123] propose a real-time point cloud segmentation method using a proba-

bilistic framework. They partition the entire point clouds into smaller segments and

make successive decisions whether to split each segment or merge multiple segments
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Figure 5.1: The pipeline of our proposed framework to estimate intrinsic images from
RGB-D streams. The diagram summarizes each step with sample inter-
mediate outputs during the interval [t, t+ 1).

into a larger one. While our task is different from Held et al., the formulation for our

framework is motivated by this work. Miksik et al. [124] made pixel-wise predictions

from streaming data for semantic scene understanding as opposed to the image de-

composition problem being addressed here. They propagate redundant information

across frames to increase both temporal consistency of the pixel-wise prediction and

the efficiency of the proposed approach.

5.3 System Overview

This section presents an overview of the proposed pipeline. Figure 5.1 summa-

rizes a single iteration of the proposed approach that generates intrinsic images from

a stream of RGB-D frames. We follow a similar process to the Bayes filter [125]

algorithm where the belief about a state is recursively calculated over time using

measurement and control data.

At the start of the iteration during [t, t + 1), we are given the resulting intrinsic

images from the previous frame t − 1. Given a raw RGB-D frame at time t, we

first initialize the framework by partitioning pixels into disjoint segments. Next we

generate segment proposals that consist of either a single reflectance or a pair of

distinct reflectance values. For each segment proposal, beliefs are being tracked over

time. In the prediction step, we assign proper reflectance values to each segment by

using the resulting reflectance map from the previous iteration. The beliefs are also

transferred from previous segments to the corresponding segments at a current frame.

The next step in the pipeline obtains measurements for each segment proposal.

The measurement is a new observation for each segment at time t, which will be
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used to update the belief in the subsequent step. We extract several features for

both unary and pairwise segment proposals (see Section 5.4.6). Using computed

measurement likelihoods, we finally update the beliefs for each segment proposal and

determine whether to perform splitting and merging in a step we refer to as palette

management (see Section 5.4.5). After repeating merging operations, we obtain the

final reflectance map. As we process the image on the segment level instead of pixel

by pixel, the reflectance image loses details, such as texture, and the shading map

may contain severe discontinuities around segment boundaries. After passing through

a simple post-processing step at the end of an iteration, we obtain the final intrinsic

decomposition of an image. In the following sections, details of each step will be

discussed.

5.4 Probabilistic Framework

The details about the problem formulation and the probabilistic framework are

discussed in this section. The images presented in this section are taken from the

living room dataset used in the ICL-NUIM RGB-D benchmark [126], which provides

a sequence of RGB-D frames with the ground-truth camera trajectory.

5.4.1 State representation

At each frame, we observe an RGB image with the corresponding depth map. We

group the image pixels into n disjoint subsets of distinct reflectance values. Let St

denote a set of disjoint subsets that compose the frame at time t such that:

St = {s1
t , s

2
t , . . . s

n
t } (5.2)

where sit represents the ith reflectance segment in the frame at t. Note that pixels

within a segment share the common reflectance. For each segment sit, we define the

state variable xit and the measurement variable zit. The state is a binary indicator

where xit = 1 if the pixels in sit correspond to a single reflectance, and xit = 0 if the

pixels belong to more than one reflectance values. The measurement variable zit is

computed by extracting some features from the segment sit.

5.4.2 Initialization

To obtain St we use the Statistical Region Merging (SRM) algorithm [127] which

efficiently partitions an image into disjoint segments while preserving object bound-
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aries. The obtained initial segments are refined through splitting and merging op-

erations in later steps. For those operations, we generate segment proposals, each

of which consists of either one or two initial segments. We named them unary and

pairwise segment proposals. Note that splitting is a unary operation performed over

a single segment, while the merging is a binary operator that requires at least two

distinct segments.

Suppose the initial frame consists of n disjoint segments. All n segments are

potential candidates for splitting, and all O(2n) combinations of those segments are

candidates for merging. However, instead of passing through all combinatorial pos-

sibilities, which involves prohibitive computation, we only consider pairs of segments

nearby as potential candidates. Additionally, we track the beliefs for all potential

segment candidates to perform splitting and merging in later steps.

