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ABSTRACT

Understanding how developers carry out different computer science activities with objective mea-

sures can help to improve productivity and guide the use and development of supporting tools

in software engineering. In this thesis, we present three research components using three differ-

ent objective measures including neuroimaging (functional magnetic resonance imaging (fMRI)

and functional near-infrared spectroscopy (fNIRS)) and eye tracking. We evaluate on over 140

human subjects to explore multiple computing activities, including data structure manipulations,

code writing and code review.

First, in a human study involving 76 participants, we examine data structure manipulation and

mental rotation tasks using both fMRI and fNIRS. We find a nuanced relationship: data structure

and spatial operations use the same focal regions of the brain but to different degrees. They are

related but distinct neural tasks. In addition, more difficult computer science problems induce

higher cognitive load than do problems of pure spatial reasoning. Finally, while fNIRS is less

expensive and more permissive, there are some computing-relevant brain regions that only fMRI

can reach. This study paves the way for investigating the foundations of software engineering

activities at the cognitive level, as well as providing insights for pedagogical training and guidelines

for future studies.

Second, we present a human study in which 30 participants write code and prose while under-

going a fMRI brain scan. Our experiment is the first to use a realistic keyboard that is compatible

with modern medical imaging facilities. We find that code writing and prose writing are signifi-

cantly dissimilar neural tasks. While prose writing entails significant left hemisphere activity as-

sociated with language, code writing involves more activations of the right hemisphere, including

regions associated with attention control, working memory, planning and spatial cognition. This

xi



study provides a basis for future investigations on complex programming activities. The findings

also provide insights to encourage more diversified participation in computer science.

Third, we present the results of a controlled experiment with 37 participants using both fMRI

and eye tracking to investigate the neurological correlates of biases and differences between ma-

chines (e.g., automated program repair tools) and genders of humans in code review. We find that

men and women conduct code reviews differently, in ways that are measurable and supported by

behavioral, eye-tracking and medical imaging data. We also find biases in how humans review

code as a function of its apparent author, when controlling for code quality. In addition to advanc-

ing our fundamental understanding of how cognitive biases relate to the code review process, the

results may inform subsequent training and tool design to reduce bias.

This thesis presents a systematic framework and shows that it is possible to conduct studies

that acquire objective data in a natural setting to provide an understanding of users’ underlying

cognitive processes in software engineering tasks. We also provide basic principles and guidelines

to adapt multiple psycho-physiological measures to software engineering.
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CHAPTER 1

Introduction

With software-related innovations driving a $3.8 trillion global IT market [1; 2] and demand for

university computer science courses outstripping the supply of professors [3], the value of software

engineering is increasing rapidly. Modern software engineering is not just about programming, but

is also about understanding how and what to program, how to structure information, how to plan the

work, how to lead the people and how to get them to communicate and collaborate effectively [4].

In recent years, modern software systems are also being developed by increasingly distributed

and diverse teams. For instance, Open-Source Software (OSS) has established itself not only as

a critical resource in today’s software infrastructure and economy, but also as a launching point

for careers in technology [5]. From the early stages of talking to customers and clients (called re-

quirements elicitation) and planning the entire project design (called system specification), all the

way through to the maintenance of software systems after deployment, a fundamental understand-

ing of multiple activities is essential to improving productivity and efficiency in modern software

engineering. This importance is already emphasized in the software industry, with Fortune 500

companies, such as Amazon and AT&T, committing massive resources to retrain up to half of their

workforces to obtain better productivity and efficiency in programming-intensive areas [6; 7] as of

2020.

Over the years, among research approaches in modern software engineering, some solutions

worked well while others did not (e.g., aspect-oriented programming vs. object-oriented program-

ming [8], system design decisions and usability across different demographic groups [9], etc.).
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However, we lack a grounded theory and supportive information to understand and explain these

failures and successes. Such a theory could make it possible to design software engineering tech-

niques in a more efficient way. Despite the increasing prevalence of software and demand for

skilled programmers, in the past, researchers primarily relied on methods that collect subjective

information and opinions from users (e.g., think-aloud protocols, questionnaires, surveys, and in-

terviews, etc.) to study software engineering tasks [10; 11; 12]. Although these traditional methods

contribute important evidence and advance the state of the art, they suffer from the Hawthorn (ob-

server) effect [13; 14] and may not be reliable [15; 16; 17; 18]. For example, researchers may

collect users’ answers to study their behaviors or design preferences by asking questions such as

“which product do you think is better”, where human bias related to the racial background of the

interviewers (among other qualities) can harm the reliability of the results [19]. To complement

and enhance data collected using such traditional methods, and mitigate biases introduced therein,

we favor objective measures to provide insights into the cognitive processes that underlie various

software engineering activities.

In Psychology, cognition is the ability to process information through perception, or the accu-

mulation of information that we have acquired through learning or experience. It includes different

cognitive processes, like learning, attention, memory, language, reasoning, decision making, etc.,

which are part of our intellectual development and experience (e.g., [20]). Cognitive processes

have attracted significant attention in many academic disciplines (e.g., neurology, psychology, an-

thropology, philosophy). In cognitive psychology, researchers have studied cognitive processes

since the 1950s and the interest in research about cognition has increased since the 1960s. One

example is spatial ability, the manipulation of three-dimensional shapes in imagination, which

psychologists have shown to be a major factor in proficiencies such as mathematics [21; 22], nat-

ural sciences [23; 24], engineering [25], meteorology [26], and map navigation [27]. At the same

time, the emergence of technologies that look inside neurological processes, like medical imaging

and sensing technologies, such as functional magnetic resonance imaging (fMRI), functional near-

infrared spectroscopy (fNIRS), and eye tracking, has advanced and contributed to the neurological
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and cognitive understanding of thinking processes.

Researchers in Psychology have studied cognitive processes of different tasks, ranging from

musical performance [28], to food cravings [29] to prose writing [30; 31; 32]. However, these stud-

ies rarely involve computer science tasks. There is also a significant body of work investigating

the psychology of programming, ranging from the cognitive prerequisites of programming [33], to

programming behaviors [10; 34] to entire theories of the coding process [12]. Unfortunately, these

studies usually rely on self-reporting data which may lack foundational evidence. To address the

concerns associated with self-reporting, researchers in software engineering have turned to med-

ical imaging to obtain neurological evidence regarding programming activities. Research using

medical imaging techniques has examined brain patterns in code comprehension, code readability

and bug detection [35; 36; 37; 38]. However, these studies fail to provide an understanding of

cognitive processes for higher-level and more industry-related activities, such as reviewing others’

code and writing programs, as well as the differences between diversified groups of users. Some

studies in software engineering explored individual differences in outcomes (e.g., associated with

gender) [39; 40; 41], but they do not illuminate how user demographics actually affect decision

making in programming tasks.

In this thesis, we present a systematic framework to objectively measure and understand user1

cognition in software engineering activities by introducing three research components that range

from foundational to high-level tasks in modern software engineering: data structure manipula-

tion, code writing, and code review. We also introduce the design and methodology for studying

cognitive processes in these activities with multiple state-of-the-art objective measures, including

fMRI, fNIRS and eye tracking. This thesis shows that it is feasible to study user cognition in soft-

ware engineering activities and reveal truths that may be overlooked by traditional methods such

as self-reporting.

1For a broader group of audience, “user” usually refers to end users. In this thesis, “user” refers to humans that are
involved in any type of software engineering activities. Broadly, the framework presented in this thesis can be applied
to both end users and programmers.
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1.1 Approach

While findings relating to cognitive processes have successfully transitioned to guiding behav-

ioral and developmental improvement in domains like mathematics [42] and education [43], we

still lack a fundamental understanding of the cognition behind software activities. Such an un-

derstanding would help programmers, academics, and industry participants: from understanding

productivity and expertise [44; 45; 46] to increasing participation in the modern workforce [47; 48]

to guiding pedagogy [49; 50] to augmenting unreliable self-reporting [51; 52]. To obtain such an

understanding, we present a systematic framework that satisfies the following criteria:

• Objective Measures. It is critical to measure the relevant factors objectively in computer

science tasks. Research in both Psychology and Computer Science has shown that subjective

measures may not be adequately trustworthy (e.g., [15; 16; 17; 18]). Objective measures are

necessary to understand user cognition in a generalizable and reliable way.

• Foundational Understanding. A fundamental understanding of the cognitive processes in

programming tasks is essential to help users solve software problems, learn programming,

and make decisions in software development, as well as to further improve productivity and

efficiency [53; 54].

• Higher-Level Tasks. We desire an understanding of higher-level programming tasks. Soft-

ware development is a complicated process consisting of different components. In the soft-

ware industry, development usually includes higher-level tasks such as code reviews [55; 56].

The efficiency of such higher-level tasks directly and significantly affects their time and

monetary cost [57; 58]. Thus, it is important to understand the cognitive processes for these

semantically-rich and industry-related activities.

• Generalizability Across Users. We desire an understanding that applies to a wide range of

people. Modern software development is conducted in an environment of diverse populations

and diversity is important to effectiveness in software engineering [59; 60]. The diversity of
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the CS workforce has been receiving more attention over time [61; 62] as of 2020. Thus, we

desire a theory that accounts for demographic differences (e.g., gender) across users.

The overall thesis statement of this dissertation is:

It is possible to meaningfully and objectively measure user cognition to understand the

role of spatial ability, fundamental processes and stereotypical associations in certain

software engineering activities by combining medical imaging and eye tracking.

We combine several insights to form the basis of a systematic study for understanding user

cognition in computer science. First, with the increasing emergence of medical imaging and eye

tracking (e.g., fMRI, fNIRS, and eye trackers), it is now possible to conduct studies that acquire

objective data in a natural setting to provide an understanding of the underlying cognitive processes

of certain tasks. For instance, modern medical imaging techniques allow researchers to investigate

the neurological patterns in human brains during different tasks. Second, we can adapt scientific

approaches and concepts from other domains to assist our investigation and understanding for

computer science activities. For example, education researchers have studied the influence of

spatial ability and shown that it is a major factor in proficiencies such as mathematics [21; 22]

and the natural sciences [23; 24]. They have also designed corresponding interventions to enhance

spatial ability [63; 64; 65; 66]. These results inspire us to study the relationship between spatial

ability and programming to help with programmers’ productivity. Third, it is now possible to

study historically-subjective factors like cognition by designing rigorous controlled experiments.

For instance, contrast-based experiments are widely used in medical imaging studies to investigate

the brain. Such designs make it possible to focus on brain activities that are only relevant to

the actual experimental conditions. These three insights support our systematic framework that

satisfies all four of the desired properties we require.

To understand cognition in software engineering activities, this thesis presents the results of

three studies that investigate certain relevant and important behaviors of programmers.
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Our first research component is to investigate the relationship between data structure

manipulation and spatial ability using multiple medical imaging techniques. Studies in Psy-

chology have displayed the importance of, and possible interventions for, enhancement for spatial

ability in several domains [22; 26; 64; 65], but it is rarely studied within software development.

We hypothesize that spatial ability is highly associated with software tasks on a foundational level.

If so, we can leverage training experience for spatial ability in Psychology to improve pedagogy

and productivity in computer science. We use medical imaging to compare the brain activities of

spatial ability and data structure tasks because (1) data structures are a fundamental element in

computer science that affect the performance and cost of many systems, and (2) medical imaging

techniques can provide us with a neurological basis for the relationship between two tasks. We

statistically validate this relationship on humans using two medical imaging modalities.

Our second research component investigates the relationship between code writing and

prose writing using medical imaging. The goal of this study is to understand the cognitive process

of code writing, a crucial activity in software engineering. We use prose writing as a baseline to

ground our results. While some studies have explored how software developers read code (e.g., [35;

67]), there is no research studying the cognitive processes of creativity in programming such as

code writing. One challenge is that normal keyboards may not be safely deployed with state-of-

the-art medical imaging. We design a bespoke magnet-safe keyboard to allow typing and editing.

We test the brain activity relationship between code writing and prose writing using statistical tests

on human participants.

Our third research component is to study the decision making process in code reviews

using medical imaging and eye tracking. The goal of this study is to investigate the effects

of stereotypical associations (i.e., bias) in software engineering. There is research showing that

software developers do not recognize this potential bias when checking the source of code in code

reviews [41] and female developers have lower acceptance rates when their identities are directly

recognizable in open source projects [40]. We use open source projects and controlled author

information to study the cognitive processes in code reviews. In addition, we also monitor subjects’
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eye movement using eye tracking devices. We compare the brain activities and eye motions across

conditions using statistical tests.

1.2 Summary and Organization

The main contributions of this thesis are the following:

• A mathematical model and analysis of the particular relationship between data structure

manipulation and spatial ability based on fundamental medical imaging results.

• A mathematical model and analysis of the particular cognitive processes involved in the

higher-level software engineering activities of code writing and code review (including the

effects of certain human biases).

• A comparison of cost-benefit and feasibility tradeoffs between different medical imaging

techniques for software engineering.

The remainder of this thesis is organized in the following manner. In Chapter 2, we provide

relevant background material on the formalisms and techniques used in the remainder of this dis-

sertation, including the general introduction of medical imaging, mechanisms of fMRI, fNIRS, eye

tracking and contrast-based analysis, and processes of software engineering tasks. We also provide

related work for studies presented in this thesis in the end of Chapter 2. In Chapter 3, we present

the study of understanding user cognition in data structure manipulation using two medical imag-

ing modalities (i.e., fMRI and fNIRS) and the comparison between the two modalities for future

research principles. In Chapter 4, we present the study of investigating the cognitive processes in

a more complex and higher level software engineering activity, code writing, and introduce a be-

spoke keyboard that allows typing in modern medical imaging facilities. In Chapter 5, we present

the study on exploring biases in code review across different user groups with both medical imag-

ing (i.e., fMRI) and eye tracking. In Chapter 6, we summarize the work in this thesis and present
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discussion on potential future research directions in the community based on results presented in

this thesis.

8



CHAPTER 2

Background and Related Work

Prior to commencing our exploration of understanding user cognition in computational activities,

we first introduce key concepts, results and techniques related to psycho-physiological measures

for a computer science audience in Section 2.1. Second, we review the psychology and software

engineering tasks involved in this thesis, including the study of mental rotation in psychology, sup-

porting our experimental use of it as a neurological basis for spatial ability, code comprehension,

code and prose writing, and code review. Finally, we introduce related work that has been done in

software engineering with various psycho-physiological measures.

2.1 Psycho-physiological Measures

Human brains run many types of operations to center all information collected to effectively op-

erate in the world. In software engineering, similarly, developers’ cognitive processes involve the

acquisition, storage, interpretation, manipulation, transformation, and use of relevant knowledge.

When developers think and reason about a task, usually their visual attention (i.e., the information

they focus on visually) indicates the information they are acquiring and certain regions of their

brains are activated. Developers’ visual attention can be captured through their eye movements via

techniques such as eye tracking (described in detail in Section 2.1.3). When an area of the brain is

in use, blood flow to that region increases accordingly. The theory behind the process is, neurons

do not have internal reserves of energy in the form of sugar or oxygen, so their firing causes a
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need for more energy to be brought in quickly [68]. Developers’ brain activation patterns can be

measured through neuroimaging techniques (described in detail in Section 2.1.1).

In this section, we overview the mechanism and research use of the two popular neuroimag-

ing techniques: functional magnetic resonance imaging (fMRI) and functional near-infrared spec-

troscopy (fNIRS), as well as eye tracking, including their relative advantages and disadvantages for

our experiments to measure user cognition. We also introduce the experimental design principles

for neuroimaging techniques.

2.1.1 Neuroimaging

As mentioned above, human brains support neural activities with energy provided in blood oxy-

gen. Functional neuroimaging techniques are used to study brain activity based on this theory. In

this thesis, we also refer to neuroimaging as medical imaging for convenience and the significant

overlap between them [69]. Over the past 30 years, non-invasive in vivo functional neuroimag-

ing techniques have emerged as important tools in understanding cognitive processes. The most

popular of these techniques, fMRI, and its counterpart, fNIRS, provide several advantages.

First, as non-invasive tools, fMRI and fNIRS pose significantly less risk and can access a

wider range of brain regions than previous invasive techniques (e.g., electrocorticography (ECG)).

Second, fMRI and fNIRS provide a wider field of view and higher spatial resolution than other

functional neuroimaging techniques (e.g., electroencephalogram (EEG), Magnetoencephalogra-

phy (MEG)), allowing for the characterization of a brain region’s contribution to a specific task.

Third, fMRI and fNIRS avoid the use of ionizing radiation or radioactive elements that is common

in many other neuroimaging modalities (e.g., computerized tomography (CT), positron emission

tomography(PET)). Instead, fMRI and fNIRS rely on the hemodynamic response, the metabolic

changes (e.g., oxygen, glucose) in neuronal blood flow to active brain regions, using oxygen con-

sumption as an indirect measurement for brain region activity [70] (see Sections 2.1.1.1 and 2.1.1.2

for more detail).

In neuroimaging, researchers adapt anatomical classification systems that divide the human
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brain into areas, each associated with specific neurological functions. A popular choice is the

Brodmann anatomical classification system which divides the brain into 52 areas [71]. In this

thesis, we use the Brodmann system and refer to brain areas with the notations of BA1–BA52.

In the remaining of this subsection, we will first introduce the mechanisms of fMRI and fNIRS.

Then we will compare fMRI and fNIRS from the perspectives of research applications and setups.

2.1.1.1 How fMRI Works

Through a process called the hemodynamic response, blood releases oxygen to active neurons at a

greater rate than to inactive neurons. This causes a change of the relative levels of oxyhemoglobin

and deoxyhemoglobin (oxygenated or deoxygenated blood) that can be detected on the basis of

their differential magnetic susceptibility [68]. In neuroscience, we refer to the contrast between

oxyhemoglobin and deoxyhemoglobin as the blood-oxygen-level-dependent (BOLD) signal [72].

Hemoglobin has different magnetic properties in its oxygenated and deoxygenated forms (deoxy-

genated hemoglobin is paramagnetic and oxygenated hemoglobin is diamagnetic), which leads to

magnetic signal variation [68]. Thus, certain neuroimaging techniques such as fMRI can be used

to detect brain activities. fMRI measures BOLD signals via the application and removal of a se-

ries of magnetic fields. The energy that nuclei emit upon returning to their original positions can

be used to determine their locations. As task-related brain activity is mapped onto an anatomical

scan of the participant’s brain in the associated mathematical analysis, participants must lie still in

the narrow fMRI machine throughout the experiment with minimal head movement. For a more

detailed introduction and explanation of the foundational physical and physiological principles of

fMRI, the reader is referred to Hashemi et al. [73] and Ulmer et al. [74]. For a high-level example

of an fMRI machine, please refer to Chapter 3.2.3.

2.1.1.2 How fNIRS Works

Similarly, oxygenated and deoxygenated hemoglobin also lead to optical differences. Thus, tech-

niques, such as fNIRS, can also be used to detect brain activities, where light signals of near-
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infrared wavelengths are reflected differently according to the ratio of (de-)oxygenated blood.

fNIRS also measures the hemodynamic response to determine active brain regions. fNIRS re-

lies on differences in the absorption of chromophores, groups of atoms that generate color through

the absorption of light, between oxygenated and deoxygenated hemoglobin. Light is emitted and

detected through devices placed at specific locations on a scalp cap worn by the participant. Un-

like fMRI, fNIRS measures concentration changes in oxygenated and deoxygenated hemoglobin

separately. fNIRS admits relative freedom of motion and has few environmental restrictions. For

example, participants can sit in front of a standard computer and monitor and perform in a more

realistic software development setting. For more detailed introduction and explanation of the foun-

dational physical and physiological principles of fNIRS, please refer to Ozaki et al. [75]. For a a

high-level example of fNIRS equipment and the associated setup, please refer to Chapter 3.2.3.

2.1.1.3 Comparison of fMRI and fNIRS

Both fMRI and fNIRS have been widely used in psychological and clinical research to develop

a deeper understanding of brain functions such as sensory, verbal, and motor processing [76; 77;

78; 53; 79; 80]. As a result, fMRI and fNIRS are popular in research. In 2020 alone, there

are more than 37,000 publications on fMRI officially collected in PubMed only. Among other

examples, fMRI has been used to study face recognition, decision making, resting, and vegetative

states [81; 82; 83; 84; 85; 86]. Similarly, the use of fNIRS is also on the rise [87]. The applications

of fNIRS span many fields, such as behavioral development, psychiatric conditions, and brain

injury [87; 88; 89; 90].

