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Abstract 

 

Wearable devices have enhanced health monitoring in clinical settings by effectively 

measuring physiological signals to inform prevention strategies. With the rapid development of 

sensors and data-driven decision-making, wearables can be applied in non-clinical settings to 

monitor various health conditions. Oftentimes, the most direct, accurate measurements are 

inaccessible or impractical during real-life, unscripted daily activities (e.g., equipment access). In 

this dissertation, signal-based models were developed to evaluate common wearables for health 

monitoring, with specific applications on motion sickness and dehydration.  

Motion sickness can range from stomach discomfort to severe nausea and affects 

passengers more frequently than drivers. As automated vehicles and mobility solutions become 

normalized, motion sickness incidence is anticipated to increase among on-road passengers. As 

such, there is a greater need for early detection of vehicular motion sickness. Previous studies 

have shown postural instability to be associated with motion sickness. Therefore, assessments of 

standing balance may be useful for estimating levels of motion sickness. However, there are 

limited studies of post-drive standing balance that have been conducted in passenger vehicles or 

under ecologically-relevant conditions. In this dissertation, three studies quantified motion 

sickness and standing balance of vehicle passengers following continuous driving exposures 

deployed on a closed test track and on-road environments using a wearable inertial measurement 

unit. In the closed test track study, trunk postural sway increased significantly during the more 

challenging balance exercises. Post-drive changes to postural sway metrics (e.g., sway velocity 

and path length) were larger for drives during which participants performed a visual-based task 
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on a handheld tablet-based device, as compared to drives without a task. In the on-road study, 

changes in post-drive postural sway were consistent with the findings from the closed test track 

study. However, there was no meaningful effect of performing a task on changes in postural 

sway metrics. In the third study, significant changes in post-drive postural sway were associated 

with the severest motion sickness responses, suggesting that sway metrics could characterize 

motion sickness. While preliminary, these findings could inform monitoring approaches of 

vehicular motion sickness using postural sway data from wearable sensors. Additional work 

would further explore wearables as a potential screening tool for motion sickness susceptibility 

prior to the drive.  

In the fourth study of this dissertation, wearables were used to develop a noninvasive 

method for continuously measuring dehydration; untreated, dehydration can lead to performance 

detriments and in severe cases, death due to heat-related complications. Participants performed a 

series of orthostatic postural movements before and after a cycling session while donning 

common wearable that measured heart rate and trunk kinematic data. A machine learning model 

was trained and accurately classified a level of fluid loss equivalent to 2% of bodyweight. Using 

data from wearable devices, this method can support preemptive fluid replenishment and 

subsequently minimize potential decreases in performance; reduce the risk of serious heat 

injuries; and inform users to take additional hydration assessments. 

These findings demonstrated the feasibility of wearable technologies for monitoring 

health conditions that are difficult to assess in non-clinical settings. Specifically, this dissertation 

developed models that could relate motion sickness and post-drive postural sway measured from 

wearable devices, and could reliably leverage common sensor-based signals to minimize 

dehydration. Future applications with wearable devices could especially support secondary 
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prevention strategies, which are approaches aimed at minimizing the impacts of health 

conditions once they have occurred.   



 1 

Chapter 1 Introduction and Background 

1.1. Introduction 

The growth and development of wearable technology has the potential to significantly 

enhance health monitoring, especially in non-clinical settings. Sensors embedded in wearable 

devices can measure various biomarkers including physiological signals (e.g., heart rate) to 

support data-driven models. These models can then estimate the state of a health condition, 

inform additional assessments, and prevent severer outcomes. However, actual applications are 

limited in practice, and more work is needed to evaluate the performance of such applications, 

especially when these approaches require extensive validation for usage in health monitoring. As 

such, there is a need to understand the extent to which data-driven models and sensor-based 

signals can support health monitoring. In this dissertation, wearable technologies are used to 

explore data-driven approaches for addressing nontrivial health conditions in non-clinical 

settings, with a focus on motion sickness and dehydration. Due to current limitations in 

quantifying these health conditions, this dissertation conducts preliminary analyses using 

wearables to leverage known relationships and estimate different levels of motion sickness and 

dehydration.  

1.2. Prevention Strategies 

Preventive measures at the patient level are classified depending on when the intervention 

occurs during the history of a health condition. Primary prevention describes strategies that aim 
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to prevent the onset of a health condition and limit the risk of its occurrence. Secondary 

prevention strategies seek to detect and treat symptoms early and limit the progression of a 

disease. Tertiary prevention strategies reduce the severity of long-term effects after a health 

condition is detected [1]. This hierarchical model of prevention strategies can be applied in 

multiple domains of health (e.g., stroke, cancer, behavioral disorders, mental health) [2]–[6]. For 

example, primary and secondary prevention strategies for cardiovascular disease can consist of a 

combination of regular physical activity, tobacco cessation, blood pressure screenings, and 

prescribed β-blockers [7].  

Recent advances in technology have enhanced secondary prevention strategies [8]–[10]. 

Specifically, wearable devices can support health monitoring by remotely collecting pertinent 

data about patient behavior that supports and informs clinical assessments for early detection and 

treatment of serious health conditions [8]. Additionally, smartphones and other wireless 

applications allow clinicians to directly and frequently communicate their recommendations to 

patients to reduce the risk of serious health conditions [11], [12]. In synthesizing and interpreting 

the literature, a high-level, conceptual map of the relationship between prevention strategies, 

health conditions, and wearables was created. Figure 1.1 illustrates the general progression of a 

health condition, starting from a stimulus, leading to the onset of symptoms, and ending with 

potential outcomes. Different types of prevention strategies can be taken at different stages to 

reduce the severity and treat the health condition. Wearable technologies can be leveraged at the 

stage of secondary prevention to increase the likelihood of success.  

Wearable devices are especially useful for health monitoring in non-clinical settings 

because direct, accurate clinical measurements can be impractical or inaccessible. Wearables can 

support data-driven models to make indirect estimations and infer the progression of a health 
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condition. However, the actual applications of wearables for health monitoring in non-clinical 

settings are limited in part due to the physical limitations of the sensors, the lack of 

computational power to support large models and signal processing, environmental conditions, 

and validated studies [13]. Moreover, assessments of health conditions using wearables is limited 

by what signals are available from the devices. This dissertation seeks to leverage data from 

wearable technology to explore data-driven approaches for monitoring nontrivial health 

conditions in non-clinical settings. In particular, this dissertation explores two areas of 

application: motion sickness and dehydration.  

 

Figure 1.1: Diagram of the general progression of health conditions, relating stimulus, prevention strategies, symptoms, wearable 

technologies, and potential outcomes. Primary prevention strategies can reduce the effects of a stimulus. Secondary prevention 

strategies should be taken once symptoms have occurred to reduce the likelihood of potential outcomes. Wearable devices can 

further support secondary prevention strategies. 

1.3. Wearable Technology 

Wearable technology—or more commonly, “wearables”—describes a broad spectrum of 

devices designed to be affixed on the body during use of the sensor. Due to their compact size 

and unobtrusive nature, wearables enable a wide range of designs and portable applications [14]. 

Typical embodiments of wearable devices include: 1) accessories (e.g., smart watches [15], 
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[16]), 2) e-textiles (e.g., smart clothing [17]), and 3) e-patches (e.g., smart patches [18]) [19]. As 

wearables grow in popularity, their flexibility has encouraged researchers to innovate, develop, 

and validate new approaches to traditional health monitoring, which is one of the most common 

applications of wearable technology [19]–[23]. Wearables in health monitoring combine 

physiological and kinematic data captured in real-time to offer insights into the user’s health and 

condition [24], creating health applications that range from cardiovascular diseases [25] to gait 

and falls [22], [26]–[28]. As such, there is potential for clinicians to adopt wearable technology 

for in-patient care [29], [30], home-based assessments [31], [32] and tele-health [33]. In the 

consumer space, wearables have become prevalent among the sports science and athletics 

communities as a tool for measuring, analyzing, and maintaining physical performance, or even 

detecting the risk of injuries [20], [34]–[38]. The extent to which wearables are integrated in an 

application depends on the system design. In some cases, wearable devices act simply as sensors 

that wirelessly communicate with larger, integrated networks to perform complex functions; for 

example, local transmitters from wearables allow tracking of players’ field positions in an 

athletics setting [39], [40]. In contrast, some wearables devices fully operate as a singular, offline 

package. A common paradigm that utilizes these two concepts comprises a wearable device that 

transmits data to a smartphone (e.g., Polar heart rate monitor). 

1.3.1. Inertial Sensors 

Many wearable devices (including mobile devices and smartphones) use inertial 

measurement units (IMUs) to measure the motion and orientation of the device to perform 

various features [41]. Embodiments of IMUs typically consist of a combination of a triaxial 

accelerometer, gyroscope, and magnetometer to capture linear acceleration, angular velocity, and 

magnetic fields, respectively. By fusing these signals (e.g., using a Kalman filter), users can 
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obtain reliable measurements of the IMU’s orientation and position with respect to an origin 

[42], [43]. When attached to a rigid body, IMUs can provide valuable information regarding the 

orientation of the body with respect to a reference frame (typically gravity) [42]. Furthermore, a 

system of IMUs can provide the orientation of each device relative to other devices within the 

system [44], [45]. As such, they are a useful tool in human motion measurement and application. 

For instance, multiple IMUs attached to particular body segments (e.g., forearms, trunk, shank) 

comprise a system for analyzing gait patterns and other motion artifacts [45]–[47]. Balance can 

similarly be measured using a single IMU placed on the lower back [48]–[51]. Kinematic data 

from the IMU at the lower back are used to estimate the small deviations in the angle of the trunk 

relative to the gravity vector, which can then be decomposed into different metrics of postural 

sway [52]. In this dissertation, IMUs embedded in wearable devices were used to analyze 

standing balance performance. 

1.4. Standing Balance 

Balance control is a complex activity governed by multiple physical and sensory systems. 

Standing balance specifically refers to the dynamic control of the body’s center of mass (COM) 

over the base of support to maintain upright stability and prevent falling [53]. Three sensory 

systems play a critical role in maintaining balance [54], [55]. The visual sensory system consists 

of receptors within the retinas of the eyes that process visual stimuli. The somatosensory system 

consists of the different receptors in the body (i.e., skin, joints, muscles, fascia) that sense 

information about position, movement, and touch. Lastly, the vestibular system consists of the 

otoliths and semicircular canals located within the inner ear. Two otolith organs in each ear 

detect linear accelerations of the head. The utricle is sensitive to horizontal accelerations, while 
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the saccule is sensitive to vertical accelerations. Three semicircular canals within each inner ear 

sense rotational velocities of the head. Each of these semicircular canals are roughly orthogonal 

to each other, which allows the body to sense three-dimensional angular velocity and sense the 

orientation of the head relative to gravity. The signals from these sensory systems are integrated 

to assist with postural control [56]. 

1.4.1. Measuring and Assessing Balance  

During standing balance, an IMU secured around the lower back measures acceleration 

and angular rate to capture the kinematics of the body’s approximate center of mass (COM) [57]. 

Alternatively, force plates are frequently used to record the movements of the center of pressure 

(COP), which is defined to be the point where the resultant ground reaction force acts under the 

base of support [58]. Furthermore, laboratory-based optical systems use reflective markers 

(placed on anatomical landmarks) and multiple cameras for measuring the position of said 

markers for passive motion tracking [59]. However, IMUs offer the advantage of inexpensive 

and portable data collections [60], [61]. As such, many studies opt to use IMUs as the primary 

instrument for studying balance [57], [62]. 

It is common to decompose the time series into anteroposterior (A/P) and mediolateral 

(M/L) components, which reflect body motion in the sagittal and frontal planes, respectively. 

From the individual signals, various metrics in the time and frequency domain have been derived 

and validated for quantifying standing balance [52]. Some metrics have been shown to 

discriminate between different populations (e.g., fallers and non-fallers) with greater accuracy 

than others [51], [63], [64]. Other commonly used metrics include the root mean square (RMS) 

of the sway position and velocity, the area of the ellipse that encompasses the sway trajectory, 

and the total length of that trajectory [48]. Using these metrics, researchers have shown that 
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changes in standing balance ability are indicative and associated with various pathologies and 

health conditions, including motion sickness. In addition, comprehensive balance tests have been 

developed for clinical assessments, such as the Berg Balance Scale, Mini Balance Evaluation 

Systems Test, and the Romberg Test [65]. 

1.5. Motion Sickness 

Motion sickness describes a general state of unwellness caused by incompatible motion. 

Surveys have shown that a significant percentage of the population has experienced some form 

of motion sickness across various forms of transportation, with the most common type being 

carsickness [66], [67]. Symptoms can range from physiological sensations such as nausea and 

emesis, to symptoms indicative of sopite syndrome (e.g., fatigue and drowsiness) [68], [69]. The 

multidimensional symptom profile of motion sickness can detract from daily activities and 

severely affect comfort during routine travel. With respect to sex and age, females have been 

shown to report motion sickness more often than males, and older adults tend to be less 

susceptible to motion sickness due to habituation [70]. The most popular theory for describing 

the onset of motion sickness is the sensory conflict theory. First described by Reason and Brand 

(1975) [71], the sensory conflict theory proposes that motion sickness arises from a mismatch 

between afferent signals to the sensory systems. The integration of the visual and vestibular 

sensory signals contributes to maintaining postural control and gait stability. However, when the 

summative motion is incompatible with the existing model developed by previous experiences, 

sensory conflict occurs and leads to the onset of motion sickness [72]. 
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1.5.1. Vehicular Motion Sickness 

Carsickness is one of the most common examples of motion sickness. In a survey of 

coach passengers, over 30% of people have reported feeling carsick [66]. Age affects the 

likelihood of motion sickness, with older adults experiencing fewer symptoms at a lower rate 

[66], [73], [74]. One reason is that an age-related decline (or total loss) of vestibular function 

significantly reduces the rate of motion sickness and could even render a person immune [73], 

[75]. Increased travel experience seems to reduce the likelihood of motion sickness as well, 

which points to habituation to vehicle motion as a potential countermeasure to motion sickness.  

In the context of sensory conflict theory, the visual information of the vehicle interior can be 

mismatched with the dynamic vehicle motion sensed by the vestibular system. This mismatch is 

evident in the differences in reports of motion sickness between drivers and passengers [76], 

[77]. When passengers’ views of the oncoming road are obscured (e.g., sitting in the rear seat), 

motion sickness is more likely to occur [77]. For drivers, their view of the road aligns with the 

motion of the vehicle, so it has been hypothesized that active control of the vehicle contributes to 

reducing likelihood of vehicle motion sickness [76].  

In-vehicles tasks are another aggravator of increased motion sickness for vehicular 

passengers. Passengers must stabilize their view of the task, which involves suppressing the 

reflexes of the vestibular system. Activities such as reading a book or watching a movie on a 

mobile device contributes to the sensory mismatch between the visual field and vehicle motion 

[78]–[80]. Passengers who complete in-vehicle tasks report more severe symptoms and 

frequency of motion sickness compared to those that do not perform a task [77], [81]–[83]. 

Depending on the type of task, motion sickness and incompatible motion may negatively affect 

the performance of the in-vehicle task [78].   
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1.5.2. Effects of Motion Sickness on Balance 

Increased postural sway has been associated with motion sickness. An ecological theory 

of motion sickness posits that being in a state of postural instability leads to motion sickness 

[84]. More specifically, novel types of motion demand different postural control strategies to 

maintain stability. Consequently, a person’s inability to adapt their posture in these 

circumstances leads to motion sickness. Therefore, the theory implies that increased postural 

sway should be observed prior to the onset of motion sickness. Although there are limitations to 

this theory [85], studies have observed these effects by measuring postural sway during a 

sickness-inducing exposure (e.g., virtual moving rooms or optokinetic drums). Postural sway 

increased especially among those that later reported motion sickness after the exposure [86]–

[89], or those that were highly susceptible to motion sickness [90], [91]. 

In contrast, some studies have focused on the relationship between balance following an 

exposure and motion sickness, but there has not been firm evidence of a relationship between the 

severity of motion sickness and increased postural sway [92]–[96]. Moreover, prior work on 

balance and vehicle motion sickness have only taken place in virtual and motion-based driving 

simulators. Given the ecological differences between simulators and on-road driving, there is a 

need to understand how balance may be affected by vehicle motion sickness. 

1.5.3. Quantifying Motion Sickness 

Subjective reports of motion sickness are typically used to quantify motion sickness 

within individuals. To capture the full spectrum of symptoms, sensations, and severity, previous 

studies have used a combination of history questionnaires, surveys, and rating scales. Motion 

sickness rating scales usually consist of an enumerated, ordinal scale on a predetermined range 
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and anchor points throughout. One of the more common rating scales is the “Fast Motion 

Sickness” rating scale [97], which prompts users to rate their overall motion sickness on a scale 

between 0 (no sickness at all) and 20 (frank sickness). The rating scale captures the development 

of motion sickness over time by being quick to administer throughout a protocol.  

 In comparison, questionnaires capture a more in-depth profile of motion sickness. Given 

the diverse profile of motion sickness symptoms, questionnaires such as the “Simulator Sickness 

Questionnaire” probe for scores on multiple symptoms [98]. The “Motion Sickness Assessment 

Questionnaire” similarly measures motion sickness as a multidimensional phenomenon, 

categorizing the symptoms as either gastrointestinal, central-, peripheral-, or sopite-related [99].  

A subset of questionnaires pertains to motion sickness susceptibility and history as opposed to 

measuring symptoms. The “Motion Sickness Susceptibility Questionnaire”, one of the more 

commonly used tools, asks about a participant’s frequency of motion sickness in various motion 

modalities (e.g., cars, boats, planes, swings) before and after the age of 12 [100]. Participants 

respond to each questionnaire item with “never”, “rarely”, “sometimes”, “frequently”, or 

“always”. The overall score is then computed by weighing each item response, adjusted for the 

participant’s travel experience. Variants of the motion sickness susceptibility questionnaire have 

modified the scoring method, the relevant history, and the types of motion modalities included 

[101].  

 Ultimately, the lack of objective, quantitative assessments of motion sickness make it 

difficult to determine whether the severity of symptoms may lead to a potential injury. 

Wearables are capable of leveraging the relationship between standing balance performance and 

motion sickness to develop an inexpensive measurement method. Such an approach may be 
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implemented as a preventative screening tool or integrated into existing wearable devices as a 

complementary feature.  

1.6. Dehydration 

Dehydration is defined as the process of losing total body water, which is all the water 

content distributed between the extracellular fluid (ECF) and intracellular fluid (ICF) 

compartments [102]. If unaddressed, dehydration beyond the daily variability in mass leads to 

dehydration, a state of low total body water. Depending on the ratio of water and sodium 

excreted during dehydration, different types of dehydration occur. In one case, a greater loss of 

body water compared to sodium leads to an increased sodium concentration in the ECF. Osmotic 

shifts in body water between the ICF compartments and ECF compartments lead to hypertonic 

dehydration. Some of most common causes of hypertonic dehydration are excessive sweating 

and a lack of fluid replenishment, usually during extended, intensive exercise [103], [104]. In 

another case, if sodium loss is equivalent to fluid loss, isotonic dehydration occurs. Cases of 

isotonic dehydration are usually attributed to diuretics [105]. This dissertation focuses on 

hypertonic dehydration, where exercise plays the primary role in dehydration. 

1.6.1. Exercise-induced Dehydration 

During intensive, extended exercise, the core temperature of the body increases [106], 

[107].  The human body excretes sweat and increases subcutaneous blood flow as a 

thermoregulatory response [108]–[110]. However, a deficit in total body water occurs when the 

volume of sweat output is greater than the amount of fluid replenished. The rate of sweat is 

highly dependent on body composition, participant demographic, and fitness level [111], [112].  

Additionally, sweat rates vary substantially across different sports and physically demanding 
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activities (e.g., military training) [113], [114]. Athletes are often in a state of dehydration even 

before the start of training or competition, with up to 44% of athletes finishing their activities 

dehydrated [115]. Fluid losses beyond 2% of bodyweight have been associated with increased 

perception of exertion, decreased aerobic capacity, decreased cognitive performance, and 

decreased physical performance [114]. This threshold has been considered controversial though, 

as recent bodies of work have called for improved, controlled study designs to validate the effect 

of dehydration on athletic performance [116], [117]. Nevertheless, severe levels of dehydration 

decrease the body’s ability to thermoregulate, which can lead to various heat-related injuries 

[118], [119]. Among high school athletes, heat stroke is one of the three leading causes of death 

[120]. Therefore, it is important to monitor hydration status before, during, and after exercise to 

maintain performance and reduce the risk of injury to heat exhaustion. 

1.6.2. Estimations of Hydration Status 

Many approaches exist for estimating the amount of total body water lost during exercise. 

Due to the complicated, dynamic, physiological processes of dehydration, a “gold standard” has 

been difficult to define [121], [122]. Laboratory-based methods typically involve invasive 

samples of bodily fluids to compute correlated measures of dehydration. Biochemical indices of 

blood/plasma, saliva, and urine have all been shown to be acceptable measures of dehydration 

[123]–[125]. Although highly accurate, stable isotope dilution is a costly, time-consuming 

process that is unadaptable to field settings [122], [126].  

Most field applications use quick, gross measurements of bodyweight and urinalysis tests 

that provide decent short-term estimates of fluid loss. However, other sources of fluid exchange 

(e.g., substrate oxidation) are not completely captured by bodyweight measurements, and long-

term changes in body composition invalidate previous baseline measurements [127]. Indices of 
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urine samples can be limited due to a lack of research on their validity in different populations 

[128], [129]. Nevertheless, using a combination of bodyweight and urinalysis measurements 

provides inexpensive, quick assessments with sufficient accuracy for most field applications 

[122], [130].  

Clinics can diagnose dehydration by monitoring changes in orthostatic vital signs after a 

postural movement. Patients are typically asked to stand up after lying supine for several 

minutes, after which the cardiovascular response is measured. Upon standing, there is an 

expected decline in blood pressure due to venous blood pooling in the lower body, leading to an 

overall decreased venous return to the heart [131]. Baroreceptors in the body detect this drop in 

blood pressure, and heart rate increases as part of a compensatory response to these orthostatic 

changes [132]. However, large increases in heart rate of over 30 bpm after standing may be 

indicative of hypovolemia, which is partly symptomatic of low total body water [105]. In this 

dissertation, a combination of bodyweight measurements and simple urinalysis tests are used to 

adapt clinical methods for hydration assessments. 

1.7. Dissertation Aims 

This dissertation seeks to evaluate wearable technology for health monitoring to support 

secondary prevention approaches for nontrivial health conditions—specifically, motion sickness 

and dehydration. Figure 1.2 expands on the conceptual map shown in Figure 1.1, and further 

adds specific examples of stimuli, symptoms, potential outcomes, and prevention strategies 

associated with motion sickness. Moreover, wearable devices can potentially support secondary 

prevention through balance measurements for health monitoring. Figure 1.3 similarly uses the 

conceptual map to illustrate the progression of dehydration, and indicates when wearable devices 
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can contribute to health monitoring needs to inform secondary prevention strategies. Using 

wearable devices, the goals are to: 1) quantify how motion sickness, vehicle motion, and task 

performance on a closed test track affect standing balance; 2) assess how these effects of motion 

sickness on standing balance translate to an on-road driving environment; and 3) develop a 

potential noninvasive approach to monitoring hydration status that could be more easily 

integrated in a field setting.  

 

Figure 1.2: Progression of motion sickness using the conceptual map shown in Figure 1.1, with examples of stimuli, symptoms, 

and potential outcomes. Examples of primary prevention strategies are included as well. In the case of motion sickness, wearable 

technologies can measure balance and monitor the development of motion sickness to support secondary prevention approaches. 
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Figure 1.3: Progression of dehydration using the conceptual map shown in Figure 1.1, with examples of stimuli, symptoms, and 

potential outcomes. Some examples of primary prevention are shown as well. Wearable technologies can monitor orthostatic 

variables to monitor dehydration and support secondary prevention approaches. 

 

Aim 1: Standing balance has been shown to be negatively affected by motion sickness, but there 

is a lack of work performed in ecologically relevant driving conditions. Differences between the 

motion modality and the symptom profiles of virtual motion sickness and motion-induced 

sickness necessitate additional work in the on-road space. In this study, the goal was to 

characterize the effects of a drive and task performance on a closed test track on passenger’s 

standing balance. Balance was assessed using a wearable IMU and conventional metrics of 

postural sway, such as the RMS of trunk tilt and velocity, elliptical area of sway, and the total 

path length of the sway trajectory. This study tested the following hypotheses: 

H1.1:  Postural sway would be negatively affected as a function of motion sickness 

severity, and motion sickness susceptibility.  

H1.2: Larger changes in balance will be expected in exercises that are more challenging.  

 



 16 

Aim 2: Compared to driving on a closed test track, on-road driving introduces several factors 

that significantly alter the experience, such as other vehicles and on-road actors. Given the need 

to investigate whether the effects of motion sickness on standing balance performance translate 

to real-time on-road traffic, two studies sought to adapt and extend the methodology from the 

previous study by exploring standing balance following a combination of on-road driving and 

task performance in real-time traffic. In particular, on-road driving consisted of a highway-based 

route, and an urban route that emphasized local and neighborhood driving behavior. Similar 

metrics of postural sway were computed, and motion sickness was measured throughout the tests 

to compare against changes in balance. Moreover, a preliminary analysis was performed to 

determine if the pre-drive balance metrics could be predictive of motion sickness incidence 

during the drive. These studies tested the following hypotheses: 

H2.1:  Changes in balance would reflect the limited intensity of driving in real-time 

traffic. Assuming a less severe response to motion sickness, standing balance 

performance would still be affected negatively, but not to the extent hypothesized in the 

previous study. Still, the pre-drive balance metrics would show good performance in 

predicting motion sickness incidence. 

H2.2: Wearable devices would sufficiently measure postural sway off-site and enable 

portable data collections. 

 

Aim 3: The goal was to develop and test the accuracy of a noninvasive method that used 

currently existing wearables to estimate exercise-induced dehydration. Current field methods for 

assessing hydration (i.e., changes in body weight, urinalysis tests) capture gross measurements of 

fluid loss, and may be limited in accuracy and reliability. As such, additional approaches are 
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needed to complement existing methods and improve overall accuracy of hydration assessments. 

In a fast-paced athletic environment, methods for assessing hydration should be inexpensive, 

quick to administer, and noninvasive. Considering the ubiquity of wearable devices among 

athletic programs and individuals, there is an opportunity to extend the function of existing 

wearables to detect dehydration.  

In this study, a noninvasive method for estimating dehydration was developed by 

leveraging the cardiovascular response to orthostatic postural changes. When transitioning 

standing from a supine position, heart rate increases as part of a compensatory response to 

decreased venous return and blood pooling in the lower extremities. Increased heart rate has been 

observed in other orthostatic movements as well (e.g., sit-to-stand). In this study, wearable 

devices were used to capture these dynamic changes in heart rate and posture using embedded 

EKG leads and IMUs. Predictive models were developed to test the following hypotheses: 

H3.1:  Continuous measurements from wearable devices would contribute to building a 

machine learning model capable of weighing different features of the heart rate to 

accurately estimate dehydration.  

H3.2: Beyond standard supine-to-stand tests, other postural movements commonly seen 

in the field (e.g., toe-touches) would elicit sufficient orthostatic changes for building a 

reliable, predictive model. 

