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ABSTRACT 

Glucagon-like peptide-1 (GLP-1) is encoded by the preproglucagon gene (Gcg) and 

expressed in the intestine, pancreas, and central nervous system (CNS). Activation of 

GLP-1 receptors (GLP-1R) on pancreatic β-cells induces insulin secretion in a glucose-

dependent manner while activation of CNS GLP-1Rs suppress feeding. Thus, Gcg-

derived peptides play an important role in gluco- and body weight regulation, and GLP-1 

has been implicated in the success of bariatric surgery. GLP-1 agonists are an effective 

treatment of type 2 diabetes mellitus (T2DM) and obesity. The predominant source of 

circulating GLP-1 is the intestine, but the α-cell becomes an important source when the 

islet is metabolically stressed. Further, plasma GLP-1 is increased in T2DM patients in 

response to inflammation. Nutrient-stimulated GLP-1 functions as an incretin, however, 

the function of GLP-1 during inflammation is unknown. My dissertation proposes that 

during inflammation, GLP-1 plays a metabolic role, functioning to regulate glucose 

levels and food intake, and an immunologic role, functioning to regulate inflammation.  

I examined the metabolic and immunologic role of Gcg under inflammatory conditions. 

Using a combination of high-fat diet (HFD)-induced obesity and a mouse model of 

tissue-specific Gcg expression, I explored the function of GLP-1 in response to 

inflammation by administering lipopolysaccharide (LPS), a well-established tool for 

inducing inflammation. LPS is a known anorectic agent that also alters glucose 

homeostasis; both functions of GLP-1.  

I hypothesized that HFD would exacerbate physiological responses to LPS including 

increased plasma GLP-1, decreased blood glucose levels, and increased sickness-

induced anorexia, as well as systemic inflammatory responses including increased 

plasma cytokines. Indeed, HFD did increase plasma pro-inflammatory cytokines, and 

GLP-1 levels in response to LPS and this was associated with greater anorexia in HFD-
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fed animals. In the next set of studies, I tested whether GLP-1 secreted from either the 

pancreas or intestine was directly regulating feeding and glucose responses to LPS. I 

hypothesized that increases in circulating GLP-1, primarily from the pancreas, were 

necessary for feeding and glucose responses to LPS. I found that while both pancreatic 

and intestinal Gcg contribute to circulating levels of GLP-1 after LPS, the availability of 

either source of GLP-1 had no impact on glucoregulatory or feeding responses. 

Because pancreatic GLP-1 is the more novel contributor to circulation, I investigated the 

impact of Gcg on pancreatic inflammation. I found that 24h after LPS, whole-body chow-

fed Gcg Null animals had increased macrophage accumulation in the pancreas. I saw a 

similar trend in HFD-fed Gcg Null mice. Using a GLP-1R reporter mouse, I found that 

macrophages isolated from the pancreas, but not the bone marrow, express GLP-1R. 

These data suggest that pancreatic GLP-1 directly regulates local macrophage 

responses to inflammation. I conclude that under severe inflammatory conditions, GLP-

1 plays an immunologic rather than metabolic role in the pancreatic responses to LPS, 

through direct macrophage regulation.  

This dissertation indicates a new role for GLP-1 signaling to pancreatic macrophages in 

response to inflammation. Future studies will explore the impact of this increased 

macrophage accumulation on long-term pancreatic function. In fact, my preliminary data 

demonstrate that IP glucose tolerance was impaired 2 weeks following LPS. This lasting 

impact of inflammation on pancreatic function points to a new use of GLP-1 agonists to 

protect pancreatic tissue during severe inflammation such as sepsis, or more recently, 

COVID-19.  
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CHAPTER 1                                                                                                                                

1Glucagon-like peptide-1: Actions and Influence on Pancreatic Hormone Function  

Abstract 
Glucagon-like petptide-1 (GLP-1) was described as an incretin over 30 years ago. GLP-

1 is encoded by the preproglucagon gene (Gcg) which is expressed in the intestine, the 

pancreas, and the central nervous system. GLP-1 activates GLP-1 receptors (GLP-1R) 

on the β-cell to induce insulin secretion in a glucose-dependent manner. GLP-1 also 

inhibits α-cell secretion of glucagon. As few, if any, GLP-1R are expressed on α-cells, 

indirect regulation, via β- or δ-cell products has been thought to be the primary 

mechanism by which GLP-1 inhibits glucagon secretion. However, recent work 

suggests that there is sufficient expression of GLP-1R on α-cells for direct regulation as 

well. Although the predominant source of circulating GLP-1 is the intestine, the α-cell 

becomes a source of GLP-1 when the islet is metabolically stressed. Recent work 

suggests the possibility that this source of GLP-1 is also important in regulating nutrient-

induced insulin secretion in a paracrine fashion. More work is also accumulating 

regarding the role of glucagon, another Gcg-derived protein produced by the α-cell, in 

stimulating insulin secretion by acting on GLP-1R. Altogether, these data clearly 

demonstrate the important role for Gcg-derived peptides in regulating insulin secretion. 

Because of GLP-1’s important role in glucose homeostasis, it has been implicated in the 

success of bariatric surgery and has been successfully targeted for treatment of type 2 

diabetes mellitus. 

 
1 This chapter is a reproduction of the following manuscript: 

Davis EM, Sandoval DA. Glucagon-Like Peptide-1: Actions and Influence on Pancreatic Hormone Function. Compr 
Physiol. 2020 Mar 12;10(2):577-595. doi: 10.1002/cphy.c190025. PMID: 32163198. 

 



2 
 

Introduction: History of GLP-1 as an incretin   

After the discovery of insulin and the development of the radioimmunoassay to assess 

plasma insulin levels, a debate ensued over whether glucose was the only stimulus for 

insulin secretion. Spurred on by work demonstrating that glucose removal from the 

blood was more rapid with oral vs. IV glucose in dogs (1), McIntyre et al. found that 

glucose was lower but insulin was higher after isocaloric loads of glucose administered 

into the jejunum vs. intravenously in man (2). Months later, a second study had similar 

findings with oral vs. IV glucose (3). These data in conjunction with multiple reports in 

the 1920’s and 30’s that intestinal mucosa had hypoglycemic properties led the authors 

of both papers to hypothesize that a gut-derived humoral substance contributed to the 

regulation of insulin secretion (Figure 1.1). Yet, it was not until the 1970’s when the first 

“incretin” was discovered. When gastric inhibitory polypeptide (GIP; aka glucose-

dependent insulinotropic peptide) was infused into humans intravenously, insulin 

immunoreactivity increased and glucose tolerance was improved (4). However, while 

gut extracts containing GIP increased insulin secretion, removal of GIP from the 

extracts only blunted the insulin response by 30% suggesting the presence of additional 

incretins (5).  

With the discovery of glucagon and in the pursuit of understanding its form and function, 

two other peptides were found on the same mRNA (6,7). These peptides were 

glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2). At this time the 

biological function of these peptides was unknown but later work demonstrated that 

GLP-1, but not GLP-2, stimulated insulin release in rat islets (8) and when infused in 

humans (9). This latter study found that GIP was less effective at increasing insulin 

levels and concluded that GLP-1 was a physiological incretin in man.  We now know 

that GLP-1 has a wide array of physiological functions, yet its role in the pancreas is still 

the most widely studied. The purpose of this review is to discuss the role and 

mechanisms associated with GLP-1 and GLP-1 receptor (GLP-1R) signaling in 

regulation of pancreatic hormone secretion and consequently glucose homeostasis. 

Consideration is also given to its role in bariatric surgery and the current state of GLP-1 

pharmaceuticals.  
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Regulation of preproglucagon (Gcg) expression 

We now know that preproglucagon (Gcg) is the gene that codes for GLP-1 and it is 

expressed in a specific population of intestinal enteroendocrine cells called L-cells.  Gcg 

is also expressed within pancreatic islet α-cells, and in a distinct set of neurons within 

the nucleus of the solitary tract (NTS) (10,11). Gcg undergoes tissue-specific post-

translational modification by prohormone convertases (PC). In intestinal L-cells and 

neurons of the NTS, a specific isoform of PC, PC1/3, is predominantly expressed and 

yields GLP-1, oxyntomodulin, and GLP-2 as the physiologically relevant products (12–

14). In contrast, the α-cell predominantly expresses another PC isoform, PC2, which 

yields glucagon (15). Gcg codes for other bioactive proteins including the proglucagon 

fragments glicentin, glicentin-related pancreatic polypeptide (GRPP), and major 

proglucagon fragment (MPGF) but the functional significance of these peptides is 

unclear.  

Nutrient status is clearly an important factor in regulating Gcg expression across all 3 

organs for which it is expressed. Re-feeding after fasting (16,17), dietary fibers (17–19), 

long chain fatty triglycerides (16), and peptones (20,21), all increase intestinal Gcg 

expression, and amino acids stimulate α-cell hyperplasia and glucagon secretion (22). 

Interestingly, in vitro work in cell lines suggest that physiological stimuli such as 

peptones act via cyclic adenosine monophosphate (cAMP) response element binding 

protein (CREB) signaling to regulate transcriptional responses of Gcg (23,24). In fact, 

increases in cAMP leads to increases in Gcg expression in both the pancreas and 

intestine (17,25–27). Downstream of cAMP but a pathway that is distinct from protein 

kinase A (PKA), activation of exchange protein activated by cAMP 2 (EPAC) also 

increases Gcg transcription in both α- and L-cells (28,29). In contrast, specific to the L-

cell, Gcg expression has been shown to be downstream of the canonical Wnt signaling 

pathway (a specific signaling transduction pathway), β-catenin and transcription factor 7 

like 2 (TCF7L2) (30). Although the mechanisms are unclear, it is also well established 

that bowel resection or injury causes a large increase in intestinal Gcg expression (31).  

The function is likely related to the increase in GLP-2, which functions as an intestinal 

growth factor (see (32) for review). Distinct regulatory mechanisms for Gcg 
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transcriptional control between tissues is in parallel with the distinct patterns of 

prohormone processing in the major cell types producing Gcg peptides. 

Regulation of intestinal GLP-1 secretion 

Within the intestine, the density of Gcg-expressing cells increases from the proximal to 

distal gut with the expression being highest in the colon (33). L-cells within the intestinal 

epithelium and have apical processes that extend into the gut lumen allowing direct 

access to ingested nutrients (34), and all three macronutrients (carbohydrate, fat, 

protein) individually stimulate GLP-1 secretion (35,36).  

Greater numbers of enteroendocrine cells that express Gcg within the lower intestine 

suggests that postprandial GLP-1 secretion is derived from the ileum and colon. Indeed, 

nutrient infusions directly into the ileum causes significantly greater increases in portal 

vein (the major blood vessel that collects intestinal secretions) concentrations of GLP-1 

(37).  Interestingly, in ex vivo studies from human tissue, the duodenum and ileum but 

not the colon were found to be glucose responsive (38) which is different than what is 

reported in mouse colon (39,40) but are consistent with data where patients that have 

had colon resection have normal GLP-1 responses to glucose (41). An argument has 

been made that duodenal secretion of GLP-1 is responsible for early phase GLP-1 

secretion (42) but no direct link has been found. However, the anatomic distribution of 

the L-cells (highest number in distal gut) and the rapid increase in postprandial 

circulating GLP-1 (43) that occurs before nutrients reach the distal gut (44,45) is 

evidence supportive of neural, endocrine and/or paracrine mechanisms being more 

critical to nutrient-induced increases in circulating GLP-1 (46).  

One possibility is that there are feed forward neural or paracrine signals from the upper 

gut to the ileum that stimulates the release of GLP-1 (47,48). Transection of the gut 

below the duodenum resulted in a delayed GLP-1 response to nutrients compared to 

when the gut is simply ligated, the latter being a procedure which preserves neural 

innervation (49). Further support for neural regulation of GLP-1, bilateral 

subdiaphragmatic vagotomy in conjunction with intestinal transection completely 

abolishes nutrient induced GLP-1 secretion (49). In rodents, human enteroendocrine 
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cells, and in perfused porcine ileum, cholinergic agonists, which bind to receptors in 

both the enteric and parasympathetic nervous system, stimulate GLP-1 secretion 

(26,48,50,51). Conversely, norepinephrine and α-adrenergic agonists inhibit (50) and β-

adrenergic agonists stimulate (52,53) GLP-1 secretion suggesting that sympathetic 

neural innervation of the gut is also important in the regulation of GLP-1 secretion. In 

humans, atropine, which is a parasympathetic nervous system agonist, blunts glucose-

induced increases plasma GLP-1 (45). Together these data lend support to the idea that 

neuronal influences are at play in regulation of postprandial GLP-1 secretion.  

Despite the anatomic limitations, there are several potentially overlapping nutrient-

sensing mechanisms that have been found to regulate intestinal GLP-1 secretion. Both 

passive glucose transport through the sodium glucose cotransporter 1 (SGLT1) (39,54) 

and active glucose transport through glucose transporter 2 (GLUT2) have been found to 

regulate intestinal GLP-1 secretion as inhibitors for each transporter blocks GLP-1 

release (38). Similar to pancreatic β-cells that secrete insulin, potassium adenosine tri-

phosphate (KATP) channels and its associated sulfonylurea receptor are also expressed 

in L-cells (55,56). Data suggest that increased glucose metabolism within L-cells leads 

to an increase in ATP and consequently depolarization of KATP channels triggering GLP-

1 secretion (39,55,57).  Interestingly, GLUT2 is linked to KATP channels (58) while 

SGLT1 is linked to voltage gated sodium and calcium channels in GLP-1 secretion (38). 

However, in animal models pharmacological (59) or genetic (60) blockade of SGLT1 

had a bigger impact on blunting GLP-1 secretion compared to the same manipulations 

towards GLUT2. In contrast, ex vivo studies in human tissue suggests GLUT2 may be 

more important (38). It is unknown whether these differences are simply due to the 

species or the experimental conditions; in particular for the ex vivo experiments.  

Early work demonstrating that PKA activators could stimulate GLP-1 secretion from cell 

lines suggested that G-protein coupled receptors (GPCR) were involved in the 

regulation of GLP-1 secretion (51,61,62). Gαs and Gαq-coupled receptors responding to 

luminal bile acids and long-chain fatty acids have demonstrated potent effects on GLP-1 

secretion (63). Bile acids signaling through the Gαs protein-coupled bile acid receptor 1, 

or TGR5, stimulate GLP-1 secretion (63,64). Bile acids also signal through farnesoid X 
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receptor, a nuclear transcription factor, but TGR5 is the primary bile acid receptor that 

can drive GLP-1 secretion (65). Offering clinical promise, in vitro data using primary 

enteroendocrine cells and an intestinal cell line indicated that pharmacologic TGR5 

agonists are more potent GLP-1 secretagogues and are better at enhancing L-cell 

responses to calcium and glucose-induced GLP-1 secretion compared to naturally 

occurring bile acids (64).  

Long-chain fatty acids and their derivatives specifically activate multiple types of GPCRs 

including, GPR119, GPR120, and GPR40 (66), and this activation also stimulates GLP-

1 secretion. GPR119 is a Gαs-coupled protein receptor and it is highly co-localized to L-

cells within the GI tract. GPR119 agonists increase GLP-1 secretion (67) and GPR119 

knockout mice have a reduced GLP-1 response to an oral glucose load (68). However, 

a randomized double-blind placebo controlled trial revealed that GPR119 agonism was 

not as effective at increasing total and active GLP-1 responses to glucose or a mixed 

liquid meal nor was it as effective at improving glucose control over a 2-week study 

period (69). In contrast to GPR119, a Gαs-coupled receptor, GPR120 and GPR40 are 

Gαq-coupled receptors that signal through protein kinase C. Activation of both GPR40 

and GPR120 result in increased GLP-1 secretion (70–73), however, their role may be 

more pharmacological than physiological. While members of these GPCR families were 

under active investigation as drug targets for the treatment of type 2 diabetes mellitus 

(T2DM), due to lack of efficacy the number of drugs in the pipeline have been drastically 

reduced.  

Another type of GPCR that is expressed in the GI tract and has been found to be linked 

to GLP-1 secretion are “sweet taste receptors” (74). These same receptors are 

expressed in the tongue and are integral in sweet taste perceptions. Their function in 

the GI tract is less clearly understood. Non-nutritive agonists of sweet taste receptors do 

increase GLP-1 levels and mice null for one such sweet taste receptor, α-gustducin, 

have reduced GLP-1 responses to an oral glucose load (74). Some data suggest that 

pharmacological inhibition of sweet taste receptors blunt GLP-1 responses to nutrients 

(75), but other studies found no impact of sweet taste receptor agonists on GLP-1 

secretion in humans (40,76) or in in vivo or ex vivo studies in rats (77).  
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Altogether it seems that many molecular signaling pathways have been linked to GLP-1 

secretion (Figure 1.2), and it is possible that all of these pathways are involved in order 

to provide an integrated response that also allows for fine tuning of GLP-1 secretion. 

One example of this is recent work that found a synergistic action of pharmacological 

TGR5 and GPR40 activation on the electrophysiological properties of L-cells (78). 

However, while data in mouse models are promising, there are currently no therapies 

currently in clinical trials focused on GPCR signaling to increase plasma GLP-1. 

Whether this is because these GPCRs are not important or whether increasing intestinal 

GLP-1 secretion, alone, is sufficient for obesity and/or T2DM treatment remains to be 

determined.  