However, fMRI and fNIRS rely on the hemodynamic response (see Section 2.1.1.1), and share

several limitations. One limitation arises from hemodynamic lag: the onset of changes in neuronal

blood flow peaks several seconds after the onset of stimuli [91; 92]. Similarly, the hemodynamic

response saturates over time [54], resulting in weaker signals for tasks involving sustained activity.

The hemodynamic response enforces experimental restrictions such as lower and upper limits on

stimuli (commonly 30 seconds, no longer than 60 seconds), as well as demanding robust mathe-
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matical analysis [93; 94].

fMRI provides excellent spatial resolution and deep penetrating power. It is a precise neu-

roimaging modality that captures activations across the whole brain. In contrast, fNIRS provides

inferior spatial resolution and depth compared to fMRI due to inconsistent photon paths and the

limited penetration of near-infrared light. As a result, fNIRS also provides a noisier signal, lead-

ing to more careful considerations in experiment and analysis design. Likewise, fNIRS places a

burden on the researcher to decide, in advance, on the placement of light emitter-detector devices.

Given finite placement space on the scalp, the number of regions fNIRS can measure simultane-

ously is limited. However, as of 2021, fNIRS is gaining traction as a neuroimaging technique due

to its portability, ease of administration, ecological validity, and lower cost. In contrast, the high

cost, restrictive environment, and high sensitivity to participant motion of fMRI limit its practical-

ity. In this thesis, we present recommendations for the use of fMRI and fNIRS to study software

engineering in Chapter 3.

2.1.2 Basic Principles for Neuroimaging Experimental Design

In this section, we will introduce basic principles in study design using neuroimaging techniques.

The design principles are discussed from the perspective of fMRI, while experimental design for

fNIRS shares the same considerations. More discussion can be found in Amaro Jr. et al. [95].

2.1.2.1 Stimulus Representation

Initially, fMRI studies relied on sequentially presented stimuli within blocked conditions with a

long history relevant to an historical influence of PET studies: researchers had investigated changes

in blood flow measured over time periods of up to one minute when the human participants had

to maintain their cognitive engagement. Over the last decade, fMRI has employed a variety of

presentation schemes [95].
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Block Design. In a block design, two or more conditions are alternated sequentially [96]. Each

block will have only one experimental condition presented. After each block, there is a rest condi-

tion in which the hemodynamic response has enough time to return to baseline. Thus, a maximum

amount of variability is introduced in the signal and this allows block design to offer considerable

statistical power [97]. However, block design is limited by constraints such as signal drift and head

motion (see Chapter 3.3.1 for techniques to mitigate such limitations).

Event-related Design. In contrast to block designs, the presentation of event-related designs is

randomized and the time in between stimuli can vary [96]. Event-related designs model the change

in fMRI signal in response to neural events associated with behavioral trials. Within each trial,

there are a number of events such as the presentation of a stimulus, delay period, and response.

Event-related designs allow more real world testing, however, the statistical power of event related

designs is inherently low, because the change in the BOLD signal following a single stimulus

presentation is small [98]. The disadvantages of event-related design also include more complex

design and analysis.

Due to the difference in statistical power, in this thesis, we employ block design for the pre-

sented studies.

2.1.2.2 Contrast-based Design and Analysis

Both block and event-related designs are based on the contrast-based design (also called the sub-

traction paradigm), which assumes that specific cognitive processes can be added selectively in

different conditions [95; 96]. Any difference in the BOLD signal between two conditions is then

assumed to reflect the differing cognitive process. By making the conditions differ in only the cog-

nitive process of interest, the fMRI signal that differentiates the conditions should represent this

cognitive process of interest [98].

Following the convention in Psychology and Neuroscience, in this thesis, we use the notation

A > B to refer to the contrast (or difference) between two task conditions. For example, A > B
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refers to the comparison of brain activations during task A vs. task B. Contrasts are directional

tests: the aforementioned A > B contrast will specifically attempt to identify regions in which

average task A activity is greater than B. Critically, this does not imply that the inverse contrast

(B > A) will reveal regions in which task B activity is significantly greater than task A activity, as

differences in the opposite direction may be too small to be statistically meaningful (particularly

with the conservative thresholds we use to guard against false positives).

2.1.3 Eye Tracking

When users conduct software engineering activities, for example, reading code, their eye move-

ments indicate the real-time visual attention. Such eye movements can be measured with eye

trackers. Modern eye trackers are non-invasive, versatile, easy-to-use devices that have been used

to study diverse topics, such as surgery [99], driver-vehicle interfaces [100], human-computer in-

teractions [101], gaming [102; 103], and software engineering [104; 105].

Eye trackers are designed to collect a participant’s visual attention by recording eye-movement

data [106]. Visual attention triggers the mental processes required for comprehending and solving

a given task, while cognitive processes guide the visual attention to specific locations. Thus, eye

tracking provides useful information to study the participant’s cognitive processes and effort while

performing tasks [107]. Compared to conventional self-reporting methods, eye trackers are a cost-

effective way of collecting data at a fine level of details with minimal intrusion [108]. An eye

tracker also provides information that is not available from conventional methods, including fine-

grained patterns of visual attention (visual attention trends) [109; 110]. A visual attention trend

encapsulates changes in participant’s visual attention over time.

Raw data recorded by an eye tracker is processed by an event detection algorithm and results in

eye gaze data. Eye gaze data is studied with respect to certain areas of interest (AOIs) in a stimulus.

AOIs are manually defined by the experimenter based on research questions and variables [101;

109; 111; 112].

Eye gaze data is typically divided into two categories [106] based on ocular behavior. A fixa-
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tion is a spatially-stable eye gaze that lasts for approximately 200–300 ms (on average, three eye

fixations happen per second during active looking). During a fixation, visual attention is focused

on a specific area of display. Researchers in psychology claim that most of the information ac-

quisition and processing occur during fixations [101; 109] and that a small set of fixations suffices

for the human brain to acquire and process a complex visual input [106; 109; 111]. Fixation data

has been extensively used to measure the visual effort (cognitive load) representing the tasks and

stimuli being assessed [101; 112; 113]. Longer fixation duration and higher number of fixations

indicate higher visual effort [101; 113]. A saccade is a continuous and rapid eye-gaze movement

that occurs between fixations. Saccadic eye movements are extremely rapid (within 40–50 ms).

Cognitive processing during saccades is very limited [106; 109]. In this thesis, we focus on fixation

data to measure users’ visual attention.

How Eye Tracking Works. Modern, non-intrusive eye trackers consist of two miniature cam-

eras and one infra-red light source. They measure and track the human eye’s focus point using the

“corneal-reflection/pupil-center” method [107; 114]. The invisible infra-red light is directed into

the participant’s eyes. After entering the retina, a large proportion of the emitted light is reflected

back and creates a strong reflection which causes the pupils to appear very bright. A corneal re-

flection is also generated and shown as a sharp glint over the iris. Cameras then record the center

of the pupil and location of the corneal reflection while image processing identifies and tracks the

eyes.

Neuroimaging techniques provide information on the brain activation patterns which indicate

the thinking process on the neurological level. At the same time, eye tracking allow researchers to

measure visual attentions involved in certain tasks. Though there is a long way to go to completely

decode user cognition in software engineering tasks, these modern psycho-physiological measures

allow us to further understand it with objective measurement. In this thesis, we will use fMRI,

fNIRS and eye tracking, to measure and understand the cognitive process involved in various soft-

ware engineering activities. In the following sections, we will introduce several critical software

engineering and Psychology tasks to investigate in this thesis with the psycho-physiological mea-
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sures introduced in this section.

2.2 Psychology Tasks

In this section, we introduce tasks that have been studied in Psychology and are also relevant to

software engineering activities we investigate in this thesis. These psychology tasks include mental

rotation and prose writing.

2.2.1 Mental Rotation

Mental rotation is defined as the capacity to quickly and accurately rotate two- or three-dimensional

figures in imagination [115]. Mental rotation tasks generally involve comparing two three-dimensional

objects rotated about an axis, and are a standard paradigm for testing spatial ability [116]. There are

many interpretations of spatial ability, including the determination of spatial relationships between

objects and the mental manipulation of spatially-presented information. Despite spatial ability’s

influence in a wide range of disciplines, it has rarely been studied within software engineering. To

the best of our knowledge, only one previous study (conducted by Aharoni [10]) focused on the

relationship between software engineering tasks and spatial ability. This previous work relied on

interviews with students to understand their thought processes and suggested that programmers use

visual representations to reduce the level of abstraction of data structures. However, no quantitative

relationship has been investigated.

Neuroimaging has provided evidence that mental rotation involves the right parietal lobe, a

region believed to be responsible for spatial ability [117; 118; 119]. In our experiments we use

mental rotation as a validated test case for spatial ability. Shepard and Metzler found that the

time required to solve mental rotation tasks is a linearly-increasing function of the angular dif-

ference between the orientations of the two objects [120]. Gogos et al. studied the difficulty of

mental rotation using fMRI to identify rises in the BOLD signal with increased angles of rota-

tion [121]. Mental rotation is a meaningful comparison for the investigation of difficulty in our
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studies. Psychology research has shown spatial ability to be a major factor in proficiencies such

as mathematics [21; 22], natural sciences [23; 24], engineering [25], meteorology [26], and map

navigation [27].

In this thesis, we will relate data structure manipulation (i.e., operations on data structures)

and spatial ability (measured via mental rotation tasks) in Chapter 3, to investigate fundamental

activities in software engineering.

2.2.2 Prose Writing

For the purpose of this thesis, prose writing refers to any natural language writing work that fol-

lows a basic grammatical structure, such as arranging words and phrases into sentences and para-

graphs [122]. Theoretically, prose writing can refer to many types of natural languages. In this

thesis, we focus on English prose writing. There is a significant body of research in Psychology to

study the cognitive processes of prose writing (see Berninger and Winn [30] for a survey).

Early research dedicated to the cognitive processes of prose writing was conducted without

medical imaging. Hayes and Flowers proposed a theory of the cognitive processes of writing in

1981 [123]. Research in the field continued throughout the 1980s and 1990s, focusing on more

nuanced aspects of prose writing cognition including second-language proficiency [124; 125] and

studies on gaining writing expertise (e.g., [126]). Beaufort later proposed a social apprenticeship

model for gaining writing expertise, highlighting a continuum of novice to expert writing roles as

an opportunity for such a framework [126].

Unlike code writing, researchers have since leveraged medical imaging to establish objective

models of the prose writing process and have used such an understanding to improve prose writing

as a whole. Menon and Desmond were among the first to use fMRI to understand prose writing.

Their study, in which participants wrote by dictation in an fMRI machine, found activation in

only the left hemisphere, particularly the left superior parietal lobe [31]. Our study similarly found

activation in left temporal region for prose, but also found the right temporal region to be associated

with code writing. Shah et al. later used fMRI to study the neural correlates of creative writing
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with an experiment that separated the “brainstorming” phase of prose writing from “the act of

writing a new and creative continuation of a given literary text” [127].

There has also been particular interest in studying the specialization of writing-specific brain

regions. Sugihara et al. studied the brain’s writing center during both left- and right-handed writing

tasks [128], identifying regions crucial to the core process of writing. Planton et al. later identified

brain regions that are consistently involved in prose writing tasks, as well as differences in brain

activation across writing, drawing, and oral spelling [129]. Similarly, Purcell et al. studied the

neural basis of spelling and its relation that of reading: their study used a QWERTY keyboard to

study prose writing with fMRI [130]. However, their experimental design was restricted to typing

single words by dictation and without the participants having any live feedback while typing.

Historically, the development of a fundamental, neurological understanding of other activities,

such as prose writing, has proved useful as a guide in pedagogy and research. Berninger and

Winn credit advanced brain-imaging technologies as the primary development near the end of the

20th century that reformed prose writing research and education [30]. Examples of brain imaging

contributing to pedagogy include the use of verbal and non-verbal cues and strategies to improve

learning [131; 132], as well as teaching such cues and strategies to overcome inefficiencies in

temporally-constrained verbal working memory [133].

In comparison, researchers lack a corresponding fundamental understanding of code writing

that might illuminate new ways to improve code writing skills. Our thesis is motivated by the belief

that such a foundational understanding could guide more focused training and teaching strategies

for code writing.

2.3 Software Engineering Tasks

In this section, we present some relevant background on the software engineering tasks considered

in this thesis, as well as results related to expertise and imaging.
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2.3.1 Data Structure Manipulation

In computer science, a data structure is a particular way of organizing data in a computer so that it

can be used effectively. Manipulating data structures is one of the most fundamental skills required

in software development. For example, programmers use data structures such as lists, arrays and

trees to store data and apply operations such as sort, insert and traversal to the data structures.

As of 2021, only one other previous line of research has considered data structures at a cognitive

level. In a qualitative study involving nine computer science majors, Aharoni investigated student

thought processes when dealing with data structures [10; 134]. Aharoni found that visual repre-

sentations influenced students’ perceptions of the overall properties of data structures, suggesting

that programmers use visual representations to reduce levels of abstraction. While we draw inspi-

ration from Aharoni’s investigation of data structure mental manipulations, rather than focusing on

qualitative self-reporting, our studies use objective measurements of associated visual and neural

representations.

2.3.2 Code Comprehension

Much research, both recent and established, has argued that reading and comprehending code play

a large role in software maintenance [135]. A well-known example is Knuth, who viewed this as

essential to his notion of Literate Programming [136]. He argued that a readable program is “more

robust, more portable, [and] more easily maintained.”

Knight and Myers argued that a source-level check for readability improves portability, main-

tainability and reusability and should thus be a first-class phase of software inspection [137]. Basili

et al. showed that inspections guided by reading techniques are better at revealing defects [138].

An entire development phase aimed at improving readability was proposed by Elshoff and Mar-

cotty, who observed that many commercial programs were unnecessarily difficult to read [139]. A

2012 survey of over 50 managers at Microsoft found that 90% of responders desire “understand-

ability of code” as a software analytic feature, placing it among the top three in their survey [140,

Fig. 4].
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2.3.3 Code Writing

There is strong interest from both academia and industry in improving programmers’ ability to

write code [141; 142; 143; 144]. Developing methods to make code writing more productive,

accurate, and accessible has long been a software engineering goal. Such methods are often mo-

tivated by an understanding of programming psychology, such as block-style languages designed

for younger ages (e.g., Scratch [145]) and IDEs intended to increase productivity [146].

Researchers from as early as the 1950s have sought to understand the psychology of writing

code. Early efforts focused on cognitive load [147], psycholinguistic theory [148], and exper-

tise [149; 150], among other topics. In 1977, Brooks proposed an entire theory of programming

behavior oriented toward explaining transcriptions of participants asked to talk aloud while per-

forming programming tasks [12]. More recent work includes studies on how experts and novices

classify algorithms [151; 152] and programmers’ use of the Web when writing code [153].

In contrast to this thesis, previous studies have not directly investigated the cognitive processes

of code writing on the neurological level.

2.3.4 Code Review

Static program analysis methods aim to find defects (or other critical information) in software and

often focus on discovering those defects early in the code’s lifecyle. At its core, code review is

the process of developers reviewing and evaluating source code content and changes. Code re-

view is one of the most common forms of static analysis as of 2021 [154]; well-known companies

such as Microsoft, Facebook, and Google employ code review regularly [155; 156]. Typically,

the reviewers are someone other than author of the code under inspection. Code review is of-

ten employed before newly-written code can be committed to a larger code base. Reviewers may

check for style and maintainability deficiencies as well as defects. Numerous studies have affirmed

that code review is one of the most effective quality assurance techniques in software develop-

ment [157; 158; 159; 160]. While it is a relatively expensive practice due to high developer input,

it successfully identifies defects early in the development process. This benefit is valuable because
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the cost to fix a defect generally increases with the time it goes unnoticed [161; 162; 163].

Because code review is a critical software development activity, which directly and largely

affects the quality and maintenance cost of software design, it is essential to understand the limita-

tions of current code review process and improve the efficiency and effectiveness of code review.

2.3.5 Gender Biases and Differences in Software Engineering

Previous studies have found that the field of software engineering has very low participation from

women [164]. This is in spite of multiple studies that have found a positive correlation between

team diversity and team performance in this field [59; 60; 165]. Several candidate explanations for

low participation among women have been proposed in multiple studies: for example, women in

software engineering (and, more generally, in male-dominated fields) tend to see more criticism

on the quality of their work, more rejection of work, more harassment in the workplace, lower

chances of promotion, and more ridicule for both success and failure than men [166; 167; 168;

169; 170; 171; 172]. While there has been extensive research into the measurement of and the

social causes for these biases, there has been no research into the psychological basis behind code

review decisions as of 2021. Because of the importance of code review, we seek to avoid potential

bias on behalf of the reviewer to make code review as effective as possible.

Knowing that gender-based bias and discrimination exist in software engineering, in this thesis,

we hope to understand and mitigate its impact on code review.

2.4 Medical Imaging and Eye Tracking in Software Engineer-

ing

In this section, we discuss previous work related to computer science and neuroscience, as well

as studies in a wider range of domains that have used fMRI and fNIRS. Additionally, we discuss

previous research on eye-tracking studies in software engineering.

We note that the use of medical imaging in software engineering is still exploratory; between
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2014 and 2021, there have been fewer than 20 publications that have studied its associated cog-

nitive processes with either fMRI or fNIRS [35; 67; 173; 174; 38; 37; 36; 175; 176]. Given the

tradeoffs between these two neuroimaging techniques, the community has not settled on the best

option for studying software engineering tasks. Siegmund et al. introduced the study of software

engineering tasks with fMRI, focusing on code comprehension [177]. Their analyses identified

five brain regions with distinct activation patterns, all of which are relevant to working memory,

attention, and language processing. Newer work has explored the relationship between compre-

hension, code and prose review with expertise [67], bug detection and brain activities [36; 37],

code comprehension with eye tracking [176] and the effects of beacons (semantic cues) on code

comprehension [175]. In this thesis, we apply Siegmund et al.’s innovative use of neuroimaging,

and adopt these previously-identified brain regions as an established basis for verbal processing in

software engineering.

Similar to fMRI, fNIRS has been used to study the relationship between program comprehen-

sion and brain activity. Researchers used NIRS signals and found an increase in cerebral blood

flow when analyzing obfuscated code and code that requires variable memorization [173; 174].

Subsequent research studied the effect of code readability on cognitive load [38; 175].

Besides fMRI and fNIRS, researchers have tried other medical imaging tools to study software

engineering. Crk et al. used electroencephalography (EEG) to investigate the role of expertise in

programming language comprehension. Their study found that the brain’s electrical activity can

indicate both prior programming and self-reported experience levels [178]. Lee et al. used EEG in

a similar setting [179] to Floyd et al.’s work [67]. Parnin used electromyography (EMG) to explore

the roles of subvocalization for different programming [180]. Researchers have explored the link

between programming tasks and cognitive load [181; 182] using EEG, EMG, and eye tracking.

While medical imaging is relatively new to the software engineering community, it has made re-

markable contributions in guiding behavioral enhancement and development in different domains,

such as mathematics [42] and education [43]. For instance, cognitive understanding of numeracy

has inspired researchers to use different measures to predict individual differences in mathemat-
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ical development and achievement [183; 184; 185; 186]. Based on medical imaging research in

music training, researchers successfully developed interventions to enhance executive functioning

and working memory in older adults [187]. Similarly, imaging findings in reading-related brain

activities made it possible to design interventions to improve reading skills over time in dyslexic

children [188; 189]. Surveyed educators largely believe understanding the brain is important to

the design and delivery of teaching [43]. Berninger and Winn found that integration of neuro-

science and learning science may promote educational evolution [30]. Dahlin et al. found that

training can transfer between two tasks that engage overlapping processing components and brain

regions [190]. Specifically, the neuroimaging findings of the role of working memory in prose

writing [191; 192] have led to a series of instructional intervention studies showing writing prob-

lems can be improved [131; 132; 133]. Inspired by research in Psychology and other domains

using medical imaging, we believe similar benefits for code writing may be available.

Beyond medical imaging, Parnin proposed a model focused on how a programmer manages

task memory, specifically during multi-tasking and interruptions [193]. Of the previous studies

combining neuroimaging or cognitive neuroscience with software engineering, as of 2021, none

has investigated the effect of data structures on brain activity or explicitly investigated the relation-

ship between data structures and spatial ability. In addition, no previous study has compared fMRI

to fNIRS in the domain of software engineering.

