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ABSTRACT

Electric aircraft propulsion is an intriguing path towards sustainable aviation, but the technological

challenges are significant. Bulky and heavy electrical components such as batteries create spatial

integration and aircraft performance challenges, especially for longer-range aircraft. A common

thread among all aircraft with electric propulsion is the close coupling of aircraft design disci-

plines, such as aerodynamics, structures, propulsion, controls, and thermal management. Multidis-

ciplinary design optimization (MDO) is a promising technique for solving design problems with

many closely-coupled physical disciplines.

The first half of this dissertation focuses on MDO of electric aircraft considering systems mod-

eling. First, design of electric aircraft is reviewed in detail from the perspective of the various

disciplines. Next, methods and models for electric aircraft propulsion systems are introduced. A

case study involving a general aviation airplane is explored in order to validate the performance of

the methods and generate some insight into the tradespace for series hybrid aircraft. The systems

modeling approach is then extended to include basic thermal management systems. The prior case

study is revisisted while considering thermal constraints. Impact of thermal management on air-

craft performance is assessed. The thermal management analysis methods are validated using flight

test data from the Pipistrel Velis Electro, finding good agreement between experiment and simu-

lation. Finally, an MDO model of a parallel hybrid electric transport aircraft with a liquid-cooled

thermal management system is constructed. Sensitivities of aircraft performance with respect to

important technologies parameters are computed.

This first half introduces the first publicly-available simulation tool that can handle unsteady

thermal states and that offers efficient and accurate gradients. The methods are very efficient, en-

xxiv



abling users to perform dozens or hundreds of optimization runs in a short amount of time using

modest computational resources. Other novel contributions include the first empirical validation

of thermal management models for MDO against real flight test data, as well as the only com-

prehensive look so far at the unsteady thermal management of a transport-scale parallel hybrid

aircraft.

The second half of the dissertation introduces novel methods for performing high-fidelity shape

optimization studies subject to packaging or spatial integration constraints. A new mathematical

formulation for generalized packaging constraints is introduced. The constraint formulation is

demonstrated on simple aerodynamic shape optimization test cases. Next, a wing design study

involving optimal battery packaging is conducted in order to demonstrate the coupling of outer

mold line design and propulsion system component design via spatial integration. Finally, a more

complex aerostructural optimization involving the wing of a hydrogen aircraft is constructed and

solved. These test cases demonstrate the interdisciplinary coupling introduced by packaging con-

straints, as well as the impact of spatial integration on aircraft performance.

This latter half contributes a powerful new way for MDO engineers to pose realistic spatial

constraints in their shape optimization problems, thus solving an important practical barrier to

the industrial adoption of MDO for certain relevant problems. This work also represents the first

time an MDO problem has been posed and solved for an aircraft using hydrogen fuel in the wing.

Altogether, this dissertation significantly advances the state of the art in modeling, simulation, and

optimization tools for aircraft with electric propulsion architectures and introduces new insights

into the design spaces for several diverse aircraft configurations.
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CHAPTER 1

Introduction

1.1 The Electric Age of Aviation?

A confluence of external forces has primed the field of aeronautics for rapid change. The

COVID-19 pandemic altered the economic landscape in commercial aviation, weakening the fi-

nancial position of incumbent manufacturers and airlines. At the same time, investment flowed

into aerospace startups, giving them a cash infusion needed to get from a proof of concept to certi-

fication. Technologies initially developed in other fields have now become practical for aerospace

applications, such as large-scale lithium-ion batteries and lightweight, efficient electric motors.

Solar and wind power continue to decline rapidly in price, and renewable energy sources are fi-

nally cheaper than natural gas and coal in certain markets. For the first time, airlines have faced

mainstream public campaigns to reduce carbon emissions (such as the flygskam movement in the

Nordic countries).

This confluence of forces has resulted in a burst of activity in the area of sustainable aviation,

and in particular, electric aviation. The number of startups developing electric vertical takeoff

and landing (eVTOL) aircraft for urban air mobility is nearly uncountable. As of this writing,

three startups have received valuations over one billion USD: Joby Aviation, Archer Aviation, and

Lilium. Other potential competitors in the eVTOL space include huge incumbents such as Airbus

and Bell Helicopter.
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The fixed-wing electric aircraft market is not nearly as crowded but arguably closer to a viable

product. The Pipistrel Velis Electro has been certified in Europe as a primary trainer aircraft under

the Light Sport Aircraft category. Bye Aerospace is developing similar two- and four-seat aircraft

for training and recreation. MagniX is pursuing certification for an electric motor sized for retrofit

applications in aircraft such as the DHC-2 Beaver and Cessna Caravan. What these concepts lack

in range they potentially recover in low operating costs and sustainability. Alternative approaches

using hybrid-electric, turboelectric, or hydrogen architectures are also being actively pursued. Ze-

roAvia, Boeing, and H2Fly have flown manned fuel cell electric vehicle (FCEV) demonstrators,

and Universal Hydrogen and ZeroAvia have announced plans to commercialize the technology.

Electra.aero is constructing a manned flight demonstrator with a distributed hybrid-electric archi-

tecture designed for very short takeoff and landing (STOL), while Airflow pursues a very similar

configuration for logistics applications.

Aviation historians often mark the introduction of an important new technology as the begin-

ning of an “age”. The interwar period following the invention of the metal monoplane became

known as the Golden Age of Aviation. After World War II followed the Jet Age. If the startup

founders are right, we are witnessing the beginning of the Electric Age.

1.2 Open Questions

Despite widespread optimism about continued progress in electric aviation, significant tech-

nical challenges loom, both in the short term and on the horizon. While the pace of progress is

accelerating, the industry as a whole simply does not have much service experience with electric

propulsion architectures. Thus, we cannot rely on historical data typically used in early stages

of aircraft design to estimate important parameters (such as empty weight). Estimates of aircraft

performance must be built from the bottom up using reasoning rooted in the physics. Furthermore,

it is not controversial that it will be challenging for battery-electric aircraft to fly reasonable and
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useful distances. Careful attention must be paid not only to the propulsion system, but also to the

aerodynamics and structures, if electric aircraft are to reach their full potential.

In the absence of historical data, and where weight and drag are critical, there is clearly a

role for computational models and optimization. Computational models of increasing fidelity can

produce the required bottom-up performance estimates. Optimization can reduce the structural

weight, drag, and propulsive losses, allowing electric aircraft to make the most of their limited

energy source.

However, at the time I started the research detailed in this dissertation, computational models

and optimization applications for electric aircraft had glaring limitations. Nearly all authors ne-

glected to model the physics of removing waste heat from the electric propulsion system, and most

models were incompatible with the gradient-based optimization methods necessary for solving

large problems or performing broad tradespace sweeps. The issue of spatially integrating (packag-

ing) the bulky electric propulsion system into an optimized outer shape was totally unexplored in

the public literature. Finally, most of the higher-quality modeling frameworks were closed-source

and proprietary in some way, resulting in needless duplication and wasted effort across industry

and academia.

Thus, I identified the two central research objectives of this dissertation:

1. Demonstrate gradient-based optimization of electric aircraft with aircraft systems modeled

at an appropriate level of fidelity (including transient thermal effects)

2. Develop (and demonstrate) methods for performing high-fidelity MDO subject to general

packaging or spatial integration constraints

Both objectives necessarily require developing new computational tools. It was a high priority that

the computational tools be transferable to industry and others in academia. Therefore, the software

must be open source, high quality, and validated.
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1.3 Overview of the Dissertation

This dissertation is roughly divided into two parts, preceded by a “prelude” and followed by

a “postlude”. The prelude introduces the reader to electric aircraft design principles and reviews

the commercial and academic landscape, as well as presenting a brief introduction to MDO. Part

One focuses on MDO of electric aircraft considering systems modeling. I introduce an open-

source computational framework which enables users to model and optimize aircraft propulsion

systems, with a particular focus on managing waste heat. I validate the models using flight-test

data from the Pipistrel Velis Electro and explore two optimization case-studies: one for a general

aviation airplane, and the other for a transport aircraft. In Part Two, I shift focus to the problem

of packaging optimization, introducing a new theoretical approach to posing spatial constraints

in MDO and demonstrating the technique on two relevant electric aircraft wing design problems.

The postlude offers concluding remarks and includes computational details of two open-source

software packages I developed for this dissertation.
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CHAPTER 2

A Comprehensive Review of Electric Aircraft Design

2.1 Historical Context

In the last decade, aircraft concepts using electricity for some or all of their propulsive power

have captured the public imagination and garnered great attention in the popular press. Several

start-up ventures have formed to commercialize aircraft EP. Electric propulsion has also become

a topic of widespread study in academia. From 2006 to 2009, there was about one paper per year

on electric and hybrid electric aircraft design and analysis. By 2017 the volume of similar papers

increased to more than 20 per year. In 2018 the Electric Aircraft Technologies Symposium (EATS)

emerged as an annual venue exclusively dedicated to the topic, and in 2019 the North Atlantic

Treaty Organization (NATO) Science and Technology Organization held a special symposium on

military applications of electric and hybrid propulsion.

A major factor motivating public interest in electrification is the urgent need to reduce envi-

ronmental impact. Recognizing the urgency of climate change and aviation’s sizable contribution

to global carbon emissions, governments and international organizations have established volun-

tary and mandatory targets for emissions reductions. The International Civil Aviation Organi-

zation (ICAO) has established certification standards for noise and NOx in the 2020s [2] and a

voluntary carbon offset scheme aiming to hold overall sector carbon emissions at 2020 levels [3].

National Aeronautics and Space Administration (NASA)’s Subsonic Fixed Wing program estab-
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lished aggressive goals for energy consumption, nitrogen oxides (NOx), and noise for three gener-

ations of airplanes extending out to the 2030s [4, 5]. The most aggressive performance targets are

for the “N+3” generation with projected entry into service (EIS) dates in the mid-2030s: −55 dB

noise at the airport boundary, −75% NOx, and −70% fuel burn relative to 2006-era technology.

NASA-funded study results (discussed in Section 2.3) indicate that electrification can improve

performance on carbon, noise, and NOx, enabling the civil aviation fleet to meet N+3 goals [5].

There are also potential economic benefits to electrification which can be divided into two

parts: first, reduced operating costs compared to conventional aircraft on existing missions; and

second, completely new capabilities that may open new and lucrative markets. Reduced operating

costs can be achieved through replacement of jet fuel with electricity, through a reduction in total

energy consumption, or through reduced maintenance costs. Figure 2.1 shows that jet fuel has

generally been more expensive than electricity over the long term, although in the more recent past

the gap has been less pronounced.
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Figure 2.1: Normalized energy cost of Northwest U.S. wholesale electricity versus U.S. Jet A-1

(Data from [6, 7])
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Electrification may also enable concepts of operations that are not currently served with con-

ventional aircraft propulsion architectures. eVTOL concepts have been launched by numerous

start-up and incumbent firms worldwide, including VoloCopter, Ehang, Wisk, Joby Aviation, and

Airbus. Technology and transportation firm Uber released the “Elevate” white paper in 2016, argu-

ing that a sizable market exists for point-to-point urban air mobility, catalyzing activity in this new

segment [8]. For noise and cost reasons, eVTOL proponents argue that traditional helicopters are

not a suitable architecture for this application. This dissertation (and thus, this review) focuses on

fixed-wing aircraft, though many of the principles also apply to vertical takeoff vehicles as well.

There are several published survey articles providing partial coverage of the fixed-wing aircraft

EP field. Thomson et al. [8] provide a particularly broad and readable, though non-technical, sum-

mary of aviation electrification from a business perspective. Hepperle [9] presents an overview of

EP architectures and some basic sensitivity analyses based on the Breguet range equation. Por-

net [10] covers practical conceptual design considerations of hybrid electric passenger aircraft us-

ing lower-order sizing methods and graphical methods, but is missing coverage of higher-fidelity

optimization tools and a comprehensive survey of design studies and demonstrator programs. A

U.S. National Academy of Engineering (NAE) subcommittee published a study report evaluating

underlying EP technologies and making recommendations on high-level research priorities [11].

Several other reviews cover aircraft EP as a sidebar to another primary topic. Gohardani et al. [12]

review distributed propulsion with an extended discussion of EP; Gohardani [13] later updated

and expanded the review. Sarlioglu and Morris [14] present an excellent review of more-electric

aircraft systems that includes a sidebar on propulsion. Perullo and Mavris [15] focus only on

higher-fidelity modeling of energy management in hybrid configurations; Wall and Meyer [16]

likewise focus only on hybrid electric.

In spite of all the work cited above, there was a need for a review article that provides an

entry point to the field of EP for aircraft designers, modelers, and technologists, who are versed

in aircraft design principles but do not necessarily have an electrical background. I addressed this
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need by publishing [17], a comprehensive review article covering EP fundamentals, concepts and

demonstrators, technologies, practical design trades, and simulation capabilities. This chapter and

Chapter 3 contain substantially condensed and updated material from [17].

2.2 Aircraft Electric Propulsion Fundamentals

2.2.1 Classification

Aircraft can be categorized based on the degree of hybridization of their power (HP ) and energy

(HE) sources. A definition of hybridization with respect to power and energy was developed by

Isikveren et al. [18], namely:

HP =
Pm
Ptot

(2.1)

HE =
Eb
Etot

(2.2)

where Pm is the motor power, Ptot is the total propulsive power, Eb is the battery energy, and Etot is

the total energy storage including fuel. By convention, hybridization is usually given with respect

to Pm and Eb, though in principle the same method of analysis could be used for other sources,

such as hydrogen fuel.

Conventional aircraft use no electric power or electric energy for propulsion (HP = 0, HE =

0). All-electric aircraft (Figure 2.2a) use exclusively electrical energy and power for propulsion

Table 2.1: Classification of electric propulsion architectures

Architecture HP HE Diagram
Conventional 0 0
All-Electric 1 1 2.2a
Turboelectric >0 0 2.2b
Series Hybrid 1 <1 2.2c
Parallel Hybrid <1 <1 2.2d
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(HP = 1, HE = 1). Some authors prefer the term universally-electric. Hybrid electric aircraft

rely on a mix of fuel and electrical energy storage and propulsive power (HP > 0, 0 < HE < 1).

Finally, turboelectric aircraft (Figure 2.2b) use combustible fuel for energy storage but electrical

power transmission instead of mechanical power to drive the propulsor(s) (HP > 0, HE = 0).

Hydrogen aircraft are not typically described using the HP /HE formalism, but a hydrogen fuel cell

aircraft could be said to have HP = 1 and hydrogen combustion HP = 0.

Hybrid electric architectures are broadly similar to hybrid automobiles but have some impor-

tant distinctions. Non-plug-in hybrids like the Toyota Prius generate electrical power only through

regenerative braking. For transport-class aircraft, regenerating power during descent is less effi-

cient than using a non-regenerative continuous descent trajectory [19, 20]. Proposed hybrid aircraft

concepts operate more like the plug-in hybrid Chevrolet Volt, where electricity from grid power

may be used for short trips and fuel is used as a range extender. Turboelectric designs are simply

hybrids without significant battery storage.

Hybrid electric architectures can be further divided into parallel and series hybrids. Series

hybrid designs (Figure 2.2c) generate electrical power using a combustion engine and deliver both

battery and fuel energy to the propulsor via electrical buses (HP = 1, 0 < HE < 1). Parallel

hybrid architectures (Figure 2.2d) deliver combustion power to the propulsor mechanically (HP <

1, 0 < HE < 1). The combustion engine may operate continuously and use electrical power to

reduce fuel flow [19], or the engine may disconnect via a clutch to enable full-electric operation

during some portion of the flight envelope [21]. Finally, the Ampaire Cessna 337’s push-pull

configuration with one combustion engine and one electric motor operating independently can be

conceptualized as a type of “parallel hybrid”, though it is really in a category of its own.

2.2.2 Key Technological Parameters

When evaluating the feasibility of aircraft EP today, the two most important technological pa-

rameters are (arguably) specific energy (energy per unit mass of energy storage) and specific power

9



Inverter

Motor

Propulsor

Battery

DC Bus

Mechanical 

Electric (AC)

Electric (DC)

(a) All Electric

Turboshaft/ICE

Rectifier

Generator

Inverter

Motor

Propulsor

DC Bus

Mechanical 

Electric (AC)

Electric (DC)

Turboshaft/ICE

Generator

Rectifier

Inverter

Motor

Propulsor

(b) Twin Turboelectric

Turboshaft/ICE

Rectifier

Generator

Inverter

Motor

Propulsor

BatteryDC Bus

Pump*

Radiator*
*Optional liquid 
thermal management 
system 

Mechanical 

Coolant

Electric (AC)

Electric (DC)

(c) Series Hybrid (with Liquid Cooling)

ICE/Turbine

Inverter

Motor

Propulsor

Battery

DC Bus

Power-Split
Mechanism (clutch)

Mechanical 

Electric (AC)

Electric (DC)

(d) Parallel Hybrid

Figure 2.2: Notional electric propulsion architectures

10



(power of a component per unit mass). Specific energy is especially applicable to batteries, while

specific power is especially relevant for electric motors, power conversion electronics, and energy

storage devices. There does not seem to be a consensus in the literature on how to abbreviate

specific energy and specific power symbolically. Like Pornet et al. [22], I adopt the convention of

fluid dynamics, representing specific quantities as the lowercase of the extensive quantity: battery

specific energy as eb, fuel specific energy as ef , motor specific power as pm, and so on. By conven-

tion, eb is tabulated in units of Whr/kg, specific power in units of kW or MW/kg, and heat values

(ef ) of fuel in MJ/kg.

The most fundamental challenge facing aircraft EP is that batteries have on the order of 50

times lower specific energy than liquid fuels. For Jet-A, ef = 11900 Whr/kg, while lithium-ion

batteries are in the range of eb = 200 Whr/kg [23]. The critical impact of specific energy is

illustrated through the Breguet range equations. For consumable fuels,

Rf =
L

D
ηpηintηeng

ef
g

ln

(
1

1−mf/mTO

)
. (2.3)

where L/D is the lift-to-drag ratio, ηp is the propulsive efficiency, ηint is the efficiency due to

propulsion integration losses, ηeng is the engine thermal efficiency, ef is the fuel specific energy,

and mf/mTO is the ratio of fuel weight to takeoff gross weight.

For battery-powered aircraft, a different version of the Breguet range equation can be derived

as [9, 24]

Rb =
L

D
ηpηintηe

eb
g

mb

mTO

. (2.4)

where ηe is the total efficiency stackup of the electric propulsion system, eb is the battery specific

energy, and mb/mTO is the ratio of battery weight to takeoff gross weight. These equations differ

due to the decrease in fuel mass (and therefore, induced drag) during a mission for fuel-powered

aircraft.
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For both fuel-burning and battery-powered configurations, range is directly proportional to

specific energy (eb, ef ). At state of the art (SOA) battery specific energies, aircraft with significant

HE will have very short useful ranges or very poor payload fractions. For a realistic set of mission

requirements (including a given design range), low eb leads to dramatically heavier takeoff gross

weight (TOGW) and higher total energy consumption. The effect of specific energy is mission-,

scale-, and platform-dependent, but sensitivities obtained for particular concepts can be found in

the literature [25–28].

Since eb is important to other industries (such as automotive and consumer electronics), aca-

demic and industrial research in higher-specific-energy batteries is ongoing. For aviation, advanced

concept studies require an estimate of battery technology available near the first-flight date. Pro-

jecting future battery technology is outside the scope of this dissertation, but study authors are

assuming eb on the order of 400–1000 Whr/kg for advanced concepts, depending on the time

frame [23, 29]. Individual eb assumptions for specific studies are tabulated in Table 2.3. The

SOA of energy storage technologies, including alternative battery chemistries, is discussed by

Rheaume and Lents [23]. The NAE committee report projected that eb will reach 400–600 Whr/kg

by 2035 [11].

Volumetric energy density is a related consideration for energy storage devices. Jet fuel is

Pareto optimal in ef and volumetric energy density. While compressed hydrogen has very high ef ,

its volumetric density is very low. Lithium-ion batteries also have significantly lower volumetric

energy density than jet fuel, but the performance gap is a less-acute problem than eb [9].

Specific power of electrical devices (pe), including motors/generators and power conversion, is

another key technological parameter in the design problem [29]. Since no single number captures

the full operational envelope of an electrical device, the power considered in this metric could

be rated power, maximum power, or design power. Electric motors are often rated for short-

term burst power, which is usually substantially higher than the maximum continuous power; the

analogous rating for a turbofan is takeoff thrust and maximum continuous thrust, respectively.
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Unless otherwise specified, motor specific power (pm) values listed in this dissertation refer to

short-term burst power.

In all-electric and series hybrid architectures, electrical power systems must be rated for the

entire propulsive power of the airplane. If pe is too low, the airplane will be too heavy, possibly

resulting in increased fuel burn compared to a conventional design. The electrical system weight

appears in the empty weight component ofmTO in the range equations (2.4) and negatively impacts

range.

Like turbines, fuel cells convert liquid fuel to power [9]. Fuel cells do so with high effi-

ciency, but their poor specific power historically made them uncompetitive with batteries or tur-

bogenerators except in niche applications where hydrogen is available and low thermal signature

is paramount [23]. However, recent advances in fuel cell technology have resulted in renewed

interest by startups including Universal Hydrogen and ZeroAvia.

Specific power of batteries pb can be an important constraint on the design problem. Certain

portions of the flight envelope, such as takeoff, may require substantially more power than cruise.

This problem is particularly apparent for eVTOL aircraft, particularly those with high disc loading

such as the Lilium Jet. Batteries must be capable of discharging quickly enough to meet this

demand over the duration of the maneuver; unfortunately, high pb strictly trades off with eb [30].

See Section 2.5.2 for a more detailed discussion of battery characteristics and design trades.

The efficiency of electrical components is a third key technological factor. The overall electrical

efficiency for a direct current (DC) turboelectric configuration can be written as,

ηe = ηgηrηbusηiηm, (2.5)

where ηg/r/bus/i are the efficiencies of the generator, rectifier, bus, and inverter, and ηm is the motor

efficiency. I define these components in more detail in Section 2.5. All-electric and parallel hybrid

designs do not require a generator or rectifier. Using an alternating current (AC) architecture elim-
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inates the rectifier and inverter. Multiplied together, the electrical efficiencies are analogous to the

thermal efficiency of a combustion engine. The propulsive efficiency ηp is considered separately.

Pornet et al. [22] provides a good discussion of electrical component efficiency stackups and power

constraints for a series hybrid aircraft.

Unlike specific energy, efficiencies are bounded at 1 and are already relatively large, so the in-

fluence on aircraft range is not as strong as that of e and p. The larger problem comes from thermal

management of waste heat inside the aircraft. If we assume that all electrical inefficiency results in

resistive heating, improving ηe from 97% to 99% results in 2% higher range but a 67% reduction

in waste heat. Efficiencies of specific types of power electronics are addressed in Section 2.5 and

TMS in Section 2.6.

2.3 Products, Prototypes, and Concepts

At least 17 manned, electric, fixed-wing aircraft have flown since 2000, three of which are

commercially available products. Two more technology demonstrators are reasonably expected to

fly by 2020. There are also numerous industry- and government-funded advanced concept studies

focused on higher technology and power levels. This section reviews most of the flight-tested

electric aircraft and the well-developed studies.

Table 2.2 lists noteworthy manned electric aircraft with first-flight dates since 2000. Table 2.3

lists major design studies by government, established industry firms, and start-ups. The National

Academy report includes a related table focusing on technology targets for batteries, motors, and

generators [11].
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Table 2.2: Summary of flyable, manned electric aircraft

Name 1st
flight
yr

Arch. 1 Seats TOGW
(kg)

Max
power
(kW)

eb (W
hr/kg)

Range
(nmi)/
Endur

Remarks Ref

Lange Antares 20E 2003 E 1 660 42 136 NA 1st elec. aircraft w/ airworthiness cert.; commercially avail. motor-
glider

[31]

Fishman Electraflyer C 2008 E 1 283 13.5 90min Converted motorglider; Li-Po battery [32]
Boeing HK-36 FCD 2008 FC 1 860 75 NA 45min 30 kW fuel cell; experimental [33]
Yuneec E430 2009 E 2 470 40 154 Clean-sheet composite airframe; commercialization abandoned [12, 34]
Siemens/Diamond E-Star 2011 SHE 2 800 70 30 kW Wankel engine, experimental [35]
Pipistrel Taurus Electro G2 2011 E 2 450 40 Commercially avail. [36]
Pipistrel Taurus Electro G4 2011 E 4 1500 150 180 244 Won NASA Green Flight Challenge; experimental; 400+ pmpg [31, 37]
IFB Stuttgart eGenius 2011 E 2 950 60 204 244 Competed in NASA GFC; experimental [37]
Embry-Riddle Eco-Eagle 2011 PHE 2 1075 105 125 170 Unofficial participant in GFC; 75 kW rotax, 30 kW elec; exp. [31, 38]
Fishman Electraflyer ULS 2012 E 1 238 15 120min Commercially-available under US ultralight rules [32]
Chip Yates Long ESA 2012 E 1 680 192 Experimental [39]
Siemens/Diamond E-Star 2 2013 SHE 2 800 80 5 kW/kg motor; experimental [40]
Airbus E-Fan 2014 E 2 600 60 207 60min 2x30 kW fan; experimental [41, 42]
Cambridge SOUL 2014 PHE 1 235 20 144 12 kW elec, 8 kW petrol; recharges in flight; exp. [43, 44]
Pipistrel Alpha Electro 2015 E 2 550 60 171 70 Commercially avail. [45, 46]
Airbus E-Fan 1.2 2016 SHE 2 600 60 2x30 kW fan, 50 kW range extender; experimental [42]
Siemens Extra 300 (330LE) 2017 E 1 1000 260 95% eff. motor, >5 kW/kg incl. inverter, 580VDC; exp. [47]

1E=All-electric; SHE/PHE=Series/parallel hybrid; TE=Turboelectric; FC=Fuel cell
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Table 2.3: Summary of electric fixed-wing aircraft concepts and studies

Name Target
EIS yr

Arch. 2 Seats TOGW
(kg)

Max power
(MW)

eb (W
hr/kg)

Design
Range
(nmi)

Remarks Ref

NASA X-57 “Maxwell” 2018 E 2 1360 0.144 130 2x72 kw tip motors; manned demonstrator; leading-edge DP [48–50]
NASA STARC-ABL 2035 TE 154 60000 2.6 3 3500 -9.4% fuel burn; tube/wing config. w/ tailcone boundary layer in-

gestion (BLI) prop.
[51, 52]

NASA N3-X 2045 TE 300 227000 50 7500 -10% FB due to EP; supercond.; hybrid wing body (HWB) w/ BLI
dist. prop.

[29, 53–58]

Boeing SUGAR Volt 2035 PHE 154 68040 1.0 4 750 3500 -10.9% FB due to EP; Strut-braced wing w/ battery pods [19]
Bauhaus Luftfahrt Ce-Liner 2035 E 189 109300 33.5 2000 900 C-wing, supercond. motors, aggressive tech assumptions [59, 60]
Airbus VoltAir 2035 E ∼33 ∼33000 750+ ∼900 Superconducting electronics; BLI; laminar-flow wing [61, 62]
Airbus/R-R E-Thrust 2050 SHE 90 9.0 1000 Rgnl Superconducting; BLI and high bypass ratio; embedded fans [63]
ESAero/Wright ECO-150R 2035 TE 150 60-75k 12.7 1650 FB ≈ 737-700; 16 motors embedded in wing; no supercond. [64]
Eviation Alice 2019 E 11 6350 0.780 260 560 3 pusher props; Kokam Li-Ion batteries [65, 66]
XTI Tri-Fan 600 2024 SHE 6 2404 1.5 1200 VTOL; tilt-fan configuration [67]
Ampaire Tailwind 2020s E/SHE 350 Tail-mounted boundary layer ingestion thruster [68]
Zunum 2020s SHE 12 5216 1 700 Conventional regional jet layout; straight NLF wing [69]

2E=All-electric; SHE/PHE=Series/parallel hybrid; TE=Turboelectric; FC=Fuel cell
3tailcone propulsor power only
4includes electric motor only
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2.3.1 Flight Test Vehicles, Prototypes, and Commercial Products

The experimental history of electric aviation dates back to over a century ago, when Santos-

Dumont devised an electric airship [31]. In the 1980s and 1990s, very high aspect ratio solar

aircraft demonstrations were pursued by NASA and others. This experimental heritage resulted

in high-altitude long-endurance (HALE) or “pseudosatellite” systems such as the QinetiQ/Airbus

Zephyr. The technical challenges of these aircraft are distinct from manned electric aircraft and

include aeroelasticity and control problems related to the excessive aspect ratio and aggressive

empty weight requirements. Even at low speeds and power levels, solar cells typically do not

justify the additional weight and drag in manned applications [37].

The first manned, electric fixed wing aircraft was the Brditschka MB-E1, which flew for less

than 10 minutes in 1973 [26]. Since the 2000s, several self-launching electric motor gliders have

been offered for sale. The first to earn a type certificate was the Antares 20E [31]. Several

lightweight electric aircraft prototypes by independent designers flew in the late 2000s, includ-

ing the Electraflyer C, Yuneec 430, and an all-electric modified Cri-Cri [37]. Larger firms then

converted demonstrators from glider airframes, including the Boeing HK-36 fuel-cell demonstra-

tor [33], series hybrid Diamond DA-36 E-Star [35, 40], and all-electric Pipistrel Taurus Elec-

tro [36].

The NASA/CAFE foundation Green Flight challenge in 2011 inspired three new experimental

electric aircraft with extended range, including a four-seat variant of the Taurus Electro, Embry-

Riddle Aeronautical University’s parallel hybrid Eco-Eagle, and IFB Stuttgart’s eGenius [31, 37,

38]. The culmination of these lightweight, manned demonstrators was the Pipistrel Alpha Electro,

which was designed as a two-seat trainer aircraft and targeted at the Light Sport Aircraft cate-

gory [45]. An experimental version of the Alpha Electro was offered for sale in the EU and US.

In 2020, the Pipistrel Velis Electro (an evolutionary upgrade of the Alpha Electro) was awarded

a type certificate by European Aviation Safety Agency (EASA) under the LSA rules, becoming

the first electric aircraft to be type certified by a major regulator. The Velis Electro is expected to
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cost dramatically less to operate than piston trainers and does not emit lead pollution from burning

100LL aviation fuel.

Other recent demonstrators have focused on scaling up power to 100 kW and above. Chip

Yates set multiple speed and time-to-climb records in an all-electric Long EZ, followed by Siemens

AG which installed 260 kW of electrical power in an Extra 300 [39, 47]. The Siemens effort set

specific power records for a flight-rated electric motor: 5.2 kW/kg including power conversion with

a liquid TMS [47, 70]. In 2019, magniX flew a converted DHC-2 Beaver powered by a 500 kW

motor, joined in 2020 by an all-electric Cessna Caravan using the same motor. While these aircraft

set records for propulsive electrical power, the Boeing 787’s electrical system generates over 1

MW of electrical power using mechanical off-takes from turbine engines [71, 72]. To the author’s

knowledge, this is the highest-power electrical system flying on an aircraft today. However, it

would not be surprising to learn that some undisclosed military applications may generate even

more power (for mission systems such as radar and directed-energy weapons).

Figure 2.3 shows the progression of tested and proposed manned electric demonstrators. There

is a clear linear power/weight trend for battery and turboelectric demonstrators focused on maxi-

mum efficiency up to 1500 kg; most of them are based on similar motor glider airframes. Pipistrel’s

Velis Electro and NASA’s upcoming X-57 Maxwell demonstrator fall neatly into this trend. More

conventional airframes fall above this trend line, such as the Yates and Siemens speed records and

the magniX Beaver and Caravan conversions.

However, recent progress has not been free of obstacles. In late 2017, Airbus, Rolls-Royce,

and Siemens announced a partnership to build a hybrid electric flying testbed known as “E-Fan

X”. Built on a BAe-146 platform, the demonstrator was to replace one of the four turbofan engines

with a 2 MW electric motor and was intended to “explore the challenges of high-power propulsion

systems, such as thermal effects, electric thrust management, altitude and dynamic effects on elec-

tric systems, and electromagnetic compatibility issues” [73]. The platform was targeted for first

flight by 2020 [73], but was later placed on hold or cancelled. NASA was anticipated to flight test
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the X-57 Maxwell in 2018, but as of this writing, the aircraft has not yet flown on electrical power.

2.3.2 Concepts and Studies

This section focuses on aircraft designs which have not yet flown and are not imminently

expected to fly (except X-57). Conceptual design of aircraft larger than one to four seats started

with NASA-funded industry studies beginning in the late 2000s. This resulted in two concepts

which have been at least partly published.

The Boeing Subsonic Ultra-Green Aircraft (SUGAR) (Subsonic Ultra-Green Aircraft) series

of studies evaluated several evolutionary and revolutionary designs against NASA N+3 goals. This

study is particularly valuable because it provides a fair comparison between a hybrid concept and

turbofan concepts with equal technology and mission rules. All of the concepts were sized for

900 nmi economic missions with 154 seats. The concepts were a tube-and-wing baseline with cur-

rent technology (SUGAR Free); a tube-and-wing architecture with estimated 2030s technologies
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(Refined SUGAR); a high aspect ratio strut-braced tube-and-wing design with 2030s technology

(SUGAR High); a hybrid-wing-body (HWB) configuration with turbofans and 2030s technology

(SUGAR Ray); and a version of SUGAR High with parallel hybrid electric propulsion (SUGAR

Volt, Figure 2.4).

In Phase 1 of the study, SUGAR Volt was the only concept capable of meeting NASA’s N+3

fuel burn goal of -70% (compared to the SUGAR Free baseline). The Volt used 28% less fuel

than the conventionally-powered SUGAR High [74]. In Phase 2, hybrid electric propulsion was

extended to the conventional tube-and-wing and HWB configurations, and similar fuel burn im-

provements were found (25%–46% better than conventional propulsion for the HWB; 33%–55%

better for the tube-and-wing) [19]. However, the study assumed a 750 Wh/kg battery would be

available by 2035, which looks like an aggressive assumption with the benefit of hindsight.

Figure 2.4: Boeing SUGAR Volt concept

(NASA/Boeing image)

A higher-fidelity model of the SUGAR Volt, including a refined hybrid electric/turbofan model

from Georgia Tech, reduced the estimated hybrid electric fuel burn increment to between -10.9%
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and -21.7% depending on HP chosen. Higher HP was associated with higher total energy con-

sumption but lower fuel burn in this trade study. The study included a detailed discussion of

technology development risks, commercialization potential, and an agenda for future development

of parallel hybrid technology [19].

The second major series of industry studies on hybrid electric commercial transports was con-

ducted by Empirical Systems Aerospace (ESAero). Two concepts were studied: a single-aisle com-

mercial airplane (ECO-150) [75–77] and dual-use military/civilian transport [78]. Both concepts

use a series turboelectric architecture, with 16 electric fans embedded in the wing. This configu-

ration provides some blown lift and is claimed to be structurally efficient [64, 79]. The ECO-150

concept initially showed very large fuel burn reductions versus a current single-aisle benchmark (-

44% conventional, -59% superconducting) [58]. A higher-fidelity assessment in 2016 (designated

ECO-150R) showed no fuel burn improvement but acknowledged that the airplane could be resized

for better fuel burn [64]. Due to the large change in assessed fuel burn at the latest iteration, it does

not seem that this study was fully converged yet.

NASA itself is actively researching four concepts at widely varying power scales. The best-

developed of these is the Scalable Convergent Electric Propulsion Technology and Operations Re-

search (SCEPTOR) project, which launched in 2014. This project is focusing on rapidly achieving

ground and flight test demonstrations of higher power levels and distributed propulsion in a phased

approach. SCEPTOR is closely related to a NASA propulsive concept known as Leading Edge

Asynchronous Propellers Technology (LEAPtech), which introduces numerous small propellers

across the leading edge of the wing [80]. The goal of LEAPtech is to reduce drag by increasing

cruise wing loading of general aviation airplanes by 2.5 times. This is achieved by greatly in-

creasing CLmax through blown lift, avoiding the need for complex and heavy multi-element flap

systems.

SCEPTOR Mod 1 was a truck-mounted LEAPtech wing model tested at NASA Armstrong in

2015. This experiment was reportedly not successful in producing a dataset useful for quantita-
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Figure 2.5: X-57 Maxwell demonstrator

(NASA image)

tive comparison or validation of powered-lift distributed propulsion computational fluid dynam-

ics (CFD) results [81, 82]. An unexplained thrust and power consumption asymmetry at equal

commanded RPM merits further investigation and highlights potential controls issues that will

need to be addressed in flight demonstrators.

The manned flight test vehicle currently under development, known as the X-57 Maxwell,

is a converted Tecnam P2006T airframe (Figure 2.5). SCEPTOR Mod 2 involves replacing the

Tecnam’s combustion engines with electric motors, powered by lithium-ion battery packs stored

in the fuselage [49, 83]. Mod 3 replaces the stock wing with a deliberately-undersized carbon fiber

wing, with tip-mounted propulsive motors and dummy distributed-lift motor fairings. Mod 3 will

have high wing loading (by design) and uncontrollable one-engine-inoperative yawing moments

due to the location of the wingtip propulsors; safety considerations of this evolution are discussed

by Papathakis et al. [50] and will restrict operations to a dry lakebed. Mod 4 adds the distributed

propulsion motors in a configuration similar to the Mod 1 experiment. Mod 2 ws scheduled to

fly in 2018 following tests of a redesigned battery module [84], but as of this writing was still

undergoing ground testing in preparation for first flight.
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The largest electric transport aircraft design ever seriously studied is the N3-X turboelec-

tric concept, which is similar in range and size to the Boeing 777. The N3-X is a hybrid wing

body configuration with distributed turboelectric propulsion on the trailing edge, first derived from

the NASA/Boeing cruise-efficient short takeoff and landing (CESTOL) study in 2008 [85, 86].

Subsequently, the concept has been the focus of more detailed analysis and design revision by

NASA [53, 55, 56, 87], with refined weights [88] and noise and emissions [89]. Notably, the 2014

noise analysis required a major redesign of the aft body propulsion integration for noise. Rolls-

Royce and the University of Strathclyde have collaborated on electrical system trades [54, 90, 91]

and system safety analysis of high-power and superconducting electric aircraft [92–94] using the

N3-X as a baseline. The N3-X relies on very advanced technology and claims -70% fuel burn

reduction versus the 777-200 benchmark; the portion attributable to electric propulsion is closer to

-20%, with much of the remainder a result of airframe and other technologies [53]. The concept

will require on the order of 50 MW of power, which will certainly require superconducting elec-

trical components and the associated cryogenic subsystem; thus, this concept introduces a large

amount of technological risk and uncertainty and is envisioned for EIS in the 2040s. Jansen et al.

review the individual technologies required to implement EP at such power levels, including soft

magnetic materials fabrication, superconducting wires and electric machines, and insulators [29].

Figure 2.6: STARC-ABL turboelectric concept

(NASA image)
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Because of the high technological barriers of the N3-X, NASA sought to develop a concept

which would be feasible in the nearer term [29]. This resulted in a conceptual design study

of a single-aisle turboelectric aircraft with an aft boundary layer propulsor (STARC-ABL) [51].

STARC-ABL adds a tailcone propulsor to a typical tube-and-wing single-aisle configuration with

downsized, podded turbofans (Figure 2.6). Unlike many proposed turboelectric architectures, the

STARC-ABL does not include a dedicated turbogenerator; the power for the electric propulsor is

generated from the turbofans. The last NASA assessment showed -9.4% fuel burn for the economic

mission [52].

From 2011–2013, the European aviation community released three new advanced EP concepts,

but they are not as widely published as the NASA-funded concepts. An Airbus-funded study for

an all-electric regional airliner, known as the VOLTAIR, was widely publicized in popular media

but apparently resulted in just one conference paper (with minimal design definition) [61, 62]. The

bulbous configuration had an aft-mounted boundary layer ingestion propulsor and was designed

for natural laminar flow over the wing.

The Distributed Electrical Aerospace Propulsion (DEAP) collaboration between Airbus, Rolls-

Royce, and Cranfield University developed preliminary studies for high-temperature supercon-

ducting (HTS) turboelectric propulsion [95, 96] and a concept aircraft known as the Airbus E-

Thrust [63]. The E-Thrust is a series hybrid regional passenger aircraft with multiple, embedded

electric fans in a striking split-tail configuration.

A team at Bauhaus Luftfahrt developed the all-electric Ce-Liner concept: a regional aircraft

with very advanced technology. The Ce-Liner uses a C-wing shape for high aerodynamic efficiency

and HTS electronics. The Ce-Liner study uses perhaps the most aggressive technology assumption

for future eb: 2000 Whr/kg [59, 60]. Isikveren et al. [60] present not only typical conceptual sizing

data, but also detailed cabin layouts and ground handling considerations.

Figure 2.7 illustrates demonstrated and projected battery specific energy (eb) for both flight

tested prototypes and advanced concept studies. SOA batteries fall far below the requirements for
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N+3 and N+4 advanced concepts. Boeing and Airbus use similar technology assumptions, while

Bauhaus Luftfahrt has been using more aggressive assumptions.
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Figure 2.7: Historic and projected eb

(data from Table 2.2 and 2.3)

Beginning the mid-2010s, many fixed-wing electric aircraft startup companies formed, gener-

ally focusing on general aviation and Part 23 aircraft in the 1 MW power range:

Zunum Aero was developing a 12-passenger hybrid electric regional aircraft designed to Part 23

rules for early 2020s EIS [69]. The company was funded by Boeing and JetBlue.

Wright Electric has been exploring single-aisle size airliners, beginning with a concept similar

to the ESAero ECO-150 concept. Wright’s design use electric fans embedded in the wings.

Their main partnership is with the airline EasyJet.

Eviation is an Israel-based firm developing the “Alice” nine-passenger concept. As of the 2019

Paris Airshow, Alice used two wingtip-mounted pusher propellers and a tailcone propeller

(some boundary-layer ingestion is claimed) [65].
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Ampaire was an early-stage startup, initially promoting the “Tailwind” concept (featuring an aft

boundary layer ingesting propulsor similar to the STARC-ABL) in an all-electric and series

hybrid configuration [68]. Ampaire eventually focused most of its activity on a push-pull

gas-electric version of the Cessna 337, which flew numerous manned test flights around

Hawaii before the company was acquired.

XTI Aircraft claimed to have taken more than 60 orders for the Tri-Fan series hybrid vertical

takeoff and landing (VTOL) aircraft. The design features three ducted electric fans, two of

which rotate 90 degrees to transition from vertical to horizontal flight [67]. In 2019, the

company started test flying a 65% all-electric proof of concept test vehicle.

ZeroAvia is a British company that flew a proof-of-concept hydrogen fuel cell Piper Meridian and

is initially focusing on short-haul commuter aircraft.

Project Fresson is a consortium of British companies converting a Britten-Norman Islander as a

hydrogen fuel cell demonstrator by 2022.

VoltAero is developing a special series-parallel hybrid propulsion system designed to provide

twin-engine safety with single-engine economics. The company flew a Cessna 337 Sky-

master with the piston hybrid-electric drive unit in the rear, and two 70 kW electric motors

in a tractor configuration on the wings. For production, the company envisions 4–10 seat

twin-boom aircraft with a single hybrid drive unit in a pusher configuration.

A multitude of other startups have focused on eVTOL, and many of these have employed fixed

wings for the cruise phase of flight; they are too numerous to list here.

Several academic authors have conducted one-off studies on general aviation and commuter

aircraft [97–100]. Others focused on small unmanned aerial system (UAS), such as the early work

at the Air Force Institute of Technology by Harmon et al. [21, 101, 102] and one study of a UAS

propulsion subsystem by Merical et al. [103]. In general, these studies do not rely on technology
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as advanced as the large commercial transport studies.

2.4 Airplane-Level Effects of Electrification

Even assuming substantial improvements in eb and pm, electrification is likely to add substan-

tial amounts of weight compared to conventional aircraft. Until weight parity with jet fuel and

turbomachinery is reached, EP will need to “buy” its way onto each configuration based on the

sum of airplane-level benefits and disadvantages. This section reviews some of the claimed bene-

fits enabled by electrification and contrasts them with the known risks.

2.4.1 Direct Electrification Effects

Hybrid and all-electric aircraft can claim benefits directly by replacing fuel with electricity on

shorter missions (see the Breguet range relations in Section 2.2). As eb grows, a larger share of

economic missions can be flown on electric energy. If electricity is cheaper than jet fuel on a per-

unit-energy basis, then this may result in an operating cost savings. Depending on the source of

electricity, carbon emissions reductions may also result. This requires a detailed understanding of

generator fuels, transmission/grid losses, and lifecycle analysis of battery production and disposal.

If renewable electricity generation is assumed, carbon emissions reduction is a clear benefit of EP.

All-electric aircraft also have a theoretical efficiency advantage by eliminating a thermody-

namic cycle (see Section 2.2). If superconducting wires and power electronics are used, the overall

electrical efficiency fraction may be very close to 1. This theoretical advantage is negated some-

what if battery energy is generated using conventional power plant turbines (which also experience

thermodynamic losses). The efficiency advantage may still be meaningful even if grid power is

generated using non-renewable means, since land-based steam turbines have higher thermal effi-

ciency than aviation turbines.

Readers of electric propulsion studies must carefully examine energy accounting to ensure that
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claimed emissions, efficiency, or total energy benefits are actually fair comparisons. For example,

full-electric aircraft efficiency is often overstated by neglecting losses during grid power genera-

tion, while conventional aircraft understate carbon emissions by neglecting contributions due to

petroleum processing.

Replacing turbine engines and fuel systems with electric motors and batteries may reduce the

maintenance cost of all-electric aircraft. An assumption seems to exist that electric motors will

cost less to maintain than turbofans of equal power/thrust, and this is probably justified based on

the service experience of electric cars. For example, Tesla claims that its electric drive units last

upwards of a million miles maintenance-free [104]. Goldberg et al. [105] examines the sensitivity

of N3-X economics to maintenance cost and concludes that uncertainty in maintenance cost is an

acceptable risk. Demonstrator programs should be structured in order to gather useful reliability

and maintainability data alongside performance data.

2.4.2 Propulsion Effects

In turbine engines, the rotation speed of the fan or propeller is coupled to the speed of the

turbine. For DC architectures, the fan and turbine speeds are decoupled, enabling both to be

operated at their ideal point [77]. Turboelectric and series hybrid architectures capture all of the

benefit of a geared turbofan (GTF) engine through reduced fan speed, with an additional efficiency

benefit from shaft speed decoupling. Electric propulsion also may enable higher bypass ratio

(BPR) by decoupling the number of fans from the number of engines. The combined effect of speed

decoupling and bypass ratio is estimated at 4%–8% of ηp for a transport-category turboelectric

aircraft [106]. This effect does not necessarily require distributed propulsion.

Boundary layer ingestion (BLI) increases propulsive efficiency by ingesting slower air from

the fuselage or wing boundary layer. Suction from the fan inlet changes the pressure distribution

upstream, and fan outflow energizes the wake, causing some controversy as to whether BLI should

be accounted as a drag decrement or a ηp increment [11, 107]. BLI benefit is proportional to the
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percentage of boundary layer flow captured at the fan inlet [51].

While boundary layer ingestion is possible with conventional engines (such as the MIT/Aurora

D-8 concept [108]), the unique scaling properties of electric motors make BLI more feasible.

Combustion engines generally pay a performance, weight, and efficiency penalty when scaled

down in size, while electric motors scale mostly linearly [80]; therefore, turbofan or turboprop

aircraft tend to have as few engines as feasible. Electric motors are also physically smaller, making

wingtip and tailcone installations feasible (as in the X-57 Maxwell and STARC-ABL). Since the

boundary layer extends to a small, finite thickness past the wing or fuselage, numerous small

electric fans may cover more of the wing and body and ingest a higher fraction of boundary layer

flow than a few larger-diameter turbine propulsors.

2.4.3 Aerodynamic Effects

Electric motors enable new propulsion installation possibilities, resulting in potential aerody-

namic benefits. There are three proposed aerodynamic benefits of distributed electric propulsion:

installation drag reduction, high lift augmentation, and swirl cancellation. The overall benefit is

unproven and will depend on the mission and configuration but is probably between 0 and 8%

drag [106].

Engine nacelles and pylons introduce propulsion installation drag, comprised of friction, inter-

ference, and wave drag. Along with nacelle and fan weight, propulsive aerodynamic drag serves as

a practical limit on turbofan bypass ratio. Wick et al. [109] showed an 8% installed drag reduction

by embedding distributed propulsors in the wing on a transonic military transport concept. Engine

installations embedded in the fuselage surface may save wetted area equivalent to nearly half of a

typical podded nacelle [108]. This benefit can be booked as a reduction in drag for fixed bypass

ratio, or an increase in bypass ratio for fixed drag.

High lift augmentation through distributed propulsion reduces cruise drag by enabling higher

wing loading (and therefore, lower wetted wing area and viscous drag). With higher overall CL,
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approach speed and takeoff field length constraints can be met with a smaller wing. The NASA

LEAPtech wing concept and X-57 demonstrator are designed to test this idea; Stoll et al. [110]

predict that cruise L/D of 20 can be achieved, compared to a baseline L/D of 11 through a 2.5–3

times larger wing loading [48]. The LEAPtech wing has been studied using CFD and is estimated

to augment CL by 1.7 to 2.4 (in absolute terms) [111–113]; however, a loss of power may result

in a sudden stall if it occurs during low speed flight [77]. In the U.S., transport category airplanes

may not claim a powered lift benefit to stall speed (and thus, approach speed) for certification (14

Code of Federal Regulations (CFR) 25.103 and 25.125); a small credit in takeoff speeds may be

claimed. There does not seem to be an equivalent regulatory obstacle for Part 23 commuter and

general aviation aircraft to take advantage of powered lift.

Finally, wingtip propulsors have been proposed in order to take advantage of cancelling some

swirl in the wingtip vortices, but are not as well studied as BLI and lift augmentation. Miranda

and Brennan [114] published experimentally-validated low-fidelity results. The X-57 design study

booked this benefit as a drag reduction estimated between 5% and 10% using low-fidelity methods

and used Miranda and Brennan’s findings (though not their code) for further analysis [113]. Evi-

ation’s Alice concept also uses wingtip-mounted pusher propellers. The compactness of electric

motors enables wingtip propulsion.

2.4.4 Sizing Effects

In addition to the wing loading increase possible with blown lift, EP may result in favorable

control surface and engine sizing effects. The one-engine-inoperative (OEI) takeoff condition pro-

vides such an example. Multiengine aircraft must continue a takeoff at a minimum climb gradient

after the loss of one engine. In conventional tube-and-wing aircraft, this results in oversized en-

gines (to maintain minimum takeoff and climb thrust) and possibly oversized vertical tails (to trim

the large OEI yawing moment); thus, the OEI condition imposes weight, drag, and cost penalties

on conventional designs.
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Electric propulsion provides design freedom to eliminate these penalties. The N3-X concept

studies have illustrated how power distribution architectures may prevent asymmetric loss of thrust

following loss of a power source [54]. Furthermore, if one or more fans are lost, compensating

motors on the same side may be throttled up to higher power to cancel out the yawing moment.

Modern commercial airplane vertical tails may (or may not) be sized by OEI yawing moments.

Reduced thrust asymmetry through EP is likely to alleviate this constraint, possibly leading to

smaller vertical tails, lower weight, and lower drag [27, 77]; however, in a tube-and-wing config-

uration, other constraints such as stability and crosswind landing are likely to limit the value of

this benefit [27]. No studies have itemized this benefit separately from overall weight and L/D

improvements.

Turbines in hybrid electric aircraft may be further downsized by using battery power during

power-intensive phases of flight, and during normal operations and failure conditions. For ex-

ample, a series hybrid may supplement takeoff and top-of-climb power with batteries, sizing the

turbogenerators to a less critical condition [77]. Whenever turbomachinery is downsized, weight

and cost reductions are sure to follow; if the size of podded engines is reduced, installation drag

reductions may be achieved as well.

Turbine engines are subject to thrust and power lapse at altitude, rendering top-of-climb the

engine sizing constraint in some cases [115]. Electric fans are not subject to power lapse with

altitude when powered by batteries [48]. The STARC-ABL was able to reduce the thrust and size

of its turbofans substantially using the improved thrust lapse characteristics of its electric tailcone

propulsor, resulting in a virtuous cycle of lower weight and lower viscous drag [51].

2.4.5 Weight Effects

The most apparent disadvantage of electric propulsion today is weight. Every electric aircraft

study must account for the weight of energy storage, transmission, and follow-on structural growth.