5.4.3 Prediction

The prediction step accumulates evidence from the past frames. With the Markov

assumption, we propagate evidence at time t not from all the past frames but only

from frame t− 1. Given the frame at t− 1 and the camera movement ut during the

interval [t− 1, t), we warp an image using a homography between the two frames. By

similarly applying a homography to the resulting reflectance map from the previous

frame, we obtain a reflectance map for the current frame. We denote the segments

defined over the warped image as s t.

Let at indicate the temporal association of the segment st with all the segments

in the previous frame. We assign ajt = 1 if the jth segment of frame t− 1 corresponds
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to the same reflectance region with the segment st, and ajt = 0 otherwise. In our

framework, we simply compute the overlap between two segments st and sjt and

determine the association ajt by thresholding it. Figure 5.2 describes how the temporal

association vector is defined between two consecutive frames. The first image shows

the segments in the previous frame at t − 1, and the second image describes the

predicted segments in the warped frame with respect to the camera pose at t. The

third image shows one of the segments obtained from the initialization step at current

frame t. Since st has sufficient overlap with s1
t alone, we determined the first three

components of the temporal association vector as (a1
t , a

2
t , a

3
t ) = (1, 0, 0).

For a segment proposal st, the probability that st consists of a single reflectance

region and is associated with the previous frame in terms of at is:

bel(xt, at) = p(xt, at|Z1:t−1, u1:t) (5.3)

=
∑
∀xt−1

p(xt|at, xt−1, Z1:t−1, u1:t)

× p(at|xt−1, Z1:t−1, u1:t) p(xt−1|Z1:t−1, u1:t−1) (5.4)

=
∑
∀xt−1

p(xt|at, xt−1, ut) p(at) bel(xt−1) (5.5)

where ut represents camera movement, and Zt is the set of measurements for all

segments at frame t. We can interpret bel(xt, at) as evidence transferred to st from

the previous segments specified by at. The first term in (5.5) corresponds to the state

transition probability, which maintains the temporal consistency of a segment across

frames. In our implementation, we model this transition probability with a constant

value for each of xt−1 = 1 and xt−1 = 0.

When a segment proposal st is judged to have a single reflectance value in the

previous frame, it is highly likely that the segment consists of a single reflectance value

in the current frame as well. So, we use a large constant as a transition probability for

xt = 1. On the other hand, when a segment is determined to have multiple reflectance

values in the past frame, there will be a little chance of having a single reflectance

value in the current frame. Therefore, we model a small transition probability for

xt = 0.

The remaining terms in (5.5) correspond to the prior beliefs about the data as-

sociation and the previous segments. at does not depend on the knowledge from the

previous frame, and we use a constant value for p(at). The belief bel(xt−1) indicates

how likely it is for the segments to consist of either a single reflectance or more than

one reflectance components. Beliefs are recursively estimated through the iterations

which we discuss in detail in the following section.
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5.4.4 Update

The update step aims to compute the belief on the number of distinct reflectance

values. The belief is factorized as:

bel(xt) = p(xt|Z1:t, u1:t) = p(xt|zt, Z1:t−1, u1:t) (5.6)

= η
∑
∀at p(zt|xt, at, Z1:t−1, u1:t) bel(xt, at) (5.7)

where the first term in the summation of (5.7) corresponds to the measurement model

which is discussed in Section 5.4.6, and the second term is computed in the prediction

step as in (5.5). When transitioning from (5.6) to (5.7), the data association at is

introduced which relates the past frame with the current segment proposal. Since

a segment proposal st is not associated with all segments in the previous frame but

only connects a few, introducing at simplifies the computation. We sum over all 2n

associations where the previous frame contains n final segments. Fortunately, segment

proposals are associated with at most a few or none of the previous segments. In

other words, p(xt, at|Z1:t−1, u1:t) for most associations is close to zero so that it can

be ignored to efficiently compute the belief.