Between 2020 to 2021, software engineering community has benefited from the uses of eye

trackers. The results of eye-tracking studies add to the existing body of knowledge on how devel-

opers perform different software engineering tasks and how they use different models and repre-

sentations along with source code to understand software systems. However, eye trackers are not

without shortcomings and unlike neuroimaging, they do not provide insight into the brain activi-

ties. As a result, in a handful of studies, researchers started to use eye tracking simultaneously with

electroencephalography (EEG) [181], fNIRS [38] and fMRI [176]. To the best of our knowledge,

only Peitek et al. [176] performed a conjoint study to simultaneously use eye tracking and fMRI

while providing a comprehensive analysis of the combined data.
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In this chapter, we presented the background of psycho-physiological measures that are used

in this thesis, including fMRI, fNIRS and eye tracking. We also introduced relevant software en-

gineering and psychology tasks, as well as related work, that are involved in this thesis. Starting

from the next chapter, we will present the three research components introduced in Chapter 1 that

form the main body of this thesis to investigate and understand users’ cognition in software engi-

neering tasks. In the next chapter, we will first investigate the cognitive process in data structure

manipulation, one of the most fundamental activities in software engineering.
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CHAPTER 3

Representation of Data Structure Manipulation

In this thesis, we investigate the cognitive processes of data structure manipulations, code writing

and code review, to provide a more complete picture of user cognition in software engineering

activities. In this chapter, we begin by focusing on understanding the cognitive processes of data

structure manipulation, one of the most fundamental activities in programming and software engi-

neering, with a comparison to spatial ability. As the first chapter presenting studies adapting med-

ical imaging in software engineering research, we also present a comparison between the fMRI

and fNIRS paradigms, and discuss experimental guidelines for future research combining medical

imaging and software engineering.

Data structures are a fundamental element in computer science that affect the performance and

cost of many systems [194; 195; 196; 197]. Data structure choice and usage influence many aspects

of software engineering, including maintainability [198], fault tolerance [199], reliability [200],

and scalability [201]. Despite the importance of data structures in software development, we have

a limited understanding of the subjective cognitive processes underlying their employment.
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3.1 Overview of Experimental Design, Results and Contribu-

tions

In this thesis, we leverage two key insights to decode the neural representations of several classes

of data structures and their manipulation1. First, we investigate the relationship between data struc-

tures and spatial ability. Spatial ability, which is first introduced in Chapter 2, is often measured

via mental rotation tasks like the one illustrated in Figure 3.1 [116; 120; 115; 202]. Second, we

use both fMRI and fNIRS, the two popular medical imaging techniques introduced in Chapter 2, to

provide objective measurements of active brain function and establish a grounded understanding

of mental processes associated with data structure manipulation. By comparing these neuroimag-

ing modalities, we develop best practices for imaging investigations of software engineering. To

the best of our knowledge, only one previous study focused on the relationship between software

engineering tasks and spatial ability [10]. This previous work relied on interviews with students to

understand their thought processes and suggested that programmers use visual representations to

reduce the level of abstraction of data structures. However, no quantitative relationship has been

investigated. Drawing inspiration from previous work, we consider spatial ability in the context of

data structures to be the capacity to mentally represent, remember and manipulate spatial relations

between elements of data.

We conducted a human study in which 76 participants mentally manipulated lists, arrays, and

trees. Participants also completed mental rotation tasks involving the ability to determine if two

perspective drawings portray the same three-dimensional shapes. In our study, we use mental

rotation tasks to provide a solid neurological basis for spatial ability against which the cognitive

processes associated with data structure manipulation can be compared.

The contributions of the work presented in this chapter are as follows:

• We report on a human study involving 76 participants and two medical imaging techniques,

the largest such study we are aware of for software engineering.

1In this thesis, we focus on exploring the cognitive process of tasks on the neurological level.
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Figure 3.1: Illustration of the investigation on data structure manipulation and spatial ability: on
the left, an unbalanced binary tree is rotated about node 1 to produce the tree on the bottom left.
On the right, a three-dimensional object is rotated in space as shown in the bottom right. We
investigate how the brain represents these two activities using medical imaging techniques.

• We find that data structure and spatial operations are related but distinct neural tasks: they

use the same focal regions of the brain but to different degrees.

• We demonstrate that problem difficulty matters at a neural level in computer science, with

more complex stimuli inducing a relatively higher cognitive load in data structure tasks than

in mental rotation.

• We find that fMRI and fNIRS measurements broadly agree for the claims in this study.

However, fNIRS cannot distinguish some activities as clearly as can fMRI. On the other

hand, fMRI may influence participant accuracy. Care is needed when using medical imaging

for software engineering.

• We present evidence from a qualitative investigation showing that imaging can find connec-

tions that subjective self-perceptions may overlook.

This chapter contributes to a fundamental understanding of cognitive processes in software

engineering including (1) studying data structures with neuroimaging, (2) studying the relationship

between data structure manipulation and spatial ability, and (3) comparing fMRI and fNIRS in the

context of software engineering.
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3.2 Experimental Setup And Methods

Having provided an overview of medical imaging and mental rotation, we present our study proto-

col to decode the neurological bases of data structures and their relationship with spatial ability and

difficulty. Materials (e.g., all stimuli and de-identified data) are available at the project’s website.2

3.2.1 Overview

In this human study, participants completed three blocks of tasks while being scanned by either

fMRI or fNIRS. Stimuli consisted of data structure (i.e., list, array, tree) and mental rotation tasks

with varying levels of difficulty. This setup permits the controlled investigation of the relationship

between data structures and spatial ability through the lens of difficulty and the choice of medical

imaging modality.

3.2.2 Recruitment

We recruited 76 students from University of Michigan for this study. Email solicitations were

made to a graduate student list as well as brief presentations in four upper-level undergraduate CS

classes. Monetary compensation was offered. After standard filtering (see Section 3.2.3), the final

pool contained measurements from 30 fMRI participants and 40 fNIRS participants. Prior to each

experiment, participants were screened for the requisite computing background. Table 3.1 summa-

rizes the demographic information for all participants. The protocol was approved by University

of Michigan’s Institutional Review Board.

3.2.3 Data Collection

Each participant completed the experiment in a single session. Upon arriving, they provided in-

formed consent and completed a background questionnaire. After watching a training video, par-

ticipants were prepared for scanning and began the task activities. Participants completed three

2https://web.eecs.umich.edu/˜weimerw/fmri.html
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Table 3.1: Demographic data of eligible participants in the study of data structure manipulation

Demographic Variables # fMRI # fNIRS

Sex Male 16 30
Female 14 10

Degree Pursuing Undergraduate 23 31
Graduate 7 9

task blocks of 30 stimuli each (90 stimuli in total). All stimuli were presented for up to 30s and

required an A or B response. A red fixation cross, a mark used to center participants’ gaze, was

shown before each stimulus for 2s–10s. Both fMRI and fNIRS experiments used the same set of

90 stimuli.

Stimuli were subdivided into three categories: (1) lists and arrays (collectively referred to as

“sequences”), (2) trees, and (3) mental rotation. Each task block consisted of 10 stimuli from each

category. The stimuli order was chosen randomly per participant. Participants were directed to

respond as quickly and accurately as possible. After the scanning, participants completed a post

survey to provide verbal explanations of their choices and actions.

Our experimental task protocol was designed to accommodate both fMRI and fNIRS. For

the fMRI experiments, participants lay in an fMRI machine (see Section 2.1.1.1) holding MR-

compatible buttons and remained in the machine for the entire scan (see Figure 3.2). In contrast,

fNIRS participants sat in a chair wearing an fNIRS device (see Section 2.1.1.2) using a standard

keyboard and monitor (see Figure 3.3). Participants were asked to remain still, but were permitted

five minute breaks between each task block. As mentioned in 3.2.2, data from 6 individuals were

removed due to difficulties presented when collecting fMRI data (e.g., discomfort in the machine,

incomplete dataset, or excessive head motion). In the fNIRS analyses, data from all 40 individuals

could be used.3

We now provide technical details suitable for conducting or replicating similar research. Sec-

tion 3.2.4 continues with a discussion of the stimuli used in our experiment.

3Although no fNIRS data were removed due to noise, fNIRS does rely on differences in the absorption of near-
infrared light, which can be obstructed depending on properties of a participant’s hair such as color and thickness.
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Figure 3.2: fMRI machine used in the experiment. The participant lies flat in the center of the bore.

3.2.3.1 fMRI Acquisition

In this experiment, we used fMRI to collect high-resolution imaging data following best practices

from neuroimaging [203; 204]. All imaging procedures were conducted on a 3T General Electric

MR750 with a 32-channel head coil at University of Michigan Functional MRI Laboratory. High-

resolution anatomical images were acquired with a T1-weighted spoiled gradient recall (SPGR)

sequence (TR = 2300.80 ms, TE = 24 ms, TI = 975 ms, FA = 8◦; 208 slices, 1 mm thickness).

Prior to the functional scans, we obtained estimates of the static magnetic field using spin-echo

fieldmap sequences (TR = 7400 ms, TE = 80 ms; 2.4 mm slice thickness). Functional MRI

data were then acquired during both a resting state and during three task-related runs. All scans

employed a T2∗-weighted multiband echo planar imaging sequence sensitive to the BOLD contrast

(TR = 800 ms, TE = 30 ms, FA = 52◦; acceleration factor = 6), with whole-brain coverage over

60 slices (2.4 mm3 isotropic voxels).
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3.2.3.2 fNIRS Acquisition

In this experiment, we collected data using the TechEn Inc. CW6 fNIRS system with an above-

average number of light detection channels, allowing for a broader view of the brain activities than

many published fNIRS studies (cf. [173; 174]). This system contains two laser diodes at 690 nm

and 830 nm with fiber optic cables to transmit light between the instrument and a sensor probe on

the participant’s head. We designed three head caps to accommodate different head sizes (head

circumference: 58 cm, 60 cm, 62 cm) based on the international 10–20 system [205; 206; 207]

(see Figure 3.3a). For registration of the fNIRS cap [206], the cap center was aligned with the

10–20 point fPZ (above the bridge of the nose, see [207] for more measurement details). The

cap included 16 light emitters and 32 detectors, spaced 3 cm apart, yielding 61 data collection

channels4 deployed at different regions. Regions were chosen based on previous neuroimaging

studies of program comprehension and mental rotation [35; 119], and consisted of 15 Brodmann

areas (see more details in Chapter 2.1.1). Signals were sampled at 50 Hz and then resampled to 2

Hz for analysis.

3.2.4 Materials and Design

As described in Section 3.2.3, participants were presented with three categories of stimuli: (1)

sequences, (2) trees, and (3) mental rotation. Each stimulus from the first and second categories

included a starting data structure, an operation to perform, and two answer choices (Figure ??).

Answers were either numerical values to describe the outcome of an operation or candidate data

structures resulting from an operation. A sequence appeared as either a linked list or an array. For

simplicity of modeling, we defined the difficulty of a sequence or tree task to be the total number

of elements present — the N in Big-Oh notation.

The sequence tasks include merge, insert and swap operations. The tree tasks include binary

search tree (BST) rotation, insertion and traversal operations. In mental rotation tasks, participants

4In theory, each emitter-detector pair could form a channel. In practice, our fNIRS hardware throughput limited us
to 61 channels.
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(a) fNIRS cap (b) fNIRS environment

Figure 3.3: The self-made fNIRS cap: fitting on the head of a participant providing coverage of
Brodmann areas 6–9, 17–19, 21, 39, 40, 41, 44–47 is shown on the left. On the right, a participant
is shown completing the tasks in the fNIRS experimental environment.

were shown a starting three-dimensional object and two candidate objects. Participants chose

the candidate that could result from a rigid rotation of the original (Figure 3.4c). The mental

rotation stimuli were adapted from the Mental Rotation Stimulus Library established by Peters and

Battista [208] with rotational angle difficulty. Figure ?? shows simplified examples. Stimuli are

available at the project’s website5.

In the fMRI experiment, the stimuli were presented as images on a screen in the back of the

scanner. Participants viewed stimuli via a mirror mounted atop the head coil.6 Conversely, in the

fNIRS experiment, the stimuli were presented as images on a computer monitor next to the fNIRS

device (Figure 3.3b).

5https://web.eecs.umich.edu/ weimerw/fmri.html
6A helmet-like casing that surrounds the head and is essential for capturing high-quality images [209].
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(a) Sequence (List or Array) (b) Tree (c) Mental Rotation

Figure 3.4: Example task stimuli: Sequence, Tree and Mental Rotation. The examples for Se-
quence and Tree stimuli are simplified for presentation space and clarity.

3.3 Approach

In this section, we present details on the mathematical analyses applied to fMRI and fNIRS data.

Our goal is to localize brain activations from task-related changes in the BOLD response (fMRI)

or light absorption (fNIRS). Such analyses pose complicated statistical challenges, involving the

interpretation of hemodynamic responses across anatomically and functionally diverse participants,

which themselves are indirect metabolic proxies for underlying neuronal (i.e., molecular/cellular)

responses. We used standard preprocessing techniques to identify and remove artifacts, validate

model assumptions, and standardize locations of brain regions across participants. We then used

general linear models to obtain estimates of task-related brain activations within voxels (fMRI) or

channels (fNIRS) based on the canonical hemodynamic response function. Finally, we performed

statistical tests at both individual and group levels to test for significant brain activations, including

subsequent correction for false positives.

Notation. As described in Chapter 2.1.1, we use the neuroimaging notation A > B to refer

to the contrast (or difference) between two task conditions. For example, Sequence > Tree refers

to the comparison of brain activations during sequence vs. tree manipulation. Contrasts are di-

rectional tests: the aforementioned Sequence > Tree contrast will specifically attempt to identify

regions in which average sequence task activity is greater than tree manipulation.
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3.3.1 fMRI Analysis Approach

Preprocessing. A critical first step in the analysis of fMRI data is preprocessing, which serves to

correct systematic sources of noise and transform individual brains into a standard space for cross-

participant comparison. We employed a number of standard preprocessing procedures using the

Statistical Parametric Mapping 12 (SPM12, Wellcome Trust Centre for Neuroimaging, London)

software in Matlab. First, we computed voxel displacement maps (VDMs) using images from the

fieldmap sequence. We then realigned the functional scans after accounting for head motion over

time; the VDMs were used to “unwarp” geometric distortions from motion. Next, the anatom-

ical scans were segmented, skull-stripped, and spatially coregistered to the functional data. All

images were then transformed into a standard space according to the Montreal Neurological Insti-

tute (MNI152) template [210]. Finally, we computed a brain mask using gray and white matter

segments of the anatomical scans — this was applied in subsequent statistical analyses to prevent

identification of false positive signals within ventricles or outside of brainspace.

First-level analysis. Functional MRI analyses are multi-level. First-level models are specified

on individual participant data — the results are then combined in a group-level model to assess

average task-related changes in brain activity. We specified two first-level general linear models

(GLMs) per participant. Briefly, these analyses require us to predict the BOLD response to each

condition — voxels whose timeseries align with the predicted response are “task-sensitive”. In

each GLM, we specified regressors for Sequence, Tree, and Mental stimuli across all runs. The

duration of each event was curtailed to participant response times. These were convolved with the

canonical hemodynamic response function (HRF) and high-pass filtered (σ = 128 s) to remove

low-frequency noise. In one model, we additionally specified a parametric modulator for each

condition to determine whether the magnitude of the BOLD response scaled linearly with trial

difficulty. All models were fit using robust weighted least squares (rWLS) [211], which first obtains

estimates of the error variance at each timepoint and reweights the images by a factor of 1/variance

to reduce the influence of noisy scans (e.g., due to head motion). This procedure homogenizes the

residual timeseries and obtains optimal parameter estimates for each condition.
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Contrasts and group-level analysis. Following first-level model estimation, we computed

pairwise contrasts to determine mean differences in activity between conditions. These were es-

timated on a within-participant basis (i.e., on first-level models). We applied a 5 mm3 full-width

at half maximum (FWHM) Gaussian smoothing kernel to each contrast map and carried them up-

ward into group-level random effects analyses. A GLM in this context allows us to assess average

activity across all participants, accounting for inter-individual variance to make some population-

level inference. The end result is a statistical parametric map of t-values describing clusters of

significant activity for a given task-related comparison. Importantly, all models and tests described

here were done voxelwise — that is, a GLM was specified and estimated for each of nearly 73,000

voxels in brainspace. We therefore applied a false discovery rate (FDR) threshold at q < .05 to

control for false positives as a result of multiple comparisons.

3.3.2 fNIRS Analysis Approach

Preprocessing. The raw fNIRS data are light signals transmitted through the channels between

emitters and adjacent detectors on the fNIRS cap. The light signals were converted to a measure

of the optical density7 change over time that results from hemodynamic responses.

First-level analysis. Statistical analyses for fNIRS follow the same general principles as fMRI.

We specified within-subject, first-level GLMs to model fNIRS optical density measurements in all

the channels that were statistically related to the timing of the hemodynamic responses (as deter-

mined by convolving timeseries of stimulus events with the canonical HRF). In fNIRS, systemic

physiology and motion-induced artifacts are major sources of noise and false positives. We there-

fore fit our models using autoregressive-whitened robust regression [212], which controls for such

confounds and affords optimal parameter estimation. Then, we applied t-tests to the regression

coefficients describing the task-related brain activations modeled for every participant. We addi-

tionally separated tasks into three difficulty levels and constructed GLMs to analyze the effect of

task difficulty on neural activity.

7The degree to which a refractive medium retards transmitted rays of light.
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Contrasts and group-level analysis. As with the fMRI analysis, we computed pairwise

contrasts to determine mean differences in activity between conditions, estimated on a within-

participant basis. Next, we conducted a group-level analysis to summarize the first-level regression

coefficients. A mixed effects model was used to examine the average group-level response, with

individual participants treated as random effects. Finally, we applied an FDR threshold at q < .05

to control for false positives from multiple comparisons.

3.4 Results and Analysis

We present quantitative and qualitative analyses to address the following research questions:

RQ 3.1 Do data structure manipulations involve spatial ability?

RQ 3.2 What is the role of task difficulty?

RQ 3.3 Do fMRI and fNIRS agree for software engineering?

RQ 3.4 How do self-reporting and neuroimaging compare?

For simplicity of presentation, we use Code to refer to sequence (array and list) and tree tasks

collectively.

3.4.1 RQ 3.1 (Data Structures & Spatial Ability) — fMRI

We began with a broad examination of mental rotation vs. code tasks, independent of task diffi-

culty: this would allow us to determine whether there were reliable differences between mental

rotation and the two data structure tasks on average. A group-level test of Code > Mental yielded

no significant activations after FDR thresholding (i.e., no regions showed consistently stronger acti-

vations across both tree and sequence tasks relative to mental rotation). However, Mental > Code

revealed robust increases in activation (FDR-corrected) of several regions commonly associated
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Figure 3.5: Weight map: significant cluster of brain activity for Mental > Tree, independent of
task difficulty. “Hotter” colors indicate regions showing a larger magnitude difference between the
two tasks (i.e., more activity during mental rotation relative to tree manipulation).

with the brain’s “default mode network” (DMN) [213]. Most notably, we observed bilateral re-

cruitment of wide swaths of posterior cingulate cortex (PCC; BA 31) and medial prefrontal cortex

(mPFC; BA 8), including subgenual anterior cingulate cortex (sgACC; BA 32). On the lateral face,

there emerged a large cluster of activity in the left angular gyrus (AG) / temporoparietal junction

(TPJ) (BA 39, 21–22), with additional clusters extending rostrally along the superior temporal sul-

cus (pSTS) and middle temporal gyrus (MTG) to the temporal pole (BA 21, 38). These anterior

temporal cortex clusters were also largely bilateral. The DMN is heavily implicated in various

types of mental simulation, as required by the tasks performed here.

Given that mental rotation reliably activated DMN regions more than the two code tasks,

we applied more focal contrasts to determine whether there were specific differences between

Mental > Tree and Mental > Sequence. This revealed that the Mental > Code effect was

primarily driven by Mental > Tree (Figure 3.5). While Mental > Sequence yielded signifi-

cant differential activations in midline DMN regions such as the PCC and mPFC, these clusters

had relatively minimal spatial extent. Patterns of activity related to Mental > Tree, however,

were nearly identical to those observed in the comprehensive Mental > Code contrast (Pearson’s

r = 0.97, p < .001). As with the omnibus Code > Mental contrast above, the inverse contrasts

(Tree > Mental and Sequence > Mental) also had no voxels survive FDR thresholding.
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fMRI results suggest that there are more similarities than differences during mental rotation

vs. software engineering tasks. A number of DMN regions involved in mental simulation were

recruited more heavily during mental rotation; nevertheless, 95% of voxels were statistically

indistinguishable between Mental and Tree tasks.