The direct TOGW penalty due to energy storage is inversely proportional to eb and linear
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with range. TOGW growth is especially pronounced at long range. Since batteries do not lose

mass during flight, they carry a “hidden” weight and induced drag penalty compared to fuels. It

is difficult to overcome the weight penalty on longer missions with all-electric or significantly

hybridized designs with today’s technology; the current frontier is 244 nmi range (for the Pipistrel

Taurus G4 and eGenius) [37].

Electronic, propulsive, and thermal management components affect empty weight directly.

This may be a benefit or penalty depending on the systems architecture, mission, configuration,

and technology level. For example, the STARC-ABL claims a net propulsive weight decrease due

to synergistic propulsive efficiency and turbofan sizing benefits [51]. The XTI Tri-Fan switched

from a triple turboshaft design to a series hybrid electric architecture and booked a 37% gross

weight reduction [116]. At the opposite extreme, the ECO-150R propulsion system is one-third

of the overall empty weight [64]—about three times heavier than the 10.5% engine empty weight

fraction of a 737-900ER or 777-300ER. Distributed propulsion may allow fan structural weight re-

duction by reducing tip speeds, and by relaxing bird strike requirements through redundancy [54];

on the other hand, BLI fans will need to be distortion-tolerant, which may add weight [108]. Dis-

tributed propulsion requires more aircraft structure to be reinforced against fan-blade loss (14 CFR

33.94), which adds weight.

Energy storage, electronic, and TMS weight also affect structural weight. For example, lower

eb leads to heavier batteries and higher rated maximum takeoff weight. This increases structural

loads, structural gauge weight, and empty weight and reduces range in a vicious cycle. This cycle

effectively prohibits long-range, manned, all-electric flights at today’s technology levels.

2.4.6 System Safety Effects

Electric propulsion presents new and unknown challenges for airplane designers and safety

engineers, but also exciting opportunities to eliminate known risks. All-electric aircraft substitute

the hazard of flammable jet fuel with the new hazard of lithium batteries (or some future chemistry).
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Aircraft manufacturers and regulatory agencies have long service experience with liquid fuels, and

the resulting engineering controls (such as fuel tank inerting) are very well developed. Batteries

are also a known aviation hazard but have much less service experience and fail in seemingly more

complex modes.

The Federal Aviation Administration (FAA) has imposed special certification conditions on

the use of rechargeable lithium-ion batteries in aircraft [117]. The primary hazard is thermal

runaway, when rapid, self-sustaining increases in temperature and pressure occur in battery cells

and may lead to an external fire. Toxic gases may also be released. Thermal runaway may result

from overdischarging, overcharging, and internal short-circuits (see Section 2.5.2 for additional

details on battery charge/discharge characteristics). Several lithium battery thermal events led to

the grounding of the entire 787 fleet, and personal electronics lithium batteries carried in cargo are

the suspected cause of multiple fatal air freighter accidents. A lithium battery module designed for

the X-57 demonstrator required a major redesign following a failed thermal runaway during test,

adding 45 kg empty weight [84]. Thermal runaway was identified as one of two critical hazards

for the X-57 program because of combined loss of power and potential structural damage [49].

Crashworthiness is an area of potential benefit but high uncertainty. Liquid fuel, an obvi-

ous hazard following a crash, is replaced with battery modules. While only a few aircraft have

faced survivable crashes with sizable lithium battery packs, electric automobiles will be a valuable

source of data; automotive design practices for crash-tolerance of lithium batteries are reviewed by

Arora et al. [118]. Much more data and testing will be required to refine the design of aerospace

propulsion battery packs.

High-voltage electrical systems present another novel hazard in aircraft design. In-flight haz-

ards include the release of energy through short circuits and arcing (see Section 2.5). At a min-

imum, this will result in degradation of propulsion system performance, and could lead to fire.

High-voltage electrical systems also present a hazard to maintainers and ground handlers. This

will likely be a similar hazard to aircraft hydraulic systems, which require special engineering
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controls and lockout/tagout procedures to avoid injury.

All-electric aircraft eliminate turbines and their associated high-energy bladed disks. The FAA

treats turbine disk burst zones as special hazard areas and requires that certain flight-critical sys-

tems not be exposed; this introduces spatial integration constraints. Electric fans turn at much

slower speeds, reducing the potential hazard from blade loss. Aircraft with distributed propulsion

may be more tolerant to bird strikes and engine loss than SOA twin turbofan configurations [54].

Distributed fans provide more redundancy and could potentially continue providing thrust in the

rare circumstances that have caused dual engine failures; however, embedded propulsors (as in the

ECO-150) may expose primary wing structure or systems to high-energy blade impacts.

N3-X study collaborators Rolls-Royce and the University of Strathclyde produced concep-

tual safety analyses and trade studies of high-power EP systems; Armstrong et al. is the most

general [54]. More detailed studies included fault tree analysis of loss of thrust [92, 94] and super-

conducting fault protection considerations [93, 119]. Specific hazards related to NASA’s current

electric demonstrator efforts are analyzed by Clarke et al. [49] and Papathakis et al. [50].

In summary, electric propulsion potentially improves system safety during failure conditions

and eliminates hazards associated with jet fuel, but introduces new hazards such as thermal run-

away of battery packs. Methods to substantiate safety of EP systems, service experience from

demonstrators, and design best practices will be crucial in reducing risk in this area.

2.4.7 Noise and Heat Signature Effects

Noise reduction is a widely claimed benefit of electric propulsion [43, 80, 120, 121]; unfortu-

nately, the published literature does not include many quantitative noise predictions. One of the

most relevant is a noise analysis of the SUGAR High (high-technology turbofan) and SUGAR Volt

(parallel hybrid electric). The study found that SUGAR Volt was only about 1 EPNdB quieter than

SUGAR High [19]; however, both are relatively conventional configurations with podded engines.

Moore and Fredericks note that the noise savings from electric propulsion are primarily due to an
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enlarged design space for propulsion integration, which enables more effective shielding than can

be achieved with conventional engines [80]. SUGAR High and Volt do not use shielding in this

way.

The original N3-X concept required an extensive redesign to meet noise goals, but it ultimately

achieved a margin of 64 EPNdB compared to current Stage 4 community noise requirements [89].

Huff et al. [122] used empirical and low-fidelity methods and predicted that a 1 MW electric

motor’s contribution to external sound levels will be small compared to the noise of a low pressure

ratio fan. Bryson et al. [123] describe the trade space between noise and range for a small, quiet

UAS.

For military applications, reducing heat and noise emissions is desirable to avoid detection and

improve survivability. Donateo et al. [124] describe a UAS with an electric-only mode to avoid

generating a thermal signature.

2.5 Electrical System Architecture

In the past, electrical systems were a small portion of overall airplane weight, and engineers

could afford to use rough empirical weight estimating relationships for conceptual design without

making architectural decisions. Where an appreciable amount of electric thrust is produced, this

is no longer the case. Electrical architecture choices will be strongly coupled with performance,

weight, and flight safety. The key elements of an electric propulsion system include the following:

Energy storage: a battery (or alternative technology such as ultracapacitor or fuel cell) designed

for high eb, pb, (dis)charge rate, and safety.

Generator: converts mechanical shaft power into AC electrical power

Rectifier: converts AC power to DC electrical power

Motor: converts AC or DC current to mechanical shaft power
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Inverter: converts DC electrical power to AC power. Can be used as a variable-frequency drive

for AC motors.

Bus: an electrical conductor that transfers electrical power from source to destination

Motor controller: closely related to inverters, motor controllers use DC power to generate time-

varying currents in the armature coils of brushless DC and switched-reluctance machines.

Motor controllers respond to position or speed feedback from the motor and do not neces-

sarily generate sinusoidal currents.

Fault current limiter: prevents large currents during short-circuit events (essentially a circuit

breaker). For DC superconducting applications, superconduction fault current limiters (SFCL)

are used, which operate on different physical principles.

2.5.1 Electrical Machines and Power Conversion

Motors and generators (electrical machines) operate using the same general principles, and

there are several types which may have advantages and disadvantages for flight applications. Elec-

trical machines use the interaction between the magnetic fields of a rotating component (rotor)

and stationary component (stator) to generate a mechanical torque. The main magnetic field in

an electric machine may be constant or time-varying and can be generated using permanent mag-

nets, soft magnetic materials (reluctance), passive field coils (“squirrel cage”), or active field coils

(wound-rotor and doubly-fed machines). Typically, the main field is generated in the rotor [125].

When operated as a motor, windings in the stator generate a time-varying magnetic field and

consume the large majority of the electrical power of the machine. Stator currents can be driven by

a sinusoidal source (AC machines) or by arbitrary, actively-controlled waveforms (DC machines).

AC machines typically operate in three phases, whereas DC machines may employ an arbitrary

number of independently-controlled coils. In generator mode, the rotating main field induces a

current in the stator coils.
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Jansen et al. [29] summarize the state of the art of electric machines for flight applications,

including efficiencies and specific power ratings. NASA expects machines in the 1 MW power

class to achieve 13–16 kW/kg pm/g and 96–99% ηm/g. The NAE report envisions non-cryogenic

generators with pg up to 9 kW/kg by the N+3 time frame [11].

Lightweight and efficient power conversion (including inverters and rectifiers) is an evolving

research area. A detailed discussion of the operating principles of power converters is beyond the

scope of this review, but the major design choices being explored include semiconducting materials

and cooling systems. Jansen et al. provides an up-to-date summary of NASA-funded power con-

version research [29]. Armstrong et al. [90] present a table summarizing estimated specific power

and technology readiness of many kinds of electrical components. For megawatt-scale converters,

NASA envisions pi/r ratings between 19–26 kW/kg and efficiencies above 99% [29]. The NAE

committee projects pi/r of about 9 kW/kg by the N+3 generation [11].

At high power levels, large amounts of waste heat are generated with even highly-efficient con-

ventional electronics. Freeman et al. pointed out the memorable fact that a half-megawatt motor

operating at a state-of-the-art 95% ηm produces as much waste heat as a barbecue grill [115]; there-

fore, superconducting motor/generators, power electronics, and conductors have been proposed

as a way to raise efficiency and greatly reduce the thermal management problems introduced by

megawatt-scale electric propulsion systems. Superconducting materials exhibit zero resistance at

low operating temperatures, greatly reducing or eliminating Joule heating. For example, supercon-

ducting stator windings in motors and generators may improve efficiency substantially but incur

penalties for other reasons (such as eddy current losses and fault currents) [88, 93]. Conceptual

trade studies so far have favored superconducting architectures for very high-power applications

(such as the 300-passenger NASA N3-X) and conventional conductors for megawatt-class require-

ments and below (such as the 150-passenger NASA STARC-ABL) [29, 53]. Thermal management

is discussed in more detail in Section 2.6.
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2.5.2 Batteries

An electrochemical cell “converts stored chemical energy into electrical energy via the energy

difference between the reactions occurring at the two electrodes” [126]. A battery is a practical

electrical energy storage device consisting of one or more cells connected in series and/or parallel

in order to provide desired output voltage, capacity, and power.

An important parameter in the design and operation of battery-powered devices is the C-

rate [127]:

ζ(t) =
I(t)

Cnom
,

where I(t) is the charge or discharge current (in A) and Cnom is the nominal charge capacity of the

battery (in Ah). At a 1C discharge rate, the battery will be fully discharged from nominal capacity

in one hour. The rated maximum power of a battery is directly proportional to the maximum C-

rate. A high C-rate is desirable from an operational perspective, as it enables rapid recharging (and

less downtime). Two related metrics are the state of charge (SOC), which measures the percentage

of charge capacity remaining, and the depth of discharge (DOD) which is simply 1− SOC [127].

Each battery design has a characteristic voltage profile as a function of DOD. For lithium-

ion batteries, voltage decreases slowly until a precipitous drop at about 90% DOD. Discharging

past a threshold DOD (specific to the battery design) can cause shortened lifetime and/or thermal

runaway; maximum DOD of 80% is typical in the literature [25, 128, 129].

At higher discharge rates, internal resistance in the battery becomes significant, and the output

voltage will be reduced; therefore, high discharge rates (high power) result in lower total useful

energy [127]. The curve of pb versus eb is called a Ragone plot, and it is specific to the cell

design/chemistry and pack design. Xue et al. [126] show Ragone curves for Li-ion cells optimized

for different C-rates (Figure 2.8). Vratny et al. [127] contains a related plot of battery “efficiency”

(eb,act/eb,0C) as a function of C-rate.

Cell chemistry significantly contributes to battery characteristics. In general, batteries contain
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Figure 2.8: Ragone curves for Li-ion cells optimized for 0.2C–9C rates, with Pareto front

(figure from Xue et al. [126])

a positive electrode (cathode), negative electrode (anode), electrolyte, and various other inactive

materials for binding, insulation, and other necessities. Li+ ions are currently favored as a charge

carrier because of high potential and light weight [126]. The theoretical upper limit on cell-level

specific energy is determined by the electrochemical reaction; however, practical considerations

ensure that the actual eb is lower than the theoretical maximum.

Xue et al. discuss the tradeoff between high specific energy and high specific power [126].

At the cell level, densely-packed active materials result in high eb, but the resulting low porosity

and conductivity limit the C-rate (and therefore pb). For a given cell chemistry, a Pareto front

exists between specific energy and specific power when considering detailed cell design parameters

(Figure 2.8). Adding inactive materials is also required in order to prevent degradation of eb over

repeated charge/discharge cycles. Each of these factors causes actual cell specific energy to fall

below the theoretical value. At the battery pack level, practical design considerations introduce

additional parasitic weight (such as spacing/cooling to contain cells in thermal runaway and battery

control electronics [84, 130]).
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Battery modeling in conceptual aircraft studies often assumes a fixed pack-level eb and pb with

constant battery efficiency factor [18]. This approach may be appropriate for long-term advanced

technology studies where detailed discharge characteristics of the battery technology are unknown.

A higher level of fidelity considers discharge rate effects by constructing an “equivalent circuit”

model of the battery. The battery model consists of an internal resistance and possibly capacitance

determined from empirical data [19, 127, 131, 132]. Equivalent circuit models introduce a power-

dependent battery efficiency factor and create coupling between mission analysis, control strategy,

and vehicle weights. Physics-based models considering internal cell design variables have been

used to explore coupling between vehicle design and optimal cell design [133]; however, physics-

based cell modeling introduces significant computational cost and has not yet been coupled to an

aircraft design problem. Avanzini et al. contains a detailed procedure for empirical modeling of a

particular battery pack [134].

2.5.3 Electrical System Trades

Key trade studies for an electric propulsion system include the choice of AC or DC in the

distribution buses, the nominal system operating voltage, and whether to utilize constant-voltage

or variable-voltage DC power for battery-fed hybrid- and all-electric systems. Vratny et al. [135]

studied constant system voltage (CSV) and variable system voltage (VSV) in a hybrid system

and concluded that VSV was more efficient overall. High system voltages may be more efficient

but incur a weight or safety penalty due to the risk of electrical arcing at high altitude [90, 135].

Paschen’s Law dictates that air gap insulation is safe below 327V, no matter the air density or

pressure; therefore, current commercial airplanes restrict electrical bus voltages to 270V or below

for intrinsic safety. Electric propulsion concepts will require higher operating voltages in the low

kV range, necessitating investment in highly durable and lightweight insulative materials [29, 90,

136].

The literature currently favors DC power distribution, particularly for any application involving
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the use of batteries but also for high-power turboelectric [19, 54]. DC power distribution eliminates

the need to synchronize the phases of multiple electrical generators and motors and simplifies

“throttling” for distributed propulsion applications, but it incurs weight and efficiency penalties

due to AC/DC conversion on both ends [137]. Each unit of rated motor power requires an equal

unit of inverter and rectifier power, plus redundancies for system safety. Using the pe estimates

given above, this means that the weight of the power electronics will be on the order of or even

heavier than the motors themselves. Regardless, since batteries operate on DC, there is no need to

rectify the power; therefore, where electric energy storage is used, DC power distribution will be

more favored [138]. An alternative AC power distribution scheme for a turboelectric configuration

was devised by Sadey et al. [139] and utilizes doubly-fed induction machines similar to wind

turbines. Figures 2.2c and 2.2d illustrate the more common DC distribution architecture.

For hybrid electric applications involving turbofans, shaft power may be taken off from the low-

pressure and/or high-pressure spool. While the high-pressure spool rotates over a narrower range

of speeds, operability characteristics of the engine limit the amount of shaft power that can be

extracted [14]. United Technologies and GE independently announced successful demonstrations

of near-MW scale power offtakes from low-pressure spools [140, 141].

2.6 Thermal Management

While electric motors are more efficient at generating shaft power than turbine engines, tur-

bines exhaust nearly all the waste heat into the ambient air. Because electrical components are

located within the aircraft interior, ambient cooling is not sufficient to keep conventional (non-

superconducting) electronics at their operating temperature. Superconducting electrical power

systems eliminate resistive heating but introduce a different problem: keeping high-temperature

superconducting (HTS) materials sufficiently cold compared to the ambient temperature. Both

technologies will require TMS. A deeper review of thermal management design approaches and
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models is deferred until section 5.1

2.7 Concluding Remarks

The design of economically-viable fixed-wing electric aircraft demands high technology and

highly integrated design. It is widely known that specific energy of batteries (eb) and specific power

of electronics (pe) strongly impact aircraft capabilities. Battery and electronics unit costs also influ-

ence aircraft acquisition cost. Driven by investment from the automotive industry, the performance

and cost of these components should improve over time. The aerospace industry should moni-

tor developments and independently invest in adapting the technology to meet aerospace-specific

design requirements.

Regardless, the technological barriers to aircraft EP remain challenging. The NAE consensus

report [11] finds that “turboelectric propulsion systems are likely the only approach for developing

electric propulsion systems for a single-aisle passenger aircraft” feasible by the N+3 (2035) time

frame, due primarily to limited advancement in eb. Studies at smaller power scales and ranges are

more optimistic.

As Moore and Fredericks [80] argue, the practical and economic viability of electric aircraft is

also determined by the effective use of the additional degrees of design freedom opened through

electrification. This is corroborated by findings that more-electric propulsion is not effective as a

drop-in replacement for existing combustion engines [142]. The design space for electric aircraft

is still poorly understood due to the very limited diversity of designs with service experience, the

small number of well-developed trade studies, and the many configuration degrees of freedom.

Opening the design space, particularly for propulsion architecture, requires constant evaluation

of safety and regulatory compliance. Electric propulsion potentially eliminates longstanding risks

such as combustible fuels, but also introduces new and potentially unknown risks. Intelligent

systems architecting can take advantage of EP capabilities to meet safety requirements in new
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ways; however, innovative ideas may require regulatory acceptance before they become feasible

for use in particular applications (such as powered lift for commercial aircraft certified by the

FAA). Modeling, simulation, and optimization are promising ways to rigorously explore the design

space.
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CHAPTER 3

A Brief Review of Aircraft MDO

3.1 General Background

Design optimization, which combines simulation models with mathematical optimization al-

gorithms, is an increasingly important tool in aircraft design. Multidisciplinary design optimiza-

tion (MDO) is design optimization involving more than one engineering function or discipline.

MDO models are advantageous because they capture physical coupling, such as the interplay be-

tween aerodynamic loads and structural deflection. As detailed by Martins and Lambe [143], pio-

neers of aircraft MDO were demonstrating aerostructural optimization problems with the limited

computing resources of the late 1970s. Haftka [144] computed Pareto curves between structural

weight and induced drag using linear potential flow and finite elements in 1977. Schmit [145]

optimized structural designs as early as the 1960s, and by the 1980s had also demonstrated MDO

of turbomachinery blades subject to aerodynamic and structural constraints. As computational

power increased and methods improved, researchers were able to increase the fidelity of the model

physics. Martins incorporated Euler aerodynamics into a supersonic business jet aerostructural

problem [146], and also demonstrated a significant range improvement by optimizing using cou-

pled MDO instead of a sequential approach. The level of fidelity continues to increase, from multi-

point aerodynamic analysis [147] to Reynolds-averaged Navier–Stokes (RANS) physics [148] and

even other aeroelastic effects such as flutter [149]. multidisciplinary design analysis and optimiza-
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tion (MDAO), typically at lower fidelity, has been demonstrated and used for industrial design,

e.g. [150, 151].

3.2 Overcoming Barriers to Large-Scale MDO

One of the most significant constraints on the scale of MDO problems is the computational cost.

Factors which contribute to the overall computational cost include the cost of the simulation(s), the

number of disciplines, and the number of design variables and constraints. Using gradient-based

optimization algorithms can offset much of the computational cost of additional design variables.

Gradient-based optimizers exploit the derivatives of the objective function and constraints with

respect to the design variables. These methods tend to outperform gradient-free optimizers as long

as the requirements for gradient-based methods are satisfied. Figure 3.1 illustrates that gradient-

free optimizers scale poorly for larger-scale optimization problems with more design variables,

whereas gradient-based optimizers are nearly invariant in the number of design variables.

One disadvantage of gradient-based methods is that they require computing derivatives. This

can require additional development of the analysis software. It also incurs an additional com-

putational cost, as computing the gradients of a nonlinear, implicit function can be expensive.

Careful attention must be paid to the method of derivative computation to ensure minimum com-

putational cost and high accuracy. For optimization problems with many design variables and only

a few relevant outputs (which includes multidisciplinary shape optimization problems), computing

derivatives in the reverse mode (also known as computing the adjoint) is significantly cheaper than

using the forward mode or finite differences. Martins and Hwang [153] provide a comprehensive

review of derivative methods relevant to MDO. Choosing an efficient mathematical form of the

MDO problem can also mitigate computational cost — for example, it may sometimes be bene-

ficial to allow an optimizer to satisfy a constraint equation instead of using a separate solver. A

comprehensive review of MDO architectures and the associated benefits and disadvantages of each
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can be found in Martins and Lambe [143].

Another significant barrier to constructing large-scale MDO models is ease of use and devel-

opment time. MDO practitioners historically have been required to master not only the relevant

design disciplines involved, but also scientific computation and a significant amount of applied

mathematics. Some MDO projects developed frameworks which define interfaces between com-

plex analysis codes, solvers, and optimizers. These frameworks tended to be specific to the task at

hand, such as the MDO of Aircraft Configurations with High Fidelity (MACH) framework which

was developed for aerostructural optimization of transport aircraft [154].

The recent development of the OpenMDAO framework [155] has revolutionized the field by

providing a high-performance, general-purpose MDO framework. OpenMDAO allows users to

define complex, hierarchical MDO models as a composition of simpler components. It provides
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powerful linear and nonlinear solver methods to converge multidisciplinary problems with high

performance. One of OpenMDAO’s most powerful features is that it computes derivatives across

large, coupled models in an efficient and accurate way [156]. This eliminates the onerous require-

ment for MDO developers to define custom coupled adjoints for every new problem.

3.3 Modeling, Simulation, and Optimization of Electric Air-

craft

3.3.1 Electric propulsion-specific modeling challenges

While individual simulation capabilities for electric aircraft have been addressed in Chapter 2,

the intent of this section is to discuss MDO in the context of electric aircraft. Models for MDO (es-

pecially for more conceptual-level MDO problems) often rely on historic data and regressions to

estimate unknown parameters, but models adapted from conventional aircraft may be inapplicable

to innovative configurations. Wind tunnel and flight test data is limited or nonexistent, so new em-

pirical models for the most expensive physics (e.g., high-lift prediction for distributed propulsors)

cannot easily be constructed. We also lack any significant operating cost data for electric aircraft.

To understand the economic case for aircraft EP, we must also quantify the effect of electrification

on acquisition, operational reliability, and maintenance; all areas that are traditionally “resistant”

to physics-based modeling.

Making matters more complex for the modeler, the design freedom, close coupling, and tight

packaging requirements of the electric propulsion design problem introduce competing objectives

for models. Compared to conventional aircraft design, the electric aircraft design problem is likely

to be even more strongly coupled between disciplines than conventional aircraft. For example, the

high-fidelity aeropropulsive optimization of Gray et al. [157] demonstrated the coupling between

aerodynamics and propulsion for the STARC-ABL. The ECO-150R study [64] illustrated cou-
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pling between electrical, propulsion, thermal management, and aerodynamics disciplines. Novel

thermal constraints are also time- and path-dependent, requiring trajectory analysis and poten-

tially trajectory optimization tightly coupled with the rest of the aircraft design optimization prob-

lem [131, 158].

As the number of closely-coupled disciplines grows, the computational complexity (in terms

of numerical cost) and the software complexity (in terms of lines of code and effort) also grow.

Low-cost, moderate-fidelity analysis is necessary in order to explore the broad tradespace, while

high-fidelity analysis and optimization is necessary in order to explore close coupling and spatial

integration. This will require flexibility and high performance in any modeling framework, along

with judicious modeling choices about where to apply higher-fidelity methods.

3.3.2 EP modeling and simulation projects

One published optimization environment for design of electric fixed-wing aircraft is ESAero’s

software, which has been known by the names HAPSS, DOETech, TOGW Framework, and PAN-

THER over the last decade. The general capabilities and architecture of these tools have been

published [64], but the software itself is proprietary. The PANTHER tool has at least been used for

analysis and to generate tradespace contour plots, but it is unclear whether an airplane-level MDO

capability has been implemented. Multiobjective optimization has been used to design a Meredith

effect radiator [64].

Another unified framework is the Georgia Tech GT-HEAT framework [159]. This is a propulsion-

focused model: all components, even electrical models, are implemented in the Numerical Propul-

sion Simulation System (NPSS) software program. This modeling framework has good fidelity

in propulsion and electronics but lacks important capabilities in aerodynamics, structure, and cost

modeling. Optimization was conducted using a design of experiments (DOE) and surrogate mod-

eling methodology [160].

NASA has been developing modeling, simulation, and optimization capabilities for the X-57,
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N-3X, STARC-ABL, and PEGASUS studies, mostly at conceptual levels of fidelity. Capristan and

Welstead introduced the LEAPS software package, designed as a replacement for NASA’s FLOPS

mission analysis software but supporting distinctive features of aircraft EP (including mixed elec-

tric and fuel-burning propulsion and independent throttling). LEAPS uses energy-based methods

to provide low-fidelity, low-cost estimates of somewhat optimized mission trajectories [161, 162].

Basic MDO capabilities were implemented to guide NASA studies [48, 131]. More recently,

Hwang and Ning [163] developed a medium-fidelity optimization tool for vehicles similar to the

X-57, incorporating blade element momentum theory propulsion modeling, vortex lattice aerody-

namic analysis, finite element structural sizing, automatic derivatives using the adjoint method (to

handle hundreds of design variables), and full mission analysis; however, thermal modeling was

not included.

Falck et al. [131] demonstrated the need for modeling thermal constraints when trajectory op-

timization is considered. The tool was implemented in OpenMDAO to facilitate gradient-based

optimization and computation of derivatives [156]. Despite significant progress on particular stud-

ies, there is no single NASA optimization environment for electric propulsion trade studies, and

high-fidelity analysis has not yet been incorporated.

Gray et al. [157] conducted high-fidelity aeropropulsive shape optimization of the STARC-

ABL’s aft tailcone propulsor. A RANS CFD solution was fully coupled to a 1-D thermodynamic

cycle model using the OpenMDAO framework. This combination enables direct physical model-

ing of boundary-layer ingestion. The flow solver and thermodynamic cycle model both provide

efficient derivatives, enabling the use of a coupled adjoint method to compute total derivatives and

perform optimization with respect to hundreds of geometric design variables. This is the first pub-

lished shape optimization of a hybrid electric aircraft using high-fidelity CFD, but the scope of the

MDAO problem was limited to the region of the aft tailcone propulsor; a full-airplane optimization

has not yet been conducted.

The fully coupled aeropropulsive optimization found that the fuel burn reduction contribution
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from BLI was attributable to both aerodynamic effects and propulsive effects (8 to 12 counts from

aerodynamic drag; 16 effective counts from propulsion). The analysis also found that aft body

aerodynamic drag was very sensitive to propulsive design variables (such as fan pressure ratio).

Optimizing the configuration as a multidisciplinary coupled system led to a significantly better

optimum design point than an uncoupled analysis. While such multidisciplinary coupling will

manifest in ways specific to each configuration, this case study illustrates the benefit of using high-

fidelity, coupled modeling for analysis and optimization in order to maximize the benefit afforded

by electric propulsion.

Bauhaus Luftfahrt developed simple low-fidelity methods and conducted broad tradespace ex-

ploration studies; unlike all other studies, cash operating cost was considered as an optimization

variable [27].

The electric VTOL literature on modeling and simulation may also apply to fixed wing appli-

cations in some cases. The Boeing team of Duffy et al. developed an MDO framework for sizing

and tradespace exploration of small eVTOL aircraft. The paper includes a simple methodology for

operating cost modeling for electric aircraft, including some low-fidelity estimation of cost savings

due to increased reliability [164]. A similar approach was used by Brown and Harris [165]. The

Airbus Vahana team posted an open-source conceptual design tool with MDO capability on the

web, but has not published on the work in a scholarly forum [151].

A summary of modeling and simulation capabilities, by discipline and project, is shown in Ta-

ble 3.1. It is worth remembering that advanced modeling and simulation capability probably exists

in trade secret form within industry, so the published literature may present an incomplete view of

the state of the art in electric aircraft modeling. It is clear from the summary table that certain disci-

plines have received a great deal of attention (electrical, propulsion) while, for example, nearly no

cost modeling has been incorporated (though one-off studies have tackled the issue [164]). While

one-off safety analyses have been conducted, safety has not been incorporated into the analysis

process in an automated fashion.

50



Table 3.1: Electric aircraft modeling and simulation

GT-HEAT [132, 159, 166] NASA X-57 NASA N-3X ESAero [64] Bauhaus Luftfahrt
Aerodynamics FLOPS/drag polar; BLI bene-

fit based on flat-plate momentum
thickness

Design using vortex lattice/boundary layer
codes; some CFD for analysis [48, 82, 163]

CFD results from similar configuration, with in-
crement for BLI [53]

Drag polar L/D correction methods from
Torenbeek [18]

Structures NA 6 DOF beam finite element method
(FEM) [163]

NA NA (for MDAO); detailed analysis of
split-wing published in NASA report

NA

Weights FLOPS tops-down methods Parametric wing weight (from Raymer) [48],
sized beam model [163]

WATE for propulsion flowpaths; tops-down
kg/kW estimates for electrics/TMS [88, 89]

WATE for fan weight [78]; low-fidelity
radiator model; tops-down empirical for
all others

Semi-empirical structural methods;
tops-down kg/kW methods for
electrics [22]

GNC Engine, motor, TMS control vari-
ables for on- and off-design analy-
sis

Full-mission optimal control [131] NA; some discussion of off-design conditions
in [54]

NA NA

Electrical Moderate fidelity motor/inverter
loss modeling; equivalent-circuit
battery

Transient battery model based on Thevenin
equiv. circuits (cell-level). Assumed efficien-
cies for wire/motors [131]

Conceptual: efficiency stackup method with es-
timates for future tech. Transient: RLC circuit
model in SimPowerSystems [88, 93]

Efficiency stackup; battery model unclear Low-fidelity efficiency stackup
with empirical battery discharge
curve [22]

Turbo/Propulsion NPSS Propeller map from manuf.; prop efficiency
from theory [131], blade element momentum
theory [163]

NPSS [56] 2D fan analysis using velocity trian-
gles [78]; efficiency maps for turboma-
chinery

Single prop efficiency parame-
ter [22]

Thermal TMS sizing considering various
heat sources and types of heat sinks

Analytical model for optimization; thermal
FEM of motor [131, 167]

Coolant system load based on efficiency
stackup (assume 100% to heat) [88]

Cooling based on flight cond. [76]; TMS
model discussed in [115]

NA

Cash operating cost NA except for fuel/energy NA except for fuel/energy NA NA Considers relative cost of fuel/elec;
cash operating cost [27]

Ownership cost NA NA NA NA NA
Noise

NA NA
ANOPP noise simulation prompted re-
design [89] NA NA

Safety
NA

Comprehensive FMEA [49, 50] FMEA and FTA for loss of thrust; more work
needed for other hazards [92, 94]

Qualitative
NA
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3.3.3 Limitations of Prior Work

There is significant duplication of effort in the research community, particularly within the

area of electrical system modeling and mission analysis. Several codes with similar levels of

fidelity for integrating energy used over a mission have been announced [25, 127, 131, 132, 161–

163, 168–170], but none have been open-sourced or made publicly available (with the exception

of Stanford’s SUAVE, which includes some limited support for EP modeling). NASA’s LEAPS

is being developed with the intention of open-sourcing the code [162], and as of 2020 there is a

preliminary working version, but the release plan is not clear as of this writing [171].

As of 2018, no publicly-available EP mission analysis and sizing code supported thermal anal-

ysis. Multiple industry and government studies have already demonstrated the need to include

thermal constraints in analysis and optimization at the conceptual level [115, 131, 132, 142]. Al-

though the LEAPS energy integration method supports electrical and fuel energy storage options,

thermal analysis is not included. The open-source SUAVE conceptual design tool also does not

incorporate thermal management analyses.

Another need exists for an EP design framework with efficient gradients. SUAVE does not

support analytic or automatic gradients, and it does not appear that LEAPS will either. Other

NASA electric aircraft studies demonstrate the benefits of efficient gradients in mission analysis

codes [131, 163].

Falck et al. [131], and Hwang and Ning [163] developed electric aircraft mission analysis

codes with moderate fidelity and efficient gradients. The two codes are similar and rely on optimal

control theory and collocation methods to calculate trajectories, energy usage, and thermal states.

Using OpenMDAO, the codes provide efficient gradients for use in large scale optimization [163].

However, optimal control-based methods sometimes introduce robustness problems. For example,

the problem may not converge if initial guesses of the states and trajectories are not close enough.

There may also be cases where non-optimal trajectories form constraints on the design problem

(e.g., whenever a human pilot is in the loop). Neither model supports parametric cost estimates,

52



and neither model is currently publicly available.

3.4 Concluding Remarks

Ideally, a fully-coupled MDAO tool employing high-fidelity physics-based models for all rel-

evant disciplines in electric aircraft design should be developed. However, no industry, govern-

ment, or academic team has publicly acknowledged the development of such a tool at the time

of this publication. The full MDAO problem, including economic and safety analysis, remains

a formidable open challenge. This dissertation details several meaningful steps toward coupling

more disciplines (especially thermal) and making electric aircraft MDO models more user-friendly

to develop and use.
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CHAPTER 4

Conceptual MDO of a Series-Hybrid Aircraft with

Efficient Gradients

We recall from Chapter 3 that a need exists for an electric aircraft mission performance and

sizing tool with:

• Thermal analysis

• Component-based parametric cost

• Public availability

• Efficient gradients for use with high-fidelity MDO

With these goals in mind, I developed a conceptual design toolkit, under the working title

“OpenConcept”. OpenConcept is a Python-based library built on top of the NASA OpenMDAO

framework [156, 172]. At the highest level, it consists of three parts: a library of propulsion

modeling components; a set of reusable, analytically-differentiated mission analysis codes; and a

set of example aircraft models capable of analysis only, simple resizing, or full MDO.

This chapter describes the basic methods and models used in the OpenConcept framework.
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4.1 Propulsion Models

I initially developed a set of simple, conceptual level electrical and propulsion components that

can easily be adjusted to reflect future technology levels, as follows:

• SOCBattery: electrical power source with constant specific power and specific energy

• SimpleMotor: constant efficiency

• SimpleGenerator: constant efficiency

• SimpleTurboshaft: constant power specific fuel consumption (PSFC)

• SimplePropeller: based on empirical efficiency map

• Splitter: combines or divides power sources or loads

These can be connected together to form all-electric, conventional, series hybrid, parallel hybrid,

or turboelectric architectures.

4.1.1 Battery

The SOCBattery component provides an electrical power source with constant specific

power and specific energy. The main sizing parameter of the battery is the total pack weight

mb. Total energy of the pack in the fully-charged state is then mbeb where eb is the specific energy.

State of charge is computed by integrating the ordinary differential equation (ODE):

dSOC
dt

=
Pb
mbeb

(4.1)

where Pb is the electrical load (power) drawn on the battery. The battery produces heat

qcomp = (1− ηb)Pb (4.2)
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where ηb is the battery electrical efficiency. Since battery (in)efficiency is already typically

booked in eb, it is only used for computing heating. The battery sizing ratio is computed as:

φb =
Pb
mbpb

(4.3)

where pb is the battery specific power. The optimizer constrains φb ≤ 1 at every point in the

mission such that the battery does not exceed its maximum rated power. Finally, a linear estimate

of battery cost is computed as:

cost = base cost + incremental cost× Pb (4.4)

4.1.2 Motor

The SimpleMotor component is agnostic of the motor design and simply assumes a constant

electrical efficiency across the operating envelope. The motor is sized by the rated electrical power

Pm,rated which represents a max continuous power setting. The electrical load Pm of the motor can

be computed as:

Pm = ΘmPm,rated (4.5)

where Θm is the motor throttle setting. Θm = 1.0 represents maximum continuous power; for

takeoff, Θm > 1.0 may be permissible for a time. Likewise, mechanical power Pm,shaft and heat

qcomp are computed as follows:

Pm,shaft = ΘmηmPm,rated (4.6)

qcomp = Θm(1− ηm)Pm,rated (4.7)

where ηm is the motor efficiency. Motor weight mm and cost are computed linear functions of

Pm,rated.
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4.1.3 Generator

The SimpleGenerator is the mirror image of SimpleMotor in that it takes mechanical

shaft power as input and produces electrical power. The primary sizing parameter is the generator

power rating (Pg,rated). Electrical power Pg is computed as

Pg = ηgPshaft,in (4.8)

where ηg is the generator efficiency and Pshaft,in is the input shaft power. Heat, weight, and sizing

ratio are computed in a similar fashion as SimpleMotor.

4.1.4 Turboshaft

The SimpleTurboshaft converts fuel to shaft power using a constant specific fuel con-

sumption model. The mechanical power rating Pts,rated is the primary sizing parameter for the

engine, and defines shaft power as follows:

Pts = ΘtsPts,rated (4.9)

where Θts is the turboshaft engine throttle setting. The fuel flow ṁf is proportional to the shaft

power:

ṁf = Pts PSFC (4.10)

where PSFC is the power specific fuel consumption of the engine. Typical units of PSFC would be

lb / hp / hr. Weight and cost are again linear functions of the power rating.
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4.1.5 Propeller

The SimplePropeller uses an empirical efficiency map for a constant-speed propeller to

convert shaft power into thrust. Thrust T of a propeller in flight is computed as follows:

T =
Pηp
V

(4.11)

where P is the shaft power driving the propeller, V is the airspeed, and ηp is the propulsive effi-

ciency. For a given propeller design in flight, efficiency data can be made to collapse well onto two

nondimensional parameters. The first dimension, advance ratio J , is defined as:

J =
V

ndprop
(4.12)

where V is the airspeed, n is the number of revolutions per second, and dprop is the propeller

diameter.

The second parameter, power coefficient Cp is defined as:

Cp =
P

ρn3d5
prop

(4.13)

where ρ is the air density and P is the shaft power into the propeller. The propeller map defines

the propeller efficiency ηp = f(Cp, J) as a surrogate model. I used a propeller map for a turboprop

airplane from [173]. Weight of the propeller is estimated using a historical regression [174], as

follows:

mprop = 0.108(dpropPratedn
0.5
blades)

0.782 (4.14)

where mprop is weight of the propeller in pounds, dprop is propeller diameter in feet, Prated is the

rated power in horsepower, and nblades is the number of propeller blades.

At low speeds (such as during takeoff), the velocity V goes to near-zero and Equation 4.11
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has a singularity. To work around this issue, a separate static propeller map adapted from [175]

is used at lower speeds (J < 0.1) and thrust is linearly interpolated between the two maps at

low-intermediate speeds (0.1 < J < 0.2).

4.1.6 Splitter

For hybrid architectures, electrical or mechanical power from a source generally needs to be

split across multiple destinations. This is accomplished using the Splitter component. The

user can elect to use either a fixed-amount strategy or a ratio strategy to allocate input power Pin to

destinations PA and PB. If the fixed-amount strategy is used, PA is specified directly as a control

parameter and PB = Pin − PA. If the ratio strategy is used instead, the control parameter becomes

0 ≤ Θ ≤ 1 and PA = ΘPin, PB = (1−Θ)Pin.

4.1.7 Power Matching

The OpenConcept modeling approach is that, in general, machinery “pushes” shaft power and

electrical consumers “pull” electrical load proportional to rated power and and some control set-

ting. A turboshaft engine pushes shaft power based on its throttle setting. An electric motor both

pushes shaft power and pulls electrical load on an upstream source, which might include a gener-

ator or a battery.

Where mechanical power (typically, a turboshaft) drives a generator, there is an implicit gap

where electrical power produced by the generator in must equal the electrical load on the generator

and the required shaft power is unknown. OpenConcept uses a Newton solver to find the throttle

setting for the engine by driving the following residual equation to zero at every flight condition:

Rg = Pg − Preq (4.15)
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where Pg is the instantaneous generator power produced and Preq is the summed electrical load on

the generator. Batteries do not require this special treatment, as state of charge will deplete at the

correct rate given the summed electrical load on the battery.

4.2 Example Propulsion Model

Figure 4.1 shows a twin-motor series hybrid propulsion system built in OpenConcept and used

for the case study in Section 4.5. Two motor components are connected to individual propellers.

Each motor drives the propeller with a given shaft power depending on the throttle setting. The

throttle settings may be different depending on the flight condition; for example, to model an

engine-out takeoff condition, one motor may be set to idle while the other uses full emergency

power. The combined electrical load of both motors is then split between the battery and the gen-

erator using a hybridization factor. The OpenMDAO Newton solver then computes the turboshaft

throttle setting required to balance the system across the gap.

4.3 Analysis Routines

OpenConcept analysis routines can be used to model portions of the flight which impose design

constraints. Takeoff analysis computes the takeoff field length assuming “critical” propulsion fail-

ure and often sizes the wing area, high-lift systems, and installed thrust. Mission analysis computes

the fuel and/or energy used during the climb, cruise, descent, loiter, and any other relevant phases

of flight. Together, these analysis routines define sufficient objective functions and constraints to

perform conceptual-level aircraft MDO.
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Figure 4.1: Example of a twin-motor series hybrid electric propulsion model in OpenConcept.

4.3.1 Takeoff Analysis

OpenConcept’s takeoff module calculates balanced field length (BFL) and propulsion sys-

tem states during the takeoff run, using methods and assumptions presented in [175]. For this flight

phase, control inputs are specified by the user (e.g. 100% throttle) and accelerations are determined

using a force balance equation. In order to compute balanced field length, takeoff divides the

takeoff into five segments:

1. Takeoff roll at full power from rest to V1 (the takeoff decision speed)

2. Takeoff roll at OEI power from V1 to VR (takeoff rotation speed)

3. Rejected takeoff with zero power and max braking from V1 to rest

4. Transition in a steady circular arc to the OEI climb-out flight path angle and speed
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5. Steady climb at V2 (climb safety speed) and OEI power until an obstacle height ho is reached

During the takeoff roll (segments 1, 2, and 3), the force balance equation is:

dV

dt
= T −D − µ(mg − L). (4.16)

where V is the velocity, T , D, and L are total thrust, drag, and lift forces, µ is the effective

“friction” coefficient accounting for rolling resistance and braking, m is the aircraft weight, and g

is the acceleration due to gravity.

The accelerate-go distance combines segments 1, 2, 4, and 5, while the accelerate-stop distance

includes 1 and 3.

VR = 1.1Vstall and V2 = 1.2Vstall, where stall speed is calculated as a function of maximum

takeoff weight (MTOW) [175]. The speed at “rest” is assumed to be 1 m/s in order to avoid

singularities in analysis codes at zero forward speed. Default µ is 0.03 during the takeoff roll, and

0.4 during emergency braking in a rejected takeoff, though this could be overridden to simulate

wet or snowy runways or improved aircraft brake systems. The obstacle clearance height is set at

35 feet by default (14 CFR 23), but can be trivially changed to 50 feet to model a Part 25 transport

aircraft.

Equation (4.16) is an ordinary differential equation and must be integrated to obtain distances

for segments 1, 2 and 3. For example, the distance travelled during run up to decision speed

(segment 1) is:

RV1 =

∫ V1

V0

dr

dt

dt

dV
dV =

∫ V1

V0

V

a
dV. (4.17)

The integration method is described in more detail in Section 4.4

The takeoff module uses a Newton solver to vary the chosen V1 speed until the accelerate-

go and accelerate-stop distances are equal, or until the accelerate-go distance is longer than the

accelerate-stop distance and V1 = VR. The accelerate-go distance is then equal to the balanced
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field length, which can be used as an optimization or sizing constraint.

4.3.2 Mission Analysis

The mission module accomplishes two main tasks: setting condition-dependent control in-

puts necessary for steady flight, and integrating quantities such as fuel burn and energy over the

mission profile. Each mission is defined as a series of segments. For example, a transport mission

without a reserve would be modeled as follows:

• Climb at constant vertical speed and indicated airspeed to the cruise altitude.

• Cruise at constant indicated airspeed and altitude.

• Descent at constant indicated airspeed and vertical speed to the landing altitude.

Figure 4.2 illustrates flight conditions and aircraft states for a representative hybrid-electric aircraft

mission.

During mission analysis, the aircraft is treated as a point mass, which changes as fuel burns.

At each flight condition, OpenConcept calculates the value of the residual equation

Rthrust = T −D −mg sin(γ) (4.18)

where γ is the flight path angle. OpenMDAO’s Newton solver drives these residuals to zero at

every flight condition in the mission by varying the primary thrust control parameter (usually either

motor or engine throttle). If more than one independent thrust control parameter is available (for

example, high-lift and cruise propellers as in the X-57), the user can specify some of the parameters

and let the Newton solver find the remaining one. Alternatively, an optimizer can find the optimal

value for every control parameter by treating the thrust residual as an equality constraint.

Conceptually, during each iteration of the mission solver, the following steps occur:
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Figure 4.2: Representative mission profile from Section 4.5 case study

(eb = 500 Wh/kg, range= 500 nmi)

1. Generate vectors representing the flight condition at each point in time during the mission.

2. Calculate atmospheric properties [176].

3. Compute climb and descent phase distances and times to obtain cruise distance and time.

4. Run an OpenConcept propulsion model at each flight condition to obtain fuel flows, battery

loads, thrusts, and constrained quantities like heat output.

5. Integrate fuel flow and battery load with respect to time using Simpson’s rule (as described
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in Section 4.4) to obtain aircraft weight and battery SOC vectors.

6. Calculate flight CL and drag.

7. Calculate the thrust-drag residual.

Once the Newton solver has converged the mission, thrust balances drag (and weight, if climb-

ing or descending), lift matches weight, and any hybrid turbomachinery components are producing

the correct shaft power to meet electrical loads. In addition, the user needs to make sure that the

aircraft’s design weights are consistent with the mission being flown. This can be posed as a set of

inequality constraint equations:

mTO ≥ mf +mempty +mpayload

mf,max ≥ mf

(4.19)

where mTO is the takeoff weight. For aircraft with batteries, one more constraint is required:

Eb,max ≥ Eb,used (4.20)

The Newton solver does not automatically drive these constraints to zero, which enables anal-

ysis of aircraft where not all of the fuel or battery is consumed during a mission. Instead, the

optimizer should enforce these. Takeoff weight (TOW) and battery weight are then set to the min-

imum required to fly the mission. When using the mission module without an optimizer in the

loop, the user must manually ensure that the mission weights are feasible.

4.4 ODE Integration

For performance, OpenConcept uses vectorized computations in each segment, meaning that

time-marching ODE integration approaches cannot be used (since vectorized quantities must be
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computed all-at-once). Instead, OpenConcept uses an implementation of Simpson’s Rule for nu-

merical integration. An integral can be approximated using Simpson’s rule as follows:

∫ xU

xL

f(x) dx ≈ 1

3
∆x(f0 + 4f1 + 2f2 + 4f3 + 2f5 + ...+ 2f2N−2 + 4f2N−1 + f2N) (4.21)

∆x =
xU − xL

2N
, (4.22)

where N is the number of Simpson subintervals and ∆x is the constant spacing between the points

fi. This method always requires evaluating a function at 2N + 1 points. Simpson’s rule integrates

polynomials up to third order exactly [177].

The number of Simpson subintervals in each mission segment is a major driver of the size

of the linear algebra problem solved by OpenMDAO and thus, computation time. I performed a

convergence study of the integration method using a representative hybrid aircraft model which

uses significant battery and fuel energy (described in Section 4.5). Table 4.1 illustrates that very

accurate fuel burn and BFL results can be obtained with a relatively minimal number of points per

mission segment. Five intervals per segment is the default and integrates fuel burn and BFL nearly

exactly.

Table 4.1: Simpson integration convergence

Simpson Intervals Points Fuel Burn FB Error BFL BFL Error
15 31 314.18975 0.000% 1357.0047 0.00%
8 17 314.18975 0.000% 1357.0047 0.00%
5 11 314.19058 0.000% 1357.0053 0.00%
4 9 314.19259 0.001% 1357.1920 0.01%
3 7 314.19254 0.001% 1357.2149 0.02%
2 5 314.19330 0.001% 1356.2602 −0.05%
1 3 314.31917 0.041% 1357.5849 0.04%
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(a) Daher TBM 850 (photo by Gyrostat, CC-BY-
SA)

(b) Beechcraft King Air C90GTi (photo by Joao
Carlos Medau, CC-BY)

Figure 4.3: OpenConcept benchmark aircraft

4.5 Case Study: Design of an Electric Aircraft for Minimum

Operating Cost

To validate the code, I conducted a case study with the notional goal of converting a Beechcraft

King Air C90GT to series hybrid electric propulsion.

4.5.1 Conventional Baseline

To test OpenConcept’s propulsion modeling and analysis routines on a simple case, I first mod-

eled a single engine turboprop, the SOCATA/Daher TBM 850. Structural and system weights were

estimated using textbook formulas [174, 175], with a constant factor of 1.6 applied to structural

weight in order to match published empty weights [178]. Cruise drag was estimated using a drag

polar formulation, with induced drag and zero-lift drag estimated using tops-down methods [175].

CLmax was set to match the nominal takeoff rotation speed to handbook values [179]. Initial model

runs using the a priori estimate of CD0 resulted in a fuel burn total close to the published value; I

adjusted CD0 to match fuel burn and maximum range.
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Propeller maps from manufacturers are closely held. For the case study, propeller efficiency

was estimated from a published map [173]. I “compressed” this map in theCP axis so that the peak

efficiency point better matched the anticipated operating point, and visually extrapolated the map

into the higher CP region. I also adjusted the very low speed propulsive efficiency downward to

reduce spuriously high thrust levels during the takeoff roll. The balanced field length for the single-

engine TBM is simply the takeoff distance with full takeoff power since the one-engine-inoperative

takeoff distance is not defined.
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Figure 4.4: Propeller efficiency map for the Section 4.5 case study

I modeled the Beechcraft King Air C90GT in a nearly identical way, except that the King Air

has two engine and propeller components, and I applied a structural weight factor of 2.0 to match

published empty weight [180]. On this King Air model, the PT6A-135A engine is derated by

about 25% (from 750 hp to 550 hp) for structural reasons. Balanced field length was calculated

using 25% derated takeoff power, and zero power in Engine 2 following V1. Table 4.3 illustrates

input and model output data for the TBM 850 and King Air. Balanced field length for the King
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Air matched published figures quite closely, but the simulated fuel burn was about 25% lower. It is

possible that the propeller map is not representative of the King Air at the cruise flight condition,

or that in reality the derated PT6A-135A engine is operating significantly below peak efficiency at

the specified cruise throttle setting and altitude. I did not attempt to vary CD0 upward enough to

match the published (higher) fuel burn for the King Air.

4.5.2 Sizing the Propulsion System of a Series-Hybrid Conversion

Next, I examined the feasibility of a drop-in replacement of the twin turboprop architecture

of the King Air with a series hybrid system. The purpose of this study was not to prove or dis-

prove the viability of electric propulsion for light aircraft retrofit, but simply illustrating the use

of OpenConcept for an aircraft study. A modern clean-sheet design would have weight and drag

advantages which may make electric propulsion feasible at longer ranges and lower eb.

Following federal regulations for commuter aircraft, I assume that any single component of the

propulsion system may fail and that the aircraft must be able to continue safe flight and landing

during the takeoff phase. To achieve this, the series hybrid architecture includes the following

features:

• Two motors and propellers (providing redundancy in the event of motor or propeller failure)

• Batteries split into at least two independent packs, with battery power alone used for takeoff

(providing redundancy against single engine failure on takeoff)

These conditions ensure a level of safety on takeoff equivalent to a twin turboprop. Specific power,

efficiency, and cost assumptions for individual powertrain components are stated in Table 4.2.