GLP-1 Receptor distribution and signaling 

Direct regulation of insulin secretion 

The GLP-1R is a GPCR that is expressed within the pancreas, lung, adipose tissue, 

kidney, heart, vascular smooth muscle, and in a number of specific nuclei within the 

CNS (25,79). Most of what we know about GLP-1R signaling is derived from studying 

the β-cell population of GLP-1R. When glucose is transported into the β-cell, its 

metabolism generates ATP which provides energy for closure of KATP channels and 

consequently an increase in intracellular calcium; the latter being necessary for 

exocytosis of insulin. Binding of the GLP-1R produces cAMP and consequently 

activation of PKA and EPAC2 (80) which potentiates glucose-stimulated insulin release 

(80–82). With fasting and when intracellular ADP is increased, PKA activation 

hyperpolarizes the β-cell membrane by increasing KATP channel conductance. When 

ADP levels are reduced with glucose metabolism, PKA phosphorylates a subunit of the 

KATP channel leading to channel closure and depolarization (83). This extends to 

pharmaceutical activation of the GLP-1R in that GLP-1R agonists are weak insulin 

secretagogues at basal glucose levels. Further, the ability of GLP-1 to suppress 

feeding, an action dependent upon CNS receptors, is blunted in fasted conditions 

(84,85) and dependent upon nutrient-dependent intracellular pathways (86) indicating 

that CNS GLP-1R signaling is also dependent upon nutrient availability.  
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Although pharmacological data make it very clear that GLP-1 regulates insulin 

secretion, genetic data suggest that the system is more complex than a simple 

endocrine model of insulin regulation. Genetic models demonstrate that although GLP-1 

regulates insulin secretion through the β-cell GLP-1R (87), the necessity of these 

receptors depend on the route of delivery of nutrients. Mice with an inducible knockout 

of the β-cell GLP-1R have normal oral, but impaired intraperitoneal (IP) glucose 

tolerance (88). This is interesting as even whole body GLP-1R KO mice have greater 

impairments in IP vs. oral glucose tolerance. Importantly, these responses could also be 

explained by the redundancy of insulinotropic signals from the gut or nervous system 

during oral vs. IP glucose loads, but in the end still demonstrate that β-cell GLP-1R, in 

and of themselves, are not necessary for oral glucose tolerance.  

GLP-1R regulation of insulin secretion independent of the β-cell GLP-1R 

If GLP-1 has a role for regulating insulin secretion independent of its β-cell receptor, 

what would the population of receptors be? Given the rapid postprandial increase in 

insulin, one possibility is nervous system GLP-1R. Indeed, direct administration of GLP-

1 into the 3rd cerebral ventricle (ICV) increases insulin secretion (89,90); an effect that is 

maintained in mice fed a high fat diet (91). In both mice and rats, administration of ICV 

exendin-4(9-39) (Ex9), a potent GLP-1R antagonist, during oral glucose impairs glucose 

tolerance and reduces insulin levels (89,92,93).  

There are no detectable GLP-1R on the liver or on skeletal muscle and yet GLP-1 has 

repeatedly been shown to not just increase insulin secretion but also to improve insulin 

sensitivity. Despite the lack of hepatic GLP-1R expression, intravenous GLP-1 inhibits 

hepatic glucose production independent of islet hormones in humans (94). CNS GLP-

1R activation may also explain this finding. When administered directly into the arcuate 

nucleus of rats, GLP-1 decreases hepatic glucose production under clamped conditions 

where glucose and insulin were held constant (89). The specific population of neurons 

responsible for this effect is not clear as  deletion of GLP-1R within the hypothalamus or 

even more specifically on pro-opiomelanocortin neurons with the arcuate nucleus of the 

hypothalamus also do not impact normal glucose regulation (95). GLP-1 activates vagal 

afferent neuronal activity and administration of GLP-1R antagonists into the portal vein 
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impairs glucose tolerance (96) suggesting that the peripheral nervous system is also 

important in mediating GLP-1 effects on glucose homeostasis.  However, neither 

genetic deletion of CNS nor vagal neuronal GLP-1R is not necessary for normal glucose 

regulation (97), but CNS (97) and specifically glutamatergic excitatory (vs. GABAergic 

inhibitory) neurons (98) that express GLP-1R are necessary for the weight-reducing 

effects of liraglutide, a long-acting GLP-1 agonist. Lastly, in obese mice and in humans, 

administration of GLP-1 agonists reduces hepatic steatosis (99–102). Whether these 

effects are also due to CNS activation is unclear but they do seem to be independent of 

the effect of chronic GLP-1 administration to reduce body weight. It remains to be seen 

whether the discrepancy between the genetic vs. pharmacological manipulation of CNS 

GLP-1R signaling and the impact on glucose regulation is due to a species difference or 

a development compensation in the mice. The CNS distribution of the GLP-1R is 

disperse and different populations of receptors have sometimes very different functions 

(see (103) for review). As neuroscience technology becomes more sophisticated, the 

capability to tease this system apart becomes more promising.  

GLP-1R regulation of β-cell mass 

In addition to stimulating insulin secretion, GLP-1R activation benefits β-cell survival and 

importantly does so in the presence of multiple apoptotic conditions including 

hyperglycemia, hyperlipidemia, inflammatory cytokines, and oxidative stress (104). The 

exact signaling mechanisms that drive β-cell growth and differentiation are still being 

resolved. However, phosphatidylinositol 3-kinase (PI3K) rather than PKA activation 

seems to be the principle signaling mechanism by which the GLP-1R controls β-cell 

growth and apoptosis. GLP-1 also induces a rapid cAMP-dependent activation of 

extracellular signaling kinase, ERK1/2, and a delayed β-arrestin (an adaptor protein 

necessary for GLP-1R signaling (105))-dependent increase of ERK1/2 signaling (106). 

Providing a direct link, β-arrestin has been found to be necessary for the anti-apoptotic 

effects of GLP-1 (106) and GLP-1 administration to a β-cell line reduces H2O2-induced 

apoptosis through both cAMP and PI3K (but not ERK1/2) signaling with independent but 

additive effects (107). Liraglutide also protects against apoptosis via PI3K signaling and 

the consequent phosphorylation of AKT (108). Recent work has demonstrated that 
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GLP-1-induced activation of PI3K is through activation of epidermal growth factor 

receptor 1 (EGFR), a tyrosine kinase receptor. EGFR has been found to be necessary 

for the ability of exendin-4 (Ex4), another long-acting GLP-1R agonist, to regulate β-cell 

mass and proliferation (109). Because EGFR directly activates PI3K, these data provide 

a link between GLP-1R signaling, PI3K, and β-cell proliferation. Downstream of AKT 

phosphorylation in the activation of β-cell proliferation is Wnt signaling, a pathway 

established in cancer biology to be critical for cell proliferation and survival. Activation 

AKT leads to accumulation of cytosolic β-catenin and subsequent translocation to the 

nucleus where it forms a complex with TCF7L2 (110), a transcription factor that 

activates expression of Wnt target genes (111). siRNA silencing of β-catenin and a 

dominant negative insertion of TCF7L2 in INS-1 cells (a β-cell line) blunted the ability of 

Ex4 to stimulate β-cell proliferation (110), indicating that Wnt signaling is necessary for 

GLP-1-induced β-cell proliferation.  

These data illustrate the wide-ranging signaling pathways induced by GLP-1R activation 

to regulate β-cell mass and function. There is still much debate about the relevance of 

this impact of GLP-1 signaling in cell lines and in mice vs. in humans. While it was found 

that short-term incretin therapies do not expand β-cell mass in young male mice (112), 

in a model that enables assessment of human β-cell replication in vivo, it was found that 

Ex-4 induced proliferation occurred only in juvenile, but not adult islets (113). This work 

provides an important advance in our understanding of the decline in β-cell proliferation 

that occurs with aging and indicates that even pharmacological GLP-1 signaling may 

not be critical in driving proliferation in humans.  

Impact of GLP-1 on glucagon secretion 

GLP-1-induced inhibition of glucagon secretion has been demonstrated in a variety of 

species including humans (114,115). Activation of the GLP-1R also inhibits glucagon 

release from isolated islets or in perfused pancreas studies (116).  While the data are 

clear that GLP-1 inhibits glucagon, the mechanisms are debated as some report low 

(117,118), if any (99,119), expression of the GLP-1R on α-cells. One possibility is that 

the impact of GLP-1 on glucagon release is indirect through release of glucagon-
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regulating hormones from nearby β- and/or δ-cells (116,120). While somatostatin 

secreted from δ-cells inhibited glucagon secretion, a somatostatin antagonist only 

partially blunted the GLP-1-induced decrease in glucagon (121) suggesting additional 

mechanisms at play. 

GLP-1 also acts on β-cells to secrete insulin which is known to suppress glucagon 

(122). However, co-secreted with insulin are amylin, zinc (Zn2+) and GABA; all of which 

have also been shown to individually suppress the release of glucagon. For example, 

GABA released from β-cells enhances glucose inhibition of glucagon secretion by acting 

via an Akt kinase-dependent pathway (123). Co-secreted with insulin in hyperglycemic 

conditions, Zn2+ has been found to have inhibitory action on glucagon release from α-

cells (124–126) and α-TC6 cells (an α-cell line) (126). The potential role of Zn2+ has 

found increasing interest due to the fact that genome-wide association studies (GWAS) 

have revealed that rare variants of a Zn2+ transporter gene are associated with 

improved glucose homeostasis and protection from T2DM (127). To determine whether 

the impact of Zn2+ was independent of insulin, streptozotocin-treated (to kill β-cells) rats 

where studied during pancreatic perfusion studies (125). In these rats, disruption of the 

intrapancreatic infusion of insulin bound to Zn2+, but not of insulin unbound to Zn2+, 

accelerated glucagon secretion, indicating that Zn2+ but not insulin inhibits glucagon 

secretion. The thinking is that Zn2+ inhibits pyruvate-induced glucagon secretion via 

opening of KATP channels and subsequent inhibition of α-cell electrical activity (128). It is 

important to note that contrasting data exist suggesting that Zn2+ does not regulate 

glucagon (129).  However, given the connection to the GWAS data, at a minimum Zn2+ 

is important for glucose control and a logical link for that is through inhibiting release of 

glucagon.  

In addition to Zn2+, insulin is co-secreted with amylin, and amylin has also been found to 

dose-dependently suppress arginine-mediated glucagon secretion in rats (130) while 

pharmacological inhibition of amylin signaling enhances glucagon secretion (131). 

Pramlintide, an amylin receptor agonist, improves glycemic control in T2DM patients 

and at least part of that effect is via inhibition of postprandial glucagon secretion (132). 

A caveat to all of these studies demonstrating that β-cell products could play an indirect 
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role in GLP-1-mediated regulation of glucagon is that GLP-1 maintains the ability to 

inhibit glucagon secretion in type 1 diabetic patients who have little to no endogenous 

insulin (133,134) demonstrating that GLP-1 inhibition of glucagon secretion does not 

fully depend on β-cell products.  

Besides the low expression levels of the GLP-1R on the α-cell, another caveat to the 

potential direct role of GLP-1 on glucagon regulation is that generally, GLP-1R 

activation generates cAMP and increases in cAMP are associated with increased, 

rather than decreased, glucagon release. Recently, an α-cell GLP-1R KO mouse was 

generated by crossing a loxP flanked humanized GLP-1R mouse with a Gcg-Cre mouse 

(135). Theoretically, this will eliminate the GLP-1R only from α-cells as neither L-cells 

nor Gcg-expressing neurons express the GLP-1R. In these mice, the glucagon 

response to increasing glucose loads was increased rather than decreased in the α-cell 

GLP-1R KO mice. While ad lib fed glucagon levels were higher in the α-cell GLP-1R KO 

mice, a curious finding was that these mice had impaired IP glucose tolerance and 

increased glucagon response to an IP glucose load, a condition that does not stimulate 

gut-derived GLP-1 secretion. Regardless, a couple of studies have provided a basis for 

an evolving story on how GLP-1 might mechanistically inhibit glucagon levels. The idea 

is that there are low numbers of GLP-1R on α-cells but these receptors have enough 

capacity to generate proportionately small amounts of cAMP (117). This small amount 

of cAMP mediates suppressive effects glucagon secretion through discrete inhibition of 

high voltage N-type calcium channels in mice (117) and via P/Q-type voltage-gated 

calcium channels in humans (136). In their hands, GLP-1 retained this inhibitory effect 

with either insulin or somatostatin antagonists onboard (117,136). However, it would be 

interesting to know if somatostatin and insulin signaling are synergistic in the paracrine 

effect; ie. if both antagonists were given, would GLP-1 still inhibit glucagon release. 

Regardless, this model explains how low and high intra-cellular cAMP concentrations 

with the α-cell could have opposing actions on glucagon secretion. Thus, while there is 

much to be learned about the signaling that drives GLP-1-induced inhibition of glucagon 

secretion, there are multiple indirect and direct mechanisms at play. The inhibitor action 

of GLP-1 on glucagon levels is often overlooked in favor of its role as an insulin 
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secretagogue, but it is clear that pharmacologically this is one mechanism by which 

GLP-1R agonists improve glycemia in T2DM patients (137). 

Role of α-cell produced Gcg in insulin secretion 
α-cell GLP-1 during metabolic stress 

PC1/3, which processes GLP-1 (and GLP-2 and oxyntomodulin) from Gcg, is more 

predominantly expressed in the gut and CNS, but α-cell PC1/3 activity and/or 

expression is found in embryonic and neonatal mice, with pregnancy, and in models of 

prediabetes and diabetes (138–141).  Along with this, α-cell GLP-1 clearly increases 

when the pancreas is under metabolic stress (142–144). Although the incretin model 

that intestinally-secreted GLP-1 is the functional source of GLP-1, these data do 

suggest that the α-cell pool of GLP-1 also has a functional role in the pancreas.  

Streptozotocin (STZ), a β-cell toxin, is used to model diabetes in animals. In rats 

administered STZ, there is an acute increase in islet Gcg and PC1/3 expression that 

leads to an increased processing of α-cell Gcg to GLP-1 (141). While the function of α-

cell GLP-1 under metabolic stress conditions is unknown, glucagon receptor (GcgR) KO 

animals have a developmentally driven increase in pancreatic GLP-1 production and 

are also, interestingly, resistant to STZ-induced diabetes (145). Further, blockade of the 

GLP-1R in GcgR deficient mice prevented the improved glucose tolerance seen in the 

mice (146). Additionally, mice with a cre-inducible α-cell KO of PC1/3 (although the 

extent to which intestinal and CNS PC1/3 expression was intact is unknown) had 

reduced levels of GLP-1 in the islet and greater impairments of glucose and insulin in 

response to STZ (144). Altogether these data suggest that α-cell GLP-1 production 

provides a protective effect on β-cell function during times of stress. Further examples 

of this are that in cultured α-cell lines or isolated islets, high media glucose 

concentrations increase PC1/3 expression and cellular GLP-1 content (147,148). α-cell 

hyperplasia also occurs with high fat diet and this precedes β-cell mass expansion 

(149), and in both human and mouse islets there is positive correlation between islet 

levels of GLP-1 and adiposity (150). Together these data suggest a role for α-cell GLP-1 

production in the adaptation to metabolic disease. Whether this increase is as a 

protective factor that eventually fails or a part of the pathophysiology is unknown.  
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Although our focus here is on pancreatic GLP-1, GLP-1 in the circulation, presumably 

due to intestinally-secreted GLP-1, also increases with inflammation and the 

mechanism by which this occurs has been linked to one particular cytokine, interleukin 6 

(IL-6). IL-6 is increased in inflammatory conditions including exercise, and obesity 

(143,149). Under severe inflammatory conditions such as sepsis, or when induced by 

exogenous lipopolysaccharide (LPS) administration, there is a systemic increase in 

GLP-1 that is dependent on IL-6 (151,152). In response to LPS, the increase in GLP-1 

is dose-dependent, and GLP-1 levels remain elevated for 8-hours (151). Whereas in IL-

6 knockout mice, there is no increase in GLP-1 after LPS administration (151). With 90 

min of exercise in mice, there is an acute increase in IL-6 and GLP-1 and again this 

increase in GLP-1 was not seen in IL-6 knockout mice (143). To look at α-cell production 

specifically, IL-6 injections were given twice daily for over a week and the protein 

content of pancreatic GLP-1 and insulin were both increased (143). Despite the 

evidence showing that IL-6 increases GLP-1 secretion from the α-cell, the function, and 

whether it relates to glucose regulation or not, during this kind of inflammatory state is 

unknown. After several hours, LPS treatment causes elevated IL-6 levels and 

hypoglycemia to develop and Ex4 administration blunts this hypoglycemic effect in rats 

suggesting that the effect of GLP-1 is related to glucose control (153) although the 

direction goes opposite of what we normally think of as GLP-1-mediated glucose 

control.  Another leading hypothesis is that IL-6 induced GLP-1 is a part of a negative-

feedback loop to inhibit or restrain inflammatory responses. Rat islets treated with 

liraglutide showed both decreased pro-inflammatory cytokine levels (IL-6 and TNF-α) 

and the islets had improved function (154). Both the glucose and anti-inflammatory 

effect of GLP-1 point to α-cell GLP-1 acting locally rather than centrally. However, 

whether these pharmacological agonists have the same function as endogenously 

secreted GLP-1 from the α-cell remains an important unresolved question.   

Thus, both metabolic (hyperglycemia, STZ-induced, diabetes) and physiological 

(exercise, inflammation) stress conditions influence IL-6 circulating levels which may be 

the factor that triggers GLP-1 secretion from the α-cell (Figure 1.3). However, the role of 

increased GLP-1 secreted from the α-cell under inflammatory conditions, how it impacts 



15 
 

overall glucose homeostasis, and how this may be targeted pharmacologically is 

unknown.  