3.4.2 RQ 3.1 (Data Structures & Spatial Ability) — fNIRS
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Table 3.2 summarizes the fNIRS results. We first examined brain activations comparing each

task to a rest condition. The columns Sequence, Mental and Tree show the Brodmann Areas that

are significantly activated during the task categories (p < 0.01 and q < 0.05). The t-values range

from 8 (much stronger activation) to -8 (much weaker). We observe that the three categories of

tasks all involve significant activations in exactly the same brain regions: BA 6–9, 17–19, 39 and

46.

In the frontal lobe, the premotor cortex and supplementary motor cortex (BA 6), and the frontal

eye field (BA 8) showed activation. In the parietal lobe, the part which is associated with visuo-

motor coordination presented activation (BA 7) and part of Wernicke’s area showed activation (BA

39). We also observed strong activation in the primary, secondary and associative visual cortex

(BA 17–19). Finally, regions of the dorsolateral prefrontal cortex (BA 9, 46) showed activations

for all tasks. All the brain areas listed in the table passed FDR correction (q < 0.05).

Having established a broad similarity in how the three tasks each differ from a rest state, we

narrowed the investigation by examining how the tasks differ from each other. In Table 3.2, the

column Sequence > Mental shows the brain activation results when comparing sequence tasks

and mental rotation tasks. Areas related to vision (BA 17–19), Wernicke’s area (BA 39) and the

prefrontal cortext (BA 46) showed very different patterns of activation between the data structure

task and mental rotation. In addition, areas related to language processing (BA 41, 44–45, and 47,

which include Broca’s Area) strongly distinguish the two. As we observe here, an area (e.g., BA

41) may not significantly distinguish Sequence from a rest state or Mental from a rest state, but

may significantly distinguish them from each other.

However, the Mental > Tree and Sequence > Tree distinctions are far less compelling. In a

comparison, t-values near to either 8 or -8 are relevant. While Sequence > Mental features three

areas that reach a magnitude of 5 or more, the other two contrasts never reach a magnitude of 5

and involve fewer regions and channels. In an fNIRS analysis [214; 215], contrasts of that strength

result in a conclusion that Mental and Tree, as well as Sequence and Tree, are similar tasks.
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fNIRS results demonstrate that mental rotation and data structure tasks involve activations to

the same brain regions. However, while Sequence > Mental may be a compelling contrast, the

fNIRS evidence does not support the claim that the other tasks are distinct.

3.4.3 RQ 3.2 (Task Difficulty) — fMRI

When we considered the difficulty of each task, we found a significant effect in Sequence >

Mental (Figure 3.6). Larger sequence tasks elicited stronger activations across a wide extent of

the brain (FDR-corrected). With the exception of PCC, there was little to no overlap with DMN

regions (as seen in the contrasts in 3.4.1). Rather, the largest clusters included bilateral postcentral

gyrus (BA 40), left inferior frontal gyrus (IFG; BA 44–45), bilateral dorsomedial PFC (dmPFC;

BA 6, 8), bilateral anterior insula (BA 13), and bilateral ventral precuneus extending into visual

association cortex (BA 18). The heavy recruitment of frontoparietal regions — particularly in the

left hemisphere — suggests an increase in cognitive load [216] scaling with the total size of the

stimuli.

That is, we found that the brain works measurably “harder” (i.e., there is a larger magnitude

BOLD response) for more difficult problems. Because the relationship between mental rota-

tion difficulty and the BOLD signal is so well-established in psychology and cognitive neuro-

science [120; 121], it is particularly compelling that we observe a significantly larger effect (in

terms of cognitive load and top-down control rising with more complex stimuli) for sequence data

structures in software engineering than for mental rotation.

A similar analysis with our fNIRS data revealed no significant findings for the effect of task

difficulty on neural activity. This is likely due to fNIRS lacking the penetrative depth and spatial

resolution of fMRI.

The brain works measurably harder for more difficult software engineering problems (in terms

of cognitive load). Moreover, the regions activated suggest a greater need for effortful, top-
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Figure 3.6: Weight map: significant clusters of brain activity for Sequence > Mental, accounting
for task difficulty. “Hotter” colors indicate regions showing a larger magnitude difference between
the two tasks (i.e., more activity during difficult sequence manipulation trials relative to difficult
mental rotation trials).

down cognitive control when completing challenging sequence manipulation tasks.

3.4.4 RQ 3.3 (fMRI and fNIRS Agreement)

Our fMRI and fNIRS measurements and analyses both support the claim that mental rotation and

data structure tasks differentially recruit a number of brain regions. However, while fMRI evidence

supports a very robust Mental > Tree contrast, the fNIRS evidence is insufficient to support that

same claim. This is sensible when we consider the regions yielding the largest differences in fMRI:

they largely correspond to structures (e.g., the medial prefrontal cortex and posterior cingulate) that

fNIRS cannot measure. Very informally, the parts of the brain that distinguish mental rotation from

tree manipulations are too far “inside the skull” for fNIRS to see: its near-infrared light cannot

penetrate deeply beyond regions near the cortical surface.

However, while fMRI is more spatially-resolved, its restrictive and alien environment can also

be more daunting for participants. We compared participant performance (i.e., whether or not

they gave the correct answer and how long it took) for fMRI and fNIRS; such information was

available for 30 fMRI and 40 fNIRS participants. Recall that the questions were identical and the

participants were drawn from the same pool. The average accuracy of fNIRS participants, 92%,

was significantly higher than the 85% accuracy of fMRI participants (t = 4.50, p < 0.01) with no
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significant difference in response time (t = 0.70, p = 0.25). This could be a very relevant concern

for medical imaging studies of productivity, expertise, accuracy or similar software engineering

issues.

fMRI and fNIRS agreed that many areas similarly activate during data structure and mental

rotation tasks. However, there were also differences between the tasks that fNIRS was not able

to observe. In addition, the fMRI environment had a significant effect on participant accuracy.

3.4.5 RQ 3.4 (Self-Reporting & Neuroimaging) — Qualitative

We also conducted a qualitative analysis of survey data focusing on the correlation between ex-

planations provided by participant and neuroimaging data. Data was available for 72 of our 76

participants. At a high level, we find that self-reporting often subtly contrasts with analyses from

fMRI and fNIRS data. Complete (de-identified) survey information is available with our other

experimental materials and scanned measurements; for reasons of space we focus here on a single

indicative question.

Participants were asked to compare and contrast a mental rotation task with an BST rotation

task. Of the 72 responses, 70% reported no similarity between the two tasks. The following

quote is indicative: “I don’t think those two kinds of tasks were similar. Tree rotation was an idea

acquired from CS classroom [sic], but mental rotation was an action more natural to me and easier

to perform.” However, this subjective experience does not align with measured observation that

the same brain regions are recruited to solve both tasks. Even if mental rotation and tree rotation

feel subjectively different, changes to brain regions and brain region connectivity have been shown

to correlate with learning rates and expertise [217; 218]. It may be, for example, that exercises

related to spatial ability can help improve student performance on certain data structure tasks (e.g.,

because mastering one changes a brain region recruited by the other). While speculative, this is

simply one example of a research avenue that is encouraged by medical imaging data but entirely

hidden if only self-reporting data is used.
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These findings reinforce a considerable body of work on unreliable self-reporting (both in

psychology [219; 220] and in computer science, including fields such as security [16], human-

computer interaction [17], and software maintenance [18]). As previous studies have relied on

self-reporting to study mental processes associated with data structures [10; 134], this evidence

informs future research of the importance of neuroimaging (or similar techniques) when studying

the cognitive processes underlying software engineering tasks.

While medical imaging data found a nuanced relationship between mental rotation and data

structure tasks, including the involvement of the same brain regions, subjective self-report

only rarely mentioned any connections.

3.5 Threats to Validity

In this section, we describe threats to internal and external validity in this experiment.

One potential threat to internal validity concerns whether or not our data structure tasks mea-

sure what they claim to be measuring (i.e., data structure manipulation). The thought processes that

participants used when answering may not be identical: indeed, there is significant inter-participant

variance in the neural representation of this problem solving. In addition, the particular data struc-

tures and tasks we chose are not representative of all of software engineering (e.g., skip lists, tries,

heaps, maps, etc. are not considered). While we mitigate this somewhat by considering fundamen-

tal structures (linear sequential structures and branching trees), it is important not to generalize our

results far beyond what was directly measured.

Our use of mental rotation tasks as a baseline for spatial ability is one potential threat to external

validity, as mental rotation and data structure manipulations differ in their rigidity. In spatial

ability tasks, rigid transformations are those where distances between every pair of points on an

object is preserved [221]. When studying the relationship between data structure manipulation and

spatial ability, operations such as insertion, tree rotation, and merging may be more amenable to
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comparison with non-rigid transformations. However, we believe that mental rotation serves as a

useful baseline (see Section 2.2.1) for relating data structures to spatial ability. Mental rotation is

a paradigm case of spatial ability, and has been classified on the basis of difficulty both with and

without medical imaging [117; 118; 119].

The data structure stimuli used in this experiment may pose an additional threat to external

validity. Due to the inherent limitations of fMRI and fNIRS (see Section 2.1.1.3), we explicitly

used stimuli that took no longer than 30 seconds to finish. Thus, by focusing only on relatively

short data structure tasks, our results may not generalize to real-world software engineering tasks.

We mitigate this threat slightly by choosing stimuli from college-level courses, which commonly

focus on associated fundamental skills. However, this emphasis on tasks that are much shorter than

many of those performed by practicing software developers is a significant limitation of the current

use of medical imaging techniques in software engineering [35; 67; 173; 174; 38; 37; 36; 175; 176].

A final threat to external validity is the pool from which we selected participants. By only

recruiting undergraduate and graduate students, our results may only generalize to those with

university-level programming experience and education.

3.6 Costs, fMRI, fNIRS, and Research

Medical imaging studies, while still quite rare, are becoming more common in the software en-

gineering literature [35; 67; 173; 174; 38; 37; 36; 175; 176]. fMRI and fNIRS present tradeoffs

between cost, fidelity, experimental convenience, and experimental verisimilitude. In this section,

we discuss their tangible and intangible costs, including those associated with participant recruit-

ment, equipment cost and time.

As discussed in Section 2.1.1.3, fMRI poses significantly higher monetary costs than fNIRS.

In our study, the cost of fMRI was $575/hour (including the equipment, the fMRI-provided tech-

nician, etc.); each participant required 30 minutes of preparation, up to 75 minutes of scanning,

and the presence of two researchers. By contrast, in our institute, the use of fNIRS equipment was
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free; each participant required 30 minutes of preparation time to fit the cap, up to 75 minutes of

scanning, and the presence of two researchers.

In addition, each approach comes with recruitment restrictions. For example, fMRI typically

requires corrected-to-normal vision (because of the mirror/projection setup) and is not approved

for pregnant women or those with medical implants or head tattoos, etc. In some cases, participants

may not be able to finish a fMRI scanning due to claustrophobia. On the other hand, fNIRS may

place significant practical restrictions on the use of participants with dark, thick hair. In practice,

we found the fNIRS restrictions to be less onerous (resulting in 0 unusable applicants compared to

4 for fMRI).

Software engineering researchers must carefully weigh the costs and benefits. At a high level,

the two approaches provide broadly similar evidence. fNIRS requires the researcher to identify

relevant brain areas in advance for cap construction (Section 2.1.1.3) and cannot penetrate some

areas relevant to software engineering (Section 3.4.4). On the other hand, while fMRI is regarded

as the gold standard for imaging accuracy, it cost roughly $20,000 more to acquire the fMRI

data than the fNIRS data for this experiment, and the environmental constraints of fMRI may

influence participant accuracy (Section 3.4.4). As a broad generalization, researchers investigating

a computer science topic for the first time may favor fMRI; once the relevant brain areas have been

identified, if those regions are accessible to fNIRS light, a more cost effective and ecologically-

valid study can be conducted via fNIRS. If the proposed study requires more freedom of motion

or a quiet environment, involves more than one participant (e.g., pair programming, face-to-face

communication, etc.), or uses metal equipment (e.g., a tablet or cellphone), fMRI is not an option

without significant extra work.

3.7 Chapter Summary

We investigated the neural representations of fundamental data structures and their manipulations.

We hypothesized that data structures are related to spatial ability. Our two key insights were the
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use of multiple medical imaging approaches and the use of the mental rotation paradigm to serve

as a baseline for measuring spatial ability.

Our study involved 76 participants, at least two times larger than previous studies investigating

software engineering with medical imaging and is the first to investigate the neural representations

of data structures.

We found that data structure and spatial ability operations are related: both fMRI and fNIRS

evidence demonstrates that they involve activations to the same brain regions (e.g., Section 3.4.1

and Section 3.4.2, p < 0.01).

However, the similarity relationship is nuanced: spatial ability operations and tree operations

admit a significant contrast and are characterized by differentiated activation magnitudes (e.g.,

Section 3.4.1, p < 0.001).

Further, some regions relevant to data structures are not accessible to fNIRS: fNIRS lacked the

penetrating power to uncover the full evidence reported by fMRI (Section 3.4.4) and was unable

to distinguish between two distinct tasks.

We also found that difficulty matters for data structure tasks: more complicated stimuli result

in greater neural activation, and thus an increase in cognitive load (Section 3.4.3).

While a neural relationship between between spatial ability and data structure manipulation

may seem clear in retrospect, it was not obvious to our participants, 70% of whom reported no

subjective experience of similarity (Section 3.4.5).

Since our direct comparison of fMRI and fNIRS is unique in software engineering, we elabo-

rate on both measurement and performance issues (Section 3.4.4), as well as monetary, protocol

and recruitment issues (Section 3.6).

Data structures are critical to many aspects of software engineering, but no previous work

has quantitatively investigated their neurological underpinnings. The use of medical imaging to

understand cognitive processes in software engineering is still very new: this study is exploratory

rather than definitive. Indeed, from our perspective it encourages future investigations, such as

the exploration of how a neurological link between data structures and spatial reasoning can best
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inform pedagogy or training. It is our hope that our concrete analysis of a lower-cost medical

imaging alternative, as well as our direct analysis of a computing activity beyond the realm of code

comprehension, will encourage more researchers to investigate the cognitive aspects of software

engineering.

Having concluded our investigation on data structure manipulation and the comparison between

fMRI and fNIRS, we will study a higher level and more complex software engineering activity,

code writing, in the next chapter.
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CHAPTER 4

Comparing Code Writing and Prose Writing

In the last chapter, we investigated the cognitive processes of data structure manipulation, a fun-

damental activity in software engineering, with a comparison to spatial ability, and also provided

guidelines to select medical imaging techniques. In this chapter, we study a more complex software

engineering activity: code writing.

Writing code is a crucial activity in software engineering. Despite this increasing prevalence

of software and demand for skilled programmers, as of 2021, most of research still rely on tradi-

tional survey instruments and self-reporting, rather than an understanding of fundamental human

brain function, when developing methods to support, improve, teach and evaluate code writing and

editing.

As introduced in Section 2.2.2, previous work simultaneously studying code and prose writing

has focused on non-imaging uses of one to aid in the instruction of the other. More explicitly, re-

search in storytelling has used programming as a means to improve children’s prose writing [222],

and vice versa [223; 224]. In either direction, researchers reported similarity in the processes of

code and prose writing, such as their sequence, structure, and object-oriented nature [225]. How-

ever, these qualitative findings have not been substantiated by medical imaging.

In this thesis, we provide the first instantiation of studying cognitive processes with medical

imaging in code writing and present findings. Based on the comparison between fMRI ad fNIRS

in the previous chapter, we choose to use fMRI as the medical imaging modality due to its stronger

penetration power.
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I got in my | ,
and I drove into
town.

int sum(int a, int b)

{
/*YOUR CODE HERE*/

return | ;

}

Figure 4.1: Illustration of the investigation on code and prose writing: we investigate the rela-
tionship between prose and code writing using functional brain imaging. Experimental controls
systematically vary content (code vs. prose) and size (fill-in-the-blank vs. long response). Do
code and prose writing exhibit the same patterns of neural activity?

There is a significant body of work studying the psychology of programming, ranging from

the cognitive prerequisites of programming [33] to entire theories of the coding process [12], but

this research has relied largely on observational evidence. Recent advances in medical imaging,

particularly functional magnetic resonance imaging (fMRI), have improved researchers’ ability

to measure brain activity associated with various cognitive processes. As a non-invasive, in vivo

technique, fMRI is an effective tool for clinical researchers studying brain function [76; 77; 78] and

the effects of various treatments [226; 227; 228], as well as for psychology researchers mapping

brain areas in activities as diverse as musical performance [28] and food cravings [29]. Findings

using medical imaging have successfully transitioned to guiding behavioral and developmental

improvement in domains like mathematics [42] and education [43].

While there have been fMRI studies of code reading (e.g., [35; 67]) and non-fMRI studies of

code writing (e.g., [153; 142]), to the best of our knowledge there are no previous fMRI studies

of code writing. We attribute this to two challenges: physics and design. First, normal keyboards

cannot be safely placed or accurately read near magnetic resonance scanners. They interfere with
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the fMRI measurements and the fMRI interferes with keyboard reporting. Second, imaging studies

require carefully-controlled experiments, and no high-level design for a code writing contrast has

been proposed (cf. Behroozi et al.’s contrast of whiteboard interview questions with pencil-and-

paper versions [229], which changes the modality but uses identical tasks, or our approach in the

previous chapter that contrasts data structure problems with mental rotation problems [15], which

changes the task but not the modality). We combine two corresponding insights to overcome these

challenges. First, we propose to employ a bespoke keyboard that moves all metal and control logic

to a separate room. Second, we propose a two-by-two contrast setup: code vs. prose writing and

fill-in-the-blank vs. long response (informally, single-word production vs. longer creativity).

Our use of prose writing as a baseline grounds our experiment and clarifies our results. Prose

writing is a well-studied activity in psychology [124; 125; 126; 230; 231], and medical imaging

has aided understanding of its underlying cognitive processes (see Chapter 2.2). For example,

fMRI studies have provided insights into brain areas associated with prose writing [31] and the

specificity of such regions across different prose writing tasks [129], in addition to addressing

neural correlates of the roles of expertise [232] and creativity [127]. The contrast between code

and prose writing in our experiment illuminates their differences and similarities at a neurological

level.

4.1 Overview of Experimental Design, Results and Contribu-

tions

We conducted a human study in which 30 participants performed prose and code writing tasks in

an fMRI scanner (Figure 5.1). Participants completed two types of tasks: fill-in-the-blank (FITB)

and long response (LR). FITB tasks presented either a sentence or program containing a blank

space, requiring the participant to provide the missing word or code snippet. In LR tasks, par-

ticipants wrote prose or code from scratch to answer an open-ended question or meet a program

specification.
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Our primary finding is that code writing and prose writing feature significantly different pat-

terns of neural activity, particularly in parts of the brain associated with attention control, working

memory, and spatial cognition. While prose writing involves activation in canonical areas associ-

ated with language, code writing involves a very different set of right-lateralized regions associated

with attention, memory, planning and spatial ability. Our experiment provides the first evidence of

significant neural differences between prose writing (which is neurally similar to natural language)

and code writing (which, we find, is not).

The contributions of this chapter are as follows:

• An fMRI study of 30 participants comparing code writing to prose writing. To the best of our

knowledge, this is the first fMRI study to feature keyboard code writing. Our experimental

design contrasts code, prose, fill-in-the-blank and long-response questions.

• A mathematical analysis of the results. After mitigating noise and correcting for false dis-

covery rate (q < 0.05), we find that general code and prose writing feature distinct patterns

of neural activity (2.4 ≤ t ≤ 6.2) related to attention, working memory and spatial cogni-

tion. For long-response writing questions, we find the clearest distinction we are aware of

in the literature (−7.0 ≤ t ≤ −3.1 and 3.5 ≤ t ≤ 5.8) between code (attention, memory,

planning and spatial ability) and prose (language, letters and words).

• For replication and reproducible research, we make available our materials and methods on

our project website.1 These include our corpus of stimuli; our de-identified medical imaging

data; our method for adapting a 101-key QWERTY USB keyboard for the fMRI environ-

ment; and a configurable program for stimuli presentation, editing and data collection.