1does not include 104kg base wt
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Table 4.2: Powertrain technology assumptions

Component Specific Power (kW/kg) Efficiency Cost PSFC (lb/hp/hr)
Battery 5.0 – $50/kg –
Motor 5.0 97% $100/hp –
Generator 5.0 97% $100/hp –
Turboshaft/Prop 7.151 – $775/shp 0.6

The scipy.optimize SLSQP algorithm was used to size the propulsion system compo-

nents (motor, engine, and generator sizing) for minimum fuel burn on the design mission. MTOW,

wing area, and all other parameters remain equal to the King Air baseline. The optimization prob-

lem is formulated as:

minimize: fuel burn
by varying:

mb

Pm,rated

Pts,rated

Pg,rated

HE (degree of hybridization w.r.t energy)
subject to scalar constraints:

RTOW = mTO −mf −mempty −mpayload −mb ≥ 0

Rb = Eb,max − Eb,used ≥ 0

BFL ≤ 4452 ft (no worse than baseline)
and vector constraints:

Pm ≤ 1.05Pm,rated

Pts ≤ Pts,rated

Pg ≤ Pg,rated

Pb ≤ mb · pb

The optimizer successfully sized the motor, generator, battery, and turboshaft and found the

mix of electric and fuel energy (degree of hybridization, HE) which minimized fuel burn. De-

sign variables and simulation outputs are listed in Table 4.3. Using battery specific energy of

750 Wh/kg, the series hybrid conversion could not meet the 1000nmi design range of the original
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King Air. At a maximum range of 762 nmi, the optimizer converged on a design with essentially

the minimum allowable amount of battery (sized by power, not energy, at takeoff). Since the

762 nmi mission was at the very limit of the airplane’s capability, I changed the design range to

500 nmi and resized the propulsion system again. This time, eb significantly affected the sizing

(at 250, 500, and 750 Wh/kg). All three designs had identical motor sizing (to meet the takeoff

constraint at MTOW), but the generators and engine power increased with decreasing eb due to the

larger fraction of power from fuel. The 750 Wh/kg case burned 38% less fuel than the 250 Wh/kg

case.

To further validate the speed and flexibility of OpenConcept, in 2018 I conducted a rough

feasibility study of an all-electric conversion of the Cessna C208B Grand Caravan. The objective

was to assess the feasibility of using all-electric propulsion to handle cargo flights of one hour or

less, as proposed by the start-up firm magniX. From start to finish (including gathering input data

on the Grand Caravan online and assessing control surface areas using photogrammetric methods),

the study took less than 90 minutes. The results are not tabulated here, but indicated that the idea

could be feasible with current technology (which, of course, it was — magniX flew the eCaravan

in 2020).

4.5.3 Multidisciplinary Design Optimization for Minimum Fuel Burn

Following successful demonstration of the simple sizing capability, I added MTOW, fuel vol-

ume, wing area, and prop diameter variables to the optimization problem. The expanded optimiza-

tion problem is:
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minimize: fuel burn + 0.01MTOW
by varying:

MTOW
Sref

dprop

mb

Pm,rated

Pts,rated

Pg,rated

HE (degree of hybridization w.r.t energy)
subject to scalar constraints:

RTOW = mTO −mf −mempty −mpayload −mb ≥ 0

Rb = Eb,max − Eb,used ≥ 0

Rvol = mf,max −mf ≥ 0

BFL ≤ 4452 ft (no worse than baseline)
Vstall ≤ 81.6 kt (no worse than baseline)

and vector constraints:
Pm ≤ 1.05Pm,rated

Pts ≤ Pts,rated

Pg ≤ Pg,rated

Pb ≤ mb · pb

Results for 250, 500, 750, and 1000 Wh/kg on a 500 nmi design mission are listed in Table 4.3.

In these four optimizations, hints of discontinuities emerge in the hybrid electric design space. At

1000 and 750 Wh/kg, the airplane prefers to use no fuel and fly the design mission completely

on batteries. At 500 Wh/kg, the optimizer hits the MTOW upper bound (5700kg, above which

EASA and the FAA require pilots to obtain a type rating). It uses as much battery as possible,

supplementing with just enough fuel to meet the required range. At 250 Wh/kg, the optimizer

prefers to reduce battery weight to the takeoff power-constrained minimum and reduce MTOW

below the baseline.

This fuel burn optimization was repeated over a grid of 252 individual combinations of design

range and eb (Figure 4.5). The primary finding from this set of optimizations is that, for an airplane
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with King Air-like structural efficiency and aerodynamics, hybrid propulsion is generally only

preferable to all-fuel or all-electric operation when an upper limit exists on MTOW. Practical

MTOW limits might include a retrofit application with an existing airframe, or regulatory limits (as

mentioned above). This finding may not apply generally to more aerodynamically and structurally

efficient clean-sheet designs.

At short range and high eb (the upper left corner of Figure 4.5), the optimizer can eliminate

fuel altogether. Since fuel burn is zero everywhere in this triangular region, using pure fuel burn

as the objective function will fail to converge on a reasonable airplane. A small additional term

proportional to MTOW was added to the objective function in order to encourage the optimizer to

reduce MTOW (and therefore, battery weight) as much as possible, once fuel burn is reduced to

zero.

4.5.4 Multidisciplinary Design Optimization for Minimum Cost

I ran an additional grid of 252 optimizations with respect to operating cost. The optimization

problem is formulated as follows:
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Figure 4.5: Minimum fuel burn MDO results.
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minimize: trip cost
by varying:

MTOW
Sref

dprop

mb

Pm,rated

Pts,rated

Pg,rated

HE (degree of hybridization w.r.t energy)
subject to scalar constraints:

RTOW = mTO −mf −mempty −mpayload −mb ≥ 0

Rb = Eb,max − Eb,used ≥ 0

Rvol = mf,max −mf ≥ 0

BFL ≤ 4452 ft (no worse than baseline)
Vstall ≤ 81.6 kt (no worse than baseline)

and vector constraints:
Pm ≤ 1.05Pm,rated

Pts ≤ Pts,rated

Pg ≤ Pg,rated

Pb ≤ mb · pb

A notional trip cost model was constructed as follows:
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Trip cost = cf + celectricity + cb + cdepreciation

where:
cf = ($2.50/gal)mf/ρf

celectricity = ($36.00/MWh)Eb, used

cb = ($50.00/kg)mb /nbatt cycles

cdepreciation = caircraft/nflights,daily/365 days/nyears

and:
caircraft = (OEM premium) (cairframe + cengine + cmotors + cg)

cairframe = ($277/kg) (OEW−mengines)

cengine = ($775/shp)Pengine,rated

cmotors = ($100/shp)Pmotors,rated

cg = ($100/shp)Pg,rated

nbatt cycles = 1500

nflights,daily = 5

nyears = 15

OEM premium = 1.1

Fuel and electricity prices were picked as representative wholesale values for 2018. Battery

cost was estimated assuming $200 per kWh, and specific energy of 250 Wh/kg. Airframe cost

factor includes everything except propulsion components and was estimated based on general light

turboprop pricing trends (in current USD currency). Engine price per shaft horsepower was esti-

mated based on new PT6A prices listed on various online marketplaces. The original equipment

manufacturer (OEM) premium assumes a 10% operating profit above Tier 1 supplier costs. Note

that the cost model does not contain any contribution from maintenance cost (for either conven-

tional or electric propulsion), nor does it include crew costs or landing fees. Crew cost is neglected,

as the missions being tested are equal in block time. Maintenance and crew cost could be easily

added to the cost calculation for future studies.

The price of aerospace-certified propulsion motors and generators, and the cycle life of aerospace-

grade batteries, were unknown since they were not commercially available at the time this study

was conducted — certification rules for such motors were only established in Europe in 2021.
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Figure 4.6: Minimum cost MDO results
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The maintenance cost of electric propulsion is also unknown, although it can be expected to be

lower than for turboprop engines on an hourly basis. The effect of these economic assumptions on

optimal design can be easily tested using OpenConcept.

Figure 4.6 shows the cost, fuel burn, degree of hybridization, and MTOW for the cost-optimized

aircraft. Compared to Figure 4.5, optimizing for cost has moved the electric propulsion feasibility

line up and to the left. Under this (debatable) set of economic assumptions, electric propulsion

is more favorable for fuel burn reduction than for economics, at least at moderate specific energy

levels.

In order to provide a fair comparison between a conventional architecture and the series hybrid

architecture, I ran an additional 21 optimizations of a conventional twin turboprop, but allowed the

optimizer to perform full MDO (same rules as for the hybrid MDO study, but without the electric

propulsion design variables or constraints). Figure 4.7 shows the relative difference between the

cost-optimized hybrid electric aircraft and the cost-optimized conventional aircraft at the same

design range. In the lower right half, the series hybrid (effectively turboelectric) design actually

costs more to operate than a conventional twin turboprop. A breakeven point runs nearly linearly

from lower left to upper right; conventional and electric are economically equivalent along this

line. Above the breakeven line (in the hybrid regime), costs fall rapidly as the optimizer can trade

fuel for batteries and reduce the size of the turbogenerator system. Once turbogenerator power is

reduced to zero, the (low) costs remain relatively stable even as battery specific energy improves.

Figure 4.7 illustrates that the potential for cost savings is high if a significant proportion of battery

power can be used. Turboelectric propulsion by itself is not an efficient replacement for turboprop

engines, at least when no ancillary aerodynamic or propulsive efficiency benefit can be realized. If

maintenance costs were modeled, the breakeven line would move down and to the right.

78



300 400 500 600 700 800
Design range (nmi)

300

400

500

600

700

800

Sp
ec

ifi
c 

en
er

gy
 (W

hr
/k

g)

Fuel Burn - Percent Change

100

75

50

25

0

25

50

75

100

300 400 500 600 700 800
Design range (nmi)

300

400

500

600

700

800

Sp
ec

ifi
c 

en
er

gy
 (W

hr
/k

g)

DOC (ex-maintenance) - Percent Change

60

48

36

24

12

0

12

300 400 500 600 700 800
Design range (nmi)

300

400

500

600

700

800

Sp
ec

ifi
c 

en
er

gy
 (W

hr
/k

g)

Trip Energy Cost - Percent Change

100

75

50

25

0

25

50

75

100

300 400 500 600 700 800
Design range (nmi)

300

400

500

600

700

800

Sp
ec

ifi
c 

en
er

gy
 (W

hr
/k

g)

MTOW - Percent Change

100

75

50

25

0

25

50

75

100

Figure 4.7: Minimum cost hybrid versus minimum cost conventional
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4.6 Using OpenConcept for Technology Assessment

A fundamental challenge faced by aircraft designers in industry is finding the right time to

incorporate new technology onto an aircraft family. We learned in Section 4.5 that a tipping point

exists in the design space: an optimal conventional airplane will be as light as possible, but once

batteries are economically favored, the best aircraft is as heavy as possible with batteries. This

tendency makes retrofitting a hybrid or all-electric powertrain to an existing airframe infeasible,

assuming the user wishes to fly similar mission ranges. Therefore, clean sheet designers must

be able to predict at what point in time electrical component and battery technology will become

economically favored for the chosen mission. OpenConcept can conduct the sort of low-cost,

moderate-fidelity tradespace exploration required to answer this question.

The Section 4.5 hybrid King Air airframe was heavy and had relatively high parasitic drag.

To simulate improved airframe technology, the CD0 was reduced from 0.022 to 0.018, and the

structural weight factor reduced from 2.0 to 1.5 (a 33% structural weight reduction; for example,

using carbon composites and reclaiming margin). I then ran an additional 252 MDO scenarios

on the same range–versus–eb grid, using the minimum cost optimization rules presented in Sec-

tion 4.5. I also ran the full span of design ranges on the conventional twin turboprop model, using

the same structural weight and drag reductions, to provide a fair comparison. The total time (in-

cluding setup) to run the optimizations and analyze results was approximately 9 hours on a laptop.

Figure 4.8 illustrates the fuel burn, cost, weight, and energy.

I found that, as predicted, the lower-weight and lower-drag airplane favored electric propulsion

at lower eb across all ranges. The economic breakeven line moved down about 50 Wh/kg, nearly

into the present-day feasibility zone for a 300 nmi mission (Figure 4.9). The line is also shallower,

meaning that the effect of the weight and drag reduction is felt more strongly at longer ranges.

The published literature has contributed to industry understanding of the primary technical and

performance drivers of electric flight. However, results from published studies are not general
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Figure 4.8: Minimum cost hybrid versus minimum cost conventional with reduced structural
weight and drag
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Figure 4.9: Effect of technology inputs on hybrid propulsion breakeven line: improved airframe
technology makes electric propulsion economically feasible at lower specific energies

enough to tell a design team when to implement electric propulsion for their particular set of re-

quirements. Using OpenConcept, designers can rapidly test their internal assumptions and generate

large amounts of trade study data with modest setup time and computational resources. Similar

studies could be conducted with respect to specific power or efficiency of individual electrical

components.
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Table 4.3: Baseline analysis, component resizing, and MDO results (minimum fuel burn objective)

TBM850
(Model)

TBM850
(Published)

King Air
C90GT
(Model)

King Air
C90GT

(Published)

Hybrid
Conversion

- Max
Range

Hybrid
Conversion

750

Hybrid
Conversion

500

Hybrid
Conversion

250

Hybrid
MDO 1000

Hybrid
MDO 750

Hybrid
MDO 500

Hybrid
MDO 250

King Air
MDO

1000nmi

King Air
MDO

500nmi

Optimization Rules Analysis Analysis Analysis Analysis
Comp
Sizing

Comp
Sizing

Comp
Sizing

Comp
Sizing

MDO MDO MDO MDO MDO MDO

Specific Energy (Wh/kg) – – – – 750 750 500 250 1000 750 500 250 – –

Design Range (nmi) 1250 1150+100 1000 894+100
761.6
(max)

500 500 1000 500

MTOW (lb) 7392 7392 10100 10100 10100 10156 12505 12566 8912.8 9367 7941
OEW (lb) 4756 4762 7177 7150 7433.9 7197 7328 7410 6755 7594 7967 6828.5 6827 6279
Max Fuel Wt (vol imit, lb) 2000 2000 2570 2570 2570 1102 1102 1102 1102 1540 1102
MLW (lb) 7000 7000 9600 9600 9600 9600 9600
Rated TO SHP (each) 850 850 550 550 527.2 527.2 572.2 527.2 519.4 640.0 649.9 456.6 511.5 434.6
Turboshaft SHP (each) 850 850 550 550 1061.0 629.0 867.6 1018.2 – – 641.1 940.0 511.5 434.6
Generator SHP – – – – 1029.2 610.6 841.5 987.6 – – 630.4 907.9 – –
Prop Diameter (ft) 7.58 7.58 7.50 7.50 7.50 7.22 7.22 7.22 7.22 7.22 7.22
PSFC (lb/hp/hr) 0.60 0.60 0.60 0.6 0.6

Wing Ref Area (ft2) 193.8 193.8 294.0 294.0 294.0 296.0 364.6 366.3 259.8 273.1 231.5
Wingspan (ft) 41.5 41.5 50.2 50.2 50.2 50.4 55.9 56.1 47.2 48.4 44.6
Aspect Ratio 8.95 8.95 8.58 8.58 8.58 8.58 8.58
Flaps-Down CLmax 1.70 1.52 1.52 1.52 1.52
Oswald Efficiency 0.78 0.80 0.80 0.80 0.80
CD0 at Cruise 0.0205 0.0220 0.0220 0.0220 0.0220
CD0 at Takeoff 0.0300 0.0290 0.0290 0.0290 0.0290
Takeoff Rotation Speed (kias) 89.6 90 89.8 90 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8

Battery Wt (lb) – – – – 381.4 1397.9 1079.2 754.6 2400.8 3911.4 3077.6 330.3 – –
Takeoff Battery % – – – – 100% 100% – –
Cruise Battery % – – – – 5.0% 43.7% 22.3% 8.6% 100.0% 100.0% 52.5% 3.6% – –

Design Payload (lb) 1000 1000 1000 1000 1000 1000 1000
Cruise Speed (KIAS) 201 201 170 170 170 170 170
Cruise Altitude (ft) 28000 28000 29000 29000 29000 29000 29000
Climb Rate (ft/min) 1500 1500 1500 1500 1500
Climb Speed (KIAS) 124 124 124 124 124
Descent Speed (KIAS) 140 130 130 130 130

BFL, SL, ISA+0 (ft) 2844 2838 4452 4519 4452 4452 4452 4452 4452 4452 4452 4452 4452 4452
BFL % Error 0.2% -1.5%
Cruise Fuel Flow (lb/hr) 414 415 468 612
Cruise Fuel % Error -0.3% -23.5%
Design Mission Fuel (lb) 1605.8 1663.8 1284.2 504.5 692.7 811.0 0.0 0.0 520.0 754.0 1540.3 663.4
Design Mission Fuel (lb/nmi) 1.285 1.664 1.686 1.009 1.385 1.622 0.000 0.000 1.040 1.508 1.540 1.327

Bold numbers indicate an active design variable bound or constraint
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4.7 Concluding Remarks

This chapter introduced a new, open-source mission analysis and conceptual sizing tool—

OpenConcept—written in Python and running atop of the OpenMDAO framework. OpenCon-

cept’s analytic gradients enable the use of Newton solvers and efficient gradient-based optimiza-

tion. Unique among extant aircraft MDO tools, the efficient solvers and gradients allow the user to

hundreds or thousands of unique design points without high-performance computing hardware.

For this case study, more than 750 individual MDO cases were solved across a wide range of

battery specific energy levels and design ranges, revealing discontinuities and tipping points in the

design space. Another novel contribution was the MDO trade space exploration of a hybrid-electric

aircraft considering operating economics in a comprehensive way. While a few other studies have

considered total operating costs in the MDO problem for eVTOL [164], and cash operating cost

for fixed wing [27], to my knowledge this is the first published MDO study considering both

cash operating cost and acquisition cost for a hybrid or fixed-wing electric aircraft. Most of the

previously published studies on hybrid aircraft use fuel burn as an objective function, but this

tendency may be overstating the economic benefit realizable through electric propulsion, especially

at lower specific energies. Using operating cost as an objective function balances the weight gain

due to electric propulsion with the fuel burn reduction in a more realistic way.

A third novel contribution is quantifying the effect of airframe technology on the conventional

versus electric economic tipping point. A more efficient aerostructure substantially reduces the

technological requirements necessary for electric propulsion to be economically favorable. While

the tipping points for this airframe and architecture may not be generally applicable, using Open-

Concept, other researchers and designers may rigorously and rapidly examine the tradespace for

their own architecture, mission, and set of economic inputs.

This material in this chapter was previously published [1] and has been lightly edited and

condensed.
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CHAPTER 5

MDO of a Series Hybrid Electric Aircraft Subject to

Thermal Constraints

In the previous chapter, I demonstrated conceptual-level MDO for a hybrid-electric aircraft,

but thermal constraints were not yet incorporated. Multiple industry and government studies have

demonstrated the need to include thermal constraints in analysis and optimization at the conceptual

level [115, 131, 132, 142], but no publicly-available electric propulsion mission analysis and sizing

code supports thermal analysis. In the broader literature, a few attempts at physics-based TMS

modeling of electric aircraft have been made [167, 181, 182], but none of the codes have been

publicly released or open-sourced. The primary purpose of this chapter is to describe an approach

to thermal modeling in conceptual aircraft MDO and describe the implementation of the thermal

components. I then illustrate the effect of thermal constraints on the electric aircraft design problem

by repeating the King Air tradespace study with TMS design variables.

5.1 A Brief Review of Thermal Management Systems for Elec-

tric Aircraft

The thermal management system of an electric (or hybrid-electric) aircraft removes waste heat

from the electronic components. Unlike conventional turbine-powered aircraft, electric aircraft
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have two features that significantly increase the magnitude of the thermal management challenge.

First, while turbine engines have lower efficiency, they exhaust their waste heat to the free stream

and away from the aircraft. In contrast, resistive and eddy current losses in electrical components

generate internal heat and require designers to provide a way to carry away the heat. Second,

electrical components must be kept at fairly low temperatures to operate properly. The smaller

temperature differential between the components and the outside air means that the waste heat is

much more difficult to reject.

For hydrogen fuel cell aircraft, the thermal management demands can be very large. A third or

more of the fuel energy delivered to the fuel cell stack must be rejected to the atmosphere [183],

which is comparable in magnitude to the thermal inefficiency of a modern, high pressure ratio

turbofan. Unlike a turbofan, the fuel cell rejects most of the heat through a heat exchanger system

rather than through the exhaust gas stream [183]. Compounding the problem, fuel cell stack oper-

ating temperatures are between 60-80°C, reducing the heat transfer driving force and necessitating

large, efficient heat exchanger surfaces.

5.1.1 Thermal Management Architectures

There are two general design approaches to aircraft thermal management systems: direct

air cooling and liquid cooling. The air-cooled approach uses heat sinks to enhance convection

from each electrical component to freestream air. The X-57 Maxwell demonstrator uses this ap-

proach [131, 167, 184]. An advantage of this approach is system simplicity and reliability. A major

disadvantage is that each electrical component requires direct access to an air flow path, increasing

configuration complexity and potentially increasing drag as well.

The liquid-cooled approach uses coolant loops to transfer heat from the electrical components

throughout the aircraft to a heat exchanger that can reject the heat to the air [142]. This ap-

proach usually reduces the number of cooling air ducts. Liquid cooling can be feasible when

direct air cooling is not, especially for high power density components such as high-power fuel
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Figure 5.1: Example of liquid-cooled thermal management system architecture

cell stacks [183]. Liquid-cooled systems may also optionally use a refrigeration cycle to improve

heat rejection. However, the liquid cooling architecture is arguably a more complex system de-

sign (with more failure modes and moving parts). Some aircraft may use a combination of liquid

cooling and direct air cooling. A notional liquid-cooled TMS architecture is illustrated in Fig. 5.1.

The more recent industry-funded electric aircraft demonstrators have tended to be liquid-

cooled. The Pipistrel Velis Electro uses a liquid-cooled battery and motor TMS. MagniX’s

Magni250 and Magni500 motors (used in that company’s Cessna Caravan and DeHavilland Beaver

demonstrators) also use liquid cooling. The more recent Siemens (now Rolls-Royce) motors have

also been liquid-cooled, including the SP200D used on the CityAirbus and the SP260D used on the

Extra 330LE demonstrator. Finally, the European Hy4 fuel cell demonstrator uses a liquid-cooled

architecture, including a prominent ducted heat exchanger reminiscent of the P-51. Liquid cooling

is used in electric ground vehicles as well, such as the Tesla Model 3 (for the motors and battery).
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5.1.2 Modeling and Simulation Studies of Electric Aircraft TMS

Detailed NASA design study results have been published for the X-57. Clarke et al. [49]

describe wire design trade studies including resistive heating considerations. Schnulo et al. [167]

describe design and analysis of a flow-through air-cooled motor and inverter. Falck et al. [131]

describe trajectory optimization subject to thermal constraints; the study found that X-57’s air-

cooled motors reach temperature limits and constrain the climb rate. The heat exchanger area can

be reduced significantly if climb rate requirements are relaxed. Edwards and Smith [184] designed

and tested a direct air-cooled sink for the X-57’s low-power high lift motors and power electronics

that conforms to the outer nacelle line (omitting fins).

Several NASA design studies for larger aircraft included thermal management considerations

for non-superconducting architectures. Two conceptual weight estimates have been published.

Jansen et al. estimate that the X-57’s TMS will be 5% of the overall electronic weight (including

the battery) [185]. The latest STARC-ABL assessment includes TMS weight equal to about 6% of

the weight of the power electronics (not including a battery) [52].

In industry, ESAero has published most extensively on the topic of thermal management of

conventional electrical machines. Freeman et al. describe the general EP thermal management

design problem, analysis methods, and solutions [115]. These methods were used to design and

analyze the ECO-150R [64]. The ECO-150R produces nearly 1.5 MW of waste heat at the critical

top-of-climb condition. The authors describe the design and analysis of a recirculating liquid

cooling system with a ram-air radiator. The radiator is designed to use heated air to generate some

useful thrust to offset the radiator drag. This strategy has been referred to as the Meredith effect

(after a designer of the North American Aviation P-51 Mustang, the first aircraft to demonstrate

the phenomenon). Including the Meredith effect, the direct cooling system contribution to drag

was around 2%–3% at cruise, and the total cooling system was 20% of the weight of all the power

electronics and motors.

United Technologies created a parallel hybrid GTF engine concept, including a sized liquid
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cooling system [142]. The critical condition was on a hot day prior to takeoff; a fan was required

to pull cooling air through the radiator duct until sufficient ram air became available in flight. The

authors concluded that once weight and drag increases from the TMS were included, the concept

was not competitive with a conventional GTF. The paper includes a design sensitivity of TMS

weight with maximum battery temperature; heat-sensitive batteries require more cooling power

and weight. A Rolls-Royce/Georgia Tech study of an parallel hybrid engine similarly identified

the challenge of cooling the batteries, and that the TMS was most challenged prior to takeoff [132].

Vratny et al. [135] present analytic equations for conceptual design of an electric aircraft TMS,

including a rough consideration of liquid coolant properties (density, viscosity, and specific heat

capacity).

Unlike conventional electronics, superconductors require extremely low operating tempera-

tures — 20 K to 60 K. In exchange, Joule heating and resulting diffuse waste heat from a con-

ventional electrical system is virtually eliminated. However, a National Academy consensus re-

port [11] summarizes technical challenges with cryogenic power systems, including cryocooler

weight, inability to handle transient loads, and difficulty with voltage regulation; thus, the com-

mittee does not expect that “cryogenic power generation or power distribution will be ready for

incorporation in an aircraft propulsion system within [a] 30-year time frame.”

At least three more modeling and simulation projects emerged following the publication [186]

of the major results in this chapter. The work of Chapman et al. [187] developed independently

and (coincidentally) uses a very similar technical approach to this chapter for modeling ducted

heat exchangers — like the earlier work by Schnulo et al [167], the codebase for this project

is not publicly available. Bell and Litt [188] developed thermal models of similar fidelity in the

MATLAB/Simulink ecosystem; these should be useful for developing thermal control laws and less

useful for airplane-level MDO because efficient and accurate derivatives are not available. Byahut

and Uranga [189] modeled the propulsion system of an all-electric Twin Otter aircraft considering

thermal management weight, including the effect of system voltage and insulator thickness on the
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wiring. However, this project did not consider unsteady thermal profiles and sized the TMS for the

climb condition only.

Thus, even in 2021, there remains a need for an open-source modeling and simulation toolkit

suitable for optimization and considering unsteady thermal states. The remaining sections of this

chapter detail the development, implementation, and validation of this toolkit.

5.2 Thermal Management Components and Models

5.2.1 Component Temperatures

The electrical component models detailed in Section 4 (motor, generator, battery) have a

heat out output variable that computes the heat generation rate of the component at the given

operating point. Translating these heat outputs into component temperatures can be done assuming

quasi-steadiness, or including the effect of thermal mass in a fully-unsteady fashion.

The quasi-steady formulation relies on OpenMDAO’s Newton solver to compute component

temperatures. The implicit problem is:

compute Tcomp

such that R(Tcomp) = qcomp − qout = 0

(5.1)

(5.2)

where Tcomp is the component temperature, qcomp is the heat generation rate of the electrical com-

ponent, and qout is the instantaneous heat rejection rate due to cooling that component. The heat

rejection rate is computed as a function of the component temperature and a number of other heat

transfer parameters (introduced in Section 5.2.2) like so:

qout = q(Tcomp, . . .) (5.3)
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Equations 5.1 and 5.2 depend on each other via the cooling system model (Equation 5.3), creating

a circular dependency that must be solved using the OpenMDAO Newton solver.

The quasi-steady formulation becomes less accurate as the thermal mass increases. Even

lightweight aerospace-grade electrical components have a significant thermal mass, and at low-

speed conditions (such as the beginning of the takeoff roll), neglecting thermal mass is likely to

result in unrealistic high temperatures and drive oversized TMS designs. Therefore, it is preferable

to use a time-accurate model, which can be expressed as

dTcomp

dt
=
qcomp − q(Tcomp, ...)

mcompcp

Tcomp =

∫ tf

t0

dTcomp

dt
dt

(5.4)

(5.5)

Equations (5.4) and (5.5) depend on each other and hence form an implicit cycle similar to the

quasi-steady formulation.

The rate dTcomp

dt
is computed by the ThermalComponentWithMass component. A numer-

ical scheme is required to compute the time integral in Equation (5.5), and I use a fourth-order

Simpson’s rule approximation (described in more detail in Chapter 4), solved implicitly in vector-

ized form all-at-once using the Newton solver (without time marching). This means that the time

integration and the implicit ODEs are solved simultaneously as one coupled nonlinear system. The

user must specify an initial component temperature, usually based on ambient conditions. Unlike

the quasi-steady problem, the accuracy of the temperature profile in unsteady mode depends on the

time step chosen. A smaller time step increases the size of the OpenMDAO implicit problem that

needs to be solved and increases the computation time.
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5.2.2 Component-Fluid Heat Transfer

Computing qout from each component, which represents the convective heat transfer rate from

the component to a fluid stream, requires physics-based models based on assumptions about the

component design. For a liquid-cooled component, the fluid stream is a coolant like propylene

glycol, whereas for an air-cooled component the fluid stream comes from freestream air. In

nearly every case, designers use enhanced heat transfer surfaces, such as microchannels or finned

heat sinks. The ConstantSurfaceTemperatureColdPlate NTU component implements

a microchannel cold plate and is a reasonable choice for liquid-cooled and air-cooled applications.

I assume that the thermal conductivity of the electrical component is large relative to the cooling

fluid resulting in a constant channel surface temperature in the streamwise direction. I further

assume that the aspect ratio of each channel is large and thus approximates the local heat trans-

fer properties using the theoretical result for infinite parallel plates. The convective heat transfer

coefficient can be computed as

hconv =
Nu k
dh

, (5.6)

where Nu is the Nusselt number (which is set to 7.54 by default for constant temperature infinite

parallel plates [190]), k is the thermal conductivity of the fluid, and dh is the hydraulic diameter of

the channel. For a high aspect ratio channel,

dh =
2W H

W + H
(5.7)

where W is the fluid channel width and H is the fluid channel height. I neglect entrance effects

for this high aspect ratio microchannel. For air cooled applications using finned heat sinks, the

user may wish to modify the heat transfer coefficient to account for fin efficiency. To compute the
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overall heat transfer, the heat transfer surface area is obtained from:

A = 2`(W + H )nparallel, (5.8)

where A is the overall heat transfer surface area, ` is the length of the microchannel in the fluid

flow direction, and nparallel is the total number of individual microchannels.

Given these convective properties, I compute the actual heat transfer using the NTU-effectiveness

method [190], which is typically used for fluid-fluid heat exchangers where both fluids change

temperature during the exchange. For a metal component with high thermal conductivity, the heat

transfer capability of the solid is effectively “infinite” for the purposes of the NTU-effectiveness

method. Therefore, the heat transfer capacity of the cold plate is governed solely by the coolant

material properties and flow rate. The heat transfer capacity is computed as:

Cmin = ṁcoolant cp,coolant, (5.9)

where ṁcoolant is the coolant mass flow rate through the entire cold plate (not just a single channel)

and cp,coolant is the coolant’s specific heat capacity. The number of thermal units (NTU) is computed

as

NTU =
Ahconv

Cmin
, (5.10)

and heat transfer effectiveness is

ε = 1− e−NTU (5.11)

Finally, the heat transfer as

qout = εCmin(Tcomp − Tcoolant,in), (5.12)
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and the coolant outlet temperature as

Tcoolant,out = Tcoolant,in +
qout

Cmin
. (5.13)

The user is responsible for setting reasonable values for channel geometry (`, w, H , nparallel)

so that the channel flow is laminar and the infinite parallel plate assumption remains reasonable,

and for ensuring that the component has sufficient material volume to accommodate the cooling

channels. This analysis also assumes that the cooling channel weight is accounted for in the all-up

weight of the component, which may not be the case for air-cooled external heat sinks.

5.2.3 Fluid-fluid Heat Transfer

After heat from electrical components is transferred into the liquid coolant loop via the cold

plate, the heat must be rejected to the atmosphere. A reasonable choice for accomplishing this is

a ducted compact heat exchanger. Like the cold plate component in the previous subsection, I use

the NTU-effectiveness method to compute the heat transfer rate,

q = ε
UAoverall

NTU

(
Tin,h − Tin,c

)
, (5.14)

where UAoverall is the overall heat transfer coefficient times the corresponding heat transfer area,

Tin,h Tin,c are the fluid inlet temperatures, the number of thermal units is computed as

NTU =
UAoverall

Cmin
, (5.15)

and the heat transfer effectiveness is

ε = Φ

(
NTU,

Cmin

Cmax

)
, (5.16)
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Figure 5.2: Cross-sectional geometry of the offset strip fin heat exchanger [192]

where Cmin, Cmax are the maximum and minimum values of the fluid heat transfer capacity ṁ cp

for the hot and cold sides, and Φ is an analytical or empirical function that depends on the flow

arrangement of the heat exchanger (for example, crossflow) [191].

For this study, I use crossflow plate-fin heat exchangers with offset strip fin geometry as de-

scribed in Jasa et al [192]. Offset strip fin heat exchangers are considered “compact” heat exchang-

ers with high heat transfer to surface area rates [191]. The geometric design of a heat exchanger

varies to satisfy heat transfer, pressure loss, weight, and volume requirements. Figure 5.2 illustrates

a cross section of offset strip fin channels along with a commonly-used geometric parameterization.

I use an empirical relation from [193] to compute heat transfer and pressure loss specific to

the offset strip fin configuration. By default, OpenConcept’s HXGroup component uses geometric

parameters representative of a air-liquid heat exchanger, with cold-side channel width and height

1 mm, and hot-side channel width 14 mm by 1.35 mm.
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5.2.4 Fluid Reservoir

Liquid cooling systems require a reservoir to account for thermal expansion and maintenance.

The thermal mass of the fluid in the reservoir may affect peak temperatures. If the fluid is perfectly

mixed within the reservoir (that is, fluid entering the reservoir is instantaneously mixed with the

existing fluid), the rate of change of temperature within the reservoir can be computed using

dTreservoir

dt
=
ṁcoolant

mcoolant
(Tin − Treservoir), (5.17)

where Treservoir is the reservoir (and reservoir outlet) temperature, ṁcoolant is the coolant mass flow

rate, mcoolant is the mass of coolant in the reservoir, and Tin is the reservoir inflow temperature.

Quasi-steady thermal analysis cannot model the effect of a fluid reservoir, which is purely a thermal

mass effect. When ṁ/m is large, the time constant associated with the reservoir temperature

becomes small. As m tends to zero, the unsteady solution approaches the quasi-steady solution.

A small time constant makes the thermal ODE very stiff and introduces numerical difficulties

in the overall time integration problem, so unless the reservoir is large and flow rates are small,

the reservoir can be neglected in the thermal analysis (though the mass of the coolant should be

considered in the TMS total mass).

5.2.5 Coolant Duct

Ducted radiators greatly reduce cooling drag compared to finned heat sinks in the freestream [194,

195]. There are two primary mechanisms for this. First, a duct that decelerates flow prior to en-

countering the heat exchanger element generally undergoes a lower total pressure loss. Second,

the combination of duct and heat exchanger can act as a weak ramjet providing a further modest

offset to the drag of the whole arrangement. For aircraft with high-temperature cooling loads fly-

ing at relatively high speeds, a large portion of the drag can be offset (or potentially, some positive
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Figure 5.3: Ducted heat exchanger to reduce cooling drag.

thrust could be generated). The most famous application of this weak ramjet concept (known as

the Meredith effect) is the North American P-51 Mustang’s liquid engine cooling system [194].

I developed two approaches for computing cooling drag due to ducted heat exchangers. The

first option is an incompressible approximation. Adapting Theodorsen’s model of radial engine

cylinder cooling drag from [195], I model a duct with a frontal opening, diffuser, heat exchanger,

and nozzle (Fig. 5.3). The fluid density everywhere in the duct is assumed to be ρ∞. LetAhex be the

free flow passage area of the heat exchanger, and Aexit be the exit nozzle area. Let ∆p0,hex = f(ṁ)

be the pressure loss across the heat exchanger as a function of the duct mass flow rate ṁ. Let

ξexit be a static pressure loss as a function of nozzle dynamic pressure, that is ∆p0,exit = ξexitqexit.

I assume that the nozzle expands the flow back to the freestream static pressure p∞, though this

assumption would not hold in all cases. The total pressure at the exit is then computed as:

p0,exit = p0,∞ −∆p0,hex −∆p0,exit = p∞ +
1

2
ρU2
∞ −∆p0,hex −∆p0,exit = pexit +

1

2
ρU2

e (5.18)

Substituting ∆p0,exit = ξexit
1
2
ρU2

exit and rearranging, I obtain:

Uexit =

√
U2
∞ − 2

ρ

(
(pexit − p∞) + ∆phex

)
1 + ξexit

, (5.19)
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By continuity:

ṁ = AexitρUexit. (5.20)

Net force is computed by balancing the change in fluid momentum (ṁ∆U ) and pressure forces. To

account for inlet, duct, and nozzle losses not otherwise accounted for, I apply a factor (Cfg = 0.98)

to gross thrust in the drag computation and obtain:

Fnet = ṁ(UexitCfg − U∞) + AexitCfg(pexit − p∞). (5.21)

Alternatively, a more sophisticated 1D thermodynamic cycle modeling approach can be used to

compute drag. Isentropic relations are used to solve for Mach numbers and flow properties implic-

itly using OpenMDAO’s Newton solver. The compressible model captures Mach number and heat

addition effects on net cooling drag. However, the additional fidelity is likely not meaningful for

low-speed general aviation airplanes with small thermal management loads, and the compressible

relations introduce many implicit states and some robustness issues to the overall MDO problem.

5.3 Case Study: Revisiting the Series Hybrid Twin

To exercise the TMS model and assess the impact of thermal constraints on the design space, I

revisit the MDO study of the series hybrid twin turboprop from Chapter 4. The baseline aircraft is a

Beechcraft King Air C90GT with a drop-in replacement series-hybrid propulsion system replacing

the turboprop engines.

The series-hybrid electric propulsion architecture including TMS is illustrated in Fig. 5.4. To

enable the aircraft to continue safe flight and landing after loss of any single component on take-

off, the propulsion system uses two electric motors, two propellers, and a battery large enough to

provide full takeoff power in the event of engine loss. Specific power, efficiency, and cost assump-

tions for individual powertrain components are listed in Table 5.1 and remain unchanged from
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Figure 5.4: Systems architecture for the twin series hybrid case study.

Chapter 4. The airplane structural weight and drag characteristics, and the mission analysis meth-

ods, also remain unchanged, except that OpenConcept now integrates many more ODE states (the

component temperatures).

Table 5.1: Powertrain technology assumptions [1]

Component Specific Power (kW/kg) Efficiency PSFC (lb/hp/hr)
Battery 5.0 97% –
Motor 5.0 97% –
Generator 5.0 97% –
Turboshaft 7.151 – 0.6

As the revised study with thermal constraints followed some major updates to the OpenConcept

code base, I began by re-running the series hybrid twin tradespace exploration from Chapter 4. The

grid of MDO problems was formulated as follows:

1Not including 104 kg base weight
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minimize: fuel burn + 0.01MTOW
by varying:

MTOW
Sref

dprop

mb

Pm,rated

Pts,rated

Pg,rated

HE (degree of hybridization w.r.t energy)
subject to scalar constraints:

RTOW = mTO −mf −mempty −mpayload −mb ≥ 0

Rb = Eb,max − Eb,used ≥ 0

Rvol = mf,max −mf ≥ 0

BFL ≤ 4452 ft (no worse than baseline)
engine out climb gradient ≥ 2%

Vstall ≤ 81.6 kts (no worse than baseline)
and vector constraints:

Pm ≤ 1.05Pm,rated

Pts ≤ Pts,rated

Pg ≤ Pg,rated

Pb ≤ mb · pb

The results were similar to the previous study despite significant changes to the underlying

mission analysis methods.

5.3.1 Optimization with Thermal Constraints

I modified the aircraft propulsion model to include thermal management of the motor and bat-

tery. I added a ThermalComponentWithMass to the motor (lumping both motors together)

and to the battery pack. Thermal mass of the battery and the motor was computed using a specific

heat of 921 J/kg/K (representative of aerospace-grade aluminum). I connected cold plates for both

components in series using a liquid cooling system using a propylene glycol and water mixture
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Figure 5.5: Minimum fuel burn MDO results without thermal constraints.

101



with a specific heat of 3801 J/kg/K [196]. The coolant loop rejects heat via a ducted heat ex-

changer. As this is a low-speed aircraft with modest thermal loads, I neglected the drag-offsetting

effect of heat addition and used the simpler incompressible duct to model the air mass flow and

drag. I set OpenConcept’s default geometric parameters for the offset strip fin heat exchanger

to reasonable numbers based on measurements from several automotive radiators and used those

parameters for this study as well. Finally, I included a liquid coolant reservoir upstream of the

heat exchanger. I include the weight of the coolant and heat exchanger in the empty weight of

the airplane, and include the drag contribution of the duct and heat exchanger with the overall air-

craft drag when computing the steady flight throttle setting. Figure 5.6 shows profiles of mission

parameters for a single point in the grid of optimization runs (at 250 Wh/kg and 400 nmi range).

The figure highlights the importance of time-accurate thermal analysis. During takeoff and low-

altitude climb, heating is at its maximum and convective heat transfer capability is at a minimum

(due to higher atmospheric temperature and lower coolant duct mass flow). A quasi-steady thermal

analysis would predict very high temperatures during this part of the mission. However, because

the thermal components have considerable thermal mass, the maximum temperature is not reached

until the top of the climb phase. Sizing the thermal management system to a quasi-steady analysis

at the most critical condition (early in the takeoff roll) would result in an oversized heat exchanger

and unnecessarily high drag and weight penalty.

I also added several design variables and constraints to the previous problem. The optimizer

sizes the heat exchanger width and the area of the duct nozzle, thus allowing it to trade off weight

and drag (a larger, heavier heat exchanger will have less pressure drop for a given heat transfer

rate). The optimizer also sizes the coolant reservoir. I constrain the time-accurate temperatures of

the motor and battery pack to stay within operating limits (90° C for the motor and 50° C for the

battery). The full MDO problem is as follows:
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Figure 5.6: Mission trajectories for a 400 nmi mission (eb = 250)
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minimize: fuel burn + 0.01MTOW

by varying:
MTOW
Sref

dprop

mb

Pm,rated

Pts,rated

Pg,rated

HE (degree of hybridization w.r.t energy)
Anozzle (cooling duct outlet cross-sectional area)
nwide (number of heat exchanger cells wide)
mcoolant (coolant reservoir mass)

subject to scalar constraints:
RTOW = mTO −mf −mempty −mpayload −mb ≥ 0

Rb = Eb,max − Eb,used ≥ 0

Rvol = mf,max −mf ≥ 0

BFL ≤ 4452ft (no worse than baseline)
engine out climb gradient ≥ 2%

Vstall ≤ 81.6kt (no worse than baseline)
and vector constraints:

Pm ≤ 1.05Pm,rated

Pts ≤ Pts,rated

Pg ≤ Pg,rated

Pb ≤ mb · pb
Tm ≤ 90◦C

Tb ≤ 50◦C

Figure 5.7 shows the design variables and selected responses at the optimal points across the

trade space. The motor temperature constraint is always active at the top of climb for all the designs

in the tradespace (and so is not shown in Fig. 5.7). The optimizer varies the duct nozzle area (to

vary cooling air mass flow) and motor size (to add thermal mass) such that the motor temperature

reaches the limit at the top of the climb. The heat exchanger width converges to its upper bound at

virtually every point in the design space, while coolant mass converges to its lower bound at every
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point.

Figure 5.8 shows the difference in key variables (including fuel mileage) after accounting for

thermal design and thermal constraints. While fuel mileage worsened at every point in the design

space, the impact was much larger on certain combinations of specific energy and design range.

At long range and low battery specific energy, and at short range and high specific energy, there

was little effect. The long range design with low eb are essentially turboelectric and benefit from

light weight and low battery waste heat; there is simply less overall heat to reject, thus minimizing

the associated penalty. The short range designs with high eb use no fuel to begin with, so their fuel

burn remains at zero even as they use more energy; instead, the thermal management penalty is

observed as an increase in MTOW. Between these two extreme designs, the heavy hybrid airplanes

generate a large amount of waste heat and burn appreciable fuel, making the impact of thermal

constraints more significant.

A very interesting trend emerged in the motor sizing design variable. The optimizer greatly

oversized the motors in a band in the heart of the tradespace (seen as a band of red from middle

left to top right in Figure 5.7). In the rest of the tradespace, the motor is sized by power required

during climb. However, in the red band, the motor is being constrained by the thermal problem. I

suspect that this is a result of the sequencing of components in the thermal management system.

I designed the TMS architecture to provide the coldest coolant to the battery, since it has a lower

operating temperature. The consequence is that warmer coolant flows into the motor. The motor

inflow temperature varies slowly even as outside temperature drops due to the thermal mass of the

battery. The best solution available to the optimizer is to oversize the motors to add thermal mass

and avoid overheating at the critical top of climb point. Reordering the components could result in

an improvement in fuel burn in this part of the tradespace by better balancing peak temperatures

between the motor and battery.
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Figure 5.7: Minimum fuel burn MDO results with thermal constraints.
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Figure 5.8: Difference in optimal designs due to thermal constraints (positive = thermally-
constrained higher)
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5.4 Concluding Remarks

Thermal constraints are understudied compared to other disciplines in aircraft conceptual de-

sign, and there are few publicly-available resources available for the research community to in-

corporate thermal constraints into electric aircraft studies. To fill this gap, I introduced thermal

analysis and design capabilities to the OpenConcept Python package. I demonstrated that thermal

mass effects are significant when analyzing aircraft thermal trajectories, particularly early in the

mission when power is high and speeds and altitudes are low. Therefore, quasi-steady thermal

models are not sufficient for the design of aircraft thermal management systems, because they

can lead to dramatic over-sizing. I incorporated time-accurate thermal models into the mission

analysis and used them to formulate constraints in the aircraft design optimization problem. The

time-accurate thermal analyses and derivatives were computed by the OpenConcept package to

enable efficient gradient-based design optimization.

I showed that thermal constraints appreciably affect the fuel burn and energy usage achievable

in a series hybrid architecture, but not uniformly throughout the tradespace. The non-uniform ef-

fects make the impact of thermal constraints on aircraft design somewhat non-intuitive and under-

score the importance of including them early in the design process. Electric aircraft architectures

with a large percentage of battery power will be impacted by TMS penalties, but because they burn

little or no fuel, the penalty is seen as an MTOW and total energy increase, not a fuel burn penalty.

Conversely, turboelectric aircraft experience a modest TMS penalty due to lighter weight and lack

of battery heating. Hybrid-electric aircraft see the largest fuel burn penalty since they are heavier

than turboelectric aircraft (thus producing more motor waste heat) and use significant quantities

of batteries (producing yet more waste heat). I also observed that the optimizer can find creative

ways to satisfy the thermal constraints (such as oversizing a motor to add thermal mass and avoid

a transient over-temperature condition).

The material in this chapter was previously published [186] and has been edited and expanded.
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CHAPTER 6

Improved Thermal Subsystem Models for Electric

Aircraft

The previous chapter described an initial set of basic thermal management models sufficient

to solve the MDO problem for a small airplane, as well as the numerical approach to solving the

model equations in OpenMDAO. This chapter introduces a much broader set of models designed

to capture more airplane-level effects of the thermal management subsystem. These models are

necessary in order to perform the MDO trade study for a more complex parallel hybrid transport

aircraft described in Chapter 7. I also validate the a subset of the thermal models by replicat-

ing temperature profiles from two experimental test flights of the Pipistrel Velis Electro (the first

electric aircraft to earn a type certificate from EASA or the FAA).

6.1 Improved Semi-Empirical Heat Sink Models

While the generic cold plate described in Section 5.2.2 describes one valid means of extracting

waste heat from an electrical component, it does not represent the state of the art in battery cooling

architectures. It also does not automatically scale with the sizing of the electrical component per

current engineering practice. The purpose of this section is to describe new battery and electric

machine heat sink models developed based on current best practices.
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6.1.1 Battery Heat Sink Modeling

Arguably the state of the art in thermal management of large batteries is the Tesla Model 3.

The Model 3 battery pack consists of hundreds of 21mm by 70mm lithium ion cells arranged

in a rectangular array. The pack is manufactured by thermally and mechanically bonding two

rows of cells to each ribbon (one row of cells on either side of the ribbon), forming a “bandolier”

assembly [197]. The general arrangement is shown in Figure 6.1 The bandoliers are then stacked

in rows to form the pack. Coolant is fed to each ribbon in parallel from an upstream manifold,

an arrangement which has been estimated to double the heat rejection capability of the Model 3

compared to the earlier Model S [198].

Figure 6.1: Example of a battery thermal management arrangement (from Tesla patent [199])

I developed a battery-specific heat sink model based on Tesla’s design. The goal of the model

is to predict the time-varying cell temperature, T cell(t), given battery pack sizing parameters and

coolant flow properties. First, the temperature drop from the cell volume to the cell surface must
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be computed; then the convective heat transfer to the coolant must be obtained.

Convective heat transfer to the coolant in the high-aspect ratio ribbon can reasonably be mod-

eled by considering the theoretical heat transfer due to laminar flow between infinite parallel plates.

The convective heat transfer coefficient for this configuration can be computed as

hconv =
Nu k

2tribbon
, (6.1)

where Nu is the Nusselt number (7.54 for infinite parallel plates [190]), k is the thermal conductiv-

ity of the coolant, and tribbon is the narrow dimension of the coolant channel (here, I approximate

the hydraulic diameter dh ≈ 2tribbon). The heat transfer area A in one bandolier is:

A = 2hcell`bandolier (6.2)

where hcell is the height of the cell and `bandolier is the length of the bandolier in the flow direction.

`bandolier can be conservatively estimated as:

`bandolier = ncelldcell (6.3)

where ncell is the number of cells long in each bandolier, and dcell is the diameter of the cell. The

general arrangement and relevant dimensional parameters are illustrated in Figure 6.2.

I use the NTU-effectiveness method introduced in Chapter 5 to compute the pack-level heat

transfer. The number of thermal units (NTU) is computed:

NTU =
hconvA

ṁcp,coolant
(6.4)

where ṁ is the coolant mass flow rate and cp,coolant is the coolant specific heat capacity. Assuming

the flow direction is alternated in time to maintain a relatively uniform pack temperature, we can
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Figure 6.2: General arrangement and dimensional parameters of the battery heat sink model

use the same “infinite specific heat” assumption for the solid side of the heat transfer and compute

the overall heat transfer using the expression from Chapter 5:

qconv,overall = ṁcp,coolant(1− e−NTU)(Tbattery,surface − Tcoolant,in) (6.5)

Averaging the heat transfer over each cell, we obtain:

qconv,cell =
qconv,overall

2ncell
=
ṁcp,coolant(1− e−NTU)

2ncell
(Tcell,surface − Tcoolant,in) (6.6)

We can also pull out the thermal conductance Cconv,cell as follows:

Cconv,cell =
ṁcp,coolant(1− e−NTU)

2ncell
(6.7)
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To compute cell surface temperature from internal cell temperature, I make a quasi-steady heat

transfer assumption — that is, while the overall cell temperature T cell(t) can vary with time, I as-

sume that the radial temperature gradient in the battery instantaneously adjusts to remain consistent

with the convective heat transfer. Mathematically:

qconv,cell = qcond,cell (6.8)

where qcond,cell is the instantaneous radial conductive heat transfer rate from a reference point at

radius RT inside the battery to the cell surface at Rcell = Dcell/2. The steady-state conductive heat

transfer in a hollow cylinder with inner radius RT and outer radius Rcell is:

qcond,cell = 2πhcellkr,cell
T cell − Tcell,surface

ln(Rcell/RT )
(6.9)

where kr,cell is the material thermal conductivity of the cell in the radial direction (the material

properties of cells vary immensely between the radial and axial directions) [200]. For this study, I

arbitrarily chose a reference location at about 75% of the cell radius and assumed kr,cell = 0.3 (a

conservative knockdown from published estimates [200]). The radial thermal conductance of the

cell is:

Ccond,cell =
2πhcellkr,cell

ln(Rcell/RT )
(6.10)

Finally, to compute overall heat transfer as a function of T cell − Tcoolant,in, I compute the series

thermal conductance across conduction and convection and obtain:

qcell,out =
Ccond,cellCconv,cell

Ccond,cell + Cconv,cell
(T cell − Tcoolant,in) (6.11)
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The unsteady temperatures can be calculated using the ODE:

dT

dt
=
qcell,heating − qcell,out

mcellcp,cell
(6.12)

where mcell is the mass of one cell and cp,cell is the bulk specific heat capacity of the cell. This

relation produces an implicit system of equations in time and can be solved using the numerical

integration and Newton solver approach previously described in Chapter 5.

