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ABSTRACT

Isotatic mechanical structures, where numbers of constraints arising from physical interac-
tions balance the number of internal degrees of freedom, are on the verge of mechanical
instability. Isostatic structures exhibit fascinating phenomena, showing criticality in me-
chanical responses and other properties. Such critical mechanical structures, including
jamming, Rigidity Percolation (RP) and Maxwell lattices, have been widely explored. In
those structures, the emergence of rigidity is controlled by the isostatic point and the density
is moderately high.

This dissertation focuses on critical mechanical phenomena when the connectivity of
the structure is away from isostaticity. The study of these systems unravel the complex-
ity of rigidity in a broad range of materials. The first act of this dissertation discusses
the emergence of rigidity in ultra-low-density systems with the introduction of positional
correlations, including two projects related to correlated rigidity percolation. In addition
to low-density solids, high-density solids like glasses exhibit interesting phenomena and
different mechanical behaviors compared with isostatic systems. The second act of this
dissertation studies high-density glasses and includes a project discussing stressed elastic-
ity in over-isostatic region.

The first project presented in this dissertation concerns RP with structural correlations,
an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid
transitions, such as colloidal gelation, which is introduced by attractive interactions and
aggregation. Using a lattice model, we show that structural correlations shift RP to lower
volume fractions. Through molecular dynamics simulations, we show that increasing at-
traction in colloidal gelation lowers the RP transition, and this phenomena agrees with
experiments. Hence, the emergence of rigidity at colloidal gelation can be understood as
a RP transition, but occurs at volume fractions far below values predicted by the classical
RP, due to attractive interactions which induce structural correlation.

Motivated by the experimentally observed fractal nature of materials like colloidal gels
and disordered fiber networks, the second project discussed in this dissertation studies RP
in a fractal network where intrinsic correlation in particle positions is controlled by fractal
iteration. Specifically, we calculate the critical packing fractions of site-diluted lattices of

xii



Sierpiński Gasket (SG)’s with varying degrees of fractal iteration. Our results suggest that
although the correlation length exponent and fractal dimension of the RP of these lattices
are identical to those of the regular triangular lattice, the critical volume fraction is dramat-
ically lower due to the fractal nature of the network. Furthermore, we develop a simplified
model for a SG lattice based on the fragility analysis of a single SG. This simplified model
provides an upper bound for the critical packing fractions of the full fractal lattice, and this
upper bound is strictly obeyed by the disorder averaged RP threshold of the fractal lattices.
Our results characterize rigidity in ultra-low-density fractal networks.

The third project presents a systematic method based on States of Self-Stress (SSSs) to
investigate how prestress affects elastic response of amorphous solids. Using a triangular
lattice model with varying prestress, and also in amorphous configuration of compressed
repulsive particles, as a model for a colloidal soft solid, we show how prestress determines
the response of glasses to both macroscopic shear strain and local dipole forces, where they
display behaviors qualitatively different from un-stressed random networks with the same
geometry. We also use this method to study the dependence of the stress-bearing ability of
the system on the preparation protocol, which changes the microscopic prestress distribu-
tion, as well as signatures of the spatial evolution of stress under strain. The heterogeneity
of stress change and mechanical responses are accurately depicted from the SSS calcu-
lation when prestress is included. Our results characterize the elasticity for prestressed
amorphous solids.
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CHAPTER 1

Introduction

1.1 Overview

1.1.1 Maxwell lattices and the isostatic point

In 1864, James Clerk Maxwell published a remarkable paper [3] and took the first system-

atic study on mechanical stability of frames. In this paper, Maxwell introduced frames as

points (referred as site) connected by rigid struts (referred as bond), and argued that a stiff

frame, which is defined as ‘the distance between any two points cannot be altered without

altering the length of one or more of the connecting lines of the frame’, requires that

Nb ≥ dN − d(d+ 1)

2
, (1.1)

where Nb is the number of bonds, N is the number of sites and d is the dimension of the

system. The term
d(d+ 1)

2
corresponds to the number of translations and rotations under

free boundary, sometimes referred as “trivial” zero modes. Equation 1.1 is known as the

Maxwell’s rule, and plays a fundamental role in understanding the mechanical stability of

materials.

The Maxwell’s rule also gives a critical threshold to separate stiff and floppy systems
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as

zNc = 2d− d(d+ 1)

N
,

where z ≡ 2Nb/N is defined as the average coordination number. Following the Maxwell’s

rule, when z > zNc , the system is stiff, and when z > zNc the system is not stiff.

zNc reduces to z∞c = 2d in the limit of large N , and the term Maxwell lattice is com-

monly used for lattices which have the average coordination number z = zc ≡ 2d.

However, the Maxwell’s rule is not a general rule since there could be redundant con-

straints, which are constraints not needed for rigidity [4]. Thus a generalized Maxwell

relation is developed and known as the Maxwell Calladine Index Theorem:

N0 −Ns = dN −Nb, (1.2)

whereN0 is the number of Zero Mode (ZM), corresponding to the set of site displacements

that produce no changes in bond lengths, andNs is the number of State of Self Stress (SSS),

corresponding to the set of tensions that produce no forces at any site.

N0 includes the counting for “trivial” ZMs from rigid translations and rotations, and

there are
d(d+ 1)

2
trivial ZMs. Any other ZMs involving internal displacements of sites

are called floppy modes. The number of floppy modes are

M = N0 −
d(d+ 1)

2

= dN −Nb +Ns −
d(d+ 1)

2
,

from the Maxwell Calladine index theorem. Those internal ZMs are usually called as

floppy modes in the physics literature [5] and mechanisms in the engineering literature [4].

From the concept of floppy modes, one can have a more rigorous way of defining “rigid”
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(or stiff) compared to the Maxwell’s rule: a system is rigid if it has no floppy modes.1 This

rule of determining rigidity takes care of redundant constraints which the Maxwell’s rule

does not.

Figure 1.1: Frames of bonds connecting N = 6 sites. (a) has 6 sites, 7 bonds, 5 ZMs and
two floppy modes indicated by the dotted bonds. (b) has 6 sites, 8 bonds, 4 ZMs and one
floppy mode. (c) and (d) are constructed from (b) by adding an additional diagonal bond.
(c) satisfies the Maxwell’s rule with only the three trivial ZMs. (d) has 4 ZMs and one SSS
indicated by the arrows on the bonds in the left square.

Now let’s look at a few examples of frames with some of them satisfying the Maxwell’s

rule in Fig. 1.1 [6], to illustrate the relationship between the Maxwell’s rule and the Maxwell

Calladine index theorem. Fig. 1.1(a) gives a simple example of the Maxwell Calladine in-

dex theorem. There are N = 6 sites, and Nb = 7 bonds in the frame. There are no SSSs in

the frame (Ns = 0) so the number of ZMs is N0 = dN − Nb = 5. Removing the 3 trivial

ZMs, there are 2 floppy modes in such system, which are indicated by the dotted bonds. In

Fig. 1.1(b), there is one additional bond compared to the frame in Fig. 1.1(a) and there are

no SSSs either. As a result, the number of ZMs in such system is one fewer than the system

in (a), and this decrease of ZMs reflects a number decrease in floppy modes. Fig. 1.1(c) and

(d) are obtained from adding additional bond to the frame in (b). However, the bond added

in frame (d) is redundant, which doesn’t take away ZMs and provides a SSS instead, while

the added bond in frame (c) is not. When considering the Maxwell’s rule, the frames in (c)

and (d) both follow the rule that Nb ≥ dN − d(d+ 1)

2
. While in the case of frame (d), the

whole system is not rigid since one can find a floppy mode indicated by the dotted bonds

1Note that this is one way of defining rigidity. One can also define rigidity as the capability of carrying
load (SSSs).
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in Fig. 1.1(d). From the examples shown above, we can see that the Maxwell’s rule does

not apply for all frames when determining rigidity. A more rigorous way of determining

rigidity is to follow the count of Calladine index theorem and see if there are no floppy

modes.

From the Maxwell Calladine index theorem, a system with neither any floppy modes

(M = 0) nor any SSSs (Ns = 0) is defined as isostatic. Maxwell frames (z = 2d) with no

SSSs are thus called isostatic frames. Such isostatic systems necessarily satisfy the relation

z = zc, but for systems with z = zc, they could have finite number of SSSs then the system

is not isostatic.

The above definition of isostaticity is unambiguous for finite free boundary systems,

since it takes into account of trivial ZMs in such boundary condition when counting floppy

modes. However, there is a problem with the same way of defining isostaticity under

Periodic Boundary Conditions (PBCs) [7]. The lattice must have at least d(d + 1)/2 SSSs

in order to be elastically stable. Reference [6] proposes calling systems under PBCs as

isostatic if N0 = d and 1 ≤ Ns ≤ d(d + 1)/2 and uniquely calling periodic lattices as

isostatic lattices when N0 = Ns = d.

1.1.2 Physics near isostaticity

The isostatic point, defined as the critical point where the system is isostatic, is on the verge

of mechanical instability, and it is critical to understand systems as diverse as engineering

structures [8, 9], diluted lattices near RP [1, 2, 10–13], jammed systems [14–21], biopoly-

mer networks [22–29] and network glasses [30, 31]. In this section, we will briefly review

several typical isostatic systems and discuss their behaviors.

1.1.2.1 Emergence of rigidity

Rigidity Percolation (RP) - RP describes the emergence of rigidity in central-force net-

works, which could be generic lattices or disordered systems. Such rigidity transition oc-
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curs at the marginal condition where the equality of the Maxwell’s rule holds [2], as a result

of locating near the isostaticity. More details about RP will be discussed in Section 1.2.

Jamming - Starting from the simplest model: frictionless spheres interacting via repul-

sive finite-range forces at zero temperature, Liu and Nagel proposed a remarkable phase

diagram describing the rigidity transition known as the Jamming transition [14].

Figure 1.2: Jamming phase diagram. Outside the shaded green region, at high temperature
T , applied shear stress Σ, and high inverse density 1/φ, the system is unjammed and can
flow; inside the shaded green region, the system is jammed. The lines in the (T − 1/φ) and
(1/φ− Σ) planes represent the generic dynamical glass transition and yield stress, respec-
tively. The point “J” marks the jamming transition for ideal spheres at zero temperature
and applied stress.

In the context of the jamming diagram as shown in Fig. 1.2, the jamming transition is

controlled by three parameters: temperature, density and stress. Point J in the jamming

diagram, defined as the jamming transition point for ideal spheres at zero temperature and

zero applied stress, is a special transition point with aspects of both first- and second-

order phase transitions. The order parameter that characterizes the jamming transition is

z ≡ 2Nb/N , the average coordination number. At low packing density φ < φc, z = 0
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since particles are not forced to be in contact. z jumps discontinuously from z = 0 to

the non-zero value zc at the jamming transition packing fraction φc. Interestingly, it turns

out that Point J (φ = φc), which describes the minimal rigidity for mechanical stability in

jamming transition, is at the isostatic point (zc = 2d) [18]. When the system is compressed

to packing fraction above the transition point, a scaling relation is verified as [32]

(z − zc) ∼ (φ− φ)β≈1/2,

implying a diverging length scale near isostaticity. This brings us the insight that even

for systems as complex as jammed solids, isostaicity is a great indicator for mechanical

stability.

1.1.2.2 Elasticity and topological mechanics

Both RP and jamming study the emergence of rigidity in disordered systems, and show

criticality at the isostatic point. In the meantime, there are profound results of the elastic

and dynamical properties at or near isostaticity [6] and some of those studies excite an

emergent field: topological mechanics, where concepts of electronic topological states of

matter are applied to mechanical systems [33, 34].

Topological Mechanics of Maxwell Lattices - In 2014, Kane and Lubensky published

a landmark paper connecting the topological mechanical modes and the topological band

theory of electronic systems in isostatic lattices, and proposed a topological invariant to

identify distinct topological states [33]. Owing to the criticality of isostaticity, any Maxwell

lattice has at least d(d− 1)/2 homogeneous soft deformations, so called Guest-Hutchinson

floppy modes, and these homogeneous soft deformations provide a tool to change the lattice

geometry and thus are able to induce transitions between different topological states [34].

Examples of topological Maxwell lattices include 1-D mechanical Su-Schrieffer-Heeger

model and 2-D deformed Kagome lattices. The manipulability of these topological me-
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chanical states opens the way to the creation of metamaterials that display designable and

reliable behaviors.

1.1.2.3 Examples of isostatic systems

Here we introduce some typical examples of 2-D isostatic or near-isostatic systems in

Fig. 1.3.

(a) (b)

(c) (d) (e) (f)

Figure 1.3: (a) Packed bi-disperse discs just above the jamming transition. The dark red
lines are chains of force that are a response to the pressure required to pack the particles
at z > zc. (b) A representative bond-diluted lattice near the rigidity percolation threshold
of zc ≈ 3.96. (c) Square, (d) distorted square, (e) kagome lattice and (f) twisted kagome
lattice.

Fig. 1.3 (a) and (b) are disordered systems close to the isostatic point. Those systems

representatively show examples of the emergence of rigidity for amorphous solids. Fig. 1.3

(c-f) are examples of isostatic lattices, which have special elasticity due to their criticality

and some of them could be tuned for different topological mechanical states.
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1.1.3 Rigidity beyond isostaticity

Isostaic systems are interesting due to their criticality, elasticity and manipulability. Look-

ing at the examples of Fig. 1.3 (a) and (b), the packing fractions for reaching such iso-

staticity are rather moderate. The critical density for jamming threshold is φJ ≈ 0.84 for

2-D bi-disperse packings and φJ ≈ 0.64 for 3-D mono-disperse spheres. The bond RP

threshold for 2-D generic triangular lattice is pc ≈ 0.66 and the site RP threshold for such

system is pc ≈ 0.70. In this section, we will introduce systems of both much lower density

and higher density than the isostatic systems which we just went over. Interestingly, lower

density systems can still have rigidity even much sparser than jammed packings or RP.

High density systems also have rich elasticity which is worth paying attention to. Those

behaviors are all untypical to the isostaticity we just talk about, so we will look at those

special isostaticity and systems beyond isostaticity in both low and high densities for the

following discussion.

1.1.3.1 Low density solids

Shear Jamming - The jamming transition has the threshold of φJ ≈ 0.84 for 2-D bi-disperse

packings and φJ ≈ 0.64 for 3-D mono-disperse spheres, however, jamming of frictional,

disk-shaped particles can be induced by applying shear stress at densities lower than the

critical value φJ [35].
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Figure 1.4: (a) Original jamming phase diagram and (b) generalized jamming phase dia-
gram with shear jamming in the T = 0 plane.

Fig. 1.4(b) is a generalized jamming phase diagram proposed by Bi and coworkers in

2011 [35], including the shear-jammed (SJ) and fragile (F) states. Along the density axis

φ, two special densities exist: φS , below which there is no shear jamming, and φJ , above

which isotropically jammed states exist (point J). For φS ≤ φ ≤ φJ , jamming can occur

with application of shear stress.

Since the SJ region has the density below point J , we can see that while frictionless

spheres at jamming are isostatic, frictional spheres at jamming (unjammed to SJ transition)

are not. This violation of isostaticity for the emergence of rigidity in shear-jammed system

is due to the fact that besides of the constraints of normal motions between connected sites,

a frictional packing needs to satisfy one additional group of constraints: the sliding motion

when there is static friction in between particles. As a result, even a smaller coordination

number z < 2d can provide enough constraints for the system to reach minimal rigidity.

For a packing of N interacting particles, there are Nd force balance equations and

d(d − 1)N/2 torque balance equations, and the number of contacts is zN/2. If we treat

these tangential forces as independent new degrees of freedom in the constraint counting,

the threshold for having a stable packing is zµc = d + 1. In the case that not all of the
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tangential forces provide the degrees of freedom for torque balance, one can expect any

z in the range of zµc ≡ d + 1 ≤ z ≤ zc. To resolve the conundrum compared to the

original definition of isostaticity, a criterion called generalized isostaticity was introduced

as [36, 37],

zmc = (d+ 1) +
2nm
d
,

where nm is the mean number of fully mobilized contacts per particle and zmc is the general-

ized isostaticity criterion. This equation describes a line of transition points in 2-D system

interpolating from z = d + 1 at nm = 0, corresponding to the limit of µ = ∞ where µ is

the friction coefficient, to zc = 2d at nm = 1, corresponding to the limit of µ = 0 [36].

Along the route of recounting contact constraints to extend frictional jamming from

frictionless jamming, RP can also be extended to frictional RP by generalizing the rigid

cluster decomposition algorithm [37–39], and the frictional RP threshold approaches to the

general isostaticity counting zmc instead of the original isostaticity counting rule zc, which

goes below the isostatic point.

Colloidal Gels - Another interesting phenomenon I want to bring up is colloidal gels,

disordered arrested states of matter at very low packing fraction φ, which do not flow but

behave solid-like mechanical properties such as a yield stress. One important nature which

leads to the gel transition is the short-range interaction in colloidal systems, and multiple

routes to the gel state have been proposed and critically examined [40]. Fig. 1.5 gives

the 3D reconstruction of a colloidal gel sample, with the inset as 2D confocal microscope

image [41]. This gel structure is in a very low volume fraction φ = 0.045, far below point

J , but still has structural rigidity.
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Figure 1.5: A colloidal gel sample with φ = 0.045

In this dissertation, we are not focusing on the transition to gels. Instead, we will try

to look at one straightforward but important question: after the formation of gels, how can

they obtain solid-like mechanical properties with such low volume fractions? Theoretical

models are proposed to dive into such questions and more details will be discussed in

Chapter 3 and Chapter 4;

1.1.3.2 High density solids

Glasses - For amorphous solids which have higher volume fractions compared to either

point J or RP threshold, their responses to mechanical perturbations are always interest-

ing. Understanding glassy rheology is the key to designing disordered materials and devel-

oping predictive models for flow and failure in disordered systems. Such glassy systems

are usually above isostaticity and have overconstrained regions, which provide additional

structural supports to marginal rigidity. Just like stress plays a role in stabilizing the soft

modes of tenuous bonding structures in shear jammed states, stress also takes great impact

on the rheology of amorphous solids, especially in over isostatic systems with high volume
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fractions. We will discuss those high density solids beyond isostaticity with more details in

Chapter 5.

1.2 Rigidity percolation

Rigidity Percolation (RP), as mentioned in Section 1.1.2, is a concept describing the emer-

gence of rigidity in disordered networks. In this section, I will give an overview on RP with

its development and phenomena, providing a solid background for the study in Chapter 3

and Chapter 4.

1.2.1 Connectivity percolation

Before diving into RP, let’s look at connectivity percolation first. Connectivity is essen-

tial for physics of disordered systems. Starting from 1940s, scientists studied the emer-

gence of system-wise connectivity by developing theory of percolation, which describes

how small molecules react and form very large macromolecules connected by chemical

bonds [42, 43]. Later, the field of connectivity percolation rapidly evolves and has been

applied to many disciplines in statistical physics and mathematics. In Stauffer’s textbook

for percolation theory [44], percolation is illustrated as: Each site of a very large lattice

is occupied randomly with probability p, independent of its neighbors. Percolation theory

deals with the clusters thus formed, in other words with the groups of neighboring sites.

Connectivity percolation is a geometric type of phase transition, because a critical fraction

1−pc of removal to the network breaks the macroscopically connected network into signif-

icantly smaller connected clusters. The critical threshold pc and critical phenomena close

to pc for connectivity percolation have been deeply examined [44].

Connectivity percolation studies the connectivity between nodes via bond and uses

bond connections as an approach for mechanical behaviors of disordered systems. How-

ever, the emergence of rigidity demands more than simple connectivity. Imagine a system
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of three nodes connected by two rigid bars, even though all nodes are connected, the whole

system is not rigid since the two connecting bars can freely rotate using the center node

as a pivot point. Considering such limitations of connectivity percolation in the article of

rigidity, a more specified and concrete concept, Rigidity Percolation (RP) is introduced.

1.2.2 Phenomena of rigidity percolation

In 1983, Thorpe studied the rigidity in random networks and proposed a picture of rigid

regions percolation related to the coordination number [5], so a rigidity transition is char-

acterized. Following this work, Feng and coworkers [10] did numerical simulations to

study the central-force RP in lattices and discovered a new universality class for this transi-

tion. To further understand the central-force RP, Feng, Thorpe and Garboczi developed an

effective-medium theory to describe elastic networks in 1985 [11]. Their results indicate

that RP is a continuous phase transition. To study the universality class of RP, the “pebble

game” algorithm, which is an efficient algorithm for detecting RP, is proposed and the crit-

ical phenomena near the RP threshold is examined [1, 2]. The details of the “pebble game”

algorithm will be illustrated in Section. 2.1, and in this section we will focus on looking at

the physical phenomena for RP.

The nature of RP is related to connectivity percolation, which is a second-order phase

transition and is described by critical exponents for its critical phenomena. Critical expo-

nents, which describe the fractal properties of the percolating medium at large scales close

to the transition, are universal in the sense that they only depend on the space dimension

and the type of percolation model. Critical exponents of the same universality class do not

depend on microscopic details like lattice structures, or whether site or bond percolation

is considered. Some typical critical exponents of connectivity percolation, like the fractal

dimension and correlation length, can also be characterized in RP with different values.