α-cell GLP-1 in normal glucose regulation 

The accepted dogma of GLP-1 secreted from the intestine and acting on the pancreas 

in an endocrine manner is difficult to reconcile given the observations that GLP-1 is 

rapidly degraded by dipeptidylpeptidase 4 (DPP4) and very little, in fact only ~10% of 

intestinally-secreted GLP-1, reaches the circulation (155–157). While the role of α-cell 

secreted GLP-1 became established during states of metabolic stress, the question 

remains whether or not it has a role in normal glucose control. Although controversial, 

pancreatic GLP-1 has been found in normal islets and its expression increases with 

increasing glucose concentrations (144,147,148). In isolated human islets the amount of 

GLP-1 was low under basal conditions and was only present in the cell lysates, not the 

culture medium in one study (148). However, others have found pancreatic GLP-1 to be 

higher in human vs. mouse islets (144). In addition, PC1/3 activity can also be up-

regulated by activating a bile acid receptor (TGR5) known to regulate GLP-1 secretion 

(147). These data suggest that the conditions by which α-cell GLP-1 is assessed may 

be important in the ability to detect GLP-1 levels.  

Recently, the role of pancreatic Gcg, the gene that encodes GLP-1, was explored using 

a Cre lox-P mouse model that selectively reactivated the endogenous Gcg gene in the 

pancreas vs. the intestine while the remaining tissues remained devoid of Gcg (142). To 

understand the role of GLP-1R activation specifically, glucose responses to Ex9, a GLP-

1 receptor antagonist, was examined. Ex9 had no impact on Gcg deficient animals 

indicating that Ex9 was a true GLP-1R antagonist in vivo. This indicates that the 

presence of GLP-1 is necessary for the ability of Ex9 to impair glucose. Interestingly, 

animals that only expressed pancreatic, but not animals that expressed only intestinal 

Gcg had impaired glucose tolerance (whether oral or IP) in response to Ex9. Thus, the 

source of the GLP-1 ligand necessary for the ability of Ex9 to impair glucose tolerance 

was pancreatic and not intestinal GLP-1.  
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However, there is an important caveat to this work. It has been known for quite some 

time that glucagon increases insulin secretion (122) and this was presumed to be 

through glucagon receptors. However, three independent islet perfusion studies 

demonstrated that glucagon increases insulin not by acting on glucagon receptors but 

by acting on GLP-1R (158–160). At a first pass, these data suggest the possibility that it 

was pancreatic glucagon rather than pancreatic GLP-1 that was responsible for the 

ability of Ex9 to impair glucose tolerance in the previous study (142). However, the 

ability of glucagon to bind to the GLP-1R is extraordinarily less potent than GLP-1 (159). 

In addition, it would mean that the entirety of Ex9’s action is by impairing glucagon 

action on β-cell GLP-1R since Ex9 had no impact on glucose tolerance in animals that 

had fully restored intestinal Gcg expression and postprandial circulating GLP-1 levels 

(142). Lastly, experimental conditions that lead to the increase in glucagon and 

glucagon action on the GLP-1R was specific to having both elevations in glucose and 

amino acids. The in vivo experiments described above (142) were only done with oral 

glucose.  

Other mouse models have been derived in attempt to separate the role of α-cell 

glucagon and GLP-1. One used a diphtheria toxin-inducible α-cell KO of Gcg and this 

mouse had a small impairment of age-induced IP glucose tolerance (144). 

Administration of DPP4 inhibitor, but not glucagon, restored glucose tolerance in these 

mice. The authors suggest this provides evidence that intestinally-derived GLP-1 can 

compensate for the lack of α-cell GLP-1. However, DPP4 inhibitors increase bioactive 

GLP-1 AND GIP and previous work demonstrates that these drugs can fully improve 

glucose tolerance even if only one of the incretin’s have intact signaling (161). Isolated 

islets from another mouse model with α-cell KO of PC1/3 had reduced levels of GLP-1 

in the islet and reduced glucose-stimulated insulin secretion (144). These mice also had 

impaired intraperitoneal, but not oral glucose tolerance (144). Similarly, β-cell GLP-1R 

KO mice have normal oral but not intraperitoneal, glucose tolerance (87,162). Thus, a 

model where paracrine, rather than endocrine action of preproglucagon peptides in 

regulating insulin emerges. Because of the nature of preproglucagon processing, it will 

be difficult to distinguish between the impact of α-cell derived glucagon vs. GLP-1 on 

local GLP-1R. However, this work clearly demonstrates that the conventionally accepted 
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role of GLP-1 biology is inadequate. The combined impact factors driving an increase in 

α-cell GLP-1 and glucagon are summarized in Figure 1.4.  

If we ignore the intestinal vs. pancreatic source of GLP-1 topic and just focus on the fact 

that GLP-1 regulates insulin secretion by acting directly on β-cell GLP-1 receptors and 

either directly or indirectly suppresses glucagon then under what circumstance is 

glucagon important for β-cell GLP-1R signaling? Of the components of a mixed meal 

(lipids, carbohydrates, and proteins), free fatty acids, if anything decrease glucagon 

levels in man (163), carbohydrates potently suppress glucagon, and proteins (amino 

acids) potently stimulate glucagon secretion (164). Interestingly, free fatty acids 

suppress the ability of arginine to stimulate glucagon secretion in man (163) suggesting 

that even in a mixed meal situation, increases in glucagon levels are restrained. In 

addition to GLP-1 suppressing glucagon, insulin and somatostatin, which also increase 

during a meal, also suppress glucagon levels. Many questions arise from these 

observations. Is the system set-up to suppress redundant signals? Is the increase in 

glucagon during a high protein meal necessary to increase insulin? Is GLP-1 vs. 

glucagon necessary for different phases of insulin secretion? Are both GLP-1 and 

glucagon synergistic or additive in insulin control? All of these are possibilities. 

However, in animals devoid of both GLP-1 and glucagon, insulin response to an 

intravenous and oral glucose load appear to be normal suggesting that GLP-1 and 

glucagon, together, are not necessary for insulin secretion and/or that redundant in vivo 

mechanism are able to compensate (142). As has been suggested before, it could be 

that glucagon offers an additional redundant signal that allows for fine-tuning of glucose 

control in the face of metabolic stress whether it is exercise, hypoglycemia, or 

postprandial glucose control.   

Targeting α-cell production of GLP-1, specifically, in T2DM therapeutics is an idea that is 

being explored. One study used adenovirus-mediated expression of PC1/3 in α-cells to 

increase islet production of GLP-1 and was able to improve glucose-stimulated insulin 

secretion in a mouse model of type 1 diabetes mellitus (T1DM) (165). In addition, 

pharmaceutical activation of GPR142, a GPCR that is expressed in pancreatic islets 

and that has previously been shown to enhance glucose-dependent insulin secretion 
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(166,167), also increases GLP-1 secretion from the α-cell (168). Moreover, using 

isolated mouse islets treated with Ex9, the researchers showed that insulin secretion 

induced by GPR142 activation is dependent on GLP-1 (168). Thus, regardless of our 

understanding of the physiology or pathophysiology of islet produced GLP-1, these data 

suggest that this pool of GLP-1 could be targeted to treat T2DM and avoid some of the 

CNS side-affects (ie. nausea) associated with long-acting GLP-1 agonists.  

Bariatric surgery and GLP-1 
Why does GLP-1 increase with surgery?  

Bariatric surgery is currently the most effective strategy at treatment of obesity and its 

co-morbidities. There are many types of bariatric surgeries. Roux-en-Y gastric bypass 

(RYGB; a small gastric pouch is formed and the jejunum is connected directly to the 

small pouch) used to be the most widely performed bariatric surgeries but its utilization 

has been reduced to about 20% of the procedures in the last couple of years (169). 

Currently the most common surgery in the US is vertical sleeve gastrectomy (VSG; 80% 

of the stomach along the greater curvature is removed) which comprises about 60% of 

performed bariatric procedures. The switch is likely due to the fact that VSG is surgically 

more simplistic, leads to fewer long-term malabsorptive issues, and although dogma 

persists that it is less effective, randomized clinical trials demonstrate similar efficacy 

between VSG and RYGB (see (170) for meta-analysis).  

Among the many similar physiological effects between these two surgeries is about a 

10-fold increase in postprandial levels of GLP-1; something observed in both patients 

and rodent models of surgery (171–174). A long-standing hypothesis for why GLP-1 

(and other gut peptides for that matter) are increased after RYGB is that the shorter 

length of small bowel leads to more rapid nutrient delivery further down into the GI tract 

where the majority of L-cells are located (175). VSG also increases nutrient delivery to 

the distal gut thanks to a restricted stomach size that increases gastric pressure (176) 

and consequently gastric emptying rate (176,177). Indeed, speed of nutrient delivery 

may be important after RYGB as the increase in nutrient-induced GLP-1 was eliminated 

if nutrients were delivered to the bypassed limb (178).  However, in rats after VSG, 

glucose infused slowly and directly into the duodenum caused similar increases in GLP-
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1 as when the same glucose load was delivered orally (176). These data suggest that 

intestinal L-cells are either increased in number or in nutrient-sensitivity after VSG. 

While one study demonstrated that VSG in rats increased L-cell number (179) another 

did not (180). Differences in diet as well as the control groups utilized (pair-fed vs. ad lib 

fed sham groups) could lead to differential structural and functional changes in the gut 

nutrient-sensing pathways (181). On the other hand, RYGB is more consistently 

associated with intestinal hypertrophy regardless of dietary exposure (179,182). The 

intestine is considered a major site of glucose disposal after RYGB and this may 

provide energy for intestinal metabolic pathways to support tissue growth (183). In 

humans, this increase in glucose absorption after RYGB was associated with the 

exaggerated release of insulin and GLP-1 (184). Thus, the anatomical differences 

between the surgeries may lead to different adaptations in either the morphological or 

mechanical function of the GI tract and either of these adaptations can regulate prandial 

GLP-1 responses.  

Another common physiological response to both RYGB and VSG is the significant 

increase in total and various subspecies of plasma bile acids (185–187). Bile acids have 

demonstrated effects on stimulating GLP-1 secretion from L-cells by acting through a 

specific G protein-coupled receptor (TGR5) vs. their other common receptor a nuclear 

transcription factor, farnesoid X receptor (FXR) (188).  However, surgery-induced 

increases in bile acids have been demonstrated to be important for the increase in 

postprandial GLP-1 in one (189), but not another study (190). Further, these two studies 

had divergent results on the necessity of TGR5 for surgery-induced weight loss and 

improvements in glucose homeostasis (189,190). Conversely, FXR seems to be 

necessary for the full effects of VSG, independent of GLP-1 (191). Thus, although this 

will require future validation, it seems that the surgery-induced increase in GLP-1 is due 

to intestinal responses to nutrient delivery. With RYGB, this is more acute, but with 

VSG, chronic adaptations are more critical.  

GLP-1 as mechanism for the metabolic success of surgery 

Although T2DM is thought to be chronic and progressive, bariatric surgery leads to large 

improvements in insulin secretion and sensitivity which results in a remission of T2DM 
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for many patients. The consistency of the finding that GLP-1 increases with surgery in 

addition to this increase being associated with greater prandial insulin release (174) and 

greater weight loss (192) after surgery has led to the suggestion that GLP-1 is an 

integral mechanism for the success of surgery. While the postprandial GLP-1 response 

may be required for the insulin and glucose responses to a meal after bariatric surgery, 

whether GLP-1 is responsible for resolution of T2DM is less clear. One study found that 

postprandial GLP-1 responses were a significant predictor of T2DM remission after 

RYGB (193), yet another found similar postprandial GLP-1 responses 2-years after 

VSG whether the patients had postoperative remission, relapse, or lack or remission of 

T2DM (172). 

In support of a role for GLP-1, multiple studies have demonstrated that administration of 

the GLP-1 receptor antagonist, Ex9, reduces the insulin response to a glucose load in 

both humans and rodents (194–197). However, these data come with an interpretative 

problem (198). There is no dispute that GLP-1 regulates postprandial insulin. The same 

dose of Ex9 impairs glucose and reduces insulin in control subjects (172) and rats 

(197). The degree of this impairment is similar between surgery and control conditions. 

If GLP-1 was more important in glucose control after surgery, the degree of impairment 

should be greater. Thus, the question is whether what we are seeing after surgery is 

reflective of the normal response or is reflective of greater importance of GLP-1 during 

surgery.    

The incretin effect is credited to both GLP-1 and GIP (199,200) with each thought to 

contribute equally to insulin secretion in non-obese, non-T2DM subjects (199). Both 

T2DM and to a lesser extent, obesity, reduce (201,202), while bariatric surgery 

enhances, the incretin effect (203). However, there is little agreement as to whether 

bariatric surgery leads to an increase in GIP suggesting that the extent to which GIP 

contributes to the enhanced incretin effect is debatable. In an effort to determine the 

importance of GIP after RYGB, RYGB patients were given a DPP4 inhibitor to increase 

bioavailability of both GIP and GLP-1 and then combined this with Ex9 to block GLP-1R 

signaling; an experimental condition that would isolate the impact of GIP signaling on 

glucose tolerance (204). The DPP4 inhibitor failed to improve glucose tolerance or β-cell 
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function while GLP-1R signaling was blocked in RYGB patients. In contrast, T2DM 

patients that had not undergone bariatric procedures fully responded to the DPP4 

inhibitor with improved glucose tolerance and insulin secretion even when combined 

with Ex9 (205). Together these data suggest that RYGB shifts the balance of the 

incretin effect toward GLP-1 and away from GIP. 

Qualitatively, rodents and humans respond similarly to bariatric surgery. Both have 

substantial weight loss, elevated gastric emptying rate, and increased postprandial 

insulin and GLP-1 levels. While human work is limited to acute pharmacological 

intervention, preclinical work offers the additional ability to genetically manipulate the 

GLP-1 system and test its role in the metabolic success of surgery. One would hope 

that this would lead to less interpretive issues. Whole-body GLP-1R KO mice have 

similar weight loss and improvements in glucose tolerance compared to littermate 

controls after both VSG (206,207) and RYGB (208) suggesting a limited role of GLP-1R 

in surgical success. Central nervous system GLP-1R have been shown to be important 

for regulating body weight and glucose homeostasis in rodents (89,90,95) and may be a 

target population for the impact of surgically-induced GLP-1 to act in regulating body 

mass and glucose. However, Ex9 infused directly into the CNS of rats during RYGB or 

sham surgeries (208) had no significant impact on the surgery-induced reductions in 

body mass. Thus far, the data would seem to be in agreement that GLP-1R signaling is 

not necessary for the metabolic success of surgery. However, in the last few years, 

conflicting reports have been published. To examine the specific role of β-cell GLP-1R, 

two slightly different versions of an inducible Cre-loxP strategy was used to knock out 

these receptors and VSG was performed. One study found that β-cell GLP-1R were 

necessary for surgery-induced improvements in glucose tolerance and glucose-

stimulated insulin secretion, but not weight loss (209); while the other found not only 

that these receptors were not necessary for VSG-induced improvements in glucose 

tolerance but that glucose responses were essentially normalized to the WT levels 

(210). Differences in diet, mouse models, and/or some other factor may contribute 

either independently or in combination to the differences in these experimental findings. 

Regardless, we are still left with no solid conclusion as to whether GLP-1 is necessary 

for the success of surgery.  
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The increase in GLP-1 after surgery may also have a trophic effect on β-cell mass. 

GLP-1 increases β-cell mass in rodents, and has also been suggested to increase β-cell 

function in humans following bariatric surgery (211). In isolated islets, VSG mice had 

changes in their genetic and functional signature favoring calcium signaling and insulin 

secretion (212). In a pooled group of VSG and RYGB patients, pancreatic fat deposition 

as assessed by PET imaging was found to be reduced alongside improvements in β-cell 

function (213). These data suggest the possibility that the impact of surgery on the 

pancreas could be due to the weight loss itself and is independent of GLP-1’s trophic 

effect.  

With both human and rodent work, the clear finding is that the increase in postprandial 

GLP-1 drives acute glucose responses to a meal after bariatric surgery but whether or 

not they are required for long-term improvements in glucose control, T2DM remission, 

and/or for weight loss are debatable. However, this may be difficult to determine as the 

degree of β-cell destruction prior to surgery may be more critical in determining whether 

those β-cells can recover sufficiently to resolve T2DM (214).  

GLP-1 in post-bariatric hypoglycemia 

One increasingly recognized surgery complication is post-bariatric hypoglycemia (PBH) 

(215). This is reflected in a subset of bariatric patients and is associated with symptoms 

of postprandial “dumping syndrome” characterized not only by hypoglycemia, but also 

hyperinsulinemia, sweating, nausea or vomiting, and heart palpitations. Given that 

adrenergic and cholinergic symptoms in the postprandial state can be nonspecific, PBH 

has recently been re-defined as the presence of neuroglycopenic symptoms (difficulty 

thinking, weakness, fatigue) with concomitant hypoglycemia (<54 mg/dL) (215) that is 

relieved within minutes of carbohydrate ingestion. This condition threatens the safety of 

affected patients as hypoglycemia impairs cognition and increases the risk for syncope, 

cardiac arrhythmias, seizures, coma, and even death. Moreover, many patients may be 

rendered unable to perform job-related tasks or to safely operate a motor vehicle.      

Initial reports indicated a prevalence of <1% for hypoglycemia requiring hospitalization, 

but 10% for clinically recognized hypoglycemia (216,217). However, the use of 
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continuous glucose monitoring (CGM) has highlighted that hypoglycemia occurs much 

more frequently (closer to 30%), and is observed with similar frequency in both RYGB 

and VSG (218–220). Using CGM, one study found that 75% of post-RYGB patients had 

glucose levels of <55 mg/dl compared to no hypoglycemia in nonsurgical controls (221). 

