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d � λc and F c12(v) → 0 for d � λc are apparent. For d ∼ λc, however, the profile
is modulated with the interference inherent in the cross-spectrum. In this simple case,
there is no additional information about the velocity distribution that may be extracted
by having multiple detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 The expected uncertainty on the angle between the detector axis and solar velocity,
θ� = arccos(v̂� · x̂12), as a function of d/λc = d×mav0. In this example we have set
the true orientation to θt� = π/4. With this configuration, we find that the maximum
precision is obtained for d ≈ 2λc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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4.4 (Left) A Mollweide projection of the Asimov test statistic Θ̃(θ, φ) for the SHM di-
vided by the co-located detection significance TS0. The detectors are configured so
that the displacement vector between them is parallel to the SHM boost velocity, and
the Mollweide plot is rotated so that it is centered on the maximum test statistic. (Cen-
ter) As on the left, but for a detector configuration where the displacement vector is at
a 45◦ angle to the North (θt� = π/4) with respect to the SHM boost velocity. (Right)
As on the left, but for a detector configuration where the displacement vector is per-
pendicular to the SHM boost velocity (θt� = π/2). In this configuration the location
of the boost velocity can only be localized to a great circle on the celestial sphere. . . . 105

4.5 (Left) As in Fig. 4.3, but for the Sagittarius (SGR) stream rather than for the SHM. As
before, the maximum precision for the inferred value of θstr is achieved at mav0d ≈
2, although the overall dependence is somewhat softened outside of the extremes at
mav0d = 0 and mav0d = 2π. The values of σθstr ×

√
TS0 are also considerably

smaller than those found in the SHM example, indicating that the angle θstr can be
reconstructed with much greater precision for the SGR stream as compared to the
SHM. (Right) The Asimov TS Θ̃(θstr) for the SGR stream rescaled by the co-located
detection significance TS0 as a function of θstr for a detector configuration where the
true stream direction is θtstr = π/4 (dashed vertical line). We have fixed mav0d =

2. The TS Θ̃(θstr) is maximized at the true value of θstr, but there is considerable
nontrivial global structure with a large number of local minima and maxima in Θ̃. . . . 106

4.6 As in Fig. 4.4, we construct Mollweide projections of the Asimov test statistic Θ̃(θ, φ)
for the SHM rescaled by the co-located detection significance TS0. However, we now
perform a joint likelihood over data collected over a 24-hour period so that the daily
modulation of the detector displacement vector produces a time-varying signal, which
helps break degeneracies in the reconstructed directional parameters. The Mollweide
projection for a configuration in which the detectors are oriented along an East-West
(North-South) orientation is shown on the left (right). While the results of obtained in
an East-West configuration do not depend on the latitude of the detectors, the North-
South configuration results do, so for definiteness, we have taken the detectors to be
located in New Haven, CT, the site of the HAYSTAC detector. In both configurations,
the SHM boost velocity direction can be localized effectively, although there remains
a non-trivial degeneracy in the East-West map between two points on the sphere. . . . 108

4.7 As in Fig. 4.6, but for the Sagittarius stream example. For a fixed axion mass, the
physical detector separation d = 2λc is a factor of 20 larger than in Fig. 4.6 be-
cause of the larger coherence length of the stream. While there are many local max-
ima in both configurations, the North-South orientation produces only a single global
maximum, at the true detector localization, while the East-West orientation leads to
two degenerate global maxima (one at the true detector location and the other dis-
placed). An animated version of these figures, showing how the localization im-
proves throughout the day as more orientations of x12 are sampled, can be found
at github.com/joshwfoster/DM Interferometry. . . . . . . . . . . . . . . . . . . . . . 109
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4.8 The posterior distribution for a model with daily modulation where the signal strength
is at the threshold of an expected 5σ detection for a 100 second observation with a
single detector. Monte Carlo data is generated for 24 hours of data collection with two
detectors separated along the North-South direction by a distance with 2× (mav0)−1.
The true parameters are indicated in blue, with the 1σ confidence intervals on the
parameter estimations are indicated by the dashed black lines in the single-parameter
posteriors. The two parameter posteriors show the 1σ and 2σ contours. On the left, we
display the posterior distributions for the overall signal strength, the boost speed of the
SHM, and the velocity dispersion of the SHM, all of which are parameters accessible
in a single detector configuration. On the right, we display the posterior distributions
for the angles ∆θ� = θ� − θt� and ∆φ� = φ� − φt� which specify the orientation
of SHM boost velocity and are only accessible in a multiple-detector configuration.
Both θ� and φ� are determined at degree precision in this scenario. . . . . . . . . . . 111

5.1 Left: Rendering of the ABRACADABRA-10 cm setup. The primary magnetic field
is driven by 1,280 superconducting windings around a polyoxymethylene (POM)
support frame (green). The axion-induced field is measured by a superconducting
pickup loop mounted on a PTFE support (white). A second superconducting loop
runs through the volume of the magnet to produce a calibration signal. All of this is
mounted inside a superconducting shield. Right: Picture of the exposed toroid during
assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Flux spectrum averaged over the the data used in this analysis. (a) The spectrum
over the frequency range 11 kHz < f < 3 MHz, corrected for the pre-digitizer filters
(blue). For comparison, we also show the digitizer noise floor, corrected for pre-
digitizer filters (gray) and the characteristic SQUID flux floor (green dashed). The
axion search range is between the dotted black lines. (b) A zoomed view of the
10 MS/s spectrum (blue) with ∆f = 100 mHz and and an example axion signal at
the 95% upper limit (red dashed). (c) A zoomed view of the 1 MS/s spectrum with
∆f = 10 mHz. Note that the digitizer data was collected at a different time from the
SQUID data, and shows a few transient peaks that are not present in the SQUID data. 116

5.3 The limit on the axion-photon coupling gaγγ constructed from ABRACADABRA-
10cm data described in this work. We compare the observed limit, which has been
down-sampled in the number of mass points by a factor of 104 for clarity of presenta-
tion, to the expectation for the power-constrained limit under the null hypothesis. This
down-sampling excludes the 87 isolated mass points vetoed in the discovery analysis;
further details will be presented in [82]. Additionally, we show the astrophysical con-
straint on gaγγ in this mass range from the CAST helioscope experiment [263]; the
region above the grey line is excluded. . . . . . . . . . . . . . . . . . . . . . . . . . 119
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6.1 Top: Schematic of ABRACADABRA-10 cm showing the effective axion-induced cur-
rent (blue), sourced by the toroidal magnetic field, generating a magnetic flux (ma-
genta) through the pickup cylinder (green) in the toroid bore. Bottom: Simplified
schematic of the ABRACADABRA-10 cm readout (full circuit diagram in Fig. E.1).
The pickup cylinder Lp is inductively coupled to the axion effective current Jeff . The
power spectrum of the induced current is read out through a DC SQUID inductively
coupled to the circuit through Lin. An axion signal would appear as excess power
above the noise floor at a frequency corresponding to the axion mass. . . . . . . . . . 123

6.2 The gain shown here is defined as the change in amplifier output voltage over a cor-
responding change in input flux amplitude on the pickup cylinder (∂Vout/∂Φa). Both
transfer functions roll off at high frequencies due to the amplifier bandwidth, which
we estimate to have a cutoff frequency of approximately 1 MHz. We believe the dif-
ference in calculated and measured gain is due to inconsistency in the total inductance
of the pickup circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 The survival function of TS values from the likelihood analysis of the Run 3 results.
The y-axis indicates the fraction of mass points tested with a discovery TS at or above
the value on the x-axis. Under the null hypothesis, the distribution should follow
the survival function of the one-sided χ2 distribution with one degree of freedom
(“Expected,” dotted gray). This is indeed the case after data cleaning for e.g. single-
channel excesses in time slices, magnet-off vetoes, and the inclusion of a systematic
nuisance parameter, which is tuned in a sliding window at 4σ local significance to
give the correct number of excesses at or above that significance, masking the signal
of interest. No excesses are found beyond our indicated 5σ LEE-corrected discovery
threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 (Left) The one-sided 95% upper limit (U.L.) on gaγγ from this work excludes pre-
viously unexplored regions of ADM parameter space. The 1σ and 2σ containment
regions are constructed by taking the appropriate percentiles of the distributions of
the limits over narrow mass ranges; note that this means that ∼16% of the upper lim-
its lie at the bottom of the green band. Around 11.1 million mass points are analyzed,
so the plotted data is smoothed for clarity. Our limits surpass those from a number of
indicated astrophysical and laboratory searches in this mass range, including CAST
(solid grey region), super star cluster constraints (dashed grey line), and SHAFT (solid
grey line). See text for details. (Right) The un-smoothed limit in a narrow mass range
between 2.99790 and 2.99798 neV. This provides a detailed view of variations in the
limit at each axion mass that arise from statistical fluctuations across the collected
data that are not visible in the smoothed data shown in the left plot. This range also
depicts the location where our maximum sensitivity is achieved, with our strongest
limit at gaγγ . 3.2× 10−11 GeV−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1 The 95% upper limits on the signal flux for the indicated sources from the GBT and
Effelsberg observations. These upper limits apply to monochromatic signals at the
widths δffid given in Tab. 7.1. These curves have been down-sampled for visualiza-
tion purposes. We compare these limits with the 95% upper limits expected from
the ideal radiometer equation under the assumption that the only source of statistical
uncertainty is thermal noise at the total system temperature. . . . . . . . . . . . . . . 137

xiii



7.2 The one-sided 95% upper limits on gaγγ as a function of the axion mass ma from this
work are shown as colored lines (GBT INS observations) and black lines (Effelsberg
GC observations). Previous limits from the CAST helioscope and the UF and RBF
haloscopes are shown in shaded grey. The range of couplings expected for the QCD
axion is shaded in orange. Note that the fiducial GC limits assume an NFW DM
profile and the conservative NS population model (Model II) from [104]. The green
band depicts theoretical uncertainties on the gaγγ limit associated with the GC analysis
for the Effelsberg data. The top of the band assumes an NFW DM density profile with
a 0.6 kpc core, while the bottom of the band uses the alternate NS population model
in [104] (Model I). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1 The stacked and pixelated background-subtracted count data (10 - 80 keV) from the
NuSTAR observations of the Quintuplet SSC. The locations of the stars are indicated
in black, while the 90% energy containment region for emission associated with the
SSC is indicated by the black circle, accounting for the NuSTAR point spread function
(PSF). RA0 and DEC0 denote the locations of the cluster center. We find no evidence
for axion-induced emission from this SSC, which would follow the spatial counts
template illustrated in the inset panel. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 The spectra associated with the axion-induced templates from the Quintuplet and
Wd1 SSCs constructed from the NuSTAR data analyses, with best-fit points and 1σ
uncertainties indicated. In red we show the predicted spectra from an axion with
ma � 10−11 eV and indicated gaγγ . Note that for Wd1 we do not analyze the 10 - 15
keV energy bin because of ghost-ray contamination. . . . . . . . . . . . . . . . . . . 149

8.3 The 95% upper limits (black) on gaγγ as a function of the axion mass from the Quin-
tuplet and Wd1 data analyses. We compare the limits to the 1σ (green band) and 2σ
(yellow band) expectations under the null hypothesis, along with the median expec-
tations (dotted). The joint 95% upper limit, combining Quintuplet and Wd1, is also
indicated (expected joint limit not shown). At low masses our limits may be surpassed
by those from searches for X-ray spectral modulations from NGC 1275 [364], though
we caution that those limits have been called into question recently, as discussed fur-
ther in the text [365]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1 Our fiducial D-factor, which is proportional to the expected DM signal flux. Values
are given in all 30 annuli, which are 6◦ wide in angular distance from the GC (with
|b| > 2◦), and we define a signal and background ROI as shown. In each ring, we
compute the D-factor of all MOS or PN exposures, weighted according to the obser-
vation time and field of view. The horizontal line indicates Dbkg, the mean D-factor
in the background ROI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2 The background-subtracted MOS data for the innermost annulus, downbinned by a
factor of four for presentation purposes. The indiciated best fit null and signal models,
for a 3.5 keV UXL, are constructed using the GP modeling described in the text. . . . 157
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9.3 (Upper) The power-constrained 95% upper limit on the DM lifetime from this work,
presented in the context of the sterile-neutrino mixing angle sin2(2θ), as a function
of the DM mass mχ. The dark grey regions correspond to theoretical bounds for
DM underproduction in the νMSM or bounds from previous X-ray searches (1)–(5);
see text for details. (Lower) The associated sign-weighted significance for the UXL.
Vertical grey regions denote background lines and are at least partially masked. Green
and gold regions indicate 1/2σ expectations under the null hypothesis. These results
are shown in the context of more general DM models as constraints on the DM lifetime
in Fig. H.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.4 Our decay search interpreted in the context of limits on the axion decay to two pho-
tons. Our limits, along with those from additional blank sky searches are indicated as
in Fig. 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.1 Double differential mass fractions for axion minihalos as a function of the concentra-
tion parameter δ and mass M . In the top left we compute that mass function using
the field immediately after the QCD phase transition, at η̂ = 7, while in the bottom
left we use the more correct procedure of first evolving to η̂ = η̂MR before performing
the clustering procedure. Evolving to matter-radiation equality gives the most over-
dense regions time to expand and results in less dense overdensities, as compared to
the incorrect procedure shown in the top left. This is perhaps even more apparent
in the single differential mass fractions as a function of the mass M (top right) and
concentration parameter δ (bottom right). These results are based on our most real-
istic simulation with η̂c = 3.6 and λ̃ = 5504. Error bars are statistical, and we do
not extend the df/d logM curves to lower masses as we are unable to resolve those
properly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Illustration of an oscillon (log(ρ/ρ̄)) at different times in a 2D simulation. Two sce-
narios are considered with different truncation points of the mass growth, η̂c = 4.0
and η̂c = 6.0. The three left panels are identical in both scenarios, while the two top
right panels are for η̂c = 6.0, and the two bottom panels are for η̂c = 4.0. The radius
of the oscillon is proportional to the oscillation frequency ∼ ma(T )−1 (circles of that
radius are shown in dashed blue) and as such is decreasing over time. The oscillon
central density slowly dissipates after the mass growth ends, as seen in the bottom
right panels for η̂c = 4.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.3 Our results for the DM density today Ωa, inferred at η̂MR, from simulations at different
values of λ̃ for our most realistic η̂c: η̂c = 3.6. The uncertainties are the inferred
statistical uncertainties arising from the spread in the DM density determinations as
a function of λ̃. No trend is discernible for the dependence of Ωa on λ̃, above the
statistical noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.4 A comparison of the predictions for the relic abundance of axions dark matter as a
function of fa obtained in [118] (Kawasaki et al.) and [112] (Klaer and Moore) with
the simulation results realized in this work. Error bars are combined statistical and
correlated systematic errors, with the former dominating at η̂ = 7 due to large field
gradients and the latter at η̂ = η̂MR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
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A.5 A comparison of the power spectra realized in simulations for λ̃ = 5504 for different
choices of η̂c. New features in the power spectrum emerge as we push to larger values
of η̂c, and we cannot exclude the possibility that further features would emerge were
we to simulate with a greater value for the cutoff. On the other hand, the power-
spectrum is highly non-Gaussian at small scales, so the distribution ∆2

k alone is not
adequate for understanding the small-scale nature of the overdensity field. . . . . . . . 174

A.6 A comparison of the distribution of the squared magnitudes of Fourier components for
four different fixed reference momentum k. The expected exponential distribution for
a Gaussian field is also indicated. While the distributions are Gaussian at large scales,
they become increasingly non-Gaussian at small scales. The momentum mode |k| =
500 corresponds to approximately 6.5 grid sites. These distributions were constructed
from our most realistic simulation with λ̃ = 5504 and ηc = 3.6. . . . . . . . . . . . . 175

A.7 Comparison between differential mass fractions as a function of the minihalo mass
M from our simulations at different η̂c. In this plot we have rescaled the minihalo
masses such that we achieve the correct DM density ρ̄ observed in the Universe, but
for the solid curves we have not applied the Hubble volume rescaling factor to reach
our target fa. However, the dashed curves do have the Hubble volume rescaling factor
included, but here we take our target fa to be that corresponding to our most realistic
simulation with η̂c = 3.6. The difference between the dashed mass functions and the
solid black mass functions gives a sense of the systematic uncertainty introduced by
applying the naive mass rescaling factors instead of simulating with the correct value
of η̂c (fa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.8 Comparison between differential mass fractions as a function of the concentration
parameter δ and minihalo mass M for different η̂c and λ̃ at η̂ = η̂MR. Error bars are
statistical. Shown as dotted lines is a fit to the df/dδ curves as described in the text.
We do not extend the df/d logM curves to lower masses as we are unable to resolve
those properly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.9 Comparison between cumulative mass fractions, defined in the text, for our simulation
at η̂ = 7 (solid blue) and η̂MR (solid black). We use our fit to the differential mass
fraction df/dδ to extrapolate to high δ0 for our η̂MR data (dotted black). Error bars are
statistical. We compare our results to those from Kolb and Tkachev [430] obtained at
η̂ = 4 by using the fit to their data presented in [99] (red curve). . . . . . . . . . . . . 178

A.10 We depict the variation of f1, f2, and f3 as a function of η̂ over the relevant range
of η̂ for our simulations accounting for a varying g∗. For fixed g∗, we would expect
f1 and f2 to be constant at value 1. We additionally show the behavior of f3, which
describes the evolution of the quantity ma(η)2/H2

1 , normalized to f̃3, wherein we
compute ma(η)2/H2

1 assuming a fixed g∗. Assuming a fixed g∗ causes the axion to
reach its zero-temperature value earlier in η̂, but the ratio ultimately reaches unity as
the same zero-temperature mass is reached. . . . . . . . . . . . . . . . . . . . . . . . 183
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A.11 Numerical evolution of the idealized circular string-domain wall collapse. (Left) A
comparison of the radius of the circular domain wall as a function of conformal time
η̂ for the simulation parameter λ̃ = 5504 (solid black) and for a physically-motivated
parameter value λ̃ ≈ 1030. The collapse of the domain wall occurs at around η̂ = 2,
i.e., after a Hubble time. (Right) The ratio of the domain wall radius as a function of η̂
for the two values of λ̃. We see that the collapse rate is largely insensitive to the value
of λ̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.12 The string length parameter ξ shown as a function of the ratio of simulation tempera-
ture T to the temperature TPQ at which the PQ phase transition occurred, including the
results of our fit to the functional form of (A.58). We observe significant evidence for
logarithmic deviation from the scaling regime. Extrapolating this result to the QCD
phase transition (vertical dashed line) gives the prediction that ξ should be around a
factor of 15 higher at the beginning of the QCD phase transition than in the final state
of our most realistic simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.13 The fraction of the string length in super-horizon length strings. Like [124], we find
roughly 80% of the string length resides within long strings. . . . . . . . . . . . . . . 188

A.14 The present day axion abundance as a function of the string density parameter ξ at the
beginning of the QCD simulation at η̂i = 0.4. Individual data points are labeled by
their box length LQCD. The error bars are estimates of the statistical uncertainties, and
no clear trend is visible in the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.15 Differential mass spectrum as a function of the minihalo mass M for different box
sizes. Error bands include statistical errors and the uncertainty on the overall normal-
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B.1 A comparison between the variation in the 95% upper limit found in Monte Carlo
(MC) simulations to that derived analytically with the Asimov dataset. As shown the
two are in good agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.2 Schematic depiction of the approximation made to the model used to derive TSthresh.
Specifically we assume that the signal model is non-zero only within a finite frequency
range, and equal to the background outside this, and within this range the combined
signal and background is flat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
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C.1 Monte Carlo validation that the statistics of DM interferometry are as claimed in
App. C.2. In the left figure we confirm that the variances of the real and imagi-
nary signal-only data sets, collected for the N = 2 experiments, is as claimed in
(4.16). This was proven directly in the text, but in the plot we show that the average
of 4,000 Monte Carlo simulations provides a consistent prediction for the variances
as a function of frequency in the different cases. On the right figure, for the fre-
quency where 〈R(1)R(1)〉 achieves its maximum, we show the distribution of values
across the simulations. In detail, we see that the real and imaginary components are
normally distributed, and consistent with a mean-zero normal distribution, where the
variance is given as on the left, here σ2 ≈ 25 Wb2/Hz. We found that the distri-
butions were consistent with the Gaussian expectation at the level of p > .05 us-
ing the D’Agostino and Pearson omnibus normality test [432, 433]. In both cases,
each Monte Carlo simulation involves a direct construction of the axion field starting
from (C.16) with Na = 100, 000, taking ma = 2π Hz, and A = 1 Wb2. Further,
we take the velocity distribution to follow a variant of the SHM in (4.50), but with
v0 = 0.07 and v� = (0, 0.08, 0), both in natural units. The (unphysically) large veloc-
ity helps simplify the computation of the Fourier transform. The detector separation
is x12 = d(0, 1, 0), with d ≈ 4.4λc. . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

D.1 (a) Three of the 80 Delrin wedges that form the toroid structure stacked together. The
black bar indicates a ≈ 1 cm scale. (b) Cutaway rendering of the toroid with the
1 mm diameter wire pickup loop in the center. A 0.5 mm diameter wire runs through
the center of field region to form the calibration loop. Toroid height is ≈ 12 cm.
(c) Rendering of the ABRACADABRA-10 cm support structure. The pickup loop is
supported by a PTFE (white) tube through the center. The magnet is supported by an
outer G10 support structure and thermalized with two copper bands. (d) Photo of the
assembled ABRACADABRA-10 cm, with the top of the superconducting shield and
support structure removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

D.2 Gain of the combined high-pass and anti-aliasing filters. All spectra are corrected
for this response function – unless otherwise noted. Measured in-situ, using injected
signals at different frequencies. This also defines the usable range of data. For our
search we use the range 75 kHz – 2 MHz. . . . . . . . . . . . . . . . . . . . . . . . . 216

D.3 A conceptual diagram of the ABRACADABRA-10 cm calibration circuit. The cali-
bration loop, LC ≈ 300 nH, is concentric with the pickup loop, LP = 95.5 nH. The
circuit is plugged into the SQUID with input inductance Lin ≈ 150 nH. The parasitic
resistance in the circuit is measured as RP ≈ 13µΩ. . . . . . . . . . . . . . . . . . . 218

D.4 Low frequency SQUID spectra from ABRACADABRA-10 cm taken with an ac-
celerometer attached the 300 K plate. The spectrum is that of the SQUID output,
with the degree of correlation with the accelerometer indicated by color (i.e. the cor-
relation coefficient). The accelerometer begins to lose sensitivity above a few kHz,
so it is not clear from this measurement how far up the correlation continues. These
data were taken with a larger dynamic range on the digitizer, so have a relatively high
ADC noise floor of ∼ 5× 10−6 mV2/Hz. (Data taken without signal shaping filters.) . 219
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D.5 Example F̄10M SQUID spectra with magnet on (blue) and off (orange), along with
the digitizer noise floor (gray). SQUID spectra are averaged over ≈9 h, digitizer data
averaged over ≈16 h. The typical SQUID noise floor is shown in green dashed line.
Note: The spectra were collected at different times and some of the transient noise
peaks are not seen in all spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

D.6 (a) Example calibration peak at 850 kHz with 10 mVpp excitation and 90 dB of atten-
uation. Bin width is 1 Hz wide and all power is contained within a single bin. Output
voltage is measured at the output of the amplifier electronics. (b) Measured detector
response for four different input amplitudes taken with the magnet on. The measured
gain is a factor of ≈ 6.5 below the expected response (dashed line at the top). The
outlier in the 20 mVpp spectrum is the result of a background line contributing power
to the measured peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

D.7 (a) The number of 3σ excesses accounting for the look-elsewhere effect in each spec-
trum after vetoing the excesses that are present in the corresponding Magnet Off data.
(b) The distribution of local TS values in the full month of analyzed data after remov-
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prior to vetoing the Magnet Off excesses. In green, the observed distribution of TS
values after the Magnet Off veto. In red, the expected distribution under the null hy-
pothesis. We see that after applying vetoes, there is excellent agreement down to very
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D.8 (Top row) The recovered signal parameters as a function of the injected signal param-
eters in four Monte Carlo realizations with identical mean background levels. Green
and yellow bands indicate the expected 1 and 2σ containment for the upper 95% limit
on the axion coupling under the hypothesis of no axion signal. (Bottom row) The
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50 Ω terminator. The FLL feedback resistor and inductor are omitted for clarity. . . . . 234
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E.4 (Left) The histogrammed data acceptance fraction under the data filtering over all
masses analyzed in Run 3 data. (Right) The fraction of masses removed by magnet off
vetoes as a function of frequency in Run 3 data. The acceptance fraction is determined
within 100 log-spaced bins between the minimum and maximum axion masses within
our analysis range. Note that while we display the Run 2 results, those were used only
to develop our analysis protocols and not in the physics analysis. . . . . . . . . . . . . 240

E.5 The hyperparameter, σA, converted to the units of gaγγ , for the systematic nuisance
parameter, gnuis

aγγ , as a function of axion mass (labeled Systematic Nuisance Param.).
We compare the systematic nuisance hyperparameter to the statistical uncertainties
(labeled Hessian Statistical Error), which are computed from the Hessian for the log-
likelihood without systematic uncertainties about the best-fit axion coupling, ĝaγγ . . . 242

E.6 The time evolution of the broad excess that is associated with the putative signal can-
didate in the Run 2 data that survived all analysis cuts. The excess persists after the
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E.7 A comparison of our fiducial limits that include a nuisance hyperparameter correction
(black) and those without any correction (blue). Limits set with the nuisance hyper-
parameter are slightly weaker, but the features and limit-setting power are broadly
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E.8 (Top row) The best fit and 95% upper limit on the recovered signal strength as a func-
tion of the injected signal strength at five mass points evaluated on the real Run 3
data. The results are compared to the 1σ and 2σ expectations for the 95th percentile
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effect while the green and yellow bands indicate the 1σ and 2σ expectations for the
detection significance determined from 2560 MC realizations of the null model com-
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F.1 (Left) A comparison of the 95% upper limits of the flux density spectra measured
with our windowed analysis for the GBT and Effelsberg observations of the Galac-
tic Center and radiometer expectations. Data are analyzed at an approximately 1.831
MHz frequency resolution corresponding to the fiducial resolution for the GBT anal-
ysis. Although the Effelsberg data is consistent with the radiometer expectations at its
original resolution, when down-binned to the GBT resolution, it demonstrates similar
incompatibility with the radiometer expectations. (Right) The 95% upper limits on
the signal flux for the indicated sources from the GBT observations. These signal flux
limits are compared to the expected flux density limit appropriately computed from
the radiometer equation. The analysis is performed at the fiducial analysis bandwidth,
see Tab. F.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
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F.2 (Upper Left) The raw, uncalibrated Effelsberg data collected in the L-Band at the GC
and in the Off Position at frequencies between 1.3-1.45 GHz. Detector features much
larger than the expected width of an axion signal and coincident RFI lines in On and
Off data are clearly visible. (Upper Right) The raw, uncalibrated GBT data collected
from the INSs RX J0720 and RX J0806. For visual clarity, we do not show the corre-
sponding Off Position data. Thickets of RFI are especially visible around 1.575 GHz
and 1.62 GHz. (Lower Left) The flux density limits as a function of frequency ob-
tained from our analysis of the Effelsberg GC data. With the exception of locations
of narrow RFI, the limits are flat and characterized by the expected statistical varia-
tions from channel to channel. (Lower Right) The flux density limits as a function of
frequency obtained from our analysis of the GBT INS data. . . . . . . . . . . . . . . 250

F.3 The interval-by-interval acceptance for two adjacent frequency channels for data taken
from the GC observation by the GBT. Channels I and II are located at 1.61908569
GHz and 1.61899414 GHz, respectively. Data for each channel are shown in black
and blue, respectively, with correspondingly colored highlighted regions identifying
the reference interval for each channel. The antenna response is shown in arbitrary
units. Time intervals accepted in both channels are highlighted in green, with those
rejected in both channels highlighted in red. Intervals which are accepted in only one
channel are not highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

F.4 The channel-by-channel acceptance fraction for each ON-position measurements of
the observation target in each observing session. Acceptances are averaged over the
two polarizations and downsampled by a factor of 50 for presentation purposes. In the
top row, we display the acceptances in the ON observing position; in the bottom row,
the acceptances in the OFF observing position. . . . . . . . . . . . . . . . . . . . . . 254

F.5 A comparison of the calibrated flux density for the GBT observation of the GC (blue)
to the Effelsberg observations of the GC in the L-Band and S-Band (green). Note that
the Effelsberg data is calibrated to follow the black curve, averaged over large fre-
quency scales. The calibrated L-band Effelsberg data is around 20% different than the
calibrated GBT data, suggesting that errors from the calibration procedure impacting
sensitivity to gaγγ are only on the order of 10% and subdominant compared to other
sources of uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

F.6 (Top Left) A noise-free example flux density spectra for an axion of mass ma = 3.46π
GHz with a coupling strength of gaγγ = 10−11 GeV−1 generated for the GBT obser-
vation of the GC at δffid = 1.831 MHz. We assume Model I for the NS population
(the model with more NSs participating in the conversion process) and take the DM
to follow an NFW density profile. (Top Right) As in the top left, but using a cored
DM density profile with a core radius of 600 pc. (Bottom Left) As in the top left, but
assuming the conservative Model II for the NS population. (Bottom Right) As in the
top right, but assuming the conservative Model II for the NS population. . . . . . . . . 258
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F.7 As in Fig. F.6 but for the Effelsberg observations of the GC in the S-band, for an axion
with ma = 2π × 2.5 GHz and gaγγ = 10−11 GeV−1. The panels indicate the assumed
DM density profile for the Milky Way (NFW or cored NFW with a core radius of 0.6
kpc) and also the NS population model (Model I or Model II, as described in the text).
Note that in this case we search for the brightest converting NS. We have shifted each
of the MC realizations around in frequency space such that the brightest converting
NS appears at f = 2.5 GHz. Note that in the scenario with Model 1 and a cored DM
profile, the brightest converting NS is not always that much brighter than the signal
flux in the sidebands, from other NSs within the Effelsberg beam, which makes it
harder to discover an axion signal in this case. . . . . . . . . . . . . . . . . . . . . . 260

F.8 (Above) The ON-position antenna temperature and raw antenna data for ON- and
OFF-position measurements for the M31 observation. A narrow feature appears at
the indicated central frequency channel in each of the datasets, although with larger
relative magnitude in the antenna temperature. The fact that the feature appears in all
datasets suggests it is not an axion signal. (Below) The test statistics for the central
channel excess as a function of the central channel for the analysis of the ON-position
antenna temperature and the raw antenna data for ON- and OFF-position measure-
ments for the M31 observation. At the location of the narrow feature, the test statistic
is quite large for all analyzed datasets, and the excess in the antenna temperature is
vetoed as the test statistic in the OFF-position data exceeds the veto threshold. . . . . 264

F.9 (Left) The one-sided 95% upper limit on the axion-photon coupling as a function of the
injected signal strength. The limit lies above the injected signal strength, indicating
that we are not excluding an axion signal when present. (Right) The test statistic (TS)
for discovery as a function of the injected signal strength. For sufficiently large signal
strengths the TS exceeds our TS = 100 threshold for an axion signal to be discovered. 266

F.10 Maser lines as detected in the GBT data. For each maser line, we show the antenna
temperature (black) and the raw OFF data (blue), with each independently rescaled
so as to fit within the same figure. The expected frequency location and width of the
maser line, which is set by the line-of-sight velocity of W3OH, is indicated by the
light red band. The width of the central frequency channel in which the maser line is
detected is indicated by the light blue band. We additionally provide the TS associated
with the maser line detection in the antenna temperature and the maximum percentile
of the variable-width OFF position TS for each line. None of the detections are vetoed
as none the maximum OFF position TS percentiles exceed the 97.5th percentile value
that triggers vetoing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

F.11 (Left) The discovery TS survival function for all of the observations considered in this
Letter. Note that the survival function is defined as the fraction of TSs observed at
or above the indicated value. This figure excludes frequencies that are vetoed from
the OFF position observation analyses. The “MC Expected” curve shows the expec-
tation under the null hypothesis, as determined by MC simulations. We note that all
observations are from GBT except those labeled “Eff”, which are from the Effelsberg
telescope. (Right) As in the left panel, but including frequencies that would be ve-
toed by the OFF data. Without the OFF vetoes there would be a significant number
of frequencies with TSs exceeding the TS detection threshold, which emphasizes the
importance of the OFF position vetoing procedure. . . . . . . . . . . . . . . . . . . . 269

xxii



F.12 (Top Left) The Effelsberg data shown in the analysis window around the excess can-
didate located at a central frequency of approximately 2.51 GHz in the S-band ob-
servation of the GC. Frequencies are plotted relative to the frequency corresponding
to the excess channel frequency. This excess has TS ≈ 41. While this excess is not
vetoed by the OFF data analysis, the OFF data does should a feature at the central
frequency. (Top Right) Similarly, the Effelsberg data shown in the analysis window
around the excess candidate located at a central frequency of approximately 2.69 GHz
in the S-band observation of the GC. This excess is also not vetoed, but like the previ-
ous excess there does appear to be a corresponding feature in the OFF data. (Bottom
Left) The Effelsberg data shown in the analysis window around the excess candidate
located at a central frequency of approximately 1.34 GHz in the L-band observation
of the GC. It also appears that there is a similar, though not so significant, feature in
the OFF data. (Bottom Right) The GBT data shown in the analysis window around
the excess candidate located at a central frequency of approximately 1.59 GHz in the
observation of RX J0720.4−3125. As before, frequencies are plotted relative to the
frequency corresponding to the excess channel frequency. The excess only appears at
high significance in the antenna temperature; similar coincident features are observed
in both ON and OFF data, coincident features appear in the raw ON and OFF data,
although not at high enough significance in the OFF data to result in a veto of the
excess. As before, this excess does not exceed our detection threshold, although it
does come closer, with TS ≈ 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

F.13 A comparison of survival functions for various polynomial background models for
the analysis of Effelsberg S-Band data. The flat background model is unable to ac-
curately model the null hypothesis and a significant improvement in the quality of
the fits is seen by going to the linear background model. On the other hand, there is
little improvement to the quality of the fits when going from the linear to quadratic
background models, except at very high TS values. Note that we use the quadratic
background model in our fiducial analyses. Cubic background models produce simi-
lar results but are most computationally intensive to implement. . . . . . . . . . . . . 272

F.14 The discovery TS survival function for the INSs analyzed with and without time-series
data filtering applied. Applying the time-series filtering eliminates a number of high
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F.15 Limits on the axion-photon coupling for different combinations of assumptions about
the DM density profiles in the observed galaxies and the properties of the NSs within
those galaxies (see [104] and text for details). . . . . . . . . . . . . . . . . . . . . . 274

F.16 Comparison between the profile likelihood and percentile upper limits methods for
M54 observations with GBT. The black line (green area) shows the 95% C.L upper
limits (1σ containment band) obtained with the percentile method. The red line shows
the upper limits obtained with the profile likelihood method and calibration used as
default in our main pipeline; these flux limit curves are used in the main text. . . . . . 276
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G.1 (Left) The HR diagram for the Quintuplet template star of mass 85 M� and initial
surface rotation of 300 km/s. The coloring indicates the year before the run was
stopped, approximately a few years from supernova. We mark with black squares, in
order of occurrence, when the star enters the WNh phase, when it is 3 Myr old, when
its core undergoes helium ignition, when it enters the WN, WC, and WO phases, and
finally when the run ends at 3.85 Myr. (Right) A logT-log ρ diagram for the template
star with the same points of interest marked. We also show the relevant degeneracy
zones, showing that the star is entirely in the nonrelativistic nondegenerate regime. . . 282

G.2 (Left) The abundances of hydrogen (black), helium (red), carbon (yellow), and oxygen
(green) in the center of the star as a function of time, for the simulation described
in Fig. G.1. With dashed-black vertical lines, we mark several points of interest:
“WNh” indicates the time the star enters the WNh phase, “He ignition” when its core
undergoes helium ignition, and “WN”,“WC”, and “WO” indicate the beginning of the
WN, WC, and WO phases, respectively. (Right) The same as in the left panel, but for
surface abundances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

G.3 (Left) The stellar core temperature as a function of time for the simulation described
in Fig. G.1. (Right) The hydrogen and helium luminosities in the core through the
CNO cycle and the triple-alpha process, respectively. The dashed-black vertical lines
retain their meanings from Fig. G.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 284

G.4 The stellar mass (black) and radius (red) as a function of time from the simulation
described in Fig. G.1. The dashed-black vertical lines retain their meanings from
Fig. G.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

G.5 (Left) Axion volume emissivity over the interior of the star. In this figure we have
taken the stellar model to be the one at the start of the WC stage and fixed gaγγ = 10−12

GeV−1. For comparison purposes, we also show the temperature profile. (Right)
Axion luminosity spectrum for those same stages marked in Fig. G.2. . . . . . . . . . 285

G.6 We denote the projections of the Galactic magnetic field onto the plane normal to the
propagation direction by B1, B2. (Left) The transverse magnetic field components in
our fiducial model (the JF12 model, black) and alternate model (PTKN11, orange)
towards the Quintuplet and Arches clusters. Note that in our fiducial B-field model
we extend the JF12 model to distances less than 1 kpc from the GC using the field
values at 1 kpc. The true magnetic field values in the inner kpc almost certainly
surpass those from this conservative model (see text for details). (Right) The two
field components towards the Wd1 cluster, which is taken to be at a distance of 2.6
kpc from the Sun. The conversion probabilities towards Wd1 are much larger in the
alternate model (PTKN11) than in our fiducial model (JF12), though we stress that
random fields are not included and could play an important role in the conversion
probabilities towards Wd1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

G.7 (Left) The free electron density ne towards the GC in our fiducial model (YMW16)
and the alternate model (ne2001). (Right) As in the left panel but towards the Wd1
cluster. The free-electron density gives the photon an effective mass and thus affects
the axion-photon conversion probability. . . . . . . . . . . . . . . . . . . . . . . . . 288
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G.8 (Left Column) The axion-photon conversion probabilities pa→γ , assuming gaγγ =
10−12 GeV−1, computed as a function of the axion energy E (and assuming ma �
10−10 eV) using the formula given in (G.5). (Top Left) The conversion probabilities
for axions produced in the Quintuplet or Arches clusters for different modeling as-
sumptions for the Galactic magnetic field and free-electron density. Our fiducial result
is shown in solid black. Note that the plasma mass, induced by the free-electron den-
sity, becomes more important at lower axion energies and induces the lower-energy
features. The dashed black curve shows the effect of changing from the YMW16
free-electron model to the ne2001 model. Removing the B-field within the inner
kpc leads to the results in red, while only modeling a 50 µG field in the inner 400 pc
leads to the results in blue. Changing to the PTKN11 model (and masking the inner
kpc) gives the results in orange. We estimate that if the axions traverse the GC ra-
dio arc, located near the Quintuplet and Arches clusters, the conversion probabilities
could be enhanced to the values shown in grey. (Bottom Left) As in the top left panel
but for axions emitted from the Wd1 cluster. (Right Column) The effects of the dif-
ferent conversion probability models on the 95% upper limits on gaγγ for Quintuplet
(top right) and Wd1 (bottom right). Note that Arches is similar to Quintuplet, since
they are both assumed to have the same conversion-probability models. . . . . . . . . 297

G.9 (Left) As in Fig. 8.1, but for the total observed counts between 10 - 80 keV instead of
the background-subtracted counts. (Center) The best-fit background model, summed
from 10 - 80 keV, for the Quintuplet data set shown in the left panel. (Right) The
predicted axion-induced signal template from Quintuplet, in counts, normalized for
an axion with gaγγ = 7× 10−12 GeV−1 and ma � 10−11 eV. . . . . . . . . . . . . . 298

G.10 (Upper Left) The Quintuplet axion spectrum assuming gaγγ = 10−12 GeV−1 (black)
plotted against the NuSTAR effective area (blue). The analysis range, from 10 - 80
keV, is shaded in red. (Upper Right) The individual contributions of each stellar clas-
sification to the Quintuplet axion spectrum. The analysis range is again shaded. (Bot-
tom) The 10-80 keV luminosity distribution assigned to each stellar classification (per
star) in Quintuplet. In red we show the frequency with which each luminosity occurs,
while the black error bars show the mean and 1σ band. . . . . . . . . . . . . . . . . . 298

G.11 (Left) We inject a synthetic axion signal into the Quintuplet NuSTAR data with axion
coupling ginj

aγγ . We then pass the hybrid synthetic plus real data through our analysis
pipeline and show the best-fit coupling grec

aγγ , along with the recovered 1σ and 2σ
uncertainties. (Middle) The discovery TS for the axion signal for the test illustrated in
the left panel. The square root of the TS is approximately the discovery significance.
(Right) The 95% upper limit recovered for the injected signal test. Importantly, the
95% upper limit is above the injected signal value, for all injected signal strengths,
and the upper limit is consistent with the 68% and 95% expectations for the upper
limit under the null hypothesis, which are indicated in green and gold, respectively. . 299

G.12 As in Fig. 8.2, except for different ROI sizes, as indicated. . . . . . . . . . . . . . . . 299
G.13 As in Fig. G.9, but for the Wd1 cluster NuSTAR analysis. The red star indicates the

location of the magnetar CXOU J164710.2–45521, which is masked at 0.5’. Also
shown is the background-subtracted count data, as in Fig. 8.1. . . . . . . . . . . . . . 300
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G.14 (Upper Left) The Wd1 axion spectrum assuming gaγγ = 10−12 GeV−1 (black) plotted
against the NuSTAR effective area (blue). The analysis range, from 15 - 80 keV, is
shaded in gray. (Upper Right) The individual contributions of each stellar classifica-
tion to the Wd1 axion spectrum. The analysis range is again shaded. (Bottom) The
10-80 keV luminosity distribution assigned to each stellar classification in Wd1. In
red we show the frequency with which each luminosity occurs, while the black error
bars show the mean and 1σ band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

G.15 As in Fig. G.12 but for the Wd1 analysis. Note that we only include energies above
15 keV in our analysis because of ghost-ray contamination. . . . . . . . . . . . . . . 302

G.16 (Upper Left) The Arches axion spectrum assuming gaγγ = 10−12 GeV−1 (black) plot-
ted against the NuSTAR effective area (blue). The analysis range, from 20 - 80 keV, is
shaded in gray. (Upper Right) The individual contributions of each stellar classifica-
tion to the Arches axion spectrum. The analysis range is again shaded. (Bottom) The
10-80 keV luminosity distribution assigned to each stellar classification in Arches. In
red we show the frequency with which each luminosity occurs, while the black error
bars show the mean and 1σ band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

G.17 (Top Panel) As in Fig. G.9, but for the Arches cluster. (Bottom left) We show the
best-fit emission associated with the halo template that describes emission from the
nearby molecular cloud. (Bottom right) As in in Fig. 8.1, but for Arches. . . . . . . . 303

G.18 (Left) The Arches spectrum measured with and without the halo template. Note that
we use the spectrum with the halo template in our fiducial analysis, though the dif-
ference between the two results is relatively minor above ∼20 keV. (Right) As in
Fig. G.12 but for the Quintuplet analysis. Note that these spectra are computed while
profiling over halo emission. Above ∼20 keV the different ROIs produce consistent
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

G.19 As in Fig. 8.3 but from the analysis towards the Arches SSC. No evidence for axions
is found from this search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

G.20 (Left) The evolution of the nitrogen abundance Z(N) over time from MESA simula-
tions of a non-rotating 85 M� star with initial metallicity Z = 0.01 to Z = 0.04.
The bolded sections of the lines correspond to the WNh phase. The gray shaded re-
gion indicates the measurements of nitrogren abundances of the Arches WNh stars
from [329]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

G.21 (Left) The variation to the 95% upper limit found by varying the initial metallicity and
rotation in the range Z ∈ (0.018, 0.035) and µrot ∈ (50, 150) km/s for the Quintuplet
analysis. The blue region indicates the maximum and minimum limit found, while the
black curve shows our fiducial limit. (Right) As in the left panel but for Wd1. . . . . 305

H.1 Examples of the signal region spectra for MOS (top panels) and PN (bottom pan-
els) in Ring 1 (left panels) and Ring 8 (right panels) with and without background
subtraction in red and black, respectively. The background-region spectra are shown
in grey. Many of the large instrumental features that are removed when looking at
the background-subtracted data. Note that for visual clarity these spectra have been
down-binned by a factor of 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
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H.2 The same background-subtracted data sets illustrated in Fig. H.1 (also down-binned),
but now shown along with their best-fits under the null hypothesis. The best-fit model
prediction is shown in black, which may be decomposed into the contribution from the
GP model (dark red) and the contributions from the individual background lines (col-
ored curves). Note that the background lines to include in the analysis are determined
independently in each annulus, as described in the text. . . . . . . . . . . . . . . . . 314

H.3 The spurious-signal hyperparameter σ2
spur,m (labeled MOS Sys. and PN Sys.), as com-

puted in (H.9), as a function of the DM mass. For both MOS and PN the nuisance
parameterAspur is predominantly active at low energies, and it plays a more significant
role in PN than in MOS. We compare the hyperparameter to the statistical uncertain-
ties (labeled MOS Stat. and PN Stat.), which are computed from the Hessian of the
log-likelihood (without the spurious-signal) about the best-fit mixing angle at a fixed
energy. We note that several of the sharp variations of the expected sensitivity shown
in Fig. 9.3 arise as a result of the variations of the spurious signal hyperparameter
shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

H.4 (Left) The survival function of the test statistic for discovery in the analysis of the
MOS data. Under the null hypothesis, and for a large number of samples, the survival
fractions are expected to follow the χ2 distribution, as verified by MC (as labeled). At
a finite number of samples the expected chi-square distributions are found from MC to
be expected to be contained within the green and gold shaded regions at 68% and 95%
confidence, respectively. The negligible effect of the systematic nuisance parameter
can be seen by comparing the survival function without the nuisance parameter (red,
labelled “Data”) and with the nuisance parameter (blue, labeled “Data w/ Nuisance
Parameter”). (Center) As in the left panel, but for the PN analysis. (Right) The sur-
vival function for the joint analysis of MOS and PN data. In blue, the survival function
for the joined PN and MOS analysis without systematic nuisance parameters; in red,
the survival function for the joint analysis when the PN and MOS results are corrected
by their independently-tuned systematic nuisance parameters prior to joining. . . . . 318

H.5 As in Fig. 9.3, but for the MOS (left panel) and PN (right panel) analyses individually
and with and without the spurious-signal nuisance parameter. The 1σ and 2σ expec-
tations are shown only for the case with the spurious-signal nuisance parameter. The
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ABSTRACT

The majority of the matter in the Universe is non-luminous and unaccounted for by any known
particle, making the unknown nature of dark matter one of the most urgent problems in funda-
mental physics. Amidst a broad landscape of particles proposed to explain the dark matter, axions
have emerged as a particularly well-motivated candidate as they naturally arise in extensions of
the Standard Model and can simultaneously reproduce the observed dark matter abundance while
solving other outstanding mysteries in particle physics. Despite this, axions have remained largely
unprobed, and new insights and innovative approaches are required to carefully test the axion dark
matter hypothesis. This thesis aims to advance prospects for axion detection by identifying how
axion signals may appear, developing optimized searches for these signals, and implementing ro-
bust analysis strategies. I will begin by showing how simulations of axion production in the early
universe can direct search efforts toward the best-motivated mass range for axions that solve the
Strong CP Problem related to the absence of a neutron electric dipole moment in quantum chro-
modynamics. I will then discuss the development of rigorous analysis frameworks for axion direct
detection and their application to the search for axion dark matter with the ABRACADABRA de-
tector. Lastly, I will show how astrophysical observations with X-ray and radio telescopes can be
used in novel searches for axion dark matter. This thesis contributes to an increasingly compre-
hensive search program that will either discover or exclude axion dark matter in the coming years.

xxxiv



CHAPTER 1

Introduction

The unknown nature of dark matter (DM) is one of the most significant unsolved problems in
physics. An overwhelming accumulation of evidence in the form of observations of gravitational
interactions on astrophysical and cosmological scales suggests that a form of cold, nonluminous
matter exists in nearly five times greater abundance than the so-called ordinary matter described by
the well-established Standard Model (SM) of particle physics. Gravitational interactions of DM are
unlikely to provide a complete characterization of this unidentified form of matter since all forms
of matter interact gravitationally. Instead, the discovery of the microphysical nature of DM will
require identifying its presently unknown interactions through the development of well-motivated
hypotheses with detailed phenomenologies, the design of precise experimental and observational
probes, and the execution of sensitive analyses that can untangle the signals of new physics from
enormous datasets in the presence of potentially confounding backgrounds.

Despite the associated challenges, work toward identifying DM represents arguably the best
prospect to advance understanding of particle physics. Characterizing DM and developing a more
fundamental theory that describes ordinary matter, DM, and the interactions within and between
the two sectors could lead to insights on outstanding theoretical questions. Moreover, as the dom-
inant fraction of matter in the universe, DM plays a central role in cosmological and astrophysical
histories by seeding large-scale structure and driving the dynamics of galaxies and galaxy clus-
ters. Therefore, the study of DM is highly compelling as an understanding of its precise details is
intrinsic to understanding the evolution of the universe.

This thesis will attempt to ask and answer the question of how we can work toward the detection
of arguably the best-motivated DM candidate, the axion. This chapter will serve as an introduction
to the key concepts that underlie these efforts and is structured as follows. In Sec. 1.1, we will
consider the strong evidence for the existence of DM and its nature as an unidentified particle
and provide a general discussion on particle dark matter candidates. In Sec. 1.2, we will discuss
in detail theoretical aspects of the Strong CP Problem and its solution through the introduction
of an axion. In Sec. 1.3, I will review the two strategies I have pursued in the search for DM:
direct detection with precision laboratory experiments and indirect detection through observation
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of astrophysical systems. Finally, in Sec. 1.4, I will describe the organization of the remainder of
this thesis.

1.1 The Particle Dark Matter Paradigm

In this section, I will discuss several measurements that provide strong evidence for the existence
of DM, largely inspired by the excellent historical review provided in [1]. This discussion will be
far from comprehensive and instead is intended to illustrate the concordance of the many comple-
mentary probes that suggest DM is the dominant form of matter in the universe. I will then discuss
the general aspects of DM model building an the choices made in performing model-dependent
searches for DM candidates.

1.1.1 Evidence for Particle Dark Matter

The most straightforward evidence for DM comes from measuring the circular velocity of stars in
galaxies. The key concept is that the velocity of a star in a bound orbit of a galaxy must be related
to the gravitational force it experiences determined by the mass of the galaxy interior to the orbit.
If a star moves too fast, it will escape the galaxy; if it moves too slow, it will fall into the galaxy’s
potential well. In Newtonian theory, the requisite circular velocity vc for a star located a distance r
from the center of the galaxy is given by

vc(r) =

√
GM(r)

r
, (1.1)

where G is the universal gravitational constant and M(r) is the mass of the galaxy contained
within radius r. By measuring the circular velocities of many stars at many different radii, one
can piece together the continuous mass distribution of a galaxy. An example of measured rotation
curves with comparison to theory expectations for the Milky Way galaxy is provided in Fig. 1.1.
Similar features are observed across a vast catalog of galaxies. Interpreted in the absence of DM,
the discrepancy between theory and observation is striking. At radii beyond the galactic disk,
beyond which there is little ordinary matter, circular velocities would be expected to scale like
vc(r) ∝ r−1/2. However, the observed circular velocities are roughly constant out to much larger
radii. This suggests the presence of “dark” matter that results in an enclosed mass scaling like
M(r) ∝ r to radii much larger than that of the galactic disk [2].

However, while certainly suggestive, galaxy rotation curves are only gravitational anomalies
and do not uniquely prescribe the presence of unaccounted-for matter; galaxy rotation curves
might instead be evidence for undiscovered aspects of gravitational interactions. There is his-
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Figure 1.1: A comparison in the Milky Way of measured circular velocities as a function of radius
(grey) with expected theoretical contributions from various mass components within the galaxy.
The galactic bulge (blue) and the galactic disk (green) are baryonic matter distributions that dom-
inate within the inner galaxy. The expected rotation curves associated with a Milky Way that
consisted only of the observed baryonic matter are shown in dashed black and are visibly incom-
patible with the data at large radii. The contribution of the DM to the circular velocity (red) be-
comes appreciable at large radii. The rotational velocities expected for the combination of galactic
bulge, galactic disk, and DM halo are shown in solid black, demonstrating good agreement with
the observed data. Adapted with permission from [3] using data from [4].

torical precedent for both possibilities, as is noted in [5]. In the mid-1800s, measured deviations
of Uranus from its expected orbit did lead to the discovery of missing matter (the planet Neptune).
Later, in the early 1900s, the precession of the perihelion of Mercury, which was anomalous as in-
terpreted in Newtonian gravity, lead to the discovery of General Relativity. Similarly, an alternative
hypothesis to DM could be made for galaxy rotation curves. They could instead be explained by a
class of theories known as the MOdified Newtonian Dynamics (MOND) [6–8]. We now consider
several additional probes that provide strong evidence for DM and arguably lesser consistency with
the MOND hypothesis.1 While we will not explicitly discuss the tensions of MOND with these
observations, reviews can be found in several references [5, 10–12].

Unaccounted-for matter can also be inferred on super-galactic scales from the Bullet Cluster, a
pair of merging galaxy clusters. X-ray-emitting gas in the Bullet Cluster can be used to trace its
baryonic matter distribution, while its total matter distribution can be measured from the gravita-
tional lensing of photons propagating through the potential of the massive objects. A depiction of
these inferred mass distributions is provided in Fig. 1.2. Strikingly, the baryonic matter distribu-
tion does not coincide with the total matter distribution, suggesting that not only does the Bullet
Cluster primarily consist of non-baryonic matter, but also that that non-baryonic matter must have

1We also note with that the advent of large-scale astrometric surveys like GAIA and its planned successors, MOND
predictions may be sensitively probed on the galactic distances scales at which it is engineered to address the rotation
curve problem [9].
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Figure 1.2: A depiction of inferred mass distributions within the Bullet Cluster. Bright blobs
indicate the location of X-ray-luminous baryonic matter, while the contours indicate the central
location of the inferred mass distributions of the two merging clusters. See [13] for further details.

experienced qualitatively different dynamics during the collision event [13]. An identical conclu-
sion is reached by a similar analysis of the galaxy cluster merger MACSJ0025.4-1222 [14]. From
these observations, we infer that while the baryonic matter was slowed by friction induced by its
particle physics interactions during the collision, the DM was essentially noninteracting and went
unperturbed on its gravitational trajectory.

Finally, we consider cosmological probes of DM enabled by ΛCDM, a phenomenological
model describing a universe with an energy budget allowing for dark energy (Λ) and cold, nonin-
teracting DM (CDM) in addition to the baryonic matter.2 ΛCDM has achieved remarkable success
in describing the CMB, large- and small-scale structure, the late-time accelerated expansion of the
universe, and relic elemental abundances [17, 18]. For simplicity, we will limit ourselves to a dis-
cussion of the CMB, where the relevant observable is the angular power spectrum of temperature
fluctuations on an otherwise uniform background. This angular power spectrum, as measured by
Planck, is presented in Fig. 1.3 alongside theory predictions in ΛCDM cosmologies. The power
spectrum contains three notable peaks which describe the angular scales at which the tempera-
ture inhomogeneities appear on the sky, with a variety of physical processes are imprinted within

2The description of DM as cold is in contrast with ordinary matter. Although the DM may initially be characterized
by relativistic velocities, observational constraints require that it become cold at times when ordinary matter remains
hot.
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Figure 1.3: In grey, the Planck TT spectrum, which measures the angular scales at which temper-
ature inhomogeneities in CMB appear. In blue, we depict the predictions of the best-fit ΛCDM
cosmology obtained in the Planck 2018 analysis. This cosmology describes a universe in which
84% of matter is comprised of DM, and its predictions demonstrate excellent agreement with the
data [15]. If we hold the total matter abundance fixed but reduce the amount of DM by 10%, then
we would expect the spectrum shown in dashed green, which is visibly a poor description of the
data. Here, the predicted CMB spectra have been generated with the CLASS code package [16].

the location and relative height of each peak. A more detailed review of CMB phenomenology
is provided by [19], but in highly simplified terms, the first peak informs us of the total energy
density content of the universe, the second tells us about the total baryonic content of the universe,
and the third is sensitive to the relative abundance of DM compared to baryonic matter. The most
recent CMB analysis from the Planck satellite provides measurements of a ΛCDM cosmology in
which only 16% of the matter in the universe is baryonic, with the remaining 84% accounted for
by DM [15].3

We conclude by again emphasizing that this discussion of the evidence for DM is far from a
complete one. Any attempt to construct such a list is doomed to failure, but we attempt to provide
a slightly more comprehensive catalog by noting that, among others, weak lensing [20], strong
lensing [21, 22], large-scale structure [23, 24], small-scale structure [25–27], and local measure-
ments [28] all strongly support a consistent interpretation of DM that is abundant in the Milky Way
and throughout the universe.

3In fact, ordinary matter and DM only account for 32% of the total energy budget. The remaining 68% is described
by the mysterious dark energy. There is relatively less effort toward identifying dark energy within the particle physics
community due to the limited scope of well-motivated models testable with present-day technology. Nonetheless, a
successful characterization of dark energy would be equally significant, if not more so, as the identification of DM in
advancing fundamental physics.
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1.1.2 Particle Models for Dark Matter

Since all forms of matter interact gravitationally, gravitational probes tell us little about its particle
physics nature. Moreover, the universe as we observe it today tells us that the non-gravitational
interactions of DM with itself or with ordinary matter must be either very weak or very infrequent.
If this were not the case, DM would not admit a good effective description in ΛCDM cosmology
as noninteracting. As a result, the design of effective search strategies requires detailed models
that enable us to identify how weak DM signals may manifest and which of those signals can be
sensitively probed. This section will provide a brief overview of several DM models and their
motivations before proceeding to a more detailed discussion of axions and axion-like particles,
which are the primary focus of this thesis.

For my model-building colleagues, constructing Beyond the SM theories with DM is not too
difficult a task. Because DM must have weak interactions, it is fairly straightforward to add new
sectors to the theory that include DM candidates without disrupting agreement with the SM. The
much greater challenge is to identify DM candidates which might be considered natural or well-
motivated in order to make use of limited resources in the search for new physics.4

One widely adopted guideline is to search for new physics candidates that can resolve an ex-
isting shortcoming of the SM while also accounting for the observed abundance of DM. This
has motivated a considerable focus on weakly interacting massive particles (WIMPS) and axions.
WIMPS might be related to the resolution of the hierarchy problem related to the mass of the higgs
boson in the SM and have been the target of decades of direct, indirect, and accelerator-based
searches [29]. Axions, which will be discussed at greater length later in this section, are motivated
as a DM candidate that may also solve the Strong CP problem in quantum chromodynamics related
to the absence of the neutron electric dipole moment [30]. An alternative principle is to consider
DM candidates that may not solve other problems but instead are sufficiently qualitatively similar
to the particles already known to us such that their addition to existing fundamental theories might
be considered a “minimal” extension. For example, sterile neutrinos and dark photons, in analogy
to the active neutrinos and photons of the SM, might be considered DM candidates within this
category [31, 32]. Finally, we must acknowledge nature may not be simple or well-aligned with
the assumptions that underlie these perspectives. In that sense, it is valuable to perform searches
underneath the lamppost of existing experiments and observations so that our theory biases do not
preclude the discovery of an “exotic” DM candidate within our reach.

This question of how we choose which DM models to search for might seem academic, but
it is a necessary first step in performing any search. In addition to being challenging to detect
by construction, different DM candidates produce qualitatively distinct signals that require unique

4Note that “natural” has a technical meaning, but we restrict ourselves to its nontechnical meaning here.
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search strategies. Although there may be synergies between searches for various DM candidates,
DM will likely not be identified in a model-agnostic search. As a result, we must decide what we
are searching for before searching for it, and the principles and perspectives we have discussed are
merely ways of navigating a model landscape that may be too broad to ever be fully explored.

1.2 Axion and Axion-like Particle Dark Matter

In light of the challenging decisions required in searches for DM, this section aims to introduce the
axion as a DM candidate and explain its status as a particularly well-motivated one. Here, we are
adopting the perspective that one should look for DM candidates that relate to existing problems
within the SM, and in the case of the axion, we are motivated by the Strong CP Problem in QCD.
Following along the lines of [33], we will begin with a nontechnical discussion that provides an
intuitive picture of the Strong CP Problem before we proceed to its more technical statement and
resolution with the introduction of the axion.

1.2.1 A Classical Analogy for the Strong CP Problem

We start with a classical analogy for the Strong CP problem by considering a neutron, a familiar
SM particle comprised of one up quark and two down quarks. All these quarks have an electric
charge, but because the up quark has charge +2e/3 and each down quark −e/3, the neutron has
no total electric charge, i.e., it has no electric monopole moment. This means that if we expose
a neutron at rest to an electric field, the neutron will stay exactly where we placed it. Similarly,
we can think about a compass and its needle. The needle has zero total magnetic charge, i.e. no
magnetic monopole moment,5 which is why it stays on the compass rather than flying off in the
direction of the Earth’s magnetic field. However, the needle has “positive” and “negative” ends,
making it a magnetic dipole and causing point north to aligns with the Earth’s magnetic field. As
we have now seen in this example, having zero monopole moment while having nonzero dipole
moment is perfectly acceptable and readily realized in nature.

This line of reasoning leads us to the natural question of whether the neutron has an electric
dipole moment, which we can imagine testing by observing whether or not a neutron aligns itself in
a particular direction in the presence of an electric field. But before we perform such an experiment,
we would want to equip ourselves with some theory expectations to understand our result. If we
treat the quarks inside the neutron as point charges, we can compute the expected electric dipole
moment by integrating the charge density weighted by the displacement vector over the neutron

5Magnetic monopoles do not appear to be realized in nature.
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volume to obtain
d =

∫
dV rρ(r) =

e

3
(2ru − rd,1 − rd,2) (1.2)

where ru is the location of the up quark and rd,1 and rd,2 are the locations of the two down quarks
within the neutron. In this problem, we have nine unknowns (three spatial coordinates for each of
the three quarks) and three constraints imposed by the vanishing of each component of the dipole
vector. This tells us that generic configurations of the quarks will typically have some nonvanishing
dipole moment, and only special configurations of the quarks, such as when the three are collinear,
and each of the down quarks is an equal distance from the up quark, will produce a vanishing
neutron electric dipole moment (NEDM). Moreover, the distribution of quarks inside the neutron
is governed by the strong force of QCD. Because the QCD interactions are independent of electric
charge, it would be surprising if QCD conspired to arrange the quarks so that the electric dipole
would vanish. Without an informed guess for the precise charge distribution of a neutron, we can
make a rough dimensional estimate of the size of the dipole moment by

d ≈ erNS ≈ 10−13 e× cm (1.3)

where we have used the neutron radius of approximately 1 fm.
Our estimate for the NEDM is small but not so small that it cannot be measured in the lab.

The most sensitive existing measurements would be able to detect the NEDM so long as d &

10−26 e× cm. So it is somewhat surprising that all attempts at measuring the NEDM have resulted
in a measurement perfectly consistent with zero [34].

The absence of an NEDM has interesting implications for QCD. To see this, we consider the
action of a charge-parity (CP) transformation on a neutron. For the NEDM, the CP transformation
roughly acts as q → −q and r → −r. We can then see that the dipole is invariant under the CP

transformation since

d =
e

3
(2ru − rd,1 − rd,2)→ −e

3
(−2ru + rd,1 + rd,2) = d. (1.4)

We must also recall that neutrons are characterized by an intrinsic spin, which we will take to
point in the direction ŝ, that transforms under a CP transformation ŝ → −ŝ. Hence, the quantity
ŝ · d, transforms to −ŝ · d, showing us that the neutron is not CP invariant if it is characterized
by an NEDM. However, since the NEDM appears to be zero, ŝ · d = 0 is preserved under a
CP transformation, suggesting that the QCD interactions which govern the structure of a neutron
respect CP symmetry. As we will now see, given the structure of the theory of QCD, this is
unexpected.
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1.2.2 The Strong CP Problem in QCD

We can advance beyond our crude estimate through a calculation of the NEDM in QCD using
quantum field theory, the framework used to describe particle physics interactions. For simplicity,
we consider QCD restricted to the neutron’s consistuents, the gluons, up quarks, and down quarks,
but the generalization to the full theory of QCD is straightforward.

For our two-flavor theory of QCD, we have the lagrangian density

LQCD = −1

4
Ga
µνG

a,µν +
∑

q∈{u,d}

[
iq̄ /Dq −mq q̄e

iθqγ5

q
]

(1.5)

where G is the gluon field strength tensor, u and d are the four-component quark spinors, /D is the
covariant derivative contracted with the gamma matrices, andmu andmd are the magnitudes of the
quark masses. The quark masses are generally complex, which generally produces CP violation,
as they arise through electroweak dynamics which also mix the quark mass eigenstates through the
Cabibbo–Kobayashi–Maskawa matrix. We therefore define θu and θd as the complex phases of the
quark masses.

One possibility is that although the complex-valued quark masses might be expected to produce
CP violating effects, these are in turn removed by an underlying symmetry of QCD. Indeed, we
can consider the action of a chiral rotation with angle αq on our quarks, which acts as

q → eiαqγ
5

q, q̄ → q̄eiαqγ
5

. (1.6)

In a classical theory, if we chirally rotate both the up quark and down quark by angles, αu and αd,
respectively, then we obtain the lagrangian

Lclassical
QCD = −1

4
Ga
µνG

a,µν +
∑

q∈{u,d}

[
iq̄ /Dq −mq q̄e

i(θq+2αq)γ5

q
]
. (1.7)

In the massless quark limit, the lagrangian is invariant under chiral rotations of the quarks, a prop-
erty we refer to as a U(1)A symmetry. In the presence of quark masses, choosing αq = θq/2 would
remove the quark phases, thereby eliminating CP violation from the QCD sector. However, this
U(1)A symmetry of the lagrangian is anomalous, meaning that it is broken in the quantized theory.
After attempting to rotate away the quark mass phases in quantized QCD, we instead obtain

LQCD = −1

4
Ga
µνG

a,µν +
g2(θu + θd)

32π2
Ga
µνG̃

a,µν +
∑

q∈{u,d}

[
iq̄ /Dq −mq q̄q

]
, (1.8)

where G̃µν = εµναβG
αβ/2 is the Hodge dual of the gluon field strength tensor and g is the QCD
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coupling constant. Even though we have removed the CP violation from the quark mass terms,
this GG̃ term, which is a total derivative, is also CP-violating, showing us that CP violation is a
inescapable feature of our QCD lagrangian.

Observing that our theory in Eq. 1.5 was hiding aGG̃ interaction term motivates a more general
QCD lagrangian of the form

L = −1

4
Ga
µνG

a,µν − g2θ

32π2
Ga
µνG̃

a,µν +
∑

q∈{u,d}

[
iq̄ /Dq −mq q̄e

iθqγ5

q
]
, (1.9)

where θ is an angular phase setting the strength of the new GG̃ interaction. After rotating away the
phases from the quark masses, we obtain

LQCD = −1

4
Ga
µνG

a,µν − g2θ̄

32π2
Ga
µνG̃

a,µν +
∑

q∈{u,d}

[
iq̄ /Dq −mq q̄q

]
, (1.10)

where we have defined θ̄ = θ − θu − θd. It is then clear that generalizing our argument to include
all known quark flavors merely requires including additional θq within the definition of θ̄. With the
lagrangian cast in this form, we can see that the strength of CP violating effects in QCD, such as
an NEDM, is determined by θ̄. The full field-theoretic calculation for the NEDM in terms of θ̄ was
performed in [35], finding

d ≈ 3.6× 10−16 θ̄ e× cm. (1.11)

This calculation, in combination with existing NEDM constraints, requires |̄θ| . 10−10. This very
small value of θ̄ is surprising as it requires θ, a free parameter of the theory which could take values
between 0 and 2π, to precisely cancel the sum of the phases of the quark masses. This mystery
of why such a unnecessarily precise cancellation resulting in the absence of CP violation in QCD
would be realized in nature is then referred to as the Strong CP Problem.

1.2.3 Solving the Strong CP Problem and Dark Matter with the Axion

The empirically small value of the theta angle that is without anthropic resolution [36] suggests
the possibility of as-of-yet undiscovered dynamics that demand θ̄ = 0.6 The discovery of those
dynamics would then resolve the Strong CP Problem. A possible solution was introduced by
Roberto Peccei and Helen Quinn, who suggested the introduction of a new degree of freedom
called the axion, which would enter the CP-violating interaction term as

L ⊃ −g
2(θ̄ − a/fa)

32π2
Ga
µνG̃

a,µν (1.12)

6By this we mean that our existence as observers of the universe seems possible for any value of θ̄.
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where a is the axion field, and fa is the axion decay constant. As a result of the axion’s interactions
with gluons, the axion experiences a potential at low energies of the form

V (a) = m2
af

2
a

[
1− cos

(
θ̄ − a

fa

)]
(1.13)

where ma is the QCD-induced axion mass [37]. In order to minimize its potential, the axion will
take on a vacuum expectation value (vev) of a = faθ̄, eliminating the interaction term that appears
in Eq. 1.12. This process is known as the Peccei-Quinn (PQ) mechanism, and it represents the
leading candidate for the solution to the Strong CP Problem [38, 39].

Arguably the simplest axion model that solves the Strong CP Problem was introduced in [40]
and is known as the KSVZ axion. In this model, we consider a new quark ψ which interacts with
gluons as well as a complex scalar φ described by

L ⊃ iψ̄ /Dψ + (φψ̄LψR + φ†ψ̄RψL) + |∂φ|2 −m2|φ|2 +
m2

2f 2
a

|φ|4, (1.14)

where ψL/R are the left- and right-handed two-component spinors of the quark, m is the complex
scalar mass, and fa is a dimensionful constant that sets the strength of the complex scalar’s quartic
interaction. The introduction of a new quark provides us a new anomalous U(1) symmetry through
which phases can be rotated in and out of θ̄. An inspection of the scalar potential reveals that
the theory will undergo a spontaneous symmetry breaking in which the magnitude of the scalar
acquires a vev of φ0 = fa while its phase is still free to vary. Neglecting fluctuations of the scalar
magnitude about its vev, we can parametrize the complex scalar in terms of the axion phase a by
φ = φ0 exp(ia/fa). Our lagrangian will then contain

L ⊃ iψ̄ /Dψ + ψ̄fae
iaγ5/faψ, (1.15)

where we have neglected the axion kinetic term. We have now realized a dynamical phase for the
quark mass term, which will enter θ̄ precisely as in Eq. 1.12, allowing us to solve the Strong CP

Problem. Alternative constructions, such as the DFSZ axion [41, 42] or the PQWW axion [43, 44]
offer additional model realizations.7

Shortly after the PQ mechanism was proposed and realistic models for realizing the axion were
introduced, it was observed that small fluctuations of the axion field about its vev could be detected
and could also account for the DM [43–46], spurring excitement for axions as the solution to two
outstanding problems in fundamental physics. We note, however, that other mechanisms could
solve the Strong CP Problem, such as the Nelson-Barr mechanism, a massless up quark, and

7While the KSVZ and the DFSZ axions represent current axion model benchmarks, the PQWW is now excluded
by various experiments.
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mirror SM sectors [47–50].

1.2.4 Additional Axion Motivations

There exist many additional theoretical motivations for axion DM beyond just the Strong CP prob-
lem. Typically, however, they require sacrificing the assumption that the QCD axion which solves
the Strong CP Problem is the same as the axion which comprises the DM. This is not to say that
invoking alternate motivations for the axion requires an alternate solution for Strong CP Problem;
there might exist several species of axions, one of which could be the QCD axion, with the re-
maining having alternate roles in particle physics, including accounting for the DM. This precise
scenario may even be expected in String Theory, which predicts a spectrum of axions across a
broad range of masses [51, 52]. Axions may also be features of Grand Unified Theories of the
three8 fundamental forces [53] or explain the universe’s matter-antimatter asymmetry [54]. While
a full review of the diverse set of theories that include axions or the outstanding problems they
could solve is beyond the scope of this thesis, suffice it to say that compelling models give us every
reason to believe they might be realized in the spectrum of nature.

1.3 Searching for Axion Dark Matter

Having laid out the multitude of reasons axions are considered a well-motivated DM candidate,
we transition to a discussion of efforts toward detecting axion DM. We begin with a review of
the status of experimental and observational constraints on the axion parameter space. We then
provide an overview of the strategies used in search of axions through their coupling to photons in
direct and indirect detection efforts, both of which are considered in work presented in this thesis.
Finally, we conclude the section with a brief discussion of the basic techniques used to analyze
data from direct and indirect detection searches that address the unique statistical challenges faced
in axion detection.

1.3.1 Existing Constraints on Axion Dark Matter

Physically, axion detection is challenging because the range of viable masses for axion DM spans
over ten orders of magnitude with a diverse set of physical observables that require various tech-
nologies for detection. This problem was exacerbated by the comparatively greater focus on
WIMPs, which have been considered a leading DM candidate for decades, and it is only recently

8I have excluded gravity from this accounting as there are no obvious prospects for its inclusion in a realistic
quantized theory, nor does the inclusion of gravity appear to be necessary for the unification of the remaining three
forces.
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that considerable efforts have been invested in axion searches. This makes it a particularly exciting
time to search for axions. A raft of new experiments are coming online alongside the long-running
ADMX experiment, allowing for the very real possibility that axion DM will be either discovered
or excluded in the relatively near future.9
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Figure 1.4: The axion parameter space in terms of the axion mass, ma, and the strength of its
coupling to photons, gaγγ . Green, blue, red, and gray regions are excluded by various searches. The
orange band indicates the mass-coupling relation for an axion which solves the Strong CP Problem.
White space is unconstrained. Several of these constraints have been produced by works included
in this thesis. See https://cajohare.github.io/AxionLimits/ and accompanying
references for details.

To illustrate the current status of the axion parameter space, we have included Fig. 1.4, which
depicts the the plane of axion mass, ma, and axion photon coupling strength, gaγγ . While axions
may couple to many SM particles, we feature the axion-photon coupling as it is the coupling
on which the work presented in this thesis is exclusively focused. Many existing exclusions are
colorfully indicated in the figure, but for continued search efforts, the most relevant feature is the
expanse of white in the figure, corresponding to unconstrained but theoretically viable axion DM
parameter space. Likewise, the QCD axion band that depicts the expected strength of the axion-
photon coupling for an axion that solves the Strong CP Problem, indicated in orange, remains
unprobed above 10−4 eV and below 10−6,requiring the development and execution of new search

9“Relatively” is doing some heavy lifting here. The effort will take decades, but the relevant perspective is that it
took over 40 years from the proposal of the PQ mechanism for a comprehensive detection program to begin in earnest.
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strategies. In practice, this band is merely illustrative, as the axion-photon coupling is a model-
dependent quantity. For instance, the two canonical QCD axion models, the KSVZ and DFSZ
axions, predict a one-to-one relationship between the axion mass and its photon coupling, but
alternative models which realize larger or much smaller photon couplings at a given mass are also
possible. Discussion of the parameter space in terms of the similarly unconstrained axion couplings
to other SM particles, including neutrons, protons, and electrons, can be found in [55–57].