Connectivity percolation describes the percolation of a scalar field - whether two elements

are connected, with one degree of freedom. On the other hand, RP describes the percola-
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tion of a vector field, which determines the rigidity between two elements by looking at

the vector floppy modes, with more degrees of freedom when space dimension d > 2. The

consequence of this difference is that RP and connectivity percolation belong to different

universality classes.

Figure 1.6: The probability for a bond-diluted generic network to have a spanning rigid
cluster with respect to bond concentration p. Periodic (free) boundary conditions with var-
ious system sizes are shown with solid (dashed) line segments drawn between data points.

RP is studied for random central-force networks on both bond- and site-diluted generic

triangular lattices [1]. The critical thresholds for bond and site diluted RP are respectively

pc = 0.66020 ± 0.0003 and pc = 0.69755 ± 0.0003. The critical threshold pc can be

obtained from the finite size scaling of |pc(L)− pc(L =∞)| ∼ L−1/ν with the exponent ν

extracted from the critical fluctuation ∆ =
√
〈pc(L)2〉 − 〈pc(L)〉2 ∼ L−1/ν , where pc(L)

is the measured RP threshold with the occurrence of spanning rigid cluster in system size

L, and pc(L = ∞) = pc is the critical threshold for RP in the generic lattices. The critical

exponent ν, is actually the exponent describing the divergence of correlation length ξ when
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approaching to the RP transition as

ξ ∼ |p− pc|−ν .

The infinite rigid cluster becomes homogeneous at length scales beyond the correlation

length ξ; furthermore, ξ is a measure for the linear extent of the largest finite rigid cluster.

Another important critical exponent to describe RP is the fractal dimension df , which

describes how the mass of the incipient infinite rigid cluster depends on the linear size of

the system as

M∼ LdF .

M is the mass (number of sites) of the spanning rigid cluster at RP transition point, and L

is the system linear size.

Critical exponents are essential features to describe the scale invariance properties near

the transition point, so those exponents also indicate that for generic triangular lattices,

RP is a second-order phase transition. The measured exponents are ν = 1.21 ± 0.06 and

df = 1.86±0.02, compared with the different universality class of connectivity percolation

with ν = 1.896 and df = 1.333 on same lattices.

1.3 Linear elasticity in discrete models

For the previous discussions about isostaticity and beyond, mechanical properties of dis-

ordered systems are described by constraints and degrees of freedom counting, with the

underlying assumption than the building blocks of such systems, like repulsive spheres in

jammed systems, are considered discretely connected by bonds as the constraints. Discrete

models are good approximant for soft matter systems. In this section, we will discuss the

linear response of one simplest discrete model - the spring-mass model, which describes a
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mechanical frame consisting of N point masses connected by Nb central-force springs in d

dimensions.

1.3.1 The equilibrium matrix and the compatibility matrix

The linear response of an elastic network with N point masses connected by Nb central-

force springs in d dimensions can be fully described by the equilibrium matrix Q and the

compatibility matrix C as

Q · |t〉 = |f〉,

where |t〉 represents the tensions on each bond, which is a Nb dimensional vector; |f〉

represents the forces on each site, which is a N · d dimensional vector. As a result, the

equilibrium matrix Q has the dimension Nd×Nb.

As for the compatibility matrix C,

C · |u〉 = |e〉,

where |u〉 represents the displacements of each site, which is a N · d dimensional vector;

|e〉 represents the extensions of each bond, which is a Nb dimensional vector. As a result,

the compatibility matrix C has the dimension Nb ×Nd.

The compatibility matrix C is constructed from the bond elongation relations as:

e〈ij〉 = b̂〈ij〉 · (~ui − ~uj), (1.3)

with b̂〈ij〉 as the unit vector pointing from site j to site i, ~ui as the displacement vector for
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site i. And the equilibrium matrix Q is constructed from the site force equations as

~fi =
∑
β

sign(β)~tβ, (1.4)

with β as the bond site i shares with its neighbors and sign(β) = +1(−1) if the direction of

bond β points away from (toward) site i. If we choose the direction of bond β as b̂〈ij〉, which

points from site j to site i, then ~fi = −
j∈N (i)∑
〈ij〉

~t〈ij〉 whereN (i) is the set of all neighbors for

site i.

Let’s go with an instructive example to carry out the explicit calculation of Q and C for

a simple frame from the review paper by Mao and Lubensky [34]. It is also straightforward

to see from this example that the compatibility matrix and equilibrium matrix are transposes

of each other C = QT .

Figure 1.7: A frame of six sites (red numbers) and nine springs (circled black numbers)
and its 12 × 9 equilibrium matrix Q with rows ordered according to the sites degrees of
freedom, {x1, y1, x2, y2, · · · , x6, y6}, and columns ordered according to the springs.

We consider the frame shown in Fig. 1.7 with N = 6 and Nb = 9 on 2D plane d = 2.

The figure labels sites (s = 1, · · · , 6) and bonds (β = 1©, · · · , 9©). The displacement-
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elongation equations are

e 1© = b̂〈12〉 · (~u1 − ~u2), e 2© = b̂〈24〉 · (~u2 − ~u4), e 3© = b̂〈34〉 · (~u3 − ~u4)

e 4© = b̂〈13〉 · (~u1 − ~u3), e 5© = b̂〈14〉 · (~u1 − ~u4), e 6© = b̂〈23〉 · (~u2 − ~u3)

e 7© = b̂〈35〉 · (~u3 − ~u5), e 8© = b̂〈56〉 · (~u5 − ~u6), e 9© = b̂〈46〉 · (~u4 − ~u6),

and the vector forces equations are

~f1 = −~t〈12〉 − ~t〈13〉 − ~t〈14〉, ~f2 = ~t〈12〉 − ~t〈23〉 − ~t〈24〉

~f3 = ~t〈13〉 + ~t〈23〉 − ~t〈34〉, ~f4 = ~t〈14〉 + ~t〈24〉 + ~t〈34〉

~f5 = ~t〈35〉 − ~t〈56〉, ~f6 = ~t〈46〉 + ~t〈56〉.

One needs to note that it is arbitrary to choose the bond direction b̂β as b̂〈ij〉 or b̂〈ji〉, as long

as following the sign conventions in Eq. 1.3 and Eq. 1.4. Those two equations also lock the

positive convention for |e〉 as bond elongations instead of bond shrinking.

The matrix Q for the frame thus constructed is shown in Fig. 1.7 as well. The matrix C

constructed following the above formulations is the transpose of Q.

1.3.2 States of self-stress (SSS) and zero modes (ZM)

The null space of Q is the set of tensions, defined as SSSs in the Maxwell Calladine index

theorem from Eq. 1.2, that produce no forces at any site.

0 = Q · |tSSS〉

The null space of C is the set of site displacements, defined as ZMs in the Maxwell

18



Calladine index theorem from Eq. 1.2, that produce no changes in bond lengths.

0 = C · |uZM〉

Now let’s look back to the example frame in Fig. 1.7. Solving for the null space of Q

gives the SSS of the system, that the frame contains one SSS with

|t1SSS〉 = {− 1√
2
,− 1√

2
,− 1√

2
,− 1√

2
, 1, 1, 0, 0, 0};

This SSS is shown in Fig. 1.7 with the way that blue bonds are under tension with magni-

tude proportional to line thickness, and red bonds are under compression. The null space

of C contains four ZMs, including three trivial translations and rotations and one nontrivial

floppy mode (springs shown as dashed gray lines and sites as solid gray dots in Fig. 1.7).

1.3.3 The dynamical matrix

The dynamical matrix D is defined as the Hessian given by the second derivative of elastic

energy with respect to particle displacements as

δV =
1

2
〈u|D|u〉

The elastic energy can be written from summing up the energy of all single springs 〈ij〉 as

δV =
∑
i

k〈ij〉
2
e2
〈ij〉

=
∑
i

k〈ij〉
2

(∑
j

C〈ij〉,juj

)2

=
1

2
〈u|CT ·K · C|u〉
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As a result, one can have the dynamical matrix as

D = CTKC = QKQT

where K is the diagonal matrix of spring constants of all the springs in system.

1.4 Outline

The remainder of this dissertation focuses on two primary parts: 1) emergence of rigidity

in low-density amorphous solids; 2) elasticity in high-density glasses. It is organized as

follows.

Chapter 2 gives significant details of numerical techniques used for the study in later

chapters. The purpose of this chapter is to make the results in later chapters reproducible

and share precise numerical protocols for related study.

Chapter 3 discusses rigidity percolation with structural correlations. We use two models

- the correlated lattice model and the attractive gel model to study the effect of correlation

on rigidity. In both of those two models, the RP transition threshold is shifted to lower

density with the increasing of structural correlations, and we are able to show in the lattice

model that the introduction of positional correlation doesn’t change the critical exponents

thus it is an irrelevant perturbation to RP in general. This chapter is based on the published

work in Physical Review Letters by Zhang et al. [45].

Chapter 4 studies rigidity percolation in a fractal network, where intrinsic correlations

in particle positions are controlled by the fractal iteration. Specifically, we calculate the

critical packing fractions of site-diluted lattices of Sierpiński Gasket (SG)’s with varying

degrees of fractal iteration. Our results suggest that although the critical exponents of the

RP of these lattices are identical to that of the regular triangular lattice, the critical volume

fraction is dramatically lower due to the fractal nature of the network. Furthermore, we

develop a simplified model based on the fragility analysis of a single SG, and this simplified
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model provides an upper bound for the critical packing fractions of the full fractal lattice.

Our results characterize rigidity in ultra-low-density fractal networks. This chapter is based

on the published work in Physical Review E by Machlus et al. [46].

Chapter 5 presents a systematic method based on states of self-stress to investigate

how prestress affects elastic response of amorphous solids, especially in high-density dis-

ordered systems. Using simulated colloidal glasses, we show how prestress determines the

response of the glass to both macroscopic shear strain and local dipole forces, where they

display qualitatively different behaviors from un-stressed random networks with the same

geometry. This chapter is based on the work in manuscript by Zhang et al..

Finally in Chapter 6, I will make a summary of the results presented. To conclude, I will

end up with a discussion on future directions of rigidity and elasticity in low-density/high-

density mechanical systems.
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CHAPTER 2

General Computational Techniques

This chapter provides significant details of those numerical methods I used throughout

this dissertation. The purpose of such chapter is to make results in this dissertation as

reproducible as possible, and also to share the efforts and non-trivial techniques to pave the

way for related study. The main sections in this chapter include the numerical details of the

“pebble-game” algorithm, which is used to identify rigidity percolation properties, and the

matrix-related calculations of Zero Mode (ZM) and State of Self Stress (SSS) in discrete

networks.

2.1 The “pebble game” algorithm

To identify Rigidity Percolation (RP), there is a purely combinatorial algorithm called the

pebble game algorithm [47] , which allows for efficient ways of calculating the number

of internal degrees of freedom, identifying all rigid clusters and locating overconstrained

regions in 2D generic bar-joint networks. The crux of this algorithm is based on a theorem

by Laman [48] from graph theory followed as:

Theorem: A generic network in two dimensions with N sites and B bonds (defining a

graph) does not have a redundant bond if no subset of the network containing n sites and b

bonds (defining a subgraph) violated b ≤ 2n− 3.

To identify graph rigidity for a network, one has to apply the Laman condition recur-

sively on all possible subgraphs, which is computational costly. In order to identify RP,
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one also needs to build or dilute the network unit by unit (the unit can be bond or site), and

perform rigid cluster decomposition for each step of the new generated configuration. This

will lead to an extreme increase of the computational cost.

However, because of the recursion of checking all subgraphs, only the subgraphs that

contain the newly added bond need to be checked. If each of these subgraphs satisfies the

Laman condition b ≤ 2n−3, the last bond placed is independent; otherwise it is redundant.

This trick can reduce the cost a bit when building or diluting the network to study its RP,

and then the pebble game algorithm is introduced to solve for such problem efficiently.

A very nice feature for the pebble game algorithm is that it is directly correspondent

to a physical picture: A free pebble at a site represents an independent motion (degree of

freedom), and each free site has d pebbles as its translational degrees of freedom, where

d = 2 is the dimension for most of the cases in this dissertation. A bond placed between

free sites introduces an independent constraint which consumes a pebble (or say, constrains

a degree of freedom), then this bond is covered with a pebble. Once a bond is covered by a

pebble, it must remain covered as pebbles are rearranged throughout the entire graph. Such

requirements in the movement of pebbles give the property that a rigid cluster cannot have

more than three free pebbles. The three free pebbles physically correspond to the three

degrees of freedom required to specify the position of a rigid body in two dimensions.

2.1.1 The pebble search

The pebble search is key part of the pebble game algorithm, which sets a couple of graph

search rules according to the Laman condition to search for graph rigidity.

The information of the network connectivity is stored in the graph G, which could be

an undirected graph if one only cares about the network configuration. However, the graph

G in the pebble game algorithm is a directed graph, with the graph direction information

indicating the arrangement of pebbles in the configuration. An edge is included in the

graph when there is a pebble covering the bond, and the direction of that edge is marked as
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pointing from the site which gives the pebble for covering that bond.

Here are some details of methods for the pebble search:

• Find Pebble is implemented in a depth first search in the graph of covered edges

to find a free pebble all over the graph G, in order to move that pebble to site v.

Similarly, one can also have breadth first search version of Find Pebble method1.

• Rearrange Pebbles is a method which moves the found free pebble through-

out the entire graph G and move the pebble to site v. It is usually followed by the

Find Pebble method.

Algorithm 1: Algorithm for Find Pebble

Function Find Pebble(G, v, seen, path):
seen(v) = True;
path(v) = -1;
if pebbles(v) > 0 then

return True;
else

for x ∈ out neighbors of v in the directed graph G do
if not seen(x) then

path(v) = x;
found = Find Pebble(G, x, seen, path);
if found then

return True;

return False;

With the combination of Find Pebble and Rearrange Pebbles methods, the

pebble game algorithm can search for free pebbles over the entire graph and move the

found pebble to the site as desired. If such free pebble is not available, the pebble search

will also return a signal to indicate the failure of such pebble search.

The Load Pebblesmethod can be implemented using Find Pebble and Rearrange Pebbles

methods, and it tries to load two free pebbles for arbitrary site v in the graph. This turns
1To reach a better practical performance, the Find Pebble algorithm is implemented using an iterative

strategy instead of recursive like shown in Algorithm. 1.
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Algorithm 2: Algorithm for Rearrange Pebbles

Function Rearrange Pebbles(G, v, path):
while path(v) 6= −1 do

w = path(v);
if path(w) = −1 then

pebbles(v, w) + = 1;
pebbles(w) − = 1;

else
pebbles(v, w) + = 1;
pebbles(w, path(w)) − = 1;

if pebbles(v, w) > 1 then
pebbles(v, w) − = 1;
pebbles(v) + = 1;

Reverse the edge direction from (v, w) to (w, v) in G;
v = w;

out to be a very powerful method, since if one can find two free pebbles for both of sites

connecting to a bond, this bond is an independent constraint according to the Laman con-

dition. To determine whether a bond is independent or redundant is one of the key goals

when utilizing the pebble game algorithm.

When building the directed graph G for the network, the pebble is either free or it

covers a bond connecting to the site that the directed edge points from. Uncovered bonds

play no role. This means that if a bond is redundant, it will not be included in graph G.

All bonds which connect pairs of sites belonging to the Laman subgraph associated to such

redundant bonds are overconstrained. This information must be explicitly recorded when

it is of interest because it will be lost once the next pebble search is completed.

2.1.2 Rigid cluster decomposition

A systematic search to map out all rigid clusters is made after building up the network with

the pebble search routine. To identify rigid clusters in the network, one can start from the

method of identifying redundant bonds from the pebble search. The rigidity between a pair

of sites is checked using a dummy test bond connecting them. If the test bond is redundant,
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Algorithm 3: Algorithm for Load Pebbles

Function Load Pebbles(G, v):
Initialize path = -1, seen = False;
while pebbles(v) < 2 and Find Pebble(G, v, seen, path) do

% find the first pebble;
Rearrange Pebbles(G, v, path);
% find the second pebble;
if path(v) == −1 then

for x ∈ out neighbors of v in the directed graph G do
if not seen(x) then

path(v) = x;
found = Find Pebble(G, x, seen, path);
if found then

Rearrange Pebbles(G, v, path);

if pebbles(v) == 2 then
return True;

else
return False;

the pair sites are mutually rigid. Sites are defined as in the same rigid cluster if they are

mutually rigid to each other. A site can be shared by more than one rigid clusters and in this

situation such site acts as a pivot site. Multiple rigid clusters can be connected together in a

network through pivots forming macroscopic floppy regions that are governed by collective

motions. As a result, sites can be shared with multiple rigid clusters while bonds fall into

their specific rigid clusters.

To perform the rigid cluster decomposition:

• Introduce a new rigid cluster label for an unlabeled bond e.

• Loop through all unlabeled bonds ei in the graph to check its rigidity with respect to

e. In order to see if those two bonds are mutually rigid, build four dummy test bonds

connecting the sites of ei and e, and check if all of those four dummy bonds are

redundant. If all dummy bonds are redundant, bond ei is in the same rigid cluster with

e, so ei is labeled as the same rigid cluster index to e. Note that the four dummmy
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test bonds will not be built into the graph no matter they are redundant or not.

• Go back to Step 1 until all bonds are labeled with a rigid cluster index.

The rigid cluster decomposition can be done through an incremental graph search strat-

egy when filling the spring-mass network with adding sites one-by-one. The rigid cluster

information from previous snapshot can be used to determine rigidity of new-added bonds,

due to the fact that a new bond can only merge rather than split rigid clusters.

There are two kinds of bonds in a rigid cluster: isostatic and overconstrained bonds.

Isostatic bonds are essential bonds which build the minimal rigid structure of a rigid com-

ponent and cannot be removed when maintaining the rigidity. However, overconstrained

regions contain bonds which are redundant when running the pebble game algorithm, and

those bonds can be removed without changing the overall rigidity. The overconstrained

regions are identified from failed pebble search.

2.1.3 Emergence of the spanning rigid cluster

One can identify the spanning rigid cluster by testing whether the largest rigid cluster wraps

around the periodic boundary of the lattice. When considering periodic boundary condi-

tions, it is somewhat more difficult to detect the spanning, while it is also important since

in percolation problems one has to detect the spanning percolating cluster to measure the

critical threshold pc. Here I introduce a technique for detecting cluster wrapping which is

widely used in connectivity percolation problems [49, 50].

The method for detecting cluster wrapping on periodic boundary conditions is shown

in Fig. 2.1 [50].

• After running rigid cluster decomposition, pick out the rigid cluster which contains

the most number of sites as the giant rigid cluster.

• Pick one site from the giant rigid cluster as as the root site of the cluster (shaded).
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Figure 2.1: Method for detecting cluster wrapping for connectivity percolation on periodic
boundary conditions. In RP problem, all the sites in the connected cluster represent sites in
the giant rigid cluster.

• Starting from the root site, run graph search (can be either breadth first search or

depth first search) in the giant rigid cluster. For each site the graph search reaches,

calculate its displacement to the root site (arrows).

• At every step of such graph search, compare the site displacements to the root site,

and there will be two cases:

– Graph search along bond (a) in Fig. 2.1: the difference between these displace-

ments is not equal to a single lattice spacing, instead the difference can be the

system size or even multiple times of the system size. In this case, the cluster

wraps around the system. If the cluster wrapping is found, terminate the graph

search and return true.

– Graph search along bond (b) in Fig. 2.1: the difference between these displace-

ments is equal to a single lattice spacing. This case indicates that the cluster

wrapping has not taken place yet.

• After the graph search of the entire giant rigid cluster, if cluster wrapping is still not

found, return false.

The emergence of spanning rigid cluster in 2D systems can be determined in either x

28



direction or y direction, or it can also be determined as spanning in both x and y directions.

Any case can be used as the measurement of the critical threshold for RP. There are a num-

ber of possible methods for determining the position of connectivity percolation threshold

numerically on a regular lattice [44], and similarly there are also various measurements for

determining the location of RP threshold.

2.2 Matrix decomposition in linear elasticity

As illustrated in Section 1.3, the dynamical matrix D is defined as the Hessian given by the

second derivative of the energy with respect to particle positions, so the linearized equations

of motion are

|ü〉 = −D|u〉

Thus the eigenvectors of the dynamical matrix D are the normal vibrational modes of the

system with the eigenvalues indicating the squared corresponding frequencies. It is of

great interest for finding out the normal modes for the system, which is to diagonalize the

dynamical matrix D and solve for its eigenvalues as well as eigenspaces.

The high performance computing package ARPACK [51] is designed to compute a few

eigenvalues and corresponding eigenvectors of large sparse or structured matrices, and is

suitable for solving normal modes of disordered systems, but with some difficulty in highly

degenerate eigenvalue conditions [52]. However, when considering the systems with a

large amount of SSSs or ZMs, it is usually the case of having high degeneracy in D.