Given the increasing numbers of bariatric procedures, and that hypoglycemia typically 

emerges only after 2-3 years postoperatively, the prevalence of PBH is likely to further 

increase over the next decade.   

Hypoglycemia is a complication for T1DM and T2DM, but for those patients medications 

can be adjusted to minimize occurrence. The mechanism for PBH is unknown and 

creates a difficult therapeutic challenge. The dominance of postprandial timing indicates 

that hypoglycemia is partly due to exaggerated systemic appearance of ingested 

glucose secondary to altered anatomy and subsequent disproportionate insulin 

response to a meal. In healthy individuals, regulation of postprandial glucose excursions 

is tightly controlled by regulating the rate of nutrient entry and hormonal responses that 

coordinate nutrient assimilation. Both RYGB and VSG alter many steps in this 

assimilation process including more rapid pouch or gastric emptying, increased glucose 

absorption, increased postprandial GLP-1, and finally markedly increased insulin 

secretion and sensitivity (Figure 1.5). Thus, most initial treatment strategies focus on 

reducing simple carbohydrate intake or using medication to slow carbohydrate 

absorption in order to minimize glucose and consequently insulin “spikes” (222). 

Strategies to reduce insulin itself have also been used including somatostatin analogues 

(e.g. octreotide), diazoxide (reduces insulin secretion), partial pancreatectomy, and 

reversal of the surgical procedure toward normal anatomy if possible. Unfortunately, all 

of these therapies are limited by side effects or incomplete efficacy, even 

pancreatectomy and surgical revision.  

One hypothesis is that this phenomenon is caused by the exaggerated postprandial 

GLP-1 and consequently insulin levels. Postprandial glucose, GLP-1, and insulin have 

been found to be even higher in patients susceptible to PBH (223). Multiple studies 

have now demonstrated that administration of Ex9 can lower postprandial insulin and 

prevent hypoglycemia in RYGB patients (224–227). However, patients with PBH still 
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have higher peak glucose levels after GLP-1R antagonist treatment compared to 

asymptomatic patients. In addition, the rapid time course of the post-surgical increase in 

postprandial GLP-1 and insulin secretion (days) does not mirror the delayed 

development of PBH (years). Importantly, although GLP-1 is likely not a mechanism for 

PBH, Ex9 therapies may still be a way to treat PBH.  

In conclusion, GLP-1 increases with bariatric surgery are likely due to acute and/or 

chronic responses to rapid nutrient entry seen with RYGB and VSG, respectively. This 

increase in GLP-1 likely plays an important role in the acute glucose and insulin 

responses to a given meal. However, whether these increases are responsible for the 

overall improvements in glucose homeostasis, body mass, or in the onset of PBH is 

something that is still debated.  

Targeting GLP-1 in Pharmacology 
GLP-1 agonists and DPP4 inhibitors 

The development of GLP-1-based drugs has been one of the major advances in 

diabetes medicine in recent years. The currently approved pharmaceutical strategies 

targeted to the GLP-1 system are aimed at either increasing endogenous GLP-1 levels 

with inhibitors for the protease that inactivates GLP-1 or long-acting GLP-1R agonists 

resistant to DPP4 cleavage (228,229). DPP4 inhibitors are effective at stimulating 

insulin and reducing glucagon actions; attributes that are credited to GLP-1R signaling 

(230). However, DPP4 acts on GIP as well 40 additional substrates (231). GIP is the 

only additional substrate of note for glucose regulation and work in both humans 

(205,232) and mice (161,233) suggest that both GIP and GLP-1 signaling are targets for 

the improved glucose control with these drugs.  

There are now multiple GLP-1R agonists currently available for the management T2DM 

(229,234,235). Various strategies are used to extend the half-lives of these agonists 

compared to native GLP-1 including using a synthetic analogue of Ex4 (Byetta) and the 

addition of a fatty acid side chain to native GLP-1 to facilitate albumin binding 

(Liraglutide/Victoza). In an effort to improve convenience and compliance (236), 

modifications of these drugs are also being made to extend the half-life to allow for 
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once-weekly injections (Bydureon and semaglutide/Ozembic). Besides being more 

convenient for the patient, there seem to be added benefits of creating a more stable 

pharmacodynamics profile (ie. reducing the peaks and troughs of drug action) as these 

drugs induce less nausea, a common side-effect of rapid acting compounds (237–240). 

An added benefit of these drugs compared to DPP4 inhibitors is the added weight loss 

(241) and for some specific GLP-1R agonists (liraglutide and semaglutide) there is a 

reduction in cardiovascular events (242). Because of the impact of these drugs on 

weight loss, there are now multiple formulations approved to specifically treat obesity 

independent of T2DM. Interestingly, although T2DM patients do see improvements in 

body mass, there is a larger benefit for the obese non-diabetic patient for weight loss.  

The neural pathways leading to the weight loss effects of these drugs are being actively 

pursued in preclinical work. Part of the reason for this effort is to determine whether the 

neural circuitry that drives the weight loss effect is distinct from the circuitry that drives 

the nausea effect of these drugs. In animal work, we know that some neuronal regions 

regulating the impact of GLP-1 on food intake are distinct from those regions that 

regulate nausea (243,244). As discussed above, previous preclinical work in mice and 

rats established that the CNS (97,245), but not the peripheral nervous system (97) is 

critical in mediating the impact of long-acting GLP-1R agonists on body mass. With 

newer advances in neuroscience techniques, we now know that glutamatergic rather 

than GABAergic neurons (98) are the specific type of neurons necessary for the ability 

of liraglutide to induce weight loss. However, given that neither hypothalamic (Nkx2.1 

neurons), PVN (Sim1 neurons), nor POMC neurons were not necessary for the ability of 

long-acting agonists to reduced body mass (95), the hunt is still on for the specific 

population of neurons responsible for the pharmaceutical reduction in body mass. Better 

understanding of the neural mechanisms of these processes would benefit the 

therapeutic utility of these agents.  

Poly-agonists  

An exciting recent pharmaceutical strategy to the treatment of obesity and T2DM has 

been the development of hybrid peptides that activate more than one receptor to 

generate an effect (246). Given that obesity and T2DM are diseases with integrated 
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pathology, a multi-faceted approach is likely necessary for more effective treatment. 

These agents are touted as mimicking the broad range of peptide increases seen after 

bariatric surgery. Some of the first compounds developed using this strategy were 

glucagon/GLP-1 co-agonists, peptides engineered to activate the cognate receptors of 

both peptides in different relative potencies (247,248). The rationale behind this line of 

drug development is that both glucagon and GLP-1 bind specific and distinct receptor 

populations in the brain to cause satiety (249,250), and activating both receptors could 

lead to synergistic effects. Peptides with equal agonism for each of the target drugs (eg. 

GLP-1/glucagon) seem to have the most therapeutic promise (247,248). In the case of 

glucagon, greater glucagon potency would lead to greater energy expenditure and 

suppression of food intake, but there seems to be a threshold beyond which glucose 

control worsens despite weight loss. The results for combined agonism in mice and rats 

are promising with improved glucose tolerance but also greater reductions body weight 

and fat with the dual agonists compared to GLP-1R agonism alone (247,251). Although 

there may be subtleties in formulation that lead to species differences, the results in 

humans have not been as exciting as in mice. Specifically, a recent phase 2a clinical 

trial found reductions in body weight and improvements in glucose control but the 

degree of the improvements seemed to be within the range of what is seen with long-

acting GLP-1R agonists alone (252,253). Interestingly, a GIP receptor/GLP-1R dual 

agonist in phase 2 trials caused greater improvements in both HbA1c% and weight loss 

compared to the GLP-1 agonist alone (254). Given that GIP is thought to be important 

for lipogenesis, the mechanism for this effect of the dual agonist is unclear. Regardless, 

this drug shows great promise in improving glucose control and weight loss in T2DM 

patients. 

Conclusions 

GLP-1 was suggested to be an incretin over 32 years ago. Indeed, GLP-1 actions in the 

islet are implicated in the success of surgery and have been exploited for effective 

glucose control in T2DM patients. However, the incretin model is much too simple for 

the complexity of the system. GLP-1 has a wide array of physiological effects that go 

beyond the β-cell. Further, GLP-1 and glucagon released from the α-cell may be 



27 
 

important for β-cell proliferation and function suggesting that paracrine regulation of the 

β-cell needs to be incorporated into our thinking surrounding GLP-1 function. These 

interesting interactions and/or overlapping functions of GLP-1 and glucagon and GPCR 

signaling requires further exploration. What is true, is that GLP-1R agonists are safe 

and effective therapies for obesity and T2DM and will remain an active area of 

exploration. 
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Figure 1.1 The incretin effect: Glucose levels are lower while insulin levels are higher when the same dose of 
glucose is administered directly into the gut versus when administered intravenously (IV). This difference in 
insulin between the gut and venous infusion is the “incretin effect” which occurs in response to GLP-1 and GIP 
secreted from the distal gut. Adapted, with permission, from McIntyre N, et al. 
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Figure 1.2 Intestinal GLP-1 secretion: Several factors have been linked to GLP-1 secretion. The 
parasympathetic nervous system (PNS) stimulates GLP-1 secretion via cholinergic muscarinic receptors (MR). 
Activation of α-adrenergic receptors (AR) stimulates while activation of β-adrenergic receptors inhibits GLP-1 release. 
Various GPCRs including ones activated by bile acids and various fatty acids stimulate GLP-1 through PKA signaling 
and increases in calcium-induced exocytosis. Lastly, direct glucose sensing, predominantly via SGLT1 in humans, 
activates sodium (NA+), and calcium (Ca2+) voltage-gated channels to lead to the release of GLP-1.  
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Figure 1.3 Factors that impact α-cell GLP-1 production. Metabolic stress, systemic inflammation, exercise, 
hyperglycemia, obesity, and diabetes stimulate α-cell GLP-1 production. IL-6 seems to be a primary factory that leads 
to this increase. The function of this increase is unknown, but regulation of β-cell mass and function is a likely 
endpoint.  
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Figure 1.4 Recent work highlights a more complexity to the role of Gcg-derived peptides in the incretin effect. 
While historical work suggest intestinal GLP-1 is important in regulating glucose homeostasis, there may be a role for 
α-cell derived GLP-1 as well. In addition, in response to amino acids, glucagon is secreted and acts on local GLP-1R 
to regulate insulin secretion.  
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Figure 1.5 Postprandial GLP-1 increases several-fold after bariatric surgery and has been implicated as a 
mechanism in both positive and negative impacts of bariatric surgery. On the positive side, GLP-1 has been 
implicated in increasing postprandial insulin levels to restrain postprandial glucose homeostasis improvements in 
insulin sensitivity lead to reductions in fasting insulin, improved hepatic insulin sensitivity, and overall improved β-cell 
function. However, on the negative side, the increase in postprandial insulin is thought to contribute to post-bariatric 
hypoglycemia which occurs in as much as 30% of surgery patients.  
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CHAPTER 2                                                                                                                                    
Premise and Hypotheses for the Role of GLP-1 in Regulation of Inflammation 

Introduction 
One predominant theory explaining the link of obesity to type 2 diabetes mellitus 

(T2DM) involves the obesity-induced chronic low-grade inflammation, or meta-

inflammation. This is because inflammation itself has been linked to impaired glucose 

homeostasis including insulin resistance (255–257). In contrast to the inflammatory 

response to an infection, where the purpose of immune cells is to identify, locate, and 

dispose of foreign microorganisms and viruses, the low-grade inflammation associated 

with obesity is not directed to a specific pathogenic target. Yet, similar to infection-based 

inflammation, meta-inflammation still results in increased accumulation of immune cells 

in metabolic tissues and increased systemic and organ-specific levels of cytokines 

(255,258,259). This includes accumulation of macrophages, phagocytotic cells that are 

either resident within an organ or that migrate from other tissues and play a large role in 

organizing immune responses to promote either a pro- or anti-inflammatory state (260). 

The reverse is also true, that metabolic dysfunction impairs immune responses. For 

example, T2DM patients have impaired immune responses including neutrophil function 

and T cell responses to an infection (261–263). T2DM also worsens the mortality 

prognosis for sepsis, which is hypothesized to be due to innate immune dysregulation, 

such as macrophages and natural killer cells, and adaptive immune suppression, such 

as T cells and B cells (264–266). This complex interaction between T2DM and the 

immune system remains an important inquiry for researchers as there are currently no 

therapeutics that increase survival to sepsis (267). Thus, the search for those critical 

signals that link inflammation and metabolism is critical for treating inflammatory and 

metabolic diseases.  
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Glucagon-like peptide 1 (GLP-1) is a peptide made within intestinal L-cells, pancreatic 

α-cells, and a small cluster of neurons in the hindbrain (10–12). GLP-1 is predominantly 

studied for its role in facilitating postprandial insulin secretion and sensitivity, and 

consequently regulation of glucose homeostasis (26,27,37,38,57,142). In addition to 

glucoregulation, activation of the GLP-1R in the CNS decreases food intake (243,268). 

Although its role in regulating glucose metabolism and food intake has been extensively 

studied, there is also an emerging connection between GLP-1 and the immune system 

(151,269). Data demonstrate that in response to nutrients, circulatory GLP-1 comes 

primarily from the intestine (37,38,42,43). During severe inflammation, the pancreas and 

intestine increase GLP-1 tissue content in response to IL-6 or lipopolysaccharides (LPS) 

(151). However, a key unanswered question is whether there is a physiological 

contribution of the pancreas and/or the intestine to the increase in circulating GLP-1 

and, if so, what is the function of that increase. One possibility is that the physiological 

role for this increase in GLP-1 is similar to postprandial conditions, i.e. to regulate 

glucose and/or energy homeostasis during inflammation. However, pharmacological 

data suggest that at least in bone marrow derived macrophages, GLP-1 signaling 

directly regulates macrophage accumulation and polarization (270). While type 1 

diabetes mellitus (T1DM) has long been studied in association with macrophage 

accumulation in the pancreas, only recently have researchers begun to look at 

macrophage expansion in the islets in T2DM patients and animal models (271–273). 

For example, recent studies have demonstrated that macrophage accumulation within 

the pancreas occurs in response to dietary-induced obesity and that this plays a role in 

impaired glucose-stimulated insulin secretion (259) and with inflammatory stress (272). 

Collectively, these data indicate a need to understand the interaction between meta-

inflammation in the pancreas and the protective role GLP-1 might be playing. To 

investigate the physiological role of Gcg, the gene that encodes GLP-1, GLP-2, 

glucagon and other peptides, under inflammatory conditions, I utilized a well-established 

model to induce severe inflammation, LPS, in combination with the low-grade 

inflammation seen with high-fat diet (HFD). To distinguish the role of pancreatic and 

intestinally produced GLP-1, I used our lab’s Cre lox-P Gcg reactivation model which 

limits expression to either the pancreas or the intestine (274). I hypothesized that 
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increased GLP-1 plays a metabolic role, functioning to regulate glucose levels and food 

intake, and an immunologic role, functioning to decrease inflammation. 

Thus, the goal of this proposal is to determine the physiological role of GLP-1 in the 

regulation of immune cell accumulation and polarization, and downstream metabolic 

processes during infection-based inflammation and the impact of HFD.  

Specific Aims 

Aim 1. To test the hypothesis that high-fat diet and impaired glucose tolerance increase 

inflammatory responses to LPS-induced inflammation. 

High-fat diet (HFD) is known to result in an increase in inflammatory cytokines and 

impaired glucose control. Studies in humans have shown that obesity and impaired 

glucose control impairs immune responses to severe inflammatory conditions. Using 

wild-type mice on HFD, I explored how impaired glucose tolerance and chronic low-

grade inflammation affect GLP-1 levels, glucose, insulin, cytokine expression, and 

feeding responses to an inflammatory insult induced by exogenous administration of 

LPS. I hypothesized that HFD will exacerbate the physiological responses to LPS, 

including increased GLP-1, sickness-induced anorexia and inflammatory responses 

compared to chow-fed mice.  

Aim 2. To test the hypothesis that pancreatic- and intestinally produced GLP-1 regulates 

metabolic responses to severe inflammation   

Our lab used Cre-loxP technology to limit Gcg, the gene that encodes GLP-1, 

expression to either the pancreatic α-cells or intestinal L-cells. These animals were 

placed on normal chow or HFD and feeding responses to LPS administration were 

assessed to determine whether Gcg is necessary for the anorectic effect of LPS. 

Additionally, I determined whether intestinal, pancreatic, or both sources of GLP-1 are 

necessary for the acute glucose response, systemic and pancreatic inflammatory 

responses to LPS administration. I hypothesized that pancreatic GLP-1 plays a 

paracrine role in glucose regulation under LPS-induced inflammation and that both 

pancreatic and intestinal GLP-1 contribute to the anorectic effect of LPS. 
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Aim 3. To test the hypothesis that pancreatic GLP-1 regulates local macrophage 

accumulation in the pancreas during severe inflammation 

Our preliminary data suggests that the pancreas contributes to circulatory GLP-1 after 

LPS administration. Again, I used our chow vs. HFD Cre-loxP Gcg model, animals 

received LPS or vehicle treatment and through a combination of flow cytometry and 

immunohistochemistry (IHC) techniques, I characterized the immune cells that 

accumulated within the pancreas after LPS. Then I used a Glp1r-GFP reporter mouse to 

determine whether immune cells in the pancreas expressed Glp1r.  I hypothesized that 

pancreatic GLP-1 promotes a local anti-inflammatory state and works to restrain the 

LPS-induced immune response, thus fewer macrophages will accumulate within the 

islet when GLP-1 is present.
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CHAPTER 3                                                                                                                               
The Role of GLP-1 in the Regulation of Metabolism and Immune Responses  

Abstract 

While GLP-1 is classically described as an incretin hormone, it is known to be increased 

by the pro-inflammatory cytokine, interleukin 6 (IL-6), in both the pancreatic α-cells and 

intestinal L-cells. Interestingly, the activation of the endogenous GLP-1 system is 

exaggerated in type 2 diabetes mellitus (T2DM) patients under an inflammatory 

stimulus. However, the function of GLP-1 during an inflammatory state is unknown. 