There are two notable improvements in this approach versus the generic cold plate approach

in the previous chapter. First, this model is reflective of current design practice specific to trans-

portation lithium ion batteries. Second, the model reduces to the individual cell level and becomes

independent of the sizing of the pack, reducing the number of design variables for the top-level

optimization problem.

6.1.2 Motor Heat Sink Modeling

Aviation motors over 100 kW are seemingly converging on liquid-cooled architectures (in-

cluding the Siemens SP200D and SP260D [201] and magniX Magni250 and Magni500 [202]).

However, the cooling channel design inside the motors has not been publicly divulged (at least,

not in any degree of detail). It is unclear whether the physics-based cold plate model introduced

in Chapter 5 is applicable to state-of-the-art aerospace motors. It is also desirable to have a motor

heat sink model which automatically scales reasonably with the motor as the optimizer changes

motor power, which reduces the size of the optimization problem.

Because the materials used to create the motor (including the housing) are generally highly

thermally conductive, it is reasonable to treat the motor as uniform in temperature, while the

coolant spatially varies in temperature. Therefore, the heat transfer can be computed using the

NTU-effectiveness method, as in Equation 6.4. However, computing NTU requires the overall

heat transfer parameter hconvA where A is the heat transfer surface area. Without knowing even
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rough parameters of the coolant channels, a bottom-up physics-based estimate of hconv (or indeed,

even the geometric parameter A) is ill-advised.

Based on an informal survey of liquid-cooled electric motors, most of them either use coolant

channels machined into the motor casing outer diameter (indirect liquid cooling), or direct liquid

cooling on the windings inside the motor case. In either event, the area available for heat transfer

is roughly proportional to the area of the outer ring of the motor case (Acase, the yellow area in

Figure 6.3). Ideally, the model would automatically scale Acase with rated power, as waste heat is

proportional to the rated power. Using rough photogrammetry, I estimated Acase for the magniX

motors and the Siemens SP200D and obtain values in a narrow band between 630 and 800 kW/m2

case area.

Coolant inlet
Coolant outlet

Acase

Figure 6.3: General arrangement of the motor heat sink

The best view I could find of an aerospace motor’s detailed thermal design is a grainy image

of a thermal finite element model of the Siemens SP200D motor in a corporate presentation [201].

Based on the color scale, my best (imprecise) estimate is that the maximum winding temperature

is approximately 108° C, the cooling inlet temperature is about 85° C, and the maximum coolant

temperature is somewhere around 98° C. The cp,coolant of Dow Syltherm heat transfer fluid is about

1950 J/kg/K [203]. If the SP200D motor is about 95% efficient and the motor is operating at full

power in the thermal FEM image, it is rejecting about 10 kW waste heat, which places the mass

flow rate of the coolant at about 0.4 kg/s. Working through equation Equation 6.4 with ṁ = 0.4
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and temperatures as listed, we obtain an estimate of hconv: 2000 W/m2/K.

The final expression for the heat transfer out of the motor is:

qcell,out = ṁcp,coolant(1− e−hconvAcase/ṁ/cp,coolant)(Tm − Tcoolant,in) (6.13)

where Acase ≈ Pm/650000 and hconv is estimated at 2000 W/m2/K. The time-varying motor tem-

perature can be computed using Equation 6.12.

6.2 Expanded Thermal Management Models

The previous two subsections describe improvements to OpenConcept’s existing heat sink

models. The following two sections expand OpenConcept’s thermal models into two new areas:

specifically, active cooling via a vapor cycle machine, as well as weight and power contributions

of the hoses and circulation pumps of a liquid TMS.

6.2.1 Chiller Modeling

While motors and power electronics may operate at relatively warm temperatures above 80° C,

batteries are limited to cooler temperatures. Depending on the outside air temperature, it may be

difficult or even impossible to operate the battery at high power levels without active refrigeration.

The Tesla Model 3 uses a vapor cycle to chill the battery coolant in warm conditions [204]. Electric

aircraft may benefit from trading drag associated with air-cooled heat exchangers for additional

weight and power consumption of a chiller.

A real vapor refrigeration cycle can be plausibly modeled semi-empirically by applying correc-

tions to the theoretical Carnot cycle [205, 206]. In a vapor cycle, refrigerant is evaporated on the

cold side (absorbing heat), compressed, condensed under pressure at the hot side (releasing heat),

and expanded to low pressure to close the circuit. The arrangement is illustrated schematically in
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Figure 6.4 The cycle moves heat qC from a cold reservoir at temperature TC to a hot reservoir at

temperature TH while consuming power Ẇ .

Compressor
Expansion
valve

qC

qH = W+qC

W

Figure 6.4: Vapor compression refrigeration cycle

The amount of heat moved in a Carnot cycle is proportional to a metric called coefficient of

performance (COP) as follows:

qC = COP Ẇ (6.14)

For a perfect Carnot cycle, COP is exactly:

COPtheo =
TC

TH − TC
(6.15)

However, because of unavoidable irreversible losses in a real vapor cycle, we can approximate the

heat transfer as

qC = COP′ Ẇ (6.16)
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COP′ = COPtheoηcycle (6.17)

where ηcycle is the deviation from the theoretically optimal Carnot cycle, generally on the order of

50 to 70 percent for industrial equipment [206]. I assume ηcycle = 0.4 because aerospace chillers

will likely trade some efficiency for weight. The hot side receives qC plus the lost shaft power, or:

qH = (COP′ + 1)Ẇ (6.18)

Unfortunately, COPtheo has some undesirable numerical properties which I identified through

experimentation in OpenMDAO. If the “hot” side becomes cooler than the “cold” side, coefficient

of performance takes on a negative sign, implying that the heat transfer is reversed (i.e. to the

“cold” side instead of away as intended). A more useful notion might be to label the temperatures

T1 and T2 where the intended heat flow is from side 1 to side 2. COP is also undefined if the two

sides equilibrate to the same temperature. Both of these features are undesirable in the context

of a system of thermal equations solved iteratively (where T1 and T2 take on intermediate values

set by a solver). For a thermal management system designed to cool a battery, the heat transfer

problem only becomes easier if the outside air temperature becomes much colder than the battery

(notionally, T2 < T1) whereas the theoretical COP expression actually makes the heat transfer

problem harder. Finally, the asymptotic behavior of the theoretical COP implies that a virtually

unlimited amount of heat can be removed using a vapor cycle using only modest power, as long

as the temperature gap T2 − T1 remains tiny but positive. In reality, irreversible flow and pumping

losses would quickly overwhelm the useful heat transfer. The COP should intuitively asymptote to

a finite positive number for T2 − T1 < |ε|.

To fix these numeric issues, I alter the theoretical expression as follows:

COP′′ = COPtheotanh(∆T )ηcycle + COPasymptote
1 + tanh(−(∆T + ε∆T ))

2
(6.19)
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COP′ =
COP′′eαCOP′′

+ COPasymptotee
αCOPasymptote

eαCOP′′
+ eαCOPasymptote

(6.20)

where ∆T is the temperature gap (T2 − T1), COPasymptote is the value to which COP asymptotes

due to irreversible losses at low ∆T , and ε∆T and α are tunable parameters. Equation 6.19 (an

application of the discrete induced exponential (DIE) [207, 208]) takes the theoretical COP, applies

an efficiency factor, but uses a sigmoid function to keep COP positive when the temperatures flip.

The parameter ε∆T controls where the sigmoid function sign flips and should be positive and

modest (I chose 3° K). Equation 6.20 is a “smooth minimum” operator that essentially selects the

lower of COPtheoηcycle or COPasymptote but maintains continuous smooth derivatives. The parameter

α controls the smoothness of Equation 6.20 and it should be modestly negative (I chose -1.5).

The numerically robust COP is compared to the theoretical result for ηcycle = 0.4, T2 = 300,

COPasymptote = 10 in Figure 6.5.
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Figure 6.5: Theoretical versus robust COP

An additional complicating factor is that in some cases it may be preferable to bypass the chiller

altogether and pump hot coolant from the battery directly into an air-cooled heat exchanger without

undergoing any thermal lift from the chiller. For example, the Tesla Model 3 thermal management
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system uses a five-way valve to bypass the chiller in cold conditions [204]. An aircraft may benefit

from bypassing the chiller while flying at high altitude (where the outside air is very cold), while

using the chiller during climb and descent (where the air may be even warmer than the battery).

Figure 6.6 schematically illustrates the chiller subsystem in an active (non-bypassed) configuration,

while Figure 6.7 shows the subsystem in direct air cooling mode. While in bypass mode, no shaft

work Ẇ is required, which saves electrical load. There is also no upper limit on heat transfer q1

in bypass mode (heat transfer is limited only by the temperature differential and heat exchanger

performance), whereas in chiller mode the upper limit is ẆratedCOPasymptote, where Ẇrated is the

maximum design power of the chiller compressor.

CompressorExpansion
valve

Battery heat sink

Air heat exchanger

Bypass valve

Figure 6.6: Chiller subsystem in active configuration

I introduce a bypass parameter 0 ≤ β ≤ 1 representing the “degree” of bypass. When β = 1,

the chiller is bypassed altogether. When β = 0, the chiller is completely active. There are multiple

reasonable ways to implement this, but after experimenting with various approaches, the one I

selected (for numerical stability) is:
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CompressorExpansion
valve

Battery heat sink

Air heat exchanger

Bypass valve

Figure 6.7: Chiller subsystem in bypassed configuration

T2,out = βT1,in + (1− β)T2,out,chiller (6.21)

T1,out = βT2,in + (1− β)T1,out,chiller (6.22)

Ẇ ′ = (1− β)Ẇ (6.23)

where T1/2,out,chiller are the coolant outlet temperatures of the previously-defined chiller model,

T1/2,in are the coolant temperatures coming into the chiller (out from the battery and air-side heat

exchangers), and Ẇ ′ is the “actual” shaft power used (which will generally be consumed as an

electrical load). The temperatures represent a notional mass-averaging between the bypassed and

non-bypassed temperatures and are well-behaved but not strictly valid between β = 0 and β = 1

due to temperature-related COP effects. β is a good candidate for a dynamic control parameter in

a trajectory optimization context; in my experience, the optimizer tends to send β to the upper and
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lower bounds, which is the desired physical behavior.

Finally, the weight of the chiller system can be estimated using a linear specific power relation:

mchiller =
Ẇrated

pchiller
(6.24)

where pchiller is the specific power of the chiller. pchiller is probably somewhere in the neighborhood

of 200 W/kg based on limited public data for the Honeywell Micro VCS (20kW heat removed,

TH = 160° F, TC = 50° F [209], 140 lb weight [210]).

6.2.2 Pump and Hose Modeling

Since realistic coolant flow rates are relatively high (in the neighborhood of 0.5 to 1.0 kg/s),

the electrical load due to coolant circulation pumps and the weight of the coolant hoses cannot be

completely neglected. Furthermore, while the models in Chapter 5 considered the airplane-level

drag effects of air-side pressure losses in the heat exchanger, there was no equivalent penalty on the

coolant side. Put another way, if the heat exchanger is too short in the airflow direction, the liquid

coolant channels become narrow and constricted, increasing pressure losses across the liquid side

of the heat exchanger and resulting in higher pump power consumption and heavier hoses. There

is also a tradeoff between weight and power in the fluid system design. Larger hoses have lower

pressure losses (reducing pump energy consumption), but because the coolant and hose material

are relatively heavy, the weight penalty will increase energy consumption at the airplane level.

Pump power consumption can be modeled as follows:

Ppump =
Pfluid

ηpump
(6.25)

where Pfluid is the theoretical fluid power and ηpump is the pump efficiency (including fluid,
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mechanical, and electrical losses). The fluid power is:

Pfluid = V̇∆p (6.26)

where V̇ = ṁ/ρ is the volumetric flow rate and ∆ppump is the pressure rise across the pump. In a

closed loop, the pressure rise across a circulation pump must equal the accumulated pressure losses

along the loop, so for i components (such as hoses, heat sinks, etc.):

∆ppump = −
∑
i

∆pi (6.27)

Based on an informal survey of commercially-available fuel and hydraulic pumps on certified

commercial airplanes (tabulated in Appendix D), I estimated that ηpump = 0.35 is an appropriate

choice for coolant circulation. The weight of the pump can be estimated as:

mpump =
Ppump,rated

ppump
(6.28)

where ppump is the pump specific power (estimated at 450 W/kg rated electrical power) and Ppump,rated

is the pump power rating. Across all operating conditions the designer or optimizer must ensure

that Ppump ≤ Ppump,rated.

Pressure drop across a coolant hose is straightforward to compute. Assuming flow in the pipe

is in the turbulent regime (4000 < Redh < 105) the Darcy friction factor f for a smooth-walled

pipe with diameter dhose = dh can be computed using the well-known Blasius correlation [211] as

follows:

f = 0.3164Re
1/4
dh

(6.29)

where Redh is the hydraulic diameter Reynolds number. Then, the pressure drop across a length `

123



of pipe can be computed using the Darcy-Weisbach equation:

∆p = f`
ρU2

2dhose
(6.30)

where U is the mean flow velocity and ρ is the fluid density. U can be computed from the mass

flow rate ṁ and cross section:

U =
4ṁ

πρd2
hose

(6.31)

Finally, the weight of the hose is comprised of the weight of the fluid in the hose plus the

weight of the hose itself. The hose weight depends on the hose wall thickness, which depends on

the design pressure and diameter based on the hoop stress, as follows:

those =
pdesdhose

2σdes
(6.32)

where pdes is the design fluid pressure and σdes is the hose design stress. The total weight of the

hose and coolant is then:

mhose = π`
(
(dhose + those)thoseρhose + (dhose/2)2ρcoolant

)
(6.33)

The material weight and design stress were estimated based on a selection of low-pressure aerospace

fluid hoses from Eaton Corporation [212]: σdes = 300 psi at the operating point, and ρhose = 1356

kg/m3. The tabulated hose data can be found in Appendix D.

6.3 Empirical Validation of OpenConcept TMS Models

While the individual component models developed in this chapter and Chapter 5 are all rooted

either in empirical data or relatively simple physics, there is a paucity of empirical data with which
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to validate time-varying temperature profiles of electric aircraft components. Fortunately, Pipistrel

Aircraft, a Slovenian aircraft manufacturer and a leading developer of electric propulsion systems,

agreed to share proprietary flight test data to aid in validating OpenConcept’s thermal models. I

obtained time series data from flight tests of the Pipistrel Velis Electro, the first electric aircraft to

receive a type certificate from the major aviation regulators.

Figure 6.8: Pipistrel Velis Electro

(Author: Wikimedia user Andrejcheck License: CC-BY-SA)

The Velis Electro (pictured in Figure 6.8) is a two-seat, single-motor electric aircraft designed

for low-cost primary flight training. It has a lightweight composite airframe and a three-blade

fixed-pitch propeller [213]. The TMS consists of two independent liquid coolant loops: one for

the motor and power electronics module, with a radiator near the nose, and a second loop for the

batteries, with a ducted heat exchanger located in the rear of the aircraft.

The flight test data set consists of time series data for three flights. Each flight data file contains:

• Flight conditions (indicated airspeed, barometric altitude, outside air temperature)

• Control settings (motor power)
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• Component temperatures (measured in the motor, both batteries, and TMS)

After examining the data for one flight, I decided to attempt to simulate the motor temperature

profiles, in the hopes that the simulated temperatures would match favorably with the measured

temperatures and provide some additional confidence in the overall thermal modeling approach:

in particular, the motor heat sink and ducted heat exchanger models. Lacking any insight into the

design of the heat sinks inside the proprietary battery packs, I elected not to attempt to simulate

the battery TMS at this time.

In order to model the motor TMS loop, I needed to obtain a fairly significant amount of aircraft

design data. Pipistrel is unusually transparent in sharing technical data publicly. In addition to the

Velis Electro and E811 motor type certification data sheet (TCDS) available from EASA, the web-

site offers additional useful technical data such as dimensioned drawings [214]. Beyond the public

data, I was provided with general configuration information including system diagrams, coolant

mass flow rates, and heat exchanger fin details, as well as measurements of the heat exchangers

and heat exchanger ducts. The non-public design data are not reported in this dissertation.

Information that was not provided and therefore needed to be identified or estimated includes:

• Motor heat production as a function of throttle setting (i.e. the efficiency map)

• Motor heat sink architecture and dimensions

• Motor active thermal mass

Using OpenConcept, I created a coolant loop including the motor (with associated heat sink)

and a louvered-fin heat exchanger (using empirical data from [191]). Because the Velis Electro

flies only at very modest speeds, I used the incompressible model for the heat exchanger duct mass

flow rate introduced in Chapter 5. I obtained the motor weight (22.7 kg) and maximum rated power

(57.6 kW) from the TCDS for the Pipistrel E-811 electric motor [215]. Lacking any additional

information about the E-811 motor’s cooling channels, I elected to use the heat sink parameters
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Figure 6.9: Parameter identification flight test data (Flight A)

identified in Subsection 6.1.2 as-is. Instead of attempting to duplicate the test flight profiles using

OpenConcept’s built-in mission analysis capability, I fed the outside air temperature, airspeed,

altitude, and motor throttle setting directly into the propulsion TMS model — this eliminated

several sources of discrepancy between model and experiment.

To identify motor efficiency ηm, I used only the first test flight and altered ηm until the simulated

and measured thermal profiles matched closely (as the heating is a strong function of ηm). The

second and third test flights were held out for validation tests. Assuming ηm = 0.95 a priori,

I simulated an initial time series (Figure 6.9a). The simulated heating was obviously too low.

I iteratively adjusted the efficiency to ηm = 0.92 and obtained Figure 6.9b. This was a major

improvement, but the simulated rate of temperature change was too slow. Because the motor

mass consists of a rotor and a stator, it is plausible that the heating may be concentrated in the

stator, reducing the apparent thermal mass m′m of the overall motor. I adjusted the thermal mass

downward by about 30% and obtained the result in Figure 6.10.

With good agreement and no additional changes to system parameters, I simulated the second

and third flights (Figure 6.11). Flight B and Flight C both consist of repetitive flight test conditions
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Figure 6.10: Test Flight A with final parameter tuning (ηm = 0.92, m′m = mm/1.4)

with full stop landings in between; I selected one condition arbitrarily. While I did not consciously

tune parameters based on Flight B, I did at least view the data before re-tuning the parameters

following an unrelated OpenConcept model bug fix. Flight C is a “true” blind validation case —

no model changes occurred after seeing the simulated result.

Flight B (Figure 6.11a) shows outstanding agreement between simulation and experiment.

Flight C (Figure 6.11b) shows reasonably good agreement. Because Flight C’s profile consists of

a very short hop, the motor operating temperatures remain fairly low. As resistive heating is higher

at lower temperatures, it is possible that a higher-fidelity motor efficiency map would explain the

small (less than 3° C) discrepancy at top-of-climb. Another possible explanation for remaining

discrepancy between model and experiment is the effect of propwash on the heat exchanger duct.

The Velis Electro’s motor cooling duct inlet is located in the propeller slipstream. I accounted for

this by adding 200 Pa total pressure boost across the duct (based on a rough estimate of propeller

disc loading), but the true amount of additional forced convection attributable to the propeller is

unknown, as is the thrust-dependence of this effect.
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Figure 6.11: Validation flight test data

6.4 Concluding Remarks

This chapter introduced new and improved thermal models in OpenConcept. The semi-empirical

battery and motor heat sink models reflect modern design thinking and scale well as the compo-

nents change size during optimization. The motor heat sink and ducted heat exchanger models

were empirically validated using Pipistrel flight test data, confirming that OpenConcept’s numeri-

cal methods for solving the thermal equations are correct and that the component thermal models

tested in the simplified validation case are reasonably predictive. This chapter is entirely new and

unpublished material.
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CHAPTER 7

MDO of a Parallel Hybrid Transport Aircraft

In the United States, most commercial flights are under 1000 nautical miles [216], and the large

majority of these are flown using single-aisle aircraft such as Boeing 737 or Airbus A320 series

airplanes. As batteries continue to improve, these modest ranges start to look interesting as appli-

cations for hybrid-electric propulsion. The 737 Max and A320neo are both sized for trans-Atlantic

range, a consequence being that they take off significantly below design MTOW on shorter domes-

tic flights. If a modular battery system was conceived that could be loaded and unloaded depending

on mission demands, a parallel hybrid propulsion architecture could potentially exploit this unused

payload capacity.

NASA is actively developing a flying testbed to demonstrate technologies necessary for a single

aisle-sized parallel hybrid aircraft [217]. The parallel hybrid concept would consist of a 737-sized

airframe with N+3 GTF engines and 1 MW of hybrid power. Optimizing the TMS architecture of

this aircraft is important because of the high power levels (and therefore, waste heat) involved.

I was tasked by NASA with performing a MDO trade study and sensitivity analysis of the

thermal management system of the parallel hybrid single aisle aircraft concept. The trade study is

between a conventional TMS with a vapor cycle chiller, and a novel TMS with a thermoacoustic

chiller. This chapter covers the modeling approach for the airframe, hybrid propulsor, and conven-

tional TMS as well as selected trends from the optimization results. Results for the thermoacoustic

TMS are the subject of a separate, upcoming paper.
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7.1 System Architecture

The first step in this study was defining a baseline architecture for the TMS and the propulsion

subsystem. Because the focus of the trade study is on those two subsystems only, I did not attempt

to define new system architectures for other functions (such as hydraulic). The system architecture

is illustrated schematically in Figure 7.1.

The propulsion system consists of a parallel hybrid variant of the NASA N+3 turbofan en-

gine, plus supporting electrical systems. The N+3 turbofan is a NASA concept for a conventional

(non-hybrid) GTF with 2030-level technology [218, 219]. I used a moderate fidelity model of

the N+3 [218], added shaft power input from a parallel hybrid motor, and reoptimized the engine

cycle. The details of the engine optimization procedure are discussed in Section 7.2.2.

Battery

Motor
Fault 

Protection

Ducted
Heat 

Exchangers

Pump
Variable
exit duct

Chiller
Bypass

Parallel Hybrid
Turbofan

Pump

DC Bus

Figure 7.1: Propulsion system architecture for the parallel hybrid aircraft

The hybrid motor in the engine is connected to the DC power bus via its power electronics

module and a fault current protection module, as seen in Figure 7.1. For the NASA trade study,

a novel high-speed, solid-state fault current protection circuit was included. The DC bus is fed

by a sizable (on the order of 3000 lb) battery bank in the fuselage of the aircraft. Because of
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the substantially higher voltages and for simplicity, the electrical system for propulsion and the

propulsion TMS is kept separate from the rest of the airplane electrical system.

The thermal management architecture consists of three coolant loops and two heat exchanger

ducts. To avoid running hoses to the pylon from the fuselage and back, the motor and fault protec-

tion thermal management loops exchange heat with a duct co-located on the pylon. Since the motor

can run hotter than the fault protection, the motor and fault protection heat sinks are plumbed to

separate heat sinks in a common duct, and the motor heat exchanger lies downstream of the fault

protection heat exchanger.

The battery thermal management loop includes the battery heat sink, a second ducted heat ex-

changer, as well as an electrically-driven chiller, all illustrated in Figure 7.1. The battery duct is

located in the wing side-of-body fairing (similar to environmental control systems ducts in exist-

ing aircraft), and is equipped with a variable-area exit nozzle to control airflow rates through the

duct. The chiller improves performance in warm conditions and potentially enables a smaller heat

exchanger. It draws electrical power for the compressor from the propulsion DC power bus. Two

electric pumps, one for the motor TMS and one for the battery, circulate coolant in the loops and

are sized to overcome the pressure losses in hoses and heat exchangers. They also draw electrical

power from the propulsion DC power bus.

7.2 System Modeling

7.2.1 Airframe Modeling

The baseline airplane takes the aerodynamic and weight characteristics of the 737-800. A

quadratic drag polar was curve fit based on an empirical drag polar of the 737-800 [220]. Weight

data for the 737-800 was assembled from public sources [221]. I assume no change in the baseline

operating empty weight (OEW) due to two offsetting effects: the 737-800’s aluminum airframe
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could be lightened with judicious use of composite materials, but the higher- BPR N+3 engine will

be heavier than the 737-800’s CFM-56 turbofans. I also assume no change in the baseline drag

polar, again due to offsetting effects of incremental aerodynamic improvements and higher instal-

lation drag for the higher BPR. Weight and drag increments attributable to the hybrid propulsion

system are added on top of the baseline OEW and drag.

7.2.2 Hybrid Turbofan Modeling and Optimization

Parallel hybrid architectures primarily benefit from replacing fuel energy with electrical energy

directly, but there may also be some benefits at the corners of the flight envelope which result in

a more efficient thermodynamic cycle at the cruise condition. In order to capture this effect, I re-

designed the engine cycle of the N+3 accounting for hybrid power. The base engine model consists

of the pyCycle N+3 hybrid turbofan model [218]1. I then added an additional shaft power input

to the low-speed shaft to account for the hybrid electric power. e In addition to the engine model,

the pyCycle repository also contains a MDP optimization problem definition. MDP signifies that

the engine cycle design is constrained by performance requirements at off-design conditions. The

cycle design consists of design flow rates, BPR, and turbomachinery pressure ratios, such as the

low-pressure compressor (LPC) pressure ratio and the overall pressure ratio (OPR) (which, in this

parameterization, essentially sets the HPC pressure ratio). In the case of the N+3 GTF, there are

minimum thrust specifications for top-of-climb (TOC), cruise (CRZ), sea-level static (SLS), and

rolling takeoff (RTO), as outlined in Table 7.1. The design point (where design pressure ratios and

mass flows are matched) is the TOC point.

I slightly modified the original optimization problem parameterization for clarity, defining

the engine design problem as listed in Table 7.2. I solved the engine design problem for both

the hybrid engine and the conventional (non-hybrid) N+3 GTF, using the SNOPT optimizer and

1Source code available at https://github.com/OpenMDAO/pyCycle/tree/3.2.0/example_
cycles/
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Condition Mach Altitude (ft) Thrust Req (lb)
RTO 0.25 0 22,800
SLS 0.0 0 28,621
Cruise 0.8 35,000 5,510
TOC (design) 0.8 35,000 6,200

Table 7.1: Operating points for the N+3 hybrid engine design problem

Unit Lower Upper Optimum
(Hybrid)

Optimum
(Conventional)

minimize fuel burn at CRZ lb/s 0.6627 0.6652
with respect to fan PRdes 1.2 1.4 1.308 1.307

LPC PRdes 2.5 4.0 4.0 4.0
OPR 40 70 65.71 64.54
Vbypass/V∞ 1.35 1.45 1.35 1.35
BPR at TOC 17.0 24.5 19.66 19.53
ṁ at TOC lb/s 780 850 810.92 810.92
Pm at RTO kW 0.0 1000.0 1000.0 —
Pm at SLS kW 0.0 1000.0 1000.0 —
Pm at TOC kW 0.0 1000.0 0.0 —

subject to T4 at RTO R 3400 3097 3176
T4 at TOC R 3230 2927 2932
dfan in 100 100 100

Table 7.2: Optimization definition and results for N+3 engine MDP problem

OpenMDAO’s pyOptSparse wrapper [155, 222, 223]. The optimized engine design parameters for

both cases are listed in Table 7.2. The optimal design for the conventional engine in Table 7.2

differs slightly from the baseline cycle in the N+3 paper [219] because the paper used a manual

procedure to select the final design. Despite a significant hybrid boost at the sea-level conditions

which reduced T4 markedly, the hybrid engine reduced cruise fuel burn (hybrid power off ) by only

0.37% compared to the optimized conventional design. This very modest cycle-only improvement

may reflect that the baseline engine is not temperature-limited at the RTO and SLS conditions, thus

reducing the value of temperature reductions at those conditions.

Incorporating the pyCycle model of the optimized engine in OpenConcept directly is not feasi-

ble for two main reasons. First, pyCycle uses a Newton solver to converge the systems of equations
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defining the model, and thus requires good guesses of the thermodynamic states at each station if

reliable convergence is to be achieved. OpenConcept will likely feed dramatically different flight

conditions to the engine model as it converges, which has a high likelihood of causing pyCycle

itself to fail to converge. Second, pyCycle is relatively expensive to compute per flight condition

compared to the rest of OpenConcept’s models.

Instead of coupling pyCycle to OpenConcept directly, I used a surrogate modeling approach. I

generated an “engine deck” for the conventional and hybrid N+3 engines by computing fuel flow,

thrust, and surge margins at a full-factorial grid of flight conditions. The independent variables

on the grid are altitude, Mach number, and throttle. The hybrid engine includes hybrid electric

power setting as a fourth variable in the engine deck. Generating the deck with pyCycle is a one-

time expense — generally, a few hours on a desktop computer. After generating the deck, I fit a

surrogate model to the data using the kriging method. Kriging allows OpenConcept to query the

engine model by interpolating between points in the engine deck. Appendix A includes details of

the surrogate modeling procedure and the goodness of fit.

Figure 7.2 shows the full-throttle thrust of the optimized, conventional N+3 turbofan across

a variety of flight conditions. Maximum thrust at each operating point is limited by the shaft

speed of each spool as well as T4. As expected, the thrust lapses quickly with speed and altitude.

Figure 7.3 shows the thrust specific fuel consumption (TSFC) of the optimized hybrid engine at

90% (approximately cruise) throttle, with zero electrical power on. At the cruise condition (M =

0.8, 35,000 feet altitude), the TSFC is significantly better than the 737-800’s CFM56-7 engine,

which is two generations behind in technology. Adding hybrid power reduces fuel consumption

significantly. Figure 7.4 shows that 10%–25% TSFC savings at a given thrust level are achieved

with 1 MW hybrid power. The relative fuel burn benefit is more pronounced at lower throttle

settings.
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7.2.3 Electrical Modeling

The propulsion electrical architecture described in Section 7.1 and illustrated in Figure 7.1 was

modeled using OpenConcept electrical component models. Because this is a 2030+ technology

study, there are no empirical (or even detailed, simulated) performance maps or discharge curves

for the motor or the battery. The hybrid propulsion motor uses OpenConcept’s SimpleMotor

class and assumes the default efficiency of 97% (including the power electronics module) with

a specific power of 5 kW/kg. The battery uses the SOCBattery class, with a baseline specific

energy of 400 Wh/kg and an efficiency of 95%. This is consistent with SOA lithium-ion batteries

discharging at rates around 1C or 2C.

The fault current protection circuit, designed by a research team at the Naval Postgraduate

School (NPS), is also considered. The proposed solid-state design has very fast response time,

which helps prevent damage to other components in the event of a fault. However, it is “only”

99.7% efficient. The fault current limiters are therefore modeled as an inline electrical efficiency

loss.
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7.2.4 Thermal Modeling

The TMS architecture described in Section 7.1 and illustrated in Figure 7.1 was modeled using

the OpenConcept thermal components described in the previous two chapters. I used the semi-

empirical battery and motor heat sink models from Chapter 6 with default parameters, except that

the effective heat transfer area of the motor was reduced by about 40% from the default. This

is a conservative assumption, as my data set for aerospace motors was limited to 500kW, and

there are qualitative reasons to expect that very high power motors will have higher power-to-

surface area ratios. The pump and hose models are as described in Chapter 6, with the default

empirical constants unchanged. Because of the high cruise speed of this transport aircraft, I used

heat exchanger duct models with compressibility effects, which increases the computation cost of

the problem but is necessary to account for the Meredith effect, especially at higher power levels.

The fault protection circuit is a special case. At 99.7% efficiency, it produces a significant

amount of waste heat for such a small component. As the component is still in the detailed design

phase, the geometry of the coolant channels is not yet firm. The NPS system specification does

not quote an internal temperature limit, but does list a coolant inflow temperature requirement of

50° C or less. Because the fault protection is lightweight relative to the amount of waste heat, I

make a quasi-steady assumption (fault protection waste heat is instantaneously transferred to the

coolant loop), and then add an optimization constraint that the fault protection heat exchanger

outlet temperature is no higher than 50° C.

7.3 Baseline Optimization

I set up an MDO problem to minimize fuel burn. The design variables, constraints, and up-

per/lower bounds are listed in Table 7.3. The optimizer, IPOPT [224], controls high-level mission

parameters such as the cruise altitude, takeoff weight, and battery weight. The aircraft design

parameters include the chiller size, physical geometry of the heat exchangers, and sizing of the
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coolant hoses. Finally, the optimizer has control of dynamic (i.e., time-varying) parameters of

importance. These include the power setting of the hybrid motor, the battery duct nozzle setting

(which controls mass flow in the duct), and whether the chiller is active or bypassed. The dy-

namic control parameters are posed as linear ramps between a start value and an end value for each

mission segment (for a total of 8 degrees of freedom for each dynamic control).

The reference mission is an 800 nautical mile passenger mission with a payload of 20,000 kg

(representative of around 180 average passengers plus 40 kg cargo per person). Airspeeds, climb

rates, altitudes, and throttle settings for the optimized hybrid airplane are illustrated in Figure 7.5.

To capture a critically hot day (worst case for TMS design), I incremented the standard atmosphere

temperatures up by 20° C.

Because the N+3 engine is generously sized for the 737-800 airframe, it flies at a relatively

low throttle setting on descent. Unfortunately, adding power to the LP shaft creates compressor

stall concerns at low throttle settings. To allow for reasonable hybridization on descent and avoid

operability issues, the continuous descent profile is fairly shallow. Nonetheless, the hybrid motors

are limited to about 30% of max power on descent.

Table 7.4 shows the optimized design variable values for the hybrid airplane. The optimizer

uses significant hybrid power on this 800 nautical mile mission, which reduces its fuel burn by

around 3.3% compared to a non-hybrid airplane with the N+3 engine flying the same mission. The

optimizer also sizes the chiller above its lower bound, indicating that an actively-chilled TMS is

favorable despite the high cruise altitude and short duration of this mission. Most of the TMS

design variables, including the heat exchanger flowpath lengths and hose and pump sizes, are also

off their bounds and are being sized by the optimizer.

The dynamic control parameters and component temperatures are illustrated on Figure 7.5 and

7.6. As expected, the optimizer maximizes the amount of battery power that it uses (i.e., hybrid

motor power is at its limit throughout the mission). The optimizer also hits the battery and motor

temperature limits through a combination of controlling the duct mass flow rates and using the

139



chiller. The chiller is bypassed for all but the descent phase, which is attributable to thermal mass

on ascent and cold temperatures at cruise. As the airplane descends through the warmer lower

atmosphere with a pre-heated battery, the chiller kicks in to avoid excessive cooling drag.

Figure 7.6 also illustrates the net force through the cooling ducts. Both ducts actually develop

a little bit of net thrust at certain flight conditions, and the drag contribution is relatively modest (a

few pounds) at most points during the flight. The higher speed of this transport aircraft increases

compression in the duct and enables the significant Meredith effect recovery.
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Figure 7.5: Optimized flight profile and control parameters — base case

Table 7.4 includes several comparison airplanes. The 737-800 comparison airplane uses the

same empty weight and airframe drag model, but substitutes a pyCycle-generated engine deck of
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Figure 7.6: Optimized thermal trajectory and control parameters — base case

the CFM56-7 turbofan. The “N+3 GTF” comparison airplane is a non-hybrid variant with the

optimized, conventional GTF engine. The modeled 737-800 uses over 30% more fuel than the

N+3 conventional comparison. Finally, the “no TMS” hybrid airplane accounts for the weight and

drag of the hybrid motor, power electronics, and batteries, but not the weight or drag of thermal

management. Figure 7.7 shows that the parallel hybrid saves about 3.3% fuel compared to the N+3

conventional comparison airplane, after accounting for TMS weight, power, and drag penalties on

this 800 mile mission. Parallel hybridization by itself saves 3.5%, whereas thermal management

requirements offset that by 0.2%. This is a significantly lower penalty than found in the Chapter 5

series hybrid study. The lower thermal management penalty is partly attributable to the higher
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flight speed of the transport aircraft, which enables some Meredith effect cooling drag recovery.

The parallel architecture also reduces the fraction of propulsive power that is electrified, which

reduces the relative size of the heat rejection problem.
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Unit Lower Upper
minimize Fuel burn lb
with respect to
Mission parameters Cruise altitude ft 25000 35000

WTO lb 110231a 174170b

Wb lb 2500 12500
Battery TMS parameters Chiller power rating kW 0.1 50

Battery HX nwide 2 1500
Battery HX nlong 3 75
Coolant pump power rating kW 0.1 5
Coolant hose diameter in 0.5 2

Motor TMS parameters Motor HX nwide 50 1500
Motor HX ntall 10 25
Motor HX nlong 3 75
Fault prot. HX nlong 1 4
Motor HX duct nozzle area in2 5 60
Coolant pump power rating kW 0.1 5
Coolant hose diameter in 0.5 2

Control parameters Battery HX duct nozzle area in2 5 150
Hybrid motor power kW 0.0 1000.0c

Chiller bypass (β) 0 1
subject to
Design constraints Battery HX cross-sectional area in2 300

Motor HX width in 23.6a

Motor HX height in 11.8a

Motor HX area in2 300

Mission constraints SOCfinal 0.05
Payload weight lb 44092a

Tm ° C 90
Tb ° C 45d

Tb,final ° C 35d

Fault prot. coolant inlet temp. ° C 50
Battery coolant pump P/Prated 1.0
Motor coolant pump P/Prated 1.0

aNon-round number because constraint specified in non-SI units
bMTOW for 737-800
cLimited to 300kW on descent due to compressor surge margin
dDuring temperature sensitivity studies these values may vary

Table 7.3: Parallel hybrid optimization problem specification
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B738 Baseline N+3 GTF N+3 Hybrid
(No TMS)

N+3 Hybrid
(optimized, w/TMS)

Range nmi 800 800 800 800
Battery spec energy Wh/kg 400 400
Chiller spec power W/kg 200
Design Variables
Cruise altitude ft 35000 35000 35000 35000
Takeoff weight lbm 148232 144914 159299 159643
Battery weight lbm 6901 6969
Battery TMS
Chiller power rating kW 2.21
Battery HX cells wide 204.81
Battery HX cells long 13.64
Coolant pump power kW 0.77
Hose diameter inch 1.29
Motor TMS
Motor HX cells wide 413.22
Motor HX cells long 16.32
Motor HX cells tall 17.04
Fault prot. HX cells long 3.72
Nozzle area in2 15.61
Coolant pump power kW 0.13
Hose diameter inch 0.73
Objective
Fuel burn lbm 11830.15 8511.33 8212.12 8229.13
Constraints
Final SOC 0.05 0.05
Battery HX width inch 11.71
Battery HX XS area in2 300.00
Motor HX width inch 23.62
Motor HX height inch 11.81
Motor HX XS area in2 206.30
Payload lbm 44092 44092 44092 44092
Outputs
Chiller weight lbm 24.41
Battery HX weight lbm 15.80
Batt. TMS pump weight lbm 3.78
Batt. TMS hose weight lbm 30.47
Motor HX weight lbm 13.21
Motor TMS pump weight lbm 0.65
Motor TMS hose weight lbm 4.92

Table 7.4: Optimized design and performance of the hybrid single aisle transport, plus comparison
airplanes
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7.4 Sensitivity Studies

The following subsections explore the effect of several important parameters on TMS design

and airplane performance, namely:

• Range

• Specific power of the chiller

• Specific energy of the battery

• Temperature limits of the battery

Each sensitivity study includes two types of figures. Sweep plots show the effect of the param-

eter in question on scalar design and performance quantities, with the sensitivity variable on the x

axis. Trajectory plots illustrate the effect of the parameter on dynamic parameters like component

temperatures and control parameters across the duration of the mission, with distance travelled on

the x axis.

7.4.1 Effect of range

Figure 7.8 illustrates how the optimal parallel hybrid airplane design changes as the mission

lengthens. Fuel burn increases more or less linearly with the mission length, as expected. However,

we see jumps in some of the design parameters between 720 and 740 nautical miles. At this range,

the optimum cruise altitude jumps from around 30,000 feet to the upper bound at 35,000 feet. The

higher altitude reduces cruise drag, so the aircraft can reduce the size of the battery and reduce

takeoff weight. The colder temperatures cause a jump downward in the size of chiller and the

size/weight of the battery heat exchanger.

We also see a slight, generally linear trend in coolant pump size and hose diameter. This is a

very subtle tradeoff. As the mission gets longer, the penalty to carry used batteries gets larger,

which penalizes anything that uses electrical power. At short ranges, a larger pump that can
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overcome the pressure losses in smaller, lighter hoses is favored. At long range, the electricity

consumption of the larger pump is penalized and a larger hose with less pressure drop is favored.

Figures 7.9 and 7.10 show the trajectories of state variables and control parameters. There

are no major discontinuities in the trajectories as range increases, but subtle differences in the duct

nozzle control scheduling can be observed.

7000

8000

9000

10000

Fu
e
l 
b

u
rn

 (
lb

)

7000

8000

9000

B
a
tt

e
ry

 w
e
ig

h
t 

(l
b

)

160000

165000

T
a
ke

o
ff

 w
e
ig

h
t 

(l
b

)

30000

32000

34000

C
ru

is
e
 a

lt
it

u
d

e
 (

ft
)

2.1

2.2

2.3

C
h
ill

e
r 

p
o
w

e
r 

ra
ti

n
g

 (
kW

)

13.5

14.0

14.5

B
a
tt

e
ry

 H
X

 c
e
lls

 l
o
n
g

24

25

26

C
h
ill

e
r 

w
e
ig

h
t 

(l
b

)

16.0

16.5

17.0

B
a
tt

e
ry

 H
X

 w
e
ig

h
t 

(l
b

)

700 800 900 1000
Design range (nmi)

3.6

3.8

4.0

B
a
tt

. 
T
M

S
 p

u
m

p
 w

e
ig

h
t 

(l
b

)

700 800 900 1000
Design range (nmi)

30

31

B
a
tt

. 
T
M

S
 h

o
se

 w
e
ig

h
t 

(l
b

)
Optimizer finds 
tipping point in
cruise altitude

Fuel burn trend
is smooth

Jump in cruise
altitude results
in discontiunity
in the TMS sizing
trends

Figure 7.8: Effect of mission range on optimal design

‘

146



Range nmi 650 700 720 800 900 1000
Battery spec energy Wh/kg 400 400 400 400 400 400
Chiller spec power W/kg 200 200 200 200 200 200
Design Variables
Cruise altitude ft 28479 29293 29649 35000 35000 35000
Takeoff weight lbm 156906 158371 158937 159643 162834 166043
Battery weight lbm 6242.8 6756.3 6951.5 6968.8 8148.2 9326.4
Battery TMS
Chiller power rating kW 2.38 2.34 2.32 2.21 2.16 2.11
Battery HX cells wide 204.81 204.81 204.81 204.81 204.81 204.81
Battery HX cells long 14.66 14.58 14.55 13.64 14.05 14.44
Coolant pump power kW 0.82 0.80 0.79 0.77 0.74 0.71
Hose diameter inch 1.27 1.27 1.28 1.29 1.30 1.31
Motor TMS
Motor HX cells wide 413.22 413.22 413.22 413.22 413.22 413.22
Motor HX cells long 17.27 17.14 17.08 16.32 16.34 16.35
Motor HX cells tall 17.04 17.04 17.04 17.04 17.04 17.04
Fault prot. HX cells long 3.78 3.78 3.78 3.72 3.72 3.72
Nozzle area in2 15.21 15.24 15.26 15.61 15.61 15.61
Coolant pump power kW 0.14 0.14 0.14 0.13 0.13 0.12
Hose diameter inch 0.72 0.72 0.73 0.73 0.74 0.74
Objective
Fuel burn lbm 6938.18 7377.20 7553.04 8229.13 9061.01 9912.62
Constraints
Final SOC 0.05 0.05 0.05 0.05 0.05 0.05
Battery HX width inch 11.71 11.71 11.71 11.71 11.71 11.71
Battery HX XS area in2 300.00 300.00 300.00 300.00 300.00 300.00
Motor HX width inch 23.62 23.62 23.62 23.62 23.62 23.62
Motor HX height inch 11.81 11.81 11.81 11.81 11.81 11.81
Motor HX XS area in2 206.30 206.30 206.30 206.30 206.30 206.30
Payload lbm 44092.45 44092.45 44092.45 44092.45 44092.45 44092.45
Outputs
Chiller weight lbm 26.22 25.77 25.59 24.41 23.81 23.23
Battery HX weight lbm 16.99 16.89 16.86 15.80 16.28 16.73
Batt. TMS pump weight lbm 4.02 3.92 3.89 3.78 3.62 3.48
Batt. TMS hose weight lbm 29.51 29.85 29.99 30.47 31.04 31.58
Motor HX weight lbm 13.98 13.88 13.83 13.21 13.23 13.24
Motor TMS pump weight lbm 0.69 0.67 0.67 0.65 0.63 0.61
Motor TMS hose weight lbm 4.77 4.82 4.85 4.92 5.02 5.10

Table 7.5: Sensitivity of design and performance with respect to range
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Figure 7.10: Optimized thermal trajectory and control parameters — various ranges
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7.4.2 Effect of chiller specific power

For this TMS trade study, a key technological parameter is the specific power of the chiller

(in other words, how heavy it is). Lower specific power will favor using a smaller chiller and

larger heat exchanger. Figure 7.11 shows the effect of specific power on the TMS design for two

mission profiles. The “chilldown” scenario requires the airplane to land with a battery temperature

of 35° C or less (to enable the airplane to take off again quickly after unloading and loading). The

“no chilldown” requirement imposes a flat 45° C limit on battery temperature across the whole

mission. For both scenarios, fuel burn decreases sharply as specific power increases to about 100

W/kg. Beyond 200 W/kg (which is my best estimate of the state of the art), the returns diminish

greatly. Therefore, it is likely that dramatic improvements in chiller weights are not on the critical

path to hybrid propulsion for this type of mission. However, for an electric aircraft at lower altitude

(e.g. eVTOL), this parameter may be more significant.

For all specific powers, the “no chilldown” scenario burns less fuel and uses a smaller chiller

than for the “chilldown” scenario. The higher the chiller specific power (the lighter the chiller), the

lower the fuel burn penalty attributable to a chilldown requirement. Figures 7.12 and 7.13 show

trajectories and control parameters for the chilldown and no-chilldown scenarios, respectively. As

the specific power increases, the TMS manages to keep the battery temperature more consistent

across the mission. At low specific power, the optimizer does not provide very much chiller capac-

ity, so the optimizer has to cool down the battery at altitude in order to “bank” enough cold thermal

mass for the trip down.
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Range nmi 800 800 800 800 800 800
Battery spec energy Wh/kg 400 400 400 400 400 400
Chiller spec power W/kg 10 20 50 100 200 400
Design Variables
Cruise altitude ft 35000 35000 35000 35000 35000 35000
Takeoff weight lbm 160149 159913 159748 159681 159643 159621
Battery weight lbm 6958.5 6960.6 6964.0 6966.5 6968.8 6970.3
Battery TMS
Chiller power rating kW 1.21 1.41 1.74 1.98 2.21 2.37
Battery HX cells wide 204.81 204.81 204.81 204.81 204.81 204.81
Battery HX cells long 21.86 19.02 16.04 14.57 13.64 13.24
Coolant pump power kW 0.71 0.73 0.75 0.76 0.77 0.78
Hose diameter inch 1.30 1.29 1.29 1.29 1.29 1.29
Motor TMS
Motor HX cells wide 413.22 413.22 413.22 413.22 413.22 413.22
Motor HX cells long 16.31 16.32 16.32 16.32 16.32 16.32
Motor HX cells tall 17.04 17.04 17.04 17.04 17.04 17.04
Fault prot. HX cells long 3.72 3.72 3.72 3.72 3.72 3.72
Nozzle area in2 15.62 15.61 15.61 15.61 15.61 15.61
Coolant pump power kW 0.13 0.13 0.13 0.13 0.13 0.13
Hose diameter inch 0.74 0.73 0.73 0.73 0.73 0.73
Objective
Fuel burn lbm 8251.63 8241.23 8233.77 8230.81 8229.13 8228.22
Constraints
Final SOC 0.05 0.05 0.05 0.05 0.05 0.05
Battery HX width inch 11.71 11.71 11.71 11.71 11.71 11.71
Battery HX XS area in2 300.00 300.00 300.00 300.00 300.00 300.00
Motor HX width inch 23.62 23.62 23.62 23.62 23.62 23.62
Motor HX height inch 11.81 11.81 11.81 11.81 11.81 11.81
Motor HX XS area in2 206.30 206.30 206.30 206.30 206.30 206.30
Payload lbm 44092.45 44092.45 44092.45 44092.45 44092.45 44092.45
Outputs
Chiller weight lbm 266.64 155.41 76.52 43.73 24.41 13.05
Battery HX weight lbm 25.33 22.04 18.59 16.88 15.80 15.34
Batt. TMS pump weight lbm 3.47 3.58 3.69 3.74 3.78 3.80
Batt. TMS hose weight lbm 31.05 30.77 30.58 30.51 30.47 30.45
Motor HX weight lbm 13.21 13.21 13.21 13.21 13.21 13.21
Motor TMS pump weight lbm 0.63 0.64 0.65 0.65 0.65 0.65
Motor TMS hose weight lbm 5.02 4.97 4.94 4.93 4.92 4.92

Table 7.6: Sensitivity of design and performance with respect to chiller spec. power — 35 C
chilldown
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Range nmi 800 800 800 800 800 800
Battery spec energy Wh/kg 400 400 400 400 400 400
Chiller spec power W/kg 10 20 50 100 200 400
Design Variables
Cruise altitude ft 35000 35000 35000 35000 35000 35000
Takeoff weight lbm 159804 159718 159657 159627 159614 159596
Battery weight lbm 6951.2 6952.7 6955.9 6958.6 6963.0 6963.4
Battery TMS
Chiller power rating kW 0.50 0.65 0.95 1.21 1.59 1.63
Battery HX cells wide 204.81 204.81 204.81 204.81 204.81 204.81
Battery HX cells long 18.87 17.10 14.88 13.69 12.61 12.41
Coolant pump power kW 0.72 0.74 0.76 0.77 0.78 0.78
Hose diameter inch 1.30 1.29 1.29 1.29 1.29 1.28
Motor TMS
Motor HX cells wide 413.22 413.22 413.22 413.22 413.22 413.22
Motor HX cells long 16.32 16.32 16.32 16.32 16.32 16.32
Motor HX cells tall 17.04 17.04 17.04 17.04 17.04 17.04
Fault prot. HX cells long 3.72 3.72 3.72 3.72 3.72 3.72
Nozzle area in2 15.61 15.61 15.61 15.61 15.61 15.61
Coolant pump power kW 0.13 0.13 0.13 0.13 0.13 0.13
Hose diameter inch 0.74 0.73 0.73 0.73 0.73 0.73
Objective
Fuel burn lbm 8238.95 8234.43 8230.75 8229.04 8227.66 8227.01
Constraints
Final SOC 0.05 0.05 0.05 0.05 0.05 0.05
Battery HX width inch 11.71 11.71 11.71 11.71 11.71 11.71
Battery HX XS area in2 300.00 300.00 300.00 300.00 300.00 300.00
Motor HX width inch 23.62 23.62 23.62 23.62 23.62 23.62
Motor HX height inch 11.81 11.81 11.81 11.81 11.81 11.81
Motor HX XS area in2 206.30 206.30 206.30 206.30 206.30 206.30
Payload lbm 44092.45 44092.45 44092.45 44092.45 44092.45 44092.45
Outputs
Chiller weight lbm 111.14 71.36 41.99 26.71 17.52 9.01
Battery HX weight lbm 21.86 19.82 17.24 15.86 14.62 14.38
Batt. TMS pump weight lbm 3.52 3.62 3.72 3.78 3.83 3.84
Batt. TMS hose weight lbm 31.02 30.75 30.55 30.48 30.43 30.41
Motor HX weight lbm 13.21 13.21 13.21 13.21 13.21 13.21
Motor TMS pump weight lbm 0.63 0.64 0.65 0.65 0.65 0.65
Motor TMS hose weight lbm 5.01 4.97 4.94 4.93 4.92 4.91

Table 7.7: Sensitivity of design and performance with respect to chiller spec. power — no chill-
down
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Figure 7.13: Optimized thermal trajectory and control parameters — various chiller spec. powers,
without chilldown
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7.4.3 Effect of battery specific energy

For this 2030+ trade study, the technological performance of the battery (in particular, specific

energy) is highly uncertain. Figure 7.14 shows the effect of specific energy on aircraft design

variables and performance. Because range and specific energy are so tightly linked, I plotted

sweep lines for ranges between 700 and 1000 nautical miles and normalized fuel burn by range

to collapse the plot. The fuel burn reduction due to battery specific energy improvement is not

very large (2.5% fuel burn reduction per 100 Wh/kg improvement). This is likely due to the mild

HP /HE of this configuration. On the other hand, 2.5% is quite significant compared to the 3.3%

fuel burn improvement of the baseline hybrid.