Here I’m introducing the tool I used for calculating the SSS or ZM in large systems,

and in the scope of this dissertation, it is the following routine that is used in the SSS study

for Chapter 5.
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2.2.1 Numerical orthonormal null space bases

To solve for SSSs or ZMs in large disordered systems is to solve for orthonormal null

space bases for Q and C matrices. In the meantime, the counting of SSSs or ZMs is

to determine the numerical ranks of those elastic matrices. The most widely used and

accurate method for determining the numerical rank and null space is the Singular Value

Decomposition (SVD). However, SVD is expensive for large sparse matrices, which are

usually the cases when dealing with complicated disordered systems.

QR decomposition is an efficient and reliable alternative to SVD for finding out null

space bases and numerical ranks of large matrices. In order to get the numerical orthonor-

mal null space bases of matrix A ∈ Rm×n, rank-revealing QR decomposition to its trans-

pose is performed as ATΠ = QR, where Π is a permutation matrix, Q ∈ Rn×n satisfying

QTQ = In and the upper triangular matrix R is defined as

R =

R11 R12

0 R22 ≈ 0

 ,
where R11 ∈ Rr×r and R22 ∈ R(n−r)×(m−r) has a very small norm. The numerical rank of

A, which is r, can be determined by calculating the number of entries on the main diagonals

of R whose magnitude exceeds a numerical tolerance, so R22 is picked out from R11. As a

result, the last n− r columns of Q after column pivoting from Π make up the null space of

A, giving its numerical orthonormal null space bases.

There are different ways of implementing the above QR decomposition routine in

order to solve for the null space of large matrices. I predominantly use the package

SPQR RANK [53] which contains routines that calculate the numerical rank of large,

sparse, numerically rank-deficient matrices, and it has a method called SPQR NULL which

solves the orthonormal null space bases for the matrix. This algorithm along with other

algorithms in the SPQR RANK package, are all based on the SPQR routine from SuiteS-
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parseQR [54], which is a high performance sparse QR factorization from SuiteSparse [55].

When solving for SSSs in large overconstrained systems, the null space for the equilib-

rium matrix Q has very high dimensions (See Chapter 5). A great advantage of SPQR NULL

is that it can provide a reliable determination of null space base vectors for large sparse ma-

trices, providing a stable tool to solve for SSSs when there are lots of degeneracies for Q

diagonalization. Similarly, SPQR NULL is also reliable when solving for the null space of

QT to get ZMs in large and floppy systems.
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CHAPTER 3

Correlated Rigidity Percolation and Colloidal

Gels

This chapter summarizes the published work “Correlated rigidity percolation and col-

loidal gels” Physical review letters 123, no.5 (2019): 058001 co-authored by Shang Zhang,

Leyou Zhang, Mehdi Bouzid, D. Zeb Rocklin, Emanuela Del Gado, and Xiaoming Mao.

3.1 Introduction

The emergence of mechanical rigidity in soft amorphous solids is central to many material

technology developments from 3D printing with soft, biocompatible inks [56] to design-

ing food texture [57, 58], but it is poorly understood and controlled. The main theoretical

framework is based on the idea that locally rigid structures, due to mechanical constraints

such as chemical bonds or steric repulsion, percolate through the material. Hence the prob-

lem translates into the onset of rigidity in a disordered network of springs, an abstraction

of the actual solid, whose RP transition has been intensively studied especially in relation

with molecular glasses [2, 59–63]. With respect to percolation phenomena controlled by

the geometric connectivity [44], the onset of rigidity requires a mechanically stable span-

ning cluster able to transmit stresses, a problem intrinsically vectorial and long-range [2].

As a result, compared to geometric percolation, RPs display different critical exponents

and occur at higher volume fractions (e.g., 63% for site RP on a two-dimensional triangu-
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lar lattice [1] and 36% for site RP on a three-dimensional face-centered-cubic lattice [64]).

It is therefore surprising that soft amorphous solids such as colloidal gels—formed in sus-

pensions of colloidal particles with prevalently attractive interactions (due to dispersion or

depletion forces)—can be mechanically rigid at low volume fractions, and even as low as

a few percent [41, 65, 66].

Basic formulations of RP ignore any structural correlation: bonds or sites are randomly

removed from a lattice, with no correlation between them, until the structure loses its

rigidity. While this approach provided well-tested predictions for glasses [59], the na-

ture of the rigidity transition can significantly depend on how the final structure is assem-

bled [61, 63, 67]. For example, when rigidity emerges as frictionless spheres jam due to

compression, a spanning rigid cluster that includes nearly all particles suddenly appears

and, with one more contact, the whole system is stressed [18, 32, 68, 69]. This scenario

differs from basic RP where the spanning rigid cluster is fractal at the transition, although

both transitions (jamming and RP) occur near the isostatic point [6, 12, 13, 18, 20], where

the mean coordination number equals two times the spatial dimensions, 〈z〉 = 2d. The

emergence of rigidity in jamming is so different from the classical RP because the self-

organization of the structure, accommodating the repulsive interactions among the parti-

cles as they are pushed together, dictates the nature of the rigidity transition. It has been

recently suggested that the presence of attractive interactions may further change the na-

ture of the rigidity transition at jamming [70], but the emergence of rigidity when the

self-organization of the structure is due to aggregation and gelation in a thermodynamic

system [41, 65, 71–73] is a much less explored question and remains fundamentally not

understood.

Here we propose and demonstrate that spatial correlations can shift the RP to low vol-

ume fractions and are therefore crucial to the onset of rigidity in materials like colloidal

gels. Using a lattice model in which sites are occupied with local density correlations, we

show that the RP threshold shifts to lower volume fraction as correlation strength increases,
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albeit with the same critical exponents as the classical RP (Fig. 3.1ab). Our Molecular

Dynamics (MD) simulations of a colloidal-gel model where particles aggregate due to

short-range attractions confirm that increasing interaction strength can lead to RP at pro-

gressively lower volume fractions by increasing the correlation strength (Fig. 3.1cd). A

simple way to illustrate how structural correlations move the RP to lower volume fractions

is that correlations may organize particles into “smart” thin structures that transmit stress.

When particles are arranged on a Warren truss which is rigid (Fig. 3.1a inset), the vol-

ume fraction of this one-dimensional structure on a two-dimensional plane vanishes in the

thermodynamic limit. As we show below, spatial correlations originating from short-range

attractive interactions naturally prepare particles into such types of structures, giving rise

to rigidity at low volume fractions.

For suspensions of attractive colloidal particles, structural correlations are often ac-

cessible in experiments and well rationalized via statistical mechanics: fractal aggrega-

tion models, cluster theories and density functional theories provide good understanding

of structural correlations resulting from short-range attractive interactions [74–76]. While

for polymer gels it has been long understood that not all sub-parts of a gel are necessarily

rigid [77], for colloidal gels most of existing studies simply assume that all persistent clus-

ters or sub-structures are rigid, in spite of floppy, non-rigid clusters being observed [78].

Hence gelation has been mainly discussed in terms of the geometric percolation of such

structures and of the related particle localization [79–85]. Only recent work has started

to address specifically the rigidity rather than just the connectivity [78, 86–91]. A clear

view of how the interplay between RP and particle localization in the gel structure gives

rise to colloidal gelation has been therefore so far lacking. Our findings provide a novel

concept and rigorous theoretical framework for understanding the emergence of rigidity in

colloidal gels: the rigidity of aggregates comes from the coordinated organization of many

interacting particles rather than from the fact that each single cluster is rigid.
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a b

c d

Figure 3.1: Examples of rigid cluster decomposition of the correlated lattice model
(φl = 0.6) at different correlation strengths [c = 0 in (a) and c = 0.6 in (b)], and the
attractive gel model (φg = 0.6) at kBT/ε = 0.4 in (c) and 0.1 in (d). Red particles be-
long to the largest rigid cluster, and other particles are colored in gray. In both models,
correlation/attraction induces rigidity at volume fractions below the rigidity transition in
the uncorrelated/repulsive limit. The rigid clusters percolate in (b) and (d) where there is
strong correlation/attraction, but not in (a) and (c). The inset in (a) shows an extreme ex-
ample where particles are perfectly correlated (on a Warren truss) and exhibit rigidity at
φ = 0 in thermodynamic limit.

3.2 Models and Methods

We use two models to investigate the effect of correlation on rigidity. We work in 2D,

to be able to use a very efficient method for identifying rigid clusters, the “pebble game”

algorithm [2, 47], to obtain the large numerical samples needed to analyze the RP critical

behavior. Nevertheless, all arguments (theoretical and phenomenological) extend to 3D.

The first model, the correlated lattice model, is a modified version of the site-diluted trian-

gular lattice model for RP [1]. Instead of randomly populating lattice sites with a uniform

probability, we put particles on a triangular lattice according to the following protocol. At

each step, an empty site is randomly chosen, and a particle is put on this site with probabil-
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ity

p = (1− c)6−Nnn (3.1)

where Nnn is the number of its nearest-neighbor sites which are already occupied (0 ≤

Nnn ≤ 6) and c is a dimensionless constant controlling the correlation strength (0 ≤ c < 1).

We start with an empty triangular lattice and repeat this process until a target volume frac-

tion φl is reached (subscript l denotes “lattice”), which relates to the fraction of occupied

sites f through φl ≡ πf/(2
√

3). We then obtain a spring network where all nearest neigh-

bor pairs, if both exist, are connected. The limit of c = 0 corresponds to the classical RP

with no structural correlation (all sites occupied with the same probability).

The second model, the attractive gel model, is an assembly of interacting colloidal par-

ticles, studied via MD in 2D. The particles interact through a pairwise Lennard-Jones-like

potential which displays a short range attraction (of depth ε) and a repulsive core [92, 93].

We generate configurations at different volume fraction φg (subscript g denotes “gel”), and

different ratios between the thermal energy and the attractive well depth kBT/ε, by solv-

ing the many-body Newton’s equations of motion in a square simulation box with periodic

boundary conditions. In spite of its simplicity, our simulations include the essential ingredi-

ents of thermodynamics and dynamics in colloidal gels. For each particle configuration, we

obtain the corresponding spring network by assigning bonds between pairs of particles of

center-to-center distance 1.03σ (the inflection point of the potential) or less. In both models

we consider purely central forces, which have been used successfully to understand exper-

iments on colloidal gels in a large part of the literature [41, 85, 87, 92, 94, 95]. Non-central

forces may also be important [96–100] and can be included in our approach through bond-

bending rigidity [28, 101, 102]. Further details of our simulation protocol are included in

the appendix at Section 3.4. We analyze the rigidity of all the spring networks from the two

models using the pebble game algorithm [2, 47], which decomposes the networks into rigid
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clusters. RP occurs when the largest rigid cluster percolates in both directions, leading to

macroscopic rigidity [38, 63].

3.3 Results

In both models, we find that with correlation/attraction, rigidity emerges at volume frac-

tions lower than in uncorrelated cases (Fig. 3.1). In the correlated lattice model, we measure

two quantities, the probability of having a percolating rigid cluster P (φl, c, L), and the av-

erage mass of the largest rigid clusterM(φl, c, L), where L is the linear size of the lattice.

Following the notion of percolation,M is the order parameter of the transition. As shown

in Fig. 3.2, when the correlation strength c increases, both P and M curves shift to the

left, confirming that RP occurs at a lower φl in the presence of correlation. Moreover, the

gradual increase ofM at the transition suggests that the correlated rigidity transition is still

continuous, as the classical RP. The fact that P andM for different L intersect at the same

scale-free point confirms this.

We analyze critical scaling relations near the correlated rigidity transition using finite-

size scaling (details in appendices). We first determine the transition point φl,c(c, L) where

the spanning rigid cluster first appears, averaging over disordered samples. For each c, the

transition point shifts as a function of L following standard finite-size scaling relations with

correlation length exponent ν = 1.21 (agreeing with classical RP [2]), towards the infinite

volume limit, φl,c(c, L =∞). We find that the transition point decreases with c

φl,c(c = 0, L =∞)− φl,c(c, L =∞) = a c1/ζ , (3.2)

at small c, where ζ ' 0.76, the coefficient a ' 0.19, and the c→ 0 limit transition point is

φl,c(0,∞) ' 0.63 agreeing with the classical RP result (note the extra factor of π/(2
√

3)

converting from site occupancy probability to volume fraction).
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Figure 3.2: (a) P (φl, c, L) at different L and c (symbols and line styles defined in legends).
Inset: ν for different c (blue with error bars), in comparison with average (red line) and
standard error (yellow dashed line) of ν in the classical RP (from Ref. [1]). (b)M(φl, c, L)
at different L and c. Inset: df for different c (blue with error bars), in comparison with
average (red line) and standard error (yellow dashed line) of ν in the classical RP (from
Ref. [1]). In both (a) and (b), curves for different L cross at the same point (marked by red
lines), indicating continuous transitions at every c at different φl,c(c, L =∞).

The data for P andM can then be collapsed using the following scaling forms

P (φl, c, L) ∼ P̃ [(φl − φl,c(c, L =∞))L1/ν ], (3.3)

M(φl, c, L) ∼ Ld−β/νM̃[(φl − φl,c(c, L =∞))L1/ν ], (3.4)
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where ν and β are the critical exponents for the correlation length and the growth of the

order parameter (figures in appendices). These scaling relations share the same form as

ones used in classical RP with the same exponents (ν = 1.21 and β = 0.18) [2], but with

correlation dependent transition points φl,c(c, L =∞) which we determine above.

Our results suggest that correlations play the role of an irrelevant perturbation at the RP

transition. They shift the transition point φl,c(c, L = ∞) while leaving critical exponents

the same as in the uncorrelated case. Thus, with correlation, the RP still belongs to the

same universality class, as also found in other percolation problems [108, 109]. One way

to interpret this result is that the structural correlations we introduce in the model are a short

range feature. Although they shift the transition, the critical scaling is controlled largely

by the physics at large length scales and is not sensitive to microscopic modifications. We

confirm this by measuring the critical exponents at different c. In particular, we measure ν

via fluctuations of φl,c(c, L) over samples, ∆φ ≡
√
〈φl,c(c, L)2〉 − 〈φl,c(c, L)〉2, as well as

the fractal dimension of the giant rigid cluster at the transitionMc = 〈M(φl,c, c, L)〉. We

fit these quantities to their finite-size scaling relations,

∆φ ∼ L−1/ν , (3.5)

Mc ∼ Ldf , (3.6)

where the fractal dimension relates to β by df = d − β/ν (here d = 2 is the spatial

dimension). Within error bars, ν and β agree with those of the classical RP for every c

(Fig. 3.2 insets).
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Figure 3.3: Phase diagram of the correlated lattice model (without and with the strong
correlation correction). Calculated phase boundary φl,c(c, L = ∞) are shown as yellow
dots (before correction: with black circles around the dots, after correction: without circles;
They overlap at small c). The red dashed line and the black solid line show the phase
boundaries before and after the correction by connecting the dots, respectively. The c→ 0
limit (classical RP) is shown as the black dashed line. The insets are configurations taken
at c = 0.9, φl = 0.5 (the yellow star) with and without the strong correlation correction,
which avoids the formation of disconnected dense blobs and leads to a percolating rigid
cluster.

The resulting phase diagram is shown in Fig. 3.3, with the phase boundary determined

from φl,c(c, L = ∞). We plot the phase diagram in the φl vs 1/c plane for convenient

comparison with the attractive gel model, where we identify the rigid gel states in the φg vs

kBT/ε plane, since correlations decrease as both 1/c and kBT/ε increase. In the limit of

1/c → ∞ the transition reduces to the classical RP, while the boundary shifts to lower φl

as c increases (as discussed above). However, when c is large (> 0.6) the phase boundary

bends back to higher φl (dashed line in Fig. 3.3). The reason for this reentrant behavior is

that very strong correlations force the particles to aggregate into densely packed blobs that

do not percolate. This high c limit would correspond to a separation of the colloid-dense

phase in an attractive colloidal suspension, rather than to the colloidal gelation that takes

place through dynamical arrest and prevents the formation of disconnected droplets [94,

99, 101]. To better capture gelation, we add a correction for strong correlation: a site
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can not be occupied if 4 or more of its neighboring sites are already occupied [p = 0

when Nnn ≥ 4 and p still obeys Eq. (3.1) for Nnn < 4]. With the modified model, the

RP transition volume fraction becomes monotonically decreasing as c increases, in better

agreement with experiments and our attractive gel simulation described below.
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Figure 3.4: (a) Phase diagram of the attractive gel model. Simulated parameters
(φg, kBT/ε) are shown as squares colored according to their measured Pg(φg, kBT/ε)
(color scale shown in legend). Black stars show fitted phase boundary at each kBT/ε
and the black line is the phase boundary from fitting these transition points to third order
polynomial. The hard sphere limit of the transition is shown as a black dashed line. (b,c)
show two example configurations with their rigid cluster decomposition, chosen at the two
marked points on the phase diagram. The largest rigid cluster percolates in (c) but not in
(b), agreeing with the phase boundary.

Results from rigidity analysis of the attractive gel model are shown in Fig. 3.4. We sim-

ulate gels of 104 particles in 2D at various φg and kBT/ε, and obtain the mean probability

for the emergence of a percolating rigid cluster Pg(φg, kBT/ε). At each kBT/ε we identify

the transition point φg,c(kBT/ε) by fitting Pg(φg, kBT/ε) as a quadratic function of φg and

find the point where Pg = 0.5. These transition points are then fitted to a smooth curve to
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construct the phase boundary of rigidity in the φg vs. kBT/ε plane. In Fig. 3.4ab we show

two sample configurations (with rigid cluster decomposition) at the same volume fraction

φg = 0.6 but for two distinct values kBT/ε = 0.23 and 0.38 . Large thermal fluctuations

can frequently break bonds, and the resulting structure is either a homogeneous gas of par-

ticles (Fig. 3.1c) or displays phase separation but the large clusters do not show rigidity

percolation yet (as shown in Fig. 3.4b). In contrast, decreasing kBT/ε, the attraction is so

strong that the particle-rich regions not only percolate through the whole system, but also

exhibit rigidity (Fig. 3.4c). The phase boundary bends down again at very strong attraction,

where the system goes out of equilibrium and the rigidity is dominated by the physics of

diffusion limited aggregation [110]. The similarity between the phase boundaries in the

correlated lattice model and the attractive gel model indicates that the rigidity onset in di-

lute systems is favored by the structural correlations induced by the attractive interactions.

Hence, the emergence of rigidity at colloidal gelation can be understood as a RP transition

in which structural correlations help optimize mechanically stable structures [87, 90].

To summarize, we have studied the rigidity transition in a diluted triangular lattice

model where particles populate sites with positional correlation, and a colloidal gel model

with short range attraction using MD simulation. The two models show similar struc-

tural heterogeneities where particles clusters, forming stress-bearing networks that perco-

late through the system at low volume fractions. We analyze critical scaling exponents

in the correlated lattice model, and find that the rigidity transition belongs to the same

universality class as the classical RP, but the transition threshold moves to lower volume

fractions as correlation increases. The attractive gel model further demonstrates that such

structural correlations and heterogeneities can naturally arise as a result of short range at-

tractive interactions in a thermal system. Deeper understandings of how this structural

heterogeneity develops in the incipient phase separation and how it depends on the prepa-

ration protocol used for the gel (for example, the cooling rate or the gelation kinetics in

the simulations) [111], as well as connecting correlated RP scenario obtained here to the
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hard sphere limit where no attraction is present and rigidity emerges at the random close

packing volume fraction (84% in 2D) or to the case in which different types of topological

constraints may be present [112], will be intriguing topics to explore in future studies.

3.4 Appendices

3.4.1 The “pebble game” method: rigid cluster decomposition

To study the rigidity of the contact networks we obtained, we perform rigidity analysis by

decomposing the networks into rigid clusters. The “pebble game”[2, 47] method is applied.

The “pebble game” method is a combinatorial algorithm based on Laman’s theorem

[48], which states that a graph with N vertices and 2N − 3 edges is minimally rigid if and

only if no subgraph of n vertices has more than 2n − 3 edges. Laman’s theorem counts

constraints beyond the mean-field theory in two dimensions. The “pebble game” method

is an efficient way to apply Laman’s theorem to networks and is able to perform tests such

as (i) calculating the number of floppy modes, (ii) identifying over-constrained regions and

(iii) locating rigid clusters.

For a given contact network obtained from the correlated lattice model or the attractive

gel model, we assign each particle d pebbles that match its d degrees of freedom, where

d = 2 is the dimension. We then use the “pebble game” method to classify each contact

as either an independent constraint that absorbs one pebble, or a redundant constraint that

absorbs no pebble. Rigid clusters, subsets of the system where contacts absorb all degrees

of freedom except the d(d+ 1)/2 rigid body motions, are then identified.