Using a combination of high-fat diet (HFD)-induced obesity and our innovative mouse 

model of tissue-specific Gcg (the gene that encodes GLP-1) expression, I explored the 

function of GLP-1 in response to inflammation by administering lipopolysaccharide 

(LPS), a well-established tool for inducing inflammation. LPS is also suppresses feeding 

and impacts glucose homeostasis; both functions of GLP-1. I hypothesized that HFD 

would exacerbate physiological responses to LPS including increased plasma GLP-1, 

decreased blood glucose levels, and increased sickness-induced anorexia, as well as 

systemic inflammatory responses including increased plasma cytokines. I found that 

HFD increased LPS-induced suppression of feeding and increased plasma levels of 

both pro-inflammatory cytokines and GLP-1. I hypothesized that increases in GLP-1 in 

response to LPS were necessary for the feeding and glucose responses to LPS. To test 

this hypothesis, I examined the role of tissue-specific GLP-1 in the metabolic and 

immunologic responses to LPS. I found that while both pancreatic and intestinal Gcg 

expression contribute to LPS-induced increases in GLP-1, Gcg was not necessary for 

the glucoregulatory or feeding responses to LPS. However, whole-body Gcg Null 

animals had increased the macrophage accumulation in the pancreas. Lastly, using a 

GLP-1R reporter mouse, I found that macrophages that accumulate in the pancreas 

after LPS express the GLP-1R. Altogether these data suggest that pancreatic 

production of GLP-1 directly regulates macrophage responses to inflammation. I 
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conclude that under severe inflammatory conditions, GLP-1 plays an immunologic, 

rather than metabolic role, through direct macrophage regulation.  

Introduction 

Within a few decades, obesity has risen in prevalence at an alarming rate and now 

affects more than a third of US adults (275). Obesity and its concomitant comorbidities 

are an urgent public health concern and burden on the healthcare system. Patients with 

obesity are more likely to develop hypertension, cardiovascular disease, osteoarthritis, 

and Type 2 Diabetes Mellitus (T2DM). T2DM is characterized by insulin resistance, 

dysregulated glucose control, and impaired islet function. Prevalence of T2DM is rising 

in parallel to obesity worldwide (276,277). In addition to developing co-morbidities, 

T2DM patients are at an increased risk for complications associated with inflammation. 

For example, T2DM patients are at an increased risk for both developing infections that 

lead to sepsis and mortality associated with sepsis (255,257,262). In 2020, the COVID-

19 pandemic highlighted the need to understand the link between T2DM and severe 

inflammatory responses (278).  

One predominant theory explaining the link of obesity to type 2 diabetes mellitus 

(T2DM) involves the obesity-induced chronic low-grade inflammation. In contrast to the 

inflammatory response to an infection, where the purpose of immune cells is to identify, 

locate, and dispose of foreign microorganisms and viruses, the low-grade inflammatory 

state associated with obesity is not directed to a specific pathogenic target. Yet, similar 

to infection-based inflammation, meta-inflammation results in increased accumulation of 

immune cells in metabolic tissues and increased systemic and organ-specific levels of 

cytokines (255,258,259). The reverse is also true, that metabolic dysfunction impairs 

immune responses. Macrophages are essential for detecting, engulfing, and destroying 

apoptotic cells and inflammatory stimuli, typically a pathogen such as a virus or 

bacteria. During severe inflammation, tissue damage and hyperinflammation can result 

in an accumulation of neutrophils and other immune cells to remove damaged cells and 

regulate the immune response within an organ (279,280). While macrophage function 

and accumulation in the pancreas has been well studied in type 1 diabetes mellitus 
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(T1DM), recently, researchers have seen that macrophages also accumulate in the 

islets of T2DM patients and obese animal models (271–273). Under steady state 

conditions, macrophages within the islets are myeloid derived and express IL1-β and 

TNF-α (281). These tissue-resident macrophages are established prenatally and self-

maintained, and distinct from circulating monocytes (282). Severe inflammation 

(modeled by exogenous administration of lipopolysaccharide; LPS) will increase 

inflammatory transcripts from islet-resident macrophages (283). Recent research has 

shown that macrophages accumulate within the islet during diet-induced obesity leading 

to elevated levels of pro-inflammatory cytokines (259). Similarly, recent work 

demonstrates that during obesity, islet-resident macrophages proliferate contributing to 

a local inflammatory state and this results in impaired β-cell function (259,283). 

Collectively, these data indicate growing evidence that pancreatic 

inflammation/macrophage accumulation occurs with obesity and this contributes to 

impaired β-cell function. The impact of COVID-19 on islet function supports the 

importance of studying pancreatic inflammatory responses (284).  

One islet-derived factor that increases with both inflammation and metabolic stress is 

glucagon-like peptide-1 (GLP-1). GLP-1 is classically described as an incretin hormone, 

coded by the preproglucagon gene (Gcg). Gcg is expressed in the α-cells of the 

pancreas, the L-cells of the intestinal tract, and in the nucleus of the solitary tract (NTS). 

As a metabolic hormone, GLP-1 is increased after a meal, secreted predominantly from 

the intestinal L-cells and functions to decrease blood glucose in an insulin-dependent 

manner (37,38,42,43). GLP-1 has one known receptor (GLP-1R), a G-protein coupled 

receptor (GPCR), that is primarily found on the cellular membrane of pancreatic β-cells, 

and in nerve terminals in the wall of the hepatic portal vein, the lung, and within the 

brain (25). Activation of these GLP-1R in the CNS decreases food intake (243,268). The 

primary product of Gcg within the pancreas is glucagon. However, with metabolic and 

inflammatory stress, there is increased pancreatic production of GLP-1 

(139,143,285,286). While the physiological function of this increase in pancreatic GLP-1 

during an immune response remains unknown, pharmacological GLP-1 agonists have 

been found to have an anti-inflammatory effect (287,288) and in vitro work has shown 

that GLP-1 agonist treatment decreases TNF-α mRNA expression from macrophages 
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under LPS-induced inflammation (270). Previously, our lab discriminated between the 

roles of pancreatic and intestinal GLP-1 and have found that pancreatic GLP-1 is critical 

in regulating glucose homeostasis using our validated innovative mouse models 

(142,162,289,290).  Using a combination of high-fat diet (HFD)-induced obesity and our 

tissue-specific Gcg expression mouse model, I explored the function of Gcg-derived 

peptides in response to inflammation. A stated above, LPS is a well-established tool for 

inducing inflammation and is a known anorectic agent that alters glucose homeostasis; 

both functions of GLP-1. I hypothesized that GLP-1 contributes to the anorectic and 

glucoregulatory responses to inflammation. I also predict that pancreatic-produced GLP-

1 functions to regulate the local pancreatic endocrine cell inflammatory state by 

organizing macrophage accumulation as part of a complex cross-talk system between 

immune and endocrine cells. I hypothesized that HFD would exacerbate all these 

responses. 

Methods 

Animal Care  

8-week old C57BL6/J male mice (The Jackson Laboratory) or genetically crossed mice 

(discussed below) were used for all studies and housed in the University of Michigan 

North Campus Research Complex animal facilities under controlled conditions (12:12 

light-dark cycle, 50–60% humidity, and 25°C) with ad libitum access to water, and 

normal chow diet (Chow; Lab Diet, 5L0D) or high-fat diet (HFD; Research Diets 

D12492; 20% Kcal protein, 60% kcal fat, 20% kcal carbohydrate; 5.21 kcal/g) as 

indicated by each study. Intestinal or pancreatic reactivation of the 

endogenous Gcg gene was accomplished as described previously (274). Briefly, Gcg 

Null mice were crossed with villin 1-Cre (Jax Laboratories, stock number 004586) and 

PDX1-Cre (Jax Laboratories, stock number 014647) mice, respectively resulting in 

offspring with Cre-specific reactivation of the Gcg gene, Gcg Null, and Cre littermate 

controls (Con) (274). Glp1r-GFP reporter mice were generated as done previously 

(98,291). Briefly, Glp1rCre/+ mice (Jax Laboratory; 029283) were crossed to EGFP-L10a  
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mice (292) to generate offspring with a GFP labelled Glp1r. The University of Michigan 

Institutional Animal Care and Use Committee approved all procedures. 

Lipopolysaccharide (LPS) Dosing  

At 8 weeks of age, male mice either remained on chow or were switched to HFD for 9-

16 weeks depending on the endpoint of interest to assess the interaction between diet-

induced obesity and metabolic response to severe inflammation. To determine whether 

HFD alters the GLP-1 response to LPS compared to chow, I analyzed plasma levels of 

GLP-1 and glucose before and after LPS administration. To do this, mice were fasted 4 

hours after the onset of light phase. Mice were then administered LPS at a dose 

(100ng/g BW) previously demonstrated to increase plasma levels of GLP-1 (151,269) 

(n=4/diet) or vehicle (n=4/diet) via IP injection. Blood glucose was measured at baseline 

and plasma GLP-1 and blood glucose were measured 2 and 4 hours after LPS via tail 

blood collected in EDTA-coated tubes. Due to the increase in body weight, the HFD-fed 

mice received a higher absolute dose of LPS, the above experiment was repeated 

under the same dietary and experimental conditions except with a flat dose of LPS 

(0.32µg delivered in 0.22mL) (Chow-LPS, n=8; HFD-LPS, n=9) or vehicle treatment 

(Chow-Veh, n=6; HFD-Veh, n=9). The flat dose was calculated based on the average 

dose a chow-fed mouse would receive at 100ng/g LPS dose.  

Food Intake 

On the experiment day, chow or HFD-fed mice were fasted for then 4 hours prior to 

lights out. Immediately before lights out, LPS (100ng/g) or vehicle (0.9% NaCl) was 

administered via IP injection. In one cohort of HFD-fed Gcg Null vs. Cre animals the 

dose was lowered to 50ng/g. Food intake was measured 2, 4, 15, and 24 hours after 

injections.  

Energy Homeostasis  

In order to understand the impact of HFD on changes in energy expenditure during 

severe inflammatory conditions, I utilized indirect calorimetry cages. A cohort of animals 

was generated under the same chow vs. HFD dietary conditions as described above. 
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Mice were housed in PhenoMaster chambers (TSE Systems, Bad Homburg, Germany) 

for 5 days to assess food intake, energy expenditure, and respiratory exchange ratio. 

Mice acclimated to the chambers and 22°C for 2 days prior to the experiment day. Prior 

to lights out, mice received a flat LPS dose (4µg delivered in 0.13mL) (n=6/diet) or 

vehicle (n=6/diet) via IP injection. Mice remained in the metabolic chambers for 3 days 

to monitor recovery from LPS.  

Time Course of Glucose, Glucoregulatory Hormones, and Cytokine Responses to LPS  

Because previous experiments were limited by time points and blood volume that could 

be taken via tail nick, I designed a study to examine the time course responses of 

plasma levels of metabolic hormones and cytokines in response to LPS. A cohort of 

male C57Bl/6J animals was generated under the same chow vs. HFD dietary conditions 

described above. 3-5 days before the experiment, under general anesthesia 

(isoflurane), mice had catheters placed in the carotid artery (MJC-02, SAI Infusion 

Technologies) and jugular vein (BTPU-014, Instech Laboratories Inc.; MRE037, 

Braintree Scientific Inc.). After recovery from surgery, mice regained at least 90% of 

their pre-surgery body weight by study day. On the experiment day mice were fasted 4 

hours after the onset of light phase. To minimize handling of the mice, LPS (4µg 

delivered in 0.13mL) or vehicle was administered via the jugular vein. Blood samples, 

about 200 μL, were collected from the carotid artery in EDTA-coated tubes containing 

aprotinin and dipeptidyl peptidase-4 (DPP-4) inhibitor at baseline, 30, 60, 120 and 180 

minutes post-LPS infusion for assessment of plasma GLP-1, insulin, glucagon, IL-6, 

TNF-alpha, and IL-1β. Additional measures of blood glucose were taken every 30 

minutes throughout the experiment. To maintain blood volume due to the frequent 

sampling, heparin washed red blood cells from donor mice were administered via the 

jugular vein throughout the three-hour experiment at a rate of 4.4µL/minute for a total of 

800µL. During the experiment, I observed stroke-like symptoms in 5 mice and excluded 

these mice from analysis. Following the experiment, animals (Chow-Veh, n=6; Chow-

LPS, n=9; HFD-Veh, n=8; HFD-LPS, n=8) were sacrificed with pentobarbital sodium 

(Fatal-plus solution) administered via the jugular vein. Tissues were collected for qPCR 

analysis.  
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Glucose Tolerance Tests  

To determine if LPS administration has a long-term impact on glucose tolerance and 

whether diet impacted these results, we conducted glucose tolerance tests on male 

mice (n=12/diet) that were generated under the same chow vs. HFD dietary conditions 

described above. Glucose tolerance was assessed 2-3 weeks after an IP injection of a 

flat dose of LPS or vehicle treatment as above. For the IP and oral glucose tolerance 

tests, mice were fasted for 4h after the onset of the light phase. Blood was sampled and 

measured via tail nick. Basal blood glucose was sampled at -15 min, and glucose was 

administered via IP (2g/kg of 25% dextrose) injection or oral (300uL of 25% dextrose) 

gavage. Blood samples were taken at 15, 30, 45, 60, and 120 minutes after glucose 

administration. 

Real-time Quantitative PCR (qPCR)  

To examine systemic cytokine expression, necropsied livers were rapidly removed and 

frozen for later analysis. After homogenization in Trizol reagent, tissue RNA was 

extracted using a Pure Link RNA mini kit (Invitrogen, Carlsbad, CA). cDNA was 

synthesized (iScript cDNA synthesis kit, BioRad, Hercules, CA), and qPCR was 

performed using a TaqMan 7900 Sequence Detection System with TaqMan Universal 

PCR Master Mix (Applied Biosystems, Foster City, CA.). Relative mRNA expression of 

hepatic Il6 (Mm00446190_m1), Tnfa (Mm00443258_m1), IL-10 (Mm01288386_m1) and 

Ccl2 (Mm00441242_m1) were calculated relative to β-actin (Mm02619580_g1) samples 

using the ΔΔCT method. 

Hormone Assays  

Plasma levels of total GLP-1 and IL-6, TNF-alpha, and IL-1β (Mesoscale Discovery, 

Rockville, MD, USA), insulin (Crystal Chem Inc., Elk Grove Village, IL, USA) and 

glucagon (Mercodia, Uppsala, Sweden) were measured using ELISA kits.  

Tissue Macrophage Accumulation  

On experiment day, mice (n=3-4/group) were administered LPS (100ng/g) or vehicle 

treatment via IP injection. 24 hours after administration, mice were euthanized by CO2 
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asphyxiation and pancreas was immediately removed and placed in 10% formalin 

overnight. Tissues were processed for subsequent paraffin embedding and cut into 4 

μm sections for immunohistochemistry staining. The sections were incubated overnight 

with a F4/80 antibody (1:250; Cell Signaling Technology) as a marker of general 

macrophage accumulation and counterstained hematoxylin. The slides were scanned 

using Leica Aperio AT2® scanner and quantified using ImageJ as percent F4/80 area of 

total, islet, or acinar area. 

Macrophage Characterization via Flow Cytometry 

Mouse pancreata (Con-Veh n=5, Con-LPS n=5, Gcg Null-Veh n=5, Gcg Null-LPS n=5; 

HFD-Con-LPS n=5, HFD-Con-Veh n=5, HFD Gcg Null n=4, Gcg Null-LPS n=4; wild-

type n=1, Glp1r-GFP-LPS n=2) were excised immediately after euthanasia and then 

mechanically dissociated with scissors in sterile PBS. Pancreata were washed and 

pelleted under centrifugation, resuspended in 1mg/mL Collagenase V (Sigma), digested 

for 15 minutes at 37°C, quenched with RPMI + 10% FBS, then filtered through 40μm 

filters (Corning). The cells underwent RBC lysis, washed in PBS, then blocked and 

stained with the CD45-PerCP (Biolegend) for total immune cells, CD64-PE (BD 

Biosciences) for macrophages, and CD11b-APC (Biolegend) for a specific 

subpopulation of macrophages at 1:100 dilution in 100% FBS. Separately, bone marrow 

was extracted (Wild-type=1, Glp1r-GFP-LPS n=2), homogenized to a single cell 

suspension and stained with the following antibodies CD45-eFluor450 

(Invitrogen/eBioscience) and CD11b-APC (Invitrogen/eBioscience). The cells were then 

washed in FACS buffer (1% FBS, HBSS), and run on a ZE4 Analyzer flow cytometer 

(BioRad). While I had a validated F4/80 IHC antibody, I tested both F4/80 and CD64 to 

identify macrophage populations with flow cytometry and the CD64 population was 

more distinct for flow cytometry of the pancreas. 