1https://web.eecs.umich.edu/ weimerw/fmri.html
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Fill in the blank below.

Angered that the book arrived in the mail in such
shabby condition, Elliot insisted that the book-
seller it with a new copy.

(a) Prose Fill-in-the-Blank

What would happen if everyone lived in space?
(e.g., what type of houses would they live in?
What type of clothing would they wear?)

(b) Prose Long Response

Given two 3×5 2D arrays of integers x1 and x2,
write the code needed to copy every value from x1

to its corresponding element in x2.

1 for (int i=0; i < j; i++) {

2 for (int j=0; j < 5; j++) {

3 /* YOUR CODE HERE */

4 }

5 }

(c) Code Fill-in-the-Blank

Implement a function is sorted that accepts a
vector of integer values and returns true if it is
non-decreasing, and false otherwise.

(d) Code Long Response

Figure 4.2: Example two-by-two task stimuli: code and prose writing. We investigated four cate-
gories of stimuli covering code and prose in fill-in-the-blank and long response scenarios.

4.2 Experimental Setup and Methods

We present a human study in which 30 participants underwent an fMRI scan while completing

prose and code writing tasks. We discuss (1) the makeup and recruitment of our participant co-

hort, (2) how we developed our task materials, (3) the experimental protocol, (4) our method for

collecting fMRI data, and (5) the construction of an fMRI-safe keyboard that enabled participants

to freely write text and code during an fMRI scan.

4.2.1 Participant Demographics and Recruitment

We recruited 30 undergraduate and graduate computer science students at the University of Michi-

gan. The protocol was approved by the University’s IRB (HUM00138634). Table 4.1 summarizes

demographic information for this cohort. Students who had completed coursework in data struc-

tures and who could safely undergo an MRI scan were eligible to participate. All participants
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Table 4.1: Demographic data of the eligible participants in the study of code writing.

Demographic Variables # Participants

Sex
Male 20
Female 10

Gender
Men 20
Women 9
Fluid 1

Degree Pursuing
Undergraduate 27
Graduate 3

were native English speakers, right-handed, and had normal or corrected-to-normal vision. Each

participant was offered a $75 cash incentive and a 3D model of their brain upon completion.

When participants elected to participate in the study, we collected basic demographic data (sex,

gender, age, cumulative GPA, and years of experience) and socioeconomic status (SES) data. In

addition, each participant completed three standard psychological measurement surveys: Positive

and Negative Affect Scale (PANAS, emotional health), Autism Spectrum Disorder (ASD), and

Need for Cognition (NFC, inclination for effortful cognition). Finally, we administered a short

programming quiz to assess basic C/C++ programming skills.

Although we conducted a correlation analysis between these demographic and psychological

measures and brain activities, none survived a strict false discovery rate correction (q < 0.05). We

claim no significant demographic or attitudinal correlation with code or prose writing in our study.

In the remainder of this paper, we thus treat our participants as a whole, rather than considering

any subpopulation analyses.

4.2.2 Participant Tasks

Participants underwent an fMRI scan during which they completed a sequence of tasks associated

with code and prose writing. Participants were shown a sequence of sentences or code snippets and

asked to type a response while inside the MRI machine. We divided tasks into Fill-in-the-Blank

(FITB) and Long-Response (LR) activities. In FITB, participants were shown a nearly-completed
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sentence or code snippet and had 30 seconds to type a short word or expression that they thought

best completed the sentence or snippet. In LR, participants had 60 seconds to write a complete

response to a high-level task or question. Participant completed four categories of tasks, each

lasting 20 minutes: (1) 17 FITB Prose tasks, (2) 9 LR Prose tasks, (3) 17 FITB Code tasks, and (4)

9 LR Code tasks. Examples of stimuli under each of these categories are shown in Figure 4.2.

Code Tasks We developed a corpus of code stimuli by adapting tasks from Turing’s Craft [233], a

library of short programming exercises used in web teaching evaluations [234], each with prompts

and example correct solutions. For the FITB Code tasks, we selected a set of 17 prompt-answer

pairs, and replaced a random portion of the solution with a blank line. Participants were asked to

fill in that blank line. For the LR Code tasks, we selected a set of 9 prompts that our pilot study

suggested as answerable within 60 seconds.

Prose Tasks For controlled experimentation and to admit a contrast-based analysis, we selected

prose stimuli that were analogous to the code stimuli. As prose writing fMRI studies have revealed

differences in brain activation based on writing content [127; 129], we carefully developed our

prose writing stimuli. First, we used a set of non-math analogies that have been shown to be useful

in the teaching of mathematics [235; 236] to develop a list of terms associated with quantitative

reasoning. Synonyms of these words were added to expand the search space. To generate Prose

FITB prompts, we first matched the list of search words to a set of Scholastic Assessment Test

(SAT) fill-in-the-blank questions and chose 17 such matches. We then replaced the blanks used

in the original SAT prompt with the appropriate words from the SAT answer, selecting easier

synonyms when our pilot study revealed that they might not be accessible to a wide population.

We replaced the search word found in the prompt with a blank line; participants were asked to fill

in that blank line. Our Prose LR prompts were generated by matching search words with a set of

English as a Second Language (ESL) long response prompts and choosing 9 matching prompts.

29 out of the 30 recruited participants supplied valid inputs for the tasks. Per task, the 29

participants provided a maximum of 82 keystrokes (mean: 13) for FITB prose and 116 keystrokes
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(mean: 36) for FITB code. For the LR tasks, we collected a maximum of 435 keystrokes (mean:

258) for prose and 244 keystrokes (mean: 121) for code. In general, the FITB tasks required fewer

keystrokes to complete; participants had twice the time to complete the LR tasks. We observed

that participants were able to write multiple complete sentences for prose tasks and to complete

variable declarations, loops, and function calls in the time allotted.

4.2.3 Experimental Protocol

In this subsection, we provide details on the process that participants completed before and during

their fMRI scans. During a two-hour session, we collected informed consent and safety screen-

ing information. Participants cleared to participate were given a coding quiz and psychological

surveys. Participants were then shown a brief training video about the task before entering the

scanner. Each machine session began with a high-resolution anatomical scan during which par-

ticipants were given a text editor interface and were instructed to practice typing on the keyboard

while lying inside the bore of the machine (shown in Figure 4.3). This practice typing was not

recorded. Participants then completed four task blocks associated with code and prose writing:

Prose FITB, Prose LR, Code FITB, and Code LR. To mitigate training and fatigue effects, we ran-

domized both the category order and the task order. A fixation cross was presented between each

question for a random 2–10s duration to provide a brief rest and settle brain activity.

4.2.4 fMRI Data Acquisition

MRI data were acquired with protocols ensuring high spatial and high temporal resolution. We

summarize the details (e.g., for the purposes of replication and meta-analysis), but generally attest

that the scanning measurement hardware and steps align with contemporary best practices [15;

35; 67]. All scans were conducted on a 3T General Electric MR750 scanner with a 32-channel

head coil at the University of Michigan Functional MRI Laboratory, the same fMRI machine used

in Chapter 3 and the technical parameters for setting up the scans are identical to the protocol in

Chapter 3 (see Section 3.2.3.1).

57



Figure 4.3: fMRI environment for typing on the bespoke keyboard. During a scan, the participant
would be placed further in the bore of the machine, but the keyboard and visual interface remain
as shown.

4.2.5 fMRI-Safe Keyboard and Editing

Because the fMRI machine involves an extremely powerful magnet and very strong electromag-

netic fields, typical electronic devices cannot be used safely nearby. For example, a traditional USB

keyboard will not function in the MRI machine because it will induce current on the USB cable,

causing erratic keystroke signals or unpredictable behavior. Moreover, large metal masses within

the MRI’s magnetic field can cause disastrous signal noise and ruin brain images (and also pose fire

and collision hazards).Previous fMRI studies of software engineering all employed special hand-

held button-press devices for selecting among a small, fixed set of choices (e.g., [67; 35; 15]).

These devices do not meet the requirements for code writing.

In this work, we adapted a 101-key QWERTY USB keyboard for the fMRI environment. All

control logic and metal are removed from the keyboard, and moving metallic pieces are replaced

with 3D-printed (plastic) equivalents. Briefly, each individual key is attached to its own shielded

wire that extends 30 feet to provide adequate distance from the core of the MRI machine. The

wires were fed through an RF-safe waveguide to the fMRI control room, where a custom-built

device reads the state of each key and outputs a standard USB signal. Because no control logic was
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Figure 4.4: Illustration of fMRI writing setup. The participant lies in the bore of the fMRI machine,
and the keyboard’s cables are connected through an RF- and MRI-safe waveguide. The waveguide
connects to the control room, where we attach the keyboard logic to an experiment PC displaying
our editing environment. The video output of the experiment PC feeds through the waveguide to
connect to an MRI-safe monitor which can be seen by the participant in the MRI bore via mirror
projection.
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present near the MRI machine and keystrokes were processed from the control room, we eliminated

issues caused by electromagnetic interference. In addition, most fMRI studies use sequences of

static pre-rendered stimuli controlled by software (e.g., E-Prime [237]) to record responses. We

instead employed a more indicative dynamic editor environment, including syntax highlighting,

available in our replication materials. We found this organization, illustrated in Figure 4.4, to

work well, although imperfectly-printed plastic pieces caused occasionally-duplicated keystrokes

for two participants.

While researchers have considered the problem for piano keyboards [238], keyboards with no

screen (and thus no back-and-forth editing, e.g., [130]) or significant restrictions on which keys

could be pressed (e.g., [239]), to the best of our knowledge, the closest related fMRI-keyboard

work tends to be about a decade old (e.g., [240; 130]). Existing work has primarily focused on ex-

perimental design that reduces signal noise affecting brain scan quality. Our custom-built keyboard

introduces negligible signal noise on the fMRI brain scan, but also supports our additional use case

for live editing during scanning. We make our engineering notes on our successful approach (and

failed attempts) available as part of our replication materials.

4.3 Analysis Approach

Care must be taken when analyzing fMRI results to both mitigate noise and also to avoid false

positive correlations [241]. Informally, we follow a three step process: preprocess the data to

account for noise, analyze individual participants, and compare between participants. This data

analysis approach follows the basic principles in Section 3.3.1 and is adjusted for the data collected

from this specific experiment. Our approach follows the state-of-the-art in medical imaging (both

for cognitive neuroscience in general and for software engineering in particular, e.g., [15; 67; 35]).

We present our results in Section 4.4; the remainder of this section summarizes our analysis for

replication and comparison purposes.

Statistical analysis of fMRI data is inherently multi-level. The data first require extensive
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preprocessing to remove various sources of systematic noise (e.g., due to head motion or inhomo-

geneities in the magnetic field). An additional goal of this procedure is to align all individual par-

ticipant brains with a standard anatomical template — this allows for inter-participant comparison

and localization of signals to specific brain structures. Following preprocessing, each participant’s

data are submitted to a first-level, fixed effects general linear model (GLM). Here, voxel timeseries

are modeled against an idealized timeseries, given the canonical hemodynamic response function

and the occurrence of each event (i.e., stimulus) over the course of the scan. This yields a set of

beta images that describe how sensitive each voxel is to the conditions of our experiment. Finally,

the beta images for each participant are combined in a second-level, random effects GLM, which

yields average maps of brain activity when contrasting one condition versus another (e.g., code vs.

prose tasks). Importantly, because these statistical tests are conducted on a voxel-by-voxel basis

(covering tens of thousands of voxels), we apply a false discovery rate (FDR) correction to protect

against spuriously-significant effects across the brain.

Preprocessing — Removing Noise The preprocessing step removes noise (such as from motion

during the scan). We employed a robust preprocessing pipeline using the Statistical Parametric

Mapping 12 Matlab package [242]. First, the functional timeseries were slice-time corrected —

this accounts for the fact that interleaved slice acquisition during scanning causes slight differ-

ences in the relative timing of data collection within a TR (i.e., the 800 ms interval during which

whole-brain volumes are sampled). Next, we applied head motion correction and unwarped the

data using voxel displacement maps derived from the fieldmap sequence (see Section 4.2.4). This

step is arguably the most crucial aspect of preprocessing, as head motion is the leading cause of

signal artifacts in fMRI data, further interacting with baseline distortion in the magnetic field to

geometrically warp voxels. We then segmented and skull-stripped the anatomical images, which

were subsequently coregistered to the functional data; both anatomical and functional scans were

then spatially-normalized to the Montreal Neurological Institute (MNI152) template [210]. Finally,

we constructed a brain mask for each participant, which ensures the exclusion of voxels outside of
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brainspace during statistical analysis.

First-level Analysis — Within One Participant The first-level analysis focuses on each partici-

pant individually. We specified four GLMs for each participant (corresponding to each of the FITB

and LR code and prose tasks). The onsets and durations of each trial were defined and convolved

with the canonical hemodynamic response function [243] to yield a predicted timeseries of activity

(i.e., how we would expect the signal in a voxel to behave if it were sensitive to our task). The data

were high-pass filtered (σ = 128s) to remove low-frequency noise, and the model was fit using

robust weighted least squares (rWLS) [244]. Since these data may be more susceptible to head

motion (as a result of typing on the keyboard), we view rWLS as essential for ensuring unbiased

parameter estimates: the objective function first obtains an estimate of the noise variance at each

scan, and the model is subsequently re-fit after reweighting the data by a factor of 1/variance. Thus,

any scans biased by head motion are given less influence in the model, allowing for homogeneous

error variance and optimal parameter estimates.

Second-level Analysis — Between Participants The second-level analysis compares how dif-

ferent participants approached the same task. Prior to second-level GLM, the beta images for each

participant were spatially smoothed using a 5 mm3 full-width at half-maximum (FWHM) Gaus-

sian kernel. These were submitted to an omnibus model (i.e., a factorial analysis of variance) fit

using restricted maximum likelihood (ReML). To test for average differences in activity between

conditions, we specified several t-contrasts: Code > Prose, FITB Code > FITB Prose, and LR

Code > LR Prose. The contrast A > B refers to the comparison between task conditions A and

B: voxels or features that are more sensitive to A rather than B, or that drive the modeled distinc-

tion between A and B, as introduced in 2.1.2.2. In general, fMRI cannot be used to examine a

condition C directly; a subtractive controlled experiment is used instead to compute A − B. For

example, in our experiments both the FITB and LR tasks feature reading a written prompt, but in

general the neural activity associated with reading the prompt “cancels out” when the two are con-

trasted, and any remaining difference can be attributed to non-identical parts of the experimental
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condition (i.e., writing code vs. writing prose). The ultimate result of this process is a statistical

parametric map that displays significant contrast-related activity across the brain, quantified us-

ing t-statistics — the magnitude of the mean difference between A and B, scaled by model error.

Traditionally, brain regions showing significantly more activity in A relative to B are represented

with a gradient of ‘hot’ colors (red to yellow), while regions that are more active during B than

A are represented by a gradient of ‘cool’ colors (blue to green). Such contrast-based analyses are

standard for fMRI [67; 35; 15]. All results were FDR-corrected (q < .05) and thresholded for a

minimum cluster extent of 20 voxels.

4.4 Results

We analyze our results with respect to four research questions:

RQ 4.1 Do self reports claim code writing is like prose writing?

RQ 4.2 Does the brain treat code writing like prose writing?

RQ 4.3 What low-level features explain code and prose writing?

RQ 4.4 What high-level features explain code and prose writing?

To guide the interpretation of our results, we consider an informal model in which long re-

sponse coding (the task we studied that is most indicative of coding practice) is made up of the

iterative, low-level selection of individual pieces of syntax guided by top-down control. That is,

writing a small procedure (the long response task) consists of repeatedly writing the next individ-

ual word (the fill-in-the-blank task) while guided by a higher-level goal. Examining the FITB task

sheds light on the lower-level basis for code writing, while examining the LR task may illuminate

aspects of higher-level “creativity” at the heart of software engineering.

In our fMRI analyses, after filtering incomplete and noisy brain scans, we used data from 24

(8 female, 16 male) of the 30 participants in our experiment. When reporting patterns of neural

activity we make use of the standard Brodmann anatomical classification system, which divides
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the brain into 52 areas (BA 1 through BA 52) [71] based on cytoarchitectural (i.e., cellular-level)

similarity. The fMRI results discussed in this section are obtained following the contrast-based

analysis methodology described in Section 4.3.

4.4.1 RQ 4.1 — Self-Reporting on Code and Prose

We conducted a qualitative analysis of participants’ self-reported post survey data. Of our 30

participants, 26 provided their interpretations of similarities between prose and code writing tasks

in the post survey. Over a third (38.5%) of these participants reported some similarity between

code writing and prose writing. Representative examples include explaining how “filling in the

blank was like adding variables in code” (we investigate such similarities in Section 4.4.3) and that

both tasks “use logic” (we consider mental representations and problem solving in Section 4.4.4).

Another participant attributed similarity between the two tasks to having “already formed” an idea

of the solution that had only to be translated to text (we consider working memory and attentional

control in Section 4.4.2). As our imaging results will reveal, these subjective reports do not align

with measurements of the neural correlates of code and prose writing.

Unreliable self-reporting is well-established in both computer science [16; 17; 18; 15] and

psychology [51; 52], highlighting the need to augment surveys with more objective metrics.

4.4.2 RQ 4.2 — Code Writing vs. Prose Writing

We investigate whether there are general differences in neural activity between writing code and

writing prose. We thus consider all of our code writing tasks (FITB and LR) against all of our prose

writing tasks (FITB and LR). This broader Code > Prose contrast, shown in Figure 4.5, revealed

a widely-distributed set of brain regions showing significantly greater activity when writing code.

Only significant regions are shown: the colors correspond to the t statistic, which measures the

size of the difference relative to the variation in the sample data (t values closer to 0 are not

significant after FDR-correction). While care must be taken when comparing such statistics across

experiments, as an example baseline we note that the greatest t-value reported in the previous
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Figure 4.5: Weight map: significant clusters of brain activity for CodeWriting > ProseWriting.
Hotter colors indicate greater t-values (i.e., more activity during coding relative to prose).

Chapter’s study of data structures and spatial ability was 2.0 ≤ t ≤ 4.2. We view this 2.4 ≤ t ≤ 6.2

contrast as a very strong result.

In detail, a particularly large cluster peaked near the left postcentral gyrus and superior pari-

etal lobule (BA 5), extending forward through the primary motor cortex (BA 4) and the premo-

tor/supplementary motor cortex (BA 6). This pattern was also observed in the right hemisphere,

albeit yielding somewhat smaller differences in activity (reflected in the smaller t-statistics). How-

ever, the right hemisphere did demonstrate more diffuse activity through the lateral prefrontal

cortex, including the superior and middle frontal gyri (BA 9–10). The right hemisphere further

showed wider clusters of activity in the lateral temporo-occipital and temporoparietal cortex, span-

ning from the inferior and middle temporal gyri dorsally to the angular gyrus, supramarginal gyrus,

and inferior parietal lobule (BA 18–19, 39–40). Finally, we observed comparable patterns of activ-

ity in bilateral anterior insula (BA 13) and across the midline of the brain, particularly the medial

face of the supplementary motor area (BA 6) and the cingulum (both middle and anterior; BA 24,

32).

We find a significant (2.4 ≤ t ≤ 6.2) and widely-distributed difference in neural activity

between code writing and prose writing in general. The brain does not treat code writing and

prose writing as similar tasks.
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Figure 4.6: Weight map: significant clusters of brain activity for FITBCode > FITBProse. Hotter
colors indicate more activity during coding relative to prose; cooler colors indicate the reverse.

4.4.3 RQ 4.3 — Code and Prose Foundations

Having established that the brain treats code writing and prose writing differently, we focus atten-

tion on our lower-level tasks to explain that difference. We thus consider the contrast FITB Code

> FITB Prose, shown in Figure 4.6. While there was considerable overlap between this contrast

and the general Code > Prose analysis (informally, we expect some similarity between writing

one word and writing a full sentence), we find that focusing on FITB Code > FITB Prose reveals

even stronger (−5.1 ≤ t ≤ −4.2 and 2.3 ≤ t ≤ 7.0; conservatively thresholded for multiple

comparisons) differences in activity across a number of regions. For example, we observed strong

bilateral activity across the entirety of both precentral and postcentral gyri (i.e., the primary motor

and somatosensory cortices, respectively; BA 1–4). While these areas are essential for somatomo-

tor function, they are not cognitive — that is, activity in these regions does not directly involve

‘thought’ or ‘planning’. These aspects of motor behavior are generally supported by the dorsal

premotor cortex and (pre-)supplementary motor area (BA 6, 8), which show significantly greater

bilateral activity when performing FITB Code vs. Prose trials. This suggests that the production of

even a single element of code may require more careful, top-down control to effectively plan and

produce a context-relevant answer. This is further supported by significant differences in activity

along the frontal eye fields, including the prefrontal eye fields and supplementary eye fields (BA

8–9): these regions are known to help guide the eyes toward relevant stimulus features to generate
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Figure 4.7: Weight map: significant clusters of brain activity for LRCode > LRProse. Hotter
colors indicate more activity during coding relative to prose; cooler colors indicate the reverse.
This represents a strong and exciting result: a significant lateralized difference between prose
writing (canonical left hemisphere language areas) and code writing (right hemisphere attention,
memory, planning and spatial ability areas).

an appropriate motor plan [245; 246].