We can determine whether the largest rigid cluster spans around the system by testing

whether the cluster wraps around the periodic boundary of the lattice [49, 50]. Fig. 3.1

shows example configurations of our correlated model as well as attractive gel model, with

rigid clusters identified by the “pebble game” algorithm marked.
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3.4.2 Colloidal gel simulation

Our model for the colloidal system is a 2D assembly of ofN = 104 particles (monodisperse

in size) interacting through a Lennard-Jones-like potential

U(r1, · · · , rN) = ε
∑
i>j

u(
ri − rj
σ

) (3.7)

where ε is the potential energy scale (setting the unit energy in our simulations) and σ

is the diameter of particles (setting the unit length). u(r) is a potential well obtained by

combining, in the spirit of Lennard-Jones potential, an attractive term with a short range

repulsive core, and, for computational convenience, is written as

u(r) = A(a r−18 − r−16), (3.8)

where r is the interparticle distance rescaled by the particle diameter and A and a are

dimensionless constants. In particular we have fixed A = 6.27, a = 0.85 to obtain a

short-ranged attractive well of depth ε and range ' 0.3σ [102, 103]. We adopt periodic

boundary conditions and, using the particle diameter σ, we define an approximate volume

(surface) fraction φg = π(σ/2)2N/L2, where L is the side length of the square simulation

box (in units of σ). We then set the box length according to the target volume fraction

φg. The gel configurations are obtained using MD and a Nosé-Hoover thermostat to con-

trol the temperature [104], to mimic different interaction strengths kBT/ε as usually done

when simulating interacting colloidal particles [92, 105]. For the gel preparation we solve

Newton’s equations of motion for computational efficiency, having checked that the gel

configurations obtained through the procedure described below do not meaningfully vary

with varying the microscopic dynamics (i.e. Newton’s vs. Langevin overdamped dynam-

ics). For the MD simulations we use a time step δt = 0.005τ0, where τ0 =
√
mσ2/ε is

the usual MD unit time (m is the particle mass). All simulations reported here have been

44



performed with LAMMPS [106], suitably modified by us to include the interactions above.

The particles are initially equilibrated at a high temperature (T ' 1 in units of ε/kB) and

then slowly quenched to different target temperatures, corresponding to different kBT/ε

values, for 2 · 106 MD steps. For the lowest target temperatures, T ≤ 0.32ε/kB, we make

sure the system has reached a local minimum of the potential energy by solving the damped

equations of motion

m
d2ri
dt2

= −ξ dri
dt
−∆riU, (3.9)

where ξ is the damping coefficient and has units of m/τ0, for 2 · 105 MD steps, within

which the kinetic energy of the system drops to ' 10−10ε. All data discussed here have

been averaged over 200 independently generated samples.

3.4.3 Finite-size scaling for lattice model

3.4.3.1 Identifying the position of phase transition boundary

We randomly generate 100 realizations of the correlated lattice model for each correlation

strength c and system size L and identify the critical volume fractions for each configu-

ration. The average critical volume fractions of the ensembles are measured by fitting a

Gaussian distribution N (µ, σ2) to the probability distribution of the critical volume frac-

tions, i.e. φl,c(c, L) = µ.

We then linearly extrapolate these finite critical volume fractions φl,c(c, L) for each c

as a function of L−1/ν to obtain the infinite-size limit φl,c(c, L = ∞) from the y-intersects

of the linear fits, as shown in Fig. 3.51. Here, we adopt ν = 1.21 from the uncorrelated

RP. We also directly measure the critical exponents in the correlated RP (section 3.4.3.3),

which are shown to be the same within error bars as those in the uncorrelated RP .
1The error bar in small system size is rather wide compared to large system sizes, since in lattice model

the discrete filling/diluting of sites leads to larger gap in density φ, which introduces more fluctuation for φl, c.
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Figure 3.5: Linear extrapolation of the finite-size critical volume fractions as a function of
L−1/ν (ν = 1.21 [2]). The dashed lines are linear fits, and the y-intersects of these dashed
lines represent the infinite-size limit of the critical volume fractions φl,c(c, L =∞).

Using the extrapolated infinite-size critical volume fractions, we obtain the phase bound-

ary for the correlated RP, as shown in Fig. 3.6. As a comparison, we also show the phase

boundary of the modified model that is introduced in the main text (Fig. 3.6). In this phase

diagram, all the critical volume fractions are also in the infinite-size limit. The only visible

difference of the two phase boundaries is at c = 0.9.
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Figure 3.6: Transition point φl,c(c = 0, L =∞) as a function of c for the correlated lattice
model, without and with the strong correlation correction.

Scaling behavior of φl,c(c = 0, L =∞) as a function of c at small c is shown as

|φl,c(c = 0, L =∞)− φl,c(c, L =∞)| = a c1/ζ . (3.10)

The fitted parameters are ζ ≈ 0.76 and a ' 0.19. This fitting provides a quantitative

measurement for the magnitude of the critical volume fraction shift as correlation strength

c increases.
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Figure 3.7: The fitting of the phase boundary as a function of the correlation strength c, as
described in Eq. (3.10), without and with the strong correlation correction.

3.4.3.2 Scaling forms and data collapse

The scaling functions of the rigidity percolation are described as:

P (φl, c, L) ∼ P̃ [(φl − φl,c(c, L =∞))L1/ν ], (3.11)

and

M(φl, c, L) ∼ Ld−β/νM̃[(φl − φl,c(c, L =∞))L1/ν ]. (3.12)

Here, we show that using the extrapolated infinite-size critical volume fractions and the

critical exponents ν and β adopted from the uncorrelated RP, we are able to collapse the

data of P andM. (Fig. 3.8 and Fig. 3.9).
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Figure 3.8: Collapsing of data for P , the probability of having a spanning rigid cluster, for
the correlated RP, showing the master curve P̃(z), where z = [φl − φl,c(c, L = ∞)]L1/ν

and ν = 1.21. The exponent is from the uncorrelated RP[2]).
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Figure 3.9: Collapsing of data forM, the mass of rigid cluster in the correlated RP, show-
ing the master curve M̃(z), where z = (φl− φl,c(c, L =∞))L1/ν and β = 0.18, ν = 1.21.
The exponents are from the uncorrelated RP [2].
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3.4.3.3 Direct measurement of critical exponents

To further verify that the correlated RP is in the same universality class as the uncorrelated

RP, we also directly measure the critical exponents in the correlated RP from the following

scaling relations

∆φ ∼ L−1/ν , (3.13)

and

Mc ∼ Ldf , (3.14)

where df = 2− β/ν.

The critical fluctuation ∆φ of critical volume fraction is measured as the standard de-

viation σ of the Gaussian distribution N (µ, σ2) fitted from the probability distribution of

P (φl, c, L) for each c and L. The critical exponent ν is then fitted using Eq. (3.13). The

fractal dimension for the spanning rigid cluster df is fitted from the finite-size scaling of

Mc(φl, c, L) for each c and L using Eq. (3.14). The exponent β are then obtained using

df = 2− β/ν.

3.4.4 The rigidity diagram for gelation of colloidal particles

3.4.4.1 Defining contact networks

To construct the rigidity phase diagram of the colloidal particles, we need to define the

spring network in the configurations generated through the MD simulations and then per-

form the “pebble game” algorithm to identify rigid clusters. We assume that a spring can

be places between two particles that are separated within a distance close to the minimum

of the potential well. In our case, we choose ' 1.03σ, which is the inflection point of the

interaction potential, defined as the distance where the second derivative of the potential is
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zero, i.e.

U
′′
(r) = 0. (3.15)

At the inflection point, the attractive force starts to decrease with distance. At such distance

two particles can be considered as bonded and the interactions can be approximated as a

spring and hence 1.03σ is considered as the bond length in our analysis.

At low temperatures, bonded particles are indeed separated within this range in the vast

majority of cases and hence using different lengths to identify the contact, or the bonded

state (e.g. the inflection point or the total range of the attractive well) does not affect the re-

sults obtained. At high temperatures, instead, particles distances can vary significantly even

when they are persistently within the well range, due to their kinetic energy, and they don’t

necessarily sit in the potential minimum. Nevertheless, the overall analysis of the rigidity

boundary does not significantly change when we consider different bond lengths within the

well range, due to the fact that we average the results of the rigidity analysis over several

different MD initial configurations: either particles are instantaneously interacting but the

bond between them is not persistent (and hence not relevant for the rigidity analysis) or the

particles are actually interacting over a finite time and the potential minimum is indeed the

most probable interparticle distance. For one specific target temperature, we generate 200

different initial configurations, and for each initial configuration we can extract the spring

network using the bond length range 1.03σ. Then we can average over these results of the

rigidity analysis to get the probability of having a spanning rigid cluster.

We also test the persistence of the clusters of bonded particles using the damping pro-

cedure described above. The local structures have been characterized in terms of the lo-

cal Bond Orientational Order Parameter (BOP) characterizing local crystalline order in
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2D [107]. The BOP of a particle k is defined as:

ψ6(k) =
1

N

N∑
l

exp(i · 6θl), (3.16)

whereN is the number nearest neighbors for particle k and θl is the direction of neighboring

particle l. Dense clusters of particles tend to be locally crystalline since the particles have

the same size. (Fig. 3.10ab) shows, as expected, that for low temperatures (kBT/ε ≤ 0.32

in our simulation), the damping tends to preserve the local structures of rigid clusters,

and the obtained contact networks reflect the rigidity of the low temperature systems. For

high temperatures (kBT/ε > 0.32 in our simulation), instead, the damping modifies the

aggregates local structure, since those aggregates tend not to persist over time (Fig. 3.10cd).

c d

Before damping After damping

a b

Figure 3.10: Bond Orientational Order Parameter (BOP) in sample configurations. (a,b)
kBT/ε = 0.23, φ = 0.6. (c,d) kBT/ε = 0.38, φ = 0.6. (a,c) BOPs without the damping
process. (b,d) BOPs with the damping process.
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3.4.4.2 Rigidity boundary for the colloidal gel model

To find the transition point for RP of colloidal particles, we fit the mean probability for the

emergence of a percolating rigid cluster Pg(φg, kBT/ε) to quadratic functions and interpo-

late for Pg(φg,c, kBT/ε) = 0.5. These transition points at each kBT/ε are shown in Fig. 3.4

and used to fit the phase boundary.

In Fig. 3.11 we show two examples Pg(φg, kBT/ε) fitted to second order polynomial

functions. The interpolated transition points φg,c are also marked.

a

b

Figure 3.11: Fitting of Pg(φg, kBT/ε) to second order polynomial in two example cases,
9a)kBT/ε = 0.2 and (b)kBT/ε = 0.35, where the black stars indicate the extrapolated
transition point defined as Pg(φg, kBT/ε) = 0.5.
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CHAPTER 4

Correlated Rigidity Percolation in Fractal

Lattices

This chapter summarizes the published work “Correlated rigidity percolation in fractal lat-

tices” Physical Review E 103, no.1 (2021): 012104 co-authored by Shae Machlus, Shang

Zhang, and Xiaoming Mao.

4.1 Introduction

Soft disordered solids are ubiquitous; they exist in many forms such as colloidal gels, fiber

networks, colloidal glasses, emulsions, aerogels, polymer melts, and foams. These classes

of materials make up biological tissues, food products, cosmetic products, and materials

like paper and nonwoven fabric. Some of these soft materials need only a very low density

of solid particles to become rigid. In particular, colloidal gels can exhibit nonzero shear

rigidity at a wide range of volume fractions [65, 89, 102, 113–117], which can be below

1% in the case of blood clots [115].

Classical RP problems are concerned with the emergence of rigidity in discrete me-

chanical networks. They have been studied in a number of lattices as models of rigidity

transitions in soft matter. In these models one typically starts with an empty lattice and

populates bonds or sites randomly while observing the emergence of a percolating cluster

that can carry stress. In comparison with percolation (sometimes called “geometric per-
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colation”), rigidity percolation not only requires the emergence of an infinite cluster, but

also requires that stress can be transmitted from edge to edge of the whole lattice via this

infinite cluster. For example, on a two-dimensional site-diluted triangular lattice, the per-

colation threshold is 1/2, and the rigidity percolation threshold is about 69.8% in terms of

the fraction of site occupancy [1].

Classical RP transitions are associated with high values of critical volume fractions φc

for a material to be rigid (typically much greater than 10%) [1, 12, 13, 45, 64], so how can

these ultra-low-density materials exhibit rigidity? Previous work suggested that the answer

to this question lies in how the particles are spatially correlated to each other–the War-

ren truss, for example, transmits stress very efficiently and can achieve rigidity at φc = 0

when viewed as a two or three dimensional structure [45]. While colloids will not spon-

taneously form in Warren trusses (as that involves an unrealistic amount of correlation),

moderate correlation strength is still successful in lowering φc. While the type of corre-

lation used in [45] was not enough for describing rigidity in ultra-low-density solids, it

suggested that there may be another sort of spatial correlation that is both physically real-

istic and allows the system to achieve an arbitrarily low value of φc. We conjecture that a

recursive correlation (which generates a fractal network) would be a promising candidate

for describing rigidity at ultra-low-densities because (i) fractals are low density while still

being connected, and they can be rigid, and (ii) experimental evidence suggests that low

density disordered solids (coagulated blood, for example) can indeed be fractal as a result

of the non-equilibrium process in which the material is assembled [65, 80, 117–121].

In this paper, we show that a model fractal network, the Sierpiński Gasket Lattice

(SGL), does indeed achieve rigidity at arbitrarily low volume fractions. The SGL exhibits

intrinsic positional correlation between the particles which increases with its number of

fractal iterations n. This result is supported analytically by simple calculation on the undi-

luted SGL and numerically on the randomly diluted SGL by using the pebble game algo-

rithm. We also calculate the correlation length and fractal dimension critical exponents for
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RP in this lattice and find that the universality class of the rigidity phase transition in the

lattice is the same as that for the regular triangular lattice. We further propose a simple

non-fractal model, the RP of which yields a strict upper bound to the disorder-averaged

critical volume fraction of the SGL.

4.2 Model

We use a lattice that achieves an arbitrarily low volume fraction while still exhibiting rigid-

ity at full site occupancy. Motivated by the experimentally observed fractal structure of

fiber networks and colloidal gels [80, 110, 117], we consider a triangular lattice where the

upwards pointing triangles are replaced by Sierpiński Gasket (SG)’s, as shown in Fig. 4.1.

The unit cell of this lattice is an upwards pointing SG with an adjoining vacant downwards

pointing triangle, which forms a rhombus. Vibrational modes and spin phase transitions

have been studied on this lattice [122–128]. This is a rich lattice to study since there are

three length scales: (i) the size of the smallest triangle in an SG which we always set as 1,

(ii) the length of the edge of an SG 2n, and (iii) the length of the lattice L = s2n. s is the

number of SG’s on one side of the lattice, and n is the number of times the SG pattern re-

peats on itself, what we call the fractal iteration number. We emphasize that L is measured

in units of the smallest triangle of an SG since the length of the smallest triangle is always

1, independent of n. Also note that n = 0 corresponds to a regular triangular lattice.

The volume fraction of the SGL, at full site occupancy, is

φSGLundiluted = A
3n+1 − 1

22n
, (4.1)

where the constant A is the area of the particle. In the SGL we consider here, A = π/4
√

3.

This result is derived in Appendix 4.6.1, and it is obtained by assuming that each site

is occupied by a disk whose diameter equals the bond length between neighboring sites,
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pictured in Fig. 4.1(c). It follows that

lim
n→∞

φSGLundiluted(n) = 0. (4.2)

An arbitrarily large n corresponds to an arbitrarily small φSGLundiluted , so the SGL is indeed a

suitable model to study the emergence of rigidity in ultra-low-density networks. A single

SG, of any n, is isostatic–it has 3 trivial zero modes and no states of self stress [6]. The

coordination number of the undiluted lattice under periodic boundary conditions 〈z〉undiluted

can be calculated as a function of n.

〈z〉undiluted =
6 + 4(x− 1)

x
, (4.3)

where x = (3n+1− 1)/2 is the number of sites present in a single n-level SG where n ≥ 1.

At n = 0, the lattice is a regular triangular lattice, so 〈z〉undiluted = 6. The coordination

number decreases from 6 to 4 as n goes from 0 to∞.

We dilute the SGL by removing randomly chosen sites. If a site is removed, all of the

bonds attached to that site are also removed. The occupancy fraction pSGL is the ratio of

the number of occupied sites to the number of sites present in a completely filled SGL. As

shown in Appendix 4.6.1, the volume fraction of the diluted SGL is then

φSGL = pSGLφSGLundiluted . (4.4)

We emphasize that while the occupancy fraction pSGL is the ratio of the number of

occupied sites to total number of sites (unoccupied and occupied), the volume fraction

φSGL is the ratio of the occupied space to the total space covered by the lattice. Because

the volume fraction of the undiluted SGL φSGLundiluted vanishes in the n→∞ limit, φSGL can

approach 0 even when pSGL is of O(1).
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Figure 4.1: (a,b) Sierpiński gasket (SG) of fractal iteration n = 2, 5. (c,d) Lattices of SG’s
are models for ultra-low-density networks at n = 2, 5. In (c) semi-transparent purple disks
represent the physical particles we are modeling. The diameter of each particle is equal to
the bond length, which we set to 1.

4.3 Method & Results

A rigid cluster in a mechanical network is a collection of sites and bonds without any floppy

modes. The only zero energy normal modes of a rigid cluster are trivial rigid-body degrees

of freedom of the whole cluster. If a rigid cluster spans the whole network, the system must

exhibit at least one positive elastic modulus. The emergence of such an infinite rigid cluster

is called RP. It is worth mentioning that when rigidity percolates, floppy modes may still

exist in other parts of the network which are not in an infinite rigid cluster. The pebble game

is an efficient algorithm that can be used to examine rigidity in two dimensions [2, 47].

In order to study the RP in the diluted SGL, we execute the pebble game algorithm on
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SGL’s at n = 1, 2, 3, 4, 5 with periodic boundary conditions. For each value of n, we con-

sider 4 different system sizes L which were chosen so that the lattices have approximately

250, 1000, 4000, and 16,000 particles (sites) (although at n = 5 we consider only the 3

larger system sizes because each SG at n = 5 already contains a large number of sites,

and we need to keep the number of SG’s large in the lattice). To keep the number of sites

roughly constant across varying n, we reference

L = 2
2n+1

2

√
N

3n+1 − 1
, (4.5)

which is immediate from Eqs. (4.14) and (4.15) (Appendix 4.6.1), to choose an integer

valued side length L for each target system size (in terms of the total number of sites) and

fractal iteration n.

For each n and L, we generate 200 samples of SGL’s. Each one represents a realization

of disordered dilution. For each SGL, initially empty, we add new sites randomly to the

lattice one by one. Each new site added increases pSGL. We run the pebble game algo-

rithm at regular intervals of pSGL on this lattice to determine when a spanning rigid cluster

appears. The occupancy fraction at which this occurs is the critical occupancy fraction

pc,SGL. We record the mass of the spanning rigid cluster Mc,SGL when it first occurs in each

sample. The code used to produce this data is contained in a GitHub repository [129]. We

then average over the 200 samples to obtain the averaged quantities, 〈Mc,SGL(n, L)〉 and

〈pc,SGL(n, L)〉, for each n and L. We also measure the fluctuation of the transition point

∆pc,SGL =
√
〈pc,SGL(n, L)2〉 − 〈pc,SGL(n, L)〉2. (4.6)

Our previous study of correlated RP on the triangular lattice [45] showed that the short-

range spatial correlation only shifts the transition point and does not change the universality

class of RP in the triangular lattice. Following this result, we make the assumption that RP

in the SGL is also a continuous transition, with the mass of the infinite rigid cluster being
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the order parameter. This assumption is verified by our scaling results below.

We invoke finite-size scaling relations [44, 45] to calculate the critical exponents associ-

ated with the rigidity phase transition. The correlation length exponent νSGL and the fractal

dimension df,SGL are calculated as the slopes of linear fits of log-log plots of 〈Mc,SGL〉 and

∆pc,SGL versus L, according to the finite size scaling relations

〈Mc,SGL(n, L)〉 ∝ Ldf,SGL , (4.7)

∆pc,SGL ∝ L−1/νSGL (4.8)

(Appendix 4.6.2). Note that these relations give a calculation of df,SGL and νSGL for each n.

We find νSGL and df,SGL for the SGL rigidity phase transition are the same as for the

rigidity phase transition in the regular triangular lattice [1] as shown in Fig. 4.2. This

observation is consistent with results on RP in lattices with spatial correlations [45], where

the critical exponents remain the same as in classical RP, and the short-ranged spatial

correlation can be viewed as an irrelevant perturbation. Here, the fractals in each unit

cell can also be viewed as a short range feature, which do not change the divergent length

scale at the transition.
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Figure 4.2: (a) The correlation length exponent νSGL at n = 1, 2, 3, 4, 5. (b) The spanning
rigid cluster fractal dimension df,SGL for the five values of n. The red lines show these
exponents for classical RP in the regular triangular lattice (ν = 1.21 ± 0.06 and df =
1.86± 0.02) [1]. The error bars are 95% confidence intervals.

We assert that the large-scale fractal structure of the spanning rigid cluster in the infinite

system size limit overwhelms the local fractal structure of the SG’s, so df,SGL is the same

as in the regular triangular lattice case instead of being the fractal dimension of the SG. We

also verify that our assumption (the phase transition is continuous) is well justified since

the phase transition belongs to the same universality class as [45].