1.8. Chapter Overview 

Chapter 2, Standing balance among vehicle passengers following a drive on a closed test 

track, describes a mixed factorial design experiment to understand how various factors during a 

continuous driving exposure altered a passenger’s standing balance. Specifically, the study 
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explored the relationship between motion sickness, test drive conditions, and post-drive standing 

balance. For the drives, participants were randomly assigned one of two acceleration levels 

(Low, Moderate), and repeated two scripted drives. One of the drives involved a visual-based 

task performed on a handheld tablet device (Task and No-Task conditions). During the tests, 

participants were driven in the front passenger seat of a midsized sedan on a 20-min. scripted 

drive around a closed test track. Before and after each scripted drive, participants completed two 

standing balance exercises: 1) feet tandem, eyes open, on firm support, and 2) feet together, eyes 

closed, on foam support. A wearable IMU worn around the waist captured estimates of postural 

trunk sway, from which various postural sway metrics were derived. The results of this study 

suggested that standing balance was negatively affected following a script drive, especially when 

an in-vehicle task was involved. However, there were only weak relationships between the 

magnitude of changes in balance, participants covariates, and motion sickness severity. Changes 

in balance were also much larger for the more challenging exercise, during which participants 

stood with their feet together on a foam support with eyes closed.  

Chapter 3, Post-Drive Standing Balance of Vehicle Passengers Using Wearable Sensors: 

The Effect of On-Road Driving and Task Performance, describes a study similar in design to that 

of Chapter 2. Standing balance was explored as a function of participant covariates and an on-

road driving exposure to real-time traffic. Participants were randomly assigned to either a 

Highway route or an Urban route; two repeated drives under No-Task and Task conditions were 

consistent with the previous study as well. Participants were similarly driven in the front 

passenger seat of a midsized sedan for up to 60-min on the designated route. The balance 

exercises performed increased in difficulty: 1) feet together, eyes open, on firm support, 2) feet 

together, eyes closed, on firm support, and 3) feet together, eyes closed, on foam support. The 
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wearable IMU setup was the same as described in the previous study. The results of this study 

suggested that standing balance was negatively affected by ecologically relevant vehicle motion 

(especially when a task was involved), such that a plausible increase in fall risk may have been 

observed.  

Chapter 4, Motion sickness affects passengers’ standing balance performance, describes 

the formal analysis of standing balance performance (captured using wearable IMUs) and motion 

sickness in on-road environments. Using the data collected from the previous studies in this 

dissertation, a mixed model approach was used to correlate post-drive standing balance metrics, 

participant covariates, and motion sickness. A predictive analysis was also performed using pre-

drive balance metrics, where a random forest model was trained to predict whether or not a 

participant would report motion sickness during a drive. The mixed models found a significant 

association between postural sway velocity and different levels of motion sickness reported 

during the drive. The predictive model achieved fair performance when predicting motion 

sickness incidence during the drive, suggesting that pre-drive balance metrics could potentially 

predict whether or not a person is prone to vehicular motion sickness. Overall, these companion 

chapters illustrated the efficacy of wearables for novel applications in health monitoring—in this 

case, vehicular motion sickness. 

Chapter 5, Noninvasive approach to hydration assessments using a data-driven approach 

based on orthostatic changes, describes a study focused on developing a potential approach by 

collecting participant data using wearable devices, building a predictive model, and then 

evaluating its accuracy and reliability. The data collection consisted of athletic individuals 

exercising without fluid replenishment to a loss of 2% bodyweight, and performing a varied set 

of postural movements before and after the exercise. Acting as their own controls, participants 
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repeated this protocol, but replenished any lost body weight with sports drink. Throughout the 

data collections, participants’ heart rate and postural data from wearable devices were used to 

train and validate a predictive model. The results of the trained model suggested that dehydration 

(parameterized as bodyweight loss) could be accurately estimated from orthostatic 

measurements. Non-standard and shorter postural movements achieved similar discriminative 

performance. Moreover, the overall approach leveraged data from wearable technology to make 

informed predictions of hydration status.  

Chapter 5, Discussion, summarizes the major findings; the limitations and implications of 

the studies; and makes suggestions for future work. 
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Chapter 2 Standing Balance Among Vehicle Passengers Following a Drive on a Closed Test 

Track 

 

2.1. Introduction 

Mobility solutions such as autonomous vehicles (AVs) and ride-sharing services, have 

the potential to increase user productivity, reduce traffic congestion, and provide a broader 

population with access to personal transportation [1]. Prior studies have shown that passengers 

experience motion sickness more frequently and severely than drivers, especially when they are 

focused on other visual activities (e.g., reading on a handheld device, watching movies on an in-

vehicle screen) [2]–[5]. By implementing mobility solutions, the number of passengers on the 

road is projected to increase as drivers are transformed to passengers and transportation becomes 

more accessible to the population [1]. Consequently, a larger population will be at risk of 

experiencing motion sickness. This population may exhibit multidimensional sensations [6] that 

range from physiologically-related responses (e.g., nausea and fatigue) to difficulties 

concentrating on a task [5,7,8]. Furthermore, passengers affected by motion sickness may 

observe concomitant changes in their balance abilities post-drive [9]. Subsequently, this change 

in balance ability could affect the coordination of movements and increases the risk of injury and 

falls [10]. Therefore, the current study sought to investigate the effects of a drive on a closed test 

track and task performance on post-drive standing balance. 

Currently, there are no in-vehicle studies that explore balance following on-road or 

closed test track conditions. Although high-fidelity driving simulations may provide visual, 
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auditory, and motion stimuli, the summative, real-world experience of physically riding in a 

passenger vehicle may be substantially different [11]. Additionally, naturalistic passenger 

vehicle-induced motion sickness manifests itself differently than simulator-induced motion 

sickness [12]. The sensory conflict theory suggests that motion sickness results from conflicts or 

differences between visual and vestibular inputs, kinesthetic proprioception of motion, and the 

brain’s “internal model” of what is expected [13]. In passenger vehicles, motion sickness is 

hypothesized to result from a sensory conflict between the static, visual perception of the vehicle 

interior and the global, inertial motion of the body perceived by the vestibular system [13,14]. 

Therefore, an in-vehicle, closed test track study is needed to quantify the effects of vehicle 

motion and task performance on standing balance.  

Several studies have investigated the association between passengers’ balance and motion 

sickness in simulated driving environments that include a range of physical motion and visual 

modalities [9], [15], [16]. Keshavarz et al. [9] used a high-fidelity, 6 degree-of-freedom (DOF) 

motion platform and had participants complete four simulation-based drives at constant speed 

over 7 km. Throughout the simulations, visual, audio, and motion cues were varied. During an 

eyes-open standing exercise, the pre-post change in the center of pressure (COP) path length was 

compared with results from the Simulator Sickness Questionnaire (SSQ) and the Fast Motion 

Sickness Scale (FMS) ratings. The study participants were divided into two groups: “well group” 

(participants who reported a score of 0-4.9 on a scale of 0-20) and the “sick group” (participants 

who reported a score of 5 or greater on a scale of 0-20). Path length increased following the 

simulation regardless of the sensory cues given. However, there was no meaningful difference 

between the “sick group” and the “well group”; only weak associations were found between the 

path length and the FMS and SSQ scores. One major difference between the study performed by 
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Keshavarz et al. [9] and the current study is that participants were not passengers, but instead 

drivers during the simulations.  

In a fixed-base simulation study [17] that provided exclusively visual cues via a head-

mounted display, participants completed 5-min. drives on a simulated highway (60 mph), rural 

(60 mph), and city (25 mph) course. Participants’ maximum time in single-leg stance (eyes 

closed) decreased following the highway and rural courses and SSQ oculomotor discomfort 

scores were higher in all simulated driving environments. However, the relationship between 

SSQ scores and maximum time in single-leg stance was not reported [17]. Reed-Jones et al. [15] 

used a fixed-base driving simulator to explore post-drive balance performance of 30 participants 

during eyes-open and eyes-closed, single-leg stance. Path velocity during eyes-open single-leg 

stance decreased following two 20-min. simulated drives at a constant speed of 90 km/h. Poorer 

balance was also correlated with lower SSQ scores (i.e., less severe motion sickness). Lee at al. 

[18] used a fixed-base driving simulator to induce vection and compensatory postural responses 

and analyzed the immediate changes in balance during a feet-tandem exercise. The increase in 

M/L sway velocity (measured at the head) of 11 participants approached statistical significance 

following a 5-min. simulated drive at a speed of 30 mph. Overall, these fixed-base simulator 

studies reveal quantifiable changes in balance following exposure. However, the fixed-base 

simulations lacked a vestibular stimulus, and the optical, spatial, and temporal characteristics of 

the simulator displays may not have directly mapped to the visual stimuli experienced during on-

road, closed test-track-based exposures [11]. 

Given (1) the lack of in-vehicle, on-road or closed test track based studies that examine 

the effects of passenger vehicle exposures on standing balance, (2) the inconsistent 

methodologies and results among prior studies, and (3) the increasing implementation of 
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mobility solutions, there is a need to understand the naturalistic effects of vehicle motion and the 

concurrent performance of a task on post-drive balance. Investigating balance after exposure to 

vehicle motion that result during closed test track operations and visual-based task can extend the 

results of existing literature. Assessing the aftereffects can contextualize the risks involved with 

using AVs, ridesharing services, and passenger vehicles, which can potentially inform the 

development of countermeasures. The objective of this study was to quantify the effect of 

vehicle motion, based on a scripted drive on a closed test track, and task performance on post-

drive balance. 

2.2. Methods 

2.2.1. Participants and Experimental Design 

A broad overview of the experimental protocol is shown in Figure 2.1. 50 adults (23 

males, 27 females; between the ages of 18 and 78 years (40.0 ± 20.6 yr.) participated in a mixed 

factorial design experiment: 33 were age < 60 (28.3 ± 8.5), 17 were age ≥ 60 (66.4 ± 4.8). 

During recruitment, participants were asked about (1) the relative frequency of their prior 

experience of motion sickness, and (2) their assessment of their level of susceptibility to motion 

sickness. Motion sickness susceptibility was categorized into four levels based upon on how 

often motion sickness was experienced (never, rarely, sometimes, and frequently). The scripted 

drive was conducted on a closed test track where participants sat in the front passenger seat of 

the vehicle. It was developed to include many instances of longitudinal and lateral acceleration 

profiles consistent with driving on public roadways. The scripted drive was a continuous, 

concentrated driving exposure, 20 min. in duration that consisted of a series of frequent 90-

degree turns, along with braking, acceleration and lane change events [5], [19]. Participants were 
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assigned to one of two levels of acceleration (Low or Moderate) so that there were no significant 

differences between the groups in age and self-reported motion sickness susceptibility [5]. Two 

levels of an ecologically relevant task were performed during the in-vehicle scripted drive: i) No-

Task condition involved normative passenger behavior and unrestricted gaze; and ii) the Task 

condition instructed participants to complete a visual-based task on a handheld tablet device [5]. 

Participants completed the No-Task and Task test conditions on different days. The order of the 

No-Task/Task test conditions was randomized. Each participant provided written informed 

consent and the study was conducted in accordance with the Declaration of Helsinki. The study 

was reviewed and approved by the University of Michigan Institutional Review Board 

(HUM00128751). 

 

2.2.2. Balance Measurements and Instrumentation 

A smartphone-based (6th generation iPod touch, 2015) inertial measurement unit (IMU) 

[20] was used to estimate trunk postural sway in the anteroposterior (A/P) and mediolateral 

(M/L) directions, sampled at 50 Hz [20], [21]. The raw data were from the smartphone’s 

accelerometer and gyroscope sensors. Tilt angles and tilt velocity were computed from the 

accelerometer and gyroscopes, respectively. The raw data were passed through an extended 

Kalman filter before computing the metrics. The data were processed in MATLAB (The 

MathWorks, Natick, MA) to calculate the following six balance metrics for analysis: root-mean-

square (RMS) tilt in the A/P (A/P RMS) and M/L (M/L RMS) directions, RMS of sway velocity 

in the A/P and M/L directions, total path length of the sway trajectory, and the elliptical fit of the 

sway trajectory area [20], [22]. RMS was calculated by taking the square root of the average of 

the squared values (A/P RMS and M/L RMS are in degrees, A/P RMS and M/L RMS velocity 
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are in degrees per second). The elliptical area was computed by fitting a 95% confidence ellipse 

to the raw tilt values in each trial (elliptical area (EA) is in degrees2) [21], [22]. Total path length 

was captured by summing the absolute distance between consecutive sampled values of the tilt 

trajectory (path length is in degrees) [22]. 
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Figure 2.1: Flowchart of the experimental protocol. 
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2.2.3. In-Vehicle Test Conditions 

Participants were asked to maintain a standardized posture in the passenger seat while 

being driven on the closed test track, which is further detailed in Jones et al. [19]. Each scripted 

drive concluded a maximum of 20 minutes or when the participant requested to stop the drive, 

whichever came first. Scripted drives were scheduled on two separate days, with a minimum of 

24 hours between sessions, to prevent any lingering symptoms of motion sickness from 

influencing the second drive. Participants self-reported an overall motion sickness rating every 

minute using an 11-point integer scale during the scripted drives (with 0 representing "no motion 

sickness” and 10 representing “stop the car”) [5]. For Task test conditions, participants were 

asked to complete a questionnaire administered on a handheld device. The acceleration levels 

were characterized by maximum speed achieved during the scripted drive: up to 10-15 mph for 

Low Acceleration, and up to 20-25 mph for Moderate Acceleration [5], [19]. In total, there were 

four test conditions: Moderate Acceleration, Task; Moderate Acceleration, No-Task; Low 

Acceleration, Task; and Low Acceleration, No-Task. 

2.2.4. Balance Exercises 

Prior to and following a scripted drive, participants performed three trials of two standing 

balance exercises in the following order: feet tandem on firm support with eyes open, and feet 

together on foam support with eyes closed. The former was chosen because it is representative of 

post-drive posture and the latter was chosen to perturb the visual and somatosensory systems. 

Participants had no practice for either balance exercise prior to performing the three pre-drive 

trials. During the balance protocol, participants were instructed to stand tall, but to avoid being 

stiff or tense. In addition, participants crossed their arms and were given a reference target at 
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eye-level to partially control participants’ visual field. Each trial lasted 30 seconds unless the 

participant either stepped out of the prescribed position or lost their balance. Loss of balance was 

marked by (1) a participant’s need to grab a walker positioned nearby or (2) a participant’s 

failure to perform the exercise as described. 

2.2.5. Data Analysis 

Fourteen trials were excluded from the subsequent analysis (out of 1200 trials) due either 

to step-outs or to a participant’s inability to safely complete the exercise, which precluded direct 

comparisons to trials that were completed for the full 30-s. Given that the data were non-normal, 

all statistical comparisons used nonparametric statistical tests with a significance level of 0.05. 

To assess differences among the test conditions, the intra-variability of participants’ balance 

metrics was removed by normalizing participants’ post-drive metrics. Due to a marked learning 

effect, the post-drive metrics were divided by the metrics of the third pre-drive trial. 

Furthermore, to capture the immediate effects of the drives, the analysis focused on the 

comparison between the first post-drive and third pre-drive trials.  

Nonparametric statistics were used to analyze the data given that the data were not 

normally distributed. Both normalized and non-normalized balance metrics were compared 

across the four test conditions using Wilcoxon sign rank and rank sum tests. A Bonferroni 

correction factor or adjusted alpha level of 0.025 per statistical test (0.05/2) was applied. The 

initial comparisons between the Moderate Acceleration, Task; Moderate Acceleration, No-Task; 

Low Acceleration, Task; and Low Acceleration, No-Task conditions showed no significant 

differences between the levels of acceleration across any of the balance metrics. As a result, the 

data were further collapsed into No-Task and Task groups. One-sided Wilcoxon signed rank tests 

were then used to compare the normalized balance metrics between the No-Task and Task groups 
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for each exercise at an alpha level of 0.05. No Bonferroni corrections were applied because the 

data were non-independent.   

Subsequent statistical comparisons were performed for each balance exercise among the 

four test conditions after stratifying by the covariate descriptors. Specifically, these descriptors 

were age stratified as younger (age < 60) and older (age > 60), age as a continuous measure, sex, 

and motion sickness susceptibility. Wilcoxon rank sum tests were performed, and Spearman rank 

correlations were explored between balance, test conditions, and the covariate descriptors. 

2.3. Results 

Comparisons between the non-normalized pre-drive and post-drive metrics were made to 

determine the effect of the scripted drive. The non-normalized metrics were stratified by Task 

condition and balance exercise, as shown in Table 2.1. In the Task condition, for the feet 

together, foam support, eyes closed exercise, post-drive A/P RMS (p = 0.012), M/L RMS (p = 

0.0025), A/P RMS sway velocity (p < 0.001), M/L RMS sway velocity (p < 0.001), elliptical 

area (p < 0.001), and path length (p < 0.001) were significantly greater than pre-drive values. In 

the No-Task condition, M/L RMS (p = 0.017), A/P RMS sway velocity (p < 0.001), M/L RMS 

sway velocity (p < 0.001), elliptical area (p < 0.001), and path length (p < 0.001) were greater 

post-drive values. For the feet tandem, firm support, eyes open exercise, post-drive A/P RMS 

sway velocity (p < 0.001), and path length (p < 0.001) were significantly greater in the Task 

condition compared with the No-Task condition. Similarly, for the No-Task condition, post-drive 

A/P RMS sway velocity (p = 0.0024), and path length (p = 0.02) increased following the drive.  

 

Table 2.1: Pre-drive vs. post-drive tests of non-normalized balance metrics by exercise and Task. Data are presented as median 

(1st quartile, 3rd quartile). RMS = Root Mean Square, A/P = Anteroposterior, M/L = Mediolateral, EA = Elliptical Area. A/P and 

M/L RMS are in degrees. A/P and M/L RMS velocity are in degrees per sec. EA and Path Length are in degrees2 and degrees, 
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respectively. P-values are computed from statistical comparisons between the pre-drive and the post-drive metrics in either the 

No-Task or Task condition. A * indicates a significant difference between pre-drive and post-drive (p-value less than 0.05). 

 Balance Metric  No-Task  Task 

Pre-drive Post-drive Z p Pre-drive Post-drive Z p 

 
A/P RMS [deg] 0.99 (0.68, 1.65) 1.05 (0.70, 1.64) 0.61 0.54 0.95 (0.59, 1.44) 1.07 (0.72, 1.70) 1.23 0.22 

M/L RMS [deg] 0.43 (0.31, 0.72) 0.49 (0.33, 0.89) 0.95 0.34 0.52 (0.30, 0.73) 0.51 (0.36, 0.75) 0.88 0.38 

A/P RMS Velocity [deg/s] 0.61 (0.44, 0.83) 0.82 (0.54, 1.08) 3.04 *<0.01 0.63 (0.49, 0.75) 0.87 (0.66, 1.11) 3.33 *<0.001 

M/L RMS Velocity [deg/s] 0.40 (0.32, 0.53) 0.48 (0.38, 0.65) 1.73 0.08 0.43 (0.35, 0.55) 0.61 (0.36, 0.79) 2.92 *<0.01 

EA [deg2] 1.87 (0.88, 3.41) 2.03 (1.19, 3.84) 1.35 0.18 1.84 (1.03, 2.34) 2.18 (1.25, 4.11) 1.73 0.08 

Path Length [deg] 32.8 (23.0, 40.2) 35.7 (26.6, 48.0) 2.32 *0.02 31.4 (24.2, 38.3) 41.7 (32.4, 53.2) 3.58 *<0.001 

 

A/P RMS [deg] 1.45 (0.81, 1.87) 1.49 (1.04, 2.29) 1.44 0.15 1.30 (1.88, 2.23) 1.93 (1.06, 2.89) 2.52 *0.01 

M/L RMS [deg] 0.81 (0.59, 1.05) 0.95 (0.64, 1.23) 2.39 *0.02 0.86 (0.63, 1.20) 1.16 (0.77, 1.45) 3.02 *<0.01 

A/P RMS Velocity [deg/s] 0.99 (0.76, 1.28) 1.43 (1.18, 1.68) 4.61 *<0.001 1.07 (0.87, 1.30) 1.66 (1.13, 2.31) 5.37 *<0.001 

M/L RMS Velocity [deg/s] 1.07 (0.88, 1.36) 1.46 (1.00, 2.14) 4.13 *<0.001 1.08 (0.80, 1.39) 1.40 (1.14, 2.26) 4.52 *<0.001 

EA [deg2] 4.72 (3.73, 7.14) 6.92 (4.52, 11.53) 3.81 *<0.001 5.04 (3.51, 7.46) 8.80 (5.49, 14.1) 4.37 *<0.001 

Path Length [deg] 55.4 (42.9, 68.2) 66.8 (57.0, 95.74) 4.86 *<0.001 54.2 (45.2, 68.1) 80.9 (56.67, 113) 5.50 *<0.001 

 

 

To isolate the effect of Task, intra-variability in the balance metrics was removed. 

Analysis of these normalized metrics by Task condition and balance exercise are shown in Figure 

2.2 and Figure 2.3. For the feet tandem, firm support, eyes open exercise, normalized M/L RMS 

velocity (p = 0.043) and path length (p=0.011) values were significantly larger in the Task 

condition compared to the No-Task condition (Figure 2.2). For the feet together, foam support, 

eyes closed exercise, normalized M/L RMS (p = 0.023), M/L RMS velocity (p = 0.047), and path 

length (p = 0.025) values were significantly larger following the drive when comparing Task vs. 

No-Task conditions (Figure 2.3). The individual medians and quartiles for each group are shown 

in Table 2.2, alongside the corresponding p-values for the Task and No-Task statistical 

comparisons.  
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Figure 2.2: Bar plot showing the means of the six normalized balance metrics grouped by the Task condition for the feet tandem, 

firm support, eyes open exercise. The error bars represent standard error. A/P RMS and M/L RMS are in degrees. A/P RMS and 

M/L RMS velocity are in degrees per second. Elliptical Area (EA) and Path Length are in degrees2 and degrees, respectively. The 

measurements were normalized by dividing the first post-drive balance trial by the last baseline trial preceding the drive. An 

asterisk denotes a significant p-value less than 0.05. 

When comparing balance metrics across the levels of acceleration, no meaningful 

differences were found. Moreover, balance was analyzed only as a function of Task because no 

significant contrasts were found between the test conditions when the balance data were 

stratified by participant age, sex, and motion sickness susceptibility.  

Table 2.2: Task vs. No-Task tests of normalized values of balance metrics by exercise and Task. Data are normalized by dividing 

the first post-drive metrics by the last pre-drive metric. Data are presented as median (1st quartile, 3rd quartile). RMS = Root 

Mean Square, A/P = Anteroposterior, M/L = Mediolateral, EA = Elliptical Area. A/P and M/L RMS are in degrees. A/P and M/L 

RMS velocity are in degrees per second. EA and Path Length are in degrees2 and degrees, respectively. A * denotes a significant 

difference (p-value less than 0.05) between the No-Task and Task groups for that balance metric. 

 Balance Metric No-Task Task Z p 

    

 

A/P RMS [deg] 0.98 (0.67, 1.93) 1.08 (0.62, 2.31) 0.03 0.51 

M/L RMS [deg] 1.00 (0.60, 2.11) 1.09 (0.69, 1.47) 0.47 0.68 

A/P RMS velocity [deg/s] 1.22 (0.94, 1.65) 1.28 (0.94, 2.11) 0.87 0.19 

M/L RMS velocity [deg/s] 1.10 (0.88, 1.37) 1.21 (0.92, 1.59) 1.72 *0.043 

EA [deg2] 1.16 (0.79, 2.33) 1.49 (0.70, 2.33) 0.23 0.41 

Path Length [deg] 1.12 (0.89, 1.42) 1.24 (0.97, 1.80) 2.29 *0.011 
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A/P RMS [deg] 1.33 (0.75, 1.87) 1.24 (0.86, 1.97) 0.10 0.46 

M/L RMS [deg] 1.22 (0.92, 1.76)  1.48 (0.89, 1.95) 1.99 *0.023 

A/P RMS velocity [deg/s] 1.39 (1.01, 1.69) 1.45 (1.09, 2.15) 1.61 0.053 

M/L RMS velocity [deg/s] 1.37 (1.01, 1.85) 1.45 (0.99, 2.17) 1.68 *0.047 

EA [deg2] 1.32 (0.88, 2.11) 1.55 (1.03, 2.63) 1.38 0.084 

Path Length [deg] 1.26 (1.07, 1.58) 1.34 (1.11, 1.88) 1.96 *0.025 

 

The current study is part of a larger effort to quantify motion sickness within vehicles on 

a closed test track. In an effort to explore the association between motion sickness and balance 

metrics, analysis of motion sickness response data from the same study was conducted. Adapted 

from Jones et al. [5], Figure 2.4 shows the distribution of mean motion sickness ratings reported 

at 1-min intervals along with standard error (SE) corridors throughout the scripted drive [5]. The 

Wilcoxon Kruskal–Wallis test of the rank sum of self-reported motion sickness ratings at each 5-

min interval revealed significant differences between the No-Task and Task conditions (p < 0.01 

for all intervals). 
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Figure 2.3: Bar plot showing the means of the six normalized balance metrics grouped by the task condition for the feet together, 

foam support, eyes closed exercise. The error bars represent standard error. A/P RMS and M/L RMS are in degrees. A/P RMS 

and M/L RMS velocity are in degrees per second. Elliptical Area (EA) and Path Length are in degrees2 and degrees, respectively. 

The measurements were normalized by dividing the first post-drive balance trial by the last baseline trial preceding the drive. An 

asterisk denotes a significant p-value less than 0.05. 

2.4. Discussion 

In the current study, balance was negatively affected following a drive. Although not all 

comparisons were significant, the averages of the non-normalized post-drive values were greater 

than pre-drive across all metrics and exercises. The greatest change in non-normalized balance 

was observed in path length, increasing by 20.1° and by 36.0° post-drive in the No-Task and the 

Task conditions, respectively. Non-normalized post-drive postural sway increased from pre-drive 

for all but one of the balance metrics for the more challenging exercise (feet together, eyes 

closed, foam support). For the same exercise, there was also a general trend towards greater 

normalized postural sway following drives that involved a task (differences ranged between 8% 

and 86% for A/P RMS and EA). Likewise, participants reported higher motion sickness ratings 
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in the Task condition. However, the current study did not observe a strong relationship between 

motion sickness susceptibility and balance. There was also no effect of vehicle acceleration or 

participant covariates. 

Figure 2.4: Subjective rating data has been collapsed across the acceleration condition (low, moderate) to illustrate the difference 

in mean 1-min. subjective ratings between No-Task (light green, asterisk) and Task (blue, circle) test conditions. The y-axis is the 

subjective rating scale and the x-axis illustrates time history (20 min.). Each data point represents the mean rating and the 

corridor represents the mean ± standard error. 

Prior to the current study, no studies have explored the effect of the motion of a vehicle 

on a closed test track on post-drive balance. However, similar to the current study, increases in 

path length and sway velocity have been observed among motion-based driving and flight 

simulator studies. Keshavarz et al. [9] observed increased COP path length following a simulated 

drive (specific values were not provided, but the estimated increase based on the published figure 

was 21% for older adults). In comparison, the current study measured approximately an average 

40% increase in the non-normalized path length of the trunk following a vehicular drive. 

Although a direct comparison between Keshavarz et al. [9] and the current study is not possible 

(i.e., Keshavarz et al. [9] measured sway using the COP during a feet together, eyes open stance 

while the current study measured trunk sway during tandem stance), both studies observed 
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increases in sway following the drive. Similar to the increased M/L RMS velocity measured 

post-drive in the current study (~50% at the trunk on average), Kennedy & Stanney [24] reported 

~45% increase in M/L sway velocity of the head following a 2-hour motion-based, simulated 

flight. 