We additionally observed significant increases in activity within other regions comprising the

so-called ‘dorsal attention network’ (of which the frontal eye fields are a part). This includes

the superior parietal lobule and intraparietal sulcus (BA 7) — structures critical for guiding and

maintaining attention in a top-down fashion [247; 248]. Although not part of the dorsal attention

network, the bilateral activity found in the anterior insula (BA 13) further supports the notion that

FITB Code likely requires more careful monitoring of the relevant information needed to provide

the appropriate response.

Finally, we note significant differences in activity along posterior temporal/occipital-temporal

regions. In general, these appear left dominant, although bilateral activations emerged in the pos-

terior superior temporal gyrus and superior temporal sulcus (BA 21–22). Interestingly, we also

observed bilateral activity in the ventral temporal cortex, including the fusiform gyrus (BA 20,

37). While the fusiform gyrus is perhaps best known for its role in face perception, it (along

with other areas of the ventral temporal cortex) is also heavily involved in stimulus categorization,

particularly for stimuli with which one has developed expertise. This poses the possibility that

code — despite being a collection of numbers, letters, and words — is nevertheless treated as a

categorically distinct visual stimulus compared to English prose.
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At a low level, writing code requires significantly (−5.1 ≤ t ≤ −4.2 and 2.3 ≤ t ≤ 7.0)

more activity in parts of the brain associated with careful top-down control, planning, and

categorization than does writing prose.

4.4.4 RQ 4.4 — High-Level Coding vs. Prose Writing

Finally, but perhaps most excitingly, we analyze long response code and prose writing tasks. Long

response tasks (i.e., writing an entire method) are the most indicative of critical aspects of real-

world software engineering. If we consider long response coding to include both the iterative

production of single code elements as well as top-down attentional cover of the overarching pro-

cess, then any difference between this analysis and RQ3 reveals the neurological correlates of that

high-level “creativity” in coding.

Figure 4.7 shows the LR Code > LR Prose trials contrast. This analysis remains strongly

significant (−7.0 ≤ t ≤ −3.1 and 3.5 ≤ t ≤ 5.8; conservatively thresholded for multiple com-

parisons) and more precisely pinpoints particular regions. Note how the regions associated with

high t-values (hotter colors, more active for code than prose) are largely localized to the right side

of the brain. Dually, note how the left hemisphere largely features regions with very low t-values

(cooler colors, more active for prose than code). In cognitive neuroscience, such a left vs. right

distinction is called lateralization. These contrast-based results provide powerful evidence that the

production of code vs. prose relies on highly distinct cognitive substrates.

Prose production was strongly associated with left temporal regions classically associated with

natural language (which is almost entirely left-lateralized in right-handed individuals). Namely,

we saw increased recruitment of the middle temporal gyrus (MTG) and superior temporal gyrus

(STG) (BA 21–22). The left MTG has previously been shown to activate when accessing semantic

aspects of language and is thought to support a lexicon of words [249; 250]. The STG extends into

Wernicke’s area, which is notably the primary center of language comprehension [251]. Although

it generally appears most active during comprehension of spoken language, the act of writing
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often involves a sort of internal narration that may similarly recruit these regions. This is further

supported by increased activation of the calcarine (visual) cortex, particularly the lingual gyrus

along the right medial wall (BA 17–18). The lingual gyrus, while not playing a role in higher-order

language processes per se, is often associated with the recognition of letters and words, perhaps

contributing to their semantic understanding [252]. We also observed a small cluster of activity

in the inferior frontal gyrus (BA 44) — part of Broca’s area, which underlies the production of

language (although, again, is more commonly linked to speech) [253].

Code production, by contrast, was largely right-lateralized. The exception to this observation

was a bilateral activation of the superior parietal lobule, extending dorsolaterally into the precuneus

along the midline (BA 7). The superior parietal lobule (see Section 4.4.3) is involved in top-down

control processes related to attention and memory; the precuneus is associated with processes such

as mental imagery [254]. Similarly, we observed right temporal and temporoparietal activations

along a number of regions supporting visual association (tying visual information together) and

other forms of mental imagery, including spatial cognition (BA 19, 39). The angular gyrus, in

particular, may support various aspects of spatial and mathematical reasoning, including the ma-

nipulation of mental representations and other aspects of problem-solving [255]. Importantly, it

is thought to act as a bridge between perception, recognition, and action, suggesting that code

synthesis may require a more complex interplay of understanding a problem and formulating a

comprehensive plan to solve it [256]. This swath of activity extended ventrally into regions of

the inferior occipital-temporal cortex, which partially overlap with clusters identified by Huang et

al. as being more active during difficult data structure manipulations (relative to difficult mental

rotation tasks) [15]. Together, these findings suggest that code production is perhaps more ‘spatial’

in nature, requiring the formulation of a mental map that guides problem-solving.

Very informally, finding activity in the (expected, standard) language areas for prose writing

gives us high confidence that we designed and carried out our controlled experiment correctly

in general. However, that high confidence makes the observation that long-form code writing

does not heavily recruit these areas (instead using parts of the brain associated with planning and
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spatial ability) all the more startling. Part of the motivation for Siegmund et al.’s pioneering first

use of fMRI in software engineering [35] was to provide direct evidence, one way or another,

regarding claims such as Dijkstra’s that “exceptionally good mastery of one’s native tongue is the

most vital asset of a competent programmer” [257]. While that may be true for code reading (e.g.,

comprehension [35] and reviewing [67]), our results suggest that it is not true for code writing at a

neural level.

High-level long response coding is significantly different (−7.0 ≤ t ≤ −3.1 and 3.5 ≤ t ≤

5.8) from prose writing. Prose writing involves areas of the brain canonically associated with

language. Coding involves a different set of right-lateralized regions associated with attention,

memory, planning, and spatial ability. This provides the first evidence of significant neural

differences between prose writing (which is neurally similar to natural language) and code

writing (which, we find, is not).

4.4.5 Summary of Results

At a high level, an analysis of all code writing tasks against all prose writing tasks showed that

the two operate via distinct neural mechanisms. We analyzed these differences at a more granular

level by considering imaging data from tasks of the same type (i.e., FITB, LR). The FITB Code

> FITB Prose contrast established the low-level cognitive features distinct to code writing: brain

regions associated with top-down control, planning, and categorization. Subsequent analyses of

LR tasks revealed a clear lateralized distinction between code writing and prose writing. Largely,

we found that code writing involves right hemisphere brain regions involved in spatial ability

and planning while prose writing involves the canonical left hemisphere regions associated with

language production. In addition to supporting previous medical imaging studies of prose writing

and software engineering tasks, these findings introduce a new and alternative relationship between

code and prose in which reading and writing are not similar (cf. [257; 35; 67]).
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4.5 Threats to Validity

Our choice of writing tasks presents a first potential threat to the validity of our experiment. While

various forms of code writing exist in software engineering contexts (e.g., testing, debugging),

we restricted our task set to prompted code writing tasks. We mitigate the threat that this lim-

ited benchmark poses via our robust experimental design, whereby participants complete different

types of writing tasks (i.e., FITB, LR). We further address this concern by including a variety of

fundamental programming concepts (e.g., both control- and data-flow operations) in our selected

coding tasks indicative of many real-world coding tasks. Nevertheless, our results may not gener-

alize to all in-the-wild programming; we leave a more thorough investigation to future research.

Secondly, the design of our tasks may have impacted our ability to measure brain activity

strictly associated with code and prose writing. For example, our stimuli included written in-

structions that participants read before typing their responses. This construction introduces the

possibility that we measure brain activity beyond strictly writing responses. We designed our

contrast-based experiment to mitigate this threat. As fMRI analyses are subtractive (described

above in Section 4.4), the effects of reading the prompt cancel out, leaving only the differences

between prose writing and code writing. However, we note that differences exist in the prompt

text contained in FITB stimuli (i.e., Prose FITB and Code FITB tasks require the participant to

read prose and code, respectively, see Figures 4.2a and 4.2c). Overall, we maintain that FITB tasks

measure the process of low-level selection of individual code elements, a distinct activity to pure

comprehension.

Lastly, our results may be limited by our participant cohort. For this experiment, we recruited

undergraduate and graduate students with an average of 5.2 semesters of programming experience.

Thus, our results may not extend to programmers with different backgrounds or expertise. Indeed,

previous fMRI studies have investigated the role of expertise and demographics in detail (e.g., [67;

258]). We claim no significant findings regarding individual differences and report results for our

participants as a whole.
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4.6 Chapter Summary

Over the decades, researchers from Dijkstra and Pausch to Pea and Kurland, among many others,

have made observational investigations into, theories of, and calls to arms regarding the psycho-

logical aspects of programming. Understanding cognition has helped improve prose reading, prose

writing, and code reading — but code writing has lacked neurologically-grounded, indicative re-

search. Indeed, since the first fMRI study of software engineering in 2014, there have been fewer

than 20 fMRI experiments reported at major SE conferences as of 2021 [35; 67; 173; 174; 38; 37;

36; 175; 176; 176; 15].

We present the first fMRI study of code writing. We employ a controlled, contrast-based exper-

iment in which code writing, prose writing, fill-in-the-blank and long response tasks are presented

to participants, who make use of a special fMRI-safe keyboard to type their responses in a realistic

live editing setting.

We report three primary results. First, there is a significant and widely-distributed difference

in neural activity between code writing and prose writing in general: the brain does not treat code

writing and prose writing as similar tasks. Second, at a low level (i.e., producing a single word

or code element), writing code requires significantly more activity in brain areas associated with

careful, top-down control, planning and categorization: despite superficial similarity, code appears

to be a categorically distinct visual stimulus compared to prose. Third, and most excitingly, high-

level long response coding — the studied task perhaps most indicative of real-world programming

— is significantly different from prose writing. While prose writing involves left-brain regions

canonically associated with language, we find a sharp lateralized distinction: code writing does

not significantly recruit those regions compared to prose writing, instead showing activation in

right-brain areas associated with attention, memory, planning and spatial ability.

This unexpected result — that the production of code and prose rely on highly distinct cognitive

substrates — though quite preliminary, paves the way for future investigations analogous to those

based on medical imaging for prose writing. In addition to developing a foundational understand-

ing of code-writing, this empirical distinction may be leveraged to develop tools and pedagogies
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(e.g., transfer training), subsequently affecting large scale workforce retraining and educational

reform. Moreover, neurological evidence that code and prose writing are not as intertwined as

conventionally thought may encourage more diverse participation in computer science.

In this chapter, we investigated the cognitive processes in a higher level software engineering

task, code writing, using fMRI and a bespoke keyboard. In the next chapter, we study cognitive

processes and biases across different demographic groups in a critical software development task:

code review. We also present the usage of eye tracking in the next chapter.
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CHAPTER 5

Bias in Code Review Across Groups of Users

In previous chapters, we investigated the cognitive processes of data structure manipulations and

code writing using medical imaging techniques such as fMRI and fNIRS. In this chapter, we intro-

duce the study of cognitive processes and biases across different demographic groups in a critical

software development task: code review. We also introduce the setup and results from a combina-

tion of fMRI and eye tracking measurements.

Code review, first introduced in Chapter 2.3.4, is a common and critical practice in modern soft-

ware engineering for improving the quality of code and reducing the defect rate [57; 58; 55; 56].

Generally, a code review consists of one developer examining and providing feedback for a pro-

posed code change written by another developer, ultimately deciding whether the change should be

accepted. In modern distributed version control, code review often centers around the Pull Request

(or merge request) mechanism for requesting that a proposed change be reviewed. The impor-

tance of code review has been emphasized both in software companies (e.g., Microsoft [259],

Google [260; 261], Facebook [262; 263]) and open source projects [264; 265]. While code re-

view is widely used in quality assurance, developers that conduct these reviews are vulnerable to

biases [40; 41]. In this chapter, we investigate objective sources and characterizations of biases

during code review. Figure 5.1 shows a high-level view of our study: does the authorship of a Pull

Request influence reviewer behavior, and do men and women evaluate Pull Requests differently?

Such an understanding may help reduce bias to improve developer productivity.

While there are many potential sources of bias in code review (including perceived exper-
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Figure 5.1: Illustration of the investigation on biases in code review: we investigate the relationship
between code review activities, participants and biases. Experimental controls systematically vary
the labeled author (man vs. woman vs. machine) while controlling for quality.

tise [266], perceived country of origin [267], and reviewer fatigue [268]), of particular interest are

biases associated with the perceived gender of the author. These are relevant from a moral perspec-

tive (e.g., broadening participation in computing [269]), from a process efficiency perspective (e.g.,

arriving at the correct code review judgment [270]), and even from a market perception perspective

(e.g., recent scandals involving gender-fairness in hiring and development processes [271; 272]).

Previous studies have shed light on the effects of gender bias in software development by

analyzing behavioral data. For example, large-scale analyses of GitHub Pull Request data found

that women’s acceptance rate is higher than men’s when their gender is not identifiable, but the

trend reverses when women show their gender in their profiles [40]. Similarly, another study

using behavioral data on GitHub found that women concentrate their efforts on fewer projects

and exhibit a narrower band of accepted behavior [39]. Furthermore, research has shown that

developers may not even recognize the potential effects of biases of code authors when performing

code reviews [41; 40]. Such biases may not only decrease the quality of code reviews, but also

the productivity of software development, especially in fields like software engineering that are

dominated by men [273; 274; 275] despite (gender) diversity significantly positively influencing

productivity [267; 165; 59; 60].

Moreover, not all code changes are generated by humans. From 2010 to 2020, there has been

a flurry of research into Automated Program Repair (APR) tools in both academia and indus-
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try [276; 277]. As of 2020, APR tools have seen increased adoption among larger (e.g., Facebook’s

SapFix [278]) and smaller (e.g., Janus Manager [279]) companies. However, many developers ex-

press reluctance about incorporating machine-generated patches into their code bases [280] and

expert programmers are less accepting of patches generated by APR tools [281]. In such situa-

tions, human biases may interfere with the potential business benefit associated with the careful

deployment of such automation [278; 279; 277; 282].

Unfortunately, research studying how developers perceive and evaluate patches as a function

of their provenance (i.e., source or author) has been limited. Although the software engineering

community has realized the importance of overcoming the negative effects of bias [267; 165], we

still lack a fundamental understanding of how bias actually affects the cognitive processes in code

review. This lack of objective basis in understanding bias hinders the development and assessment

of effective strategies to mitigate productivity and quality losses from biases in code review.

In the psychology literature, researchers have explored the effects of bias in myriad daily life

scenarios. For example, behavioral studies have revealed biases in gender and race in fields such

as the labor market [283], self-evaluations of performance [284], publication quality perceptions

and collaboration interest [172], online product reviews [285] and peer reviews [171; 286; 287].

Furthermore, psychologists have also adapted medical imaging techniques to investigate the cogni-

tive processes associated with bias in different activities. In controlled experiments using medical

imaging techniques, psychologists have found several specific brain regions that are associated

with bias in humans’ cognitive processes [288; 289; 290; 291; 292; 293; 294; 295]. These psy-

chology studies provide a model for the investigation of the behavioral and neurological effects of

biases in software development tasks.
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5.1 Overview of Experimental Design, Results, and Contribu-

tions

Our experiment involves measuring humans as they conduct code review. In particular, we make

use of a controlled experimental structure in which the same code change is shown to some partici-

pants with one label (e.g., written by a man) but is shown to other participants with a different label

(e.g., written by a woman or machine). Beyond measuring behavioral outcomes (e.g., whether or

not the change is accepted, how long the review takes, etc.), we also use fMRI, which enables both

the analysis of neural bases underlying code review activities and also the inference of biases (if

they exist).

However, fMRI does not provide significant evidence about participants’ visual interaction

with the code itself. We build on previous work and address this problem by capturing participants’

attention patterns and interactions via eye-tracking, which has been used to understand developers’

visual behavior in code reading [296; 297; 298] as well as the impact of perceived gender identity

in code review [41]. Using eye-tracking in combination with fMRI allows assessing both neural

activity and higher-level mental and visual load in human subjects as they complete cognitive tasks.

We desire an understanding of code review that (1) explicitly incorporates gender bias, (2)

is based on multiple types of rigorous physiological evidence, and (3) uses controlled experi-

mentation to provide support and guidance for actionable bias mitigations. Previous studies have

considered these goals pairwise, but not all simultaneously. For example, there have been be-

havioral studies in both computer science and psychology on biases (e.g., [40; 39; 283]), medical

imaging studies of biases in psychology (e.g., [288; 291]), eye-tracking studies of biases [41], and

eye-tracking [105; 104] and medical imaging studies [67; 35; 15] of other factors in computer sci-

ence. However, to the best of our knowledge, we present the first experimentally-controlled study

investigating biases in computing activities by measuring multiple neurophysiological modalities.

Contributions. We present the results of a human study involving 37 participants, 60 GitHub

Pull Requests, three provenance labels (man, woman, and machine), fMRI-based medical imaging,
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and eye-tracking. Men and women participants conduct code reviews differently:

• Behaviorally, the gender identity of the reviewer has a statistically significant effect on re-

sponse time (p < 0.0001).

• Using medical imaging, we can classify whether neurological data corresponds to a man or

woman reviewer significantly better than chance (p = 0.016).

• Using eye-tracking, we find that men and women have different attention distributions when

reviewing (p = 0.005).

In addition, we find universal biases in how all participants treat code reviews as a function of

the apparent author:

• Participants spend less time evaluating the pull requests of women (t = −2.759).

• Participants are more likely to accept the pull requests of women and less likely to accept

those of machines (p < 0.05).

• Even when quality is controlled, participants acknowledge a bias against machines (˜3×),

but do not acknowledge a gender bias (even as evaluation and acceptance differ).

We also make our dataset available for analysis and replication.

5.2 Experimental Setup And Methods

We present a human study of 37 participants. In our experiment, every participant underwent an

fMRI scan and eye-tracking simultaneously while completing code review tasks. The eye tracker

is integrated into the fMRI machine and two sets of fMRI-safe buttons were positioned in each

of the participant’s hands to record inputs. In this section, we discuss (1) the recruitment of our

participants, (2) the preparation of our code review stimuli, (3) the experimental protocol, and (4)

our fMRI and eye-tracking data collection methodology.
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Table 5.1: Demographic data of the eligible participants in the study of biases in code review.

Demographic Number of Participants
Total Version I Version II

Men 21 11 10
Women 16 7 9

Undergraduate 26 11 15
Graduate 11 7 4

All of our de-identified data are available at our project website1.

5.2.1 Participant Demographics and Recruitment

Table 5.1 summarizes demographic information for our participant cohort. We recruited 37 un-

dergraduate and graduate computer science students at the University of Michigan; the study was

IRB approved. We required participants to be right-handed with normal or corrected-to-normal

vision, and to pass a safety screening for fMRI. In addition, we required participants to have com-

pleted data structures and algorithms undergraduate courses. Participants were offered $75 cash

incentives and scan data supporting the creation of 3D models of their brains upon completion.

5.2.2 Materials and Design

Participants underwent an fMRI scan and eye-tracking during which they completed a sequence of

code review tasks. More specifically, a single code review task consisted of evaluating an individ-

ual Pull Request and deciding whether to accept or reject the proposed changes. Participants were

shown a sequence of Pull Requests adjusted to fit the fMRI’s built-in monitor. The technical con-

tents of the Pull Requests (e.g., the code change, context, and commit message) were taken from

historical GitHub data; the identifying information (e.g., purported names and faces of developers)

was experimentally controlled. We designed the code review stimuli following the best practices

in previous fMRI research in software engineering [41; 67] as well as previous work in Chapter 4.