We extract the critical occupancy fraction at the infinite system size limit pc,SGL(n, L =

∞) by linearly extrapolating the finite critical occupancy fractions pc,SGL(n, L) for each n
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as a function of L−1/ν . The pc,SGL(n, L = ∞) are simply the y-intercepts of these linear

fits which are displayed in Fig. 4.31. Further information about this process can be found

in Appendix of [45].
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0.85
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Figure 4.3: Extracting pc,SGL(n, L = ∞) from the linear extrapolation of the finite-size
critical occupancy fractions pc,SGL(n, L) as a function of L−1/νSGL where νSGL = 1.21. The
lines are linear fits, and the y-intercepts are the infinite-size limit of the critical occupancy
fractions pc,SGL(n, L =∞). The error bars are 95% confidence intervals.

We find that the critical occupancy fraction pc,SGL(n, L = ∞) approaches 1 as n in-

creases while the critical volume fraction φc,SGL(n, L = ∞) approaches 0 [following the

relation in Eq. (4.4)], indicating that these disordered fractal structures exhibit rigidity at

vanishing volume fractions. These results are shown in Table 4.1.

1The error bar in small system size is rather wide compared to large system sizes, since in lattice model the
discrete filling/diluting of sites leads to larger gap in occupation fraction p, which introduces more fluctuation
for pc, SGL.
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n pc,SGL(n, L =∞) φc,SGL(n, L =∞)

1 0.882± 0.002 0.800± 0.002

2 0.961± 0.004 0.708± 0.003

3 0.990± 0.004 0.561± 0.002

4 0.998± 0.004 0.428± 0.002

5 0.999± 0.005 0.322± 0.002

Table 4.1: The critical occupancy and volume fractions for the SGL’s for n = 1, 2, 3, 4, 5
in the infinite system size limit, pc,SGL(n, L = ∞) and φc,SGL(n, L = ∞). As n increases,
pc,SGL(n, L = ∞) → 1 and φc,SGL(n, L = ∞) → 0. The error values are 95% confidence
intervals.

4.4 Interpretation

The fact that the pc,SGL(n, L = ∞)’s approach 1 as n increases is a reflection of both

the fragility of a single SG–for any value of n, removing any non-corner site of an SG

segregates the three corners of the SG into three separate rigid clusters (Appendix 4.6.3),

and the result [Eq. 4.3] that 〈z〉 approaches the critical value of 4 as n increases. The latter

point reveals that the SGL is asymptotically a Maxwell lattice (i.e., lattices that satisfy

〈z〉 = 2d and are thus at the verge of mechanical instability [6, 34]) as n→∞.

These observations motivate a simplified model of the SGL–the Triangle Plate Lat-

tice (TPL). The TPL is a regular triangular lattice consisting of upwards-pointing rigid

triangles hinged at their tips. In other words, if we view it as a regular bond-dilution RP

in a triangular lattice, the items which are being diluted are groups of three bonds which

together form an upwards pointing triangle. Figure 4.4 is an example of what a diluted TPL

can look like.
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Figure 4.4: The triangular plate model (TPL) is a regular triangular lattice which has been
diluted in units of upwards pointing equilateral triangles (black).

There is one main feature that separates the TPL from the SGL: in the SGL an SG

with a site removed may still be an essential part of the spanning rigid cluster. In the TPL,

a vacant triangle cannot transmit rigidity. Because of this difference the critical packing

fraction of the TPL is used to calculate a strict upper bound on that of the SGL.

All p’s that follow in this section should be taken to be in the infinite system size limit.

The relationship between pc,SGL and the critical packing fraction for the TPL pc,TPL is as

follows: consider an SGL and a TPL, where the SG’s in the SGL and the triangle plates in

the TPL are the same size. Let the two lattices also be of equal size. A removed upwards

pointing triangle from the TPL corresponds to at least one removed site from the SGL.

Letting the number of triangles/SG’s present in either lattice be N∆ and the number of sites

present in a single SG be x = (3n+1 − 1)/2, the critical occupancy fractions for the two

lattices are related by

xN∆(1− pc,SGL) ≥ N∆(1− pc,TPL). (4.9)
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The number of removed sites at the critical point in the SGL is at least the number of

removed triangles at the critical point in the TPL. The “=” sign is only satisfied if removing

each site from the SGL corresponds to removing a distinct triangle plate from the TPL. This

is not always the case because (i) multiple removed sites in the SGL can belong to the same

SG, and, as we discussed above, (ii) a “broken” SG can still contribute to the rigidity of the

lattice. As a result, the TPL provides an upper bound of the critical occupancy in the SGL,

Pc,SGL. Explicitly,

pc,SGL ≤ 1− 1− pc,TPL

x
≡ Pc,SGL. (4.10)

We perform the pebble game routine on the TPL and execute the same finite scaling

procedures that we did for the SGL. We find that pc,TPL = 0.656 ± 0.005 and νTPL =

1.4 ± 0.1. The errors given are 95% confidence intervals. pc,TPL and νTPL both lie within

error bars of the corresponding variables for the regular triangular lattice in the case of

bond dilution [1]. The upper bounds on the pc,SGL’s predicted by the TPL are obeyed for all

tested values of n and tightly obeyed for larger values of n (Fig. 4.5). It is worth pointing

out that this is a strict upper bound in the sense of disorder averaged critical occupancy. It

does not necessarily hold for individual samples.
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Figure 4.5: The difference between the upper bound on pc,SGL given by the TPL, Pc,SGL,
and the measured pc,SGL becomes smaller as n increases. The error bars are 95% confidence
intervals.

4.5 Conclusions, discussions, & extensions

In this paper we show that by introducing fractal local structures, rigidity can exist at an

arbitrarily low volume fraction of solid particles. Using a periodic lattice model consisting

of Sierpiński gaskets, we find that as the fractal iteration increases, the critical site occu-

pancy fraction for rigidity increases, while the critical volume fraction decreases, allowing

rigidity at progressively lower volume fractions. We also show that the RP transition in

this fractal lattice remains in the same universality class as the classical RP transition when

length is measured in units of the sides of the smallest triangles. We interpret this result by

mapping the RP on this fractal lattice into the RP of a simple triangle plate model, based on

the fragility of a single SG. This mapping gives a strict upper bound of the critical volume

fraction of the fractal lattice.

Our results may shed light on the origin of rigidity in ultra-low volume fraction soft

solids, such as hydrogels and aerogels. A simple way to understand this phenomena is to re-
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alize that, even in a dense disordered solid such as granular matter or colloidal glass, stress

is often carried by a very small fraction of the solid content, i.e., force chains [35, 130, 131],

while other components do not significantly contribute to the elasticity. Thus, by introduc-

ing appropriate spatial correlation between the solid particles, a material can be constructed

without filling the space which is not needed for rigidity. Interestingly, interactions and

non-equilibrium processes (such as hydrodynamics of the solvent) occurring during the

formation of these ultra-low volume fraction solids appear to naturally achieve this goal

of arranging particles in very efficient ways of transmitting stress. It is of our interest to

understand how this occurs in these experimental systems in the future.

The model we discuss here is a two-dimensional lattice. A curious question that imme-

diately arises is what happens in three dimensions. The SG has a direct three-dimensional

generalization: the Sierpiński Tetrahedron (ST), which is constructed by iteratively hing-

ing tips of four tetrahedra together to form a bigger tetrahedra (which has an octahedron

of empty space in the middle). Each face of an ST is an SG. Interestingly, there is a me-

chanical analogy between the SG and the ST: each internal node in the ST has six bonds,

satisfying the Maxwell condition 〈z〉 = 2d, while the four tip nodes each have three bonds

(z = 3), giving rise to exactly the six trivial rigid body motions of the whole ST. Thus,

each ST is isostatic in three dimensions.

These ST’s can be used to construct a face-centered-cubic lattice in the same way the

SG’s are used to construct the SGL. This three-dimensional lattice also has a volume

fraction that approaches zero as its fractal iteration increases. Analogously, in the undiluted

face-centered-cubic lattice, each node at the tip of an ST has z = 12, taking the whole

structure to 〈z〉 > 6. It is straightforward to see that the undiluted ST lattice has rigidity

from the rigidity of the single ST’s and from the stress-bearing structures (states of self-

stress along straight lines of bonds) [6, 34, 132]. Therefore, a similar RP problem can be

formulated for this three-dimensional ST lattice. The nature of the RP transition may be

more complicated because it is a three-dimensional problem [64], but this lattice at least
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provides an example of a three-dimensional lattice where rigidity exists at an arbitrarily low

volume fraction. It is also of our interest to study the RP transition in this three-dimensional

lattice in the future.

Figure 4.6: (a) The correlation length exponent νSGL and (b) the fractal dimension df,SGL

for the SGL are both obtained from the slopes of the linear fits for each n according to
Eqs. (4.7) and (4.8). The error bars are 95% confidence intervals.
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4.6 Appendices

4.6.1 Calculating φSGL

The volume fraction, an area fraction for d = 2, is the ratio of space taken up by the

occupied sites to the space enclosed within the unit cell. φSGL is the volume fraction of the

lattice, Nocc is the number of occupied sites in the lattice, Av is the area covered by a single

site, and Al is the total area covered by the lattice.

φSGL ≡
NoccAv
Al

. (4.11)

The lattice is a rhombus with side length L, so

Al =

√
3

2
L2. (4.12)

Additionally, we define the occupancy fraction pSGL as

pSGL ≡
Nocc

Ntotal
, (4.13)

where Ntotal is the total number of sites (occupied and unoccupied) in the lattice. For an

SGL with periodic boundary conditions, Ntotal is given by

Ntotal = s2

(
3n+1 − 1

2

)
, (4.14)

where n is the number of fractal iterations, and s is the length of the lattice in units of SG’s.

We set the distance between neighboring sites on the lattice to be 1. Due to the fractal

structure of an SG,

L = s2n. (4.15)
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Since the length between sites is 1, we also know that

Av = π

(
1

2

)2

. (4.16)

Putting everything together,

φSGL = A
3n+1 − 1

22n
pSGL. (4.17)

where the constant A = π/4
√

3 is specific to the geometry of the system.

4.6.2 Calculating Critical Exponents

Given the finite size scaling relations Eqs. (4.7) and (4.8), we can calculate the correlation

length exponent νSGL and the fractal dimension df,SGL for the SGL, as shown in Fig. 4.6.

4.6.3 Fragility of an SG

We use induction to prove that removing any non-corner site in an SG will segregate the 3

corner sites into different rigid clusters. If a corner site is removed in a free SG, the rigidity

of the SG is unaffected. If a corner site is removed in an SGL, the SG’s are disconnected,

and may not be rigid with respect to one another.

Consider an n = 1 SG. It is immediate from Fig. 4.7 that our desired result holds in

this case. Suppose this result holds for an n-level SG.
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Figure 4.7: (a) An n = 1 SG. (b) Removing any non-corner site (red) from an n = 1 SG
leaves two rotors attached to a rigid triangle. The triangle and both rotors (particles with
only one bond) each have a corner site (black), so all three corner sites belong to distinct
rigid clusters.

Consider now an SG of fractal iteration n+1, displayed in Fig. 4.8(a). It is composed of

3 SG’s each of fractal iteration n. When any internal site of the (n+1)-level SG is removed,

there are two possible cases: (i) the site is a shared corner site between two n-level SG’s,

shown in Fig. 4.8(b), or (ii) the site is a non-corner site which belongs to a single n-level

SG, shown in Fig. 4.8(c).
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Figure 4.8: (a) An (n + 1)-level SG, composed of three n-level SG’s (black). (b) Case
(i), a site connecting two n level SG’s (red) is removed, allowing independent motion of
the three corner sites (black). (c) Case (ii), a non-corner site is removed from an n-level
SG (gray with white hatching). If the three corners of the n-level SG are in separate rigid
clusters, the three corners of the (n+1)-level SG can move independently and are thus also
in separate rigid clusters.

If (i), the two n-level SG’s which were previously connected are now free to rotate

about the hinges they each share with the third unaltered n-level SG. The 3 corners of the

(n+ 1)-level SG are now in separate rigid clusters. If (ii), then the 3 corners of the n-level

SG from which a site was removed are now in different rigid clusters, so they can move

freely relative to each other. Since the two unaltered SG’s are independently rigid, the node

connecting the two unaltered SG’s is a free hinge, so the three corners of the (n+ 1)-level
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SG must be in separate rigid clusters. Since assuming our claim is true for an n-level SG

implies our claim is true for an (n + 1)-level SG, and the n = 1 case is manifestly true,

for an SG of an arbitrary number of fractal iterations, removing any non-corner site will

segregate the 3 corner sites of that SG into different rigid clusters. An SG is “fragile” in

the sense that it has this property.
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CHAPTER 5

Prestressed Elasticity of Amorphous Solids

This chapter summarizes the manuscript “Prestressed elasticity of amorphous solids” in

preparation co-authored by Shang Zhang, Vishwas Vasisht, Ethan Stanifer, Leyou Zhang,

Emanuela Del Gado and Xiaoming Mao. It is worth noting that this work is under the

procedure of finalizing to publication, so it will appear to public soon with a bit more

modifications and updates compared to the context in this Chapter.

5.1 Introduction

Almost all solid materials are stressed. Amorphous solids exhibit quenched residual stress

from their preparation process, crystalline solids are stressed by defects and grain-boundaries,

and living matter experience active stress from biological processes. The ubiquity of

stressed solids is encapsulated in the fact that the stress tensor σ, as a d × d symmetri-

cal matrix in d dimensions, has d(d + 1)/2 independent degrees of freedom, but the force

balance equation,

∂jσij = 0, (5.1)

only poses d constraints, leaving d(d − 1)/2 unconstrained components in the stress field.

In absence of external load, all components have to vanish if the material, and the stress

field, have to be homogeneous, but they can be nonzero at lengthscales over which hetero-

geneities or excess constraints are present, giving rise to prestress, (also known as “residual
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stress”, “initial stress” or “eigenstress” in different contexts) [133].

In structural engineering, prestress is proactively used to modify both stability and load

bearing capability of structures, from prestressed reinforced concrete to tensegrity archi-

tectures (Fig. 5.1). In materials, instead, prestresses can emerge spontaneously during

solidification, as the direct consequence of out-of-equilibrium processes through which

they form, or of the external load applied during processing. Prominent examples include

isotropic compressive prestress in jammed packings, shear prestress in shear jammed gran-

ular matter and shear thickened dense suspensions, isotropic prestresses in glasses, and

rich varieties of anisotropic prestress fields in prestressed/tensegrity metamaterials [134–

138] and biological systems [139, 140]. Remarkably, very much in the same way as for

buildings and large scale structures, microscopic residual stresses in amorphous solids may

strongly affect their strength—stiffen or soften them, and direct how they fail [133]. In

addition, prestress stores elastic energy in materials, featuring a different energy landscape

when compared to stress-free materials.

Figure 5.1: Prestress in structural engineering and materials science.

A deep understanding of the consequences of prestress is therefore key to predict elas-
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ticity and material properties in general, but microscopic prestresses can be very elusive,

since it is difficult to directly access them in experiments and in most cases only their in-

direct consequences can be detected. It has been shown that in jamming of frictionless

particles, compressive prestress both stabilizes the packing by maintaining particle con-

tacts, and destabilizes it by shifting frequencies of vibrational modes [141, 142], as well as

controlling the response to external forces [143]. In biological systems such as biopolymer

gels and epithelial cell sheets, tensile stress has been shown to provide stability [144–147],

and active stress generated by molecular motors has been shown to give rise to sophisticated

effects on rigidity [148] and mechanical signal transmission [149].

However, a general theoretical framework to disentangle effects of microstructure and

prestress, and map how external load is carried by prestressed amorphous solids, is still

missing. Current studies of elasticity of amorphous solids have mainly focused on de-

termining how the disorder in their microstructure affects elasticity , whereas the role of

prestress is far less understood, so that there is a gap in the theoretical approaches that can

rationalize the mechanics of amorphous solids when it comes to prestress.

In particular, it was pointed out in the seminal work of Edwards [150] and further

characterized in Refs [151–155], that presrtess in disordered solids exhibit degenerate states

given the same configuration, comprising a “force network ensemble”, which evolves under

external load, and in turn affects the evolution of configurations. Interesting statistical

relations of presrtess distributions within this type of ensembles have been recently studied,

where force-balance constraints [Eq. (5.1)] led to intriguing long-range correlations [156–

161]. However, unraveling the role of disordered configurations and disordered prestress

on the mechanical properties of amorphous solids has been difficult both conceptually and

computationally.

Here we present a systematic method based on the concept of states of self stress (SSSs)

to investigate how prestress affects the mechanical response of amorphous solids, where the

configuration and the prestress are allowed to change independently, while force-balance
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is always maintained. The concept of states of self stress [4, 162] captures eigenstates

of stress distributions that leave all components of a solid structure in force balance. In

discrete mechanical networks, SSSs originate from redundant constraints. SSSs were first

introduced in the mechanical engineering community to describe load bearing abilities of

structures, and more recently introduced to the condensed matter community for their spe-

cial role in characterizing mechanical topological edge states [6, 33, 34, 163]. Because

SSSs span the linear space of all possible ways a system can carry load, mapping out, and

further programming this SSSs linear space, offers a convenient handle to control the me-

chanical response of materials. Interesting examples of this type include recent work on

programming SSSs using topological mechanics to direct buckling and fracturing of meta-

materials [132, 164]. Intriguingly, SSSs in jammed packings have been shown to exhibit

rich spatial structures and a divergent length scale near jamming [69].

The general method we introduce here is applicable to a wide range of systems, both

ordered and disordered, where prestress affects elasticity. It provides an efficient compu-

tational algorithm for finding the stress distribution when the system is under any load, as

well as offering a platform to develop field-theoretic treatment of prestressed elasticity of

amorphous solids. Because this method allows the microstructure and the prestress field to

vary separately, it offers a pathway to investigate how amorphous solids evolve as well as

develop memory under stress without changing their configuration.

We demonstrate this method using a triangular lattice model with varying prestress,

and also test this method in amorphous configuration of compressed repulsive particles, as

a model for a colloidal soft solid, obtained through numerical simulations. We show how

prestress determines the response of such model solid to both macroscopic shear strain and

local dipole forces, where they display qualitatively different behaviors from un-stressed

spring networks with the same geometry. We also use this method to study the dependence

of the stress-bearing ability of the system on the preparation protocol, which changes the

microscopic prestress distribution, as well as signatures of the spatial evolution of stress
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under strain.

Overall, the new method proposed here is an ideal candidate to investigate the nature

of rigidity transitions in prestressed systems, and furthermore, yielding and shear thicken-

ing/thinning systems such as granular matter, jammed and dense suspensions, to potentially

shed new light on the dynamical interplay between stress and geometry in these complex

materials.

5.2 Prestressed mechanical networks

In this section we briefly review mechanics of prestressed networks and their continuum

elasticity limit.

5.2.1 Prestressed networks

We consider a discrete network of point-like particles connected by pairwise central-force

potentials (bonds). When this network is deformed, particle `, which was originally at ~R`,0

in the reference state, undergoes a displacement ~u` to a new position

~R` = ~R`,0 + ~u`. (5.2)

The change of the elastic energy Vb of a bond b connecting particles `, `′ is

δVb = Vb(|~Rb|)− Vb(|~Rb,0|), (5.3)

where ~Rb,0 ≡ ~R`,0 − ~R`′,0, ~Rb ≡ ~R` − ~R`′ are the vectors along the bond in the reference

state and the deformed state respectively.

This change in energy can be expanded to quadratic order in u [using Eq. (5.2) in (5.3)]
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as

δVb =
V ′′b
2
|e‖b |

2 +
V ′b

2|~Rb,0|
|e⊥b |2, (5.4)

where the derivatives are taken at |~Rb,0|,

~eb ≡ ~u` − ~u`′ (5.5)

is the difference of displacement vectors of the two particles connected by bond b, and

e
‖
b ≡ R̂b,0R̂b,0 · ~eb, e⊥b ≡ (I− R̂b,0R̂b,0) · ~eb (5.6)

are its components parallel and perpendicular to the original bond direction R̂b,0 ≡ ~Rb,0/|~Rb,0|,

respectively.

The derivatives of this potential,

V ′′b (|~Rb|) ≡
d2Vb(|~Rb|)
d|~Rb|2

= kb,

V ′b (|~Rb|) ≡
dVb(|~Rb|)
d|~Rb|

= tb,p, (5.7)

correspond to the spring constant kb and the pre-tension tb,p (tension of the bond in the

reference state) of bond b. In this paper we consider the case when the bonds are simple

harmonic springs,

Vb(|~Rb|) =
kb
2

(|~Rb| −Rb,R)2, (5.8)

where Rb,R is the rest length of bond b. In this case, kb is a constant, and

tb,p = kb(|~Rb,0| −Rb,R). (5.9)

In a stress-free network, all bonds are at their rest length Rb,R and thus V ′b (|~Rb,0|) = 0,

leaving only the V ′′b term in Eq. (5.4). Vibrational modes of disordered networks of this
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type have been extensively studied, yielding a rich set of interesting phenomena including

quasilocalized modes, anomalies of density of states at low frequencies, etc.