1.3.2 Searching for the Axion through its Photon Coupling

With a some exceptions, such as the CASPEr experiment [58], the arguably best prospects for
axion detection come from probes of the axion-photon coupling. This coupling is generically ex-
pected for axions or axion like particles, and appears as an additional term in the electromagnetism
lagrangian as

L = −1

4
gaγγaFµνF̃

µν = −gaγγa(E · B) (1.16)

where a is the axion field, F the electromagnetic field strength tensor, and F̃ its dual; this term can
be alternatively formulated in terms of the axion field’s coupling to the dot product of the electric
field E and the magnetic field B. This coupling of axions to photons is generically induced by
the interaction of the axion with charged quarks. Schematically, we can think of this term as an
interaction that occurs between a single axion and two photons. However, because axions are very
light, if they are the DM, their number density is quite high, allowing for their description in the
macroscopic limit as a classical field rather than individual particles.10 From this perspective, we
can consider the inclusion of an axion in our physical theory as a new classical scalar field that
modifies the well-known Maxwell’s equations for electromagnetism. These equations are:

−ä+∇2a = m2
aa− gaγγE · B (1.17)

∇ · E = ρ− gaγγB ·∇a (1.18)

∇ · B = 0 (1.19)

∇× E = −Ḃ (1.20)

∇×B = Ė + J− gaγγ (E×∇a− ȧB) (1.21)

where ρ is the charge density, J is the current density, and dotted quantities indicate their partial
differentiation with respect to time [59].11

10Identical reasoning in a more familiar context leads us to consider classical fields rather than the dynamics of
individual photons when discussing electromagnetism.

11We have chosen to present Maxwell’s equations in vacuum here, but they are straightforwardly modified to their
form in various media through use of constitutive equations.
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We refer to this set of partial differential equations (PDEs) as the equations of axion electro-
dynamics, and they encapsulate various physical effects by which axions can be detected through
their interactions with photons.12 The modification to Gauss’ law in Eq. 1.18 causes an electric
field to be sourced by the axion field acting as an effective charge density in the presence of a
magnetic field. Similarly, the modification to Ampere’s law in Eq. 1.21 tells us that an axion field,
in the presence of either an electric or magnetic field, will act as an effective current density and in-
duce a magnetic field.13 Finally, from Eq. 1.17, we see that the axion behaves as a time-oscillating
field propagating through space that can be sourced in the presence of nonvanishing E · B. Because
the axion field is time-varying, so too will be the electromagnetic fields it sources. Moreover, by
rewriting Maxwell’s equations as a pair of second-order PDEs, it can be shown that a time-varying
axion field in an electromagnetic background can induce propagating electromagnetic fields that
can be detected as coherent photon waves. This process can be thought of as the conversion of
axions to photons [61–63].

The physical processes primarily considered in this thesis are the induction of time-varying
magnetic fields and propagating photon emission by the axion DM background. Axions may
also be probed by “light shining through walls” experiments that generate axions from an E · B
background that are then subsequently converted to photons [64]. We note that the study in Ch. 8
is qualitatively similar, though the axions are produced through the slightly more complicated
Primakoff process. We will now describe the relevance of these mechanisms for both laboratory-
based direct detection and astrophysical indirect detection.

1.3.2.1 Direct Detection

Laboratory-based direct detection experiments seek to identify the physical observables associ-
ated with the presence of axion DM through precision measurements of nearly background-free
environments. These observables are expected to be present, if weak, due to measurements of a
local DM density in the solar neighborhood of 0.4 GeV/cm3 [65, 66]. As we see from the equa-
tions of axion electrodynamics, the axion can only induce a signal in the presence of background
electromagnetic fields, with the strength of the interaction scaling linearly with the strength of the
background field. Most experimental approaches provide a background magnetic field since large
magnetic fields are more readily realized in the laboratory than large electric fields.

A class of experiments known as axion haloscopes represent the most mature axion detection
strategy and search for the conversion of µeV-scale axions into detectable microwave photons in

12Other effects, like the possible decay of axions into two photons, are not conveniently captured in this formalism
but may also be of relevance.

13Typically, dominant effects are realized by the ȧB term as the contribution of E × ∇a is suppressed by the
nonrelativistic velocities of axion DM. In the presence of a relativistic axion background, this may no longer be true,
see, e.g., [60].
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staticO(1−10) T background magnetic fields. Notably, ADMX [67], HAYSTAC [68], and CAPP
[69] have reached or are near benchmark QCD axion sensitivity. These experiments compensate
for the small probability of axion conversion by engineering tunable resonant cavities that enhance
the signal power. Cavity-based approaches have limited sensitivity to ma & 50µeV, and larger
axion masses are targeted by the MADMAX experiment, which enhances the signal of higher-
mass axion conversion with dielectric materials [70].

Lumped-element experiments, which instead aim to measure the time-varying magnetic field
induced by an axion in the presence of a static background magnetic field, are of primary relevance
to this thesis. A simplified description adapted from [71] is as follows. In the absence of an electric
field, the solution to the axion’s equation of motion at a fixed location is approximately

a(t) =

√
2ρDM

ma

sin(mat), (1.22)

where we have determined the normalization of the field from the local DM density ρDM. This
axion field acts as an effective current of the form

Jeff = gaγγ
√

2ρDM cos(mat)B0 (1.23)

where B0 is the static background field in the modified form of Ampere’s law. Casting Ampere’s
law in its integral form, rather than differential form as in Eq. 1.21, we then see that the axion
induces a time-varying magnetic flux Φ which can be measured with a superconducting pickup
loop with expected magnitude

Φ(t) ∼ gaγγB0VB
√

2ρDM cos(mat) (1.24)

where VB is roughly the volume in which the static magnetic field of strength B0 appears. This
signal can then be readily identified as a monochromatic spectral excess at frequency f = ma/2π.14

An interesting feature of lumped element searches is that they can operate as a broadband
search, which is to say that long integration times and high-frequency readout make them sensitive
to axions in the broad mass range of 10−14 to 10−6 eV in a single data collection. This contrasts
with resonant haloscope experiments, which, by merit of their resonance, are only sensitive to a
small range of masses with each data collection and must step through their narrower range of mass
sensitivity with repeated tunings of their experiment. In addition to their broadband sensitivity,
lumped element searches can simultaneously operate in a resonant readout mode that provides
even greater sensitivity to targeted regions of parameter space. Several experiments, including

14In fact, the signal is only quasi-monochromatic as it is broadened by the finite velocity dispersion of DM in the
Milky Way galactic halo, which we will study in Chs. 3 and 4.
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ABRACADABRA [71–73], SHAFT [74, 75], and DM-Radio [76], are using the lumped element
strategy, and much of the content of this thesis is devoted to work on statistical frameworks for
these searches along with my work as a member of the ABRACADABRA collaboration.

1.3.2.2 Indirect Detection

An alternative to laboratory-based direct detection is to instead search for astrophysical signals
by pointing telescopes at locations on the sky we expect to be bright in the signal of DM. There
are several notable advantages to the indirect detection strategy. First, the freedom to point our
telescopes at any point in the sky allows us to target locations where DM is more abundant. While
direction detection experiments are limited in their sensitivity by the local DM density, indirect
detection enables to probe locations like the Galactic Center, where DM may be as much as 109

times more abundant. Moreover, extreme astrophysical environments can realize conditions more
conducive to generating axion signals than we can engineer in the lab. For instance, while axion
conversion experiments may be capable of generating 10 T magnetic fields on the meter scale,
neutron stars can have magnetic fields as strong as 1011 T over kilometer scales. Moreover, the
broad range of viable axion masses results in the possibility of axion signals at many energy scales,
which can, in turn, be probed by telescopes operating at the appropriate energy. In this thesis, we
consider signals that would appear in radio or X-ray, but DM may also produce signals at other
frequencies.

However, there are several challenges associated with indirect detection. First, astrophysical
systems are very far away from us; other than the sun, the nearest star to us is over a parsec away,
with most sources of DM signals another thousand times further away, drastically reducing the
intensity of any signal, which scales like 1/d2. Moreover, astrophysical environments have con-
siderably larger modeling uncertainties and confounding backgrounds than carefully engineered
laboratories. Finally, in the specific case of axion DM, because we need the DM signal to reach
Earth, we depend on propagating photon signals and are forced to abandon the strategy of measur-
ing time-varying axion-induced magnetic fields used to great success in lumped element searches
and depend exclusively on the conversion process.

Given the diverse array of astrophysical observables that can be probed, we defer a more de-
tailed discussion to individual chapters within this thesis, which treat searches for DM from three
qualitatively different channels. We will merely remark that robust indirect detection searches re-
quire a careful balance in selecting on-sky locations that could contain bright DM signals but are
also characterized by backgrounds that can be accurately modeled and do not introduce statistical
or systematic uncertainties larger than a candidate signal. This notion smoothly transitions us to
the final topic of discussion in this section.
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1.3.3 Statistics for Dark Matter Detection

Direct and indirect searches alike collect data, and a key step in the search for a DM is a statistical
analysis. Adopting a frequentist perspective, we develop a null hypothesis that the data do not con-
tain a DM signal and an alternate hypothesis, that the data does indeed contain a DM signal, and
then attempt to quantify the statistical evidence in favor of adopting the alternate hypothesis.15 If
we do not make a discovery, we then seek to set limits on the DM signal, akin to saying that had the
signal been brighter than some threshold, we would have expected to see it. In practice, we con-
struct nested hypotheses, infer model parameters with a technique known as maximum likelihood
estimation, determine detection significances from the likelihood ratio, and construct confidence
intervals to set limits, making use of a number of results in frequentist statistics which are excel-
lently reviewed in [77]. In this section, we will provide a schematic overview of these procedures,
followed by a brief discussion of the statistical challenges associated with DM detection.

1.3.3.1 The Basics of Frequentist Analysis

Suppose we are operating a telescope and recording the number of photons at particular energies,
obtaining a dataset d = {d1, d2, ..., dn} corresponding to d1 counts at energy E1, d2 counts at
energy E2, and so on. In this scenario, we would expect the number of photons at each energy
to be drawn from a Poisson distribution characterized by some asymptotic event rate c1 at energy
E1, etc. We would then first construct a null model M0 which attempts to predict the values of
c1, ..., cn. A very simple model hypothesis might be that the event rate at each energy is the same,
which is to say c1 = c2 = ... = cn = b and that our model M0 is now parametrized by the
unknown background rate parameter b. We could then ask, for an assumed value of b, how likely
are the data we observed. This likelihood denoted L(d|M0(b)), is then given by

L(d|M0(b)) = p(d1|b)× p(d2|b)× ...× p(dn|b) =
n∏

i

p(di|b), (1.25)

where p(d|b) is the probability of drawing d counts from a Poisson distribution with count rate b.
Since the number of observed counts at each energy is assumed to be independent, the likelihood
is then directly computed by multiplying the individual probabilities of the data given the model
at each energy. If we treat b as an unknown parameter we want to infer, we can ask what value
of b maximizes the likelihood of the observed data. That value of b, denoted b̂, is the maximum
likelihood estimate of the parameter under the null hypothesis.

We can similarly treat our alternate hypothesis, which includes the possibility of a DM signal.

15Viable statistical analyses can also be performed with bayesian methodologies, which will not be discussed at
length in this thesis and are relatively less commonly used in particle physics.
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We will call this modelM1, and it will be somewhat different fromM0. The DM physics tells
us the “shape” of the signal, which is to say that if DM is indeed present, we would expect more
photon counts in some energies and fewer in others. We will now additionally include a new
parameter, A, which describes the total number of photons we expect in our model to come from
DM. We can now compute the likelihood for our alternate hypothesis as

L(d|M1(A, b)) = p(d1|As1 + b)× p(d2|As2 + b)× ... =
n∏

i

p(di|Asi + b), (1.26)

where si is describing the shape of the DM photon spectrum. Just as we determined a maximum
likelihood for b under the null, we can determine ˆ̂A and ˆ̂b by maximizing the likelihood of our
alternate hypothesis under the joint choices of A and b.16

We have now computed our maximum likelihoods under each hypothesis, and the simplest
question we could ask is whether data are more or less likely under the alternate hypothesis than
the null hypothesis. Quantitatively, this question asks if the ratio of the maximum likelihoods,
denoted Λ and given by

Λ =
L(d|M1( ˆ̂A, ˆ̂b))

L(d|M0(b̂))
, (1.27)

is greater than 1. However, there is a subtlety. The alternate hypothesis was constructed to contain
the null hypothesis, which is realized in the A → 0 limit. As a result, the alternate hypothesis
can never result in a maximum likelihood that is less than the maximum likelihood under the null
hypothesis, and Λ > 1. Moreover, because the alternate hypothesis has one more free parameter
than the null hypothesis, we would typically expect that Λ > 1, even if the “true” underlying
physical model from which the data were drawn was indeed the null model, due to statistical error.

The more informed question we could ask is if the likelihood ratio is so much greater than 1

that it exceeds our threshold for belief that the data came from a realization of the null hypothesis,
leading us to accept the alternate hypothesis. This question can be answered in a precise way by
invoking Wilks’ theorem [78], which tells us that the quantity TS defined by

TS = −2 log(Λ) (1.28)

asymptotically follows as a χ2-distribution with one degree of freedom under the assumption that
the null hypothesis is the true description of the data.17 The conventional threshold for accepting
the alternate hypothesis in particle physics is the 5σ threshold, corresponding to when TS > 25.

16Since b̂ and ˆ̂b were determined under different hypotheses, generically b̂ 6= ˆ̂b.
17More generally, for nested hypotheses, the TS will follow a χ2-distribution where the number of degrees of

freedom is equal to the number of model parameters in the alternate hypothesis but not in the null hypothesis.
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This is merely a sophisticated way of saying that we will only accept the alternate hypothesis if
the TS is so large that if the null model did perfectly describe the data and we were to repeat
our experiment 106 times, we would never expect to see such a TS larger than the one we have
observed.

Once we have determined our TS and decided whether or not to accept the alternate hypoth-
esis, it is a relatively straightforward task to determine statistical uncertainties on our maximum
likelihood estimated parameters. If we have not detected DM in our experiment, Fisher informa-
tion considerations allow us to estimate a 95th percentile upper limit on the DM signal strength
parameter A by

A95 ≈ ˆ̂A

(
1 +

1.65√
TS

)
. (1.29)

In a realistic context, this signal strength parameter is determined by many factors, but assuming
a well-characterized instrumental sensitivity and DM signal generation mechanism, we may ex-
tract a limit on the DM coupling from A95. We also note in passing that this discussion has been
structured to be didactic rather than rigorous. In careful analyses, null and alternate hypotheses are
constructed before examining the data; otherwise, one risks building models biased either for or
against discovery. Moreover, in many instances, the application of Wilks’ theorem is invalid for
one or many reasons, such as parameter degeneracies, failure of the data to reach the asymptotic
limit, and improperly nested hypotheses, that result in nongaussian likelihoods. Much of the work
presented in this thesis is focused on a posteriori validations of statistical analyses performed with
Wilks’ theorem and the development of more appropriate statistical tests and limit-setting proce-
dures, e.g, through Monte Carlo simulation and data-driven estimates of systematic uncertainties.

1.3.3.2 Statistical Challenges for Dark Matter Detection

While the previous section laid out a relatively straightforward methodology for the statistical anal-
ysis of data collected in DM searches, working with non-idealized data is rarely straightforward.
Moreover we have seen that the DM parameter space, even when restricted to just the axion, is
broad. As a result, we may not have the luxury of multiple independent, complementary probes,
and without high-performing analysis frameworks with well-understood sensitivities, we risk never
discovering a DM particle that was within our reach. Critically, the likelihood-ratio tests we have
discussed are merely comparative tests of the goodness-of-fits of null and alternate hypotheses. If
neither hypothesis provides good descriptions of the data, we can expect spurious discoveries or
failures to discover real signals, and addressing this problem requires developing physically moti-
vated models that accurately describe the potentially complex phenomena contributing to statistical
and systematic backgrounds.

Moreover, the search for DM has rapidly become a big data problem. Many of the DM searches
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discussed in this thesis produce terabyte-sized datasets and contain somewhere between hundreds
and millions of statistically independent locations of data. Thus, not only must our analysis frame-
works be accurate, they must be efficient while also enabling the quantification of uncertainties and
the accurate interpretation of global significances of candidate detection. For instance, in the data
collected by ABRACADABRA, there exist nearly 107 statistically possible signal locations, which,
in the perfectly modeled limit, we would expect to contain ∼ 5 excesses with TS > 25. Moreover,
the analysis methodologies should be sufficiently flexible enough to describe the variations in back-
ground effects that may appear at those numerous possible signal locations while simultaneously
preserving detection sensitivity. Finally, our analyses must be sophisticated in using experimental
and observational controls to diagnose systematic failures our modelling assumptions and detector
performance. Continuing with the ABRACADABRA example, one of our single largest sources of
unanticipated background power was the collection of AM radio stations operating within the state
of Massachusetts, and our failure to diagnose them would have represented the difference between
presenting null results and announcing the discovery of dozens of strongly-coupled axions.

1.3.3.3 A Summarizing Remark and Overall Perspective

We have spent nearly equal time discussing the statistical methods and challenges for axion de-
tection as we have in reviewing the theoretical motivations, signal generation mechanisms, and
experimental and observation prospects for axion DM. This is not an accident. The objective of
the work presented in this thesis is three-fold: the identification of promising detection strategies
for axion DM (or DM more generally), the development of the robust analysis frameworks for
the search of those signals, and the execution of novel searches for axions using the multitude of
existing and planned probes, even those which were not originally designed with DM in mind but
nonetheless may reveal the nature of DM to us.

1.4 Organization of this Thesis

In Chapter 2, we use high-performance computing techniques to simulate the production of axion
DM in the early universe beginning at times after the end inflation but before the breaking of
the PQ symmetry and ending when the axion has acquired its zero-temperature mass through the
QCD phase transition. By performing these simulations for a range of possible axion masses,
we find a relationship between the axion mass and its late-time cosmological abundance. This
allows a specific prediction for the mass of an axion that comprises the DM, providing direction
to experiments and observations which seek to detect axion DM. We also study the spectrum of
overdensity perturbations that arise in the axion field due to nonlinearities in the axion’s equations
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of motion and O(1) differences in the axion field at the time it acquires at mass. This spectrum
of overdensities suggests that axion DM may produce small-scale gravitationally bound structures
known as axion minihalos with masses at and below 10−12M�.
Based on:

• Early-Universe Simulations of the Cosmological Axion with Malte Buschmann and Ben-
jamin R. Safdi; Phys. Rev. Lett., 124(16):161103, 2020; arXiv:1906.00967 [79]

In Chapter 3, our attention shifts to axion direct detection, and we study the statistics of mea-
surements of local axion field amplitude performed by generic laboratory-based experiments. We
treat the axion field as a gaussian random field measured at a single spatial location with a coher-
ence time determined by astrophysical DM velocity distribution. Using this as a starting point, we
develop a statistical analysis framework for axion direct detection data. We also explore the sen-
sitivity of direct detection experiments to that underlying velocity distribution, a prospect known
as axion astronomy, showing how the expected modulation of an axion signal can be used to vali-
date a candidate detection and how velocity substructure in the axion phase-space distribution can
enhance detection significance.
Based on:

• Revealing the Dark Matter Halo with Axion Direct Detection with Nicholas L. Rodd and
Benjamin R. Safdi; Phys. Rev. D, 97(12):123006, 2018; arXiv:1711.10489 [80]

In Chapter 4, we continue our work on the statistics of axion direct detection to explore the im-
provements in sensitivity that can be achieved with a network of axion detection experiments, a
prospect that may be soon achieved by rapidly maturing experimental collaborations. This rep-
resents a generalization of the work discussed in Chapter 3, where just as the astrophysical DM
velocity distribution defines a temporal coherence scale, it also defines a coherence length that
correlates the simultaneous measurements made by spatially separated detectors. We show that
for detectors separated by distances greater than the coherence length, the sensitivity to the axion
scales with the number of detectors like N1/4 while sensitivity for detectors within the coherence
length scales like N1/2. For detectors separated by distances comparable to the coherence length,
increased sensitivity to the axion velocity distribution may be obtained using the analysis frame-
work which we develop.
Based on:

• Dark Matter Interferometry with Yonatan Kahn, Rachel Nguyen, Nicholas L. Rodd, and
Benjamin R. Safdi; Phys. Rev. D, 103(7):076018, 2021; arXiv:2009.14201 [81]

In Chapter 5, our consideration of the statistics of axion direct detection advances beyond a
purely theoretical one within the ABRACADABRA collaboration. We design and implement the
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ABRACADABRA-10 cm prototype detector, which we use to collect approximately one month of
data used to search for a small time-varying magnetic flux induced by the coupling of the axion
field to the background magnetic field following the statistical procedures developed in Chapter 3.
This search produced new laboratory-based constraints on sub-µeV axion DM and paves the way
for future searches with lumped-element detection strategies.
Based on:

• First Results from ABRACADABRA-10 cm: A Search for Sub-µeV Axion Dark Matter with
Jonathan L. Ouellet et al.; Phys. Rev. Lett., 122(12):121802, 2019; arXiv:1810.12257 [72]

• Design and implementation of the ABRACADABRA-10 cm axion dark matter search with
Jonathan L. Ouellet et al.; Phys. Rev. D, 99(5):052012, 2019; arXiv:1901.10652 [82]

In Chapter 6, we continue our work within the ABRACADABRA collaboration to search for
axions with an improved ABRACADABRA-10 cm prototype detector that achieves greater sen-
sitivity to the local axion field. We also develop improved analysis controls designed to address
the increased significance of systematic backgrounds associated with our greater sensitivity. This
work produces leading constraints on the axion DM hypothesis for neV mass axions.
Based on:

• The search for low-mass axion dark matter with ABRACADABRA-10 cm with Chiara Salemi
et al.; Accepted in Phys. Rev. Lett; arXiv:2102.06722 [73]

In Chapter 7, our focus again shifts, this time to the indirect detection of axion DM. Through their
interaction with photons, axions can convert to photons in the strong magnetic fields of neutron star
magnetospheres, producing nearly monochromatic radio frequency emission. In this work, we use
dedicated radio observations of several neutron star dense targets, including the Galactic Center,
M54, M31, as well as two isolated neutron stars with the Effelsberg 100-m Radio Telescope and
the Robert C. Byrd Green Bank Telescope in L- and S-Band radio frequencies for searches for an
axion conversion signal. We find no evidence for axion DM, producing novel leading constraints
on previously unprobed parameter space and setting the stage for future radio searches.
Based on:

• Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in

Neutron Star Magnetospheres with Benjamin R. Safdi et al.; Phys. Rev. Lett., Phys. Rev. D,
103(7):076018, 2021; arXiv:2004.00011 [83]

In Chapter 8, we continue to consider the indirect detection of axions using X-ray observations
of super star clusters (SSCs). SSCs are home to hot young stars that can be luminous in ax-
ions produced in thermal processes inside the stellar cores, and these axions can, in turn, convert
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to X-ray photons as they propagate through the Galactic Magnetic Field. Because the axions
are produced in the stars before generating an observable X-ray signal, this probe does not de-
pend on axions comprising all of the DM, unlike all other searches discussed in this thesis. We
combine stellar modeling performed with the Modules for Experiments in Stellar

Astrophysics code package and analyze archival data collected by the NuSTAR X-ray tele-
scope to set constraints on the axion-photon coupling for axions with masses below 50 peV.
Based on

• X-ray Searches for Axions from Super Star Clusters with Christopher Dessert and Benjamin
R. Safdi; Phys. Rev. Lett., 125(26):261102, 2020; arXiv:2008.03305 [84]

In Chapter 9, we make use of 20 years of X-ray data collected by the XMM-Newton telescope
totaling 547 Ms of exposure to search for signals of decaying DM. We find no evidence for and
thereby setting leading constraints on decaying dark matter in the 5-16 keV mass range. Most of the
discussion in this chapter is cast in the language of searches for sterile neutrinos that decay in the
Milky Way galactic halo to produce diffuse X-ray spectral line emission with a spatial morphology
determined by the DM spatial distribution as they represent the benchmark model for keV-scale for
decaying DM. However, this work has been included within this thesis on axion detection for two
reasons: these constraints on decaying DM also place strong limits on the axion-photon coupling
for keV-scale axions, which may decay to two photons, and because the observation and analysis
strategies used in sterile neutrino searches are highly similar to those used in axion searches. In
particular, this chapter represents the first application of a non-parametric inference tool called
Gaussian process modeling to astrophysical searches for DM and paves the way for its application
to future analyses in the search for axion DM.
Based on

• Deep search for Decaying Dark Matter with XMM-Newton Blank-Sky Observations with
Marius Kongsore, Christopher Dessert, Yujin Park, Nicholas L. Rodd, Kyle Cranmer, and
Benjamin R. Safdi; Phys. Rev. Lett., 127:051101, 2021; arXiv:2102.02207 [85]

Finally, in Chapter 10, we offer brief concluding remarks.
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CHAPTER 2

Simulations of Axion Production in the
Post-Inflationary Misalignment Scenario

The quantum chromodynamics (QCD) axion is a well-motivated dark-matter (DM) candidate ca-
pable of producing the present-day abundance of DM while also resolving the strong CP problem
of the neutron electric dipole moment [38, 39, 43–46, 86]. The axion is an ultralight pseudo-scalar
particle whose mass primarily arises from the operator aGG̃/fa, with a the axion field, G the QCD
field strength, G̃ its dual, and fa the axion decay constant. Below the QCD confinement scale, this
operator generates a potential for the axion; when the axion minimizes this potential it dynamically
removes the neutron electric dipole moment, thus solving the strong CP problem. In the process
the axion acquires a mass ma ∼ Λ2

QCD/fa, with ΛQCD the QCD confinement scale. The standard
ultraviolet completion of the axion low-energy effective field theory is that the axion is a pseudo-
Goldstone boson of a symmetry, called the Peccei-Quinn (PQ) symmetry, which is broken at the
scale fa [40–42, 87, 88].

The cosmology of the axion depends crucially on the ordering of PQ symmetry breaking and
inflation. If the PQ symmetry is broken before or during inflation, then inflation produces homo-
geneous initial conditions for axion field and generically the cosmology is relatively straightfor-
ward [89]. In this work we focus on the more complex scenario where the PQ symmetry is broken
after reheating. Immediately after PQ symmetry breaking, the initial axion field is uncorrelated
on scales larger than the horizon, with neighboring Hubble patches coming into causal contact in
the subsequent evolution of the Universe. This leads to complicated dynamical phenomena, such
as global axion strings, domain walls, and non-linear field configurations called oscillons (also
referred to as axitons) [90–96].

We perform numerical simulations to evolve the axion field from the epoch directly before
PQ symmetry breaking to directly after the QCD phase transition. Once the field has entered
the linear regime after the QCD phase transition, we analytically evolve the free-field axion to
matter-radiation equality. The central motivations for this work are to (i) quantify the spectrum
of small-scale ultracompact minihalos that emerges through the non-trivial axion self-interactions
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and initial conditions, and (ii) to determine the ma that leads to the correct DM density in this
scenario.

The post-inflation PQ symmetry breaking cosmological scenario has been the subject of con-
siderable numerical and analytic studies. It has been conjectured that this cosmology gives rise
to ultra-dense compact DM minihalos with characteristic masses ∼10−13-10−11 M�, though we
show that the typical masses are actually smaller than this, and initial DM overdensities of order
unity [91–93, 96–99]. In this work we compute the minihalo mass function precisely, combining
state-of-the-art numerical simulations with a self-consistent cosmological picture. Understanding
this mass function is important as it affects the ways that we look for axions in this cosmologi-
cal scenario. For example, it has been claimed that microlensing by minihalos and pulsar timing
surveys [100] may constrain the post-inflation PQ symmetry breaking axion scenario [99], but
these analyses rely crucially on the form of the mass function at high overdensities and masses.
The axion minihalos may also impact indirect efforts to detect axion DM through radio signa-
tures [101–106].

A precise knowledge of the ma that gives the observed DM density is of critical importance for
axion direct detection experiments [67, 70–72, 76, 82, 107–111]. We find ma = 25.2± 11.0 µeV,
which is within range of e.g. the HAYSTAC program [110]. Our axion mass estimate is similar
to that found in recent simulations [112] but disagrees substantially with earlier semi-analytic
estimates [113–119]. The minihalo mass function is also important for interpreting the results of
the laboratory experiments. If a large fraction of the energy density of DM is in compact minihalos,
it is possible that the expected DM density at Earth is quite low or highly time dependent, which
means that direct detection experiments would need to be more sensitive than previously thought
or use an alternate observing strategy.

The original simulations that tried to estimate the minihalo mass function were performed
in [92] on a grid of size 1003. Ref. [92] found oscillons (soliton-like oscillatory solutions) that
contribute to the high-overdensity tail of the mass function. Note that oscillons are analogous to
the breather solutions found in the Sine-Gordon equation (see e.g. [120]). Recently [96] performed
updated simulations on a grid of size 81923. Our results expand on and differ from those presented
in [96] in many ways, such as through our initial state that begins before the PQ phase transition,
measurement of the overall DM density, evolution to matter-radiation equality, and accounting of
non-Gaussianities.
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Figure 2.1: Each panel illustrates the string network (yellow strings), domain walls (red mesh),
and energy density of the axion field (blue-white intensity) before (left), during (middle), and after
(right) the QCD phase transition (see animation).

2.1 Simulation Setup

We begin our simulations with a complex scalar PQ field Φ, with Lagrangian

LPQ =
1

2
|∂Φ|2 − λ

4

(
|Φ|2 − f 2

a

)2 − λT 2

6
|Φ|2 −ma(T )2f 2

a [1− cos Arg(Φ)], (2.1)

with T the temperature, λ the PQ quartic coupling strength, and ma(T ) the temperature-dependent
axion mass generated by QCD [121]. The parametrization of the temperature-dependent mass is
adopted from the leading-order term in the fit in [116]. Explicitly, the axion mass is parametrized
by

ma(T )2 = min

[
αaΛ

4

f 2
a (T/Λ)n

, m2
a

]
, (2.2)

for αa = 1.68× 10−7, Λ = 400 MeV and n = 6.68. The growth of the mass is truncated when it
reaches its zero-temperature value, which occurs at T ≈ 100 MeV independent of the axion decay
constant. The zero-temperature mass is given byma ≈ 5.707× 10−5(1011 GeV/fa) eV [122]. We
present results using a similar but more recent mass parametrization from [123] in the Appendices;
the difference between these results is used to quantify a source of systematic uncertainty.

For the PQ-epoch simulations we begin well before the breaking of the PQ symmetry at a time
when the PQ field is described by a thermal spectrum. We fix λ = 1 for definiteness. The simu-
lation is performed by evolving the equations of motion on a uniformly spaced grid of side-length
LPQ = 8000 in units of 1/(a1H1), with a1 (H1) the scale factor (Hubble parameter) at the tempera-
ture whenH1 = fa, at a resolution of 10243 grid-sites. We use a standard leap-frog algorithm in the
kick-drift-kick form with an adaptive time-step size and with the numerical Laplacian calculated
by the seven-point stencil. It is convenient to use the rescaled conformal time η̃ = η/η1, where η1

is the conformal time at which point H(η1) ≡ H1 = fa. The simulation begins at η̃i = 0.0001
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and proceeds with initial time-step ∆η̃i = 0.004 until η̃ = 250, after which a variable time-step
calculated by ∆η̃i(250/η̃) is used to maintain temporal resolution of the oscillating PQ fields. Con-
vergence was tested by re-running small time intervals of the simulation at smaller time steps. The
PQ fields evolve from their initial thermal configuration until the PQ phase transition occurs at
η̃ ≈ 280, after which the radial mode |Φ/fa| acquires its vacuum expectation value (VEV). We
simulate until η̃f = 800 in order to proceed to a time at which fluctuations around the radial mode
VEV have become highly damped.

Note that the difference in η̃ between η̃ = 1 and the PQ phase transition is proportional to√
mpl/fa, with mpl the Planck mass. The actual choice of fa here does not play an important role

since we evolve the axion-string network into the scaling regime. In the left panel of Fig. 2.1 we
show the final state of our simulation at the completion of the PQ simulation. The string network
is seen in yellow, with the blue colors indicating regions of higher than average axion density. The
length of the simulation box at this point is around 8000/(a(η̃f )H(η̃f )), and we indeed find that
there is around one string per Hubble patch as would be expected in the scaling regime.

We use the final state of the PQ-epoch simulation as the initial state in our QCD-epoch simu-
lation. To do so we assume that the axion-string network remains in the scaling regime between
the two phase transitions (see, e.g., [117]). Recently [124] found evidence for a logarithmic devia-
tion to the scaling solution and we confirm this behavior in the appendices. However, we perform
tests to show that this deviation to scaling likely has a minimal impact on both the minihalo mass
function and on the DM density, though we still assign a systematic uncertainty to our DM density
estimate from the scaling violation.

Anticipating requiring greater spatial resolution for late-times in our QCD simulation, we in-
creased the resolution of our simulation to 20483 grid-sites with a nearest-neighbor interpolation
algorithm. We re-interpreted the physical dimensions of our box from side-length LPQ = 8000

in PQ spatial units to LQCD = 4 in units of 1/(a1H1). These units are defined such that
H1 ≡ H(ηQCD

1 ) = ma(η
QCD
1 ) at conformal time ηQCD

1 . Further, we use the dimensionless pa-
rameter η̂ = η/ηQCD

1 . While our PQ simulation ended at η̃f = 800 in PQ units, the start time in
the QCD phase transition is taken to be η̂i = 0.4 in the QCD units. Modes enter the horizon as
their co-moving wavenumber becomes comparable to the co-moving horizon scale, which scales
linearly with η. Therefore, by maintaining the ratio LPQ/η̃f = LQCD/η̂i, we preserve the status of
our modes with respect to horizon re-entry.

We then evolve the equations of motion with our initial step size now chosen to be ∆η̂i = 0.001.
As before, we adaptively refine our time step size, using time-step ∆η̂i(1.8/η̂)3.34 after η̂ = 1.8,
to maintain resolution of the oscillating axion field. We simulate until η̂f = 7.0, periodically
checking if all topological defects have collapsed. When this occurs, we switch to axion-only
equations of motion for computational efficiency, since past this point the radial mode does not
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play an important role.
The conformal time η̂c at which the mass growth was cut off corresponds to the physical value

of the axion decay constant since it relates the temperature T1 at which the axion begins to oscillate
and the cutoff temperature Tc ≈ 100 MeV at which the axion reaches its zero-temperature mass.
We performed simulations at five values of η̂c uniformly spaced between 2.8 and 3.6. These values
are chosen to access different values of fa while still preserving a hierarchy between η̂c and our
simulation end time in order to provide sufficient time for the field to relax. At each of the five
values of η̂c, we performed simulations at five different values of the parameter λ̃, defined by
λ̃ ≡ λf 2

a/ma(η̂1)2. This parameter can be interpreted as the squared mass of the radial PQ mode
relative to the axion mass, at conformal time η̂1. In order for excitations of the radial mode to
be well-resolved in our simulation, we require that the resolution of our simulation ∆x̄, with
x̄ = a1H1x and x the spatial coordinate, be such that 1/(η̂λ̃1/2∆x̄) > 1, making simulations
for realistic axion parameters λ̃ impossible. We break the relation between λ̃ and fa and consider
λ̃ = [1024, 1448, 3072, 3584, 5504] in order to study the impact of this parameter. We provide
additional arguments in the appendices supporting that while not physical these λ̃ values should
preserve the correct timescale for physical defect network collapse (see also [125]).

We illustrate three important phases of the QCD-epoch simulation in Fig. 2.1. The left-most
panel is the initial state discussed previously in the context of the PQ-epoch simulation final-state.
When ma(η̂) = 3H(η̂) at η̂ ≈ 1.22, strings grow longer and become less numerous, with domain
walls forming on surfaces bounded by the strings. This is illustrated in the middle panel, with
red colors indicating domain walls. As the temperature continues to decrease with increasing η̂,
strings and domain walls tighten and decrease in size until they collapse. By η̂ & 2.0, the network
collapses in its entirety. Shortly thereafter, we observe the formation of oscillons [92,96,126]. We
note that the oscillon field configuration is relativistic, so that near the origin of the oscillons the
oscillation wavelength is ∼ma(η̂)−1, which is rapidly shrinking with increasing time. After the
zero-temperature mass is reached, oscillons stop shrinking and slowly dissipate at varying rates
until the full field enters the linear regime. White regions in the right-most panel of Fig. 2.1 denote
regions of high axion energy density, which are mostly inhabited by oscillons.

At the end of the simulation, the field has relaxed into the linear regime (e.g., axion self-
interactions are unimportant), but the field remains mildly relativistic because axion radiation is
produced during the string-network collapse and during the oscillon collapse. It is therefore im-
portant to continue evolving the axion field until a time nearer to matter-radiation equality to allow
the field to become non-relativistic everywhere and also to allow the compact but high-momentum
overdensities to spread out. We perform this evolution analytically by exactly solving the linear
axion equations of motion in Fourier space. We end this evolution shortly before matter-radiation
equality (T ∼ keV), at which time proper velocities have frozen out but local radiation domination
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is preserved at all locations in our simulation box so that gravitational effects remain negligible.

2.2 Analysis and Results

We provide Supplementary Data [127] containing the final state from our most realistic QCD-
epoch simulation, after having performed the evolution to near matter-radiation equality. Note that
the axion field after the QCD phase transition is highly non-Gaussian and phase-correlated at small
scales and cannot accurately be reconstructed from the power spectrum. In fact considering that we
find large overdensities δ (δ ∼ 10), with δ = (ρ − ρ̄)/ρ and ρ̄ (ρ) the average (local) DM density,
the field could not possibly be Gaussian at these scales, considering that Gaussian random fields
have symmetric over and under-densities but under-densities with δ < −1 would have negative
DM density.

We may try to estimate the present-day mass function by performing a clustering analysis on
the final states. In particular, we expect that the large overdensities will detach from the cosmic
expansion, due to reaching locally matter-radiation equality before the rest of the Universe, and
collapse onto themselves under gravity. Thus by clustering the 3-D spatial energy density distribu-
tion from the simulation slightly before matter-radiation equality and quantifying the distribution
of masses and overdensities that we find, we can make predictions for the spectrum of minihalo
masses and concentrations today.

From the final-state we construct an overdensity field δ(x), and we identify overdensities as
closed regions of positive δ. Under this definition 50% of the total mass is in overdensities. In
practice, we identify these regions by first finding all positive local maxima, then recursively iden-
tifying all neighboring grid sites that are larger than 20% of the corresponding local maxima. We
assign to each overdensity with at least 80 grid sites a mass M and a single mean concentration
parameter δ. The final mass function is not strongly dependent on the specific choice of the 20%
and 80 grid sites threshold.

An illustration of our clustering procedure is shown in Fig. 2.2. In that figure we show a 2-
dimensional slice through the overdensity field for our most realistic simulation with η̂c = 3.6 and
λ̃ = 5504. Note that in the left panel we show the field at η̂ = 7 at the end of the QCD simulation
while in the right panel we show the same slice slightly before matter-radiation equality, denoted
by η̂MR = 106 and corresponding to T ∼ keV. While a large overdensity left over from oscillon
decay, along with corresponding rings of relativistic axion radiation, is visible in the left panel, that
structure largely disperses in the subsequent evolution to η̂MR. Two-dimensional slices through the
boundaries of the clustered regions are shown in red in Fig. 2.2.

We characterize the minihalo mass function through the distribution d2f/d(logM)/dδ, where f
represents the fraction of mass in overdensities of mean overdensity δ and mass M with respect to
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Figure 2.2: (Left) A portion of a 2-D slice through the overdensity field δ(x) at the end of the
QCD stage of our most realistic simulation with η̂c = 3.6 and λ̃ = 5504. Large overdensities and
rings of relativistic radiation arise from oscillon decay. Slices through the clustered minihalos are
outlined in red. (Right) As in the left panel, except the field is evolved to matter-radiation equality.
The large overdensities largely disperse and the field is everywhere non-relativistic.

the total mass in minihalos. We compute the mass function for all of the 25 simulations at varying
λ̃ and η̂c. To perform the extrapolation to the physical fa (η̂c), we use the following procedure.
First, we normalize the total DM density found in the simulation at η̂MR to the value that would
give the observed DM density today. Then we perform the clustering algorithm to determine
d2f/d(logM)/dδ. We rescale all of the masses by

[
(a1H1)sim/(a1H1)target

]3, where (a1H1)sim is
the simulated horizon size at η̂ = 1 and (a1H1)target is the horizon size at the target fa. The shift
accounts for the fact that the characteristic scale of the overdensities is expected to be set by the
horizon volume when the axion field begins to oscillate (see, e.g., [96, 99] and the appendices).
The effect of this shift is to move all of the masses to lower values, since the target ma is larger
than those we simulate. The resulting mass function for our most realistic simulation is shown in
Fig. 2.3. As we show in the appendices, after applying the mass shift the mass functions appear
to give relatively consistent results between the different η̂c, though the agreement is not perfect at
high M . As a result, we cannot exclude the possibility that simulating to the target η̂c would give
different results, especially at high masses, compared to our extrapolations. On the other hand,
the effect of λ̃ appears to be minimal, since this parameter only affects the decay of the string
network. We additionally caution that these minihalo masses have been defined in a non-standard
way by calculating the total overdensity mass. For realistic projections associated with minicluster
observables, N-body simulation using the late-time axion field as an initial state evolving under
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Figure 2.3: Differential mass distribution for axion minihalos for our most realistic simulation,
as described in Fig. 2.2, computed by clustering the overdensity field at η̂MR. The shaded “unre-
solved” region denotes the parameter space that is beyond our resolution limit. Small statistical
uncertainties are displayed as grey error bands.

gravitation is necessary. However, our accounting, which has neglected gravity, is useful in that it
provides an estimate of the minimum mass of gravitationally collapsed structure that arises in this
scenario.

We may also compare our determinations of the total DM density produced during the QCD
phase transition to previous analyses (see e.g. [112–119]). Our results are summarized in Fig. 2.4,
where we show the DM density today that we find for our top four η̂c, converted to fa, for our most
physical λ̃. The uncertainties in our ρa measurements are determined from the variance between
the different λ̃ simulations, and while some small dependence on λ̃ is expected, we find that this
dependence is subdominant to statistical noise and no trend is detectable in our data. We also
include a conservative 10% systematic uncertainty that accounts for our unphysical fixing of the
effective number of degrees of freedom g∗ throughout our simulation, a 15% systematic uncertainty
from violations to scaling between the PQ and QCD phase transitions, and the uncertainty on the
measured value of Ωa in our Universe [128] (see the appendices for details).

In Fig. 2.4 we compare our results to the best-fit simulation result from [112], which like us
numerically evolved the axion-string system through the QCD phase transition, albeit with a dif-
ferent formalism, and also the semi-analytic calculations from [118]. Our results are in reason-
able agreement with those in [112] and significantly disagree with those in [118]. Note that we
self-consistently account for all production mechanisms for axion DM in our simulation, includ-
ing string decay in the few decades before the QCD phase-transition. It is the late-time axion
production, right before the QCD phase transition, which is most important since it is the least
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Figure 2.4: The DM density Ωa as a function of the axion decay constant fa, with statistical uncer-
tainties (black) and correlated systematic uncertainties (red) indicated, for our top four simulations.
We compare our results to those in [112] (Klaer and Moore), which agree relatively well with our
own, and [118] (Kawasaki et al.), which predicts significantly higher Ωa relative to what we find.

redshifted [118]. The source of the discrepancy could be due in part to the fact that by artificially
separating the production mechanisms, [118] over-counted the DM density produced (see [112]).
Additionally, the highly non-linear axion dynamics at the QCD epoch likely violate the number-
conserving assumptions made by [118].

We may estimate the fa that gives the correct DM density by fitting our results to a power-
law Ωa ∼ fαa . We find the best-fit index α = 1.24 ± 0.04, only including statistical uncer-
tainties, which is marginally compatible with the analytic calculations in [112, 118] that pre-
dict α = (n+ 6)/(n+ 4) ≈ 1.187. Fixing α to the theoretical value, we find Ωa = (0.102 ±
0.02)× (fa/1011GeV)1.187, now incorporating the correlated systematic uncertainties, which leads
to the prediction that the correct DM density is achieved for fa = (2.27 ± 0.33) × 1011 GeV

(ma = 25.2± 3.6 µeV) in agreement with [112]. Note that if we fit for α instead of fixing α to the
theoretical value we find ma = 17.4±4.5µeV; the difference between the two ma estimates could
be due to a systematic difference between the theoretically predicted α and the actual dependence
of Ωa on fa. In light of this we use the difference between the two ma estimates as an estimate
of the systematic uncertainty from the extrapolation to fa below those simulated. We additionally
include a ∼27% uncertainty on ma from uncertainties in the mass growth of the axion (see the
appendices for details), leading to the prediction ma = 25.2± 11.0 µeV.

2.3 Conclusion

We performed high-resolution simulations of axion DM in the cosmological scenario where the
PQ symmetry is broken after inflation, starting from the epoch before the PQ phase transition and
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evolving the field until matter-radiation equality. After matter-radiation equality one should still
evolve the axion field gravitationally down to lower redshifts, which we plan to do in future work.
Our mass function is an estimate of the resulting mass function one would find after simulating the
gravitational collapse. It is possible that the true halos will be slightly larger in mass due to e.g.

accretion of surrounding DM.
We may try to estimate the halo sizes based upon when we expect the halos to collapse grav-

itationally. Under the assumption, for example, that the final density profile is a constant-density
sphere of radius R (which is likely not a good approximation but still is useful to get a sense of
the halo sizes), then the halo density today was argued to be approximately ρ ≈ 140ρeqδ

3(δ + 1),
where ρeq is the DM density at matter-radiation equality [93]. This implies, for example, that a
M = 10−14 M� subhalo with an initial average overdensity δ = 3 will have a characteristic size
of ∼1 × 106 km. The implications for direct and indirect axion detection efforts (e.g., non-trivial
time dependence) are likely substantial and will be the subject of future work. One immediate im-
plication, however, is that the axion minihalos are likely out of reach for microlensing and pulsar
timing surveys [100], given the small minihalo masses.
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CHAPTER 3

The Statistics of Axion Direct Detection

The local distribution of dark matter (DM) leaves a unique fingerprint on an emerging signal at
axion direct detection experiments. While it has long been recognized that the local phase-space
distribution of DM may be partially uncovered with direct-detection experiments searching for
heavy DM candidates with masses mDM & MeV (for a recent review, see [129]), the role of the
DM distribution at axion direct detection experiments, wheremDM . meV, remains less explored.
In this work, we develop a likelihood-function-based analysis framework for analyzing the output
of axion DM direct detection experiments. Using this framework, we explore in detail the impact
of the DM phase-space distribution on the experimental sensitivity to the axion; in the presence
of a signal, we show that many aspects of the full time-dependent phase-space distribution can be
uncovered.

The need for understanding how the DM phase-space distribution is manifest in axion direct de-
tection experiments has taken on a new sense of urgency recently due to a multitude of new experi-
mental efforts. In addition to the long-running ADMX experiment [107,130,131], there has been a
raft of new ideas for directly detecting axion DM, including ABRACADABRA [71], CASPEr [58],
CULTASK [132], DM Radio [76, 111], MADMAX [70, 133–135], HAYSTAC [108–110],
nEDM [136, 137], ORGAN [138], QUAX [139–141], TASTE [142], and more [143–165]. Our
statistical framework allows us to better quantify limits and detection thresholds for the proposed
experiments. Moreover, it also shows how various features of the DM distribution, for example
annual modulation, gravitational focusing, and potential substructure such as local DM streams,
can affect the sensitivity of these experiments and how they can be searched for in the data.

The resurgence of effort towards detecting axion DM is driven by a combination of factors,
including the increasing tension that heavier DM candidates are facing from null searches, tech-
nological advancements that make axion searches more feasible, and new ideas for how to detect
axion DM in the laboratory. However, axion DM is also a focus point due to its strong theoreti-
cal motivation. The quantum chromodynamics (QCD) axion was originally invoked to solve the
strong CP problem of the neutron electric dipole moment [38, 39, 43, 44]. It was later realized that
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the QCD axion behaves like cold DM for cosmological and astrophysical purposes [45, 46, 86].
The axion interacts with the electromagnetic sector through the following operator:

La = −1

4
gaγγaFµνF̃

µν , (3.1)

where Fµν is the electromagnetic field strength, a is the axion field, and gaγγ is the coupling.1 We
may parametrize the coupling as gaγγ = gαEM/(2πfa), where fa is the axion decay constant, αEM

is the electromagnetic fine structure constant, and g is a model dependent parameter, which takes
a value −1.95 (0.72) for the KSVZ [40, 87] (DFSZ [41, 42]) QCD axion, although the space of
models covers an even broader range (see, e.g., [166]). The axion decay constant determines the
axion mass through the coupling of the axion to QCD:

ma ≈
fπmπ

fa
, (3.2)

which is given in terms of the pion mass and decay constant, mπ and fπ, respectively. Depending
on the detailed cosmological scenario, the QCD axion may make up all of the DM for axion masses
roughly in the range∼ 10−12 eV to∼ 10−5 eV (see [89] for a review). Lower masses are disfavored
by requiring the axion decay constant, which is the scale of new physics that generates the axion, to
be sub-Planckian. At higher masses it becomes more difficult to generate the required abundance
of DM through the misalignment mechanism and the decay of topological defects (see, e.g., [167]).
In addition to the QCD axion, it is also possible to have more general axion-like DM particles that
still couple to electromagnetism, but not to QCD. The mass of these axion-like particles is a free
parameter, since there is no contribution from QCD; however, axion-like particles do not address
the strong CP problem.

Most axion direct detection experiments exploit the fact that axion DM may be described by a
coherently-oscillating classical field a that acts as a source of FµνF̃ µν . The oscillation frequency
of a is set by its mass ma, while the coherence of the oscillations is set by the local DM velocity
distribution. Locally, we expect the velocity dispersion of the bulk DM halo to be∼10−3 in natural
units, which leads to the expectation that the axion coherence time is τ ∼ 106 × (2π/ma). Con-
sequently, the axion sources a coherent signal that experiments can repeatedly sample by taking
time-series data sensitive to the possible interactions of the axion. For example, in ADMX, which
is the only experiment so far to constrain part of the QCD axion parameter space,2 the coherent

1Throughout this work we will consider exclusively the electromagnetic coupling, but the framework we introduce
can be straightforwardly extended to nucleon couplings.

2This, of course, depends on the exact definition of what constitutes a QCD axion. Recent studies have suggested
the window could be broader than what we discuss in this work, see, e.g., [168,169]. Under such extended definitions,
results from the HAYSTAC experiment may already probe the QCD parameter space [108].
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axion background sources electromagnetic modes in a resonant cavity. The experiment tunes the
resonant frequency of the cavity to scan over different possible masses. Most axion experiments
make use of high-Q oscillators or cavities to build up the otherwise small signal. However, some
experiments, such as ABRACADABRA and MADMAX, can operate in a broadband mode that
allows multiple masses to be searched for simultaneously, albeit with slightly reduced sensitivity.

Resonant experiments, such as ADMX, typically analyze their data by comparing the power
output from the resonator, measured across the frequency bandwidth of the signal as determined
by the coherence time, to the expectation under the null hypothesis using, for example, the Dicke
radiometer equation [170], supplemented with Monte Carlo simulations as described in [130,171].
In this work, we present a likelihood-function based approach to analyzing the data at resonant and
broadband axion experiments that takes as input the Fourier components of the time-series data,
with frequency spacing potentially much smaller than the bandwidth of the signal. We show that
the velocity distribution of the local halo is uniquely encoded in the spectral shape of the Fourier
components, within the frequency range set by the coherence time, and that it may be extracted
from the data in the event of a detection.

We present an analytic analysis of the likelihood function using the Asimov dataset [172], which
also allows us to calculate the sensitivity of axion experiments to DM substructure such as cold
DM streams and a co-rotating dark disk. For example, we show that soon after the discovery
of axion DM from the bulk DM halo, the DM component of the Sagittarius stream, which has
been extensively discussed in the context of electroweak-scale direct detection [173–176], should
become visible in the data through the likelihood analysis. Moreover, we may use the formalism
to accurately predict exclusion and discovery regions analytically.

Most previous studies of axion direct detection have not addressed the question of how to ex-
tract measures of the local phase-space distribution from the data. In [177], it was demonstrated
that effects of the non-zero axion velocity will need to be accounted for in future versions of the
MADMAX experiment. Ref. [178] recently performed simulations to show how the sensitivity of
ADMX changes for different assumptions about the velocity distribution, such as the possibility of
a co-rotating dark disk or cold flows from late infall, using the analysis method used by ADMX in
previous searches (see, for example, [179, 180]). In [181] (see also [182]) it was pointed out that
the width of the resonance should modulate annually due to the motion of the Earth around the
Sun, which slightly shifts the DM velocity distribution. Recently, [183] took an approach similar
to that presented in this work and considered a likelihood-based approach to annual modulation
and reconstructing the halo velocity distribution. We extend this approach to accurately account
for the statistics of the axion field, to include previously-neglected but important phenomena such
as gravitational focusing [184] induced by the Sun’s gravitational potential, and to analytically
understand, using the Asimov formalism [172], the effect of DM substructure.
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3.1 Organization of this Chapter

We organize the remainder of this work as follows. To begin with, in Sec. 3.2 we derive a likelihood
for axion direct detection. The result is derived for both broadband and resonant experimental con-
figurations. Section 3.3 determines the expected limit and detection thresholds from this likelihood.
In Sec. 3.4 we discuss our results in the context of an axion population following a time indepen-
dent bulk halo. Finally, Sec. 3.5 extends the discussion of the axion phase space to include an-
nual modulation, gravitational focusing, and the possibility of local DM substructure such as cold
streams. We note that the analysis framework presented in this work is also provided in the form of
publicly available code and can be accessed at https://github.com/bsafdi/AxiScan.

3.2 A Likelihood for Axion Direct Detection

In this section we derive a likelihood that describes how the statistics of the local DM velocity
distribution are transformed into signals at axion direct detection experiments. The main result
that will be used throughout the rest of the paper is the likelihood presented in (3.29); however,
there will be several intermediate steps. In particular, in the first subsection we show how to write
the local axion field as a sum over Rayleigh-distributed random variables, as specified in (3.10). In
the following subsection we will show that when coupled to an experiment sensitive to the axion,
if data is taken in the form of a power spectral density (PSD), it will be exponentially distributed,
as given in (3.24). In the main body we will only derive the distribution of the signal, but in
App. B.1 we will show that the background only, and signal plus background distributions, are
both exponentially distributed also. Combining these, we then arrive at a form for the likelihood
function.

In the initial derivation of the likelihood we will focus on how our formalism applies to a
broadband experiment. However, the modification to a resonant framework is straightforward and
we present the details in the final subsection.

3.2.1 The Statistics of the Local Axion Field

Our goal in this section is to build up the local axion field from the underlying distribution of
fields describing individual axions. Thus as a starting point let us consider an individual axion-like
particle, which we think of as a non-relativistic classical field.3 If we assume that there are Na

3Individual axion-like particles should technically be described as quantum objects not classical fields. Neverthe-
less the local occupancy numbers of these quantum particles is enormous. For example, taking axion dark matter with
ma ∼ 10−10 eV, the number of axions within a de Broglie volume is ∼1036. Accordingly the distinction is unimpor-
tant since formally when we say single particles we really mean a collection of particles in the same state with high
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such particles locally that make up the local DM density ρDM, then we can write down the field
describing an individual particle as

ai(v, t) =

√
2ρDM/Na

ma

cos

[
ma

(
1 +

v2
i

2

)
t+ φi

]
, (3.3)

where i ∈ 1, 2, . . . , Na is an index that identifies this specific axion particle, ma is the axion mass,
vi is the velocity of this axion, and φi ∈ [0, 2π) is a random phase. The phase coherence of the full
axion field constructed from the sum each of these particles is dominated by the common mass they
share and to a lesser extent by velocity corrections which are drawn from a common DM velocity
distribution. Beyond this we take the fields to be entirely uncorrelated, which is represented by
the random phase. Axion self interactions could induce additional coherence. However, given the
feeble expected strength of these interactions we assume such contributions are far subdominant
to those written.

From here to build up the full axion distribution we need to sum (3.3) over all i. We proceed,
though, through an intermediate step that takes advantage of the fact that there will be many parti-
cles with effectively indistinguishable speeds. As such let us partition the full list of Na particles
into subsets Ωj , which contain the N j

a particles with speeds between vj and vj + ∆v, where ∆v is
small enough that we can ignore the difference between their speeds. In this way the contribution
from all particles in subset Ωj is given by

aj(t) =
∑

i∈Ωj

√
2ρDM

ma

√
Na

cos

[
ma

(
1 +

v2
j

2

)
t+ φi

]
. (3.4)

Note that it is only the random phase that differs between elements of the sum:

∑

i∈Ωj

cos

[
ma

(
1 +

v2
j

2

)
t+ φi

]

=Re



exp

[
ima

(
1 +

v2
j

2

)
t

]
∑

i∈Ωj

exp [iφi]





 .

(3.5)

To proceed further, we recognize that the sum over phases is equivalent to a 2-dimensional random
walk; this allows us to write ∑

i∈Ωj

exp [iφi] = αje
iφj , (3.6)

where φj ∈ [0, 2π) is again a random phase and αj is a random number describing the root-

enough occupancy number such that the ensemble is described by a classical wave. For simplicity, however, we refer
to these classical building blocks as “particles.”
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mean-squared distance traversed in a 2-dimensional random walk of N j
a steps. These distances are

governed by the Rayleigh distribution, which takes the form

P [αj] =
2αj

N j
a

e−α
2
j/N

j
a . (3.7)

For future convenience, we remove N j
a from the distribution by rescaling αj → αj

√
N j
a/2, so that

we can complete our result for this velocity component as follows:

aj(t) = αj

√
ρDM

ma

√
N j
a

Na

cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
,

P [αj] = αje
−α2

j/2 . (3.8)

The final step to obtain the full local axion field is to sum over all j. Before doing so, how-
ever, we note the important fact that the speeds, vj , are being drawn from the local DM speed
distribution, f(v). A simple ansatz for f(v) is given by the standard halo model (SHM):4

fSHM(v|v0, vobs) =
v√

πv0vobs
e−(v+vobs)

2/v2
0

×
(
e4vvobs/v

2
0 − 1

)
,

(3.9)

where in conventional units v0 ≈ 220 km/s is the speed of the local rotation curve, and vobs ≈
232 km/s is the speed of the Sun relative to the halo rest frame.5 As shown in Sec. 3.5, small
variations on this simple model can induce large changes to the expected experimental sensitivity,
but fSHM(v) is likely to approximately describe the bulk of the local DM speed distribution and so
gives a good initial proxy for f(v). As a first use of f(v), we can rewrite N j

a in terms of f(v), as
from the definition of j we have N j

a = Naf(vj)∆v. With this we arrive at the main goal of this
section, a form for the local axion distribution:

a(t) =

√
ρDM

ma

∑

j

αj

√
f(vj)∆v

× cos

[
ma

(
1 +

v2
j

2

)
t+ φj

]
,

(3.10)

where note the sum over j is effectively a sum over velocities, and again we emphasize that each

4We note in passing that data from the Gaia satellite is likely to lead to updates to this simple model [185, 186].
Further, there is also likely a cut-off at the Galactic escape velocity, ∼550 km/s, though this will not play an important
role in the analyses in this work.

5When manipulating the velocity distribution, we will often work in natural units.
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αj is a random number drawn from the distribution given in (3.8).

3.2.2 Coupling the Axion to a Broadband Experiment

We now discuss how to quantify the coupling of the DM axion field to an experiment sensitive to
the coupling in (3.1), using the form of the local axion field given in (3.10). Then, we write down
a likelihood function that may be used to describe the experimental data. Here we focus on deter-
mining the statistics of the signal alone; combining the signal with background is straightforward
and described in more detail in App. B.1. To make the discussion concrete, we frame the problem
in the context of the recently proposed ABRACADABRA experiment [71], operating in the broad-
band readout mode. We emphasize, however, that the results we derive are much more general
and are applicable to any experiment which seeks to measure time-series data based upon the local
axion field. An example of this generality is provided in the next section, where we extend the
formalism to the resonant case.

Let us briefly review the operation of ABRACADABRA, a 10-cm version of which is currently
under development [187]. This experiment exploits the fact that the coupling between the axion
and QED, given by the operator in (3.1), induces the following modification to Ampère’s circuital
law

∇×B =
∂E

∂t
+ J− gaγγ

(
E×∇a−B

∂a

∂t

)
. (3.11)

The final term in this equation implies that in the presence of a magnetic field and axion DM,
there is an effective current induced that follows the primary laboratory magnetic field lines and
oscillates at the axion frequency. ABRACADABRA sources this effective current via a toroidal
magnet, which generates a large static magnetic field. The axion then generates an oscillating
current parallel to the magnetic field lines, which in turn sources an oscillating magnetic flux
through the center of the torus. By placing a pickup loop in the center of the torus, this oscillating
magnetic field will induce an oscillating magnetic flux of the form

Φpickup(t) = gaγγBmaxVBmaa(t) , (3.12)

where Bmax is the magnetic field at the inner radius of the torus, and VB is a factor that accounts
for the geometry of the toroidal magnet and pickup loop and has units of m3. In the broadband
configuration, the pickup loop, which is taken to have inductance Lp, is inductively coupled to a
DC SQUID magnetometer of inductance L, which will then see a magnetic flux of

ΦSQUID ≈
α

2

√
L

Lp
Φpickup , (3.13)
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where α is an O(1) number characterizing how the SQUID geometry impacts the mutual in-
ductance of the SQUID and pickup loop circuit. A typical value we will use in calculations is
α = 1/

√
2. The coupling will also induce a frequency independent phase difference between

the pickup loop and magnetometer fluxes, but as we show below such an overall phase will not
contribute to the measured PSD and so we do not keep track of it.

In this way, through repeated measurements of the magnetic flux detected by the SQUID,
ABRACADABRA is able to build up a time series of data proportional to the local axion field.
If the experiment is sampling the magnetic flux at a frequency f over a time period T , then it will
collect a total of N = f T data points separated by a time spacing ∆t = 1/f . Storing all of the
experimental data may pose a challenge.6 In Sec. 3.3 we will introduce a stacking procedure to
cut down on the amount of stored data while maintaining the same level of sensitivity, but for now
we will put this issue aside and assume that all the data is stored and analyzed. Combining (3.10),
(3.12), and (3.13), we find that

Φn =
√
A
∑

j

αj

√
f(vj)∆v × cos

[
ma

(
1 +

v2
j

2

)
n∆t+ φj

]
, (3.14)

where n ∈ 0, 1, . . . , N − 1 indexes the measurement at time t = n∆t, and for future convenience
we have defined

A ≡ α2

4

L

Lp
g2
aγγB

2
maxV

2
BρDM . (3.15)

A is proportional to the terms that dictate the size of the axion signal in the experiment, and the
specific form here is peculiar to ABRACADABRA. We note that A caries the SI units of Wb2,
which conveniently makes it dimensionless in natural units.

To pick the axion signal out of this time-series data, given the signal is oscillating almost at a
specific frequencyma plus small corrections coming from the velocity components, it is convenient
to instead consider the discrete Fourier transform of the data:

Φk =
N−1∑

n=0

Φne
−i2πkn/N , (3.16)

where now k ∈ 0, 1, . . . , N − 1. In practice it is more useful to work with the PSD of the magnetic
flux, given by

SkΦΦ =
(∆t)2

T
|Φk|2 = A

(∆t)2

T

∣∣∣∣∣
N−1∑

n=0

∑

j

αj

√
f(vj)∆v cos [ωjn∆t+ φj] e

−i2πkn/N

∣∣∣∣∣

2

. (3.17)

6To quantify this, if we take the realistic values of f = 100 MHz and T = 1 year, this amounts to almost 13 PB of
data.
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Note that in the second equality we defined ωj ≡ ma

(
1 + v2

j/2
)
. For the moment, it is helpful

to rewrite the PSD as a function of the angular frequency ω, which we can do by noting that
k = ωT/(2π) = ω∆tN/(2π), giving

SΦΦ(ω) = A

∣∣∣∣∣
∑

j

αj

√
f(vj)∆v

T
∆t

N−1∑

n=0

cos [ωjn∆t+ φj] e
−iωn∆t

∣∣∣∣∣

2

. (3.18)

Our experimental resolution to frequency differences is dictated by the time the experiment is
run for, specifically ∆f = 1/T . Then, given the definition of ωj , for large enough T we have
approximately 1/T ≈ mavj∆v/(2π), and so

SΦΦ(ω) = A

∣∣∣∣∣
∑

j

∆v αj

√
f(vj)mavj

2π
∆t

N−1∑

n=0

cos [ωjn∆t+ φj] e
−iωn∆t

∣∣∣∣∣

2

. (3.19)

In a realistic experimental run, T will usually be much larger than any other time scale in the
problem considered so far. Exceptions to this occur when there are ultra-coherent features in the
dark matter distribution, which we discuss in detail in Sec. 3.5. Putting the exceptions aside for
now, we can approximate T → ∞, which means we can also treat ∆v → dv, ∆t → dt, and
replace the sum over j with an integral over v as follows:

SΦΦ(ω) ≈ A

∣∣∣∣∣

∫
dv αv

√
f(v)mav

2π
dt

N−1∑

n=0

cos [ωvndt+ φv] e
−iωndt

∣∣∣∣∣

2

. (3.20)

Note in the above result we have a subscript v on αv and φv, indicating that for every value of v in
the integral we have a different random draw of these numbers.

At this point, to make further progress we focus specifically on the sum over n in the second
line above. In detail,

dt

N−1∑

n=0

cos [ωvndt+ φv] e
−iωndt

=
dt

2

{
eiφv

1− exp [i (ωv − ω)T ]

1− exp [i (ωv − ω) dt]

+e−iφv
1− exp [−i (ωv + ω)T ]

1− exp [−i (ωv + ω) dt]

}

≈e
i(φv+(ωv−ω)T/2)

2

{
sin
[

1
2
(ωv − ω)T

]
1
2
(ωv − ω)

+e−i(2φv+ωvT ) sin
[

1
2
(ωv + ω)T

]
1
2
(ωv + ω)

}
,

(3.21)
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Figure 3.1: (Left) A comparison between the mean of 500 Monte Carlo simulations of a signal
only PSD dataset (blue) and the analytic expectation given in (3.26) (black). The inset shows the
distribution of the 500 simulated SΦΦ versus the predicted exponential distribution, as in (3.24),
at the frequency where the signal distribution is maximized, ω/ma ≈ 1.003. This example was
generated assuming the unphysical but illustrative parameters A = 1 Wb2, ma = 2π Hz, and
v0 = vobs = 220,000 km/s. Importantly the simulations were generated by constructing the full
axion field starting from (3.3), and so the agreement between theory and Monte Carlo is a non-
trivial confirmation of the framework. (Right) As on the left, but with Gaussian distributed white
noise added into the time-series data with variance λB/∆t, and taking λB = 500 Wb2 Hz−1.
Again we see the theory prediction in good agreement with the average data, whilst at an individual
frequency point the simulated data is exponentially distributed. See text for details.

where in the final step we expanded using (ωv±ω)dt� 1. Then, taking the (ωv±ω)T →∞ limit
we can use the result that limε→0 sin(x/ε)/x = πδ(x) to rewrite the terms in angled brackets in
terms of Dirac-δ functions which we can use to perform the integral over speeds. There are terms
associated with both positive and negative frequencies, but as we have ωv > 0 we only keep the
positive result, and so conclude:

dt

N−1∑

n=0

cos [ωvndt+ φv] e
−iωndt ≈ πei(φv+(ωv−ω)T/2)δ(ωv − ω) . (3.22)

With the above arguments we may perform the velocity integral in (3.20), obtaining

SΦΦ(ω) = A
πf(v)

2mav
α2

∣∣∣∣
v=
√

2ω/ma−2

. (3.23)

Note that ω ≈ ma, up to corrections that areO(v2); where the distinction is not important, we write
ma instead of ω, as in the denominator above. Further, in (3.23) we have dropped the subscript v
from α, as it is just a single Rayleigh distributed number as given in (3.8). Since α2 is exponentially
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distributed, this then implies that the PSD is also exponentially distributed:

P [SΦΦ(ω)] =
1

λ(ω)
e−SΦΦ(ω)/λ(ω) ,

λ(ω) ≡ 〈SΦΦ(ω)〉 = A
πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

.
(3.24)

Recall that A, which is effectively dictating the strength of the axion signal, has units of Wb2, so
SΦΦ carries units Wb2/Hz, or in natural units eV−1.

In any real experiment there will also be background sources of noise in the dataset. For most
sources we can think of this as mean zero Gaussian distributed noise in the time domain.7 For
example, in ABRACADABRA the main background sources are expected to be noise within the
SQUID for the broadband configuration or thermal noise in the resonant circuit [71]. Both of these
are well described by normally-distributed noise sources, and so they fall under this class of back-
grounds. In ADMX the dominant background is also thermal noise, and the Gaussian nature of
this source has been discussed in Refs. [188, 189]; indeed, in [189] they noted the power due to
thermal noise in the experiment should be exponentially distributed. It is likely that most other
noise sources will also be normally distributed. However, it may well be possible that certain ax-
ion direct detection experiments do suffer from background sources that are not well described by
Gaussian noise. In such a case the framework we present in this work will not go through directly,
but the same logic can be used to derive a new likelihood that accounts for the specific back-
ground distribution. Restricting ourselves to the Gaussian approximation, then, as demonstrated
in App. B.1, if we have a series of Gaussian distributed backgrounds of variance λiB/∆t, where
i indexes the various backgrounds, then the PSD formed from the combinations of all these will
again be exponentially distributed with mean

〈Sbkg
ΦΦ (ω)〉 = λB ≡

∑

i

λiB . (3.25)

It is important to note that in general λB will be a function of ω, reflecting an underlying time
variation in the backgrounds.

Given that the individual signal and background only cases are exponentially distributed, it is
perhaps not surprising that the combined signal plus background is exponentially distributed also.
This fact is demonstrated in App. B.1, however we point out here that the correct way to think
about this is that the two are combined at the level of the time-series data, not at the level of the

7If the mean of the background distribution is non-zero, then this will only impact the k = 0 mode of the PSD. For
reasons discussed in App. B.1, we will not include this mode in our likelihood, and as such we are only sensitive to
the variance of the distributions, and so can choose them to have mean zero without loss of generality.
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PSD. To highlight this, the sum of two exponential distributions is not another exponential. Taking
this fact, we arrive at the result that the full PSD will be exponentially distributed, with mean

λ(ω) = A
πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

+ λB . (3.26)

As noted above, in the broadband mode noise within the SQUID magnetometer is expected to
be the dominant source of background for ABRACADABRA, making it a useful example to keep
in mind. At high frequencies this noise source becomes frequency independent, with magnitude:

√
λB ∼ 10−6Φ0/

√
Hz , (3.27)

which is written in terms of the flux quantum, Φ0 = h/(2e) ≈ 2.1×10−15 Wb. As such the typical
value for the background is

λB ≈ 4.4× 10−42 Wb2 Hz−1 = 1.6× 105 eV−1 . (3.28)

With this example in mind, we will often assume we have a frequency independent background
in our analysis to simplify results, but the formalism can in general account for an arbitrary de-
pendence. Despite this we note that in a real DC SQUID, there will also be a contribution to the
noise scaling as 1/f , that should dominate below ∼ 50 Hz. We refer to [71] for a more detailed
discussion of these backgrounds.

To demonstrate how mock datasets compare to the theoretical expectations derived above, in
Fig. 3.1 we show the comparison directly, with (right) and without (left) background noise. In both
cases we show the PSD as a function of frequency averaged over 500 realization of the simulated
data. In the main figures we see that the frequency dependence of the mean of the signal only
and signal plus background distributions, constructed from the simulations, are well described by
the analytic relation in (3.26). The insets demonstrate that at a given frequency the simulated
data is exponentially distributed in both cases, as predicted by (3.24). The agreement is a non-
trivial check of the validity of the framework. We emphasize that the Monte Carlo simulations are
constructed in the time domain using (3.3) in the signal case and by drawing mean zero Gaussian
noise with variance λB/∆t for the background at each time step. To generate these results we
picked numerically convenient rather than physically realistic values. Specifically we used A = 1

Wb2, ma = 2π Hz, λB = 500 Wb2 Hz−1, and we assumed the signal was drawn from an SHM
as given in (3.9), but with v0 = vobs = 220,000 km/s instead of the physical values. However, we
emphasize that these values were chosen for presentation purposes only and that we have explicitly
verified that the formalism above is also valid for more realistic signal and background parameters.
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Knowing how the data is distributed means we can now write down a likelihood function to
constrain a signal and background modelM, with model parameters θ, for a given dataset d. The
dataset is given, in the case of ABRACADABRA, by N measurements of the magnetic flux in the
SQUID at time intervals ∆t. This data is then converted into a PSD distribution SkΦΦ, measured
at N frequencies given by ω = 2πk/T , for k ∈ 0, 1, . . . , N − 1. The likelihood function for the
modelM then takes the form8

L(d|M,θ) =
N−1∏

k=1

1

λk(θ)
e−S

k
ΦΦ/λk(θ) , (3.29)

where we have used an index k to denote quantities evaluated at a frequency ω = 2πk/T . Note
that the θ completely specify the model expectation given in (3.26). Specifically, θ includes pa-
rameters controlling the background contribution in λB, the DM halo velocity distribution f(v),
and the axion coupling gaγγ that appears in A. We have boxed this expression to emphasize its out-
sized importance within the context of this work. All results subsequently derived will represent
particular evaluations of the likelihood (or ratios of the likelihood) under assumptions about the
experimental sensitivity parameter A or the local DM velocity distribution f(v). In the following
section, we will show how to use this likelihood to set a limit on or claim a discovery of the axion,
as well as constrain properties of the axion velocity distribution in the event of a detection. First,
however, we describe how the formalism above is modified for a resonant readout.

3.2.3 Coupling to a Resonant Experiment

The discussion above was premised upon a broadband experimental set up. The broadband circuit
has the advantage of being able to search across a broad range of axion masses with the same
dataset. A common alternative is the resonant framework, where the resonant frequency is tuned
to the axion mass under consideration before reading out the signal [190]. Resonant experiments
provide increased sensitivity at the frequencies under consideration. The resonators may include
physical resonators, such as that used by the ADMX experiment, or resonant circuits as used, for
example, in Ref. [147].

In this section we demonstrate how the framework above is modified in these cases, and im-
portantly will find that the same likelihood function applies, with a simple modification to the

8The omission of k = 0 from the likelihood is deliberate. As described in App. B.1, the background is in fact
not exponentially distributed for this value. In addition the signal cannot contribute to the k = 0 mode, as this would
correspond to probing the velocity distribution at an imaginary value. As such the k = 0 or DC mode is only probing
a constant contribution to the background, which we can always simply set to be zero and neglected, implying that we
lose no sensitivity by simply excluding this case. Moreover, in practice it is likely only necessary to include k modes
corresponding to frequencies in the vicinity of the mass under question.
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expected PSD given in (3.26). As a consequence, this will show that the various applications of
the likelihood framework that we demonstrate throughout the rest of this work are applicable to
resonant experiments, even though our examples will generally be couched in the language of a
broadband framework for simplicity.

To avoid the discussion becoming too abstract, we will again work with the concrete set up of
ABRACADABRA, this time in the resonant mode. We assume, for simplicity, a simple resonant
circuit, where the pickup loop is connected to an RLC circuit that is inductively coupled to the
SQUID, though more complicated circuits, such as feedback damping circuits [111, 191, 192],
may be preferable in practice [71]. However, the analysis formalism described below should apply
to any resonant circuit where thermal noise is the dominant noise source.