Battery specific energy affects TMS design in diverse ways depending on the range. Fig-

ure 7.16 shows the variation in chiller sizing with range and specific energy. For example, from

700 to 900 nmi range, the chiller power is not strongly influenced by eb, but at 1000 nmi the chiller

power increases somewhat with eb. If eb is low and range is long, the battery pack will be heavy

(and therefore, have a lot of thermal mass) which smooths out thermal transients. On the other

hand, battery specific energy does strongly influence the hose/pump design subproblem in a sim-

ilar way to range. The lighter the battery, the more pump power becomes favored versus hose

diameter / weight and we see a linear trend similar to Subsection 7.4.1. Figure 7.15 shows that

specific energy does not strongly influence control parameters or states; the family of trajectories

for the 800 nmi mission look qualitatively similar.
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Range nmi 800 800 800 800 800
Battery spec energy Wh/kg 350 375 400 425 450
Chiller spec power W/kg 200 200 200 200 200
Design Variables
Cruise altitude ft 35000 35000 35000 35000 35000
Takeoff weight lbm 161707 160606 159643 158793 158038
Battery weight lbm 7963.9 7433.1 6968.8 6559.0 6194.7
Battery TMS
Chiller power rating kW 2.18 2.20 2.21 2.22 2.23
Battery HX cells wide 204.81 204.81 204.81 204.81 204.81
Battery HX cells long 13.72 13.66 13.64 13.68 13.75
Coolant pump power kW 0.72 0.75 0.77 0.79 0.81
Hose diameter inch 1.30 1.30 1.29 1.28 1.27
Motor TMS
Motor HX cells wide 413.22 413.22 413.22 413.22 413.22
Motor HX cells long 16.29 16.30 16.32 16.33 16.34
Motor HX cells tall 17.04 17.04 17.04 17.04 17.04
Fault prot. HX cells long 3.72 3.72 3.72 3.72 3.72
Nozzle area in2 15.62 15.62 15.61 15.61 15.61
Coolant pump power kW 0.13 0.13 0.13 0.14 0.14
Hose diameter inch 0.74 0.74 0.73 0.73 0.72
Objective
Fuel burn lbm 8302.01 8262.99 8229.13 8199.47 8173.27
Constraints
Final SOC 0.05 0.05 0.05 0.05 0.05
Battery HX width inch 11.71 11.71 11.71 11.71 11.71
Battery HX XS area in2 300.00 300.00 300.00 300.00 300.00
Motor HX width inch 23.62 23.62 23.62 23.62 23.62
Motor HX height inch 11.81 11.81 11.81 11.81 11.81
Motor HX XS area in2 206.30 206.30 206.30 206.30 206.30
Payload lbm 44092.45 44092.45 44092.45 44092.45 44092.45
Outputs
Chiller weight lbm 24.07 24.21 24.41 24.49 24.53
Battery HX weight lbm 15.90 15.83 15.80 15.85 15.93
Batt. TMS pump weight lbm 3.55 3.67 3.78 3.89 3.99
Batt. TMS hose weight lbm 31.37 30.90 30.47 30.08 29.72
Motor HX weight lbm 13.19 13.20 13.21 13.22 13.23
Motor TMS pump weight lbm 0.61 0.63 0.65 0.67 0.68
Motor TMS hose weight lbm 5.07 4.99 4.92 4.86 4.80

Table 7.8: Sensitivity of design and performance with respect to battery specific energy
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7.4.4 Effect of battery thermal limitations

In principle, there is a design tradeoff between the electrical performance of a battery cell and

its thermal stability (the degree to which this is actually dial-able is uncertain). Therefore, it is

useful to know how much airplane-level performance improvement would result from relaxing

thermal management requirements for the battery. Figure 7.17 shows the effect of the battery

temperature constraint on the aircraft design and performance. Figure 7.18 shows the trajectory

with states and control parameters, and illustrates the variation in the thermal constraint more

tangibly.

I found that, at least in this application, fuel burn is only a very weak function of the temperature

limit. Increasing the temperature limit from 40 C (cool for a battery) to 60 C (very warm) only

reduces fuel burn by about 5 pounds, or 0.05%. One interesting trend is in the use of the chiller as

the temperature limit is relaxed. Figure 7.17 shows that the optimizer removes the chiller altogether

once the maximum temperature is 50 C or above; these are the only cases in this trade study where

the optimizer did not elect to preserve at least some chiller capability. It is likely that lower-

altitude aircraft that fly longer in warmer air will be more sensitive to battery operating limits than

this concept.
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40 C 45 C 50 C 55 C 60 C
Range nmi 800 800 800 800 800
Battery spec energy Wh/kg 400 400 400 400 400
Chiller spec power W/kg 200 200 200 200 200
Design Variables
Cruise altitude ft 35000 35000 35000 35000 35000
Takeoff weight lbm 159626 159614 159549 159543 159538
Battery weight lbm 6963.6 6963.0 6947.8 6948.0 6947.8
Battery TMS
Chiller power rating kW 1.68 1.59 0.10 0.10 0.10
Battery HX cells wide 204.81 204.81 204.81 192.46 162.75
Battery HX cells long 15.96 12.61 12.63 11.12 10.86
Coolant pump power kW 0.76 0.78 0.78 0.79 0.78
Hose diameter inch 1.29 1.29 1.28 1.28 1.28
Motor TMS
Motor HX cells wide 413.22 413.22 413.22 413.22 413.22
Motor HX cells long 16.32 16.32 16.32 16.32 16.32
Motor HX cells tall 17.04 17.04 17.04 17.04 17.04
Fault prot. HX cells long 3.72 3.72 3.72 3.72 3.72
Nozzle area in2 15.61 15.61 15.61 15.61 15.61
Coolant pump power kW 0.13 0.13 0.13 0.13 0.13
Hose diameter inch 0.73 0.73 0.73 0.73 0.73
Objective
Fuel burn lbm 8229.26 8227.66 8225.79 8224.89 8224.44
Constraints
Final SOC 0.05 0.05 0.05 0.05 0.05
Battery HX width inch 11.71 11.71 11.71 11.00 9.30
Battery HX XS area in2 300.00 300.00 300.00 281.91 238.39
Motor HX width inch 23.62 23.62 23.62 23.62 23.62
Motor HX height inch 11.81 11.81 11.81 11.81 11.81
Motor HX XS area in2 206.30 206.30 206.30 206.30 206.30
Payload lbm 44092.45 44092.45 44092.45 44092.45 44092.45
Outputs
Chiller weight lbm 18.54 17.52 1.10 1.10 1.10
Battery HX weight lbm 18.49 14.62 14.64 12.19 10.28
Batt. TMS pump weight lbm 3.73 3.83 3.83 3.88 3.83
Batt. TMS hose weight lbm 30.44 30.43 30.42 30.38 30.37
Motor HX weight lbm 13.21 13.21 13.21 13.21 13.21
Motor TMS pump weight lbm 0.65 0.65 0.65 0.65 0.66
Motor TMS hose weight lbm 4.92 4.92 4.91 4.91 4.91

Table 7.9: Sensitivity of design and performance with respect to battery temperature limit
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Figure 7.17: Effect of battery temperature limit on optimal design — 800 nmi flight
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Figure 7.18: Optimized thermal trajectory and control parameters — various battery temp limits
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7.4.5 Multimodality

During the process of running the optimization cases for these sensitivity studies, I observed

that the IPOPT optimizer was converging cases very tightly to the minima. However, I noticed in

some of the sweeps that non-physical discontinuities in fuel burn would appear. Digging deeper,

I discovered that this optimization problem may have multiple local minima that are easily found.

For example, I noted a false minimum while running the 40 C battery temperature limit case.

Figure 7.19 shows two trajectories that meet all the design and control requirements and that IPOPT

converged tightly to a local minimum. One of the optima has a significantly larger chiller than the

other (4.38 kW versus 1.68 kW). The larger chiller design (detailed in Table 7.9) has an identical

motor TMS design but a significantly different battery TMS, and it burns 0.04% more fuel.

During the previously-described sensitivity studies, I found a handful of other similar local

minima, which I coaxed to the lower minimum by tightening design variable bounds (generally,

the chiller power upper bound). While not unprecedented in my previous OpenConcept airplane

studies, this was a qualitatively higher rate than I am used to seeing in conceptual design problems.

My guess is that the pseudo-binary bypass behavior of the chiller introduces this multimodality to

the problem. An alternative approach would be to use an ODE transcription more suited to optimal

control, such as Legendre-Gauss polynomials as implemented in the Dymos software package,

which seem to reduce multimodality in trajectory optimization problems.
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Larger-chiller local min Smaller-chiller local min
Range nmi 800 800
Battery spec energy Wh/kg 400 400
Chiller spec power W/kg 200 200
Design Variables
Cruise altitude ft 35000 35000
Takeoff weight lbm 159756 159626
Battery weight lbm 7000.3 6963.6
Battery TMS
Chiller power rating kW 4.38 1.68
Battery HX cells wide 204.81 204.81
Battery HX cells long 13.46 15.96
Coolant pump power kW 0.78 0.76
Hose diameter inch 1.28 1.29
Motor TMS
Motor HX cells wide 413.22 413.22
Motor HX cells long 16.31 16.32
Motor HX cells tall 17.04 17.04
Fault prot. HX cells long 3.72 3.72
Nozzle area in2 15.61 15.61
Coolant pump power kW 0.13 0.13
Hose diameter inch 0.73 0.73
Objective
Fuel burn lbm 8232.38 8229.26
Constraints
Final SOC 0.05 0.05
Battery HX width inch 11.71 11.71
Battery HX XS area in2 300.00 300.00
Motor HX width inch 23.62 23.62
Motor HX height inch 11.81 11.81
Motor HX XS area in2 206.30 206.30
Payload lbm 44092.45 44092.45
Outputs
Chiller weight lbm 48.27 18.54
Battery HX weight lbm 15.59 18.49
Batt. TMS pump weight lbm 3.81 3.73
Batt. TMS hose weight lbm 30.41 30.44
Motor HX weight lbm 13.21 13.21
Motor TMS pump weight lbm 0.65 0.65
Motor TMS hose weight lbm 4.91 4.92

Table 7.10: Comparison of two local minima — 800 nmi range, 40° C battery temp limit
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Figure 7.19: Trajectories of two local minima — 800 nmi, 40 C temperature limit

7.5 Concluding Remarks

In this section, I demonstrated a conceptual MDO trade study for a parallel hybrid single aisle

transport airplane subject to thermal constraints. To my knowledge, this is the first time that a

parallel hybrid transport aircraft has been studied using gradient-based optimization while also

considering thermal management. Compared to a conventional (non-hybrid) comparison airplane,

the hybrid propulsion architecture saves approximately 3.3% on an 800 nmi mission. Thermal

management of the electrical components is responsible for about 0.2% fuel burn penalty.

I performed dozens of optimization cases to generate sensitivities with respect to key parame-

ters. The TMS and propulsion design is a moderate function of range and chiller specific power,
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but only a weak function of battery specific energy. This airplane is not as sensitive to battery

specific energy as all-electric designs, but it also has much more moderate fuel burn reductions

compared to all-electric architectures. SOA chiller weight is probably adequate for the purposes

of this short, parallel hybrid mission, and further improvements would result in diminishing re-

turns to fuel burn. Finally, the transport aircraft mission does not benefit very much from running

the batteries a bit warmer, only saving a few pounds of fuel over a 800 mile mission. The trends

illustrated here are particular to this architecture, engine cycle, and mission and are likely not appli-

cable to other classes of hybrid and electric aircraft, especially lower-altitude, high-power eVTOL

aircraft.

The combined propulsion and thermal management conceptual design problem appears to in-

troduce subtle local minima at a higher than normal rate. Using an alternative ODE transcription

or possibly using multistart optimization could be good approaches to mitigating this finding.

This chapter consists of entirely new and unpublished material.
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CHAPTER 8

Development of a General Spatial Packaging

Constraint for Shape Optimization

Aerodynamic shape optimization (ASO) has become an increasingly popular tool for aircraft

design [225, 226]. MDO practitioners have various choices for aerodynamic models to suit their

requirements, ranging from low-fidelity panel codes to RANS simulations. The structural models

in aerostructural problems have also evolved from beam models to full wingbox finite element

models [147, 154]. Recent interest in boundary layer ingestion has led to close coupling of aero-

dynamic and propulsion models in aeropropulsive design optimization [157].

While the “hard” aerosciences have been incorporated into increasingly high-fidelity MDO

frameworks, one crucial aspect of aircraft design has been somewhat neglected: spatial integration.

Spatial integration requires that all crew, passengers, payloads, systems components, and energy

storage fit within the aircraft outer mold line (OML), and that objects do not overlap with each

other.

Spatial integration constraints directly drive important design features found on aircraft today;

from wing-to-body fairing depth on commercial aircraft, to carefully-shaped actuator “bumps”

on the wings of stealth military aircraft. Electric and hybrid-electric propulsion concepts force

hard decisions about where to locate hundreds or thousands of pounds of batteries that take much

more volume than conventional fuel. For example, the battery of Wisk’s Cora eVTOL flight test
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demonstrator is located behind the cabin within the fuselage upsweep, while Uber Technologies’

eCRM-003 uses large booms reminiscent of fighter external fuel tanks [227].

Since range is closely related to the quantity of batteries that can be carried on board, trade

studies for electric aircraft need to rigorously account for the aircraft volume growth necessary to

accommodate battery packs of varying sizes. This is a closely-coupled geometry-aerodynamic-

structural-performance cycle, which can be analyzed through MDO. Safety considerations may

introduce geometric requirements beyond non-interference. For example, transport aircraft are

required to physically separate critical systems components so that no single failure can result in the

loss of redundant functions. These kinds of trade studies are not easily accomplished using state-

of-the-art MDO frameworks and present a barrier to the industrial adoption of MDO in practical

vehicle design.

This chapter starts with a review of prior geometric integration (or “packing”) optimization

approaches, both from aerospace MDO and from outside the aerospace literature. Next, I develop

a mathematical basis for an MDO geometric constraint, followed by a description of the compu-

tational implementation. Finally, I demonstrate aerodynamic shape optimization subject to spatial

integration on three test cases of increasing complexity.

8.1 A Brief Review of Spatial Constraints in Shape Optimiza-

tion Problems

A simple aerodynamic shape optimization problem can be posed as follows:

minimize: CD (drag coefficient computed by CFD)
by varying: x (outer mold line shape design variables)
subject to: g ≥ 0 (geometric constraints feasible)

Several simple methods for imposing geometric constraints on shape optimization problems
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have already been developed. Kenway et al. [228] developed pyGeo, a software tool and geom-

etry engine for high-fidelity MDO, which poses the following geometric constraints (illustrated

schematically in Figure 8.1) as nonlinear inequality constraints:

Point thickness constraints: the simplest means of preventing the optimizer from reducing thick-

ness too much in one location.

1D thickness constraints: enforced using a line of point thickness constraints suitable for pre-

serving thickness along a line; for example, spar depth.

2D thickness constraints: enforced using an array of point thickness constraints suitable for pre-

serving thickness over an area; for example, wing box thickness.

Volume constraints: useful for ensuring that a wing design has sufficient space for fuel.

pyGeo’s constraint formulations have proven sufficient for a variety of wing and aircraft design

optimization problems [147, 229, 230].

2D thickness

Point thickness 

Cross-sectional area

Total volume

1D thickness

Figure 8.1: Existing geometric constraints for aerodynamic shape optimization

8.1.1 Packing Optimization Approaches in Aerodynamic Shape Optimiza-

tion

The American Institute of Aeronautics and Astronautics (AIAA) Aerodynamic Design Opti-

mization Discussion Group (ADODG) developed canonical benchmark cases which include min-
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imum thickness and cross-sectional area constraints in 2D and 3D, as well as minimum volume

constraints in 3D. Published solutions of the 2D cases used two general approaches to impose

thickness constraints. Carrier et al. [231], Anderson et al. [232] and Fabiano and Mavriplis [233]

chose 2D airfoil parameterizations with thickness control and set lower bounds on shape control

design variables. Other authors [234–238] computed thickness at discrete points and imposed

linear or nonlinear optimization constraints. Except Carrier et al., who used a constant-area pa-

rameterization, all authors imposed cross-sectional area as a nonlinear constraint.

All attempts to optimize the common research model (CRM) wing benchmark case imposed

the minimum volume constraint as a computed nonlinear constraint. LeDoux et al. [236] used a

volume discretization (voxel) approach to compute the constraint, while Carrier et al. [231] com-

puted volume based on the triangulated surface mesh. Anderson and Aftosmis [239] imposed the

additional 3D minimum thickness constraint as a 2D array of discrete thickness constraints along

the vertical axis.

While these geometric constraint approaches are sufficient for these relatively simple research

cases, they do not provide sufficient freedom to accurately reflect the complex geometries often

found in industrial practice. In theory, relatively complex shapes can be represented by imposing

a large number of point thickness constraints, but there are important practical limitations. In

the absence of an automated tool, one would need to convert a 3D model of the object-to-fit into

point thickness constraints by hand, which is error-prone and laborious. If the shape optimization

involves both planform and thickness variables, the constrained shape stretches and deforms in

unusual ways compared to the original intent.

Using thickness constraints to represent complex geometry also limits design freedom. If a

thickness constraint is imposed at a planform location, the object-to-fit is effectively locked into

the same planform location during the entire optimization. Unless the starting location is well-

chosen, the lack of positioning design variables causes the resulting shape to be suboptimal. One

can also easily envision realistic design problems in which components change shape as design re-
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quirements change (e.g., motor diameter with rated torque). The geometric constraint formulations

available today are not capable of handling these cases.

8.1.2 Packing Optimization Problems in Other Fields

While spatial integration has not been a focus in aircraft MDO, the operations research (OR)

field has developed approaches suitable to the optimal packing of objects into a specified volume.

“Tetris-like” rectangular volumes may be efficiently packed into a simple container using a mixed

integer programming (MIP) approach [240]. This approach allows 90-degree permutations but

not arbitrary rotations. It also requires a fixed outer bounding volume shape, which is analogous

to an aircraft OML. There is no existing provision for coupling together the MIP problem with

physics-based optimization (e.g., for minimum drag) of the outer volume. The MIP Tetris-like-

solid formulation has been applied to spacecraft design applications [240].

The trunk packing problem is a canonical problem in the operations research packing optimiza-

tion literature [241]. Automotive industry standards exist for the type and quantity of objects (e.g.,

suitcases and boxes) that must be able to fit into an automobile trunk. It is advantageous for auto

manufacturers to fit as many of these irregular objects as possible into the trunk’s bounded volume.

Many approaches have been proposed to tackle this problem. One of the most general approaches

is to use a volumetric discretization of the trunk; the subdivisions are called voxels [242, 243]

Using a genetic algorithm, irregular objects can be rotated and translated in six degrees of free-

dom until no voxel is occupied by more than one object [243]. This approach is general and has

been extended to handle a multiobjective engine compartment optimization to explore the tradeoff

between compactness and maintainability [241]. Voxelization can also handle optimization prob-

lems where the components being packed vary in size during the optimization, such as maximizing

coolant tank volume while still fitting all required components in the engine compartment [241].

However, like the MIP formulation, the volume discretization depends on a fixed OML, ren-

dering it unsuitable for aerodynamic shape optimization applications where the OML changes

173



during optimization. The presence-or-absence voxel test is binary and non-differentiable, which is

not suitable for gradient-based methods. Gradient-based methods are a necessity for high-fidelity

shape optimization because gradient-free methods scale poorly with increasing degrees of design

freedom and result in intractable computational cost [244].

Gradient-based packing optimization has been explored, but not as extensively as gradient-free

approaches. Stoyan et al. [245] demonstrated gradient-based packing optimization of simple 2D

and 3D geometric shapes. The approach depends on calculating a form of distance metric the

authors call quasi-φ functions. These functions can be derived analytically for some classes of

simple geometric shapes (such as a sphere or cone). Using this approach is desirable because the

quasi-φ functions can be differentiated, making them suitable for gradient-based optimization.

Unfortunately, the quasi-φ approach is not very generalizable because it applies only to classes

of geometric shapes for which the functions can be derived. This may be suitable for some con-

ceptual design scenarios, where hold-out volumes of general shape and volume are known. For

aircraft design, using this approach would require representing the OML geometry of the aircraft

as a composition of geometric surfaces with known φ functions, which would require a major re-

search effort in itself. The mathematics underlying the approach is also likely to be unfamiliar to

most aerospace engineering practitioners. However, the results demonstrate that gradient-based

packing optimization may be promising in at least some applications.

While the OR field has made substantial progress towards solving packing optimization prob-

lems, none of the prior approaches are suitable for use with high-fidelity MDO in aerospace. A

new geometric constraint formulation is required, with the following properties:

General: The method should be able to represent arbitrary surfaces (including, at a minimum, a

wing surface with high fidelity). The constraint metric calculation must not depend on the

convexity of each object (since aircraft wings are often locally concave).

Differentiable: The constraint metric(s) must be differentiable and at least C0 continuous (prefer-
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ably C1).

Efficient: The constraint metric(s) must have computation time and memory requirements with

acceptable scaling properties (with hundreds to tens of thousands of geometric design vari-

ables, objects, and surface polygons).

8.2 Deriving a Mathematical Definition of Spatial Integration

for MDO

To derive a mathematical definition of containment, let us consider some component (with

outer surface A) to be fit inside OML surface B (Figure 8.2).

AB
Pdmin

Figure 8.2: Schematic view of a wing OML and interior component

Definition. Let A be a connected surface defined in three-dimensional real space.

Definition. Let B be a closed, connected, orientable surface defined in three-dimensional real

space.

Closed orientable 3D surfaces have a defined interior volume and can be thought of as 3D

solids or closed 3D shells. A watertight CFD mesh always meets this definition. Formally, the

volume enclosed by B and the surface B are not identical, but I call them both B for simplicity.

Definition. Let dmin be the minimum distance between A and B.

Definition. Let ` be the sum of the length(s) of the intersection curve(s) between A and B, or 0 if

no intersection.

175



Next, an intuitive definition of geometric containment:

Definition. A is contained within B if and only if all points P on A are inside B.

Testing an infinite number of points P is not computationally tractable. Instead, I can replace

this definition of containment with an equally intuitive one.

Definition. A is contained within B if and only if:

1. any single point P on A is inside B, and

2. A and B do not intersect.

A binary intersection test is not suitable for gradient-based optimization because it provides no

gradient information. Therefore, I replace the second condition with a distance test with no loss of

generality.

Definition. Surface A is contained within bounding surface B if and only if:

1. any single point P on A is inside B, and

2. the minimum distance dmin between A and B > 0.

This work focuses on Condition 2—the minimum distance tests between A and B. In an op-

timization context, Condition 1 (at least one enclosed point) can be satisfied by setting reasonable

bounds on the geometric design variables. Alternatively, if there is a chance that the interior ob-

ject might “escape” from the bounding volume during optimization, a ray-casting test can be used

instead [246], as follows:

Theorem. Point P is insideB if and only if a ray, originating from P and traveling in an arbitrary

direction, intersects B an odd number of times.
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Unfortunately, the one-sided nature of Euclidean distance presents a practical difficulty for

gradient-based optimizers because the value (and more importantly, the gradient) of the dmin goes

to zero once A and B intersect. Figure 8.3 illustrates the minimum distance as a sphere translates

closer to the edge of an ellipsoidal bounding volume. If the surfaces are discretized for computation

(e.g., using a triangulated surface), an additional problem arises as dmin between the facets never

reaches machine zero, even while intersected.

0
Translation

0

Intersection
lengthMin. distance

Min. distance (discretized)

Feasible region

Figure 8.3: The minimum distance goes to zero post-intersection, presenting optimization diffi-
culties.

To help the optimizer find its way back into feasible space once intersection occurs, I include

the total length ` of the intersection curve(s) as an additional constraint. The intersection curve

length provides feasibility gradient information once shapes are intersected and ensures that inter-

sected surfaces are not falsely assessed as feasible due to discretization error (Figure 8.3).

Claim. A gradient-based optimizer can ensure that convex component A fits inside convex bound-

ing surface B if an arbitrary point P on A remains inside B, and the following nonlinear con-

straints are imposed:

1. dmin > 0

2. ` = 0
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If design variable bounds and the geometric parameterization allow A to completely “escape”

B (e.g., the fourth panel of Figure 8.3), the optimizer should be configured to reject iterations

where P is outside B using a binary test, such as ray tracing.

A further complication occurs for nonconvex geometries. If the optimizer takes too large of a

step into the intersected region, a gradient-descent or similar strategy does not allow the optimizer

to return to the feasible region, as illustrated in Figure 8.4. Therefore, the optimizer must not take

steps into the infeasible region that are too large.

0
Translation

0

Intersection
length

Min. distance
Optimizer can
get stuck here

Feasible region

Figure 8.4: The optimizer can get stuck in the infeasible region for nonconvex geometries.

Claim. A gradient-based optimizer can ensure that component A fits inside bounding surface B if

an arbitrary point P on A remains inside B, the optimizer does not step into an intersected region,

and the following nonlinear constraints are imposed:

1. dmin > 0

2. ` = 0

With this final statement, a mathematical definition of geometric feasibility is obtained that is

computable, C0 continuous, differentiable, and qualitatively well-behaved for nonlinear optimiza-

tion algorithms.
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Figure 8.5: Triangle distance tests

8.3 Computing Geometric Constraints

To compute the mathematical functions derived above, a data structure is needed to represent

the surface geometry. While there are numerous approaches to computational geometry, I chose

simple triangulated surfaces for generality and efficiency. Many unstructured CFD grids are na-

tively triangular due to tetrahedral volumes, and structured grids using hexahedral volumes can be

easily triangulated. Spline or other parametric surfaces are also easily triangulated. Furthermore,

many efficient distance and intersection algorithms have already been developed for triangular

geometry primitives.

The minimum distance between two triangles can be found through six point-triangle distance

tests and nine edge-edge tests (Figure 8.5). I implemented the point-triangle and edge–edge dis-

tance tests of Ericson [247]. While lower-cost distance tests exist in the literature, Ericson’s ap-

proach is vectorizable, allowing the use of analytic differentiation to obtain derivatives.

During optimization, the pair of triangles determining dmin changes for every iteration, and the
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gradients of dmin are discontinuous. Tracking dmin alone also ignores useful information from the

(possibly many) pairs of triangles that are almost the closest. Therefore, constraining dmin by itself

is likely to produce bad results. Alternatively, all of the edge-edge and point-triangle distances

could be constrained to be greater than zero. However, problem scaling makes this impractical.

For example, suppose a problem has n = 104 OML mesh facets, m = 103 mesh facets per object,

k = 101 objects, and p = 102 geometric design variables. There are O(nmpk) = 1010 gradient

entries to store, which easily exceeds available memory even for modest problems.

Ideally, all of the almost closest facets would contribute to a single constraint. A good way of

achieving this is constraint aggregation using the alternative form of the Kreisselmeier-Steinhauser

(KS) function [208, 248],

KS
[
g (x)

]
= gmax (x) +

1

ρ
ln

[
m∑
j=1

eρ
(
gj (x)−gmax (x)

)]
, (8.1)

where g(x) ≤ 0 is the vector of inequality constraints, evaluated at the design point x, gmax(x) is

the maximum constraint value at the current design point, and ρ is a constant associated with the

aggregation function. For spatial integration, g (x) = −dj (x), where dj (x) is the vector of all

distance test results between the facets of A and B. Using this relationship, I obtain the final form

of the distance constraint for optimization:

KSgeom(x) =
1

ρ
ln

[
J∑
j=1

eρ
(
dmin (x)−dj (x)

)]
− dmin (x) ≤ 0, (8.2)

where J = 15mn is the number of distance tests between A and B.

The KS function produces a conservative estimate of the maximum value of its inputs while

preserving function smoothness and derivative information from almost-active inputs. As the min-

imum distance between the two objects approaches zero, the KS function returns a positive (in-

feasible) value to the optimizer. The level of conservativeness of the estimate can be adjusted by
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changing ρ. Higher values of ρ lead to a tighter spatial fit, but the problem may be more poorly

conditioned. As ρ → ∞, KSgeom → −dmin, but information from other close pairs of triangles

is lost. Refining the resolution of the spatial discretization of either surface without increasing ρ

generally makes the estimate more conservative. I explored alternative constraint aggregation ap-

proaches, such as the DIE [207, 208]; however, they do not provide a strictly conservative estimate

like the KS function.

The second constraint (intersection length) is calculated following the method of Moller [249].

First, intersections between pairs of triangles are detected, if any. Then, the line segment(s) Si

of intersection are computed. Finally, total length ` is obtained by summing all intersection line

segment lengths.

The minimum distances and intersections between two surfaces consisting of n and m trian-

gles, respectively, can be computed by performing O(nm) pairwise distance tests. This operation

is embarrassingly parallel, since none of the triangle-triangle comparisons depend on any of the

others. Because n and m are both on the order of 103 to 105, the distance tests must be efficient.

To obtain the desired computational performance, I considered using a compiled language

(such as FORTRAN) and incorporating branch logic with many early exits to avoid unnecessary

computations. I would then obtain gradients for optimization via an automatic differentiation (AD)

tool. An alternative approach for parallel problems is to use a graphics processing unit (GPU).

GPUs are so much faster than a central processing unit (CPU) for repetitive parallel tasks that

wasted computations may be acceptable and the intricate branch logic to avoid them may not be

necessary.

Researchers have sometimes avoided using GPUs in the past partly because of the steep learn-

ing curve. Fortunately, the maturation of machine learning frameworks has made GPU computing

substantially more accessible. TensorFlow is an open-source Python package originally devel-

oped at Google for machine learning workflows [250]. Since the majority of production machine

learning tasks are performed on specialized hardware rather than CPU, TensorFlow includes a
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Python application programming interface (API) providing access to fast mathematical routines

on GPUs. I verified speedups of 25–100 for typical vector and tensor operations (such as addition,

dot product, and min/max) compared to NumPy with Intel Math Kernel Library (MKL) on CPU.

Another compelling feature of TensorFlow is the built-in gradient computation. All mathematical

operations and most control flow operations have reverse-mode differentiated code built in. Ten-

sorFlow propagates reverse-mode derivatives of model outputs with respect to model inputs across

the graph of operations. I implemented the mathematical approach described in Section 8.2 as a

Python library using TensorFlow, under the working title geograd.

8.4 Aerodynamic Shape Optimization Subject to Geometric Con-

straints

To validate this general geometric integration constraint, I constructed three aerodynamic shape

optimization test cases of increasing complexity: a 2D fairing around a box for minimum drag, a

3D fairing around a cylinder for minimum drag, and a 3D fairing around a human avatar for

minimum drag.

8.4.1 Methodology

I performed all optimizations using the MACH framework [154]. MACH is a set of Python-,

FORTRAN-, and C++-based tools and utilities that provide all necessary geometry, aerodynamics,

and structural analyses to perform high-fidelity aircraft MDO. Individual components of MACH

are described in detail in previous publications [225, 251], but I briefly review the overall method-

ology here.

For aerodynamic analysis, I used ADflow, an open-source code that solves the RANS equations
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on structured overset meshes (though I did not use overset capability for this study) [252]1. I

used ADflow to evaluate drag and its sensitivities. The adjoint solver in ADflow computes the

gradients of output quantities (e.g., drag) efficiently, even for problems with thousands of design

variables [253]. Together, ADflow and the MACH framework have been used to perform transonic

wing optimization for minimum drag [225, 254–256], as well as aerostructural optimization [147,

148, 229].

Unlike wing optimization cases, the test cases for this chapter often go through intermedi-

ate designs with bluff-body aerodynamics during optimization. This primarily occurs due to the

cross-flow conditions included in the multipoint aerodynamic problem. Many RANS solvers have

trouble converging cases with separated flow. However, ADflow is particularly robust in solving

these intermediate cases.

ADflow’s robustness is attributable to the approximate Newton–Krylov (ANK) nonlinear solver

scheme [252]. The ANK solver uses a matrix-free approximate Jacobian formulation with the

pseudo-transient continuation method. Using ADflow with ANK, cases with heavy separation

in the flow-field may converge, improving the likelihood that the optimization will succeed. In-

termediate steps with difficult aerodynamic characteristics can also be avoided by utilizing trust

region methods, by carefully re-formulating the optimization problem into multiple subproblems,

or both. However, both of these approaches require intervention by an expert user. With ANK,

the user need not be as careful with problem setup. This enabled me to rapidly study the range of

challenging optimization problems presented in this chapter.

Two other open-source MACH tools, pyGeo 2 and IDWarp 3, provide geometric parameteriza-

tion and mesh deformation, respectively. pyGeo uses a free-form deformation (FFD) approach to

modify the surface mesh with respect to the design variables [228]. The FFD approach embeds sur-

face mesh vertices into a solid block, which deforms as geometric design variables change during

1https://github.com/mdolab/adflow
2https://github.com/mdolab/pygeo
3https://github.com/mdolab/idwarp
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optimization. Since only the surface mesh points are directly parameterized, changes in the surface

mesh must be propagated to the volume mesh. IDWarp accomplishes this mesh deformation using

an inverse distance mesh warping method similar to the method developed in Luke et al [257]. The

initial volume mesh itself is generated using pyHyp [251], which uses a hyperbolic volume mesh

marching scheme [258]. 4

pyGeo also contains a sub-module, DVConstraints, which computes nonlinear geometric con-

straints, such as thickness and volume constraints, based on the surface mesh geometry. I extended

DVConstraints with geograd to compute the general 3D geometry constraint described in Sec-

tion 8.2.

Finally, I used Sparse Nonlinear Optimizer (SNOPT) (Sparse Nonlinear OPTimizer) [259],

wrapped in pyOptSparse [223], as the nonlinear optimizer to drive the problem. 5 SNOPT is espe-

cially useful for large-scale problems with many design variables, and for problems with functions

that are expensive to evaluate. It has been used repeatedly for aerodynamic and aerostructural

optimization problems [225, 255]. A key feature of SNOPT for this study is that is can handle ob-

jective function evaluation failures. If an analysis code fails (such as a CFD convergence failure),

SNOPT reduces its step size and tries again. I used this feature to handle intersected cases. If the

geometry tool detects intersection between the CFD surface mesh and the constraint object mesh,

it returns a failure flag to SNOPT, which forces the optimizer to backtrack and try again with a less

aggressive step. This worked qualitatively well for us, since it avoids wasting an expensive CFD

evaluation.

I ran all optimization cases on a desktop computer with an Intel Core i7-6700K CPU (4 cores)

and an NVIDIA GeForce GTX 970 GPU. ADflow runs in parallel on the CPU, while the geometric

constraint framework runs on the GPU.
4https://github.com/mdolab/pyhyp
5https://github.com/mdolab/pyoptsparse
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Figure 8.6: FFD control points and initial surface mesh for 2D cases

8.4.2 2D Aerodynamic Shape Optimization Around a Box

I first demonstrated the new geometry constraint using a 2D aerodynamic shape optimization

problem. The objective function was to minimize multipoint average drag around a box at 0° and

10° crossflow angle. The starting surface mesh was a National Advisory Committee for Aero-

nautics (NACA) 0012 airfoil (Figure 8.7). The 2D parameterization consisted of 22 FFD points

providing fine shape control in the y axis (Figure 8.6), one variable to translate the entire volume

in the streamwise x direction, and one variable for chord in the x-axis.

I imposed symmetry in the y-axis to effectively obtain a −10° crossflow case without running

additional CFD cases. The optimization parameters are described in Table 8.1. To prevent negative

warped mesh volumes near the trailing edge in single point cases, I also included a line of point

thickness constraints at x/c > 99%. Throughout this chapter, CD is computed with respect to a

fixed reference area of 1 m2.

Figure 8.7: 2D multipoint optimization initial condition
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Variable Description Quantity
minimize avg(CD,α=0, CD,α=10) Average drag at 0° and 10° angle of attack

by varying: xFFDy y-axis shape control variables (free-form deformation) 22
xchord Streamwise chord length 1
xtranslate Streamwise translation 1

subject to xFFDy,lower = −xFFDy,upper Symmetry across y-axis 11
KSgeom ≤ 0 Aggregated min. distance (spatial feasibility cond. 1) 1
` = 0 Nonintersection (spatial feasibility cond. 2) 1

at condition M = 0.3
Re = 6× 106

Sea level, standard day

Table 8.1: 2D aerodynamic shape optimization parameters

I ran five cases with varying spatial tightness parameter ρ, as shown in Figure 8.8. Table 8.2

shows that as spatial tightness is increased, the potential drag reduction increases, with diminish-

ing returns at large (tight) values of ρ. I also found that tightening spatial tolerances increased

computational cost by about 50%. As ρ increases, the local curvature (nonlinearity) of the function

increases, which reduces the accuracy of the optimizer’s quasi-Newton step. A second effect of

large ρ is that the KS contribution from nearby facets becomes large compared to distant segments.

Floating point errors round the contributions of distant segments to zero in the constraint Jacobian,

which becomes sparser as a result. Both of these effects degrade optimizer performance.

Case Time (min) CFD evals CD ∆CD
Baseline – – 0.01069 –
ρ = 200 130 40 0.01170 +9.4%
ρ = 300 131 42 0.01026 −4.0%
ρ = 600 123 56 0.00887 −17.0%
ρ = 900 185 80 0.00842 −21.2%
ρ = 1200 194 82 0.00820 −23.3%

Table 8.2: Drag reduction potential increases with tighter spatial integration tolerance ρ
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Figure 8.8: 2D multipoint minimum drag results for varying spatial tolerances (ρ)

8.4.3 3D Aerodynamic Shape Optimization Around a Simple Surface of

Revolution

For a simple 3D test, I defined single-point (0°) and multipoint (0° and 20°) drag minimization

cases. I created a starting surface mesh consisting of a NACA 0012 airfoil revolved around the

streamwise (x) axis (Figure 8.10). The structured surface and volume meshes consisted of 1802

and 237762 cells, respectively. The 3D parameterization consists of 192 FFD points which provide

fine shape control along the y-axis (Figure 8.9a), and an additional 17 parameters providing degrees

of freedom in the x and z axes. I imposed symmetry in the crossflow (x-y) plane to effectively

obtain a −20° crossflow case without running additional CFD cases. The optimization parameters

are described in Table 8.3.

Figure 8.11 shows the optimized shape for the single point case. The drag decreased 29.3%
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(a) FFD control points and initial surface mesh

(b) Constraint geometry for human cases

Figure 8.9: Geometry for 3D optimization cases

Variable Description Quantity
minimize avg(CD,α=0, CD,α=20) Average drag at 0° and 20° angle of attack (multipoint), or

CD,α=0 Drag at 0° angle of attack (single point)

by varying xFFDy y-axis FFD shape control variables (free-form deformation) 192
xchord Streamwise chord length of “airfoil” slices along z-axis 8
xtranslate Streamwise translation of “airfoil” slices along z-axis 8
xspan “Span” along z-axis 1

subject to xFFDy,left = −xFFDy,right Symmetry across y-axis 96
KSgeom ≤ 0 Aggregated minimum distance (spatial feasibility condition 1) 1
` = 0 Nonintersection (spatial feasibility condition 2) 1

at condition M = 0.3
Re = 6× 106

Sea level, standard day

Table 8.3: 3D aerodynamic shape optimization parameters
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Figure 8.10: 3D ASO starting point: NACA 0012 surface of revolution enclosing a cylinder

compared to the baseline single point case. The optimized shape is a long fairing with relatively

tight leading edge curvature. The tightly curved leading edge is characteristic of single point aero-

dynamic shape optimization, since robustness to varying flow conditions is not required. Even

though the problem is parameterized in a Cartesian frame, the finished shape is almost perfectly

axisymmetric, as we would expect from a rotationally symmetric spatial constraint and flow con-

dition.

Figure 8.11: 3D single point minimum drag result for cylinder, ρ = 1200

Figure 8.12 shows the optimized shape for the multipoint case. Drag decreased 52.2% com-

pared to the baseline multipoint case. The optimized shape has a gently rounded nose and broader
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aft body closure angle, which visually matches the crossflow condition. Compared to the sin-

gle point case, the crossflow condition has added thickness in the x-y plane and reduced length

overall. The rounder nose and extra thickness-to-chord ratio both help improve resistance to flow

separation at the crossflow condition. Visually, the x-y thickness is not required simply for spatial

integration reasons, but the x-z plane generally tightly conforms to the cylinder. This illustrates

that it is not evident a priori whether geometric constraints will be active for a particular problem;

physics and geometry are strongly coupled.

Figure 8.12: 3D multipoint minimum drag result for cylinder, ρ = 1200

8.4.4 3D Aerodynamic Shape Optimization Around a Human Avatar

Finally, I set up single and multipoint optimization cases where the geometry to be enveloped

is that of a person in a seated position, with parameters identical to the previous case (Table 8.3).

I exported a high-resolution model of an average U.S. adult in a seated driving position to a
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stereolithography file (STL) using the University of Michigan Transportation Research Institute’s

(UMTRI) online tool6 [260]. I then resized and reduced the complexity of the triangulated mesh

using Autodesk Meshmixer7 and imported it directly into the optimization environment; the final

mesh (Figure 8.9b) had 626 triangles. Figure 8.13 shows the initial condition of the optimization.

Figure 8.13: 3D ASO starting point: NACA 0012 surface of revolution enclosing human avatar

Figure 8.14 shows the optimized shape for the single point case. The drag decreased 61.3%

compared to the grossly oversized baseline single point case. The optimizer generated a rounded

leading edge and an elongated trailing cone with moderate closure angle. In this case, the rotational

asymmetry is due to the asymmetric constraint geometry, not the flow condition.

Figure 8.15 shows the optimized shape for the multipoint case. Drag decreased 78.5% com-

pared to the grossly oversized baseline multipoint case. Compared to the single point case, we

see an even blunter leading edge and dramatically shorter overall length. The result is an even

larger thickness-to-chord ratio, which reduces drag in the crossflow condition. The multipoint case

benefits more from shape optimization than the single point case. This may be due to in part to

the better relative performance of the initial NACA 0012 geometry in oncoming flow compared to

significant crossflows.

I then tightened the spatial tolerance and re-ran the multipoint case. Figure 8.16 shows that the

6http://humanshape.org/
7http://www.meshmixer.com/
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Figure 8.14: 3D single point minimum drag result for human, ρ = 1200

spatial fit has tightened significantly compared to Figure 8.15. There is a noticeable decrease in

frontal area of the fairing. Drag decreased an additional 16% compared to the ρ = 1200 case. This

illustrates the direct design tradeoff between spatial requirements and aerodynamics.

8.5 Concluding Remarks

Geometric (or spatial) integration constraints have been a barrier to industrial adoption of high-

fidelity MDO for vehicle design applications. Existing geometric constraint techniques are limited

in their ability to capture complex geometries. I reviewed the state-of-the-art in packing opti-

mization problems and identified gaps that prevent existing methods from being directly applied

to aerospace MDO. I then developed a mathematical approach for imposing spatial integration

constraints based on triangulated surfaces and constraint aggregation using the KS function. This

allows practitioners to specify geometric design intent, even for complex geometries, in an intu-
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Figure 8.15: 3D multipoint minimum drag result for human, ρ = 1200

itive and visual way. The method is general, differentiable, and efficient, making it suitable for use

with gradient-based optimization with high-fidelity simulation tools.

I demonstrated the performance of the method by minimizing drag for three test geometries of

increasing complexity. Drag decreased by 30% to 80% compared to the initial designs. Multipoint

aerodynamic problems with crossflows benefited more from shape optimization. Tightening spatial

tolerances reduced drag further, as expected. By varying the spatial tolerance ρ, designers can

perform high-fidelity trade studies to quantify the value of tighter systems or payload packaging.

All optimizations, including the multipoint 3D cases, were run on a desktop computer in less

than 24 hours, placing the shape optimization capability in reach of typical MDO engineers. This

new constraint formulation is a major improvement over point thickness geometric constraints and

an important step towards solving aircraft systems packaging MDO problems.

This material was previously published [261] and has been lightly edited and formatted.
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Figure 8.16: 3D multipoint minimum drag result for human, ρ = 3000
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CHAPTER 9

Aerodynamic Shape Optimization of a Wing

Considering Battery Packaging

9.1 Introduction

The previous chapter introduced a novel way of posing spatial constraints in shape optimization

problems, and demonstrated aerodynamic shape optimization subject to fixed, arbitrary geometric

constraints. I demonstrated through the test cases that the constraint formulation can success-

fully handle high-fidelity aerodynamic shape optimization cases with simple or complex geometry.

However, in Chapter 8, I only varied the shape of the outer aerodynamic surface during optimiza-

tion, not the shape of the inner object. Varying both the outer surface and inner component(s) is

necessary for fully coupling aerodynamics and systems components through spatial integration.

In this chapter, I demonstrate an MDO problem coupling both systems design and aerodynamic

shape. The case study involves designing the wing and battery pack of a notional electric aircraft

for maximum range.
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9.2 A Brief Review of High-Fidelity Design Optimization of

Electric Aircraft

Electric propulsion introduces new components, such as batteries and power electronics, and

opens many new questions about how airplanes ought to be configured. Are batteries best installed

inside the wing box, or in the fuselage? What is the optimal tradeoff between battery volume and

aerodynamic efficiency? What is the optimal motor diameter for distributed propulsion along a

wing? Each of these questions can be answered with a high-fidelity MDO trade study involving

both outer mold line shape, and inner component layout and sizing. However, because of the

limited flexibility of spatial constraints used in current MDO practice, these types of trades are

difficult to do today.

Various authors have performed MDO trade studies of electric aircraft at a conceptual level

of fidelity[1, 17, 27, 160]. Hwang and Ning [163] modeled and optimized a battery-powered air-

craft similar to the NASA X-57 using moderate-fidelity conceptual tools implemented in NASA’s

OpenMDAO framework [155]. Battery sizing was considered but not the actual geometry. Gray et

al. [157] optimized the STARC-ABL turboelectric concept’s aft body propulsor using CFD. Other

authors have optimized battery cells and battery packs using multiphysics models including elec-

trochemical models [133], convective cooling models including CFD [262, 263] and structural fi-

nite element models [264]. However, prior to the work in this Chapter, no published work explored

optimal battery layout and geometry for aircraft including high-fidelity aerodynamic coupling.

9.3 Improvements to the Constraint Implementation

Following the proof-of-concept work detailed in Chapter 8, I made substantial improvements

and extensions to geograd. The geograd revision level used in Chapter 8 computed derivatives

with respect to one surface mesh only. Following updates for this chapter, geograd computes
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derivatives with respect to both surfaces simultaneously. This is required for problems where both

surfaces may change in shape during optimization.

I also implemented better computational scaling on CPU-based environments. Previously,

geograd used only GPU acceleration to provide rapid evaluation of the large number of pair-

wise computations. Since I anticipate using mostly CPU-based high-performance computing re-

sources, I data-parallelized geograd across an arbitrary number of MPI processes when no GPU

is available. geograd breaks up object A’s mesh and distributes it across each process, perform-

ing pairwise computations locally and then reassembling aggregate values and gradients across

all processes later. This MPI parallel implementation runs significantly faster than TensorFlow’s

multithreaded CPU implementation on a single computer.

9.4 Coupling Systems Design, Aerodynamics, and Spatial Inte-

gration: A Validation Study

Aircraft design with electric propulsion provides a timely test problem for fully-coupled sys-

tems sizing and aerodynamic design. Let us consider a transport aircraft with conventional wings

and all-electric propulsion. For battery-powered aircraft, a modified Breguet equation provides an

estimate of range [9, 17, 24]

Rb =
L

D
ηeηintηp

eb
g

mb

mTO

. (9.1)

where ηe is the total electrical efficiency of the propulsion system, ηint is efficiency loss due to

propulsion integration, ηp is the propulsive efficiency, eb is the battery specific energy, g is the

gravitational constant, and mb/mTO is the ratio of battery weight to takeoff gross weight.

Assuming fixed mTO (i.e., trading payload for batteries) and focusing only on terms which
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vary significantly during aerodynamic shape optimization, I have:

Rb ∝
L

D
mb ∝

L

D

Vb
ρb

(9.2)

where Vb and ρb are battery volume and mass density, respectively. However, adding range is not

as simple as adding battery volume, since L/D and battery volume are coupled through spatial

integration. If the aircraft OML is constrained by battery shape, L/D will tend to decrease as

battery volume increases. Lithium-ion batteries are much denser than jet fuel (in terms of mass

per volume) and a wing enclosing them is likely to be weight-limited rather than volume-limited.

However, emerging battery chemistries such as Li-S and Li-air are expected to have similar mass

density to jet fuel [265, 266]. Combined with the need for higher weight fraction to achieve useful

range, these alternative chemistries are much more likely to experience wing volume limitations.

Furthermore, in high fidelity, the specific location of the batteries will have a large effect on range

(it is generally more efficient to add volume at the root of a wing than at the tip).

I constructed a multi-point (2 flight condition) optimization problem as described in Table 9.1.

The subsections below will describe variations on this general problem: in particular, single-

versus multi-point optimization and restrictions on battery geometry. The optimizations were per-

formed using the MACH framework [154, 225]. The computational methodology was very similar

to Chapter 8. Notably, I used the open-source ADflow1 adjoint RANS solver to efficiently evalu-

ate drag and its sensitivities with respect to geometric design variables [252, 267]. For geometric

parameterization, I use pyGeo’s2 free-form deformation (FFD) approach [228]. The starting wing

geometry is similar in dimensions to a DC-9 planform, albeit with a more-modern RAE 2822

transonic airfoil. The wing was parameterized with 96 independent free-form deformation con-

trol points (Figure 9.1). After a mesh refinement study, I selected a mesh with 816,392 volume

1https://github.com/mdolab/adflow
2https://github.com/mdolab/pygeo
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Variable Description Quantity
maximize L

DVb Range, averaged from flight conditions 1 and 2

by varying xbatt,geom Battery FFD geometry varies
xFFD,wing Wing airfoil section geometry 96
xtwist,wing Twist distribution along wing axis 7
α Angle of attack 2

subject to CL,fc1 = 0.5 Lift constraint at flight cond. 1 1
CL,fc2 = 0.4 Lift constraint at flight cond. 2 1
KSgeom ≤ 0 Battery packaging feasibility (min. distance) 1
` = 0 Battery packaging feasibility (nonintersection) 1
twing ≥ 0.5 Wingbox thickness no less than half of baseline 1

at condition M = 0.8
h = 10000 m
standard day

Table 9.1: Battery packaging shape optimization parameters

Figure 9.1: Wing geometric parameterization control points

cells. I used SNOPT (Sparse Nonlinear OPTimizer) [259], wrapped in pyOptSparse3 [223], as the

nonlinear optimizer to drive the problem.

I ran all optimization cases on single 48-core Skylake nodes on the Texas Advanced Com-

puting Center (TACC) Stampede2 high-performance computing (HPC) cluster. Both ADflow and

geograd (the geometric constraint package) are MPI parallelized with one process per physical

3https://github.com/mdolab/pyoptsparse
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core.