5.4.5 Palette Management

Given the updated beliefs, we can predict the state of each segment proposal:

xt = 1 if bel(xt) > 0.5 and xt = 0 otherwise. Based on those determined states for

all segment proposals, splitting or merging operations are applied to refine segments

and finally obtain intrinsic images. When xt = 1, we do nothing if st consists of

a single reflectance segment, or if st has multiple segments we merge them. For the

segment proposal where xt = 0, we further split such segments if st consists of a single

reflectance segment, or do nothing if st already consists of a pair of distinct reflectance

segments. At the end of the palette management step, we go through post-processing

where the resulting reflectance image has its detail restored and the shading image is

smoothed to satisfy the shading continuity constraint. The reflectance values in the

palette are also updated when necessary.

5.4.5.1 Splitting

The splitting is performed on segments where xt = 0, which implies the pixels in

the segment are more likely to belong to more than one reflectance values. Figure 5.3

describes the way splitting works on a unary segment proposal. The two left images
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Figure 5.3: Splitting and merging. Two consecutive frames are connected with tem-
poral associations.

correspond to the frame at t−1 and t. Two cushions have distinct colors but suppose

they are assigned to be one segment st during the initialization step. The belief of the

temporally associated segments srt−1 and sbt−1 in the frame t− 1 are propagated to st.

If bel(xt) < 0.5, we split st into two disjoint segments. When splitting the segment

st, we project the matching segments srt−1 and sbt−1 in the previous frame onto the

current frame, which we denote as srt and sbt . The overlapping region between the

projected segment and st defines a new segment.

5.4.5.2 Merging

In the merging step, we find segments that actually share the same reflectance

value and merge these segments so that the total number of segments in the frame

does not grow too much. Figure 5.3 shows how the merging operation is applied

to the pairwise segment proposal. The right two images correspond to the frame

at t − 1 and t for each. Suppose pixels within the red cushion in the frame t are

grouped into two disjoint segments during the initialization step. This is clearly not

the desirable result. To decide whether to merge these two segments, say s1
t and s2

t ,

we consider the temporal associations with the previous frame. Red arrows indicate

that both segments s1
t and s2

t share the common association with the segment st−1

in the previous frame, and the belief on st−1 is transferred to the pairwise segment

proposal s1,2
t in the current frame. In the given example, it is highly likely that

p(x1,2
t |Z1:t−1, u1:t−1) > 0.5. That means the segment proposal s1,2

t which consists

of two distinct segments s1
t and s2

t has high chance of being composed of a single

reflectance value. In such a case, we merge the two segments. We repeat this merging

operation over all the pairwise segment proposals until there are no more proposals

to be merged.
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5.4.5.3 Post-processing of shading map

As described in (5.1), we can obtain a shading map by dividing each pixel of an

RGB image into the corresponding predicted reflectance. Here, we assume that the

shading is grayscale.

All the operations in our framework are performed at the segment-level, so the

resulting reflectance may lose much of its high frequency detail, including the texture

of object surfaces. The shading map may also contain unwanted discontinuities with

artifacts around the segment boundaries that violates the underlying assumption

that shading maps should vary smoothly [4]. To make our shading map satisfy this

constraint, we perform basic smoothing on the shading map, particularly for the pixels

around the segment boundaries.

5.4.5.4 Palette adjustment

The palette is the set of distinct reflectance values where we store all the reflectance

values seen in the reflectance image. We also maintain a mapping between each

reflectance and its corresponding RGB pixels so the palette can function as a lookup

table for initializing new segments. For example, when a segment proposal st has a

temporal association with no previous segments, we find the element from the palette

that has the closest chromaticity to that of st and use its reflectance as our initial

estimate.

However, there still exists a possibility that a new object will emerge in a scene

with a completely new reflectance never seen in the palette. In such a case, incorrect

reflectance values could be being propagated in future frames. To avoid this, we

threshold the distance of new observations and the palette RGB colors. For values

exceeding the threshold, new reflectance values are added to the palette.

5.4.6 Measurement Model

To update the belief in (5.7), we compute the measurement likelihood p(zt|xt, at, Z1:t−1)

for each segment proposal. The following are the assumptions that motivated our

measurement model:

• Piecewise-constancy of a reflectance map [128].