When a network is stressed, V ′b (|~Rb,0|) 6= 0, and both terms contribute to the elastic

energy, increasing the number of constraints, as we discuss in detail in Sec. 5.3. Interest-

ingly, the sign of tb can be either positive (tension) or negative (compression). In the case

of tb > 0, the prestress term contribute another complete square term in the elastic energy,

clearly stabilizing the system. In the case of tb < 0, naively, the prestress term appears to

be unstable. However, because e⊥b are not variables independent of e‖b , the stability of the

network need to be analyzed for the collective modes, which we discuss more in Sec. 5.2.3.

Here we assumed that the network is in force balance, i.e., the total force on each

particle vanishes. As a result there is no O(e) terms in the expansion. Note that the

force-balance condition and the stress-free condition are two distinct conditions, where

the later means V ′b (|~Rb,0|) = 0 on all bonds, and is a much more stringent requirement

than the force-balance condition. We will revisit this distinction in continuum elasticity in

Sec. 5.2.2.

5.2.2 Continuum elasticity with prestress

The discrete theory discussed above can be rigorously linked to continuum elasticity using

the relation between the discrete nonlinear strain vb of bond b defined as [165, 166]

vb ≡
1

2

(
|~Rb|2 − |~Rb,0|2

)
(5.10)

and the (continuum) nonlinear strain tensor (repeated indices are summed over)

εij(~x) ≡ 1

2
(∂iuj + ∂jui + ∂iul∂iul) (5.11)

where the relation reads

vb = ~Rb,0 · εij(~x) · ~Rb,0. (5.12)
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This follows from the definition of the nonlinear strain tensor, and we have taken the con-

tinuum limit by assuming the spatial variation of the strain field is slow compared to the

scale of the particles and bonds, so the deformation of bond b is determined by the strain at

its location ~x.

Using the expansion of bond length in terms of vb,

|~Rb| = |~Rb,0|

1 +
vb

|~Rb,0|2
− v2

b

2|~Rb,0|4
+O

(
vb

|~Rb,0|2

)3
 (5.13)

we can rewrite the expansion of elastic energy of bond b as

δVb = V ′b
vb

|~Rb,0|
+

1

2

(
V ′′b −

V ′b

|~Rb,0|

)(
vb

|~Rb,0|

)2

. (5.14)

This is equivalent to the expansion in Eq. (5.4), by recognizing that

vb = ~Rb,0 · ~eb +
1

2
~eb · ~eb = |~Rb,0|e‖b +

(e
‖
b)

2 + (e⊥b )2

2
. (5.15)

The combination of Eqs. (5.12) and (5.14) allows us to write the bond energy change in

terms of the strain tensor.

The elastic energy of the whole system can be taken to the continuum limit by convert-

ing the sum over all bonds to an integral over space

E =
1

2

∑
`

∑
`′

Vb=〈`,`′〉 =
1

2

∫
dd~x

1

v(~x)

∑
`′

Vb=〈`,`′〉 (5.16)

where the space is Voronoi tessellated according to the particles, and v(~x) is the volume

of the Voronoi cell at ~x, and the overall factor of 1/2 comes from the fact that every bond

is counted twice. The sum
∑

`′ in the continuum limit represent the sum over the bonded

neighbors of the particle at ~x. Using this formulation, the elastic energy of the system can
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be written in the conventional form

E =

∫
dd~x

[
1

2
Kijkl(~x)εij(~x)εij(~x) + σp,ij(~x)εij(~x)

]
(5.17)

where the local elastic-modulus tensor Kijkl(~x) and prestress field σp,ij(~x) are determined

from the discrete network by

Kijkl(~x) =
1

2v(~x)

∑
`′

(
V ′′b |~Rb,0|2 − V ′b |~Rb,0|

)
· R̂b,0,iR̂b,0,jR̂b,0,kR̂b,0,l,

σij(~x) =
1

2v(~x)

∑
`′

(V ′b |~Rb,0|)R̂b,0,iR̂b,0,j. (5.18)

From this relation, it is clear that the prestress field σp(~x) in the continuum theory comes

from pretensions on bonds which are not at their rest length in the discrete network, whereas

the elastic-modulus tensor depends on both the spring constants and the tensions.

The body-force in this continuum theory

fi(~x) = ∂jσp,ij(~x) =
1

2v(~x)

∑
`′

(V ′b |~Rb,0|)R̂b,0,i (5.19)

corresponds to the total force on each particle (normalized by the volume of the Voronoi

cell) in the discrete network. Thus, the force-balance conditions in the discrete network

and the continuum theory are indeed the same condition.

It is often useful to write this continuum theory in a quadratic expansion in terms of the

displacement field ~u(~x),

E =

∫
dd~x
[1

2
Kijkl(~x)∂iuj(~x)∂jui(~x)

+ σp,ij(~x)∂iul(~x)∂jul(~x)
]

(5.20)
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where we have used the symmetry of Kijkl and the force balance condition which elimi-

nates O(u) terms in this elastic energy.

5.2.3 Prestressed rigidity

The concept of “rigidity” has been a central theme in the discussion of mechanics of soft

materials. In general, rigidity can be interpreted from two viewpoints, (i) a microscopic

view point, where rigidity is attributed to the vanishing of floppy modes (i.e. modes of

deformation that cost to elastic energy), and (ii) a macroscopic viewpoint, where rigidity

is attributed to the emergence of a spanning rigid cluster that can transmit stress. Remark-

ably, these two rigidity criteria coincide for the jamming transition of frictionless repulsive

particles.

In this section we focus on the first viewpoint and discuss how prestress changes floppy

modes. In Sec. 5.3 we discuss how prestress affects the ability of the system to carry

additional load (second point of view).

Rigidity of stress-free discrete mechanical networks is often analyzed via the compar-

ison between the numbers of constraints and degrees of freedom [2]. This is well sum-

marized by the Maxwell-Callandine index theorem [4, 163]. Rigorously speaking, when

this theorem determines that the number of floppy modes of a system vanishes, it implies

that the system is “first-order rigid”, where the energy increases quadratically for all de-

formations. By contrast, in a “second-order rigid” system the the leading order expansion

of the energy with respect to some deformations is of higher order such as cubic or quar-

tic [167, 168].
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Figure 5.2: Prestressed rigidity. (a) A mechanical network of concentric similar triangles.
When stress-free, this network has one floppy mode. When prestressed, this floppy mode
is eliminated. Black dashed arrows denote the floppy mode. Green (red) bonds are under
tension (compression). The thickness of the bond is proportional to the magnitude of the
prestress. (b) A honeycomb lattice exhibits an extensive number of floppy modes. When
prestressed (equal tension on all bonds), these floppy modes are eliminated. (c) Phonon
dispersion relation of the honeycomb lattice when stress-free (orange) and when stretched
with tensile prestress (blue). (d) Eigenvalues of the dynamical matrix of a mechanical
network (right). When prestress on the network increase beyond a threshold, one normal
mode (e) becomes unstable.

How does prestress change this paradigm of rigidity? It was pointed out in Ref. [167,

168] that prestress can rigidify second-order rigid systems and make all their modes first-

order rigid. Interestingly, this prestress stabilization effect can even take place in systems

which are underconstrained by (stress-free) Maxwell counting. One simple example is the

honeycomb lattice, which has coordination number z = 3 and thus significantly below the

Maxwell point of z = 2d (here d is the spatial dimension) where degrees of freedom and

constraints balance. When a honeycomb lattice is under tension, all modes are lifted to

finite frequency (except for trivial translations). It is worth noting that this example does

not violate the theorems in Ref. [168]: although underconstrained, floppy modes of the

honeycomb lattice under periodic boundary conditions are in fact second order rigid. In
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Fig. 5.2 we show examples of how networks become rigid by prestress.

This effect has studied in various disordered mechanical networks from polymer gels

to jamming of particles and biological tissues [144, 146, 169–171]. In these models, the

underconstrained network typically exhibit an extensive number of floppy modes before

the application of stress. When certain types of strain (tensile or shear) is applied to the

network, a system spanning SSS emerges and becomes stressed, providing (macroscopic)

rigidity and thus elastic moduli. This prestress also rigidifies floppy modes in the network,

as the geometry of the network evolves and these modes become second order rigid.

Interestingly, by increasing the magnitude of the prestress, a stable network can also

destabilize. This happens when the negative terms in Eq. (5.4) due to compressed bonds

compete with the positive terms and creates negative eigenvalues in the dynamical matrix.

Some examples of this effect is also shown in Fig. 5.2. We discuss this effect in more detail

in Sec. 5.3.2.

5.3 States of self-stress in stressed elasticity

In this section we introduce a new Q · C (equilibrium and compatibility) decomposition

for the mechanics of prestressed systems, that can be used to analyze their SSSs and zero

modes (ZMs). We first briefly review this decomposition for stress-free systems, and then

discuss the more general case of prestressed systems. We also develop general formulation

of using these SSSs to compute mechanical response of a system to external load, including

both macroscopic strain and local forces.

5.3.1 States of self-stress in stress-free systems

The elastic energy of a stress-free network of N point-like particles connected by Nb

central-force springs in d dimensions can be written to quadratic order in u using the dy-
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namical matrix D‖ as

E =

Nb∑
b=1

δVb =

Nb∑
b=1

kb
2

(e
‖
b)

2 =
1

2
〈u|D‖|u〉 (5.21)

where the inner product is taken in the N · d dimensional space for particle displacements

u, and the superscript “‖” on the dynamical matrix signifies that this dynamical matrix

describes a stress-free system where only e‖ enters the elastic energy. The more general

form for prestressed systems will be discussed in Sec. 5.3.2. This quadratic form can be

decomposed into two steps using the equilibrium and compatibility matrices, defined as

C‖|u〉 = |e‖〉 (5.22)

Q‖|t‖〉 = |f〉. (5.23)

Here |e‖〉 and |t‖〉 represent the extension and tension of every bond (where the superscript

“‖” on means that they are along the bond direction), which are both Nb dimensional vec-

tors. |u〉 and |f〉 represent the displacement and total force on every site, which are both

Nd dimensional vector. As a result, the equilibrium matrix Q has the dimension Nd×Nb,

and the compatibility matrix C has the dimension Nb ×Nd.

Using these relations in Eq. (5.21) it is straightforward to see that

D‖ = Q‖ ·K‖ · C‖ (5.24)

where K‖ is a diagonal matrix that contains all the spring constants kb.

The null space of the Q‖ is the set of tensions, called SSSs, that produce no forces at

any site,

0 = Q‖|t‖SSS〉. (5.25)
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The null space of the C‖ is the set of site displacements, called ZMs, that produce no

changes in bond lengths,

0 = C‖|uZM〉. (5.26)

ZMs have been extensively studied in soft matter systems, due to their obvious signifi-

cance as capturing deformations with no cost of elastic energy. SSSs have only recently

been explored in soft matter, but also show great potential in characterizing stress-bearing

structures in mechanical networks.

Applying rank-nullity theorem on Q,C matrices leads to the Maxwell-Calladine index

theorem

N0 −NS = Nd−Nb, (5.27)

where N0, NS are the numbers of ZMs and SSSs.

These concepts have found wide applications recently in the new field of topological

mechanics, as t‖SSS and uZM can become topologically protected modes in Maxwell lattices

and networks.

5.3.2 States of self-stress and zero modes in prestressed systems

Prestress of a mechanical network can always be viewed as “exciting” an existing SSS in

a stress-free network (which is generated by turning off stress in the prestressed network

but keeping exactly the same geometry). Thus, the “stress-free version” of a prestressed

network must exhibit a SSS in the first place.

With prestress, the elastic energy includes both e
‖
b and e⊥b terms as we analyzed in
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Eq. (5.4),

E =

Nb∑
b=1

δVb =

Nb∑
b=1

[
kb
2

(e
‖
b)

2 +
tb,p

2|~Rb,0|
|e⊥b |2

]

=
1

2
〈u|(D‖ + D⊥)|u〉. (5.28)

Similar to the stress-free case, using the fact that this elastic energy consist only complete

square terms, this dynamical matrix can also be decomposed into Q,C matrices,

D = Q ·K · C, (5.29)

where

C|u〉 =

e||
e⊥

 ≡ |e〉, (5.30)

defines the new C matrix and Q = CT . Here we have defined the new Nbd dimensional e

vector which contains one component from ‖ and d−1 from⊥ for each of the Nb bonds. It

is worth noting here that the compatibility matrix C is now Nbd×Nd dimensional instead

of Nb × Nd dimensional, because this C matrix maps the Nd dimensional displacement

vector of the network into e‖b and e⊥b for each bond b. At the same time, the equilibrium

matrix Q is Nd × Nbd dimensional. The spring constant matrix is a Nbd × Nbd diagonal

matrix with spring constant kb for the ‖ terms and pre-stress tb,p for the ⊥ terms,

K =

kb 0

0
tb,p

|~Rb,0|

 (5.31)

These new Q,C still describes the mapping between the (Nd dimensional) degrees of

freedom space and the (Nbd dimensional) constraint space. In parallel with Eq. (5.30) we
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have

Q

t||
t⊥

 ≡ Q|t〉 = |f〉 (5.32)

Correspondingly, t‖ and t⊥ are the parallel and perpendicular components of t.

It might appear confusing how tension t on a central-force spring can have a component

perpendicular to the spring. This can be understood by realizing that the ‖ and ⊥ compo-

nents are defined with respect to the reference configuration, and t denotes an increment

of stress on top of the pre-stress tp. In the prestressed reference state, tb,p is along bond

b in the reference configuration ~Rb,0. In the state after the (infinitesimal) deformation, the

total tension is along bond b in the deformed configuration ~Rb. These two bond directions,

~Rb,0 and ~Rb, are not parallel in general. The t field in Eq. (5.32) represents the increment

from the pre-tension to the tension after the deformation, and thus has components parallel

and perpendicular to the original bond direction. In other words, under an (infinitesimal)

deformation, both bond (parallel) extension e‖ and bond rotation e⊥ cause increment of

stress [Eq. (5.28)], and the two components are t‖ and t⊥ respectively.

SSSs in a prestressed system are thus defined as any vectors that satisfy

Q|tSSS〉 = Q

t||SSS

t⊥SSS

 = |f〉 = 0, (5.33)

which parallel and perpendicular change of bond tensions that leave all particles in force

balance (SSSs), respectively, for a prestressed network. In Fig. 5.3 we show two examples

of mechanical networks where prestress introduces extra SSSs that involve t⊥ components.

This formulation characterizes the tensegrity phenomena where prestress generates new

SSSs for the system to carry other types of load.

For the tensegrity T3 prism structure in Fig. 5.3, (g) corresponds to the SSS which

only has non-zero components in ‖ directions, and is also the single SSS in the stress-free
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structure. Fig. 5.3(h) is the SSS which has the top and bottom triangle twisted in reverse

directions, producing rotational tensions balanced with ‖ bond tensions and induces no net

force on sites.

One can also define ZMs in a prestressed network as

C|uZM〉 =

e||
e⊥

 = |e〉 = 0, (5.34)

and further rewrite the Maxwell-Calladine index theorem for a stressed network by apply-

ing the rank-nullity theorem on the new Q,C matrices, which reads

N0 −NS = Nd−Nbd. (5.35)

Note that the last term is now Nbd for the prestressed network instead of Nb in the stress-

free case. More rigorously, if we include the effect that not all bonds are stressed, this index

theorem should be written as

N0 −NS = Nd−N unstressed
b −N stressed

b d. (5.36)

where each unstressed bonds only provide 1 constraint.

However, actual mechanics of the network is more complicated. Because some spring

constants in K are negative (from compressively prestressed bonds), new ZMs may arise,

as we show in the example in Fig. 5.2. Thus, satisfying C|uZM〉 = 0, which guarantees no

bonds extend or rotate, is a sufficient but not necessary condition for ZMs.

In other words, there are two types of ZMs in a prestressed system. The first type

satisfies Eq. (5.34) and are also ZMs of the stress free network with the same geometry

(with the additional no-rotation constraint). The second type are new “fine-tuning” ZMs,

where positive and negative terms in the dynamical matrix balance, and these modes are

not ZMs of the stress-free network. Interestingly, because C|uZM〉 6= 0 and QKC|uZM〉 = 0
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these ZMs lead to a set of SSSs |tSSS〉 = KC|uZM〉. One trivial example of this type of ZMs

is the rigid rotation of the network if the system is under open boundary conditions: the

rotation causes e⊥ and thus not satisfying Eq. (5.34), but it is indeed a ZM of the dynamical

matrix. A nontrivial example of such fine tuning ZM is shown in Fig 5.2a where the sum

of e‖ and e⊥ terms vanish. The Maxwell-Calladine index theorem for prestressed systems

[Eq. 5.3.2] works for the case when only the first type of ZMs are counted.

In contrast, the definition of SSSs in Eq. (5.33) is more robust as it relies only on force

balance, and is not affected by the positive definiteness of D. In our discussions below,

we mainly focus on these SSSs and show how they form a linear space that efficiently

characterizes how load is carried by a prestressed system.
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Figure 5.3: Examples of SSSs in prestressed systems. Red and blue arrows denote t‖, t⊥

respectively. (a) SSS of a stress-free mechanical network. The two mechanical frames are
shown as (a) the four grey sites connected by dotted lines as bonds to form a 2D frame; (g)
the six grey sites connected in 3D to form a tensegrity T3 prism. When only considering ‖
directions, there is one SSS for the 2D frame, which is the single SSS shown in (a). After
taking ⊥ directions into account, there are six SSSs for the 2D frame in total, which are
shown from (a)-(f). With a tensegrity T3 prism structure, (g) indicates the single SSS when
only considering ‖ directions. There are 21 SSSs in total when considering ⊥ directions,
including (g)(h) shown as examples.
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5.3.3 Stress distribution as linear combinations of states of self-stress

One important property of SSSs is that they form a linear space that contains all possible

ways a network can carry stress while keeping all particles in force balance. Thus, actual

stress distributions when the network is under load must come from linear combinations

of SSSs, and the linear space of SSSs characterizes the capability of a system to carry any

external load.

Here we first illustrate this formulation using a simple shear. If the network deforms

affinely (i.e., homogeneous shear strain), one can write the affine shear as bond extensions

e
‖
affine. For a stress-free system with all spring constants being 1 the bond tension in response

to this shear can be decomposed in the SSSs linear space as

|t‖〉 =

NSSS∑
i=1

|t‖SSS,i〉〈t
‖
SSS,i|e

‖
affine〉, (5.37)

where the sum runs in the NSSS dimensional linear space of all SSSs, and |t‖SSS,i〉 form an

orthonormal basis of this linear space. This relation is straightforward to prove as follows:

when bond extension e‖affine is externally imposed (e.g., via Lee- Edwards boundary condi-

tions), the system respond by displacements u (e.g., nonaffine deformations, or displacing

internal particles) to minimize the elastic energy, so the resulting bond extensions are

|e‖〉 = |e‖affine〉+ C‖|u〉. (5.38)

If all spring constants are 1, we have |t‖〉 = |e‖〉, and the linear combination coefficients of

t‖ to the SSSs are

ci = 〈t‖SSS,i|t
‖〉 = 〈t‖SSS,i|e

‖
affine〉+ 〈t‖SSS,i|C

‖|u〉. (5.39)

The second term has to vanish because 〈t‖SSS,i|C‖ = (Q‖|t‖SSS,i〉)T = 0. This proves to the

decomposition in Eq. (5.37).
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Three comments can be made from this result. First, if this shear strain has no overlap

with any SSSs in the system, 〈t‖SSS,i|t‖〉 = 0 for all i, the system can not carry this load.

What happens physically would be that the system yields under this load, until a new SSS

emerges that can carry this load. Second, this formulation can also be applied to other types

of load, such as hydrostatic pressure. It is important to note here that any component in

eaffine that can be written in terms of C‖|u〉 will not cause stress—it correspond to strain that

will be relaxed by degrees of freedom available to the system. Third, similar formulation

can also be developed with loads applied via anchored boundaries, where SSSs are defined

as bond tensions leaving internal sites in force balance, and the strain e can be applied from

boundary connecting to boundaries.

The relation is slightly more complicated when the spring constants are not all the same,

|t‖〉 =

NSSS∑
i,j

|t‖SSS,i〉[(K
‖−1

)ss]
−1〈t‖SSS,j|e

‖
affine〉, (5.40)

where (K−1)ss is the inverse of the spring constant matrix projected to the SSS linear space.

This relation can readily be generalized to the pre-stressed case, where

|t〉 =

NSSS∑
i,j

|tSSS,i〉[(K−1)ss]
−1〈tSSS,j|eaffine〉. (5.41)

A detailed proof of this relation is included in App. 5.8.1. It is worth noting that the

response |t〉 calculated here is the addition to the prestress in response to the load, so the

total stress in the system is |tp〉 + |t〉 where tp only has longitudinal components and t has

both longitudinal and transverse components.

5.3.4 Dipole response

Similar projections can also be applied to compute the stress response of a prestressed

system to local forces, such as a force dipole.
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In particular, when a force dipole acts on a network, all particles are in force balance

from tensions within the network, and the two particles the force dipole acts on are not:

they are only in force balance when the external dipole forces are included.