In the current study, both postural sway and motion sickness ratings were more 

pronounced in the Task condition following a drive, suggesting an association between motion 

sickness and balance. In contrast to the motion sickness ratings reported in Jones et al. [5] (who 

reported a correlation with self-reported motion sickness susceptibility), postural sway was not 

expressively related with motion sickness susceptibility. Although some studies have correlated 

motion sickness measurements and balance [9], [15], the variations in motion sickness rating 

scales and balance metrics make comparisons across these studies difficult.  

One of the limitations of this study is that participants did not practice the balance 

protocol or complete any training trials prior to the pre-drive balance trials, which means that the 

pre-drive and post-drive balance trials may still be capturing a learning effect. Second, the 

balance trials were also not performed in the same location. While the pre-drive trials were 

performed indoors in a laboratory, the post-drive trials were performed outdoors immediately 

upon exiting the vehicle, which may have introduced environmental effects. However, a 

reference visual target was provided to control for differences in the visual field. Additionally, 

since the frequency of the vehicle maneuvers was greater than that of naturalistic driving, the 

closed test track used in this study was a scaled exposure of naturalistic driving conditions [19]. 

Participants were also only passengers during the scripted drive, so it is uncertain whether these 

effects on balance apply to drivers as well. Lastly, the sample size in some of the bins of the 

participant sampling strategy were lacking when stratified by the covariates. 
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During a drive, drivers can make anticipatory postural adjustments because they can 

control the vehicle dynamics and are attentive of the road ahead [25], [26]. As a result, drivers 

experience less severe motion sickness symptoms compared to passengers [2]. Given that the 

motion sickness severity and postural sway have been shown to be correlated, passengers may 

experience greater changes to their balance [27], [28]. However, most driving simulator studies 

feature participants as drivers rather than front-seat passengers. The current study captures a 

more realistic representation of the effects of the front-seat passenger experience. This is 

especially important for AVs, where users are more likely to be passengers. 

One implication of the current study raises a potential concern for at-risk populations 

using AVs and ride-sharing services in that they may be at risk of falling post-drive. Johansson et 

al. [29] found that an increased COP path length exceeding 402 mm (average COP path length 

was 338.23 mm) during a 60-s eyes open exercise was predictive of a 90% increase in the risk of 

falling in community-dwelling older adults. Future work will seek to adapt the protocol from the 

closed test track to real-time traffic on urban roads. 

2.5. Conclusion 

The current study performed a preliminary analysis of standing balance following 

exposure to the motion of a drive in a passenger vehicle on a closed test track. Similar to motion-

based driving simulations, postural sway increased following the drive; users of AVs and other 

mobility solutions may be at risk of poorer balance. Further analysis showed that those who 

performed a task exhibited even larger changes in balance. Given that passengers are more likely 

to perform tasks while in a vehicle, a larger population of AV passengers (especially at-risk 

populations) may experience the negative effects of vehicle motion on standing balance. 



 52 

2.6. References 

[1] D.J. Fagnant, K. Kockelman, Preparing a nation for autonomous vehicles: Opportunities, 

barriers and policy recommendations, Transp. Res. Part A Policy Pract. 77 (2015) 167–

181. https://doi.org/10.1016/j.tra.2015.04.003. 

[2] A. Rolnick, R.E. Lubow, Why is the driver rarely motion sick? The role of controllability 

in motion sickness, Ergonomics. 34 (1991) 867–879. 

https://doi.org/10.1080/00140139108964831. 

[3] N. Isu, T. Hasegawa, I. Takeuchi, A. Morimoto, Quantitative analysis of time-course 

development of motion sickness caused by in-vehicle video watching, Displays. 35 (2014) 

90–97. https://doi.org/10.1016/j.displa.2014.01.003. 

[4] T. Wada, Motion Sickness in Automated Vehicles, Int. Symp. Adv. Veh. Control 2016. 

(2016). https://doi.org/10.1007/978-3-319-40503-2. 

[5] M.L.H. Jones, V.C. Le, S.M. Ebert, K.H. Sienko, M.P. Reed, J.R. Sayer, Motion sickness 

in passenger vehicles during test track operations, Ergonomics. 62 (2019) 1357–1371. 

https://doi.org/10.1080/00140139.2019.1632938. 

[6] M.L.H. Jones, S. Ebert, M. Reed, Sensations associated with motion sickness response 

during passenger vehicle operations on a test track, SAE Tech. Pap. 2019-April (2019) 1–

6. https://doi.org/10.4271/2019-01-0687. 

[7] L.-L. Zhang, J.-Q. Wang, R.-R. Qi, L.-L. Pan, M. Li, Y.-L. Cai, Motion Sickness: Current 

Knowledge and Recent Advance, CNS Neurosci. Ther. 22 (2015) 1–10. 

https://doi.org/10.1111/cns.12468. 

[8] P. Matsangas, M.E. McCauley, W. Becker, The Effect of Mild Motion Sickness and 

Sopite Syndrome on Multitasking Cognitive Performance, Hum. Factors J. Hum. Factors 



 53 

Ergon. Soc. 56 (2014) 1124–1135. https://doi.org/10.1177/0018720814522484. 

[9] B. Keshavarz, R. Ramkhalawansingh, B. Haycock, S. Shahab, J.L. Campos, Comparing 

simulator sickness in younger and older adults during simulated driving under different 

multisensory conditions, Transp. Res. Part F Traffic Psychol. Behav. 54 (2018) 47–62. 

https://doi.org/10.1016/j.trf.2018.01.007. 

[10] D.A. Winter, A.B.C. (Anatomy, Biomechanics and Control) of Balance During Standing 

and Walking, Graphic Services, University of Waterloo, Waterloo, Ontario, 1995. 

[11] M. Pinto, V. Cavallo, T. Ohlmann, The development of driving simulators: Toward a 

multisensory solution, 2008. https://doi.org/10.3917/th.711.0062. 

[12] R.S. Kennedy, N.E. Lane, S. Kevin, M.G. Lilienthal, Simulator Sickness Questionnaire : 

An Enhanced Method for Quantifying Simulator Sickness, Int. J. Aviat. Psychol. 3 (1993) 

203–220. https://doi.org/10.1207/s15327108ijap0303. 

[13] J.T. Reason, J.J. Brand, Motion Sickness, Academic Press, London, New York, 1975. 

[14] M.J. Griffin, M.N. Newman, Visual field effects on motion sickness in cars, Aviat. Sp. 

Environ. Med. 75 (2004) 739–48. 

[15] R.J. Reed-Jones, L.A. Vallis, J.G. Reed-Jones, L.M. Trick, The relationship between 

postural stability and virtual environment adaptation, Neurosci. Lett. 435 (2008) 204–209. 

https://doi.org/10.1016/j.neulet.2008.02.047. 

[16] C.M. Webb, A. Estrada, J.R. Athy, Motion sickness prevention by stroboscopic 

environment during simulated military transport, Int. J. Appl. Aviat. Stud. 9 (2009) 181–

196. 

[17] R.R. Mourant, T.R. Thattacherry, Simulator Sickness in a Virtual Environments Driving 

Simulator, Proc. Hum. Factors Ergon. Soc. Annu. Meet. 44 (2000) 534–537. 



 54 

https://doi.org/10.1177/154193120004400513. 

[18] G.C.H. Lee, Y. Yoo, S. Jones, Investigation of driving performance, vection, postural 

sway, and simulator sickness in a fixed-based driving simulator, Comput. Ind. Eng. 33 

(1997) 533–536. https://doi.org/10.1016/s0360-8352(97)00186-1. 

[19] M.L.H. Jones, K. Sienko, S. Ebert-Hamilton, C. Kinnaird, C. Miller, B. Lin, B.-K. Park, J. 

Sullivan, M. Reed, J. Sayer, Development of a Vehicle-Based Experimental Platform for 

Quantifying Passenger Motion Sickness during Test Track Operations, SAE Tech. Pap. 

2018-April (2018) 1–10. https://doi.org/10.4271/2018-01-0028. 

[20] T. Bao, W.J. Carender, C. Kinnaird, V.J. Barone, G. Peethambaran, S.L. Whitney, M. 

Kabeto, R.D. Seidler, K.H. Sienko, Effects of long-term balance training with vibrotactile 

sensory augmentation among community-dwelling healthy older adults: A randomized 

preliminary study, J. Neuroeng. Rehabil. 15 (2018) 1–13. https://doi.org/10.1186/s12984-

017-0339-6. 

[21] B.C. Lee, J. Kim, S. Chen, K.H. Sienko, Cell phone based balance trainer, J. Neuroeng. 

Rehabil. 9 (2012) 1–14. https://doi.org/10.1186/1743-0003-9-10. 

[22] K.H. Sienko, M.D. Balkwill, L.I.E. Oddsson, C. Wall, Effects of multi-directional 

vibrotactile feedback on vestibular-deficient postural performance during continuous 

multi-directional support surface perturbations., J. Vestib. Res. 18 (2008) 273–285. 

https://doi.org/WQ3W11RM1H675476 [pii]. 

[23] D.A. Winter, A.E. Patla, F. Prince, M. Ishac, K. Gielo-perczak, Stiffness control of 

balance in quiet standing, J. Neurophysiol. 80 (1998) 1211–1221. 

https://doi.org/10.1152/jn.1998.80.3.1211. 

[24] R.S. Kennedy, K.M. Stanney, Postural Instability Induced by Virtual Reality Exposure: 



 55 

Development of a Certification Protocol, Int. J. Hum. Comput. Interact. 8 (1996) 25–47. 

https://doi.org/10.1080/10447319609526139. 

[25] X. Dong, K. Yoshida, T.A. Stoffregen, Control of a Virtual Vehicle Influences Postural 

Activity and Motion Sickness, J. Exp. Psychol. Appl. 17 (2011) 128–138. 

https://doi.org/10.1037/a0024097. 

[26] T. Wada, K. Yoshida, Effect of passengers’ active head tilt and opening/closure of eyes on 

motion sickness in lateral acceleration environment of cars., Ergonomics. (2015) 1–10. 

https://doi.org/10.1080/00140139.2015.1109713. 

[27] T.A. Stoffregen, L.J. Smart, Postural instability precedes motion sickness, Brain Res. Bull. 

47 (1998) 437–448. https://doi.org/10.1016/S0361-9230(98)00102-6. 

[28] J.E. Bos, Nuancing the relationship between motion sickness and postural stability, 

Displays. 32 (2011) 189–193. https://doi.org/10.1016/j.displa.2010.09.005. 

[29] J. Johansson, A. Nordström, Y. Gustafson, G. Westling, P. Nordström, Increased postural 

sway during quiet stance as a risk factor for prospective falls in community-dwelling 

elderly individuals, Age Ageing. 46 (2017) 964–970. 

https://doi.org/10.1093/ageing/afx083. 

 



 56 

Chapter 3 Post-Drive Standing Balance of Vehicle Passengers Using Wearable Sensors: 

The Effect of On-Road Driving and Task Performance 

 

3.1. Introduction 

Urban transportation is anticipated to transform through the development of autonomous 

vehicles (AVs) and other mobility solutions (e.g., ride-sharing services). These transportation 

alternatives have the potential to reduce traffic congestion, increase user productivity, and 

provide greater access to transportation to a broader population [1]. Since AV users will be 

passengers, the widespread adoption of mobility solutions will likely result in an increased 

number of on-road vehicle passengers compared to drivers. Moreover, accessibility to AVs for 

broader populations will increase the diversity of passengers on the road. Accessibility is 

especially beneficial to older adults for increasing mobility, independence, and autonomy [2]. 

Across all population segments, users of mobility solutions will be freed from having to drive 

and will be able to engage in non-driving related tasks. However, studies of simulated driving 

and of in-vehicle passengers on a closed test track have demonstrated that postural control can be 

negatively affected by motion exposure [3–8]. Control of postural sway (especially of the trunk) 

is crucial for maintaining upright standing balance [9]. A substantial increase in postural sway 

may increase the risk of falling after an in-vehicle exposure associated with mobility solutions or 

AVs [10,11]. Given a larger and more diverse passenger population, those already susceptible to 

falling (e.g., older adults) or those not accustomed to frequent transportation may encounter an 

increased risk of injury. Older adults with a history of previous falls are also more likely to 
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experience subsequent falls and injuries [12]. In the worst case, the resulting injuries from a non-

fatal fall can significantly impact quality of life, reduce social and physical activity, and raise 

medical costs [13–16]. Therefore, it is necessary to understand how passenger vehicle transport 

affects the control of standing balance as increased fall risk may be a significant deterrent for 

certain users.  

In-vehicle measurements of posture and balance have been collected using various 

sensors such as on-board depth cameras for head and upper body posture/orientation [17,18], as 

well as magnetic tracking systems for the trunk position [7,19]. When measuring post-drive 

postural sway, laboratory-based studies of simulated driving have leveraged typical laboratory-

based instrumentation (e.g., force plates [6] and passive or active motion tracking). Options for 

instrumentation are constrained during in-the-field or naturalistic studies as equipment must be 

portable to facilitate measurements immediately following the exit from the vehicle. Although 

cameras mounted within the vehicle allow for accurate tracking and analysis of occupants’ 

movements [20], they are restricted to in-vehicle data collections. Alternatively, wearable 

sensors are suitable for wireless data collection and enable the measurement of in-vehicle and 

post-drive postural sway. 

Prior studies that have quantified postural sway before, during, and after exposure to 

driving have mainly used surrogates of on-road driving (i.e., driving simulations, head-mounted 

displays, fixed-base, and a 6 degree-of-freedom (DOF) motion platforms). These surrogates can 

be limited by technical and physical factors such as latency, graphical fidelity, and motion 

scaling factors [21–23]. Several studies have measured postural sway at the trunk or head during 

a simulated (driving, flight), physical driving, or gaming exposures, and some of these studies 

have reported significant differences relative to pre-exposure postural sway [7,19,24–28]. 



 58 

Among the existing studies that have quantified post-drive standing balance performance, only 

simulated driving routes have been used with participants as the drivers. Using a 6 DOF driving 

simulator, Keshavarz et al. (2018) [6] observed increases in the path length of drivers’ sway 

following a simulated drive with varying sensory cues. In another study, Reed-Jones et al. (2008) 

[29] investigated driver behavior using a fixed-base driving simulator and found the inverse 

relationship, i.e., drivers’ path velocity decreased following a simulated drive [29]. Other 

researchers observed increases in drivers’ post-drive sway velocity following exposure to a 

fixed-base driving simulator, though the differences were not statistically significant [3]. Using a 

head-mounted display for a simulated drive, Mourant and Thattacherry (2004) [4] observed that 

drivers’ time in a single-leg stance decreased following the exposure to the simulation. Overall, 

different metrics of standing balance have been shown to be affected by a simulated drive despite 

differences in experimental modalities across the studies.  

To our knowledge, our previous study conducted in a passenger vehicle on a closed test 

track [8] is the only study that has quantified the effects of vehicle motion and task performance 

on passengers’ post-drive standing balance performance. The scripted route consisted of many 

instances of longitudinal and lateral acceleration profiles similar to those observed in naturalistic 

driving datasets [30,31]. We analyzed the participants’ performance on two balance exercises 

performed prior to and following the 20 min continuous drive in a passenger vehicle. The 

participants completed two driving sessions in randomized order as front-seat passengers. During 

one of the driving sessions, they completed a non-driving-related task that was administered on a 

handheld tablet. Throughout the other drive, the participants did not complete a task and rode in 

a standardized posture (unrestricted gaze and head orientation, hands on lap, or feet resting on 

heels). Following both driving sessions, passengers’ trunk postural sway increased significantly, 
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especially when participants performed a task throughout the driving session. We observed large 

increases in sway velocity and path length that were consistent with some findings of previous 

studies in simulated driving environments [3,6].  

Comparison studies between surrogates of driving environments and naturalistic on-road 

driving have typically focused on the fidelity of the experimental context or the validity of the 

occupant’s behavior. Simulator fidelity is critical as increased fidelity has been demonstrated to 

affect driver performance [32,33]. As it pertains to this on-road study, a lack of contextual 

vehicle features (e.g., vehicle seat, interior configuration, field of view, and accurate 

representation of vehicle motion) may influence postural sway. Physical fidelity (how a 

surrogate looks) and functional fidelity (how a surrogate operates) varies across different driving 

surrogates [34]. For example, virtual desktop vehicle simulations have reasonable functional 

fidelity (e.g., steering controls) but low physical fidelity (e.g., lack of vehicle cabin or accurate 

sensory stimuli). In-vehicle simulations use a variety of approaches to improve fidelity including 

motion cueing strategies [35,36], virtual environment tools [37], use of more realistic sensory 

cues and stimuli [38], and enhanced mechanical capability of the motion platform to generate 

tilts and displacements more representative of acceleration profiles experienced during 

naturalistic driving conditions [23]. In our previous closed test track study, passenger behavior 

was quantified during an in-vehicle exposure conducted on a closed test track with high physical 

fidelity. This in-vehicle exposure provided moderate functional fidelity given that the frequency 

of the vehicle events during the scripted route greatly exceeded the number of vehicle events that 

typically occur during naturalistic driving conditions. Additionally, a closed test track 

environment does not fully replicate the sensory, environmental and contextual cues, and 

psychological factors associated with an on-road environment that can affect occupant behavior 
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[39]. For instance, passengers experience naturalistic driving dynamics within the context of 

other on-road actors and vehicles interacting in real-time traffic. 

Given the multi-faceted characteristics of on-road driving, the lack of prior work, and 

limitations of driving simulators, it is necessary to understand how different types of vehicle 

motion and task performance in an on-road environment affect post-drive standing balance 

performance among passengers. Therefore, the objective of this on-road study was to evaluate 

passenger behavior directly in the actual environment of study (an in-vehicle exposure conducted 

on-road under realistic driving conditions) and to compare these results to those previously 

gathered within the surrogate environment (i.e., the closed test track). This work contributed to 

our understanding of the potential risks associated with passengers’ standing balance and will 

inform the design and implementation of future mobility solutions and testing platforms. 

3.2. Materials and Methods 

3.2.1. Experimental Design 

In this on-road study, participants rode in the front passenger seat of a midsize sedan that 

was operated by a trained driver. The driving routes consisted of various driving events or 

maneuvers (e.g., turning, braking) under real-time driving exposure set in midday traffic 

throughout Ann Arbor, MI, USA. Participants were assigned to one of two routes: an urban route 

that consisted of neighborhood streets and main city roads (Urban, Figure 3.1), or a highway 

route that included lengthy passages on local freeways (Highway, Figure 3.2). The urban route 

consisted of the same range of vehicle speed, number, and type of vehicle maneuvers (e.g., left 

and right turns, braking, lane changes, and roundabouts) as the scripted route conducted on the 

closed test track [8]. However, the duration of exposure differed between the closed test track 
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and on-road studies. For the closed test track study, the scripted route was 20 min in duration; in 

contrast, the time required to complete the same maneuvers on-road was approximately 2.5 times 

longer, approximately ~55 min in duration. The Highway route was designed to evaluate the 

effect of longitudinal acceleration control and higher vehicle speed (~65–70 mph) under 

conditions of minimal lateral acceleration.  

 

Figure 3.1: Map of the scripted Urban route throughout Ann Arbor. 
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Figure 3.2: Map of the scripted Highway route. 

Two levels of task performance were used as repeated tests during the on-road routes 

[31]. During the Task condition, participants completed a series of ecologically relevant, visual-

based tasks on a handheld tablet-based device throughout the duration of the driving session. 

Otherwise, participants were instructed to exhibit normative passenger behavior with an 

unrestricted gaze (No-Task condition). A mixed between/within participant design was used. 

Participants were assigned to one of the on-road routes and were tested on the route twice, with 

and without the task. The order of these repeated tests on the Task condition was randomized. In 

total, there were four test conditions: Urban, Task (UT); Urban, No-Task (UN); Highway, Task 

(HT); and Highway, No-Task (HN). 
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3.2.2. Participants 

The participants included 106 adults (47 males and 59 females) between the ages of 18 

and 89 years (34.2 ± 18.5 years). The participant sample was further stratified by age: 82 were 

aged < 60 years (24.5 ± 4.3 years) and 24 were aged ≥ 60 years (67.0 ± 6.9 years). Adults under 

the age of 60 were classified as younger adults, while those greater than or equal to 60 years old 

were classified as older adults. Prior to the experiment, participants were screened and self-

reported that they did not have diagnosed balance disorders, heart conditions, neurological 

conditions, migraines, cerebral or vascular disease, and did not use medications that might affect 

balance or cause dizziness (e.g., antidepressants or barbiturates) that would alter their motion 

sickness response or post-drive balance ability. The analysis presented in this paper was part of a 

larger study that explored motion sickness and on-road driving. Although descriptive data on 

participants’ motion sickness were gathered, the effect of motion sickness on post-drive balance 

performance was not included in this paper.  

To facilitate comparisons between the Urban and Highway routes, a non-parametric 

Wilcoxon rank-sum test and a chi-squared test was performed, indicating no significant 

differences between the two participant samples in terms of age (p = 0.44, Z = 0.77) or sex (χ2 = 

0.1361, p = 0.71). Participants provided written informed consent and the study was conducted 

in accordance with the Declaration of Helsinki. The study was reviewed and approved by the 

University of Michigan Institutional Review Board (HUM00128751). 

3.2.3. In-Vehicle Test Protocol 

During the in-vehicle exposure, participants were asked to maintain a standardized, 

neutral posture in the passenger seat; more details can be found in Jones et al. [31]. Each driving 
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session lasted until either the route was completed (55 min on average (SD = ± 4 min)) or until 

the participants opted to discontinue the driving session. In total, eight participants requested to 

stop the vehicle prior to the end of the route; however, they ended the driving session relatively 

close to the end of the scripted route and were able to perform the balance protocol. Participants 

completed a total of two driving sessions, one for each Task condition. The Task and No-Task 

driving sessions were scheduled on two separate days with a minimum of 24 h between sessions. 

For the Task condition, participants were additionally asked to complete a visual-based task 

administered on a handheld tablet-based device held in their lap during the drive. Participants 

were instructed to complete as much of the task as possible throughout the driving session and 

were allowed to take breaks at their own volition. 

3.2.4. Balance Exercises 

Participants performed a series of balance exercises immediately prior to and following 

the driving session in outdoor conditions beside the stopped vehicle. Two trials of each of the 

following three exercises that increased in difficulty were performed: 

• Exercise 1: Feet together/eyes open/firm support;  

• Exercise 2: Feet together/eyes closed/firm support; and  

• Exercise 3: Feet together/eyes closed/foam support, using a compliant support surface 

(Airex, New York, NY, USA).  

We chose these exercises because they were representative of real-world stances and visual 

and somatosensory scenarios (e.g., standing outside of a vehicle on paved or grassy surfaces 

during day and night conditions). Participants practiced this series of exercises in a laboratory 

setting prior to performing the pre-drive trials. During balance testing, participants were 

instructed to cross their arms and stand tall but avoid being stiff or tense. A visual reference 
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target was placed at eye-level in front of the participants to control for changes in the 

surrounding visual field (e.g., if the participants opted to terminate the driving session before 

completing the route, they were asked to perform the balance exercises beside the parked 

vehicle). Each trial was 30 s long unless the participants either stepped out of the prescribed 

position or lost their balance (i.e., grabbed a nearby walker, failed to complete the exercise as 

described, or required intervention by a spotter to prevent a potential fall). Figure 3.3 illustrates 

this series of balance exercises. 

 

Figure 3.3: Balance exercises are shown in the order in which they were performed.  

3.2.5. Balance Measurements and Instrumentation 

A surrogate smartphone (6th generation iPod Touch, 2015) secured at the participants’ 

lower back with an elastic waistband was used to measure anteroposterior (A/P) and mediolateral 

(M/L) postural sway [40,41]. Custom software installed on the smartphone extracted raw inertial 

measurement unit (IMU) data at a sample rate of 50 Hz from the embedded accelerometers and 
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gyroscopes [41]. These data served as inputs into an extended Kalman filter from which tilt angle 

and tilt velocity were estimated. Tilt data were then processed in MATLAB (version 2020a, The 

MathWorks, Natick, MA, USA) and the following six balance metrics were computed [40,42]: 

1. Root-mean-square (RMS) of trunk tilt in the A/P direction (A/P RMS); 
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2. RMS of trunk tilt in the M/L direction (M/L RMS); 
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3. RMS of trunk sway velocity in the A/P direction (A/P RMS Velocity); 
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4. RMS of trunk sway velocity in the M/L direction (M/L RMS Velocity); 
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5. Path Length of the trunk sway trajectory (Path Length); and 

𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ = ∑ √([𝑥𝐴𝑃]𝑖+1 − [𝑥𝐴𝑃]𝑖)2 + ([𝑥𝑀𝐿]𝑖+1 − [𝑥𝑀𝐿]𝑖)2 

𝑁−1

𝑖=1

 

6. Elliptical Area, which is the elliptical fit of the sway trajectory (Elliptical Area), 

𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝑎𝑙 𝐴𝑟𝑒𝑎 = 𝜋ab = 2𝜋𝐹0.05[2,𝑛−2]√(𝑠𝐴𝑃
2 𝑠𝑀𝐿

2 − 𝑠𝐴𝑃,𝑀𝐿
2 ) 

 where N is the number of samples; xAP and vAP are the trunk position and velocity in the 

A/P direction, respectively; xML and vML are the trunk position and velocity in the M/L direction, 

respectively; sAP and sML represent the standard deviation of the A/P and M/L trunk positions, 
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respectively; F0.02[2,n-2] is the F statistic at 95% confidence for a bivariate distribution, and sAP,ML 

is the covariance of the A/P and M/L trunk positions. 

As expressed by the equations above, RMS was calculated by taking the square root of 

the average of the squared tilt values. To compute the Elliptical Area of sway, a 95% confidence 

ellipse was fit around the tilt values for each trial before computing the area [41,42]. Path Length 

was computed by summing the Euclidean distance between consecutive samples of the A/P and 

M/L tilt angles [42]. We also computed the RMS of the acceleration signals for Exercise 1 to 

directly compare with prior work that measured trunk sway as a function of age and other 

pathologies [43–46]. The methods for computing the RMS of the A/P acceleration signal were 

consistent with those used by Moe-Nilssen and Helbostad (2002) [9], Kosse et al. (2015) [47], 

and Mancini et al. (2012) [48].  

3.2.6. Data Analysis 

In order to make comparisons between different groupings of the data, we only 

considered data from balance trials that were completed for the full 30 s. Out of 2544 pre- and 

post-drive trials, 29 trials were excluded from the subsequent analysis due to either step-outs or 

participants’ inability to safely complete the exercise. Twenty-four trials were excluded due to 

environmental factors during the balance exercises (e.g., windy conditions). Lastly, 188 trials 

were excluded due to missing data, resulting in a total of 2303 trials included in the analysis. 

Given that the data were non-normal, non-parametric statistical tests were used for all statistical 

comparisons. 
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3.2.6.1. On-Road Analysis 

Due to individual intra-variability in pre-drive balance performance, we normalized the 

post-drive measurements to analyze relative changes in the balance metrics across participants 

for each balance exercise [49,50]. Analysis of the normalized changes in balance metrics allowed 

for more direct comparisons between the on-road route and Task conditions. To compute a 

normalized change, participants’ post-drive measurements were divided by the average of their 

pre-drive measurements for each balance exercise. To isolate the effect of the driving session, the 

first post-drive measurement and the average of the pre-drive measurements were used. 