Our starting point is the magnetic flux due to the axion through the pickup loop, Φpickup, as
given in (3.12). Instead of directly inductively coupling the pickup loop to the SQUID, this time
we run the pickup loop through an RLC circuit with inductance Li, resonant frequency ω0, and
quality factor Q0. The strategy is to vary ω0 over time in order to probe a range of axion masses;
we will discuss a strategy for how to choose the time variation later in this work. Note that the
quality factor also determines the bandwidth of the circuit, and so choosing a Q0 corresponding
to the width of the signal or better is preferable, though we leave a detailed optimization of the
resonant strategy to future work. If we inductively couple this circuit directly to the SQUID, then
the flux received will be

ΦSQUID = αQ0

√
T (ma)

√
LLi
LT

Φpickup , (3.30)

where we ignore constant phase shifts. Note that we have defined the total inductance of the pickup
loop and the RLC circuit as LT ≡ Li + Lp and also a transfer function for the RLC circuit:

T (ω) ≡ 1

(1− ω2
0/ω

2)
2
Q2

0 + ω2
0/ω

2
. (3.31)

Following through the same steps as in the broadband case, we find that now our expected signal
PSD is

λres(ω) =AresQ2
0T (ω)

πf(v)

mav
,

Ares ≡α2LLi
L2
T

g2
aγγB

2
maxV

2
BρDM ,

(3.32)

where again velocities are evaluated at v =
√

2ω/ma − 2. Comparing the expected resonant signal
PSD, λres(ω), with the expected broadband result, λ(ω) given in (3.24), we see that other than the
additional frequency dependence in T (ω) the two only differ in experimental prefactors.

In the resonant case we also need to rethink what constitutes the dominant background source.
In particular, the addition of a resistor in the RLC circuit will generate a new source of background:
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Johnson–Nyquist or thermal noise. This background is again expected to be normally distributed,
with a variance λtherm

B /∆t and

λtherm
B (ω) = 2α2kbT

LLi
LT

ω0

ω2
Q0T (ω) , (3.33)

where T is in this context the temperature of the circuit. At the resonance frequency, for typical
values of the parameters of interest, it may be verified that thermal noise dominates the intrinsic
noise in the SQUID [71, 111]. Accordingly, we neglect the background from the SQUID noise,
and our full resonant model prediction is given by:9

λres(ω) =

[
AresQ0

πf(v)

mav
+ λ̃therm

B (ω)

]
Q0T (ω) ,

λ̃therm
B (ω) ≡ 2α2kbT

LLi
LT

ω0

ω2
. (3.34)

As we will see below, the fact that the transfer function is common to both the signal and back-
ground will mean its dependence vanishes when computing our experimental sensitivity. This
point will be demonstrated in the next section.

Finally we note in passing several limitations with the simple configuration described above.
Firstly above we envisioned using a DC SQUID, which should be functional for the frequency
range 100 Hz to ∼10 MHz. At higher frequencies, the SQUID noise may begin to dominate over
the thermal noise; moving to an AC SQUID can stave off this transition to 1 GHz [111]. Beyond
this an entirely different set up would be required to read out the flux through the pickup loop, one
example being provided by a parametric amplifier. We refer to [111] for a detailed discussion of
each of these regimes. Importantly, while more complicated circuits may lead to more complicated
transfer functions in (3.31), so long as the frequency-dependent factors are common to both the
signal and the noise, the analysis formalism described below goes through unchanged. Going
forward, we assume that whenever discussing the resonant readout technique that we are in a
thermal background dominated regime so the form of the transfer function is irrelevant.

3.3 Experimental Sensitivity

Armed with the likelihood given in (3.29), we will now determine the experimental sensitivity we
can achieve.10 Below we will firstly define a series of useful statistics that will be the basic tools

9In practice, we can often approximate LT ≈ Li for a resonant configuration.
10In this and subsequent sections, we will predominantly use a frequentist statistical framework when applying the

likelihood. Nevertheless, we emphasize that our likelihood can be applied equally well within a Bayesian setting. In
particular, in Sec. 3.5, we will use the Bayesian posterior as a tool for analyzing data in the presence of a putative
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in our analysis. After this we will then use an Asimov based analysis, following [172], to study
the expected background and signal distributions. We then introduce a procedure for stacking
the data, which will reduce the computational demands associated with analyzing the enormous
datasets axion direct detection experiments could potentially collect. Following on from this, we
will show how to use the Asimov framework to estimate our expected upper limits and discovery
threshold, fully accounting for the look elsewhere effect. Finally we will contrast our method to
the simple S/N = 1 approach commonly used in the literature. An alternative analysis strategy to
the one described in this section is to instead consider the average power in some frequency range
near the expected signal location. Such an approach is less sensitive to the one presented here, and
so we have relegated its discussion to App. B.2.

The starting point for our analysis is the likelihood L(d|M,θ). To claim a discovery or set lim-
its on the axion, we need to know properties of the likelihood as a function of the coupling strength,
which is effectively given by A, and the axion mass ma. As such we separate out the parameters θ
into those of interest, {A,ma}, and those describing the background, θB: θ = {A,ma,θB}. Note
that for now we fix the halo velocity distribution, though in the next two sections we generalize
the model parameters to include ones that describe the DM velocity distribution. With this distinc-
tion, we can now set up our basic frequentist tool for testing the axion model, based on the profile
likelihood:

Θ(ma, A) = 2[lnL(d|M, {A,ma, θ̂B})
− lnL(d|MB, θ̂B)] ,

(3.35)

where in each of these terms θ̂B denotes the values of the background parameters that maximize the
likelihood for that dataset and model. Note in the second line we have defined the background-only
modelMB that has A = 0 and model parameters θB.

In terms of this basic object we can now define two useful quantities. The first of these is a test
statistic used for setting upper limits on A and hence gaγγ:

q(ma, A) =

{
Θ(ma, A)−Θ(ma, Â) A ≥ Â ,

0 A < Â ,
(3.36)

where Â is the value ofA that results in the maximum value of Θ(ma, A) at fixedma. The rationale
for setting this test statistic to zero for A < Â is that when setting upper limits, the best we can
hope to do is constrain a parameter corresponding to one stronger than the best fit value. Observe
that when A ≥ Â, we have

q(ma, A > Â) = 2[lnL(d|M, {A,ma, θ̂B} − lnL(d|M, {Â,ma, θ̂B}] , (3.37)

signal.

50



and so this corresponds to the degradation in the likelihood as we increase A beyond the best
fit point. According to Wilks’ theorem, the statistic q, at fixed ma, is asymptotically a half-chi-
squared distributed with one degree of freedom. It is a half and not full chi-squared distribution, as
from the definition in (3.36), q vanished by definition for A < Â. This implies, in particular, that
for a given ma, the 95% limit on A will be set when q(ma, A95%) ≈ −2.71. Note also that when
setting limits we allow A to float negative.

The second object of interest is a test statistic for discovery, denoted TS, which quantifies by
how much a model with an axion of a given mass provides a better fit to the data than one without
it. This is defined as:

TS(ma) = Θ(ma, Â) . (3.38)

Below we will use the TS to quantify the 3 and 5σ discovery thresholds, giving an accounting for
the look elsewhere effect. But the intuition is that the larger the TS the more preferred the axion.

Importantly both q and TS are defined in terms of Θ, implying that through an understanding
of this object we can determine everything about our two test statistics. As this will be the central
object of interest, we will write out its form explicitly. Combining (3.35) with our form of the
likelihood in (3.29), we arrive at:

Θ(ma, A) = 2
N−1∑

k=1

[
SkΦΦ

(
1

λB
− 1

λk

)
− ln

λk
λB

]
. (3.39)

Recall that here SkΦΦ represents the data, whilst λk and λB represent the signal plus background and
background only contributions respectively. We also reiterate that only λk is a function of ma and
A, and further that λB can also be k dependent if the background varies with frequency. Moreover,
we stress that all k modes need not be included in (3.39) in practice, but rather only the k modes
corresponding to frequencies in the vicinity of ma.

3.3.1 Asymptotic Distribution of the Test Statistics

The object defined in (3.35) can be used immediately to quantify the preference for an axion signal
in an experimental dataset, through the two test statistics defined above. Before looking at any
data, however, it is often useful to know what the expected sensitivity is of an experiment using
these statistics. Traditionally this is obtained via Monte Carlo simulations of the experiment, and
through many realizations the expected distribution of q and TS can be constructed. The problem
is also analytically tractable, however, using the method of the Asimov dataset [172], which allows
us to determine the asymptotic properties of the test statistics over many realization of the data. In
this subsection we will exploit the Asimov approach to derive the asymptotic distribution of Θ, and
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then in subsequent sections we use this formalism to determine the expected limit and discovery
potential of a prospective experiment.

The key step in the Asimov approach for our purposes is to take the dataset to be equal to the
mean predictions of the model under question, neglecting statistical fluctuations. Consider the
case where we have a dataset that contains a signal of the axion with signal strength At, where the
subscript t indicates this is the true value. In this case, the Asimov dataset is given by:

Sk,Asimov
ΦΦ ≡ λtk = At

πf(v)

mav
+ λB , (3.40)

which is just (3.26) with A → At. Note that this expression should be evaluated at v =√
4πk/(maT )− 2, but here and below we leave the relation between v and k implicit. Now

using this Asimov dataset, Θ becomes (suppressing the dependence on ma):

Θ̃(A) = 2
N−1∑

k=1

[
λtk

(
1

λB
− 1

λk

)
− ln

λk
λB

]
, (3.41)

where Θ̃ denotes the asymptotic form of Θ. Importantly, one can check that this object is maxi-
mized exactly at A = At; in detail,

max
A

Θ̃(A) = Θ̃(At) . (3.42)

Now if we assume that the experiment has been run long enough that the width of frequency
bins is much smaller than the range over which λk or λB varies,11 then we can approximate the
sum over k modes as an integral over velocity, just as we did in Sec. 3.2:

Θ̃(A) =
Tma

π

∫
dv v

[(
At
πf(v)

mav
+ λB

)

×
(

1

λB
− 1

Aπf(v)/(mav) + λB

)

− ln

(
1 + A

πf(v)

mavλB

)]
.

(3.43)

To further simplify the expression above, we note a signal will likely be much smaller than the
background in any individual bin, such that Aπf(v)/(mav), Atπf(v)/(mav) � λB. Expanding
to leading order in A and At, we then find

11Note that in general we would expect the signal to at least have a spread set by the velocity dispersion of the SHM,
although in the presence of substructure the dispersion could be much smaller.
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Θ̃(A) ≈ ATπ

ma

(
At −

A

2

)∫
dv

v

f(v)2

λ2
B

, (3.44)

where we have left λB in the integral, as in general it will depend on frequency and hence velocity
according to ω = ma(1 + v2/2). As before, we have boxed this equation due to its importance.
In particular, we see already the dependence of our test statistic for detection on the local velocity
distribution as it enters the integral in (3.44) that implies interesting results for axion direct detec-
tion. If we assume that the background is frequency independent, then this result tells us that the
experimental sensitivity to the axion coupling g2

aγγ scales as

g2
aγγ ∼

1√∫∞
0
dv f(v)2

v

(Field) , (3.45)

with the DM velocity distribution. This should be contrasted with the rate at WIMP12 direct detec-
tion experiments, which scales with the mean inverse speed (see, for example, [193]). In particular,
the limit on the DM cross-section σDD to scatter off ordinary matter, which generically scales with
the coupling g to ordinary matter as g2, scales with the velocity distribution as

σDD ∼
1∫∞

vmin
dv f(v)

v

(Particle) , (3.46)

where vmin is the minimum speed required to cause the target nucleus in the detector to recoil at a
given recoil energy. This cut off scales with the inverse reduced mass of the WIMP nucleon system,
vmin ∝ 1/µ, so that for lighter DM particles the rate is particularly sensitive to the upper end of the
speed profile. In the axion case, the significance of an axion signal depends on an integral over the
full speed profile. Importantly, the quadratic scaling of the integrand with the speed distribution
implies that axion direct detection experiments are particularly sensitive to small scale structures
in the speed profile, such as those that can be induced by local DM substructure. This stands in
contrast to WIMP direct detection, where substructure is generally thought to only have a minimal
impact, see, e.g., [194].

We will explore the sensitivity of axion direct detection experiments to DM substructure in
Sec. 3.5, but for now we illustrate the difference between axion and WIMP experiments noted
above with a simple example. Suppose that there is a contribution to the local DM velocity dis-
tribution that can be modeled as a cold stream, with fstr(v) = 1/δv for vstr < v < vstr + δv and
zero otherwise. We assume that the stream width δv � vstr, where vstr is the stream boost speed

12Here, we use weakly interacting massive particle (WIMP) direct detection to simply refer to the direct detection
of massive DM particles at the∼MeV scale and above, even if the particle models are not directly related to the WIMP
paradigm.
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in the Earth frame. Then, then in the WIMP case we find σDD ∼ vstr, where we have assumed
vstr > vmin. However, in the axion case there is an extra enhancement for small stream widths such
that g2

aγγ ∼
√
vstrδv. Note that this implies that as δv decreases we can probe smaller values of

gaγγ in the axion case, while conversely decreasing δv does not improve our sensitivity to σDD in
the WIMP case.

Finally we note that if we repeated the analysis leading to (3.44) for the resonant case, we would
instead have arrived at

Θ̃res(Ares) =
Q2

0A
resTπ

ma

(
Ares
t −

Ares

2

)
×
∫
dv

v

f(v)2

(λ̃therm
B )2

, (3.47)

which is essentially the same result but with the broadband quantities replaced with their appropri-
ate resonant counterparts. Importantly, note that the transfer function and its associated frequency
dependence has dropped out of this result because it involved a ratio of the signal to the back-
ground, both of which are linear in T (ω). This justifies the claim that going forward our estimates
for the resonant case can be obtained straightforwardly from the broadband results provided we
make the substitutions:

A→ Q0A
res ,

λB → λ̃therm
B .

(3.48)

3.3.2 A Procedure for Stacking the Data

We would like a method to reduce the number of PSD components that need to be stored, with-
out sacrificing sensitivity, given that if we are sampling at a high rate, for example ∼100 MHz
or higher, over an extended time, the amount of data to be stored and analyzed could become
substantial. As we will now show, stacking the PSD data provides exactly such a method.13

The central idea is to break the data up intoNT subintervals of duration ∆T = T/NT , each with
∆N = N/NT PSD components.14 In each of these subintervals we calculate the PSD Sk,`ΦΦ, where
now k only indexes the integers from 0 to ∆N−1, and we have the new index ` = 0, 1, . . . , NT−1

that identifies the relevant subinterval. Using this data, our likelihood takes the form

L(d|θ) =

NT−1∏

`=0

∆N−1∏

k=1

1

λk(θ)
e−S

k,`
ΦΦ/λk(θ) . (3.49)

Importantly, we assume that the model prediction in each subinterval is identical, which we com-

13We thank Jon Ouellet for conversations related to this point.
14The choice of notation here is used to emphasize that for NT � 1 we have ∆T � T and ∆N � N , but of

course neither quantity should ever be thought of as infinitesimal.
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ment on more below. With this assumption, it is natural to define a stacked PSD

SkΦΦ ≡
1

NT

NT−1∑

`=1

Sk,`ΦΦ . (3.50)

The averaged PSD components will be distributed as the average of a sum of exponentially dis-
tributed random variables with mean λk, which is given by the Erlang distribution:

P [SkΦΦ] =
NNT
T

(NT − 1)!

(
SkΦΦ

)NT−1

λNTk
e−NTS

k
ΦΦ/λk . (3.51)

Using this stacked data, we can simplify (3.49) by removing the sum over `:

L(d|θ) =
∆N−1∏

k=1

1

λk(θ)NT
e−NTS

k
ΦΦ/λk(θ) , (3.52)

where in this result we can already see the reduction in computational requirements as it only
involves a product over ∆N � N numbers, since the SkΦΦ can be precomputed and updated as
more data comes in.

Our next task is to determine how this choice will impact our sensitivity, using the test statistics
defined in the previous subsections. It is sufficient to consider Θ(ma, A), defined in (3.35) and
from which the other statistics of interest can be derived. Doing so, we can repeat the Asimov
analysis from the previous subsection to determine the asymptotic form of the stacked Θ, given by

Θ̃stacked(A) =
ANT∆Tπ

ma

(
At −

A

2

)∫
dv

v

f(v)2

λ2
B

. (3.53)

Yet as NT∆T = T , the stacked and unstacked form of Θ̃ are identical. This implies that our
stacking procedure, which for NT � 1 dramatically reduces the required computation, has no
impact on our sensitivity to an axion signal.

There is, however, a catch. Stacking implies that we are only sensitive to frequency shifts of
size ∆f = 1/∆T , which can be much larger than the shifts we were sensitive to in the full dataset,
where ∆f = 1/T � 1/∆T . This could mean, depending on the size of the frequency spacings,
that ultra-cold local DM substructure is no longer resolved, and therefore the enhancement it would
have given to the integral over velocity discussed above is lost. In this sense stacking can lead
to a degradation in sensitivity, and so choosing a stacking strategy should be done with careful
consideration of the features being searched for. To provide some intuition, if we are searching
for an axion at a mass corresponding to a frequency f and drawn from a velocity distribution
with dispersion v0, then the coherence time is ∼ 1/(fv0vobs). To be able to fully resolve the
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axion signal we would then want ∆T � 1/(fv0vobs). For the SHM, and scanning in frequencies
from 100 MHz down to 100 Hz, the coherence time varies from 20 ms up to 5 hours. In such a
scenario, if data were collected for a year, many stacking procedures would be feasible. On the
other hand if searching for the signal from a cold stream with a dispersion of v0 = 1 km/s, then
over the same frequency range the coherence time varies from 4 seconds up to 45 days. For the
lowest frequencies in this case, any stacking procedure would be sacrificing sensitivity to such cold
substructure. On the other hand, at the lowest frequencies high sampling rates are not necessary.
Thus, a hybrid approach may be preferable in practice, where the data is stacked in Fourier space at
high frequencies while at low frequencies the data is stacked in time (i.e. down-sampled) in order
to reduce the data size without sacrificing the sensitivity to cold substructure at any possible axion
mass.

Another relevant consideration is that due to the Earth’s acceleration, lab-frame frequencies
may shift throughout the day and year, which would invalidate our assumption that the model
predictions are identical between subintervals. The rotational speed of the Earth’s surface about
its axis is roughly 0.46 cos(δ) km/s, where δ is the latitude. This value is small enough that it
can safely neglected for any cold flow with a velocity dispersion greater than this. The rotation
of the Earth about the Sun, however, occurs at roughly 30 km/s and is thus harder to ignore when
searching for cold substructure, as we discuss later in this work. Annual and daily modulation can
lead to striking additional signatures, which we explore in detail in Sec. 3.5.

3.3.3 Expected Upper Limit

We are now in a position to write down the expected 95% limit on A. In the case of a limit, the
appropriate Asimov dataset to use is a background only distribution, so that At = 0. Then by
combining our definition of the likelihood profile in (3.36) with our Asimov result in (3.44), we
arrive at the 95% limit where q(ma, A95%) = −2.71, given by

Ã95% =

√
2.71

[
Tπ

2ma

∫
dv

v

f(v)2

λ2
B

]−1

. (3.54)

Note that again the tilde indicates this is an Asimov, or median, quantity. This result is particularly
relevant as it can be interpreted for any experiment provided the definition of appropriate A and
λB. For the particular example of ABRACADABRA we can insert the form of A given in (3.15),
yielding

g̃95%
aγγ =

2.711/4
√
Lp/L

αBmaxVB
√
ρDM

×
[
Tπ

32ma

∫
dv

v

f(v)2

λ2
B

]−1/4

. (3.55)
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One of the real powers of the Asimov analysis is that not only can we determine the median
expected limit, we can also derive analytically the expected size of fluctuations away from the
central value, without having to revert to Monte Carlo simulations. The details of this statistical
procedure are discussed in [172]. As we are constructing power-constrained 95% one-sided limits,
we obtain confidence intervals via

q(ma, A95%±Nσ) = −
(
Φ−1 [0.95]±N

)2
, (3.56)

where Φ is the cumulative distribution function of the standard normal distribution (zero mean and
unit variance), and Φ−1 is the inverse of this (so Φ−1 [0.95] ≈ 1.64). Note that if we take N = 0,
then the above just reduces to q(ma, A95%) = −2.71, but this more general result contains the
information about the error bands in the expected limit. In this way, by replacing the 2.71 that
appears in (3.55) with the appropriate value for the Nσ uncertainty band on the 95% limit, we can
construct the median and uncertainty bands on g̃95%

aγγ analytically. For completeness, in App. B.3
we verify that the bands constructed in this manner agree with those generated using Monte Carlo
simulations. Finally, to be conservative we use power-constrained limits [195], which in practice
means we do not allow ourself to set a limit below our 1σ uncertainty band on the upper limit.

3.3.4 Expected Discovery Reach

In order to find evidence for a signal, we need to understand the expected distribution of the TS
under the null hypothesis. The reason is that this distribution determines how likely the background
is to produce a given TS value, and hence what threshold TSthresh we should set to establish the
existence of a signal at a given confidence level. Once we have such a threshold test statistic,
applying our Asimov results above to the case of discovery, we find we would be sensitive to
discover a signal with the following strength

g̃thresh
aγγ =

TS
1/4
thresh

√
Lp/L

αBmaxVB
√
ρDM

×
[
Tπ

32ma

∫
dv

v

f(v)2

λ2
B

]−1/4

. (3.57)

Locally, the significance in favor of the axion model is expected to be approximated by√
TS [172]; that is, a value TS = 25 corresponds to approximately 5σ local significance. However,

when scanning over multiple independent mass points, the look elsewhere effect must be accounted
for in quoting values for the global rather than local significance. The look elsewhere effect may
be determined through Monte Carlo simulations. However, in this section we will derive an ana-
lytic approximation to TSthresh, which accounts for the look elsewhere effect, and as we will show
provides an accurate representation to the output from such Monte Carlo studies. The result will be
a mapping between the desired global significance threshold and the value of TSthresh that should
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be taken, depending on the mass range scanned. We note that there are also other proposals in the
literature for approaching this problem; for a recent one see, e.g., [196].

Our starting point is to note that the asymptotic form of the survival function for the local TS
under the null hypothesis is given by

S[TSthresh] = 1− Φ
(√

TSthresh

)
, (3.58)

where S[TSthresh] is the probability that the TS, under the null hypothesis, takes a value greater
than TSthresh. This is derived explicitly in App. B.4 starting from the likelihood function, and it is
equivalent to the statement that the asymptotic local significance is given by

√
TS. However in any

realistic experiment, we will look in a number of independent frequency windows corresponding
to different axion masses. To account for this we need to note that in any of these windows there
could be an upward fluctuation. To do so let us say that we look at Nma independent mass points,
and we want to set the threshold test statistic, TSthresh, such that the probability that the background
will not fake the signal in any bin is 1 − p. To relate these two quantities, if we assume that p is
small enough, we can write the probability that at least one of the TSs, from the set over all mass
points, is greater than TSthresh as

p = 1− (1− S[TSthresh])Nma ≈ NmaS[TSthresh] . (3.59)

From here we can then substitute the survival function from (3.58), and expanding this out gives

TSthresh =

[
Φ−1

(
1− p

Nma

)]2

. (3.60)

Using this result, as soon as we know Nma we can determine TSthresh as it should be used in
our formula for g̃thresh

aγγ in (3.57). To give some intuition, in the case where we ignore the look
elsewhere effect and set Nma = 1, then the 3σ requirement is that p ≈ 1.35 × 10−3, yielding
TSthresh = 9, as expected. Importantly, note that the p values here correspond to that for 1-sided
fluctuations [172].

In any realistic experiment, we expect Nma � 1. However, estimating the correct value for
Nma is complicated by the fact that we may scan over a continuum of different possible mass
points in practice, though not all of the mass points have independent data. We expect a mass point
as frequency ma to extend over a frequency bandwidth ∼mav

2
0 , for the SHM. Thus, we expect to

be able to characterize a set of independent mass point by the relation

m(i)
a = m(0)

a (1 + αv0vobs)
i , (3.61)
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where m(0)
a is the first mass point, i = 0, . . . , Nma − 1, and α is a number order unity that should

be tuned to Monte Carlo simulations. Given the parameterization in (3.61), we may estimate the
number of mass points by relating m0

a with the minimum frequency fmin and m(Nma−1)
a with the

highest frequency fmax; solving for Nma in the limit Nma � 1 then gives

Nma ≈
1

α v0vobs

ln
fmax

fmin

. (3.62)

In Fig. 3.2 we compare the analytic prediction in (3.60), combined with (3.62), with the result of
2.5 million Monte Carlo simulations. From the ensemble of simulations, we are able to compute
the value of p for each value of TSthresh. Note that in each simulation we scan for axion DM
over a frequency range fmax/fmin ≈ 1.0007; setting v0 = 220 km/s and vobs = 232 km/s then
gives, through (3.62), Nma ≈ 1.23 × 103/α. The analytic results are found to agree well with the
simulations for α ≈ 3/4; this value may also be understood by thinking more carefully about the
extent of the SHM. Note that the real power of the analytic formalism is that once we have tuned
the relations in (3.60) and (3.62) to Monte Carlo, in order to find the appropriate value of α, we
may extrapolate to smaller values of p, where the number of Monte Carlo simulations required to
directly determine TSthresh would be intractable.

To give some more realistic examples, if we assume the experiments scans from 100 Hz to
100 MHz, using the SHM values we obtain Nma ∼ 3 × 107. This then increases the 3σ (5σ)
threshold TS to 40.9 (57.5). To contrast if instead our significance was dominated by a stream with
dispersion roughly 20 km/s, then instead we would find Nma ∼ 4× 109, and the 3σ (5σ) threshold
TS becomes 50.3 (67.0).

3.3.5 Comparison with S/N = 1

In the absence of a full likelihood framework, a common method employed for estimating sensitiv-
ity is obtained by setting the signal equal to the expected background, or S/N = 1. For example,
this approach was used in the original ABRACADABRA proposal [71] and also for the proposed
CASPEr experiment [58]. In this section we want to contrast this simple estimate to the output
from our full likelihood machinery.

Now, following these earlier references, in our notation the signal-to-noise ratio can be written
as

S/N = |ΦSQUID| (Tτ)1/4/
√
|λB| , (3.63)

where τ is the signal coherence time. This S/N ∝ T 1/4 scaling occurs when the collection time
is longer than the coherence time. If T < τ , instead the significance grows as S/N ∝ T 1/2, as
demonstrated in [58]. In App. B.5 we demonstrate that this same scaling can also be seen directly
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Figure 3.2: A comparison between the look elsewhere effect improved survival function approx-
imate result derived between (3.60) and (3.62), and the equivalent values derived directly from
Monte Carlo simulations. The good agreement between the two, especially at large TSthresh

demonstrates that our approximate result is useful for estimating how often the background can
fluctuate to fake the signal at a given confidence level. Note the values plotted here correspond to
signals varying from 0 to 4σ, for derived values of λB given in (3.28) and 2.5 million Monte Carlo
simulations. We do not extend the plot up to the 5σ value relevant for discovery, as this would
require roughly 100 times as many simulations. This statement in itself already demonstrated the
utility of our approximate analytic result.

from our likelihood.
In order to make a concrete comparison, we consider ABRACADABRA with the axion follow-

ing only the bulk velocity distribution. In this case, the coherence of the bulk halo, as discussed
above, will effectively ensure we always have T � τ , implying the signal grows as T 1/4. To
simplify (3.63), firstly consider |ΦSQUID|. Combining (3.13) and (3.12), we have:

|ΦSQUID| =
α

2

√
L

Lp
gaγγBmaxVBma |a(t)| . (3.64)

For the purposes of determining the average axion field over a time T � τ , we can simply consider
the axion field in the zero velocity limit, where

|a(t)| =
√

2ρDM

ma

|cos(mat)| =
√
ρDM

ma

. (3.65)

Note that since it is the PSD that is measured in practice, we calculate the average as
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√
|cos2(mat)| = 1/

√
2. The coherence time is determined by the kinetic energy 1

2
mav

2, which
perturbs the axion frequency. Once the phase shift from this correction equals π, the field will be
fully out of phase, so we take

τ =
2π

mav0vobs

, (3.66)

where again with the bulk halo in mind, we took values appropriate for the SHM. Finally, we
assume that we have a frequency independent background PSD λB. Combining these results with
the threshold S/N = 1, we obtain a sensitivity estimate of

gaγγ =
2
√
λB
√
Lp/L

αBmaxVB
√
ρDM

(mav0vobs

2πT

)1/4

. (3.67)

We want to contrast this estimate with the exact value we obtain from the analysis method
outlined in this section. For this purpose we take our result, but evaluated at some TSreq which is
schematic—it can be 2.71 for the case of a 95% limit, or ∼58 for a 5σ discovery accounting for
the look elsewhere effect. If we assume f(v) follows the SHM and further take vobs = v0, then the
equivalent result is:

gaγγ =

(
64 TSreq

√
2π

erf
[√

2
]
)1/4

×
√
λB
√
Lp/L

αBmaxVB
√
ρDM

(
mav

2
0

2πT

)1/4

. (3.68)

Note that the formula above is equivalent to the statement that

S/N ≈ 1.8 TS1/4
req . (3.69)

For example, the 95% expected upper limit would require S/N = 2.31, whilst a 5σ discovery
accounting for the look elsewhere effect assuming the SHM, requires S/N = 4.97. We will see
in the next section that the comparisons are similar for a resonant experiment also. In general the
various thresholds are achieved with a larger signal than the naive S/N = 1 suggests. Nonetheless,
the standard estimate is not a terrible approximation to the true results, especially considering that
S ∼ g2

aγγ . We emphasize, however, that there is a lot more that can be extracted from having the
full likelihood framework, which we turn to in the subsequent sections.

3.4 Application to the Bulk Halo

In this section we apply the formalism developed so far to ABRACADABRA and ADMX. For
this purpose we take a simple concrete example, where f(v) describes only the bulk halo, which
we further assume follows the SHM as defined in (3.9). Additionally we assume that over the
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frequency band of the signal,15 the mean of the background distribution in frequency space is ap-
proximately frequency independent. These assumptions imply that the integral appearing in (3.55)
and (3.57) can be evaluated exactly:

∫
dv

v

f(v)2

λ2
B

=
erf
[√

2vobs/v0

]
√

2πv0vobsλ2
B

, (3.70)

with
√
λB ≈ 10−6Φ0/

√
Hz as given in (3.27). In the following subsections, we will demonstrate

explicitly how to construct projected limits and detection sensitivities, under the assumption of
the SHM velocity distribution, and we will show in the event of a detection the parameters of the
SHM may be determined using the likelihood framework. We will extend this framework to more
realistic f(v), including DM substructure, in the next section.
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Figure 3.3: (Left) A comparison of the projected sensitivities for a hypothetical version of the
ABRACADABRA (ABRA) experiment [71], with inner toroidal radius R = 0.85 m, an outer
toroidal radius double this value, and a height h = 4R. A maximum magnetic field of 10 T
is assumed, along with an interrogation time of 1 year. (Right) An equivalent comparison of
projections for a future ADMX experiment. Here we take a total run time of 5 years, a volume
of 500 L, quality factor of 105, magnetic field of 7 T, and a system temperature of 148 mK. In
both panels the exact sensitivities are contrasted with an estimate obtained from the signal-to-noise
ratio, S/N = 1.

3.4.1 Sensitivity

In Fig. 3.3 we illustrate the formalism introduced in Sec. 3.3 for hypothetical future versions of the
ABRACADABRA and ADMX experiments. To be specific, for ABRACADABRA we assumed

15By the frequency band we simply mean the range of frequencies over which the signal will be significant, which
for the SHM is approximately [ma,ma(1 + v0vobs)].
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that the radius of the pickup loop is identical to the inner radius of the torus, R, and also equal
to the width of the torus, so that the total radius out to the outer edge of the toroid is 2R. For
concreteness, we took R = 0.85 m and then set the height of the torus to be h = 4R. For
the remaining parameters we generally follow [71], taking α2 = 0.5, pickup-loop inductance
Lp = πR2/h, SQUID inductance L = 1 nH, and local DM density ρDM = 0.4 GeV/cm3. In
the broadband mode we assume a flat spectrum of SQUID noise of

√
λB = 10−6Φ0/

√
Hz. In the

resonant mode, we take a temperature of 100 mK and Q0 = 106 for the RLC circuit. Note that we
cut off our projections when the Compton wavelength of the axion is equal to the inner radius of
the detector. The reason for this is that at high frequencies the magnetoquasistatic approximation
used in the original analysis of [71], which we follow, breaks down. ABRACADABRA is still
expected to set limits in this regime, albeit weaker, however in the absence of a detailed treatment
we leave this region out.16

For ADMX, we use the projected values recently presented in [197], which updated the earlier
projections from [107,198]. We take the volume V = 500 L, quality factorQ = 105, magnetic field
B = 7 T, and system temperature Ts = 148 mK. So far, we have not described how our analysis
framework is modified for the case of ADMX. Nevertheless, it is again a simple modification of
the framework presented in Sec. 3.2. Starting from the power the axion field and thermal noise
sources generate in the ADMX cavity, which is described in detail in a number of references, see
e.g., [151, 157, 183, 188, 199, 200], we find

AADMX =g2
aγγ

ρDM

ma

QB2V C010 ,

λADMX
B =kBTs ,

(3.71)

where C010 ≈ 0.692 is the cavity form factor for the TM010 mode, which dominates for the ADMX
configuration. In terms of these quantities, the mean PSD is given by

λADMX(ω) =

(
AADMX πf(v)

mav

∣∣∣∣
v=
√

2ω/ma−2

+ λADMX
B

)
× T ADMX(ω) ,

where T ADMX(ω) is the transfer function for the ADMX resonant cavity. The transfer function has
support over a frequency interval of width∼ω0Q

−1, where ω0 is the resonant frequency, in analogy
to (3.31). However, the exact form of this transfer function is not important for our purposes, since
it is common to the noise and signal contributions. In addition to computing the sensitivity of
ADMX using our likelihood framework, we also derive an S/N = 1 estimate for the sensitivity
from the Dicke radiometer equation [170].

16Preliminary simulations indicate that good sensitivity is likely maintained to somewhat higher frequency values.
We thank Kevin Zhou for these preliminary results.
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In Fig. 3.3, the dashed curves represents the sensitivity for a 5σ discovery, using the formalism
derived in Sec. 3.3.4, including the look elsewhere effect.17 We also show the median expected
95% limit, as well as the 1 and 2σ bands on the expectations for these quantities, derived using the
procedure described in Sec. 3.3.3. We reiterate that we present power-constrained limits [195], so
that we do not allow ourselves to set limits stronger than the expected 1σ downward fluctuation. In
addition we have also added the naive S/N = 1 estimated sensitivity line for the broadband mode,
as given in (3.67). As shown in Sec. 3.3.5, the 95% limit and detection threshold differ only from
the naive estimate by factors of order unity. The figure also includes the theoretically motivated
region for the QCD axion in orange.

For the resonant results shown in Fig. 3.3, we adjusted the scanning strategy such that the
mean limit under the null hypothesis is parallel to the QCD line in the gaγγ − ma plane. For
ABRACADABRA, we chose a minimum mass ma = 2.8× 10−8 eV and a maximum mass ma =

2.3 × 10−7 eV, and the total number of bins scanned in the resonant search was 1.3 × 106. A
total scanning time of 1 year was used. The lowest-frequency bin was scanned for T = 704 s,
while the highest-frequency bin was scanned for T = 0.0175 s; the amount of time spent at the
ith mass scales as T ∝ (mi

a)
−5. Note that we have not considered the possibility of incorporating

an additional broadband readout in the resonant scan to increase the sensitivity, though such an
approach may be feasible. For ADMX, we instead scanned between masses of 1.0 × 10−6 and
20.1 × 10−6 eV, using a total of 1.8 × 106 mass bins. Here a total scanning time of 5 years was
broken up as follows: the smallest and largest masses were scanned for 268 and 13.5 s, and now
the time spent at the ith mass scales as T ∝ (mi

a)
−1.

To simulate what an actual limit would look like as derived from real data, we generate Monte
Carlo data for the mock broadband ABRACADABRA experimental setup under the assumption
that the axion explains all of DM with ma = 10−8 eV and gaγγ = 2.21 × 10−16 GeV−1. Fig. 3.4
shows the resulting limit in the vicinity of the true mass; the region has been magnified so that
the bin to bin fluctuations can be seen. The figure shows that in general the limit moves around
between the expected bands, however right at the center, at the location of the true mass, the limit
weakens considerably.

3.4.2 Parameter Estimation

In this section, we show how to estimate the DM coupling to photons and aspects of the DM phase-
space distribution in the event of a detection or a detection candidate. This is done in practice by

17We caution that in the resonant case, looking for upwards fluctuations in excess of the 5σ look elsewhere effect
enhanced detection thresholds is unlikely to be the optimal discovery strategy. Instead, one could, for example, further
interrogate masses where a 2σ upward fluctuation is observed. For example, ADMX implements exactly such a
strategy, as described in [130]. We make no attempt to determine the ideal resonant discovery strategy in this work.

64



−15 −10 −5 0 5 10 15

(ω −minj
a )× 1014 [eV]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

g a
γ
γ
×

10
17

[1
/G

eV
]

Injected Signal Recovery minj
a = 10−8 eV

5σ Detection

95% Upper Limit

1/2σ containment

Monte Carlo Data

Figure 3.4: An actual limit obtained from a single Monte Carlo simulation, with the broadband
readout, compared to the various expectations for the broadband ABRACADABRA framework
used in Fig. 3.3. The data was simulated with an injected signal corresponding to ma = 10−8 eV
and gaγγ = 2.21×10−16 GeV−1, and indeed we can see that right near the frequency corresponding
to the axion mass, we are unable to exclude the corresponding signal strength.

scanning over the likelihood function with the relevant degrees of freedom given to the parameters
of interest. In this section, we show how to anticipate the uncertainties on the parameter estimates
using the Asimov framework. We proceed in an analogous fashion to previous sections, where
we studied the asymptotic form of the background only distribution; in this section, we study the
asymptotic form of the likelihood in the presence of a signal.

As a starting point, consider estimating the signal strength A from a dataset drawn from a
distribution where the true value is At. Note that we use A rather than gaγγ only to simplify the
expressions; the extension to the actual parameter of interest is straightforward. Recall we have
actually already shown in the previous section that the asymptotic form of Θ given in (3.44) has the
key property that it is maximized at the correct value of the signal strength,At.18 We can determine
the uncertainty on the estimated A from the curvature around the maximum. In detail,

σ−2
A = −1

2
∂2
AΘ̃(A)|A=At =

Tπ

2ma

∫
dv

v

f(v)2

λ2
B

, (3.72)

where σA is the expected uncertainty on the measurement. Using the SHM velocity distribution,

18Recall we assumed A(t)πf(v)/(mav)� λB in deriving that expression.
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this simplifies to

σA =

√
2
√

2ma λ2
B v0vobs

T
√
π erf

[√
2vobs/v0

] =
At√
TS

. (3.73)

From this we can see that, as expected, the uncertainty on the signal strength increases with the
background, decreases with a longer experimental run time, and scales inversely proportional to
the square root of the TS for detection. The last point is important because it says that the central
value At is

√
TS standard deviations away from zero, which matches our interpretation of

√
TS as

the significance.
We can readily extend this strategy to the estimation of other signal parameters. For example,

we can use this to estimate the best fit SHM parameters, v0 and vobs, and their associated uncer-
tainties. Let us denote by ft(v) = fSHM(v|vt0, vtobs) the speed distribution given by the true SHM
parameters, and then f(v) = fSHM(v|v0, v

t
obs) represents the distribution for some arbitrary value

of v0. To repeat the Asimov analysis, we now use the dataset and model predictions given by

Sk,Asimov
ΦΦ ≡ λtk =At

πft(v)

mav
+ λB ,

λk =At
πf(v)

mav
+ λB ,

(3.74)

respectively. Then, through the same process as above we arrive at

Θ̃(v0) =
A2
tTπ

ma

∫
dv

v

f(v)

λ2
B

(
ft(v)− f(v)

2

)
. (3.75)

Again this asymptotic expression satisfies the central Asimov requirement that

max
v0

Θ̃(v0) = Θ̃(vt0) . (3.76)

Beyond this, however, we can again estimate the uncertainty on the best fit velocity dispersion:

σ−2
v0

= −1

2
∂2
v0

Θ̃(v0)|v0=vt0
=
A2
tTπ

2ma

∫
dv

v

(
∂v0f(v)|v0=vt0

)2

λ2
B

, (3.77)

so that if we assume λB is independent of frequency, we have

σv0 =
vt0√
TS

(
3

4
+
vtobs (9vt20 − 4vt2obs) e

−2vt2obs/v
t2
0

√
2πvt30 erf

[√
2vtobs/v

t
0

]
)−1/2

≈ 1.02
vt0√
TS

.

Above, we have taken the SHM values for the approximate result. Applying the same strategy for
vobs, we would find the maximum is again obtained at the true value, with the uncertainty now
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given by

σvobs
=

vt0√
TS

(
1− 4vtobse

−2vt2obs/v
t2
0

√
2πvt0 erf

[√
2vtobs/v

t
0

]
)−1/2

≈ 1.11
vt0√
TS

.

From these three results for parameter estimation using our likelihood we can see that in general
if we are estimating a parameter αt, the estimated mean value will be µα = αt, and the uncertainty
tends to scale as σα ∼ TS−1/2. Thus exactly as expected, the more significant the detection of ax-
ion, or specifically the larger the TS, the greater precision with which we can estimate parameters.

3.5 Impact of a Realistic and Time-Varying DM Distribution

In the previous sections, we have developed a framework for the analysis of a signal sourced by
axion DM drawn from the SHM distribution fSHM(v|v0, vobs). However, this neglects a number
of effects that modify the DM speed distribution; in particular: annual modulation, gravitational
focusing, and the possible presence of local velocity substructure. As we have verified by Monte
Carlo simulations, the exclusion of these features from our analysis has a negligible effect on
our ability to successfully constrain or discover an axion signal in our data, even when features
excluded from the analysis are included in the data sets. Consequently, the framework of Sec. 3.4
is sufficient for the first stage of the data analysis. Nonetheless, since we do expect these effects to
be manifest in a hypothetically discovered signal, they present opportunities to gain sharper insight
on the local DM distribution. Moreover, because annual modulation and gravitational focusing
result in distinct signatures expected to be present only in the presence of a genuine axion signal,
the identification of these features would further strengthen any candidate detection. In addition,
if we are within a cold stream or debris flow, a significant enhancement to the signal is possible.
In this section, we specify the details of annual modulation, gravitational focusing, and velocity
substructure and their inclusion in the DM speed distribution.

Because the signatures of annual modulation, gravitational focusing, and velocity substructure
are necessarily time-dependent, we are forced to promote our likelihood to incorporate variation in
time.19 To do so, we will make use of the stacking procedure described in Sec. 3.3. We assume that
the full dataset is broken into NT subintervals of duration ∆T = T/NT containing ∆N = N/NT

PSD measurements. Now, however, we will assume that ∆T is sufficiently small that the speed
distribution does not change appreciably within a given interval. As the distribution will change

19Cold velocity substructure is more subject to annual and daily modulation, which is why these effects are time-
dependent in the Earth frame even if they are not in the Solar frame.
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over the full collection time T , we have a different model prediction in each time interval given by:

λk,` = A
πf(v, t`)

mav
+ λB , (3.78)

which leads to the following modified likelihood

L(d|θ) =

NT−1∏

`=0

∆N−1∏

k=1

1

λk,`(θ)
e−S

k,`
ΦΦ/λk,`(θ) . (3.79)

This is the form of the likelihood we will use throughout this section. Note that the ` dependence
on the model prediction invalidates the stacking analysis performed in Sec. 3.3, though the data
may still be stacked over time intervals that are sufficiently smaller than a year (day) for annual
(daily) modulation.

3.5.1 Halo Annual Modulation

Before studying how annual modulation impacts the expected axion signal, we first review how
it modifies the DM speed distribution.20 Our starting point for this is the SHM distribution given
in (3.9). Throughout the year the detector’s speed in the Galactic halo frame, vobs, is expected
to oscillate as the Earth orbits the Sun. In the lab frame, this results in an effectively time-
dependent halo distribution fSHM(v, t). All of the time dependence, neglecting that from grav-
itational focusing, which will be dealt with separately, can be accounted for by upgrading the
relative detector-halo speed to a time-dependent parameter vobs(t). To determine this speed, first
note that vobs(t) = v� + v⊕(t), where v� and v⊕(t) are the velocity of the Sun with respect to
the Galactic frame and the velocity of the Earth with respect to the Sun, respectively. These are
specified by21

v� = v�(0.0473, 0.9984, 0.0301) ,

v⊕(t) ≈ v⊕ (cos [ω(t− t1)] ε̂1 + sin [ω(t− t1)] ε̂2) ,
(3.80)

where the magnitudes are given by v� ≈ 232.37 km/s and v⊕ ≈ 29.79 km/s. We have further
introduced ω ≈ 2π/(365 days) as the period of the Earth’s revolution, t1 as the time of the vernal
equinox (which occurred on March 20 in 2017), and the unit vectors ε̂1 and ε̂2 specifying the

20We refer to [201] for a comprehensive review of these details.
21Corrections to v⊕(t) are suppressed by the eccentricity of the Earth’s orbit, given by e ≈ 0.016722, and so can

safely be neglected.
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ecliptic plane. These vectors are given in Galactic coordinates by

ε̂1 ≈ (0.9940, 0.1095, 0.0031) ,

ε̂2 ≈ (−0.0517, 0.4945,−0.8677) .
(3.81)

We may then find the time-varying Galactic-frame speed

vobs(t) =
√
v2
� + v2

⊕ + 2v�v⊕α cos [ω(t− t̄)] , (3.82)

given in terms of the parameters

α ≡
√

(v̂� · ε̂1)2 + (v̂� · ε̂2)2 ≈ 0.491 ,

t̄ ≡ t1 +
1

ω
arctan

(
v̂� · ε̂2

v̂� · ε̂1

)
≈ t1 + 72.5 days .

(3.83)

Whilst we have given the accepted values for the various parameters above, if a definitive axion
signal was detected we could then take for example v�, α, and t̄ as unknown parameters to be
estimated from the likelihood. Their agreement with the accepted values would be a highly non-
trivial test of the signal. We will show an example of this below, but before doing so we use the
Asimov formalism to estimate how significant a signal we would need to detect annual modulation
from the bulk halo.

Ignoring annual modulation, the detection significance of a SHM signal scales with the param-
eters of interest as

TS =
A2Tπ

2maλ2
B

erf
[√

2vobs/v0

]
√

2πv0vobs

, (3.84)

where here and throughout this section we assume the background is frequency independent over
the width of the signal. The relevant question is, on average, at what value of TS do we detect
annual modulation at a given significance? To estimate this, we calculate the test statistics between
models with and without annual modulation included; in order to discover annual modulation we
can think of the model without it included as the null hypothesis. We denote this test statistic by
TSa.m.. We can estimate the median value for TSa.m. as a function of the model parameters using the
asymptotic form of Θ and the Asimov formalism; in this case, the Asimov dataset includes annual
modulation. Specifically, we find

TSa.m. =
A2Tπ

maλ2
B

∫
dv

v

[
ft(v)2 −f(v)

(
ft(v)− f(v)

2

)]
. (3.85)

Above, ft features annual modulation while f does not. In order to simplify the calculation, we
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define an expansion parameter:
ε ≡ v�v⊕

v2
� + v2

⊕
≈ 0.126 , (3.86)

in terms of which we can write:

vobs(t) ≈ vobs (1 + εα cos [ω(t− t̄)]) , (3.87)

with vobs ≈ 232 km/s. Using this and averaging all time dependence over one period in the final
result, we calculate the ratio of TSa.m. to TS in the SHM as

TSa.m.

TS
=
α2ε2v2

obs

2v2
0

(
1− 4vobse

−2v2
obs/v

2
0

√
2πv0erf

[√
2vobs/v0

]
)

≈ 0.00173 . (3.88)

From the discussion above, we see that if it took a time T to detect the axion at a given signif-
icance, it would take a time 580T to detect annual modulation at the same significance. Alterna-
tively, as the test statistic scales like g4

αγγ , the coupling for the threshold of discovery for annual
modulation will be∼5 times larger, on average, than the coupling for the threshold of discovery of
a signal. On the other hand, in the resonant setup large increases in the TS are readily obtainable
since after the axion mass is known we can stay at the correct frequency for an extended period
instead of scanning over multiple frequencies.

In Fig. 3.5 we show the posterior distribution generated in a Bayesian framework from an
analysis of the Asimov dataset with gaγγ at the threshold for detection of annual modulation at 5σ.
Note that we float A, ma, v0, v�, α, and t̄ as model parameters with linear-flat priors in the fit. All
model parameters are seen to be well converged, including ma which is not shown in the figure.
This analysis was performed using Multinest [202, 203] with 500 live points. The Asimov
results are consistent with those found from an ensemble of simulated datasets, as expected.

3.5.2 Halo Gravitational Focusing

An additional source of annual modulation in the axion signal is sourced by the focusing of the
axion flux by the Sun’s gravitational potential. This effect is already known to have a significant
impact on annual modulation in the context of WIMP direct detection, as pointed out in [184]. The
intuition behind gravitational focusing is that in the frame of the Sun the DM velocity distribution
appears as a wind. The gravitational field of the Sun focuses the DM “down-wind” of the Sun,
leading to an enhanced rate when the Earth is “down-wind” relative to when the Earth is “up-
wind.” Here we investigate the impact of gravitational focusing on the corresponding axion signal.
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In [184] an exact closed-form expression was used to model the perturbation to the DM phase-
space distribution from the Sun’s potential. The perturbed phase-space distribution is derived using
Liouville’s theorem and exactly solving for the trajectories of the DM particles in the gravitational
field. However, in this work we take advantage of a perturbative result (to leading order in New-
ton’s constant), valid when the DM speeds are much larger than the Solar escape velocity, that
allows us to write [204]

f(v, t) = fhalo(v, t) + fGF(v, t) , (3.89)

where fhalo(v, t) is the unperturbed velocity distribution in the Earth frame, and where the pertur-
bation by gravitational focusing fGF is given by

fGF(v, t) ≡ −2GM�
x⊕(t)

∫
v2dΩ

π
3
2v5

0

e−(v+v⊕(t)+v�)2/v2
0

v
×

(v + v⊕(t) + v�) ·
(
x̂⊕(t)− v+v⊕(t)

|v+v⊕(t)|

)

1− x̂⊕(t) ·
(

v+v⊕(t)
|v+v⊕(t)|

) .

(3.90)

Note that in this equation, v2dΩ is written out explicitly to account for the measure. Here, x⊕(t)

denotes the position of the Earth in the Solar frame; an explicit form for this in Galactic coordinates
can be found in [201]. Note that f(v, t) is no longer normalized to integrate to unity, but rather the
change in

∫
dvf(v, t) throughout the year indicates the fractional change in the DM density do to

gravitational focusing. We have explicitly verified that the perturbative formalism for gravitational
focusing is a good approximation to the exact formalism used in [184] for the SHM.

To determine the impact of gravitational focusing, we perform two analyses using the Asimov
dataset at the 5σ detection threshold for annual modulation but this time including gravitational
focusing. We analyze the Asimov data in the Bayesian framework including with two models; the
first model does not account for gravitational focusing, while the second one does. The results
of these analyses are shown in Fig. 3.6. The use of a limited number of live points is the most
likely source of the residual disagreement between the injected and median value of t̄ in the right
panel. Note that in these analyses we only float A, α, and t̄ for simplicity. Neglecting gravitational
focusing in the model (left panel) only leads to a approximately 2σ overestimate in the value of
the A parameter, while the central value of t̄ is on average off by ∼10 days. On the other hand,
when gravitational focusing is included in the model (right panel), the halo parameters and the
normalization are correctly inferred.

3.5.3 Local DM Substructure

So far, we have only considered an axion signal sourced by dark matter contained within the
bulk halo, but there additionally exist a number of well-motivated classes of velocity substructure
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that have the potential to leave dramatic signatures in the direct detection data. One large class of
substructure relates to the DM subhalos that are expected to be present in the Milky Way [205]. DM
subhalos are believe to persist down to very small mass scales, potentially ∼10−6 M� and below,
due to the nearly scale-invariant spectrum of density perturbations generated during inflation. Low-
mass DM subhalos have low velocity dispersions, and so if we happen to be sitting in a DM
subhalo, even if it only makes up a small fraction of the local DM density, it could show up as
a narrow spike in velocity space over the bulk SHM contribution. Even if we are not directly
in a bound DM subhalo, we could still be affected by the tidally stripped debris that in-falling
subhalos leave throughout the Galaxy. There are two types of tidally-stripped substructure, in
velocity space, that are important for direct detection (for a review of the importance of tidal debris
at WIMP experiments, see [193]): DM streams and debris flows.

As an in-falling subhalo descends through the potential of the Milky Way, the outer re-
gions of the DM subhalo are expected to become tidally stripped and form an ultra-cold trailing
stream [194, 205]. Such streams should trail from DM subhalos of all sizes, with smaller subhalos
having colder streams. Eventually, the tidal debris dragged away from in-falling subhalos will be-
come fully virialized. However, before that occurs the debris becomes homogeneously distributed
in position space but remains coherent in velocity space, forming the substructure known as debris
flow [206]. While it is unlikely that a DM substructure from in-falling subhalos dominates the
local DM density [194, 205], as we show in this subsection, even if the substructure only makes
up a small fraction of the local DM density, due to the coherence in velocity space the signature of
substructure at axion experiments can be substantial and even dominate over the SHM contribu-
tion. This can be contrasted to the case in WIMP direct detection experiments, where substructure
is expected to play an important role in annual modulation studies but not necessarily have a signif-
icant impact on the total rate [193, 201, 207]. DM streams were recently considered in the context
of axion direct detection in [183].

One DM stream in particular has received a significant amount of attention with regards to
WIMP direct detection and that is the potential DM component of the Sagittarius stream. The
Sagittarius stream consists of a winding stream of stars wrapping through the Milky Way that
is thought to have formed from tidal stripping of the Sagittarius dwarf galaxy. It is possible
that the DM component of the Sagittarius stream contributes at the few percent level to the lo-
cal DM density (see, e.g., [194,205]). We follow [173,175,176] and model the stream as a boosted
Maxwellian distribution with a narrow velocity dispersion of v0 = 10 km/s and a stream velocity
of vstr = (0, 93.2,−388) km/s, in Galactic coordinates. Further we assume that the Sagittarius
stream constitutes 5% of the local DM. We will show that even though the stream may only be a
small component of the local DM density, it can still leave an important signature in axion direct
detection experiments, due to its small velocity dispersion.
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Another possible source of DM substructure that has low velocity dispersion is a dark disk. Co-
rotating thick dark disks are found to form in certain N -body simulations with baryons [208–211]
due to the disruption of merging satellites galaxies that are pulled into the disk. In the simulations,
the dark disks are found to be co-rotating with lag speeds and velocity dispersions both∼50 km/s.
They may even dominate the local DM density [208,210]; however, as we will see, even if the dark
disk is only a small fraction of the local DM density, it can still leave a significant signature in the
direct detection data due to the small velocity dispersion and lag speed.

To develop some intuition for how important substructure could be, let us take the oversimpli-
fied scenario in which the substructure of interest makes up a fraction x of the local DM distribution
and also follows the Maxwellian distribution with the same vobs as in the SHM, but with a much
smaller dispersion parameter vstr

0 . Then we can write

f(v) =(1− x)fSHM(v|v0, vobs) + xfSHM(v|vstr
0 , vobs) . (3.91)

Using this we can explicitly calculate the expected test statistic (in favor of the model of the SHM
plus the stream over the null hypothesis of no DM) of a signal with a frequency independent back-
ground, though we do not provide the expression here as its cumbersome form is not particularly
informative. In Fig. 3.7 we show this TS plotted as a function of the fraction of the DM in the
stream x for various values of vstr

0 , normalized to the TS when no stream is present. The figure
makes it clear that if the detector is within an ultra-cold DM stream the impact on the expected
axion signal can be significant, even if the stream only makes up a small fraction of the DM. For
example, if 5% of the local DM is in a stream with vstr

0 ≈ 0.1 km/s, then the TS in favor of
the model with DM is nearly 10 times larger when the stream is modeled versus when it is not.
This emphasizes the importance of searching for cold DM substructure in addition to the SHM
component.

Even though velocity substructures are not intrinsically time-dependent features, annual mod-
ulation is considerably more important for the detection of substructure, which is typically char-
acterized by a speed dispersion less than the peak-to-peak variation of the Earth’s velocity with
respect to a given substructure frame. The result is an observational signature of a given substruc-
ture feature poorly localized in frequency data collected over a year. Therefore we need a more
careful treatment than the one above, as we can only search for these features in a model framework
which accounts for time-varying signals.

Under the assumption that velocity substructure can still be reasonably modeled by a boosted
Maxwellian distribution, it is easily accommodated within our time-dependent model template.22

The direction of the stream in the ecliptic plane is specified through the parameters αsub and t̄sub,
22Even if the velocity distribution is not Maxwellian, the relevant signal template is a straightforward generalization

of that presented here for a Maxwellian.
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which are defined in analogy to (3.83) but where vsub
� = vsub

� v̂sub
� is the stream boost velocity in the

Solar frame. The generalized velocity distribution, including gravitational focusing, for both the
SHM and the substructure components is then given by

f = (1− x)fSHM(v|v�, α, t̄, v0) + xf sub(v|vsub
� , αsub, t̄sub, vsub

0 ) , (3.92)

where the superscripts “sub” and “SHM” denote the generalized substructure and SHM velocity
distributions, respectively, after gravitational focusing has been accounted for. The generalization
to multiple substructure components is straightforward.

The importance of annual modulation for cold substructure is illustrated in Fig. 3.8, where we
show, in the left panel, the mean PSD assuming the Sagittarius stream parameters taken at two
different times throughout the year. We have chosen the dates where the TS in favor of the stream
is maximized, June 5, and minimized, November 23, both for 2017. Since the stream is narrow in
frequency space, the sharp peaks at these two different times of year are almost completely non-
overlapping. On the contrary, at frequencies where the stream does not contribute appreciably,
annual modulation does not significantly affect the contribution from the SHM.

Just as we performed parameter estimations for the bulk halo component, we can also estimate
the parameters defining the contribution of velocity substructure to the speed distribution. It should
be noted that the parameter estimation for the bulk halo component can be substantially affected by
the presence of velocity substructure if the substructure is not properly accounted for. An example
of this can be seen in Fig. 3.9, where we have included a stream with Sagittarius-like parameters
in the data, as given earlier, and used the Asimov dataset. However, we have not accounted for the
stream in the model that is fit to the data. Note that the TS in favor of DM in this case is ∼104.
Our estimates for the SHM parameters v0 and v� are significantly affected by the presence of the
stream and disagree with the true values by multiple standard deviations. In contrast, in Fig. 3.10
we display the posterior distribution for a fit including a Maxwellian stream. Note that while both
the SHM and the stream parameters are floated at the same time, we display the posteriors for the
SHM and stream model parameters separately. In this case both the stream and the SHM model
parameters are accurately estimated. Comparing the model that included the stream to that without,
we find a TS value ∼400 in favor of the model with the stream over that without.23

Note that for our fiducial set of model parameters for the Sagittarius stream, we find that when
the SHM is detected at 5σ significance (TS ∼ 58), including the look elsewhere effect, the stream
may barely start to become visible at ∼1.6σ significance. We stress, however, that is possible that

23To simplify the analysis, we have neglected gravitational focusing in considering this Sagittarius-like stream.
Gravitational focusing is more important at lower speeds, and therefore is generally less relevant for such a stream
than it would be in considering, for example, a dark disk. We note, however, that if the stream is well-aligned with the
ecliptic plane, it is possible to get large enhancements to the rate over short periods of time during the year [212–214],
although such a configuration is not present for the Sagittarius stream.
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other, colder DM streams would contribute more substantially even if they are a smaller fraction
of the local DM density. While we illustrated the stream example for simplicity, the effects of
the other types of velocity substructure may be worked out similarly. For example, we find that
with our fiducial choice of parameters for the dark disk lag speed and velocity dispersion, the dark
disk would be detectable at the same significance as the SHM even if the dark disk only makes
up ∼20% of the local DM density. Moreover, the dark disk should be more affected by annual
modulation and gravitational focusing than the SHM component, since the DM in the dark disk is
on average slower moving in the Solar frame. The PSD template is illustrated, assuming the dark
disk makes up 20% of the local DM density, in the right panel of Fig. 3.8. The dark disk leads
to a significant increase in the PSD at low velocities, corresponding to frequencies near the axion
mass. As in the stream case, we show the PSD at two different times of year, corresponding to the
date of maximal TS, November 18, and minimal TS, June 5.

3.6 Conclusion

The QCD axion, and axion like particles more generally, is a well motivated class of DM can-
didates, and if it constitutes the DM of our universe, then the burgeoning experimental program
searching for such DM could be on the verge of a discovery. With such possibilities it is important
to be able to clearly and accurately quantify any emerging signal and set limits in their absence.
The likelihood framework we have introduced allows for exactly this. In addition, through the use
of the Asimov dataset, we have derived a number of analytic results that make quantifying these
thresholds possible without recourse to Monte Carlo simulations.

In the event of an emerging signal, one would always worry about the possibility of unantic-
ipated backgrounds. Nevertheless DM provides its own way of addressing this concern through
unique fingerprints in the frequency and time domains. For example, we showed the form the local
DM velocity distribution uniquely determines the frequency dependence of the PSD data, and that
by exploiting this knowledge one is able to, through the likelihood framework, constrain properties
of the local velocity distribution. Since the bulk of the DM halo is expected, locally, to follow a
Maxwellian distribution with velocity dispersion set by the local rotation speed, correctly mea-
suring the Maxwellian parameters will provide a non-trivial check of the nature of the signal. In
the time domain, any true signal should undergo annual modulation, including the subtle effect of
gravitational focusing, and we quantified how this may be verified using the likelihood formalism.
Further, the likelihood is sensitive to the presence of local DM substructure such as cold streams,
which can enhance the expected signal through an associated increase in the axion coherence time.
For example, we showed that the Sagittarius stream could leave a unique signature in the PSD data.
Nevertheless there are a great many possible types of DM substructure, beyond those considered
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here, that could be present at the position of the Earth, and we leave a careful study of these to
future work.

Taken together the results of this work provide a set of tools that will prove useful in moving
towards a possible DM axion detection, and, if we should be so lucky, into the era of axion as-
tronomy that would follow. Towards that end, we have provided an open-source code package
at https://github.com/bsafdi/AxiScan for performing all the likelihood analyses dis-
cussed in this work and also simulating data at axion direct detection experiments for different
background and signal models.
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Figure 3.5: The posterior distribution for a model with annual modulation where the signal strength
is at the threshold of annual modulation detection at 5σ. The true parameter values are indicated in
blue, with the 1σ confidence intervals on the parameter estimations indicated by the dashed black
lines in the one parameter posteriors. The two parameter posteriors show the 1 and 2σ contours.
The axion mass, ma, was also scanned over, and is recovered accurately but not shown here. Note
that this example uses the Asimov dataset. All times are measured in days and velocities in km/s,
while the units of A are arbitrary.
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Figure 3.6: As in Fig. 3.5, but this time the data includes gravitational focusing and the model only
includes the parameters A, α and t̄. (Left) Gravitational focusing, while present in the Asimov
data, is excluded from the model template. The estimations of A and t̄ are off at the ∼2σ and ∼1σ
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template. As expected, the parameter estimation is quite accurate in this case.
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role for cold substructure because the Earth’s orbital velocity may be larger than the substructure
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Figure 3.10: A simultaneous Monte Carlo parameter estimation for a signal containing a bulk
halo and a Sagittarius-like stream with 5% of the DM using identical seed parameters as Fig. 3.9.
Scanning for the bulk halo and substructure simultaneously allows us to accurately recover the
signal parameters. Left, the bulk parameter scan results, right, the stream parameter scan results.
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CHAPTER 4

The Statistics of Axion Direct Detection with
Multiple Detectors

Cold, bosonic dark matter (DM) candidates with masses much smaller than the eV scale have
macroscopic occupation numbers and may be described in the solar vicinity by classical fields.
Two well-studied DM candidates in this category, which we broadly refer to as wave-like DM, are
axions [38–46, 86, 87] and dark photons [215–217]. Wave-like DM candidates require distinctive
experimental techniques for discovery that take advantage of their spatial and temporal coherence
(see, e.g., [187]). The spatial coherence length of the DM waves, λc, and the coherence time τ are
given by1 [80]

λc ∼
1

mDMv0

, τ ∼ 1

mDMv̄ v0

, (4.1)

where v0 parameterizes the DM velocity dispersion, v̄ is the mean velocity, and mDM is the DM
mass. In the solar neighborhood we expect v̄ ∼ v0 ∼ 10−3 for the bulk of the DM, in natural units,
such that the coherence length is around 103 times the Compton wavelength, and the coherence
time is around 106 times the oscillation period for the DM wave. In this work we show that
multiple phase-sensitive wave-like DM detectors separated by distances of order λc may join their
data – through a process we refer to as “DM interferometry” – to measure properties of the DM
phase-space distribution that are inaccessible to single experiments operating in isolation.

Many axion and dark-photon detection strategies already leverage the axion coherence time as a
“quality factor” that amplifies the DM signal in the experiment. For example, axion haloscopes [67,
68,110,138,190,218] use a resonant cavity with a strong static magnetic field to convert axion DM
into electromagnetic cavity modes, which build up coherently over the DM coherence time; in this
setup the DM Compton wavelength is of order the size of the experiment. Experiments operating
in the quasistatic regime (where the DM Compton wavelength is much larger than the experiment)
– including searches for the axion-photon coupling [71,72,74,75,82,219], axion interactions with

1We briefly review both concepts in App. C.1.
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Figure 4.1: The imprint of DM interferometry. A single wave-like DM experiment is sensitive
to the DM speed distribution f(v). Two detectors separated by a vector x12, however, are sen-
sitive to the speed distribution modulated by the k · x12 phase of the DM wave, replacing f(v)
with functions F c,s12 (v) as defined in (4.3). As the figures demonstrate, the modified speed distri-
butions exhibit daily modulation and carry additional information about the velocity distribution
f(v) that would be invisible to a single detector. For this example we take mDM = 25.2 µeV [79],
near the window where the HAYSTAC collaboration is searching for axion DM. Taking the Stan-
dard Halo Model ansatz for f(v) in (4.50), we place one detector at a latitude and longitude of
(41◦ N, 73◦ W), and a second instrument∼ 20 m to the North, corresponding to d ∼ 2λc. A curve
is shown for every ten minutes starting from midnight on January 1st of 2020. Note that as F c,s12 (v)
are functions of mDMd, qualitatively similar effects exist for e.g. mDM ∼ 10−9 eV, in the mass
range probed by ABRACADABRA and DM-Radio, for d ∼ 500 km.

nuclear spins [58], or dark photons [111] – aim to detect a time-varying magnetic flux through a
pickup loop, which can build up coherently in a lumped-element circuit [220, 221].

In this paper, we explore the phenomenology of spatial coherence for wave-like DM by exploit-
ing spatially-separated detectors that probe the same DM field. It is straightforward to understand
why multiple detectors offer unique insights for wave-like DM. Generically, the wave-like DM
field may be written as a(x, t) = a0 cos(ωt− k · x + φ), where ω is the oscillation frequency, k is
the wave vector, φ is a random phase, and a0 is the amplitude.2 If the DM wave is traveling in the
direction k̂ with speed v � 1, then ω ≈ mDM(1 + v2/2) and k ≈ mDMvk̂. For a single detector we
may always choose coordinates such that x = 0. This means that a single detector is only sensitive
to the speed through ω and is not sensitive to the direction of the DM velocity.3 By contrast, two

2Vector DM also has a polarization component with nontrivial coherence properties, but in this work we focus only
on the amplitude, as appropriate for scalar or pseudoscalar DM.

3Exceptions would be experiments that make use of ∇a, but such signals are suppressed by v ∼ 10−3 relative to
experiments that are also sensitive to ∂ta. Experiments only sensitive to the speed distribution may also detect annual
modulation signals through shifts in the DM speed [183], though these are typically quite small because the Earth’s
speed relative to the Sun is small compared to the solar speed relative to the Galactic Center.
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experiments located at positions x1 and x2 will be sensitive to phase factors k · x1 and k · x2. Only
one of these can be removed by a coordinate choice, leaving a residual k · x12, with x12 = x1−x2,
which manifestly probes the velocity rather than the speed. The interferometry proposed in this
work is directly at the level of the DM field: the effect arises due to the phase difference wave-like
DM exhibits between spatially separated points.4 Indeed, due to the nonzero velocity dispersion
v0, DM waves are coherent up to distances of order λc; as we will show, phase-sensitive data
combined from two experiments exhibits maximal modulation when d ≡ |x12| ∼ λc, or

d ∼ 1

mDMv0

= 270 km

(
220 km/s

v0

)(
10−9 eV

mDM

)
. (4.2)

As we will demonstrate, this opens up striking new signatures, such as a unique daily modulation
signal applicable only to wave-like DM with multiple detectors, because the direction of x12 rotates
over a sidereal day with respect to the DM field.5

The main result of this paper is that interference effects between a pair of detectors separated
by a distance x12 are fully characterized by the modified speed distributions

F c12(v) =

∫
d3vf(v) cos(mDMv · x12)δ[|v| − v],

F s12(v) =

∫
d3vf(v) sin(mDMv · x12)δ[|v| − v],

(4.3)

with f(v) the DM velocity distribution. Examples of these distributions at various times through-
out the day are shown in Fig. 4.1 for optimally-separated detectors. If the goal is simply to enhance
the total signal reach, we should maximize the constructive interference and take d� λc, in which
case F s12(v) = 0 and F c12(v) = f(v), with f(v) the DM speed distribution. The observation that
there is an enhanced sensitivity for an array of detectors located within the DM coherence length
has been made previously in Ref. [228]; this is also the basis for the multiplexed cavity setup pro-
posed by ADMX [107]. However, if the goal is to extract information about the full 3-dimensional
DM phase space distribution, which encodes e.g. the boost of the Solar System with respect to the
Galactic Center as well as possible DM substructure (including the Sagittarius stream [229] and
the Gaia Sausage [230, 231]), we should take d ∼ λc as in (4.2). Ref. [228] points out the pos-
sibility of observing this daily modulation effect for experiments separated by distances of order
λc; here we extend this analysis by focusing on constraining directional parameters in the phase
space distribution. We will show that the sensitivity to the phase space information that may be

4This is conceptually distinct from the interferometry proposed in Refs. [222–224], where the interference results
from a phase shift developed by electromagnetic fields as they propagate through axion DM.

5Several experimental proposals have noted or exploited sensitivity to the coherence length, see e.g. [70, 134, 165,
177, 225–227], but here we focus specifically on combining data between different experiments.
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extracted from multiple detectors is comparable to the sensitivity to the initial discovery, since
the interference effects have an O(1) effect on the data when d ∼ λc. As such, in principle these
unique signatures could be used to immediately verify a putative axion signal. More optimistically,
DM interferometry would allow for the detailed mapping of the local DM phase space distribution
after an initial detection.

For concreteness, we focus in this work on the case of axion DM coupled to electromagnetic
signals, but our results would apply equally well to scalar and vector DM as long as the readout
is proportional to the DM field. Similarly, for simplicity we will present most results for the case
of two experiments, but our formalism holds for any number N ≥ 2 of experiments, and we will
provide our key results for a general N also. Our results also apply equally well to resonant-type
experiments and to broadband-type experiments (such as ABRACADABRA-10 cm [72, 82]), so
long as the resonant experiments are able to preserve the phase of the data, as opposed to e.g.

recording the power directly. One advantage of resonant experiments for wave-like DM, in addi-
tion to generically having enhanced sensitivity [220, 221], is that putative signal candidates may
immediately yield detailed and high-significance studies, since the signal-to-noise ratio rapidly
grows with measurement time when frequency-scanning is no longer necessary.

We organize the remaining discussion as follows. In Sec. 4.1, we sketch a derivation for the
statistics of the correlated Fourier-transformed data from multiple experiments. A more exten-
sive derivation and discussion is presented in App. C.2, with some useful orthogonality relations
summarized in App. C.3. In Sec. 4.2, we construct a likelihood function for the axion signal as
observed at N experiments, following the formalism of [80]; a practical data-stacking procedure
is outlined in App. C.4. In Sec. 4.3 we use several simplified toy examples to illustrate analytic
estimates of uncertainties on parameters of the velocity distribution using the Asimov data set –
a technique where the asymptotic properties of the data are assumed in order to replace Monte
Carlo simulations with analytic estimates (see Sec. 4.2) – and demonstrate that uncertainties on
directional parameters in several simple examples with two detectors are minimized for d ∼ 2λc.
We also highlight the important distinction between the de Broglie wavelength and the coherence
length for cold but boosted DM substructure. Furthermore, we show that there is a rotational sym-
metry of the likelihood which can lead to degenerate best-fit parameters forN = 2 experiments. In
Sec. 4.4, we extend the likelihood analysis to include daily modulation from the changing detector
orientation throughout the day. We also perform analyses of simulated data sets to demonstrate how
the likelihood may be implemented in practice to constrain the morphology of the DM phase-space
distribution. Using the realistic examples of the Standard Halo Model (SHM) velocity distribution
and the Sagittarius Stream, we show how daily modulation breaks the symmetry discussed in Sec.
4.3 and use this to perform parameter estimation using the effect. In App. C.1 we provide a brief
review of the coherence length and time.
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4.1 The Statistics of Multiple Detectors

In this section we describe the statistics of an axion DM signal collected by two or more spatially-
separated detectors. In particular, while we expect background sources to be generally uncorrelated
between detectors, the axion will induce non-trivial cross-correlations indicative of DM interfer-
ometry. These correlations will be the source of the additional information available to two or
more experiments that we will extract using a likelihood formalism introduced in Sec. 4.2.

We imagine that a given detector, located at a position x, is sensitive to the axion through a
time-varying signal Φ proportional to the axion field,

Φ(x, t) = maκi a(x, t). (4.4)

The flux Φ is generated by the axion effective current, Ja ∼ ∂ta ∼ maa, which is the origin
of ma in the expression. Accordingly, Φ ∼ κiJa, revealing κi as characterizing the individual
experimental response to the axion field. In the notation of Ref. [80], we take κi =

√
Ai/ρDM.

The dimensionful constant Ai is characteristic of the individual experimental response to the axion
field; for instance, in the case of ABRACADABRA [71, 72, 82], the magnetic flux induced in
the pickup loop at the center of the detector is related to the axion field by A = ρDMg

2
aγγB

2
0V

2
B ,

where gaγγ is the axion-photon coupling, B0 is the toroidal magnetic field strength, and VB is
an effective magnetic field volume associated with the detector. In addition to the experimental
factors, Ai has been defined to include ρDMg

2
aγγ , which determines the mean power in the axion

field. We assume for simplicity that the detector response Ai is purely real and does not include
phase delays. Similar expressions are available for other detectors [80]. For our discussion, all
that is required is a measurement linear in the axion field, in order to ensure direct access to the
axion phase. Measurements intrinsically proportional to a2, such as the power in the cavity of an
axion haloscope, cannot be directly ported to our formalism. Nevertheless, interferometry can still
be performed by these resonant cavity experiments, as long as the phase information is extracted.
This may be achieved for example by reading out electromagnetic signals with phase-sensitive
amplifiers (e.g., [68, 232]).