Baseline
Multipoint
Conformal

Multipoint
Rectangular

Singlepoint
Conformal

Objective (VbL/D) 187.82 305.59 254.97 314.05
Battery volume (m3) 7.560 12.18 10.31 12.29
Opt. wall time (one node, h) 68.7 73.5 16.0
Flight Condition 1
CL 0.5000 0.5000 0.5000 0.5000
CD 0.0214 0.0199 0.0203 0.0196
CM 0.7593 0.7160 0.7301 0.7347
L/D 23.35 25.09 24.67 25.55
Flight Condition 2
CL 0.4000 0.4000 0.4000
CD 0.0152 0.0159 0.0161
CM 0.6292 0.587 0.601
L/D 26.34 25.10 24.77

Table 9.2: Summary of optimization results

9.4.1 Conformal Battery

For the first case, I created an initial battery geometry by trimming the leading and trailing

edge of the starting wing and reducing its thickness slightly, producing a shape which conforms

to the wing. I used the same set of 96 FFD control points illustrated in Figure 9.1 to parameter-

ize the battery (although its optimizer design variable values are independent of the wing). I then

optimized the wing and battery using the multi-point problem formulation listed above. The opti-

mization was considered converged once SNOPT’s optimality metric was reduced three orders of

magnitude. Table 9.2 shows high-level results from the optimization run, which took 68.7 hours

on one TACC Skylake node. The range quantity increased by 62.7% compared to the baseline

design. Figure 9.3 shows a before-and-after comparison of pressure, lift, and twist distribution,

airfoil section geometry, and battery section geometry. The optimizer greatly increased inboard

wing thickness. Outboard of the battery pack end, the wing was reduced to minimum thickness.
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The battery, although parameterized independently from the wing, fits tightly to the wing upper

and lower surfaces with very small gaps.
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Figure 9.2: Optimization histories for conformal and rectangular battery problems

9.4.2 Rectangular Battery

Because today’s batteries are generally composed of cylindrical cells of finite size, it is likely

that arbitrary battery curvatures cannot be achieved. To explore the effect of geometric restrictions

on battery design, a second initial battery geometry was created by flattening the upper and lower

surfaces of the battery box from the previous problem, which produced a shape with no initial cur-

vature. I then split the flattened battery into three separate sections, each with two thickness design

variables (one upper, one lower) at all eight spanwise stations. This geometric parameterization

effectively provides thickness and vertical shear only, eliminating chordwise curvature during op-

timization. The optimization converged three orders of magnitude in 73.5 hours on one node and

increased the range quantity by 126% (Figure 9.4). The large amount of improvement is partly

attributable to the small starting battery volume.
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Figure 9.3: Multi-point optimized battery geometry and aerodynamic data compared to baseline

The optimizer again greatly increases inboard thickness and reduces thickness outboard of the

battery end. The corners of the batteries fit tightly to the boundaries of the wing cross sections.

Figure 9.5 shows the rectangular battery optimized shape compared to the conformal battery opti-

mized shape. There are some subtle differences in wing thickness and shear, but overall the shapes

are remarkably similar. Using conformal batteries resulted in a 20% improvement in the range
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Figure 9.4: Multi-point optimized rectangular battery pack geometry and aerodynamic data com-
pared to baseline

quantity compared to the rectangular restriction.

Figure 9.2 shows the value of the objective function for both problems as optimization pro-

gresses. The conformal battery problem converges somewhat earlier (as I saw with wall time).

This is likely due to the box corners and edges in the rectangular problem, which makes the KS-
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Figure 9.5: Optimized conformal battery pack compared to rectangular

aggregated distance more nonlinear in the design space near the optimal point. Both optimization

histories show non-monotonically increasing objectives early on. This is attributable to SNOPT’s

use of a penalty to force the problem to become feasible. As the problem becomes feasible, the

penalty term contributes less to the problem and objective function convergence becomes mono-

tonic.
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9.4.3 Effect of Multiple Flight Conditions

I ran an additional optimization case for a conformal battery considering a single flight condi-

tion. Some ASO problems produce non-physical results (such as sharp leading edges and shock-

free designs) when optimized for a single flight condition. However, in this case, I saw only slight

differences in optimized geometry between the single-point and multi-point cases (Figure 9.6). I

speculate that the objective function favors preserving volume and thickness in the leading edge,

preventing non-physical sharp leading edge solutions even for single-point optimization runs.
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Figure 9.6: Single-point optimized conformal battery compared to multi-point

9.5 Concluding Remarks

In this chapter, I built on my earlier geometric constraints work by performing optimization

with both inner and outer geometries changing at the same time. This introduces coupling between

aerodynamics and propulsion systems via spatial integration. I optimized the wing of an electric
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aircraft for maximum range as a validation case, and was able to find the optimum tradeoff between

battery volume and aerodynamic performance. I found that, for this volume-limited transonic

problem, allowing batteries to conform more closely to the curvature of the wing skins improves

range by about 20% versus a purely prismatic battery pack shape. These results show that the

KS-based spatial integration constraint formulation can successfully couple multiple disciplines

via spatial integration in high fidelity.

The material in this chapter was previously published [268] and has been lightly edited and

formatted.
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CHAPTER 10

Aerostructural Optimization of a Wing for a

Hydrogen Aircraft

10.1 Introduction

As demonstrated many times in this dissertation, one of the most pressing technical challenges

in electric propulsion is increasing range capability. The limited specific energy of today’s batter-

ies (on the order of 200 Wh kg−1) [17] places unacceptable limits on design range for important

applications, such as single-aisle commercial air transport. With continued progress in battery

technology, hybrid-electric designs can exploit electric motors to reduce weight, fuel burn, cost,

and drag [17], but they still consume fuel and remain a point source of carbon dioxide (CO2)

emissions.

Hydrogen fuel may be an attractive alternative because it can alleviate the range issues of

battery-electric propulsion without producing point-source CO2 emissions. Fuel cells consume

hydrogen and produce electricity, emitting only water vapor [33]. Alternatively, hydrogen can

be burned in specially-adapted engines, emitting water vapor and trace nitrogen oxides [269]. If

the hydrogen is produced cleanly (e.g., through electrolysis powered by renewable energy), it can

achieve CO2-free flying. While the impact (and potential mitigation) of high-altitude water vapor

emissions on climate change is not entirely clear, eliminating CO2 emissions would be a significant
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step towards greener aviation.

In this chapter, I introduce an optimization-based method for integrating compressed hydrogen

fuel into a wing with minimum weight and drag penalty. It is important to remember that this is not

a hydrogen aircraft design study per se, but rather validation that the spatial constraint formulation

developed in Chapters 8 and 9 performs well on a relevant wing design problem with multiple

high-fidelity analysis disciplines. I do not claim to have designed a feasible or desirable airplane

at the top level (e.g., I do not consider fuselage design or propulsor design). I also do not claim

that design trends observed on this test case are generalizable to other potential hydrogen aircraft

configurations.

10.2 A Brief Review of Hydrogen Aircraft Propulsion

Hydrogen fuel in aviation has a surprisingly long history. Soon after liquid hydrogen was

first produced for the space program, the NACA experimented with hydrogen combustion aircraft

concepts. Silverstein and Hall [270] proposed using hydrogen fuel for a subsonic high-altitude

bomber (Figure 10.1) in a declassified 1955 NACA research memo. Even then, it was apparent that

integrating the enormous hydrogen tanks into the aircraft would be a significant challenge. From

1957 to 1959, NACA flew a B-57 Canberra bomber (Figure 10.2) converted to run one engine using

liquid hydrogen fuel [271]. The airplane was able to transition from jet fuel to hydrogen and back

again on numerous successful flights. The pilots noted that the hydrogen-powered engine tended to

leave contrails even when the kerosene-powered engine did not. Simultaneously, Kelly Johnson’s

Skunk Works was seriously considering building a hydrogen-powered supersonic bomber [271].

The study airplane, known as the CL-400 Suntan, was canceled by 1958, but the government

learned valuable insights on the safe handling of hydrogen fuels.

After the cancellation of the CL-400, hydrogen aviation fuel was not seriously pursued op-

erationally again. However, the concept is experiencing a renaissance. In the last two decades,
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Figure 10.1: The Silverstein–Hall subsonic bomber concept, which used liquid hydrogen tanks in
both the wing and fuselage [270]

Figure 10.2: NACA’s converted B-57 testbed, which used liquid hydrogen to power one en-
gine [271]

prototype hydrogen-powered aircraft have been built and flown, including the Hy4 [272] and Boe-

ing Fuel Cell Demonstrator [33]. NASA has also funded a university consortium to examine liquid

hydrogen propulsion for transport aircraft applications [269]. Finally, the concept seems to be gain-

ing some traction in industry, with both startups (ZeroAvia) and incumbents (Airbus) promoting

hydrogen as environmentally-friendly alternatives to petroleum fuels [269].

Notwithstanding hydrogen’s very high energy mass density, its volumetric density under nor-

mal conditions is much lower than jet fuel [269]. Commercial aircraft carry the vast majority
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of their fuel in sealed wing tanks without significant aerodynamic penalty; hydrogen at ambient

pressure is volume-limited in the same space. Therefore, while hydrogen alleviates some of the

weight challenges of green aviation concepts, it creates a new spatial integration challenge. As

demonstrated in Chapters 8 and 9, packing optimization is a promising way of incorporating spa-

tial integration requirements into aircraft trade studies.

10.3 Problem Description

This work extends the wing packing design optimization problem described in the previous two

chapters to the aerostructural domain. Neither of the previous examples involved multidisciplinary

physics (e.g., aerodynamic and structural design), and the complexity of the packing problem was

simple compared to problems of broader industrial interest. A packing problem with both high-

fidelity multidisciplinary physics and many objects to pack has not yet been demonstrated.

Considering structure complicates the wing packing optimization problem in three primary

ways. First, the structural analysis enables the airplane model to vary both weight and drag, likely

producing a different optimal design than when considering aerodynamics alone. Second, struc-

tural members such as spars and ribs significantly increase the packing problem’s complexity com-

pared to considering the wing OML only. Finally, each optimization iteration’s computational cost

significantly increases because an iterative solution to the aerostructural problem is now required,

and a coupled adjoint must also be computed.

10.3.1 Wing Description

The baseline wing design is representative of a simple, single-aisle transport aircraft and is

identical to the wing featured in the University of Michigan MDO Lab aerodynamic shape opti-

mization tutorial1. The wing planform is modeled after the Douglas DC-9, except with RAE2822

1https://github.com/mdolab/mach-aero
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transonic airfoils at baseline. The wingbox front and rear spar locations generally approximate

the proportions of the DC-9 wing structure (Figure 10.3). I generated a conventional wingbox

structural layout with 18 evenly-spaced rib bays and 8 stringers between the spars. The stringers

each run all the way out to the end of the wing box. The cruise condition is Mach 0.8 at 10,000 m

Figure 10.3: Wingbox structural mesh overlaid on OML planform

altitude. The baseline weight at cruise is 54,900 kg, which equates to approximately CL = 0.5. I

compute structural loads at a 2.5 g static condition, flown at Mach 0.75 and 5,000 m altitude.

10.3.2 Tank Description

Unlike the previous wing problem that featured a battery, I optimize a set of seven hydrogen

tanks in each wing root (one per rib bay). The 700 bar compressed hydrogen tanks are cylindrical

with spherical end caps. Each tank can vary in radius and length, with additional variables to

position each tank relative to its rib bay (Figure 10.4). The tanks consist of optimized carbon fiber

reinforced polymer (CFRP) laminate.
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Figure 10.4: A representative compressed hydrogen tank with design variables labeled

10.4 Methodology

To perform aerostructural analysis and design, I used the MACH framework [147]. The

MACH framework integrates several high-fidelity analysis tools with geometry engines while

propagating design variable derivatives [154]. The subset of aerodynamic shape optimization tools

is open-source and freely available.

10.4.1 Aerostructural Analysis

I used the open-source ADflow solver for aerodynamic analysis and derivatives [267]. ADflow

is a structured, multiblock, overset RANS solver with discrete adjoint gradients. I use the Spalart–

Allmaras turbulence model and an approximate Newton–Krylov solver for this problem [252].

The aerodynamic mesh (Figure 10.5) consists of approximately 800,000 volume cells and was

generated using pyHyp [251], an open-source implementation of the hyperbolic scheme described

by Chan and Steger [258]. The aerodynamic solver settings and mesh are virtually identical to

those in the MACH aerodynamic shape optimization tutorial.

For structural analysis, I use the open-source finite element solver TACS [273]. TACS com-
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Figure 10.5: Aerodynamic surface mesh pictured with FFD control points

putes efficient adjoint derivatives with respect to the structural sizing (thickness) variables and

geometry. The structural mesh consists of 7,632 CQUAD4 elements (Figure 10.3), with explicitly-

modeled stringers. I only performed a linear static analysis in this scenario, though TACS supports

geometric nonlinearity and buckling.

Because structural deflections affect the aerodynamic surface and vice-versa, an aerostructural

solver is required. I use a block Gauss–Seidel approach to solve the aerostructural analysis and a

Krylov method to solve the coupled adjoint [154].

10.4.2 Geometry

I use two different geometry engines in this problem; one for the wing and one for the hydrogen

tanks. The wing was parameterized using the free-form deformation (FFD) method [274] using

the open-source implementation in pyGeo [228]. The FFD volume (Figure 10.5) is identical to the

one generated in the MACH aerodynamics tutorial and contains 96 design variables. Both the CFD

surface mesh coordinates and the structural elements are embedded in the same FFD volume, so

geometric displacements are always consistent between the two. CFD surface mesh displacements

are propagated to the volume using IDwarp, an open-source implementation of the inverse-distance

weighted warping scheme from [257].
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I use a different approach to parameterize the tank geometry. An initial triangulated represen-

tation of each tank surface is generated using Engineering Sketch Pad (ESP) [275], an open-source

computer-aided design (CAD) application. Using a Python wrapper around ESP’s OpenCSM li-

brary, I map each point on the tank surface onto the CAD B-spline surface in parametric coordi-

nates and save the result. When the geometry is perturbed, I retrieve a new set of surface mesh

points using the same parametric coordinates. This way, the topology of the mesh is preserved

across geometric perturbations. A more detailed account of the ESP geometry engine is included

as Appendix C. The design variables are as pictured in Figure 10.4—five variables per tank, for a

total of 35.

Gradients with respect to geometric design variables are computed using a parallel finite differ-

encing approach. Since the aerostructural design optimization is done in a HPC environment with

100 or more available cores, I can perform finite differences across dozens of geometry variables

without incurring much cost in terms of wall time (a few seconds). The advantages of using this

open-source CAD package were readily apparent at several points. For example, I was able to edit

the source to suppress certain console output, which, while useful in interactive mode, clogs the

output when running dozens of instances simultaneously. Open source code also made the Python

wrapper possible, which was indispensable for this project.

Like the study in Chapter 9, spatial integration constraints are computed using the software

package geograd. The software computes two metrics for each pair of objects to be packaged:

the KS aggregated distances between all the triangular facet pairs and the length of the intersection

curve(s) between the two objects (if any). As detailed in Chapter 8, when adequately constrained

in the optimization these metrics produce spatially-feasible packing solutions. Because minimum

distance computations on geometry have poor scaling properties when done naively, careful atten-

tion to detail is required in the implementation.

There is a tuning parameter, ρ in the KS function, which controls how conservative the con-

straint aggregator is. Choosing a larger ρ gives a more exact result for the constraint, but it increases
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the constraint curvature. Excessively-large ρ will prevent the optimizer from taking efficient steps

near the active zone due to the aggressive curvature. Unless otherwise specified, I used ρ = 250

for all the described cases below.

The TensorFlow implementation in the previous work was well-suited to a desktop environment

with a GPU; however, its CPU runtime was not scaling well. For this study, I re-implemented the

TensorFlow-based geograd described in Chapters 8 and 9 in FORTRAN for improved perfor-

mance. The new Fortran implementation enables orders of magnitude speedup via heuristics such

as bounding-box testing. I compute derivatives of the outputs with respect to surface mesh inputs

using the Tapenade automatic differentiation tool [276]. I wrapped the Fortran codebase in Python

using the f2py utility [277]. The details of the software implementation, performance benchmarks,

and scaling data are included in Appendix B.

10.4.3 Optimization

To solve the MDO problem, I use the gradient-based nonlinear optimizer SNOPT 7.7.5 [222,

278]. SNOPT is wrapped with the Python interface pyOptSparse [223]. I exploit a unique feature

of SNOPT in this problem. In my experience, optimizers often take steps that are too big early on

in a packing problem, before a good quasi-Newton estimate of the constraint curvature is built up

in the optimizer. To prevent unreasonably large steps from consuming wall time, geograd passes

a ”fail” flag to SNOPT if any packing objects intersect by more than a moderate tolerance during

a step. When this happens, I also prevent the aerostructural solution or adjoints from running.

SNOPT then backtracks by a factor of ten and continues. Significant time savings can be achieved

this way.

Because I am using constraint aggregation for both the structural failure constraints and spatial

integration, the optimization problems have aggressive curvature near the optimum. This is a

challenging scenario for the optimizer. The optimizer computes an internal optimality criterion,

and it usually expects this figure to drop by six orders of magnitude for successful convergence. I
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found qualitatively that the optimality metric stays artificially high when constraint aggregation is

used, preventing the optimizer from a “normal” exit. Criteria for run convergence in this chapter

include:

• Optimality metric on the order of 10−3 or less

• Feasibility metric on the order of 10−4 or less

• Diminished continued improvement (per-iteration improvement on the order of 0.01%)

I ran the cases using two or three Intel Skylake nodes on the Stampede2 supercomputer at the

University of Texas—a total of 96 to 144 physical processors.

10.5 Results

This section contains a progression of optimization results for the wing-tank problem with

increasing complexity. First, I kept the wingbox fixed and optimized the tank shape only for

maximum volume. Next, I allowed the wing outer mold line to vary, but considered only packing

and aerodynamics, and minimized drag subject to a fuel volume constraint. Then, I ran a series of

aerostructural optimization cases with all design variables active.

10.5.1 Optimizing Tank Shape Only

As a simple test, I exercised the CAD-based tank geometry by maximizing the volume of the

tanks Vtank within the baseline wing box. Since there was no high-fidelity analysis in the loop, I

used a Linux desktop for this case. Because there were fewer design variables and constraints,

I chose a slightly more aggressive ρ = 300. I found that the maximum achievable volume was

approximately 1.718 m3 and the optimizer converged without difficulty. Table 10.1 lists the design

variables, objective, and constraints and Figure 10.6 illustrates the resulting geometry (in black).

The tanks expand to efficiently fill the wingbox, as expected.
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Quantity Lower Upper Scaling
maximize Vtank 1 1.0
with respect to Tank radius 7 0.14 m 3.0 m 0.1

Tank length 7 1.0 m 2.5 m 0.1
Tank x-y offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 35

subject to Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 14

Table 10.1: Problem formulation: tank shape optimization for maximum volume

Figure 10.6: Solutions to the volume maximization and minimum drag subproblems

10.5.2 Optimizing Wing OML and Tank Shape

Next, I increased the degree of difficulty substantially by adding aerodynamic physics. I added

the angle of attack and outer mold line shape variables to the problem and include a constraint
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Quantity Lower Upper Scaling
minimize D 1 1.0
with respect to Angle of attack 1 0 ° 10 ° 0.1

Sectional shape 96 −0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank x-y offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 132

subject to L−W (cruise) 1 0 N 0 N 1/W
Vtank 1 2.4 m3 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 116

Table 10.2: Problem formulation: aerodynamic shape optimization of wing and fuel tanks for
minimum drag

balancing lift L and weight W (a notional cruise condition). Because they have entirely separate

geometric parameterizations, the inner tanks and OML are only coupled via the spatial integration

constraints. The objective is to minimize drag D subject to a minimum hydrogen fuel volume

constraint of 2.4 m3 (arbitrary, but intended to push out the OML a reasonable amount). The KS

parameter ρ remains at 300 for comparison to the volume-only case. The problem summary is in

Table 10.2 and the optimization result is included in Figure 10.6 (in blue). We see that the inboard

OML grows substantially to accommodate larger diameter tanks. The optimizer strategically adds

thickness near the aft spar to allow tanks to expand rearward. The far outer part of the wing is

constrained by minimum thickness.

10.5.3 Aerostructural Optimization at Fixed Tank Volume

This case adds structural analysis, including a 2.5 g maneuver condition (Figure 10.8), and

structural design variables to the previous problem. In the absence of a whole-airplane performance

model, this aerostructural optimization is a multiobjective problem between wing weight and drag.
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I choose 2mwing, struct +D as a reasonable compromise objective function. Table 10.3 describes the

problem formulation.
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Figure 10.7: Increasing fuel storage in the wing requires an aerostructural penalty, though aero-
dynamics and structure move in opposite directions

Consider an aircraft design team that wishes to know how adding fuel volume in the wing

might affect weight and aerodynamic performance. This is an important piece of information

when deciding how to allocate fuel throughout the whole airplane. We can answer this problem

using packing optimization. I ran the problem in Table 10.3 at several fuel volume requirements,

from 2.0 to 2.6 m3. Figure 10.7 shows how the aerostructural performance of the airplane changes

as fuel volume is added. At 2.2 m3 or less, the wing aerostructural optimum has enough room

to accommodate the tanks without affecting the design. At 2.4 m3 tank volume and above, the

optimizer can no longer accommodate the tanks without pushing out the OML, incurring a sharp

rise in drag. The drag increase is partially offset by a structural weight decrease due to the increased

structural depth at the side-of-body.

This example illustrates why it is essential to consider multiple disciplines when evaluating

spatial integration tradeoffs. Without optimization, engineers would need to perform laborious
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analysis and iterate internally to achieve a good result. Using an optimization framework, each of

the runs used 400 to 600 core-hours on the HPC (four to six hours wall time each). If the cases run

in parallel on an in-house or cloud HPC service, it is easily conceivable that the data for this trade

study could be collected and analyzed in one working day.

Figure 10.9 illustrates the solution for 2.4 m3 fuel volume (in black).

Figure 10.8: Aeroelastic solutions at the cruise and maneuver conditions

Figure 10.9: Solutions to the aerostructural problem with and without considering the weight of
the tanks
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Quantity Lower Upper Scaling
minimize 2mwing, struct +D 1 1.0
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 −0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank x-y offset 14 −0.2 m 0.2 m 0.1
Tank tilt 7 −1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to L−W (cruise) 1 0 N 0 N 1/W
L− 2.5W (maneuver) 1 0 N 0 N 1/W
Vtank 1 various m3 1.0
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 120

Table 10.3: Problem formulation: aerostructural design optimization of wing and fuel tanks with
composite objective
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10.5.4 Aerostructural Optimization Considering Tank Weight

While the previous subsections showed a series of successful aerostructural optimization pack-

ing cases, I have still neglected a significant effect: hydrogen tank weight. Because of the extreme

pressure and low density of the compressed fuel, even a CFRP composite tank will have a hydro-

gen fuel fraction significantly less than ten percent [279]. The radius and length of the tank will

affect its weight significantly.

Offline, I set up a structural optimization problem to minimize the weight of a tank made from

a bidirectional carbon fiber laminate, considering both axial and hoop stresses 2. The method uses

a simplified classical laminate theory model and computes the required laminate thickness in the

cylindrical portion of the tank subject to hoop and axial stress. I compared the optimization model

to a detailed finite element study of a CFRP tank [279] and found that the structural weight estimate

was within 15% of the published value 3. At 700 bar and 2.35 burst pressure safety factor, using

an optimal bidirectional laminate with Toray 1100G prepreg [280], I found that the optimal tank

wall thickness is a constant 0.1315 times the tank radius. Therefore, I did not need to explicitly

incorporate tank structural analysis into the optimization—only a weight calculation based on tank

radius and length. The density of the CFRP material is 1,573 kg/m3. The problem formulation is

summarized in Table 10.4.

The resulting geometry is visualized in Figure 10.9 (in blue). While the OML only changes

subtly at the lower trailing edge, the changes allow the tanks to become much longer and narrower,

reducing hoop stress and tank weight. This is a complex tradeoff between the structural weight of

a component and the structural weight and drag at the airplane level. It is a good illustration of

MDO’s potential to find non-obvious solutions in airplane trade studies rapidly.

Figure 10.10 shows the structural sizing variables for this case. Some of the structural zones

are minimum gauged, such as the ribs and some spar web zones. Figure 10.11 shows the structural

2https://gist.github.com/bbrelje/b599102f2d83749df681dd5c2c0865e1
3https://gist.github.com/bbrelje/947ef6ff401a201812fde465518b74ff
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Quantity Lower Upper Scaling
minimize 2(mwing, struct +mtanks) +D 1 1.0
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 -0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank x-y offset 14 -0.2 m 0.2 m 0.1
Tank tilt 7 -1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to L−W (cruise) 1 0 N 0 N 1/W
L− 2.5W (maneuver) 1 0 N 0 N 1/W
Vtank 1 2.4 m3 1.0
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 120

Table 10.4: Problem formulation: aerostructural design optimization of wing and fuel tanks with
composite objective, considering tank weight

failure criterion at the 2.5 g maneuver case. We can see that the optimizer has removed material

almost everywhere until most of the wingbox is nearly at failure at ultimate load (2.5 g plus 1.5

safety factor).
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Figure 10.10: Structural sizing variables at the optimum (with tank weight, 2.4 m3 fuel volume)

Figure 10.11: Structural failure criterion at the optimum (with tank weight, 2.4 m3 fuel volume)
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10.5.5 Aerostructural Optimization for Maximum Range

In the previous example, I relied on a composite objective function in the absence of an

airplane-level performance model and assumed a given fuel volume. We can make some assump-

tions and gain some intuition on whether placing compressed hydrogen in the wing of this test case

airplane is viable. For the new objective function, let us maximize the range subject to a design

payload.

Since I don’t have an airplane-level empty weight model, I assume that the aircraft’s operating

empty weight (OEW) is 53% of MTOW and that the design payload is 23% of MTOW. I subtract

the wing structure’s weight from the previous optimum point (2,586 kg) and obtain OEW-less-

wing of 26,511 kg. I then attribute the remaining 24% weight to fuel. A small fraction of the fuel

is wing fuel from the previous optimum point (100.8 kg hydrogen at 42 kg/m3 plus 1070.7 kg tank

weight per wing). The remainder is computed at 9% hydrogen weight fraction and installed in the

fuselage (975 kg hydrogen plus 9858 kg tank weight).

The actual TOW can now be computed as:

mTO = mpayload + OEWless wing +mfuselage fuel +mfuselage tank + 2(mwing struct +mwing tank +mwing fuel)

(10.1)

and the zero fuel weight as:

mzero fuel = mpayload + OEWless wing +mfuselage tank + 2(mwing struct +mwing tank) (10.2)

An obvious limitation of this simplified model is that it neglects OEW growth outside the wing

due to MTOW growth.

With pre- and post-mission weights, the range can be computed using the Breguet range equa-

tion as follows:
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1000 SFC
ln

mTO

mzero fuel
(10.3)

where R is the range in km, g is the gravitational constant, U∞ is the true airspeed in m/s, SFC is

the specific fuel consumption in kg/Ns (assumed to be 1.5 × 10−5, slightly better than published

figures for previous-generation single aisle turbofans). I can correct this SFC to account for the

higher heating value of hydrogen compared to kerosene (nearly three times greater), but it won’t

affect the optimization result. With the heat value correction, the previous optimum airplane is

computed to have a range of about 1900 km at design payload—much less than contemporary

single aisles, but much more than all-electric proposals. I can now optimize the airplane with

respect to this objective function as described in Table 10.5.

Figures 10.12 and 10.13 illustrate that, for this demonstration airplane, it is favorable to add

more fuel tank volume in the wing root, even after considering the aerodynamic, structural, and

weight penalties using high-fidelity physics. The optimizer increased each wing’s fuel volume

from 2.4 to 3.1 m3.

This is a technology validation study for the optimization approach, not an airplane study

per se. The CFD and structural meshes were reasonably coarse, and the airplane-level weight

model was of very low fidelity. I was not explicitly modeling the fuel cell or electric propulsion

system. Nonetheless, the result suggests that storing compressed hydrogen in the wing root of

a transport-class airplane can, in principle, be favorable even after considering aerodynamic and

structural penalties. While this result cannot and should not be generalized to other configurations,

it illustrates that compressed hydrogen may be an intriguing fuel for regional-length missions.
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Quantity Lower Upper Scaling
maximize range (km) 1 0.001
with respect to Angle of attack 2 0 ° 10 ° 0.1

Stringer thickness 54 0.0016 m 0.02 m 100.0
Spar thickness 18 0.0016 m 0.02 m 100.0
Skin thickness 18 0.0016 m 0.02 m 100.0
Rib thickness 18 0.0016 m 0.02 m 100.0
Sectional shape 96 -0.5 0.5 1.0
Tank radius 7 0.14 m 3.0 m 0.1
Tank length 7 1.0 m 2.5 m 0.1
Tank x-y offset 14 -0.2 m 0.2 m 0.1
Tank tilt 7 -1.0 ° 4.0 ° 1.0
Total number of design variables 241

subject to L−W (cruise) 1 0 N 0 N 1/W
L− 2.5W (maneuver) 1 0 N 0 N 1/W
Structural failure at 2.5 g (aggregated) 3 1.0 1.0
Wingbox thickness (vs. baseline) 100 1.0 1.0
Packing (aggregated distance) 7 0.0 m 100
Intersection perimeter 7 0.0 m 1.0
Total number of constraints 119

Table 10.5: Problem formulation: aerostructural design optimization of wing and fuel tanks for
maximum range
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Figure 10.12: The maximum range optimization problem adds significant fuel volume and root
thickness
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Figure 10.13: The optimizer increases range at the expense of tank weight and drag by adding
fuel volume

10.6 Concluding Remarks

Hydrogen fuel is an intriguing option for zero-emissions aviation at typical commercial trans-

port ranges. However, its extremely low density and difficult options for mitigating this fact (high

pressure or deep cryogenics) create spatial integration challenges for airplane designers. It also

provides a relevant test case for this technical approach to multidisciplinary packing problems.

By solving a series of aerostructural packing optimization problems involving a wing and several
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hydrogen fuel tanks, I have validated the approach on a problem of significantly greater complex-

ity than previously demonstrated. I showed that MDO can be used to perform spatial integration

trade studies on a relevant wing design using high-fidelity aerostructural physics and the new KS-

distance geometry constraint. I found that the aerostructural packing optimization runs can be

performed on relevant time scales (less than one eight-hour shift using modest HPC resources).

The optimization runs converge with regularity and identify subtle changes in OML shape that

enable major improvements in system capability.

Despite the limitations acknowledged above, the results suggest that storing compressed hy-

drogen in the wing root of a single-aisle transport may be a useful option at the airplane level.

Compressed hydrogen may be feasible for regional-length missions outside the reach of battery-

electric airplanes. However, the immense weight of compressed hydrogen storage, even under the

relatively optimistic weight assumptions made here, is a significant drawback of the compressed

hydrogen approach and probably forecloses the possibility of using it for transcontinental routes.

Other potential zero-carbon fuels (such as ammonia) should be explored in parallel.
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CHAPTER 11

Concluding Remarks

11.1 Key Results

The first half of the dissertation was focused on system modeling and optimization for electric

aircraft. Chapter 2 provided a comprehensive review of the electric propulsion landscape, including

concepts, prototypes, studies, and design considerations. In Chapter 3, I briefly reviewed aircraft

conceptual MDO in general, then detailed prior attempts at MDO for electric aircraft applications.

Chapter 4 introduced methods and models for modeling, simulating, and optimizing aircraft

with electric propulsion. These methods were publicly released as OpenConcept, a new open-

source software framework built on OpenMDAO. OpenConcept is the first open-source tool for

MDO of aircraft with electric propulsion architectures that is easily user-extensible and incorpo-

rates efficient, accurate gradients. It is fast, capable of performing broad tradespace studies with

many MDO runs. I demonstrated OpenConcept’s capabilities with a case study involving a series

hybrid conversion of the Beechcraft King Air C90. For this set of mission requirements, there were

tipping points where electric, hybrid, and conventional architectures become favored, depending

on the range required and battery technology. OpenConcept also computed a breakeven line where

the hybrid / electric aircraft costs the same to operate as a conventional version on the same mis-

sion. The breakeven line shifts to a lower battery technology level (or longer range) if the airframe

and aerodynamics improve — this confirms that the viability of an electric aircraft depends on

232



much more than just the battery technology.

While the King Air trade study initially did not consider thermal effects, Chapter 5 added

thermal models and methods to OpenConcept. I introduced physics-based models for tracking

component temperatures over time and removing heat from electrical machines. Models for ducted

heat exchangers were developed, including a low-cost incompressible model as well as a more

costly compressible model that can analyze the Meredith effect (drag offset due to waste heat).

I repeated the Chapter 4 trade study, but added thermal constraints and TMS design variables in

order to isolate the performance impact of thermal management. The results of the revised study

indicate that the cost of thermal management varies greatly throughout the design space, with

tipping points similar to the original study. While developing intuition about the impact of thermal

management may be difficult, MDAO is a rigorous way to consider these tradeoffs.

Chapter 6 extended the set of thermal models to include purpose-built semi-empirical motor

and battery heat sink models, fluid pumps and hoses, and chillers. To validate that the thermal

models are relevant and accurate, I simulated several test flights of the Pipistrel Velis Electro and

compared the result to the flight test data. OpenConcept thermal models were useful for parameter

identification and were predictive for thermal states, indicating good agreement between model

and experiment.

Finally, in Chapter 7, I walked through an MDO trade space exploration of a parallel hybrid

transport aircraft which was developed in support of a NASA demonstrator program. I outlined the

process of redesigning the engine cycle to benefit from hybrid propulsion and described the surro-

gate modeling methodology. Next, I constructed a model of a relatively complex TMS architecture

including a chiller, multiple coolant loops, and multiple ducted heat exchangers. I used dozens

of MDO runs to compute the sensitivity of aircraft performance with respect to key parameters,

finding that some were very important (such as range), while others had modest impact following

optimization (such as battery temperature limits). This study also demonstrated that a chiller can

be useful even for aircraft flying at high altitudes where the outside air is very cold. Unfortunately,

233



the study also found that the fuel burn benefit attributable to hybridization is very modest under

this set of mission rules: less than 4%.

The second half of the dissertation developed a workflow for optimizing aircraft with bulky

propulsion components in high fidelity. Chapter 8 reviewed the literature on packaging optimiza-

tion and identified major shortcomings in the methods available to MDO practitioners working on

industrially-relevant problems. I introduced a mathematical formulation for posing general packag-

ing constraints based on triangulated computer geometry. Demonstration problems included three

aerodynamic shape optimization problems of increasing complexity, culminating in the design of

an aeroshell around a model of a seated human. These initial results confirmed that the constraint

formulation worked as intended and may be promising for more complex aircraft problems.

Chapters 9 and 10 applied the new spatial constraint to two different aircraft design challenges.

First, the wing and battery of an electric single-aisle airplane were simultaneously designed using

MDO. The wing was shaped subject to aerodynamic drag, while the battery influenced aircraft

range by making more energy available. The results validated the functionality of the constraint

formulation for coupling the design of the OML and systems components via spatial integration.

While the study did not consider structural weight, it indicated the value of using a battery geome-

try with more degrees of freedom to improve the packaging efficiency in the wing — a conformal

battery had significantly higher range than the same aircraft with a bank of three batteries restricted

to a prismatic shape.

The optimization study of Chapter 10 significantly increased the complexity of the MDO prob-

lem to the point of industrial relevance. An aerostructural MDO problem including aerodynamic

drag, structural weight, and static aeroelastic effects was solved for an aircraft wing with integral

compressed hydrogen tanks. This study included the design of multiple interior objects, high-

fidelity multidisciplinary physics, and the use of a geometry engine that uses genuine CAD sur-

faces. The results show that storing compressed hydrogen tanks in the wing box by itself does not

result in breakthrough emissions-free range, but can be a useful additional store of fuel to com-
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pliment other locations in the aircraft. Significant wing root thickening increased available fuel

volume and decreased structural weight, while also incurring a significant drag penalty.

11.2 Novel Contributions

1. I developed an open-source framework for conceptual MDO of electric aircraft, OpenCon-

cept.

In my review of electric aircraft modeling and simulation tools in Chapter 3, I identified

duplication of effort as a major issue in academia. Ironically, to address this problem, I

developed another new software tool for modeling, simulation, and optimization of aircraft

with electric propulsion architectures — the distinction being that the software has been

open-source from the beginning. Because it is built using OpenMDAO, OpenConcept is

easily extensible to new and specific problems (e.g., incorporating an empirical map for a

motor based on proprietary test data). It provides efficient and accurate gradients, which

enables low-cost gradient-based optimization methods and rapid tradespace exploration. Fi-

nally, it is the only open-source tool in existence today which provides off-the-shelf heat sink

models for electric aircraft components and enables users to optimize aircraft subject to un-

steady thermal constraints. NASA selected OpenConcept as the tool of choice for tradespace

exploration tasks in advance of a parallel hybrid demonstrator program.

2. I conducted the first MDO studies of hybrid-electric aircraft subject to unsteady thermal

constraints.

While an industry publication has examined the design of a TMS for a parallel hybrid [142],

the study did not include unsteady thermal states and relied on point designs and engineering

judgement to identify the critical design cases. A government study [131] addressed thermal

trajectory optimization of an all-electric light aircraft. Prior to this dissertation, no study had
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examined hybrid-electric aircraft subject to unsteady thermal constraints. In Chapters 5 and

7 I optimized the propulsion and thermal management of two different hybrid architectures

and found that thermal mass effects are very important to the TMS sizing problem. The

results showed for the first time that the relative cost of thermal management depends heavily

on the mission parameters and the type of hybrid architecture.

3. I developed novel semi-empirical motor and battery heat sink models reflective of current

design practice.

I developed two new heat sink models based on open-source intelligence on the design prac-

tices of leading industry firms such as Siemens and Tesla Motors. These models scale prop-

erly as the components increase or decrease in size, reducing the size of the MDO problem

(as certain heat sink design variables are eliminated).

4. I developed an improved mathematical model of a chiller suitable for design optimization.

The equations for conceptual-level modeling of refrigeration systems are well-established

and simple. They are suitable for hand calculations, but for gradient-based optimization

or applications using numerical solvers, the mathematical properties produce significant

headaches. In Chapter 6 I developed adjustments to the theoretical Carnot cycle which elim-

inate the numerical challenges. Inspired by the architecture of the Tesla Model 3, I also

developed a mathematical model for a bypassable chiller. These improvements enabled me

to optimize the design of a TMS including a chiller for the single-aisle hybrid in Chapter 7.

5. I validated thermal management models using electric aircraft flight test data.

Because the flight test history of electric aircraft is very limited, and the majority of the

extant data is in the hands of private companies, it has historically been difficult to validate

electric aircraft models. Pipistrel Aircraft generously provided three flight test datasets and

allowed me to validate the thermal models introduced in Chapters 5 and 6. Blind validation
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tests indicated good agreement between model and experiment for the motor heat sink, duct,

and heat exchanger models. To my knowledge, this is the first time that electric aircraft TMS

models have been empirically validated.

6. I developed a novel spatial integration constraint formulation.

In Chapters 8–10 I introduced a new mathematical formulation of spatial feasibility con-

straints using constraint aggregation. Prior to the work in this dissertation, extant geometry

constraints for high-fidelity MDO were not general enough to solve certain problems of in-

dustrial relevance (those with packaging requirements on complex geometries, or where the

object to be packaged can move relative to the OML). I validated the usefulness of this con-

straint by solving test problems of increasing complexity, up to and including high-fidelity

aerostructural wing optimization with design and packaging of many objects.

7. I developed a high-performance, open-source implementation of the spatial integration con-

straint.

In Appendix B I detail the implementation of the above-mentioned packaging constraint.

With careful attention to the parallelization strategy, very high performance on present-day

HPC resources is demonstrated. This performance was easily sufficient to solve the complex

hydrogen wing test case in Chapter 10. After the defense of this dissertation, the code will be

open-source under the name geograd. At least one aerospace prime contractor has already

expressed interest in using the software and constraint in their own optimization problems.

8. I developed a geometry engine for high-fidelity MDO based on CAD geometry.

While the MACH framework is highly capable for aerostructural MDO problems, users have

traditionally relied on CAD-free geometry parameterization. As outlined in Appendix C, I

developed an open-source wrapper for the ESP software which links CAD geometry with the

rest of the framework and provides gradients using parallel finite differencing. I used this
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capability to parameterize the tank geometry for the hydrogen aircraft wing design problem

in Chapter 10. The CAD-based engine is already being used for shape optimization studies

by other students in the MDOlab.

9. I demonstrated MDO packaging optimization with high-fidelity physics on a problem of in-

dustrial relevance.

The Chapter 10 MDO study involved the design of a wing subject to RANS aerodynam-

ics, finite element structural design, and coupled static aeroelastic effects. The packaging

problem involved many independently-designed hydrogen fuel tanks which needed to be in-

tegrated not only with the OML, but also the various internal structural elements such as

spars and ribs. I demonstrated that this complex MDO problem is not only feasible using

today’s computational resources, but feasible within one shift using relatively modest HPC

resources. This raises the prospect of using MDO to handle spatial integration trade studies

in an industrial setting. These types of trade studies are particularly frequent and laborious

today, and using optimization could free up engineers to focus on higher value tasks.

10. I contributed a highly-cited review article on electric aircraft propulsion.

Portions of Chapters 2, 3, and 5 were previously published as my first-author contributions

to [17], a comprehensive review article covering electric aircraft design from an aerospace

engineering perspective. The paper has already been cited 143 times as of the writing of this

dissertation, indicating the significant appetite for such an article in the field.

11.3 Recommendations for Future Research

1. Increase fidelity of electric machine and battery models

Because the scope of most of the work in this dissertation was very forward looking (2030+),

I did not have a particular design of electric machine in mind in order to use higher-fidelity
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physics-based models, nor did I have empirical data on the performance of these components

at various operating conditions. The result is that I used very simple models for the electric

machines and batteries. However, these data are relatively easy to generate or measure for

components that exist today. An interesting extension to this research would be to incorpo-

rate physics-based or empirical models for motor, generator, and battery components. This

would enable system voltage trade studies (which I did not approach in this dissertation).

2. Develop new methods to make Newton solvers more robust

A significant portion of the time involved in this research was troubleshooting OpenMDAO

cases where the Newton solver failed to converge (generally because of numerical singulari-

ties in the underlying models). While Newton solvers are very powerful, the need to provide

good initial guesses and the associated burden imposed by this requirement has been pre-

viously identified [158]. Developing methods to improve the convergence characteristics

of Newton solvers could be a fruitful area of research in the applied math domain. If the

solver was more robust, I might have considered running cases with pyCycle in the main

optimization loop instead of handled offline as a surrogate model.

3. Improve OpenConcept integration with true trajectory optimization capability

While a relatively crude form of trajectory optimization was used for the thermal control

variables in the Chapter 7 trade study, using a “true” trajectory optimization transcription

would be a major improvement. I resisted using such a transcription for the broad tradespace

studies because, like Newton solvers, trajectory optimization transcriptions require good

initial state guesses. However, the Dymos [281] trajectory optimization tool, which is also

built in OpenMDAO, has made significant improvements in robustness recently. At one point

I prototyped an initial integration between Dymos and OpenConcept but have not had the

bandwidth to fully develop it into a publicly releasable form. This would involve replacing

the ODE states currently integrated using Simpson’s rule with Dymos states. The challenge
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is retaining ease of use, since trajectory optimization tools have a steep learning curve.

4. Incorporate CFD flow path optimization for heat exchanger ducts

This work used empirical loss factors for pressure losses in the heat exchanger duct nozzle

and diffuser. An interesting avenue of research would be to use CFD to optimize the geom-

etry of the flow path. The flow path, heat exchanger, and overall TMS could be optimized

together in a higher level of fidelity. Additional realism could be added by considering the

structural weight changes introduced by changing the duct geometry. The DAFoam solver

has already been demonstrated on interior flow problems and could be a good candidate for

this type of study.
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APPENDIX A

Surrogate Modeling of Engine Data

A.1 Introduction

Because iterative optimization algorithms (such as SLSQP or SNOPT) make many function

calls, it is important to ensure that the computational cost of the models is reasonable for the task.

It is also important for these algorithms that the objective function and constraints are evaluated

without raising errors over a broad range of inputs. Unfortunately, computer codes used to evaluate

aerodynamics and propulsion require high computational cost and sometimes fail to converge for

a given set of inputs.

A strategy to mitigate cost and robustness problems with a simulation code is surrogate mod-

eling, where simulations are run to generate data offline, and then a model fit to the data is used

within the optimization loop. However, many engineering simulations are highly nonlinear and

are poorly approximated by lower fidelity methods such as linear or polynomial regression. If

surrogate modeling approximates the simulation too poorly, then the optimization process will not

produce useful or realistic results. Therefore, improved surrogate modeling techniques are desir-

able for advanced computer simulations.

The parallel hybrid electric trade study of Chapter 7 includes the NASA N+3 concept turbofan

engine [219]. A computationally-expensive model of the turbofan was developed using the simu-

lation code pyCycle [218]. However, in order to make the computational cost of the optimization
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problem feasible, an accurate surrogate model must be used instead of the full model when in the

optimization loop.

The purpose of this Appendix is to document the process of selecting a surrogate modeling

approach for the multidimensional turbofan engine data, and to document the accuracy of the sur-

rogate model. This material was originally produced as a group term project in Professor Clayton

Scott’s EECS 545 (machine learning) class — the other group members were Rishi Nath Senthil

and A.A. A.A. ran the radial basis function test case and helped write the text of the report. Rishi

Nath Senthil helped with general editing of the report. I provided the data set, ran the test cases

except for the radial basis function test case, and was the primary author of the report text.

A.2 Problem Statement

A.2.1 Dataset Description and Feature Analysis

The turbofan engine data consists of analyses run at various operating conditions using the py-

Cycle simulation tool. Each data point consists of the operating conditions X, a four-dimensional

feature vector, along with the output Y, a four-dimensional vector. Each operating condition X

consists of a throttle setting, altitude, Mach number, and hybrid power input. Feature analysis

revealed that the problem is very linear in the hybrid power axis. Therefore, only throttle set-

ting, altitude, and Mach number need to be considered in each surrogate; subsequently, a linear

interpolation between different hybrid power levels is sufficient. The full pyCycle model output

Y = f(X) consists of fuel flow (ṁ), thrust force (F ), turbine inlet temperature (T4), and stall

margin. The dataset consists of approximately 1800 simulated engine runs at a full-factorial grid

of Mach number, altitude, throttle, and hybrid power.

This data set is challenging to model because of its nonlinearity. Generally, thrust and fuel

flow decrease with Mach number and altitude, but these relationships are highly nonlinear. Thrust
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and fuel flow are more linear with throttle and hybrid power. The engine temperature output is

highly nonlinear and has discontinuities where certain control limits are reached (for example, at

full throttle at sea level). The stall margins are somewhere in between.

A.2.2 Surrogate Modeling

The surrogate modeling problem is as follows: we have multivariate input X and multivariate

outputs Y and need to compute a surrogate model g(X) which closely approximates Y = f(X)

with low computational cost to evaluate.

We can measure the closeness of the approximation by measuring the mean error of the jth

output of Y:

Mean absolute error =

∑n
i=1 |gj(Xi)− Yij|

n
(A.1)

Mean relative error =

∑n
i=1 |gj(Xi)− Yij|∑n

i=1 Yij

(A.2)

where n is the total number of training points and gj(Xi) is the jth output of the surrogate

model evaluated at training point Xi.

A.3 Related Work

Surrogate modeling has its roots in theory of physical experiment design. Efficient space-filling

experiments were combined with second-order polynomial regression to produce the response

surface methodology [282]. This approach was later extended to computer simulations [283].

Bouhlel et al. developed the Python package Surrogate Modeling Toolkit (SMT) [284]. The

specific surrogate modeling methods in SMT are reviewed separately in the methods section (for

brevity).
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As this engine data set is brand new, no previous published work has applied machine learning

techniques to the data set. However, the SMT package has been used for several design optimiza-

tion tasks on different problems. The KPLS method was successfully used as a surrogate model

for wind turbine blades and car design [285], while RMTS was demonstrated with a helicopter

rotor [284]. For these test problems, it does not appear that a systematic effort to evaluate alter-

native machine learning (ML) approaches was made. A different engine model (for a military

engine) with fewer inputs was fit using a kriging model and used for a trajectory optimization

problem [286]. Since the accuracy of the model appeared qualitatively suitable for the problem,

the authors did not attempt to rigorously quantify model fit error in this case either, or seriously

examine alternative, possibly superior ML approaches. This work is the first time different ML

surrogates are rigorously compared for analyzing any engine data, not just this specific data set.

A.4 Methods

A.4.1 Preprocessing

Since the training and test data is not probabilistic, it required less cleaning and preprocessing

than expected. We scaled all of the inputs to O(1) which involved scaling altitude by 0.001. This

ensured that each feature direction was equally important when applying kernel-based methods.

A.4.2 Polynomial Regression

Polynomial regression fits a polynomial surface to the training data using a least-squares min-

imization procedure to vary the coefficients. Multivariate linear least squares fits a hyperplane

through the dataset to predict a target variable y from multiple independent feature variables. It

has the form:

yi = α + β1x1i + β2x2i + ....+ βnxni (A.3)
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where yi is the variable to be predicted and x1i − xni are the ith data point of the n-independent

feature variables.

Quadratic regression fits a parabolic surface to the dataset using a least-squares minimization

procedure. In one dimension it has the form:

yi = αx2
i + βxi + γ, α 6= 0 (A.4)

where yi is the variable to be predicted, xi is the independent feature variable, α, β, γ are co-

efficients determined through the fitting procedure. If the input features are multi-dimensional,

multivariate polynomial regression methods are employed and the expression turns into a matrix

equation.

A.4.3 Ordinary Kriging

Kriging is a term for a particular class of gaussian process regression models. In ordinary krig-

ing, the surrogate consists of a trend function(s) fi(X) (generally just a constant) and a realization

of a random field Z(X) as follows [282, 285]:

ŷi =
k∑
i=1

βifi(X) + Z(X) (A.5)

where the random field Z(X) has the following covariance function:

[
Z
(
X(i)

)
, Z
(
X(j)

)]
= σ2R

(
X(i),X(j)

)
(A.6)

and R is a covariance kernel, such as the Gaussian kernel (covariance varies with squared

distance) or the exponential kernel (covariance varies with absolute distance). Z(X) is obtained

by solving a constrained optimization problem involving the hyperparameters θi of the covariance

kernel during the training procedure. Variance is minimized subject to a zero bias constraint.
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Kriging thus produces the best unbiased estimate given a particular covariance kernel. Subsequent

inference points can be computed inexpensively.

A.4.3.1 Kriging Partial Least Squares (KPLS)

Because ordinary kriging requires solving a constrained optimization problem that scales with

the number of input variables, it can be computationally expensive to train on data sets with high-

dimensional X. To combat this, KPLS [285] first performs dimensionality reduction in the input

space (X → X̂, Rn → Rm, n > m) using principal components analysis (PCA). An ordinary

kriging model is then trained on the reduced input space. This reduces the dimensionality of the

kriging training problem while minimizing the loss of information from the higher-dimensional

input space.

A.4.3.2 Sequential KPLS (KPLSK)

KPLSK is an incremental improvement over ordinary kriging. Sometimes, the ordinary kriging

optimization problem will fail to converge due to a poor initial guess. In KPLSK, hyperparameters

θ∗i are first estimated using the KPLS training procedure in a reduced-dimensional space. Sub-

sequently, an initial guess of the ordinary kriging hyperparameters θi are obtained by projecting

θ∗ back into the full dimensional space using the PCA transform. Finally, the ordinary kriging

training optimization problem is solved using the initial guess obtained in the previous step [285].

This marginally enhances the quality of ordinary kriging model fit and significantly improves ro-

bustness.

A.4.4 Radial Basis Function Interpolation

Radial basis function interpolation interpolates the data as a linear combination of basis func-

tions, as follows:

y = p(x)wp + Σnt
i φ(x,xti)wr
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where x is the prediction input, p(x) is an optional mapping into a polynomial fit, xti is the ith

training data, y is one element of the prediction output, φ is the Gaussian kernel, and wp and

wr are parameters obtained by solving a linear system during the training step. Specifically, the

coefficients wp and wr are computed by solving the following linear system:



φ(xt1,xt1) . . . φ(xt1,xtnt) p(xt1)T

... . . . ...
...

φ(xtnt,xt1) . . . φ(xtnt,xtnt) p(xtnt)
T

p(xt1) . . . p(xtnt) 0





wr1

...

wrnt

wp


=



yt1
...

ytnt

0


It is worth noting that the offsetting polynomial is not required in this model. As such, the RBF

method can be defined as a weighted sum of radial basis functions. When using RBF there are

many different types of basis functions that can be used, such as the Gaussian:

φ(xi,xj) = exp

(
||xi − xj||22

d02

)

A.4.5 Regularized Minimum-Energy Tensor-Product Splines (RMTS)

Another method of analysis used on the data is called Regularized Minimum-Energy Tensor-

Product Splines (RMTS). A spline is a function defined by piece-wise polynomials. The prediction

function for RMTS is

y = F(x)w

where w is the vector of spline coefficients and F(x) is the vector mapping the spline coefficients

to the prediction output. RMTS is a novel technique that is unique to SMT [287]. RMTS com-

putes w, the coefficients of the splines by solving an energy minimization problem. This is an
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unconstrained optimization problem of the form:

min
w

1
2
wTHw + 1

2
βwTw + 1

2
1
α

∑nt
i [F(xti)w − yti]2

Here, xti is the input vector for the ith training point, H is the matrix containing the second deriva-

tives of the splines, and α and β are regularization coefficients. While computing second deriva-

tives and subsequently their integrals is expensive, the authors argue that with modern-day compu-

tational resources the computational cost is minimal compared to the performance this method is

capable of.