• Nearby pixels which have similar chromaticity and intensity being more likely

to have similar reflectance [4].

• Relative reflectance prior learned in a data-driven way [129].
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Our measurement model is defined based on the above properties.

5.4.6.1 Chromaticity prior

We consider the variance of chromaticity values within a segment. The probability

for a segment with state xt to have zt as a measurement is defined as:

p(zt|xt) =
1

λ
exp

(
−1

λ

∑
c σ

2
c/3

)
(5.8)

where σ2
c is a variance of the chromaticity channel c ∈ {red, green, intensity}, and

the parameter λ ∈ {λ1, λ0} defines the distribution for each state of xt. For segment

proposals that consist of multiple reflectance regions, the variance of chromaticity

would be large. On the other hand, it is highly probable that the variance is small

for the segment that consists of a single reflectance region.

5.4.6.2 Gradient prior

We obtain the gradient maps from the grayscaled input image and the depth

image, and then sum the gradients over the pixels within the segment region. A

single reflectance region usually has a small sum of intensity gradients and have no

strong edges across the segment. A large sum of gradients will indicate that the

segment consists of multiple reflectance regions. We modeled the probability of a

segment with state xt having zt as a measurement as:

p(zt|xt) =
1

λ
exp

(
−1

λ

∑
p∈st

|∇I(p)| / |st|

)
(5.9)

where λ ∈ {λ1, λ0} is a parameter that defines the distribution for each state of xt, |st|
is the total number of pixel in the segment proposal st, and |∇I(p)| is the magnitude

of the image gradient at pixel p. Increasing λ makes the distribution decay slow.

5.4.6.3 Relative reflectance score

Zhou et al. [5] trained a relative reflectance classifier using a large-scale human-

annotated data set [4]. Their proposed two-stage network extracts both local and

context features from the image and returns relative reflectance scores for every pixel

from a certain query point. The extracted score quantifies the reflectance similarity

between two pixel points. Figure 5.4 shows the resulting scoremaps obtained at

various query points.
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Figure 5.4: Scoremaps visualize pixels that likely have same reflectance as a certain
query point. Query points are marked as green circles. Red pixels indicate
high scores while the blue corresponds to the pixels with low scores.

For a pairwise segment proposal xt, we use this relative reflectance score as a

measurement zt. We define the measurement likelihood as:

p(zt|xt) = η exp

(
−(zt − µ)2

2σ2

)
(5.10)

where η is a normalization constant and µ and σ are the statistics of the weighted

score values computed for xt = 1 and xt = 0 using the large-scale relative reflectance

dataset [4]. For a unary segment proposal, we find the relative scores between two

pixels within the segment and use the lowest score in (5.10) to compute measurement

likelihoods.

5.4.7 Processing the Initial Frame

When propagating the beliefs across frames, the underlying assumption is that

the past frames have been processed correctly, so that the evidence accumulated over

time is reliable. We have experimented with different initial frames to see how the

quality of the initial frame affects the prediction results. The results are presented in

Section 5.5.

5.5 Experiments

In this section, we present the details of our results in comparison to the liter-

ature methods. First, we describe the real-world experiments with our framework.

Then we report the quantitative evaluation of the resulting intrinsic images, and dis-

cuss temporal consistency and the efficiency of our system. At the end, we show

potential of our framework to be applied for VR applications with 3D intrinsic model

reconstruction.
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(a)

(b)

Figure 5.5: (a) The Segway platform equipped with sensors and (b) the objects with
distinctive colors.

5.5.1 Experiments with Real-world Scene

5.5.1.1 Platform

To verify the capability of our system to process real-world scene images, we

configured the scene of simple objects with distinctive colors under normal indoor

lighting. Such scenes with a wide variety of colors provide abundant options during the

palette management step. Image sequences are captured by using a Segway platform

which has cameras attached and provides stable and controlled motion during the

data acquisition. For the experiments, we used a monocular RGB-D camera to acquire

images. The objects and the platform can be seen in Figure 5.5.

73



Figure 5.6: Resulting reflectance images.