Ultimately, we envision a set of measurements Φi of the same axion field, made byN detectors
at different spatial locations xi. The correlations between these data sets will arise due to the
statistics of the underlying axion field, as we will describe in the following subsections, leaving
the full derivation to App. C.2.
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4.1.1 Construction of the Axion Field

It is useful to recall the underlying statistics in the axion field that result from its finite velocity
dispersion and wave-like nature. In [80] it was shown that we may represent the axion field as seen
by a single detector as

a(t) =

√
ρDM

ma

∑

j

αj

√
f(vj)∆v cos [ωjt+ φj] . (4.5)

Here, the sum over j indicates a sum over subsets of particles with speeds in the interval v to
v + ∆v. The phase is controlled by ωj = ma

(
1 + v2

j/2
)

and a random contribution φj ∈ [0, 2π),
and further f(v) is the DM speed distribution in the laboratory frame. In Ref. [80] the continuum
limit for speeds ∆v → 0 is taken; below (and in App. C.2) we will generalize to the continuum
limit for velocities. In addition to the random phase, the random nature of the axion field is captured
in the random variate αj drawn from the Rayleigh distribution p[α] = α e−α

2/2.
While (4.5) represents the axion field constructed from the discretized frequency modes spec-

ified by the local DM velocity distribution, a more fundamental approach can be understood by
considering the local DM field made up ofNa axion particles (or wave packets), as detailed in [80].
The enormous occupation numbers characteristic of wave-like DM will then allow us to eventually
convert this sum to an integral by taking theNa →∞ limit; in detail, we should have nDMλ

3
dB � 1,

where nDM is the DM number density, which is satisfied locally for ma � 1 eV. We note that the
above construction also assumes DM is a non-interacting wave, which means that self-interactions
should be negligible.

The axion field described in (4.5) is appropriate for a single detector, but to reveal the effects
of DM interferometry we need to extend the description to include the spatial dependence of the
DM wave. In particular, the phase will also include a contribution k · x, with k = mav for a non-
relativistic wave. As k depends on the velocity, and not speed, we need to extend the above sum to
three independent components, vabc = vax̂ + vbŷ + vcẑ, where the indexes a, b, c are integers. We
may then write

a(x, t) =

√
ρDM

ma

∑

abc

αabc
√
f(vabc)(∆v)3 × cos [ωabct− kabc · x + φabc] , (4.6)

where ωabc depends on vabc = |vabc|, and αabc and φabc are Rayleigh and uniform random variables,
respectively, as in (4.5). Here, (∆v)3 is a discretization of the 3-dimensional velocity, generalizing
∆v for speeds; we will take the continuum limit in App. C.2.

In (4.6) we have written the axion field in a convenient form for revealing DM interferometry.
To reiterate the point, if we measure the axion field at a single location, we can always choose our
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coordinates such that x = 0. In this case, the velocity information in k is lost, and we are now
only sensitive to the speed v = |v| through ω. This collapses f(v) → f(v), and (4.6) to (4.5);
information about the phase space is lost. However, if we measure the axion field at two locations,
an irreducible k dependence remains, and the full velocity information is imprinted in the multi-
detector covariance matrix.

We implicitly assume throughout this work that the non-interacting plane-wave superposition
in (4.6) applies for all x. Corrections to this picture should arise from e.g. the gravitational field
of the Earth, which would slightly bend the DM trajectories between detectors. However, the DM
velocities we consider in this work are much larger than the Earth’s escape velocity, and also the
detector separations are typically much smaller than the radius of the Earth, so we are justified in
neglecting this effect.

4.1.2 The Multi-Detector Covariance Matrix

We will now outline how the statistics of the axion field, as described above, lead to a non-trivial
covariance matrix in the data collected by N experiments. In this section we will simply state the
key results, leaving a derivation to App. C.2.

We begin by considering the minimal case of N = 1. Suppose that a single experiment takes a
time-series of N measurements {Φn(x) = Φ(x, n∆t)}, with n = 0, 1, . . . , N − 1, collected over a
time T , so that ∆t = T/N . In order to isolate a signal oscillating at a particular frequency, as we
expect the axion to do, we calculate the discrete Fourier transform

Φk(x) =
N−1∑

n=0

Φn(x) e−i2πkn/N . (4.7)

The transform is indexed by an integer k = 0, 1, . . . , N − 1, which is related to the angular fre-
quency, ω = 2πk/T . We will switch back and forth between talking about frequency ω and
wave-number k as convenient. It is convenient to partition the Fourier transform into appropriately
normalized real and imaginary parts as follows,

Rk(x) =
∆t√
T

Re [Φk(x)] ,

Ik(x) =
∆t√
T

Im [Φk(x)] .

(4.8)

We can then write the power spectral density (PSD) as,

SkΦΦ =
(∆t)2

T
|Φk(x)|2 = R2

k(x) + I2
k(x). (4.9)
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We will assume throughout that T is long enough such that the signal is sufficiently well resolved,
i.e. the bandwidth of the Fourier transform 2π/T is much smaller than the width of the signal in
frequency space. When specifying Fourier components by frequency as opposed to wave-number
we use notation as in SkΦΦ(x)→ SΦΦ(x, ω).

As shown in [80], both R(x, ω) and I(x, ω) are normally distributed with zero mean and vari-
ance given by

〈R2(x, ω)〉 = 〈I2(x, ω)〉 =
A

2

πf(vω)

mavω
, (4.10)

where we have defined vω =
√

2ω/ma − 2 as the axion velocity corresponding to a frequency ω,
and the speed distribution is defined as

f(v) =

∫
d3vf(v)δ(v − |v|) (4.11)

This implies, for example, that SΦΦ(x) is an exponentially distributed quantity, with mean

〈SΦΦ(ω)〉 = A
πf(vω)

mavω
. (4.12)

We can understand the velocity dependence by looking back to (4.5); the signal measured by a
detector Φ is proportional to the time-dependent axion axion field, and since a is proportional to√
f(v), we obtain a power spectrum SΦΦ proportional to f(v).
In any real experiment there will also be background. However, as long as the background is

normally distributed in the time domain – as expected for, for example, thermal noise, SQUID flux
noise, or Josephson parametric amplifier noise – then both R(x, ω) and I(x, ω) remain normally
distributed but with variance

〈R2(x, ω)〉 = 〈I2(x, ω)〉 =
A

2

πf(vω)

mavω
+
λB(ω)

2
, (4.13)

where λB(ω) encapsulates the variance of the potentially frequency-dependent noise from the
background sources only.

Note that Rk(x) and Ik(x) are uncorrelated; in particular, the 2× 2 covariance matrix for these
two quantities is simply

Σk =

(
A

2

πf(vω)

mavω
+
λB(ω)

2

)[
1 0

0 1

]
. (4.14)

This implies that for a single detector, all information about the signal is contained in the PSD

89



SΦΦ(x). Further, as shown in (4.14), the location x never enters for N = 1. Even if we chose
our coordinates such that k · x 6= 0, the overall phase remains unphysical as it would vanish when
computing the modulus squared in (4.9).

Now let us extend the discussion to the case of interest: data collected by N experiments at
positions xi, with i = 1, 2, . . . ,N . For each data set, we calculate the real and imaginary parts of
the Fourier transform as above. The information collected by all detectors can then be organized
into the following 2N dimensional data vector,

dk = [Rk(x1), Ik(x1), . . . , Rk(xN ), Rk(xN )]T . (4.15)

Correlations between the real and imaginary part for any given detector will be identical to the
N = 1 case discussed above. However, DM interferometry will reveal itself through non-trivial
correlations amongst the different detectors.6 Indeed, as justified in App. C.2, dk will be a 2N -
dimensional Gaussian random variable with zero mean and a symmetric (2N × 2N )-dimensional
covariance matrix given by

Σk =




〈Rk(x1)Rk(x1)〉 〈Rk(x1)Ik(x1)〉 〈Rk(x1)Rk(x2)〉 . . . 〈Rk(x1)Ik(xN )〉
〈Ik(x1)Rk(x1)〉 〈Ik(x1)Ik(x1)〉 〈Ik(x1)Rk(x2)〉 . . . 〈Ik(x1)Ik(xN )〉

... . . .

〈Ik(xN )Rk(x1)〉 〈Ik(xN )Ik(x1)〉 〈Ik(xN )Rk(x2)〉 . . . 〈Ik(xN )Ik(xN )〉



,

〈Rk(xi)Rk(xj)〉 = 〈Ik(xi)Ik(xj)〉 =
1

2
[cij(ω) + δijλB,i(ω)] ,

〈Rk(xi)Ik(xj)〉 = −〈Ik(xi)Rk(xj)〉 =
1

2
sij(ω).

(4.16)

Here λB,i(ω) is the background observed by the ith experiment, and its contribution is purely
diagonal. The axion signal, however, induces off-diagonal correlations, which we quantify in
terms of

cij(ω) =
π
√
AiAj

mavω
F cij(vω),

sij(ω) =
π
√
AiAj

mavω
F sij(vω),

(4.17)

6Our analysis assumes that the experiments have identical timestamps on the data, or equivalently that the relative
phase of the signal at each experiment is precisely known. Of course, this is not exactly true and in general there will
be an additional contribution to the phase of Φ in (4.7) of the form ω∆τ , where ∆τ is the timing error. As long as
∆τ � |xij |v, this contribution can be safely neglected. For two detectors with |x12| ∼ 50 m and v ∼ 200 km/s, this
implies ∆τ � 10−10 s. Typical atomic clocks have timing error of 10−9 s/day, so the required ∆τ can be achieved by
synchronizing the two experiments to an atomic clock over data-taking intervals of about 2.5 hours, which is sufficient
for the daily modulation analysis in Sec. 4.4.
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with

F cij(v) =

∫
d3vf(v) cos(mav · xij)δ[|v| − v],

F sij(v) =

∫
d3vf(v) sin(mav · xij)δ[|v| − v].

(4.18)

By translation invariance, the entries of the correlation matrix only depend on the relative distances
xij ≡ xi − xj . These expressions then simplify for the correlations amongst a single detector, as
F cii(v) = f(v) andF sii(v) = 0. But for i 6= j, the expressions in (4.18) contain a modulated version
of the full velocity distribution, allowing us to extract non-trivial directional information about the
velocity distribution f(v) with multiple detectors separated by distances of order the de Broglie
wavelength, where the integrand in (4.18) exhibits maximal variation. We note that the formalism
we have developed assumes that the velocity distribution is stationary, or at least varies slowly
on timescales compared to the axion coherence time. In Sec. 4.4 we will develop a formalism to
take into account the daily modulation of f(v) through a joint likelihood over multiple data-taking
intervals.

4.2 A Likelihood for Multi-Detector Axion Direct Detection

Having understood the statistics underlying the data collected by multiple detectors, we now out-
line how to incorporate these lessons into an appropriate likelihood. The likelihood will be a simple
generalization of the axion likelihood (generally applicable to wave-like DM) introduced in [80],
and we will closely follow their approach. However, unlike in [80], we work explicitly with the
data as represented in Rk and Ik rather than the PSD, as the former notation exposes the full set
of multi-detector correlations, as captured by Σ in (4.16). We will then outline how we can ex-
tract information about the parameters of f(v) using this likelihood, exploiting where possible the
asymptotic Asimov procedure [172] to determine results analytically. In Sec. 4.3 we will then put
the formalism to use in the context of several toy examples designed to highlight where interfer-
ometry opens up new avenues, and build intuition for the more realistic scenarios considered in
Sec. 4.4.

4.2.1 The Multi-Detector Likelihood

As detailed in Sec. 4.1, we imagine we have a data set collected by N experiments, which each
perform a time series of N measurements collected at a frequency f = 1/∆t of a quantity Φ ∝ a.
The real and imaginary part of the discrete Fourier transform of each experiments data set is con-
structed according to (4.8), and then arranged into a single data set d = {d0,d1, . . . ,dN−1}, with
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dk as given in (4.15). We then define a modelM with parameter vector θ that has nuisance pa-
rameters θnuis describing the backgrounds in the individual experiments (encapsulated by λB,i(ω))
and signal parameters θsig that characterize the axion contribution. For example, θsig includes gaγγ ,
ma, and model parameters that describe the DM velocity distribution f(v). Then, as the data set is
distributed according to a multivariate Gaussian, the appropriate likelihood is given by,

L(d|M,θ) =
N−1∏

k=0

exp
[
−1

2
dTk · Σ−1

k (θ) · dk
]

√
(2π)2N |Σk(θ)|

, (4.19)

where |Σk(θ)| is the determinant of the covariance matrix.
The utility of the likelihood function is that it facilitates inferences regarding the signal param-

eters, θsig, from the data. The ultimate goal of the axion DM program would be to infer a nonzero
value of A, and hence the existence of a coupling between the Standard Model and DM, for ex-
ample gaγγ . Taking a frequentist approach to that problem, it is useful to define the following test
statistic (TS) from the profile likelihood:

Θ(θsig) = 2[lnL(d|M, {θ̂nuis,θsig})− lnL(d|M, {θ̂nuis,θsig = 0})]. (4.20)

In each likelihood, θ̂nuis denotes the value of the nuisance parameters that maximizes the likeli-
hood for the given signal parameters. The TS is then a function of the signal model parameters.
In particular, this means that in the first term in (4.20) the nuisance parameters are uniquely de-
termined at each θsig point by the values which maximize the log likelihood. The second term
in (4.20) is evaluated on the null model θsig = 0, which can be achieved by setting the signal
strength parameter A to zero.

The TS in (4.20) is convenient for quantifying the significance of a putative signal, and we will
use it throughout the following analysis. In App. C.4 we describe a data-stacking procedure which
reduces the data storage requirements for practical applications of our formalism.

4.2.2 Asimov Test Statistic

In order to build intuition for the information accessible to multiple detectors, we will use the Asi-
mov data set [172] to study the asymptotic TS analytically. More precisely, the Asimov analogue
of the TS in (4.20) is the average value taken over data realization,

Θ̃(θsig) = 〈Θ(θsig)〉 , (4.21)
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where the expectation value is taken on the data. In order to evaluate the asymptotic TS, it is
convenient to separate the model prediction, which enters through Σ, into background and signal
contributions:

Σ = B + S . (4.22)

Referring back to (4.16), recall that the background is purely diagonal:

B =
1

2
diag(λB,1, λB,1, . . . , λB,N , λB,N ). (4.23)

Using this partitioning of the model prediction, we can then express the TS as follows

Θ =
N−1∑

k=1

(
dTk
[
B−1
k −Σ−1

k

]
dk − ln

[ |Σk|
|Bk|

])
. (4.24)

Note that the values of B appearing in this expression are understood as being set to the value re-
quired by the profile likelihood technique. In order to evaluate the Asimov form of this expression,
we only need to evaluate the average on the first term, as the average is taken over the data. This
can be evaluated as follows,

〈
dTk
[
B−1
k −Σ−1

k

]
dk
〉

= Tr
(〈

dkd
T
k

〉 [
B−1
k −Σ−1

k

])
, (4.25)

and then as the data has mean zero, we know the above expected value is simply given by the true
covariance matrix,

〈
dkd

T
k

〉
= Σk(θ = θtruth) = Σt

k . (4.26)

Here the truth parameters can be considered as, for example, the parameters one would use when
generating Monte Carlo to simulate expected experimental results. For instance, to estimate the
expected limit, the truth parameters would commonly have A = 0, whereas if we are estimating
our sensitivity to features in f(v), we will take A 6= 0 in the Asimov data. In this work we are
interested in the latter case, and therefore we will further assume the background has been fixed to
the true value as a result of the profile likelihood technique,

Σt
k = Stk + Bk , (4.27)
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where St is the true signal model and the same B appears in both the Asimov and model predic-
tions. We further assume that the signal is always parametrically smaller than the background,
which is the regime we will be in for any realistic experimental setup.7 Implementing these as-
sumptions, the Asimov form of (4.24) is8

Θ̃(θsig) ≈
N−1∑

k=1

Tr

[(
Stk −

1

2
Sk

)
B−1
k SkB

−1
k

]
. (4.28)

In (4.28) we have a convenient form of the expected TS that is amenable to analytic study.
In the present work, our particular interest is the information contained in f(v) that we can only
access as a result of DM interferometry. As such, it is convenient to evaluate a form of the Asimov
TS, where all parameters except for those that control f(v), as encoded in F cij(v) and F sij(v) in
(4.18), are set to their true values in the presence of a non-zero signal. If we further assume that
our frequency resolution is sufficiently fine with respect to the scales over which the signal and
background vary, then we can approximate the sum over Fourier components k with an integral
over frequencies ω, or equivalently speeds v =

√
2ω/ma − 2. Under these assumptions, the TS

becomes

Θ̃ =
Tπ

ma

∫
dv

v

N∑

i,j=1

AiAj
λB,iλB,j

[
F cij(v)

(
F c,tij (v)− 1

2
F cij(v)

)
+ F sij(v)

(
F s,tij (v)− 1

2
F sij(v)

)]
.

(4.29)

Much of the remainder of this work is devoted to studying the implications of this result.

4.2.3 Limiting Cases of Zero and Infinite Separation

We can use (4.29) to confirm basic asymptotic scalings expected for an analysis performed with
DM interferometry. To begin with, the Asimov TS for a single detector with response A and
background λB, recalling F sii(v) = 0 and F cii(v) = f(v), is given by

Θ̃N=1 =
A2Tπ

ma

∫
dv

v

f(v)

λ2
B

(
f t(v)− 1

2
f(v)

)
. (4.30)

This expression agrees with the result in [80], which was derived for a single detector when ana-
lyzing the PSD. Importantly, we emphasize once more that (4.30) is only dependent on the speed

7This assumption also ensures the validity of the fixed background being the same in e.g. (4.27) and (4.24); if the
signal is comparable to the background, then varyingA will generically alter the background determined by the profile
likelihood technique.

8To derive this result, the following identity is useful: ln |M| = Tr lnM, for a matrix M.
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distribution, so directional parameters which affect the velocity distribution but not the DM speed
distribution are inaccessible. Before moving on to multiple detectors, we note that the expected
discovery significance, which we denote TS, is given by the Asimov Θ evaluated at the model
parameters that maximize the likelihood, which are the truth parameters. Setting f(v) = f t(v)

in (4.30) above gives

TSN=1 ≈
A2Tπ

2ma

∫
dv

v

f(v)2

λ2
B

. (4.31)

In order to extract directional parameters we need at least two detectors. To that end, consider
our expression in (4.29) for N = 2. For simplicity, we take A1 = A2 = A and λB,1 = λB,2 = λB,
in which case the Asimov TS becomes

Θ̃N=2 =
2A2Tπ

ma

∫
dv

v λ2
B

[
f(v)

(
f t(v)− 1

2
f(v)

)

+ F c12(v)

(
F t,c12 (v)− 1

2
F c12(v)

)

+ F s12(v)

(
F t,s12 (v)− 1

2
F s12(v)

)]
.

(4.32)

In particular, the discovery TS is given by

TSN=2 =
A2Tπ

ma

∫
dv

v

f(v)2 + F c12(v)2 + F s12(v)2

λ2
B

. (4.33)

Through F c12 and F s12, the discovery TS depends on the spatial separation of the two experiments
d = |x12|. In the limit where the experiments are close with respect to the DM coherence length,
i.e. d � λc, then the two experiments see the same phase of the DM wave (k · x does not vary
appreciably between them). In this case, we would expect a coherent enhancement in the signal.
Defining for future use

TS0 = lim
d→0

TS =
2A2Tπ

ma

∫
dv

v

f(v)2

λ2
B

, (4.34)

we see from (4.18) that for x12 = 0 we have F c12(v) = f(v) and F s12(v) = 0, so TS0 = 4TSN=1 .

The N 2 = 4 enhancement of the TS represents a coherent enhancement, a point emphasized
in [228]. This configuration provides a benchmark for the largest TS we can achieve for a gen-
eral N = 2 configuration, and therefore will provide a convenient benchmark in the studies that
follows. On the other hand, for widely separated detectors with d � λc, the DM fields will add
incoherently. For the problem at hand, again returning to (4.18), we see that the sine and cosine
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factors will oscillate rapidly, driving the integrals to zero. What remains is,

lim
d→∞

TS =
A2Tπ

ma

∫
dv

v

f(v)2

λ2
B

= 2TSN=1 , (4.35)

so that the TS now only scales as N , an incoherent enhancement.
The above argument can be readily generalized to N detectors. Typically the signal strength

A is proportional to g2
aγγ , so for N experiments all with pairwise separations d � λc, we expect

our sensitivity to gaγγ should scale coherently as N 1/2. If instead all experiments have d � λc,
the scaling is reduced to N 1/4, and for scenarios outside these two extremes the scaling will be
somewhere in between. However, it is precisely this intermediate regime, where neither F reduces
to the speed distribution nor vanishes, where we expect to be able to extract additional information
about f(v). We turn to the problem of estimating parameters of f(v) in the context of the Asimov
data set in the next section.

4.3 Asimov Parameter Estimation

In this section we will use (4.32) to perform frequentist parameter estimation and show explicitly
that additional information about f(v) can be extracted via DM interferometry. For the purpose
of simplifying the discussion, we will restrict our attention to the case of two detectors with equal
background and detector responses as given in (4.32). However, the entire discussion can be readily
generalized to N arbitrary detectors by using the asymptotic TS expression in (4.29).

To be specific, imagine we are interested estimating a set of signal parameters α, which are a
subset of the full set of signal parameters α ⊂ θsig related to f(v), and which have true values αt.
The Asimov procedure allows us to study our ability to infer these parameters. For example, it is
straightforward to confirm that Θ̃(α) is maximized for α = αt.9 Beyond the best fit values, we are
interested in determining the associated expected uncertainties and correlations between the vari-
ous parameters, which are encompassed in the covariance matrix between the parameters, which
we denote C. An estimator for this covariance matrix is given by the inverse Fisher information
evaluated at the maximum likelihood, C−1 = I(α̂) (again α̂ are the parameters that maximize the
likelihood), where

Iij(α) = −∂
2 lnL(α)

∂αi∂αj
= −1

2

∂2Θ(α)

∂αi∂αj
, (4.36)

where we use (4.20). Given this relation, asymptotically our estimate for the covariance matrix is

9We emphasize that there is no guarantee that other parameters besides αt cannot also maximize the likelihood.
Indeed we will see exactly this possibility realized in a number of examples considered below.
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given by

[C̃−1]ij =− 1

2

∂2Θ̃(α)

∂αi∂αj

∣∣∣∣∣
α=αt

(4.37)

=
A2Tπ

ma

∫
dv

v λ2
B

[(∂if(v))(∂jf(v))

+ (∂iF c12(v))(∂jF c12(v)) + (∂iF s12(v))(∂jF s12(v))] .

This expression involves the following shorthand for derivatives of functions then evaluated at their
truth values, ∂i = ∂/∂αi|αi=αti . The expression in the first line of this result lays bare a simple fact:
if Θ̃ has no dependence on a particular parameter, for example the incident direction of a DM
stream, or orientation of the Sun’s motion through the DM halo, then the associated entries of the
inverse covariance matrix vanish along with our ability to estimate that parameter. For the case
of a single parameter α, we can readily invert the covariance matrix, and the above expression
simplifies to

σ−2
α =

A2Tπ

ma

∫
dv

v λ2
B

[
(∂αf(v))2(∂αF c12(v))2 + (∂αF s12(v))2

]
, (4.38)

where again all parameters are evaluated at their truth values after derivatives. We can already
calibrate our basic expectation for parameter estimation from this result. Optimal estimation of
α amounts to maximizing the right hand side of the expression; indeed, as expected, increasing
the signal strength, A, or the integration time, T , both achieve this. If a parameter can be esti-
mated from the speed distribution f(v) (in other words, ∂αf(v) 6= 0), then that parameter may
be estimated by a detector configuration with d � λc. However, the true power in the multi de-
tector setup arises for parameters invisible to a single detector, defined by ∂αf(v) = 0, but where
∂αF c,s12 (v) 6= 0. In generic cases, such parameters are optimally estimated for d ∼ λc.

Continuing, let us assume that λB is independent of frequency, in which case (4.38) becomes

σ2
α =

2

TS0

[∫
dv

v
(f t(v))2

]{∫
dv

v

[
(∂αf(v))2 + (∂αF c12(v))2 + (∂αF s12(v))2

]}−1

, (4.39)

expressed in terms of TS0 as introduced in (4.34). In particular, this result demonstrates the ex-
pected scaling of σα ∼ (TS0)−1/2; the exact details will require a specific f(v) and experimental
configuration. In the following subsections we will continue this line of thinking, demonstrat-
ing in several toy examples that a second detector can lift degeneracies from the single detector
likelihood.
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Figure 4.2: The modified speed distribution, F c12(v), that carries the imprint of DM interferometry.
Here we show the particularly simple example of an isotropic SHM forN = 2 detectors, in which
case the expression is given in (4.40). The result is shown for various choices of the two detector
separation d as compared to the axion coherence length λc = (mav0)−1, with v0 = 220 km/s.
The limiting cases of F c12(v) → f(v) for d � λc and F c12(v) → 0 for d � λc are apparent. For
d ∼ λc, however, the profile is modulated with the interference inherent in the cross-spectrum.
In this simple case, there is no additional information about the velocity distribution that may be
extracted by having multiple detectors.

4.3.1 The Minimal N = 2 Example

We begin our exploration of the above parameter estimation formalism with a simple scenario:
N = 2 detectors measuring DM drawn from an isotropic velocity in the laboratory frame,
4πv2f(v) ≡ f(v). This example is obviously idealized; in reality, the finite boost velocity of
the Sun about the Galactic Center implies that even an isotropic velocity distribution in the Galac-
tic frame will become anisotropic in the laboratory frame. Nonetheless, this example will provide
basic intuition for the impact of interferometry.

Invoking isotropy to perform the angular integrals, F c,s12 (v) can be computed as

F c12(v) = f(v)
sin(mavd)

mavd
, F s12(v) = 0 , (4.40)

where again d is the distance between the two detectors. Thus for this example, we see explicitly
that for d→ 0, we have F c12(v)→ f(v), whereas for d→∞, instead F c12(v)→ 0. As we will see
in the examples below, it is the dispersion v0 rather than the average speed v̄ which determines the
crossover between small and large d.
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To progress further, we assume a concrete form for f(v): the Maxwell-Boltzmann distribution,

f(v) =
4v2

√
πv3

0

e−v
2/v2

0 , (4.41)

where v0 is the velocity dispersion. Taking v0 ≈ 220 km/s, this velocity distribution is an ap-
proximation to the SHM that is expected to describe the bulk of the local DM, neglecting the finite
velocity boost of the Sun relative to the Galactic Center, which breaks the isotropy in the laboratory
frame. We will utilize the Maxwellian ansatz repeatedly in this work as an illustrative example.
In Fig. 4.2 we show F c12(v) for various choices of d/λc; there is a clear deviation from f(v) when
d ∼ λc, which is a manifestation of the nontrivial correlations in the multi-detector spectrum. Note
that we have defined, for the Maxwell-Boltzmann distribution, λc = (mav0)−1, where v0 is the
velocity dispersion parameter that enters into (4.41); this is a particular realization of (4.1). Antic-
ipating the more general scenario where the velocity distribution is not isotropic, it is precisely the
deviation from f(v) that we will use to extract information about the full velocity profile.

As we have chosen an isotropic f(v), there is no additional information to extract about the
velocity distribution in this case. Indeed, the distribution in (4.41) is defined by a single parameter,
v0, which we can envision estimating. Evaluating (4.39) analytically in this case, we find

σ2
v0

TS0

v2
0

=
8ξ

9ξ − ξ3 +
√

2(15 + 2ξ2 + ξ4)F [ξ/
√

2]
, (4.42)

written in terms of a dimensionless distance scale ξ = mav0d = d/λc, and Dawson’s integral F .
We find explicitly that σv0 is minimized for ξ → 0, i.e. d� λc, since ∂v0f(v) 6= 0.

4.3.2 The Infinitely-Cold Stream

We now consider our first example of an anisotropic velocity distribution, a DM stream, and show
that we can infer the direction of this stream using DM interferometry. In addition to the bulk SHM,
it is expected that the local DM velocity distribution could contain non-virialized substructure,
such as cold tidal streams [80, 175, 176, 183, 233–241]. Streams are characterized by low velocity
dispersions but large velocity boosts in the solar frame. Let us suppose that in the laboratory frame
the stream is boosted at velocity vstr and has velocity dispersion v0 � |vstr|. In the limit v0 → 0,
the velocity distribution approaches a delta function,

f(v) = δ3(v − vstr), (4.43)
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which has an infinite coherence length but a finite de Broglie wavelength. This is clearly an artifi-
cial example – it is the maximally anisotropic velocity distribution – but it is one we can evaluate
fully analytically. Further, a number of the conclusions that we will reach for the infinitely-cold
stream will hold also in more realistic cases. Note that for this example f(v) = δ(v − vstr), which
has no dependence on the direction of the stream, and therefore a single detector cannot infer the
direction.

As claimed, for this simple scenario, we can compute the exact global TS using (4.32), and find

Θ̃(θstr, φstr) = TS0 cos
[
madvstr(v̂str − v̂tstr) · x̂12

]
. (4.44)

We consider the TS as a function of the spherical coordinates of our test stream direction, α =

{θstr, φstr}, with the aim being to use the TS to infer the true direction of the stream, given by
αt = {θtstr, φtstr}. In this case we can also compute TS0, as defined in (4.34), and we obtain10

TS0 =
2A2Tπ

maλ2
B

δ(vstr − vstr)

vstr

. (4.45)

Now consider the angle-dependent factor in (4.44). Without loss of generality, we take x̂12 = ẑ

and define spherical coordinates with respect to x̂12, so that the argument of the cosine in (4.44)
simplifies to

(v̂str − v̂tstr) · x̂12 = cos θstr − cos θtstr , (4.46)

where θstr and θtstr are the usual polar angles in spherical coordinates. Neither azimuthal coordinate
φ appears in this expression, and hence the azimuthal angles are also absent in the TS. This implies
we cannot infer one of the angular coordinates of vtstr from the data. For our particular choice of
coordinates, we can infer the parameter θtstr, as we will describe below, but the likelihood has a flat
direction in φstr, so that we cannot infer the associated truth value. The degeneracy is physical. In
our coordinates the symmetry of the likelihood is represented by an invariance under changes in φ,
but more generally the TS is unchanged by rotations about the detector separation axis, x̂12. This
can be seen from the dependence of the TS on (v̂str− v̂tstr) · x̂12: any change in the test or true v̂str

that is perpendicular to x̂12 has no impact.
This symmetry of the TS under rotations around x̂12 is in fact not a relic of our idealized

example. Our ability to infer the direction of a velocity parameter vector that defines a given
f(v) enters through the v · x12 in F c,s12 . But as v · x12 is itself invariant to rotations of the velocity

10Note the fact that TS0 formally diverges, TS0 ∝ δ(0), is an artifact of the stream having a delta-function speed
distribution. The divergence is regulated by the finite dispersion of the stream, as we discuss below.
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about the x̂12 axis, one can show that this flat direction in the likelihood exists generally – indeed
we will see it in more realistic cases (a direct analogue is apparent in the symmetry observed
in Fig. 4.4, related to the SHM example discussed below). This symmetry will be broken by a
dependence in the likelihood on multiple detector axes that are not parallel, provided either by a
third detector or alternatively by daily modulation, where the single x̂12(t) will vary throughout
the day at different times t. We will explore this latter example in detail in Sec. 4.4 – indeed the
optimal detector configuration will be determined by maximally violating this symmetry – but until
then the symmetry will represent a basic feature of the physics.

Returning to our specific coordinate system where x̂12 = ẑ, we may perform parameter estima-
tion on the angle between the stream and detector. From (4.39), we have

σ2
θstr =

2

TS0

1

(mavstrd)2

1

sin2 θtstr
. (4.47)

Note that the uncertainty on the parameter θstr is minimized for θtstr = π/2, i.e. when the stream is
perpendicular to the two-detector axis. On the other hand, if the two vectors are parallel, θtstr = 0

or π, then we see σθstr diverges. Yet we can still infer θtstr in this case. Indeed, looking to (4.46) we
see that the asymptotic TS depends on θstr; the likelihood is not globally flat, and we can estimate
the angle from contours around the maximum likelihood. Instead, in this case there is a breakdown
of the quadratic approximation around the maximum likelihood. If we were to incorporate higher
derivatives than in (4.37), we would confirm that the likelihood is not truly flat at these points. This
of course should be contrasted with the true flat direction in the likelihood associated with φstr.
Note, however, that as θtstr approaches either 0 or π, becoming parallel to x12, the undetermined
parameter φstr is less relevant. In the limit where the two vectors are parallel, we can infer the true
direction of the stream, in spite of this degeneracy.

There is another interesting feature in (4.47): the result suggests that we can take d → ∞ to
constrain this one direction of the stream to arbitrary precision. This is a manifestation of our
assumption that the stream has no velocity dispersion: it remains coherent over arbitrary large
distances, allowing for an improved baseline over which we can measure the stream direction. To
study this feature further, imagine making this example slightly more realistic by introducing a
finite velocity dispersion v0, with v0 � vstr, such that f(v) has support in a small volume of radius
∼ v0 around vstr. For small enough v0 we would expect the results of the δ-function stream to
hold. Yet there is an important conceptual difference: the coherence length is no longer infinite
because the different waves that constitute the local DM field now have speeds that vary byO(v0).
Parametrically, the argument of the interferometric terms scale asma|v||x12| ∼ mad(vstr+O(v0)),
but with the O(v0) term varying between states. If we now take d� (mav0)−1, then the different
waves will add incoherently, suppressing the power. But if we choose d ∼ (mav0)−1, a degree of
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coherence can be maintained, along with the interference pattern carrying the information we seek
to extract (see also the orange curve d = 2λc in Fig. 4.2). Accordingly, for the optimal separation,
the scaling of the sensitivities in (4.47) is (taking sin2 θtstr ∼ 1/2 for definiteness)

σθ ∼
2√
TS0

v0

vstr

=
2√
TS0

λdB

λc
. (4.48)

In the more realistic examples we will confirm the conclusion that d ∼ λc provides the max-
imum sensitivity. There is another consequence of this choice. Taking d = (mav0)−1 in (4.44),
the prefactor of the dot product in (4.46) is vstr/v0 � 1, by definition of this being a cold stream.
Small variations in (v̂str − v̂tstr) · x̂12 will induce large variations in the argument of the cosine,
implying that the global structure of the TS is highly nontrivial. Although the maximum TS will
be attained at the true θ, there will be a pattern of local maxima with comparable TS (this result is
depicted in Fig. 4.5, and persists even with daily modulation as shown in Fig. 4.7).

4.3.3 The (boosted) Standard Halo Model

The bulk DM halo of the Milky Way is expected to be Maxwell-Boltzmann distributed as in (4.41)
in the Galactic frame, except for a possible cut-off around the escape velocity ∼500 km/s [242].
On the other hand, the Sun is boosted with respect to the Galactic frame by [243]

v� ≈ (11, 232, 7) km/s , (4.49)

in Galactic coordinates, where x̂ points towards the Galactic Center, ŷ points in the direction of
the local rotation of the disk, and ẑ points towards the Galactic north pole. Thus in the laboratory
frame (neglecting the Earth’s motion), the velocity distribution becomes that of the SHM,

f(v) =
1

π3/2v3
0

e−(v+v�)2/v2
0 , (4.50)

with a velocity dispersion v0 ≈ 220 km/s [185, 193]. Note in particular that v0 ∼ |v�| ≡ v�, so
for the SHM λc ∼ λdB. The associated speed distribution is

f(v) =
v√
πv0v�

e−(v+v�)2/v2
0

(
e4vv�/v2

0 − 1
)
. (4.51)

As we have emphasized many times already, single detectors are only sensitive to the speed distri-
bution, which only depends on v� but not the orientation of the solar velocity v̂�. Thus, a single
detector may constrain the model parameters v0 and v� (as shown in [80]), but determining the
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orientation requires multiple detectors.11

To determine the expected sensitivity to the direction v̂� we need to compute the derivatives of
F c,s12 (v) that appear in (4.39):

∂θ�F c12(v)
∣∣
θ�=θt�

=
4v3v�e

−(v2+v2
�)/v2

0

√
πv5

0

∫
dθ sin θ exp

[
−2vv�

v2
0

cos θ cos θt�

]
cos(mavd cos θ)

×
[
I0

[
2vv�
v2

0

sin θ sin θt�

]
cos θ sin θt� + I1

[
2vv�
v2

0

sin θ sin θt�

]
sin θ cos θt�

]
,

(4.52)

where I0,1 are both modified Bessel functions (an analogous expression holds for F s12). In com-
puting this result we have again chosen coordinates x̂12 = ẑ, but left the direction of v̂� arbitrary,
defined by (θt�, φ

t
�). The most important feature of this result is that it exhibits no dependence

upon φt�: again, there is a symmetry in the likelihood for rotations around x̂12. Beyond this, we
can also see that the derivative vanishes when v� is parallel to the detector separation (θt� = 0).
Accordingly, in this case we will find σθ� diverges, as we did for the stream. But again this is not a
global flat direction in this case; the likelihood is just sufficiently flat at the maximum that the first
three derivatives vanish.

To proceed beyond these analytic insights, we will compute the remaining results numerically.
We define the angle between v� and x12 as θ�. To begin with, we take a generic value of θt� = π/4

and consider how well we can infer this angle as a function of detector separation. The results are
shown in Fig. 4.3. Unlike for the δ-function stream, there is now a minimum at a finite value of
d, and as argued on general grounds this occurs when d ∼ λc = (mav0)−1. That the uncertainty
diverges for d → 0 is consistent with the fact that a single detector cannot infer this direction.
In more detail we find the minimum occurs at d ∼ 2λc, where we obtain σθd ≈ 2/

√
TS0. For

example, if TS0 = 25, corresponding to a 5σ local significance detection with d = 0, then at
the distance d ∼ 2λc corresponding to minimum uncertainty, the solar velocity direction with
respect to the detector axis could be localized to 0.4 rad ∼ 20◦ on the sky. We can understand
the magnitude of σθd at its minimum from (4.48): the SHM has the form of a stream where v0 ∼
vstr = v�, and therefore we would expect σθd ×

√
TS0 ∼ 2, exactly as observed.

However, as we have emphasized already, it is important to keep in mind that our estimate
of σθ� is a measure of the expected curvature of the likelihood in the vicinity of the true value
and does not capture the global structure of the expected likelihood function. To illustrate these
features we fix d = 2λc for definiteness and illustrate the global map Θ̃(θ�, φ�)/TS0 in Fig. 4.4,
for three different values of θt�. Note that we have divided out the overall significance TS0, so that
exactly how well we can localize the direction will depend on how significantly the DM signal

11In principle annual modulation may be used by a single detector to infer v̂�, as discussed in [80, 183].
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Figure 4.3: The expected uncertainty on the angle between the detector axis and solar velocity,
θ� = arccos(v̂� · x̂12), as a function of d/λc = d × mav0. In this example we have set the true
orientation to θt� = π/4. With this configuration, we find that the maximum precision is obtained
for d ≈ 2λc.

has been measured. However, the expected global structure of the TS will be a rescaled version
of these maps. In each case the true v̂� that we are seeking to infer is located in the center of
the Mollweide projection maps. The left panel illustrates the scenario with x̂12 = v̂� (θ� = 0),
the center has θ� = π/4, while in the right panel two directions are perpendicular and x̂12 points
between the poles of the map (θ� = π/2). In all cases the symmetry of the TS around the x̂12 axis
is apparent. The only case where this flat direction in the maximum TS is not an obstruction to
determining the true direction of v̂� is when θd = 0. In that case we are still able to localize the
true direction, although we note the likelihood is relatively flat around the maximum (consistent
with the second derivative vanishing). In Sec. 4.4 we illustrate how daily modulation generically
allow us to fully determine both of the angles associated with the direction of v�.

4.3.4 The Sagittarius Stream

As a final example working with a single static x̂12, we return to the case of the cold stream
with non-vanishing velocity dispersion. We expect many of the conclusions reached in Sec. 4.3.3
to hold in this case. In particular, the symmetry around the x̂12 axis will remain, but we will
see explicitly in this case the non-trivial structure induced in the global likelihood by the ratio
of v0/vstr ∼ λdB/λc � 1. To make the example concrete, the DM component of the Sagit-
tarius stream may extend to the Sun’s location, and estimates [194, 244] suggest that it could
make up ∼5% of the local DM density. However, the DM associated with the stream would be
highly collimated in phase space; we follow [80] and model the Sagittarius stream DM veloc-
ity distribution by a boosted Maxwellian as in (4.50), but with v0 = 10 km/s and v� replaced
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Figure 4.4: (Left) A Mollweide projection of the Asimov test statistic Θ̃(θ, φ) for the SHM divided
by the co-located detection significance TS0. The detectors are configured so that the displacement
vector between them is parallel to the SHM boost velocity, and the Mollweide plot is rotated so that
it is centered on the maximum test statistic. (Center) As on the left, but for a detector configuration
where the displacement vector is at a 45◦ angle to the North (θt� = π/4) with respect to the SHM
boost velocity. (Right) As on the left, but for a detector configuration where the displacement
vector is perpendicular to the SHM boost velocity (θt� = π/2). In this configuration the location
of the boost velocity can only be localized to a great circle on the celestial sphere.

by vstr = (0, 93.2,−388) km/s [175, 176]. We consider the stream in isolation, as opposed to
in conjunction with the bulk SHM DM phase-space distribution, because even though the stream
component is sub-dominant in terms of DM density, it still dominates in the narrow region of phase
space where the Sagittarius stream has compact support. To simplify the discussion we will simply
take vstr = 400 km/s, with a direction that we will again specify by its angle with respect to the de-
tector axis (given the degeneracy in rotations about that axis). Note that this example could apply
equally well to other putative DM streams, such as the newly discovered S1 stream [239–241].

To begin with, in the left panel of Fig. 4.5 we show the expected uncertainty on the recovered
angle between the stream and detector, θstr, as a function of the distance in units of λc = (mav0)−1,
for a true value θtstr = π/4. This figure is the stream analogue of what we showed for the SHM
in Fig. 4.3. Once more, following the general discussion in Sec. 4.3.2, the optimal sensitivity is
achieved for d ∼ λc, and from (4.48), we expect σθd ×

√
TS0 ∼ 2v0/vstr ∼ 0.05 at the minimum-

uncertainty distance, compatible with what we see in Fig. 4.5.
However, just like in the case of the SHM it is important to also examine the global properties

of the TS in addition to the curvature of the expected TS at the true parameter values. Towards
that end, on the right of Fig. 4.5 we show the expected TS Θ̃, normalized to TS0, as a function
of the reconstructed angle between the stream and detector, θstr. For this figure we have fixed the
true orientation at θtstr = π/4 along with the separation d = 2λc. We see that Θ̃ drops off quickly
around the true value of θstr = π/4 (vertical dashed), but that there is non-trivial structure with
local maxima at larger and smaller θstr values. This is a direct manifestation of the non-trivial
interference patterns discussed in Sec. 4.3.2 for cold streams: the large ratio vstr/v0 enters into the
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Figure 4.5: (Left) As in Fig. 4.3, but for the Sagittarius (SGR) stream rather than for the SHM. As
before, the maximum precision for the inferred value of θstr is achieved atmav0d ≈ 2, although the
overall dependence is somewhat softened outside of the extremes at mav0d = 0 and mav0d = 2π.
The values of σθstr ×

√
TS0 are also considerably smaller than those found in the SHM example,

indicating that the angle θstr can be reconstructed with much greater precision for the SGR stream
as compared to the SHM. (Right) The Asimov TS Θ̃(θstr) for the SGR stream rescaled by the co-
located detection significance TS0 as a function of θstr for a detector configuration where the true
stream direction is θtstr = π/4 (dashed vertical line). We have fixed mav0d = 2. The TS Θ̃(θstr)
is maximized at the true value of θstr, but there is considerable nontrivial global structure with a
large number of local minima and maxima in Θ̃.

argument of the trigonometric functions in F c,s12 (v).

4.4 Daily Modulation

One of the most dramatic signatures of DM interferometry is the unique daily modulation signal
available to multiple detectors. This effect, which we describe in the current section, would be a
smoking gun signature that an emerging excess has a DM origin, and it also allows two detectors
to better determine geometric parameters describing the velocity distribution. The basic idea is
simply that for two detectors fixed at generic locations on the surface of the Earth, the separation
vector x12 is rotating in the inertial Galactic frame throughout the day. This is in contrast to
the angular parameters entering in the DM velocity distribution, such as the Solar direction v̂�,
which should always point in the same Galactic direction, regardless of the orientations of the
detectors at any point in time on Earth. The rotation of x12 with respect to the fixed v̂� implies
that we will sample a variety of angles between the two vectors, and therefore vary the modulation
of the speed distributions in F c,s12 (v), as already depicted in Fig. 4.1. Critically this will lift the
flat direction in the maximum likelihood associated with rotations around x12 that we observed
repeatedly in Sec. 4.3: as the likelihood will now depend on a collection of different vectors x12(t)
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, the symmetry that exists around any one of them will not be preserved in the full TS.
In the rest of this section we divide the discussion into three parts. Firstly, we describe how

to construct the likelihood for the generic case of N detectors incorporating daily modulation and
describe how it is straightforward to generalize our full formalism to this case. We then focus on
the specific case ofN = 2 and show, within the Asimov formalism, how the examples of the SHM
and Sagittarius stream discussed above are modified in the presence of daily modulation. Finally,
we turn to a Monte Carlo simulation of a realistic example and demonstrate how, within a day, a
resonant experiment could constrain the direction of the solar velocity vector, v�, that controls the
SHM to sub-degree accuracy.

4.4.1 A Likelihood with Daily Modulation

So far in this work, we have envisioned a set of N experiments collecting measurements of the
signal-plus-background frequency spectra for a duration of time T while the detector separations
were fixed with respect to the boost velocity of the DM component under consideration. However,
this framework cannot be extended to the case of daily modulation, as the signal prediction will
fundamentally be varying over a 24-hour period. In order to properly account for this effect, the
data must be collected in time intervals of duration T � 24 hours and analyzed with a joint
likelihood over all the collected intervals. In detail, if we imagine that we collect M such time
intervals, indexed by r = 0, 1, . . . ,M−1, then for each of these we will have a data set dr = {dk,r},
where again k labels the Fourier mode. For each data set dr, we can compute the likelihood as in
(4.19), and the full joint likelihood is the product of these over r. Explicitly, we have

L(d|M,θ) =
M−1∏

r=0

L(dr|M,θ) =
M−1∏

r=0

N−1∏

k=0

exp
[
−1

2
dTk,r · Σ−1

k,r(θ) · dk,r
]

√
(2π)2N |Σk,r(θ)|

. (4.53)

Importantly, note that we have also attached an index r to the signal prediction Σ(θ), as we need
to account for the variation of the detector separations xij throughout the day.

In a similar fashion the full formalism of Secs. 4.2 and 4.3 can be extended to include the varied
detector orientation: within a given sub-interval we simply adjust xij as appropriate, and then
we form joint quantities by combining these as in the likelihood above. To provide just a single
illustrative example, the Fisher information computed in (4.36), would become

Iij(α) = −1

2

M−1∑

r=0

∂2Θr(α)

∂αi∂αj
, (4.54)

with other expressions similarly generalized.
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4.4.2 Asimov Examples with Daily Modulation

East-West North-South

0.26 0.68Θ̃(θ, φ)/TS0 0.26 0.68Θ̃(θ, φ)/TS0

Figure 4.6: As in Fig. 4.4, we construct Mollweide projections of the Asimov test statistic Θ̃(θ, φ)
for the SHM rescaled by the co-located detection significance TS0. However, we now perform
a joint likelihood over data collected over a 24-hour period so that the daily modulation of the
detector displacement vector produces a time-varying signal, which helps break degeneracies in
the reconstructed directional parameters. The Mollweide projection for a configuration in which
the detectors are oriented along an East-West (North-South) orientation is shown on the left (right).
While the results of obtained in an East-West configuration do not depend on the latitude of the
detectors, the North-South configuration results do, so for definiteness, we have taken the detectors
to be located in New Haven, CT, the site of the HAYSTAC detector. In both configurations, the
SHM boost velocity direction can be localized effectively, although there remains a non-trivial
degeneracy in the East-West map between two points on the sphere.

While the alteration to our formalism imposed by daily modulation is minimal – as exhibited in
(4.53) – the impact on the results can be dramatic. We will demonstrate this with several examples
in this section, all within the Asimov formalism. To begin with, we consider usingN = 2 detectors
in order to determine the direction of v� in the SHM. This is the same problem we considered
in Sec. 4.3.3, which produced the results shown in Fig. 4.4, where there is a clear degeneracy
associated with rotations around x12. We will now see explicitly that daily modulation helps lift
this degeneracy. To do so, let us suppose that the DM velocity distribution follows the SHM in
(4.50), with v0 = 220 km/s and v� = 232 km/s. Our goal, as previously, will be to infer the
direction of v̂�. We consider two detectors separated by d = 2λc = 2/(mav0), and for definiteness
we place one detector at a latitude 41.3◦ N and longitude 72.9◦W. In Fig. 4.6 we show results where
a second detector is placed a distance d to the East (left) or North (right) of this detector with data
stacked at two-hour intervals over the 24-hour period.12 For the North-South configuration, we

12Note that since the Earth’s rotation is aligned with the East-West direction, results obtained for the East-West
configuration are independent of the exact experimental locations, so long as the detector separation is much smaller
than the Earth’s radius of curvature. For any other configuration, however, the result will generically depend on
latitude.
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see that the direction can be well-localized: a high significance axion detection in this case would
lead to a precise estimation of the direction of v�, as we show explicitly in Sec. 4.4.3 below. This
configuration clearly outperforms an East-West configuration, where there remains a degeneracy
that has not been fully lifted by the daily modulation. Additionally, the maximum test statistic
realized in the North-South configuration would be approximately 10% larger than one realized in
an East-West configuration for otherwise identical data collections.

East-West North-South

0.05 0.62Θ̃(θ, φ)/TS0 0.05 0.68Θ̃(θ, φ)/TS0

Figure 4.7: As in Fig. 4.6, but for the Sagittarius stream example. For a fixed axion mass, the
physical detector separation d = 2λc is a factor of 20 larger than in Fig. 4.6 because of the larger
coherence length of the stream. While there are many local maxima in both configurations, the
North-South orientation produces only a single global maximum, at the true detector localization,
while the East-West orientation leads to two degenerate global maxima (one at the true detector
location and the other displaced). An animated version of these figures, showing how the local-
ization improves throughout the day as more orientations of x12 are sampled, can be found at
github.com/joshwfoster/DM Interferometry.

Using the same experimental design, we can also revisit the example of the Sagittarius stream
discussed in Sec. 4.3.2. In Fig. 4.7 we construct the analogue of Fig. 4.6, but now for the much
colder stream. Note that since v0 for the stream is a factor of ∼ 20 smaller than for the SHM,
the optimal detector distance d = 2λc is a factor of 20 larger than in Fig. 4.6. Although in both
configurations the TS is maximized at the expected location on the sphere, nontrivial structure
due to the presence of many local maxima are apparent in both the North-South and East-West
configurations. We note that, as in the SHM example, there is only one global maximum for the
North-South configuration, located at the true direction of the stream. However, there remains a
degeneracy in the East-West configuration.

The degeneracy represented in the Mollweide maps for the SHM and the Sagittarius stream in
the East-West configuration is exact. It has its origin in the dimensionality of the space swept out by
the detector separation vector x12 over the course of the day. As studied in Sec. 4.3, for data taken
at fixed x12, the test statistic Θ̃(v̂) evaluated as a function of the orientation of the boost velocity
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depends only on the angle between v̂ and x12. As a result, Θ̃(v̂t) = Θ̃(v̂′) where v̂t is the true
boost direction and v̂′ is a velocity obtained by reflecting v̂t across any plane which contains x12.
For detectors in an East-West configuration, the Earth’s rotation produces a daily modulation of
x12 that is confined to the plane orthogonal to the Earth’s rotational velocity vector. As a result, the
TS measured at each point in the day, and therefore the sum of such TSs, will be exactly preserved
under reflections of the boost velocity across that plane. This means that accounting for daily
modulation in the East-West configuration the directional parameters can only be determined up to
a reflection across the plane perpendicular to the Earth’s rotation axis. By contrast, for detectors
in the North-South configuration, the set of detector separation vectors throughout the day will
generically not be co-planar, and thus there is no analogous degeneracy.13

4.4.3 Monte Carlo Example with Daily Modulation

As a realistic demonstration of our ability to perform parameter estimation using the daily modu-
lation effect, we generate a Monte Carlo realization of data in the North-South SHM scenario (as
depicted in the right panel of Fig. 4.6) using A = 38.25 and λB = 1, both of which we take to be
dimensionless without loss of generality. The values of A and ma was chosen to generate a signal
of expected 5σ significance during a 100-second collection in a single detector to mimic a realistic
resonant scanning strategy in which one of two independently operated detectors detects an excess
and both are then used for a 24-hour observation of the excess candidate. We constructed 24 hours
of Monte Carlo data for this signal, taking a detector separation of d = 2λc; with these parameters,
the excess would be expected to appear at TS0 ≈ 60, 000 after 24 hours. While large, this TS is
consistent with the power of a resonant strategy once the axion mass is known.

Using uniform priors on A between [33, 43], on v� between [212.5, 252.5] km/s, on v0 between
[200, 240] km/s, on λB between [.999, 1.001] and a uniform prior on the sphere for (θ�, φ�), we
construct a Bayesian posterior distribution for the model parameters. The results of an analysis
performed using Multinest [202,245–247] with 2,000 live points are shown in Fig. 4.8. In particu-
lar, we see that the true location of the stream has been located to degree precision. This precision
can be understood from (4.48), which gives the expectation σθ� ∼ 0.5◦, consistent with what is
shown in the figure. Let us suppose that the Sagittarius stream, as modeled in this work, comprises
10% of the local DM. In the example above, we would expect that after 24 hours the location of
the stream could be localized to∼ 10′; interestingly, this represents greater accuracy for stream lo-
calization than localization of the bulk SHM even though the stream is a sub-dominant component

13An exception occurs if the two detectors have the same longitude and equal and opposite latitudes (i.e., opposite
sides of the equator on the same line of longitude). An extreme example would be having one detector at each pole.
Then, x12 is parallel to the rotation axis of the Earth and does not change direction throughout the day. Consequently,
daily modulation provides no additional information, and the full degeneracy that was present throughout Sec. 4.3
returns.

110



A = 38.01+0.29
−0.28

22
8

23
0

23
2

23
4

v �
[k

m
/s

]

v� = 230.91+1.18
−1.22

37
.0

37
.5

38
.0

38
.5

39
.0

A [arb.]

21
6

21
8

22
0

22
2

v 0
[k

m
/s

]

22
8

23
0

23
2

23
4

v� [km/s]

21
6

21
8

22
0

22
2

v0 [km/s]

v0 = 219.10+1.31
−1.30

∆θ� = −0.92+0.59
−0.61

−3 −2 −1 0 1

∆θ� [◦]

−3
−2
−1

0

1

∆
φ
�

[◦
]

−3 −2 −1 0 1

∆φ� [◦]

∆φ� = −1.00+0.58
−0.57

Figure 4.8: The posterior distribution for a model with daily modulation where the signal strength
is at the threshold of an expected 5σ detection for a 100 second observation with a single detector.
Monte Carlo data is generated for 24 hours of data collection with two detectors separated along
the North-South direction by a distance with 2 × (mav0)−1. The true parameters are indicated in
blue, with the 1σ confidence intervals on the parameter estimations are indicated by the dashed
black lines in the single-parameter posteriors. The two parameter posteriors show the 1σ and 2σ
contours. On the left, we display the posterior distributions for the overall signal strength, the boost
speed of the SHM, and the velocity dispersion of the SHM, all of which are parameters accessible
in a single detector configuration. On the right, we display the posterior distributions for the angles
∆θ� = θ� − θt� and ∆φ� = φ� − φt� which specify the orientation of SHM boost velocity and
are only accessible in a multiple-detector configuration. Both θ� and φ� are determined at degree
precision in this scenario.

of the DM.

4.5 Conclusion

In this work we have demonstrated the power of DM interferometry for wave-like DM. The spatial
coherence of the DM field imprints phase correlations on the signals observed at spatially-separated
detectors, and these phase correlations are sensitive to parameters in the full 3-dimensional velocity
distribution f(v), whereas a single detector is blind to all effects beyond the speed distribution
f(v). As a result, the advantages of DM interferometry go beyond a simple coherent enhancement
of the signal strength as the number of detectors is increased. By taking advantage of the fact
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that the correlation matrix of the Fourier-transformed signals at multiple detectors depends on
modified speed distributions which contain modulated forms of f(v), we have demonstrated that
parameters such as the solar velocity vector may be reliably extracted from two detectors separated
by a distance d ∼ λc. Furthermore, directional parameters of coherent substructure such as DM
streams may be estimated at even higher significance, though in that case the optimal separation
λc is parametrically different from the DM de Broglie wavelength λdB.

Our formalism has immediate practical applications for new and upcoming axion DM experi-
ments. The sensitivity to gaγγ for resonant-cavity axion experiments which use external magnetic
fields, like ADMX and HAYSTAC, is typicallyBV 1/2, whereB is the peak magnetic field strength
and V is the magnetic field volume. In order to achieve resonant enhancement, the volume of an
individual cavity is fixed to be of order 1/m3

a, so to achieve greater sensitivity, one must either
increase the B-field or construct a multiplexed readout with multiple cavities. Assuming the latter
strategy is chosen, our results motivate placing at least one of the cavities at a distance λc: if a
signal is detected, the loss of coherent enhancement of the signal is more than compensated by the
ability to localize the boost direction of the DM velocity distribution to within 1 degree with just
24 hours of data.

While there are many challenges to the construction of additional instruments, we emphasize
that all of the important phenomenology is captured by a two-detector array. This smoking-gun
signature of DM is invisible to a multiplexed setup where all cavities lie inside a single coherence
length. A similar analysis applies to experiments in the quasistatic regime like ABRACADABRA
and DM-Radio, where the physical volume of the experiment is decoupled fromma. For both types
of experiments, our formalism may be applied to determine the optimal detector orientation for
localizing the solar velocity to the desired precision (with North-South orientations generally being
preferred to East-West). The optimal detector separation corresponds to physically reasonable
distances for well-motivated axion masses – O(10) m for the 10−5 eV mass range of ADMX and
HAYSTAC and O(1000) km for the 10−9 eV targeted by ABRACADABRA/DM-Radio – and as
such the coherence length and detector orientation can form an important design parameter for
future experiments, in much the same way as L/E determines the design of neutrino oscillation
experiments.

The future of axion detection involves readout beyond the standard quantum limit, using tools
such as Josephson parametric amplifiers and squeezed states. In this regime, it is important to
note that our variables Rk and Ik are canonically conjugate, and thus cannot be simultaneously
measured to arbitrary precision. In future work, we plan to investigate how our formalism must be
modified for quantum-limited readouts. As the number of new axion experiments proliferates, this
work motivates careful consideration of the spatial configuration of multiplexed detectors.
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CHAPTER 5

First Results from ABRACADABRA-10 cm

The particle nature of dark matter (DM) in the Universe remains one of the greatest mysteries of
contemporary physics. Axions are an especially promising candidate as they can simultaneously
explain both the particle nature of DM and resolve the strong-CP problem of quantum chromo-
dynamics (QCD) [38, 43–46, 86]. axion-like particle (ALP) are generically expected to have a
coupling to electromagnetism of the form [190]

L ⊃ −1

4
gaγγaF̃µνF

µν = gaγγaE · B, (5.1)

where gaγγ is the axion-photon coupling. The QCD axion is predicted to have a narrow range of
couplings proportional to the axion mass, while a general ALP may have any gaγγ . In this work,
“axion” refers to a general ALP. axion dark datter (ADM) with mass ma � 1 eV behaves today
as a classical field oscillating at a frequency f = ma/(2π) [46, 86]. The Lagrangian (5.1) implies
that a time-dependent background density of ADM modifies Maxwell’s equations. In particular, in
the presence of a static magnetic field B0, ADM generates an oscillating magnetic field, Ba, as if
sourced by an effective AC current density parallel to B0 [59],

Jeff = gaγγ
√

2ρDMB0 cos(mat). (5.2)

Here ρDM is the local DM density, which we take to be 0.4 GeV/cm3 [248, 249]. The
ABRACADABRA experiment, as first proposed in [71], is designed to search for the axion-
induced field, Ba, generated by a toroidal magnetic field (see also [147] for a proposal using a
solenoidal field). ABRACADABRA searches for an AC magnetic flux through a superconducting
pickup loop in the center of a toroidal magnet, which should host no AC flux in the absence of
ADM. The time-averaged magnitude of the flux through the pickup loop due to Ba can be written
as

|Φa|2 = g2
aγγρDMV

2G2B2
max ≡ A, (5.3)
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where V is the volume of the toroid, G is a geometric factor calculated for our toroid to be 0.027
[82], and Bmax is the maximum B-field in the toroid. The pickup loop is read out using a SQUID
current sensor, where an axion signal would appear as a small-amplitude, narrow (∆f/f ∼ 10−6)
peak in the power spectral densitie (PSD) of the SQUID output at a frequency given by the axion
mass. The present design uses a simplified broadband readout, but the same approach can be
significantly enhanced using resonant amplification and recent developments in powerful quantum
sensors [221, 250], which is the subject of future work.

In this Letter, we present first results from ABRACADABRA-10 cm, probing the axion-photon
coupling gaγγ for ADM in the frequency range f ∈ [75 kHz, 2 MHz], corresponding to axion
masses ma ∈ [3.1 × 10−10, 8.3 × 10−9] eV. This mass range is highly motivated for QCD
axions, where the axion decay constant lies near the GUT scale and is easily compatible with pre-
inflationary Peccei-Quinn (PQ) breaking in a variety of models, including grand unified theories
[251] or string compactifications [51,52], and such low-mass axions may be favored anthropically
[252]. Additionally, such light ALPs may explain the previously-observed transparency anomaly
of the Universe to TeV gamma-rays [253–256], though in this case the ALP is not required to be
DM. Recently, this mass range has gathered significant experimental interest [58, 71, 76, 147, 222,
224, 257] to name a few, or see [56] for a comprehensive review. Furthermore, this mass range is
highly complementary to that probed by the ADMX experiment [67, 258, 259], HAYSTAC [260–
262], which probema ∼ 10−6−10−5 eV. Our result represents the most sensitive laboratory search
for ADM below 1µeV, is competitive with leading astrophysical constraints from CAST [263],
and probes a region where low-mass ALPs which can accommodate all the DM of the universe
without overclosure [264–268], as well as particular models of QCD axions with enhanced photon
couplings [169, 269]. Aside from the ALP models currently being probed, this result is a crucial
first step towards a larger-scale version of ABRACADABRA sensitive to the smaller values of gaγγ
relevant for the typical QCD axion models in the mass range where axions can probe GUT-scale
physics.

5.1 Magnet and Cryogenic Setup

ABRACADABRA-10 cm consists of a superconducting persistent toroidal magnet produced by
Superconducting Systems Inc. [270] with a minimum inner radius of 3 cm, a maximum outer
radius of 6 cm, and a maximum height of 12 cm. The toroidal magnet is counter-wound to cancel
azimuthal currents; see [82] for details. We operate the magnet in a persistent field mode with a
current of 121 A, producing a maximum field of 1 T at the inner radius. We confirmed this field
with a Hall sensor to a precision of ∼ 1 %. Due to the toroidal geometry of the magnet, the field in
the center should be close to zero (in the absence of an axion signal).
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Figure 5.1: Left: Rendering of the ABRACADABRA-10 cm setup. The primary magnetic field
is driven by 1,280 superconducting windings around a POM support frame (green). The axion-
induced field is measured by a superconducting pickup loop mounted on a PTFE support (white).
A second superconducting loop runs through the volume of the magnet to produce a calibration
signal. All of this is mounted inside a superconducting shield. Right: Picture of the exposed toroid
during assembly.

To reduce AC magnetic field noise, we use both magnetic shielding and vibrational isolation.
The toroid is mounted in a G10 support inside a tin-coated copper shell which acts as a magnetic
shield below 3.7 K, when the tin coating becomes superconducting. The toroid/shield assembly
is thermalized to the coldest stage of an Oxford Instruments Triton 400 dilution refrigerator and
cooled to an operating temperature of ∼ 1.2 K. The weight of the shield and magnet is supported
by a Kevlar string which runs∼2 m to a spring attached to the top of the cryostat. This reduces the
mechanical coupling and vibration between the detector and cryostat.

We measure AC magnetic flux in the center of the toroid with a solid NbTi superconducting
pickup loop of radius 2.0 cm and wire diameter 1 mm. The induced current on this pickup loop is
carried away from the magnet through ∼ 50 cm of 75µm solid NbTi twisted pair readout wire up
to a Magnicon two-stage SQUID current sensor. The 75µm wire is shielded by superconducting
lead produced according to [271]. The majority of the 1 mm wire is inside the superconducting
shielding of the magnet, but about 15 cm is only shielded by stainless steel mesh sleeve outside the
shield.

The two-stage Magnicon SQUID current sensor is optimized for operation at< 1 K; we operate
it at 870 mK. The input inductance of the SQUID is Lin ≈ 150 nH and the inductance of the pickup
loop is Lp ≈ 100 nH. The SQUID is operated with a flux-lock feedback loop (FLL) to linearize the
output, which limits the signal bandwidth to ≈ 6 MHz. We read out the signal with an AlazarTech
ATS9870 8-bit digitizer, covering a voltage range of±40 mV. The digitizer is clocked to a Stanford
Research Systems FS725 Rb frequency standard. In order to fit the signal into the range of our
digitizer, we filter the signal through a 10 kHz high-pass filter and a 1.9 MHz anti-aliasing filter
before sending it to the digitizer.
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Figure 5.2: Flux spectrum averaged over the the data used in this analysis. (a) The spectrum
over the frequency range 11 kHz < f < 3 MHz, corrected for the pre-digitizer filters (blue). For
comparison, we also show the digitizer noise floor, corrected for pre-digitizer filters (gray) and
the characteristic SQUID flux floor (green dashed). The axion search range is between the dotted
black lines. (b) A zoomed view of the 10 MS/s spectrum (blue) with ∆f = 100 mHz and and
an example axion signal at the 95% upper limit (red dashed). (c) A zoomed view of the 1 MS/s
spectrum with ∆f = 10 mHz. Note that the digitizer data was collected at a different time from
the SQUID data, and shows a few transient peaks that are not present in the SQUID data.

To calibrate the detector, we run a superconducting wire through the volume of the toroid at
a radius of 4.5 cm into which we can inject an AC current to generate a field in the pickup loop,
similar to what we expect from an axion signal. The coupling between the calibration and pickup
loop can be calculated from geometry to be ≈50 nH. We perform a calibration scan to calculate
the end-to-end gain of our readout system. Our calibration measurements indicate that our pickup-
loop flux-to-current gain is lower than expected by a factor of∼ 6. We determined this to be likely
due to parasitic impedances in the circuit, and we will address this issue in future designs.

5.2 Data Collection

We collected data from July 16, 2018 to August 14, 2018, for a total integration time of Tint =

2.45 × 106 s. The data stream was continuously sampled at a sampling frequency of 10 MS/s for
the duration of the data-taking period. After completing the magnet-on data run, we collected two
weeks of data with the magnet off, but otherwise in the same configuration.

During data taking, the data follow two paths. First, we take the discrete Fourier transform
(DFT) of individual sequential 10 s buffers of 108 samples each to produce a series of PSDs. These
are accumulated together to produce an average PSD, called F̄10M, with a Nyquist frequency of
5 MHz and a frequency resolution of ∆f = (10 s)−1 = 100 mHz. In the second path, the streamed
data are decimated by a factor of 10, to a sampling frequency of 1 MS/s, collected into a 100 s buffer
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of 108 samples, then transformed and compiled into a similar running average PSD, F̄1M, with
Nyquist frequency of 500 kHz and ∆f = (100 s)−1 = 10 mHz. The 1 MS/s data stream is further
decimated in real time to a 100 kS/s stream and written directly to disk. This can be transformed
offline to produce F100k, with a Nyquist frequency of 50 kHz and ∆f = 1/Tint ≈ 408 nHz. We do
not use F100k for the present search. All DFT transforms are taken with the FFTW3 library [272].

The F̄10M spectra are written to disk and reset after every 80 averages; each stored spectrum
thus covers a period of 800 s. This allows us to separate time-dependent noise signals from a
constant axion signal. Similarly, the F̄1M spectra are written to disk and reset every 16 averages,
and cover a period of 1600 s. Figure 5.2 shows the full F̄10M spectrum as well as close-ups of the
F̄1M spectra, converted to pickup loop flux spectral density using the calibration measurements.

Each of the F̄10M, F̄1M and F100k spectra have a usable range limited by the Nyquist frequency
on the high end, and the frequency resolution required to resolve a potential axion signal on the
low end. With our sampling frequency and integration times, we could perform a search over the
range from 440 mHz – 5 MHz with enough resolution that a potential signal would span 5 – 50
frequency bins (assuming a typical ADM velocity of ∼ 220 km/s), though in practice our search
range is limited by the signal filters.

We observed large 1/f -type behavior below ∼20 kHz, with broad noise peaks extending up to
∼100 kHz. This noise is strongly correlated with vibration on the top plate of the cryostat up to the
highest frequency measured by our accelerometer, ∼ 10 kHz [82]. We believe that the tail of this
noise continues up to higher frequencies before becoming sub-dominant to the flux noise of the
SQUID above 100 kHz. This noise degrades our sensitivity at lower frequencies and we restrict
our search range to 75 kHz < f < 2 MHz.

For ∼1 week after starting the data collection, we observed very narrow and variable noise
peaks in the PSD above ∼ 1.2 MHz. We are investigating the source of these peaks. After about
a week, these peaks died away slowly and did not return until we re-entered the lab to refill an
LN2 dewar, then died away again after a few days. The affected time periods were removed and
account for a ∼30% decrease in our exposure. We hope that in the future, a more detailed analysis
will allow us to recover a significant fraction of this lost exposure.

5.3 Data Analysis Approach

Our data analysis procedure closely follows the method introduced in [80]. Our expected signal is
a narrow peak in the pickup loop PSD, with a width ∆f/f ∼ 10−6 arising from the DM velocity
dispersion. When averaged over Navg independent PSDs, the signal in each frequency bin k (fk)
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will follow an Erlang distribution with shape parameter Navg and mean

sk =





A πf(v)
mav

∣∣∣
v=
√

4πfk/ma−2
fk > ma/2π ,

0 fk ≤ ma/2π ,
(5.4)

where A is defined in Eq. (5.3). We assume f(v) is given by the Standard Halo Model, with
velocity dispersion v0 = 220 km/s/c, and vobs = 232 km/s/c the DM velocity in the Earth frame
[273], with c the speed of light. With the DM density and velocity distribution specified, the only
free parameter in the predicted signal rate is gaγγ .

We expect our background noise sources to be normally distributed in the time domain, such
that when combined with an axion spectrum, the resulting PSD data is still Erlang-distributed.
Accordingly, our combined signal-plus-background model prediction in each frequency bin is an
Erlang distribution P (F̄k;Navg, µk) with shape parameter Navg and mean µk = sk + b (see [80] for
details). Although the background PSD varies slowly with frequency, the axion signal for a given
mass is narrow enough that we restrict to a small frequency range and parameterize the background
as a constant b across the window. We verified that the results of our analysis were not sensitive to
the size of the window chosen.

We performed our analysis on the F̄10M and F̄1M spectra over frequency ranges 500 kHz to
2 MHz and 75 kHz to 500 kHz, respectively. We chose the frequency at which we transition from
one set of spectra to the other so that the axion signal window is sufficiently resolved everywhere,
though we have seen that the exact choice has little effect on the final result. We rebin the F̄10M

(F̄1M) spectra in time into 53 (24) spectra that cover 32,000 s (64,000 s) each. This was done to
speed up processing time, though it is not necessary for our analysis approach.

We test for an axion signal at massma and coupling strengthA by constructing a joint likelihood
of Erlang distributions over the 53 (24) F̄10M (F̄1M) given the observed PSD data [80,82]. For each
axion mass, we assign a unique background nuisance parameter to each of the rebinned F̄10M (F̄1M)
spectra and profile over the joint likelihood to construct the profile likelihood for A at that mass.
This accounts for the possibility that the background level might change on timescales of hours to
days.

To detect an axion signal, we place a 5σ threshold on a discovery test statistic (TS). To eval-
uate this we first calculate the profile likelihood ratio λ(ma, A), at fixed ma, as the ratio of the
background-profiled likelihood function as a function of A to the likelihood function evaluated at
the best-fit value Â. From here, we define TS(ma) = −2 log λ(ma, 0) for Â > 0 and zero oth-
erwise. This quantifies the level at which we can reject the null hypothesis of A = 0. The 5σ
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Figure 5.3: The limit on the axion-photon coupling gaγγ constructed from ABRACADABRA-
10cm data described in this work. We compare the observed limit, which has been down-sampled
in the number of mass points by a factor of 104 for clarity of presentation, to the expectation
for the power-constrained limit under the null hypothesis. This down-sampling excludes the 87
isolated mass points vetoed in the discovery analysis; further details will be presented in [82].
Additionally, we show the astrophysical constraint on gaγγ in this mass range from the CAST
helioscope experiment [263]; the region above the grey line is excluded.

condition for discovery at a given ma is TS(ma) > TSthresh, where [80]

TSthresh =

[
Φ−1

(
1− 2.87× 10−7

Nma

)]2

(5.5)

accounts for the local significance as well as the look-elsewhere effect (LEE) for the Nma indepen-
dent masses in the analysis (here Φ is the cumulative distribution function for the normal distribu-
tion with zero mean and unit variance). For this analysis, Nma ≈ 8.1 × 106 between 75 kHz and
2 MHz, and TSthresh = 56.1.

Where we have no detection, we set a 95% C.L. limit, A95%, again with the profile likelihood
ratio. To do so, we use the statistic t(ma, A) = −2 log λ(ma, A), with A > Â, by t(ma, A95%) =

2.71. We implement one-sided power-constrained limits [195], which in practice means that we
do not allow ourselves to set a limit stronger than the 1σ lower level of the expected sensitivity
band. We compute the expected sensitivity bands using the null-hypothesis model and following
the procedure outlined in [80].

We had to exclude a few specific mass points from our discovery analysis due to narrow back-
ground lines that were also observed when the magnet was off. To veto these mass points as
potential discoveries, we analyze data collected while the magnet was off (where no axion signal
is expected) using the same analysis framework. If in this analysis we find a mass point with
LEE-corrected significance greater than 5σ, we exclude that mass point from our axion discov-
ery analysis. In total, this procedure ensures a signal efficiency of & 99.8%. Our axion search
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yielded 83(0) excesses with significance ≥ 5σ in the frequency range 500 kHz to 2 MHz (75 kHz
to 500 kHz), however all of these points are vetoed by the magnet-off data. We do not exclude
these points from our upper-limit analysis, though the observed limits at these isolated points are
weaker (they do not appear in Fig. 5.3 because of down-sampling for clarity).

We verified our analysis framework by injecting a simulated software axion signal into our real
data and confirmed that the data-quality cuts and analysis framework described above are able
to correctly detect or exclude the presence of an axion signal. In the future we hope to build
this into a hardware-based option, using the calibration loop to inject “blinded” signals similar to
the approach used by ADMX [67]. Further details of the analysis and statistical tests we have
performed, as well as an extended discussion of the noise in the excluded exposure, will be further
described in a future publication [82].

5.4 Results and Discussion

We observe no evidence of an axion signal in the mass range 3.1× 10−10 eV – 8.3× 10−9 eV and
place upper limits on the axion-photon coupling gaγγ of at least 3.3× 10−9 GeV−1 over the full
mass range and down to 1.4× 10−10 GeV−1 at the strongest point. Our full exclusion limits are
shown in Fig. 5.3. This result represents the first search for ADM with ma < 1µeV, and with one
month of data is already competitive with the strongest present astrophysical limits from the much
larger CAST helioscope [263] in the range of overlap.

We note that for a significant range in frequency, we achieved the SQUID noise-limit. However,
constraints on the detector configuration introduced parasitic impedances into the readout circuit,
which lead to a loss in the ultimate axion coupling sensitivity [82]. This will be addressed in future
efforts and could yield up to a factor of ∼6 improvement in sensitivity with a similar exposure.