A.4.6 Mixture of Experts (MoE)

Mixture of Experts (MoE) is a method to replace a single model with a weighted sum of local

models, or “experts” [288]. Conceptually, it relies on the idea that the input space is heterogeneous,

and that models trained on a subset of the input space may perform better than a surrogate trained

on the whole input space. MoE occurs in three steps:

1. Clustering: the inputs are clustered together with their output values by means of parameter
estimation of the joint distribution.

2. Training: Train local experts, one per cluster.

3. Recombination: Create final model combining all the local experts using the Gaussian Mix-
ture Model (GMM).

In MoE, the recombination step is traditionally done with the Expectation-Maximization method.

When using MoE, it is important to consider the number of clusters as well as the types of experts

(eg. linear, quadratic polynomials etc.). While MoE is an effective tool in certain applications, it is

important to note that it is not a one-size-fits-all-approach. In fact, MoE can actually under-perform

global models in some cases [289], such as a dataset drawn from a single distribution.
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Mean abs error RTMS KPLS KRG KPLSK RBF QP LS MOE2
Thrust (lb) 27.477 1.291 1.298 0.00591 3.042 403.213 1163.657 64.94
Fuel Burn (lb/s) 7.03e-3 4.25e-4 4.23e-4 9.12e-4 8.76e-4 3.081e-2 8.798e-2 6.421e-3
T4 (Rankine) 6.423 1.280 1.275 2.054 2.288 34.773 48.500 4.698
Mean rel error
Thrust 0.44% 0.02% 0.02% ≈0.0% 0.05% 6.44% 18.60% 1.04%
Fuel Burn 1.09% 0.07% 0.07% 0.14% 0.13% 4.77% 13.63% 0.99%
T4 (Rankine) 0.26% 0.05% 0.05% 0.08% 0.09% 1.41% 1.96% 0.19%

Table A.1: Crossvalidation error for the surrogate modeling methods

A.5 Evaluation

A.5.1 Evaluation of Surrogate Modeling Methods

We performed a side-by-side comparison of 8 surrogate modeling machine learning methods on

the turbine engine data set. Each method was implemented in the SMT Python package. Using the

SMT package allowed us to compare more methods without spending time implementing each one

individually, and the common API made swapping out various surrogate modeling ML methods

straightforward. In order to evaluate the accuracy of the model, we used a k-fold cross validation

procedure with k = 10. This balances the computational cost of fitting the models with the validity

of the cross validation procedure. We randomly jumbled the data, then divided the data into ten

folds. For each fold, we trained the model on the other 90% of the data, and computed model fit

error against the fold data. We used the mean absolute error and mean relative error metrics in

Equations A.1 and A.2. We averaged the error metrics across the ten folds and tabulated the result

in Table A.1.

We found that the kriging based models (ordinary, KPLS, and KPLSK) and radial basis func-

tions, produced consistently excellent performance across the entire design space and for all output

variables, with average error less than 0.1% of the mean value for ordinary kriging and KPLS.

However, we had to provide default guesses for the hyperparameters which were different than

the defaults. The optimization algorithm used to fit the kriging models would sometimes fail to
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converge when the default initial hyperparameter guesses were used. We found that the for the

RBF, using the default parameters, without a polynomial fit improved the results. In fact, using a

regularization parameter of λ = 1
n

, led to a tenfold increase in mean absolute error.

The RMTS method showed acceptable performance, with average errors on the order of 1%

(at least ten times higher than kriging). The quadratic polynomial and least squares linear models

performed poorly on thrust data, with average errors of 6.44% and 18.6% respectively. This is

consistent with the highly nonlinear dataset, and represents a level of performance is not acceptable

for use in multidisciplinary design optimization.

The mixture of experts model with two clusters had worse performance than kriging, even

though kriging-based models were included in the candidate experts. This can be explained be-

cause the training data is drawn from the same distribution, so GMM will not produce a useful

clustering. In this situation, all MoE does is reduce the amount of training data available to each

model and degrades performance. When MoE is trained with one cluster, the result is identical to

the best kriging or RBF model for each output.

We also qualitatively evaluated the performance of each model in different parts of the flight

envelope. Since the kriging models are interpolating, they may fit more poorly near the data set

edges. We created two-dimensional slices through all outputs generated by all the surrogates. We

plotted the surrogate estimates as a surface plot, and a 30% holdout test dataset as colored dots

(indicating the true value). A representative example for thrust data is Figure A.1 and Figure A.2

shows the same for fuel burn data. We see that the held-out thrust data is not accurately modeled

by the linear surrogate (left) at high and low thrust levels. However, the KPLS surrogate is nearly

indistinguishable from the holdout data, even near the edges of the model. The fit is so accurate

that there is essentially no difference between the dot color and the background color, rendering

the test data points virtually invisible for the KPLS plot.
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A.6 Concluding Remarks

As expected, the results show that linear and quadratic models were unable to capture the

nonlinear trends in the engine deck. Kriging and radial basis functions were very accurate and

qualitatively fit well throughout the flight envelope. There was not much difference between or-

dinary kriging and the KPLS variants. While arguably the most complex model, MoE performed

worse than kriging and RBF, because the engine data is drawn from the same distribution or clus-

ter. By dividing data from the same distribution into different clusters, MoE’s expert models lose

information that they would otherwise have with a cluster of size one.

I elected to use ordinary kriging for the Chapter 7 because of OpenMDAO’s pre-existing krig-

ing surrogate implementation. Using the KPLS variants afforded almost no improvement in per-

formance, yet would have required significant software development effort to integrate into Open-

MDAO/OpenConcept.
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(a) Least Squares (b) KRG

Figure A.1: N+3 hybrid thrust (lb) as a function of altitude, Mach number, and throttle. Kriging
far outperforms least squares.
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(a) Least Squares (b) KRG

Figure A.2: N+3 hybrid fuel burn (lb/s) as a function of altitude, Mach number, and throttle.
Kriging far outperforms least squares.
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APPENDIX B

Geograd Implementation and Performance

Benchmarking

B.1 Introduction

In Chapters 8 and 9, the geometric constraint package known as geograd was implemented

using the TensorFlow framework. TensorFlow is a Python library designed for machine learning.

Using TensorFlow, I was able to compute the packaging constraints in a pure single-instruction

multiple-data (SIMD) fashion. It is very fast when running on the GPU on my local machine,

but I do not have access to GPU resources on the compute clusters I typically use. The purpose

of Appendix is to detail the implementation and performance of a significantly improved Fortran

90 implementation of geograd which takes advantage of algorithm opportunities that cannot be

expressed TensorFlow’s SIMD language.

The first section will describe the computation in more detail and the prior state of the

software. Second, I describe a test case I constructed for timings and benchmarking. Following

that, I describe the development and verification of the baseline Fortran code. Next, I walk through

each improvement to the algorithm and describe the dynamic load balancing problem that emerged

during this step. Finally, I describe the dynamic load balancing approach and present the final

timings.
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I was ultimately able to achieve over a 1350x speedup on my benchmark case compared to

my original TensorFlow-based pure SIMD implementation. This Appendix was originally a solo

term project and report for Professor Quentin Stout’s EECS 587 parallel computing class and has

been lightly edited for inclusion in the dissertation.

B.2 Description of the Computation and Previous Work

As originally described in Chapter 8, I identified a mathematical formulation for a geo-

metric constraint that is deterministic, differentiable, and C0 continuous. I restate the basics here

for clarity. We begin with triangulated representations of aircraft outer surface r and an inner ob-

ject s to pack inside it, as pictured in Figure B.1. r and s are each represented as lists of vertices

A, B, C of dimension 3 by m or n (the size of each mesh).

sr
Pdmin

Figure B.1: A section view of an object s inside wing r and the minimum distance dmin between
them

When one object encloses another, the minimum distance dmin between them is greater

than zero by some margin. Therefore, a first approach to a geometric constraint might involve

computing dmin,rs ≥ 0 + tol. We can compute dmin between two triangulated surfaces by computing

the minimum distance between each individual pair of triangles. The minimum distance between

a pair of triangles can be found by a total of fifteen primitive tests between the vertices: six point-

triangle tests, and nine line-line tests [247].

dmin,rs = min(dmin,ij) for each triangle i, j in surfaces r, s (B.1)

However, as explained in Chapter 8, the optimizer behaves poorly when the constraint is posed
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in this way because information about the nearly closest points is effectively discarded across

the min operation. Instead, I use a constraint aggregation approach using the KS function. The

computation is as follows:

KSgeom(x) =
1

ρ
ln

[
m,n∑
i,j=1

eρ
(
dmin (x)−dij (x)

)]
− dmin (x) ≤ 0, (B.2)

where x is a vector of design variables, dij(x) is the pairwise distance between the ith facet of

r and jth facet of s, dmin(x) is the minimum distance between r and s at the current design point,

and ρ is a user-controllable constant. Strictly speaking, dij is a function of the surface mesh points

of r and s, not the design variables x directly.

Initially, I implemented the computation of Equation B.2 using the TensorFlow frame-

work [250]. TensorFlow uses a graph representation of a series of array operations and computes

a result in a SIMD fashion. Since many machine learning workflows require gradients for train-

ing purposes, TensorFlow natively supports analytic reverse-mode derivatives, making it ideal for

use in this gradient-based optimization application. TensorFlow also supports heterogeneous com-

puter architectures, including GPU acceleration. I found that I could run the calculation almost

instantaneously on the GPU of my desktop machine.

I used my TensorFlow implementation to generate the results in Chapter 8 [261] and Chap-

ter 9 [268]. For the Chapter 9 results, I used the Texas Advanced Computing Center (TACC)

Stampede2 cluster. Unfortunately, while TACC does have GPU nodes, the geometry calculation

is a very small portion of the overall compute cost (which includes expensive, CPU-based fluid

dynamics calculations). Therefore, it did not make economic sense to reserve GPU nodes just

for the geometry constraints since it would be idle a large percentage of the time. Instead, I used

TensorFlow’s CPU support and created an optimized, CPU-parallel implementation. I used the

mpi4py package to scatter the computation over all MPI processes, run one TensorFlow call on

each process, and gather the results. I built TensorFlow from source with Intel MKL support and
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architecture-specific optimizations, including the Intel AVX-512 SIMD extensions. This configu-

ration provided enough performance for my immediate research needs, but increased the wall time

significantly compared to the GPU card on my desktop. I need to reduce the computation time

in order to scale up to more complex optimization problems with more objects to pack inside the

airframe, such as the problem in Chapter 10.

TensorFlow’s SIMD approach makes it infeasible to use control flow and early exits to

reduce the cost of the geometry calculations, which results in a large number of redundant calcu-

lations. I brainstormed several potential approaches which can be used to reduce compute cost,

including:

• Arranging control flow so that the most likely branches are tested first

• Using the minimum instead of the sum of the 15 pairwise primitives for each triangle (re-
duces the gradient compute cost by 15x)

• Using bounding box tests to quickly exclude pairs of facets which are far away from each
other and cannot possibly be the minimum distance

In order to use these approaches, I need more granular control flow than TensorFlow provides.

Therefore, I needed to drop the TensorFlow SIMD formalism and write my own CPU-optimized

implementation in Fortran with Python bindings. The latest version of geograd consists of this

new Fortran 90 implementation.

B.3 Benchmarking Case Description

I wanted to isolate performance metrics to the geometry code, yet test the code in a setting

representative of an optimization run, so I generated an artificial test problem. Consider a blended

wing body (BWB) aircraft, as pictured in Figure B.2. The test geometry was obtained as a trian-

gulated surface file using the NASA OpenVSP Hangar [290]. I created a notional football-shaped
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geometry to represent a generic system component to be packed optimally into the wing and placed

it into the right wing root, as pictured in Figure B.3. We can then compute Equation B.2 between

the aircraft outer shape r and the football-shaped inner component s to see whether the current

layout is feasible.

Figure B.2: Blended wing body geometry used for the test problem

During optimization, the relative positions of the two objects will change. Generally,

the changes in position will be fairly subtle. However, to make the test problem as challenging

as realistically possible, the component translates from one wing root to the other in 50 equally-

spaced increments. The arrow in Figure B.3 shows the path of the component. The test comprises

computing Equation B.2 50 times, one at each component position. I implemented the test as a

Python unittest file.Two timings are obtained; one for analysis only (no gradient), and another with

gradients.
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Figure B.3: The component geometry translates from one side of the aircraft to the other in the
test problem

B.4 Baseline Code Development and Verification

I need to ensure the code is not only fast, but also accurate, so I developed the code in the

following general steps:

• Writing line-line and point-triangle test primitive subroutines

• Algorithmic differentiation of the geometric primitives

• Writing the serial KS function subroutine (implementing Equation B.2)

• Creating the Python-Fortran interface

• Unit testing of the geometric primitives and KS function

• Parallelizing the KS function subroutine

B.4.1 Writing Geometric Primitives

I implemented the line-line and point-triangle tests as described in Ericson [247]. The

subroutines, contained in triangles.F90 take four three-dimensional points as input and return
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the minimum distance. The sequence of control flow is designed to exit early in some common

cases, deferring the least likely paths until as late as possible. I also developed unit tests using

triangles in prescribed configurations to exercise each of the branches of the mathematics.

B.4.2 Algorithmic Differentiation of the Primitives

We not only need to know the minimum distance result of the primitives; we also need the

derivatives with respect to the function inputs. It is possible to derive this by hand; however, it is

much easier to use source code transformation via algorithmic differentiation (AD). I differentiated

the point-triangle and line-line primitive subroutines using the INRIA Tapenade software. There

are two modes in AD: forward and reverse (also known as “backprop” in the machine learning

community). I used reverse mode, which requires only one function evaluation to get the deriva-

tives of a single output (dmin) with respect to all 12 of the inputs (four points, three dimensions

each).

B.4.3 Assembling the KS Function and Gradients

I implemented the loops to compute Equation B.2 with respect to all of the m facets of an

outer surface and n facets of the inner surface. The subroutine compute takes 8 inputs:

• Ar, Br, Cr: lists of vertices comprising the m triangles of the outer surface

• As, Bs, Cs: lists of vertices comprising the n triangles of the inner object surface

• dmin,current: the minimum distance between the two surfaces at the current design point (this
is used to normalize the calculation which improves numerical conditioning)

• ρ: a user-defined constant which defines how tight the objects can fit next to each other

The subroutine returns:
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• KS: the constraint described in Equation B.2

• dmin: minimum distance between the two surfaces

The major advantage that this Fortran implementation has over TensorFlow is data reuse.

TensorFlow computes each array operation in a pairwise fashion sequentially. Every entry in each

array is read one time per array operation, and one write is performed per array operation. This

should result in a bad compute-to-memory access ratio. In the Fortran implementation, each pair

of triangles is read from the global arrays only one time. Subsequently, all the primitive tests and

summation is performed on local copies which should easily fit in the L1 cache. This should result

in a major speedup over the TensorFlow implementation by itself.

I was careful to ensure sequential memory access by arranging the array order correctly.

Fortran uses column-major order, so I used the spatial dimensions x, y, z as the first array dimen-

sion, and triangle count i, j as the second dimension. This results in coalesced memory access

when individual vertices are read from the global arrays. However, for the purposes of visualiza-

tion in this paper, I illustrate the transpose of the matrix, with each row comprising a triangle.

I also wrote a function compute derivs which additionally computes the following

derivatives with respect to the surface mesh points (all m by 3 arrays):

dKS

dAr

dKS

dBr

dKS

dCr

(B.3)

and the following derivatives with respect to the object mesh points (all n by 3 arrays):

dKS

dAs

dKS

dBs

dKS

dCs

(B.4)

These derivatives are required in order to compute the total derivative of the KS function with

respect to the design variables. Recall that Equation B.2 depends on the surface mesh vertices A,

B, and C of objects r and s. Applying the chain rule, we have:
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dKS

dx
=

dKS

dAr(x)

dAr(x)

dx
+
dKS

dBr

dBr

dx
+
dKS

dCr

dCr

dx
+
dKS

dAs

dAs

dx
+
dKS

dBs

dBs

dx
+
dKS

dCs

dCs

dx
(B.5)

A separate Python tool, pyGeo, provides the design variable sensitivities dA,B,C/dx.

Differentiating top-level code, particularly when it involves dynamically-allocated arrays

or MPI calls, can be very inefficient. Therefore, I differentiated Equation B.2 by hand, obtaining:

dKS

dAr

= −

m,n∑
i,j=1

d dij
dAr

eρ
(
dmin−dij

)
m,n∑
i,j=1

eρ
(
dmin−dij

) (B.6)

and so on for the remaining 5 lists of input vertices. d dij/dAr is computed using the AD

version of the geometric primitives.

Note that, while dKS/dAr is a dense m by 3 matrix, each pairwise update in the sum-

mation (d dij/dAr) is sparse and affects at most 3 entries at a time. Note also that the summation

in the denominator is a global quantity, while the numerator is a local quantity specific to each

facet pair i,j. Since the entries of the derivatives depend on both local information as well as the

global summation across all the facet pairs, the overall computation is not embarrassingly parallel.

However, the amount of communication required is fairly low (a single partial sum is Allgathered

from all processes) in between two separate double ij loops.

B.4.4 Fortran-Python interface

The lab’s optimization framework is Python-based. Therefore, all geometry information

fed into the Fortran code needs to be passed in from a Python process executed under MPI. Nor-

mally, writing Python native interfaces is laborious, and in the past I have used the low-level

Python-C API to do this.
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A better way is to use the f2py interface generator. f2py was developed as part of the

numpy project and it is distributed with numpy. It consists of a command-line interface which

reads and compiles Fortran source and generates a .so shared object file which can be imported as

a Python package. The user can control the structure of the input and output arguments by writing

an f2py “signature” file, which I did in this case. f2py passes in numpy arrays by reference as

native Fortran array pointers in the correct column-major memory layout.

B.4.5 Testing and Verification

A major benefit of the Python interface is that it is easy to create unit and integration tests.

As I developed the codebase in a bottom-up approach, I ensured that unit tests were written and

passing before moving on. First, I generated unit tests which cover every branch of the geometry

primitives using simple configurations of triangles (test primitives.py). Next, it is abso-

lutely crucial to test the accuracy of AD derivatives, since Tapenade sometimes can be buggy and

these types of errors can be difficult to detect in integration testing.

In order to verify derivatives, we use the complex step method (CS). The complex step

method (Equation B.7) is conceptually similar to finite differencing, except that it is exactly accu-

rate even when a very small step (on the order of machine ε) is used. This makes it suitable for

testing the exact derivatives obtained via AD to high precision.

df(x)

dx
=

Im(f(x+ ih))

h
(B.7)

The drawback of the complex step method is that it requires that the code being tested

support complex inputs. Fortunately, the MDOlab has developed a method for compiling complex

versions of our Fortran codes. We use a Python script to transform the base code into a complex-

ified version. The script changes data types and overloads certain functions so that they produce

the correct control flow even with complex inputs. I added this complex build to the Makefile
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and wrote unit tests verifying the derivatives of both the geometric primitives as well as the top-

level KS function derivatives. All the derivative outputs matched CS to a relative tolerance of

10−7, indicating that both the AD derivatives and the by-hand derivative assembly were correctly

implemented.

Finally, I ported my previous integration tests from geograd–TensorFlow over to this

project and verified that the output values match the output values of my new code for known

geometries. They did match to a high degree of accuracy.

B.4.6 Parallelizing the Baseline Code

As a first cut, I parallelized the new Fortran code in the same way that I had parallelized

geograd. Here are the assumptions and requirements for the parallelization:

• Assume each process has a full copy of the input meshes r and s when it is called (no scatter
from root required)

• Each process must end up with a full copy of both the KS value and all the derivative arrays

• The p processors will be provisioned such that p << m, n

We divide up the problem along the r mesh only. Each processor is given a range of

rows in the r mesh arrays to compute against all of the s triangles. Figure B.4 shows the par-

allelized arrangement. First, an owner-computes approach is used to compute the summation of

the KS function. Each process receives the summation value via an allreduce. If analysis is be-

ing performed without the need for derivatives, the computation is done at this point. If not, the

derivatives are computed in an owner-computes fashion. Since the processors “share jurisdiction”

over the s mesh, an MPI Allreduce summation is used to combine local copies of the s derivatives

into a global array. The r mesh is simply concatenated and sent to all using the MPI Allgather

subroutine.
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Figure B.4: The problem is parallelized by dividing up the larger array and distributing its com-
putation evenly across the processors

B.4.7 Timing the Baseline

I ran the geograd (TensorFlow-based) implementation and my new Fortran implemen-

tation on the benchmark problem described in Section B.3 using 4 to 48 cores of a compute node

on the TACC Stampede2 cluster. All code was compiled using the Intel Fortran compiler with

maximum optimization, and Intel MPI. Unless otherwise specified in the report, I give timings

and speedups for the 48-core case. The TensorFlow-based benchmark took 20s to run analysis

only, and 38s for derivatives. My new Fortran-based benchmark took 0.371s for analysis only (53x

speedup), and 1.93s for derivatives (19x speedup). These were extremely promising results, and I

had not yet implemented any of the algorithm improvements.
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B.5 Algorithm Improvements

Because TensorFlow does not support control flow (at least, not in a form which reduces

computation for unused branches), there is great opportunity to gain speed by improving the al-

gorithm. In this section I describe the improvements and report speedup relative to the previous

iteration (not cumulative versus the original TensorFlow implementation).

B.5.1 Minimum Instead of Sum of the 15 Triangle Tests

Recall that each pair i, j of triangles requires 6 point-triangle and 9 line-line test primi-

tives. In TensorFlow, there is no computational advantage to taking the minimum value of the 15

pairwise primitive tests, so I sum the KS results instead. However, in Fortran, I can eliminate 14

of the 15 derivative calls by taking the minimum instead of the sum over each triangle. I added a

case control flow structure to only run the derivative subroutine for the most critical primitive. This

had only a modest effect on the analysis-only benchmark (1.1x speedup), but a large effect on the

derivatives benchmark (3.93x speedup). This optimization remains an exactly correct expression

of Equation B.2.

B.5.2 Bounding Box Testing

If a pair of triangles is far away from each other, it is possible to prove cheaply that their

interaction is not important. We can accomplish this through bounding box testing. Let us draw an

axis-aligned bounding box around the inner object s as pictured in Figure B.5. Let us also define

some tolerance value (say, the maximum dimension of s in any dimension). If the bounding box

around triangle j is more than tol away from the bounding box of s, then we can guarantee that the

minimum distance between them is at least tol. We can then replace a potentially large number of

dij computations with dij = tol.

Computing bounding box tests is much cheaper than computing dij using the subroutines.
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The bounding box test is simply several min/max operations on each triangle j, plus a few floating

point comparisons. Since aircraft geometry predominantly varies in the wingspan direction, we

can exclude a huge number of triangles with just one or two comparisons (by placing the x, or

spanwise, axis tests first in the sequence).

I implemented the bounding box test using the heuristic tol setting ofmax(xmax−xmin, ymax−

ymin, zmax−zmin) and re-ran the benchmark cases. The derivative benchmark gained an additional

3.4x speedup compared to the previous optimization.

s

ri
tolerance

Figure B.5: Bounding box tests can quickly exclude obviously unimportant facets from needing
expensive computation

B.6 Dynamic Load Balancing

While the baseline Fortran implementation and the “min of fifteen” optimization had good

load balancing (utilization above 95% with 4 processors; above 65% with 48 processors), the

bounding box test wrecked the load balancing. The reason for this is spatial correlation in the lists

of mesh vertices. Consider the aircraft geometry pictured above. A mesh representation might

include all of the “left wing” triangles in the first quarter of the list, or it may be completely
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random (there are no guarantees). A bounding box test excludes triangles that are far from the

present position of the object s. Therefore, if s is in the right wing, the processor which is assigned

all of the left wing facets may have zero triangles to compute. Furthermore, as s and r deform and

move during optimization, the load imbalance will change from processor to processor.

I measured this using the benchmarking case. After implementing the bounding box test,

my processor utilization across 48 MPI processes decreased from the high 60% range to less than

15%. Examining the problem further, I found that one or two processors would have basically zero

runtime, while the others were fully loaded. I verified that these low-runtime processes had most

or all of their triangles excluded from expensive tests by the bounding box. Below, I will describe

two approaches I used to solve the problem.

B.6.1 Global Load Balancing

Due to the dynamic nature of the load balancing issue, the load balancing step needs to be

done on every function call. As a first cut, I decided to treat the bounding box tests as negligible

in cost and simply smear all of the “active” triangles (the ones passing the bounding-box test and

requiring more expensive tests) evenly across the processors sequentially. Briefly, the method is as

follows:

• First, divide up all the triangles evenly across the processors

• Compute bounding box tests and place a boolean into a local vector indicating whether it is
active or inactive

• Allgather the bounding box test results into a global vector on each processor

• Compute the sum of all active triangles in the global vector

• Compute a scan on the global vector to find the global indices i of the triangles in r across
which the problem will be split for load balancing

• Divide the triangles up across the new split indices
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The structure of the problem remains as pictured in Figure B.4, except that each processor

will now have an unequal number of triangles to compute. I chose to ignore the potential issue

of some processors having more inactive (cheap) triangles to compute than others. This keeps the

array split indices limited in size and the split chunks contiguous in memory, which simplifies the

collective operations required to get the derivatives assembled at the end.

This global load balancing method was very effective. Processor utilization improved

from about 11% to 65% (similar to the levels seen before implementing the bounding box tests).

The remaining idleness is attributable to some point-triangle or line-line tests being more expensive

to compute than others (early exits, etc.), or to operating system interrupts. If the number of

triangles per processor is high enough, load balancing improves to about 95% (as in weak-scaling

benchmark results). With the load balancing in place, derivatives gained another 2.6x speedup

versus the unbalanced bounding box benchmark. However, I noted that weak scaling seemed to

suffer somewhat for this iteration.

After conducting some detailed profiling, I noted that the load balancing step was increas-

ing in time as the number of triangles increased. The reason was the MPI Allgather operation I

used to construct the global load balancing vector. My reasoning for this was to save bounding box

test results so they wouldn’t need to be recomputed later in the main loop. However, it was clear

that this would potentially cause poor scaling for larger problems.

B.6.2 Distributed Load Balancing

In order to eliminate the Allgather operation from the load balancing step, two changes

were required. First, I had to develop a distributed scan methodology to determine where the load

balancing break indices would be located, without gathering a global vector of bounding box test

results. I was able to do this using an Allreduce operation with only as many values as processors,

eliminating the weak scaling issue. The second change was to insert the bounding box tests back

into the main KS computation loop. This resulted in doing some redundant bounding box tests,
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but they are so cheap that it barely matters.

I ran the benchmark for this distributed load balancing variant and found that the processor

utilization remained equally high, and that the poor weak scaling of the load balancing step had

disappeared. Distributing the load balancing accounts for only about a 1.1x speedup compared to

the global load balancing, but it eliminates a sub-optimal scaling property that could come back to

haunt me in the future when working with larger problems.

B.7 Performance

The performance of my parallel Fortran implementation of the algorithm was excellent

compared to the TensorFlow implementation. Table B.1 shows that the derivative computation

could be accelerated more than 500x, while analysis-only improved three orders of magnitude.

This is a breakthrough in performance which will enable me to tackle more complex problems in

my research, such as the multiple-tank aerostructural packing problem in Chapter 10.

Table B.1 shows the relative contribution of each optimization step, both for the full

derivative computation as well as for analysis only (without derivatives). The improved mem-

ory access pattern versus TensorFlow accounts for most of the speedup in the baseline case. The

“1 of 15” optimization only really improved the derivative code, but it was a sizable speedup. The

bounding box test, properly load balanced, accounts for one more order of magnitude speedup.

The scaling studies were mixed. Because the derivative code has to do a large allgather

and allreduce to assemble the derivative output, there is no way that perfect strong or weak scaling

can be achieved. We have more hope for the analysis-only code which has a scalar allreduce in

the middle. Unfortunately there is a steep drop off in strong and weak scaling for the derivative

code. Table B.2 shows that efficiency drops to only 17% for the largest case. For this number of

processors, the collective operations take almost as much time as the actual loop work. On the

other hand, the analysis-only routine scales reasonably well. At 48 processors, the amount of work
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Speedup versus TensorFlow
Derivatives Cumulative Relative
Baseline 19.7 19.7
1 of 15 63.9 3.2
Bounding Box 217.5 3.4
Balanced Bounding Box 563.8 2.6

Analysis Only
Baseline 53.9 53.9
1 of 15 59.3 1.1
Balanced Bounding Box 1254.7 21.1
Distributed LB BB 1388.9 1.1

Table B.1: Speedup on 48 processors versus the original TensorFlow implementation

per processor starts to get pretty small and the chunks of work are not large enough to hide jitter

and differences in work due to control flow and general “luck”. We saw this as a drop in processor

utilization from 95% to about 65%. This accounts for most of the loss of efficiency - it is not due

to communication overhead.

We would expect better weak scaling for the analysis-only code due to little collective

communication, and that turns out to be correct. Table B.3 shows that the weak scaling efficiency

for both codes is pretty good. We see a modest improvement in weak scaling efficiency due to

the distributed load balancing, particularly for the analysis-only case. The load-balancing time in

these studies is basically zero and I confirmed high processor utilization across all the cases, so the

only reason I can think of for imperfect and decreasing weak scaling is OS interrupts or potentially

the instrumentation I inserted to collect run time data (which uses some collectives by necessity).

B.7.1 Future Improvement Ideas

I am more than satisfied with the performance of the code, which is scalable enough for

our purposes and certainly fast enough. However, I have two ideas to improve scaling for the

derivative code. First, I need to alleviate the requirement for allgathering and allreducing the huge
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Derivatives all results are wall time in s
Number of processors 48 24 16 9 4
TensorFlow 38
Baseline 1.925 3.121 4.430 7.823 17.111
1 of 15 0.595 0.783 1.089 1.905 3.953
Bounding Box 0.175 0.169 0.175 0.224 0.282
Balanced Bounding Box 0.067 0.050 0.052 0.076 0.140

Best strong scaling efficiency 17% 46% 67% 82% 100%

Analysis only
Number of processors 48 24 16 9 4
TensorFlow 20
Baseline 0.371 0.634 0.991 1.567 3.399
1 of 15 0.337 0.577 0.885 1.426 3.026
Balanced Bounding Box 0.016 0.022 0.028 0.047 0.098
Distributed LB BB 0.014 0.021 0.029 0.046 0.097

Best strong scaling efficiency 56% 76% 85% 94% 100%

Table B.2: Strong scaling results for various optimization levels

Jacobian arrays onto each process which will inevitably harm both strong and weak scaling. If I can

pass in the smaller array dA/dx from outside, I can compute the product inside the Fortran routine

and allgather / allreduce a much smaller number of entries of dKS/dx. This should improve both

strong and weak scaling for the derivatives code and is very straightforward to implement.

Second, I can increase the amount of serial work done per processor depending on the

design problem. Future work could involve optimizing aircraft geometries which pack dozens or

hundreds of inner objects inside. In that case, I can create a manager-worker system to allocate one

(or maybe a few) processors per object. This will reduce the number of allreduce operations that

are required to assemble the derivatives and increase processor utilization by increasing the size of

the average work chunk.
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Derivatives 48 24 16 9 4
Global load balancing (time, s) 0.347 0.200 0.169 0.152 0.137
Weak scaling efficiency 39.4% 68.3% 80.8% 89.7% 100.0%
Distributed load balancing (time, s) 0.332 0.199 0.169 0.152 0.141
Weak scaling efficiency 42.4% 70.6% 83.4% 92.6% 100.0%

Analysis only 48 24 16 9 4
Global load balancing (time, s) 0.138 0.111 0.102 0.101 0.098
Weak scaling efficiency 71.3% 88.7% 96.3% 97.5% 100.0%
Distributed load balancing (time, s) 0.127 0.110 0.103 0.100 0.098
Weak scaling efficiency 77.7% 89.8% 95.7% 98.0% 100.0%

Table B.3: Weak scaling results for various optimization levels

B.8 Concluding Remarks

I demonstrated the design, development, verification, and testing of a Fortran-based geom-

etry constraint code for gradient-based optimization. The code has a necessarily-complicated build

process involving algorithmic differentiation, complex step derivative verification, and a Python-

Fortran interface. Through careful memory access design, a 50x speedup was achieved compared

to the already well-designed TensorFlow implementation. Subsequent algorithm improvements

in the Fortran code increased the speedup to as much as 1350x. Changes to the algorithm in-

troduced a dynamic load balancing problem, which was solved using a scalable load balancing

mechanism. Strong and weak scaling were good for the analysis-only code, but suffered for the

derivative code due to required collective communication. Future work could alleviate software

interface constraints and reduce the scaling penalty on the derivative code by reducing collective

communication substantially.
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APPENDIX C

CAD-based Optimization Geometry with

Engineering Sketch Pad

C.1 Introduction

Shape optimization with high-fidelity physics requires a geometry engine to translate changes

in geometric design variables into whatever geometric representation is used by the physical sim-

ulations. For example, in aerodynamic shape optimization of a wing, the geometry engine needs

to convert changes in wingspan or aspect ratio into deformations of the CFD surface mesh. In a

structural optimization, the geometry engine computes the locations of the finite element nodes.

Historically, the MACH framework has relied on a CAD-free parameterization [228] based on the

free-form deformation method. However, it is difficult to translate shapes optimized with FFD

into buildable geometries for industrial use, because industrial fabrication relies on CAD-based

models.

For this dissertation, I developed a CAD-based geometry engine compatible with the MACH

aerostructural optimization workflow, known as DVGeoESP. This appendix describes the general

approach, but is not an exhaustive list of low-level computational tricks, nor an API reference.
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C.2 CAD Surface Description

The first step in a CAD-based shape optimization is to create a baseline geometry in ESP.

The baseline geometry should be consistent with the requirements of the analysis method(s) to be

used. For example, geometry to be used with CFD should generally be a “watertight” enclosed

surface. Finite element geometry should include surfaces coincident with the intended location

of the idealized elements (e.g. ribs, spars, skins). All points in the baseline computational model

must be coincident with a surface in the CAD model.

A notional CAD surface is pictured in Figure C.1a. A CFD mesh can be generated using

the CAD surface with an external program such as Pointwise or ICEM CFD. Alternatively, if the

geometry of an existing CFD mesh is known, a new CAD surface can be created that matches the

existing mesh. Figure C.1b illustrates a CFD mesh corresponding to the notional CAD object.

(a) Notional CAD surface (b) CFD mesh discretization of CAD surface

Figure C.1: CAD model and CFD mesh in undeformed state

The CAD object is segmented into one or more B-spline surfaces. Each spline surface has

a two-dimensional parameterization (denoted by the variables u and v). Engineering Sketch Pad

typically defines u and v on a range of 0 to 1, but circular or spherical shapes may vary from 0 to

2π or multiples thereof. Figure C.2 shows a schematic illustration of the u, v parameterization on

a B-spline surface. Each point on the surface can be uniquely defined in u, v coordinates.
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u v

Figure C.2: Parametric coordinates on a B spline surface

C.3 Adding a Point Set

A point set is simply a list of coordinate points which lie on the CAD object’s surface. A point

set may represent the nodal coordinates of a finite element model or mesh points of a CFD model.

Upon initialization, point sets must be associated to the CAD surface. This is done by storing the

unique parametric coordinates associated with each point in the point set.

Let X be a list of coordinates of length ` and column dimension 3. The i-th point Xi can be

obtained as:

Xi = f(x, ui, vi, Si) (C.1)

where f() is the CAD model, x is the vector of geometric design variables, and ui and vi are the

parametric coordinates of the point on Si, the i-th B-spline surface. On initialization, the u and v

coordinates are obtained using an inverse lookup procedure available in Engineering Sketch Pad

which can be denoted as:

(ui, vi) = h(x0,Xi, Si) (C.2)

where x0 are the design variables for the base case. The inverse lookup function h is expensive,

so this is done only once on initialization. The point set can then be saved as a list of parametric
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coordinates (u,v) along with the index of the CAD B-spline surface which had the closest match,

S. DVGeometryESP will return an error if the minimum distance from a point to any B-spline

surface is more than some tolerance.

C.4 Updating a Point Set

During optimization, the geometric design variables x will change, thus causing the B-spline

geometry to change. This requires updating the point set coordinates. The (u, v) parametric co-

ordinates remain constant during optimization, thus preserving relative locations of mesh points

and the overall topology. Figure C.3a shows the deformed CAD object with the associated mesh

points. Figure C.3b compares the CFD mesh before and after the geometry changes.

(a) The point set deforms with the deformed CAD sur-
face

(b) Mesh topology is preserved across CAD geometry
changes

Figure C.3: Post-deformation CAD surface and CFD mesh
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C.5 Computing Derivatives

For optimization, the framework needs derivatives of the CFD mesh points with respect to the

design variables, or:

dXij

dxk
(C.3)

This can be expressed as a tensor, but in pyGeo we flatten the spatial dimension so it becomes a

Jacobian. The tensor entries are computed using the finite difference method in parallel. Each pro-

cessor is evenly allocated a number of design variables, and for each variable the entire point set is

deformed across a small finite difference step before being reset. The full Jacobian is subsequently

allgathered to every processor, unless the point set is distributed. In that case, only the Jacobian

rows stored on a processor are gathered there.
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APPENDIX D

Fluid Systems Weight and Performance Data

This appendix contains tabulated and computed data for low-pressure aerospace hoses as well

as pumps. Public data on aerospace components can be difficult to find, and I was unable to locate

coolant-specific pump data for aircraft. However, Eaton Corporation publishes substantial data on

its fuel pumps, which are similar to the flow rates and pressures required for coolant applications,

so I used these for benchmarking. Tabulating the hose data was necessary in order to back-calculate

the material density and design material stress for a realistic aerospace-rated hose.
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Model No Type Voltage Current (A) Flow (pph) Pressure (PSIG) Weight (lb) Elec Power (W) Flow (kg/s) Fluid Power (W) Pump Efficiency Elec Spec Power (W/kg)
568-1-30780 Fuel 24 7 1500 30 6.44 168 0.19 47.7 28.38% 57.5
568-1-29407 Fuel 23 13 3150 27 5.2 299 0.40 90.1 30.14% 126.8
39-0001-1100 VF Boost 200 14 30000 22 17.25 2800 3.78 699.2 24.97% 357.9
568-1-24730 Boost 200 7.1 39000 12 7.5 1420 4.91 495.8 34.92% 417.4
568-1-30685 Boost (747) 200 7 28000 18 9.3 1400 3.53 533.9 38.14% 331.9
568-1-27202 Boost (A320) 200 7 10000 33 11 1400 1.26 349.6 24.97% 280.6
568-1-24190 Transfer 200 4.9 23200 10 3.6 980 2.92 245.8 25.08% 600.2

Table D.1: Eaton Corporation Fuel Pump Data and Computed Quantities [291]
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Model No dinner (in) douter (in) twall Density (kg/m3) Operating Press. (psi) Burst Press. (psi) Weight (lb/in) Operating Stress (psi) Burst Stress (psi)
306-2 0.125 0.344 0.110 0.0496 300 2000 0.004 171.2 1141.6
306-3 0.188 0.406 0.109 0.0492 250 1700 0.005 215.6 1466.1
306-4 0.25 0.469 0.110 0.0485 200 1250 0.006 228.3 1426.9
306-6 0.375 0.594 0.110 0.0480 150 1000 0.008 256.8 1712.3
306-8 0.5 0.75 0.125 0.0489 150 750 0.012 300.0 1500.0
306-10 0.625 0.875 0.125 0.0475 150 700 0.014 375.0 1750.0

Table D.2: Eaton Corporation Low-Pressure Hose Data and Computed Quantities [212]

281



Bibliography

[1] B. J. Brelje, J. R. R. A. Martins, Development of a conceptual design model for aircraft elec-
tric propulsion with efficient gradients, in: Proceedings of the AIAA/IEEE Electric Aircraft
Technologies Symposium, Cincinnati, OH, 2018. doi:10.2514/6.2018-4979.

[2] International Civil Aviation Organization, Technology Standards (2011).
URL http://www.icao.int/environmental-protection/Pages/
technology-standards.aspx

[3] International Civil Aviation Organization (ICAO), Consolidated statement of continuing
ICAO policies and practices related to environmental protection – Global Market-based
Measure (MBM) scheme (2016).

[4] M. D. Guynn, J. J. Berton, M. J. Tong, W. J. Haller, Advanced Single-Aisle Transport
Propulsion Design Options Revisited, in: 13th AIAA Aviation Technology, Integration, and
Operations Conference, Los Angeles, CA, 2013. doi:10.2514/6.2013-4330.

[5] G. J. Follen, R. Del Rosario, R. A. Wahls, N. K. Madavan, NASA’s Fundamental Aeronau-
tics Subsonic Fixed Wing Project: Generation N+3 Technology Portfolio, in: SAE 2011
AeroTech Congress and Exhibition, 2011. doi:10.4271/2011-01-2521.

[6] U.S. Energy Information Administration, U.S. Gulf Coast Kerosene-Type Jet Fuel Spot
Price FOB (2021).
URL https://www.eia.gov/petroleum/

[7] U.S. Energy Information Administration, Wholesale Electricity and Natural Gas Market
Data (2021).
URL https://www.eia.gov/electricity/wholesale/

[8] R. Thomson, N. Sachdeva, M. Nazukin, N. Martinez, Aircraft Electrical Propulsion – The
Next Chapter of Aviation? (2017).
URL https://www.rolandberger.com/en/Publications/pub_new_
trends_in_electric_aircraft.html

[9] M. Hepperle, Electric Flight – Potential and Limitations, Tech. rep., NATO, Braunschweig
(2012).

282

https://doi.org/10.2514/6.2018-4979
http://www.icao.int/environmental-protection/Pages/technology-standards.aspx
http://www.icao.int/environmental-protection/Pages/technology-standards.aspx
http://www.icao.int/environmental-protection/Pages/technology-standards.aspx
https://doi.org/10.2514/6.2013-4330
https://doi.org/10.4271/2011-01-2521
https://www.eia.gov/petroleum/
https://www.eia.gov/petroleum/
https://www.eia.gov/petroleum/
https://www.eia.gov/electricity/wholesale/
https://www.eia.gov/electricity/wholesale/
https://www.eia.gov/electricity/wholesale/
https://www.rolandberger.com/en/Publications/pub_new_trends_in_electric_aircraft.html
https://www.rolandberger.com/en/Publications/pub_new_trends_in_electric_aircraft.html
https://www.rolandberger.com/en/Publications/pub_new_trends_in_electric_aircraft.html
https://www.rolandberger.com/en/Publications/pub_new_trends_in_electric_aircraft.html


[10] C. Pornet, Electric Drives for Propulsion System of Transport Aircraft, in: M. Chromat
(Ed.), New Applications of Electric Drives, InTech, 2015, Ch. 5.

[11] National Academy of Engineering Committee on Propulsion and Energy Systems to Re-
duce Commercial Aviation Carbon Emissions, Commercial Aircraft Propulsion and Energy
Systems Research: Reducing Global Carbon Emissions, National Academies Press, 2016.
doi:10.17226/23490.

[12] A. S. Gohardani, G. Doulgeris, R. Singh, Challenges of future aircraft propulsion: A re-
view of distributed propulsion technology and its potential application for the all elec-
tric commercial aircraft, Progress in Aerospace Sciences 47 (5) (2011) 369–391. doi:
10.1016/j.paerosci.2010.09.001.

[13] A. S. Gohardani, A synergistic glance at the prospects of distributed propulsion technol-
ogy and the electric aircraft concept for future unmanned air vehicles and commercial/mil-
itary aviation, Progress in Aerospace Sciences 57 (2013) 25 – 70. doi:10.1016/j.
paerosci.2012.08.001.

[14] B. Sarlioglu, C. T. Morris, More Electric Aircraft: Review, Challenges, and Opportuni-
ties for Commercial Transport Aircraft, IEEE Transactions on Transportation Electrification
1 (1) (2015) 54–64. doi:10.1109/TTE.2015.2426499.

[15] C. A. Perullo, D. N. Mavris, A review of hybrid-electric energy management and its in-
clusion in vehicle sizing, Aircraft Engineering and Aerospace Technology 86 (6) (2014)
550–557. doi:10.1108/AEAT-04-2014-0041.

[16] T. J. Wall, R. Meyer, A Survey of Hybrid Electric Propulsion for Aircraft, in: 53rd
AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017, pp. 1–15. doi:
10.2514/6.2017-4700.

[17] B. Brelje, J. R. R. A. Martins, Electric, hybrid, and turboelectric fixed-wing aircraft: A
review of concepts, models, and design approaches, Progress in Aerospace Sciences 104
(2019) 1–19. doi:10.1016/j.paerosci.2018.06.004.

[18] A. T. Isikveren, S. Kaiser, C. Pornet, P. C. Vratny, Pre-design strategies and sizing tech-
niques for dual-energy aircraft, Aircraft Engineering and Aerospace Technology 86 (6)
(2014) 525–542. doi:10.1108/AEAT-08-2014-0122.

[19] M. K. Bradley, C. K. Droney, Subsonic Ultra Green Aircraft Research: Phase II – Volume
II – Hybrid Electric Design Exploration, NASA/CR–2015-218704 (2015).
URL https://ntrs.nasa.gov

[20] J. Thauvin, G. Barraud, M. Budinger, D. Leray, X. Roboam, B. Sareni, Hybrid Re-
gional Aircraft: A Comparative Review of New Potentials Enabled by Electric Power, in:
52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, 2016. doi:
10.2514/6.2016-4612.

283

https://doi.org/10.17226/23490
https://doi.org/10.1016/j.paerosci.2010.09.001
https://doi.org/10.1016/j.paerosci.2010.09.001
https://doi.org/10.1016/j.paerosci.2012.08.001
https://doi.org/10.1016/j.paerosci.2012.08.001
https://doi.org/10.1109/TTE.2015.2426499
https://doi.org/10.1108/AEAT-04-2014-0041
https://doi.org/10.2514/6.2017-4700
https://doi.org/10.2514/6.2017-4700
https://doi.org/10.1016/j.paerosci.2018.06.004
https://doi.org/10.1108/AEAT-08-2014-0122
https://ntrs.nasa.gov
https://ntrs.nasa.gov
https://ntrs.nasa.gov
https://doi.org/10.2514/6.2016-4612
https://doi.org/10.2514/6.2016-4612


[21] J. K. Ausserer, F. G. Harmon, Integration, Validation, and Testing of a Hybrid-Electric
Propulsion System for a Small Remotely Piloted Aircraft, in: 10th International Energy
Conversion Engineering Conference, Atlanta, GA, 2012. doi:10.2514/6.2012-
4239.

[22] C. Pornet, C. Gologan, P. C. Vratny, A. Seitz, O. Schmitz, A. T. Isikveren, M. Hornung,
Methodology for Sizing and Performance Assessment of Hybrid Energy Aircraft, Journal
of Aircraft 52 (1) (2015) 341–352. doi:10.2514/1.C032716.

[23] J. Rheaume, C. Lents, Energy Storage for Commercial Hybrid Electric Aircraft, SAE Tech-
nical Paper 2016-01-2014 (2016). doi:10.4271/2016-01-2014.

[24] I. Geiss, R. Voit-Nitschmann, Sizing of the energy storage system of hybrid-electric aircraft
in general aviation, CEAS Aeronautical Journal 8 (1) (2017) 53–65. doi:10.1007/
s13272-016-0220-5.

[25] K. R. Antcliff, M. D. Guynn, T. Marien, D. P. Wells, S. J. Schneider, M. T. Tong, Mis-
sion Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft, in: 54th AIAA
Aerospace Sciences Meeting, San Diego, CA, 2016. doi:10.2514/6.2016-1028.

[26] C. Pornet, A. T. Isikveren, Conceptual design of hybrid-electric transport aircraft, Progress
in Aerospace Sciences 79 (2015) 114–135. doi:10.1016/j.paerosci.2015.09.
002.

[27] A. T. Isikveren, C. Pornet, P. C. Vratny, M. Schmidt, Optimization of Commercial Aircraft
Using Battery-Based Voltaic-Joule/Brayton Propulsion, Journal of Aircraft 54 (1) (2017)
246–261. doi:10.2514/1.C033885.

[28] M. Marwa, B. Martos, S. M. Martin, R. Anderson, Analytic and Numeric Forms for the
Performance of Propeller-Powered Electric and Hybrid Aircraft, in: 55th AIAA Aerospace
Sciences Meeting, Grapevine, TX, 2017, pp. 1–37. doi:10.2514/6.2017-0211.

[29] R. H. Jansen, C. Bowman, A. Jankovsky, R. Dyson, J. L. Felder, Overview of NASA
Electrified Aircraft Propulsion (EAP) Research for Large Subsonic Transports, in: 53rd
AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017, pp. 1–20. doi:
10.2514/6.2017-4701.

[30] N. Xue, W. Du, J. R. R. A. Martins, W. Shyy, Handbook of Clean Energy Systems,
Vol. 5 : Energy Storage, John Wiley & Sons, Ltd, 2015, Ch. 26: Lithium-Ion Batter-
ies: Thermo-Mechanics, Performance, and Design Optimization, pp. 2849–2864. doi:
10.1002/9781118991978.

[31] L. A. Costello, State of the art of piloted electric airplanes, NASA’s centennial challenge data
and fundamental design implications, Master’s Thesis; Embry-Riddle Aeronautical Univer-
sity Scholarly Commons (2011).
URL http://commons.erau.edu/cgi/viewcontent.cgi?article=1036&
context=edt

284

https://doi.org/10.2514/6.2012-4239
https://doi.org/10.2514/6.2012-4239
https://doi.org/10.2514/1.C032716
https://doi.org/10.4271/2016-01-2014
https://doi.org/10.1007/s13272-016-0220-5
https://doi.org/10.1007/s13272-016-0220-5
https://doi.org/10.2514/6.2016-1028
https://doi.org/10.1016/j.paerosci.2015.09.002
https://doi.org/10.1016/j.paerosci.2015.09.002
https://doi.org/10.2514/1.C033885
https://doi.org/10.2514/6.2017-0211
https://doi.org/10.2514/6.2017-4701
https://doi.org/10.2514/6.2017-4701
https://doi.org/10.1002/9781118991978
https://doi.org/10.1002/9781118991978
http://commons.erau.edu/cgi/viewcontent.cgi?article=1036&context=edt
http://commons.erau.edu/cgi/viewcontent.cgi?article=1036&context=edt
http://commons.erau.edu/cgi/viewcontent.cgi?article=1036&context=edt
http://commons.erau.edu/cgi/viewcontent.cgi?article=1036&context=edt


[32] Electric Aircraft Corporation, Electric Aircraft Corporation: Home of the ElectraFlyer
(2018).
URL http://www.electraflyer.com/

[33] N. Lapena-Rey, J. Mosquera, E. Bataller, F. Ortı́, First Fuel-Cell Manned Aircraft, Journal
of Aircraft 47 (6) (2010) 1825–1835. doi:10.2514/1.42234.

[34] C. Riboldi, F. Gualdoni, An integrated approach to the preliminary weight sizing of small
electric aircraft, Aerospace Science and Technology 58 (2016) 134–149. doi:10.1016/
j.ast.2016.07.014.

[35] Diamond Aircraft, About Diamond - Innovation (2017).
URL http://www.diamondaircraft.com/about-diamond/innovation/

[36] Pipistrel, Taurus Electro G2 Technical Data (2017).
URL http://www.pipistrel.si/plane/taurus-electro/technical-
data

[37] J. W. Langelaan, A. Chakrabarty, A. Deng, K. Miles, V. Plevnik, J. Tomazic, T. Tumazic,
G. Veble, Green Flight Challenge : Aircraft Design and Flight Planning for Extreme Fuel
Efficiency, Journal of Aircraft 50 (3) (2013). doi:10.2514/1.C032022.

[38] A. Nanda, The Propulsive Design Aspects on the World’s First Direct Drive Hybrid Air-
plane, Master’s Thesis; Embry-Riddle Aeronautical University Scholarly Commons (2011).

[39] W. C. Yates, Personal Communication (2017).