Firstly, to assess the effect of drive on standing balance performance, Wilcoxon signed-

rank tests were performed to determine if post-drive measurements increased relative to 

participants’ pre-drive measurements for Exercises 1–3, while collapsed across covariate 

descriptors. Normalized balance metrics were analyzed to determine if they were significantly 

different from a value of 1 that represented no change from pre- to post-drive. Additionally, 

statistical analysis of these normalized balance metrics was performed between the on-road route 

and Task conditions for each exercise. Specifically, Wilcoxon signed-rank and rank-sum tests 

compared the pre-drive and post-drive balance metrics for Exercises 1–3 within and across the 

Highway, Task (HT); Highway, No-Task (HN); Urban, Task (UT); and Urban, No-Task (UN) 

conditions. Due to the number of balance exercises, a Bonferroni correction factor or adjusted 

alpha level of 0.0167 per test (0.05/3) was applied for these comparisons. 

We also examined the changes in post-drive standing balance performance across the two 

post-drive trials. In particular, we focused on Exercise 3 because it was the most challenging 

balance exercise and exhibited the largest changes in post-drive standing balance performance. 

Similar to the analysis in previous sections, balance metrics were grouped by the Task condition. 



 69 

In order to compare across participants, the balance metrics were normalized by dividing the 

second post-drive balance measurement by the first post-drive balance measurement. This 

normalization captured the changes in balance performance relative to the first trial of Exercise 3 

following a driving session. Wilcoxon signed-rank tests were used to determine if the relative 

changes were significantly different from a value of 1 that represented no change from the first 

trial to the second trial. Wilcoxon rank-sum tests were also used to investigate differences across 

the Task conditions. These statistical comparisons were evaluated at a level of significance of 

0.05. 

3.2.6.2. Comparative Analyses 

Given that the Urban route was a scaled version of the scripted route used during the 

closed test track study, we compared the post-drive standing balance metrics across these 

conditions [8,31]. Although full details can be found in Jones et al. (2019) [31] and Le et al. 

(2020) [8], a brief description is provided here. Fifty adults participated in a similarly designed 

experiment. The previous closed test track study consisted of a concentrated 20 min driving 

exposure on a controlled scripted route [8,31] at two levels of acceleration (Moderate or Low) 

and repeated under the same Task condition. We selected one out of the two balance exercises 

from the closed test track study to use in this comparative analysis because it allowed for direct 

comparison with Exercise 3 (feet together/eyes closed/foam support) from this on-road study. To 

ensure valid comparisons across study populations, a non-parametric Wilcoxon rank-sum test 

and chi-squared test were performed across the test conditions for the closed test track study and 

this on-road study, finding that age (p > 0.1, Z < 1.65) and sex (χ2 = 9.25, p = 0.97) were not 

significantly different between study participant samples. Wilcoxon rank-sum tests (α = 0.05) 
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were used to compare normalized changes in postural sway for Exercise 3 across conditions for 

the Urban and closed test track routes (Moderate and Low acceleration).  

Prior to comparing the RMS of trunk acceleration to other reported values in the 

literature, we first established that our study participants exhibited similar baseline standing 

balance values with respect to the values reported by Park et al. (2016) [43]. Although their 

participants performed a variant of Exercise 1 (i.e., feet apart vs. feet together with eyes open on 

a firm support surface), prior studies have demonstrated there to be minimal differences in A/P 

sway between these two stances [51,52]. In comparison to the findings reported in Park et al. 

(2016) [43], the pre-drive values of the younger and older adult participants for our on-road 

study fell within the ranges specified by their respective age categories. 

3.3. Results 

3.3.1. On-Road Driving Analyses 

3.3.1.1. Learning Effect 

Prior to analysis, we observed a learning effect among pre-drive trials using a mixed 

model approach that informed which trials to include in our data analysis. To enable comparison 

with the work by Diamantopoulos et al. (2003) [53], we chose Path Length as the representative 

balance metric to conduct the learning effect analysis. The fixed effects were the trial number 

and the day of the session; participant identifiers were implemented as random variables. 

Estimates of the model coefficients revealed a significant difference between the first and second 

trials for Exercise 3 (p < 0.001). In contrast for Exercise 1 and Exercise 2, Path Length did not 

differ between trials (p = 0.72, 0.96, respectively). Moreover, an analysis of the practice trials 

performed in the laboratory revealed that the Path Length for the practice trials was significantly 
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greater than the pre-drive trials for Exercise 3, indicating a learning effect. Therefore, for 

Exercise 3 only, we subsequently compared changes between the last pre-drive trial and the first 

post-drive trial. The analyses for Exercises 1 and 2 included all pre-drive trials. 

3.3.1.2. Effects of Route, Task Conditions and Participant Covariates 

The effects of the on-road routes, Task conditions, and participant covariates were also 

quantified using mixed models that were fit to the normalized Path Length of the sway trajectory. 

In addition to the fixed and random effects described in Section 3.1.1, we included additional 

fixed effects as categorical variables representing participant covariates (i.e., age or sex); route 

(Urban or Highway); and Task condition (Task or No-Task). For each exercise, the main effect of 

the route was insignificant (p = 0.41, p = 0.40, p = 0.34 for Exercises 1–3, respectively). 

Additionally, the effect of age or sex was not found to be significant. Therefore, all subsequent 

analyses were conducted on the combined dataset, combined across the Urban and Highway 

routes and the participant covariates. 

3.3.1.3. Pre-Post Drive Analysis 

Table 3.1 outlines the results from the pre-post analysis of the normalized changes in 

balance metrics as a function of the Task condition for each exercise. Across all the exercises, 

there were significant increases in nearly all of the balance metrics for the Task condition. For 

the final, most difficult balance exercise (Exercise 3), we found significant post-drive increases 

across all balance metrics during both No-Task and Task conditions. With the exception of A/P 

RMS for the No-Task condition (p < 0.01, Z = 3.16), the p-values for the comparisons among the 

other metrics were <0.001, with the largest Z-statistic reported for Path Length (Z = 7.35) and 

M/L RMS sway velocity (Z = 7.01).  
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Many of the balance metrics associated with Exercise 1 were also significant. For the No-

Task condition, M/L RMS (p < 0.01, Z = 2.62), M/L RMS sway velocity (p < 0.01, Z = 3.14), 

and Elliptical Area (p < 0.01, Z = 3.29) increased significantly following the driving session. 

Similarly, for the Task condition, M/L RMS sway (p < 0.001, Z = 4.04), M/L RMS sway velocity 

(p < 0.001, Z = 3.97), and Elliptical Area (p < 0.001, Z = 4.25) increased significantly. In 

contrast, for Exercise 2, fewer balance metrics increased following a driving session, with only 

Elliptical Area (p < 0.01, Z = 3.21) increasing significantly following a driving session for the 

No-Task condition. 

 

Table 3.1: Normalized values of the pre-post balance metrics for all exercises by Task condition. Median values (1st quartile and 

3rd quartile) are shown. An asterisk (*) denotes a significant difference between pre-drive and post-drive postural sway for a 

specific Task condition. RMS = root mean square; A/P = anteroposterior; M/L = mediolateral; and EA = Elliptical Area. A/P and 

M/L RMS are in degrees. A/P and M/L RMS velocity are in degrees per second. Elliptical Area and Path Length are in degrees2 

and degrees, respectively. 

 No-Task Z p Task Z p 

Exercise 1: Feet Together/Eyes Open/Firm Support      

A/P RMS 1.15 (0.72, 1.68)  2.84 *<0.01 1.07 (0.69, 1.78)  2.34 0.019 

M/L RMS 1.13 (0.77, 1.48)  2.62 *<0.01 1.23 (0.76, 1.92)  4.04 *<0.001 

A/P RMS Velocity 1.03 (0.82, 1.33)  1.87 0.061 1.03 (0.88, 1.34)  2.80 *<0.01 

M/L RMS Velocity 1.07 (0.89, 1.34)  3.14 *<0.01 1.10 (0.93, 1.38)  3.97 *<0.001 

Elliptical Area 1.13 (0.76, 1.82)  3.29 *<0.01 1.28 (0.75, 2.56)  4.25 *<0.001 

Path Length 1.04 (0.90, 1.21)  2.07 0.038 1.03 (0.91, 1.28)  2.68 *<0.01 

Exercise 2: Feet Together/Eyes Closed/Firm Support      

A/P RMS 1.07 (0.77, 1.46)  2.14 0.033 1.15 (0.78, 1.57)  3.30 *<0.01 

M/L RMS 1.00 (0.71, 1.44)  1.19 0.235 1.08 (0.73, 1.42)  1.88 0.060 

A/P RMS Velocity 1.03 (0.86, 1.29)  1.95 0.052 1.14 (0.87, 1.30)  3.49 *<0.001 

M/L RMS Velocity 1.05 (0.88, 1.24)  2.31 0.021 1.15 (0.94, 1.40)  3.57 *<0.001 

Elliptical Area 1.13 (0.82, 1.55)  3.21 *<0.01 1.21 (0.74, 1.73)  3.45 *<0.01 

Path Length 1.02 (0.90, 1.22)  2.06 0.040 1.06 (0.91, 1.27)  3.13 *<0.01 

Exercise 3: Feet Together/Eyes Closed/Foam Support      

A/P RMS 1.14 (0.81, 1.79)  3.16 *<0.01 1.24 (0.79, 2.11) 4.09 *<0.001 

M/L RMS 1.22 (0.80, 1.76)  3.70 *<0.001 1.37 (0.95, 1.99)  5.79 *<0.001 

A/P RMS Velocity 1.23 (1.04, 1.52)  6.15 *<0.001 1.26 (1.01, 1.53)  6.01 *<0.001 

M/L RMS Velocity 1.38 (1.13, 1.74)  7.01 *<0.001 1.27 (1.05, 1.63)  6.44 *<0.001 

Elliptical Area 1.35 (1.08, 2.04)  5.83 *<0.001 1.35 (0.92, 1.98)  5.18 *<0.001 

Path Length 1.23 (1.10, 1.55)  7.35 *<0.001 1.28 (1.05, 1.55)  6.99 *<0.001 
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3.3.1.4. Effect of Task Conditions 

For Exercises 1 and 2, the normalized balance metrics were not statistically different 

between the two Task conditions. For Exercise 3, normalized RMS sway in the M/L directions 

increased significantly for the Task condition compared to the No-Task condition (p = 0.0014, Z 

= 3.19). The median, quartiles, Z-statistics, and p-values associated with the statistical 

comparisons are presented in Table 3.2. 

Table 3.2: Normalized values of the balance metrics for all exercises by Task condition. Median values (1st quartile, 3rd quartile) 

are shown. An asterisk (*) denotes a significant difference between the No-Task and Task conditions for an exercise. RMS = root 

mean square; A/P = anteroposterior; M/L = mediolateral; and EA = Elliptical Area. A/P and M/L RMS are in degrees. A/P and 

M/L RMS velocity are in degrees per second. Elliptical Area and Path Length are in degrees2 and degrees, respectively. 

 No-Task Task Z p 

Exercise 1: Feet Together/Eyes Open/Firm Support    

A/P RMS 1.15 (0.72, 1.68)  1.07 (0.69, 1.78)  0.90 0.37 

M/L RMS 1.13 (0.77, 1.48)  1.23 (0.76, 1.92)  1.80 0.07 

A/P RMS Velocity 1.03 (0.82, 1.33)  1.03 (0.88, 1.34)  1.03 0.31 

M/L RMS Velocity 1.07 (0.89, 1.34)  1.10 (0.93, 1.38)  0.65 0.52 

Elliptical Area 1.13 (0.76, 1.82)  1.28 (0.75, 2.56)  2.19 0.03 

Path Length 1.04 (0.90, 1.21)  1.03 (0.91, 1.28)  1.02 0.31 

Exercise 2: Feet Together/Eyes Closed/Firm Support    

A/P RMS 1.07 (0.77, 1.46)  1.15 (0.78, 1.57)  1.14 0.25 

M/L RMS 1.00 (0.71, 1.44)  1.08 (0.73, 1.42)  -0.01 0.99 

A/P RMS Velocity 1.03 (0.86, 1.29)  1.14 (0.87, 1.30)  1.65 0.10 

M/L RMS Velocity 1.05 (0.88, 1.24)  1.15 (0.94, 1.40)  1.65 0.10 

Elliptical Area 1.13 (0.82, 1.55)  1.21 (0.74, 1.73)  0.86 0.39 

Path Length 1.02 (0.90, 1.22)  1.06 (0.91, 1.27)  1.54 0.12 

Exercise 3: Feet Together/Eyes Closed/Foam Support    

A/P RMS 1.14 (0.81, 1.79)  1.24 (0.79, 2.11) 2.16 0.03 

M/L RMS 1.22 (0.80, 1.76)  1.37 (0.95, 1.99)  3.19 <0.01* 

A/P RMS Velocity 1.23 (1.04, 1.52)  1.26 (1.01, 1.53)  1.01 0.31 

M/L RMS Velocity 1.38 (1.13, 1.74)  1.27 (1.05, 1.63)  -0.83 0.41 

Elliptical Area 1.35 (1.08, 2.04)  1.35 (0.92, 1.98)  0.86 0.39 

Path Length 1.23 (1.10, 1.55)  1.28 (1.05, 1.55)  0.05 0.96 

 

3.3.1.5. Changes in Post-Drive Standing Balance Across Trials 

To investigate the change in standing balance performance across the two post-drive 

trials, we analyzed the normalized balance metrics for Exercise 3 because it was the most 
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challenging balance exercise and demonstrated the largest post-drive changes. All normalized 

balance metrics exhibited significant differences between the first and second trial for the Task 

condition. For the No-Task condition, sway velocity in the A/P (p < 0.001, Z = −5.46) and M/L 

(p < 0.001, Z = −5.97) directions, and Path Length (p < 0.001, Z = −7.03) decreased significantly 

as a function of post-drive trial number. Normalized post-drive measures of M/L RMS sway 

were significantly different (p < 0.001, Z = 3.35) when comparing between the No-Task and Task 

conditions. All statistical comparisons are shown in Table 3.3. 

 

Table 3.3: Changes across post-drive trials described by normalized values for the post-drive trials and grouped by the Task 

condition for Exercise 3 (feet together/eyes closed/foam support). Median values (1st quartile and 3rd quartile) are shown. An 

asterisk (*) denotes a significant change in the second trial from the first trial. RMS = root mean square; A/P = anteroposterior; 

M/L = mediolateral; and EA = Elliptical Area. A/P and M/L RMS are in degrees. A/P and M/L RMS velocity are in degrees per 

second. Elliptical Area and Path Length are in degrees2 and degrees, respectively. 

 No-Task Task Task vs. No-Task 

 Trial 2 / Trial 1 Z p Trial 2 / Trial 1 Z p Z p 

A/P RMS 0.95 (0.67, 1.36) 0.48 0.63 0.76 (0.52, 1.16) -2.35 *0.02 1.81 0.07 

M/L RMS 0.91 (0.58, 1.26) -0.80 0.42 0.76 (0.52, 1.06) -4.03 *<0.001 3.35 *<0.001 

A/P RMS Velocity 0.86 (0.79, 0.98) -5.46 *<0.001 0.86 (0.72, 0.98) -5.55 *<0.001 0.98 0.33 

M/L RMS Velocity 0.83 (0.70, 0.94) -5.97 *<0.001 0.83 (0.69, 0.96) -6.07 *<0.001 0.93 0.35 

Elliptical Area 0.88 (0.61, 1.13) -1.86 0.06 0.77 (0.52, 1.05) -3.81 *<0.001 1.58 0.11 

Path Length 0.85 (0.78, 0.95) -7.03 *<0.001 0.85 (0.76, 0.96) -6.67 *<0.001 0.63 0.53 

 

3.3.2. Comparative Analyses 

To facilitate comparisons between our previous closed test track study (a driving 

surrogate characterized as having high physical and moderate functional fidelity) and the current 

on-road study (naturalistic on-road driving environment), here we report the common balance 

exercise (Exercise 3) results from our closed test track study (further detailed in Le et al. (2020) 

[8]). The analysis of normalized balance metrics from the previous closed test track study 

revealed a significant effect of the Task condition on: M/L RMS sway (p = 0.023, Z = 1.99), 

M/L RMS sway velocity (p = 0.047, Z = 1.68), and Path Length (p = 0.025, Z = 1.96). Figure 
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3.4 presents the statistical comparisons, means, and standard errors for all the balance metrics 

spanning the Urban and closed test track routes (Moderate and Low Acceleration) for Exercise 3. 

Comparisons between the studies revealed no significant differences in normalized balance 

metrics across the routes for each Task condition. Although the normalized M/L RMS sway 

velocity for the Task condition was greater in the closed test track study, this difference was not 

significant (p = 0.08, Z = 1.75). Overall, there were no meaningful differences between the 

normalized changes in postural sway across the Urban route and the two acceleration levels of 

the closed test track route. 
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Figure 3.4: Bar plot illustrating the means and standard errors for the six normalized balance metrics for Exercise 3 (feet 

together/eyes closed/foam support) across studies. Abbreviations: RMS = root mean square; A/P = anteroposterior; M/L = 

mediolateral; and EA = Elliptical Area. A/P and M/L RMS are in degrees. A/P and M/L RMS velocity are in degrees per second. 

Elliptical Area and Path Length are in degrees2 and degrees, respectively. An asterisk (*) denotes a significant difference for the 

non-parametric comparisons between the No-Task and Task conditions for that metric. 

 

3.4. Discussion 

3.4.1. On-Road Driving Analyses 

Across all three balance exercises, postural sway increased following the driving session 

for each participant, regardless of participant covariates (i.e., age or sex). More specifically, the 

median values of the normalized metrics were either equivalent to or greater than pre-drive 

values across the route and Task conditions. For the most challenging balance exercise (Exercise 

3), all the post-drive balance metrics were observed to increase significantly. Moreover, for 

Exercises 1 and 2, there were only two balance metrics that did not demonstrate significant 

increases following a driving session. These balance metrics were the normalized A/P RMS for 

Exercise 1 and normalized M/L RMS for Exercise 2. However, when comparing across the 

Urban and Highway routes and No-Task and Task conditions, there were only minimal 

differences among the normalized balance metrics. The only significant increase in balance 

metrics as a function of the Task condition was normalized M/L RMS sway for Exercise 3 (37% 

vs. 22% increase).  

For Exercise 3, many balance metrics changed between the two post-drive trials. On 

average, the relative measures of all balance metrics decreased during the second trial. For the 

Task condition, all changes in the second trial differed significantly from the first trial, with the 

largest change being a 24% decrease in the median A/P and M/L RMS sway. Moreover, the 

decreased median value for M/L RMS sway during the second trial (0.83 deg) was similar to the 
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median pre-drive value (0.80 deg), suggesting that post-drive standing balance ability may return 

to pre-drive levels within a short period of time following egress from a vehicle. However, there 

were some metrics that increased significantly post-drive but did not significantly decrease in the 

second post-drive trial. For example, for the No-Task condition, we observed significant post-

drive increases in A/P and M/L RMS sway and Elliptical Area but no meaningful decreases in 

those metrics for the second trial, implying that some directional changes in postural sway may 

be sustained longer than others following a driving session. M/L RMS sway and elliptical area 

exhibited some of the largest post-drive changes among the six balance metrics (increases of 

22% and 35%, respectively, for the No-Task condition and increases of 37% and 35% for the 

Task condition) that may explain why changes between the post-drive trials may take longer to 

recover to pre-drive values. Balance performance that did not fully recover by the second post-

drive trial may potentially be a function of the specific postural strategies used for given standing 

postures [54] and/or explained by potential sensory adaptation [29]. Future work is needed to 

determine why some metrics were affected more than others and whether in-vehicle exposures 

lead to measurable sensory adaptations. 

Among the published simulated studies that have investigated post-drive balance, 

Keshavarz et al. (2018) [6] demonstrated that the COP path length of drivers increased during a 

feet together/eyes open exercise following a simulated driving session on a 6 DOF motion 

platform. Although a direct comparison was not possible, the directional change of the Path 

Length (i.e., consistent increase) was similar between this on-road study and the Keshavarz et al. 

(2018) study, which we report here as a percent change for context. In this on-road study, the 

percent change between the medians of the non-normalized Path Lengths for Exercise 1 were 6% 

and 16% for the No-Task and Task conditions, respectively. In contrast, Keshavarz et al. (2018) 
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[6] found that there was roughly a 21% increase in the COP path length among older adults and a 

17% increase among young adults. These similarities between passengers’ and drivers’ postural 

sway responses warrant additional investigation using direct comparisons. 

3.4.2. Comparative Analyses 

3.4.2.1. On-Road vs. Closed  

This on-road study was the first to explore passengers’ standing balance performance 

following a driving session in a naturalistic on-road environment. The changes in post-drive 

standing balance performance for Exercise 3 were consistent with the findings from our previous 

closed test track study [8] that found that all balance metrics increased following an in-vehicle 

drive. Additionally, there were minimal differences observed between the normalized post-drive 

postural sway metrics for the closed test track study and this on-road study, suggesting that the 

in-vehicle exposures scale similarly. The findings from the pre-post analyses across studies also 

provide further evidence that the closed test track is a representative experimental platform and 

surrogate for naturalistic on-road driving exposures.  

The closed test track study reported a significant effect of the Task condition on more 

than one balance metric; specifically, normalized M/L RMS sway, normalized M/L RMS sway 

velocity, and Path Length were greater for the Task versus the No-Task condition. However, the 

balance metrics were not observed to differ between the Task conditions in this on-road study. 

Disparities between the findings may be attributed to the differences in the in-vehicle exposures. 

Although the number of vehicle events and the acceleration associated with each individual 

vehicle event were standardized, the overall in-vehicle exposure time differed between the closed 

test track (~20 min) and on-road (~55 min) studies. The association between task performance 
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and increasing post-drive balance metrics observed during the closed test track study may 

suggest an interaction between task performance and the concentrated driving exposure. 

 

3.4.2.2. Implications of Post-Drive Standing Balance for Falls 

To contextualize the changes in post-drive balance, we chose to compare the RMS of the 

A/P acceleration with findings from a study by Park et al. (2016) [43] who reported normative 

RMS trunk acceleration data per decade of age. Following the driving sessions performed with a 

task, the average RMS A/P acceleration among the younger adult (0.0594 m/s2) and older adult 

(0.0589 m/s2) participants reflected measurements likely to be observed in older adults above the 

age of 60 from the Park et al. (2016) study. In a study conducted by Doheny et al. (2012) [55], 

RMS A/P acceleration was 20% larger among older adult fallers versus non-fallers. In 

comparison, the average percent change of post-drive RMS A/P acceleration among older adults 

in this on-road study was 14% and 42% for the No-Task and Task conditions, respectively. 

Hence, following in-vehicle exposures with task performance, the relative change in postural 

sway suggests that a rider susceptible to balance issues (e.g., an older adult) may be more likely 

to be at an increased risk for falls [56,57]; an increasingly likely scenario given the anticipated 

use of AVs and mobility services. However, there is large variability among RMS A/P 

acceleration data reported in the literature that may be due to a combination of heterogeneity 

among the sensors, post-processing techniques, and experimental conditions (e.g., vision and 

stance conditions) used [44,46,48,55], which makes such comparisons challenging. 

3.4.3. Limitations 

The current study is not without limitations. The balance exercises were performed in 

different locations. We assessed pre-drive balance outdoors near the laboratory facility, while 
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post-drive balance exercises were performed next to the vehicle immediately upon exiting. 

However, to partially control for the variation in the visual surroundings, a visual reference target 

was provided for participants to use during both pre- and post-drive balance exercises. The order 

of the balance exercises was fixed as well with each subsequent exercise increasing in difficulty; 

therefore, order may have introduced a learning effect throughout the session. Even with a 

predetermined route and time of day (midday), we did not fully control for variations in traffic 

flow given that the driving sessions were affected by real-time traffic conditions. Furthermore, a 

60 min driving exposure does not reflect the average time that participants normally spend in a 

passenger vehicle. Lastly, this analysis only considers standing balance performance before and 

after a driving session; thus, in-vehicle postural sway of the trunk should be included in future 

work to close the gap in continuous monitoring and the effects on gait should be explored. 

3.5. Conclusion 

This on-road study was the first to analyze the relationship between vehicle motion in an 

on-road setting, task performance, and post-drive balance performance. Postural sway was 

measured using a personal device-based IMU worn on the lower back. Parameterized using 

different metrics, postural sway increased post-drive, especially for the most difficult balance 

exercise. The pre-post changes in normalized postural sway on the Urban route did not differ 

significantly from a previous study conducted on a closed test track environment. However, the 

effect of task performance was less significant in this on-road study. Future work should 

continue to evaluate how an on-road driving exposure affects the standing balance ability of 

populations already susceptible to falling.  
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Chapter 4  Motion sickness affects passengers’ standing balance performance 

 

4.1. Introduction 

  Motion sickness is a common illness experienced among vehicle passengers.  Symptoms 

include nausea, drowsiness, fatigue, and stomach awareness, all of which can lead to travel 

discomfort and discourage the performance of in-vehicle, non-driving-related tasks [1]–[3]. With 

the growing use of urban on-road transportation (especially with automated vehicles), there is a 

greater need to understand and quantify the risk and severity of motion sickness incidence. One 

potential approach involves leveraging the relationship between postural instability and motion 

sickness, as there may be potential for using pre-drive balance assessments for predicting the 

motion sickness response. However, the association between standing balance performance and 

motion sickness has not yet been fully studied in an on-road driving environment, and few 

studies in the simulation space have explored the response among vehicle passengers. Moreover, 

there is a lack of work exploring the responses of passengers performing normative in-vehicle 

activities during on-road exposures.  

The sensory conflict theory states that visual-vestibular sensory inputs that are 

incompatible with what is expected by the brain’s “internal model” (developed through prior 

experience) lead to motion sickness [1], [4]. In one particular example, Reason (1978) [5] 

described how reading a book while in a moving vehicle causes sensory conflict between the 

static visual of the object and the dynamic motions of the vehicle. Other theories claim that 
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reflexive eye movements or even the novelty of new modes of transportation explain motion 

sickness incidence [6]. Other works have added further nuance by claiming that motion sickness 

is observed alongside sensory conflict, postural instability, reflexive eye movements, and the 

interaction of these factors [7]. Riccio and Stoffregen (1991) [8] challenged the sensory conflict 

theory and proposed another theory based on postural instability, claiming that motion sickness 

develops as a result of a person’s inability to adapt their posture during a motion exposure. 

Moreover, those who can minimize their amount of postural sway can reduce the severity of 

motion sickness [8]. Thus, the postural instability theory suggests that postural sway should be 

greater among those who are motion sick, and that these differences should be observable prior 

to the onset of motion sickness. Studies using visual-based motion exposures have typically 

found significant changes in postural sway prior to the onset of motion sickness [9]–[14].  

However, most of these studies are based on empirical data of seated, in-vehicle postural sway in 

simulated driving and motion platforms, with limited works exploring post-drive standing 

balance. 

Many studies have explored the postural instability theory of motion sickness during 

simulated drives by measuring seated postural sway at the head and torso during an exposure 

[14]–[19]. Using a fixed-base, open-cab driving simulator, Mackrous et al. (2014) [16] measured 

participants’ head displacement while they maneuvered a continuous 26 km route with multiple 

intersections, and found no association with the severity of motion sickness symptoms. However, 

Curry et al. (2020) [20] measured the positional variability of the head and torso during a 15-min 

drive using a video game and a head-mounted-display, and found significant interactions 

between motion sickness incidence, participants’ sex, and the axis of body motion. Similarly, 

two studies by Dong et al. (2011) [14] and Chang et al. (2021) [18] used a driving video game 
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exposure; their findings were consistent with one another and suggested that seated postural 

activity in the torso increased over the length of the exposure, particularly for participants who 

self-reported motion sickness incidence. Moreover, participants who would later report motion 

sickness exhibited greater postural activity prior to the onset of symptoms, which aligns with the 

postural instability theory of motion sickness. A study by Chang et al. (2013) [19] used passive 

restraints during exposure, but participants who reported motion sickness still exhibited greater 

positional variability during the 50-min driving game exposure. Although studies using in-

vehicle exposures are limited, a study by Irmak et al. (2021) [15]  found that head roll of back-

seat passengers increased over the course of a 30-min exposure to slalom driving; however, there 

was not a strong relationship with the MISC scale (misery scale as described in Bos et al. (2005) 

[21]). In general, seated postural instability has been shown to increase throughout the duration 

of simulated exposures; in contrast, that relationship between motion sickness and postural 

instability has not been found during in-vehicle exposures. 