When this force dipole acts on a pair of particles that are connected by a bond in the

network, the stress distribution that is excited is a SSS of the original network. This concept

has been defined as “quasi-localized SSS” [69, 172] for the stress-free case. This can

be understood as follows: although the force dipole is external, it could be viewed as

carried by the bond in the original network (e.g. by changing its rest length). Thus, the

stress distribution is a SSS of the original network. Here we extend this formulation to the

prestressed case, where we define a “dipole stiffness” as

κ ≡
−2〈fdipole|ursp〉
|〈f̂dipole|ursp〉|2

=
−2〈fdipole|fdipole〉
〈fdipole|ursp〉

, (5.42)

where |fdipole〉 is the force dipole under particle representation, |f̂dipole〉 as its normalized

vector, and |ursp〉 is the particle displacement response to the force dipole. This definition

of dipole stiffness treats the whole system as a black box, and only extract the stiffness

from the force-distance relation between the two particles.

Using the SSSs linear space, the dipole stiffness to a local force dipole on bond b is thus

given as (details in the App. 5.8.2):

κb =
4k2

b

kb −
NSSS∑
i,j

〈b|tSSS,i〉[(K−1)ss]
−1〈tSSS,j|b〉

, (5.43)

where kb is the spring stiffness for bond b and |b〉 represents a vector in the labeling space

of bonds which has zeros in all components except for that the b-th component is set to

unity.

In the case when the force dipole acts on a pair of particles that are not connected in

the network, the stress distribution is not a SSS of the original network. Instead, it can be
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viewed as a SSS of the original network with an “auxiliary bond” which carries exactly the

dipole force. In App. 5.8.2 we also derive the stiffness of this case.

5.4 Prestressed triangular lattices

In this section we use prestressed triangular lattices to illustrate the prestressed elasticity

we discussed in Secs. 5.2 and 5.3.

In the stress-free case, triangular lattices have a coordination number z = 6 > 2d and

thus the number of SSSs per site is z
2
− 2 = 1. In fact, a localized SSS |t`〉 can be defined

around each site ` as shown in Fig. 5.4a. These site-localized SSSs provide a complete

basis to decompose any SSSs on the triangular lattice.
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Figure 5.4: Vibrational modes of prestressed triangular lattices. (a) a site-localized SSS
|t`〉 on a triangular lattice, where bonds surrounding the hexagon carry tension, and bonds
in the hexagon carry compression. The red disk on the center site represent the strength
of this SSS. (b) A prestressed triangular lattice with the prestress generated using a lin-
ear combination of site-localized SSSs with independent coefficients on each site. (c) A
triangular lattice with positional disorder. (d-f) Dynamical matrix eigenvalue analysis of
32 × 32 triangular lattices under periodic boundary condition with prestress (d-e) or posi-
tional disorder (f). (d) Lowest 300 eigenvalues λ of the dynamical matrix of prestressed
triangular lattices in ascending order, at c̃ = 0 (blue), c̃ = 0.1 (orange), c̃ = 0.2 (green),
from top to bottom. (e) The lowest eigenvalue λmin as a function of c̃. (f) Lowest 300
eigenvalues λ of the dynamical matrix of triangular lattices with positional disorder, at at
ũ = 0 (blue), ũ = 0.1 (orange), ũ = 0.2 (green), from top to bottom. (g) Phonon disper-
sion relation of the lowest band of triangular lattices with no prestress (yellow, upper), and
critical compressive prestress (blue, lower) where modes along ΓM approach instability.
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Figure 5.5: Prestressed triangular lattice under load. A triangular lattice with disordered
prestress (c̄ = 0, c̃ = 0.12 and all modes stable) in (a) responds to simple shear σxy, with
longitudinal |t‖〉 and transverse |t⊥〉 forces shown in (b,c). Red and green denote compres-
sion and tension in (b). Orange and cyan denote clockwise and counter clockwise in (c).
Note the stress shown in (b,c) is in addition to the prestress in (a). At different c̄ and c̃ (d),
the lattice exhibit shear modulus shown in (e). (f-i) longitudinal and transverse responses
to longitudinal (f,g) and transverse (h,i) force dipoles (black arrows show directions of
forces). (j,k) Stiffness against longitudinal and transverse dipoles.

In particular, we can generate an ensemble of prestress on triangular lattices by taking

an arbitrary coefficient c` for each site-localized SSS |t`〉 and sum them up. In Fig 5.4b we

show an example of such a prestressed state.

These prestressed lattices can be physically constructed by choosing the rest length

of each bond b such that when they are at the length in the regular triangular lattice, the

tension/compression they carry is exactly the value tb,p in the prescribed SSSs. Because the

total force is balanced at each site for any SSS, all bonds will stay at the length in the regular

lattice, and thus we obtain a triangular lattice with regular geometry and a prescribed SSS.

What are the mechanical properties of such prestressed triangular lattices? Here we

study them from two perspectives: vibrational modes and load-bearing capabilities. The

vibrational modes can be calculated based on the quadratic expansion in Eq. (5.4) for each

bond, which leads to the dynamical matrix defined in Eq. (5.29).

In Fig. 5.4d we show eigenvalues of the dynamical matrix of the triangular lattice at

three levels of prestress (by assigning c` from a Gaussian distribution with mean at c̄ and

standard deviation at c̃). Prestress significantly affects the vibrational modes especially at
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low frequencies. In particular, negative eigenvalues start to appear when the fluctuations of

the SSS goes beyond a critical level, c̃ > c̃∗, in the case of c̄ = 0 (Fig. 5.4e). This indi-

cates that by increasing the fluctuation of prestress (where the mean remains 0), unstable

modes appear, although the system remains in force balance. This is in alignment with our

discussion on prestressed rigidity in Sec. 5.2.3

To contrast this result, we also consider triangular lattices with positional disorder but

no prestress (Fig. 5.4c). In this case, we move site ` by a random displacement ~u`, the x, y

components of which being generated from a Gaussian distribution with mean at ū = 0 and

standard deviation at ũ. We also plot the eigenvalues of the dynamical matrix in Fig. 5.4f.

Although positional disorder also affects the eigenvalues, it mostly smooths out the regular

lattice eigenmodes, and does not lead to qualitative change at low frequencies. Note that to

make a fair comparison we chose the same values for c̃ and ũ, which represents the same

level of disorder, under the simple convention we took where the bond length and spring

constant on the triangular lattice both being unity.

The load-bearing capabilities of prestressed triangular lattices can be analyzed by the

SSSs formalism discussed in Sec. 5.3. In particular, at any given realization of disordered

prestress, we can compute the linear space of SSSs, and use Eq. (5.40) to find the stress

response of the system to external load.

We apply this method to prestressed triangular lattices with two types of load: simple

shear and dipole forces, and the results are shown in Fig. 5.5.

Furthermore, we also measured shear modulus of these prestressed triangular lattices at

different values of mean and standard deviation, and the results are shown in Fig. 5.5 too.

In general, positive mean stress (tension) leads to increased shear modulus, and negative

mean stress (compression) leads to decreased shear modulus.

This can also be seen from the perspective of phonon structures of regular lattices. In

Fig. 5.4 we show the lowest phonon bands of triangular and honeycomb lattice at different

levels of (force-balanced) prestress. It is straightforward to see that negative prestress (com-
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pression) destabilizes the originally stable triangular lattice, and positive prestress (tension)

stabilizes the honeycomb lattice, which was originally unstable against shear. Interestingly,

the modes that first become unstable in the triangular lattice as negative prestress increase

are the modes along the ΓM direction in the first Brillouin zone, indicating that the type of

modes that first become unstable are the modes that zig-zag between the straight lines of

bonds, agreeing with recent studies of strain-localization in triangular lattices.

5.5 3D numerical simulations of soft repulsive particle as-

semblies

The new Q,C matrix methods described in Sec. 5.3 provide a set of tools to analyze stress-

bearing capabilities and mode structures of pre-stressed systems. In this section, we intro-

duce a computational model for an assembly of soft repulsive particles, widely used for

soft amorphous solids and glasses, on which this method can be applied. The amorphous

solid is formed with pre-stress both from compression and frozen-in structural disorder. In

Sec. 5.6 we will present results from applying this new method to this model system.

The numerical model describes a suspension of particles with soft repulsive inter-

actions given by a truncated and shifted Lennard-Jones potential [173], whose strength

ε is the unit energy in the simulations. The potential energy, for particle i and j, is

U(rij) = 4ε[(aij/rij)
12 − (aij/rij)

6] + ε for rij ≤ 21/6aij , otherwise U(rij) = 0. Here

aij = 1/2(ai + aj) with ai and aj being the diameters, and rij is the center-to-center dis-

tance between the two particles. The size poly-dispersity is introduced by drawing the

diameter of each particle ai from a Gaussian distribution with mean of unit length a and

variance of 10%. All simulations used here have volume fraction φ ≈ 70% and consist of

104(10976) particles in a cubic box of linear size L = 20.36, unless otherwise specified.

The initial samples are prepared by melting down FCC crystals of particle volume fraction

0.7 at T = 5.0ε/kB, and then they are cooled down to a low temperature 0.001ε/kB through
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a NVT molecular dynamics (MD) protocol. The cooling rate Γ varies from 5 × 10−2 to

5×10−6 ε/(kBτ0), where τ0 = a
√
m/ε is the MD time unit with m the particle mass. Sub-

sequently each sample is quenched to a local energy minimum using a conjugate gradient

(CG) algorithm. The resulting amorphous solid is under both a homogeneous compres-

sional stress and disordered local stresses. In Fig. 5.6 we show a typical configuration

where (negative) bond tensions are visualized.

We also examine these samples as they are strained using Lees-Edwards boundary con-

ditions (LEBCs) and a shear rate γ̇, by solving the related equations of motions with a

drag force that guarantees minimal inertia effects as discussed in [174]. All simulations are

performed using LAMMPS [106], with suitable modifications to include the particle size

poly-dispersity and the interactions discussed above. More details of the preparation and

shear protocols can be found in [174, 175].

To obtain the contact network for one configuration and define the Q,C matrices, we as-

signed bonds between pairs of particles with center-to-center distance no more than 21/6aij ,

which is the cutoff range of the repulsive interaction in our model. With the contact network

and particle coordinates, we built the compatibility and equilibrium matrices and studied

the stressed elasticity using the general formalism proposed in previous sections. When

building up the compatibility and equilibrium matrices Q and C, transverse directions of

every bond need to be indicated and two orthogonal transverse directions besides the lon-

gitudinal one (the bond direction) are needed for each bond in a 3D system. In our formu-

lation of the contact network, we defined the first transverse direction as the unit vector of

the cross product between the bond vector and z-axis (0, 0, 1), and the second transverse

direction as the unit vector of the cross product between the bond vector and the first trans-

verse direction. One needs to note that this selection of transverse directions is arbitrary as

long as the two transverse directions and the bond direction vector are orthonormal to each

other in the 3-D real space.
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Figure 5.6: (a) Prestress visualization of colloidal glass systems. The system size is N =
10976 with preparation cooling rate Γ = 5 × 10−6 ε/(kBτ0). (b) Initial bond tension
distribution for the configuration shown in (a).

When solving for SSSs in large stressed systems like the samples we generated, the null

space for the equilibrium matrix Q has very high dimensions. We used the SPQR RANK

package [53] from SuiteSparse [55], which is a high performance sparse QR decomposi-

tion package and can provide a reliable determination of null space basis vectors for large

sparse matrices, to solve for SSSs efficiently and reliably, especially when there are lots of

degeneracies for diagonalizing Q. Similarly, SPQR RANK is also suitable when solving
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for the null space of QT to get ZMs in large systems.

5.6 Results

5.6.1 Spatial heterogeneity of stress fields

Structural disorder in glasses manifest as spatial heterogeneities in the stress fields when

they are subject to external load. In particular, the heterogeneity is mostly visible in plots of

stress change, instead of the total stress, which appears to be rather homogeneous in dense

systems.

Remarkably, this heterogeneity is accurately depicted from the SSS calculation when

prestress is included. In contrast, when the system is approximated as a stress-free mechan-

ical network, the stress response appears to be homogeneous.

Fig. 5.7 gives a visualization of the tension increment responses in simulated colloidal

glass systems. Heterogeneity of tension responses is observed in such systems. Similar ten-

sion response clustering is predicted using stressed elasticity when considering pre-stress

in such systems. However, when using the stress-free model to predict the elasticity, no

such tension increment clustering is observed and the tension increment response is quite

homogeneous under the shear strain.
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Figure 5.7: Actual tension increment compared to the tension increment prediction from
pre-stressed elasticity and stress-free elasticity. (a) Cooling rate Γ = 5 × 10−2 ε/(kBτ0)
with shear strain 1%, (b) cooling rate Γ = 5 × 10−6 ε/(kBτ0) with shear strain 0.01%.
The system size is N = 10976 in both (a) and (b). (c) Clustering tendency index H
averaged over two different samples with stress-free and pre-stressed elasticity compared
to the actual H . The actual tension response is measured with shear strain 1% with system
size N = 10976 and preparation cooling rate Γ = 5× 10−6 ε/(kBτ0). The red dashed line
indicates the threshold to determine whether or not the tension change is clustered.

We characterize this spatial heterogeneity using a clustering tendency index: the Hop-

kins statistic H [176], with a value close to 1 indicating the data is highly clustered, and a

value around 0.5 from random data. Fig. 5.7(c) shows that the pre-stressed elasticity cap-

tures the tension increment clustering tendency which exists in actual tension responses,

while in stress-free elasticity this clustering is overlooked.

5.6.2 Calculating stress response to shear using states of self-stress

We demonstrate the power of the SSSs as “stress-eigenstates” that characterize the stess-

bearing capabilities of a system. To this end, we compute all SSSs of the system described

in Sec. 5.5, and use Eq. (5.41) to calculate the change of stress as the system is under

macroscopic shear, by taking eaffine to be an affine shear deformation field. At the same

time, we also measure the change of the stress in the system in a numerical experiment
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where the system is under a small quasistatic shear deformation. Figure. 5.8 shows the

agreement between the tension change at each bond measured from quasistatic shear and

the values calculated from SSSs.

To contrast this comparison, we also calculated the tension change treating the system

as a stress-free network, i.e., as characterized by equilibrium matrix C‖ instead of C. As

shown in Figure. 5.8, the calculated tension change is very different from actual tension

change.

Figure 5.8: (a) Linear response of tension increment with and without considering pre-
stress in the system. The pre-stressed tension increment are the tension increment along
longitudinal directions; (b) Comparison to actual tension increment including transverse di-
rections. Note: Here the actual tension increment response is from 0.01% strain compared
to the initial configuration, and the system size is N = 10976, Γ = 5 × 10−6 ε/(kBτ0). (c)
Shear modulus G from stress-free response and pre-stressed response compared to actual
G. Note: Here the actual G is measured from 1% shear strain to the initial configuration,
and the system size is N = 10976 with preparation cooling rate Γ = 5× 10−6 ε/(kBτ0). G
is averaged over three different samples for each data point.

The shear modulus G can be obtained from the stress distributions calculated from
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either C‖ or C, and the results are shown in Fig. 5.8(c). Similar to the tension change

measurements, the shear modulus calculated from C is much closer to the actual shear

modulus from energy minimization. This effect can also be viewed from the continuum

elasticity formulation in Sec. 5.2.2: when the macroscopic shear deformation field ∂yux is

plugged into the continuum theory, the elastic energy density is

E/V =
1

2
(Kxyxy + σp,yy)(∂yux)

2, (5.44)

leading to a prestress-corrected shear modulus of G = Kxyxy + σp,yy. It is straightforward

from this relations that an isotropic compressional prestress (σij = −pδij) destabilizes the

shear rigidity of a network.

Besides the prestress effects on tension responses, the effect of bond rotations is char-

acterized by calculating the shear modulus G with tension increment responses from pre-

stressed elasticity, using the after-sheared bond orientations. From Fig. 5.8 one can see that

prestressed elasticity captures the tension response behaviors, while bond rotations take

another important part of role to contribute to G.

This demonstrates that the inclusion of prestress effects are essential in characterizing

the mechanical response of glasses which are always prestressed.

5.6.3 General statistics of states of self-stress

Next, we collect statistical information on SSSs of glasses at different preparation proto-

cols.

The total number of SSSs in a pre-stressed system, which equals the dimension of the

null space of the Q matrix, is directly related to the numbers of degrees of freedom and

constraints via the Maxwell-Calladine index theorem,

N0 −NSSS = Nd−Nbd, (5.45)
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where N0 is the number of ZMs. This can be proven using the rank-nullity theorem on the

Q,C matrices, similar to the proof for stress-free systems. Here the main difference from

stress-free systems is that the number of constraints is Nbd instead of Nb, as each bond

provides d constraints via one from e‖ and d− 1 from e⊥.

In Fig. 5.9 we show the total numbers of SSSs in the repulsive glass systems we study

at different preparation protocol. Fig. 5.9(a) verifies the Maxwell-Calladine index theorem

for pre-stressed system in Equation. (5.45). The number NSSS decreases with the increase

of cooling rate, and the number of bonds and shear modulus decrease as well.

107



Figure 5.9: (a) Number of SSSs (NSSS), (b) number of bonds (Nb), (c) measured shear
modulus (G), (d) averaged normal stress (P ) for different cooling rates Γ. Those quantities
are averaged over 5 different configurations for each cooling rate, and the system size is
N = 10976.)

5.6.4 Local dipole stiffness in prestressed glasses

We look at local dipole force responses in prestressed systems, with introducing transverse

bond directions when defining the dipole stiffness κ. Bond locally minimized κ is calcu-

lated, representing the least stiffness of dipole force responses between the two particles,

among all possible parallel and transverse directions (details in App. 5.8.2).

Fig. 5.10(a) gives an example of applying a transverse force dipole on a local bond

108



in prestressed systems, showing both ‖ and ⊥ tension responses. Such transverse force

dipoles, which are studied at the first time, indicate the effect of prestress to determine

the responses of soft solids. The near field of the local force dipole has larger magnitude

of responses in ‖ bond directions while in the far field, the prestress induces more bond

rotations.

Figure 5.10: (a) Tension responses of a ⊥ force dipole applied on the highlighted bond
with black color. The 2-D color scheme contains t‖ indicating tension/compression in
bonds and |t⊥/t| indicating the rotational responses. (b) gives a zoomed-in view to the
dipole force response in (a). The visualized sample configuration has system size N = 2916
with preparation cooling rate Γ = 5 × 10−6 ε/(kBτ0). (c) Distribution of minimum κ for
systems with different preparation protocols. System size: N = 2916; The histogram is
averaged over 10 different samples for each preparation cooling rate.

The minimized local dipole stiffness κmin is compared in two different preparation

cooling rates as shown in Fig. 5.10(c), indicating the impact of preparation history to the

mechanical stiffness in prestressed systems. From the statistics collected, κ̄min(Γ = 5 ×
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10−6) = 918.41 ± 4.34 ε/a2; κ̄min(Γ = 5 × 10−3) = 861.45 ± 3.35 ε/a2. An exponent

is extracted in small κ region as shown as fitted lines in Fig. 5.10(c). Noting the power

exponent as β, we have β(Γ = 5× 10−6) = 3.96± 0.07; β(Γ = 5× 10−6) = 3.65± 0.04.

5.7 Discussion

The general method we introduce here incorporates the effect of prestress in elasticity of

amorphous solids. Stress-bearing abilities of glasses, as characterized by SSSs, provide

a new way to unravel mechanical response of glasses to any load, both macroscopic and

local. The spatial heterogeneity of stress fields, which comes from prestress rather than

geometry, indicates structural disorder in glasses. The statistics of these SSSs sheds new

light on understanding yielding, shear thinning and thickening, as well as providing input

to field theory for the dynamics of dense suspensions.

There are many more to work on along this route. The evolution of SSSs to external

loads, especially when the geometry is almost intact but prestress evolves, indicates the

impact of prestress on glassy dynamics and can provide a novel pathway to study glass

behaviors beyond network geometry.

5.8 Appendices

5.8.1 SSSs formulation for shear response of prestressed networks

5.8.1.1 Projection of the shear load to the SSSs linear space

When a mechanical network is subject to a shear load, the resulting bond extensions and

rotations can be written as the sum of contributions from the affine shear field eaffine and the

nonaffine displacements C|ursp〉,

|e〉 = |eaffine〉+ C|ursp〉, (5.46)
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which is similar to Eq. (5.38) in the main text, but here we include both the parallel and the

perpendicular components of e.

When force-balance is reached, net force on each particle vanishes,

|f〉 = Q|t〉 = QK(|eaffine〉+ C|ursp〉) = 0. (5.47)

This means that |t〉 = K(|eaffine〉+C · |ursp〉) must be a vector that belongs to the null space

of Q. Thus it can be written as a linear combinations of the SSSs of the system.