5.5.1.2 Results

To extend our pipeline as a complete real-world platform, we integrated our frame-

work into ElasticFusion [130], which estimates camera pose and reconstructs a global

3D model. The estimated camera pose by ElasticFusion is fed into our framework.

Figure 5.6 shows the decomposed reflectance images.

The resulting images look temporally consistent, and the reflectance values seem

desirable given the known objects. However, the reflective material of the object

surface caused specular reflections, and the direct light source located at a close

distance hampered obtaining the ideal reflectance images.

5.5.2 Quantitative Evaluation

There is no standard measure to evaluate the performance of the resulting intrinsic

images from an image sequence due to the lack of ground truth benchmark datasets.

Fortunately, the ICL-NUIM dataset provides the 3D model of a livingroom scene with

rendering details. After properly controlling the properties of the scene, we generated

the ground truth reflectance images by rendering the model. (see Figure 5.11)

In Table 5.1, we report three different measures used by Chen et al. [119]: the

standard mean-squared error (MSE), the local mean-squared error (LMSE) [131],

and the structural dissimilarity index (DSSIM) [132]. We used images from the

subset of ICL-NUIM lr kt1 dataset, which consists of 965 RGB-D frames. For the

evaluation, we excluded the frames from index 233 to 576 because they include fully-

transparent surfaces, which are outside the scope of any of the proposed techniques

in the literature. Compared to the baseline methods, our framework produces the

smallest error across all three measures. The reason for better performance of our

framework may be related to the piecewise-constancy prior of the reflectance image.
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Table 5.1: Per-frame quantitative evaluation of the reflectance maps predicted by
different methods on the subset of ICL-NUIM dataset.

MSE LMSE DSSIM

Bell et al. [4] .01597 .006927 .08270

Zhou et al. [5] .01942 .009483 .09271

Ours (init by ground truth) .009792 .006148 .04780

Ours (init by Bell et al.) .01168 .006325 .04864

Ours (w/o initial reflectance map) .01163 .006405 .04900

Figure 5.7: RGB images from ICL-NUIM dataset.

As we predict reflectance images at a segment level, our framework may better satisfy

the piecewise-constancy constraint described by Barron et al. [128] especially when

compared to pixel-wise prediction methods.

5.5.3 Temporal Consistency

Figures 5.8, 5.9, and 5.10 show the resulting reflectance images obtained using

different methods. While the frame-based methods show inconsistent reflectance im-

ages over time, our framework demonstrates great consistency across frames. This

is true particularly in Figure 5.9, where the approach Zhou et al. [5] proposes relies

mostly on the relative reflectance prior between each pair of pixels in an image and

as such the absolute values of reflectance shows a significant fluctuations over time.
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Figure 5.8: Predicted reflectance and shading images using Bell et al. [4].

Figure 5.9: Predicted reflectance and shading images using Zhou et al. [5].
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Figure 5.10: Predicted reflectance and shading images using our framework.

Table 5.2: Running time for processing a single frame.

Bell et al. Zhou et al. Ours

Time (s) 89.47 13.88 1.5-3.5

5.5.4 Efficiency

None of the baseline methods are designed to work with streaming data. To com-

pare the running time of different approaches, we measure the average running time

it takes to process a single frame. The experiments were performed using a GeForce

GTX TITAN X GPU and an Intel i7-4790K CPU. We are currently using a GPU

for extracting high-dimensional features from an image and computing the relative

reflectance prior. No other parallelization or optimization have been implemented

yet. Table 5.2 shows the elapsed time for different methods to process a single frame

in VGA resolution.

5.5.5 3D Intrinsic Models

Based on the predicted reflectance images with corresponding depth maps, we re-

constructed a 3D reflectance model using the ElasticFusion [130] dense SLAM system.
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Figure 5.11: The ground truth reflectance images obtained by rendering the 3D scene
model with known reflectance values.

Figure 5.12: The reconstructed 3D reflectance and shading models of the living room
scene from ICL-NUIM benchmark.