Previous studies have also explored how motion sickness affects pre- and post-drive 

standing balance performance in many different virtual and motion-based environments [22]–

[27]. For example, virtual-based studies have investigated motion sickness and balance ability 

using virtual moving rooms, head-mounted displays, console video games, virtual environments, 

and virtual simulations (e.g., flight simulators) [10], [13], [28]–[30]. However, prior studies 

focused on simulated driving [24], [25], [27] or on closed test tracks [26] have found inconsistent 

results. For example, Keshavarz et al. (2018) [24] observed that the path length of participants’ 

postural sway increased following a session in a driving simulator. However, no correlation was 

found between path length and subjective motion sickness ratings on the Fast Motion Sickness 

Scale. A study by Reed-Jones et al. (2008) [25] also used a fixed-base driving simulator, but 
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found that path velocity of postural sway during a single-leg stance decreased following a 

session. Moreover, the changes to path velocity were inversely related with increasing motion 

sickness severity, which was quantified using the Simulator Sickness Questionnaire (SSQ). 

Using a head-mounted display as their simulated driving exposure, Mourant & Thattacherry 

(2000) [27] found that drivers’ time in single-leg stance decreased and motion sickness ratings 

on the SSQ increased significantly following the exposure. However, there were no reports of 

how these data were correlated. A study by Curry et al. (2020) [11] demonstrated that pre-drive 

postural sway measures (i.e., multifractality) differed significantly between susceptible 

participants prior to a driving game exposure. Overall, studies of pre- and post-drive standing 

balance performance have suggested that there may be a relationship between motion sickness 

severity and changes in postural sway. 

         In our previous studies of on-road driving, we looked primarily at the change in 

passengers’ standing balance performance following a drive on a closed test track [26] and a 

realistic, urban on-road driving environment [31]. In both studies, passengers exhibited large 

relative increases in the balance metrics after a drive, especially when participants were 

instructed to perform a non-driving-related task during the in-vehicle exposure. Moreover, 

participants self-reported higher ratings of motion sickness during the drives that involved a task. 

This positive trend between a non-driving-related task and substantial post-drive changes in 

balance metrics suggested that motion sickness may have been an underlying factor. Although 

we collected data on passengers’ motion sickness throughout the drive, we did not consider them 

in these prior analyses. 

To the best of our knowledge, the relationship between motion sickness and post-drive 

standing balance has not been fully explored in an on-road, in-vehicle environment. There is a 
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need to study this relationship beyond simulated driving because the motion sickness response 

may be substantially different between in-vehicle exposures to on-road, simulated, or closed test 

track driving. This may be due to experiential differences in the visual field, physical and 

functional fidelity, the driver workload, or the intensity of the motion during the drive [32], [33]. 

Such work would be particularly relevant to all types of vehicle passengers because motion 

sickness can affect user performance [2], especially as automated vehicles and mobility solutions 

become further normalized in urban transportation. 

Therefore, we seek to formally evaluate the effects of motion sickness on changes in 

standing balance performance following in-vehicle exposures conducted on a closed test and a 

realistic, on-road driving environment. Moreover, we perform a preliminary analysis for 

predicting motion sickness incidence using balance metrics and other relevant participant 

demographics. 

4.2. Methods 

4.2.1. Dataset 

The data included in this study are sourced from two previous on-road driving studies. 

These studies explored the relationship between the standing balance performance of vehicle 

passengers following in-vehicle exposures on a closed test track and in realistic urban on-road 

driving conditions [26], [31]. In the following sections, a description of the experimental 

protocols is provided. The relevant data collected across studies include: i) self-reported ratings 

of overall motion sickness throughout a drive, ii) pre-drive and post-drive balance metrics, iii) 

drive conditions, and iv) participant demographics (i.e., age, sex). 
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4.2.2. Participants and Experimental Design 

In the on-road study, 106 adults (47 males, 59 females) between the ages of 18 yr. and 89 

yr. (34.2 ± 18.5 yr.) participated in a mixed factorial design experiment: 82 were age < 60 yr. 

(24.5 ± 4.3 yr.), 24 were age ≥ 60 yr. (67.0 ± 6.9 yr.). As for the closed test track study, 50 adults 

(23 males, 27 females) between the ages of 18 and 78 years (40.0 ± 20.6 yr.) participated in a 

similarly designed experiment: 33 were age < 60 yr. (28.3 ± 8.5 yr.), 17 were age ≥ 60 yr. (66.4 

± 4.8 yr.). Participants in both studies were asked to assess their prior history with motion 

sickness as well as their level of motion sickness susceptibility. Motion sickness susceptibility 

was categorized into four levels (never, rarely, sometimes, and frequently) based on how often 

participants experienced motion sickness in the past. 

In both studies, participants rode in the front passenger seat of a midsize sedan operated 

by a trained driver. However, different routes were used in the closed test track and on-road 

studies. In the on-road study, participants were assigned to be driven on one of two routes: an 

urban route that exclusively used local neighborhood streets and main city roads, or a highway 

route that involved extended bouts on local freeways. These routes were referred to as the Urban 

and Highway routes, respectively. Each route involved real-time driving exposure with various 

driving events (e.g., braking, lane changes) set in midday traffic throughout Ann Arbor, MI, 

USA. In contrast, the closed test track study consisted of a concentrated driving exposure on a 

controlled, scripted route on a closed test track [26], [34]. The scripted routes were designed to 

include many different latitudinal and longitudinal acceleration profiles that would likely be 

observed in naturalistic driving datasets [34], [35]. The frequency of driving events was designed 

to be similar across both studies (e.g., similar number of left turns); however, to distinguish two 

different routes, participants were driven at two levels of acceleration (referred to as Moderate or 
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Low Acceleration). Further details about the in-vehicle exposures and the route designs can be 

found in Jones et al. (2019) and Le et al. (2020) [26], [34]. 

Participants performed repeated tests on their assigned route (i.e., either one of Urban, 

Highway, Low Acceleration, or Moderate Acceleration) using two different levels of an 

ecologically relevant task. During a drive with Task, participants completed a visual-based task 

administered on a handheld tablet during the drive, as seen in Figure 4.1. In another drive (No-

Task), participants were instructed to exhibit normative passenger behavior with an unrestricted 

gaze. The order of these repeated tests on the Task condition was randomized. In total, there 

were four test conditions for the on-road drive: Urban, Task; Urban, No-Task; Highway, Task; 

and Highway, No-Task. Similarly, the four test conditions for the closed test track study were: 

Moderate Acceleration, Task; Moderate Acceleration, No-Task; Low Acceleration, Task; and 

Low Acceleration, No-Task. To facilitate comparisons between study participants, a non-

parametric Wilcoxon rank sum test and a chi-squared test was performed and observed no 

differences between groups in terms of age, sex, and motion sickness susceptibility. Each 

participant provided written informed consent and the study was conducted in accordance with 

the Declaration of Helsinki. The studies were reviewed and approved by the University of 

Michigan Institutional Review Board (HUM00128751). 

4.2.3. Experimental Protocol 

4.2.3.1. Balance Testing 

Participants completed a series of balance exercises before entering the vehicle, and 

immediately after egress. In the on-road study, participants performed three trials of each balance 

exercise, whereas only two trials were performed for each exercise in the closed test track study. 
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Although a different set of balance exercises were used in each study, all participants performed 

a feet together/eyes closed/foam support exercise using a compliant surface (Airex, New York, 

NY); this balance exercise was used for direct comparisons across studies. During the exercises, 

participants were instructed to cross their arms, stand tall, and avoid being too stiff or tense. A 

visual target was placed in front of the participant to provide a consistent reference point, 

especially when the surrounding visual field was different (i.e., depending on where the vehicle 

was parked during the test). Each trial lasted 30 seconds, unless the participant lost their balance. 

Losses of balance were considered as either 1) stepping out of the feet together stance, 2) 

needing to grab a nearby walker, or 3) a spotter intervening to prevent potential falls. 

 

4.2.3.2. In-Vehicle Protocol 

Throughout the drives, participants were asked to maintain a neutral posture in the 

passenger seat while being driven on the assigned driving course. In the on-road study, each 

drive lasted until either the route was completed (55 minutes on average), or until the participant 

opted to discontinue the test within that time frame. In contrast, the maximum time for a drive 

was limited to 20 minutes in the closed test track study. The repeated tests were scheduled with a 

minimum of 24 hours between drives to minimize the influence of lingering symptoms of motion 

sickness on the second test. To assess the level of motion sickness, participants self-reported an 

overall motion sickness rating every minute during the drives using an 11-point integer scale 

(with 0 representing "no motion sickness” and 10 representing “stop the car”). 
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Figure 4.1: Participants performed repeated tests on their assigned route in either a Task or No-Task condition. In the No-Task 

condition, participants exhibited an unconstrained head position, orientation, and gaze. In the Task condition, participants were 

instructed to hold a handheld tablet in their lap. Every minute, participants self-reported an overall rating of the motion sickness 

on a scale between 0 and 10. 

4.2.4. Balance Measurements and Instrumentation 

Standing balance performance was measured by using an inertial measurement unit 

(IMU) embedded in a surrogate smartphone (6th generation iPod Touch, 2015) [36], [37]. The 

device was secured at the participants’ lower back with an elastic waistband throughout the 

balance exercises. Accelerometer and gyroscope data were collected at a sample rate of 50 Hz, 

after which a Kalman filter was used to fuse and decompose the signals into measures of 

anteroposterior (A/P) and mediolateral (M/L) trunk postural sway position and sway velocity. 

These tilt data were then processed in MATLAB (The MathWorks, Natick, MA) to calculate the 

following six balance metrics: root-mean-square (RMS) of trunk tilt in the A/P (A/P RMS) and 

M/L (M/L RMS) directions, RMS of trunk sway velocity in the A/P and M/L directions, path 

length of the sway trajectory, and the elliptical fit of the sway trajectory area [36], [38]. RMS 

was calculated by taking the square root of the average of the squared tilt values. To compute the 

elliptical area of sway, a 95% confidence ellipse was fit around the trunk tilt values in each trial 
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before computing the area [37], [38]. Path length was computed by summing the distances 

between consecutive samples in the signals capturing the tilt angles [38]. 

4.2.5. Data Analysis 

4.2.5.1. Mixed Models of Balance Metrics 

A mixed model approach was used to explore the relationship between metrics of 

standing balance and motion sickness. A model was fit to each balance metric for the feet 

together/eyes closed/foam support exercise, leading to a total of 6 fitted mixed models. 

Participant age, sex, motion sickness response, route (Urban, Highway, Low, or Moderate), Task 

condition, and their interactions acted as fixed effects in the model. The subject code was treated 

as a random variable.  

To further elaborate on the fixed effect representing motion sickness, participants were 

labeled as either a non-responder, a mid-level responder, or a high-level responder based on their 

self-reported motion sickness ratings. If their maximum motion sickness rating belonged in the 

lowest quartile relative to other pooled participants in their test condition, they were labeled as 

non-responders. If their self-reported maximum rating fell in the highest quartile, they were 

labeled as a high-level responder to motion sickness. Otherwise, they were labeled as mid-level 

responders. The thresholds that defined responders and non-responders of motion sickness were 

computed for each individual test condition across both data sources. In the current study, the 

lower and upper quartiles of motion sickness ratings for each test condition were: Highway, No-

Task (0, 3); Highway, Task (1, 5); Urban, No-Task (1, 4); Urban, Task (2.25, 8.75). In the closed 

test track study, the lower and upper quartiles of motion sickness ratings for the test conditions 

were: Low Acceleration, No-Task (1, 4.5); Low Acceleration, Task (2.5, 7.5); Moderate 



 99 

Acceleration, No-Task (0, 4); Moderate Acceleration, Task (5, 10). These thresholds are shown 

in Table 4.1. In order to make comparisons between our previous studies, only data from the first 

trial in the common balance exercise were used. Consequently, the on-road data set consisted of 

only 212 data points, while the closed test track data set consisted of only 100 data points.  

 

Route Task Lower Quartile Upper Quartile 

Highway No-Task 0 3 

Highway Task 1 5 

Urban No-Task 1 4 

Urban Task 2.25 8.75 

Low Acceleration No-Task 1 4.5 

Low Acceleration Task 2.5 7.5 

Moderate Acceleration No-Task 0 4 

Moderate Acceleration Task 5 10 

Table 4.1: Thresholds for defining a participant as a non-responder or responder to motion sickness for each test condition across 

both studies. Ratings were reported on a continuous scale with a range between 0 and 10. The on-road study used a Highway and 

Urban route. The closed test track study used a Low Acceleration and Moderate Acceleration route. 

 

4.2.5.2. Binary Classification of Motion Sickness 

We framed part of the analysis as a supervised binary classification task, where the goal 

was to predict whether or not a participant would experience motion sickness during the drive 

using a combination of pre-drive balance metrics and participant demographics. Participants’ 

data were labeled as “sick” or “not sick” depending on the maximum motion sickness rating 

reported during the drive. The threshold for determining “sick” or “not sick” was chosen such 

that the data were split roughly evenly. Other covariates included the values of the balance 
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metrics, the independent conditions of the drive (i.e., the route and the Task condition), and 

participants’ age and sex.  

During model development, we randomly split the data into a training set (80%) and a 

held-out test set (20%) and repeated this 5 times for the entire dataset. When splitting the data, 

repeated tests from a single participant (i.e., during Task and No-Task condition) were grouped 

together to prevent label leakage. During each iteration, we learned a nonlinear tree-based model 

known as a random forest, selecting model hyperparameters (i.e., number and depth of trees, the 

number of features assigned to each tree, and the number of samples needed to split a node) 

using 10-fold cross-validation on the training data and optimizing for the area under the receiver 

operating characteristic curve (AUC). In brief, the AUC captures the ability of a model to rank a 

randomly selected example from the “sick” group higher than a randomly selected example from 

the “not sick” group. An AUC of 0.5 indicates that the model performs no better than chance, 

while an AUC of 1.0 indicates perfect classification of the data. Moreover, the AUC was used as 

the primary performance metric because the data were roughly balanced, and overall model 

performance can be determined without specifying model structure [39]. 

To characterize model performance, the AUC was computed for each held-out test set. 

Error bars were computed using the AUC’s computed during the 10-fold cross-validation of the 

training set. Lastly, to assess the contribution of different covariates towards prediction, 

permutation importance of each covariate was computed for the final models by permuting 

correlated groups of features with ⍴ > 0.7. We measured the drop in AUC after 100 permutations 

in the test set. 
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4.3. Results 

4.3.1. Mixed Models of Balance Metrics 

Being a responder to motion sickness played a significant role in the mixed models fitted 

to normalized M/L RMS sway velocity (β = 0.20 ± 0.06, p < 0.01), and path length (β = 0.14 ± 

0.05, p < 0.01). Performing a task throughout the drive was also significantly correlated with 

increased M/L RMS (β = 0.27 ± 0.11, p = 0.01) and A/P RMS velocity (β = 0.24 ± 0.11, p = 

0.03). The results for the mixed model of normalized path length and M/L RMS sway velocity 

are reported in Table 4.2. A visualization of the path length as a function of responders to motion 

sickness and the different routes are shown in Figure 4.2.  

Path Length 

Fixed Effect Estimate Standard Error df t p 

(Intercept) 1.28 0.07 201.53 18.90 *<0.001 

Responder 0.14 0.05 233.04 2.73 *<0.01 

Random Effect 0.30     

 

M/L RMS Velocity 

Fixed Effect Estimate Standard Error df t p 

(Intercept) 1.32 0.08 205.15 15.7 *<0.001 

Responder 0.20 0.06 242.77 3.27 *<0.01 

Random Effect 0.44     

Table 4.2: Results of the reduced mixed model for path length and sway velocity in the M/L direction, exhibiting a significant 

effect of motion sickness. A * denotes that the estimate of the coefficient for a fixed effect was significantly different from 0 (p < 

0.05). 
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Figure 4.2: Path length grouped by the four test conditions, and pre-drive versus post-drive across both data sources for different 

levels of motion sickness responses. The balance exercise is feet together/eyes closed/foam support. 

4.3.2. Binary Classification of Motion Sickness 

A rating of 3 on the motion sickness rating scale was used as a threshold for labeling 

participant data as “sick” and “not sick”. Out of 300 complete data points, 178 were labeled as 
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“sick”. The AUC’s for the 10-fold cross-validation for each train-test split are shown in Table 

4.3, as well as averages for each train-test split. For each train-test split, the AUC computed for 

the held-out test sets were 0.68, 0.79, 0.64, 0.65, and 0.69. The average AUC across all held-out 

test sets was 0.69, indicating fair performance for this classification task. A plot of the AUC for 

one of the held-out test sets is included in Figure 4.3.  

 

 Fold  

Split 1 2 3 4 5 6 7 8 9 10 Avg. (S.D.) 

1 0.700 0.733 0.604 0.696 0.614 0.600 0.549 0.607 0.603 0.729 0.644 (0.061) 

2 0.659 0.643 0.555 0.607 0.729 0.594 0.676 0.508 0.650 0.586 0.621 (0.061) 

3 0.511 0.521 0.738 0.600 0.857 0.625 0.539 0.563 0.607 0.808 0.637 (0.116) 

4 0.563 0.733 0.664 0.860 0.514 0.630 0.785 0.725 0.664 0.713 0.685 (0.097) 

5 0.719 0.629 0.715 0.692 0.518 0.671 0.773 0.521 0.663 0.842 0.674 (0.096) 

Table 4.3: Area under the receiver operating curve computed for the 10-fold cross validation of the training set for each train-test 

split. 

A plot of the permutation importance for each of the features in the model is also shown 

in Figure 4.4. The top five most important features were the Task condition; the correlated group 

of M/L RMS sway velocity, elliptical area, and sway path length; the Highway route; the age of 

the participant; and the sway position in the A/P direction. 
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Figure 4.3: Receiver operating characteristic curve for the model predicting motion sickness on one of the held-out test sets. 

 

 

Figure 4.4: Permutation importance of the different features in the model, defined as the drop in AUC for all the held-out test 

sets. Error bars represent the standard deviation of 100 iterations. Task, Highway Route, Moderate Acceleration Route, and Low 

Acceleration Route represent the respective independent drive conditions. M/L RMS Velocity/Elliptical Area/Path Length 

represent the correlated group of M/L RMS sway velocity, elliptical area of sway, and the path length of the sway trajectory. Age 

and Sex represent participant demographics. A/P RMS, A/P RMS Velocity, and M/L RMS represent the RMS of sway 

position/velocity in the A/ P direction, and the RMS of sway position in the M/L direction, respectively. 
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4.4. Discussion 

Motion sickness was significantly related to the metrics of standing balance, as seen in 

the mixed models. The fixed effect representing motion sickness responders had a relatively 

large effect for sway velocity and path length. For instance, evaluating standing balance 

performance among motion sickness responders corresponded with a 14% and 20% increase in 

M/L RMS sway velocity and path length, respectively. However, the effect of motion sickness 

did not seem to correlate with any metrics of RMS sway position. Physically, “sick” participants 

exhibited less control of their posture (i.e., increased sway velocity) while simultaneously 

minimizing increases to the area of sway, which might be achieved by adapting different control 

strategies to compensate for disorienting effects of motion sickness. For example, higher 

stiffness around the ankle joint is associated with higher frequencies of postural sway and fast, 

small adjustments of posture [40]. Overall, larger changes were observed among those who 

experienced greater levels of motion sickness during the drive. 

When classifying participants as either “sick” or “not sick”, the random forest model 

obtained an average AUC of 0.69 on the held-out test sets. Given that an AUC of 0.5 indicates 

performance no better than chance, the predictive model shows adequate performance for 

classifying motion sickness using this specific set of covariates [41]. Based on the permutation 

importance, the Task condition exhibited the largest influence on the model’s prediction of 

motion sickness. This is consistent with previous experimental studies that have found higher 

motion sickness severity that perform non-driving related tasks during a drive. This is supported 

by the fact that the distribution of the motion sickness ratings tended to be centered around a 

larger rating for the Task conditions. For example, in the Moderate Acceleration, Task condition, 

the lowest quartile corresponded to a motion sickness rating of 5, which was higher than some of 
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the upper quartiles in other conditions. However, in contrast to previous findings in our closed 

test track study, the age of the participant had a somewhat substantial amount of influence on the 

predictive performance of the models. Though, more data may be needed to make firm 

conclusions given the large standard deviation.  

Findings from previous studies of motion sickness and standing balance have been 

inconsistent. As mentioned earlier, the study by Keshavarz et al. (2018) [24] found significant 

increases in path length following simulated driving, but there was no meaningful relationship 

with reported ratings of motion sickness. In contrast, Reed-Jones et al. (2008) [25] found a 

negative correlation between pre-drive path velocity (r = -0.344), post-drive sway area (r = -

0.476), and the measurements from the SSQ in a driving simulator. One potential explanation for 

the inconsistency in these findings is the methodological variations in motion sickness 

assessment and standing balance exercises. The SSQ quantifies specific dimensions and 

symptoms of motion sickness, while the rating scales reflect an overall assessment of motion 

sickness. Although the FMS functions similarly to the rating scale used in the current on-road 

study, a max rating of 20 may skew the results differently for participants. Moreover, the types 

of balance exercises performed vary greatly (i.e., single-leg stance vs. feet together/eyes 

open/firm support), such that the sensitivity of balance metrics to motion sickness ratings may be 

lower in certain exercises. More importantly, in this on-road study, analysis of the motion 

sickness ratings in the mixed models only included the most responsive and least responsive 

participants. Therefore, changes to balance metrics may only be significantly related to the most 

severe levels of motion sickness, which could explain why findings in previous studies have 

been inconsistent.  
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The findings of this study revealed the importance of participants’ age and sex in making 

predictions of motion sickness. However, postural sway (using normalized balance metrics) was 

not found to be correlated with either participant demographic. Previous studies on the 

relationship between motion sickness, postural sway, and participant demographics have 

reported inconsistent results. Some virtual-based studies have found significant effects of age 

and sex on the severity of motion sickness responses [42], [43], while others have found no such 

relationships [44], [45]. In one virtual driving study among older adults, motion sickness 

incidence (based on SSQ) was greatest among older females, and lowest among younger males 

[42]. In another virtual-based study, motion sickness responses among older adults increased 

after a session in a driving simulator, though any effects of sex were insignificant [46]. With 

respect to postural sway, a pair of virtual-based studies found participant sex to be expressively 

related to the amount of in-vehicle sway [17], [20]. It is possible that participants' lack of 

exposure to vision-based, virtual systems may have contributed to stronger motion sickness 

responses, especially among older participants [6], [47]. Conversely, in on-road environments, 

the effects of age and sex on motion sickness or postural sway may not be as strong due to 

participants’ familiarity with the motion modality (i.e., urban transportation). In our previous 

study on closed test tracks, post-drive postural sway was not associated with participant age or 

sex [26]. Overall, the effect of participant demographics on motion sickness and postural sway 

are varied among different driving environments. Additional work is needed in a realistic on-

road environment to understand how motion sickness responses and standing balance ability 

might change for different passenger populations. 

Studies that have predicted motion sickness from in-vehicle exposures are still limited. 

One study by Lin et al. (2013) [48] used electroencephalogy (EEG) to estimate the continuously 
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changing level of motion sickness in a dynamic driving simulator. Although their neural network 

architecture obtained promising results, the prediction task was not a binary classification task. 

Still, their work demonstrated that EEG-based features may be valuable for improving the 

prediction accuracy of motion sickness during a drive. Another study by Dennison et al. (2019) 

[49] used a combination of sensor data to optimize a model for classifying four levels of motion 

sickness in a virtual environment on a head-mounted display.  Postural sway measured with a 

Wii Balance Board during the 30-minute exposure was able to achieve ~83% predictive accuracy 

on 10-fold cross-validated data.  

         The current study is not without limitations. The amount of data used for the analyses 

were limited because only the first trial from the common exercise was used. The balance 

metrics were also computed from balance trials performed before and after a drive, as opposed to 

trunk postural sway during the drive. Moreover, no features in the models captured motion 

sickness throughout the course of the drive. Consequently, the findings in the mixed model 

analysis captured discrete states of motion sickness, rather than its development or onset. 

Additionally, the “sick” and “not sick” labels were based on the maximum motion sickness 

ratings; there could be other potential metrics for characterizing the data. 

4.5. Conclusion 

In this study, the relationship between postural sway, participant covariates, and motion 

sickness were explored in on-road driving. Mixed models of the balance metrics revealed that 

participants who were more responsive to motion sickness exhibited the larger changes in post-

drive postural sway. When training a prediction model, task performance and the balance metrics 

were the two most predictive features of motion sickness during the drive. These findings 
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support the relationship between postural instability and motion sickness, and further work can 

inform future approaches for estimating motion sickness during urban transportation. 
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Chapter 5 Noninvasive Estimation of Hydration Status in Athletes Using Wearable Sensors 

and a Data-Driven Approach Based on Orthostatic Changes 

 

5.1. Introduction 

Exercise-induced dehydration is typically a result of insufficient replenishment of fluids 

lost mainly to sweat. Dehydration of up to 2 to 3% of one’s body weight in athletic settings is 

common for healthy individuals, especially when competing in the heat [1]. Dehydration can 

predispose individuals to a variety of heat illnesses, including heat stroke and heat exhaustion 

[2]–[5]. Heat stroke for example, is the third leading cause of death in high school athletes and is 

regularly reported among other occupations that encounter heat stress [5].  

To lower the potential risk of heat-related injuries, it is important to monitor hydration status and 

rehydrate during exercise [6]–[8] (e.g., drinking to thirst [9]–[11] or planned drinking programs 

to minimize bodyweight loss [6], [7], [10], [12], [13]. Laboratory-based approaches for 

monitoring dehydration status (e.g., serum chemistry panels), while accurate, require specialized 

equipment and can be difficult to administer during athletic activities due to low portability [10], 

[14], [15]. Measuring changes in bodyweight is one of the most common means of assessing 

hydration status, primarily due to its simplicity and low cost [10], [15], [16]. However, in athletic 

settings, it is often difficult to get accurate assessments of fluid loss without nude bodyweight 

measurements. Clothed bodyweight measurements may be rendered inaccurate over time due to 

sweat captured in clothes and other parts of the body [10], [17]–[19]. Other confounders 

affecting bodyweight measurements include the time of day, respiratory water loss, and substrate 
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oxidation [19], [20]. Therefore, to improve hydration assessments during exercise, there is a need 

to develop complementary approaches to current field-based bodyweight measurements [20]. 

There exists a potential opportunity to leverage the data that are already collected in athletic 

contexts for estimating hydration status. Many professional and collegiate athletes are equipped 

with wearable technologies in the field that inform training and performance (some athletic 

programs include Duke Basketball; University of Michigan Basketball, Soccer, and Field 

Hockey). Devices like the Catapult Optimeye (catapultsports.com) can continuously collect data 

such as heart rate and position during games and practices [21]–[23].  The specific types of data 

and their accessibility create a promising opportunity for developing a noninvasive, 

complementary approach for assessing hydration status.  