As ABRACADABRA-10 cm is a prototype detector, there are many potential directions for
future improvement. Our focus in this work has been on demonstrating the feasibility and power
of this new approach. Future upgrade paths for the ABRACADABRA program will include im-
provements to shielding and mechanical vibration isolation, reduction of parasitic inductances, im-
provements to the readout configuration, expanded frequency range, and construction of a larger
toroid.
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CHAPTER 6

Second Results from ABRACADABRA-10 cm

The axion is a well-motivated candidate to explain the particle nature of DM [45, 46, 86]. This
pseudoscalar particle is naturally realized as a pseudo-Goldstone boson of the PQ symmetry, which
is broken at a high scale fa; the axion would be exactly massless but for its low-energy interactions
with quantum chromodynamics (QCD) [38, 39, 43, 44]. The axion mass is tied to the scale fa by
ma ≈ 5.7(1015 GeV/fa) neV [123]. The range of scales fa ≈ 1015 − 1016 GeV is particularly
compelling because of connections to String Theory [51] and Grand Unification [251,268], and in
the corresponding mass range of ma ∼ 1 − 10 neV the axion may naturally explain the observed
DM abundance [252,268]. In this Article we provide the most sensitive probe of ADM in this mass
range to date.

ADM that couples to photons modifies Ampère’s law such that in current-free regions

~∇× B =
∂E
∂t
− gaγγ

(
E× ~∇a− ∂a

∂t
B
)
, (6.1)

with E and B the electric and magnetic fields, respectively, a(x, t) the ADM field, and gaγγ the
axion-electromagnetic coupling constant. In the presence of a static external magnetic field ADM
behaves like an effective current density Jeff = gaγγ(∂ta)B. If the axion makes up all of the
observed DM then, to leading order in the DM velocity, ∂ta =

√
2ρDM cos(mat), with ρDM ≈

0.4 GeV/cm3 the local DM density [28]. It was pointed out in [71, 147] that the effective current
induces an oscillating secondary magnetic field which may be detectable in the laboratory without
the aid of a resonant cavity for sufficiently small ma. The oscillation frequency is given by f =

ma/(2π), with bandwidth δf/f ≈ 10−6 arising from the finite axion velocity dispersion [190]. In
this work we leverage this theoretical principle to search for axions in the laboratory.

The most common detection strategy for ADM is through the electromagnetic coupling gaγγ ,
which for the QCD axion is directly proportional to the mass ma. Until recently, experiments have
focused on searching for axions in the mass range 1 . ma . 40µeV, which is well-suited to
microwave cavity searches [67, 68, 110, 258, 260]. In the low-mass regime targeted in this work,
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the Compton wavelength of the axion λC ∼ km is much larger than the experimental apparatus,
and so the sensitivity of the experiment improves with volume as V 5/6, roughly independent of ma

until the size of the experiment approaches λC [71]. This scaling is important because the expected
coupling gaγγ is smaller at lower masses, requiring ever-more-sensitive experiments to achieve a
detection. ABRACADABRA is an experimental program designed to detect axions at the Grand
Unification scale using a strong toroidal magnetic field [71]. ABRACADABRA is part of a suite
of ADM experiments which together aim to probe the full QCD axion parameter space [67, 68,
70, 76, 110, 138, 218, 274–276]. The experiment we report on here, ABRACADABRA-10 cm, is
a prototype for a larger ADM detector that would be sensitive to the QCD axion. This Article
presents data collected in 2020 that is up to an order of magnitude more sensitive than our previous
results [72] and places strong limits on ADM in the 0.41− 8.27 neV range of axion masses.

6.1 ABRACADABRA-10 cm detector

The ABRACADABRA-10 cm detector is built around a 12 cm diameter, 12 cm tall, 1 T toroidal
magnet fabricated by Superconducting Systems Inc [270]. The axion interactions with the toroidal
magnetic field B0 drive the effective current, Jeff , which oscillates parallel to B0 and sources a
real oscillating magnetic field through the toroid’s center. The oscillating magnetic flux is read
out with a two-stage DC-SQUID via a superconducting pickup in the central bore. Unlike other
axion detector designs, this novel geometry situates the readout pickup in a nominally field-free
region unless axions are present [71]. The detector can be calibrated by injecting fake axion signals
(i.e., AC currents) through a wire calibration loop that runs through the body of the magnet. The
detector, illustrated schematically in Fig. 6.1, is located on MIT’s campus in Cambridge, MA.

In 2019, we performed several detector upgrades from the Run 1 configuration in order to im-
prove our sensitivity [72,82]. In this Article we report the results of the subsequent data campaign
(Run 3), collected after the detector upgrade. Run 3 data consists of ∼430 hours of data collected
from June 5 to June 29, 2020.

Before the upgrades were complete, we took additional, uncalibrated data (Run 2), which is not
presented here. A subset of that data was instead used to develop our data analysis procedure in
order to run a blind analysis on the Run 3 data, as described in detail below.

The total expected axion power, A, coupled into our readout pickup is related to the axion-
induced flux Φa as

A ≡ 〈|Φa|2〉 = g2
aγγρDMG2V 2B2

max, (6.2)

where G is a geometric coupling, V is the magnetic field volume, Bmax is the maximum value of
|B0|, and the angle brackets denote the time average [71, 80]. Run 1 utilized a 4.02 cm diameter
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Figure 6.1: Top: Schematic of ABRACADABRA-10 cm showing the effective axion-induced
current (blue), sourced by the toroidal magnetic field, generating a magnetic flux (magenta)
through the pickup cylinder (green) in the toroid bore. Bottom: Simplified schematic of the
ABRACADABRA-10 cm readout (full circuit diagram in Fig. E.1). The pickup cylinder Lp is
inductively coupled to the axion effective current Jeff . The power spectrum of the induced current
is read out through a DC SQUID inductively coupled to the circuit through Lin. An axion signal
would appear as excess power above the noise floor at a frequency corresponding to the axion
mass.
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pickup loop made from a 1 mm diameter wire, giving G ≈ 0.027. In 2019, we replaced this
readout with a 10 cm tall, 5.1 cm diameter superconducting cylinder pickup centered in the toroid
bore. This consisted of a 150 µm-thick Nb sheet wrapped around a PTFE cylinder. This design
yields a stronger geometric coupling to Jeff of G ≈ 0.031 and decreases the inductance of the
pickup [71]. We compute G using electromagnetic simulations in the COMSOL Multiphysics
package [82, 277].

To amplify our signal, Φa is coupled into the readout SQUID through the pickup circuit (see
Fig. 6.1) yielding a transformer gain Min/LT , where Min is the input coupling to the SQUID, and
LT ≡ Lp + Lin + Lwires is the total inductance of the pickup circuit, with Lp the pickup cylinder
inductance, Lin the input inductance of the SQUID package, and Lwires the parasitic inductance,
dominated by the twisted pair wiring. The SQUID, manufactured by Magnicon [278], is read out
using Magnicon’s XXF-1 SQUID electronics operating in closed feedback loop mode. The Run 1
sensitivity was limited by parasitic inductance in the NbTi wiring of this circuit that placed a lower
limit on LT & 1.6µH. During the upgrade, we replaced this wiring, moving the SQUIDs closer to
the detector to reduce the wire length. Based on calibration data, we found that the total impedance
in the circuit is∼ 800 nH. Finally, the SQUID was operated at a higher flux-to-voltage gain setting
of 4.3 V/Φ0 in Run 3, compared to the previous Run 1 which we ran at 1.29 V/Φ0 due to higher
levels of environmental noise. This change does not directly improve the signal gain, but does
reduce system noise. We also improved our noise floor by reducing the operating temperature of
the SQUID package from ∼870 mK to ∼450 mK. All together, the upgrade campaign increased
the expected power coupled into our readout and reduced the total system noise.

The improved sensitivity of the upgraded readout circuit also amplified the low-frequency vi-
brational backgrounds seen in Run 1, which caused the SQUID amplifier to rail when the magnet
was on. In order to correct this, we implemented an active feedback stabilization (AFS) system to
reduce the low-frequency noise, which is discussed further in the appendices.

As in Run 1, the magnet and pickup were placed inside a superconducting tin-copper shield and
hung from a passive vibration isolation system, consisting of a string pendulum and spring, within
an Oxford Instruments Triton 400 dilution refrigerator [82]. The magnet and pickup were operated
at .1 K and the SQUIDs were at ∼400 mK, which kept the readout circuit superconducting over
the course of the run and kept thermal noise subdominant to SQUID flux noise. Following the
procedure of Run 1, the output of the SQUID was run into an 8-bit AlazarTech AT9870 digitizer
via a 70 kHz-5 MHz bandpass filter. The digitizer was locked to a Stanford Research Systems
FS725 Rubidium frequency standard in order to maintain clock accuracy over the coherence time
of the axion signal, ∼ 1 s for signals at 1 MHz, throughout the data and calibration runs.

We performed in situ magnet-on and magnet-off calibrations in the data-taking configuration by
attaching a harmonic signal generator to the calibration circuit and scanning across frequencies and
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Figure 6.2: The gain shown here is defined as the change in amplifier output voltage over a cor-
responding change in input flux amplitude on the pickup cylinder (∂Vout/∂Φa). Both transfer
functions roll off at high frequencies due to the amplifier bandwidth, which we estimate to have a
cutoff frequency of approximately 1 MHz. We believe the difference in calculated and measured
gain is due to inconsistency in the total inductance of the pickup circuit.

amplitudes. The calibration signal was attenuated and fed into the calibration loop, mimicking the
axion effective current signal Jeff up to geometric factors. The geometry is modeled in COMSOL
Multiphysics [277], from which we extract the coupling between both the calibration loop and
axion effective current signal to the pickup cylinder. By combining the results of the calibration
scans and geometric modeling, we can determine the effective gain, ∂Vout/∂Φa, of the SQUID
amplifier output voltage as a function of flux on the pickup cylinder (see Fig. 6.2). This procedure
is analogous to that used in Run 1 [82].

The gain measured by the calibrations for Run 3 differs from the calculated gain by a factor
of ∼1.8. By individually calibrating various components of the end-to-end circuit, we determined
that this is likely due to a misestimation of the calculated total inductance of the pickup circuit. The
calibrated SQUID noise floors, which set the lower limits of our sensitivity, are shown in Fig. E.2

6.2 Data Collection

The axion search data was collected using an identical procedure as in Run 1 [82]. The SQUID
amplifier output voltage was sampled at a frequency of 10 MS/s, with a ±40 mV voltage window.
The data were stored as a series of PSDs, which were computed on-the-fly: F̄10M with a Nyquist
frequency of 5 MHz and frequency resolution of ∆f = 100 mHz, F̄1M with a Nyquist frequency
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of 500 kHz and frequency resolution of ∆f = 10 mHz, and a continuous data stream sampled at
100 kHz that can be analyzed offline. F̄10M (F̄1M) is averaged over 800 s (1600 s) before being
written to disk. In this work, we used the F̄10M to search the frequency range from 500 kHz −
2 MHz, and the F̄1M spectra to search from 50− 500 kHz.

6.3 Data Analysis and Results

An axion signal is expected to manifest as a narrow peak in the PSD data, as illustrated in Fig. 6.1.
The width and overall shape of the signal are set by the local DM velocity distribution, which we
take to be the Standard Halo Model with a velocity dispersion of v0 = 220 km/s and a boost from
the halo to the solar rest frame of v� = 232 km/s [185]. With the speed distribution and local
DM density fixed, the two free signal parameters are the axion mass, ma, which determines the
minimum frequency of the signal, and the coupling gaγγ , which determines its amplitude through
Eq. (6.2). Our analysis procedure closely follows the approach used in the Run 1 search [72, 82]
based on [80], which constrains the allowable values of gaγγ at each possible value of ma.

The search is performed with a frequentist log-likelihood ratio TS; exact expressions are pro-
vided in the SI (see also [82]). Our broadband search procedure probes∼ 11.1 million mass points
between 0.41− 8.27 neV (100 kHz− 2 MHz) in Run 3. As we expect only one axion signal in our
search (or at most a small number), the majority of the TS values are probing the distribution of the
null hypothesis. Assuming only Gaussian noise, we expect this null distribution to be a one-sided
χ2-distribution [80], which was indeed the case in Run 1 [72,82]. However, the increased sensitiv-
ity from the detector upgrades introduced non-Gaussian noise sources that required us to modify
our Run 1 analysis procedure. We developed and validated our new procedure on a randomly-
selected sample of 10% of Run 2’s ∼ 13.7 million mass points, after which we unblinded the
Run 3 data with the procedure fixed.

In Run 1, we searched for an axion signal as a feature appearing above a flat white noise back-
ground. For each ma, the search was performed in a narrow window around that mass with the
background level allowed to vary independently in each window. For the Run 2 and Run 3 anal-
yses we allow the mean background level of the noise to vary linearly with frequency uniquely in
each sliding window. We use sliding windows of relative width δf/f ≈ 5.5 × 10−6, starting at
f = (1− 10−6)×ma/(2π).

As in Run 1, we use the magnet-off data to veto frequency ranges that also display statistically
significant TS values when |B0| = 0 and thus the axion power should vanish. However, we
observed narrow single-bin ‘spikes’ that appear to drift in frequency on the timescale of our data
collection (see E.6 for an example). If interpreted in isolation, these spikes sometimes correspond
to statistically-significant excesses. Nevertheless, they are inconsistent with axion signals and are
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most likely due to unknown environmental noise sources near the detector, persisting throughout
Runs 2 and 3; indeed, many of the peaks are distributed at multiples of 50 Hz. To remove these
artifacts, we leverage the fact that the PSDs are saved periodically to disk yielding a time evolution
of the environmental backgrounds; we veto single-bin spikes that move in frequency. We place a
1.0 Hz veto window around these single-bin spikes. These cuts remove 3.8% of the axion mass
points from our search in the Run 3 data. The magnet-off vetoing procedure removes an additional
0.07% of mass points.

After implementing the vetoes, we found the distribution of TS values in the 10% Run 2 vali-
dation sample deviated from the expected χ2 distribution; for example, there were 27 mass points
with TS > 25 whereas from the χ2 distribution we would have expected less than one. To account
for the deviation in the TS distribution from the χ2 distribution in a data-driven fashion, we follow
the prescription developed and implemented in [279–281] for searches for DM-induced lines in
astrophysical gamma-ray data sets. At each mass point, we introduce and profile over a system-
atic nuisance parameter that would be degenerate with the signal parameter but for a prior that is
determined by forcing the TS distribution to follow the χ2 distribution. Specifically, we force the
TS distribution to match the null hypothesis distribution at 4σ local significance. This is described
further in the SI.

After the nuisance parameter and vetoing procedures, we construct a likelihood as a function
of gaγγ at each mass point. The final distribution of TS values computed from the likelihoods is
shown in Fig. 6.3; no TS values were found in excess of the 5σ look-elsewhere effect-corrected
discovery threshold. In the calibration of our analysis procedure, we found one signal candidate in
the Run 2 data at over 5σ global statistical significance (see Fig. E.6, where a corresponding feature
can be seen in the magnet-off data), but that mass point is not significant in the Run 3 analysis.

In the absence of an excess consistent with an ADM origin, we can determine 95% one-sided
upper limits on gaγγ as a function of the mass, ma. The average 95% upper limits from the Run 3
analysis along with their 1σ and 2σ expectations under the null hypothesis are indicated in Fig. 6.4.
In that figure we compare our upper limits to those found from the ADM experiment SHAFT [276]
along with results from the solar axion experiment CAST [263] and astrophysical X-ray searches
(SSC) [84], both of which do not require the axion to comprise the DM. The fraction of vetoed
mass points is illustrated in a sliding window inFig. E.4, which also shows the distribution of
data fractions included in the analyses. In Fig. E.5 we illustrate the magnitude of the systematic
nuisance parameter gnuis.

aγγ , while in Fig. E.7 we show what the limit would be without the nuisance
parameter tuning. Fig. E.8 shows that the 95% upper limit and discovery TS behave as expected
when synthetic axion signals are injected into the real data.
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Figure 6.4: (Left) The one-sided 95% upper limit (U.L.) on gaγγ from this work excludes previously
unexplored regions of ADM parameter space. The 1σ and 2σ containment regions are constructed
by taking the appropriate percentiles of the distributions of the limits over narrow mass ranges;
note that this means that ∼16% of the upper limits lie at the bottom of the green band. Around
11.1 million mass points are analyzed, so the plotted data is smoothed for clarity. Our limits
surpass those from a number of indicated astrophysical and laboratory searches in this mass range,
including CAST (solid grey region), super star cluster constraints (dashed grey line), and SHAFT
(solid grey line). See text for details. (Right) The un-smoothed limit in a narrow mass range
between 2.99790 and 2.99798 neV. This provides a detailed view of variations in the limit at each
axion mass that arise from statistical fluctuations across the collected data that are not visible in
the smoothed data shown in the left plot. This range also depicts the location where our maximum
sensitivity is achieved, with our strongest limit at gaγγ . 3.2× 10−11 GeV−1.

6.4 Conclusion

In this work we present the results from ABRACADABRA-10 cm’s second physics campaign,
searching for ADM in the mass range 0.41-8.27 neV. We find no evidence for ADM and con-
strain the axion-photon coupling down to the world-leading level gaγγ . 3.2 × 10−11 GeV−1 at
95% confidence. Our work motivates key elements of the design of future larger-scale experi-
ments. These include the mitigation of stray fields from the magnet and vibrations induced by a
modern pulse-tube-based cryogenic system, which limits our current low-frequency reach. The
ABRACADABRA-10 cm results presented in this Article demonstrate the power of mature sim-
ulations for optimizing the design of the detector and for modeling the calibration response. An
advanced and novel analysis framework was used to identify noise sources and account for sys-
tematic uncertainties in a data-driven fashion.

Our work identifies three areas that can be addressed in the next physics campaign: (i) mod-
erate improvements (up to a factor ∼0.4 in gaγγ) could be achieved by further reducing the wire
and SQUID inductances, (ii) better shielding from environmental noise could increase the sensi-
tivity to gaγγ by an order of magnitude at low frequencies, so long as (iii) the fringe fields are
reduced or better vibrationally isolated (see Fig. E.2). To significantly increase the sensitivity of
the experiment, larger magnets with higher fields are needed since the sensitivity to gaγγ scales
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with the detector volume V and field B0 as g−1
aγγ ∼ B0V

5/6 [71]. The addition of a resonant
readout circuit could enhance the reach in gaγγ by an additional ∼2 orders of magnitude depend-
ing on the scanning strategy, with a high frequency readout permitting sensitivity to masses up
to 800 neV [71, 221]. ABRACADABRA is merging with the DMRadio program to realize a se-
ries of experiments that chart a path toward discovering the QCD axion in the parameter space
corresponding to new physics at the Grand Unification scale [282–286].
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CHAPTER 7

Radio Searches for Axion Dark Matter

Recently, it was proposed that radio telescope observations of neutron stars (NSs) can probe ax-
ion dark matter (DM) [101–104, 287]. In the magnetosphere surrounding a NS, axion DM may
resonantly convert into radio-frequency photons at locations where the plasma frequency of the
magnetosphere equals the axion mass, with conversion probabilities determined in part by the
strength of the magnetic field surrounding the NS. The central frequency of the hypothetical radio
signal from an individual NS is set by the mass of the axion, red-shifted by the line-of-sight veloc-
ity of the NS. The predicted axion-induced radio signal would appear as a nearly monochromatic
peak in the otherwise smoothly-varying radio spectrum from the NS and its nearby environment.
The frequency of this peak is universal for all sources and is determined by the currently unknown
mass of the axion particle.

In [103, 104, 287, 288] it was shown that high-frequency-resolution observations with radio
telescopes such as the Robert C. Byrd Green Bank Telescope (GBT) and the Effelsberg 100-m
Telescope towards nearby isolated NSs (INSs) and towards regions of high NS and DM density,
such as the Galactic Center (GC) of the Milky Way, would be sensitive to vast regions of previously
unexplored axion parameter space. In this work, we perform such searches with the GBT and the
Effelsberg radio telescope.

The quantum chromodynamics (QCD) axion is a well-motivated DM candidate because in ad-
dition to explaining the observed abundance of DM [45, 46, 86] it may also resolve the strong CP

problem of the neutron electron dipole moment [38,39,43,44] (see [56] for a detailed review). The
QCD axion may make up the observed abundance of DM over a wide range of masses [289], but a
natural mass range is 5–25 µeV. In this work we target axion masses in the range ma ∈ (4.5, 10.5)

µeV, corresponding to radio frequencies f = ma/(2π) ∈ (1.1, 2.7) GHz.
The conversion of axion DM to radio photons arises from the Lagrangian L = gaγγ aE · B,

where E (B) are electric (magnetic) fields, a is the axion field, and gaγγ is a coupling constant with
units of inverse energy. For the QCD axion, gaγγ is proportional to ma, but models of more general
axion-like particles can have gaγγ and ma as independent parameters. The mass range that we
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target here with radio telescope searches is also the subject of significant longstanding laboratory
search efforts for the coupling gaγγ . The Rochester-Brookhaven-Fermilab (RBF) [261, 290] and
University of Florida (UF) [260] axion haloscope experiments set competitive constraints on axion
DM in the mass range covered by this analysis, though our results exclude new parameter space
beyond what was probed by those experiments. More recently, the ADMX experiment has reached
sensitivity to the QCD axion at ∼2–3.5 µeV [67,131,291], and the HAYSTAC experiment has set
strong constraints on axion DM in the mass range ma ∼ 23− 24 µeV [110].

7.1 Parametrics of Indirect Detection of Axion Conversion

As this Chapter represents a departure from our previous focus on axion direct detection, we begin
with a brief discussion of why astrophysical observations of NSs represent promising opportunities
for axion discovery. As discussed at various points in this thesis, axion direct detection attempts to
provide a background electromagnetic field with which axions may interact and produce observ-
able signals. In the laboratory, one typically seeks to provide as strong as possible a magnetic field.
NSs realize magnetic fields much larger than can be generated in the laboratory, and, as a result,
can generate bright signals in the presence of axions, even accounting for their large distance from
Earth.

NSs generate axion-induced signals by the conversion of ambient DM axions to photons in
their magnetospheres, enabling a direct comparison with the CAST experiment, which seeks to
convert relativistic axions produced by the sun to detectable photons [263]. The probability of
axion-to-photon conversion in a background magnetic field is given by

paγ ≈ g2
aγγB

2L2 (7.1)

where gaγγ is the axion photon coupling, B is the strength of the background magnetic field, and
L is the length over which the conversion process occurs. For CAST, B = 9 T and L = 9 m
whereas for NS conversion, we can have B as large as 1011 T and L ≈ 100 m. As is then clear, the
conversion probability for axions at NSs is considerably larger.

However, conversion of axions at NSs is somewhat more limited in terms of mass-range than
CAST. Conversion of axions at NSs only occurs efficiently if the mass of the photon matches
the mass of the axion. While this is never true in vacuum, the nonzero charge density in NS
magnetospheres provides the photon a plasma mass, which varies between 100 neV and 50 µeV at
distances where the NS magnetic field is large. In fact, the L ≈ 100 m length for conversion at NSs
is determined by the typical length over which the mass-matching is sufficiently good. Given this
mass range of 100 neV to 50 µeV, conservation of energy tells us that converted axions will become
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radio photons, motivating searches for axion conversion with radio telescopes as is considered in
this Chapter.

Axion conversion will produce a monochromatic excess of flux density as observed by a radio
telescope at a frequency determined by the axion mass. For an axion that produces a signal at
a frequency of 1 GHz with a coupling of gaγγ = 10−11 GeV−1 by converting at NS a distance
of 100 pc from Earth with typical period and magnetic field strength, we would expect to see a
total flux density excess of 6.7 × 10−3 Jy with a width of 5 kHz. With three hours of observing
time, single-dish radio telescopes can achieve statistical sensitivity to such a signal, enabling us
to constrain gaγγ . 10−11 GeV. Limits along these lines, which exceed CAST in sensitivity, are
realized in this work through observations of two isolated NSs. Even greater sensitivity is achieved
through observations of NS populations containing stars with larger magnetic fields in the presence
of enhanced DM densities.

7.2 Data Acquisition

We collected data in the L-band (1.15− 1.73 GHz) with the GBT and in the L-Band (1.27− 1.45

GHz) and S-band (2.4 − 2.7 GHz) using the Effelsberg radio telescope to search for axion DM
signatures from a variety of different sources. We describe the data taking procedures from the two
telescopes in turn.

7.2.1 GBT Observations

The GBT observations were performed with the VErsatile GBT Astronomical Spectrometer (VE-
GAS) backend [292] on March 10 and 29, 2019 with a notch filter applied from 1.2 to 1.34 GHz, so
these frequencies are not included in our analysis (project AGBT19A 362, PI: Safdi). The nearby
INS targets observed by the GBT are summarized in Tab. 7.1. Note that we also observed the GC,
M31, and M54 with the GBT, but the resulting axion limits are less robust than those from the
INSs and from the Effelsberg GC observations and so are presented in the appendices. (The GBT
GC observations lead to weaker limits than the Effelsberg GC observations because the GBT ob-
servations were taken with lower frequency resolution.) All observations used the “Spectral Line”
observing type and with one beam covering an area on the sky ∼ π(FWHM/2)2, where FWHM
is the full width at half maximum of the telescope response, which is 8.4′ at 1.5 GHz for the GBT.

The INS observations used five VEGAS spectrometers in mode 9 across the L-band, leading
to the frequency resolution δfobs reported in Tab. 7.1. For our fiducial analyses the data is fur-
ther down-binned to resolutions δffid given in Tab. 7.1. Data were collected in both polarizations,
though in this analysis we only analyze the polarization-averaged flux. (See [103] for possible
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polarization signatures.) The observations performed position switching so that for a given obser-
vational target, half the data collection time was on-source (“ON”) and half was spent observing
blank-sky locations at similar elevations (“OFF”) in order to establish a reference baseline for the
analysis. The ON exposure times texp are listed in Tab. 7.1. The OFF locations were chosen to
be 1.25◦ away from the target of interest. The position-switching was carried out at five-minute
intervals for each of the targets, leading to four separate observations of ON and OFF positions.

Over the observing period, data were saved in independent short exposures for ON and OFF
observations of RX J0720.4−3125 and RX J0806.4−4123. In each successive exposure, a cali-
bration noise diode was alternated between on and off with a switching period of 0.2097 seconds.
The timing resolution allows for the identification of transient effects and data filtering, which
is discussed further below and in the appendices. The calibration source 3C48 was observed for
approximately two minutes to flux-calibrate the INS observations. Additionally, we observed the
star-forming region W3(OH) for approximately five minutes to verify that our analysis framework
is able to successfully identify the OH maser lines.

7.2.2 Effelsberg Observations

We also carried out L-Band and S-Band observations with the Effelsberg 100-m radio telescope to-
wards the GC (project 77-17, 64-18, PI: Desvignes). The observations were taken with the PSRIX
backend [293] − performing baseband sampling − in mid-June 2018 and early-February 2019 us-
ing the prime (secondary) focus receiver P217mm (S110mm) for the L- and S-band, respectively.
In both cases we recorded orthogonal polarizations, which were later averaged offline for further
analysis. Note that the FWHM of the Effelsberg beam is 9.78′ (4.58′) at 1.408 GHz (2.64 GHz).
Observations were carried out towards the magnetar SGR J1745−2900, which is∼2.4′′ away from
the GC, and the planetary nebula NGC 7027 for subsequent use in the flux calibration procedure.
For the measurements towards the GC we used a position switching mode, with ON-source in-
tegration times of 61.9 min and 40.0 min for S-band and L-band, respectively, and respective
OFF-source integration times of 22.8 min and 37.0 min (see Tab. 7.1). The ON observation was
performed first, followed by a single OFF observation taken 16.4◦ away from the GC.

7.3 Analysis

We reduced and calibrated the GBT data following a modified implementation of the GBTIDL data
reduction pipeline [294], extended to include a time-series data filtering performed independently
at each channel and a channel-dependent system temperature calibration. The full procedure results
in measurements of flux densities {di} at frequencies {fi}, with i labeling the frequency channel.
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Target texp [min] δfobs [kHz] δffid [kHz] type
RX J0806.4−4123 20.0 0.8 8.4 INS
RX J0720.4−3125 20.0 0.8 8.4 INS
GC (Eff., S-Band) 61.9 3.81 11.44 pop.
GC (Eff., L-Band) 40.0 2.44 7.32 pop.

Table 7.1: The targets observed by the GBT and Effelsberg for evidence of axion DM. “Pop.”
refers to populations of NSs, while “INS” refers to a single isolated NS. The bin widths δfobs

correspond to those of the original observation, but we down-bin the data before performing the
axion line search to the resolution given by δffid to account for the finite width of the signal. The
INS (GC) observations were performed with the GBT (Effelsberg radio telescope). The GBT INS
observations cover the frequency range 1.15 to 1.73 GHz, with a gap from 1.2 to 1.35 GHz, and
the L-band (S-band) Effelsberg observation covers 1.27 to 1.45 GHz (2.4 to 2.7 GHz). Note that
the texp are the ON exposure times.

Because the stacked, calibrated data has been constructed by averaging many (> 103) independent
antenna measurements together, the {di} are approximately normally distributed.

For Effelsberg, high-resolution frequency spectra (131072 spectral channels) were generated
from the raw ‘baseband’ data using the DSPSR1 software tools [295]. We used the full-integrated
spectra in our analysis, with a calibration procedure described in the appendices. Before analyzing
the data we first down-bin in frequency space to bins of width∼8 kHz (see Tab. 7.1) to account for
the finite width of the signal, such that the majority of the signal should appear in a single frequency
bin. As discussed further in the appendices and first suggested in [287], reflection and refraction of
the outgoing electromagnetic waves in the rotating plasma induces a frequency broadening at the
level δf/f ∼ 5×10−6 or less from the INSs. We note that even though the Effelsberg observations
are searching for emission from a population of NSs, the data are at sufficiently high frequency
resolution that we may search simply for the brightest converting NS from that population.

To inspect the data for excess flux at frequency channel i, we construct the likelihood

Li(~d|A, a) =
∏

k

1√
2πσ2

k

exp

[
−(dk − µ(fk|a)− Aδik)2

2σ2
k

]
, (7.2)

where A is the excess flux density in the central frequency channel. Note that the index k labels
the analysis-level frequency channel, and the product runs over the frequency bins included in
the analysis window. We model the background in the narrow sliding frequency window with a
frequency-dependent mean flux density µ(f |a) and a single variance parameter σ2, such that the
variance in each frequency channel is given by σ2

i = σ2/αi for an acceptance fraction αi of data at

1http://dspsr.sourceforge.net
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frequency channel i after the data filtering. Note that αi = 1 for all Effelsberg frequency channels
as we do not apply the time-filtering procedure to that data. The nuisance parameter vector a char-
acterizes the frequency dependence of the mean; in practice we take µ to be a quadratic function
of f so that a has three independent parameters, though our final results are not sensitive to this
choice (see the appendices).

In our fiducial analysis we include within the sliding analysis window the 10 frequency bins
to the left and to the right of the central frequency channel, excluding the two bins on either side
of the signal bin in case of signal leakage into those bins, if e.g. the axion mass does not line
up with the bin center. Note that to account for this possibility we also perform the analyses
with all frequency bins shifted by approximately half a bin spacing. The variance parameter σ2 is
fixed by fitting the background-only model to the frequency sidebands with the central frequency
channel masked out. We construct the profile likelihood Li(~d|A) by maximizing Li(~d|A, a) over
the nuisance parameters a at each fixed value ofA, and we use the profile likelihood to construct the
one-sided 95% upper limit on the flux density as shown in Fig. 7.1 (see, e.g., [172]). In particular,
we consider positive and negative values of A and we take the 95% upper limit to be the value
of A > Â such that 2[lnLi(~d|A)− lnLi(~d|Â)] ≈ −2.71, where Â is the signal parameter that
maximizes the profile likelihood. We then further power-constrain our limits to avoid setting limits
that are stronger than expected due to downward statistical fluctuations [195]. We accomplish this
by recording the actual limit as the maximum of the 16th percentile of the distribution of expected
limits under the null hypothesis, as computed using the Asimov procedure [172], and the limit
observed on the actual data. Our test-statistic (TS) for comparing signal and null hypotheses for
evidence of an axion is the log-likelihood ratio TSi ≡ 2 × [lnLi(~d|Â) − lnLi(~d|0)], for Â > 0,
and TSi = 0 if Â < 0.

We additionally analyze the stacked but uncalibrated OFF spectra. This is valuable because
the OFF data are subtracted and divided from the ON data to remove the instrumental baselines,
but this may cause features in the OFF spectra to be imprinted on the calibrated flux densities.
Therefore, statistically significant excesses that appear in both the calibrated source flux density
spectra and the OFF system temperatures can be vetoed as they are inconsistent with, or at least do
not require, an axion interpretation. In our analysis, we veto any excess in the calibrated ON data
which appears with a 97.5th percentile discovery TS in the OFF data. Note that we determine the
TS percentiles by using the full distribution of observed TSs.

The 95% upper limits on the flux densities, defined relative to the single-channel frequency bin
widths δffid given in Tab. 7.1, are shown in Fig. 7.1. We compare the upper limits to the expected
limits from the ideal radiometer equation, which assumes that all of the noise is thermal at the
system temperature. The true limits are slightly weaker likely because of sources of systematic
uncertainty, such as uncertainties in the background model and instrumental uncertainties not fully
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Figure 7.1: The 95% upper limits on the signal flux for the indicated sources from the GBT
and Effelsberg observations. These upper limits apply to monochromatic signals at the widths
δffid given in Tab. 7.1. These curves have been down-sampled for visualization purposes. We
compare these limits with the 95% upper limits expected from the ideal radiometer equation under
the assumption that the only source of statistical uncertainty is thermal noise at the total system
temperature.

captured by the calibration procedure.
We search for evidence of an axion signal by using the discovery TSs. We apply a discovery

threshold of TS > 100, which was defined before performing the analysis and not modified after-
wards. From Monte Carlo (MC) simulations of the null hypothesis we find that this TS threshold
corresponds to approximately 5σ local significance (see the appendices for details). After apply-
ing the analysis procedure described above we find no axion signal candidates at or beyond the
detection significance in any of the observations, and the distributions of observed TSs are consis-
tent with the null hypothesis. Note that HI emission frequencies are excluded automatically in our
analysis by the OFF veto criterion.

7.4 Results

To translate the flux-density limits from Fig. 7.1 into limits on the axion-photon coupling, we
closely follow the theoretical modeling presented in [103, 104] for computing the axion-induced
radio fluxes from these specific sources.

The radiated power for a single INS depends on gaγγ , the polar magnetic field strength B0

(assuming a dipole field configuration), the NS mass (which we fix at 1 M�, since this value does
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not significantly affect the flux), the NS spin period P , the axion mass ma, the DM density ρ∞ in
the neighborhood of the NS but asymptotically far away from its gravitational potential, and the
velocity dispersion v0 of the ambient DM. For the local INSs we take v0 = 200 km/s and ρ∞ = 0.4

GeV/cm3 [28, 65, 296]. For the GC analysis we assume the DM follows an Navarro-Frenk-White
(NFW) [297, 298] density profile near the GC, normalized to give the local DM density above and
with a scale radius of 20 kpc (see, e.g., [104]). For RX J0806.4−4123 we take log10(B0/G) =

13.40 and P = 11.4 s, while for RX J0720.4−3125 we use log10(B0/G) = 13.53 and P = 8.4 s.
We note that these parameters were inferred from spin-down measurements performed in the X-
ray band [299–301]. We take RX J0806.4−4123 and RX J0720.4−3125 to be at distances of 250
pc and 360 pc from Earth, respectively [300].

Given these parameters, we estimate the radiated power following [103, 288]. However, we
note that a fully self consistent calculation of the axion-induced radiation has yet to be per-
formed. Ref. [288] corrected the assumption in [103] that the axions travel along radial trajectories,
but [288] did not account for the fact that the outgoing radiation is strongly refracted in the inho-
mogeneous magnetosphere, as we point out in the appendices. As a dedicated simulation of the
axion-induced radiation is beyond the scope of this work, we estimate the power with the following
approximation. We assume that (i) all axions travel along radial trajectories, as in [103], (ii) that
all NSs are aligned rotators (magnetically-misaligned rotators give nearly identical results [103]),
and (iii) that the magnetosphere is well-described by the Goldreich-Julian (GJ) model [302]. Then,
following [103] we compute the angular power distribution dP/dθ of radio emission as a function
of the angle from the polar axis θ. However, we assign to each NS a single power value equal
to
∫

dP
dθ
dθ, and we assume that the flux is radiated from each NS isotropically. With the latter

assumption we find results are consistent with those in [288], which correctly accounted for the
isotropic axion phase space. For example, taking NS parameters describing the nearby isolated
NSs studied in this work (and assuming aligned rotators) the formalism in [288] predicts fluxes
∼50% larger than inferred by our simpler calculation. We chose this simpler formalism, however,
because it is likely that the more complicated computation in [288] must be modified due to the
refraction of outgoing radio photons, which could result in an anisotropic signal(though from the
studies in [288] we do not expect such calculations to change the flux predictions by more than
an O(1) amount). Given an improved theoretical predictions in the future, our results may be
reinterpreted using the Supplementary Data [303].

In [104] it is shown that more complicated magnetosphere models, such as the electrosphere
model, give similar results. In particular, the total radiated power averaged over NS populations
differed by ∼20% between the electrosphere and GJ models in [104]. Active pulsars and magne-
tars could have magnetospheres which deviate more substantially from the GJ model by having
large charge-pair multiplicities, though this is expected to only affect a small fraction of the NSs
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within the populations and to not affect the nearby isolated NSs studied in this work (see [104] and
references therein).

The width of the signal in frequency space is determined in part by the asymptotic energy
dispersion of the DM, which is set by v0. This induces a δf/f . 10−6 contribution to the width
from the INSs. However, as discussed more in the appendices and in [287], the signals are Doppler-
broadened when refracting or reflecting from the rotating plasma, inducing a frequency broadening
closer to δf/f ∼ 5× 10−6 and justifying the bin widths taken in Tab. 7.1.

Since we do not actually know which specific NSs are being targeted in the Effeslberg GC
analysis (and similarly in the GBT population analyses discussed in the appendices), we model
the population of NSs (number density, spatial distribution, magnetic field, and spin period) within
the GC region as a whole, closely following [104]. In particular, two models for the NS magnetic
field and period distributions were developed in that work, based on fits to existing pulsar data. We
conservatively choose the model which yields weaker constraints as our fiducial model. In practice,
our fiducial NS population model (Model II in [104]) assumes that magnetic fields quickly decay
after the NSs cross the pulsar death-line, while the optimistic model (Model I in [104]) assumes
that the magnetic fields decay more slowly. We also follow [104] when modeling the spatial
distribution of NSs within the Galactic bulge and disk. For the Effelsberg analysis, we perform
O(103) MC simulations of the NS population model and profile over the simulation results when
calculating the expected flux and associated 95% limit.

Given the fiducial models we have described, we obtain the limits on gaγγ shown in Fig. 7.2.
The orange band represents the predicted gaγγ for the QCD axion, and the grey shaded regions
represent existing constraints from other experiments. We obtain limits that are stronger than those
from CAST [263] and comparable to constraints from the UF [260] and RBF [261,290] haloscopes,
while the S-band Effelsberg constraints exclude previously unexplored parameter space. The green
shaded band in Fig. 7.2 represents two dominant sources of uncertainty for the GC analysis. The
top of the band is derived by assuming that the DM profile follows a cored density profile with
a core radius of 0.6 kpc; this radius is chosen based on recent hydrodynamic simulations which
suggest that the DM density may be modified in the inner ∼0.6 kpc where the baryons dominate
the gravitational potential, though these same simulations suggest an enhancement of the central
DM density may also be possible [304]. The lower boundary of the band assumes the fiducial
NFW DM profile but takes the alternate NS population model (Model I) from [104].

7.5 Conclusion

In this work we performed the first dedicated radio telescope search for signatures of axion DM
from axion-photon conversion in NS magnetospheres. We found no evidence for axion DM and set
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Figure 7.2: The one-sided 95% upper limits on gaγγ as a function of the axion mass ma from
this work are shown as colored lines (GBT INS observations) and black lines (Effelsberg GC
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shown in shaded grey. The range of couplings expected for the QCD axion is shaded in orange.
Note that the fiducial GC limits assume an NFW DM profile and the conservative NS population
model (Model II) from [104]. The green band depicts theoretical uncertainties on the gaγγ limit
associated with the GC analysis for the Effelsberg data. The top of the band assumes an NFW DM
density profile with a 0.6 kpc core, while the bottom of the band uses the alternate NS population
model in [104] (Model I).

some of the strongest constraints to date on the axion DM scenario. These results show that radio
searches for axion DM are a promising path forward, analogous to indirect detection for WIMP
DM searches, which should proceed in parallel with laboratory experiments for discovering or
excluding axion DM. Additional flux sensitivity is needed in order to reach the QCD axion band at
the frequencies targeted in this work. This sensitivity may be available with the upcoming Square
Kilometer Array-mid [305] or may already be achievable with the FAST radio telescope [306],
since at constant system temperature the sensitivity to gaγγ scales inversely with the square root of
the effective area [104].

Our work strongly motivates searching with the GBT or Effelsberg radio telescope for evidence
of axion DM at higher frequencies, closer to 6 GHz, to probe the axion mass window aroundma ≈
25 µeV. There is mounting evidence that points towards 25 µeV as a likely mass for the axion [79,
112], and the axion-photon coupling may also be enhanced [169] and thus within reach of GBT
and Effelsberg searches. This work also motivates additional effort in modeling the population
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evolution of NS magnetic fields and spin periods, as these are the largest sources of uncertainty in
our population analyses, as well as further efforts to understand the distribution of DM in the inner
Galaxy. More work on the axion-induced signal itself from individual INSs would be also useful,
as a full calculation of the axion-induced radio signal does not yet exist; such results could lead to
reinterpretations of the limits presented in this Letter using the Supplementary Data [303].
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CHAPTER 8

X-Ray Searches for Axions from Super Star Clusters

Ultralight axion-like particles that couple weakly to ordinary matter are natural extensions to
the Standard Model. For example, string compactifications often predict large numbers of such
pseudo-scalar particles that interact with the Standard Model predominantly through dimension-
five operators [51, 52]. If an axion couples to quantum chromodynamics (QCD) then it may also
solve the strong CP problem [38, 39, 43, 44]; in this work we refer to both the QCD axion and
axion-like particles as axions.

Axions may interact electromagnetically through the operator L = −gaγγaFµνF̃ µν/4, where
a is the axion field, F is the electromagnetic field-strength tensor, with F̃ its Hodge dual, and
gaγγ is the dimensionful coupling constant of axions to photons. This operator allows both the
production of axions in stellar plasmas through the Primakoff Process [307,308] and the conversion
of axions to photons in the presence of static external magnetic fields. Strong constraints on gaγγ for
low-mass axions come from the CERN Axion Solar Telescope (CAST) experiment [263], which
searches for axions produced in the Solar plasma that free stream to Earth and then convert to
X-rays in the magnetic field of the CAST detector. CAST has excluded axion couplings gaγγ &

6.6 × 10−11 GeV−1 for axion masses ma . 0.02 eV at 95% confidence [263]. Primakoff axion
production also opens a new pathway by which stars may cool, and strong limits (gaγγ . 6.6 ×
10−11 GeV−1 at 95% confidence for ma . keV) are derived from observations of the horizontal
branch (HB) star lifetime, which would be modified in the presence of axion cooling [309].

In this work, we produce some of the strongest constraints to-date on gaγγ for ma . 10−9

eV through X-ray observations with the Nuclear Spectroscopic Telescope Array (NuSTAR) tele-
scope [310] of super star clusters (SSCs), which are relatively young, luminous, and compact
clusters of stars produced in regions of particularly high stellar formation rates. Thought to be the
progenitors of globular clusters, SSCs contain a large number of hot, young, and massive stars,
such as Wolf-Rayet (WR) stars. Many of the known SSCs have been detected in extragalactic
targets by the Hubble Space Telescope, but several within the Milky Way have been detected. As
we will show, the stars within SSCs are highly efficient at producing axions with energies ∼10–
100 keV through the Primakoff process. Axions produced in Milky Way SSCs may then convert
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Figure 8.1: The stacked and pixelated background-subtracted count data (10 - 80 keV) from the
NuSTAR observations of the Quintuplet SSC. The locations of the stars are indicated in black,
while the 90% energy containment region for emission associated with the SSC is indicated by the
black circle, accounting for the NuSTAR point spread function (PSF). RA0 and DEC0 denote the
locations of the cluster center. We find no evidence for axion-induced emission from this SSC,
which would follow the spatial counts template illustrated in the inset panel.

into photons in the Galactic magnetic fields, leading to signatures observable with space-based
X-ray telescopes such as NuSTAR. We analyze archival NuSTAR data from the Quintuplet SSC
near the Galactic Center (GC) along with the nearby Westerlund 1 (Wd1) cluster and constrain
gaγγ . 3.6 × 10−12 GeV−1 at 95% confidence for ma . 5 × 10−11 eV. In Fig. 8.1 we show the
locations of the stars within the Quintuplet cluster that are considered in this work on top of the
background-subtracted NuSTAR counts, from 10 - 80 keV, with the point-spread function (PSF)
of NuSTAR also indicated. In the appendices we show that observations of the Arches SSC yield
similar but slightly weaker limits.

Our work builds upon significant previous efforts to use stars as laboratories to search for ax-
ions. Some of the strongest constraints on the axion-matter couplings, for example, come from
examining how HB, white dwarf (WD), red giant, and neutron star (NS) cooling would be affected
by an axion [309,311–319]. When the stars have large magnetic fields, as is the case for WDs and
NSs, the axions can be converted to X-rays in the stellar magnetospheres [301, 320–322]. Intrigu-
ingly, in [301, 322] observations of the Magnificent Seven nearby isolated NSs found evidence for
a hard X-ray excess consistent with the expected axion spectrum from nucleon bremsstrahlung.
This work extends these efforts by allowing the axions to convert to X-rays not just in the stellar
magnetic fields but also in the Galactic magnetic fields [323–325].
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8.1 Organization of this Chapter

A brief description of the set of procedures implemented in this Chapter to constrain axions is as
follows.

• Use the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to
model the interiors of the hot, young stars within Milky Way SSCs.

• Predict the axion production from SSC stars using the MESA-generated stellar interior mod-
els combined with the axion emissivities through the Primakoff process.

• Convolve the radiated spectrum axions with the energy-dependent conversion probability of
axions propagating through the Galactic Magnetic Field from their stellar origin to Earth.

• Generate an energy-dependent template of axion-induced X-ray flux from stars in SSCs that
is then convolved with the NuSTAR instrumental response.

• Reduce archival data collected with the NuSTAR telescope at three known Milky Way SSCs:
Arches, Quintuplet, and Westerlund 1 to produce X-ray flux maps.

• Analyze the X-ray images in search of emission consistent with the previously generated
axion-induced X-ray flux templates, setting limits in the absence of a detection.

These procedures are explained in greater detail in the subsequent sections and the corresponding
Appendices.

8.2 Axion production in SSCs

During helium burning, particularly massive stars may undergo considerable mass loss, especially
through either rotation or binary interaction, which can begin to peel away the hydrogen envelope,
revealing the hot layers underneath and reversing the cooling trend. Stars undergoing this process
are known as WR stars, and these stars are the most important in our analyses. If the star has a
small (<40% abundance) remaining hydrogen envelope, it is classified as a WNh star; at <5%
hydrogen abundance it is classified as a WN star; otherwise, it is classified as WC or WO, which
indicates the presence of >2% carbon, and oxygen, respectively, in the atmosphere.

Axions are produced through the photon coupling gaγγ in the high-mass stars in SSCs through
the Primakoff process γ + (e−, Z) → a + (e−, Z). This process converts a stellar photon to an
axion in the screened electromagnetic field of the nucleons and electrons. The massive stars are
high-temperature and low-density and therefore form nonrelativistic nondegenerate plasmas. The

144



Primakoff emission rate was calculated in [308, 326] as a function of temperature, density, and
composition, and is described in detail in the appendices.

To compute the axion luminosity in a given star, we use the stellar evolution code Modules
for Experiments in Stellar Astrophysics (MESA) [327, 328] to find, at any particular time in the
stellar evolution, radial profiles of temperature, density, and composition. The simulation states
are specified by an initial metallicity Z, an initial stellar mass, an initial rotation velocity, and an
age. The initial metallicity is taken to be constant for all stars. In the appendices we show that the
Quintuplet and Arches clusters, which are both near the GC, are likely to have initial metallicities
in the range Z ∈ (0.018, 0.035), consistent with the conclusions of previous works which place
the initial metallicities of these clusters near solar (solar metallicity is Z ≈ 0.02) [329, 330]. Note
that higher metallicities generally lead to the stars entering the WR classifications sooner, when
their cores are cooler. Rotation may also cause certain massive stars to be classified as WR stars
at younger ages. We model the initial rotation distribution as a Gaussian distribution with mean
µrot and standard deviation σrot for non-negative rotation speeds [331,332]. Refs. [331,332] found
µrot ≈ 100 km/s and σrot ≈ 140 km/s, but to assess systematic uncertainties we vary µrot between
50 and 150 km/s [331].

We draw initial stellar velocities from the velocity distribution described above (from 0 to 500
km/s) and initial stellar masses from the Kroupa initial mass function [333] (from 15 to 200
M�). We use MESA to evolve the stars from pre-main-sequence (pre-MS)–before core hydro-
gen ignition–to near-supernova. At each time step we assign each stellar model a spectroscopic
classification using the definitions in [334,335]. We then construct an ensemble of models for each
spectroscopic classification by joining together the results of the different simulations that result
in the same classification for stellar ages within the age range for star formation in the cluster; for
Quintuplet, this age range is between 3.0 and 3.6 Myr [336]. Note that each simulation generally
provides multiple representative models, taken at different time steps. In total we compute 105

models per stellar classification.
Quintuplet hosts 71 stars of masses & 50M�, with a substantial WR cohort [336]. In particular

it has 14 WC + WN stars, and we find that these stars dominate the predicted axion flux. For
example, at gaγγ = 10−12 GeV−1 we compute that the total axion luminosity from the SSC (with
Z = 0.035 and µrot = 150 km/s) is 2.1+0.7

−0.4×1035 erg/s, with WC + WN stars contributing∼70% of
that flux. Note that the uncertainties arise from performing multiple (500) draws of the stars from
our ensembles of representative models. In the 10 - 80 keV energy range relevant for NuSTAR the
total luminosity is 1.7+0.4

−0.3 × 1035 erg/s. We take Z = 0.035 and µrot = 150 km/s because these
choices lead to the most conservative limits. For example, taking the metallicity at the lower-end
of our range (Z = 0.018) along with µrot = 100 km/s the predicted 10 - 80 keV flux increases by
∼60%. At fixed Z = 0.035 changing µrot from 150 km/s to 100 km/s increases the total luminosity
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(over all energies) by∼10%, though the luminosity in the 10 - 80 keV range is virtually unaffected.
The Wd1 computations proceed similarly. Wd1 is measured from parallax to be a distance d ∈

(2.2, 4.8) kpc from the Sun [337], accounting for both statistical and systematic uncertainties [338].
Wd1 is estimated to have an age between 4.5 and 7.1 Myr from isochrone fitting, which we have
broadened appropriately from [339] accounting for expanded distance uncertainties. In our fiducial
analysis we simulate the stars in Wd1 for initial metallicity Z = 0.035 and µrot = 150 km/s as
this leads to the most conservative flux predictions, even though it is likely that the metallicity is
closer to solar for Wd1 [340], in which cases the fluxes are larger by almost a factor of two (see
the appendices). We model 153 stars in Wd1 [339], but the axion flux is predominantly produced
by the 8 WC and 14 WN stars. In total we find that the 10 - 80 keV luminosity, for gaγγ = 10−12

GeV, is 9.02+1.2
−1.1 × 1035 erg/s, which is ∼5 times larger than that from Quintuplet.

8.3 Axion conversion in Galactic fields

The axions produced within the SSCs may convert to X-rays in the Galactic magnetic fields.
The axion Lagrangian term L = gaγγaE · B, written in terms of electric and magnetic fields E

and B, causes an incoming axion state to rotate into a polarized electromagnetic wave in the
presence of an external magnetic field (see, e.g., [341]). The conversion probability pa→γ depends
on the transverse magnetic field, the axion mass ma, and the plasma frequency ωpl ≈ 3.7 ×
10−12(ne/10−2 cm−3)−1/2 eV, with ne the free-electron density (see the appendices for an explicit
formula). Note that hydrogen absorption towards all of our targets is negligible, being at most
∼5% in the 15-20 keV bin of the Quintuplet analysis [342].

To compute the energy-dependent conversion probabilities pa→γ for our targets we need to
know the magnetic field profiles and electron density distributions along the lines of sight. For our
fiducial analysis we use the regular components of the JF12 Galactic magnetic field model [343,
344] and the YMW16 electron density model [345] (though in the appendices we show that the
ne2001 [346] model gives similar results), though the JF12 model does not cover the inner kpc of
the Galaxy. Outside of the inner kpc the conversion probability for Quintuplet is dominated by the
out-of-plane (X-field) component in the JF12 model. We conservatively assume that the magnitude
of the vertical magnetic field within the inner kpc is the same as the value at 1 kpc (|Bz| ≈ 3

µG), as illustrated in Fig. G.6. In our fiducial magnetic field model the conversion probability is
pa→γ ≈ 2.4 × 10−4 (7 × 10−5) for gaγγ = 10−12 GeV−1 for axions produced in the Quintuplet
SSC with ma � 10−11 eV and E = 80 keV (E = 10 keV). Completely masking the inner kpc
reduces these conversion probabilities to pa→γ ≈ 1.0 × 10−4 (pa→γ ≈ 3.2 × 10−5), for E = 80

keV (E = 10 keV). On the other hand, changing global magnetic field model to that presented
in [347] (PTKN11), which has a larger in-plane component than the JF12 model but no out-of-
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plane component, leads to conversion probabilities at E = 80 and 10 keV of pa→γ ≈ 4.9 × 10−4

and pa→γ ≈ 4.2× 10−5, respectively, with the inner kpc masked.
The magnetic field is likely larger than the assumed 3 µG within the inner kpc. Note that the

local interstellar magnetic field, as measured directly by the Voyager missions [348], indirectly
by the Interstellar Boundary Explorer [349], inferred from polarization measurements of nearby
stars [350], and inferred from pulsar dispersion measure and the rotation measure data [351], has
magnitudeB ∼ 3 µG, and all evidence points to the field rising significantly in the inner kpc [352].
For example, Ref. [353] bounded the magnetic field within the inner 400 pc to be at least 50 µG,
and more likely 100 µG (but less than ∼400 µG [354]), by studying non-thermal radio emission
in the inner Galaxy. Localized features in the magnetic field in the inner kpc may also further
enhance the conversion probability beyond what is accounted for here. For example, the line-of-
sight to the Quintuplet cluster overlap with the GC radio arc non-thermal filament, which has a∼3
mG vertical field over a narrow filament of cross-section ∼(10 pc)2 (see, e.g., [355]). Accounting
for the magnetic fields structures described above in the inner few hundred pc may enhance the
conversion probabilities by over an order of magnitude relative to our fiducial scenario (see the
appendices).

When computing the conversion probabilities for Wd1 we need to account for the uncertain
distance d to the SSC (with currently-allowable range given above). In the JF12 model we find the
minimum pa→γ/d

2 (for ma � 10−11 eV) is obtained for d ≈ 2.6 kpc, which is thus the value we
take for our fiducial distance in order to be conservative. At this distance the conversion probability
is pa→γ ≈ 2.4×10−6 (pa→γ ≈ 1.5×10−6) for E = 10 keV (E = 80 keV), assuming gaγγ = 10−12

GeV−1 and ma � 10−11 eV. We note that the conversion probabilities are over 10 times larger in
the PTKN11 model (see the appendices), since there is destructive interference (for d ≈ 2.6 kpc)
in the JF12 model towards Wd1. We do not account for turbulent fields in this analysis; inclusion
of these fields may further increase the conversion probabilities for Wd1, although we leave this
modeling for future work.

8.4 Data analysis

We reduce and analyze 39 ks of archival NuSTAR data from Quintuplet with observation ID
40010005001. This observation was performed as part of the NuSTAR Hard X-ray Survey
of the GC Region [356, 357]. The NuSTAR data reduction was performed with the HEASoft soft-
ware version 6.24 [358]. This process leads to a set of counts, exposure, and background maps
for every energy bin and for each exposure (we use data from both Focal Plane Modules A and
B). The astrometry of each exposure is calibrated independently using the precise location of the
source 1E 1743.1-2843 [359], which is within the field of view. The background maps account
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for the cosmic X-ray background, reflected solar X-rays, and instrumental backgrounds such as
Compton-scattered gamma rays and detector and fluorescence emission lines [360]. We then stack
and re-bin the data sets to construct pixelated images in each of the energy bins. We use 14 5-keV-
wide energy bins between 10 and 80 keV. We label those images di = {cpi }, where cpi stands for
the observed counts in energy bin i and pixel p. The pixelation used in our analysis is illustrated in
Fig. 8.1.

For the Wd1 analysis we reduced Focal Plane Module A and B data totaling 138 ks from
observation IDs 80201050008, 80201050006, and 80201050002. This set of observations
was performed to observe outburst activity of the Wd1 magnetar CXOU J164710.2–45521 [361],
which we mask at 0.5′ in our analysis. (The magnetar is around 1.5’ away from the cluster center.)
Note that in [361] hard X-ray emission was only detected with the NuSTAR data from 3 - 8
keV from CXOU J164710.2–45521 – consistent with this, removing the magnetar mask does not
affect our extracted spectrum for the SSC above 10 keV. We use the magnetar in order to perform
astrometric calibration of each exposure independently. The Wd1 exposures suffer from ghost-ray
contamination [362] from a nearby point source that is outside of the NuSTAR field of view at
low energies (below ∼15 keV) [361]. (Ghost-ray contamination refer to those photons that reflect
only a single time in the mirrors.) The ghost-ray contamination affects our ability to model the
background below 15 keV and so we remove the 10 - 15 keV energy bin from our analysis.

In each energy bin we perform a Poissonian template fit over the pixelated data to constrain the
number of counts that may arise from the template associated with axion emission from the SSC.
To construct the signal template we use a spherically-symmetric approximation to the NuSTAR
PSF [363] and we account for each of the stars in the SSC individually in terms of spatial location
and expected flux, which generates a non-spherical and extended template. We label the set of sig-
nal templates by Spi . We search for emission associated with the signal templates by profiling over
background emission. We use the set of background templates described above and constructed
when reducing the data, which we label Bp

i .
Given the set of signal and background templates we construct a Poissonian likelihood in each

energy bin:

pi(di|{Si, AB}) =
∑

p

(µpi )
cpi e−µ

p
i

cpi !
, (8.1)

with µpi = SiS
p
i + ABB

p
i . We then construct the profile likelihood pi(di|{Si}) by maximizing the

log likelihood at each fixed Si over the nuisance parameter AB. Note that when constructing the
profile likelihood we use the region of interest (ROI) where we mask pixels further than 2.0’ from
the SSC center. The 90% containment radius of NuSTAR is ∼1.74’, independent of energy, as
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Figure 8.2: The spectra associated with the axion-induced templates from the Quintuplet and Wd1
SSCs constructed from the NuSTAR data analyses, with best-fit points and 1σ uncertainties indi-
cated. In red we show the predicted spectra from an axion with ma � 10−11 eV and indicated
gaγγ . Note that for Wd1 we do not analyze the 10 - 15 keV energy bin because of ghost-ray
contamination.

indicated in Fig. 8.1. We use a localized region around our source to minimize possible systematic
biases from background mismodeling. However, as we show in the appendices our final results
are not strongly dependent on the choice of ROI. We also show in the appendices that if we inject
a synthetic axion signal into the real data and analyze the hybrid data, we correctly recover the
simulated axion parameters.

The best-fit flux values and 1σ uncertainties extracted from the profile likelihood procedure are
illustrated in Fig. 8.2 for the Quintuplet and Wd1 data sets. We compare the spectral points to
the axion model prediction to constrain the axion model. More precisely, we combine the profile
likelihoods together from the individual energy bins to construct a joint likelihood that may be used
to search for the presence of an axion signal: p(d|{ma, gaγγ}) =

∏
i pi
[
di|Ri(ma, gaγγ)

]
, where

Ri(ma, gaγγ) denotes the predicted number of counts in the ith energy bin given an axion-induced
X-ray spectrum with axion model parameters {ma, gaγγ}. The values Ri(ma, gaγγ) are computed
using the forward-modeling matrices constructed during the data reduction process.

In Fig. 8.3 we illustrate the 95% power-constrained [195] upper limits on gaγγ as a func-
tion of the axion mass ma found from our analyses. The joint limit (red in Fig. 8.3), com-
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Figure 8.3: The 95% upper limits (black) on gaγγ as a function of the axion mass from the Quin-
tuplet and Wd1 data analyses. We compare the limits to the 1σ (green band) and 2σ (yellow band)
expectations under the null hypothesis, along with the median expectations (dotted). The joint 95%
upper limit, combining Quintuplet and Wd1, is also indicated (expected joint limit not shown). At
low masses our limits may be surpassed by those from searches for X-ray spectral modulations
from NGC 1275 [364], though we caution that those limits have been called into question recently,
as discussed further in the text [365].

bining the Quintuplet and Wd1 profile likelihoods, becomes gaγγ . 3.6 × 10−12 GeV−1 at
low axion masses. At fixed ma the upper limits are constructed by analyzing the test statistic
q(gaγγ|ma) ≡ 2 ln p(d|{ma, gaγγ}) − 2 ln p(d|{ma, ḡaγγ}), where ḡaγγ is the signal strength that
maximizes the likelihood, allowing for the possibility of negative signal strengths as well. The
95% upper limit is given by the value gaγγ > ḡaγγ such that q(gaγγ|ma) ≈ 2.71 (see, e.g., [172]).
The 1σ and 2σ expectations for the 95% upper limits under the null hypothesis, constructed from
the Asimov procedure [172], are also shown in Fig. 8.3. The evidence in favor of the axion model
is ∼0.3σ (0σ) local significance at low masses for Quintuplet (Wd1).

We compare our upper limits with those found from the CAST experiment [263], the non-
observation of gamma-rays from SN1987a [366] (see also [367–369] along with [370], who re-
cently questioned the validity of these limits), and the NGC 1275 X-ray spectral modulation
search [364]. It was recently pointed out, however, that the limits in [364] are highly dependent on
the intracluster magnetic field models and could be orders of magnitude weaker, when accounting
for both regular and turbulent fields [365]. The CAST limits are stronger than ours for ma & 10−9

eV and rely on less modeling assumptions, since CAST searches for axions produced in the Sun,
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though we have made conservative choices in our stellar modeling.

8.5 Conclusion

We present limits on the axion-photon coupling gaγγ from a search with NuSTAR hard X-ray data
for axions emitted from the hot, young stars within SSCs and converting to X-rays in the Galactic
magnetic fields. We find the strongest limits from analyses of data towards the Quintuplet and
Wd1 clusters. Our limits represent some of the strongest and most robust limits to-date on gaγγ for
low-mass axions. We find no evidence for axions. Promising targets for future analyses could be
nearby supergiant stars, such as Betelgeuse [323, 371], or young NSs such as Cas A.
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CHAPTER 9

X-Ray Searches for Decaying Dark Matter in the
Milky Way

Sterile neutrino dark matter (DM) is a well-motivated DM candidate that may give rise to observ-
able nearly monochromatic X-ray signatures [372–374]. In this scenario the DM has a mass in
the keV range and may decay into an active neutrino and an X-ray, with energy set by half the
rest mass of the sterile neutrino [375]. Sterile neutrino DM is motivated in part by the seesaw
mechanism for explaining the active neutrino masses [376, 377]. In this work we present one of
the most sensitive searches for sterile neutrino DM, along with other DM candidates that may de-
cay to monochromatic X-rays, over the mass range mχ ∈ [5, 16] keV. We do so by searching for
DM decay from the ambient halo of the Milky Way using all archival data from the XMM-Newton

telescope collected from its launch until September 5, 2018.
This work builds heavily off the method developed in [378], which used XMM-Newton blank-

sky observations (BSOs) to strongly disfavor the decaying DM explanation of the previously-
observed 3.5 keV unidentified X-ray line (UXL). This UXL was found in nearby galaxies and
clusters [379–383]. However the analysis performed in [378] was able to robustly rule out the
DM decay rate required to explain the previous 3.5 keV UXL signals [384]. (For additional non-
observations, see Refs. [385–391].) We extend the search in [378] to the broader mass range
mχ ∈ [5, 16], and in doing so implement the following notable differences: (i) we use a data-
driven approach to construct stacked, background-subtracted data sets in rings around the Galactic
Center (GC), while Ref. [378] performed a joint-likelihood analysis at the level of individual ex-
posures, and (ii) we use Gaussian Process (GP) modeling to describe continuum residuals, instead
of parametric modeling as used in [378].

As demonstrated in [378], BSO searches for DM decaying in the Milky Way halo can be both
more sensitive and more robust than extra-galactic searches, because (i) the expected DM flux, even
at angles ∼45◦ away from the GC, rivals the expected flux from the most promising extra-galactic
objects, such as M31 and the Perseus cluster; (ii) promising extra-galactic targets have continuum
and line-like X-ray features that are confounding backgrounds for DM searches (dwarf galaxies
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being an exception [389, 392]), while BSOs instead focus on the lowest-background regions of
the sky; (iii) extra-galactic targets require pointed observations, while in principle any observation
collected by XMM-Newton is sensitive to DM decay in the Milky Way, opening up considerably
more exposure time.

The limits presented in this work represent the strongest found using the XMM-Newton instru-
ment over the energy range ∼2.5–8 keV. At higher energies our limits are superseded with those
found using the NuSTAR satellite [393–397]. Ref. [395] performed a search similar in spirit to that
in this work (though with NuSTAR) in that they looked for DM decay from the Milky Way halo
near the GC (∼ 10◦ away in their case), while Ref. [397] searched for DM decay from M31 with
NuSTAR. Our results put in tension efforts to explain the abundance of DM with sterile neutri-
nos. DM models such as axion-like-particle DM [398] and moduli DM [399] predict similar UXL
signatures from DM decay and are also constrained by this work.

9.1 Data Reduction and Processing

We process and analyze all publicly-available data collected before 5 September 2018 by the metal
oxide semiconductor (MOS) and positive-negative (PN) cameras on board XMM-Newton. We sub-
ject each exposure to a set of quality cuts, which are described shortly. Those exposures satisfying
the quality cuts are included in our angularly-binned data products. In particular, we divide the sky
into 30 concentric annuli centered around the GC, each with a width of 6◦ in angular radius from
the GC, rGC, where cos(rGC) = cos(l) cos(b) in terms of the Galactic longitude, l, and latitude,
b. We label these from 1 to 30, starting from the innermost ring. We further mask the Galactic
Plane such that we only include the region |b| ≥ 2◦. In each ring we then produce stacked spectra
where, in each energy bin, we sum over the counts from each exposure whose central position lies
within that annulus. We produce separate data sets for the MOS and PN cameras, which have 2400
and 4096 energy channels, respectively. In addition to stacking the counts in each ring and energy
channel, we also construct the appropriately weighted detector response matrices in every ring for
forward modeling an incident astrophysical flux. The full-sky maps and associated modeling data
are provided as Supplementary Data [400] in both the annuli and in finer-resolution HEALPix

binning [401]. We analyze the MOS data from 2.5 to 8 keV and the PN data from 2.5 to 7 keV, in
order to exclude intervals containing large instrumental features.

9.2 Data Analysis

Having constructed our data in all 30 rings, we divide the full sky into two regions of interest
(ROI): a signal ROI, consisting of annuli 1 through 8 (0◦ ≤ rGC ≤ 48◦ with |b| ≥ 2◦), inclusive,
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Figure 9.1: Our fiducialD-factor, which is proportional to the expected DM signal flux. Values are
given in all 30 annuli, which are 6◦ wide in angular distance from the GC (with |b| > 2◦), and we
define a signal and background ROI as shown. In each ring, we compute the D-factor of all MOS
or PN exposures, weighted according to the observation time and field of view. The horizontal line
indicates Dbkg, the mean D-factor in the background ROI.

and the background ROI, consisting of annuli 20 through 30 (114◦ ≤ rGC ≤ 180◦ with |b| ≥ 2◦).
The regions are illustrated in Fig. 9.1. The MOS (PN) exposure time in the signal ROI is 25.27
Ms (5.56 Ms), whereas in the background ROI it is 62.51 Ms (17.54 Ms). The signal flux of decay
producing a single photon, given by

F =
D

4πmτ
(9.1)

is proportional to the D-factor which is defined by the line-of-sight integral of the Galactic DM
density ρDM by

D(Ω) ≡
∫
ds ρDM(s,Ω). (9.2)

Here we have defined m the mass of the decaying particle and τ as its lifetime. Hence we see that
a model-independent constraint on the DM lifetime can immediately be inferred given an known
D-factor while translating these to bounds on a given model merely requires translation of τ to
the relevant particle physics parameters. Decay to two photons can be trivially accommodated by
multiply the flux in Eq. 9.1 by a factor of two.

In Fig. 9.1 we show the appropriately weighted D-factor in each annuli. The motivation for the
two ROIs is that the signal should dominate in the inner regions of the Galaxy and become pro-
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gressively weaker further away from the GC. The background ROI is chosen to be large enough to
have significantly more exposure time than the signal ROI, so that using the background-subtracted
data does not significantly broaden the statistical uncertainties. We stack the data over the full
background ROI, which has D-factor Dbkg, and use this as an estimate of the instrumental and
astrophysical baseline fluxes by subtracting this data from the data in each ring of the signal ROI.
This subtraction mostly removes large instrumental lines, as illustrated in Fig. H.1.

We analyze the background-subtracted data in each annulus for evidence of a UXL. The data
is modeled as a combination of narrow spectral features at the locations of known astrophysical
and instrumental lines, and a continuum flux which we account for using GP modeling. Note
that the instrumental lines need not be completely removed by the data-subtraction procedure,
leaving a residual flux or flux deficit that must be modeled. Astrophysical emission lines from
the Milky Way plasma should be brighter in the signal ROI, and so are also expected to appear
in the background-subtracted data. For both astrophysical and instrumental lines, the lines are
modeled using the forward modeling matrices for MOS and PN. We allow the instrumental lines
to have either positive or negative normalizations, while the astrophysical lines are restricted to
have positive normalizations. To decide which lines to include in our residual background model
we start with an initial list of known instrumental and astrophysical lines. The instrumental lines
are determined from an analysis of the background ROI data, while the astrophysical lines are those
expected to be produced by the Milky Way. In each ring, and for MOS and PN independently, we
then determine the significance of each emission line, keeping those above ∼2σ. As a result,
every ring has a different set of lines included in the analysis. We note that it is conceivable that a
UXL might be inadvertently removed by an overly-subtracted instrumental line at the same energy;
however, it would be highly unlikely for such a conspiracy to occur in every ring, given the varying
D-factor. The effects of sub-threshold instrumental lines are mitigated through a spurious-signal

nuisance parameter [402], as discussed in the SM.
The unprecedented data volume incorporated into this analysis necessitates a flexible approach

to modeling the residual continuum emission, which is accomplished with GP modeling, in order
to minimize background mismodeling. As opposed to parametric modeling, where the model
is specified by a specific functional form and associated list of model parameters, GP mod-
eling is non-parametric: the model expectations for the data at two different energies, E and
E ′, are assumed to be normally distributed with non-trivial covariance. Taking the model ex-
pectation to have zero mean, the GP model is then fully specified by the covariance kernel,
K(E,E ′). We model the mean-subtracted data using the non-stationary kernel K(E,E ′) =

AGP exp [−(E − E ′)2/(2EE ′σ2
E)], implemented in george [403], where σE is the correlation-

length hyperparameter and AGP is the amplitude hyperparameter. We fix σE such that it is larger
than the energy resolution of the detector, which is δE/E ∼ 0.03 across most energies for MOS
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and PN, while ensuring σE is kept small enough to have the flexibility to model real variations in
the data. The goal is to balance two competing effects. If σE approaches the lower limit imposed
by the energy resolution of the detector, then the GP model would have the flexibility to account
for line-like features, which would reduce our sensitivity when searching for such features over the
continuum background. On the other hand, if σE is too large then the GP continuum model may not
accurately model real small-scale variations in the data. In our fiducial analysis we fix σE = 0.3,
though in the appendices we show that our results are robust to variations not only in this choice,
but also to modifications to the form of the kernel itself. In contrast, the hyperparameter AGP is
treated as a nuisance parameter that is profiled over when searching for UXLs.

We then follow the statistical approach developed in [404], which used GP modeling to perform
an improved search for narrow resonances over a continuum background in the context of the
Large Hadron Collider. In particular, we construct a likelihood ratio Λ between the model with
and without the signal component, where the signal is the UXL line at fixed energy Esig. The null
model is as above, the combination of a GP model with a single nuisance parameter AGP, and a set
of background lines, whose amplitudes are treated as nuisance parameters. We use the marginal
likelihood from the GP fit in the construction of the likelihood ratio [404]. Note that as the number
of counts in all energy bins is large (� 100), we are justified in assuming normally-distributed
errors in the context of the GP modeling. We then profile over all nuisance parameters. Finally,
the discovery significance is quantified by the test statistic (TS) t = −2 ln Λ. We verify explicitly
in the appendices that under the null hypothesis t follows a χ2-distribution. The 95% one-sided
upper limits are constructed from the profile likelihood, as a function of the signal amplitude.

We implement this procedure and scan for a UXL from 2.5 to 8 keV in 5 eV intervals. At
each test point we construct profile likelihoods for signal flux independently for each ring using
the background-subtracted MOS and PN data. We then combine the likelihoods between rings
– and eventually cameras – in a joint likelihood in the context of the DM model, as discussed
shortly. As an example, Fig. 9.2 illustrates the signal and null model fits to the innermost MOS
background-subtracted signal-annulus data for a putative UXL at 3.5 keV (indicated by the vertical
dashed line). Note that while the fit is performed over the full energy range (2.5−8 keV) for clarity
we show the data zoomed in to the range 3 to 4 keV. In this case the data have a deficit, which
manifests itself as a signal with a negative amplitude.

9.3 Interpretation

We combine together the profile likelihoods from the individual annuli to test the decaying DM
model. In the context of sterile neutrino DM with mass mχ and mixing angle θ, the DM decay in
the Galactic halo produces an X-ray flux at energy mχ/2 that scales as Φ ∝ m4

χD sin2(2θ) [405].
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Figure 9.2: The background-subtracted MOS data for the innermost annulus, downbinned by a
factor of four for presentation purposes. The indiciated best fit null and signal models, for a 3.5
keV UXL, are constructed using the GP modeling described in the text.

Specifically, the translation from the model-independent τ to sin2(2θ) is given by

1

τ
= 1.361× 10−29 s−1

(
sin2 2θ

10−7

)( ms

1 keV

)5

. (9.3)

It is in terms of this sin2(2θ) that we present the majority of our results, though we do provide
general limits on τ and on gaγγ for the axion scenario. Note that the D-factors, appropriately
averaged over observations in the individual annuli, are illustrated in Fig. 9.1. Thus, at fixed DM
mass mχ we may construct profile likelihoods as functions of sin2(2θ) to appropriately combine
the profile likelihoods as functions of flux in the individual annuli. We subtract off Dbkg from the
D-factors in each signal ring since any UXL would also appear in the background ROI and thus be
included in the background subtraction.