Statistics  

The number of animals studied per treatment and genotype are indicated within each 

experiment and were determined by a power analysis completed using variance from 

previous data. All data are expressed as mean ± SEM. The statistical procedures were 

performed as indicated in the figure legends. Normally distributed data were analyzed 
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via standard parametric statistics including two-way, or three-way ANOVA’s and t-tests. 

If significant interactions were detected between independent variables, Tukey’s post-

hoc analysis was performed to determine where significant differences lie. Statistical 

analyses were performed using GraphPad Prism v.8.1.1, and statistical significance 

was accepted when p<0.05. 

Results 

Impact of LPS on plasma GLP-1 in HFD versus chow-fed mice. 

LPS is a well-established tool to induce inflammation and important for this study, 

increases GLP-1 (151,293,294). Additionally, plasma GLP-1 responses to severe 

inflammation are higher in patients with T2DM (152,295). To determine whether HFD 

alters physiological responses to LPS compared to chow-fed mice, I analyzed plasma 

levels of GLP-1 and glucose before and after LPS administration in chow and HFD-fed 

mice. As expected, HFD for 8 weeks significantly increased body weight (mean ± SEM; 

Chow-Veh 30.2 grams (g)±1.11, Chow-LPS 29.5g±0.95, HFD-Veh 48.4g±2.16, HFD-

LPS 47.9g±2.30, p<0.05) compared to chow-fed mice. As expected, HFD animals had 

greater baseline glucose levels. 2h after LPS, both chow and HFD-fed mice had 

decreased blood glucose levels compared to baseline but HFD animals were still 

significantly higher compared to chow-fed mice (Figure 3.1A). 4h after LPS, there were 

no longer statistical differences between the LPS-treated chow and HFD animals 

indicating a greater relative fall from baseline in HFD-fed mice. Total GLP-1 (Figure 
3.1B) levels were increased with LPS and were significantly greater in HFD-fed 

compared to chow-fed mice 2h after LPS. Consistent with previous work, the LPS dose 

was calculated based on body weight. However, because HFD-fed mice weigh more, 

their absolute LPS dose was higher, which, in and of itself, could increase plasma GLP-

1 levels in the obese animals. To determine if this was the case, I then administered a 

flat dose (0.32ug) to a second cohort of chow vs. HFD-fed mice. Again, HFD 

significantly increased body weight (mean ± SEM; Chow-Veh 32.43g±0.66, Chow-LPS 

32.07g±0.32, HFD-Veh 45.66g±1.86, HFD-LPS 45.43g±1.90; p<0.05). Similar to the 

body weight relative LPS dose, glucose (Figure 3.1C) levels in chow and HFD-fed 

decreased over 4h after LPS and this greater relative decrease was greater in HFD-fed 
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mice. Total plasma GLP-1 (Figure 3.1D) was significantly increased in the HFD- 

compared to chow-fed mice 2 hours after LPS. Taken together, these data indicate that 

HFD alters glucose and the GLP-1 responses to LPS.   

HFD-fed mice have a prolonged anorectic effect in response to LPS compared to chow-

fed mice 

LPS is known to decrease food intake and because of this reduction, conserve energy 

expenditure and alter fuel utilization (296,297). Typically, this results in a shift away from 

carbohydrate oxidation (296). To further examine the interaction between energy 

homeostasis, immune responses, and diet, I utilized metabolic chambers to monitor 

end-points associated with energy homeostasis after LPS. Baseline body weight was 

greater in HFD vs. chow-fed mice but within diet the LPS and Veh groups were matched 

for body weight (Figure 3.2A). Consistent with the literature, LPS-treated mice had a 

significant decrease in body weight (Figure 3.2B) over 4 days. In addition, there was a 

significant decrease in lean but not fat mass 4 days after LPS indicating that the 

majority of the body weight lost was from muscle mass (Figure 3.2C-D). As expected, 

LPS-treated mice decreased their food intake both within hours of administration 

(Figure 3.2E) and this suppression of feeding lasted for 3 days (Figure 3.2F). During 

Day 1 after LPS, the HFD mice had significantly decreased food intake compared to the 

Chow-fed LPS group (Figure 3.2E). As the mice recovered on Day 2 and 3, the HFD-

LPS mice continued to have decreased cumulative food intake compared to chow-fed 

mice (Figure 3. 2F).  

As stated above, a typical response to LPS is a decrease in energy expenditure to 

prioritize immune cell function (296). I found a significantly lower energy expenditure in 

the Chow-LPS vs. Veh group during Day 1 dark cycle and then no significant difference 

between these groups during the first light cycle or after (Figure 3.2G-H) indicating that 

the animals were quickly recovering from the LPS injection. However, the HFD-LPS 

group has similar energy expenditure to their Veh-treated control after LPS (Figure 
3.2G-H) implying that HFD induces a dysregulation of energy prioritization. Because the 

HFD-fed mice have greater body weight, I chose to calculate absolute energy 

expenditure. However, I saw similar results when energy expenditure was expressed 
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relative to body weight as well (Supplementary Figure 3.1). Together these data 

suggest that HFD-fed mice have an increased sickness-induced anorexia and 

dysregulated energy expenditure during severe inflammation.  

Under immune activation, competing metabolic demands of immune cells vs. 

physiological functions must be balanced (296). The respiratory exchange ratio (RER) is 

an indicator of whole-body fuel utilization and was reported for all groups 24h following 

LPS (Figure 3.2I). The average RER (Figure 3.2J) for Day 1 was significantly higher in 

the Chow-Veh group compared to all others, and on Days 2 and 3 both Veh- and LPS-

treated chow groups were significantly higher compared to the HFD-fed groups. These 

RER data show that the chow-fed mice shift away from oxidizing carbohydrates (100% 

carbohydrate oxidation indicated by a RER=1) as an energy source (Figure 3.2I). The 

HFD-LPS mice are already oxidizing fatty acids (100% fatty acid oxidation indicated by 

a RER=0.7) as an energy source at baseline so no decrease in RER is detected. By 

Day 2 after LPS, RER in the chow-fed mice is similar to baseline indicating that they 

have recovered from the LPS administration. Conversely, the HFD-LPS mice dips below 

0.7 on the RER graph, implying the mice are resorting to either fatty acids or ketone 

utilization. Day 3 after LPS, both LPS-treated mice have similar RER to their respective 

control groups.  

HFD-fed mice show increased inflammatory responses to LPS compared to chow-fed 

mice 

Having observed differences in responses to LPS between chow vs. HFD-fed mice, I 

wanted to further explore the systemic physiological and inflammatory responses. Mice 

underwent vascular catherization and LPS (4ug; flat dose) was administered via the 

jugular vein while blood draws were taken from the carotid artery. This is beneficial 

compared to tail bleeding as it allows me to take a higher volume and frequency of 

blood draws because I can maintain blood volume with a constant red blood cell 

infusion, and it is less stressful to the mice compared to repeated tail bleeding. The 

LPS-treated mice had decreased blood glucose levels (Figure 3.3A) and had increased 

plasma GLP-1 (Figure 3.3B) over time relative compared to Veh-treated mice and 

these effects were magnified (Diet x Treatment p=0.02) in mice fed HFD. Interestingly, 
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although insulin was higher in HFD- vs. chow-fed mice, the increase in GLP-1 did not 

result in increased plasma insulin with LPS (Figure 3.3C). The LPS treated mice had 

significantly increased glucagon (Figure 3.3D) levels compared to Veh-treated mice at 

120 and 180min after LPS in both HFD- and chow-fed mice. The pro-inflammatory 

cytokines, IL-6 (Figure 3.3E) and TNF-α (Figure 3.3F), were greater in the HFD-LPS 

group compared to the Chow-LPS group while IL-1β (Figure 3.3G) increased with LPS 

similarly between the two dietary groups. Because the liver is an important link between 

the gut and systemic circulation (298), I evaluated liver cytokine expression in the HFD 

and chow-fed mice. In LPS-treated mice, there is a significant increase of liver cytokine 

expression including IL-6 (Figure 3.3H), TNF-α (Figure 3.3I), IL-10 (Figure 3.3J), and 

MCP-1 (Figure 3.3K) compared to Veh-treatment, but there were no significant 

interactions between diet and LPS. Together these data suggest that HFD-fed mice 

have increased systemic and liver inflammatory responses to LPS compared to chow-

fed mice. 

The role of Gcg in the physiological responses to LPS in chow and HFD-fed mice  

Next, I wanted to determine the function of the increase in GLP-1 in response to LPS. 

The traditional function of GLP-1 focuses on its ability to decrease appetite and increase 

insulin secretion in response to nutrients (37,38,42,43,243,268). However, GLP-1 has 

also been implicated as an anti-inflammatory agent (285,286). To determine the 

necessity of GLP-1 in the metabolic and immunologic responses to LPS, I studied both 

PDX1-Cre and Vil-Cre litter-mate controls (indicated by Con in figures), Gcg Null, 

pancreatic and intestinally Gcg reactivated mice that were fed chow (Figure 3.4A-M) or 

HFD (Figure 3.5A-L). There was no significant impact of genotype on the feeding 

response to LPS (Figure 3.4B-C) demonstrating that Gcg is not necessary, nor is 

pancreatic or intestinal Gcg sufficient, for the anorectic effect of LPS. There was no 

significant change in glucose in response to saline (Figure 3.4D) over time or between 

genotypes. While glucose was significantly lower at 240 min in response to LPS, 

(Figure 3.4E) there was no significant difference in this decrease between the 

genotypes. At 240 minutes after LPS, (Figure 3.4F) total GLP-1 was increased in the 

chow-fed control and GcgRAΔPanc mice and, as expected, was undetected in the Gcg 
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Null mice. The GcgRAΔInt mice had no significant increase in total GLP-1 levels in 

response to LPS. This indicates that the pancreas is a more significant contributor to 

plasma GLP-1 responses during LPS-induced inflammation. There was no significant 

impact of genotype or LPS on insulin levels (Figure 3.4G). Together these data suggest 

that GLP-1 does not function to increase insulin during severe inflammation and is not 

necessary for the glucose response to insulin. Glucagon (Figure 3.4H) was significantly 

higher in response to LPS in control and GcgRAΔPanc mice and undetectable in both the 

Gcg Null and GcgRAΔInt mice. Several cytokines were significantly increased in 

response to LPS in both the plasma (Figure 3.4I-K) and liver (Figure 3.4L-M) but there 

was no additional impact of genotype. Because genotype did not impact hepatic 

expression of cytokines in the control, Gcg Null or GcgRAΔPanc mice, this endpoint was 

not assessed GcgRAΔInt groups. 

I previously observed difference in total GLP-1 expression in chow versus HFD-fed mice 

under inflammatory conditions, therefore, I also assessed similar endpoints in a 

separate cohort of HFD-fed mice. There was no significant impact of genotype on food 

intake (Figure 3.5A-B) demonstrating that the lack of impact of Gcg on the anorectic 

effect of LPS is not impacted by diet. Similar to chow-fed, there was no significant 

change in glucose in response to saline (Figure 3.5C) over time or between genotypes. 

Glucose was significantly lower at 240 min in response to LPS (Figure 3.5D) but there 

was no significant difference in this decrease between the genotypes. Together these 

data suggest that Gcg does not play a role in regulating glucose, feeding, or systemic 

cytokine responses to LPS, regardless of diet.  

Total GLP-1 was increased in the Con-LPS HFD-fed mice only (Figure 3.5E). When I 

examined the GLP-1 levels after LPS as percent of average saline, the chow and HFD 

control mice contributed about the same levels of total GLP-1 (mean ± SEM; Chow-Con 

289.36±30.02, HFD-Con 238.22±28.31; p=0.25), regardless of diet. The pancreatic 

contribution trended towards being higher in the chow-fed (mean±SEM; Chow-

GcgRAΔPanc 364.40±95.40, HFD-GcgRAΔPanc 196.71±45.07, p=0.08). The intestinal 

contribution (mean±SEM; Chow-GcgRAΔInt 69.21±21.35, HFD-GcgRAΔInt 181.54±40.08, 

p=0.01) increased in the HFD compared to chow-fed mice. These data imply that in 
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chow-fed mice the pancreas was the major contributor but in the HFD-fed mice both the 

pancreas and intestine contribute to circulating GLP-1 levels. In the HFD-fed mice, only 

the Con-LPS group had a significant increase in glucagon (Figure 3.5G). 

Gcg Null mice have increased macrophage accumulation in the pancreas after LPS  

To test whether Gcg had a role in regulating local inflammation, I determined pancreatic 

macrophage accumulation and characterization via two methods: flow cytometry and 

immunohistochemistry. Pancreatic immune cells were sorted on a flow cytometer, and 

the cells were (Figure 3.6A, Figure 3.7A) gated on singlets, scatter, and CD45+ cells. 

The population of interest, CD64+CD11b+, which represents a specific subpopulation of 

macrophages, was quantified and analyzed (Figure 3.6A, Figure 3.7). The Gcg Null-

LPS treated mice had significantly increased macrophage accumulation compared to all 

other groups in the chow-fed mice (Figure 3.6A). In the HFD-fed mice, LPS significantly 

increased CD64+CD11b+ (main effect of treatment (p=0.03)) and the Gcg Null mice had 

significantly greater CD64+CD11b+ cells (main effect of genotype (p=0.04)) but there 

was no significant interaction between the two variables.  

In a separate cohort, LPS was administered and pancreata were collected and 

processed for immunohistochemistry. Slides were stained for F4/80 (Figure 3.6B, 
Figure 3.7B) as general marker for macrophages using DAB. These data were 

quantified as percentage of area positive for F4/80 staining compared to the total 

(Figure 3.6C, Figure 3.7C) islet (Figure 3.6D, Figure 3.7D), and acinar area (Figure 
3.6E, Figure 3.7E), respectively. In both chow and HFD-fed mice, there was an 

increase in F4/80 staining in response to LPS, but this increase was similar in control, 

Gcg Null, and GcgRAΔPanc mice. The Gcg Null HFD mice had a baseline increase as 

shown by the Gcg Null-Veh group. In the acinar (p=0.02) and total (p=0.04) area of the 

HFD pancreata, I found a main effect of LPS treatment. Together, these data imply that 

under severe inflammation, Gcg Null mice have more macrophage accumulation in the 

pancreas compared to control as shown by the CD64+CD11b+ population in the flow 

cytometry, and the IHC demonstrates that the macrophages accumulate in both the islet 

and acinar cells of the pancreas.  
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Macrophages isolated from the pancreas express GLP-1R 

Next, I investigated if GLP-1 could be directly regulating macrophage accumulation. 

Whether GLP-1R are expressed on macrophages, and other immune cells for that 

matter, is unknown as GLP-1R antibodies are questionable (299).  To address this 

problem, I crossed an eGFP-L10a reporter mouse to a Glp1rΔCre (Figure 3.8A) mouse. I 

administered LPS and pancreatic tissues were stained for immune cells, acquired on 

the flow cytometer, and gated on singlets, scatter, CD45+, and CD64+ cells (Figure 
3.8B). Validating that I was able to detect the GFP signal, the wild-type mice showed no 

GFP signal (Figure 3.8C), whereas Glp1r-GFP mice showed a strong GFP signal 

(Figure 3.8C). Additionally, this population of GFP+ cells were positive for CD11b+, the 

subpopulation of macrophages I saw elevated in Gcg Null mice. Interestingly, only the 

pancreas showed this population and not immune cells isolated from the bone marrow 

(Figure 3.8C). This implies that under the stress of inflammation, macrophages in the 

pancreas express GLP-1R and are likely directly regulated by locally produced GLP-1.  

HFD-fed mice have impaired IP glucose tolerance 3 weeks after LPS  

To determine whether pancreatic macrophage accumulation after LPS could have a 

long-term effect on endocrine function, chow- and HFD-fed mice underwent oral and 

intraperitoneal (IP) glucose tolerance tests (GTTs) 2 and 3 weeks after LPS, 

respectively. On the day of both the oral GTT (mean±SEM; Chow-Veh 31.91g±0.45; 

Chow-LPS 30.46g±0.53; HFD-Veh 48.43g±1.19; HFD-LPS 46.59g±1.23) and IP GTT 

(mean±SEM; Chow-Veh 31.11g±0.29; Chow-LPS 30.09g±0.67; HFD-Veh 49.58g±1.17; 

HFD-LPS 48.43g±1.06) the body weight of LPS vs. Veh-treated mice were not different. 

LPS had no significant impact on oral glucose tolerance (Figure 3.9A) in chow- or HFD-

fed mice. However, while HFD-fed mice had significantly greater glucose responses 

compared to chow fed mice, both LPS treated groups had impaired IP glucose 

tolerance, regardless of diet (Time x Diet p<0.0001, Time x Treatment p=0.0049) 

(Figure 3.9B). Together these data suggest that LPS treatment has a lasting impact on 

glucose tolerance that can be overcome by incretin control of glucose.  
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Discussion 

Type 2 diabetes mellitus (T2DM) remains a pervasive problem both in the United States 

and around the world (275). The COVID-19 pandemic was a prime example of how 

T2DM and the associated immune dysfunction can adversely impact the immune 

responses (278). I found that high-fat diet (HFD) increases physiological responses to 

severe inflammation including greater increases in total GLP-1, greater sickness-

induced anorexia and dysregulated energy homeostasis, and that GLP-1 directly 

regulates macrophage accumulation in response to LPS. Thus, GLP-1 plays an 

immunologic, rather than metabolic, role in response to LPS.  

GLP-1 is traditionally thought of as an incretin hormone which increases after a meal 

and functions to insulin secretion and thus control blood glucose levels (37,38,42,43). 

Many studies have investigated the GLP-1 response to inflammation (139,143,285,286). 