[40] K. Petermaier, Electric propulsion components with high power densities for aviation, in:
2015 Transformational Vertical Flight Workshop, Siemens AG, 2015.
URL https://nari.arc.nasa.gov/sites/default/files/
attachments/Korbinian-TVFW-Aug2015.pdf

[41] Airbus Group, E-Fan: The New Way to Fly, Brochure (2015).
URL http://company.airbus.com/service/mediacenter/download/
?uuid=48b1bd2c-a428-4c65-82e5-ed3e923bd142

[42] Airbus Group, E-Fan: toward more electric planes (2017).
URL http://company.airbus.com/responsibility/airbus-e-fan-
the-future-of-electric-aircraft/Programme.html

[43] C. Friedrich, P. Robertson, Hybrid-Electric Propulsion for Aircraft, Journal of Aircraft
52 (1) (2015) 176–189. doi:10.2514/1.C032660.

[44] University of Cambridge, Watts up - aeroplanes go hybrid-electric (2014).
URL http://www.cam.ac.uk/research/news/watts-up-aeroplanes-
go-hybrid-electric

285

http://www.electraflyer.com/
http://www.electraflyer.com/
https://doi.org/10.2514/1.42234
https://doi.org/10.1016/j.ast.2016.07.014
https://doi.org/10.1016/j.ast.2016.07.014
http://www.diamondaircraft.com/about-diamond/innovation/
http://www.diamondaircraft.com/about-diamond/innovation/
http://www.pipistrel.si/plane/taurus-electro/technical-data
http://www.pipistrel.si/plane/taurus-electro/technical-data
http://www.pipistrel.si/plane/taurus-electro/technical-data
https://doi.org/10.2514/1.C032022
https://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf
https://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf
http://company.airbus.com/service/mediacenter/download/?uuid=48b1bd2c-a428-4c65-82e5-ed3e923bd142
http://company.airbus.com/service/mediacenter/download/?uuid=48b1bd2c-a428-4c65-82e5-ed3e923bd142
http://company.airbus.com/service/mediacenter/download/?uuid=48b1bd2c-a428-4c65-82e5-ed3e923bd142
http://company.airbus.com/responsibility/airbus-e-fan-the-future-of-electric-aircraft/Programme.html
http://company.airbus.com/responsibility/airbus-e-fan-the-future-of-electric-aircraft/Programme.html
http://company.airbus.com/responsibility/airbus-e-fan-the-future-of-electric-aircraft/Programme.html
https://doi.org/10.2514/1.C032660
http://www.cam.ac.uk/research/news/watts-up-aeroplanes-go-hybrid-electric
http://www.cam.ac.uk/research/news/watts-up-aeroplanes-go-hybrid-electric
http://www.cam.ac.uk/research/news/watts-up-aeroplanes-go-hybrid-electric


[45] T. A. Horne, Pipistrel Alpha Electro: The Trainer of the Future?, AOPA Pilot (October
2017).
URL https://www.aopa.org/news-and-media/all-news/2015/
october/pilot/f_pipistrel/

[46] Pipistrel, Pipistel Alpha Electro Information Pack Rev 05 (2017).
URL www.flypipistrel.com/info-packs/Pipistrel-Alpha-ELECTRO-
Information-Pack.pdf

[47] Siemens AG, Aerobatic Airplane ”Extra 330LE” (2016).
URL https://www.siemens.com/press/pool/de/events/2016/
corporate/2016-12-innovation/inno2016-aerobatic-airplane-
e.pdf

[48] N. K. Borer, M. D. Patterson, J. K. Viken, M. D. Moore, J. Bevirt, A. M. Stoll, A. R.
Gibson, Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion
Flight Demonstrator, in: 16th AIAA Aviation Technology, Integration, and Operations Con-
ference, Washington, DC, 2016. doi:10.2514/6.2016-3920.

[49] S. Clarke, M. Redifer, K. V. Papathakis, A. Samuel, T. Foster, X-57 power and command
system design, in: 2017 IEEE Transportation and Electrification Conference and Expo,
ITEC 2017, 2017, pp. 393–400. doi:10.1109/ITEC.2017.7993303.

[50] K. V. Papathakis, P. A. Burkhardt, D. W. Ehmann, A. M. Sessions, Safety Considerations
for Electric, Hybrid-Electric, and Turbo-Electric Distributed Propulsion Aircraft Testbeds,
in: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017. doi:10.
2514/6.2017-5032.

[51] J. Welstead, J. L. Felder, Conceptual Design of a Single-Aisle Turboelectric Commercial
Transport with Fuselage Boundary Layer Ingestion, in: 54th AIAA Aerospace Sciences
Meeting, San Diego, CA, 2016. doi:10.2514/6.2016-1027.

[52] J. Welstead, J. L. Felder, M. D. Guynn, W. Haller, M. T. Tong, S. Jones, I. Ordaz, J. Quinlan,
B. Mason, Overview of the NASA STARC-ABL (Rev . B) Advanced Concept (2017).
URL https://ntrs.nasa.gov/search.jsp?R=20170005612

[53] J. L. Felder, G. V. Brown, H. D. Kim, J. Chu, Turboelectric distributed propulsion in a hybrid
wing body aircraft, in: International Symposium on Air Breathing Engines 2011, 2011.

[54] M. J. Armstrong, C. A. H. Ross, M. J. Blackwelder, Trade Studies for NASA N3-X Turbo-
electric Distributed Propulsion System Electrical Power System Architecture, SAE Interna-
tional Journal of Aerospace 5 (2) (2012) 325–335. doi:10.4271/2012-01-2163.

[55] H. D. Kim, J. L. Felder, M. T. Tong, M. J. Armstrong, Revolutionary Aeropropulsion Con-
cept for Sustainable Aviation: Turboelectric Distributed Propulsion, in: 21st International
Symposium on Air Breathing Engines (ISABE), Busan, Korea, 2013.

286

https://www.aopa.org/news-and-media/all-news/2015/october/pilot/f_pipistrel/
https://www.aopa.org/news-and-media/all-news/2015/october/pilot/f_pipistrel/
https://www.aopa.org/news-and-media/all-news/2015/october/pilot/f_pipistrel/
www.flypipistrel.com/info-packs/Pipistrel-Alpha-ELECTRO-Information-Pack.pdf
www.flypipistrel.com/info-packs/Pipistrel-Alpha-ELECTRO-Information-Pack.pdf
https://www.siemens.com/press/pool/de/events/2016/corporate/2016-12-innovation/inno2016-aerobatic-airplane-e.pdf
https://www.siemens.com/press/pool/de/events/2016/corporate/2016-12-innovation/inno2016-aerobatic-airplane-e.pdf
https://www.siemens.com/press/pool/de/events/2016/corporate/2016-12-innovation/inno2016-aerobatic-airplane-e.pdf
https://www.siemens.com/press/pool/de/events/2016/corporate/2016-12-innovation/inno2016-aerobatic-airplane-e.pdf
https://doi.org/10.2514/6.2016-3920
https://doi.org/10.1109/ITEC.2017.7993303
https://doi.org/10.2514/6.2017-5032
https://doi.org/10.2514/6.2017-5032
https://doi.org/10.2514/6.2016-1027
https://ntrs.nasa.gov/search.jsp?R=20170005612
https://ntrs.nasa.gov/search.jsp?R=20170005612
https://doi.org/10.4271/2012-01-2163


[56] H. D. Kim, J. L. Felder, M. T. Tong, J. J. Berton, W. Haller, Turboelectric distributed propul-
sion benefits on the N3-X vehicle, Aircraft Engineering and Aerospace Technology 86 (6)
(2014) 558–561. doi:10.1108/AEAT-04-2014-0037.

[57] A. Jankovsky, C. Bowman, R. H. Jansen, Building Blocks for Transport-Class Hybrid and
Turboelectric Vehicles, NASA Presentation (2016).
URL https://ntrs.nasa.gov/search.jsp?R=20170006238

[58] J. L. Felder, NASA Electric Propulsion System Studies, NASA Presentation (2017).
URL https://ntrs.nasa.gov/search.jsp?R=20160009274

[59] M. Hornung, A. T. Isikveren, M. Cole, A. Sizmann, Ce-Liner – Case Study for eMobility
in Air Transportation, in: 13th AIAA Aviation Technology, Integration, and Operations
Conference, Los Angeles, CA, 2013. doi:10.2514/6.2013-4302.

[60] A. T. Isikveren, A. Seitz, P. C. Vratny, C. Pornet, K. O. Plötner, M. Hornung, Conceptual
Studies of Universally-Electric Systems Architectures Suitable for Transport Aircraft, in:
Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, 2012.

[61] S. Stückl, J. van Toor, H. Lobentanzer, VOLTAIR - The All Electric Propulsion Concept
Platform – A Vision For Atmospheric Friendly Flight, in: 28th Congress of the International
Council of the Aeronautical Sciences, Brisbane, Australia, 2012.

[62] EADS, VoltAir All-electric Transport Concept Platform, Brochure.
URL https://www.airbusgroup.com/service/mediacenter/download/
?uuid=1af7b378-404c-4345-a243-a13de66a2dbd

[63] Airbus Group and Rolls-Royce, E-Thrust, Brochure (2012).
URL http://company.airbus.com/service/mediacenter/download/
?uuid=64ea2c23-91b1-4787-9d1d-5b22b7d716b9

[64] B. T. Schiltgen, J. Freeman, Aeropropulsive Interaction and Thermal System Integration
within the ECO-150: A Turboelectric Distributed Propulsion Airliner with Conventional
Electric Machines, in: 16th AIAA Aviation Technology, Integration, and Operations Con-
ference, Washington, DC, 2016. doi:10.2514/6.2016-4064.

[65] Eviation, Alice Commuter (2018).
URL eviation.co/alice/

[66] Eviation, In a Major Step Toward Fully Electric Aviation, Eviation and Kokam Announce
Battery Supply Deal Worth Over 1 Million at Singapore Airshow, Press Release (feb 2018).
URL https://www.prnewswire.com/news-releases/in-a-major-
step-toward-fully-electric-aviation-eviation-and-kokam-
announce-battery-supply-deal-worth-over-1-million-at-
singapore-airshow-300594703.html

287

https://doi.org/10.1108/AEAT-04-2014-0037
https://ntrs.nasa.gov/search.jsp?R=20170006238
https://ntrs.nasa.gov/search.jsp?R=20170006238
https://ntrs.nasa.gov/search.jsp?R=20170006238
https://ntrs.nasa.gov/search.jsp?R=20160009274
https://ntrs.nasa.gov/search.jsp?R=20160009274
https://doi.org/10.2514/6.2013-4302
https://www.airbusgroup.com/service/mediacenter/download/?uuid=1af7b378-404c-4345-a243-a13de66a2dbd
https://www.airbusgroup.com/service/mediacenter/download/?uuid=1af7b378-404c-4345-a243-a13de66a2dbd
https://www.airbusgroup.com/service/mediacenter/download/?uuid=1af7b378-404c-4345-a243-a13de66a2dbd
http://company.airbus.com/service/mediacenter/download/?uuid=64ea2c23-91b1-4787-9d1d-5b22b7d716b9
http://company.airbus.com/service/mediacenter/download/?uuid=64ea2c23-91b1-4787-9d1d-5b22b7d716b9
http://company.airbus.com/service/mediacenter/download/?uuid=64ea2c23-91b1-4787-9d1d-5b22b7d716b9
https://doi.org/10.2514/6.2016-4064
eviation.co/alice/
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html
https://www.prnewswire.com/news-releases/in-a-major-step-toward-fully-electric-aviation-eviation-and-kokam-announce-battery-supply-deal-worth-over-1-million-at-singapore-airshow-300594703.html


[67] T. B. Haines, XTI Trifan 600 Draws the Curious at NBAA, AOPA (2017).
URL https://www.aopa.org/news-and-media/all-news/2017/
october/11/xti-trifan-600-draws-the-curious-at-nbaa

[68] C. Combs, Personal Communication (2017).

[69] Zunum Aero, Zunum Aero - Aircraft (2017).
URL http://zunum.aero/aircraft/

[70] B. Fehrm, Airbus , Rolls-Royce and Siemens develops Hybrid-Electric demonstrator,
Leeham News and Comment (2017).
URL https://leehamnews.com/2017/11/29/airbus-rolls-royce-
siemens-develops-hybrid-electric-demonstrator/

[71] K. J. Karimi, Future Aircraft Power Systems- Integration Challenges Future Aircraft Power
Systems (2007).
URL https://eng.umd.edu/$\sim$austin/ense622.d/lecture-
resources/Boeing787-MoreElectricAircraft.pdf

[72] S. F. Clark, 787 Propulsion System, Boeing Aero Quarterly (2012) 13.
URL www.boeing.com/boeingedge/aeromagazine

[73] Airbus Group, Airbus, Rolls-Royce, and Siemens team up for electric future (2017).
URL http://www.airbus.com/newsroom/press-releases/en/2017/
11/airbus--rolls-royce--and-siemens-team-up-for-electric-
future-par.html

[74] M. K. Bradley, C. K. Droney, Subsonic ultra green aircraft research: Phase I final report,
Tech. Rep. CR–2011-216847, NASA (April 2011).

[75] B. T. Schiltgen, A. R. Gibson, J. D. Keith, Mission Performance Comparisons of Subsonic
Airliners with Current and Future Propulsion Technologies, in: 48th AIAA Aerospace Sci-
ences Meeting, Orlando, FL, 2010. doi:10.2514/6.2010-279.

[76] B. Schiltgen, M. W. Green, A. R. Gibson, D. W. Hall, D. B. Cummings, Benefits and Con-
cerns of Hybrid Electric Distributed Propulsion with Conventional Electric Machines, in:
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2012. doi:
10.2514/6.2012-3769.

[77] B. T. Schiltgen, A. R. Gibson, M. W. Green, J. Freeman, More Electric Aircraft: ”Tube
and Wing” Hybrid Electric Distributed Propulsion with Superconducting and Conventional
Electric Machines, SAE Technical Paper 2013-01-2306 (2013). doi:10.4271/2013-
01-2306.

[78] M. W. Green, B. T. Schiltgen, A. R. Gibson, Analysis of a Distributed Hybrid Propul-
sion System with Conventional Electric Machines, in: 48th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference, Atlanta, GA, 2012. doi:10.2514/6.2012-3768.

288

https://www.aopa.org/news-and-media/all-news/2017/october/11/xti-trifan-600-draws-the-curious-at-nbaa
https://www.aopa.org/news-and-media/all-news/2017/october/11/xti-trifan-600-draws-the-curious-at-nbaa
https://www.aopa.org/news-and-media/all-news/2017/october/11/xti-trifan-600-draws-the-curious-at-nbaa
http://zunum.aero/aircraft/
http://zunum.aero/aircraft/
https://leehamnews.com/2017/11/29/airbus-rolls-royce-siemens-develops-hybrid-electric-demonstrator/
https://leehamnews.com/2017/11/29/airbus-rolls-royce-siemens-develops-hybrid-electric-demonstrator/
https://leehamnews.com/2017/11/29/airbus-rolls-royce-siemens-develops-hybrid-electric-demonstrator/
https://leehamnews.com/2017/11/29/airbus-rolls-royce-siemens-develops-hybrid-electric-demonstrator/
https://eng.umd.edu/$\sim $austin/ense622.d/lecture-resources/Boeing787-MoreElectricAircraft.pdf
https://eng.umd.edu/$\sim $austin/ense622.d/lecture-resources/Boeing787-MoreElectricAircraft.pdf
https://eng.umd.edu/$\sim $austin/ense622.d/lecture-resources/Boeing787-MoreElectricAircraft.pdf
https://eng.umd.edu/$\sim $austin/ense622.d/lecture-resources/Boeing787-MoreElectricAircraft.pdf
www.boeing.com/boeingedge/aeromagazine
http://www.airbus.com/newsroom/press-releases/en/2017/11/airbus--rolls-royce--and-siemens-team-up-for-electric-future-par.html
http://www.airbus.com/newsroom/press-releases/en/2017/11/airbus--rolls-royce--and-siemens-team-up-for-electric-future-par.html
http://www.airbus.com/newsroom/press-releases/en/2017/11/airbus--rolls-royce--and-siemens-team-up-for-electric-future-par.html
http://www.airbus.com/newsroom/press-releases/en/2017/11/airbus--rolls-royce--and-siemens-team-up-for-electric-future-par.html
https://doi.org/10.2514/6.2010-279
https://doi.org/10.2514/6.2012-3769
https://doi.org/10.2514/6.2012-3769
https://doi.org/10.4271/2013-01-2306
https://doi.org/10.4271/2013-01-2306
https://doi.org/10.2514/6.2012-3768


[79] V. Mukhopadhyay, T. A. Ozoroski, M. L. Mcmillin, Structural Configuration Analysis of
Advanced Flight Vehicle Concepts with Distributed Hybrid-Electric Propulsion, in: 2018
AIAA Aerospace Sciences Meeting, Orlando, FL, 2018. doi:10.2514/6.2018-1747.

[80] M. D. Moore, B. Fredericks, Misconceptions of electric aircraft and their emerging aviation
markets, in: 52nd Aerospace Sciences Meeting, no. AIAA Paper 2014-0535, AIAA, 2014.
doi:10.2514/6.2014-0535.

[81] J. Murray, J. Lechniak, The LEAPTech Experiment: Approach, Results, Recommendations,
NASA Presentation (2016).
URL https://ntrs.nasa.gov/search.jsp?R=20160012394

[82] K. A. Deere, S. Viken, M. Carter, J. K. Viken, J. M. Derlaga, A. M. Stoll, Comparison of
High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion
Aircraft, in: 35th AIAA Applied Aerodynamics Conference, Denver, CO, 2017. doi:
10.2514/6.2017-3925.

[83] J. Bennett, NASA’s Next Great X-Plane Will Try to Revolutionize Electric Flight, Popular
Mechanics (July 2017).
URL http://www.popularmechanics.com/flight/a26609/nasa-plane-
electric-x-57-maxwell/

[84] T. Risen, For NASA’s X-57 Electric Plane, More Battery Tests Ahead, Aerospace America
(July 2017).
URL https://aerospaceamerica.aiaa.org/x57-battery-tests/

[85] H. D. Kim, G. V. Brown, J. L. Felder, Distributed Turboelectric Propulsion for Hybrid Wing
Body Aircraft, in: 2008 International Powered Lift Conference, London, UK, 2008.
URL http://mdao.grc.nasa.gov/publications/IPLF08-Kim.pdf

[86] J. Felder, H. Kim, G. Brown, Turboelectric Distributed Propulsion Engine Cycle Analysis
for Hybrid-Wing-Body Aircraft, in: 47th AIAA Aerospace Sciences Meeting, Orlando, FL,
2009, pp. 1–25. doi:10.2514/6.2009-1132.

[87] J. L. Felder, M. T. Tong, J. Chu, Sensitivity of mission energy consumption to turbo-
electric distributed propulsion design assumptions on the N3-X hybrid wing body air-
craft, in: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2012.
doi:10.2514/6.2012-3701.

[88] G. V. Brown, Weights and Efficiencies of Electric Components of a Turboelectric Aircraft
Propulsion System, in: 49th AIAA Aerospace Sciences Meeting, Orlando, FL, 2011. doi:
10.2514/6.2011-225.

[89] J. J. Berton, W. J. Haller, A Noise and Emissions Assessment of the N3-X Transport,
in: 52nd Aerospace Sciences Meeting, National Harbor, MD, 2014. doi:10.2514/6.
2014-0594.

289

https://doi.org/10.2514/6.2018-1747
https://doi.org/10.2514/6.2014-0535
https://ntrs.nasa.gov/search.jsp?R=20160012394
https://ntrs.nasa.gov/search.jsp?R=20160012394
https://doi.org/10.2514/6.2017-3925
https://doi.org/10.2514/6.2017-3925
http://www.popularmechanics.com/flight/a26609/nasa-plane-electric-x-57-maxwell/
http://www.popularmechanics.com/flight/a26609/nasa-plane-electric-x-57-maxwell/
http://www.popularmechanics.com/flight/a26609/nasa-plane-electric-x-57-maxwell/
http://www.popularmechanics.com/flight/a26609/nasa-plane-electric-x-57-maxwell/
https://aerospaceamerica.aiaa.org/x57-battery-tests/
https://aerospaceamerica.aiaa.org/x57-battery-tests/
http://mdao.grc.nasa.gov/publications/IPLF08-Kim.pdf
http://mdao.grc.nasa.gov/publications/IPLF08-Kim.pdf
http://mdao.grc.nasa.gov/publications/IPLF08-Kim.pdf
https://doi.org/10.2514/6.2009-1132
https://doi.org/10.2514/6.2012-3701
https://doi.org/10.2514/6.2011-225
https://doi.org/10.2514/6.2011-225
https://doi.org/10.2514/6.2014-0594
https://doi.org/10.2514/6.2014-0594


[90] M. J. Armstrong, C. A. H. Ross, M. J. Blackwelder, Propulsion System Component Consid-
erations for NASA N3-X Turboelectric Distributed Propulsion System, SAE International
Journal of Aerospace 5 (2) (2012) 344–353. doi:10.4271/2012-01-2165.

[91] C. Ross, M. Armstrong, M. Blackwelder, C. Jones, P. Norman, S. Fletcher, Turboelectric
Distributed Propulsion Protection System Design Trades, SAE Technical Paper 2014-01-
2141 (2014). doi:10.4271/2014-01-2141.

[92] J. C. Shaw, P. Norman, S. Galloway, G. Burt, A Method for the Evaluation of the Effec-
tiveness of Turboelectric Distributed Propulsion Power System Architectures, SAE Interna-
tional Journal of Aerospace 7 (1) (2014) 35–43. doi:10.4271/2014-01-2120.

[93] K. Davies, P. Norman, C. Jones, S. Galloway, G. Burt, Modelling the Fault Behaviour of a
Superconducting Turboelectric Distributed Propulsion Network Overview of Superconduct-
ing DC Networks, SAE Technical Paper 2014-01-2142 (2014). doi:10.4271/2014-
01-2142.

[94] J. C. Shaw, S. Fletcher, P. Norman, S. Galloway, G. Burt, Failure Analysis of a Turboelectric
Distributed Propulsion Aircraft Electrical Network : A Case Study, SAE Technical Paper
2015-01-2403 (2015). doi:10.4271/2015-01-2403.

[95] F. Berg, J. Palmer, P. Miller, M. Husband, G. Dodds, HTS electrical system for a distributed
propulsion aircraft, IEEE Transactions on Applied Superconductivity 25 (3) (2015). doi:
10.1109/TASC.2014.2384731.

[96] F. Berg, J. Palmer, P. Miller, G. Dodds, HTS System and Component Targets for a Dis-
tributed Aircraft Propulsion System, IEEE Transactions on Applied Superconductivity
27 (4) (2017). doi:10.1109/TASC.2017.2652319.

[97] M. Kreimeier, E. Stumpf, Benefit evaluation of hybrid electric propulsion concepts for CS-
23 aircraft, CEAS Aeronautical Journal 8 (4) (2017) 691–704. doi:10.1007/s13272-
017-0269-9.

[98] M. D. Olson, A Conceptual Approach to Flight - Training Mission and Cost Analysis of an
All-Electric Aircraft Equipped with Regenerative Energy Devices, in: 15th AIAA Aviation
Technology, Integration, and Operations Conference, Dallas, TX, 2015. doi:10.2514/
6.2015-3189.

[99] Y. Fefermann, C. Maury, C. Level, K. Zarati, J.-P. Salanne, C. Pornet, B. Thoraval, A. Isikv-
eren, Hybrid-Electric Motive Power Systems for Commuter Transport Applications, in: 30th
Congress of the International Council of the Aeronautical Sciences, Daejeon, Korea, 2016.

[100] T. S. Dean, G. E. Wroblewski, P. J. Ansell, Mission Analysis and Component-Level Sen-
sitivity Study of Hybrid-Electric General Aviation Propulsion Systems, in: 2018 AIAA
Aerospace Sciences Meeting, Kissimmee, FL, 2018. doi:10.2514/6.2018-1749.

290

https://doi.org/10.4271/2012-01-2165
https://doi.org/10.4271/2014-01-2141
https://doi.org/10.4271/2014-01-2120
https://doi.org/10.4271/2014-01-2142
https://doi.org/10.4271/2014-01-2142
https://doi.org/10.4271/2015-01-2403
https://doi.org/10.1109/TASC.2014.2384731
https://doi.org/10.1109/TASC.2014.2384731
https://doi.org/10.1109/TASC.2017.2652319
https://doi.org/10.1007/s13272-017-0269-9
https://doi.org/10.1007/s13272-017-0269-9
https://doi.org/10.2514/6.2015-3189
https://doi.org/10.2514/6.2015-3189
https://doi.org/10.2514/6.2018-1749


[101] F. G. Harmon, A. A. Frank, J.-J. Chattot, Conceptual Design and Simulation of a Small
Hybrid-Electric Unmanned Aerial Vehicle, Journal of Aircraft 43 (5) (2006) 1490–1498.
doi:10.2514/1.15816.

[102] R. Hiserote, F. G. Harmon, Analysis of Hybrid-Electric Propulsion System Designs for
Small Unmanned Aircraft Systems, in: 8th Annual International Energy Conversion Engi-
neering Conference, Nashville, TN, 2010. doi:10.2514/6.2010-6687.

[103] K. Merical, T. Beechner, P. Yelvington, Hybrid-Electric, Heavy-Fuel Propulsion System for
Small Unmanned Aircraft, SAE International Journal of Aerospace 7 (1) (2014) 126–134.
doi:10.4271/2014-01-2222.

[104] F. Lambert, Tesla releases impressive pictures of Model 3 drive unit after test, Musk says
they drove 1M miles, Electrek (October 2018).
URL https://electrek.co/2018/10/15/tesla-drive-after-
million-miles-test/

[105] C. Goldberg, D. Nalianda, P. Pilidis, R. Singh, Economic Viability Assessment of NASA’s
Blended Wing Body N3-X Aircraft, in: 53rd AIAA/SAE/ASEE Joint Propulsion Confer-
ence, Atlanta, Ga, 2017. doi:10.2514/6.2017-4604.

[106] R. H. Jansen, K. P. Duffy, G. V. Brown, Partially Turboelectric Aircraft Drive Key Perfor-
mance Parameters, in: 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA,
2017. doi:10.2514/6.2017-4702.

[107] J. Gray, C. A. Mader, G. K. W. Kenway, , J. R. R. A. Martins, Approach to modeling
boundary layer ingestion using a fully coupled propulsion-RANS model, in: 55th AIAA
Aerospace Sciences Meeting (SciTech), Grapevine, TX, 2017. doi:10.2514/6.2017-
1753.

[108] B. M. Yutko, N. Titchener, C. Courtin, M. Lieu, L. Wirsing, J. Tylko, C. T. Jeffrey, T. W.
Roberts, C. S. Church, Conceptual Design of a D8 Commercial Aircraft, in: 17th AIAA
Aviation Technology, Integration, and Operations Conference, Denver, CO, 2017. doi:
10.2514/6.2017-3590.

[109] A. T. Wick, J. R. Hooker, C. J. Hardin, C. H. Zeune, Integrated Aerodynamic Benefits of
Distributed Propulsion, in: 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, 2015.
doi:10.2514/6.2015-1500.

[110] A. M. Stoll, J. Bevirt, M. D. Moore, W. J. Fredericks, N. K. Borer, Drag reduction through
distributed electric propulsion, in: 14th AIAA Aviation Technology, Integration, and Oper-
ations Conference, no. AIAA Paper 2014-2851, AIAA, 2014. doi:10.2514/6.2014-
2851.

[111] K. A. Deere, J. K. Viken, S. A. Viken, M. B. Carter, M. R. Wiese, N. Farr, Computational
Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft, in: 17th

291

https://doi.org/10.2514/1.15816
https://doi.org/10.2514/6.2010-6687
https://doi.org/10.4271/2014-01-2222
https://electrek.co/2018/10/15/tesla-drive-after-million-miles-test/
https://electrek.co/2018/10/15/tesla-drive-after-million-miles-test/
https://electrek.co/2018/10/15/tesla-drive-after-million-miles-test/
https://electrek.co/2018/10/15/tesla-drive-after-million-miles-test/
https://doi.org/10.2514/6.2017-4604
https://doi.org/10.2514/6.2017-4702
https://doi.org/10.2514/6.2017-1753
https://doi.org/10.2514/6.2017-1753
https://doi.org/10.2514/6.2017-3590
https://doi.org/10.2514/6.2017-3590
https://doi.org/10.2514/6.2015-1500
https://doi.org/10.2514/6.2014-2851
https://doi.org/10.2514/6.2014-2851
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005883.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005883.pdf


AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, 2017.
URL https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
20170005883.pdf

[112] K. A. Deere, S. Viken, M. Carter, J. K. Viken, M. Wiese, N. Farr, Computational Analysis
of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing, in:
35th AIAA Applied Aerodynamics Conference, Denver, CO, 2017. doi:10.2514/6.
2017-3921.

[113] N. K. Borer, J. M. Derlaga, K. A. Deere, M. B. Carter, S. Viken, M. D. Patterson, B. Lither-
land, A. Stoll, Comparison of Aero-Propulsive Performance Predictions for Distributed
Propulsion Configurations, in: 55th AIAA Aerospace Sciences Meeting, Grapevine, TX,
2017. doi:10.2514/6.2017-0209.

[114] L. R. Miranda, J. E. Brennan, Aerodynamic effects of wingtip-mounted propellers and
turbines, in: 4th Applied Aerodynamics Conference, AIAA, 1986. doi:10.2514/6.
1986-1802.

[115] J. Freeman, P. Osterkamp, M. W. Green, A. R. Gibson, B. T. Schiltgen, Challenges and
opportunities for electric aircraft thermal management, Aircraft Engineering and Aerospace
Technology 86 (6) (2014) 519–524. doi:10.1108/AEAT-04-2014-0042.

[116] J. T. McKenna, XTI Aims to Fly 60 Percent Scale TriFan 600 Within Year, Rotor and Wing
International (October 2017).
URL http://www.rotorandwing.com/2017/10/13/xti-aims-fly-60-
scale-trifan-600-within-year

[117] Federal Aviation Administration, AC 20-184: Guidance on Testing and Installation of
Rechargeable Lithium Battery and Battery Systems on Aircraft (2015).

[118] S. Arora, W. Shen, A. Kapoor, Review of mechanical design and strategic placement tech-
nique of a robust battery pack for electric vehicles, Renewable and Sustainable Energy Re-
views 60 (2016) 1319–1331. doi:10.1016/j.rser.2016.03.013.

[119] M.-C. Flynn, C. Jones, P. Rakhra, P. Norman, S. Galloway, Impact of Key Design Con-
straints on Fault Management Strategies for Distributed Electrical Propulsion Aircraft, in:
53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 2017. doi:10.2514/
6.2017-5034.

[120] M. K. Bradley, C. K. Droney, Subsonic Ultra Green Aircraft Research: Phase II. N+4 Ad-
vanced Concept Development (2012). doi:2060/20150017039.
URL ntrs.nasa.gov

[121] A. M. Stoll, G. Veble Mikic, Design Studies of Thin-Haul Commuter Aircraft with Dis-
tributed Electric Propulsion, in: 16th AIAA Aviation Technology, Integration, and Opera-
tions Conference, Washington, DC, 2016. doi:10.2514/6.2016-3765.

292

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005883.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170005883.pdf
https://doi.org/10.2514/6.2017-3921
https://doi.org/10.2514/6.2017-3921
https://doi.org/10.2514/6.2017-0209
https://doi.org/10.2514/6.1986-1802
https://doi.org/10.2514/6.1986-1802
https://doi.org/10.1108/AEAT-04-2014-0042
http://www.rotorandwing.com/2017/10/13/xti-aims-fly-60-scale-trifan-600-within-year
http://www.rotorandwing.com/2017/10/13/xti-aims-fly-60-scale-trifan-600-within-year
http://www.rotorandwing.com/2017/10/13/xti-aims-fly-60-scale-trifan-600-within-year
http://www.rotorandwing.com/2017/10/13/xti-aims-fly-60-scale-trifan-600-within-year
https://doi.org/10.1016/j.rser.2016.03.013
https://doi.org/10.2514/6.2017-5034
https://doi.org/10.2514/6.2017-5034
ntrs.nasa.gov
ntrs.nasa.gov
https://doi.org/2060/20150017039
ntrs.nasa.gov
https://doi.org/10.2514/6.2016-3765


[122] D. L. Huff, B. S. Henderson, E. Envia, Motor Noise for Electric Powered Aircraft, 22nd
AIAA/CEAS Aeroacoustics Conference (2016) 1–12doi:10.2514/6.2016-2882.

[123] D. E. Bryson, C. R. Marks, R. M. Miller, M. P. Rumpfkeil, Multidisciplinary Design Op-
timization of Quiet, Hybrid-Electric Small Unmanned Aerial Systems, Journal of Aircraft
53 (6) (2016) 1959–1963. doi:10.2514/1.C033455.

[124] T. Donateo, A. Ficarella, Designing a Hybrid Electric Powertrain for an Unmanned Aircraft
with a Commercial Optimization Software, SAE International Journal of Aerospace 10 (1)
(2017) 2017–01–9000. doi:10.4271/2017-01-9000.

[125] P. Krause, O. Wasynczuk, S. Pekarek, Windings and Rotating Magnetomotive Force, 2nd
Edition, IEEE, 2012, pp. 145–184.

[126] N. Xue, W. Du, A. Gupta, W. Shyy, A. M. Sastry, J. R. R. A. Martins, Optimization of a sin-
gle lithium-ion battery cell with a gradient-based algorithm, Journal of the Electrochemical
Society 160 (8) (2013) A1071–A1078. doi:10.1149/2.036308jes.

[127] P. C. Vratny, C. Gologan, C. Pornet, A. T. Isikveren, M. Hornung, Battery Pack Model-
ing Methods for Universally-Electric Aircraft, in: 4th CEAS Air and Space Conference,
Linkoping, Sweden, 2013.

[128] N. K. Borer, C. L. Nickol, F. P. Jones, R. J. Yasky, K. Woodham, J. S. Fell, B. L. Litherland,
P. L. Loyselle, A. J. Provenza, L. W. Kohlman, A. G. Samuel, Overcoming the Adoption
Barrier to Electric Flight, in: 54th AIAA Aerospace Sciences Meeting, San Diego, CA,
2016. doi:10.2514/6.2016-1022.

[129] J. Hoelzen, Y. Liu, B. Bensmann, C. Winnefeld, A. Elham, J. Friedrichs, R. Hanke-
Rauschenbach, Conceptual Design of Operation Strategies for Hybrid Electric Aircraft, En-
ergies 11 (1) (2018) 217. doi:10.3390/en11010217.

[130] J. Tomazic, A. Zemva, Efficient and lightweight battery management system contributes to
victory in the Green Flight Challenge 2011, Electric Power Systems Research 98 (2013)
70–76. doi:10.1016/j.epsr.2013.01.008.

[131] R. D. Falck, J. Chin, S. L. Schnulo, J. M. Burt, J. S. Gray, Trajectory Optimization of
Electric Aircraft Subject to Subsystem Thermal Constraints, in: 18th AIAA/ISSMO Multi-
disciplinary Analysis and Optimization Conference, Denver, CO, 2017. doi:10.2514/
6.2017-4002.

[132] D. Trawick, C. A. Perullo, M. J. Armstrong, D. Snyder, J. C. Tai, D. N. Mavris, Development
and Application of GT-HEAT for the Electrically Variable Engine Design, in: 55th AIAA
Aerospace Sciences Meeting, Grapevine, TX, 2017. doi:10.2514/6.2017-1922.

[133] N. Xue, W. Du, T. A. Greszler, W. Shyy, J. R. R. A. Martins, Design of a lithium-ion battery
pack for PHEV using a hybrid optimization method, Applied Energy 115 (2014) 591–602.
doi:10.1016/j.apenergy.2013.10.044.

293

https://doi.org/10.2514/6.2016-2882
https://doi.org/10.2514/1.C033455
https://doi.org/10.4271/2017-01-9000
https://doi.org/10.1149/2.036308jes
https://doi.org/10.2514/6.2016-1022
https://doi.org/10.3390/en11010217
https://doi.org/10.1016/j.epsr.2013.01.008
https://doi.org/10.2514/6.2017-4002
https://doi.org/10.2514/6.2017-4002
https://doi.org/10.2514/6.2017-1922
https://doi.org/10.1016/j.apenergy.2013.10.044


[134] G. Avanzini, E. L. D. Angelis, F. Giulietti, Optimal performance and sizing of a battery-
powered aircraft, Aerospace Science and Technology 59 (2016) 132–144. doi:10.1016/
j.ast.2016.10.015.

[135] P. C. Vratny, H. Kuhn, M. Hornung, Influences of voltage variations on electric power
architectures for hybrid electric aircraft, CEAS Aeronautical Journal 8 (1) (2017) 31–43.
doi:10.1007/s13272-016-0218-z.

[136] A. Lowe, D. Mavris, Technology Selection for Optimal Power Distribution Efficiency in
a Turboelectric Propulsion System, SAE International Journal of Aerospace 5 (2) (2012)
425–437. doi:10.4271/2012-01-2180.

[137] C. E. Jones, P. J. Norman, S. J. Galloway, M. J. Armstrong, A. M. Bollman, Comparison
of candidate architectures for future distributed propulsion aircraft, IEEE Transactions on
Applied Superconductivity 26 (6) (2016) 1–9. doi:10.1109/TASC.2016.2530696.

[138] G. Warwick, NASA Moves Electric-Propulsion Components Closer To Reality, Aviation
Week (2017).
URL http://aviationweek.com/commercial-aviation/nasa-moves-
electric-propulsion-components-closer-reality

[139] D. J. Sadey, L. Taylor, R. Beach, Proposal and Development of a High Voltage Variable
Frequency Alternating Current Power System for Hybrid Electric Aircraft, in: 14th Inter-
national Energy Conversion Engineering Conference, Salt Lake City, UT, 2016. doi:
10.2514/6.2016-4928.

[140] S. Trimble, GE reveals major achievements in hybrid electric propulsion, FlightGlobal (Au-
gust 2017).

[141] S. Trimble, ANALYSIS : Key challenges in the race to develop hybrid-electric aircraft,
FlightGlobal (November 2017).

[142] C. E. Lents, L. W. Hardin, J. Rheaume, L. Kohlman, Parallel Hybrid Gas-Electric Geared
Turbofan Engine Conceptual Design and Benefits Analysis, in: 52nd AIAA/SAE/ASEE
Joint Propulsion Conference, Salt Lake City, UT, 2016. doi:10.2514/6.2016-4610.

[143] J. R. R. A. Martins, A. B. Lambe, Multidisciplinary design optimization: A survey of archi-
tectures, AIAA Journal 51 (9) (2013) 2049–2075. doi:10.2514/1.J051895.

[144] R. T. Haftka, Optimization of flexible wing structures subject to strength and induced drag
constraints, AIAA Journal 15 (8) (1977) 1101–1106. doi:10.2514/3.7400.

[145] L. A. Schmit, Jr., Structural synthesis—precursor and catalyst. recent experiences in multi-
disciplinary analysis and optimization, Tech. Rep. CP-2337, NASA (1984).

294

https://doi.org/10.1016/j.ast.2016.10.015
https://doi.org/10.1016/j.ast.2016.10.015
https://doi.org/10.1007/s13272-016-0218-z
https://doi.org/10.4271/2012-01-2180
https://doi.org/10.1109/TASC.2016.2530696
http://aviationweek.com/commercial-aviation/nasa-moves-electric-propulsion-components-closer-reality
http://aviationweek.com/commercial-aviation/nasa-moves-electric-propulsion-components-closer-reality
http://aviationweek.com/commercial-aviation/nasa-moves-electric-propulsion-components-closer-reality
http://aviationweek.com/commercial-aviation/nasa-moves-electric-propulsion-components-closer-reality
https://doi.org/10.2514/6.2016-4928
https://doi.org/10.2514/6.2016-4928
https://doi.org/10.2514/6.2016-4610
https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/3.7400


[146] J. R. R. A. Martins, J. J. Alonso, J. J. Reuther, High-fidelity aerostructural design opti-
mization of a supersonic business jet, Journal of Aircraft 41 (3) (2004) 523–530. doi:
10.2514/1.11478.

[147] G. K. W. Kenway, J. R. R. A. Martins, Multipoint high-fidelity aerostructural optimization
of a transport aircraft configuration, Journal of Aircraft 51 (1) (2014) 144–160. doi:
10.2514/1.C032150.

[148] D. A. Burdette, J. R. R. A. Martins, Design of a transonic wing with an adaptive morphing
trailing edge via aerostructural optimization, Aerospace Science and Technology 81 (2018)
192–203. doi:10.1016/j.ast.2018.08.004.

[149] E. Jonsson, C. Riso, C. A. Lupp, C. E. S. Cesnik, J. R. R. A. Martins, B. I. Epureanu, Flutter
and post-flutter constraints in aircraft design optimization, Progress in Aerospace Sciences
109 (2019) 100537. doi:10.1016/j.paerosci.2019.04.001.

[150] J. Agte, O. de Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, M. Spieck, MDO:
Assessment and direction for advancement—an opinion of one international group, Struc-
tural and Multidisciplinary Optimization 40 (2010) 17–33. doi:10.1007/s00158-
009-0381-5.

[151] G. Bower, Vahana Configuration Trade Study - Part II (2017).
URL https://vahana.aero/vahana-configuration-trade-study-
part-ii-1edcdac8ad93

[152] Z. Lyu, Z. Xu, J. R. R. A. Martins, Benchmarking optimization algorithms for wing aerody-
namic design optimization, in: Proceedings of the 8th International Conference on Compu-
tational Fluid Dynamics, Chengdu, Sichuan, China, 2014, iCCFD8-2014-0203.

[153] J. R. R. A. Martins, J. T. Hwang, Review and unification of methods for computing deriva-
tives of multidisciplinary computational models, AIAA Journal 51 (11) (2013) 2582–2599.
doi:10.2514/1.J052184.

[154] G. K. W. Kenway, G. J. Kennedy, J. R. R. A. Martins, Scalable parallel approach for high-
fidelity steady-state aeroelastic analysis and adjoint derivative computations, AIAA Journal
52 (5) (2014) 935–951. doi:10.2514/1.J052255.

[155] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, B. A. Naylor, OpenMDAO: An
open-source framework for multidisciplinary design, analysis, and optimization, Structural
and Multidisciplinary Optimization 59 (4) (2019) 1075–1104. doi:10.1007/s00158-
019-02211-z.

[156] J. T. Hwang, J. R. R. A. Martins, A computational architecture for coupling heterogeneous
numerical models and computing coupled derivatives, ACM Transactions on Mathematical
Software 44 (4) (2018) Article 37. doi:10.1145/3182393.

295

https://doi.org/10.2514/1.11478
https://doi.org/10.2514/1.11478
https://doi.org/10.2514/1.C032150
https://doi.org/10.2514/1.C032150
https://doi.org/10.1016/j.ast.2018.08.004
https://doi.org/10.1016/j.paerosci.2019.04.001
https://doi.org/10.1007/s00158-009-0381-5
https://doi.org/10.1007/s00158-009-0381-5
https://vahana.aero/vahana-configuration-trade-study-part-ii-1edcdac8ad93
https://vahana.aero/vahana-configuration-trade-study-part-ii-1edcdac8ad93
https://vahana.aero/vahana-configuration-trade-study-part-ii-1edcdac8ad93
https://doi.org/10.2514/1.J052184
https://doi.org/10.2514/1.J052255
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1145/3182393


[157] J. S. Gray, C. A. Mader, G. K. W. Kenway, J. R. R. A. Martins, Modeling boundary layer
ingestion using a coupled aeropropulsive analysis, Journal of Aircraft 55 (3) (2018) 1191–
1199. doi:10.2514/1.C034601.

[158] J. P. Jasa, Multidisciplinary design optimization of an aircraft considering path-dependent
performance, Ph.D. thesis, University of Michigan (2020).

[159] J. C. Gladin, D. Trawick, C. A. Perullo, J. C. Tai, D. N. Mavris, Modeling and Design of
a Partially Electric Distributed Aircraft Propulsion System with GT-HEAT, in: 55th AIAA
Aerospace Sciences Meeting, Grapevine, TX, 2017, pp. 1–18. doi:10.2514/6.2017-
1924.

[160] J. C. Gladin, C. A. Perullo, J. C. Tai, D. N. Mavris, A Parametric Study of Hybrid Electric
Gas Turbine Propulsion as a Function of Aircraft Size Class and Technology Level, in: 55th
AIAA Aerospace Sciences Meeting, Grapevine, TX, 2017. doi:10.2514/6.2017-
0338.

[161] F. M. Capristan, J. R. Welstead, An Energy-Based Low-Order Approach for Mission Anal-
ysis of Air Vehicles in LEAPS, in: 2018 AIAA Aerospace Sciences Meeting, Kissimmee,
FL, 2018. doi:10.2514/6.2018-1755.

[162] J. R. Welstead, D. Caldwell, R. Condotta, N. Monroe, An Overview of the Layered and
Extensible Aircraft Performance System (LEAPS) Development, in: 2018 AIAA Aerospace
Sciences Meeting, Kissimmee, FL, 2018. doi:10.2514/6.2018-1754.

[163] J. T. Hwang, A. Ning, Large-scale multidisciplinary optimization of an electric aircraft for
on-demand mobility, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, Kissimmee, FL, 2018, pp. 1–18. doi:10.2514/6.2018-
1384.

[164] M. J. Duffy, S. R. Wakayama, R. Hupp, R. Lacy, M. Stauffer, A study in reducing the cost
of vertical flight with electric propulsion, in: 17th AIAA Aviation Technology, Integration,
and Operations Conference, no. AIAA Paper 2014-3442, AIAA, 2017. doi:10.2514/
6.2017-3442.

[165] A. Brown, W. L. Harris, A Vehicle Design and Optimization Model for On-Demand Avia-
tion, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Kissimmee, FL, 2018. doi:10.2514/6.2018-0105.

[166] C. A. Perullo, D. N. Mavris, Assessment of Vehicle Performance Using Integrated NPSS
Hybrid Electric Propulsion Models, in: 50th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference, Cleveland, OH, 2014. doi:10.2514/6.2014-3489.

[167] S. L. Schnulo, J. Chin, A. D. Smith, A. Dubois, Steady State Thermal Analyses of SCEP-
TOR X-57 Wingtip Propulsion, in: 17th AIAA Aviation Technology, Integration, and Op-
erations Conference, Denver, CO, 2017, pp. 1–14. doi:10.2514/6.2017-3783.

296

https://doi.org/10.2514/1.C034601
https://doi.org/10.2514/6.2017-1924
https://doi.org/10.2514/6.2017-1924
https://doi.org/10.2514/6.2017-0338
https://doi.org/10.2514/6.2017-0338
https://doi.org/10.2514/6.2018-1755
https://doi.org/10.2514/6.2018-1754
https://doi.org/10.2514/6.2018-1384
https://doi.org/10.2514/6.2018-1384
https://doi.org/10.2514/6.2017-3442
https://doi.org/10.2514/6.2017-3442
https://doi.org/10.2514/6.2018-0105
https://doi.org/10.2514/6.2014-3489
https://doi.org/10.2514/6.2017-3783


[168] G. E. Wroblewski, P. J. Ansell, Mission Analysis and Emissions for Conventional and
Hybrid-Electric Commercial Transport Aircraft, in: 2018 AIAA Aerospace Sciences Meet-
ing, Kissimmee, FL, 2018. doi:10.2514/6.2018-2028.

[169] V. Cipolla, F. Oliviero, HyPSim : A Simulation Tool for Hybrid Aircraft Performance
Analysis, in: Variational Analysis and Aerospace Engineering, 2016, pp. 95–116. doi:
10.1007/978-3-319-45680-5.

[170] J. M. Vegh, J. J. Alonso, T. H. Orra, C. R. Ilario da Silva, Flight Path and Wing Optimization
of Lithium-Air Battery Powered Passenger Aircraft, in: 53rd AIAA Aerospace Sciences
Meeting, Kissimmee, FL, 2015. doi:10.2514/6.2015-1674.

[171] F. Capristan, D. Caldwell, R. Condotta, B. Petty, Aircraft Analysis Using the Layered and
Extensible Aircraft Performance System (LEAPS) (2020).
URL ntrs.nasa.gov

[172] J. S. Gray, T. Hearn, K. Moore, J. T. Hwang, J. R. R. A. Martins, A. Ning, Automatic
evaluation of multidisciplinary derivatives using a graph-based problem formulation in
OpenMDAO, in: Proceedings of the 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Atlanta, GA, 2014. doi:10.2514/6.2014-2042.

[173] J. D. Mattingly, W. H. Heiser, D. T. Pratt, Aircraft Engine Design, 2nd Edition, American
Institute of Aeronautics and Astronautics, Reston, VA, USA, 2000.

[174] J. Roskam, Airplane Design, Volumes 1-8, Roskam Aviation and Engineering Corporation,
1989.

[175] D. P. Raymer, Aircraft Design: A Conceptual Approach, 5th Edition, AIAA, 2012.

[176] J. T. Hwang, J. Jasa, J. R. R. A. Martins, High-fidelity design-allocation optimization of a
commercial aircraft maximizing airline profit, Journal of Aircraft 56 (3) (2019) 1165–1178.
doi:10.2514/1.C035082.

[177] E. W. Weisstein, Simpson’s Rule, from MathWorld–A Wolfram Web Resource (2003).
URL http://mathworld.wolfram.com/SimpsonsRule.html

[178] T. A. Horne, TBM 850 By the Numbers, AOPA Pilot (jan 2012).

[179] SOCATA-Daher, Pilot’s Information Manual - TBM 850 from S/N 434 to 999 (2015).

[180] T. A. Horne, King Air C90GTi: More Power, More Panel, AOPA Pilot (jun 2008).

[181] S. L. Schnulo, R. D. F. Jeff Chin, J. S. Gray, K. V. Papathakis, S. C. Clarke, N. Reid,
N. K. Borer, Development of a multi-segment mission planning tool for SCEPTOR X-57,
in: 2018 Multidisciplinary Analysis and Optimization Conference, AIAA, Atlanta, GA,
2018. doi:10.2514/6.2018-3738.

297

https://doi.org/10.2514/6.2018-2028
https://doi.org/10.1007/978-3-319-45680-5
https://doi.org/10.1007/978-3-319-45680-5
https://doi.org/10.2514/6.2015-1674
ntrs.nasa.gov
ntrs.nasa.gov
ntrs.nasa.gov
https://doi.org/10.2514/6.2014-2042
https://doi.org/10.2514/1.C035082
http://mathworld.wolfram.com/SimpsonsRule.html
http://mathworld.wolfram.com/SimpsonsRule.html
https://doi.org/10.2514/6.2018-3738


[182] J. Chin, S. L. Schnulo, T. Miller, K. Prokopius, J. S. Gray, Battery Performance Modeling
on SCEPTOR X-57 Subject to Thermal and Transient Considerations , in: AIAA Scitech
2019 Forum, AIAA, San Diego, CA, 2019. doi:10.2514/6.2019-0784.
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[224] A. Wächter, L. T. Biegler, On the implementation of an interior point filter line-search al-
gorithm for large-scale nonlinear programming, Mathematical Programming 106 (2006)
25–57.

[225] Z. Lyu, G. K. W. Kenway, J. R. R. A. Martins, Aerodynamic shape optimization inves-
tigations of the Common Research Model wing benchmark, AIAA Journal 53 (4) (2015)
968–985. doi:10.2514/1.J053318.

[226] Z. Lyu, J. R. R. A. Martins, Aerodynamic design optimization studies of a blended-wing-
body aircraft, Journal of Aircraft 51 (5) (2014) 1604–1617. doi:10.2514/1.C032491.

[227] Uber Technologies, eVTOL common reference models (2018).
URL https://www.uber.com/info/elevate/ecrm/

[228] G. K. Kenway, G. J. Kennedy, J. R. R. A. Martins, A CAD-free approach to high-fidelity
aerostructural optimization, in: Proceedings of the 13th AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference, no. AIAA 2010-9231, Fort Worth, TX, 2010. doi:
10.2514/6.2010-9231.

[229] T. R. Brooks, G. K. W. Kenway, J. R. R. A. Martins, Benchmark aerostructural models
for the study of transonic aircraft wings, AIAA Journal 56 (7) (2018) 2840–2855. doi:
10.2514/1.J056603.

[230] S. Chen, Z. Lyu, G. K. W. Kenway, J. R. R. A. Martins, Aerodynamic shape optimization
of the Common Research Model wing-body-tail configuration, Journal of Aircraft 53 (1)
(2016) 276–293. doi:10.2514/1.C033328.
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