TheD-factors may be computed from the DM density profile of the Milky Way. Modern hydro-
dynamic cosmological simulations indicate that the DM density profile in Milky Way mass halos
generally have a high degree of spherical symmetry (for a review, see Ref. [406]). Further, the pres-
ence of baryons contracts the inner∼10 kpc of the profile away from the canonical Navarro, Frenk,
and White (NFW) DM distribution [297, 298], so that there is an enhancement of the DM density
at smaller radii versus the NFW expectation [304,407–411], though cores could develop on top of
this contraction at radii . 2 kpc [412–415]. For example, in Milky Way analogue halos within the
Fire-2 simulations the DM-only and hydrodynamic simulations produce DM density profiles
that agree within ∼25% at 10 kpc, but with baryons the density profiles are typically around twice
as large as the NFW DM-only expectation at distances ∼1 kpc away from the GC [304]. To be
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Figure 9.3: (Upper) The power-constrained 95% upper limit on the DM lifetime from this work,
presented in the context of the sterile-neutrino mixing angle sin2(2θ), as a function of the DM
mass mχ. The dark grey regions correspond to theoretical bounds for DM underproduction in
the νMSM or bounds from previous X-ray searches (1)–(5); see text for details. (Lower) The
associated sign-weighted significance for the UXL. Vertical grey regions denote background lines
and are at least partially masked. Green and gold regions indicate 1/2σ expectations under the null
hypothesis. These results are shown in the context of more general DM models as constraints on
the DM lifetime in Fig. H.7.

conservative we assume the canonical NFW density profile for all radii, though in the appendices
we discuss how our results change for alternate density profiles.

The NFW profile is specified by a characteristic density ρ0 and a scale radius rs: ρDM(r) =

ρ0/(r/rs)/(1 + r/rs)
2. We use the recent results from [416], who combined Gaia DR2 Galactic

rotation curve data [417] with total mass estimates for the Galaxy from satellite observations [418,
419]. These data imply, in the context of the NFW model, a virial halo mass MDM

200 = 0.82+0.09
−0.18 ×

1012 M� and a concentration c = r200/rs = 13.31+3.60
−2.68, with a non-trivial covariance between

MDM
200 and c [416] such that lower concentrations prefer higher halo masses. Within the 2D 68%

containment region forMDM
200 and c quoted in Ref. [416], the lowest DM density at r ≈ 0.5 kpc, and

thus the most conservative profile for the present analysis, is obtained for ρ0 = 6.6×106 M�/kpc3

and rs = 19.1 kpc. We adopt these values for our fiducial analysis. With our choice of NFW DM
parameters the local DM density, at the solar radius, is ∼0.29 GeV/cm3 (cf. 0.4 GeV/cm3 used
in [378]), which is consistent with local measurements of the DM density using the vertical motion
of tracer stars perpendicular to the Galactic plane, see, e.g., Refs. [28, 420].
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We search for evidence of decaying DM in 10 eV intervals in mass between 5−16 keV, masking
0.1 keV windows around the locations of known lines, as indicated in Fig. 9.3. We construct the
joint likelihoods for the MOS and PN data sets. We test and account for additional background
mismodeling in the MOS and PN analyses by looking at the distribution of best-fit mixing angles
in the energy side-bands, using a technique similar to the “spurious signal” used by ATLAS in
the search for the Higgs boson [402]. This procedure is described in the appendices and only
has a small effect at low masses. We then combine, at a given mass, the resulting MOS and PN
profile likelihoods to obtain the final profile likelihood used to construct the limit and discovery
significance shown in Fig. 9.3. In that figure we show the one-sided 95% upper limit on sin2(2θ) in
the upper panel, along with the 1 and 2σ expectations for the power-constrained upper limit [195]
under the null hypothesis (shaded green and gold, respectively).

We find no evidence for decaying DM signals above our pre-determined significance threshold
of 5σ global significance (corresponding to∼6σ local significance), as shown in the bottom panel.
In that figure we compare our upper limit to previous limits in the literature, adjusted to our fiducial
DM model for the Milky Way where appropriate. In the context of the νMSM it is impossible to
explain all of the observed DM in the region marked “DM under production” because of the big
bang nucleosynthesis bound on the lepton chemical potential [421–423]. Note that the νMSM also
predicts that the DM becomes increasingly warm for decreasing mχ, which leads to tension with
Milky Way satellite galaxy counts for lowmχ: data from the Dark Energy Survey and other Galac-
tic satellite surveys [424] constrains mχ greater than ∼15–20 keV in the νMSM [425] (which can
be strengthened further when combined with strong lensing measurements [22]), though we note
that our results apply to more general DM production mechanisms that do not predict modifica-
tions to small-scale structure. In Fig. 9.3 we also show previous X-ray limits from (1) [378], (2)
a Chandra search for DM decay in the Milky Way [426], (3) a Chandra search for DM decay in
M31 [385], and (4) combined NuSTAR searches for DM decay: in the Milky Way [393–395], the
Bullet Cluster [396], and M31 [397]. Note that the results from Milky Way searches have been
adjusted to use the same DM density profile as in our fiducial analysis.

9.3.1 Axion Interpretation

Although this chapter is presented within the context of the sterile neutrino, these X-ray searches
can also be interpreted in the context of a search for the decay of keV-scale axions to two photons.
The axion lifetime is given in terms of its coupling as

1

τ
=
g2
aγγm

3
a

64π
(9.4)
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Figure 9.4: Our decay search interpreted in the context of limits on the axion decay to two photons.
Our limits, along with those from additional blank sky searches are indicated as in Fig. 9.3

allowing for simple translation of our results to constraints on gaγγ . These constraints are presented
in Fig. 9.4.

9.4 Conclusion

We find no significant evidence for decaying DM, which leads us to set some of the strongest
constraints to-date on the DM lifetime. We confirm the results of Dessert et al. [378] for the non-
observation of a DM decay line near 3.5 keV using a more robust and flexible analysis strategy,
leaving little room for a decaying DM explanation of the previously-observed 3.5 keV anoma-
lies [379–383]. (See the appendices for further discussion.)

Given the data volume incorporated into this analysis it is unlikely that further analyses of
XMM-Newton data, or Chandra data, could produce qualitatively stronger results on the DM life-
time in the mass range considered here. However, the approach taken in this work may lead to
a powerful advancement in discovery power with future data sets from surveys such as those by
the upcoming Athena [427] and XRISM [428] telescopes. A combination of the data collected by
those missions and the analysis framework introduced in this work may lead to the discovery of
decaying DM in the few-keV mass range at lifetimes beyond those probed in this work.
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CHAPTER 10

Conclusion

In this thesis, I have shown that promisingly open parameter space for axions can be effectively
probed with new phenomenological insights combined with novel detection methods possible
through astrophysical observation and precision laboratory measurement. As these searches are
currently probing only the most accessible possibilities for axion DM, there remains considerable
work to be done. However, there are many reasons to be optimistic. New ideas and steadily
improving computational power will enable us to refine our understanding of axion phenomenol-
ogy. Simultaneously, upcoming telescopes and experiments with improved sensitivities will lead
to new and improved searches that will push the frontiers of axion detection further than previously
thought possible. Moreover, there exists a wealth of unexamined archival data from astrophysics,
some of which might already contain hints of new physics. There is every reason to believe that
axions exist in nature, and with now unprecedented effort devoted to their discovery, prospects for
shedding light on the nature of dark matter may be better than ever.
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APPENDIX A

Simulations of Axion Production in the
Post-Inflationary Misalignment Scenario

A.1 Simulation Equations of Motion

Our phenomenological Lagrangian describing the PQ field is adopted from the construction of
[121] and is of the form

LPQ =
1

2
|∂Φ|2 − λ

4

(
|Φ|2 − f 2

a

)2 − λT 2

6
|Φ|2 −ma(T )2f 2

a [1− cos Arg(Φ)], (A.1)

where Φ is the complex PQ scalar, T is the temperature, λ is the PQ quartic coupling strength, fa is
the PQ-scale identified as the axion decay constant, andma(T ) is the temperature-dependent axion
mass [121]. The parametrization of the temperature-dependent mass is adopted from the leading
order term in the fit in [116]. Explicitly, the axion mass is parametrized by

ma(T )2 = min

[
αaΛ

4

f 2
a (T/Λ)n

, ma

]
, (A.2)

for α = 1.68 × 10−7, Λ = 400 MeV and n = 6.68. The growth of the mass is truncated at
T ≈ 100 MeV. The zero-temperature mass is given by

m2
a =

m2
πf

2
π

f 2
a

mumd

(mu +md)2
, (A.3)

where mπ is the pion mass, fπ is the pion decay constant, mu/d is the up/down quark mass. Details
of the temperature-dependent axion mass, or equivalently, the topological susceptibility, remain
uncertain, especially at low temperatures. Note that we do not explore here how our results are
affected by uncertainties in the temperature-dependent axion mass, though doing so is a worthwhile
direction for future work.
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Decomposing the complex scalar as Φ = φ1 + iφ2, and assuming a radiation-dominated cos-
mological background, leads to equations of motion in metric coordinates of the form

φ̈1 + 3Hφ̇1 −
1

R2
∇2φ1 +

1

3
λφ1

[
3
(
φ2

1 + φ2
2 − f 2

a

)
+ T 2

]
− ma(T )2φ2

2

(φ2
1 + φ2

2) 3/2
= 0

φ̈2 + 3Hφ̇2 −
1

R2
∇2φ2 +

1

3
λφ2

[
3
(
φ2

1 + φ2
2 − f 2

a

)
+ T 2

]
+
ma(T )2φ1φ2

(φ2
1 + φ2

2)
3/2

= 0 .

(A.4)

Over temperatures T & 100 MeV, the number of relativistic degrees of freedom g∗ in the Standard
Model is expected to vary only mildly. For simplicity, we therefore assume g∗ = 81, which is a
typical value adopted at high temperatures (though later in the Appendices we explore the system-
atic uncertainty introduced by this assumption). It is useful to define a dimensionless conformal
time η̂ such that

η̂ =
R

R(T = T1)
=

R

R1

=

(
t

t1

)1/2

, (A.5)

whereR is the scale factor and the time t1 (with T (t1) ≡ T1) is a reference time that will be defined
differently in the PQ and QCD epoch simulations.

The axion-mass term is not included in our PQ-epoch simulations. In our QCD-epoch simula-
tions, on the other hand, the mass term is included and drives the dynamics. In this case, the mass
grows until the cutoff temperature Tc at which point the axion mass reaches its zero-temperature
value; the corresponding conformal time is given by η̂c = R(T = Tc)/R1. Rewriting (A.4) with
the dimensionless coordinates, we then find

ψ′′1 +
2

η̂
ψ′1 − ∇̄2ψ1 +

1

H2
1

[
λψ1

(
η̂2f 2

a (ψ2
1 + ψ2

2 − 1) +
1

3
T 2

1

)

−m2
a(T1)η̂2min(η̂, η̂c)

n

(
ψ2

2

(ψ2
1 + ψ2

2)3/2

)]
= 0

(A.6)

ψ′′2 +
2

η̂
ψ′2 − ∇̄2ψ2 +

1

H2
1

[
λψ2

(
η̂2f 2

a (ψ2
1 + ψ2

2 − 1) +
1

3
T 2

1

)

+m2
a(T1)η̂2min(η̂, η̂c)

n

(
ψ1ψ2

(ψ2
1 + ψ2

2)3/2

)]
= 0 ,

(A.7)

where φ = faψ, primes denote derivatives with respect to η̂, and the spatial gradient is taken with
respect to x̄ = a1H1x.
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A.1.1 The PQ Epoch

Simulations in the PQ epoch occur at T � ΛQCD and so the temperature-dependent axion mass
may be neglected. We therefore take our equations of motion to be

ψ′′1 +
2

η̃
ψ′1 − ∇̄2ψ1 + λψ1

[
η̃2
(
ψ2

1 + ψ2
2 − 1

)
+
T 2

1

3f 2
a

]
= 0

ψ′′2 +
2

η̃
ψ′2 − ∇̄2ψ2 + λψ2

[
η̃2
(
ψ2

1 + ψ2
2 − 1

)
+
T 2

1

3f 2
a

]
= 0 ,

(A.8)

and we fix η̃ = 1 to be the time at which H1 = fa. Note that for our PQ-epoch simulations we
refer to η̂, defined in (A.5), as η̃ in order to avoid confusion with the dimensionless conformal time
η̂ used in the QCD-epoch simulations. The ratio (T1/fa)

2 is determined by

(
T1

fa

)2

≈ 8.4× 105

(
1012 GeV

fa

)
. (A.9)

In principle, it would seem that axions of different decay constants would require different simu-
lations in the PQ epoch. However, this ratio is degenerate with our choice of physical box size and
dynamical range in η̃ in a particular simulation, allowing us to perform only one PQ simulation and
interpret its output as the initial state of the axion field for several different values of fa. The key
assumption behind this, however, is that at late times after the PQ phase transition the field enters
the scaling regime so that we may reinterpret the output of the PQ simulation in the appropriately
rescaled box as the initial state of the QCD simulation at much lower temperatures. Note that the
value of λ is a free parameter, which we naturally choose to be λ = 1 though it has little effect.

A.1.1.1 Initial Conditions for a PQ Scalar

We generate initial conditions for our PQ scalar by taking it to be described by a thermal distri-
bution characterized by the temperature T at the initial early time. As can be read off from the
Lagrangian, each of the two fields has an effective mass of the form

m2
eff = λ

(
T 2

3
− f 2

a

)
. (A.10)
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Correlation functions of the initially-free massive scalar fields are given by

〈φi(x)φj(y)〉 = δij

∫
dk

2π

nk
ωk
eik · (x−y) (A.11)

〈φ̇i(x)φ̇j(y)〉 = δij

∫
dk

2π
nkωke

ik · (x−y) (A.12)

〈φ̇i(x)φj(y)〉 = 0 , (A.13)

where overdots denote differentiation with respect to time, and we have defined

nk =
1

eωk/T − 1
, ωk =

√
k2 +m2

eff . (A.14)

In momentum space, these correlation functions take the form

〈φi(k)φj(k
′)〉 =

2πnk
ωk

δ(k + k′)δij (A.15)

〈φ̇i(k)φ̇j(k
′)〉 = 2πnkωkδ(k + k′)δij (A.16)

〈φ̇i(k)φj(k
′)〉 = 0 . (A.17)

Our simulations occur on a discrete lattice of finite size, so the correlation functions above lead to
initial conditions set by a realization of a Gaussian random field specified in Fourier space by

〈φi(k)〉 = 0, 〈|φi(k)|2〉 =
nk
ωk
L, (A.18)

〈φ̇i(k)〉 = 0, 〈|φ̇i(k)|2〉 = nkωkL . (A.19)

Note that we include the 50 lowest k-modes in each of the three directions when constructing the
initial conditions, and we have verified that including more modes does not affect our results.

A.1.2 Early Times in the QCD Epoch

During the QCD epoch, T ∼ ΛQCD, and so the axion mass is non-negligible. Here, we define
η̂ = 1 to be the time at which H1 = ma(T1), with the axion field beginning to oscillate shortly
thereafter when ma = 3H . The equations of motion are then given by

ψ′′1 +
2

η̂
ψ′1 − ∇̄2ψ1 + λ̃η̂2ψ1(ψ2

1 + ψ2
2 − 1)−min(η̂, η̂c)

nη̂2

(
ψ2

2

(ψ2
1 + ψ2

2)3/2

)
= 0

ψ′′2 +
2

η̂
ψ′2 − ∇̄2ψ2 + λ̃η̂2ψ2(ψ2

1 + ψ2
2 − 1) + min(η̂, η̂c)

nη̂2

(
ψ1ψ2

(ψ2
1 + ψ2

2)3/2

)
= 0 ,

(A.20)
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where we have neglected the T1 contribution to the PQ scalar mass as it is small compared to fa.
The parameter λ̃ is defined by

λ̃ = λ

(
fa

ma(T1)

)2

(A.21)

and can be interpreted as the squared mass of the radial mode |Φ/fa|. For physical parameters
we expect λ̃ � 1, though in practice we find that the final results are relatively independent of
λ̃ for moderately sized values of the parameter, as described in the main text and later in the
Appendices. Indeed, our choices for λ̃ allow us to resolve the radial mode mass by more than a
few grid-spacings, satisfying the requirement of [124] to accurately study the axion spectrum from
string radiation. There exist additional criteria on the largeness of λ̃ such that the metastability of
topological defects is preserved despite the unphysical smallness of simulated λ̃ in comparison with
the rapidly increasing axion mass. At all times prior to expected defect collapse, our choices of λ̃
satisfy the simplest construction of these conditions [96], with our choice of λ̃ = 5504 satisfying
the most stringent criteria established in [125]. We note that we are largely unable to differentiate
between simulations at any two particular values of λ̃, and that our choice of values appear to have
minimal impact, as illustrated further below.

A.1.3 Late Times in the QCD Epoch

The presence of topological defects in the axion field at early times during the QCD epoch requires
that we fully simulate both degrees of freedom of the PQ field. Once the topological defects have
collapsed, however, we are free to use the axion-only equations of motion. Our axion is defined by
a = faarctan2(φ1, φ2) and has the Lagrangian

L =
1

2
(∂a)2 −m2

a(T )f 2
a

[
1− cos

(
a

fa

)]
, (A.22)

along with corresponding equations of motion

θ′′ +
2

η̂
θ′ − ∇̄2θ + min(η̂, η̂c)

nη̂2 sin θ = 0 . (A.23)

Above, we define θ = a/fa. Evolving these equations of motion is formally equivalent to freezing
out excitations of the radial mode by taking λ̃ → ∞, which more accurately recovers the true
physics of the evolution of the axion field for realistic values of fa. Note that the coordinate x̄ and
η̂ here are identical to those used in evolving the two degrees of freedom of the complex scalar
performed prior to defect collapse.
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A.1.4 Analytically Evolving in the Fixed-Mass Small-Field Limit

At late times when the axion mass has reached its zero-temperature value and the axion field has
redshifted considerably so that |θ| � 1, the equations of motion are linear and well-approximated
by

θ′′ +
2

η̂
θ′ −∇2θ + η̂nc η̂

2θ = 0. (A.24)

We may solve this equation analytically by going to Fourier space and adopting an ansatz for the
solution as

θ(η̂) = f(η̂) exp(ik · x) . (A.25)

This ansatz leads to the equation

f ′′(η̂) +
2f ′(η̂)

η̂
+ f(η̂)

(
η̂2η̂nc + k2

)
= 0 , (A.26)

which has the general solution

f(η̂) =
exp(− i

2
η̂2η̂

n/2
c )

η̂

[
C1H− 1

2
η̂
−n/2
c

(
η̂
n/2
c +ik2

) ( 4
√
−1η̂η̂n/4c

)
+

C2 1F1

(
1

4
η̂−n/2c

(
η̂n/2c + ik2

)
;
1

2
; iη̂2η̂n/2c

)]
,

(A.27)

for coefficients C1 and C2 determined by boundary conditions, and where Hn and 1F1 are the
analytic continuations of the Hermite polynomials and the confluent hypergeometric function of the
first kind, respectively. From this analytic solution, we can transfer late-time field configurations
from our simulation to arbitrary large η̂. Differentiation with respect to η̂ may be straightforwardly
performed to find f ′(η̂) at large η̂ as well. The computation of the analytically continued Hermite
polynomials and hypergeometric functions was performed with the python package mpmath.

We directly compare the differential mass spectrum at η̂ = 7 with the same field analytically
evolved to η̂ = ηMR in Fig. A.1. While the basic differential shape is the same, the η̂ = 7 results
have a much wider distribution in δ. In particular, all overdensities above δ > 10 have vanished by
the time matter-radiation equality is reached. However, the peak of the distribution is still around
δ = 1. Evolving the fields down to matter-radiation equality is important because many of the
modes are generated with high momentum at the QCD epoch, causing the large overdensities to
disperse by the time of matter-radiation equality.
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Figure A.1: Double differential mass fractions for axion minihalos as a function of the concen-
tration parameter δ and mass M . In the top left we compute that mass function using the field
immediately after the QCD phase transition, at η̂ = 7, while in the bottom left we use the more
correct procedure of first evolving to η̂ = η̂MR before performing the clustering procedure. Evolv-
ing to matter-radiation equality gives the most over-dense regions time to expand and results in less
dense overdensities, as compared to the incorrect procedure shown in the top left. This is perhaps
even more apparent in the single differential mass fractions as a function of the mass M (top right)
and concentration parameter δ (bottom right). These results are based on our most realistic simu-
lation with η̂c = 3.6 and λ̃ = 5504. Error bars are statistical, and we do not extend the df/d logM
curves to lower masses as we are unable to resolve those properly.

A.2 Studying the (Over)Density Field

Our interest in this work is studying the energy density field ρ and the overdensity field δ =

(ρ− ρ̄)/ρ realized in the axion field from our simulations. The axion energy density for the axion
field a = faθ is computed by the Hamiltonian density

H = f 2
a

[
1

2
θ̇2 +

1

2R2
(∇θ)2 +m2

a(1− cos θ)

]
, (A.28)

which can be rewritten in simulation units as

H = m2
af

2
a

[
θ′2 + (∇̄θ)2

2η̂6.68
c η̂2

+ (1− cos θ)

]
, (A.29)
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assuming η̂ > η̂c. At late times, the Hamiltonian is approximately

H ≈ m2
af

2
a

2

(
θ′2

η̂nc η̂
2

+ θ2

)
, (A.30)

when all modes in the simulation are non-relativistic and the field values are small.

A.2.1 Oscillons

Large overdensities right after the QCD phase transition are caused by oscillons. Oscillons are,
in contrast to strings and domain walls, not topological defects but arise due to non-linearities in
the equation of motions, forming at locations where the the axion self-interaction dominates the
Hubble friction. As a result, the first oscillons form at the location of collapsed strings and domain
walls, where the axion remains excited and reaches large field values. However, at later times,
oscillons are observed forming throughout the simulation box. The dynamics of the oscillons are
highly non-trivial, especially as the axion self-interaction increases in strength with the growing
axion mass.

Oscillons decrease in size over time following the oscillation wavelength ∼ma(T )−1, as axions
in the core are relativistic. Good spatial resolution is therefore needed to resolve them. In order to
study their behavior we perform a 2D (two spatial dimensions, one time) simulation using the same
simulation setup in the PQ- and QCD-epoch as in 3D. We find that there is no qualitative difference
between 2D and 3D simulations regarding oscillons, but going to 2D allows us to increase the
spatial resolution to 40962 grid sites and to subsequently increase η̂c. Note that in the context
of our 2D simulations we have explicitly verified that the final-state fields and, in particular, our
central results, such as those concerning the DM density estimates and the non-Gaussian density
distributions, are stable to increases in the number of grid sites. For example, we increased our
resolution by a factor of two in each direction and found consistent results.

We illustrate the evolution of an oscillon in Fig. A.2. Two scenarios are considered with dif-
ferent truncation points of the mass growth, η̂c = 4.0 and η̂c = 6.0. Note how the radius of the
oscillon decreases as long asma(T ) is increasing. The circles in A.2 have radiusma(T )−1, and the
oscillon cores are seen to track this scale. Subsequently, if the mass growth is truncated at η̂c = 4.0,
the radius of the oscillon is constant as well. When the mass growth is cut-off, the density contrast
at the core of the oscillon slowly decreases over time and the oscillons dissipate, as can be seen in
the two lower right panels in Fig. A.2.
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Figure A.2: Illustration of an oscillon (log(ρ/ρ̄)) at different times in a 2D simulation. Two scenar-
ios are considered with different truncation points of the mass growth, η̂c = 4.0 and η̂c = 6.0. The
three left panels are identical in both scenarios, while the two top right panels are for η̂c = 6.0, and
the two bottom panels are for η̂c = 4.0. The radius of the oscillon is proportional to the oscillation
frequency ∼ ma(T )−1 (circles of that radius are shown in dashed blue) and as such is decreasing
over time. The oscillon central density slowly dissipates after the mass growth ends, as seen in the
bottom right panels for η̂c = 4.0.

A.2.2 Calculating the Axion Relic Abundance

To calculate the axion DM abundance as a function of ma, we first need to understand the rela-
tionship between the mass cutoff conformal time η̂c and the decay constant fa. Here we use the
relation T1/η̂c = Tc, with Tc ≈ 100 MeV. This allows us to solve for fa in terms of η̂c. The
energy densities are calculated from the axion field and its derivatives according to (A.30) after
numerically evolving until η̂ = 7, then analytically evolving until η̂MR = 106, at which point the
contribution of the gradient term to the energy density is negligible. As a side note, our definition
of η̂MR actually puts us at slightly earlier times than global matter-radiation equality. This us be-
cause matter-radiation equality is, locally, reached earlier for the largest overdensities and because
we want to make sure that gravitational interactions can be neglected. In particular, note that the
temperature corresponding to η̂MR is given by TMR = Tcηc/η̂MR. For our most realistic simulation
with ηc = 3.6 this corresponds to TMR ≈ 0.5 keV. However, if we reinterpret the final state for a
more realistic axion with ma ≈ 25 µeV, which has a higher ηc, then TMR ≈ 4 keV. In practice,
though, the exact value of TMR is not important because by these temperatures the proper motions
in the axion field are frozen out and the field is thus not evolving non trivially. As a consequence
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our results (both for the DM density and for the spectrum of overdensities) are not sensitive to
small (or even relatively large) changes to the exact value of η̂ that we evolve to.

Note that we present our results in terms of the DM density fraction today Ωa, which is defined
as the ratio of the average energy density today in DM relative to the observed critical energy
density. We compute statistical error bars at each value of fa from the variance as a function of λ̃
at fixed η̂c. We note that no trend is visible in the data for the dependence of Ωa on λ̃, as is shown in
Fig. A.3. The statistical noise is inferred from the spread in Ωa values, which are determined from
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Figure A.3: Our results for the DM density today Ωa, inferred at η̂MR, from simulations at different
values of λ̃ for our most realistic η̂c: η̂c = 3.6. The uncertainties are the inferred statistical uncer-
tainties arising from the spread in the DM density determinations as a function of λ̃. No trend is
discernible for the dependence of Ωa on λ̃, above the statistical noise.

the output at ηMR, between different λ̃. The observed variations are consistent with the expected
noise from Poisson counting statistics due to having a finite number of overdensities within the
simulation box.

In Fig. A.4 we show our results for Ωa as a function of fa, compared to earlier predictions
in [118] and [112]. For reference, we also include predictions for the relic abundance based on
the field value and the time derivative at η̂ = 7. Here it is less straightforward to determine the
DM axion abundance, relative to taking the results at η̂MR, as some of the modes in the simulation
are still relativistic. This introduces an additional systematic uncertainty, since the field is not
completely red-shifting like radiation at this time. For these reasons it is important to evolve the
field until it is completely non-relativistic before measuring the DM density.

Because the ratio of the axion mass density to entropy density is constant after the axions have
become non-relativistic and the number of axions is conserved, we can redshift our energy density
from our matter-radiation equality η̂MR to today. Then, we compare this energy density to the
most up-to-date measurement of the average DM density in the Universe today ρDM = 33.5± 0.6

M�/kpc3 [128]. Note that we have propagated all cosmological uncertainties other than those on
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Figure A.4: A comparison of the predictions for the relic abundance of axions dark matter as a
function of fa obtained in [118] (Kawasaki et al.) and [112] (Klaer and Moore) with the simulation
results realized in this work. Error bars are combined statistical and correlated systematic errors,
with the former dominating at η̂ = 7 due to large field gradients and the latter at η̂ = η̂MR.

Neff , which we have fixed to the Standard Model value. These cosmological uncertainties introduce
an approximately 3% correlated uncertainty across the results of our simulations. We additionally
have an approximately 8% uncertainty due to our assumption of fixed g∗, which is examined in
greater detail later. These uncertainties are the dominant ones in our results, and we emphasize
that they have not been typically considered in determinations of the DM axion mass. From the Ωa

data, for the various fa values simulated, we may extrapolate to predict the fa for an axion which
produces the observed DM relic abundance by fitting a simple power law relation of the form

Ωa(fa) = c1 · fαa , (A.31)

as discussed in the main body of this work. Note that we expect α = (6 + n)/(4 + n), where n
is the index of the axion mass growth. We assume this scaling is valid to make our estimate for
the ma that gives the correct DM abundance. The relation between α and n is expected to arise
for the following reason. Let us estimate the axion DM density from an axion with a constant
initial misalignment angle θi. The present-day axion abundance as produced by the misalignment
mechanism can be estimated by

ρa(T0) = ρa(T3)
ma(T0)

ma(T3)

g∗(T0)T 3
0

g∗(T3)T 3
3

, (A.32)

where T0 is the present-day temperature, T3 is the temperature at which the axion began to oscillate
(ma(T3) = 3H(T3)), and g∗(T ) the number of effective degrees of freedom at temperature T .
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The initial axion abundance ρa(T3) is given

ρa(T3) =
ma(T3)2f 2

a

2
θ2
i , (A.33)

Anharmonicity factors can be included, but have no temperature or fa dependence. The temper-
ature T3 depends on fa through the relation T3 ∝ f

−2/(4+n)
a . Substituting these relations in and

keeping only terms which depend on fa, we have

ρa(T0) ∝ f (6+n)/(4+n)
a

g∗(T0)

g∗(T3)
. (A.34)

We thus expect the relic abundance to scale with fa like ρa ∝ f
(6+n)/(4+n)
a . Note that the DM

abundance from string and domain wall production is calculated similarly in [118], and although
our results are not consistent with those presented in that work, the abundance calculation they
present proceeds similarly, yielding string and domain wall production that scale like f (6+n)/(4+n)

a

as well.
On the other hand, we may also calculate the the ma that gives the correct DM abundance by

using our fit value for α, as defined in (A.31), instead of the theoretical value. Doing so leads to a
slightly lower ma estimate, as described in the main text.

A.2.3 Tests of the Overdensity Field Gaussianity

In typical cosmological contexts, overdensity fields are treated under the assumption that they are
Gaussian random fields. For a real-space Gaussian field, we may Fourier transform the field and
find that the squared magnitude of each mode is independently exponentially distributed with mean
set by the power-spectrum and with the phase of each mode independently uniformly distributed on
[0, 2π) [429]. For reference, in Fig. A.5 we show our power spectra ∆2

k at fixed λ̃ across our various
choices for η̂c. Note that we construct the power spectra from the fields that have been evolved until
η̂ = η̂MR. However, as we demonstrate below, the power spectrum fails to accurately describe the
overdensity field we realize in our simulations because the field is highly non-Gaussian at small
scales. As a result, standard tools for predicting structure formation that rely upon an underlying
Gaussian overdensity field, such as the Press-Schechter formalism, cannot be applied to predict
the spectrum of structures that form from the overdensities in the axion field, at least on the very
smallest scales.

First, we note that the largest field values taken within the overdensity fields at the state realized
by the analytic evolution until η̂ = η̂MR are O(10), whereas the minimum value the overdensity
field can take is −1 by construction. This is trivially incompatible with the interpretation of the
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Figure A.5: A comparison of the power spectra realized in simulations for λ̃ = 5504 for different
choices of η̂c. New features in the power spectrum emerge as we push to larger values of η̂c, and
we cannot exclude the possibility that further features would emerge were we to simulate with a
greater value for the cutoff. On the other hand, the power-spectrum is highly non-Gaussian at small
scales, so the distribution ∆2

k alone is not adequate for understanding the small-scale nature of the
overdensity field.

overdensity field as a Gaussian random field, which would have symmetric variance about its
mean of 0. For our overdensity fields to realize O(10) maxima with −1 as a construction-imposed
minimum, there must exist considerable phase-correlations between Fourier modes, contrary to the
uncorrelated phases of a Gaussian random field.

We also may inspect the distribution of power at each mode in the Fourier transformed over-
density field. If the overdensity field were Gaussian, then the power in each mode would be
exponentially distributed with mean set by the value of the mean power spectrum. To test this, we
plot the probability distribution dP/dx of x = |δ̂(k)|2/〈|δ̂(k)|2〉|k|=k, with δ̂(k) the Fourier trans-
formed overdensity field at momentum k, as measured in the final states of our field at η̂ = η̂MR.
We compare the observed distributions with the expected Gaussian random field assumption of
an exponential distribution with unit mean in Fig. A.6. Dramatic deviations from the expected
behavior are observed for large |k|. We stress, however, that in addition to these distributions
departing from the expected exponential distributions, the real and imaginary components across
modes are also highly phase correlated on small scales. We additionally note that this study of
the Fourier spectrum of the overdensity field is performed after the field has been undergone an
eight-fold down-binning, so that all modes inspected are well above the simulated lattice-spacing
scale. Moreover, the oscillons which are obvious indicators of non-Gaussianity, are resolved by
several lattice spacings at all times in our simulation. In this way, we can be confident that the
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appearance of non-Gaussianity is a physical effect rather than one associated with discretization
error. As mentioned in Sec. A.2.1, we have also explicitly verified in the context of our 2D sim-
ulations that increasing the number of grid sites leads to consistent results, further indicating that
the non-Gaussian density spectra are physical and not related to the finite lattice spacing.
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Figure A.6: A comparison of the distribution of the squared magnitudes of Fourier components
for four different fixed reference momentum k. The expected exponential distribution for a Gaus-
sian field is also indicated. While the distributions are Gaussian at large scales, they become
increasingly non-Gaussian at small scales. The momentum mode |k| = 500 corresponds to ap-
proximately 6.5 grid sites. These distributions were constructed from our most realistic simulation
with λ̃ = 5504 and ηc = 3.6.

A.2.4 Minihalo Mass Spectrum

In this subsection we give additional details and results for the minihalo mass and density spec-
trum. In addition to the technical difficulties associated with a non-Gaussian overdensity field,
computational limitations prevent us from performing realistic simulations of fa ∼ 1011 GeV ax-
ions, which would require us to simulate until η̂c ≈ 15. We instead interpret our simulation results
at smaller η̂c in appropriate units to rescale these results to the target fa ≈ 2 × 1011 GeV. We do
so with the following methods. The total axion mass contained within some set of grid-sites in our
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simulation can be computed from the Hamiltonian as

Mtot = a(η̂)3

∫
d3xH ≈ a(η̂)

∑
(∆x)3H =

(
a(η̂)3∆x̄

a1H1

)3∑
H =

(
η̂∆x̄

H1

)3∑
(1 + δ)ρ̄ ,

(A.35)
where ρ̄ is computed by the average of our Hamiltonian in (A.30) in the simulation box. We
calculate H1 from T1 based on our choice of fa, then rescale ρ̄ to the value of the axion energy
density at the time η̂ such that the correct relic abundance is realized today. In this manner, we
aim to rescale all dimension-full quantities related to fa to our target fa. In particular, we rescale
the DM density ρ̄ to give the correct DM density realized in our Universe, and we also rescale the
minihalo masses by the factor ∝ (a1H1)−3 appearing in (A.35) to those for the target fa.
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Figure A.7: Comparison between differential mass fractions as a function of the minihalo mass M
from our simulations at different η̂c. In this plot we have rescaled the minihalo masses such that
we achieve the correct DM density ρ̄ observed in the Universe, but for the solid curves we have
not applied the Hubble volume rescaling factor to reach our target fa. However, the dashed curves
do have the Hubble volume rescaling factor included, but here we take our target fa to be that
corresponding to our most realistic simulation with η̂c = 3.6. The difference between the dashed
mass functions and the solid black mass functions gives a sense of the systematic uncertainty
introduced by applying the naive mass rescaling factors instead of simulating with the correct
value of η̂c (fa).

We illustrate the rescaling procedure in Fig. A.7. In that figure we show the differential mass
distribution of minihalos df/d logM as a function of minihalo mass M . These mass distributions
have been rescaled such that ρ̄ matches the actual DM density. However, the solid curves do not
have the a1H1 Hubble volume rescaling included. The dashed curves, on the other hand, apply
the Hubble volume rescaling factor but for a target η̂c of η̂c = 3.6, which is that corresponding
to the black curve. Clearly there are still differences between the rescaled dashed curves and the
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black curve, which tells us that there are dynamical effects that arise from changing η̂c that are not
captured by the simple rescaling. This should not be too surprising considering that e.g. the mass
growth affects the oscillon stability, which determines the high-mass part of the distribution. In
our work we rescale the mass function to the target fa as described above, but it is important to
keep in mind that this almost certainly results in a systematic uncertainty from the fact that we do
not capture the full oscillon dynamical range in doing so. Also note that all of the mass functions
abruptly drop off at low halo masses. This is due to our resolution limit on the finite lattice. We
also cannot rule out the possibility that the low-mass tail continues down to much smaller masses.
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Figure A.8: Comparison between differential mass fractions as a function of the concentration
parameter δ and minihalo mass M for different η̂c and λ̃ at η̂ = η̂MR. Error bars are statistical.
Shown as dotted lines is a fit to the df/dδ curves as described in the text. We do not extend the
df/d logM curves to lower masses as we are unable to resolve those properly.

We compare the single-differential mass fractions for different values of η̂c and λ̃ as a function
of δ and M in Fig. A.8. Note that here we have applied the rescaling factors for the masses to
our true target fa, which is that which gives the correct DM density. First of all we note that there
is no dependence on λ̃ visible in our parameter range within than statistical scatter. As for the
differential distribution as a function of δ, there is also no clear dependence on η̂c visible. The only
place where a clear dependence on η̂c is visible is in the mass fraction as a function ofM . Here, the
peak values shift to smaller masses upon increasing η̂c, even after including the rescaling factors.

It is useful to have an approximate analytic formula for the differential mass fraction. We find
that the differential mass fraction as function of δ can be accurately described by a Crystal Ball
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function based on a generalized Gaussian and a power-law high-end tail together with a suppres-
sion factor at high-δ:

df

dδ
=

A

1 +
(

δ
δF

)S




e
−
[
ln
(
δ
δG

)
/
√

2σ
]d

for ln
(

δ
δG

)
≤ σα

B
[
C + 1

σ
ln
(

δ
δG

)]−n
for ln

(
δ
δG

)
> σα

. (A.36)

The parameters B and C are given by

B = e
−
(
|α|√

2

) 

(√

2

|α|

)d
|α|n
d



n

, C = |α|



(√

2

|α|

)d
n

d
− 1


 , (A.37)

and they are chosen such that df/dδ and its first derivative are continuous. A is not a free parameter
as
∫∞

0
dδ(df/dδ) = 1 must hold. The fit parameters from our most realistic simulation with

η̂c = 3.6 and λ̃ = 5504 are given by

σ = 0.448± 0.008 n = 115± 8 δG = 1.06± 0.02 S = 4.7± 1.6

d = 1.93± 0.02 α = −0.21± 0.07 δF = 3.4± 1.2 .
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Figure A.9: Comparison between cumulative mass fractions, defined in the text, for our simulation
at η̂ = 7 (solid blue) and η̂MR (solid black). We use our fit to the differential mass fraction df/dδ
to extrapolate to high δ0 for our η̂MR data (dotted black). Error bars are statistical. We compare
our results to those from Kolb and Tkachev [430] obtained at η̂ = 4 by using the fit to their data
presented in [99] (red curve).

This fit allows us to make a precise comparison with previous work by Kolb and Tkachev [430].
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We present in Fig. A.9 the cumulative mass fraction that is in overdensities larger than δ0,

F (δ > δ0) =

∫ ∞

δ0

df

dδ
dδ. (A.38)

Unsurprisingly, we find considerably less mass in highly concentrated overdensities relative
to [430]. Whereas [430] predicts roughly 10% of the mass is in overdensities with δ = 10 or
more, we find a similar result only when using the simulation output at η̂ = 7. Once evolved to
matter-radiation equality, that percentage falls to ∼0.1%.

A.3 Testing the QCD Potential

The QCD potential may be modified in order to obtain more numerically tractable equations of
motion. Our effective Lagrangian

LPQ =
1

2
|∂Φ|2 − λ

4

(
|Φ|2 − f 2

a

)2 − λT 2

6
|Φ|2 −ma(T )2f 2

a [1− cos Arg(Φ)], (A.39)

has an apparent singularity when Φ→ 0, which may happen in the string cores, since Arg(0) is not
well defined. An alternate form of the potential has been proposed in the literature (see, e.g., [121])
to mitigate this apparent singularity and make the equations of motion numerically more tractable:

LPQ =
1

2
|∂Φ|2 − λ

4

(
|Φ|2 − f 2

a

)2 − λT 2

6
|Φ|2 −ma(T )2f 2

a [1− |Φ| cos Arg(Φ)]. (A.40)

This leads to equations of motion for early times in the QCD epoch of the form

ψ′′1 +
2

η̂
ψ′1 − ∇̄2ψ1 + λ̃η̂2ψ1(ψ2

1 + ψ2
2 − 1)−min(η̂, η̂c)

nη̂2 = 0

ψ′′2 +
2

η̂
ψ′2 − ∇̄2ψ2 + λ̃η̂2ψ2(ψ2

1 + ψ2
2 − 1) = 0 ,

(A.41)

in analogy to those found in (A.20). The equation of motion for the single axion field appropriate
for late times in the QCD epoch are unchanged.

Equipped with these new equations of motion, we re-simulate in three spatial dimensions using
our fiducial values of ηc = 3.6 and λ̃ = 5504. A comparison of results across metrics, such as
the energy density as measured at matter-radiation equality, leads to a ∼1% difference between
results obtained with the two potentials. We neglect this systematic in our error budget as it is
vastly subdominant to other sources of uncertainty.
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A.4 Testing the Impact of the Mass Parametrization

Precise details regarding the temperature dependence of the axion mass remain uncertain. While
we have chosen to use the parametrization of [116] with index n = 6.68 as done in [117, 118],
an more recent result is provided in [123]. In that work, an index of n ≈ 8.2 is found at high
temperatures, though we do note that an increasingly shallow dependence on T is realized at lower
temperatures. Motivated by power-law fits to this numerical result and informed by considerations
of the changing number of degrees of freedom, recent works have taken an index of n = 7.6

in [112] and n = 7.3 in [96] to study the axion field. In this section, we use the extreme value
n = 8.2 to estimate the maximal effect that uncertainties in the mass growth may have on the
determination of the DM density.

We perform simulations first in two spatial dimensions, then in the full three spatial dimension
using our initial state, now using n = 8.2. We fix λ̃ = 5504 and fa ≈ 4.8× 1014 GeV. This choice
of fa corresponds to η̂c = 3.6 in the n = 6.68 parametrization. However, the value of η̂c depends on
our choice of n and is η̂c ≈ 3.1 for the choice of n = 8.2, since the mass grows faster in that case.
We re-simulate with this alternative choice of index until η̂ = 7 and then recompute the present-day
axion abundance by analytically transferring the simulation fields to the same late time physical
temperature. In both 2D and 3D simulations, we find that there is a ∼10% enhancement in the
expected relic abundance with n = 8.2 versus n = 6.68. This is somewhat surprising, considering
that the analytic estimate predicts that higher n should result in a lower DM abundance at fixed fa.
To understand how this result affects the final determination of the axion mass, we fit the predicted
scaling Ωa ∼ f

(n+6)/(n+4)
a for the DM abundance using n = 8.2 and find the ma that gives the

correct DM abundance.
The result is that with n = 8.2 we find that the ma that gives the correct DM abundance is

enhanced by ∼27% compared to the n = 6.68 case. We account for this 27% uncertainty as an
additional systematic uncertainty in our final determination of the axion mass. We also emphasize
the consistency between results obtained for simulations with two spatial dimensions as compared
to those with three spatial dimensions. This is an important result which will serve as evidence in
the following section examining the impact of the evolution of the number of relativistic degrees
of freedom during the QCD epoch.

A.5 Equations of Motion for Varying Relativistic Degrees of
Freedom

In this section we investigate the systematic effect on our results from the assumption of fixed g∗.
In truth, the value of g∗ is not fixed at g∗ ≈ 81 but instead evolves across the temperature range of
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interest; it varies from as large as roughly 100 to as little as roughly 10 after the QCD phase transi-
tion. This does not represent a dire shortcoming of our simulation procedure, however, as varying
g∗ should only nontrivially affect the dynamics of the axion field during times when axion number
density is not a conserved quantity. By η̂ ≈ 3 most of the field has become linear, except for the
isolated oscillon configurations, which means that the axion number density is mostly conserved
at this time and beyond. The variation in g∗ before η̂ ≈ 3 for our target fa is relatively minor. To
quantify this impact, however, we perform simulations in two spatial dimensions accommodating
the varying g∗.

With a change of variable we may rewrite the axion equations of motion, in the two-field for-
malism during the QCD epoch, as

φ′′1 +

(
R1R̈

Ṙ2
+

3

η

)
φ′1 −

R2
1Ṙ

2
1

R2Ṙ2
∇2φ1 +

Ṙ2
1

Ṙ2

[
λ̃φ1

(
φ2

1 + φ2
2 − 1

)
− ma(T )2φ2

2

H2
1 (φ2

1 + φ2
2) 3/2

]
= 0

φ′′2 +

(
R1R̈

Ṙ2
+

3

η

)
φ′2 −

R2
1Ṙ

2
1

R2Ṙ2
∇2φ2 +

Ṙ2
1

Ṙ2

[
λ̃φ2

(
φ2

1 + φ2
2 − 1

)
+

ma(T )2φ1φ2

H2
1 (φ2

1 + φ2
2)

3/2

]
= 0 ,

(A.42)
where we define λ̃ = λf 2

a/H
2
1 as before. Citing standard references [17], we have

H ≈ 1.660g∗(T )1/2 T
2

mPl

(A.43)

t ≈ 0.3012g−1/2
∗

mPl

T 2
(A.44)

R ≈ 3.699× 10−10g∗(T )−1/3 MeV

T
. (A.45)

Using these relations, we may compute

R1R̈

Ṙ2
=

(
t1
t

)1/2
(
g(t)
g(t1)

)1/12

(13t2ġ(t)2 − 12tg(t) (tg̈(t) + ġ(t))− 36g(t)2)

(tġ(t)− 6g(t))2 (A.46)

= −1

η̂

[−13t2ġ(t)2 + 12tg(t) (tg̈(t) + ġ(t)) + 36g(t)2

(tġ(t)− 6g(t))2

]
(A.47)

= −f1(η̂)

η̂
. (A.48)

Above, we have defined

f1(η̂) =
−13t2ġ(t)2 + 12tg(t) (tg̈(t) + ġ(t)) + 36g(t)2

(tġ(t)− 6g(t))2 , (A.49)

where the right hand side is evaluated at the time t corresponding to the conformal time η̂. Simi-
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larly, we evaluate
R2

1Ṙ
2
1

R2Ṙ2
= f2(η̂),

Ṙ2
1

Ṙ2
= η̂2f2(η̂) , (A.50)

for

f2(η̂) =

(
g(t)
g(t1)

)
7/3 (t1ġ (t1)− 6g (t1)) 2

(tġ(t)− 6g(t))2 . (A.51)

Finally, we define f3(η̂) = ma(η̂(T ))2/H2
1 . Combining these results, the equations of motion take

the form

φ′′1 +

(
3

η̂
− f1(η̂)

η̂

)
φ′1 − f2(η̂)∇2φ1 + η2f2(η̂)

[
λ̃φ1

(
φ2

1 + φ2
2 − 1

)
− f3(η̂)φ2

2

(φ2
1 + φ2

2) 3/2

]
= 0

φ′′2 +

(
3

η̂
− f1(η̂)

η̂

)
φ′2 − f2(η̂)∇2φ2 + η2f2(η̂)

[
λ̃φ2

(
φ2

1 + φ2
2 − 1

)
+

f3(η̂)φ1φ2

(φ2
1 + φ2

2)
3/2

]
= 0.

(A.52)
In the single-field formalism, these results are analogously applied to obtain

θ′′ +

(
3

η̂
− f1(η̂)

η̂

)
θ′ − f2(η̂)∇̄2θ + η2f2(η̂)f3(η̂) sin θ = 0 . (A.53)

In Fig. A.10 we show the functions f1, f2, and f3 entering into the equations of motion as
functions of η̂. Note that for f3, we normalize against f̃3(η̂), which we define to be f3 but with
a fixed g∗. In the absence of a varying g∗, all of the curves appearing in Fig. A.10 would be
identically one.

To test the impact of an evolving g∗, we adopt the parametrization of g∗ from [116] and simulate,
in two spatial dimensions, for an axion with fa = 4.83 × 1015 GeV. When we assumed g∗ was
constant, this axion reached its zero-temperature mass at η̂ = 3.6, but accounting for the changing
value of g∗, the axion now reaches its zero-temperature mass at η̂ ≈ 5.5. As before, we conclude
our simulation at η̂ = 7, and we calculate a relic abundance that is 7.7% smaller than it is in
the fixed g∗ case. We note that this scenario represents something of a worst-case scenario for
the impact of g∗ on the dynamics because g∗ varies significantly during the epoch where axion
number density is not conserved for this choice of fa, and so we adopt this as a quantification of
the systematic error associated with adopting a fixed g∗. For our target fa, g∗ varies less, relative
to the example illustrated, when the axion is in the non-linear regime and so we expect the effect
of varying g∗ to be less important in this case.

We acknowledge that the estimates above were performed in 2D and not in 3D and that physical
results may scale differentially between simulations in different dimensions (for example, oscillons
are stable in 1D). (The simulations described in this section would be numerically intensive to
perform in 3D.) However, one reason that the 2D results may be a reasonable proxy in this case
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Figure A.10: We depict the variation of f1, f2, and f3 as a function of η̂ over the relevant range
of η̂ for our simulations accounting for a varying g∗. For fixed g∗, we would expect f1 and f2 to
be constant at value 1. We additionally show the behavior of f3, which describes the evolution of
the quantity ma(η)2/H2

1 , normalized to f̃3, wherein we compute ma(η)2/H2
1 assuming a fixed g∗.

Assuming a fixed g∗ causes the axion to reach its zero-temperature value earlier in η̂, but the ratio
ultimately reaches unity as the same zero-temperature mass is reached.

for what would happen in 3D is that the evolution of g∗ is largely degenerate with the temperature-
dependent mass-growth, as pointed out in [96, 112] . In fact, prior works, such as [96, 112],
modify their fiducial choice of mass-growth parameter n in order to accommodate the evolution
of g∗. We previously obtained consistent results across 2D and 3D simulations when studying the
impact of changing n, which supports the argument that we may use the dimensional extrapolation
to evaluate the impact of a varying g∗.

A.6 String and Domain Wall Tensions and Defect Network
Collapse

We observe the the defect network collapses early in the QCD epoch. It is important to verify
that this collapse does not happen in an unphysical fashion (for example, happen too quickly or
too slowly) because of our unphysical value of λ̃. Recall that λ̃ is proportional to the radio of the
radial mode mass squared to the axion mass squared, and so physically this is expected to be an
exponentially large number. On the other hand, our most realistic simulations use λ̃ = 5504. In
our simulations, we observe defect network collapse at η̂ ≈ 2, indicating that the collapse occurs
within a Hubble time. In [125] the criterion m2

s/m
2
a & 43 was established as a necessary condition

for defect network metastability, with ms the mass of the radial mode. If m2
s/m

2
a . 43, the QCD

potential sufficiently distorts the radial mode potential so as to allow the complex scalar to roll
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over the tilted Mexican hat potential, resulting in unphysical domain wall decays which would not
be realized in the physical scenario where (ms/ma)

2 � 1. In our simulation with our choice of λ̃,
we preserve m2

s/m
2
a > 43 until η̂ = 2.3, which supports the claim that the domain wall decays we

observe in our simulations by η = 2 do not arise from an unphsysical mechanism.
Additionally, our fiducial choice of λ̃ preserves the correct timescale for defect network col-

lapse. The linear string tension is given (see, e.g., [125])

T ≈ πf 2
a ln(ms/H). (A.54)

Restrictions in our dynamical range prevent us from simulating at large values of the radial model
mass ms, and thus, although our interest is in fa ≈ 1011 GeV resulting in ln(ms/H) ≈ 60 ∼
70, we can only simulate at ln(ms/H) ≈ 4.5. By comparison, the domain wall surface tension
is [125, 431]

σ ≈ 8maf
2
a , (A.55)

and at small values of ms a potential concern is that the domain wall tension plays an unphysically
large role in driving the dynamics of the defect network collapse. As we will show in a toy model,
however, this is likely not the case.

We consider the idealized scenario of a circular, horizon-scale domain wall at η̂ = 1. This is
to say that the domain wall has surface area πR2 for R = H(η̂ = 1) in our simplified units. The
domain wall will then end on a circular string with total length 2πR. The potential energy of such
a configuration is approximated by

V (R(η̂), η̂) = π2 ln(2λ̃η̂2)R + 8πη̂n/2R2 , (A.56)

and the corresponding relativistic Lagrangian takes the form

L = V (R(η̂), η̂)

[
1−

(
R′(η̂)

η̂

)2
]1/2

. (A.57)

Using the Euler-Lagrange equations of motion, we numerically solve forR(η̂) satisfyingR(1) = 1

and R′(1) = 0. Results for the evolution are shown in Fig. A.11, where it can be seen that the
evolution of the string-domain wall system results in a collapse time that is highly insensitive to
λ̃. Explicitly, our simulated value of λ̃ gives consistent results with the physically-expected value
of λ̃ for the collapse of the circular domain wall. Thus, we confirm that our choice of λ̃ is likely
sufficient to realize the correct dynamics of defect collapse.
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Figure A.11: Numerical evolution of the idealized circular string-domain wall collapse. (Left)
A comparison of the radius of the circular domain wall as a function of conformal time η̂ for
the simulation parameter λ̃ = 5504 (solid black) and for a physically-motivated parameter value
λ̃ ≈ 1030. The collapse of the domain wall occurs at around η̂ = 2, i.e., after a Hubble time.
(Right) The ratio of the domain wall radius as a function of η̂ for the two values of λ̃. We see that
the collapse rate is largely insensitive to the value of λ̃.

A.7 Testing Deviations from the String Scaling Regime

While our simulation was performed in two stages, it can be understood as a single simulation
in which the PQ phase transition and the beginning of the QCD phase transition are separated by
approximately an order of magnitude in temperature. By comparison, for a physically motivated
hierarchy, we would expect these two epochs in our simulation to be separated by at least 11 orders
of magnitude in temperature. As a result, our simulations might be expected to be highly unphys-
ical. However, it has been conjectured that the axion field and associated defect network enters
a scaling regime some time after the PQ phase transition (see, e.g., [117]). If this conjecture is
true and our field configuration has entered the scaling regime before the axion begins to oscillate,
our simulation should be expected to give a good description of the physics of interest despite the
abbreviated hierarchy.

Recent work has found evidence for logarithmic deviations to the number of strings per Hubble
patch in the scaling regime [124]. In this section we confirm that we also observe such deviations.
This implies that we are not fully justified in taking the final state of our PQ-epoch simulation,
fast-forwarding through the rest of the radiation dominated epoch to the QCD phase transition, and
then restarting our simulation directly before the QCD phase transition. This is because the axion-
string network should change logarithmically during the evolution between the phase transitions.
Below, we provide evidence for the logarithmic deviation to scaling and then perform simulations
to address the impact of this deviation on our determination of the axion massma and the spectrum
of DM minihalos.
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The average number of strings per Hubble patch is commonly defined by [117, 124, 125]

ξ(η̃) =
l(η̃)t(η̃)2

L(η̃)3
, (A.58)

where l(η̃), L(η̃), and t(η̃) are the physical total string length in the box, the physical box length,
and the physical time, each a function of η̃, respectively. We measure the string length by first
identifying grid sites that are next to a string. This is achieved by forming a loop in each of the
three dimensions around a test grid site. The grid site is flagged once at least one change larger
than π in the axion field between consecutive grid sites is found. In a 2D slice this implies the 4
closest grid sites that surround the string core are tagged, such that we use the number of tagged
grid sites divided by 4 as a measure for the string length. Note that this is a rough estimate for the
string length and more sophisticated methods exist [117].

We compute ξ(η̃) at 13 points in η̃ in our PQ simulation, with results illustrated in Fig. A.12.
As in [124], we find that ξ depends logarithmically on η̃ after the PQ phase transition. Note that
the shaded region denotes η̃ before the PQ phase transition, where it does not make sense to talk
about axion strings. We fit the model

ξ = α log

(
T

TPQ

)
+ β (A.59)

to the {η̃, ξ} data, where TPQ denotes the temperature of the PQ phase transition, and we find
α ≈ −2.60 and β ≈ 1.27. Note that our values for ξ at comparable η̃ are significantly larger than
those found in [124]. Part of this discrepancy could be due to the way in which we measure string
length versus in that work, which may introduce an overall rescaling between our two results. We
are in good agreement, however, with [124] regarding the distribution of string length in long and
short strings. As in that work, we find that approximately 80% of the string length resides in long
strings, much larger than a Hubble length, at all times in our simulation as seen in Fig. A.13.

Since we do observe logarithmic scaling violations, it is important to determine the impact of
these corrections on the minihalo mass spectrum and the DM relic abundance. In particular, we
find that ξ should be around a factor of 15 higher at the QCD phase transition than it is for the final
state of our most realistic PQ-epoch simulation. The string density ξ at the beginning of the QCD
simulation depends on the simulation box size as ξQCD ∝ L−2

QCD, where LQCD is the box size in
units of 1/(a1H1) whenH = ma, for a fixed initial state. Thus by performing new simulations with
the same initial conditions and run parameters as our fiducial analysis (namely η̂c = 3.6, λ̃ = 5504,
and starting at η̂i = 0.4) but changing LQCD from 4 to LQCD = 3 and LQCD = 2, we may enhance
ξQCD by a factor of 16/9 and 4, respectively, compared to our fiducial simulation. While these
value still fall short of the physically motivated enhancement ∼15, such simulations still allow
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Figure A.12: The string length parameter ξ shown as a function of the ratio of simulation temper-
ature T to the temperature TPQ at which the PQ phase transition occurred, including the results of
our fit to the functional form of (A.58). We observe significant evidence for logarithmic deviation
from the scaling regime. Extrapolating this result to the QCD phase transition (vertical dashed
line) gives the prediction that ξ should be around a factor of 15 higher at the beginning of the QCD
phase transition than in the final state of our most realistic simulation.

us to see if there is a trend in how ξ affects observables such as the DM density. We do caution
that modifying LQCD in this way is somewhat unphysical as it changes the horizon entry status of
modes in the simulation box from the end of the PQ simulation as compared to the beginning of
the QCD simulation.

The results of varying LQCD in order to modify ξ are shown in Fig. A.14, where we see no
discernible trends in the dependence of the relic abundance on ξ. Note that the uncertainties in
Fig. A.14 are estimates of the statistical uncertainty. As the box size gets smaller the statistical
uncertainty increases. However, we caution that these are estimates only, as we have not run
multiple independent simulations for each box size due to computational limitations. It is possible
that the true uncertainties at small box sizes are larger than indicated due to the fact that there are a
small number of e.g. domain walls that form these cases. Still, to be maximally conservative given
the available datasets, we estimate the difference between the LQCD = 2 and LQCD = 3 values
for Ωa as a systematic uncertainty induced from the deviation to scaling. However, we cannot be
sure that this difference is not a result of statistics or from the way in which we artificially mock
up initial conditions with higher ξ values. The systematic uncertainty we assign from these tests is
15% correlated between different fa points.

We show in Fig. A.15 the impact on the minihalo mass spectrum. Again, all simulations largely
agree within their error bands (estimated from statistical uncertainties), indicating that an increase
in ξ has only a marginal effect on the late-time axion field. Note that computational resources
limit us to just these three additional simulations, and we leave a more detailed investigation of the
dependence of Ωa on ξ to future work.
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Figure A.13: The fraction of the string length in super-horizon length strings. Like [124], we find
roughly 80% of the string length resides within long strings.
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Figure A.14: The present day axion abundance as a function of the string density parameter ξ at the
beginning of the QCD simulation at η̂i = 0.4. Individual data points are labeled by their box length
LQCD. The error bars are estimates of the statistical uncertainties, and no clear trend is visible in
the data.
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Figure A.15: Differential mass spectrum as a function of the minihalo mass M for different box
sizes. Error bands include statistical errors and the uncertainty on the overall normalisation.

188



APPENDIX B

The Statistics of Axion Direct Detection

B.1 Distribution of the Combined Signal and Background
Model

In Sec. 3.2 of the main text we demonstrated that the signal only distribution is exponentially
distributed, as given in (3.24). However, we simply asserted that the background only and signal
plus background distributions were also exponentially distributed. In this appendix we demonstrate
both of these results. We reiterate at the outset that in all cases the correct starting point for
determining these distributions is the time-series data, which is where the different contributions
are combined. We cannot straightforwardly think about combining distributions at the level of
the PSD. To emphasize this, even though the PSD in the background and signal only cases are
individually exponentially distributed, the sum of two exponentially distributed numbers is not
itself exponentially distributed, and yet the PSD formed from the sum of the background and
signal is.

Consider firstly the background only distribution. Imagine we have time-series data collected in
the presence of nB independent background sources, each Gaussian distributed random variables
with mean zero and variance λiB/∆t, where i indexes the different backgrounds and the inclusion
of ∆t in the variance is for later convenience. Note that we can choose the backgrounds to have
zero mean without loss of generality, because the mean will only impact the k = 0 mode of the
PSD, which for reasons described below we will not include in our likelihood. In the presence of
this noise, the time-series data will take the form

Φn =

nB∑

j=1

xjn , (B.1)

where n = 0, 1, . . . , N − 1 indexes the times at which the measurements were taken and the xin
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satisfy

〈xin〉 = 0 , 〈xjnxlm〉 = δnmδjl
λjB
∆t

. (B.2)

The second relation here follows as we assume our backgrounds are independent, and for a given
background the values measured at different times are independent and identically distributed.
Moving towards the PSD, consider the discrete Fourier transform of this data:

Φk =
N−1∑

n=0

Φne
−i2πkn/N =

N−1∑

n=0

nB∑

j=1

xjne
−i2πkn/N . (B.3)

It is convenient to expand the exponential and analyze the real and imaginary parts of this sepa-
rately. In detail:

Φk =
N−1∑

n=0

nB∑

j=1

xjn cos

(
2πkn

N

)

−i
N−1∑

n=0

nB∑

j=1

xjn sin

(
2πkn

N

)

≡Rk + iIk .

(B.4)

The real and imaginary parts, Rk and Ik respectively, are both Gaussian distributed since they
are sums of Gaussian distributed random variables. Accordingly they are completely specified by
their means and variances, which we can determine using (B.2). Consider the real part first, as the
argument for the imaginary part proceeds in exactly the same fashion. For the mean we have

〈Rk〉 =

〈
N−1∑

n=0

nB∑

j=1

xjn cos

(
2πkn

N

)〉

=
N−1∑

n=0

nB∑

j=1

〈xjn〉 cos

(
2πkn

N

)

=0 .

(B.5)

Similarly

〈R2
k〉 =

nB∑

j=1

λjB
∆t

N−1∑

n=0

cos2

(
2πkn

N

)

=
λB
∆t

N−1∑

n=0

cos2

(
2πkn

N

)
.

(B.6)
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where we used λB ≡
∑

j λ
j
B following (3.25). We can evaluate the remaining sum using1

N−1∑

n=0

cos2

(
2πkn

N

)
=

{
N k = 0

N/2 0 < k < N
. (B.7)

Putting these together, we conclude the real part has a variance given by

〈R2
k〉 =

{
λBN
∆t

k = 0
λBN
2∆t

0 < k < N
. (B.8)

The argument for the imaginary part is almost identical, and we find again that 〈Ik〉 = 0, whilst

〈I2
k〉 =

{
0 k = 0
λBN
2∆t

0 < k < N
. (B.9)

Knowing how contributions to the Fourier transform are distributed, we now move to the PSD,
which will again be a random variable given by:

SkΦΦ =
(∆t)2

T
|Φk|2 =

∆t

N

(
R2
k + I2

k

)
. (B.10)

There are many ways to determine the probability density function (pdf) obeyed by SkΦΦ. A particu-
larly straightforward one in this case is to start by determining the cumulative distribution function
(cdf), F [SkΦΦ]. We will do this for N > k > 0 first, and return to the k = 0 case afterwards. To
obtain the cdf, we simply integrate the distributions for Rk and Ik over all values up to some SkΦΦ.
In detail,

F [SkΦΦ] =

∫ SkΦΦ

dRkdIk
∆t

πλBN

× exp

[
− ∆t

λBN

(
R2
k + I2

k

)]
.

(B.11)

To perform this integral it is convenient to change to polar coordinates, u2 = R2
k + I2

k and θ, so that

F [SkΦΦ] =

∫ √NSkΦΦ/∆t

0

du
2∆tu

λBN
exp

[
−∆tu2

λBN

]

=1− e−SkΦΦ/λB .

(B.12)

1Note that if N is even, then for the k = N/2 mode the sum evaluates to the k = 0 result. This extends to (B.8)
and (B.9), and indeed when propagated through to the likelihood, implies that this mode will also be gamma and not
exponentially distributed.
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The pdf is just the derivative of this, so we find

P [SkΦΦ] =
1

λB
e−S

k
ΦΦ/λB , (B.13)

demonstrating that for 0 < k < N the background is exponentially distributed as claimed in the
main body.

Consider next the case for k = 0. Utilizing an identical approach, we find firstly that

F [S0
ΦΦ] =

∫ √NSkΦΦ/∆t

−
√
NSkΦΦ/∆t

√
∆t

πλBN
exp

[
− ∆t

λBN
R2

0

]

= erf

[√
S0

ΦΦ/λB

]
, (B.14)

implying

P [S0
ΦΦ] =

1√
πλBS0

ΦΦ

e−S
0
ΦΦ/λB . (B.15)

Clearly the k = 0 mode is not exponentially distributed: it is in fact gamma distributed with shape
parameter 1/2 and scale parameter λB. In practice, however, this mode does not contribute to the
likelihood function in (3.29) since all of the axions we search for have finite mass and thus finite
oscillation frequency. Moreover, the k = 0 mode is degenerate with the mean background values
that we have chosen to neglect.

Finally we want to show that the combined signal and background dataset is also exponentially
distributed for 0 < k < N − 1. We will show this in a somewhat indirect manner. Firstly, given
that the signal is exponentially distributed, as shown in the main text, we will show that the real and
imaginary parts of the discrete Fourier transform of such a dataset must be normally distributed.
Then we can combine the signal in as if it was just another background in the argument presented
above, and it will follow immediately that the full distribution must be exponential. Our starting
point is (3.24), where we showed the signal only PSD is exponentially distributed. We repeat this
result here for convenience:

P [SkΦΦ] =
1

λk
e−S

k
ΦΦ/λk ,

λ ≡ A
πf(v)

mav

∣∣∣∣
v=
√

4πk/(maT )−2

.
(B.16)

As an intermediate step, consider SkΦΦ = x+ y, where x = (∆t/N)R2
k and y = (∆t/N)I2

k . As the
real and imaginary parts are independent and identically distributed for the signal dataset, then so
too are x and y, and we denote their pdf by g. Given that x, y ≥ 0, we can relate their distributions
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to that of the signal PSD via

P [SkΦΦ] =

∫ ∞

0

dxdy g[x]g[y]δ(SkΦΦ − x− y)

=

∫ SkΦΦ

0

dx g[x]g[SkΦΦ − x] .

(B.17)

To solve this equation for g we take the Laplace transform, denoting transformed quantities with a
tilde. This yields

g̃[x̃] =
1√

1 + x̃λk
, (B.18)

which when inverted becomes
g[x] =

1√
πλkx

e−x/λk . (B.19)

From here, to derive the pdf for Rk we can change variables using x = (∆t/N)R2
k. In doing so

we need to account for the Jacobian and also the fact that whilst x ∈ [0,∞), this is only half the
domain of possible Rk values. Doing so we find

P [Rk] =
1√

πNλk/∆t
exp

[
− R2

k

Nλk/∆t

]
, (B.20)

which is exactly a normal distribution with mean zero and variance Nλk/(2∆t). The distribution
for Ik will be identical, and thus we find the signal is distributed just like a single background but
with λjB → λk. If we then repeat the background only argument shown at the start of this appendix
with the signal contribution added, we will find the full PSD is again exponentially distributed with
mean λk + λB, completing the required derivation.

B.2 Comparison to a Bandwidth Average

An alternative analysis strategy to that presented in the main text is to take the average PSD (or
power) measured across a given bandwidth range and compare that directly to the average model
prediction. This should be contrasted with taking the product of exponential likelihoods across k
modes as we introduced in (3.29), and at face value it should have less discriminating power as the
information regarding how the axion signal is distributed within the bandwidth has been lost. In
this section we quantify this statement by deriving the expected sensitivity of such an approach. As
a side point we will also demonstrate how to derive the optimum bandwidth range in performing a
bandwidth averaged search.

To begin with, we note that in each frequency bin the PSD formed from the data will still be
exponentially distributed. Then, if we are searching in some bandwidth range Ωω, which contains
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nω frequency bins, the mean PSD can be formed from a sum of these exponentials and will thus
be Erlang distributed. In detail, the likelihood will have the form

L(d|θ) =
nnωω

(nω − 1)!

(
S̄ΦΦ

)nω−1

λ̄nω
e−nωS̄ΦΦ/λ̄ , (B.21)

where we have defined:
S̄ΦΦ =

1

nf

∑

k∈Ωω

SkΦΦ , (B.22)

similarly to what we had when discussing the stacked data procedure in Sec. 3.3.2. In the above
equation we also introduced the mean model prediction, which assuming we have a frequency
independent background will be given by

λ̄ =λ̄S + λB ,

λ̄S ≡
1

nω

∑

k∈Ωω

A
πf(v)

mav
.

(B.23)

Consider the average signal prediction. This average is taken over some frequency range, or
bandwidth, which we denote by ∆ω, and is equivalent to a range in velocities, v ∈ [0, vmax].2

Consequently we have

∆ω =
1

2
mav

2
max . (B.24)

The bandwidth can also be written as ∆ω = nωdω, where dω is the width of an individual fre-
quency bin. Assuming sufficient run time, as dω = 2π/T , then we can also write

∆ω = nωmavdv . (B.25)

Taken together, these show that
∆ω

∆ω
=

2nω
v2

max

vdv . (B.26)

Substituting this into (B.23), we can rewrite the signal prediction as

λ̄S =
2Aπ

mav2
max

∫ vmax

0

dv f(v) . (B.27)

To estimate the sensitivity it is most convenient to return to Θ as introduced in (3.39). This is

2In principle the lower velocity could be vmin rather than 0, and this value can also be optimized for. Nevertheless
as the signal distribution rises sharply from v = 0, approximating vmin = 0 is sufficient for the argument in this
appendix.
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modified for the averaged PSD likelihood given in (B.21) to

Θ(A) = 2nωS̄ΦΦ

[
1

λB
− 1

λ̄

]
− 2nω ln

λ̄

λB
, (B.28)

where as in Sec. 3.3, we suppress the axion mass dependence. As in the main body, to analytically
estimate the sensitivity we can use the Asimov dataset. Here we denote this by λ̄tS + λB, where λ̄tS
is identical to (B.27), but with the signal strength replaced by its true value: A→ At. To simplify
the resulting form of Θ̃, we again assume that we are in the limit where the true and modeled
average signal strength are subdominant to the average background, such that we obtain

Θ̃(A) =
2ATπ

maλ2
B

(
At −

A

2

)(∫ vmax

0

dv
f(v)

vmax

)2

. (B.29)

To compare this directly to results obtained from the analysis in the main body, we need to
determine a value for vmax. A procedure for doing so is to choose the vmax that maximizes the
significance of any emerging signal, or in detail one that maximizes the test statistic of discovery.
Using TS as defined in (3.38), for the present case we have

T̃S =
A2
tTπ

maλ2
B

(∫ vmax

0

dv
f(v)

vmax

)2

, (B.30)

which we want to maximize as a function of vmax. The value that does so depends critically on
the form of f(v), and so needs to be re-evaluated for each assumption. For example, if we take
the simple SHM ansatz as per (3.9), then we find vmax ≈ 453 km/s. Using this value we can then
construct the ratio between the TS using our default bin-by-bin approach, denoted TSfull, to that
obtained here, denoted TSav., which is explicitly:

T̃S
full

T̃S
av. =

(
1

2

∫
dv
f(v)2

v

)(∫ vmax

0

dv
f(v)

vmax

)−2

≈ 1.14 , (B.31)

where in the final step we again assumed a default SHM form for the speed distribution. Thus
as claimed at the outset, even when optimized, this averaging procedure is not as sensitive as our
full construction. The optimization is important; if we had instead taken vmax = 300 (600) km/s,
we would have obtained a ratio of 1.87 (1.43) above. Further in the presence of substructure,
the averaging approach suffers even further. As a simple estimate of this if we took Maxwellian
substructure, with the much smaller velocity dispersion v0 = 10 km/s but the same boost velocity
as the SHM, then even at the maximum the ratio is 5.42.

Using this maximum we can also determine the impact on limits. Recalling the definition of the
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test statistic for upper limits in (3.36), we find the condition for a 95% limit is determined when

Ã95% = At +

√
2.71

maλ2
B

Tπ

(∫ vmax

0

dv
f(v)

vmax

)−1

. (B.32)

To compare this to case discussed in the main body, we take the simplifying values of At = 0 and
again the default SHM speed distribution. Doing so we find

Ãfull
95%

Ãav.
95%

=

(∫ vmax

0

dv
f(v)

vmax

)(
1

2

∫
dv

f(v)2

v

)−1/2

≈ 0.94 , (B.33)

which corresponds to a ratio of the axion electromagnetic couplings of 0.97 (A ∝ g2
aγγ). This value

shows that the full framework sets similar, but slightly stronger, constraints.
Accordingly, in all cases the framework described in the main body outperforms the averaged-

power technique described in this appendix. For the case of the SHM, when that technique is
optimized the improvements are marginal. Nevertheless in the presence of substructure, or if the
optimal signal window is not chosen, then the gain from resolving the individual frequency bins
can be much more substantial. Moreover, it is very difficult to constrain aspects of the DM phase-
space distribution with the power-averaged technique, since the frequency dependence of the signal
is not resolved.

B.3 Verifying the Asimov Derivation of Upper Limit Bands

Using the Asimov dataset analysis, in Sec. 3.3.3 we were able to calculate the expected 95% limit
on the signal strength A at a given ma. We were also able to calculate the 1 and 2σ containment
bands around the expected 95% limit without recourse to Monte Carlo simulations. In this ap-
pendix we confirm that these results, presented in (3.54) and (3.56), match those derived using
Monte Carlo methods.

For this procedure, we generate 1000 background-only datasets over frequencies in a 22Hz
window centered at 550kHz and then scan these PSDs for a bulk SHM model. According to our
estimate in (3.62), we expect there to be approximately 55 independent mass points for which we
can scan contained within this frequency data. However, for the sake of precision, we will arbi-
trarily increase our resolution to scan over 150 mass points, between which there may be some
degeneracy. At each mass point, we scan over A values between −5σA and 10σA calculated ac-
cording to (3.72). We emphasize again that it is necessary that we allow A to take on negative
values despite that, by its definition, A must be nonnegative. In practice, this is resolved by im-
posing a power-constrained limit such that constraints on A are placed no lower than 1σ below
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Figure B.1: A comparison between the variation in the 95% upper limit found in Monte Carlo
(MC) simulations to that derived analytically with the Asimov dataset. As shown the two are in
good agreement.

the expected constraint as calculated by (3.56). In Fig. B.1 we show the median 95% upper limit
as well as the 1 (shaded green) and 2σ (shaded yellow) containment intervals constructed from
the ensemble of Monte Carlo simulations. Note that we only show the upper 2σ region, since we
anticipate neglecting fluctuations below 1σ with the power-constrained method. Additionally, we
indicate the same quantities predicted by our Asimov analysis with dashed lines. As the figure
demonstrates, the Monte Carlo and Asimov results are generally in good agreement.3

B.4 Asymptotic Distribution for the Discovery Test Statistic

In this appendix we will explicitly calculate, from our likelihood, the survival function for the local
TS under the null hypothesis. We will then show that asymptotically the TS is χ2-distributed, and
therefore there is a simple connection with the significance, Z, given by Z =

√
TS. Doing so

will verify (3.58), presented in Sec. 3.3.4. Note that this appendix is in many ways an explicit
illustration of Wilks’ theorem.