1https://web.eecs.umich.edu/ weimerw/fmri.html
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Each code review stimulus consisted of a loading image that displayed an author profile followed

by the corresponding Pull Request. Each loading image was presented for 5 seconds and each Pull

Request page was presented for 25 seconds. A red-cross fixation image randomly ranging from

2-10 seconds was presented between code review stimuli.

Pull Requests: In our study, we included 60 real-world Pull Requests in total from open source

C/C++ projects on GitHub. These 60 Pull Requests consisted of (1) 20 code review stimuli adopted

from a previous fMRI study conducted by Floyd et al. [67] and (2) 40 Pull Requests obtained from

the top 60 starred C/C++ projects on GitHub in February 2019. For each of the 60 GitHub projects,

we requested the 60 most recently committed Pull Requests on February 3, 2019, retaining that

contained (1) no more than two files with changes, (2) fewer than 10 lines of changes (to fit the

fMRI monitor), and (3) at least one C/C++ file being changed. Finally, we randomly selected 40

Pull Requests from 18 different GitHub projects that meet the filtering requirements. The 60 Pull

Requests have an average of 8.7 lines of code (δ = 1.8) and an average of 2.7 lines of changes

(δ = 1.5).

Author Profile Pictures: We used human photos from the Chicago Face Database [299],

which are controlled for race, age, attractiveness, and emotional facial expressions. To avoid bias

from other variables of human faces, we randomly selected 20 pictures each for white women and

men between 22 and 55 years old with neutral emotional facial expressions and average attrac-

tiveness (x̄attractiveness ± σ). Then we conducted equivalence hypothesis tests [300] of age and

attractiveness between the men and women picture sets. Both tests were significant (p < 0.01, us-

ing the 20% × x̄ bound) which indicated there was no significant difference between the women’s

and men’s pictures with respect to age and attractiveness.

Code Review Stimuli Construction: We designed two versions of code review stimuli in this

study. Each version contained 60 code review tasks which were constructed with the 60 selected

Pull Requests, 40 human photos and a computer avatar (examples shown in Figure 5.5). In Version

I, we randomly paired the Pull Requests and author profile pictures so that the final set of code

review tasks contained 20 Pull Requests labeled as being written by women, 20 Pull Requests
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written by men, and 20 Pull Requests generated by machines (automated repair tools). Then in

Version II, we relabeled all the Pull Requests, assuring that each received a different author label

than in Version I while preserving a 20/20/20 split. For example, a Pull Request paired with a

woman’s picture in Version I would be paired with a man’s picture or the computer avatar in

Version II.

This two-Version approach supports our experimental control. No single participant is shown

the same patch twice. However, across the entire experiment, each patch P will be constructed

with two different author labels and shown once to all participants. For example, Participant A

will review patch P with a man author, while Participant B will review P with a woman author.

Since the technical content of patch P remains constant and only the label changes, given enough

samples, differences in responses to patch P can be attributed to differences in the labels.

Each code review task started with a 5-second loading image that briefly introduced the pur-

ported author (shown in Figure 5.2a). The loading image also showed a grayed-out area indicating

that the author’s name, affiliation, and title were omitted for privacy protection. Participants were

then presented with the Pull Request contents for 25 seconds (similarly, the author’s name was

grayed out). An example of a code review stimulus is shown in Figure 5.2b. On the bottom right

corner of each code review stimulus, we displayed an indicator image to remind participants of

which finger buttons to press to accept or reject the current Pull Request. This stimulus structure

is broadly similar to that used by Ford et al. [41].

5.2.3 Experimental Protocol

We recruited participants via email lists and in-class invitations. Candidate participants were re-

quired to complete an fMRI safety screening (e.g., age between 18 and 65, right-handed, cor-

rectable vision, etc.). Each participant was also required to complete a pre-scan survey to assess

minimum coding competence. We split participants into two approximately equally-sized groups

of men and women. Participants in each group received either the Version I or Version II stim-

uli. Table 5.1 summarizes demographic information for each group. Participants gave informed
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(a) Example loading image. (b) Example code review stimulus.

Figure 5.2: Examples stimuli of code review, including a loading image (top) shown for 5 seconds
before a Pull Request with author profile picture (bottom).

consent and could withdraw from the study at any time. Scans required 60–70 minutes.

Pre-scan Surveys: After participants elected to participate in the study, we first collected

basic demographic data (sex, gender, age, cumulative GPA, and years of experience). We also

administered a short programming quiz to assess basic C/C++ programming skills. Participants

could only proceed with the study if they answered all the questions in the programming quiz

correctly.

Training: We showed each participant a training video explaining the study design and pur-

pose. Because many view gender bias as a moral or social issue, we expect that telling participants

that gender bias was being studied would influence their behavior [301]. Thus, by design, we

(deceptively) described this study only as understanding code reviews using fMRI and involving

only code reviews from real-world software companies. We claimed the researchers had merely

adjusted the stimuli presentation to fit the fMRI environment. We told the participants that the goal

of this study was to understand how programmers think when deciding to accept or reject a Pull

Request. We explicitly elided any mention of author gender or provenance as a basis for evaluat-

ing Pull Requests. Per IRB regulations, this deception required a formal debriefing session upon

completion of the experiment to explain the true motivation of the study.

fMRI Scan: After consenting, participants underwent an fMRI scan, during which they com-

pleted four blocks of code review tasks. Additionally, we used an eye-tracking camera to record
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gaze data. Each block contained 15 randomly-ordered code review tasks and 2 dummy stimuli for

eye calibration that were presented at the beginning and middle of a block. For each code review

task, participants were asked to review the Pull Request as a real-world software developer and use

the fMRI-safe buttons positioned in their hands to provide a binary decision: accept or reject that

Pull Request.

Post-scan Surveys: After the fMRI scan, participants were asked to take an Implicit Associa-

tion Test (IAT) [302]. Such assessments are widely used in both psychology and engineering for

investigating implicit, relative associations between liberal arts and women and between science

and men [41; 303]. Then, participants finished a paper-based post-survey regarding the experiment

(see section 5.4.4).

Debriefing: After completing the experiment, we formally debriefed participants about the true

motivation of the study. In particular, we disclosed to each participant the nature of the experiment

was to evaluate gender-based biases, and that in fact the author identity information associated with

each Pull Request did not correspond to actual authors. Additionally, we explained that knowing

the nature of the experiment a priori might introduce social desirability bias [301].

We conducted a correlation analysis between psychology measures from pre-scan surveys (i.e.,

SES data), IAT results from post-scan surveys, behavioral data, eye data, and brain activity. While

no simple correlations survived a significance test (p < 0.05), we report other significant findings

in Section 5.4.

5.2.4 Data Collection

fMRI acquisition: MRI data were acquired with protocols ensuring high spatial and high temporal

resolution. We summarize the details (e.g., for the purposes of replication and meta-analysis), but

generally attest that the scanning measurement hardware and steps align with contemporary best

practices [15; 35; 67]. All scans were conducted on a 3T General Electric MR750 scanner with a

32-channel head coil at the Functional MRI Laboratory at the University of Michigan (the same

facility and parameters as used in Chapter 3 and 4).
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Eye-tracking Acquisition: We used an MRI-compatible Avotec RE-5701 eye tracker to moni-

tor and track participants’ eye movements while undergoing an fMRI scan. Using a slide projector

and a galvanometer-driven mirror, stimuli were back-projected onto a screen on top of the head-

coil. The mirror reflected the picture of a computer screen with a resolution of 1920x1080 with

fonts sized to approximately 36 pixels in height. Participants viewed the stimuli via a mirror while

supine and a second mirror reflected images of the eyes to the eye tracker, installed at the head end

of the scanner.

5.3 Modeling Approach

In this section we describe the mathematical modeling applied to our measurements. Key consid-

erations include accounting for noisy physiological data, correcting for multiple comparisons (i.e.,

avoiding spurious conclusions resulting from repeated analysis attempts), and statistical signifi-

cance.

5.3.1 fMRI Anaylsis

This preprocessing and first-level analysis below in this fMRI analysis approach follows the basic

principles in Section 3.3.1 and is adjusted for the data collected from this specific experiment.

In this Chapter, we adapt the Gaussian Process Classification to investigate the relationship on

general brain patterns between men and women participants.

Preprocessing: Functional MRI data require careful preprocessing prior to statistical analy-

sis: these procedures correct systematic sources of noise in the signal (e.g., due to head motion)

and spatially align brains to a standardized anatomical space. Here, we implemented a robust

preprocessing pipeline using the Statistical Parametric Mapping 12 (SPM12) software in Matlab.

First, we used the RETROICOR technique to remove signal confounds associated with cardiac

and respiratory noise. We then slice-time corrected the blood oxygen-level dependent (BOLD)

timeseries to account for minor differences in the relative timing of signal acquisition within a TR
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(i.e., the 800 ms window during which the whole brain is sampled). Images were then realigned

to correct for head motion during the scan, and geometric deformations (due to motion and mag-

netic field inhomogeneity) were unwarped using data from the fieldmap sequence. Finally, we

skull-stripped the high-resolution anatomical image, coregistered it with the functional data, and

spatially-normalized all images to the standard MNI152 template.

First-level analysis: Task-related changes in BOLD activity were assessed on a within-subject

basis using the general linear model (GLM). For each of the four scanning runs, we specified

regressors corresponding to the author ‘prime’ (i.e., the 5s loading screen preceding each Pull Re-

quest) and the code review block (Pull Requests with author labels), separated by author identity

(e.g., ‘Man Prime’ and ‘Man PR’). This yielded six event types per scanning run, with review block

durations defined by the participant’s response time. The design matrices were convolved with the

canonical hemodynamic response function (HRF) and data were high-pass filtered (σ = 128 s) to

remove low-frequency noise. Model parameters were estimated using restricted maximum likeli-

hood (ReML) with robust weighted least squares (rWLS) [244]: this technique ensures maximally-

unbiased parameter estimation by first estimating the residual noise variance associated with each

image and subsequently re-weighting scans by a factor of 1/variance. Thus, noisy images (e.g.,

those contaminated with motion artifact) are given less influence in the model.

Following model estimation, it is necessary to compute contrasts in brain activity: task-related

changes in the BOLD signal can only be understood relative to other conditions in the experiment

(see Section 2.1.2.2). Here we generated contrasts for all pairwise comparisons between author

prime and code review conditions. For example, WomanPrime > ManPrime and WomanPR >

ManPR. In subsequent analyses, however, we focus on the WomanPR > ManPR contrast

because it represents a direct comparison in brain activity related to author gender (note that the

reverse ManPR > WomanPR is symmetric about zero, and therefore it would only flip the sign

of the estimated parameters in our machine learning model — not change the fit or the results).

These contrast maps for each participant were smoothed with a 5 mm3 full-width at half maximum

(FWHM) Gaussian kernel prior to group-level analysis.
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Gaussian Process Classification: To test the hypothesis that men and women participants

differentially process code written by women versus men, we implemented a multivariate pattern

analysis using Gaussian Process Classification (GPC). Machine learning techniques such as GPC

can be more powerful than conventional mass-univariate analyses because they harness the multi-

variate nature of fMRI data: rather than estimating voxel-by-voxel models of differences in brain

activity (requiring conservative corrections for multiple comparisons), GPC considers whole-brain

patterns of activity that may distinguish between groups or stimulus categories. For this analysis,

we used the Gaussian Processes for Machine Learning (GPML) software v3.5 in Matlab.

The details of our approach follow Floyd et al.’s previous use of GPC in a software engineer-

ing context [67]. In short, the extremely high-dimensionality of fMRI images (tens of thousands

of voxels) requires that data be compressed into a feature space. We used a simple linear kernel,

whose elements indicated the degree of similarity (the dot product) between all pairs of images.

A key advantage to the linear kernel — as opposed to nonlinear methods, such as the radial ba-

sis function — is the ability to project model hyperparameters back into the original data space,

yielding a spatial representation of the decision function (i.e., brain regions where greater activity

pushes the classifier towards predicting ‘man’ or ‘woman’). Classification is ultimately a two-

step procedure: the model is first trained to identify patterns that distinguish between men and

women participants, and performance is then tested using a new image without a class label. We

therefore implemented a leave-one-out cross validation scheme, where participants were iteratively

removed from the training data, models were fit, and a predicted class was obtained for the left-out

participant. This yields a percent classification accuracy for each group and the average balanced

accuracy (BAC) of the classifier on the whole. To determine whether performance was significantly

greater than chance, we ran 1,000 iterations of nonparametric permutation testing: in this proce-

dure, class labels were randomly permuted, the entire cross-validation scheme was performed, and

classification accuracies were recorded to build empirical null distributions for classifier perfor-

mance. Performance is considered significant if the true model outperformed the random models

more than 95% of the time.
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5.3.2 Eye-Tracking Analysis

Preprocessing: Preprocessing eye-tracking data includes removing outliers and fixing offsets. An

offset is the difference in the location of a sampled gaze point and its true coordinates, offsets

grow when the participant’s head falls outside the range of camera or as a result of calibration

deterioration over time. We use Ogama2 to manually identify horizontal and vertical offsets by

replaying the eye gaze data. If the offset is the same for all gaze samples of the stimulus, then we

correct it by shifting them all. When this is not the case, we exclude outlier captured data from the

analysis. We end up obtaining a complete data set for 24 out of 37 (71%) participants. This drop-

out rate, while high, agrees with the literature for eye-tracking data recorded by fMRI pre-installed

eye trackers [176]: it is difficult to avoid noise when conducting fMRI scans and eye-tracking

simultaneously.

AOI and Metrics: An area of interest (AOI) corresponds to when, and for how long, a sub-

ject’s eyes focus on a specific area. Following the guidelines of Goldberg and Helfman [111] for

defining AOIs in terms of size and granularity, we manually divide every stimulus into four two-

dimensional rectangular AOIs: Pull Request message, Code, Author Picture, and Indicator Image.

The AOI sizes are identical across all stimuli and they are always present on screen.

The Pull Request message AOI is provided by the author of the Pull Request to present some

information about the proposed code change (i.e., a commit message). The Code AOI presents the

proposed code changes visually (i.e., as a diff), while the Author Picture and Indicator Image AOIs

display the author of the Pull Request and how to use two fMRI-safe buttons, respectively.

We use the following standard metrics to investigate the impact of provenance on participants’

cognitive load and problem-solving strategy. A problem-solving strategy models attention distri-

bution and navigation trends over time throughout a task. The fixation count indicates the number

of attention shifts required to complete the task [109]. Fixation counts often correlate highly with

the time spent on a task. The fixation time is the total duration of all the fixations on an AOI or

the stimulus. Longer fixation time indicates either a relatively high level of interest or difficulty in

2http://www.ogama.net/
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extracting information and an increased strain on the working memory [114; 113]. The saccade

length indicates the distance that the eye travels [113]. Larger saccades indicate more meaningful

cues while comparing AOI as attention is drawn from a distance [101].

5.4 Results and Analysis

We consider the following research questions:

RQ 5.1 How do the identities of code reviewers and authors change or bias the code review

process?

RQ 5.2 Can we classify the gender identities of code reviewers based on patterns of brain

activity?

RQ 5.3 Can we differentiate the gender identities of code reviewers based on their visual

attention patterns?

RQ 5.4 How do self-reports of the role of identity in code review align with reality?

We make our de-identified dataset (behavioral data, fMRI scan data, eye-tracking data, and

survey data) available for analysis and replication at 3.

5.4.1 RQ 5.1 — Behavioral Differences

We examine how code review behaviors (response times and acceptance rates) change as a function

of the identities involved using behavioral data from 36 participants.4

First, to mitigate false positives, we built a linear mixed effects model (LMM) [304] to inves-

tigate the joint effects of Pull Request author and participant identities on response times (RT).

Here, we use the notation RTA Woman to refer to the response time for a Pull Request purportedly

authored by a woman, and RTP Man to refer to the response time for a Pull Request reviewed by

3https://web.eecs.umich.edu/ weimerw/fmri.html
4One participant did not complete the scan due to physical discomfort.
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a man participant. In this model, we treated individual participants as random effects and the au-

thors’ and participants’ identities as fixed effects. We employed a contrast-based analysis; women

participants and machine authors were used as the reference levels (these baselines were chosen

by LMM by default and it does not affect the analysis results). We find that both the identities of

reviewers (participants) and Pull Request authors have a significant effect on response time: par-

ticipants’ identities: b = 1.51, SE = 0.77, 95%CI = [0.02, 3.03], t = 1.97; authors’ identities:

b = −1.14, SE = 0.41, 95%CI = [−1.96,−0.35], t = −2.759. Based on the fixed effects re-

sults from the linear mixed effect model, we further investigated the relationship between response

time and participants’ and authors’ identities. First, we used Shapiro-Wilk tests to confirm the

response time did not follow a normal distribution (p < 0.001); we thus used the Mann-Whitney

U test to assess the relationship between response times and identities in code review. Our re-

sults show that all participants spent significantly less time on Pull Requests that were written by

women (RTA Woman = 20.8s, RTA Man = 21.7s, RTA Machine = 21.7s, p < 0.01). Furthermore,

women reviewers spent significantly less time on all Pull Requests than men (RTP Woman = 20.5s,

RTP Man = 22.1s, p < 0.0001). Comparing among woman, man and machine author labels, the

effect size is large (all rank − biserial r ≥ 0.7).

We also examined the relationship between the acceptance rates and identities using Pearson’s

Chi-squared Test for significance. We found that machine-written Pull Requests have a lower

acceptance rate (78.03%) comparing to man-written (79.68%) and woman-written Pull Requests

(84.36%) (χ2(df = 2, n = 1, 722) = 8, p < 0.05). The gender bias magnitudes measured here

are in line with previous work (e.g., [40]), and on average, human are 4% less likely to accept

Pull Requests labeled as written by machine. The effect size of author labels on acceptance rate is

small (all Cramer ′s V < 0.1) which aligns with observations in previous studies on gender biases

in code reviews [40].

Men and women conduct code reviews differently: behaviorally, the gender identity of the

reviewer has a significant effect on response time (p < 0.0001). Universal biases exist: all
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Figure 5.3: Weight map: significant clusters of brain activity for WomanPR > ManPR. When
there is stronger activity for woman-authored Pull Requests in ‘hot’ brain regions, the classifier
is pushed towards predicting men participants; more activity in ‘cool’ brain regions pushes the
classifier towards predicting women participants.

participants spend less time evaluating the Pull Requests of women (t = −2.759), and all

participants are less likely to accept the Pull Requests of machines (p < 0.05).

5.4.2 RQ 5.2 — Neurological Differences

We use multivariate pattern classification to determine whether men and women participants ex-

hibit differential neural responses to woman- vs. man-authored Pull Requests (i.e., the contrast in

brain activity for WomanPR > ManPR). Thirty-six participants’ fMRI data is included in this

analysis (see Section 5.4.1). Following cross-validation and nonparametric permutation testing,

the classifier indeed distinguished between men and women participants significantly better than

chance (BAC = 68.59%, p = 0.016). This was primarily driven by the ability to accurately

identify women participants (AccWomen = 68.75%, p = 0.019); while identification of men par-

ticipants was similarly-high after cross-validation, accuracy was nonsignificant after permutation

testing (AccMen = 68.42%, p = 0.527). A spatial representation of the classifier decision function

is shown in Figure 5.3 — note, however, that because these are multivariate weights, localized

spatial inferences cannot be made.

Ultimately, these results suggest that — relative to women participants — men show less-

consistent differences in their responses to woman- vs. man-authored Pull Requests. That is,
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Table 5.2: Pair-wise gender comparisons of eye-gaze data: using non-parametric Wilcoxon Test
(α = 0.05) for fixation count, fixation time, fixation rate, and saccade length. Significant results
(p < 0.05) are bolded.

Mean (Standard Deviation)
Women Men p

Fixation count 13.0 (13.4) 15.5 (13.8) <0.001
Fixation time (s) 21.6 (7.1) 16.4 (11.5) 0.3
Fixation rate 0.33 (0.34) 0.39 (0.33) <0.001
Saccade length (px) 755.0 (883.1) 561.0 (581.4) 0.03

patterns of activity observed in women participants are more similar to one another than men par-

ticipants are to one another, enabling easier identification of women participants when the model

is presented with new data.

It is possible to distinguish women and men conducting code review at a neurological level

(BAC = 68.59%, p = 0.016). Men and women conduct code reviews differently in terms of

associated cognitive processes and patterns of neural activation.