These models contain the lighting and shading information for full 3D scenes. Fig-

ure 5.12 shows the reconstructed 3D reflectance and shading models. To demonstrate

the power of this kind of data we show an example of adding a virtual 3D object to

generate the novel 3D scene. The point cloud is first converted to the triangular mesh

using the Poisson surface reconstruction. Then to relight the reconstructed scene, a

synthetic light is placed into the scene with varying intensities. Figure 5.14 shows

the rendering results. We see this as one of the major applications of this work.

Augment reality models can be given much higher degrees of realism using models

with matching lighting and shading and the ability to map the lighting and material

properties of a 3D scene has application for segmentation and object classification.
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Figure 5.13: Resulting reflectance images (bottom) from using our framework with
the Scene3D dataset (top).

Figure 5.14: Rendered images of a scene with a virtual object added. The scene is
relighted by synthetic shading effects under different lighting conditions.

5.6 Conclusion

This chapter presented an intrinsic image prediction system from an RGB-D

stream using a probabilistic framework. The significant advantage of our frame-

work is that it significantly reduces the amount of computation and running time to

produce an image decomposition by taking advantage of information already known

from past frames. It also maintains temporal consistency over time, which is not the

case for frame-based methods. We reduce the running time of the state-of-the-art by

an order of magnitude. Finally, our framework to predict intrinsic images was inte-

grated into a real-time SLAM system to reconstruct 3D intrinsic models of a scene,

which has many exciting applications for object classification, augmented reality, 3D

rendering, and scene understanding.

This work suggests a direction for improving the densely reconstructed scene mod-

els in Chapter IV. From the decomposed intrinsic images, we can infer the objects’

intrinsic properties in a scene. Based on the 3D intrinsic models, we can obtain re-

alistically textured reconstruction of a scene, and color images can be rendered to

generate simulated camera images.

Nevertheless, many challenges still exist. First, urban intersections are outdoor

scenes, so we might need different formulation of the intrinsic image decomposition

for outdoor images. From rigid objects, such as vehicles, traffic signs, lampposts, and
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buildings, to non-rigid objects, such as pedestrians and trees, many different types of

complex objects exist in urban intersections at different scales. Many other intrinsic

properties need to be considered in addition to reflectance and shading due to the

hard shading, natural lighting, and effects of reflections on specular surfaces.
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CHAPTER VI

Conclusion and Future Directions

6.1 Conclusions

This dissertation addressed key challenges relevant to the perception of autonomous

vehicles in urban traffic environments and contributed to several components, from

data collection and labeling to 3D reconstruction. We have answered several research

questions with the following contributions:

1. How can we obtain meaningful data from real urban traffic scenes?

In the first part of the dissertation (Chapter II), we explored the importance

and challenges of acquiring real-world urban traffic data and explained our

sensor system to capture data with meaningful events. The data collected at

unsignalized urban intersections using the AV sensor system contains natural

motions and behaviors of pedestrians and vehicles with multi-modal sensor data.

2. How can we efficiently process the raw data to produce meaningful

labels for the dynamic road agents?

The second part of the dissertation (Chapter III) addressed the efficient labeling

of pedestrians based on 3D model fitting. The model-fitting-based pedestrian

labeling method provides a rich set of annotations and suggests a pipeline to

automatically label a large amount of multi-modal data.

3. How can we augment the data to entire traffic scenes?

The third part of the dissertation (Chapter IV) presented the dense 3D re-

construction of the entire urban traffic scenes, including various types of road

agents and static objects. The model-based dense 3D reconstruction of entire

traffic scenes, including pedestrians, vehicles, and static scene components, can
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be utilized to generate a large set of AV simulated realistic data with free la-

bels. Experiments, such as simulating virtual sensors and predicting ego-vehicle

trajectories, validate the quality of the simulated data and suggest interesting

applications.

4. What factors can make the reconstruction more realistic?

In the last part of the dissertation (Chapter V), we explored one of the factors

to achieve photo-realistic reconstruction. The intrinsic image decomposition

problem was tackled by taking advantage of the probabilistic framework.