To begin with, the situation to keep in mind is that we have a dataset that is drawn from the
background only distribution, where in some frequency range there is an upward fluctuation that
can be well described by a model including the signal. From this picture, in order to derive our
result we will make two simplifying assumptions:

3While there may be a small systematic offset, as visible in Fig. B.1, the agreement is likely satisfactory for use
at direct detection experiments. However, if required the containment intervals could be further tuned to agree with
Monte Carlo simulations like those presented here.
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Figure B.2: Schematic depiction of the approximation made to the model used to derive TSthresh.
Specifically we assume that the signal model is non-zero only within a finite frequency range, and
equal to the background outside this, and within this range the combined signal and background is
flat.

1. that the signal model we use is only non-zero in a set of nS frequency bins, the set of which
we denote ΩS , and outside this λk = λB; and

2. that in these nS bins the background and model predictions are both frequency independent,
so to avoid confusion we denote our signal prediction in this range as the k-independent λS .

Taken together these assumptions imply we are approximating our model for this upward fluctu-
ation in the background as a step function, similar to what is shown in Fig. B.2. In that figure,
which is intended to be schematic, we have shown a flat background model, and added on top of
this the signal distribution as expected from (3.24), and also shown the shape of the full model
approximation we will use. Note that nothing in our first approximation or the derivation below
requires nS � N , however for this approximation to be realistic this will usually be the case.

Our aim now is to determine how the discovery test statistic is distributed under these assump-
tions. Combining these assumptions with the form of Θ given in (3.39), and then choosing the A
that maximizes this quantity, we arrive at:

T̃S =

{
2nS

[
SΦΦ

λB
− 1− ln SΦΦ

λB

]
SΦΦ > λB ,

0 SΦΦ ≤ λB ,
(B.34)
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where we have defined the average data PSD in this range:

SΦΦ ≡
1

nS

∑

k∈ΩS

SkΦΦ . (B.35)

Note that this should be distinguished from the subinterval averaged PSD in (3.50). Note also as
written this result is independent of ma, so we have suppressed the dependence on the mass.

Now recall that as each of our PSD measurements are exponentially distributed, the average
PSD, SΦΦ, will follow an Erlang distribution. In detail, we have

P [SΦΦ] =
nnSS

(nS − 1)!

(
SΦΦ

)nS−1

λnSB
e−nSSΦΦ/λB . (B.36)

We emphasize again that we are taking the data to follow the background distribution, as in cal-
culating TSthresh we are interested in the distribution of the discovery test statistic under the null
hypothesis. This explains why the mean in the above distribution is simply λB.

Now we want to use this to derive the distribution for T̃S. Before doing so, we need to take a
brief aside. Observe that the distribution for the average PSD given in (B.36) is correctly normal-
ized for SΦΦ ∈ [0,∞). Nevertheless, from (B.34), we see that we only get a non-zero test statistic
for SΦΦ > λB, thus in the probability distribution for T̃S there will be a pileup of probability at
zero accounting for the fact that any time the average PSD is less than the background value, the
maximum discovery test statistic will be zero. We can determine the probability of that occurring
as: ∫ λB

0

dSΦΦ P [SΦΦ] = 1− Γ(nS, nS)

(nS − 1)!
, (B.37)

where Γ(nS, nS) is the upper incomplete gamma function. Keeping this additional probability in
mind, we determine the distribution for T̃S from our distribution for SΦΦ via a change of variables.
As an intermediate step, observe that we can invert that equation for SΦΦ in terms of TS using

SΦΦ = −λBW−1

(
− exp

[
−1− T̃S

2nS

])
, (B.38)

where W−1 is the lower branch of the Lambert W function. This function provides an inverse
to equations of the form y = xex, such that x = W (y). As W is multivalued, we choose the
lower branch W−1, where W < −1, which implies that SΦΦ ≥ λB. This shows that the change
of variables will not cover the situation where the average PSD is less than the background, which
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we account for using the result of (B.37). Using this change of variables, we then arrive at

P [T̃S] =
nnSS
2nS!

wnSe−nSw

w − 1
+

[
1− Γ(nS, nS)

(nS − 1)!

]
δ(T̃S) ,

w ≡ −W−1

(
− exp

[
−1− T̃S

2nS

])
. (B.39)

At this stage we can move to the asymptotic form of this result. To invoke Wilk’s theorem, we
need to take the large sample size limit. Here this is controlled by nS , and so we take nS → ∞,
and in particular nS � TS. Taking these limits and keeping just the leading term, we obtain

P [T̃S] =
e−T̃S/2

√
8π T̃S

+
1

2
δ(T̃S) . (B.40)

This equation represents the asymptotic form of the discovery test statistic distribution under
the background only hypothesis. We can now directly integrate this distribution to get the survival
function, in detail to find the probability of a background fluctuation yielding a test statistic greater
than some value:

S[T̃S] ≡
∫ ∞

T̃S

dT̃S
′
P [T̃S

′
] =

1

2
erfc



√

T̃S

2




=1− Φ
(√

T̃S
)
,

(B.41)

where erfc is the complementary error function and again Φ is a zero mean, unit variance Gaussian.
This result verifies (3.58).

B.5 Sensitivity Scaling for T < τ

The main results from the Asimov dataset analysis performed in Sec. 3.3 demonstrated that our
sensitivity increased with collection time as T 1/4, which is manifest in both (3.55) and (3.57).
Nevertheless in deriving both of these results, we assumed that T was large enough that frequency
bins fully resolved variations in the signal; explicitly, we assumed that T � τ , where τ represents
the coherence time of the signal. This assumption was used in (3.43) so that we could rewrite the
sum over frequency modes as an integral. As commented in Sec. 3.3.5, we would expect that for
T < τ the sensitivity should instead scale as T 1/2 [58]. In this appendix we repeat our analysis,
now assuming the collection time is less than the coherence time, and demonstrate we recover this
scaling also.

To do so, we start with Θ, from which we can derive 95% limits and the TS of an excess, as
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described in Sec. 3.3. In particular, we begin with (3.41) which is the furthest we advanced in
the Asimov analysis of Θ before invoking the assumption of T � τ . Repeating that result for
convenience, we have

Θ̃(A) = 2
N−1∑

k=1

[
λtk

(
1

λB
− 1

λk

)
− ln

λk
λB

]
, (B.42)

where again λtk is the expected signal plus background, but with the signal set to its true value.
In the case where T < τ , where we cannot resolve the signal, we can approximate it as being

confined to a single k mode, say k = kS . We are effectively approximating T � τ here, much as
we did T � τ in the main body, simply to expose the scaling. This allows us to rewrite the above
as

Θ̃(A) = 2

[
λtkS

(
1

λB
− 1

λkS

)
− ln

λkS
λB

]
, (B.43)

as for all other modes λtk = λk = λB, and so the contributions vanish. As in the main body,
if we again consider the case of an emerging signal, then we can assume that Aπf(v)/(mav) ∼
Atπf(v)/(mav)� λB, which to lowest order simplifies our result as

Θ̃(A) = 2A(At − A)

(
πf(v)

mavλB

)2

. (B.44)

Note the velocity appearing in this result is fixed by the value of kS .
By relating the collection time to the width of our frequency bins and hence velocity, we have

again that 1/T = mav∆v/(2π), where recall ∆v is the width with which we can probe in velocity
space. Accordingly we arrive at

Θ̃(A) =
1

2
T 2A(At − A)

(
f(v)∆v

λB

)2

. (B.45)

Importantly, note that as f(v) is a normalized pdf and ∆v is roughly the range over which it varies,
we have f(v)∆v ∼ O(1). The exact numerical value is irrelevant: the key observation is that the
combination is no longer dependent on T . As such we see in this limit Θ̃ ∝ T 2, which should be
contrasted with (3.44), where Θ̃ ∝ T . As A ∝ g2

aγγ , when we use Θ̃ to derive the TS or 95% limit
as we did in the main body we will find they both scale as T−1/2, as expected.
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APPENDIX C

The Statistics of Axion Direct Detection with
Multiple Detectors

C.1 Coherence Length and Time

In this appendix we briefly review the concepts of the coherence length and time, as relevant
to wavelike DM. We emphasize that in our work both concepts only arise heuristically. Indeed,
the coherence length and time are only defined parametrically, and for all quantitative results we
instead rely on the likelihood formalism in [80], which produces not only all parametric scalings,
but also the required O(1) factors.

Consider first the coherence length λc ∼ (mDMv0)−1, the scale over which wavelike DM
remains coherent. In discussions of ultralight DM, “coherence length” is often used inter-
changeably with “de Broglie wavelength.” Strictly speaking, though, the de Broglie wavelength
λdB = 2π/(mav) is a property of particles with fixed velocity v, while the coherence length de-
scribes the dephasing of various plane wave components with different velocities. When v0 ∼ v,
these two length scales are comparable, but there are relevant situations where the two diverge, such
as for cold streams, and then the distinction between the coherence and de Broglie wavelengths
becomes important.

The coherence time is then the timescale over which a measured signal of ultralight DM will
build up coherently. In real space, this is the time it take for a new spatially coherent packet of
the DM wave, which has size λc, to arrive at the instrument. If these packets travel with a mean
speed of v̄, then the timescale is τ ∼ λc/v̄ ∼ (mDMv̄ v0)−1. The same result can be arrived at
from a frequency space consideration. The Fourier transform of an experimental data set collected
over a time T will have a frequency resolution of ∆ω = 2π/T . If the entire signal fits within a
single frequency bin, the result is associated with a single draw from an exponential distribution, as
shown in [80]. Once we resolve the signal, however, we obtain multiple draws which will combine
incoherently, partially offsetting the benefit of additional integration time. The coherence time is
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therefore dictated by the width of the signal in frequency space, and then as dω = mDMv dv, we
again arrive at τ ∼ (mDMv̄ v0)−1.

C.2 Demonstrating d ∼ N (0,Σ)

The goal of this appendix is to demonstrate a fact that was used without proof in the main body: the
data set d, given in (4.15), is a random variable drawn from a multivariate normal distribution with
zero mean and covariance matrix Σ as given by (4.16). In order to show this we will start from
the known statistics of the axion field, as reviewed in the main body, together with a Gaussian
background, and show that the mean and variances of the data sets follow the expected normal
distribution. We will further confirm this result with a Monte Carlo realization of the axion field.
From here, rather than confirm that all higher moments are also consistent with Gaussianity, we
will instead confirm numerically that the distribution is normal. Indeed, the diagonal components
of d, which govern the statistics of individual detectors, must be Gaussian as proven in [80].

Let us begin by restating (4.6) in a simplified notation. We introduce a single multi-index
d = abc, and a random variable fd = αd

√
f(vd)(∆v)3, yielding

a(x, t) =

√
ρDM

ma

∑

d

fd cos (ωdt−mavd · x + φd) . (C.1)

We now envision collecting a data sensitive to this axion field at each of the N detectors, located
at positions xi. Specifically, we imagine collecting N measurements at a frequency f = 1/∆t at
each experiment, so that we have at our disposal N ×N data points {Φ(i)

n }, with

Φ(i)
n = ma

√
Ai
ρDM

an(xi, n∆t) + x(i)
n . (C.2)

The second term in this expression captures the background noise. We will assume the noise is
Gaussian, which holds for a wide range of sources as described in the main body, and in detail that
it satisfies

〈
x(i)
n

〉
= 0 ,

〈
x(i)
n x

(j)
m

〉
= δijδnm

λB,i
∆t

. (C.3)

In other words, we assume the noise has zero mean, is uncorrelated between detectors, and has a
variance that increases with the measurement frequency f . The variance is controlled by the mean
power in the background, λB,i, and if there are multiple background sources at a single detector,
their power can simply be combined.
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From this data set, we compute the discrete Fourier transform {Φ(i)
k } using (4.7), and then the

associated real and imaginary parts, R(i)
k and I(i)

k from (4.8). These variables are what combine to
form the data vector d, and so the goal is to study their statistics. Before proceeding, let’s introduce
some further notation to keep expressions compact. Firstly, we encapsulate the axion phase into a
single term,

ϕ
(i)
d,n = ωdn∆t−mavd · xi + φd . (C.4)

To capture the trigonometric sums introduced by the Fourier transforms, we write

cn,k = cos

(
2πkn

N

)
= cos (ωn∆t) , (C.5)

and the equivalent expression for sine is denoted sn,k. Using this, the real and imaginary parts of
the data set can be written

R
(i)
k =

∆t√
T

N−1∑

n=0

[
√
Ai
∑

d

fd cosϕ
(i)
d,n + x(i)

n

]
cn,k, (C.6)

I
(i)
k =− ∆t√

T

N−1∑

n=0

[
√
Ai
∑

d

fd cosϕ
(i)
d,n + x(i)

n

]
sn,k .

From these expressions, we can see immediately that 〈R(i)
k 〉 = 〈I(i)

k 〉 = 0. That this holds for the
background follows from (C.3), and for the axion signal contribution we have

〈
fd cosϕ

(i)
d,n

〉
= 〈fd〉

〈
cosϕ

(i)
d,n

〉
= 0 . (C.7)

The first step follows as the value of αd (and hence fd) is uncorrelated with φd (and hence ϕ(i)
d,n),

whilst the second utilizes the fact 〈cosϕ〉 = 0 when the argument ϕ is a random phase. This
establishes that 〈d〉 = 0.

Next we consider the covariances. In particular, we will compute 〈R(i)
k R

(j)
k 〉. The calculation

where one or both of the real components is replaced by an imaginary equivalent proceeds simi-
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larly, and we will comment on the important differences throughout. In detail, we will compute

〈
R

(i)
k R

(j)
k

〉
=

(∆t)2

T

×
〈
N−1∑

n=0

[
√
Ai
∑

d

fd cosϕ
(i)
d,n + x(i)

n

]
cn,k (C.8)

×
N−1∑

m=0

[
√
Aj
∑

s

fs cosϕ(j)
s,m + x(j)

m

]
cm,k

〉
.

Note the effect of sending R
(j)
k → I

(j)
k is simply to replace cm,k → −sm,k, and similarly for

R
(i)
k . Continuing with the calculation at hand, expanding out the final two lines, we will have

expressions involving only the signal, only the background, and cross terms. As the background
value is uncorrelated with the signal, the cross terms will be zero via an almost identical argument
to the vanishing of the means. Of the remaining terms, consider the background first.

(∆t)2

T

〈
N−1∑

n,m=0

(
x(i)
n cn,k

) (
x(j)
m cm,k

)
〉

=
δijλB,i
N

N−1∑

n=0

(cn,k)
2 =

δijλB,i
2

, (C.9)

which holds except for k = 0 (or k = N/2 for N even). Note if we were evaluating 〈I(i)
k I

(j)
k 〉, we

would have the same expression but with cn,k → sn,k, and therefore the background contribution
would be identical. If we were evaluating 〈R(i)

k I
(j)
k 〉, however, the background contribution would

vanish as
∑
cn,ksn,k = 0. Taken together, these results demonstrate the appearance of λB in (4.16).

Now we turn to the signal contribution, for the moment dropping the overall factor of√
AiAj(∆t/N),

〈
N−1∑

n,m=0

∑

d,s

fdfs cosϕ
(i)
d,n cosϕ(j)

s,mcn,kcm,k

〉
=

N−1∑

n,m=0

cn,kcm,k
∑

d,s

〈fdfs〉〈cosϕ
(i)
d,n cosϕ(j)

s,m〉 .

(C.10)

Again we used the independence of the amplitude and phase of the random walk that emerges in
calculating the axion field statistics. The second expectation value in this expression will vanish
unless the random phases in the cosines are equal, effectively as

〈ei(φd−φs)〉 = δsd . (C.11)
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Figure C.1: Monte Carlo validation that the statistics of DM interferometry are as claimed in
App. C.2. In the left figure we confirm that the variances of the real and imaginary signal-only
data sets, collected for the N = 2 experiments, is as claimed in (4.16). This was proven directly
in the text, but in the plot we show that the average of 4,000 Monte Carlo simulations provides
a consistent prediction for the variances as a function of frequency in the different cases. On the
right figure, for the frequency where 〈R(1)R(1)〉 achieves its maximum, we show the distribution
of values across the simulations. In detail, we see that the real and imaginary components are
normally distributed, and consistent with a mean-zero normal distribution, where the variance is
given as on the left, here σ2 ≈ 25 Wb2/Hz. We found that the distributions were consistent with the
Gaussian expectation at the level of p > .05 using the D’Agostino and Pearson omnibus normality
test [432, 433]. In both cases, each Monte Carlo simulation involves a direct construction of the
axion field starting from (C.16) withNa = 100, 000, takingma = 2π Hz, andA = 1 Wb2. Further,
we take the velocity distribution to follow a variant of the SHM in (4.50), but with v0 = 0.07 and
v� = (0, 0.08, 0), both in natural units. The (unphysically) large velocity helps simplify the
computation of the Fourier transform. The detector separation is x12 = d(0, 1, 0), with d ≈ 4.4λc.

Further, as 〈α2
d〉 = 2, we can also evaluate the result as

∑

d,s

〈fdfs〉〈cosϕ
(i)
d,n cosϕ(j)

s,m〉 = 2
∑

d

f(vd)(∆v)3〈cosϕ
(i)
d,n cosϕ

(j)
d,m〉 , (C.12)

which we can simplify further as,

〈cosϕ
(i)
d,n cosϕ

(j)
d,m〉 (C.13)

=
1

2
[cos (ωd(n−m)∆t−mavd · xij) + 〈cos (ωd(n+m)∆t−mavd · (xi + xj) + 2φd)〉]

=
1

2
cos (ωd(n−m)∆t−mavd · xij)

=
1

2
cos

(
ωd
ω

2πk(n−m)

N

)
cos (mavd · xij) +

1

2
sin

(
ωd
ω

2πk(n−m)

N

)
sin (mavd · xij) .
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In the final step we see the emergence of the k · x type phase factors that separate F c,sij (v) defined
in (4.18) from f(v). We have broken the calculation into a number of pieces at this stage, let us
begin to put things back together. Combining the different expressions above, we have

〈
R

(i)
k R

(j)
k

〉
=

1

2
δijλB,i(ω) +

√
AiAj

∆t

N

∑

d

f(vd)(∆v)3× (C.14)

[
cos (mavd · xij)

N−1∑

n,m=0

cn,kcm,k cos

(
ωd
ω

2πk(n−m)

N

)

+ sin (mavd · xij)
N−1∑

n,m=0

cn,kcm,k sin

(
ωd
ω

2πk(n−m)

N

)]

=
1

2
δijλB,i(ω) +

π
√
AiAj

2

∑

d

(∆v)3f(vd) cos (mavd · xij) δ(ωd − ω) (C.15)

=
1

2
δijλB,i(ω) +

π
√
AiAj

2mavω

∫
d3vf(v) cos (mav · xij) δ(|v| − vω)

=
1

2
[cij(ω) + δijλB,i(ω)] .

The final result is the claimed form of 〈R(i)
k R

(j)
k 〉 used in the main body, but let us detail the steps in

the calculation, working backwards. In the last step we simply recalled the definitions introduced in
(4.18) and (4.17). The penultimate step simply involved approximating the sum over all velocity
components d = abc with an equivalent integral. The only non-trivial manipulation occurred
when we evaluated the sums over n and m. These were performed using a set of discrete Fourier
transform double orthogonality relations, which for convenience we have collected in App. C.3.
From those relations, we can see that as 〈R(i)

k R
(j)
k 〉 involved cn,kcm,k, only the cosine of k · xij

survived. By analogy, if we were evaluating 〈I(i)
k I

(j)
k 〉, we would instead have sn,ksm,k in the sums,

which would again isolate the cosine. On the other hand, for 〈R(i)
k I

(j)
k 〉 (where the background

contribution vanishes as described above), we have cn,ksm,k, which instead singles out the sine,
implying the above result would have cij(ω) → sij(ω). The same argument holds for 〈I(i)

k R
(j)
k 〉,

up to a sign.
Taken together, the above arguments suffice to demonstrate analytically that the variance of the

data set is as claimed in the main body. We can also confirm this result numerically. On the left
of Fig. C.1, we show that a direct construction of the axion field as a sum over Na plane wave
components,

a(x, t) =

√
2ρDM

ma

√
Na

Na∑

i=1

cos [ωit−mavi · x + φi] , (C.16)
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where vi is drawn from f(v) and φi is drawn uniformly from [0, 2π), leads to the exact same re-
sults.1 The detailed parameter choices are described in the figure caption, and the curves represent
the average over repeating this procedure 4,000 times. In all cases, there is excellent agreement
between this approach and the corresponding theory curves.

On the right of Fig. C.1 we confirm a point that we did not demonstrate directly, namely that
the individual real and imaginary components are normally distributed. The distribution is shown
amongst the 4,000 simulated data sets for the two components measured at two different detectors.
In all cases consistency is observed with the predicted Gaussian distribution. We performed a chi-
squared test to determine the goodness of fit and found p-values greater than 0.05. In detail, the
R(1), I(1), R(2), and I(2) data sets shown in Fig. C.1, had corresponding p-values of 0.06, 0.12,
0.97, and 0.27.

C.3 Orthogonality Relations

In App. C.2 we made use of several unstated orthogonality relations. We collect these in the present
appendix. Firstly, the following expressions vanish for any k

N−1∑

n,m=0

cn,ksm,k cos

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

sn,kcm,k cos

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

cn,kcm,k sin

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

sn,ksm,k sin

(
ωd
ω

2πk(n−m)

N

)

= 0 .

(C.17)

1Binning the velocities leads to (4.6) in the main text, with a Rayleigh-distributed amplitude in each bin.
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However, there are four non-zero combinations. In detail, for most values of k,

N−1∑

n,m=0

cn,kcm,k cos

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

sn,ksm,k cos

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

cn,ksm,k sin

(
ωd
ω

2πk(n−m)

N

)

=
N−1∑

n,m=0

sn,kcm,k sin

(
ωd
ω

2πk(n−m)

N

)

=

(
N

2

)2
2π

T
δ(ωd − ω).

(C.18)

The exception to the above is if k = 0, or k = N/2 for N even. For those values, only one of the
above three sums is non-zero, in detail

N−1∑

n,m=0

cn,kcm,k cos

(
ωd
ω

2πk(n−m)

N

)

=N2 2π

T
δ(ωd − ω).

(C.19)

However, recall that we usually exclude these exceptional k values from our likelihood.
The non-zero results above were written in terms of Dirac δ-functions, however this is an ap-

proximation. Recall all results are obtained through the discrete Fourier transform, within which
the frequency can be interpreted as ω = (2π/T )k, with k = 0, 1, . . . , N − 1. In truth, if we define
kd = bωdT/2πc, then what appears in the above sums is the Kronecker-delta δkkd . However, in the
spirit of assuming our frequency resolution is sufficient enough to approximate ω as a continuous
variable, we take

δkkd = δ(kd − k) =
2π

T
δ(ωd − ω), (C.20)

which is the form it appears in (C.18) and (C.19).
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C.4 Data Stacking Procedure

In practical situations it is usually neither feasible nor necessary to save the entire time-series data
to disk and then construct the Fourier transform of the full data set. The frequency resolution of
this complete Fourier transform would be ∆ω = 2π/T , and potentially much smaller than the
scale of any expected features induced by the signal due to f(v). As a specific example, the
ABRACADABRA-10 cm experiment [72, 82] recorded the PSD data over short time periods and
then stacked the PSD data over the time subintervals to construct the average PSD data. The
advantage of this averaging procedure is that it requires less storage and is easier to deal with
computationally, since there are less frequencies involved than would be in the full data set without
time sub-binning.

With this in mind, it is useful to understand how we may stack the Fourier transform data over
multiple experiments in such a way that we preserve the full power of the likelihood in (4.19) but
that allows us to reduce the data volume needed to be saved to disk. (An optimized procedure for
stacking the data from a single experiment is presented in [80].) Let us imagine that we record
time-series data in NT equal time subintervals of time ∆T = T/NT , and that in each subinterval
the frequency spacing of the ∆N = N/NT Fourier components is sufficient to resolve the axion
signal by multiple frequency bins, i.e. we retain sufficient frequency resolution that our signal
remains well resolved. We then denote the full data set by d = {d`k}, indexed now by both
k = 1, . . . ,∆N − 1, denoting the Fourier component, and ` = 1, . . . , NT , the data subinterval.
The appropriate likelihood is then simply the product of the likelihood in (4.19), but now also
over all values of NT . However as NT × ∆N = N , the number of frequency bins in the Fourier
transform of the full data, at this stage we have not reduced the size or complexity of the data or
likelihood evaluations at all. In order to do so, we can combine the data into the following average
data matrix, which can be computed prior to any evaluation likelihood,

[d̄k]
ij =

1

NT

NT∑

`=1

dik,`d
j
k,` . (C.21)

Here, the indices i and j run over the 2N entries of the data vector in (4.15), k indexes the discrete
Fourier transform, and ` specifies the appropriate subintervals. In terms of the average data matrix,
the likelihood can be written as

L(d|M,θ) =
∆N−1∏

k=1

exp
[
−NT

2
Tr(d̄k · Σ−1

k )
]

[(2π)2N |Σk|]NT /2
, (C.22)

where we have left the θ dependence of Σ implicit. We can now compare how much data needs to
be stored for this stacking procedure compared to the full data set. Again, we haveNT subintervals,
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each with ∆N Fourier components, and for each we have 2N components in our data vector. As
(C.21) is a real symmetric matrix, we need N (2N + 1) components to specify it for each k value.
Thus in total, we need to storeN × (2N + 1)×∆N entries to disk, although if Σ−1

k has a number
of zeros (associated with experiments well within or outside the coherence length λc), fewer points
may be required. This number should be contrasted with the 2N ×N = 2N ×∆N ×NT values
that would be needed in the absence of a data stacking procedure. Thus, as long as NT � N , a
significant reduction in the data set can be achieved. For simplicity, in the main body of the paper
we assume that no data stacking has been performed, though it is important to keep in mind that
all results we derive may also be applied to the stacked data likelihood. An important caveat is that
care should be taken when accounting for daily modulation to make sure the data is stacked with
other data taken at a similar time of day, otherwise the effect can be washed out.

Finally, we briefly demonstrate using the Asimov procedure that as long as the subintervals
retain sufficient frequency resolution that the signal remains well resolved, the stacked and full
likelihoods are equally sensitive. If the signal prediction remains unchanged in each subinterval,
then the averaged data set defined in (C.21) has the following expected value,

〈[d̄k]ij〉 =
1

NT

NT∑

`=1

〈dik,`djk,`〉 = Σt . (C.23)

It is straightforward to then evaluate the equivalent Asimov Θ, and one finds a result enhanced by
NT , but with T → ∆T when replacing the sum over Fourier components with an integral over
speed. For instance, the equivalent of (4.29) has T → NT∆T . Yet as NT∆T = T , by definition,
the test statistic is identical, and therefore the stacking procedure is optimal as claimed.
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APPENDIX D

First Results from ABRACADABRA-10 cm

In recent years, the absence of a compelling direct detection of DM in accelerator and Weakly
Interacting Massive Particle (WIMP) searches has reignited the search for ADM. The coincidence
of new developments in quantum sensors and quantum information technology has stoked this
reawakened interest, and the past few years have seen a wealth of new experimental ideas and
approaches that are beginning to revolutionize the field [187, 434]. While most ADM searches
have traditionally focused on a narrow mass range from 10 . ma . 100µeV, recent theoretical
work has made a compelling case for ADM in the mass range ma . 1µeV [51, 52, 169, 251, 252,
264–267, 269, 435].

The ABRACADABRA-10 cm experiment has recently released results of the first direct de-
tection search for ADM below 1µeV [72]. The design of the experiment was motivated by the
proposal of [71], and is based on measuring the coupling of ADM to electromagnetism – sim-
ilar to experiments probing different mass regimes like the long-running ADMX [67, 258] and
HAYSTAC [219]. In this lower mass range, the axion field a, in the presence of a large magnetic
field can be thought of as an induced effective current

Jeff = gaγγ
∂a

∂t
B , (D.1)

where gaγγ is the axion-photon coupling. This current sources a small AC magnetic field that can
be measured with a sensitive enough magnetometer.

ABRACADABRA-10 cm is a prototype detector for a new search approach, and its implemen-
tation contains novel elements that have not previously been used in ultralight dark matter searches:

• A toroidal magnet geometry, with the detection element placed in the near-zero-field region
– the first operational non-microwave cavity sub-eV ADM search;

• A broadband readout mode involving continuous-stream data-taking for ∼ 106 seconds
(roughly 1 month), and several compression techniques to mitigate the total data storage
requirements while preserving the desired signal bandwidth;
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• A calibration technique where a signal is injected through current in a calibration loop in a
similar geometry as the expected axion signal;

• A data analysis pipeline tailored to the expected statistics of the axion field in the quasistatic
regime, where the signal is best described as a flux power spectral density rather than photon-
counting with the added constraint that “rescanning” is prohibitively time-consuming.

In this Appendix, we provide context and additional details for each of these novel elements and
their specific implementation in ABRACADABRA-10 cm. In Section D.1, we describe the design
and construction of the toroidal ABRACADABRA-10 cm detector. We describe the data collection
approach used for the broadband readout in Sec D.2, and describe the calibration of the detector
in Sec. D.3. In Sec. D.4, we describe the data analysis and limit extraction approach used for our
broadband search. We conclude by commenting on the improvements and modifications necessary
for scaling up the ABRACADABRA-10 cm prototype to an experiment capable of probing QCD
axion couplings.

D.1 Detector Design and Construction

The ABRACADABRA-10 cm detector and setup can be split into six separate systems: the toroidal
magnet, the magnet support infrastructure and shielding, the pickup loop circuit, the SQUID elec-
tronics, the calibration circuit, and finally the cryostat and detector support infrastructure. In this
section, we discuss the design and construction of each.

The expected signal-to-noise ratio (SNR) of ABRACADABRA-10 cm can be written approxi-
mately as

SNR = gaγγ
√
ρDMGV Bmax

(
Min

LT

)
(τt)

1
4

S
1/2
ΦΦ

, (D.2)

where V is the volume of the toroid, G is a geometric factor, Bmax is the max field inside the
toroid, Min is the inductive coupling of the SQUID, and LT is the total inductance of the readout
circuit. Here, we assume that the integration time t, exceeds the axion coherence time, τ . The
final parameter of importance is the flux noise level, S1/2

ΦΦ , typically measured in µΦ0/
√

Hz. The
relevant parameters are summarized in Table D.1.

D.1.1 The Toroidal Magnet

The magnet structure is built around 80 identical Delrin wedges, (see Fig. D.1a). When glued
together, they create a toroidal frame with an inner radius of 3 cm and an outer radius of 6 cm, with
a total height of 12 cm. The total volume of magnetic field is V ≈ 890 cm3.
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(a) (b)

(c) (d)

Figure D.1: (a) Three of the 80 Delrin wedges that form the toroid structure stacked together. The
black bar indicates a ≈ 1 cm scale. (b) Cutaway rendering of the toroid with the 1 mm diameter
wire pickup loop in the center. A 0.5 mm diameter wire runs through the center of field region to
form the calibration loop. Toroid height is≈ 12 cm. (c) Rendering of the ABRACADABRA-10 cm
support structure. The pickup loop is supported by a PTFE (white) tube through the center. The
magnet is supported by an outer G10 support structure and thermalized with two copper bands. (d)
Photo of the assembled ABRACADABRA-10 cm, with the top of the superconducting shield and
support structure removed.
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The magnet current is carried by a NbTi(CuNi) wire which is wound 1,280 times around the
magnet. Between each pair of wedges is a groove that has 16 winds of wire, laid down in pairs 8
layers deep. The wire is held in place with epoxy. To cancel the azimuthal current, the toroid is
counterwound.

The toroid was wound by Superconducting Systems, Inc [270] in three separate pieces, with
three separate lengths of NbTi(CuNi) wire. The pieces are then glued together and the wires are
connected together with two superconducting crimps. These crimps are then attached to the outside
of the toroid. These joints could create small stray fields which contribute to the backgrounds for
the axion search, but unfortunately could not be avoided in the construction.

The toroid is mounted in a dilution refrigerator (described below) and cooled to . 1 K. The
NbTi(CuNi) wire superconducts below . 9 K. We charge the magnet by injecting a 121 A current
into the toroid. Once charged, we turn off heat to a superconducting switch (located away from the
magnet) which then locks the current into the magnet. The current source is disconnected from the
charging leads on top of the refrigerator.

When fully charged, the maximum field in the magnet is Bmax = 1 T. This was confirmed with
a Hall probe to a precision of ∼ 1%, with the uncertainty coming from uncertainty in position of
the probe in the field. Once in persistent mode, we observed no decay in the field to a precision of
. 0.1% on the scale of 1 week. The Hall sensor was removed before normal data taking.

D.1.2 Support Infrastructure

The toroid is mechanically supported by a G10 frame held together with nylon bolts (see Fig. D.1c).
The goal of this structure was to rigidly mount the toroid in place, while minimizing the amount of
non-superconducting metal near the magnet. The one exception to this is the copper straps which
wrap around the outside of the toroid that provide the required thermalization to cool the magnet.
These straps undoubtedly contribute some level of noise for our axion search, though in the current
setup it is not the dominant noise source. In the future we will search for alternative thermalization
approaches.

The entire toroid and support structure are mounted inside the external shield (see Fig. D.1d).
The shield consists of a spun copper can that has been coated inside and out with a 25-75µm
layer of tin, for a total thickness of ≈1 mm. The copper provides good thermal conductivity to
minimize thermal gradients across the shield. It also provides the thermal conductivity to the
copper straps which cool the magnet. Once below 3.7 K, the tin becomes superconducting and
expels environmental magnetic fields and acts as a shield against electromagnetic interference.
Optimizing and characterizing this external shielding will be the subject of future work.

The external shield is built in two hemispheres (top and bottom) which have≈ 12 mm of vertical
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Table D.1: Summary of the ABRACADABRA-10 cm detector design parameters.

Pickup Loop Radius Rp 20.1 mm
Pickup Loop Wire Diameter rp 1.0 mm
Magnet Inner Radius Rin 30 mm
Magnet Outer Radius Rout 60 mm
Magnet Height h 120 mm
Magnet Max Field Bmax 1.0 T
Geometric Factor GV 0.027
Pickup Loop Inductance Lp 95.5 nH
SQUID Input Inductance Lin 150 nH
SQUID Inductive Coupling Min 2.5 nH

Figure D.2: Gain of the combined high-pass and anti-aliasing filters. All spectra are corrected
for this response function – unless otherwise noted. Measured in-situ, using injected signals at
different frequencies. This also defines the usable range of data. For our search we use the range
75 kHz – 2 MHz.

overlap when assembled. There is a small gap in one location between the inner and outer shield
through which the magnet wires, pickup loop wires and calibration loop wires pass as three sets
of twisted pairs. The shield halves are connected with a layer of solder and epoxy to ensure both
electrical and mechanical connection.

A 12 mm thick aluminum top plate is epoxied to the top of the top shield and acts as the con-
tact point for the thermalization to the rest of the cryostat and mechanical mounting point to the
vibration isolation system (see below). The aluminum plate is electrically isolated from the shield
to minimize grounding loops. A thermometer is epoxied to the outside of the bottom shield which
monitors the temperature of the farthest point from the thermalization. However, during data taking
this thermometer is not active.

D.1.3 Pickup Loop Circuit

The pickup loop measures the magnetic field in the center of the toroid – a region that should have
zero field in the absence of an axion signal. The time-averaged magnitude of the flux through the
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pickup loop due to Jeff can be written as

|Φa|2 = g2
aγγρDMV

2G2
VB

2
max ≡ A , (D.3)

where ρDM is the DM density, V is the volume of the magnet, Bmax is the maximum field in the
magnet and G is a geometric factor. The pickup loop itself consists of a 1 mm diameter solid NbTi
wire wrapped around the outside of a 5.5 cm diameter polytetrafluoroethylene (PTFE) tube that is
18.1 cm tall. The geometric factor GV weights the effective current in Eqn. D.1, by the contribution
to the flux through the pickup loop. This can be written as

GV ≡
1

BmaxV

∣∣∣∣
∫

Loop
dA

∫

Toroid
dV ′

B(r′)× (r′ − r)

|r′ − r|3 · n̂
∣∣∣∣ (D.4)

where n̂ is the normal to the plane of the pickup loop, and the integrals are taken over the area
enclosed by the pickup loop and the volume of the toroid. The integrand is reminiscent of the Biot-
Savart law, with the current taken to be the axion-induced effective current Jeff which follows lines
of B [71].1 For the ABRACADABRA-10 cm geometry, we calculate this using a COMSOL [277]
simulation to be GV = 0.027. The two wire leads from the pickup loop, which consists of the same
wire as the loop, are twisted into a twisted pair configuration and run out under the bottom of the
toroid through the gap in the shield. Once outside of the shield, the wires run ≈ 15 cm inside a
stainless steel mesh sleeve. At this point, the 1 mm wires are joined to 75µm twisted-pair PFA-
insulated wire with superconducting crimped solder. The 75µm wires run for ≈1 m inside hollow
superconducting solder capillaries [271] to the input of the SQUIDs mounted on the 700 mK (Still)
stage of the cryostat. The SQUIDs have an input inductance of 150 nH to match the calculated
inductance of the pickup loop of Lp = 95.5 nH. Including the inductance of the wires, the total
design inductance of the pickup loop circuit is ≈550 nH. However, measuring the inductance of
the circuit yielded a value closer to LT ≈ 3.3µH, we discuss this further in Sec. D.3. The data
presented in [72] was taken in a broadband readout configuration with no resonant amplifier.

D.1.4 SQUID Setup And Readout

The first stage was readout with a Magnicon two stage SQUID current sensor [278, 436]. The
SQUID is operated at a temperature of 870 mK and has typical flux noise floor of 0.6µΦ2

0/Hz.
The inductive coupling between the input coil of the SQUID and the SQUID is Min = 2.52 nH.
The SQUID is operated with the Magnicon XXF-1 electronics in FLL mode with a SQUID flux to
voltage conversion of ∂V/∂ΦS = 1.29 V/Φ0. In FLL mode, the response of the SQUID is linear
over the dynamic range of the amplifier ±11 V or ≈ ±8.5 Φ0, however, this comes at the cost of
limiting the bandwidth of the system to ≈ 6 MHz.

1In the notation of [71], GV = VB/V .
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Figure D.3: A conceptual diagram of the ABRACADABRA-10 cm calibration circuit. The calibra-
tion loop, LC ≈ 300 nH, is concentric with the pickup loop, LP = 95.5 nH. The circuit is plugged
into the SQUID with input inductance Lin ≈ 150 nH. The parasitic resistance in the circuit is
measured as RP ≈ 13µΩ.

The output voltage of the SQUID was recorded with an AlazarTech 9870 8-bit digitizer [437].
To achieve the needed voltage precision we use the smallest available input range of±40 mV which
leads to a typical digitizer noise floor of 3.5×10−9 mV2/Hz. However, due to the large background
below ∼ 20 kHz (see Fig. D.4), we must first pass the signal through a 10 kHz high-pass filter to
prevent railing the digitizer. Additionally, we use a 2.5 MHz anti-aliasing filter. The frequency
response of these two filters is shown in Fig. D.2. These filters define the usable range of data for
our axion search of 50 kHz – 3 MHz. It is worth pointing out that even though the gain is less than
unity over the majority of our search range, both the signal and dominant noise is scaled by this
gain, so the SNR is unchanged.

The digitizer is clocked to a Stanford Research System FS725 Rb frequency standard, with a
ten-second Allan variance of < 10−11.

D.1.5 Calibration Circuit

We measure the end-to-end gain using a calibration system. It consists of the 0.5 mm diameter
NbTi wire passing through the body of the toroid (i.e. in the magnetic field region), creating a 9 cm
diameter loop concentric with and in the same plane as the pickup loop (see Fig. D.1b). This wire
runs out of the detector shield as a twisted pair and then into an RG196 coaxial cable. This cable
is connected to a 30 dB attenuator at the 4 K stage and then continues up to the top of the cryostat
and through a BNC feed-through out of the vacuum region. During data taking, this BNC is left
unplugged, and the attenuator contributes noise from a 50 Ω resistor at 4 K, which is well below
our current noise level. We calculate the mutual inductance between the calibration and pickup
loops both with an analytic calculation based on the geometry, as well as with a COMSOL [277]
simulation. These values agree and predict a mutual inductance of MCP = 19.3 nH.

While calibrating, we typically add an additional 60 dB of warm attenuation for a total of 90 dB
of attenuation to get the signal to reasonable size. All attenuators are impedance matched at 50 Ω.
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Figure D.4: Low frequency SQUID spectra from ABRACADABRA-10 cm taken with an ac-
celerometer attached the 300 K plate. The spectrum is that of the SQUID output, with the degree
of correlation with the accelerometer indicated by color (i.e. the correlation coefficient). The ac-
celerometer begins to lose sensitivity above a few kHz, so it is not clear from this measurement
how far up the correlation continues. These data were taken with a larger dynamic range on the
digitizer, so have a relatively high ADC noise floor of ∼ 5 × 10−6 mV2/Hz. (Data taken without
signal shaping filters.)

However, the output of the final attenuator is shorted by the calibration loop, which has an induc-
tance of ≈300 nH; for frequencies below ≈ 30 MHz this causes it to behave as a current source
driving a current through the calibration loop with amplitude independent of frequency. A wiring
schematic of the calibration circuit is shown in Fig. D.3.

D.1.6 Cryostat and Detector Suspension

The ABRACADABRA-10 cm detector is mounted inside an Oxford Instruments Triton 400 dilu-
tion refrigerator. It is mechanically supported by the detector suspension system. This consists
of a 0.038” Kevlar thread which attaches to a vented bolt screwed into the center hole of the top
aluminum mounting plate on ABRACADABRA-10 cm. The thread runs ∼ 1.5 m up through the
various cold stages of the cryostat to a steel spring which supports the weight of the detector. The
steel spring has a spring constant of k ≈ 20.4 N/m and connects to a hook which is mounted about
1 m above the 300 K plate of the cryostat. The hook is at the top of a 1 m long vacuum tube which
is rigidly connected to the 300 K plate. Due to the poor thermal conductivity of Kevlar, the spring
and top end of the thread stay at 300 K while the bottom of the thread is cooled to .1 K with the
detector.

The detector is thermalized to the coldest stage of the cryostat through four 10 mm wide 75µm
thick copper ribbons. Specifically, they are attached to the Mixing Chamber plate of the cryostat
and then to the aluminum top plate of the detector. They are mounted with significant slack to
minimize vibration through these ribbons. They are electrically isolated from the top of the detector
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by using thin Kapton pads between the copper ribbon and the aluminum plate and connected with
Nylon bolts.

The detector suspension system is designed to act like a pendulum which rolls off lateral vibra-
tion above frequencies of f ≈ 0.4 Hz and in the vertical direction above frequencies of f ≈ 0.3 Hz.
The operating frequency of the pulse tube is 1.4 Hz and creates one of the main vibrational noise
sources in the ABRACADABRA-10 cm data. It is clear from Fig. D.4, that even with this suspen-
sion system, vibrational noise still plays a significant role in the ABRACADABRA-10 cm back-
grounds, and is a future path for potential improvement.

To improve the magnetic shielding of the detector, we wrapped the cryostat in MuMetal shield-
ing. As MuMetal performs best at room temperature, we only wrapped the outermost vacuum
vessel. The vertical walls of the vessel were lined both inside and out with a 200µm thick layer.
The bottom of the vessel was covered with a single layer on the inside. The top of the vacuum
vessel and cryostat were not covered with MuMetal due to all the instrumentation and cryostat
infrastructure. We measured the DC magnetic field attenuation ex-situ to be a factor of ∼ 5− 10.

D.2 Data Collection Procedure

D.2.1 Axion Search Data

In [71], the original proposal for a broadband search involved collecting time series data at a high
sampling frequency continuously for months to years. However, this runs into practical disk space
limitations. For example, one month sampled at 10 MS/s would fill ≈26 TB of disk space. This is
maneagable, but would not scale well to a 1 GS/s sampling rate for a full year. However, this sort
of sampling is not necessary for resolving ADM signals, where the expected signal width is given
by ∆f/f ∼ 10−6. Instead, we take an approach that maintains the required spectral resolution,
while minimizing the required disk space.

For ABRACADABRA-10 cm, we sample continuously at 10 MS/s. Once samples are pulled
from the digitizer, the data follows two processing paths: transforming and downsampling. First,
the samples are accumulated into a 10 s buffer (of 108 samples), which is then transformed via
DFT [272] into a PSD. Once the next 10 s is available, it is transformed and its PSD is then
averaged with the first, and so on. This builds up an averaged PSD, called F̄10M, which has Nyquist
frequency of 5 MHz and frequency resolution of 100 mHz. This spectrum would be able to resolve
axion signals down to ma ∼ 100 kHz with at least one bin width. After 80 averages (or 800 s), the
average spectrum is written to disk and the averaging is reset. This level of averaging was chosen
as a balance between storage space and being able to resolve time variation of background noise.

In parallel with this, the 10 MS/s time series is decimated by a factor of 10, to a 1 MS/s time
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series. This data is then accumulated into a 100 s buffer – again of 108 samples – then transformed
with a DFT and converted into a PSD. In this way, we build up a second averaged PSD called, F̄1M,
with a Nyquist frequency of 500 kHz and a frequency resolution of 10 mHz. This spectrum would
be able to resolve signals down to ma ∼ 10 kHz with at least one bin width. After 16 averages (or
1600 s), the average spectrum is written to disk and the averaging is reset.

The data are then decimated by another factor of 10 and written directly to disk at a sampling
rate of 100 kS/s. Offline, we take the time series data and transform it as one 2.45 × 1011 sample
long DFT to form a final spectrum, F100k. Unlike the other spectra, F100k is not averaged over
multiple integration periods, but is instead a single PSD with Nyquist frequency 50 kHz and fre-
quency resolution of ≈ 408 nHz. This spectrum could be used for searches for axion signals down
to below 1 Hz, however, it is not used in the present analysis.

Each decimation step is done by first applying a top-hat filter with a 10-bin width, and then
down-sampling by keeping every 10th filtered sample. This approach was chosen because it is
fast computationally, though it is not quite optimal. We collected data from July 16, 2018 through
August 14, 2018, accumulating a total exposure of T = 2.45 × 106 s or 24.5 × 1012 samples.
In total, the data consist of 3065 independent F̄10M spectra and 1532 F̄1M spectra as well as a
2.45×1011 continuous samples of 100 kS/s data. The total data footprint was about 3.8 TB for an
average write rate of 12.4 Mbps – both of which are easily handled by a desktop PC.

D.2.2 Magnet Off and Digitizer Noise Data

We also perform a Magnet Off measurement to understand backgrounds that are not correlated with
the magnet. This data was collected with the exact same procedure and hardware configuration as
the Magnet On data. Neither the cryostat, nor the SQUIDs were stopped in between measurements.
We started collecting Magnet Off data within a few days of stopping the Magnet On run. We
collected Magnet Off data from August 18, 2018 through August 27, 2018, for a total of 8.00×105 s
of data.

We also collected ≈ 16 h of digitizer noise data, with nothing plugged in to measure the noise
level inherent to the ADC and computer.

D.2.3 Data Quality

Figure D.5 shows examples of spectra for magnet on and magnet off data. There are a few fea-
tures of these spectra worth discussing. The region below 100 kHz shows large noise spikes and a
baseline increasing towards lower frequency. These spikes are generally too broad to be identified
as ADM, but instead are incoherent noise backgrounds. We also observe that this noise is signif-
icantly reduced when the magnet is turned off. We interpret this noise as due to vibration of the
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Figure D.5: Example F̄10M SQUID spectra with magnet on (blue) and off (orange), along with the
digitizer noise floor (gray). SQUID spectra are averaged over ≈9 h, digitizer data averaged over
≈16 h. The typical SQUID noise floor is shown in green dashed line. Note: The spectra were
collected at different times and some of the transient noise peaks are not seen in all spectra.

detector. In particular, this appears to be the high frequency tail of the noise in Fig. D.4. The fact
that it is reduced when the magnet is turned off implies that stray fields from the toroidal magnet
are being seen by the pickup loop. We see that for f > 100 kHz this noise becomes sub-dominant;
however, it is likely that it continues to higher frequency. This will present a major challenge for
future detector configurations, including those with resonator readouts, that hope to lower the noise
floor by many orders of magnitude.

In the region from 100 kHz . f . 850 kHz, the noise is mostly flat with a few small broad
bumps and is approximately consistent with the expected SQUID flux noise floor. We see a slow
variation in this noise level over the month of data taking, associated with variations in the noise
level of the SQUIDs.

The region above ∼ 850 kHz shows two effects: broad bumps with ∼ 100kHz widths and a
forest of very narrow transient peaks. The broad peaks are due to an unknown and incoherent
noise source that decreases our sensitivity in that frequency range. The origin of this noise will be
the subject of future investigation, but for now we tolerate the decreased sensitivity. The forest of
narrow transient peaks, on the other hand, present a larger problem. These peaks are .100 mHz
wide and actually narrower than we expect for an ADM signal in this range. They are transient
in time and appear to be correlated with working in the lab and with working hours. They were
present for a portion of the time that we collected Magnet On data and all the time that we collected
Magnet Off data. The transient nature and narrow width of these peaks imply that their source is
likely from digital electronics turning on and off somewhere in, or near, the lab.

This transient noise was observed to be either present as a forest of many lines or completely
absent. For our ADM search, the easiest approach was to use this fact to tag and eliminate the
effected periods of time. This could be done reliably by eye, but we use a more quantitative
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approach described in Sec. D.4.2. Though the lines only appeared at frequencies above∼ 850 kHz,
we excluded all data from the tagged time intervals. In total, these cuts eliminated ∼30% of the
exposure.

D.3 Calibration

We quantify our detector response to a potential ADM signal, by performing a set of calibration
measurements. Each measurement involves injecting a series of AC signals with known amplitude
and frequency into the calibration system described in Sec. D.1.5. We compare the power measured
by our readout circuit to the power expected from the flux through the pickup loop generated by
the calibration loop.

The input signal is generated by a Stanford Research Systems SG380 signal generator, locked
to the same Rb frequency standard as the digitizer. The SG380 has very low phase noise and is able
to output a tone with very long coherence time (longer than our measurement time), such that the
resulting peak in the PSD was less than one frequency bin wide. For each amplitude and frequency,
we perform a similar data collection to our axion search. We collect, transform and average 1 s
buffers to form an averaged PSD. A zoomed example calibration line is shown in Fig. D.6a. The
resulting peaks are typically only one bin wide. We measure the power in each calibration peak
and compare this to the expected flux power generated by the calibration loop.

We perform this procedure for between 120 and 200 frequencies from 10 kHz to 3 MHz, and for
four different input amplitudes: 10 mVpp, 20 mVpp, 100 mVpp and 200 mVpp. The resulting gain
spectrum is shown in Fig. D.6b, and shows good agreement between the different input amplitudes.
We perform the calibration measurement before the ADM search run, between the Magnet On run
and the Magnet Off run, and again after the Magnet Off run. The resulting calibration curves
were very consistent in time and did not depend on whether the magnet was on or off. For the
present search, we determine our final calibration by interpolating the 200 mVpp data taken with
the magnet on (red curve in Fig. D.6b).

From Fig. D.6b, we see that our measured gain is a factor of ≈ 6.5 below what is expected
based on the calculated circuit inductance. We tested each element of the calibration circuit and
determined that the discrepancy came from the pickup loop side of the measurement. We deter-
mined the factor of ≈6.5 to most likely come from parasitic inductance in the readout circuit. This
degrades the overall sensitivity of our axion search, and is the focus of future upgrades.
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(a)

(b)

Figure D.6: (a) Example calibration peak at 850 kHz with 10 mVpp excitation and 90 dB of atten-
uation. Bin width is 1 Hz wide and all power is contained within a single bin. Output voltage is
measured at the output of the amplifier electronics. (b) Measured detector response for four differ-
ent input amplitudes taken with the magnet on. The measured gain is a factor of ≈ 6.5 below the
expected response (dashed line at the top). The outlier in the 20 mVpp spectrum is the result of a
background line contributing power to the measured peak.
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D.4 Axion Search and Limit Extraction

For the present analysis, we restrict our axion search to the frequency range 75 kHz < f < 2 MHz

or axion mass range 0.31 < ma < 8.3 neV. We therefore do not include the F100k spectrum in
the rest of this analysis, as it has a Nyquist frequency of 50 kHz. We use the F̄10M spectra to
search the range from 500 kHz < f < 2 MHz, and the F̄1M spectra to search the range 75 kHz <

f < 500 kHz. In this way, a potential signal would be covered by at least 10 frequency bins
at all frequencies. We further average the averaged spectra F̄10M and F̄1M to contain 3200 and
480 averages respectively. This decreases our ability to resolve time variations in our background
noise to ≈9 h and ≈18 h, respectively. This step is not necessary for our analysis and is purely to
decrease the computational resources required by a factor of ≈ 40. After this, our 1 month of data
collection is spanned by 75 F̄10M spectra and 37 F̄1M spectra.2

Our data analysis procedure closely follows the method introduced in [80]. Our expected signal
is a narrow peak in the pickup loop PSD above the noise background, with a width ∆f/f ∼ 10−6

arising from the ADM velocity dispersion. The challenge in a broadband search such as this is
that we are scanning a large number of mass points without the benefit of being able to efficiently
‘rescan’ mass points with possible signal detections. As such, we need to be thorough with our
statistical modeling, as at least some points are likely to populate the tails of any distribution. In
this section, we describe the statistical modeling of our expected signal and background, as well
as a data quality cut for tagging the periods of time when transient noise causes the data to look
neither like signal nor background.

D.4.1 Likelihood Analysis

The local ADM field can be thought of as arising from a partially coherent sum over a very large
number of individual axion particles, where the phases of each particle are randomly distributed.
As a result, the expected signal power in each frequency bin is drawn from an exponential distribu-
tion. When averaged over Navg independent PSDs, the signal in each frequency bin k will follow
an Erlang distribution. When combined with background noise that is incoherent and Gaussian
distributed in the time domain, the resulting PSD data is still Erlang-distributed [80]. Accordingly,
for a single averaged PSD, our combined signal-plus-background model prediction in each bin is
an Erlang distribution,

P (F̄k;Navg, λk) =
N
Navg
avg

(Navg − 1)!

(F̄k)Navg−1

λ
Navg

k

e
−NavgF̄k

λk , (D.5)

2We recycle the notation because we have only changed the number of spectra contributing to the average, but
otherwise, they are conceptually equivalent.
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with shape parameter Navg and mean λk = sk + b, where

sk =





A πf(v)
mav

∣∣∣
v=
√

4πfk/ma−2
fk > ma/2π ,

0 fk ≤ ma/2π ,
(D.6)

and b is the expected background power. Here, A denotes the combination of parameters that
control the signal strength, defined in Eqn. D.3. We assume f(v) is given by the Standard Halo
Model (SHM), with velocity dispersion v0 = 220 km/s, and vobs = 232 km/s the DM velocity in
the Earth frame [273] and ρDM = 0.4 GeV/cm3 [248, 249].

We build an analysis over a set of N averaged spectra F̄j , each one an average over Navg in-
dividual PSD. For example, the analysis of the F̄10M spectra, we have N = 75 averaged spectra,
where each averaged spectrum F̄j is an average over Navg = 3200 PSDs (with the possible excep-
tion of the final averaged spectrum which usually has fewer PSDs contributing). We search for an
axion signal at mass ma = f/(2π), by restricting our search to a window containing frequency
bins from fki(ma) = ma/(2π) to fkf (ma) = (1 + 4v2

0)fki(ma) – approximately 8 times the width
of the expected signal. Since incoherent background noise varies on frequency scales much larger
than this, we can approximate the background noise level in this window as independent of fre-
quency. We tested that our final results were insensitive to the precise choice of this window width.
We account for long term variability in our noise levels by allowing the expected background level
to vary from one averaged spectrum F̄j to the next; we denote b = {b1, b2, . . . , bN} to be these
background values, which we treat as nuisance parameters. The expected axion signal strength A
is constant across our data taking period and thus is the same for each F̄j . For a given axion mass
point ma, signal strength A and background values b, we calculate the likelihood of our data d:

L(dma|A,b) =
N∏

j=1

kf (ma)∏

k=ki(ma)

P (F̄j,k;Navg,j, λj,k), (D.7)

where k indexes the (windowed) frequency bins and j indexes the different spectra. We allow
for the generic possibility that each spectrum F̄j has a different number of averages, Navg,j . This
accounts for the spectra collected at the very end of the data taking period which have a different
number of averages.

With the likelihood in Eq. (D.7), we perform a likelihood ratio test to search for a possible axion
signal. To claim a detection, we place a 5σ threshold on the profiled likelihood ratio between the
signal-plus-background and background-only hypotheses. We define a TS for discovery as

TS(ma) = 2 ln

[
L(dma|Â, b̂)

L(dma |A = 0, b̂A=0)

]
, (D.8)
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where Â and b̂ are the values of A and b which achieve the global maximum of the likelihood, and
b̂A=0 is the value which achieves the constrained maximization with A = 0. The maximization of
A is performed over a range including positive and negative parameter values, accommodating that
a negative parameter value may provide the optimal fit to the data. If Â < 0, it is understood that
the corresponding best-fit axion coupling is 0, as no value of gaγγ could lead to negative-valued Â.
The 5σ condition for discovery at a given ma is TS(ma) > TSthresh, where

TSthresh =

[
Φ−1

(
1− 2.87× 10−7

Nma

)]2

(D.9)

accounts for the local significance as well as the LEE for the Nma independent masses in the
analysis (here Φ is the cumulative distribution function for the normal distribution with zero mean
and unit variance) [80]. For this analysis, Nma ≈ 8.1 × 106 between 75 kHz and 2 MHz (see
below), and TSthresh = 56.1.

Where we do not see a detection, we set a 95% C.L. limit, A95%, with a similar profiled likeli-
hood ratio. To do so, we use the following test statistic for upper limits

t(ma, A) =





2 ln
[
L(dma |Â,b̂)

L(dma |A,b̂A)

]
A ≥ Â ,

0 Otherwise .
(D.10)

Here, b̂A is the background values that maximizes the likelihood for a given A. Using t, we can
establish the 95% C.L. limit A95% where t(ma, A95%) = 2.71. In this limit setting procedure, it is
necessary that Â was allowed to be negative-valued if this provided the best fit in order to make an
accurate calculation ofA95%. In addition, we implement one-sided power-constrained limits [195],
which in practice means that we do not allow ourselves to set a limit stronger than the 1σ lower
level of the expected sensitivity band. This ensure that our constraints are statistically conservative
while also addressing the possibility that A95% is negative-valued.

Finally, we discuss the set of mass points over which we scan. In principle, we can search
for an axion signal at any value between 75 kHz < ma/(2π) < 2 MHz. In our data, this range
is spanned by 57.5 × 106 frequency bins and it might seem natural to search for an axion sig-
nal centered at each frequency bin. However, since each axion signal model is resolved by be-
tween 10 and 100 frequency bins, neighboring frequency bins would produce very strongly corre-
lated results. Alternatively, a log-spaced set of N masses such that mi+1

a /mi
a = 1 + 4v2

0 , would
achieve a minimal coverage such that every frequency bin belongs to exactly one fit window.
However, the spacing that achieves a set of statistically independent axion mass points is given by
mi+1
a /mi

a ≈ 1 + 3v2
0/4 [80], which yields Nma ≈ 8.1× 106 independent axion masses within our

frequency range. For our search procedure, we therefore increase the granularity of the search and
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Figure D.7: (a) The number of 3σ excesses accounting for the look-elsewhere effect in each spec-
trum after vetoing the excesses that are present in the corresponding Magnet Off data. (b) The
distribution of local TS values in the full month of analyzed data after removing periods of tran-
sient noise. In blue is the observed distribution of local TS values prior to vetoing the Magnet Off
excesses. In green, the observed distribution of TS values after the Magnet Off veto. In red, the
expected distribution under the null hypothesis. We see that after applying vetoes, there is excellent
agreement down to very low survival counts, with no remaining 5σ excesses.

produce a set of log-spaced masses that obeymi+1
a /mi

a = 1+v2
0/2. This eight-fold enhancement in

the resolution of our tested masses, as compared to the minimal coverage set, results in overlapping
signal windows of masses studied in our analysis and allows us to over-resolve a potential axion
signal by a factor of two. This yields a total of 13.0×106 mass points to test, which is appropriately
larger than the estimated number of independent mass points. We emphasize that this choice of
mass points is not a fundamental limit on our mass resolution but is instead imposed merely by
computational resources. In the event of an observed excess, we could fit a region around it with
the mass floating in the fit.

For each mass studied, we also compute the expected sensitivity bands from the null-hypothesis
models using the Asimov dataset procedure [172], following implementation outlined in [80].

D.4.2 Quality Cuts

We can also use the analysis infrastructure described in the previous section to veto mass points
where the condition of Gaussian-distributed incoherent noise does not hold as well as to create a
quantitative data quality cut to identify periods of time with excess transient noise.

In order to tag periods of time with increased transient noise, we leverage the fact that the
transient noise does not appear as a single peak, but instead as a forest of many correlated peaks.
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Under the null hypothesis of a flat background, the survival function for the test statistic t is given
by

S(t) = 2
(

1− Φ
(√

t
))

. (D.11)

The presence of a true axion signal, would yield a small number of mass points that deviate from
this distribution. But a violation of the null hypothesis of a flat background – e.g. due to a forest of
correlated transient noise – would lead to a much larger deviation from this distribution.

For each F̄j , we calculate the number of mass points with at least a 3σ excess within the time
period covered by that PSD, accounting for the LEE. We find that the number of 3σ excesses,
follows a clear bi-modal distribution with an obvious time correlation, see Fig. D.7a. This allows
us to place a quantitative cut by requiring that an averaged PSD, F̄j , have fewer than 30 mass points
with a 3σ excess. This effectively eliminates periods of time with transient noise. We emphasize
two points here: first, by placing this cut on a statistic which is calculated across a broad ranges
of frequency, we do not produce a bias at any one mass point or range. Second, as we describe
in the next section, a single axion signal would not be expected to create 30 mass points with 3σ

excesses or larger. So, while exotic models with multiple axion could be affected by this cut, it
would not present a problem for our baseline model of a single axion. This cut removes ≈ 30% of
our exposure.

Once we have removed periods of time with high transient noise, we remove individual mass
points that have non-transient noise peaks – or are in other ways inconsistent with our null hypoth-
esis of a flat background. We perform our axion discovery analysis on the Magnet Off data – where
we expect no axion signal to be present. Any mass points that show LEE-corrected excess beyond
5σ in the Magnet Off data are vetoed. We consider these mass points to have poorly understood
backgrounds where we do not have sensitivity to ADM. Out of 13.0×106 mass points, this require-
ment vetoed 18,733(6,651) points in the range 500 kHz < f < 2 MHz (75 kHz < f < 500 kHz)
and implies a decrease in our signal recovery efficiency of 0.2%.

The axion search data, collected with the magnet on, showed 83(0) excesses with LEE corrected
significance≥ 5σ, however they were all vetoed by cutting against the Magnet Off data. It is worth
pointing out that the number of 5σ excesses in the axion search data was much smaller than in the
Magnet Off data, due to the lower transient noise levels seen during that run. In Fig. D.7b, we
show the distribution of TS values before and after the Magnet Off veto, compared against the
distribution expected under the null hypothesis. The strong agreement between the theoretical ex-
pectation and the observed distribution after vetoes are applied demonstrates that the experimental
backgrounds are well-modeled by the null hypothesis and ABRACADABRA-10 cm has strong
discovery power under deviations from this theoretical expectation. In particular, in the results
presented in [72], we find no significant excesses after vetoes are applied.
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Figure D.8: (Top row) The recovered signal parameters as a function of the injected signal param-
eters in four Monte Carlo realizations with identical mean background levels. Green and yellow
bands indicate the expected 1 and 2σ containment for the upper 95% limit on the axion coupling
under the hypothesis of no axion signal. (Bottom row) The observed and expected test statistic for
discovery as a function of the injected signal strength. The dashed red line indicates the threshold
for a discovery at 5σ significance accounting for the LEE, while the dashed black line indicates the
upper 95% limit on the observed test statistic under the null hypothesis.

D.4.3 Recovering an Injected Signal

As a final test of our analysis procedures, we test that we are able to recover an injected signal and
discover an axion at the claimed significance. This is crucial because as axion searches achieve
greater sensitivity, there will be an inevitable trade-off between broadband and narrow-band cov-
erage, and a claimed exclusion at a given gaγγ will be used as justification to avoid re-scanning
parameter space that has already been tested.

To test the discovery power of our analysis procedure, we generate Monte Carlo (MC) spectra
characterized by a mean background level b̂ and {Navg,j} averaged PSDs identical to that of the
observed data. We then add an artificial axion signal with signal template set by the SHM, for a
range of axion coupling strengths A. We perform our quality cuts on the individual spectra, then
perform the joint analysis on the surviving spectra. We then evaluate the best-fit axion coupling and
the 95th percentile limit on that coupling as a function of the “true” axion coupling of the injected
signal for each MC realization. Figure D.8 shows the resulting distributions of reconstructed gaγγ
and t-values for six axion masses.
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Critically, the ability of our analysis procedure to accurately recover the correct axion parame-
ters when allowable by the background level is unaffected by the quality cuts. This is most clearly
seen in the bottom panels of Fig. D.8, which show the t-value as a function of the injected signal
strength, as compared to the expected t-value as a function of the injected signal. We see strong
agreement between the expected and observed test statistic when the signal is strong enough that
we expect to be able to discover it (i.e., when the injected coupling lies above the null model con-
tainment bands). These examples also demonstrate that when our signal is not significant enough
to be discovered, our limit-setting procedure is unaffected by the quality cuts.

D.5 Conclusions

The successful run of the ABRACADABRA-10 cm experiment [72] introduced and validated sev-
eral new techniques useful for constraining axion dark matter, including a toroidal magnet geom-
etry sensitive to ADM at ma . 1µeV, a broadband readout technique capable of handling the
data-load required to study millions of axion masses simultaneously, a signal injection through a
calibration loop to characterize this type of detector, and the first implementation of the broadband
data analysis technique proposed in [80]. In this paper, we have described in detail the implemen-
tation and validation of these techniques, which lend additional to support to the results presented
in [72].

Of greatest practical concern for the first results is the identification of the mismatch between
expected and measured end-to-end gain, which we aim to rectify in the next data-taking run, and
the mitigation of vibrational noise. We have also emphasized the statistical analysis employed to
extract the first results. The goal of this analysis is to establish a sure footing for the presented
statistical limits with a robust understanding of the exclusion limits. This is important as next
generation experiments reach for ever higher sensitivities and re-scanning regions of parameter
space becomes prohibitively time-consuming. In addition, the excellent performance of our data
quality cuts will allow use of a blind analysis pipeline, which we expect to use in future runs.

ABRACADABRA-10 cm represents the first step in an experimental search program, which
aims to ultimately be sensitive to ADM in the coupling range preferred by QCD axions. Future
phases of ABRACADABRA will require larger magnets with higher fields, improved shielding,
and strong mitigation of mechanical vibration. Augmenting the techniques described here with
a resonant amplification readout and scan strategy will also greatly improve the sensitivity of a
future full scale ABRACADABRA detector [71, 221, 275]. We have already begun engineering
studies towards designing and building such a detector and ABRACADABRA-10 cm creates a
strong foundation for this ongoing work.
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APPENDIX E

Second Results from ABRACADABRA-10 cm

E.1 Detector upgrade and electromagnetic simulations

The sensitivity of ABRACADABRA-10 cm to ADM is set by the coupling strength between the
axion induced current Jeff and the readout SQUIDs. This coupling can be conceptually split into
two parts: the coupling between Jeff and the pickup, and the coupling between the pickup and
the SQUIDs. Before Run 2, the ABRACADABRA-10 cm detector was upgraded in two ways to
increase each of these two coupling strengths.

The first step of the upgrade was the installation of the superconducting pickup cylinder. The
pickup cylinder geometry more effectively cancels the flux induced by Jeff and thus couples more
strongly to it. The cylinder was constructed out of a 150µm thick sheet of Nb wrapped around
a PTFE tube, secured with Kapton tape. The resulting cylindrical pickup was 10 cm tall with a
5.1 cm diameter and centered vertically in the magnet bore. This is close to the maximum diameter
that could practically fit. A 1 mm gap was left in the wrapping of the Nb sheet to prevent electrical
contact and the formation of a complete loop. The PTFE tube was glued and clamped onto the
magnet support structure inside the superconducting shielding can. From experience in Run 1, a
strong mounting was critical to reducing relative motion between the pickup and magnet.

The second step of the upgrade was a replacement of the wiring between the pickup cylinder
and the SQUID readouts. The new wiring – along with the new pickup cylinder – reduced the total
inductance of the readout circuit, resulting in more current in the SQUIDs. The new wiring consists
of 75µm superconducting solid NbTi twisted-pair wires that are spot welded to two corners of the
Nb sheet. Spot welding ensures a superconducting connection between the Nb sheet and the NbTi
wires. We used a series of four spot welds on each corner for redundancy, in case of breakage
during handling or due to differential thermal contraction. These wires were then taped to the PTFE
cylinder with Kapton in order to minimize stress on the connections. The wires run ∼57.5 cm to
the SQUID input. The wires are shielded in a superconducting capillary which extends from about
1 cm from the Nb sheet up to the point where the wires enter the SQUID shielding can. In addition
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to providing electric shielding, this capillary also reduced the inductance per unit length. The
inductance of the new cylinder and the readout wires are calculated using simulations in COMSOL
Multiphysics to be 20 nH and 288 nH, respectively. This decrease in the readout inductance was
confirmed with calibrations up to a factor ∼1.8.

E.2 Active Feedback System

A major challenge encountered in Run 1 was low frequency vibrations converting stray fields from
the magnet into low frequency noise. Since this noise is generally below the frequency ranges of
interest, we were able to simply filter it and ignore it. In Runs 2 and 3, the higher gain of the
upgraded detector amplified this vibrational noise enough to rail the SQUID amplifier. Because
most of this noise was relatively slow – below∼ 1 kHz – we installed an active feedback system to
cancel it. We fed part of the output signal into the input of a Stanford Research Systems SIM960
analog PID controller. The output was filtered through a 1 kHz low-pass filter (LPF) and fed into
the calibration loop via a 10 dB warm attenuator followed by 40 dB of cold attenuation, as sketched
in Fig. E.1. The LPF guaranteed that the feedback system could not interfere with signals in our
ROI, while the warm 10 dB attenuator reduced the power dissipated on the cold stages of the fridge.

Before Run 3, we added power combiners and power splitters to the active feedback circuit in
order to better impedance match and isolate the various parts of the circuit. This improved our in
situ calibration, as described below.

E.3 Detector calibration

At a basic level, the ABRACADABRA-10 cm readout converts the flux through the pickup cylinder
Φp to an output voltage from the SQUID amplifier, VSQUID. The detector calibration provides an
end-to-end measurement of the detector response ∂VSQUID/∂Φp to an axion-like signal across the
full range of frequencies being searched. A schematic of the detector configuration for the Run 3
calibration can be seen in Fig E.1. We generate a fixed frequency signal of known amplitude using
an Stanford Research Systems SG380 signal generator. This signal is attenuated by 93 dB before
passing into the calibration loop in the detector. The current in the calibration loop generates a flux
through the pickup cylinder, inducing a current and response in the readout circuit in the same way
that an axion signal would, up to geometric factors.

The response of the system to a calibration signal can be written as

∂VADC

∂VSig

=
∂VADC

∂VSQUID

∂VSQUID

∂Φp

∂Φp

∂IC

∂IC
∂VSig

(E.1)
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Figure E.1: ABRACADABRA-10 cm Run 3 calibration circuit diagram. A fake axion signal gen-
erated in the signal generator is attenuated by 93 dB (including 3dB loss in the combiner) before
being coupled into the pickup cylinder analogously to an axion signal. The resulting power excess
is readout on the SQUID and measured in the ADC digitizer. In Run 3, calibration is performed
with the magnet turned on and the active feedback circuit running. During data taking, the signal
generator is replaced with a 50 Ω terminator. The FLL feedback resistor and inductor are omitted
for clarity.

where VADC is the RMS voltage measured by the digitizer, IC is the RMS current entering the
calibration loop, and VSig is the peak-to-peak voltage output by the signal generator. The first and
last terms in this conversion are determined by the warm electronics and cold attenuators, and
can be measured directly, while the third term is the mutual inductance between the calibration
loop and pickup cylinder, which is modeled in COMSOL. By dividing the measured end-to-end
calibration by these three terms, we are left with the resulting flux to voltage conversion of the
ABRACADABRA-10 cm readout circuit ∂VSQUID/∂Φp.

During Run 3, the calibration was performed in an identical configuration to data taking, namely
with the magnet on and the AFS active. The resulting calibration can be seen in Fig. 6.2, and
agreed very well with our calculated signal gain. The rolloff above ∼1 MHz corresponds to the
finite bandwidth of the SQUID electronics. The Run 3 calibration circuit diagram is provided
in Fig. E.1. During Run 2, we were not yet able to accurately calibrate the detector with the
AFS system in place, which led to the decision to not present this data in our limits. Instead, the
uncalibrated Run 2 data was used to tune our analysis procedure.

The flux noise determines the lower limit of our sensitivity. In particular, the 95% upper limit
on gaγγ under the null hypothesis scales like the square root of the flux noise, which is shown in
Fig. E.2. In that figure we illustrate three different noise levels through the SQUID: (i) the measured
magnet on flux, which is the relevant flux for the axion signal analysis; (ii) the magnet off flux;
(iii) the flux measured in a similar SQUID that is not connected to the pickup loop circuit (labeled
“open input”). The increased noise level in the magnet off data relative to the open input SQUID is
likely the result of imperfect shielding, with environmental noise magnified by the pickup loop. On
the other hand, when the magnet is on increased noise is apparent at low frequencies, which is the
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Figure E.2: The SQUID flux for Run 3 over the 70 kHz to 2 MHz frequency range at which we
collect data. The magnet on noise level (magenta) is elevated compared to data taken with the
magnet off (gold) primarily due to vibrating fringe magnetic fields. For comparison, the noise
level from a similar SQUID without anything plugged into its input is plotted in teal.

result of the magnetic fringe fields giving frequency-dependent flux noise because of vibrations.
Increasing the quality of the shielding and decreasing either the magnitude of the fringe fields or
their vibrational coupling to the pickup loop would improve the sensitivity.

E.4 Likelihood analysis

In this section, we describe the implementation of the analysis framework used to produce upper
limits on gaγγ and determine detection significances for potential excesses. We first define the
profiled Gaussian likelihood used herein, followed by our procedure for cleaning the data to enable
the removal of spurious excesses and confounding backgrounds. We then detail our treatment of a
nuisance hyperparameter used to address potential systematics in the data, describe our results in
terms of survival functions and upper limits on gaγγ , and demonstrate the efficacy of our analysis
pipeline with injected signal tests. Though uncalibrated and not presented here, the Run 2 data was
used while constructing the likelihood analysis framework. As such, we include it in the discussion
below.
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E.4.1 Likelihood for Axion Signal Detection

The likelihood analysis utilized in this work is performed using the signal modeling formalism
developed in [80], which was also used in studying the Run 1 results [72, 82]. Our starting point
is a series of N samples of the flux in the pickup loop {Φn}, made over a collection time T and at
a sampling frequency f = 1/∆t (such that N∆t = T ). In the presence of an axion, this flux will
receive a contribution from both the DM signal and any background. The mean expectation for the
PSD at a frequency fk = k/T is

Φk = A(gaγγ)sk(ma) + µk , (E.2)

with µk is the mean expected background at this frequency. The signal strength parameter A is
given in (6.2) and is controlled by the unknown gaγγ , while sk is the signal template for a specific
axion mass:

sk(ma) =

{
πf(vω)
mavω

fk > ma/2π ,

0 fk ≤ ma/2π .
(E.3)

Here, vω =
√

4πfk/ma − 2 and f(v) is the local axion speed distribution, which we take to be
the Standard Halo Model with boost velocity v� = 232 km/s and velocity dispersion v0 = 220

km/s. To the extent the background is Gaussian in the time domain, the PSD formed from this
data will be exponentially distributed, and the sum of multiple PSDs formed during data stacking
will be Erlang-distributed. Nevertheless, in the limit of a large number of stackings, the Erlang-
distribution becomes normally-distributed. For this reason we are justified in analyzing the data
using a Gaussian likelihood.