Under severe inflammatory conditions, such as sepsis, patients have remarkably 

increased GLP-1 levels and this increase is associated with higher mortality rates (300).  

As stated above, I used LPS as an inflammatory stimulus which results in a strong, 

systemic inflammatory response including increased systemic cytokine production and 

decreased food intake (296,297). In my HFD vs. chow-fed experiments I saw that HFD-

fed mice had a stronger physiological response to the LPS. I found that HFD mice had 

increased plasma GLP-1 two hours after LPS administration. This greater increase in 

GLP-1 is consistent with what is seen in human T2DM data who have had sepsis 

(152,295,300). In addition, the HFD-fed mice had increased sickness-induced anorexia 

as seen by the food intake data and increased cytokine production. Together, these 

data show that HFD increases the inflammatory state after LPS, including plasma GLP-

1 levels suggesting that GLP-1 is involved in the immune response. Indeed, researchers 

have shown that GPL-1 levels predict mortality of patients with critical illness (300).    

The function of endogenous GLP-1 under inflammatory conditions remains unknown. 

Because LPS is a known anorectic agent that alters glucose homeostasis, both 

functions of GLP-1, I predicted that the role of GLP-1 in response to LPS would be an 

extension of its postprandial functions. While pancreatic GLP-1 contributed relatively 

more GLP-1 to the circulation, neither the pancreatic nor intestinal sources of GLP-1 
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were necessary for the anorectic or glucose responses to LPS. Together these data 

imply that the function of GLP-1 under inflammatory conditions differs from its function 

postprandially. This is corroborated by my insulin data which shows no increase in 

plasma insulin despite increased circulating GLP-1 levels after LPS administration.  

Because obesity and T2DM impact GLP-1 levels, in a separate cohort of mice fed HFD, 

I investigated these same endpoints. In these experiments, only the control mice had a 

significant increase in total GLP-1. This lack of increase in the GcgRAΔPanc mice could 

be due to baseline increases of GLP-1 in the HFD-fed mice, or that the HFD 

GcgRAΔPanc mice have dysregulated responses to diet and/or LPS due to lack of Gcg in 

either the gut or hindbrain.  

GLP-1 agonists have been implicated in anti-inflammatory signaling in multiple tissues 

(153,287,288,301). Exendin-4 (Ex-4) has been show to decrease circulatory cytokine 

levels after both LPS and Ex-4 administration (153). Similarly, patients administered 

liraglutide over six weeks had decreased cytokine levels measured in mononuclear cells 

(287). Additionally, GLP-1 agonists increased functional recovery and viability of 

cardiomyocytes with and without GLP-1R (302). Despite well-established anti-

inflammatory effects of GLP-1, how GLP-1 agonists contribute to an anti-inflammatory 

state remains unknown. Furthermore, whether endogenous GLP-1 has the same effect 

as long-acting GLP-1 agonists in unknown. In the above experiments, I did not observe 

any difference in systemic cytokine levels between Gcg Null, GcgRAΔPanc, GcgRAΔInt vs. 

control mice, regardless of diet. The discrepancy between the effects of endogenous 

GLP-1 and exogenous administration of long-lasting GLP-1 agonists could be explained 

by the rapid degradation of GLP-1 in circulation (155–157). While long-lasting agonists 

have systemic anti-inflammatory properties, perhaps endogenous GLP-1 has a local 

effect in GLP-1 producing tissues, the intestine and pancreas. As mentioned above, 

under LPS induced inflammation there is an increase in pancreatic produced GLP-1 in 

chow-fed mice. This is different from what is seen postprandially, where the 

predominant source of GLP-1 is from the intestine (33). Given this more novel source of 

GLP-1, I wanted to investigate specifically the impact of Gcg- derived peptides on 

pancreatic inflammation. The flow cytometry data comparing Gcg Null versus control 
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mice shows that after LPS, the Gcg Null-LPS group had significantly more 

CD64+CD11b+ cells compared to all other groups. This population was of interest to me 

because under HFD-induced chronic inflammation, this subpopulation of macrophages 

are the major contributor to the immune environment of the islet (259). I saw similar 

results in both the chow fed and HFD-fed mice. However, it is important to note that the 

HFD mice had a greater number of unhealthy cells leaving the populations of 

macrophages less distinct in the HFD flow analysis and this effect was greater in Gcg 

Null vs. control mice. This implies that the absence of Gcg increases the inflammatory 

state of the pancreas.  

The strength of flow cytometry is that it allows both the characterization and 

quantification of the macrophages, but not the localization. To look at the anatomical 

accumulation of the immune cells, I quantified percentage of area positive for F4/80 

staining compared to the total, islet, and acinar area. In both chow and HFD-fed mice, 

there was an increase in F4/80 staining in response to LPS, but this increase was 

similar in control, Gcg Null, and GcgRAΔPanc mice. While I had a validated F4/80 

antibody and protocol available for the IHC samples, I used both F4/80 and CD64 

antibodies for the flow experiment. The CD64 population was more distinct so I used it 

to distinguish the macrophages along with CD11b rather than F4/80. Both F4/80 and 

CD64 are common macrophage markers (303,304). However, while flow cytometry 

revealed a significant increase in macrophages in the pancreas in in the Gcg Null mice 

in response to LPS, I saw no significant genotype effect with IHC. This difference can 

be explained by the fact that the flow experiment used the entire pancreas is isolate 

macrophages, whereas the IHC images were taken of the islets and the surrounding 

tissue. Images taken only around the islet might skew the results for the acinar 

population. Despite this discrepancy, these data imply that macrophages accumulate in 

the pancreas after an inflammatory insult, and Gcg Null mice have increased 

CD64+CD11b+ macrophages compared to control mice.  

As discussed above, GLP-1 agonists result in anti-inflammatory signals 

(153,287,288,301,302). However, it is unclear how GLP-1 agonists are contributing to 

the anti-inflammatory state. Is it through CNS or peripheral signaling, or via direct 
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regulation of immune cells? To determine whether GLP-1 could directly regulate 

macrophages I used a Glp1r-GFP reporter mouse. It is well established that there are 

few, perhaps just one, antibody that is sensitive and accurate enough to detect the 

GLP-1R. To avoid this issue, I used a GLP-1RΔCre mouse crossed to an eGFP-L10 

reporter line and used flow cytometry to gate for GFP and immune cells. I found that a 

population of CD64+ CD11b+ cells were also positive for GFP in the pancreas implying 

that there are macrophages within the pancreas that express GLP-1R. However, there 

were no cell population that was positive for both immune cell markers and GFP. Thus, I 

hypothesize that GLP-1 directly regulates macrophage accumulation in the pancreas. 

This conflicts with a recent study which looked at the impact of liraglutide on bone 

marrow macrophages and found GLP-1R expression in both these macrophages and 

RAW264.7 cells, a macrophage cell line (305). However, single cell transcriptome 

analysis found GLP-1R expression in both classical monocytes, a macrophage 

precursor, and natural killer cells, an important cell type in innate immune responses, in 

the lung (306). This is an entirely new role for GLP-1 and puts forth a new hypothesis of 

why GLP-1 agonists show anti-inflammatory properties. 

One limitation of this study is the specificity of the PDX1-Cre expression in our promotor 

mouse. PDX1-Cre is expressed in both the pancreas and duodenum. Previous research 

has shown that the predominant source of GLP-1 postprandially is the ileum and colon 

(33), so the PDX1-Cre promoter is still useful as a pancreatic promoter for Gcg.  

Additionally, our Cre model targets the entire Gcg gene and all the peptides it encodes. 

Indeed, glucagon is an important counterregulatory hormone that may play a role in the 

local inflammatory state of the islet and cannot be discounted at this time. Although 

tools are limited at this time, future studies targeting either GLP-1 and/or glucagon could 

offer further insight into pancreatic Gcg peptides and local inflammatory responses.  

This study puts forth an additional role for GLP-1, as a macrophage regulating peptide. 

LPS-induced inflammation resulted in impaired glucose tolerance 3 weeks later. 

Previous data has shown that islet macrophage accumulation impacts glucose-

stimulated insulin secretion (259). Together, these data show the lasting effect of 
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inflammation on islets and could be particularly impactful for pre-diabetic patients who 

have an inflammatory insult as it could exacerbate the progression to T2DM.  

Conclusion 

These experiments explored the interaction between LPS-induced inflammation and 

metabolism and found that HFD-fed mice had increased susceptibility to the symptoms 

of LPS-induced inflammation. It also put forth a novel function of GLP-1 as a direct 

regulator of macrophage accumulation. 
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Figure 3.1 Impact of LPS on plasma GLP-1 in HFD versus chow-fed mice. LPS was either dosed per body weight 
(100ng/g) or as a flat dose (0.32ug) and (A, C) glucose, and (B, D) plasma total GLP-1 were measured, respectively. 
HFD-fed mice had a greater fall from baseline glucose at 4 hours and a greater increase in total GLP-1 at 2 hours 
regardless of dosage. Data in this figure were statistically analyzed with a 2-way (or mixed model) (A-B) or 3-way (C-
D) ANOVA with Tukey post hoc analysis when appropriate, each animal was tested once, and data are represented 
as Mean ± SEM. *p<0.05 Chow vs. HFD, **p<0.01 Chow vs. HFD 
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Figure 3.2 HFD-fed mice have a prolonged anorectic effect in response to LPS compared to chow-fed mice. 
Mice (n=6/group) were acclimated to the metabolic chambers for two days. (A) Mice were matched for body weight. 
(B) Total body weight, (C) lean mass, (D) and fat mass loss 3 days after LPS (4ug). (E) The HFD-LPS group has 
decreased food intake compared to the Chow-LPS group. (F) Cumulative food intake during recovery from LPS (Day 
2 and 3). (G) Energy expenditure in chow and HFD groups the 3 days following treatment with Veh or LPS. (H) 
Average energy expenditure separated into dark and light cycles over the three-day experiment; the Chow-LPS mice 
had significantly lower energy expenditure during the dark cycle of Day 1 compared to the Chow-Veh group. (I) RER 
for all groups over 3 experiment days in response to Veh vs. LPS. (J) The average RER for Day 1 was significantly 
higher in the Chow-Veh group compared to all others, and on Days 2 and 3 both chow groups were significantly 
higher compared to the HFD-fed groups. Data in this figure were statistically analyzed with a 2-way (A-D), or a 3-way 
(H-J) ANOVA with Tukey post hoc analysis when appropriate, or an unpaired t-test (E-F inset graphs), each animal 
was tested once, and data are represented as Mean ± SEM. *p<0.05; ***p<0.001; ****p<0.0001 as indicated in each 
graph.  
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Figure 3.3 HFD-fed mice have increased inflammatory responses to LPS compared to chow-fed mice. 
Following vascular catheterization, mice (Chow-Veh, n=6; Chow-LPS, n=9; HFD-Veh, n=8; HFD-LPS, n=8) recovered 
for 3-5 days and were administered LPS (4ug) via the jugular vein and (A) glucose, (B) total GLP-1, (C) insulin, (D) 
glucagon, (E) IL-6, (F) TNF-α and (G) IL-1β were measured. LPS treated mice had decreased glucose levels over 
time (Time x Treatment p<0.0001). Total GLP-1 (Time x Treatment p<0.0001) and glucagon (Time x Treatment 
p<0.0001) were increased over time in LPS-treated groups. Insulin levels were increased by diet but were not 
significantly impacted by LPS treatment. The iAUC for IL-6 and TNF-α were increased in HFD compared to chow-fed 
mice. There was no significant difference between dietary groups in the LPS-induced increase in IL-1β. Following the 
experiment, liver tissue was collected for cytokine and chemokine expression including (H) IL-6, (I) TNF-α, (J) IL-10 
and (K) MCP-1. While there was a clear impact of LPS on liver cytokine production, there was no significant 
additional impact of HFD. Data in this figure were statistically analyzed with a 3-way (A-G) ANOVA with Tukey post 
hoc analysis when appropriate or 2-way (H-K) ANOVA with Tukey post hoc analysis when appropriate, each animal 
was tested once, and data are represented as Mean ± SEM. *p<0.05 Chow-LPS vs. HFD-LPS 

 

 

 

 

 

 

 
 



61 
 

Figure 3.4 The role of Gcg in the physiological responses to LPS in chow-fed mice A brief schematic of the (A) 
Gcg genetic models are shown. Following a 4 hour fast, mice (Con-Veh, n=15; Con-LPS, n=13; Gcg Null-Veh, n=14; 
Gcg Null-LPS, n=14; GcgRAΔPanc-Veh, n=6; GcgRAΔPanc-LPS, n=8; GcgRAΔInt-Veh, n=7; GcgRAΔInt-LPS, n=7) were 
administered LPS (100ng/g) via an IP injection and food intake (B) was measured. (C) Food intake expressed as % 
difference from saline was similar between genotypes. A separate cohort of mice (Con-Veh, n=13; Con-LPS, n=14; 
Gcg Null-Veh, n=13; Gcg Null-LPS, n=14; GcgRAΔPanc-Veh, n=7; GcgRAΔPanc-LPS, n=8; GcgRAΔInt-Veh, n=9; 
GcgRAΔInt-LPS, n=10) were administered LPS as in (B) for panels D-K.  (D) There was no significant change in 
glucose in response to saline over time or between genotypes. (E) There was a drop in glucose over time in response 
to LPS but no significant difference between genotypes. (F) At 240 minutes after LPS, total GLP-1 was increased in 
the Con and GcgRAΔPanc mice. (G) There was no significant increase in insulin detected in response to LPS. (H) 
Glucagon was significantly higher in response to LPS in Con and GcgRAΔPanc mice and undetectable in both the Gcg 
Null and GcgRAΔInt mice. (I) Plasma IL-6 response to LPS (Veh levels indicated by dashed line) was significantly 
higher in the GcgRAΔPanc group. (J-K) There were no detectable difference between genotypes for TNF-α and IL-1β 
plasma levels after LPS (Veh levels indicated by dashed line).  Hepatic expression of (Con-Veh, n=5; Con-LPS, n=8; 
Gcg Null-Veh, n=4; Gcg Null-LPS, n=7; GcgRAΔPanc-Veh, n=6; GcgRAΔPanc-LPS, n=8) both IL-6 (L) and TNF-α (M) 
were significantly increased in response to LPS but there was no impact of genotype. Data in this figure were 
statistically analyzed with a 3-way (B, D-E) ANOVA with Tukey post hoc analysis when appropriate or 2-way (C, F-M) 
ANOVA with Tukey post hoc analysis when appropriate, each animal was tested once, and are represented as Mean 
± SEM. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 
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Figure 3.5 The role of Gcg in the physiological responses to LPS in HFD-fed mice Following a 4 hour fast, mice 
(n=7/group) were administered LPS (100ng/g) via an IP injection and food intake (A) was measured. (B) Food intake 
expressed as % difference from saline was not significantly different between genotypes. In a separate cohort of mice 
(Con-Veh, n=14; Con-LPS, n=20; Gcg Null-Veh, n=14; Gcg Null-LPS, n=16; GcgRAΔPanc-Veh, n=8; GcgRAΔPanc-LPS, 
n=9; GcgRAΔInt-Veh, n=7; GcgRAΔInt-LPS, n=8) were administered LPS as in (A) for panels C-J. (C) There was no 
significant change in glucose in response to saline over time or between genotypes. (D) There was a drop in glucose 
over time in response to LPS but no significant difference between genotypes. Blood was collected at 240 minutes 
and (F) plasma total GLP-1, (G) plasma Insulin, (H) plasma glucagon, (I) plasma IL-6, (J) plasma TNF-α, (K) plasma 
IL-1β were measured. All groups, regardless of genotype, responded similarly to LPS (Veh levels indicated by 
dashed line). Hepatic expression of (L) IL-6 and (M) TNFα were increased in response to LPS, but there was no 
significant impact of genotype on these responses (Con-Veh, n=7; Con-LPS, n=9; Gcg Null-Veh, n=6; Gcg Null-LPS, 
n=6; GcgRAΔPanc-Veh, n=8; GcgRAΔPanc-LPS, n=9. Data in this figure were statistically analyzed with a 3-way (A, C-D) 
ANOVA with Tukey post hoc analysis when appropriate or 2-way (B, H-L) ANOVA with Tukey post hoc analysis when 
appropriate, each animal was tested once, and are represented as Mean ± SEM. ***p<0.001 ****p<0.0001 
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Figure 3.6 Gcg Null mice have increased macrophage accumulation in the pancreas after LPS 24h after LPS, 
mouse (n=4/group) pancreata cells were (A) gated on singlets, scatter, and CD45+ cells. The population of interest, 
CD64+CD11b+ was quantified and analyzed. Gcg Null-LPS mice have increased macrophage accumulation 
compared to all other groups. In a separate cohort (Con-Veh, n=4; Con-LPS, n=4; Gcg Null-Veh, n=3; Gcg Null-LPS, 
n=3; GcgRAΔPanc-Veh, n=4; GcgRAΔPanc-LPS, n=4; GcgRAΔInt-Veh, n=4; GcgRAΔInt-LPS, n=4) pancreas sections were 
stained for (B) F4/80 using DAB and (C-E) quantified. LPS-treated mice had increased macrophage accumulation in 
the (C) total pancreas (p<0.0001), including both the (D) islet (p=0.0117), and (E) acinar cells (p<0.0001) regardless 
of genotype.  Data in this figure were statistically analyzed with a 2-way (A, C-E) ANOVA with Tukey post hoc 
analysis when appropriate, each animal was tested once, and are represented as Mean ± SEM. **p<0.01 
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Figure 3.7 Gcg Null mice fed HFD also have increased macrophage accumulation in the pancreas after LPS 
Mice (Con-Veh, n=4; Cre-LPS, n=4; Gcg Null-Veh, n=3; Gcg Null-LPS, n=3) pancreata was stained for immune cells 
and acquired on a flow cytometer. The cells were (A) gated on singlets, scatter and CD45+ cells. LPS mice have 
increased CD64+CD11b+ accumulation compared to veh groups (Treatment p=0.0297) and macrophages were 
higher in Gcg Null mice (Genotype p=0.0369). In a separate cohort HFD-fed mice pancreata were collected 24 hours 
after LPS and sections were stained for (B-E) F4/80 using DAB. LPS-treated mice had increased macrophage 
accumulation in the (C) total pancreas (p=0.0395), but not the (D) islets, implying increase was in the (E) acinar cells 
(p=0.0245). This was consistent across genotypes.  Data in this figure were statistically analyzed with a 2-way (A, C-
E) ANOVA with Tukey post hoc analysis when appropriate, each animal was tested once, and are represented as 
Mean ± SEM.  
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Figure 3.8 Macrophages isolated from the pancreas express GLP-1R. A brief schematic of the (A) Glp1r-GFP 
reporter mouse is shown. 24 hours after LPS (100ng/g) administration, immune cells were isolated from pancreata 
and bone marrow (Wild-type n=1, Glp1r-GFP-LPS n=2), stained, and acquired on the flow cytometer using the gating 
scheme (B) shown. Wild-type mice showed no GFP signal (C), whereas Glp1r-GFP mice showed a strong GFP 
signal (C). Additionally, a population of cells were positive for both CD11b and GFP.  
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Figure 3.9 HFD-fed mice have impaired IP glucose tolerance 3 weeks after LPS Mice (n=6/group) administered 
LPS (0.32ug) had no significant difference in (A) oral glucose tolerance (oGTT) compared to saline-treated mice, 
regardless of diet. (B) Both HFD and LPS treatment impaired IP glucose tolerance but there was no significant 
interaction of diet and treatment (Time x Diet p<0.0001, Time x Treatment p=0.0049). Data in this figure were 
statistically analyzed with a 3-way (A-B) ANOVA and are represented as Mean ± SEM. 
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Supplementary Figure 3.1 Energy Expenditure response to LPS is similar when expressed relative to body 
weight (A) Energy expenditure expressed relative to body weight was decreased in the Chow-LPS group, but not in 
the HFD-LPS group. (B) The average energy expenditure did not have a significant 3-way interaction but there was a 
significant Day x Treatment interaction (p<0.0001) and a main effect of diet (p=0.0441). Data in this figure were 
statistically analyzed with a 3-way ANOVA (B) with Tukey post hoc analysis, each animal was tested once, and data 
are represented as Mean ± SEM.  
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CHAPTER 4                                                                                                                 
Conclusion 