In this study, we explore the potential for utilizing data from existing wearables to detect 

early levels of dehydration. We aim to develop an approach that performs sophisticated analyses 

of available data to make informed estimations of hydration status. Such an approach could be 

integrated into future wearables to complement existing techniques and improve overall 

assessments of hydration status in athletic settings. In particular, we are interested in wearable 

devices that measure heart rate and postural orientation over an extended period of time. Using 

these data, we leverage the relationship between hydration and cardiovascular responses to 

orthostatic changes for assessing hydration status: when an individual is dehydrated, heart rate 

increases significantly as part of an overall compensatory response to a decreased cardiovascular 

return due to orthostatic changes [24], [25].  

Previous work has investigated orthostatic movements to measure exercise-induced 

dehydration. However, prior work only used summary statistics (e.g., peak heart rate response) 

[26], considered the delayed effects of exercise-induced dehydration [27], or focused on standard 
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postural movements (e.g., supine-to-stand or sit-to-stand) [27], [28], leading to only modest 

diagnostic results and a limited capacity for field applications. In a study by Cheuvront et al. 

(2012) [26], the difference between the averaged heart response of the final 10 seconds of 3 

minutes of sitting and 1 minute of standing provided fair discrimination of dehydration of 3% 

bodyweight loss. Owen et al. [27] aimed to estimate 2% bodyweight loss and achieved moderate 

accuracy by measuring the heart rate change one minute after standing from supine. Though, 

participants in both studies performed the post-dehydration postural tests in the day following 

their exercise session, which raises further uncertainty as to how their methods might translate to 

a field application. In contrast, in this study, we leverage the longitudinal heart rate response, 

monitor hydration immediately after exercise, and consider non-standard and shorter postural 

movements (e.g., toe-touches)—ultimately with a goal to develop an approach more suitable for 

field applications. We hypothesized that we could accurately detect exercise-induced 

dehydration using a combination of wearable technology that currently exists in the field and a 

varied set of postural movements, especially those more amenable to athletic environments (e.g., 

toe-touches). 

5.2. Materials and Methods 

5.2.1. Study Design and Setting 

This study employed a controlled crossover design. The protocol was reviewed and 

approved by the University of Michigan Institutional Review Board (HUM00011582). Each 

participant provided written informed consent and the study was conducted in accordance with 

the Declaration of Helsinki. 
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5.2.2. Study Population 

Physically active volunteers (10 male, 25.0 ± 6.6 years; 10 female, 27.8 ± 4.3 years) were 

recruited using the University of Michigan’s online recruitment tool 

(https://umhealthresearch.org) from May 2019 to February 2020. Using the area under the 

receiver operating curve (AUROC), a sample size calculation determined that 20 samples would 

be sufficient for detecting hydration status with a discriminative performance of at least AUROC 

= 0.74 (α = 0.05, β = 0.2) [29]. Given a randomly selected pair of positive and negative 

examples, the AUROC represents the probability of ranking the positive example higher than the 

negative example. For reference, an AUROC of 0.5 describes a model performance no better 

than random chance, whereas an AUROC of 1.0 represents perfect discrimination. Healthy 

volunteers were screened for any history of cardiovascular, gastrointestinal, or musculoskeletal 

pathologies prior to enrollment. Volunteers were included if they were between ages 18 and 45, 

had a body mass index (BMI) below 30, and were not taking blood pressure or diuretic 

medication. Volunteers were screened for a minimum level of fitness and weekly activity; the 

inclusion criteria required an estimated VO2 max rating above the 70th percentile for adults of 

their age and sex [30]. We estimated VO2 based on a previously validated approach that relies 

on self-reported BMI, Perceived Functional Ability (PFA), the Physical Activity Rating 

Questionnaires (PAR-Q), and sex [31]. 

5.2.3. Study Interventions 

 

Participants completed two experimental sessions scheduled 1-2 weeks apart within in a 

laboratory setting. To ensure euhydration upon arrival, participants were instructed to drink a 
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prescribed amount of water before their session (7 mL/kg of bodyweight 4 hours before the 

experiment, and 5 mL/kg of bodyweight 2 hours before the experiment) [7]. Additionally, 

participants were instructed to fast by avoiding solid foods 2 hours before the session. Upon 

arrival, participants voided, and a urine strip was used to measure urine specific gravity and 

verify hydration status. Nude bodyweight was then captured to the nearest 50 grams using a Seca 

703 (Hamburg, Germany) scale. Participants were provided a set of loose, moisture-wicking, 

athletic clothing. 

During the first session, no fluids were provided during exercise. Using a Monark 928e 

(Vansbro, Sweden) cycle ergometer, participants warmed up for 5 minutes at 70 watts and 

subsequently exercised in 15-minute bouts (with ~1 minute between bouts) in-side an enclosed, 

heated environment until they either 1) lost 2% of their initial nude bodyweight, or 2) completed 

90 minutes of total exercise. Changes to bodyweight were repeatedly measured after each 15-

minute bout to track the percentage of bodyweight lost due to exercise. Participants toweled off 

and wore clothing during weight measurements until they lost roughly 1% of bodyweight, after 

which nude bodyweight measurements were taken until exercise ended. During the second 

session, participants exercised for the same number of bouts, and losses in bodyweight were 

measured and replenished with a prescribed amount of commercially available sports drink 

(Gatorade, Chicago, IL). After drinking, participants’ bodyweight was measured again to verify 

that participants attained their original bodyweight. The heated environment consisted of a 6.5' x 

10' walk-in greenhouse with a 1500-watt commercial feedback-controlled space heater (Patron, 

Cheektowaga, New York) set to 86° F. Participants were asked to maintain a heart rate 

equivalent to 75% of their estimated maximum heart rate throughout exercise. Maximum heart 

rate for each participant was estimated by subtracting their age from 220 [32] 
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Prior to and following the exercise portion, participants exited the heated environ-ment 

and performed a series of five scripted postural movements (i.e., “pre-exercise” and “post-

exercise” movements) (Figure 5.1). In order, they were: 

• supine-to-stand test (2 minutes supine, 1 minute standing; three repetitions), 

• short supine-to-stand test (1 minute supine, 1 minute standing; one repetition), 

• toe-touch stretch (2 minutes stretching, 1 minute standing; two repetitions), 

• short toe-touch stretch (30 seconds stretching, 30 seconds standing; three repetitions) 

• “tired runner” pose (bending down with hands on knees, 30 seconds stretching, 30 

seconds standing; three repetitions) 

The supine-to-stand test was chosen because of its prominent use as a clinical tool for grossly 

screening dehydration [33]. We included the canonical version of the test, as well as a variation 

where we reduced the amount of time participants laid in the supine position. Other postural tests 

(i.e., toe-touch and “tired runner” pose) were included as they represented postures that are 

expected to be seen in an athletic setting. 
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Figure 5.1: Scripted postural movements. Overall, 11 postural movements were performed before, and after exercise (2% 

dehydration) during the dehydrated session with a varying number of repetitions. For the hydrated sessions, participants 

performed the postural movements following the same amount of exercise that was needed to lose 2% bodyweight during the 

dehydrated sessions. The timing of the full postural movement sequence and the number of repetitions are shown in the top panel. 

The bottom panel shows the timing of the postural movements relative to the exercise component of the protocol. After 

transitioning to a standing position and completing a repetition, participants sat for 1 minute. 

Between repetitions, participants sat on a chair for 1 minute to allow their heart rate to 

return to the level prior to the postural movement. Afterwards, participants stood up, returned to 

the center of the lab, and remained in the initial standing position for a few seconds before 

performing the next postural test. Participants completed the series of scripted postural 

movements in approximately 40 minutes. Throughout the scripted postural movements, 

participants were instrumented with a chest strap heart rate monitor (Polar H10) to monitor heart 

rate and a wearable inertial measurement unit (Catapult OptimEye S5) to measure postural 

orientation at 100 Hz. 



 122 

5.2.4. Data Processing 

We framed the hydration estimation task as a binary classification problem, where an 

accurate model would map the heart rate response during a postural movement to an estimate of 

the participant’s hydration status. Postural movements were labeled ‘dehydrated’ if they were 

performed after exercise during the first session (no fluids). All other postural movements were 

labeled “euhydrated” given that they were performed either before exercise, or after an exercise 

session with fluid replenishment. To develop our model, we focused on the relative change in 

heart rate evoked by the transitions to standing during the postural movements. 

To compute relative change in heart rate, we started by smoothing the heart rate signal 

using a moving average (4-second window), and then dividing the heart rate signal into a pre-

transition response, and a post-transition response. The transitions between postural positions 

were automatically detected based on the velocity of the pitch of the trunk during the postural 

movement. We then segmented the post-transition heart rate into three segments of equal length 

(e.g., divide 30 seconds of standing into three 10-second segments). As seen in Figure 5.2, the 

features used in our model were based on the difference between the average heart rate within 

each post-transition segment and the average pre-transition heart rate (i.e., average heart rate 

during 10 seconds prior to transition). This scheme effectively adjusted for inter-individual 

variances in resting heart rate and captured orthostatic effects rather than effects of exercise and 

recovery. 
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Figure 5.2: Feature extraction from a single postural movement. The differences between the mean heart rate in each segment and 

the mean pre-transition heart rate focus on the heart rate response to the transition in the postural movement. By subtracting the 

mean heart rate before the transition occurs, we removed the magnitude of the heart rate and focused on the response to the 

postural movement. 

5.2.5. Model Training and Validation Scheme 

To train and evaluate a model for assessing dehydration status based on extracted 

features, we iteratively split the data into training and testing sets. In each iteration, we re-served 

one participant's postural movements for the test set, and the postural movements of all other 

participants were used to train the model. Compared to a random split, this approach estimates 

how the model will generalize to new participants. As postural movements that were labeled 

‘dehydrated’ only occurred after bouts of exercise, we focused our evaluation on post-exercise 

postural movements to ensure that the model was learning the effect of dehydration rather than 

exercise.  

To construct our model, we used L2 regularized logistic regression to learn a mapping 

from our computed features of heart rate to estimate hydration. We selected model 
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hyperparameters based on the training data by maximizing the leave-one-out cross-validation 

AUROC [34].   

Applied to each held-out participant, we evaluated the model’s ability to distinguish 

between hydrated and dehydrated examples based on the AUROC.  We reported the AUROC 

averaged across participants, along with the interquartile range (IQR). To qualitatively evaluate 

the AUROC of our model, we referred to the descriptors outlined by Obuchowski et al. [35]. In 

addition to evaluating on all post-exercise postural movements, we evaluated on subsets of 

postural movements (e.g., toe touches only). Finally, we explored the importance of each feature 

by calculating Shapley values with respect to all post-exercise postural movements, using 

AUROC as the value function [36]. We reported the average and standard deviation of the 

Shapley values across all held-out participants. A larger Shapley value indicates a more 

important the feature. To visualize these different segments, we computed and illustrated the 

heart rate responses for the post-exercise toe-touches between the hydrated and dehydrated 

sessions. We averaged the heart rate measurements at each sample (every 0.01 seconds) across 

all participants. Furthermore, we subtracted the average heart rate measured at the time of 

transition from the dehydrated and hydrated signal. Consequently, the signals were aligned at the 

time of transition, which facilitated fair comparisons between the post-transition responses.  We 

specifically chose to present the post-exercise toe-touches to show the potential of shorter 

postural movements. 

5.3. Results 

5.3.1. Participant Characteristics 
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Participants lost 2.0% ± 0.3% of their bodyweight following exercise without 

replenishing fluids. Male participants weighed 75.4 ± 9.9 kg before exercise and 73.9 ± 9.7 kg 

after exercise (dehydrated sessions); female participants weighed 63.8 ± 5.5 kg before exercise 

and 62.5 ± 5.4 kg after exercise (dehydrated sessions). Self-reported PFA-1, PFA-2, and PAR-Q 

are shown in Table 5.1. Using a published regression formula [31], the average VO2 max for 

males and females were 53.4 ± 2.11 and 46.6 ± 3.61 ml·kg-1·min-1, respectively. Each subject 

met the 70th percentile of VO2 max for their age and sex for inclusion in the study. 

Table 5.1: Characteristics for each participant. BMI = Body Mass Index, BW = Nude Bodyweight, PFA-1 = Perceived Functional 

Ability First Rating (assesses ability to run 1 mile), PFA-2 = Perceived Functional Ability Second Rating (assesses ability to run 

3 miles), PAR-Q= Physical Activity Readiness Questionnaire, DEH = Dehydrated Session, HYD = Hydrated Session 

ID Age 

[yrs.] 

Sex Height 

[cm] 

Initial 

BW, 

DEH 

[kg] 

Body-

weight 

Lost 

[%] 

Initial 

BW, 

HYD 

[kg] 

BMI 

[kg∙m-2] 

PFA 

[1, 2] 

PAR

-Q 

VO2max 

[ml∙kg-1∙min-1] 

1 23 M 182 85.60 1.52 88.50 25.8 11, 9 9 51.7 

2 25 M 195 98.10 2.14 98.40 25.3 11, 10 7 51.4 

3 27 F 165 66.10 1.21 65.00 23.8 11, 9 7 51.9 

4 27 M 172 66.40 1.58 66.30 22.9 12, 9 7 54.1 

5 23 M 182 70.45 2.20 70.60 21.7 13, 11 8 57.3 

6 19 M 163 70.85 1.98 70.50 26.6 11, 10 7 50.4 

7 27 F 178 65.95 2.43 65.00 20.8 11, 10 7 48.1 

8 25 M 165 76.50 2.09 76.15 25.5 11, 11 9 53.4 

9 42 M 195 76.80 2.28 75.75 22.1 11, 11 8 55.5 

10 24 F 175 75.80 2.31 75.65 24.4 10, 8 7 42.9 

11 27 F 155 59.45 1.93 59.35 25.3 9, 9 7 42.2 

12 23 F 167 66.50 2.03 67.50 24.2 11, 10 7 45.3 

13 28 F 170 59.00 2.03 59.35 20.8 12, 12 8 51.0 

14 38 F 160 58.55 2.04 57.60 22.7 9, 7 7 42.8 

15 18 M 180 75.20 2.53 75.10 24.0 11, 9 7 51.8 

16 30 F 170 59.95 1.83 59.25 20.4 9, 9 7 46.2 

17 26 M 178 67.35 2.15 65.95 20.8 11, 9 7 54.4 

18 22 M 163 66.75 1.95 68.25 24.9 12, 11 8 53.9 

19 30 F 170 67.10 2.01 67.10 23.8 11, 9 7 44.9 

20 24 F 170 59.70 2.09 59.80 19.6 11, 11 8 50.5 
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5.3.2. Model Performance 

Our algorithm achieved an average AUROC of 0.79 (IQR: 0.75, 0.91) when evaluating 

on post-exercise postural movements (Figure 5.3). Applied to the two-minute post-exercise 

supine-to-stand movements for the full population, performance improved (mean AUROC: 0.89, 

IQR: 0.89-1.0) (Table 5.2). Applied to the shorter 30-second toe-touches, the model achieved 

similarly strong discriminative performance (mean AUROC: 0.89, IQR: 0.89-1.0). In 

comparison, performance decreased slightly for the two-minute toe-touches (mean AUROC: 

0.82, IQR: 0.81-1.0). For the one-minute supine-to-stand movement, the model achieved a mean 

AUROC of 0.79 (IQR: 1.0-1.0). Lastly, the 30-second “tired runner’s” pose achieved the lowest 

discriminative performance among the individual postural movements (mean AUROC: 0.77, 

IQR: 0.67-1.0). 
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Figure 5.3: AUROC curve for the model when evaluating on post-exercise postural movements. The results were averaged across 

all participants as the test set. The shaded portion represents the IQR of the performance across the test participants. 

Table 5.2: Distribution of classification performance when evaluating on specific postural movements post-exercise. AUROC = 

Area Under Receiver-Operating-Curve, IQR = Interquartile Range 

Evaluated Postural Movements Mean AUROC (IQR) 

All 0.79 (0.75, 0.91) 

2-Minute Supine-to-Stand 0.89 (0.89, 1.00) 

1-Minute Supine-to-Stand 0.79 (1.00, 1.00) 

2-Minute Toe-Touch 0.82 (0.81, 1.00) 

30-Second Toe-Touch 0.89 (0.89, 1.00) 

30-Second Runner’s Pose 0.77 (0.67, 1.00) 

 

5.3.3. Feature Importance 

The Shapley values for the first, second, and third heart rate segments were 0.02 ± 0.05, 

0.11 ± 0.07, and 0.15 ± 0.10, respectively. The heart rate responses during the first segment of 

the post-transition appeared similar in the hydrated and dehydrated sessions (Figure 5.4). The 

difference between the two heart rate responses was most pronounced in the final segment. 
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Figure 5.4: Average heart rate response to post-exercise toe-touches. The hydration session and dehydration session heart rate 

responses are shown, averaged across all participants and post-exercise trials. The vertical dashed line is halfway between the 

toe-touch and standing positions. Standard error is shown for each signal. 

5.4. Discussion 

Our results demonstrate that mild dehydration of at least 2% body weight loss can be 

detected noninvasively using readily available data from commercial wearables (i.e., heart rate 

and postural data), which is consistent with findings in prior lab-based studies that found 

orthostatic changes to be sensitive to levels of exercise-induced dehydration [26], [27]. 

Moreover, accurate assessment does not necessarily require the longer clinical-based supine-to-

stand movement. Instead, postural movements common in athletic settings, such as shorter toe-

touches, may be used to detect mild. 

At a level of 2% bodyweight loss, our model achieved between fair to high average 

AUROC for all the postural movements. Notably, the canonical 2-minute supine-to-stand test 
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and the 30-second toe-touches achieved the highest average AUROC (0.89). Although the 30-

second “tired runner’s pose” had the lowest average AUROC (0.77, IQR: 0.67-1.00), the 

performance would still be considered fair [35]. The model’s performance on the shorter postural 

movements (i.e., toe-touches and “tired runner” pose) indicate that postural changes with 

movements closer to what is more commonly seen in athletic settings have the potential to be 

used for hydration assessments, and these postural changes are likely to be seen when individuals 

are maximizing their recovery between repeated bouts of activity (e.g., during games/practices) 

[37]. The high average performance and tight interquartile ranges across participants also 

demonstrated the robustness of our algorithm. In fact, the upper bound of the IQR for each 

postural test equaled 1.00, indicating a perfect classification for some individuals. When 

classifying all 24 post-exercise postural tests for a participant, our model achieved moderate 

performance (0.79, IQR: 0.75-0.91), demonstrating that data from wearables can be used for 

reliable predictions of mild dehydration.  

Few studies have quantified the discriminative ability of the clinical orthostatic test, and 

even fewer studies have incorporated varied postural movements for diagnostic approaches [26], 

[27]. Previous works exploring the relationship between postural movements and the post-

transition heart rate responses have achieved only modest AUROCs. At an average dehydration 

of 2% bodyweight loss, Owen et al. [27] reported an AUROC of 0.66 for their supine-to-stand 

assessments. However, their dehydration protocol account-ed for effects of exercise by assessing 

hydration two days after the exercise with a fluid re-striction protocol. As a result, their 

participants reached a steady-state whereby orthostatic changes in heart rate may not be as useful 

for discriminating hydration status. In comparison, we processed relative change in heart rate to 

address the immediate effects of exercise and obtained a higher AUROC (0.89), while also 
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exploring different postural movements that are more commonly seen in athletic settings. 

Moreover, our assessment of hydration following the end of exercise (especially in heated 

environments) may be more valuable for early interventions of mild dehydration. At 3% 

bodyweight loss minimum, Cheuvront et al. [26] reported an AUROC of 0.67 using sit-to-stand 

movements and measurements of the absolute difference in the peak heart rate responses. Similar 

to the study Owen et al. [27], they assessed hydration status during the following day after 

exercise, which may have diminished the ability for orthostatic changes in heart rate to 

discriminate hydration status. Although our study assessed a lower percentage of bodyweight 

loss, our model still achieved a higher AUROC for different postural movements (i.e., 0.89 for 

the 30-second toe-touches). Our improved values of AUROC may be explained by our modified 

approach, which leveraged the longitudinal heart rate response to extract useful information and 

estimate dehydration. Furthermore, we tested immediately following exercise, which may have 

decreased the general variability in heart rate [38]. The authors have cited heart rate variability 

contributing to the insensitivity of their approach. Ultimately, it is not possible to make direct 

comparisons to these methods as we assessed hydration status immediately following exercise.  

The heart rate response closer to the end of the postural tests influenced the model more 

heavily, as indicated by the Shapley values. Studies that measured the change in participant heart 

rate 1 minute after a supine-to-stand postural transition similarly found a significant effect of 

dehydration [27], [28]. Owen et al. [27] reported a change of 26 ± 12 bpm while dehydrated to 

2% bodyweight loss, and 14 ± 8 bpm when hydrated. In an ultramarathon setting, Holtzhausen 

and Noakes [28] reported the change in heart rate 30-60s after standing from supine (17 ± 8 

bpm) to be significantly greater after the race than before (7 ± 9 bpm). However, their study 

participants had a greater bodyweight loss percentage (4.6% ± 1.3%). The severe level of 
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dehydration, intensity of the exercise, and environmental factors may have factored into the 

differences in reported values between the related studies. Overall, these studies’ findings are 

consistent with the results of our feature importance analysis; the heart rate response closer to the 

end of the postural tests provided the most useful information for classifying mild dehydration of 

2% bodyweight loss.  

When evaluating on all postural movements, the model achieved random or worse than 

random performance for two participants (9 and 17). We hypothesize that these differences were 

due to moderate changes in baseline bodyweight between experimental sessions (Table 1). Both 

subjects weighed more at the beginning of their dehydrated session than their hydrated session 

by 1.40 kg and 1.05 kg, respectively. Given that they lost 1.75 kg and 1.45 kg after exercise, 

their final post-exercise weight in the dehydrated sessions would have been relatively close to 

their baseline weight during their hydrated sessions, which may have led to similar orthostatic 

responses. Although we restricted fluid and food intake prior to the experiment, daily mass 

variability may have factored into the differences in baseline bodyweight. Our study did not 

account for participants’ daily mass variability, which may have introduced some uncertainty to 

bodyweight measurements as a proxy for hydration status. However, changes in daily mass have 

been estimated to be less than 1% in active men [39].  

Lab-based detection methods that typically involve samples of bodily fluid, while 

accurate, are expensive and may be difficult to collect continuously in a fast-paced athletic 

context [10], [14], [15], [20]. In contrast, clothed bodyweight measurements provide one of the 

quickest and most accessible assessments of hydration with minimal equipment in the field (e.g., 

a scale situated on the sidelines). However, if nude bodyweight measurements are not feasible, 

excess sweat in the clothing and on the athlete should be minimized to obtain the most accurate 
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and precise measurements [40]. In our lab-based study, we used nude bodyweight measurements 

throughout a cycling exercise to train a model and make predictions of dehydration. As such, our 

model learned how to weigh features based on accurate measurements of nude bodyweight, 

which improves the reliability of the model predictions. Therefore, our method may potentially 

complement clothed body-weight measurements by leveraging increasingly available data from 

wearable sensors. As recommended by Barley et al. [20], combining our approach and gross 

bodyweight measurements may therefore lead to an increase in overall reliability. In a practical 

setting, our method may inform athletes when they are approaching mild levels of dehydration 

and enable early interventions, such as taking additional informed measurements of bodyweight, 

before potentially reaching severe levels of dehydration.  

Our study is not without limitations. First, cycling in a heated environment was used to 

dehydrate participants; it is unclear how our results might generalize to other methods of 

dehydration, especially passive approaches (e.g., heat exposure) [41]–[43]. Second, we relied on 

bodyweight to measure the level of dehydration. While blood sample analysis may be more 

accurate it is more difficult to obtain. Third, we designed the study such that the dehydrated 

session preceded the hydrated session in the case that, if participants dropped out after the first 

session, we would still have relevant data on dehydrated individuals. As a result, this could have 

caused habituation to the protocol, particularly for individuals with minimal cycling experience. 

However, we only included participants above an estimated level of fitness with no history of 

cardiovascular disease (though fit-ness was not directly measured). Fourth, postural movements 

were performed in the same order each time. Thus, heart rate following exercise may have 

recovered substantially during the later postural movements (e.g., “tired runner’s pose”). 

Additionally, participants sat between repetitions, which may have affected heart rate responses 
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due to the dynamic shift in body fluids. Finally, fluids were replenished periodically throughout 

the experiment as well, meaning that fluids administered near the end of the exercise may not 

have been fully absorbed by the time participants performed the postural tests.  

We note that some of these limitations are likely present, and have been present in the 

past, for many lab-based dehydration studies. For example, in lab-based settings, ecologically 

valid exercise conditions can be difficult to replicate, which raises some uncertainty when 

studying the effect of hydration on physical performance [9], [44]. Despite these limitations, our 

approach provides a meaningful step towards potentially automating non-invasive measurements 

of dehydration, which may eventually improve hydration practices and health monitoring. In 

addition to reducing the risk of heat-related injuries, prop-er hydration may also maintain 

physical performance during activity [4], [45]–[47]. In its current form, our method may not be 

directly applicable to natural field settings. However, this work illustrates the efficacy of using 

increasingly readily available data from wearable sensors for detecting hydration status, while 

also using shorter and more diverse postural movements than previously considered. 

5.5. Conclusion 

Overall, our method for detecting mild dehydration (2% bodyweight loss) leverages 

increasingly common wearable sensors and varied postural movements. Using heart rate and 

postural orientation data, a reliable and accurate prediction could be made after 30 seconds of a 

postural transition. Moreover, the approach required minimal, noninvasive, commonly used 

wearable sensors. In future implementations, such an approach would complement existing 

bodyweight measurements, and potentially allow earlier interventions of dehydration. Future 
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work should incorporate more ecological exercise conditions to validate the efficacy of such an 

approach in natural field settings. 

5.6. References 

[1] S. D. R. Galloway, “Dehydration, rehydration, and exercise in the heat: Rehydration 

strategies for athletic competition,” Canadian Journal of Applied Physiology, vol. 24, no. 

2. pp. 188–200, 1999. 

[2] E. E. Coris, A. M. Ramirez, and D. J. Van Durme, “Heat Illness in Athletes: The 

Dangerous Combination of Heat, Humidity and Exercise,” Sport. Med., vol. 34, no. 1, pp. 

9–16, 2004. 

[3] A. Bouchama and J. P. Knochel, “Heat stroke,” N. Engl. J. Med., vol. 346, no. 25, pp. 

1978–88, 2002. 

[4] A. S. Howe and B. P. Boden, “Heat-related illness in athletes,” Am. J. Sports Med., vol. 

35, no. 8, pp. 1384–1395, 2007. 

[5] T. L. Lee-Chiong and J. T. Stitt, “Heatstroke and other heat-related illnesses: The 

maladies of summer,” Postgrad. Med., vol. 98, no. 1, pp. 26–36, 1995. 

[6] B. P. McDermott et al., “National athletic trainers’ association position statement: Fluid 

replacement for the physically active,” J. Athl. Train., vol. 52, no. 9, pp. 877–895, 2017. 

[7] M. N. Sawka, L. M. Burke, E. R. Eichner, R. J. Maughan, S. J. Montain, and N. S. 

Stachenfeld, “American College of Sports Medicine position stand. Exercise and fluid 

replacement,” Med. Sci. Sport. Exerc., vol. 39, no. 2, pp. 377–390, 2007. 



 135 

[8] S. J. Montain and E. F. Coyle, “Influence of graded dehydration on hyperthermia and 

cardiovascular drift during exercise,” J. Appl. Physiol., vol. 73, no. 4, pp. 1340–1350, 

1992. 

[9] J. D. Cotter, S. N. Thornton, J. K. W. Lee, and P. B. Laursen, “Are we being drowned in 

hydration advice? Thirsty for more?,” Extrem. Physiol. Med., vol. 3, no. 1, pp. 1–16, 

2014. 