To facilitate the discussion of this SSSs linear combination, we define the following no-

tations. Let {~t (1)
s , . . . ,~t (NS)

s } be an orthonormal basis of the null space of Q, and let PQ
s de-

note the Nbd×NS matrix whose columns are ~t (1)
s , . . . ,~t (NS)

s , i.e., PQ
s =

[
~t

(1)
s , . . . ,~t

(NS)
s

]
.

One can also define the Nbd× (Nbd−NS) dimensional matrix PQ
r whose columns are an

orthonormal basis of the orthogonal compliment of the null space of Q. Similarly one can

define the Nd × N0 matrix PC
s whose columns are an orthonormal basis of the null space

of C, and the Nd× (Nd−N0) matrix PC
r whose columns are an orthonormal basis of the

orthogonal compliment of the null space of C. These matrices are represented as,

PQ
s =

[
~t

(1)
s , . . . ,~t

(NS)
s

]
, (5.48)

PQ
r =

[
~t

(1)
r , . . . ,~t

(Nbd−NS)
r

]
, (5.49)

PC
s =

[
~u

(1)
s , . . . , ~u

(N0)
s

]
, (5.50)

PC
r =

[
~u

(1)
r , . . . , ~u

(Nd−N0)
r

]
, (5.51)
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and they satisfy the following identities,

(PQ
s )T · PQ

s = I(NS), (5.52)

(PQ
r )T · PQ

r = I(Nbd−NS), (5.53)

(PC
s )T · PC

s = I(N0), (5.54)

(PC
r )T · PC

r = I(Nd−N0), (5.55)

PQ
s · (PQ

s )T + PQ
r · (PQ

r )T = I(Nbd), (5.56)

PC
s · (PC

s )T + PC
r · (PC

r )T = I(Nd) (5.57)

As we discussed above, |t〉 is a linear combination of the SSSs,

|t〉 =

NS∑
i

αi|tSSS, i〉 = PQ
s · ~α,

where ~α are coefficients of the linear combination of |t〉 as the SSSs.

Because the basis we use are orthonormal,

~α = (PQ
s )T |t〉 = (PQ

s )TK(|eaffine〉+ C|ursp〉), (5.58)

~0 = (PQ
r )T |t〉 = (PQ

r )TK(|eaffine〉+ C|ursp〉). (5.59)

Inserting identity matrix [Eq. (5.56)] into Eq. (5.59) and using the fact that,

Q · PQ
s = ~0,

we have,
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~0 = (PQ
r )TK · [PQ

s · (PQ
s )T + PQ

r · (PQ
r )T ] · (|eaffine〉+ C|ursp〉)

= (PQ
r )TK · [PQ

s · (PQ
s )T ·QT + PQ

r · (PQ
r )T ·QT ] · |ursp〉

+ (PQ
r )TK · [PQ

s · (PQ
s )T + PQ

r · (PQ
r )T ] · |eaffine〉

= (PQ
r )TK · PQ

r · (PQ
r )T ·QT · |ursp〉+ (PQ

r )TK · [PQ
s · (PQ

s )T + PQ
r · (PQ

r )T ] · |eaffine〉

= Krr(P
Q
r )TQT · |ursp〉+ [Krs(P

Q
s )T + Krr(P

Q
r )T ] · |eaffine〉

=⇒ (PQ
r )TQT · |ursp〉 = −(Krr)

−1[Krs(P
Q
s )T + Krr(P

Q
r )T ] · |eaffine〉, (5.60)

where we defined the decomposition of K into the null and orthogonal compliment space

as

K→

(PQ
s )T ·K · PQ

s (PQ
s )T ·K · PQ

r

(PQ
r )T ·K · PQ

s (PQ
r )T ·K · PQ

r

 =

Kss Ksr

Krs Krr

 (5.61)

and also used the fact that Krr is invertible.
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The coefficients ~α in Eq. (5.58) can then be solved as

~α = (PQ
s )TK · [PQ

s · (PQ
s )T + PQ

r · (PQ
r )T ] · (QT |ursp〉+ |eaffine〉)

(5.62)

= (PQ
s )TK · PQ

r · (PQ
r )T ·QT · |ursp〉 (5.63)

+ (PQ
s )TK · [PQ

s · (PQ
s )T + PQ

r · (PQ
r )T ] · |eaffine〉 (5.64)

= Ksr(P
Q
r )TQT · |ursp〉+ [Kss(P

Q
s )T + Ksr(P

Q
r )T ] · |eaffine〉

(5.65)

(from Equation (5.60)) = Ksr{−(Krr)
−1[Krs(P

Q
s )T + Krr(P

Q
r )T ] · |eaffine〉} (5.66)

+ [Kss(P
Q
s )T + Ksr(P

Q
r )T ] · |eaffine〉 (5.67)

= {Ksr(P
Q
r )T + Kss(P

Q
s )T −Ksr(Krr)

−1[Krs(P
Q
s )T + Krr(P

Q
r )T ]} · |eaffine〉

(5.68)

= [Kss(P
Q
s )T −Ksr(Krr)

−1Krs(P
Q
s )T ] · |eaffine〉 (5.69)

= [Kss −Ksr(Krr)
−1Krs] · (PQ

s )T · |eaffine〉. (5.70)

This can be further simplified by letting A = K−1, and decompose A into the column-

space and null-space of Q as,

A→

(PQ
s )T · A · PQ

s (PQ
s )T · A · PQ

r

(PQ
r )T · A · PQ

s (PQ
r )T · A · PQ

r

 =

Ass Asr

Ars Arr

 (5.71)

114



One can see that

Kss · Ass + Ksr · Ars = Iss (5.72)

Krs · Ass + Krr · Ars = ~0rs (5.73)

=⇒ (5.74)

Kss + Ksr · Ars · (Ass)
−1 = (Ass)

−1 (5.75)

Krs = −Krr · Ars · (Ass)
−1 (5.76)

=⇒ (5.77)

Kss + Ksr · Ars · A−1
ss = (Ass)

−1 (5.78)

−(Krr)
−1 ·Krs = Ars · (Ass)

−1 (5.79)

=⇒ (5.80)

Kss −Ksr · (Krr)
−1 ·Krs = (Ass)

−1 = ((K−1)ss)
−1 (5.81)

As a result, ~α is simplified to

~α = ((K−1)ss)
−1 · (PQ

s )T · |eaffine〉 (5.82)

and the tension response to this external shear is

|t〉 = PQ
s · ((K−1)ss)

−1 · (PQ
s )T · |eaffine〉. (5.83)

Note that this t includes both t‖ and t⊥, and this formulation applies to other types of

homogeneous strain, such as hydrostatic compression, as well.

5.8.1.2 Affine bond deformation in prestressed systems

In this subsection we derive the eaffine field for any external load represented by a strain

tensor ε.
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The affine bond deformation for bond β from uniform strain εij is given as,

eaff
β = b̂β,iεijbβ,j

where ~bβ is the end-to-end vector for bond β. This equation applies to the case when

only considering parallel bond directions.

To have the bond deformation |eaffine〉 in Equation 5.40, one needs to incorporate trans-

verse direction bond stretch. To start, one can write down the affine stretch of bond β

as

eaff
β = b̂β · (u(s′β)− u(sβ))

In the linearized limit, the displacement vector u for some point s is given as

u(s) = Γ ·X(s)

Then the affine stretch of parallel direction is

eaff
β,|| = b̂β · Γ · (X(s′β)−X(sβ))

= b̂β · Γ · bβ

= ˆbβ,i · εij · bβ,j (5.84)

where εij is the strain tensor.

The affine stretch of transverse components is thus similarly when considering trans-
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verse directions as:

eaff
β,⊥ = ˆbβ,⊥ · (u(s′β)− u(sβ))

= ˆbβ,⊥ · Γ · (X(s′β)−X(sβ))

=
1

2

(
ˆbβ,⊥ · Γ · bβ + bTβ · ΓT · ( ˆbβ,⊥)T

)

In the end, one can obation |eaffine〉 as

|eaffine〉 =

|eaff
|| 〉

|eaff
⊥ 〉


5.8.2 Dipole stiffness κ in prestressed systems

When a pair of dipole forces is applied on a mechanical network between two particles

that belong to the same rigid cluster, the network will show a linear response with tension

distributed on the bonds. In this Appendix we derive the stress field of a prestressed network

in response to the force dipole, and obtain a computationally efficient formula that gives

the stiffness the system has against this force dipole.

5.8.2.1 Local dipole stiffness

We first consider the case of a force dipole acting on a pair of particles in contact (i.e.,

connected by a bond in the network, which we call bond b). In this case, the dipole force

can be written as

|fdipole〉 = Q|tdipole〉 = QK|b〉,

where |b〉 is the bond space vector where only bond b is set to unity and all other bonds

at zero. When K acts on it we obtain a tension vector |tdipole〉 where only bond b carries

tension kb · 1. Acting Q on this vector then gives the force vector where only this pair of
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particle experience the dipole force (of magnitude kb · 1 and pointing along bond b) and all

other particles feel no force, which is exactly the external force dipole acting on the system.

In response to this force dipole, the system produces a linear response, which can be

written as a displacement field |ursp〉, which leads to a tension response on the network

|trsp〉 = KC|ursp〉.

This bond tension vector is not a SSS of the system, because it leads to net forces on the

two particles where the dipole acts on, which balances the external dipole. In other words,

the sum of this response and the external dipole is a SSS,

Q(|tdipole〉+ |trsp〉) = 0.

This sum can always be expanded as a linear combination of all SSSs of the prestressed

network,

|tdipole〉+ |trsp〉 =

NSSS∑
i

αi|tSSS, i〉.

The coefficients αi are determined in the same way as discussed in App. 5.8.1, just by

replacing |eaff〉 with |b〉. As a result

|tdipole〉+ |trsp〉 = PQ
s · ((K−1)ss)

−1 · (PQ
s )T · |b〉.

We can thus use this in the expression for the dipole stiffness, where the denominator

is now

−〈fdipole|ursp〉 = −〈b|KC|ursp〉

= kb −
NSSS∑
i,j

〈b|tSSS,i〉[(K−1)ss]
−1〈tSSS,j|b〉.
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Therefore the dipole stiffness is

κb =
2〈fdipole|fdipole〉
−〈fdipole|ursp〉

=
2〈b|KCQK|b〉

〈b|K|b〉 − 〈b|
NSSS∑
i,j

|tSSS,i〉[(K−1)ss]
−1〈tSSS,j|b〉

(5.85)

=
4k2

b

kb −
NSSS∑
i,j

〈b|tSSS,i〉[(K−1)ss]
−1〈tSSS,j|b〉

5.8.2.2 Non-local dipole stiffness

Besides applying the force dipole on an arbitrary existing bond b in the system, one could

also apply a force dipole between two particles which are not originally connected.

The general formulation with imposed force dipole |fdipole〉 can be written as:

0 = |ffinal〉 = |fdipole〉+ QKC|u〉,

where |u〉 indicates the particle displacements after force equilibrium. This can be inter-

preted as adding an auxiliary bond between the two sites that carry |fdipole〉. In this sense, a

new SSS is added to the system by the auxiliary bond.

Here we introduce the new mechanical matrices after introducing the auxiliary bond

(which has zero stiffness so that it will not induce tension responses) as

C̃ =

C

Ca

 , Q̃ =

(
Q Qa

)
, K̃ =

K

0

 ,

C̃ · |u〉 =

|e〉
ea

 , Q̃ ·

|t〉
ta

 = |f〉.

The dimension of the matrices corresponding to bonds is extended with one additional
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component from the auxiliary bond indexed as a.

Now the tension distribution can be written as

|t̃〉 =

 |t〉
tdipole

 =

KC|u〉

tdipole

 = K̃C̃|u〉+ |t̃dipole〉.

Similar to App. 5.8.1, one can define P Q̃
s , P

Q̃
r , P

C̃
s , P

Q̃
r to the new mechanical matrices.

To decompose tension distributions onto SSSs,

|t̃〉 =

NSSS∑
i

αi|tSSS, i〉 = P Q̃
s · ~α,

where ~α are coefficients of the linear combination on SSSs.

To calculate the tension distribution,

(P Q̃
s )T |t̃〉 = ~α,

(P Q̃
r )T |t̃〉 = ~0.

Thus

~0 = (P Q̃
r )T

(
K̃C̃|u〉+ |t̃dipole〉

)
= (P Q̃

r )T K̃
(
P Q̃
r (P Q̃

r )T + P Q̃
s (P Q̃

s )T
)
Q̃T |u〉+ (P Q̃

r )T |t̃dipole〉

= (P Q̃
r )T K̃P Q̃

r (P Q̃
r )T Q̃T |u〉+ (P Q̃

r )T |t̃dipole〉

= K̃rr(P
Q̃
r )T Q̃T |u〉+ (P Q̃

r )T |t̃dipole〉.

As a result, one can have

(P Q̃
r )T Q̃T |u〉 = −

(
K̃rr

)−1

(P Q̃
r )T |t̃dipole〉 (5.86)
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Applying P Q̃
r on both sides of Eq.5.86,

P Q̃
r (P Q̃

r )T Q̃T |u〉 = −P Q̃
r

(
K̃rr

)−1

(P Q̃
r )T |t̃dipole〉

(LHS) =
(
I− P Q̃

s (P Q̃
s )T

)
Q̃T |u〉

= Q̃T |u〉 − P Q̃
s

(
Q̃ · P Q̃

s

)T
|u〉

= Q̃T |u〉

One can then have the non-local dipole stiffness κa as (the force dipole |fdipole〉 =

Q̃|t̃dipole〉 ≡ Q̃|a〉):

κa =
2〈fdipole|fdipole〉
−〈fdipole|u〉

=
2〈t̃dipole|Q̃T Q̃|t̃dipole〉
−〈t̃dipole|Q̃T |u〉

=
2〈t̃dipole|Q̃T Q̃|t̃dipole〉

〈t̃dipole|P Q̃
r

(
K̃rr

)−1

(P Q̃
r )T |t̃dipole〉

=
2〈a|Q̃T Q̃|a〉

〈a|P Q̃
r

(
K̃rr

)−1

(P Q̃
r )T |a〉

=
4

〈a|P Q̃
r

(
K̃rr

)−1

(P Q̃
r )T |a〉

,

where |a〉 is the vector in the labeling space of bonds (including the auxiliary bond a)

which has zeros in all components except for the a-th component is set to unity, and the

a-th component is the component corresponding to the auxiliary bond.

The local force dipole response is a special case of non-local force dipole response.

When considering local force dipoles, the auxiliary bond a overlaps with bond b. One can

show that in this case, the non-local force dipole stiffness reduces to local force dipole

stiffness.
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5.8.2.3 Local minimum κ in prestressed system

To minimize κ for a local force dipole to bond b associated its arbitrary combination of ‖

and ⊥ directions, one is to find

|eext〉 =



0

...

cos θ

sin θ cosφ

sin θ sinφ

...

0



≡ |b〉

As a result,

κb = 〈b|P|b〉

=

(
0 · · · cos θ sin θ cosφ sin θ sinφ · · · 0

)
· P ·



0

...

cos θ

sin θ cosφ

sin θ sinφ

...

0



=

(
cos θ sin θ cosφ sin θ sinφ

)
· Pb ·


cos θ

sin θ cosφ

sin θ sinφ


where P represents the matrix in between |b〉 vectors in Eq. (5.85) and Pb is the b-th 3 × 3

block diagonal matrix for P.
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To minimize κb for the single bond b.

κmin
b = min

θ,φ


(

cos θ sin θ cosφ sin θ sinφ

)
· Pb ·


cos θ

sin θ cosφ

sin θ sinφ




which is a straightforward optimization problem with respect to the two variables θ and φ.

To solve for such optimization problems in our system, we used the Nelder-Mead simplex

algorithm as described in [177].

After optimizing the bond direction to find κmin, one can see that the direction to obtain

the minimum κ corresponds to the direction which has the smallest magnitude of κb. In our

colloidal systems, this direction usually corresponds to ⊥ bond directions.
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CHAPTER 6

Summary and Outlook

6.1 Conclusions

In this dissertation, we have explored a number of topics related to rigidity and elasticity of

both low-density amorphous solids and high-density glasses, beyond the scope of typical

isostatic systems like jamming or rigidity percolation. We have shown how correlation

controls the rigidity of disordered systems, without changing the critical phenomena of

the rigidity transition. We have also examined how pre-stress affects elastic responses of

amorphous solids, especially on how the stress-bearing ability of a system evolves as the

pre-stress changes, even when the geometry of the system is kept the same.

In Chapter 3, we have discussed the rigidity of structures with introducing correla-

tions/attractions. Both the correlated lattice model and colloidal gel model elucidate that

the emergence of rigidity is shifted to lower volume fractions compared with uncorrelated

systems. The correlated lattice model suggests that correlation is an irrelevant perturbation

to rigidity transition, with the critical exponents unchanged to classical rigidity percola-

tion. Chapter 4 examined the emergence of rigidity in fractal lattices. In this Chapter we

show that rigidity can exist even in arbitrarily low volume fraction of solids with the in-

troducing of fractal structures. Rigidity transition in fractal lattices remains in the same

universality class with classical rigidity percolation as well as correlated rigidity percola-

tion models. Chapter 3 and Chapter 4 study correlated rigidity percolation, provide a way
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of understanding ultra-low-density solids like hydrogels and aerogels, and shed light on

designing amorphous solids with “smart” rigidity which reaches solid phase with very low

consumption of particles.

Chapter 5 studies the elasticity of glasses, which are above the isostatic point with high

densities. We have developed a method to investigate the effect of pre-stress to elastic

responses of amorphous solids, and used this method to study the stress-bearing ability

of systems based on preparation history. From the study of glasses to macroscopic shear

strain and local dipole forces, pre-stressed amorphous solids show qualitatively different

behaviors to un-stressed systems, even when the geometry of the system is unchanged. The

general method we introduce here is applicable to a wide range of systems, both ordered

and disordered, where pre-stress affects elasticity, and provides an efficient computational

algorithm for finding the stress distribution when the system is under any load. Thus, it

can be applied to yielding and shear thickening/thinning systems such as granular matter

and dense suspensions, to potentially shed some light on the dynamical interplay between

stress and geometry in these complex materials.

6.2 Outlook

So far We have presented rich phenomena and interesting results on rigidity and elasticity in

amorphous solids, especially in low-density and high-density systems beyond isostaticity.

There are many more steps to move forward. Below I’m pointing out some potentially

interesting directions which can be conducted along the results by this dissertation.

When achieving rigidity in low-density solids, our results suggest that correlation can

naturally introduce structural heterogeneity which lowers the rigidity threshold. In the

meantime, fractal local structures, which can be introduced by non-equilibrium process of

assembling the material, can lower the rigidity threshold to even arbitrarily low volume

fractions. It is of great interest to manipulate the route of arranging particles in efficient
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ways of transmitting stress to design low-density solids, and is interesting to understand

how this occurs in experimental systems.

Since the models of studying correlated rigidity percolation in this dissertation are all

in 2-D due to the limitation by the “pebble game” algorithm, it is worth looking at corre-

lated rigidity percolation in 3-D systems, with modified “pebble game” algorithm or other

computational efficient methods. 3-D attractive gel models as well as the Sierpiński Tetra-

hedron FCC lattice (mentioned in Chapter 4) are both interesting next steps based on our

current study.

The stressed elasticity method we proposed for glasses take bond transverse directions

into account, which have non-negligible impacts on elastic responses when there is pre-

stress. SSSs are efficient tools to detect the role of pre-stress, external loads and system

geometry in elasticity, thus it is worth looking at different aspects of properties for SSSs,

especially their dynamical behaviors. When the geometry is almost intact but pre-stress

evolves, it is of great interest to look at the evolution of SSSs under external loads.

With the pre-stress effect on stress-bearing ability captured, it is also of great interest

to look at the rearrangement of particles and relate to behaviors in non-linear regime. The

evolution of SSSs in pre-stressed systems can help understand yielding, shear thinning,

shear thickening and other mechanical behaviors, to shed light on the study of dynamics of

dense suspensions.

Mechanical responsiveness is essential to all biological systems down to the level of

tissues and cells. Systems with biological rigidity can be used to build force-responsive

materials. To design such active systems, correlation and pre-stress are crucial. A further

step along this direction is to understand the rigidity in active systems by looking at the

biological interactions and the introduced heterogeneity, and to design the elasticity based

on the residual stress in systems like biological tissues. It can open the door to various

applications like drug delivery, tissue engineering, etc.

It is always challenging to predict the long-time evolution of glassy systems, especially
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when they are out of the linear regime. The connection between static properties from ini-

tial configurations of amorphous solids and their dynamical behaviors is not obvious. In

this context, machine learning is a potentially well-suited tool for detecting the mechanical

behaviors. Along the direction of this dissertation, physical interactions and residual stress

are essential input features for supervised learning machines, for example support vector

machines (SVMs), to obtain excellent predictive power on the elasticity of glassy systems.

In the meantime, a state-of-art machine learning method in glassy systems by graph neural

networks (GNN) [178], has shown impressive empirical performance but is still neverthe-

less a black-box function modeling method. As a result, it is also of great interest to look at

the evolution of SSSs in the learned neural network structures, which can shed light on un-

derstanding the machine learning predictive power on glassy systems from the perspective

of their physical properties.
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