5.4.3 RQ 5.3 — Visual Attention Differences

We analyze eye movements on two levels: globally over the whole stimuli, as well as locally

with respect to AOIs. Twenty-four participants’ eye-tracking data is included in this analysis (see

Section 5.3.2). We measure fixation counts, total fixation times, fixation rates, and saccade lengths

over the whole stimulus. The fixation rate is the ratio between fixation count and the total fixation

time.

As shown in Table 5.2, we observe a higher level of activity for men participants compared to

women. Specifically, men fixated more frequently and made shorter saccades (with regards to the

distance traveled) when they were looking at stimuli to evaluate the Pull Request. We also analyze

these metrics according to the author’s identity (machine, man, or woman) via Friedman tests. No

significant effect of author identity was found on these high-level metrics in isolation.
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Figure 5.4: Distribution of fixation times across AOIs for men and women participants. Women
participants put more attention on reading and processing Pull Request messages and author pic-
tures compared to men.

However, we calculated the metrics mentioned above within each AOI to determine whether a

difference exists between the attention distribution of men and women participants while evaluat-

ing Pull Requests. We used a general align-and-rank non-parametric factorial analysis [305]. We

find that there is a significant interaction between genders: F (1, 3) = 2.64, p = 0.05 for fixation

count and F (1, 3) = 4.43, p = 0.005 for fixation time.

Figure 5.4 shows participants’ attention distribution across AOIs. Women participants spent

significantly more time analyzing Pull Request messages (Wilcoxon test with Bonferroni adjust-

ment: p < 0.05) and author picture (Wilcoxon test with Bonferroni adjustment: p = 0.02).

These results confirm that AOI relevance varies significantly between men and women partici-

pants. Specifically, men and women used different patterns of scanning behavior and attention

distribution while reviewing code.
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We summarize a participant’s visual attention using a heat map. Figure 5.5 displays example

heat maps of a man and woman participant analyzing three different stimuli. These heat maps

represent visual activity on a color scale — red, orange, green, and blue (warmer to cooler) colors

indicate fixation duration. Intuitively, warmer colors indicate locations on the stimulus where a

participant focused the most visual attention while evaluating a Pull Request. These heat maps

indicate men participants employed a more active scanning pattern (shorter fixation, cooler colors)

associated with more frequent attention switching. Additionally, women spent more time and

cognitive effort evaluating Pull Request messages and author pictures (regardless of its identity),

while men spent more time reading the code. Men and women differ substantially in their visual

attention patterns.

Previous work has found that gender differences are likely in problem-solving activities, includ-

ing programming [306; 307; 308]. Sharafi et al. [309] also reported different attention distribution

trends based on gender and showed that women participants pay more attention to analyzing and

ruling out wrong identifiers. Our results are in broad agreement with the findings of Beckwith et

al. [306] that men tend to tinker and explore more within an unfamiliar environment and approach

the new, unknown features earlier than do women.

Eye-tracking results suggest that men and women participants employ different high-level

problem-solving strategies during code review. Men fixated more frequently (p < 0.001),

while women spent significantly more time analyzing Pull Requests messages and author pic-

tures (p = 0.02).

5.4.4 RQ 5.4 — Self-Reporting and Code Review

In our study, all 37 participants provided answers for post-scan questions regarding the tasks and

their own experience. To minimize directing participants’ self-reports in any particular direction,

we employed free response questions. We summarize the six post-survey questions here:
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1. What factors do you check (what do you look at, how do you check the content) when you

made decisions in code reviews?

2. What were the three most important factors (in order) when you were making decisions in

code reviews?

3. How would you compare the machine-generated code changes (i.e., by automated repair

tools) with the human-generated changes?

4. Do you think there are any difference between code written by men and women? If there

were some, what might they be?

5. Have you observed or thought about any differences between men and women code review-

ers?

6. As a software developer, would you be willing to commit machine-generated code into your

code base?

We conducted a qualitative analysis of participants’ self-report data. The most commonly re-

ported factors in code review that affect participants’ decisions were: (1) the quality of comments,

(2) whether the description in comments matched code, (3) code readability, and (4) code func-

tionality. These four aspects combined account for 65% of all the reported factors.

Thirty-five of the 37 participants reported they did not notice any difference between the code

written by women and men. Only five out of the 37 participants indicated they believed there

were behavioral difference between men and women reviewers (e.g., “Women can be more

descriptive with the comments”, “Perhaps men code reviewers will be more skeptical of

code written by women, and women code reviewers will be more cautious in reviewing

code written by men”).

Only four participants indicated they would consider if a Pull Request was generated by human

or machine. However, more participants reported machine-generated Pull Requests in our study

to be worse in overall quality, matching intuition, and comments (23 occurrences) than the other
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direction (8 occurrences). Indicative quotes from participants are “I think the code generated by

machine was more confusing and harder to read. It seemed more complicated than the

human-generated code.” and “Machine-generated changes are IMO less readable, a little

worse in quality, capable in fewer scopes”. Without knowing all the Pull Requests and com-

ments were actually written by human programmers, participants expressed negative judgements

on those labeled as machine-written. That is, although there were no real differences between

the Pull Requests, humans held negative attitudes or biases against machine-generated code. This

aligns with the results in Section 5.4.1: humans are less likely to accept Pull Requests generated

by machine. Similarly, though the majority of participants reported they believed there was no dif-

ference regarding genders of programmers in code reviews, their behaviors displayed significant

differences in code reviews (see Section 5.4.1).

Although humans exhibit biases in their acceptance rates of identical code labeled as written by

human vs. machines (Section 5.4.1), participant self-reports acknowledge the bias against ma-

chines (23 : 8) but do not acknowledge a gender bias. When Pull Request author information

changes, participants report seeing quality differences where none exist.

5.4.5 Discussion of Results

Reviewer differences: Our results suggest that men and women conduct code reviews differently.

We support this claim with three measurement modalities. Behaviorally, the gender identity of

the reviewer has a statistically significant effect on response time. Using medical imaging, we

can classify whether neurological data corresponds to a man or woman reviewer. Using eye-

tracking, we find that men and women have different attention distributions when reviewing. Note

that our results do not support any inferences about whether men or women are more accurate at

code review. Regardless of the direction of the bias, the code review process overall benefits by

identifying and mitigating it [40; 39; 41; 273; 274; 275; 267; 165; 59; 60].

Humans tend to claim no differences between men and women as code reviewers. However,
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our results indicate the opposite. Despite no overt behavioral differences (i.e., no significant in-

teraction between participant gender and author identity), the pattern of brain regions recruited

when evaluating woman- vs. man-authored code significantly distinguished between men and

women participants, with women participants generally showing more reliable patterns of activity

(as evidenced by significant classification accuracy for that group). Similarly, our analysis of the

distribution of visual attention and the intensity of visual processing reveals that men and women

participants have different implicit AOI preferences. While women put more effort into analyz-

ing the pull request messages and author pictures, men fixated more on source code. This finding

emphasizes that any a priori assumptions about the importance of different features and various

types of information may negatively influence the participants’ performance. It may be beneficial

to have various sources of information easily accessible to the participants to make an effective

judgment without interrupting their train of thought.

In finding statistically-significant differences in how men and women participants carry out

software analysis tasks, our results are broadly in line with previous studies (e.g., [309; 306]). We

note that a recent medical imaging study of code writing did not find any gender differences [310,

Sec. 3.1] but did suggest that code reading and writing are distinct neural tasks.

Author differences: Our results suggest that the contributions of women and machines are not

held to the same standards as those of men: they are accepted at different rates and scrutinized

for different amounts of time. One null hypothesis is that reviewers are simply correctly favoring

better patches (e.g., machine patches may be worse or less maintainable [311; 18]). However, our

controlled experiment, in which patch qualities are actually equal, rules out that explanation here.

Dual formulations (e.g., women-authored Pull Requests may be of higher quality) are also ruled

out by our post-survey data (Section 5.4.4) as well as previous studies [39]. We thus hypothesize

that the observed differences result from systematic biases. Such biases have been previously

found in software engineering in general and code review in particular [39; 41; 40].

In our study, we observed that humans are 4.7% more likely to accept woman-labeled Pull

Requests than man-labeled Pull Requests. Further, they are 4% less likely to accept Pull Re-
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quests labeled as machine-generated and humans may hold negative opinions against machine-

generated code. These results align with Ryan et al.’s findings on trust issues against automated

repair tools [281] and other studies on program repair bots [312; 282].

Implications: These neurological and eye-tracking differences do not imply inborn biological

differences. Indeed, previous fMRI studies on code review using the same classification analysis

found such similar differences between experts and novices, regardless of sex [67, Sec. V.3]. This

suggests that these observations are more likely attributable to differences in training or feedback.

For example, if women are more likely to experience ridicule for failure (e.g., [166; 167; 168; 169;

170; 171; 172]), they may logically adopt different strategies for code review than do men because

they perceive different penalties for false positives and false negatives. We view this study as part

of a line of work to clarify such biases so that they can be mitigated. For example, follow on work

might benefit from investigating which patches, and thus which syntactic or semantic properties

of code, were most and least vulnerable to bias (Section 5.4.1). Similarly, if some participants

look more at author information (Section 5.4.3), a direct measurement of the reduction in bias that

occurs when anonymizing names and author pictures is merited (cf. [41]).

5.5 Threats to Validity

One threat to validity associated with generality is that our selected stimuli may not be indicative.

We mitigate this by choosing the Pull Requests randomly from real-world, open-source projects.

Similarly, many of our participants are undergraduates. We mitigate this by including a large

proportion (30%) of graduate students, and note that, as evaluating the impact of expertise is not

the goal of this study, using students as participants is more acceptable [313].

To reduce stereotype threat [314] and social desirability bias [301] and alleviate hypothesis

guessing and apprehension, we did not inform the participants about the precise goals of the study.

Also, by minimizing the interaction between our team and participants and analyzing de-identified

data, we mitigate biases associated with learning or using the identities of individual participants.
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Our research team contained both men and women; we conducted a set of pilot studies to help

identify biased procedures or results.

To account for conclusion validity, we choose well-documented eye-tracking metrics and anal-

yses [113] as well as well-established and previously-used fMRI analyses [67; 15].

5.6 Chapter Summary

Code review is a critical practice in software engineering. We conducted a study of 37 participants

including behavioral, eye-tracking, and medical imaging measurements. Our experiment used

historical GitHub Pull Requests but carefully controlled their author information labels, holding

quality constant while varying provenance.

We find that men and women conduct code reviews differently in terms of associated visual

and cognitive processes and patterns of neural activation. Men and women participants employ

different high-level problem-solving strategies during code review: men fixated more frequently

(p < 0.001), while women spent significantly more time analyzing Pull Request messages and

author pictures (p = 0.02). Also, the gender of the reviewer has a significant effect on response

time (p < 0.0001). It is possible to distinguish women and men conducting code review at a

neurological level (BAC = 68.59%, p = 0.016).

We also find general biases when assessing Pull Requests labeled as written by women or

machines. Participants spent less time evaluating the Pull Requests of women (t = −2.759), and

all participants are less likely to accept the Pull Requests of machines (p < 0.05). However, while

participant self-reports acknowledge the bias against machines (˜3×), they do not acknowledge

a gender bias. When Pull Request author information changes, participants report seeing quality

differences where none exist.

We hypothesize that these differences in behaviors and outcomes are related to training and

feedback, but more work remains. Our results shed light on potential sources of bias and the

physiological mechanisms and behaviors through which they manifest. This chapter presents the
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first study to employ both fMRI and eye-tracking to observe potential bias in code review while

controlling for quality.

With the ending of this chapter, we have presented all three research components to investigate

the cognitive processes in multiple software engineering tasks, including fundamental tasks (i.e.

data structure manipulation), higher level tasks (i.e. code writing), as well as the effect of different

demographic groups. We presented the application of multiple psycho-physiological measures

in these software engineering tasks including fMRI, fNIRS and eye-tracking. The next chapter

summaries the three studies presented in this thesis with a look to the future.
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CHAPTER 6

Conclusion

Understanding how developers carry out computing activities can help to improve software en-

gineering productivity and guide the use and development of supporting tools and environments.

Previous research has explored how programmers conduct computing activities such as code com-

prehension and code review, but they rely on traditional survey instruments, which may not be reli-

able. Instead, advances in medical imaging (i.e., fMRI and fNIRS) and eye tracking have recently

been applied to software engineering, paving the way for grounded neurobiological understandings

of fundamental cognitive processes involved therein.

Using three research components presented in this thesis, we show that it is possible to mean-

ingfully and objectively measure user cognition to understand the role of spatial ability, fundamen-

tal processes and stereotypical associations in certain software engineering activities by combining

medical imaging and eye tracking:

• In Chapter 3, we investigated our hypothesis that spatial ability is highly associated with

software tasks on a foundational level. We exploit two key insights to investigate the re-

lationship between spatial ability and data structure manipulation: (1) the use of multiple

medical imaging approaches (i.e., fMRI and fNIRS), and (2) the use of the mental rotation

paradigm to serve as a baseline for measuring spatial ability. We designed a controlled ex-

periment using both fMRI and fNIRS (including constructing a customized fNIRS cap) to

compare the brain activities of spatial ability (through mental rotation tasks) and data struc-

ture tasks. We recruited 76 participants in this work and presented a comparison on costs
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and benefits between fMRI and fNIRS for future research in the community.

We found that data structure and spatial ability operations are similar neurological ac-

tivities: both fMRI and fNIRS evidence demonstrates that they involve activations to the

same brain regions (p < 0.01). However, some regions relevant to data structures are

not accessible to fNIRS: fNIRS lacked the penetrating power to uncover the full evidence

reported by fMRI. We also found that difficulty matters for data structure tasks: human

brains work even harder for more difficult data structure tasks compared to mental rota-

tions. Though strongly supported by objective measures, this relationship was not obvious

to human participants, 70% of whom reported no subjective experience of similarity. Our

results provide potential for support future research on enhancing programming skills by

taking advantage of extant spatial ability training.

• In Chapter 4, we aimed to understand the cognitive processes involved in writing code. We

used prose writing as a baseline to ground our results. While some studies have explored

how software developers read code, there is no research studying the cognitive processes of

creativity in programming such as code writing. We designed and conducted the first fMRI

study of code writing and employed a controlled, contrast-based experiment in which 30

participants completed code writing, prose writing, fill-in-the-blank and long response tasks

using a customized fMRI-safe keyboard to type their responses in a realistic live editing

setting.

While previous studies have found that code and prose reading may be similar at a neuro-

logical level, we find that code and prose writing are quite dissimilar at the neurological

level (q < 0.05). At both a low level (i.e., producing a single word or code element) and

a high level (i.e., long response coding), we found that writing code requires significantly

more activity in brain areas associated with careful, top-down control, planning, and cate-

gorization: despite superficial similarity, code appears to be categorically distinct compared

to prose. In addition to developing a foundational understanding of code writing, this em-
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pirical distinction may be leveraged to develop tools and pedagogies (e.g., transfer training),

subsequently potentially affecting large scale workforce retraining and educational reform.

Moreover, neurological evidence that code and prose writing are not as intertwined as con-

ventionally thought may encourage more diverse participation in computer science.

• In Chapter 5, we investigated human biases in code review, a critical step in modern software

quality assurance. Previous studies have found that software developers do not recognize po-

tential biases when checking the source of code in code reviews and developers may be re-

luctant to adopt patches generated by automated program repair tools. We conducted a study

of 37 participants including behavioral, eye-tracking, and medical imaging measurements to

investigate objective sources and characterizations of biases during code review. Our exper-

iment used historical GitHub Pull Requests but carefully controlled their author information

labels (man, women, or machine), holding quality constant while varying provenance. We

investigated whether the authorship of a Pull Request influences a reviewer’s behavior, and

whether men and women evaluate Pull Requests differently.

We found that men and women conduct code reviews differently in terms of associated

visual and cognitive processes and patterns of neural activation. Men fixated more fre-

quently (p < 0.001), while women spent significantly more time analyzing Pull Request

messages and author pictures (p = 0.02). We also found general biases when assessing

Pull Requests labeled as written by women or machines. Participants spent less time

evaluating the Pull Requests of women (t = −2.759), and all participants were less likely to

accept the Pull Requests of machines (p < 0.05). However, while self-reports acknowledge

the bias against machines (3×), they do not acknowledge a gender bias. When Pull Request

author information changes, participants report seeing quality differences where none exists.

Our results shed light on potential sources of bias and the physiological mechanisms and be-

haviors through which they manifest. Such an understanding may help design interventions

to reduce bias to improve developer productivity.
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Table 6.1: Major publications supporting this dissertation

Venue Title

ICSE’19 Distilling Neural Representations of Data Structure Manip-
ulation using fMRI and fNIRS [15] (Chapter 3)

ICSE’20 Neurological Divide: An fMRI Study of Prose and Code
Writing [315] (Chapter 4)

FSE’20 Biases and Differences in Code Review using Medical
Imaging and Eye-Tracking: Genders, Humans, and Ma-
chines [316] (Chapter 5)

TOSEM’21 Towards an Objective Measure of Developers’ Cognitive
Activities [317] (Chapter 3)

Table 6.1 lists the major peer-reviewed publications that support the findings presented in this

thesis. The work in this thesis addresses the problem of objectively measuring user cognition in

software engineering activities using multiple psycho-physiological measures. The work presented

in this thesis is among the first to leverage various objective measures to provide a systematic

framework to understanding user cognition in programming activities. We presented a systematic

approach to study the cognitive processes behind multiple important activities in software engi-

neering that

1. objectively measures relevant factors in computing tasks;

2. is based on rigorous cognitive (neurological and visual) evidence;

3. helps understand semantically-rich and industry-related software engineering activities (e.g,

data structure manipulation, code writing and code review);

4. provides guidance for actionable mitigations across different demographic groups.

This approach allowed us to adapt knowledge from other domains (e.g., psychology, biomed-

ical engineering) to design interventions that enhance the effectiveness of modern software engi-

neering and pedagogy techniques. Additionally, this thesis presented guidelines and suggestions

for future research on investigating user cognition in software engineering.
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6.1 A Look to the Future

While the work presented in this thesis improves our foundational understanding of multiple crit-

ical software engineering activities and provides basic principles to adapt psycho-physiological

measures to investigate such activities, significant room remains for understanding users’ cogni-

tive processes and improving users’ productivity in software engineering. Here we summarize

future directions regarding the open challenges on this research topic.

We believe investigating user cognition can have high impact on guiding the design of tools,

systems and computer science pedagogy. Throughout this thesis, we have addressed the chal-

lenges related to our foundational understanding of cognitive processes in software engineering.

This paves the way for future work to extend those results and use them as insights for design-

ing effective interventions. Using objective evidence on the neurological and visual level, there is

significant room for developing strategies in computing education and workforce training, design-

ing rules for programming tools and systems, as well as support policies for improving diversity

and participation in software engineering. While modeling user behavior remains a challenging

research topic, the objective measures we describe could lead to a new angle for building a com-

putational model (e.g., with fault tolerance to deal with individual variance). This type of future

work could make significant impact on the design paradigms of software engineering. In addition,

research on cognition in software engineering may also spark exciting future work with progress

in brain computer interaction (BCI).

As of 2021, studies using medical imaging in software engineering struggle with experimental

design constraints related to the environment and length of task stimuli. We believe it is important

to mitigate these constraints in the future. There are positive news: there are already portable

fNIRS machines on the market and researchers in neuroscience and psychology have conducted

exploratory work on the application and justification of longer tasks in experimental design. In the

future, we expect more research to be done on more complex and realistic software engineering

tasks (e.g., more complex software projects, different working environments for multiple users,

etc.).
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Though psycho-physiological measures, such as medical imaging and eye tracking, are more

costly compared to traditional measures, we believe they can be soon more widely adapted with

ease to the software engineering community. We have observed that the support for these measures

have developed rapidly in the last decade. For example, commercial products for fMRI, fNIRS and

eye tracking have been improved over time with lower costs and more technical features. While

fMRI requires relatively more professional training for the associated technicians, fNIRS and eye

tracking are already common and feasible for researchers with minimum engineering background

to adapt to their research activities.

As the research community in software engineering that investigates users’ cognitive processes

is relatively new, we also believe we need to support replication of our studies. With more research

effort on this topic, it is important for us to build a community to share our datasets including ex-

periment protocols, deidentified datasets, and analysis approaches. Since studies in our community

commonly involve human participants, we also emphasize the ethical consideration in our research

practice.

We firmly believe there are still many interesting and exciting research problems to investigate

to better understand user cognition in software engineering. Our work in this thesis paves the way

to future explorations along this direction.
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