[10] L. E. Armstrong, “Hydration Assessment Techniques,” Nutr Rev, vol. 63, no. suppl_1, 

pp. S40–S54, 2005. 

[11] E. D. B. Goulet and M. D. Hoffman, “Impact of Ad Libitum Versus Programmed 

Drinking on Endurance Performance: A Systematic Review with Meta-Analysis,” Sport. 

Med., vol. 49, no. 2, pp. 221–232, 2019. 

[12] R. W. Kenefick, “Drinking Strategies: Planned Drinking Versus Drinking to Thirst,” 

Sport. Med., vol. 48, no. s1, pp. 31–37, 2018. 

[13] L. E. Armstrong, E. C. Johnson, and M. F. Bergeron, “COUNTERVIEW: Is Drinking to 

Thirst Adequate to Appropriately Maintain Hydration Status during Prolonged Endurance 

Exercise? No,” Wilderness Environ. Med., vol. 27, no. 2, pp. 195–198, 2016. 

[14] L. E. Armstrong, “Assessing Hydration Status: The Elusive Gold Standard,” J. Am. Coll. 

Nutr., vol. 26, pp. 575S-584S, 2007. 

[15] S. N. Cheuvront and M. N. Sawka, “Hydration Assessment of Athletes,” Sport. Sci. 

Exch., vol. 18, no. 2, pp. 1–12, 2005. 

[16] G. Harvey, R. Meir, L. Brooks, and K. Holloway, “The use of body mass changes as a 

practical measure of dehydration in team sports,” J. Sci. Med. Sport, vol. 11, no. 6, pp. 

600–603, 2008. 



 136 

[17] F. Manz and A. Wentz, “24-h hydration status: Parameters, epidemiology and 

recommendations,” Eur. J. Clin. Nutr., vol. 57, no. SUPPL.2, pp. S10–S18, Dec. 2003. 

[18] L. N. Belval et al., “Practical Hydration Solutions for Sports,” Nutrients, vol. 11, no. 7, p. 

1550, Jul. 2019. 

[19] R. J. Maughan, S. M. Shirreffs, and J. B. Leiper, “Errors in the estimation of hydration 

status from changes in body mass,” J. Sports Sci., vol. 25, no. 7, pp. 797–804, 2007. 

[20] O. R. Barley, D. W. Chapman, and C. R. Abbiss, “Reviewing the current methods of 

assessing hydration in athletes,” J. Int. Soc. Sports Nutr., vol. 17, no. 1, pp. 1–13, 2020. 

[21] D. R. Seshadri, C. Drummond, J. Craker, J. R. Rowbottom, and J. E. Voos, “Wearable 

Devices for Sports: New Integrated Technologies Allow Coaches, Physicians, and 

Trainers to Better Understand the Physical Demands of Athletes in Real time,” IEEE 

Pulse, vol. 8, no. 1, pp. 38–43, 2017. 

[22] R. T. Li, S. R. Kling, M. J. Salata, S. A. Cupp, J. Sheehan, and J. E. Voos, “Wearable 

Performance Devices in Sports Medicine,” Sports Health, vol. 8, no. 1, pp. 74–78, 2016. 

[23] S. L. Halson, “Monitoring Training Load to Understand Fatigue in Athletes,” Sport. 

Med., vol. 44, pp. 139–147, 2014. 

[24] J. G. Bradley and K. A. Davis, “Orthostatic Hypotension,” Am. Fam. Physician, vol. 68, 

no. 12, pp. 2393–8, 2003. 

[25] N. Goswami, A. P. Blaber, H. Hinghofer-Szalkay, and J. P. Montani, “Orthostatic 

intolerance in older persons: Etiology and countermeasures,” Front. Physiol., vol. 8, no. 

803, 2017. 



 137 

[26] S. N. Cheuvront, B. R. Ely, R. W. Kenefick, M. J. Buller, N. Charkoudian, and M. N. 

Sawka, “Hydration assessment using the cardiovascular response to standing,” Eur. J. 

Appl. Physiol., vol. 112, no. 12, pp. 4081–4089, 2012. 

[27] J. A. Owen, M. B. Fortes, S. Ur Rahman, M. Jibani, N. P. Walsh, and S. J. Oliver, 

“Hydration marker diagnostic accuracy to identify mild intracellular and extracellular 

dehydration,” Int. J. Sport Nutr. Exerc. Metab., vol. 29, no. 6, pp. 604–611, 2019. 

[28] L. M. Holtzhausen and T. D. Noakes, “The prevalence and significance of post-exercise 

(postural) hypotension in ultramarathon runners,” Medicine & Science in Sports & 

Exercise, vol. 27, no. 12. pp. 1595–1601, 1995. 

[29] N. Turck et al., “pROC: an open-source package for R and S+ to analyze and compare 

ROC curves,” BMC Bioinformatics, vol. 8, pp. 12–77, 2011. 

[30] L. S. Pescatello, R. Arena, D. Riebe, and P. D. Thompson, ACSM’s Guidelines for 

Exercise Testing and Prescription, 9th ed. Philadelphia, PA: Lippincott Williams & 

Wilkins Health, 2014. 

[31] J. D. George, W. J. Stone, and L. Burkett, “Non-exercise VO2max estimation for 

physically active college students,” Med. Sci. Sport. Exerc., vol. 29, no. 3, pp. 415–23, 

1997. 

[32] S. M. Fox, J. P. Naughton, and W. L. Haskell, “Physical activity and the prevention of 

coronary heart disease,” Ann. Clin. Res., vol. 3, no. 6, p. 404—432, Dec. 1971. 

[33] “Tool 3F: Orthostatic Vital Sign Measurement,” Agency for Healthcare Research and 

Quality, 2013. [Online]. Available: 

https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk-tool3f.html. 

[Accessed: 22-Jul-2020]. 



 138 

[34] R. R. Picard and R. D. Cook, “Cross-Validation of Regression Models,” J. Am. Stat. 

Assoc., vol. 79, no. 387, pp. 575–583, Sep. 1984. 

[35] N. A. Obuchowski, M. L. Lieber, and F. H. Wians, “ROC curves in Clinical Chemistry: 

Uses, misuses, and possible solutions,” Clin. Chem., vol. 50, no. 7, pp. 1118–1125, 2004. 

[36] K. Aas, M. Jullum, and A. Løland, “Explaining individual predictions when features are 

dependent: More accurate approximations to Shapley values,” pp. 1–28, 2019. 

[37] J. Michaelson, L. Brilla, D. Suprak, W. McLaughlin, and D. Dahlquist, “Effects of Two 

Different Recovery Postures during High-Intensity Interval Training,” Transl. J. Am. 

Coll. Sport. Med., vol. 4, no. 4, pp. 23–27, 2019. 

[38] R. Carter, S. N. Cheuvront, D. W. Wray, M. A. Kolka, L. A. Stephenson, and M. N. 

Sawka, “The influence of hydration status on heart rate variability after exercise heat 

stress,” J. Therm. Biol., vol. 30, no. 7, pp. 495–502, 2005. 

[39] S. N. Cheuvront, R. Carter, S. J. Montain, and M. N. Sawka, “Daily body mass variability 

and stability in active men undergoing exercise-heat stress,” Int. J. Sport Nutr. Exerc. 

Metab., vol. 14, no. 5, pp. 532–540, 2004. 

[40] R. A. Oppliger and C. Bartok, “Hydration Testing of Athletes,” Sport. Med., vol. 32, no. 

15, pp. 959–971, 2002. 

[41] S. Kabiri Ameri et al., “Graphene Electronic Tattoo Sensors,” ACS Nano, vol. 11, no. 8, 

pp. 7634–7641, 2017. 

[42] P. H. Falcone et al., “Sport-specific reaction time after dehydration varies between 

sexes,” J. Int. Soc. Sports Nutr., vol. 11, no. 1, p. P29, 2014. 



 139 

[43] J. S. Greiwe, K. S. Staffey, D. R. Melrose, M. D. Narve, and R. G. Knowlton, “Effects of 

dehydration on isometric muscular strength and endurance,” Med. Sci. Sport. Exerc., vol. 

30, no. 2, pp. 284–288, 1998. 

[44] L. J. James, M. P. Funnell, R. M. James, and S. A. Mears, “Does Hypohydration Really 

Impair Endurance Performance? Methodological Considerations for Interpreting 

Hydration Research,” Sport. Med., vol. 49, no. s2, pp. 103–114, 2019. 

[45] D. A. Judelson et al., “Hydration and muscular performance: Does fluid balance affect 

strength, power and high-intensity endurance?,” Sport. Med., vol. 37, no. 10, pp. 907–

921, 2007. 

[46] E. D. Goulet, “Dehydration and endurance performance in competitive athletes,” Nutr. 

Rev., vol. 70, no. SUPPL/2, pp. S132–S136, 2012. 

[47] B. Murray, “Hydration and Physical Performance,” J. Am. Coll. Nutr., vol. 26, no. 2007, 

pp. 542S-548S, 2007. 

[48]  Cheng, Y.C.; Vyas, A.; Hymen, E.; Perlmuter, L.C. Gender differences in orthostatic 

hypotension. Am. J. Med. Sci. 2011, 342, 221–225, 

doi:10.1097/MAJ.0b013e318208752b. 

[49] Fu, Q.; Witkowski, S.; Okazaki, K.; Levine, B.D. Effects of gender and hypovolemia on 

sympathetic neural responses to orthostatic stress. Am. J. Physiol. - Regul. Integr. Comp. 

Physiol. 2005, 289, 109–116, doi:10.1152/ajpregu.00013.2005. 

 



 140 

Chapter 6 Discussion 

 

6.1. Dissertation Overview 

This dissertation explored the potential for translating physical and physiological 

wearable-based signals for secondary prevention of health conditions beyond a clinical setting. 

Chapters 2 through 5 focused on developing models of vehicular motion sickness and mild 

dehydration, such that measurements from wearable sensors (i.e., standing balance, heart rate) 

could be leveraged to estimate the progression and onset of a health condition. Chapters 2 and 3 

evaluated post-drive postural sway as a function of in-vehicle task performance and continuous 

vehicular motion on closed test tracks and realistic driving conditions, respectively. In Chapter 4, 

motion sickness ratings were correlated with pre-drive balance metrics of postural sway to 

develop a predictive model. Chapter 5 illustrated the feasibility of existing wearable sensors for 

developing novel methods of assessing dehydration. The following sections of this chapter will 

contextualize these findings with respect to prior work, and further discuss the next steps in 

translating these relationships for field applications using wearable technology. 

6.2. Scalability and fidelity of simulation-based findings to realistic environments 

In this dissertation, the methodology in Chapter 3 was an iteration of the methodology 

described in Chapter 2, adapting the experimental protocol from a closed test track to a realistic 

on-road driving environment. The on-road drive conducted in Chapter 3 operated at the highest 

level of physical and functional fidelity. The sample sizes for both studies (N = 50, 106 
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participants, respectively) were larger in comparison to previous driving-related studies, which 

suggests that the data set collected and analyzed in this dissertation were more representative of 

normative in-vehicle behavior. To further highlight the fidelity of the data set, the motion 

sickness ratings were self-reported on a continuous scale with anchors at 0 and 10. Although the 

ratings themselves were subjective, excluding descriptive levels of motion sickness allowed 

more salient measurements of motion sickness. In comparison, the scripted route on the closed 

test track in Chapter 2 lacked certain contextual factors (e.g., other actors on the road), limiting 

its functional fidelity.  

Nevertheless, the scripted routes in Chapter 2 were designed to reflect a scaled version of 

the Urban on-road route in terms of the frequency of driving events. As such, with similar in-

vehicle motion exposures, the changes in post-drive standing balance performance were expected 

to be relatively consistent across studies. However, the comparative analysis found no substantial 

differences between the normalized balance metrics. At first glance, the similarities suggest that 

there is absolute validity in the balance metrics between the closed test track and realistic on-

road driving. Moreover, normalized balance metrics were greater for the Task condition than for 

the No-Task condition in both studies, suggesting relative validity of these balance metrics.  

The effect of the Task condition was significant across both studies; specifically, changes 

to balance metrics were largest for the Task condition. Performing an in-vehicle task likely 

introduced a provocative level of sensory conflict between the moving vehicle and the view of 

the handheld device. Furthermore, participants were instructed to hold the device in their lap, 

which implies that participants held their head downward to complete the task. Studies in other 

types of motion exposures have shown that head position can influence motion sickness 

incidence and severity [1]–[4]. In a study by Baumgarten et al. (1980) [5], participants that tilted 
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their head forward during rollercoaster flight always reported motion sickness symptoms earlier 

than participants that sat in an upright position. In contrast, in a study of rally car co-drivers, 

there were fewer occurrences of motion sickness among passengers that frequently shifted their 

view between the road and their notes (15.3%) in comparison to passengers that read a book in 

the car (25.9%) [4]. However, passengers’ notes or books may not have been strictly placed in 

their lap during the experiment. Overall, in addition to the sensory conflict introduced by the 

handheld task, the position of the head may have had an integral, additive role in causing motion 

sickness incidence during drive, which subsequently affected post-drive standing balance.   

However, the effect of the Task condition was less prevalent among the on-road balance 

metrics compared to the closed test track balance metrics. In the on-road driving study, for the 

feet together/eyes closed/foam support exercise, only normalized M/L RMS sway differed as a 

function of the Task condition. In contrast, for the same balance exercise, the Task condition was 

significant for M/L RMS sway, M/L RMS sway velocity, and path length. The inconsistencies in 

these findings may potentially be a result of the design of the in-vehicle exposure. Although the 

frequency of driving events was designed to be consistent between the two studies, the scripted 

route on the closed test track consisted of a shorter exposure (20 minutes maximum) in 

comparison to the on-road driving exposures (~55 minutes on average). Consequently, the 

amount and distribution of recovery time between the different driving maneuvers on the closed 

test track may have been much shorter, causing relatively larger changes in post-drive postural 

sway.   

Nevertheless, comparisons for validity across Chapters 2 and 3 have some limitations. 

Studies on driving validity typically consist of repeated measurements on a sample population, 

where a single participant completes tests in both a simulator and an on-road environment. This 
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was not the case in Chapters 2 and 3, as sample populations did not overlap. Still, there were no 

meaningful differences in the demographics between the study cohorts. Ultimately, there was 

consistency between the findings, which could imply that, when scaled properly, tests on a 

closed test track might offer meaningful approximations of the outcomes of in-vehicle exposures 

to on-road driving. Future work should directly compare the post-drive standing balance 

performance of passengers following an in-vehicle exposure during closed test track and on-road 

driving for individuals and aim to the quantify the role of head position on motion sickness and 

post-drive changes in standing balance. 

 

6.3 Risk of falling due to in-vehicle exposures and motion sickness  

When considering the populations that can benefit from increased access to 

transportation, the magnitude of the increases in standing balance performance may increase the 

risk of falling for certain segments of the population (e.g., older adults) [6]–[8]. Normalized 

changes in standing balance metrics from to pre- to post-drive were significantly greater across 

every balance exercise. Furthermore, for the Task condition, nearly every balance metric 

increased significantly post-drive. To facilitate comparisons to prior work, additional metrics 

needed to be computed. Namely, the RMS of the trunk’s acceleration was computed given that it 

is commonly reported for comparing postural sway between non-fallers and fallers [9]–[13]. As 

described in Chapter 3, the relative changes in RMS acceleration exceeded what has been 

reported in prior studies of fallers. For the on-road study, RMS acceleration increased by 14.1% 

(No-Task) and 42.4% (Task) on average for older adults, whereas previous studies have observed 
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relative differences of ~20.0% between non-fallers and fallers. Consequently, the changes in 

balance metrics suggest an increased level of fall risk following continuous in-vehicle exposures.  

 The effect of motion sickness must also be considered when discussing the risk of falling, 

as motion sickness incidence and susceptibility have been correlated with decreased postural 

stability across various virtual and motion-based platforms [14]–[18]. The studies in this 

dissertation were among the first to identify a positive correlation between motion sickness and 

increased postural sway following an on-road drive. However, self-reported ratings of motion 

sickness were lower among older adults [19], which has been observed in previous studies of 

passenger behavior [20]. Less motion sickness among older adults suggests that the increased 

risk of falling due to motion sickness may be minimal, which further implies that the main 

contributions to the increased postural sway among older adults could be due to sensory 

adaptations to in-vehicle motion. In short, sensory adaptation describes the change in how 

sensory information (i.e., from the visual, vestibular, somatosensory systems) is regulated for 

sensing the body’s orientation in space due to changes in environmental conditions and tasks. 

Sensory adaptation has been observed to contribute to maintaining postural stability in different 

motion contexts [21]. Previous studies have investigated similar sensory adaptations in other 

motion modalities [3], [22]. In contrast, younger adults in the on-road driving studies reported 

larger ratings of motion sickness on average. Furthermore, normalized changes in RMS 

acceleration were comparable between younger and older adults, suggesting uncharacteristically 

large increases in postural sway for younger adults—perhaps due to potential increased 

susceptibility to motion sickness [23].  

 Additional work is needed to characterize the effects of worsened post-drive balance 

metrics and their implications on increased fall risk. Across the studies, post-drive balance 
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metrics showed an increase in postural sway following a drive. In the closed test track study 

described in Chapter 2, nearly every balance metric for the common balance exercise (feet 

together, eyes closed, foam support) worsened following a drive, for both Task conditions. 

However, changes were especially large among balance metrics associated with sway velocity, 

which has been shown to be correlated with those with a history of falling [7]. Similarly, in 

Chapter 3, all normalized balance metrics (especially sway velocity) for the common balance 

exercise were significantly worse following a drive in an on-road environment. In Chapter 4, 

motion sickness response was significantly correlated with normalized M/L RMS sway velocity, 

which further emphasizes the effect of in-vehicle exposures on sway velocity. While postural 

sway position generally increased among participants, larger increases in sway velocity could be 

representative of a modified postural control strategy among passengers, whereby quicker 

postural adjustments were made to compensate for larger deviations from a stable posture. 

Passengers’ sense of posture may have been challenged by the motion during the drive, and some 

may have been potentially minimizing in-vehicle postural sway as a countermeasure for motion 

sickness [24]–[26]. This dynamic change in environment may have caused sensory adaptations 

to the specific postural demands of in-vehicle motion. Upon egress, the sensory model used for 

maintaining seated postural stability in an in-vehicle context was likely retained in the short-

term. When tasked with maintaining standing balance, this short-term adaptation likely hindered 

the shift in postural control strategy, producing larger increases in postural sway [3], [27], [28].  

Therefore, when assessing standing balance performance immediately following egress from the 

vehicle, participants exhibited increased postural sway, potentially as a result of the subtle 

changes in postural control strategies.  
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 The specific set of balance metrics that worsened following a drive help illustrate how 

individuals were maintaining stability to prevent falling during the balance exercises. The RMS 

of sway position and sway velocity captured the magnitude of trunk tilt and the speed of the 

postural adjustments to maintain stability. Elliptical area was most directly correlated with the 

RMS of the sway position, as larger deviations will increase the variance of the sway signals, 

which led to larger values of elliptical area. In contrast, path length captures the distance between 

consecutive samples of sway position at a fixed sample rate; therefore, larger values of RMS 

sway velocity will be associated with larger values of path length due to larger distances between 

samples. In the study described in Chapter 2, for the feet tandem, eyes open, firm support 

exercise, path length and sway velocity increased while sway position and elliptical area did not. 

In this scenario, participants may have been performing quicker postural adjustments within a 

similar area of sway, potentially in response to sensory adaptations following the drive. In the 

study described in Chapter 3, for the Task condition, nearly every normalized balance metric 

worsened significantly following the drive. Physically, participants exhibited an overall decrease 

in postural stability, as both sway position and velocity increased; participants experienced larger 

deviations from the vertical and had to make much quicker adjustments to maintain stability. 

Increased elliptical area and path length also indicated that there were substantial changes in 

sway regardless of the direction [29].  

Overall, future work will need to perform direct observations of older adults with a 

known history of falling. In this dissertation, it is unknown if some older adult participants were 

already highly susceptible to falling, or if adults had no prior history of falling at all. Analyses of 

falls in this dissertation were only based on normative, average changes in standing balance 
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performance among adults aged above 60. The results were intended to contextualize the 

potential risks associated with mobility solutions among specific populations. 

 

6.4. Comparisons to other field-based, data-driven hydration assessment studies and 

methods 

In Chapter 5 of this dissertation, a noninvasive, data-driven method for assessing 

dehydration was developed to complement current methods and inform the secondary prevention 

of severe dehydration. A predictive model achieved high diagnostic accuracy by leveraging data 

on posture and heart rate during various orthostatic movements. Below, the data-driven model 

approach developed in this dissertation is compared to other existing methods and approaches. 

Additionally, the appropriateness of the method for field-based assessments is explored.  

Previous studies have used different combinations of sensor data and data-driven 

techniques. Some studies collected clinical data on participants dehydrated from medical 

conditions [30], [31], while other studies leveraged different types of sensor data (e.g., 

electrocardiograms, galvanic skin response) [32]–[34]. Among these studies, only one 

implemented an exercise protocol [33], and the highest accuracies ( > 91%) were achieved using 

data about electrodermal activity [32], [34]. Although the reported accuracies were impressive, 

their models were trained on a different type of dehydration (i.e., fluid restriction), so it is 

unclear the extent to which the models would directly transfer to field-based assessments of 

exercise-induced dehydration. Moreover, some studies used specialized sensors that may not be 

suitable during intense physical activity or may be sensitive to body position [32]; furthermore, 

the design of wearable sensor systems themselves should not interfere with the intended task 
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[35]. In comparison, the method developed in Chapter 5 may be more amenable to field-based 

assessments given that off-the-shelf wearable sensors were used to investigate dehydration from 

aerobic cycling exercise. 

Field-based assessments of hydration status embody a few key characteristics: portability, 

ease-of-use, and reliability. As such, athletic programs have relied on periodic measurements of 

losses in bodyweight and changes in urinalysis readings to assess dehydration [36]. Although 

they may be noninvasive and quick to administer, these methods use discrete measurements to 

estimate an individual’s hydration status, which may interrupt the flow of activity. The method 

developed in this dissertation has the potential to address this limitation. Using commonly 

available wearable sensors, the method in this dissertation could eventually be adapted for real-

time feedback, which would further improve the secondary prevention of severe dehydration. 

Considering the implementation, an individual’s postural orientation and heart rate data could be 

harnessed using existing wearable devices (e.g., Catapult OptimEye S5). Following certain 

automatically-detected postural transitions, the trained model could transform the data to 

estimate hydration status. Given that 30-second toe-touches were feasible for accurate hydration 

assessments of 2% bodyweight loss (0.89 AUC), it is plausible that other naturalistic postural 

movements (during play, stretching, or downtime) could achieve similar performance. At worst, 

the recommendations of the model would complement other assessment methods and generally 

estimate the probability of mild dehydration. A future study with ecologically relevant, on-field 

data would inform how to improve the signal-to-noise ratio, and further develop a noninvasive, 

real-time feedback system.  



 149 

6.5. Extending known physiological relationships with data-driven approaches 

In this dissertation, wearable sensors (i.e., IMUs, heart rate monitors) served as a 

powerful, flexible platform for collecting user data. These data contributed to developing 

empirical models based on known physiological relationships that could be used to support 

health monitoring for secondary prevention strategies. In some cases, the reliability and 

application of current prevention methods were improved by leveraging modern data-driven 

approaches. For example, extensive analysis on the orthostatic response to postural movements 

demonstrated that other postural movements could feasibly be used for classifying hydration 

status. In addition to the traditional supine-to-stand test (which reasonably achieved the highest 

diagnostic performance), toe-touches or even “tired” runner’s poses showed comparable 

performance when supported by an analytical, data-driven approach. In Chapters 2 and 3, 

wearable sensors enabled wireless data collections of postural sway, allowing investigations of 

standing balance performance and motion sickness in an ecologically relevant on-road driving 

environment. In Chapter 4, a predictive model was trained on data pertaining to vehicular motion 

sickness, standing balance performance, drive conditions (i.e., route and Task), and participant 

demographics. Although the predictive performance could be improved with additional data, the 

results based on the balance metrics alone was promising. 

 

6.6. Potential for these wearable sensors in translating these signals for secondary 

prevention 

Wearable devices act as an unobtrusive tool that can collect various signals, such as heart 

rate, body temperature, and posture. This dissertation explored different relationships among 
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wearable sensor-based signals that were measured in a non-clinical setting, laboratory-based 

settings. The chapters in this dissertation related changes across standing balance, motion 

sickness, or dehydration with inertial and physiological measurements (e.g., trunk acceleration 

and heart rate). The following sections outline feasible ways these relationships could be 

translated into applications for secondary prevention with current wearable systems, as well as 

potential challenges.  

6.6.1. Capturing standing balance and postural sway with wearable sensors 

Control of balance plays an important role in the coordination of body movements. 

Maintaining balance is critical for reducing the risk of fall injury; otherwise, the resulting injury 

could lead to rippling, detrimental effects such as lower quality of life, increased healthcare 

costs, and increased risk of subsequent—potentially fatal—falls [37], [38]. Fall injuries are 

especially prevalent among older adults and individuals with neurological disorders like 

Parkinson’s disease [39], [40]. To reduce the risk of falling and life-altering injuries, it is 

important for adults to be cognizant of their ability to maintain balance throughout activities of 

their daily living, especially during ambulation and transportation [41].  

In this dissertation, Chapters 2 and 3 focused on evaluating standing balance specifically 

prior to and following an on-road driving motion exposure. Given the prevalence of urban, 

personal vehicular transportation, the scenarios and the findings presented in these studies have 

direct applicability to activities of daily living. For example, postural sway velocity and path 

length were found to increase significantly (across nearly all balance exercises) following an on-

road drive, regardless of whether or not an on-road drive took place on a closed test track or an 

urban environment. Based on these findings, it is recommended that standing balance be further 

evaluated after egress of a vehicle following a continuous drive (e.g., in an automated vehicle), 
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especially among older adults. Outside of an experimental setting, wearable devices may serve as 

a potential platform for conveniently measuring standing balance performance given their 

increasing popularity and accessibility.  

As explained in Chapter 1, wearables commonly implement inertial measurements units.  

In Chapters 2 and 3, inertial sensors that are, by design, embedded in a personal device were 

used to assess standing balance [42], exemplifying that existing technology can be adapted for 

different applications. Generally, with appropriate software, wearables devices could evaluate 

different metrics of postural sway during specific balance exercises [43], [44]. As an example of 

a use case, a post-drive balance assessment with a wearable device could deliver key information 

to adults about their ability to maintain balance, such that they could reduce the risk of fall 

injuries. Moreover, pre-drive balance assessments with wearable devices could provide 

assessments of a user’s susceptibility to motion sickness [45]. Beyond isolated, standing balance 

exercises, wearable devices could also continuously monitor postural sway, which is valuable 

given that previous studies have similarly observed changes in postural sway during extended 

exposures to motion [46]–[49]. Given these use cases, it is straightforward for future wearable 

sensors to capture standing balance performance as an integrated feature of a ubiquitous product 

(e.g., smart watch, smartphone applications). Wearable devices for monitoring postural sway are 

already commonly used among field, clinical, and laboratory-based studies [50], [51]. Many 

studies have further explored the feasibility of remote in-home monitoring using a plethora of 

wearable sensors [52], [53]. In a recent study, a compact wireless inertial sensor was mounted 

superior to the right ear using either a headband or a two-sided adhesive. These wearable inertial 

sensors captured different metrics of postural sway, with sway power being highly indicative of 

concussions in athletes [51]. The study’s authors envision the wearable sensors to be useful for 
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making decisions about an athlete’s ability to continue an activity following a concussion. 