6.2 Future Work

The overall subject of this dissertation is to understand the AV perception pipeline

and explore data preparations at urban traffic scenes, which is the key prerequisite

to solving various other problems. Future work should focus on further augmenting

the data and developing diverse applications using the prepared data and labels.

6.2.1 Trajectory Augmentation

Using the reconstructed 3D scene models from Chapter III and Chapter IV, we

can generate as much data as possible by configuring arbitrary specs of cameras at

different locations. While the simulated data helps supplement the real captured data

when there is an insufficient diversity of sensor perspectives and specs, it is not trivial

to simulate trajectories of new road agents that have not been observed before. The

number of agents and their trajectories cannot be easily augmented due to the com-

plex interactions between agents. The key to trajectory augmentation is adding new

trajectories consistent with all the other existing trajectories in a scene. A trajectory

prediction model can be learned at the intersections to augment the road agents’

trajectory data. The typical trajectory prediction problem aims to predict future

trajectories given past observations. In order to augment the realistic trajectories,

the problem can be formulated in a slightly different setting. To realistically add a

new road agent to the scene, all the available information – the future trajectories

and the past trajectories – can be fed into the recurrent networks. Developing this

recurrent model that produces new trajectories consistent with all the other observed

trajectories can be one potential research topic.
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6.2.2 Textured Reconstruction

As a way to overcome the limitation of the texture-less scene models reconstructed

in Chapter IV, we discussed in Chapter V to infer the objects’ intrinsic properties

and apply them to simulate camera data more realistically. However, estimating

intrinsic properties from RGB images is very challenging, particularly for complex

urban scenes. As an alternative for using the objects’ actual intrinsic values, assigning

arbitrary intrinsic values to each object might be sufficient to generate simulated data.

Once intrinsic values are configured for all the objects in a scene, we can generate the

more realistic simulated data, which we propose as a potential future direction.

To be specific, the scene models of urban intersections consist of rigid objects

such as vehicles, traffic signs, lampposts, and buildings and non-rigid objects such

as pedestrians and trees. It is simple to assign arbitrary reflectance values to the

rigid objects in the intersections because few distinct values typically comprise the

objects. Whereas for the non-rigid objects, especially pedestrians, realistically as-

signing reflectance values is difficult due to the variations and complexity in appear-

ance. Moreover, the pedestrian mesh models currently being used in Chapter III and

Chapter IV are not dressed or minimally clothed, which will produce somewhat un-

realistic rendering results. Based on recent progress to generate clothed human mesh

models [133], future research should further explore to use of realistic mesh models,

particularly for non-rigid objects.

6.2.3 Occlusion-Aware Perception

AV pipelines generally involve various perception algorithms, from object detec-

tion and scene understanding to tracking and future prediction. In urban driving

scenarios, occlusions frequently occur in many parts of a scene due to the scene clut-

ter and the driver’s limited field of view, making perception algorithms fail or degrade

the performance. Occlusions can also cause safety issues when pedestrians are severely

occluded by surroundings or utterly invisible to drivers. Handling occlusions is one

of the critical factors to advance perception algorithms and enhance AVs’ safety.

Some prior work addressed the importance of handling occlusions. The concept

of vislet was introduced to consider limited view frustum of actual pedestrians, and

the mixture of tracklets and vislets were used to learn recurrent models to predict

future pedestrian trajectories [95]. Handling occlusions in terms of vislets resulted

in better performance in predicting future trajectories. First-person view images

were used along with observed trajectories to perform the trajectory prediction [96].
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Although the synthetically rendered images were used, visual information from first-

person views was shown to be effective in improving the performance of pedestrian

trajectory prediction.

One noticeable feature of our data is that it was captured from a driver’s per-

spective. This first-person perspective data realistically mimics actual drivers’ views,

including diverse occlusion patterns. Partially occluded LiDAR points and the cap-

tured RGB images containing object appearances in first-person views can be used to

extract visual features for occlusion-aware perception algorithms. While our raw cap-

tured data involves occlusions, the augmented data generated from the reconstructed

3D models provides full annotations. Therefore, our data can be also used to recover

or infer the actual 3D scene information from partial observations.
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