Significance of Findings 

Type 2 diabetes mellitus (T2DM) remains a pervasive problem around the world 

(276,277). The COVID-19 pandemic was a startling example of the how dysfunction of 

the adaptive and innate immune systems with T2DM impacts mortality from 

inflammatory insults (278). It is critical moving forward that we understand how the 

pathophysiology of T2DM impacts immune responses. This knowledge will help to both 

decrease mortality rates of T2DM patients under severe inflammatory conditions as well 

as innovate new therapeutics. This dissertation made important strides towards 

understanding the local inflammatory state of the pancreas with endotoxemia, the 

factors that regulate it, as well as the impact of diet-induced obesity on these 

responses. Recently, researchers have been investigating the impact of GLP-1 and 

specifically, GLP-1R agonists, on responses to inflammation (139,143,285,286). Under 

severe inflammatory conditions, such as sepsis, patients have remarkably increased 

GLP-1 levels and this increase is associated with higher mortality rates (300). However, 

the function of GLP-1 under inflammatory conditions remains unknown. This 

dissertation puts forth an additional role for GLP-1, as a macrophage regulating peptide 

directly through its receptor, GLP-1R.  

First, I found that HFD increases total GLP-1 (Figure 3.1) responses to severe 

inflammation, which is consistent with human data in the literature (300). This led me to 

wonder about symptoms associated with severe inflammation that could be impacted by 

GLP-1 such as glucose levels and appetite. I found that under HFD conditions, mice 

had greater sickness-induced anorexia and dysregulated energy homeostasis (Figure 
3.2) compared to chow-fed mice. Using our innovative Gcg tissue-specific reactivation 
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mouse model, I found that GLP-1 plays an immunologic, rather than a metabolic role 

(Figure 3.3-3.7). Specifically, glucose and insulin levels were not impacted by Gcg, and 

instead, availability of Gcg prevents excessive macrophage accumulation in the 

pancreas. This is significant because it is a new role for GLP-1 which is traditionally 

described as an incretin (37,38,42,43). Furthermore, using a Glp1r reporter mouse, I 

found evidence that GLP-1R was expressed on pancreatic macrophages (Figure 3.8), 

implying that GLP-1 directly regulates macrophages.  

Last, I found that LPS-induced inflammation resulted in impaired glucose tolerance 

(Figure 3.9B) even after the mice had three weeks to recover. Importantly, this was 

only seen in the intraperitoneal (IP) glucose tolerance test (GTT) whereas the oral GTT 

(oGTT) was not impacted by LPS. A possible explanation for this is that the incretin 

activation from the gut after oral administration helps to better control glucose levels 

after a severe inflammatory insult. This important experiment shows the potential 

damage to pancreatic and gut function after a severe inflammation. In animal studies, 

HFD results in accumulation of macrophages in the pancreas and is associated with 

impaired glucose stimulated insulin secretion (259). The above data suggest that the 

pancreatic accumulation of macrophages that occurs after LPS leads to long-lasting 

impairments in glucose tolerance. Together, these data indicate a need for better 

understanding how inflammation impacts pancreatic function, and whether endogenous 

GLP-1 or GLP-1R agonists are protective against tissue damage due to inflammation.  

Strengths & Limitations 

This study utilized several innovative mouse models. First, our Gcg reactivation model 

allowed me to distinguish the impact of tissue-specific production (Figure 3.4-3.8) of 

Gcg-derived peptides, rather than using a knockout model. This is especially important 

for my experiments because I wanted to investigate the impact of Gcg-derived peptides 

on both the systemic and local inflammatory responses; Gcg is produced in multiple 

tissues and each source of Gcg has been implicated in energy and glucose regulation. 

In addition to inflammatory endpoints, this model allowed me to distinguish any potential 

glucoregulatory differences between intestinal and pancreatic GLP-1, which are 

reported for post-prandial GLP-1 (37,38,42,43). 
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However, our Cre model targets the entire Gcg gene and all the peptides it encodes. 

Indeed, glucagon is an important counterregulatory hormone that may play a role in the 

local inflammatory state of the islet and cannot be discounted. Although tools are limited 

to create this mouse model now, future studies targeting either GLP-1 and/or glucagon 

could offer further insight into pancreatic Gcg peptides and local macrophage responses. 

Specifically, GLP-2, another Gcg-derived peptide, has also been reported to have anti-

inflammatory properties (307,308).   

Another potential problem with our PDX1-Cre mouse model is the specificity of the 

PDX1-Cre expression in our promotor mouse. PDX1-Cre is expressed in both the 

pancreas and duodenum. Previous research has shown that the predominant source of 

GLP-1 postprandially is the ileum and colon (33), so the PDX1-Cre promoter is still 

useful as a pancreatic promoter for Gcg.  Future studies could use an AAV-Cre based 

virus administered directly through the pancreatic duct to specifically target the 

pancreas.  

Whether GLP-1R are expressed on macrophages, and other immune cells for that 

matter, is unknown as GLP-1R antibodies are questionable (299). To address this 

problem, I used a mouse model which crossed an eGFP-L10a reporter mouse to a 

Glp1rΔCre (Figure 3.8A) mouse, generously provided by Dr. D. Olson. I was able to 

detect immune cells that are also positive for GLP-1R without the weaknesses 

associated with the available GLP-1R antibodies. This finding that GLP-1R are located 

in pancreatic, but not bone marrow-derived macrophages suggests that, at least this 

specific population of macrophages that respond to LPS, are resident macrophages. An 

alternative explanation is that the circulating macrophages may change their genotype 

once they start accumulating in the pancreas. Macrophages are very plastic cells (309) 

and thus, this explanation is a distinct possibility. These data provide an increasing 

amount of rationale for the idea that GLP-1 directly regulates the immune response to 

inflammatory stress in the pancreas.  

I also used an innovative combination of IHC and flow cytometry (Figure 3.6-3.7) to 

look at the accumulation and characterization of macrophages in the mouse pancreas. 

To look at the accumulation of the immune cells, I quantified percentage of area positive 
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for F4/80 staining (Figure 3.6C-E, Figure 3.7C-E). In both chow and HFD-fed mice, 

there was an increase in F4/80 staining in response to LPS. While I had a validated 

F4/80 antibody and protocol available for the IHC samples, I used both F4/80 and CD64 

antibodies for pilot flow experiments as I was establishing a panel that could be properly 

compensated. The CD64 population was more distinct so I used it to distinguish the 

macrophages along with CD11b rather than F4/80. Both F4/80 and CD64 are common 

macrophage markers (303,304). However, I saw a statistically different response in the 

Gcg Null-LPS mice in the flow experiment, indicated by CD64, but not with the IHC 

strategy using F4/80 staining. It is possible that the different antibodies contributed to 

the lack of ability to detect an impact of genotype with IHC. However, I believe a more 

likely issue is that the I used the whole pancreas for the flow cytometry experiment, 

whereas the IHC images were taken of islets and the surrounding cells. Images taken 

only around the islet might skew the results; future studies could analyze the entire slide 

rather than focus on the islets. I also used DAB staining, counterstained with 

hematoxylin, and quantified as area stained rather than by individual nuclei. It is 

possible that my quantification strategy would be improved with the use of fluorescent 

antibodies and DAPI instead to quantify by nuclei. A method that I piloted to understand 

better the islet inflammatory state, was to isolate islets from Gcg Null vs. control mice 24 

after LPS administration. Unfortunately, the combination of Gcg Null and LPS resulted 

in very unhealthy islets even with an overnight incubation recovery which is standard 

procedure. In this flow experiment, there was too much debris and too little immune 

cells to identify populations.  

Because my chow-fed vs. HFD mouse metabolic experiments were limited by time 

points that could be taken via tail nick and blood volume, I designed a study to examine 

the time course responses of plasma levels of metabolic hormones and cytokines in 

response to LPS. Mice had catheters placed in the carotid artery and jugular vein in 

order to minimize handling of the mice. Additionally, this method allowed me to draw 

larger (about 200 μL), and more frequent blood draws (five blood draws throughout the 

experiment).  I was able to do this with the aid of heparin washed red blood cells from 

donor mice which were administered via the jugular vein throughout the three-hour 
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experiment. While this experiment was technically difficult to learn, it was a valuable 

experience and yielded important findings for my dissertation.   

Public Health Relevance 

As discussed above, under severe inflammatory conditions, such as sepsis, patients 

have remarkably increased GLP-1 levels and this increase is associated with higher 

mortality rates (300). Recent research has shown that macrophages accumulate within 

the islet during diet-induced obesity leading to elevated levels of pro-inflammatory 

cytokines (259). Similarly, recent work demonstrates that during obesity, islet-resident 

macrophages proliferate contributing to a local inflammatory state and this results in 

impaired β-cell function (259,283). Collectively, these data indicate growing evidence 

that pancreatic inflammation/macrophage accumulation occurs with obesity, and this 

contributes to impaired β-cell function and thus could be a critical contributing factor in 

the progression of T2DM. The impact of COVID-19 on islet function supports the 

importance of studying pancreatic inflammatory responses (284).  

I found that a population of CD64+ CD11b+ macrophage cells that were also positive for 

the GLP-1R in the pancreas (Figure 3.8C) implying that there are macrophages within 

the pancreas that express GLP-1R. Thus, GLP-1 could directly regulate macrophage 

signaling in the pancreas. Single cell transcriptome analysis found GLP-1R expression 

in classical monocytes and natural killer cells in the lung (306) indicating that the 

pancreas may not be the only organ where GLP-1R are regulating macrophage 

accumulation. Together, these data provide an increasing amount of rationale for GLP-1 

to be directly regulating macrophages. This is an entirely new role for GLP-1 and puts 

forth a new hypothesis of why GLP-1R agonists show anti-inflammatory properties.  

The development of GLP-1-based drugs has been a major advance in T2DM 

management. The approved pharmaceutical strategies targeting the GLP-1 system 

either increase endogenous GLP-1 levels with DPP4 inhibitors, or are long-acting GLP-

1R agonists resistant to DPP4 cleavage (228,229). DPP4 inhibitors are effective at 

stimulating insulin and reducing glucagon, attributes that are credited to GLP-1R 

signaling (230). One of the most used GLP-1R agonists has an extended circulatory 

half-life is accomplished by the addition of a fatty acid side chain to native GLP-1 which 
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facilitates albumin binding (Liraglutide/Victoza). Besides being more convenient for the 

patient, liraglutide treatment also results in a reduction in cardiovascular events (242). 

The reduction of cardiovascular events is interesting because GLP-1R agonists have 

been implicated in anti-inflammatory signaling in multiple tissues including 

cardiomyocytes (153,287,288,301). Exendin-4 (Ex-4), a GLP-1R agonist, has been 

shown to decrease circulatory cytokine levels after LPS administration (153). Similarly, 

patients administered liraglutide had decreased cytokine levels measured in 

mononuclear cells after six weeks of administration (287). A recent paper showed that 

COVID-19 patients who remained on sitagliptin, a DPP4 inhibitor, while in the ICU had 

increased survival compared to patients treated with standard of care, stopping 

sitagliptin and treating with insulin (310). Despite the established anti-inflammatory 

effects of GLP-1R agonists, how the agonists contribute to an anti-inflammatory state 

remains unknown. Furthermore, whether endogenous GLP-1 has the same effect as 

long-acting GLP-1R agonists in unknown. In the above experiments, I did not observe 

any difference in systemic cytokine levels (Figure 3.4I-M, Figure 3.5H-L) between Gcg 

Null, GcgRAΔPanc, GcgRAΔInt vs. control mice, regardless of diet. The discrepancy 

between the effects of endogenous GLP-1 and exogenous administration of long-lasting 

GLP-1R agonists could be explained by the rapid degradation of GLP-1 in circulation 

(155–157). While long-lasting agonists have systemic anti-inflammatory properties, 

perhaps endogenous GLP-1 has a local effect in GLP-1 producing tissues, the intestine, 

pancreas, and CNS. 

As mentioned above, LPS-induced inflammation resulted in impaired glucose tolerance 

(Figure 3.9B) after the mice had three weeks to recover. These data show the lasting 

effect of inflammation on islets and could be particularly impactful for pre-diabetic 

patients who have an inflammatory insult as it could exacerbate the progression to 

T2DM. 

Future Studies & Applications 

There are many hypotheses that could come from this dissertation regarding GLP-1 

expression and receptor signaling, as well as immune cell function. Here I put forth two 

future studies that are important follow up to the data in this dissertation.  
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First, in recent years, it has become increasingly evident that too much research is done 

in male mice only. This dissertation is in fact, guilty of this. While male mice are an 

important control, it is vital to establish how female physiology is the same or different in 

the groundbreaking research happening around the world. Specific to this dissertation, 

sex differences in GLP-1 expression (311) and immune system responses (312) have 

been detected. An interesting endpoint that I did repeat in female mice was assessing 

glucose tolerance after LPS. In the female mice, there was no impact of LPS treatment 

on either oral or IP glucose tolerance (Figure 4.1). This indicates that female mice might 

be protected from the impaired pancreatic function after LPS. Digging into this 

phenomenon further with female Gcg reactivated mice could yield data on sex differences 

in the immune response of the pancreas.  

As mentioned above, one of the interesting outcomes from this dissertation was the 

observation that LPS-treated mice had impaired glucose tolerance, at least in male mice. 

Future studies could explore pancreatic damage and recovery after severe inflammation. 

Both endocrine and exocrine function could be impacted.  

Finally, the Gcg Null, GcgRAΔPanc and GcgRAΔInt mice used in these experiments are 

lacking Gcg expression in the hindbrain. While it is known that glutamatergic rather than 

GABAergic neurons (98) are necessary for liraglutide to induce weight loss, whether 

these neurons are also necessary for or impact any of the physiological responses to 

LPS is unknown.  

Conclusion 

The data from this dissertation significantly advances our understanding of the function 

of the increase in pancreatic GLP-1 production with inflammatory stress. Furthermore, it 

explores the impact of HFD on immune responses, including Gcg. I found that HFD 

exaggerates physiological responses to LPS including increased GLP-1, decreased 

blood glucose, and a greater anorectic effect. I also found that Gcg-derived peptides play 

a role in pancreatic macrophage accumulation in response to inflammation. Finally, I 

found that macrophages isolated from the pancreas express GLP-1R indicating that GLP-

1 could be directly signaling macrophages and regulating local inflammation.  
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Figure 4.1: Female mice do not have impaired glucose tolerance in response to LPS regardless of diet Mice 
(n=6/group) administered LPS (0.32ug) had no significant difference in (A) oral glucose tolerance (oGTT) compared 
to saline-treated mice, however there was a significant interaction of diet (Time x Diet p=0.0029). (B) Only HFD 
impaired IP glucose tolerance but there was no significant interaction of diet and treatment (Time x Diet p<0.0001). 
Data in this figure were statistically analyzed with a 3-way (A-B) ANOVA and are represented as Mean ± SEM. 
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