Knowing this, a similar approach could be adapted for on-road driving. As an example of an 

embodiment, a smart watch could measure postural sway, compute balance metrics, compile the 

metrics into a model, and finally indicate the potential risk associated with the changes in 

balance control, or in comparison to normative values within the user’s cohort. The user can then 

make informed decisions and take precautionary measures to reduce the risk of falling. 

 

6.6.2. Improvements in motion sickness estimation and detection 

As transportation becomes more accessible with automated vehicles and mobility 

solutions, motion sickness is expected to become an increasingly prevalent problem for 

passengers [19], [54], [55], which can detract from the perceived benefits of automated vehicles 

(e.g., increased task productivity, leisure, accessibility to transportation and independence). 

Previous studies have already shown vehicle passengers to be more susceptible to vehicular 

motion sickness in comparison to drivers [19], [56], [57], and to experience an increased severity 

of nausea and other associated symptoms. Changes in balance performance have been reported 

as being correlated with motion sickness as well [46], [47], [58], [59]. Chapters 2 and 3 focused 

on the specific changes to post-drive standing balance performance and the relationship with 

vehicular motion sickness and task performance. The findings showed that passenger behavior 

under realistic driving conditions led to increased motion sickness and decreased post-drive 

balance performance, which could ultimately increase the risk of falling and injury among 

susceptible populations. Therefore, it is important to discuss how wearables can support 

secondary prevention of motion sickness, thereby reducing the detrimental effects of motion 

sickness on standing balance, task performance, and other activities in daily living.  
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Wearable devices can leverage physiological and physical signals for various informative 

health applications, including motion sickness. Quantifying motion sickness would be useful 

given that motion sickness ratings can be highly subjective and unrepresentative of the severity 

of motion sickness symptoms [19]. Although subjective motion sickness ratings may be useful 

for directly assessing symptom profile and severity, wearable devices might be able to further 

estimate the development of motion sickness and determine when severer symptoms might 

occur. However, limited work exists on measuring and addressing motion sickness with wearable 

devices. On the commercial market, there are only a few wearable products available, such as the 

ReliefBand®️ (reliefband.com), that attempt to reduce the occurrence of nausea and prevent 

motion sickness. In brief, users are encouraged to activate the device once they are aware of their 

symptoms, or even as a preventative measure. Based on the prevention framework developed in 

Chapter 1, the wearable could be classified as either primary or secondary intervention because 

the goal is to prevent the manifestation and onset of symptoms, or reduce the severity of 

symptoms once they appear.  

Among the published academic literature, very few studies have evaluated sensor-based 

signals from wearable devices for measuring motion sickness to inform prevention [60], [61]. In 

particular, the pilot study by Liu et al. (2015) analyzed a set of physiological signals that were 

collected using wearable devices (i.e., blood pressure, heart rate). Using a fixed-base virtual 

driving simulator, the authors compared statistical features of each physiological signal before 

and after the onset of visually induced motion sickness (VIMS), finding that a decreased 

correlation between heart rate and blood pressure may be indicative of a state of VIMS. The 

authors acknowledged that their analysis did not necessarily capture the onset of VIMS, and only 

compared differences in physiological sensor-based signals between non-VIMS and VIMS 
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conditions. Thus, their results would be more appropriate for secondary prevention, in which 

symptoms have already appeared. Nevertheless, these studies illustrate the potential of 

combining multiple wearable sensors to capture and estimate motion sickness. 

To that end, an ensemble of wearable sensors, models, and algorithms could potentially 

form a reliable system for quantitatively estimating the onset and severity of motion sickness 

throughout daily living. Given the findings of Chapter 3, assessments of balance performance 

could be a potential contributor to this proposed ensemble estimator of motion sickness. The 

study in Chapter 4 found a significant relationship between maximum motion sickness rating and 

specific balance metrics (i.e., RMS sway velocity and path length). Previous studies in motion 

sickness and standing balance have found increased postural sway during quiet standing to be a 

precursor to motion sickness symptoms [14], [58], [62]. To translate these findings, wearable 

devices could monitor postural sway, compute balance metrics, and feed a parameter into a 

larger system that could weigh the recommendation and make an improved estimate of a user’s 

state of motion sickness. In the field, users could perform prescriptive balance screenings to 

estimate potential onset of motion sickness. Following a drive, an analysis of postural sway 

could provide a complementary measure alongside other motion sickness screening tools. 

However, during the onset of motion sickness, it might be infeasible to halt all activity to 

perform a balance assessment. Instead, another approach might consist of continuous monitoring 

of posture, as discussed in the previous section. A further improvement could be using an 

analysis of postural sway during dynamic gait and correlating the changes in different metrics 

with motion sickness. The relationship between dynamic balance and motion sickness requires 

additional study though, as correlations between standing balance and dynamic balance have not 
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been strong [63]. As such, more work is needed to determine what types of balance assessments 

and metrics would be best suited for contributing to estimations of motion sickness.  

 

6.6.3. Data-driven approaches to dehydration assessments with wearable devices  

Dehydration plays an important role in reducing the risk of heat-related illness [64]–[66], 

especially among athletic individuals. To prevent severe levels of dehydration, individuals 

should engage in secondary prevention by monitoring their hydration status and rehydrating 

accordingly. However, current approaches can be limited by their reliability and/or access to 

equipment and technical expertise [36], [67]. For instance, salivary markers of hydration can be 

severely impacted by the ingestion of fluids [68]. In another case, invasive samples of blood can 

require expensive laboratory equipment and technical expertise. In field applications (e.g., 

games, practices), wearable devices can provide many opportunities for increasing the 

prevalence and accuracy of hydration assessments. In the case of the model developed in Chapter 

5, postural movements detected by an algorithm could trigger the wearable device to analyze 

subsequent changes in orthostatic vital signs. A future implementation of the model would then 

accurately classify dehydration at a level of 2% based on the changes over a set amount of time. 

The predicted outcome would enable users to make more informed decisions on replenishing 

fluids and prevent excessive dehydration that might affect their health and performance. 

Given the myriad of assessment methods, wearable devices can leverage different 

physiological principles to estimate hydration status. For example, some devices measure skin 

conductance at the wrist and are designed to be a long-term solution for monitoring hydration 

[69]; others may consist of a disposable adhesive patches that capture sweat rate [70]–[72]. In 

Chapter 5, a plausible method for noninvasive, semi-continuous monitoring of hydration status 
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based on orthostatic measurements was developed using a combination of wearable devices in a 

laboratory setting. Using a multimodal, sensor-based approach, signals from a wearable heart 

rate monitor and an inertial measurement unit were extracted to train an accurate predictive 

model of 2% dehydration, achieving an average 0.79 AUC on the test sets. Prior laboratory-

based studies have used similar orthostatic measurements to detect hydration status, but have 

reported lower discriminative performance [73], [74]. However, there are key differences 

between the study conducted in Chapter 5 and prior work on orthostatic measurements, which 

will be further discussed in the limitations. Overall, the model demonstrates the potential of 

wearable devices in a controlled setting; however, there are a few challenges to consider in order 

to translate the findings into a field-ready application.  

A significant challenge to consider is how the laboratory-based observations translate to a 

field application. The overall accuracy and reliability of the predictive model may vary 

significantly given that the natural postural movements observed in a field setting may not 

induce sufficient orthostatic changes for useful predictions. Moreover, the duration of the poses 

may introduce noise and further distort the estimation of dehydration. Still, different types of 

postural movements were found to be effective for detecting dehydration, as evidenced by the 

performance (AUC) of the models when using a 30-second toe-touch or 30-second hands-on-

knees pose. The lowest average AUC across all the different postural movements was 0.77 for 

the hands-on-knees pose, which is still considered to be significant given the statistical power of 

the study [75]. Moreover, the different types of postural movements were chosen to mimic 

common scenarios in the field. It is very likely that athletes would naturally perform similar 

movements as a form of recovery [76], or as part of a stretching routine. Future work should fit a 
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similar model using data collected from an athletic field setting to evaluate the transferability of 

the findings from Chapter 5.  

Hydration assessment methods also have to consider the physiological differences 

between different types of dehydration (i.e., hypertonic versus hypotonic), as some methods are 

more appropriate than others [36]. The study described in Chapter 4 investigated active 

dehydration through cycling exercise, where excessive sweat losses led to hypertonic 

dehydration. As a result, there was a decrease in the volume of blood (hypovolemia) and fluids 

throughout the body [77]. When making orthostatic movements, the lack of blood volume led to 

a compensatory cardiovascular response, demarcated by increased heart rate and blood pressure. 

The predictive model developed in Chapter 5 captured this relationship to make accurate 

estimations of hydration status. Although the data captured exercise-induced dehydration, it is 

anticipated that the model will perform similarly under scenarios during which individuals are 

passively dehydrated. For example, the cardiovascular response following dehydration due to 

sauna exposure has been found to be similar to the response observed in submaximal exercise 

[78]. Therefore, sauna-induced dehydration should result in similar orthostatic responses that can 

be predicted by the model. For wearable devices to be reliable in different scenarios, future work 

should focus on evaluating model performance for other types of dehydration and explore 

additional sensor-based physiological measurements, as other biomarkers may be more 

indicative and preferred for estimating passive dehydration [79]. A multimodal approach where 

multiple sensors and hydration assessments are used may be an option for increasing the overall 

reliability of a wearable system.  
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6.6.4. Populations that would benefit most from increased prevalence of wearables 

The risks associated with poor control of balance, motion sickness, and dehydration are 

highly dependent on the user. One of the most salient examples is that falls affect older adult 

populations disproportionately due to age-related effects on balance ability [40]. It follows that a 

wearable device focused on health monitoring for secondary prevention of falls would 

significantly benefit older adults. Furthermore, wearable devices may be of great value for 

populations that experience similar losses of balance (e.g., because of vestibular disorders).  

For motion sickness, wearable technologies that make progress towards estimating risk of 

onset would logically be useful for individuals with a known history of motion sickness 

incidence, as well as populations that are highly susceptible to motion sickness [23]. In the 

context of automated vehicles, drivers that are shifted into a passenger role may find themselves 

to be newly susceptible to motion sickness, contrary to their past travel experiences. In this case, 

wearable technologies for motion sickness would directly address these newer cases of passenger 

motion sickness. Generally, in an on-road driving environment, younger adults with less travel 

experience are more likely to experience motion sickness [20], with some studies reporting that 

females are more likely to be affected as well [23], [80]. Therefore, wearable applications for 

preventing motion sickness may be most beneficial to a younger adult population, who were 

found to report the highest motion sickness ratings in this dissertation. In a scenario where 

motion sickness does occur, increased fall-risk may be minimal as younger adults are much less 

likely to experience fall-related injuries [40].  

Lastly, the role of dehydration in daily living typically depends on the individual’s 

routine, environment, and occupation. Wearable technologies have been thoroughly researched 

for athletic and military applications due to their level of intense, physical activity [60], [81]–



 159 

[83]. In heated environments, it is especially critical to monitor hydration status to maintain 

physical and cognitive performance. In this dissertation, the study reported in Chapter 5 

describes a new method that could complement current hydration assessment methods, and 

improve the overall approach to secondary prevention in many existing scenarios. Given the 

focus on real-time monitoring of hydration status, the method developed in this dissertation 

could easily be modified and adapted for both inpatient and outpatient settings. Furthermore, 

future work could explore other populations (e.g., less active individuals, clinical populations).  

6.6.5. Leveraging commercially available devices for implementation 

The translation of this dissertation’s findings may be limited by the availability and 

prevalence of wearable sensors and devices. One strength of the studies in this dissertation is that 

the instrumentation for collecting sensor-based signals is highly accessible. In the case of 

detecting dehydration, a commercially available heart rate sensor (e.g., Polar H10) was used to 

collect heart rate data for developing the model. Many third-party applications and devices such 

as the Catapult OptimEye S5 interface with the transmitted heart rate signal through a common 

Bluetooth protocol. With the appropriate software, these applications can perform a 

transformation (e.g., filtering, computing metrics) and subsequently provide insights into the 

user’s current hydration status.  

The need for higher quality data from sensors may be dependent on the strength of the 

underlying relationship between model predictors and outputs. In Chapter 5, a commercially 

available chest strap heart rate monitor was sufficient for developing an accurate predictive 

model of dehydration. It is possible that aggregate metrics like the mean can sufficiently capture 

most of the variance between individuals’ hydration statuses. Though, if a higher-grade sensor 

(e.g., higher sampling frequency and/or resolution) were to be used, additional features like 
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higher-frequency components could capture dynamic signal behavior and potentially improve 

model performance. However, higher quality data may not necessarily lead to improved model 

performance. In a study by Alvarez et al. (2019) [33], an electrocardiogram was collected, 

sampled at 1000 Hz, to estimate the level of dehydration. Without using orthostatic movements, 

their best model, based on the time between RR intervals, only achieved an accuracy, precision, 

and recall of at most 0.68. Besides model performance, some technologies are currently limited 

when thinking about the design considerations for a wearable device. For example, a clinical 

electrocardiogram is currently infeasible for wearable applications. Similarly, when measuring 

postural sway, a force plate is simply not feasible for wireless data collections during daily 

living. Though, with advances in wearable technologies and sensors, it may be possible to make 

similar measurements (e.g., instrumented insoles in place of force plates). Although an IMU may 

not directly capture the center-of-pressure, prior work has successfully used IMUs to wirelessly 

assess risk of falling, detect gait abnormalities, and analyze changes to standing balance 

performance [9]–[11], [84], [85]. Ultimately, there is currently a tradeoff between having a 

higher-grade sensor (and a potentially improved model), and having a compact, inexpensive 

wearable system.  

6.7. Implications 

This dissertation illustrated specific health monitoring applications of wearable devices to 

support non-clinical, secondary prevention by studying 1) post-drive increases in postural sway 

using a mobile device, 2) the relationship between subjective ratings of vehicular motion 

sickness, task performance, and postural sway, and 3) noninvasive detection of mild dehydration 

using commonly available physiological data.  
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The study conducted in Chapter 2 revealed acute effects of a scripted, continuous driving 

exposure with task performance on passenger behavior. The study represented one of the first 

extensive explorations of postural sway in an on-road driving environment, and extends previous 

findings on postural instability in driving simulators and other motion modalities. Furthermore, 

the additive effects of performing a non-driving-related task imply that the magnitude of sensory 

conflict during the exposure may be proportional to the resulting changes to postural sway. For 

certain passengers, performing a task while using mobility solutions may decrease the level of 

comfort during transportation and, for certain segments of the passenger populations, increase 

the risk of injury due to falling.   

In Chapter 3, the analysis of standing balance was extended to realistic on-road driving 

conditions, further nuancing the relationship between post-drive postural sway and in-vehicle 

exposures. Even in realistic driving conditions, the increase in postural sway following a drive 

provided additional evidence that intensive, continuous motion exposures temporarily alter 

standing balance ability. Similar to the findings described in Chapter 2, the relative change in 

post-drive postural sway varied as a function of the Task condition, implying that normative 

passenger behavior in urban transportation may be detrimental to standing balance control 

immediately following the drive. It is for this reason that wearable devices capable of measuring 

data throughout daily living are needed. Assessing postural sway during and after in-vehicle 

exposures could inform users about their postural instabilities, and could potentially reduce the 

risk of falling, and subsequently alleviate some of the effects associated with falls (i.e., medical 

costs, social anxiety, recurring injuries) [37], [86].  

A large implication of the relationship between motion sickness and standing balance 

ability is that an unforeseen risk of injury may be present among different segments of passenger 
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populations. The postural instability theory of motion sickness proposes that being in a continued 

state of postural instability leads to the onset of motion sickness [26]. In this dissertation, 

postural instability (parametrized through balance metrics of trunk sway) was found to be 

expressively related with high responders to motion sickness. As such, during an activity as 

common as personal transportation, one might expect postural instability to be both a precursor 

and a result of motion sickness incidence, among other effects of motion sickness (e.g., 

vomiting, fatigue) [87]–[90]. The predictive model of motion sickness developed in this 

dissertation identified which types of passengers and behaviors were most likely to contribute to 

motion sickness incidence. The predictive model could easily be supported by wearable devices, 

and users could be informed, with reasonable confidence, about their potential likelihood for 

experiencing motion sickness during an on-road drive. The model parameters also provide 

insight into specific behaviors that could be the focus of mitigation strategies (e.g., limiting 

amount of time in fixed head positions during task performance). More broadly, using wearable 

technology to develop personalized mitigation strategies would reduce the likelihood of motion 

sickness and promote more comfortable use of automated vehicles, mobility solutions, and 

personal transportation among passengers. 

In Chapter 5, this dissertation demonstrated a multimodal approach using commonly 

available wearable sensors and machine learning to noninvasively detect mild dehydration. Data-

driven, machine learning approaches were shown to be feasible for quantifying and improving 

upon the existing clinical orthostatic tests, such that they potentially could complement other 

assessment methods closer to real-time. Improvements to the predictive model (e.g., with more 

data, improved feature engineering, other types of algorithms) for a wearable device could 

increase individual awareness of dehydration, inform the user to replenish fluids, and prevent 
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severe heat-related illnesses associated with dehydration. More specifically, in field applications, 

users could leverage the predictions of the model by taking additional assessments of 

dehydration (i.e., bodyweight measurements or urinalysis) to confirm the level of fluid loss. 

Furthermore, by detecting more naturalistic postural movements during physical activity, the 

model takes steps towards a real-time, long-term monitoring system based on simple ubiquitous 

wearable sensors.  

Generally, when considering predictive models coupled with a wearable device, the user 

is given actionable recommendations based on their data. In theory, gathering data and having a 

human in the loop could further improve the models installed on wearable devices (online 

learning). Ultimately, it is up to the user to act on these recommendations to address any 

symptoms or potential health issues. This dissertation primarily focused on the feasibility of 

different wearable sensors for health monitoring applications. However, the interaction between 

the wearable device, the data being collected, and the decision-making of the human user 

remains to be explored.  

6.8. Limitations 

The findings presented in this dissertation only illustrate applications of different 

relationships that can be measured using wearable technology, rather than proposing and testing 

a preliminary design. As such, customized hardware could be developed to leverage the specific 

relationship revealed through this research to create a compact, wearable devices. In Chapters 2 

and 3, assessments of balance were limited to quiet standing exercises; analysis of dynamic 

balance during gait could be useful for a more ecologically relevant context beyond passenger 

vehicular transportation. Although the relative changes in balance may have been indicative of 
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increased risk of falling, there were no data collected that directly captured the probability of 

falling or retrospective/prospective falls. Because motion sickness ratings throughout the drive 

were indicated using a custom rating scale, it is unknown if the findings would directly map to 

measurements and tools used in related studies (e.g., the SSQ). However, in prior analyses of the 

ratings, combining participants’ self-reported motion sickness susceptibility and ratings data 

revealed a strong correlation to similar descriptive rating scales. Still, the data on motion 

sickness ratings were used to classify motion sickness using pre-drive balance metrics and 

participant covariates. In Chapter 5, a larger sample size would be useful for capturing different 

levels of aerobic fitness and other participant demographics. The sample population included in 

the study was restricted to younger, athletic individuals without any history of cardiovascular 

diseases. With a machine learning approach, additional samples would lead to improved 

generalization of the model to various individuals. Although the model was trained to classify 

2% loss of bodyweight, some participants did not actually achieve 2% bodyweight loss due to 

time constraints or fatigue. Moreover, the model developed in Chapter 5 was only based on data 

obtained through exercise-induced dehydration.  

6.9. Future Work 

6.9.1. Postural sway beyond quiet standing exercises 

The balance metrics used for the studies in this dissertation were computed from trials 

that were performed prior to and following a drive. A significant body of work has examined 

postural instability over the course of an exposure, as opposed to before and after. As was 

discussed in Chapter 3, future studies should include measurements of postural sway throughout 

an in-vehicle exposure. Those findings would then elucidate whether or not the postural 



 165 

instability theory extends to physical, in-vehicle exposures during on-road driving. Given that 

metrics of trunk postural sway increased post-drive (and were significant with respect to the Task 

condition), it is likely that a similar trend would be observed for in-vehicle postural sway. Other 

studies have found that the postural sway of individuals with motion sickness increases over the 

length of an exposure [18], [58], [62]. It is possible then that, following an exposure, postural 

sway metrics might show increased postural sway compared to baseline measurements.  

In addition to in-vehicle postural sway, measurements of dynamic balance should be 

studied as part of future work. Understanding dynamic balance following a drive would 

contribute to the design of a wearable device that could be used seamlessly throughout real-life, 

unscripted daily activities. These additional metrics of balance ability could then support the 

predictive model of motion sickness, and contribute to developing a prescriptive model for 

improved secondary prevention.  

Investigating how sensory adaptation to different types of motion may have potential for 

further understanding the mechanisms of how on-road driving affects standing balance. A 

previous study has investigated sensory adaptation mechanisms following simulated driving by 

comparing sway metrics between different visual conditions and analyzing changes to the visual 

contribution to postural control [22]. Participants in that study were found to be more dependent 

on the visual sensory system for balance due to the mismatch between the visual and vestibular 

signals presented in a fixed-base driving simulator. A similar balance protocol could be 

performed to explore how dependencies on different sensory systems change throughout an on-

road driving exposure, and potentially inform mitigation strategies. 
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6.9.2. Exploring different in-vehicle exposures among passengers  

Throughout the studies of postural sway and motion sickness, participants only sat in the 

front passenger seat during the drives. Given that different seating configurations can lead to 

varying motion sickness responses [4], [91], [92], future studies should investigate how post-

drive postural instability varies as a function of different in-vehicle passenger exposures. When 

considering the potential designs of automated vehicles, future studies can place participants in 

the back seat, or even have participants face rearward during in-vehicle exposures [93]. 

Moreover, it would be important to study participants’ experiences in response to the motion 

profiles of an automated vehicle, instead of having a trained operator. Similar to the studies in 

this dissertation, it is likely that future studies would explore automated vehicle testing on a 

closed test track prior to adapting the protocol to an on-road, urban environment.  

6.9.3. Additional wearable sensors for motion sickness detection and prediction 

This dissertation investigated predicting motion sickness using a minimal number of 

wearable IMUs. However, based on the findings of related work, future work should explore 

additional physiological sensors in combination with wearable IMUs to determine if overall 

predictive performance could be improved. Some promising examples include blood pressure 

and heart rate monitors. Multiple metrics could be derived from each sensor to potentially 

improve predictive performance. With additional data and features, there is potential to re-frame 

the problem as a regression problem, where motion sickness ratings are estimated via other 

modeling techniques such as linear regression or neural networks.  

Future work focused on predicting motion sickness onset should also investigate the 

relationships between different sensations and symptoms, as opposed to just overall subjective 
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ratings. Current work on predicting motion sickness is limited because some studies incorporate 

data that has been collected after motion sickness onset. With the goal of predicting motion 

sickness, future work should shift towards only using data available prior to reaching a certain 

threshold of motion sickness.  

6.9.4. On-field data collections of postural movement 

This dissertation leveraged laboratory-based empirical data to build models to estimate 

dehydration using 20 participants (10 male, 10 female). Moving forward, a larger sample size is 

desirable, as more data would improve the generalization of the model to other individuals. 

Given that commercial wearable devices were used during data collection, future work could 

involve the adaptation of the laboratory-based protocol for an on-field study. Collecting 

kinematic postural data in real-time would be valuable for tuning the predictive model, and 

ultimately determine the practicality and viability of the noninvasive method. Furthermore, data 

should be collected in both active and passive scenarios (e.g., practices or saunas) to assess the 

generalizability of the model for different types of dehydration.  

There may be significant challenges with mapping the laboratory-controlled, scripted 

postural movements with naturalistic postural changes seen in real-life scenarios and activities. 

In an athletic field setting, the tested postural movements may not appear as frequently as 

needed. Moreover, the depth of the movements may not be sufficient to elicit the orthostatic 

changes needed to classify hydration status. In that case, future studies should focus on analyzing 

data from scripted postural movements performed by athletes at specific times during a field 

activity, so that models can be trained using levels of hydration and exercise that are more 

typical of what is observed in a field setting. Such findings will be important for determining 

whether or not the method can function beyond scripted postural movements.  
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6.9.5. Developing a multi-modal estimation system of dehydration 

Similar to the prediction of motion sickness, additional sensors should be explored as part 

of a multi-modal system for predicting dehydration. Existing methods of hydration assessment 

have their own limitations, whether it pertains to accuracy, reliability, and accessibility, among 

other criteria. As Barley et al. (2020) [94] suggested, multiple measurements are preferred for 

obtaining the most complete assessment of hydration status. Given the growth of wearable 

technologies in recent years, many other additional methods can be implemented (or already 

exist) as part of a wearable device as well. For example, certain wearable systems perform 

chemical sweat analysis while being completely housed in a watch worn on the wrist [95]. 

Therefore, future work should investigate combining and weighing the estimates from different 

systems to improve the overall quality and accuracy of the recommendations. In addition, these 

systems should focus on detecting mild dehydration so as to improve the effectiveness of 

secondary prevention. As a result, in a non-clinical setting, users of a wearable can be well-aware 

of their own hydration status, preemptively replenish lost fluids, and ultimately reduce the risk of 

injury associated with unaddressed dehydration. 

6.9.6. Evaluating passive approaches of dehydration 

 The study described in Chapter 5 developed a model based on exercise-induced 

dehydration. For alternative modes and methods of dehydration (e.g., hypotonic, isotonic), there 

are distinct differences between the physiological changes in fluid balance and composition; 

these changes can affect the accuracy of hydration assessments [96], [97]. However, orthostatic 

measurements have been effective for assessing dehydration due to diuretics [74]. Heat stress 

and fluid restriction have been shown to affect orthostatic intolerance in older adults [98], [99]. 
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Therefore, it is likely that the model developed in Chapter 5 will translate similarly for other 

passive approaches of dehydration, though predictive performance might vary. Future work 

should validate models using a similar experimental protocol; however, additional controls 

should be in place for heat acclimatization, and different exposure conditions should be used 

(e.g., fluid restriction, heat stress, saunas). Future analyses should further determine if any 

features and transformations are important for distinguishing between passive and active 

dehydration methods.  

6.9.7. Incorporating other types of models for estimations 

Physics-based models have been shown to be increasingly useful for estimating the 

behavior of different systems. Leveraging scientific theory and knowledge for developing 

physics-based models is useful because performance of data-driven models can be limited by the 

amount of available data, and they may not generalize well beyond the sample data used for 

training [100]. Moreover, a hybrid approach can be useful for improving overall performance 

[101]. Given that previous studies have developed mathematical and computational frameworks 

for motion sickness and dehydration [102], [103], future work should explore the use of physics-

based models to improve data-driven models used for monitoring health conditions, especially 

when data that trains these models are sparse.  

6.9.8. Technological requirements for supporting wearables for health monitoring 

In this dissertation, data-driven models were developed using commercial sensors and 

large, comprehensive datasets. However, work is still needed to determine if current hardware 

and software embedded in wearable devices would be able to satisfy the computational demands 

of these models for implementation. Although these models can be simple, future work could 
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incorporate more complicated models (e.g., neural networks) for health monitoring as data-

driven approaches become more popular. Depending on the application, increasingly complex 

models can drive hardware and software requirements to meet higher demands on signal 

processing, sensor input/output, and model computations, among others [104]. With respect to 

motion sickness and dehydration, improved sensors that can capture high-fidelity representations 

of physiological signals (e.g., electrocardiograms) could enable more sophisticated features for 

modeling health conditions. In parallel, embedded computers in wearable devices must be able to 

host these data-driven models and process larger input data.  
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