In detail, the likelihood used is given by

L(d|ma, A; a, σ)

=
∏

k

1√
2πσ2

exp

[
−(dk − Ask − µk(a))2

2σ2

]
,

(E.4)

where dk is the average stacked data, A and sk determine the axion signal as described above, µk
is the background model (specified by parameters a), and σ is the standard deviation which we
will treat as a nuisance parameter, and therefore estimate directly from the data. For a given axion
mass ma, the signal only has support over a narrow frequency range, and therefore we truncate
the likelihood to k values between ma(1− (v� + v0)2/2)/2π and ma(1 + 2(v� + v0)2)/2π. Over
this narrow range, we find the background is adequately described by a first order polynomial,
defined by the two-component vector a (c.f. Run 1 where the background in each signal window
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was described by a flat white-noise spectrum). In summary, our likelihood is a function of five
parameters: ma and A, which define the location and normalization of the signal, and nuisance
parameters a and σ, which describe the mean size, slope, and fluctuations of the background.

Our goal is to use the likelihood in (E.4) to search for deviations from the background only
distribution indicative of the presence of an axion. To do so we define the following test statistic
(TS), which is a log-likelihood ratio of the signal and null models,

t(ma, A) = 2 ln

[ L(d|ma, A; â, σ̂)

L(d|ma, A = 0; â, σ̂)

]
. (E.5)

Hatted background quantities are fixed to the value at which the likelihood attains its maximum
value, given the specified signal values (i.e. for A 6= 0, â and σ̂ will in general take different
values in the numerator and denominator). In other words, in defining this TS, we profile over the
background nuisance parameters. The above test statistic is defined for any ma and A. For a given
ma, we then define the discovery TS as

TS(ma) = max
A

t(ma, A). (E.6)

The maximization of A is initially performed over a range including positive and negative val-
ues, which is critical for the valid interpretation of TS as a χ2-distributed quantity under Wilks’
theorem; intuitively, background fluctuations below the mean are just as likely as those above.
However, as the presence of an actual axion signal will only result in positive spectral excesses, we
take TS(ma) = 0 when the test statistic is maximized with A < 0. Accordingly, the discovery test
statistic is expected to have the following asymptotic distribution

p(TS) =
1

2

[
δ(TS) + χ2

k=1(TS)
]
, (E.7)

which is expressed in terms of χ2
k=1, the probability density function for the χ2-distribution with

one degree of freedom, and a Dirac δ function.
Using the test statistic in (E.5), we search for evidence of ADM with masses ma such that the

signal would appear within the frequency range fmin = 100 kHz to fmax = 2 MHz. The local
significance of any excess can be quantified by inverting the distribution in (E.7). In order to
cover our entire frequency between fmin and fmax, this search is performed in 11.1 million signal
windows. As such, the local significance can be misleading and we should instead interpret results
after accounting for the look-elsewhere effect (LEE). In doing so, we also need to account for the
fact that due to the finite extent of the axion signal template sk, nearby windows are correlated. We
account for this self-consistently using the formalism developed in [80], from which we compute
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the Nσ detection threshold, accounting for the LEE by

TSthresh(N) =

[
Φ−1

(
1− 4v2

0 Φ(N)

3 ln(fmax/fmin)

)]2

, (E.8)

expressed in terms of Φ, the cumulative density function of the zero mean and unit standard devia-
tion normal distribution, with Φ−1 its inverse. Using this formalism, we find that the 5σ detection
threshold accounting for the LEE is TSthresh ≈ 55.

A direct application of the formalism outlined thus far to the Run 2 and 3 data sets would result
in a number of excesses at moderate or even high significance. Rather than interpreting this result
as the discovery as a large number of ADM signatures, we interpret these as false positives sourced
by coherent backgrounds that are not adequately captured by our null model. We employ two
strategies for improving the background model in light of this. Firstly, we apply a data cleaning
procedure in order to remove excesses inconsistent with that expected for ADM, for example
transient spectral features or features that appear also when the magnet is off. Secondly, after
applying our data cleaning pipeline, we modify our likelihood with a nuisance parameter tuned
against the ensemble of observed significance values in the clean dataset; a data driven method
for ensuring the quoted significance is consistent with the distributions observed directly in data.
After applying both corrections factors, we find no significant excesses remain in our combined
dataset. We now describe each of these strategies for improving our background treatment in more
detail. We emphasize that all data cleaning and analysis procedures were developed and tested on
the 10% of the Run 2 data which was unblinded and was then applied identically to the Run 3 data.
The 10% was obtained by subdividing the full Run 2 dataset into 1,000 frequency subsets of equal
size, and then taking the first 10% of each subset in frequency.

E.4.2 Data Cleaning Procedure

Many of the excesses present in the uncleaned data are characterized by a narrow spectral feature,
often present in a single frequency bin. The features often drift throughout our collection time, and
appear at regular frequency intervals. Although such features are inconsistent with the axion signal
expectation, which should be distributed over several frequency bins, such narrow features are far
more consistent with our signal model than our linear background model, and therefore result in
high-significance TS values.

A notable example is the background resulting from AM radio broadcasts: these manifest as
large excesses at uniform 10 kHz intervals from 560 kHz to 1.60 MHz. We identify these AM radio
signals in our data and remove them with a mask of width 15 Hz centered on the radio signal peak,
beyond which the radio signal falls below our noise floor. In other cases the origin of the features
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is unclear, although the fact that many appear at 50 Hz intervals suggests a universal environmental
origin. Regardless, we remain agnostic to their origin and instead remove them using a data-driven
procedure we now outline.

For each frequency bin, we identify a single-bin excess as follows. We determine the mean
and standard deviation of the data on either side of the bin of interest; in particular, we use the 10
bins on both sides, ignoring the immediately adjacent frequencies. We then use these results to
calculate the significance of the data observed in the bin of interest. We repeat this procedure for
each frequency bin in each independently collected dataset, i.e. the data before it is stacked. If the
bin of interest attains a significance δχ2 > 100 in any one dataset, then it is flagged for masking.
If the bin is not flagged by this procedure, we then stack the dataset and repeat this procedure once
more. If after stacking, the bin now has δχ2 > 35, then it is again flagged. For all flagged bins,
we mask the 21 frequencies centered on the bin of interest. The motivation for considering the
individual and stacked datasets is to identify both excesses that drift with time and also those that
are only significant in the stacked data where we perform our fiducial analysis.

After the single-bin spikes have been identified and removed, we perform an initial analysis of
the data. We analyze the F̄10M (F̄1M) data providing a frequency resolution of 0.1 (0.01) Hz for
axions which would produce a signal in the 500 kHz - 2 MHz (50 - 500 kHz) frequency range. We
stack the Run 2 F̄10M (F̄1M) data, which consists of 1460 (700) spectra, into 20 subintervals, each
of which are initially analyzed independently. For each axion mass, each subinterval is analyzed
independently, with the 50% of subintervals which realize the smallest values of the TS for discov-
ery and any additional subintervals which have TS < 9 accepted. The accepted subintervals are
then stacked into a single dataset and analyzed. An analogous procedure is applied to the Run 3
data, where the F̄10M (F̄1M) data, consisting of 1364 (682) spectra, are divided into 22 subintervals.
This TS filtering procedure was implemented in order to mitigate the impact of transient excesses
that imitate an axion signal in some of the subintervals and might produce a spurious excess if
included in the stacked data. With this exclusion criteria, under the null, each spectrum is expected
to be excluded with probability 0.1%, making this a relatively conservative exclusion criterion, al-
though it does have the effect of somewhat weakening the detection sensitivity of the analysis. The
binned data acceptances for the complete Run 3 analysis are shown in the left panel of Fig. E.4,
which show that all data is accepted into the stacked analysis data for the overwhelming majority
of mass points.

Finally, we perform a series of vetoes aimed at removing any remaining excess which have their
origins in unmodeled backgrounds or instrumental effects. We directly analyze stacked, unfiltered
F̄10M and F̄1M data which are collected with the magnet off. Since no axion detection can be made
with the magnet off, any mass points which are excesses at TS > 16 in both the magnet-on and
magnet-off data are vetoed.
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Figure E.4: (Left) The histogrammed data acceptance fraction under the data filtering over all
masses analyzed in Run 3 data. (Right) The fraction of masses removed by magnet off vetoes as a
function of frequency in Run 3 data. The acceptance fraction is determined within 100 log-spaced
bins between the minimum and maximum axion masses within our analysis range. Note that while
we display the Run 2 results, those were used only to develop our analysis protocols and not in the
physics analysis.
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E.4.3 Nuisance Parameter Correction

After applying both our individual bin flagging and vetoing procedures, the remaining dataset
is designated clean. Nevertheless, the distribution of TS values remains inconsistent with that ex-
pected for the asymptotic one-sided χ2 distribution given in (E.7), indicative of further background
mismodeling. To resolve this, we implement an additional nuisance parameter correction to our
likelihood.

In detail, we modify the likelihood and TS with additional nuisance parameters Am and σAm as
follows,

L(d|ma, A; a, σ, Am, σAm) = N (Am|0, σAm)
∏

k

1√
2πσ2

exp

[
−(dk − (A+ Am)sk − µk(a))2

2σ2

]

(E.9)

TS(ma|σAn) = 2 ln

[
maxA L(d|ma, A; â, σ̂, Âm, σAm)

L(d|ma, A = 0; â, σ̂, Âm, σAm)

]
. (E.10)

The index m indicates that the nuisance parameters depend on the signal window under consider-
ation.

By construction, the additional nuisance parameter is – up to a penalty factor – fully degenerate
with the signal. This allows the background model the flexibility to fit signal-like excesses, but
at the cost of a Gaussian penalty factor given by N (Am|0, σAm), which is a zero mean normal
distribution of width σAm evaluated at Am. The magnitude of this penalty is controlled by the
hyperparameter σAm , which can be chosen to ensure the above TS has the expected asymptotic
distribution. To be specific, we determine σAm for each mass (indexed by k) by tuning the observed
distribution TS(ma|σAm) against the expected distribution in the vicinity of the mass point of
interest. We consider the ensemble of the discovery test statistics belong to the nearest 94,723
mass points, not including: the mass point of interest; the five nearest mass points above and below
the mass point of interest; or any mass points that are vetoed by comparison with the magnet off
data. We then tune the value of σAm to its minimum value such that there are only three discovery
test statistics in excess of 16 within the ensemble, which would be expected if the discovery test
statistics were half-chi-square distributed. The nuisance hyperparameter σAm translated into an
effective nuisance parameter gnuis

aγγ is presented in Fig. E.5, and can be understood as an effective
floor for our limit-setting power that competes with the statistical noise floor set by the background
strength.

We note that many of the procedures required to fix the hyperparameter can be performed
analytically. As the log-likelihood is approximately quadratic around its maximum, Â, near the
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maximum we have

t(ma, A) = TS(ma)


1−

(
A− Â
Â

)2

 , (E.11)

where at this stage we do not yet zero out test statistics associated with negative best-fit signal
amplitudes. When including the correcting nuisance parameter, the distribution becomes

t(ma, A,Am|σAm)

=TS(ma)


1−

(
A+ Am − Â

Â

)2

−

(
Am
σAm

)2

,
(E.12)

with the final term arising from the Gaussian penalty. We can now define a new test statistic for
discovery including the background signal nuisance parameter as

TS(ma|σAm) =maxA,Amt(ma, A,An|σAm)

−maxAmt(ma, A = 0, An|σAm).
(E.13)

Using this, for a given σAm , the new test statistic for discovery with the nuisance background
signal can be directly constructed from the test statistic without the nuisance background signal.
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In particular, since (E.13) involves only maximizations of a quadratic function, the result is given
by

TS(ma|σAn) =
TS(ma)Â

2

Â2 + TS(ma)σ2
An

, (E.14)

which has the effect of decreasing the computed TS. As before, we then zero out TS(ma|σAn)

when the best fit signal strength parameter Â is negative.

E.4.4 Survival Functions, Unvetoed Excesses, and Limits

The analysis procedure was tuned on 10% of the Run 2 data. Once validated, to the full Run 3
dataset, which had remained blinded. The survival function evaluated at various stages of our
analysis procedure, realized on the 10% of Run 2 data used for tuning, is shown in Fig. E.3.
Approximately 10% of masses in Run 2 and 5% of masses in Run 3 are removed by the peak
exclusion and vetoing procedure, with the fraction of masses removed as a function of frequency
shown in Fig. E.4.

Even after the nuisance parameter tuning, there remain some discrepancies between the ob-
served and expected survival functions at moderate values (TS > 16) of the test statistic. In
particular, there are a small number of mass points which have TS in excess of our 5σ LEE thresh-
old in Run 2 data. All of these excesses occur in nearby frequencies, associated with a transient,
and relatively broad, spectral feature which is shown in Fig. E.6. Further, the mass points which
are high significance excesses in the Run 2 data are not significant in the Run 3 data. Accordingly,
we do not consider these excesses to represent credible detections.

The independent Run 3 limits are shown with and without the tuned nuisance parameter in
Fig. E.7.

E.4.5 Injected Signal Tests

To further validate the robustness of our analysis framework, we can inject a synthetic signal into
the data and confirm that: (1) we are able to recover the signal strength, when expected; and (2) our
limits will not exclude an injected signal. To perform this test, we select five representative mass
points and inspect the real data in the vicinity of the expected location of an injected signal. We
generate independently drawn axion signals at a range of axion couplings strengths which we add
on top of each of the spectra collected in Run 3. We then apply our analysis framework, adopting
the tuned value of the nuisance parameter that was previously determined from the real data in the
vicinity of the injected signal location, and evaluate the best-fit axion coupling, the 95th percentile
upper limit on that coupling, and the detection significance as a function of the true axion coupling
of the injected signal. As a further test of the performance of our analysis framework, for each of
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Figure E.6: The time evolution of the broad excess that is associated with the putative signal
candidate in the Run 2 data that survived all analysis cuts. The excess persists after the magnet is
turned off and evolves in frequency, indicative of a background source. The magnet off veto did
not anticipate this level of time evolution and so did not remove these excesses. Since this feature
was found after unblinding, we report it here but do not consider it to be a credible axion detection.

the five mass points, we fit the Run 3 data under the null model. We then generate Monte Carlo data
under null model fits and repeat our procedure of injecting and analyzing, allowing us to compare
the analysis of signal injections on real data with expected performance of the analysis framework
under the null model. With the exception of the tuned nuisance parameter, which we continue to
keep fixed at its value determined from the real data, this represents an entirely self-contained test
of the analysis procedure.

The results of these tests are shown in Fig. E.8. Critically, our analysis procedure is able to
place a robust 95th percentile upper limit which does not exclude the true coupling strength at
which the signal is injected more often than would be expected and accurately recovers the correct
axion parameters at a detection significance within the simulated expectations. We also briefly
comment on the somewhat jagged nature of the detection significance in the real data as a function
of the injected signal strength. These features are a product of the filtering included in our analysis
procedure which removes at most 50% of the spectra in∼5% subintervals if those subintervals have
a detection significance in excess of 3σ. This has the effect of somewhat weakening the detection
significance in discretized steps and also slightly biases the 95th percentile limit to slightly lower
values. This bias is removed using a TS-dependent correction of at most 8% that is incorporated
in our limits.

244



0.5 0.8 1 3 5 8

ma [neV]

10−10

g
95

%
a
γ
γ

[G
eV
−

1
]

SHAFT

CAST

SSC

Limit w/ Nuisance

Limit w/o Nuisance

10−1 100
Frequency [MHz]

Figure E.7: A comparison of our fiducial limits that include a nuisance hyperparameter correction
(black) and those without any correction (blue). Limits set with the nuisance hyperparameter are
slightly weaker, but the features and limit-setting power are broadly similar. The figure is smoothed
for clarity.

245



10−10

10−9

R
ec

on
st

ru
ct

ed
g a
γ
γ

[G
eV
−

1 ]

ma =0.41 neV

95% Upper Limit

Best Fit

Injected Value

1/2σ Containment

ma =1.24 neV ma =2.48 neV ma =7.44 neV

10−10

101

102

T
S

(m
a
)

Injected

5σ Threshold

1/2σ Containment

10−10 10−10 10−10

Injected gaγγ [GeV−1]
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The dashed red line indicates the threshold for a 5σ detection significance account for the look-
elsewhere effect while the green and yellow bands indicate the 1σ and 2σ expectations for the
detection significance determined from 2560 MC realizations of the null model combined with
appropriately varied injected signal strength.
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APPENDIX F

Radio Searches for Axion Dark Matter

F.1 GBT Results for the Galactic Center, M31, and M54

In this section we present results for analyses of GBT data for the following observation targets:
the GC, the Andromeda galaxy (M31), and the globular cluster M54. The M54 and M31 are
complementary targets to the nearby INS targets and the GC. Like the GC observations, the M54
and M31 observations also search for axion-photon conversion from a population of NSs in DM-
dense environments. M31 has the advantage of being a large and nearby galaxy, similar to our
own Milky Way. M54, on the other hand, is observed to lie at the center of the Sagittarius dwarf
galaxy. It is also relatively nearby at a distance around 25 kpc from the Sun. Note that the velocity
dispersions of the DM in Sagittarius and the NSs in M54 are ∼10 km/s, which increases the
gravitational capture cross section for the NSs pulling in ambient DM. On the other hand, the DM
density profile of Sagittarius is especially uncertain given its tidal interactions with the Milky Way
(see [104] for details).

The parameters of the GBT observations of these targets are summarized in Tab. F.1. These ob-
servations proceeded analogously to the INS observations, with a few minor differences. The GC
and M31 observations were performed with one VEGAS spectrometer across the L-band (mode
2), while the M54 observation used three VEGAS spectrometers (mode 4). For the GC observa-
tions, ON and OFF locations were separated by 2.5◦ since the signal is expected to be spatially
extended in this case. Otherwise, the ON and OFF locations were separated by 1.25◦. Note
that we also performed an off-center GC observation, in addition to an on-center observation,
because of the possibility of a higher signal-to-noise ratio by looking slightly away from the very
bright center of the galaxy. The angular positions of all of the targets are well known at the ac-
curacy needed for the GBT at these wavelengths, but for the GC we chose Galactic coordinate
(`, b) = (359.9443◦,−0.04614◦) for the center observation and (`, b) = (359.9996◦, 0.9958◦) for
the off-center observation. The data were saved in exposures of 0.5 seconds for observations of all
other targets in Tab. F.1.
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We note that the GBT observations took place in two sessions, and during each session cali-
brator observations were also performed. The calibrators were 3C286 for the first session, which
included the GC observations and M54, and 3C48 for the second session, which included M31 and
the INS targets discussed in the main text. The calibrators were observed for approximately two
minutes in each of the modes used in that session.
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Figure F.1: (Left) A comparison of the 95% upper limits of the flux density spectra measured
with our windowed analysis for the GBT and Effelsberg observations of the Galactic Center and
radiometer expectations. Data are analyzed at an approximately 1.831 MHz frequency resolution
corresponding to the fiducial resolution for the GBT analysis. Although the Effelsberg data is
consistent with the radiometer expectations at its original resolution, when down-binned to the
GBT resolution, it demonstrates similar incompatibility with the radiometer expectations. (Right)
The 95% upper limits on the signal flux for the indicated sources from the GBT observations.
These signal flux limits are compared to the expected flux density limit appropriately computed
from the radiometer equation. The analysis is performed at the fiducial analysis bandwidth, see
Tab. F.1.

For the population analyses with GBT data we down-bin the data to the level δf/f ∼ 10−3 to
account for the fact that we are searching for emission from the whole population of NSs, each
of which is Doppler-shifted with respect to the intrinsic frequency [104]. The M54 data is down-
binned slightly less to account for the smaller velocity dispersion in the globular cluster compared
to the GC and M31 [104]. This is a qualitatively different approach to that taken with the Effelsberg
data, which is at higher frequency resolution, because with the GBT data from the populations we
do not have high enough frequency resolution to search for the brightest converting NS. Instead,
we search for the broader emission from the whole population of NSs. The frequency bins δffid

used in the analyses are given in Tab. F.1.
The 95% one-sided upper limits on the line flux densities from these GBT observations are
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Target texp [min] δfobs [kHz] δffid [kHz] type
GC 30.0 92.0 1831.0 pop.

GC (off-center) 30.0 92.0 1831.0 pop.
M31 30.0 92.0 1831.0 pop.
M54 30.0 5.7 114.4 pop.

Table F.1: As in Tab. 7.1 but for the GBT observations of the GC, M31, and M54.

shown in Fig. F.1. Note that these limits used the frequency-down-binned data, with bin widths
δffid. Just as in Fig. 7.1, we also show the expectations for each observation from the radiometer
equation, which only accounts for statistical uncertainties.

In the left panel of Fig. F.1, we show the GBT GC flux density limits. These limits are signif-
icantly higher than the radiometer expectations, indicating that the uncertainties, which are deter-
mined in a data-driven fashion by fitting the null model to the sideband data, are predominantly
systematic and not statistical. This may seem surprising, when considering that in Fig. 7.1 the
Effelsberg constraints were comparable to the radiometer expectations. However, it is important
to remember that the bandwidths δffid for the Effelsberg analyses in Fig. 7.1 are significantly nar-
rower than those that go into the left panel of Fig. F.1 for the GBT (7.32 kHz for L-band Effelsberg
in Fig. 7.1 versus 1831 kHz for the GBT in Fig. F.1). Indeed, in Fig. F.1 we also show what hap-
pens if we down-bin the L-band Effelsberg data to 1831 kHz before performing the analysis; in
this case, the results are similar to those from the GBT. We thus see that as the bandwidths are in-
creased, the statistical uncertainties become less important relative to the systematic uncertainties.
This is consistent with the expectation that the statistical uncertainties in the individual frequency
bins shrink with more data, which is acquired by increasing the bin widths, while the systematic
uncertainties need not change with bin width.

In the right panel of Fig. F.1 we show the flux density upper limits from the GC offset, M31,
and M54 GBT observations, compared to the radiometer equation expectations. Note that these
analyses use the δffid bin widths given in Tab. F.1. In a narrow frequency range around around
1.35 - 1.5 GHz, all of the upper limits become comparable to the radiometer expectation, while
above 1.5 GHz, all of the upper limits become significantly weaker than expected from statistical
uncertainties only. However, this is precisely what is expected from the known sources of RFI that
affect GBT.1 Thus, we conclude that the loss of sensitivity above∼1.5 GHz is likely due to sources
of RFI that induce variance in the null-hypothesis model.

For the purposes of additional illustration, we depict the raw, uncalibrated Effelsberg L-Band
data between 1.3-1.45 GHz and the raw, uncalibrated GBT data from the INSs RX J0720 and RX

1See, e.g., publicly available RFI archives
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J0806, with associated flux density limits, in Fig. F.2. The data and the limits are presented without
down-binning or smoothing in order to better demonstrate the impact of RFI. Note that the RFI
may lead to decreased sensitivity at isolated mass points, but on the other hand with the Off vetoing
procedure we find that RFI does not induce any false-positive axion signals.
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Figure F.2: (Upper Left) The raw, uncalibrated Effelsberg data collected in the L-Band at the GC
and in the Off Position at frequencies between 1.3-1.45 GHz. Detector features much larger than
the expected width of an axion signal and coincident RFI lines in On and Off data are clearly
visible. (Upper Right) The raw, uncalibrated GBT data collected from the INSs RX J0720 and RX
J0806. For visual clarity, we do not show the corresponding Off Position data. Thickets of RFI
are especially visible around 1.575 GHz and 1.62 GHz. (Lower Left) The flux density limits as a
function of frequency obtained from our analysis of the Effelsberg GC data. With the exception of
locations of narrow RFI, the limits are flat and characterized by the expected statistical variations
from channel to channel. (Lower Right) The flux density limits as a function of frequency obtained
from our analysis of the GBT INS data.

The interpretations of the additional GBT observations in terms of the axion model are given
later in this SM.

F.2 GBT Data Processing

In this section, we describe the procedure by which we filter the time-series antenna data collected
at the GBT and the modified implementation of GBTIDL used to process the time-series data
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leading to a frequency-dependent stacked antenna temperature [294]. This antenna temperature is
then translated to a flux density measurement through comparison to a reference calibration source.

F.2.1 Determining the Antenna Temperature with Data Filtering

F.2.1.1 System temperature calibration

For each observation (the procedure that we describe in this section applies to all GBT observa-
tions, including those only discussed in the SM), data was collected simultaneously for XX and YY
polarizations across a range of frequency channels. For the INSs, data was recorded for 0.2097 s

exposures, while for all other targets, data was recorded for 0.5 s exposures. In alternating expo-
sures, a calibration noise diode with known effective temperature in each polarization is turned on
and off, so that the first antenna measurements in each polarization do not include contributions
from the noise diode, the second measurements do, the third measurements do not, and so on. Pe-
riodically, the observing position was alternated between ON and OFF positions. We will denote
the ith antenna measurement at the jth frequency channel in the ZZ polarization (where ZZ stands
for either XX or Y Y ) for the ON data at by dZZi,j so that the noise diode is on and off for even
and odd i, respectively. Likewise, we will denote the ith antenna measurement at the jth frequency
in the ZZ polarization for the OFF data by d̃ZZi,j . Note that except for a handful of locations due
to switching the observation position, the data dZZi+1,j (d̃ZZi+1,j) is collected immediately after dZZi,j
(d̃ZZi,j ). However, for a given i, j, dZZi,j and d̃ZZi,j are not collected simultaneously.

The system temperature can be measured at each frequency channel in each polarization using
the OFF-position data. The noise diode is alternated on at even i and off at odd i, enabling us to
obtain the system temperature by

TZZsys,j = TZZcal




∑
odd i d̃

ZZ
i,j(∑

even i d̃
ZZ
i,j

)
−
(∑

odd i d̃
ZZ
i,j

) +
1

2


 . (F.1)

This frequency-dependent treatment is recommended [294] but not implemented by the standard
GBTIDL procedure, in which the sums are extended to be additionally performed over the inner
80% of all frequency channels so that the observation is characterized by a single system temper-
ature. We found the frequency-dependent procedure to result in a cleaner calibration. Next, using
the system temperature as determined by the OFF-position data, we can determine the antenna
temperature associated with the ON-position data by

TZZa,j = TZZsys,j ×
∑

i d
ZZ
i,j − d̃ZZi,j∑
i d̃

ZZ
i,j

. (F.2)
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F.2.1.2 Data cleaning

Because the antenna temperature and therefore the flux density spectrum are directly determined
by time averages over the ON-position and OFF-position data, improved calibration precision and
a cleaner flux density spectrum, less affected by spurious features, can be achieved by filtering out
transient noise features that appear in the data. Here, we accomplish this by filtering the data inde-
pendently at each frequency channel and in each polarization, in both ON and OFF positions, using
the Kolmogorov-Smirnov (KS) test. This is a novel procedure we have devised and implemented
in order to obtain clean flux density measurements for the high-precision axion search. Alternate
non-parametric k-sample tests, such as the Anderson-Darling test, may also be appropriate but are
more difficult to implement efficiently. We note also that while these cleaning procedures do help
reduce the noise in the data, they are not strictly necessary and we find qualitatively similar results
without data cleaning.

The filtering is performed in the following way. For a particular observation position, frequency
channel, and polarization, we have time-series data which we divide into equally-sized intervals of
the shortest length possible satisfying the following conditions:

• the interval represents at least 15 seconds of continuous exposure;

• the interval contains an even number of antenna measurements;

• the interval contains at least 60 independent antenna measurements.

Denoting the jth interval yj , we determine the yj with the smallest mean and designate this as our
reference interval, which we denote by ŷ. The reference interval is accepted by default. We then
compare each yj with ŷ under the KS test when each dataset is unaltered and when each dataset
has its mean independently subtracted off. Datasets yj which are not found incompatible at the 5σ
level with ŷ under both tests are accepted, with the remaining excluded.

The requirement that the intervals represent at least 15 seconds of exposure is motivated by
choosing a duration such that our filtering procedure will never select for intervals which do not
contain flux density from an axion signal, which would lead to a spurious exclusion of a signal if it
were present. The axion signal from a given NS will have a periodicity set by the NS period, and
the time-averaged axion signal flux is expected to be constant over time intervals corresponding
to many such periods. Therefore, since NS spin periods are expected to be less than 15 seconds,
a potential signal will be present in all intervals. We additionally require at least 60 independent
antenna measurements so that there is a sufficiently large sample for the KS test to have discrimi-
nating power. Choosing the shortest interval possible satisfying these criteria then maximizes the
resolution of our filtering process. Moreover, performing the test with and without the channel
mean removed is intended to improve the discriminating power of the KS test. Requiring that each
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Figure F.3: The interval-by-interval acceptance for two adjacent frequency channels for data taken
from the GC observation by the GBT. Channels I and II are located at 1.61908569 GHz and
1.61899414 GHz, respectively. Data for each channel are shown in black and blue, respectively,
with correspondingly colored highlighted regions identifying the reference interval for each chan-
nel. The antenna response is shown in arbitrary units. Time intervals accepted in both channels are
highlighted in green, with those rejected in both channels highlighted in red. Intervals which are
accepted in only one channel are not highlighted.

interval is even-sized ensures that an equal amount of noise diode-on and noise diode-off data is
contained in each interval and therefore in the accepted ensemble.

An example of the data filtering as applied to two adjacent frequencies in ON position data
collected at the GC can be seen in Fig. F.3, where the advantage of independently filtering the data
at each channel can be seen by the nontrivial differences in the data and the acceptance results in
each channel. The polarization-averaged acceptances for the ON-position data for each observa-
tion, sorted by observing session, can be seen in Fig. F.4. For the INSs, the acceptance fraction is
quite high, while the acceptance fraction tends to be lower from lower frequency resolution sources
like M31 and the GC. This may be due to the reduction in statistical uncertainties when going to
larger bandwidths and the increased importance of systematic uncertainties.
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With a successful filtering procedure applied to the data, the calculation of the system tempera-
ture is modified so that only data which is accepted in the filtering is included in the calculation of
the system temperature, and subsequently the antenna temperature. Once we have determined an-
tenna temperatures in each polarization, we determine a single antenna temperature by averaging
over the polarizations, which typically differ at the percent level or below, as

Ta,j =
TXXa,j + T Y Ya,j

2
. (F.3)

Since the antenna temperature Ta,j is proportional to the flux density, we down-bin by averaging
in antenna temperature.

F.2.2 Calibrating to a Flux Density

We calibrate to a flux density through an observation of a flux calibrator. For Session I Observations
(M31, RX J0720.4−3125, and RX J0806.4−4123), we observed the quasar 3C48. For Session II
Observations (GC, GC Offset, M54), we observed the quasar 3C286. Several observations of each
calibrator were made so that each target observation can be calibrated to a calibration observation
with identical spectrometer configuration and frequency resolution.

Because the observations of the flux calibrators were relatively brief, the data are not amenable
to a time-series filtering, so we directly determine an antenna temperature using (F.1), (F.2). For
a particular calibrator, we have a calibrated flux density scale from [438, 439]. We then deter-
mine a frequency-dependent calibration scale for our data, cj , by comparing the observed antenna
temperature Ta,j from the calibrator to the flux density expected from the source:

cj =
ej

med(Ta,j, 31)
(F.4)

Here ej is the expected flux density at the jth frequency channel computed from [438, 439]. We
smooth the antenna temperature at the analysis frequency resolution from the calibrator by a me-
dian filter with kernel size of 31 channels, which is wider than our analysis window, in order avoid
calibrating against small-scale features that appear in the data, since the calibration data was taken
at a lower time resolution. This frequency-dependent calibration factor then allows us to calibrate
our antenna temperature measurement from our target observations.
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F.3 Effelsberg Data Processing

We note that the Effelsberg P217mm receiver provides circular polarizations with a receiver system
equivalent flux density of ∼ 17 Jy prior to averaging the two polarizations. The S110mm receiver
similarly provides circular polarizations with a receiver system equivalent flux density of ∼ 11 Jy.
Effelsberg data at L- and S-Band were calibrated to a flux density scale via observations of the
reference source NGC 7027 and using the publicly available software package PSRCHIVE2 [440].
Unfortunately, an insufficient signal-to-noise ratio for the noise diode signal, in the fine frequency
channels used in this work, resulted in strong frequency-dependent artifacts in the resulting cali-
brated spectra. Because these effects impinged on efforts to identify lines of interest, we assumed
an ideal flat frequency response for the telescope receiver (except at the band edges) and defined
calibration factors from the integrated spectrum for both ON and OFF target positions; in this case
the GC.

However, we find that the maximum flux density in our data under this calibration procedure
is in agreement with the expected flux density of the Galactic plane synchotron radiation flux
density reported in [441]. We therefore calibrate both our L-Band and S-Band data by instead the
calibration factor

cj =
ej

med(dj, 201)
, (F.5)

where ej is the expected flux density at the jth frequency channel from [441] and med(dj, 201) is
a median smoothing with kernel size 201 of the antenna data. This calibration assumes there to be
no instrumental backgrounds on the antenna, which may not be true, and it also assumes that the
expected flux density spectrum from [441], which was constructed by fitting a functional form to
data from different telescopes across a range of frequencies, may be applied to the Effelsberg angu-
lar beam size, which is also likely not completely true. A comparison of the calibrated Effelsberg
data to the calibrated GBT data for the GC is shown in Fig. F.5. The absolute magnitude of the
Effelsberg flux density is typically 20% larger in the L-Band than in the corresponding GBT data.
The discrepancy between the GBT and the Effelsberg spectra is likely due to the Effelsberg cali-
bration procedure. By comparison, in [442], a 21 cm observation of the GC using the Effelsberg
telescope determined a flux density of 450 Jy, which is more compatible with the GBT GC spectra
found in this work. Because the axion constraints scale like the square-root of the flux density,
however, these differences have only a roughly 10% effect on the constraint strength and so we do
not pursue them further. Moreover, we note that systematic errors in radio data are typically on the
order of O(10%), independent of calibration scheme.

2http://psrchive.sourceforge.net/
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Figure F.5: A comparison of the calibrated flux density for the GBT observation of the GC (blue) to
the Effelsberg observations of the GC in the L-Band and S-Band (green). Note that the Effelsberg
data is calibrated to follow the black curve, averaged over large frequency scales. The calibrated L-
band Effelsberg data is around 20% different than the calibrated GBT data, suggesting that errors
from the calibration procedure impacting sensitivity to gaγγ are only on the order of 10% and
subdominant compared to other sources of uncertainty.
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Figure F.6: (Top Left) A noise-free example flux density spectra for an axion of mass ma = 3.46π
GHz with a coupling strength of gaγγ = 10−11 GeV−1 generated for the GBT observation of the
GC at δffid = 1.831 MHz. We assume Model I for the NS population (the model with more NSs
participating in the conversion process) and take the DM to follow an NFW density profile. (Top
Right) As in the top left, but using a cored DM density profile with a core radius of 600 pc. (Bottom
Left) As in the top left, but assuming the conservative Model II for the NS population. (Bottom
Right) As in the top right, but assuming the conservative Model II for the NS population.

F.4 Axion Signal Modeling

Accurately modeling the axion signal is an important step in our limit-setting procedure. In order
to model the radio signal from axion-photon conversion from a population of NSs, we choose a
DM density profile and use the NS population models from [104] to determine the distributions
of the NS locations, magnetic fields, and spin periods. We then draw from these distributions to
construct a MC sample. NSs within the beam width will contribute to a potentially observable
signal. At each axion mass, we compute a flux density associated with conversion at each NS
within the beam that appears in the data, at a frequency corresponding to the axion mass shifted by
a randomly-drawn Doppler factor corresponding to the peculiar velocity of that NS along the line
of sight.

Examples of axion flux density spectra generated for analysis of the GBT GC observations (for
population searches) can be seen in Fig. F.6. Note that these observations are down-binned such
that the signals from all NSs appear mostly in the central bin, though there is some leakage to the

258



neighboring two frequency bins. Fig. F.6 shows the expected flux over multiple MC realizations
for an axion with mass ma = 3.46 × π GHz and gaγγ = 10−11 GeV−1. The dashed black curves
show the median expected power, while the green and yellow bands show the 68% and 95% con-
tainment regions, respectively, for the power. The red data points illustrate one representative MC
realization. Note that in Fig. F.6 we assume NFW DM or cored profile for the Milky Way, as
indicated. We also alternate between NS Model I, which has more relevant, converting NSs, and
our fiducial NS Model II, again as indicated. Note that the spread is greater for Model II since in
this case there are less NSs participating in the conversion process.

By contrast, the Effelsberg data is of sufficiently high frequency resolution to enable the search
for the brightest converting NS. Example flux density spectra are shown in Fig. F.7. The different
panels indicate which NS population model is used in the analysis along with the assumed form
of the DM density profile (NFW or cored NFW). Note that in these figures we have shifted the
MC in frequency so that the brightest converting NS always shows up at the same frequency (here
taken to be 2.5 GHz). Importantly, we see that the brightest converting NS typically makes the
central frequency bin much brighter than the neighboring frequency bins, which are shown at
the frequency resolution used in our analysis. This is especially true when simulating with NS
model II, since in this case there are less converting NSs. The difference between the central and
neighboring frequency bins also becomes more apparent with the NFW DM profile, relative to
the cored DM profile, since the NFW profile causes those NSs close to the GC to have a bright
axion-induced radio flux.

The situation is slightly more complicated in the NS Model I, cored DM profile case, since in
this case the difference between the signal flux in the central frequency bin and the neighboring
bins is not as pronounced, as seen in the MC example in top right panel of Fig. F.7. In practice
this means that using the narrow-frequency bin approach leads to some difficulty in detecting an
axion signal in the case of NS Model I and a cored DM profile with this analysis approach. For
example, we may perform multiple MC simulations of the signal only (as shown in red in the top
right panel of Fig. F.7) and then perform our analysis framework on this signal-only data. This is
an idealized analysis, since we are neglecting other sources of noise, but it allows us to quantify
the degradation to our detection capability because of signal leakage to the sidebands. We find, for
example, that in this case (for Model I and cored DM profile) that at 95% confidence the discovery
TS should be bigger than ∼30. On the other hand, for our fiducial scenario (Model II and an NFW
DM profile) at 95% confidence the TS is greater than ∼ 103, which indicates that signal leakage
into the sidebands is not a concern in this case. For NS Model I and an NFW DM profile the TS
is greater than ∼130 at 95% confidence, which is also greater than our pre-determined discovery
threshold. Thus, the only concern is that in principle an axion signal produced in the S-band for
NS Model I and a cored DM profile would not produce a discovery TS above our threshold of 100,
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Figure F.7: As in Fig. F.6 but for the Effelsberg observations of the GC in the S-band, for an axion
with ma = 2π × 2.5 GHz and gaγγ = 10−11 GeV−1. The panels indicate the assumed DM density
profile for the Milky Way (NFW or cored NFW with a core radius of 0.6 kpc) and also the NS
population model (Model I or Model II, as described in the text). Note that in this case we search
for the brightest converting NS. We have shifted each of the MC realizations around in frequency
space such that the brightest converting NS appears at f = 2.5 GHz. Note that in the scenario with
Model 1 and a cored DM profile, the brightest converting NS is not always that much brighter than
the signal flux in the sidebands, from other NSs within the Effelsberg beam, which makes it harder
to discover an axion signal in this case.

at 95% confidence. Still, we note that in the S-band there are only two frequency channels with
un-vetoed excesses with TS > 30 (one with TS = 37 and the other TS = 41), and in both of these
cases the OFF data shows spectral features in the central frequency bin as well, though not at a
significant enough level to be vetoed. Thus, we find it unlikely that these signals arise from axions.
These excesses, along with others are depicted in Fig. F.12. Note that we account for the signal
variance in the population models when setting 95% upper limits on the axion-photon coupling
from the radio data (see Sec. F.5.3).

F.5 Data Analysis

Here we describe the procedures by which we seek to discover an axion signal and by which we
impose upper limits on the axion-photon coupling gaγγ in the absence of signal detection.
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F.5.1 Profile Likelihood for Antenna Temperature Excesses

After our data processing and calibration procedure, we have obtained an antenna temperature Ta,j
and calibration factor cj over a range of frequency channels around a central frequency fj . Axion-
sourced signals are expected to appear as excesses at a narrow frequency bandwidth, so we analyze
the antenna temperature downsampled to a resolution at which most (if not all) of the axion signal
is expected to appear in a single frequency channel. In principle, we could analyze the calibrated
flux density cj × Ta,j for excesses, but we chose to not to do this so as to avoid injecting spec-
tral features from a calibration spectrum into the calibrated flux density prior to analysis, which
could result in the detection of spurious excesses. Analyzing the antenna temperature is accept-
able because our smoothed calibration scale cj should vary slowly as a function of frequency on
the scale on which the signal is expected to appear. If the calibration scale were to vary signifi-
cantly from frequency channel to frequency channel, it would indicate regions in which the data is
untrustworthy due to uncontrolled instrumental response. Indeed, this is the case for the GBT pop-
ulation analyses, which indicates that these analyses are dominated by instrumental systematics,
as discussed previously in this SM.

We search for an excess in a single channel fi using the Gaussian likelihood

Li(~Ta|A, a) =

i+j∏

k=i−j

exp
[
− (Ta,k−µ(fk|a)−Aδik)2

2σ2
k

]

2πσ2
k

, (F.6)

where A is signal parameter describing the size of the excess at the ith channel and µ is a quadratic
polynomial describing the background determined by the nuisance parameter vector a. The like-
lihood is calculated including data from the central channel where we seek to identify a putative
excess and the j sideband channels to both the left and right. In our fiducial analysis, we take
j = 10. In each analysis, we exclude the sideband channels immediately adjacent to the central
frequency channel in order to not be biased by less than 100% signal containment. The variance
of the data σ2

k is determined by σ2
k = σ2/αk where αk is the acceptance fraction of the data at the

kth frequency channel and σ2 is a fitted parameter. We fit σ2 by fitting the null model (A = 0) to
the analysis window with the central frequency channel (and hence any putative excess) masked
out. We then do not profile over the value of σ2 in the analysis. This is done to avoid biasing the
calculation of the variance, and therefore the likelihood, in the presence of a large central-channel
excess.

Equipped with our full likelihood in terms of both a signal and background model, we determine
a profile likelihood purely as a function of the central-channel excess strength A by profiling over
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the nuisance parameter vector a:

Li(~Ta|A) = max
a

[Li(~Ta|A, a)] . (F.7)

We determine the significance of the evidence for a flux density excess described by the best-fit
excess parameter Â using the test statistic (TS)

TSi = 2× [logLi(~Ta|Â)− logLi(~Ta|0)] , (F.8)

unless Â < 0, in which case TSi = 0. By Wilks’ theorem, this test statistic will be asymptotically
half-χ2 distributed [78]. In our analysis, our threshold for discovery is set at TS = 100. For details
regarding the discovery threshold and TS distribution as informed by Monte Carlo, see Sec. F.8.1.

F.5.2 Excess Vetoing Procedure

We find multiple excesses in the Antenna temperature data, such as excesses corresponding to
21 cm line emission, that may be vetoed by finding similar excesses in the OFF-position data.
We analyze the OFF-position data corresponding to each observation, i.e., the d̃ZZi,j that were used
in (F.2) to subtract off backgrounds and instrumental baselines. This is important because nar-
row spectral features present in the OFF-position data indicate locations where backgrounds or
antenna responses are systematically mismodeled and narrow spectral features in the calibrated
spectrum do not require an axion interpretation. Note that by mismodeled we do not mean that
a real astrophysical line is not necessarily present (such as the 21 cm line), but we mean that our
simple quadratic background model is not sufficient to describe all of the astrophysical emission
or instrumental backgrounds.

We analyze the OFF dataset ~̃d, which is constructed from the polarization-summed OFF data
that has been accepted by our time-series filtering. We analyze this data with a modified version
of the likelihood in (F.6), now allowing a signal to appear as a flat excess across across one, three,
or five frequency channels centered on the central frequency channel. This allows us to identify
spurious features slightly wider than the signal we search for in the antenna temperature data that
would nonetheless indicate locations of uncontrolled backgrounds and instrumental response. The
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likelihood is given by

Li(~d|A, a, w) =
i−w−1∏

k=i−j

exp
[
− (d̃k−µ(fk|a))2

2σ2
k

]

2πσ2
k

i+j∏

k=i+w+1

exp
[
− (d̃k−µ(fk|a))2

2σ2
k

]

2πσ2
k

×
exp

[
− (
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k=i−w d̃k−µ(fk|a)−A)2

2
∑i+w
k=i−w σ

2
k

]

2π
∑i+w

k=i−w σ
2
k

.

(F.9)

This likelihood is at full spectral resolution in the sidebands (the top line in Fig. (F.9) accounts for
the left and right sidebands) but at downbinned resolution corresponding to the window width in
the signal region (the bottom line in Fig. (F.9)). Note that we consider three values for w in (F.9):
w = 0, 1, 2, corresponding to signal-region widths of 1, 3, and 5 bins. Our variance parameter σ2

k

is treated analogously to before, and the TS is taken to be

T̃Si(w) = 2× [maxA,aLi(~Ta|A, a, w)−maxaLi(~Ta|0, a, w)]. (F.10)

Note that we calculate the TS for each choice of w. Here we do not zero out TSs associated
with negative best-fit signal parameters, as our interest is only in identifying locations of spurious
features of any sign. We also do not mask out the frequency channels adjacent to the signal region
in this analysis as we are not seeking to identify an axion signal in this data. Large TSs in the
antenna temperature data are then vetoed if they are at identical or directly adjacent frequency
channels to a channel in the OFF-position data with a TS above the 97.5th percentile value of the
OFF-position TS ensemble. We perform this test for each of the three choices for w. In practice,
we find that vetoing on the five-channel wide analysis has negligible effect. An example of vetoed
excesses can be see in Fig. F.8.

F.5.3 Axion Constraints

Setting constraints on the axion-photon coupling gaγγ requires a more involved data analysis pro-
cedure than our discovery search. This is because variance in the expected axion signal due to
scatter in the NS population prevents a direct conversion of a flux density limit, obtained through
Wilks’ theorem using our profile likelihood, to a constraint on gaγγ .

Instead, we take a profile-likelihood MC approach that allows us to place limits that account for
signal variance. To do this, we analyze the real data under the likelihood of (F.6) to determine the
best-fit signal strength parameter Â and the best-fit null-model background specified by the best-fit
model parameters â and σ2. We generate 200 MC realizations of the data under the best-fit null
model. For each null model spectra, we construct a unique realization of an axion signal generated
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Figure F.8: (Above) The ON-position antenna temperature and raw antenna data for ON- and OFF-
position measurements for the M31 observation. A narrow feature appears at the indicated central
frequency channel in each of the datasets, although with larger relative magnitude in the antenna
temperature. The fact that the feature appears in all datasets suggests it is not an axion signal.
(Below) The test statistics for the central channel excess as a function of the central channel for
the analysis of the ON-position antenna temperature and the raw antenna data for ON- and OFF-
position measurements for the M31 observation. At the location of the narrow feature, the test
statistic is quite large for all analyzed datasets, and the excess in the antenna temperature is vetoed
as the test statistic in the OFF-position data exceeds the veto threshold.
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under the assumed NS population and DM density profile. The axion signal is injected in the null
model spectra with varying strength corresponding to adjusting the value of gaγγ . We analyze each
MC data realization in order to determine the fraction which result in a best-fit signal strength
parameter ÂMC that is less than the best-fit signal strength parameter Â in the real data. We can
then obtain a frequentist 95% upper limit on the gaγγ by determining the value of gaγγ at which only
5% of the ÂMC are less than Â. The advantage of this procedure is a safe accounting for variance
in the signal strength and Doppler shifting that lead to less than perfect signal containment in the
central frequency channel.

F.6 Signal Injection Tests

To demonstrate that our framework is capable of setting appropriate upper limits and discovering
an axion were such a signal present in the data, we perform signal injection tests where we inject
synthetic axion signals into the actual data. Here we demonstrate these tests for signal flux density
spectra injected at several frequencies in Effelsberg S-Band data. We inject the signal flux density
spectra with varying amplitudes corresponding to varying the strength of gaγγ . The results of the
signal injection tests can be seen in Fig. F.9. In the left panel we show the 95% one-sided upper
limits g95%

aγγ as a function of the injected signal strength ginj
aγγ for three different and randomly chosen

axion masses. Importantly, we never exclude the injected signal strength, which is indicated by
the dashed black line. In the right panel we show the discovery TS in favor of the axion model
as a function of the injected signal strength, with our TS = 100 discovery threshold indicated in
horizontal dashed black. As expected, the TS increases for increasing signal strengths.

F.7 Maser Line Detection Test

The observation of known spectral line sources enables additional opportunities to test our anal-
ysis pipeline. During the March 10th observing session, 10 minutes of observing time was used
to collect data in the L-Band at the compact HII region W3OH. Data was collected at 92 kHz
frequency resolution for five minutes in the ON position, followed by five minutes of data collec-
tion at identical frequency resolution in the OFF position. Data was collected over the frequency
range 1.15-1.73 GHz with a notch filter applied in the 1.2 to 1.34 GHz region as in all other GBT
observations. Narrow maser emission at rest frequencies approximately 1.612 GHz, 1.665 GHz,
1.667 GHz, and 1.72 GHz associated with transitions in hydroxyl molecules have been observed
in W3OH [443, 444], enabling a direct test of the ability of our analysis pipeline to identify bright
spectral lines of a similar character to those that might appear due to axion-to-photon conversion
in NS magnetospheres.

265



10−12 10−11

ginjaγγ [GeV−1]

10−12

10−11

g
95

%
a
γ
γ

[G
eV
−

1
]

ma =15.2 GHz

ma =15.6 GHz

ma =16.0 GHz

ma =16.4 GHz

ma =16.8 GHz

Injected Value

10−12 10−11

ginjaγγ [GeV−1]

10−1

100

101

102

103

T
es

t
S

ta
ti

st
ic

ma =15.2 GHz

ma =15.6 GHz

ma =16.0 GHz

ma =16.4 GHz

ma =16.8 GHz

Detection Threshold

Figure F.9: (Left) The one-sided 95% upper limit on the axion-photon coupling as a function of the
injected signal strength. The limit lies above the injected signal strength, indicating that we are not
excluding an axion signal when present. (Right) The test statistic (TS) for discovery as a function
of the injected signal strength. For sufficiently large signal strengths the TS exceeds our TS = 100
threshold for an axion signal to be discovered.

We analyze the collected data over the full frequency range at the original 92 kHz frequency
resolution with the procedure described in Sec. F.5 in order to search for any spectral lines which
may appear. All OH maser lines are detected at their expected frequency locations consistent with
the measured Doppler shifting and line-widths of 1665-MHz OH emission within our observing
beam [445]. Moreover, none of the detected OH maser lines are vetoed by a coincident excess
in the OFF data, validating our exclusion criteria. Results are shown in Fig. F.10. Additional
high significance excesses TS ≥ 100 are observed at the frequencies 1.35065308, 1.374823, and
1.64664307 GHz. The excess at 1.64664307 GHz is coincident with an excess observed in the
L-Band during GBT RFI scans,3 while the origins and appropriate interpretations of the other two
excesses are less certain. Despite the presence of two unidentified lines, these tests effectively
demonstrate the ability of our framework to recover spectral lines present in the data. Analogous
data were collected for 1665-MHz OH maser 351.7754−0.536 [446] during the March 29th ob-
serving session, with similar results regarding maser line detection.

F.8 Extended Results

Here we provide extended results for the analyses presented in the main Letter and for the addi-
tional GBT observations described at the beginning of this appendix.

3RFI Scan data available from the NRAO website
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Figure F.10: Maser lines as detected in the GBT data. For each maser line, we show the antenna
temperature (black) and the raw OFF data (blue), with each independently rescaled so as to fit
within the same figure. The expected frequency location and width of the maser line, which is set
by the line-of-sight velocity of W3OH, is indicated by the light red band. The width of the central
frequency channel in which the maser line is detected is indicated by the light blue band. We addi-
tionally provide the TS associated with the maser line detection in the antenna temperature and the
maximum percentile of the variable-width OFF position TS for each line. None of the detections
are vetoed as none the maximum OFF position TS percentiles exceed the 97.5th percentile value
that triggers vetoing.
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F.8.1 Survival Functions and Excess Candidates

For each observation, we compute the survival function associated with the observed TS distri-
bution. In all observations, no significant TSs exceeding our discovery threshold are observed,
and the survival functions appear to match the expectation under the null hypothesis, as shown in
Fig. F.11. Note that the survival function figure shows the faction of TSs at or above the indicated
TS on the x-axis.

From Wilks’ theorem we would expect the distribution of TSs to be asymptotically χ2-
distributed under the null hypothesis. This asymptotic expectation is indicated in Fig. F.11. How-
ever, our expected distribution of TSs does not follow this asymptotic expectation, even under the
null hypothesis, because our analysis window contains only a finite number of frequency bins in
the sidebands. When we perform MC simulations under the null hypothesis (first, we fit the null
model to the data to determine the model parameters, and then we simulate data from those best-fit
parameters and re-analyze the simulated data) we find that passing that simulated data through our
analysis pipeline results in a survival function, under the null hypothesis, that is not χ2-distributed.
In Fig. F.11 we show the simulated survival function under the null hypothesis (“MC Expected”),
which is constructed by averaging the simulated survival functions across all observations (though
we find that all observations produce consistent expectations for the survival function). We note
that if we modify our analysis framework to include more frequency channels in the sidebands, the
survival function better approaches the χ2 distribution. On the other hand, the fact that under the
null hypothesis our survival function is not precisely χ2-distributed does not mean that our analysis
framework is in any way not valid. It simply means that when assigning TS values significances
(e.g., p-values), we should use the simulated survival function and not the asymptotic expectation
from Wilks’ theorem. For example, TS = 100 corresponds to 10σ significance under Wilks’ theo-
rem. On the other hand, using the simulated TS distribution under the null hypothesis we find that
in fact for our analysis framework TS = 100 corresponds to approximately 5σ (local) significance
(p-value of approximately 6× 10−7).

In the left panel of Fig. F.11 we have already applied the vetoes from analyses of the OFF data.
That is, frequencies that are vetoed from the OFF data analyses are not shown in Fig. F.11. In
this case, the observed TS distributions are found to closely match the MC expecations under the
null hypothesis. In the right panel of Fig. F.11 we show what would happen if we did not apply
the OFF data vetoes. In this case, there are many significant detections. Some of these detections
correspond to real astrophysical lines, such as the 21 cm line, that also appear in the OFF data,
while other lines may be due to RFI or instrumental backgrounds.

Note that we veto excesses at 27 of 56362 analyzed channels in the RX J0720.4−3125 data, 37
of 56362 analyzed channels in the RX J0806.4−4123 data, 24 of 26214 analyzed channels in the
Effelsberg S-Band data, and 22 of 24576 analyzed channels in the Effelsberg L-Band data.
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Figure F.11: (Left) The discovery TS survival function for all of the observations considered in this
Letter. Note that the survival function is defined as the fraction of TSs observed at or above the in-
dicated value. This figure excludes frequencies that are vetoed from the OFF position observation
analyses. The “MC Expected” curve shows the expectation under the null hypothesis, as deter-
mined by MC simulations. We note that all observations are from GBT except those labeled “Eff”,
which are from the Effelsberg telescope. (Right) As in the left panel, but including frequencies that
would be vetoed by the OFF data. Without the OFF vetoes there would be a significant number of
frequencies with TSs exceeding the TS detection threshold, which emphasizes the importance of
the OFF position vetoing procedure.
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We do observe some moderate to high significance excess in our data in various observations
which are depicted in F.12 with corresponding TS values and frequency locations. In the Effels-
berg observation of the GC in the S-Band we observe two unvetoed excesses, both with TS ≈ 40.
While these are not exceptionally large TS values, as studied in our MC signal construction, even
strong axion conversion signals can result in TSs as small as 30 in the scenario with a cored DM
density profile assuming the NS population is described by Model I. Similarly, we have a moderate
significance excess (TS ≈ 52) in Effelsberg observation of the GC in the L-Band. A relatively
higher significance excess (TS ≈ 90) is observed in the GBT observation of RX J0720.4−3125.
We show the data corresponding to the excesses in Fig. F.12. We remain skeptical that these ex-
cesses requires an axion interpretation, as similar or unusual features appear in the OFF-data but at
lower significances (below our veto threshold). Additionally, the location of the RX J0720.4−3125
excess at approximately 1.59 GHz is known to be subject to strong RFI. Follow-up observations
with longer exposures and at complementary positions on the sky would be necessary to confirm
or exclude the persistence of such excesses.

Note that we also do not see any significant excesses (TS > 100) when shifting the frequency
bins by half a bin size. As described in the main Letter, we analyze the data shifted by half a
frequency bin to account for the possibility that the axion mass falls between our frequency bins
and the flux is thus split between neighboring bins. In the Supplementary Data [303] we present the
flux and gaγγ limits at each frequency point, shifted and unshifted, along with the corresponding
TSs.

Additionally, our choice of a quadratic background model is somewhat arbitrary, but has limited
impact on our results. What is important is to have a background model with enough parameter
freedom to describe the data under the null hypothesis but not so much freedom that the back-
ground model can be degenerate with the signal model. The strength of axion limits set under our
likelihood procedure is not appreciably affected by the background model, for small variations to
the model. In Fig. F.13, we show that in the Effelsberg S-Band data, the detection significances are
not appreciably different across flat, linear, and quadratic background models. The flat background
model appears to be too simplistic to accurately model the form of the data, but the quadratic and
linear background models give quantitatively similar results.

In Fig. F.14, we show that in the INS GBT data the large scale features of the survival func-
tion are not appreciably changed by the application of our time-series data filtering procedure.
However, the number of moderate-to-high significance excesses in RX J0720.4−3125 and RX
J0806.4−4123 observations does decrease without the application of data filtering, which is con-
sistent with the expectation that the excesses are largely sourced by transient RFI.
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Figure F.12: (Top Left) The Effelsberg data shown in the analysis window around the excess candi-
date located at a central frequency of approximately 2.51 GHz in the S-band observation of the GC.
Frequencies are plotted relative to the frequency corresponding to the excess channel frequency.
This excess has TS ≈ 41. While this excess is not vetoed by the OFF data analysis, the OFF data
does should a feature at the central frequency. (Top Right) Similarly, the Effelsberg data shown in
the analysis window around the excess candidate located at a central frequency of approximately
2.69 GHz in the S-band observation of the GC. This excess is also not vetoed, but like the previous
excess there does appear to be a corresponding feature in the OFF data. (Bottom Left) The Effels-
berg data shown in the analysis window around the excess candidate located at a central frequency
of approximately 1.34 GHz in the L-band observation of the GC. It also appears that there is a
similar, though not so significant, feature in the OFF data. (Bottom Right) The GBT data shown in
the analysis window around the excess candidate located at a central frequency of approximately
1.59 GHz in the observation of RX J0720.4−3125. As before, frequencies are plotted relative to
the frequency corresponding to the excess channel frequency. The excess only appears at high
significance in the antenna temperature; similar coincident features are observed in both ON and
OFF data, coincident features appear in the raw ON and OFF data, although not at high enough
significance in the OFF data to result in a veto of the excess. As before, this excess does not exceed
our detection threshold, although it does come closer, with TS ≈ 90.
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Figure F.13: A comparison of survival functions for various polynomial background models for
the analysis of Effelsberg S-Band data. The flat background model is unable to accurately model
the null hypothesis and a significant improvement in the quality of the fits is seen by going to the
linear background model. On the other hand, there is little improvement to the quality of the fits
when going from the linear to quadratic background models, except at very high TS values. Note
that we use the quadratic background model in our fiducial analyses. Cubic background models
produce similar results but are most computationally intensive to implement.
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Figure F.14: The discovery TS survival function for the INSs analyzed with and without time-series
data filtering applied. Applying the time-series filtering eliminates a number of high significance
excesses that appear due to transient noise that appears in the data.

F.8.2 Variations to the NS and DM Density Modeling

In this section, we show how variations to the NS population models and assumed DM density
profiles affect the strength of the limits we are able to set. Under NS population Model I from [104],
and assuming all DM density profiles are perfectly NFW, we obtain our strongest limits, as shown
in the top left panel of Fig. F.15. Note that for M54 the NFW profile is for the host Sagittarius
Dwarf Spheroidal Galaxy (see [104] for details). Limits are made successively weaker by the
assumption of our fiducial NS population model (Model II from [104]), as shown in Fig. F.15. See
that figure for all four combinations of NS models and DM density profile choices. Note that the
Milky Way and M31 cores are taken to be 0.6 kpc, with the DM density profile following an NFW
profile outside of this radius and flat within the core radius. For Sagittarius, relevant for M54,
under the cored DM scenario we model the DM density distribution as an isothermal sphere with
scale radius of 0.2 kpc (see [104]).
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Figure F.15: Limits on the axion-photon coupling for different combinations of assumptions about
the DM density profiles in the observed galaxies and the properties of the NSs within those galaxies
(see [104] and text for details).
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F.9 Alternative Flux Density Limits

As a further test of the validity of our flux density limits, we recompute them using an alternative
approach. The alternative 95% C.L. flux density upper limits (“percentile limits method”) are
constructed as follows. First, we smooth the calibrated spectrum with a median filter in order to
remove any low-significance noise and to emphasize any potential spectral lines present in the
data. The median filter assumes frequency windows containing 20 channels (for simplicity we
used the same number of channels for both GBT and Effelsberg data). The outcome of this step
is a data-driven estimate of the background in each respective window. Second, we single out
spectral line signals T (fj) by subtracting the smoothed background from the raw data. Third,
we sort the T (fj) lines in ascending order using an “order filter.” Fourth, we compute the 68th

percentile band (1σ error) at each frequency window. Finally, we obtain approximate 95% C.L.
flux density upper limits by calculating the quantity (T (fj) + 2σ). Note that this method assumes
that the uncertainties are well-behaved, i.e., going from 1σ (68% C.L. ) to 2σ (95% C.L.) is fairly
linear. Furthermore, in order to avoid excessively strong constraints, we floor any signals that were
smaller than the negative 68th percentile error band (“power limited constraints” [172]), just as we
do for our profile-likelihood limit setting procedure.

The results of our comparison for GBT observations of M54 is shown in Fig. F.16 and for
Effelsberg GC observations in Fig. F.17. As can be seen, the two different methods display very
good agreement. This illustrates that the profile likelihood and the percentile upper limits methods
are essentially equivalent and that the upper limits obtained in this work do not depend sensitively
on the limit-setting procedure. We note that the advantage of the percentile method is its efficiency:
it avoids computationally expensive log-likelihood maximization computations.

F.10 Bandwidth estimate from refraction in moving medium

In Ref. [287] it was pointed out that the reflected photons may acquire Doppler boosts for a rotating
and misaligned magnetosphere. In effect, one may think of the conversion surface as a mirror that
reflects the incoming axions into outgoing photons. In order for the mirror to transfer momentum
to the photons, the mirror must have a component of its velocity in the normal direction. For an
aligned rotator, where the magnetic axis is aligned with the axis of rotation, the velocity vector
at any point on the conversion surface is orthogonal to the normal vector from the surface and
thus there is no induced Doppler broadening from reflection. However, as pointed out in [287],
for misaligned rotators the conversion surface locally has a velocity that has a component in the
direction of the normal vector, thus inducing a frequency shift.

Here, we consider a similar frequency shift induced by refraction for axions that are converted
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Figure F.16: Comparison between the profile likelihood and percentile upper limits methods for
M54 observations with GBT. The black line (green area) shows the 95% C.L upper limits (1σ con-
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Figure F.17: Same as Fig. F.16, for Effelsberg GC observations.
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Figure F.18: An illustration of how outgoing electromagnetic waves are refracted towards the
normal vector to the conversion surface, labeled here by ẑ.

to photons in the outgoing direction. A key point to note is that the plasma frequency profile of
the magnetosphere may be interpreted as a spatially-dependent index of refraction. For example,
for the polarization component parallel to the magnetic field direction we may write the index of
refraction as

n ≈

√√√√ 1−
(
rc
r

)3

1−
(
rc
r

)3
cos2 θ̃

, (F.11)

for r > rc, where rc is the conversion radius, r is the radial direction, and θ̃ is the angle between
the magnetic field and the propagation direction. The index of refraction is anisotropic, with a
dependence on θ̃, because the plasma is strongly magnetized. Note that the group velocity is
always smaller than the speed of light, consistent with special relativity.

Locally around the conversion surface, we are interested in describing the scenario illustrated in
Fig. F.18. We choose coordinates such that the tangent plane to the conversion surface is spanned
by the unit vectors x̂ and ŷ, with the normal given by ẑ, with ŷ chosen such that the magnetic
field lies in the ŷ-ẑ plane. In the large-field limit the two linearly independent polarization states
do not mix, so to locally describe the trajectory of outgoing electromagnetic waves, we only need
to consider the waves propagating in the x̂-ẑ plane. Without loss of generality, we imagine that
the local conversion surface is traveling at a speed vcs in the x̂-ẑ plane at an angle β from the
conversion surface, as indicated in Fig. F.18. We will work to leading order in the speed vcs, in
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natural units. We are interested in two properties of the outgoing wave: (i) the outgoing angle with
respect to the normal ẑ, given an initial angle αi near the conversion surface, and (ii) the frequency
shift ∆ω ≡ ω(r = ∞) − ω(r = rc) between the wave asymptotically far from the conversion
surface and the wave at the conversion surface.

The outgoing wave quickly turns towards the ẑ direction, as illustrated in Fig. F.18, because
radiation refracts towards the direction of increasing index of refraction and n increases with the
distance from the conversion surface. More concretely, by considering a differential form of Snell’s
law one may show that (assuming θ̃ = π/2 for simplicity and since having non-trivial θ̃ does not
qualitatively change these results)

dz

dy
=

√
1− z−3

1− z−3
i

1

sin(αi)2
− 1 , (F.12)

where z(y) is the trajectory of the wave that starts a distance zi from the conversion surface at
an initial angle αi. In the limit zi → 0, all trajectories asymptotically approach the ẑ direction,
regardless of αi. In fact, zi ∼ rcv

2 [103], where v ∼ 0.1 is the axion velocity at the conversion
surface in the frame of the NS, which is close enough to zero in practice that the asymptotics
hold. This is also true regardless of the magnetic field direction; the full differential equation
for the trajectory is a complicated nonlinear equation because θ̃ depends on the trajectory, but
such dependence is washed out because of the sharp change of index of refraction very near the
conversion surface. This itself is interesting because it says that while the initial αi are isotropically
distributed, since the DM phase space is isotropic, the outgoing radiation is collimated in the
direction normal to the local conversion surface.

Next, we consider the frequency shift ∆ω induced by the finite velocity vcs of the medium, to
lowest order in vcs. Roughly speaking, such a frequency shift results from the electromagnetic
wave being created in an index of refraction which is already moving, and being measured in a
stationary frame at infinity where the index of refraction is unity. To derive a differential equation
for the evolution of the frequency it is useful to consider a differential step as shown in Fig. F.18
whereby we transition from a layer at distance z to one at distance z + δz, with initial angle α and
refracted angle α+ δα. We perform the following set of steps. Let the frequency of the initial state
be ω(z). First, we perform a Galilean boost by vcs sin β in the ẑ direction so that the conversion
surface is stationary in that direction. Under this boost the material becomes birefringent, with
an angle-dependent index of refraction [447]. To leading order in vcs the index of refraction that
the incoming wave sees in the boosted frame is ñ(z) = n(z) + (n2(z)− 1)vcs cosα(z) sin β. The
frequency in the boosted frame (to this order in vcs) is ω̃(z) = ω(1 − n(z)vcs cosα(z) sin β). We
may then use Snell’s law to refract the wave over the interface, where the material has index of
refraction n(z + δz). This changes the angle α but does not change the frequency. Then, we
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boost again by vcs sin β but now in the negative ẑ direction. Taking the limit δz → 0 we find the
differential equation:

d logω(z)

dz
= vcs sin β [n′(z) cosα(z)− n(z)α′(z) sinα(z)] . (F.13)

In practice, since α(z) quickly approaches 0 (see Fig. F.18) the second term tends to be subdomi-
nant to the first, which remains non-zero in the limit α → 0. In this approximation, taking α = 0,
the right-hand side of (F.13) is a total derivative, and thus ω(z) only depends on the difference
in index of refraction between the conversion surface (approximately zero) and infinity (approx-
imately unity): δω/ω = vcs sin β, to leading order in vcs. Again, in the limit zi → 0 this result
is independent of the initial angle αi and independent of the anisotropy of the index of refraction
from the magnetic field direction.

There are few interesting implications of this result. First, when averaging the axion signal
over the phase of the NS rotation there will be a frequency broadening induced by the spread in
vcs sin β across the conversion surface, appropriately averaged. For the INSs considered in the
main Letter and assuming misalignment angles ∼ 45◦, we find that the frequency broadening is
less than δf/f ∼ 5 × 10−6 at 68% containment for both NSs (not much larger than the intrinsic
bandwidth δf/f ∼ v2

0 ∼ 10−6), justifying the bandwidths used in our fiducal analyses. Second,
this result reasserts the possibility of strong time dependence of the signal over the NS period, since
the outgoing radiation is beamed normal to the conversion surface by refraction. While Ref. [288]
claimed that the outgoing signal would not be strongly time-dependent because of the fact that
the DM velocity distribution is isotropic, we have shown here that this result is modified due to
the refraction of the outgoing photons. Moreover, since the frequency shift appears to leading
order to be independent of the initial angle relative to the conversion surface normal vector, it is
possible that when phase-resolved, the radio signal again becomes order v2

0 wide in terms of δω/ω,
with a central frequency that shifts by an amount δω/ω ∼ vcs over the period. We leave both the
theoretical analysis and an investigation of this effect in the data to future work.
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APPENDIX G

X-Ray Searches for Axions from Super Star Clusters

G.1 Methods: Data Reduction, Analysis, Simulations, and Cal-
culations

In this section we first provide additional details needed to reproduce our NuSTAR data reduction,
before giving extended discussions of our MESA simulations, axion luminosity calculations, and
conversion probability calculations.

G.1.1 Data Reduction and analysis

To perform the NuSTAR data reduction, we use the NuSTARDAS software included with HEASoft
6.24 [358]. We first reprocess the data with the NuSTARDAS task nupipeline, which outputs
calibrated and screened events files. We use the strict filtering for the South Atlantic Anomaly.
We then create counts maps for both focal plane modules (FPMs) of the full NuSTAR FOV with
nuproducts in energy bins of width 5 keV from 5−80 keV.1 We additionally generate the ancil-
lary response files (ARFs) and the redistribution matrix files (RMFs) for each FPM. We generate
the corresponding exposure maps with nuexpomap, which produces exposure maps with units
[s]. To obtain maps in exposure units [cm2 s keV] that we can use to convert from counts to flux,
we multiply in the mean effective areas in each bin with no PSF or vignetting correction.

Once the data is reduced, we apply the analysis procedure described in the main text to measure
the spectrum associated with the signal template in each energy bin. However, to compare the
signal-template spectrum to the axion model prediction, we need to know how to forward-model
the predicted axion-induced flux, which is described in more detail later in the SM, through the

1We use 5 keV-wide energy bins as a compromise between having narrow energy bins that allow us to resolve the
spectral features in our putative signal (see Fig. 8.2) and having wide-enough bins that allow to accurately determine
the background template normalizations in our profile likelihood analysis procedure. However, small-to-moderate
changes to the bins sizes (e.g., increasing them by a factor of 2) lead to virtually identical results.
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instrument response. In particular, we pass the signal flux prediction through the detector response
to obtain the expected signal counts that we can compare to the data:

µeS,i(θS) = te
∫
dE ′RMFei (E

′)ARFe(E ′)S(E ′|θS) . (G.1)

Here, te is the exposure time corresponding to the exposure e in [s], while the signal is the expected
intensity spectrum in [erg/cm2/s/keV]. We have now obtained the expected signal counts µeS,i(θS)

that may be integrated into the likelihood given in (8.1).

G.1.2 MESA Simulations

MESA is a one-dimensional stellar evolution code which solves the equations of stellar structure
to simulate the stellar interior at any point in the evolution. In our fiducial analysis, we construct
models at a metallicity Z = 0.035, initial stellar masses from 15 to 200 M�, and initial surface
rotations from 0 km/s to 500 km/s as indicated in the main text. We use the default inlist for high-
mass stars provided with MESA. This inlist sets a number of parameters required for high-mass
evolution, namely the use of Type 2 opacities. We additionally use the Dutch wind scheme [448]
as in the high rotation module.

On this grid, we simulate each star from the pre-MS phase until the onset of neon burning
around 1.2 × 109 K. At that point, the star only has a few years before undergoing supernova.
Given that no supernova has been observed in the SSCs since the observations in 2012-2015, this
end-point represents the most evolved possible state of stars in the SSCs at time of observation.
The output is a set of radial profiles at many time steps along the stellar evolution. The profiles
describe, for example, the temperature, density, and composition of the star. These profiles allow
us to compute the axion spectrum at each time step by integrating the axion volume emissivity over
the interior.

Here we show detailed results for a representative star of mass 85 M� with initial surface ro-
tation of 300 km/s. This star is a template star for the WC phase (and other WR phases) in the
Quintuplet Cluster, which dominates the Quintuplet axion spectrum in the energies of interest. In
the left panel of Fig. G.1, we show the Hertzsprung–Russell (HR) diagram for our template star.
The star’s life begins on the MS, where it initiates core hydrogen burning. Eventually, the core runs
out of hydrogen fuel and is forced to ignite helium to prevent core collapse (see Fig. G.2 left). Be-
cause helium burns at higher temperatures, the star contracts the core to obtain the thermal energy
required to ignite helium (see Fig. G.3). At the same time, the radiation pressure in stellar winds
cause heavy mass loss in the outer layers, which peels off the hydrogen envelope (see Fig. G.4).
When the surface is 40% hydrogen, the star enters the WNh phase; when it is 5% hydrogen, the
star enters the WN phase. Further mass loss begins to peel off even the helium layers, and the star
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Figure G.1: (Left) The HR diagram for the Quintuplet template star of mass 85 M� and initial
surface rotation of 300 km/s. The coloring indicates the year before the run was stopped, approx-
imately a few years from supernova. We mark with black squares, in order of occurrence, when
the star enters the WNh phase, when it is 3 Myr old, when its core undergoes helium ignition,
when it enters the WN, WC, and WO phases, and finally when the run ends at 3.85 Myr. (Right)
A logT-log ρ diagram for the template star with the same points of interest marked. We also show
the relevant degeneracy zones, showing that the star is entirely in the nonrelativistic nondegenerate
regime.

enters the WC and WO phases when its surface is 2% carbon and oxygen by abundance [335],
respectively (see Fig. G.2 right).

G.1.3 Axion Production in SSCs

In this section we overview how we use the output of the MESA simulations to compute axion
luminosities and spectra.

G.1.3.1 The Axion Energy Spectrum

Here we focus on the calculation of the axion energy spectrum [erg/cm2/s/keV]. The axion pro-
duction rate is [367]

Γp(E) =
g2
aγγTκ

2

32π

[(
1 +

κ2

4E2

)
ln

(
1 +

4E2

κ2

)
− 1

]
, (G.2)

where κ2 = 4πα
T

∑
i Z

2
i ni gives the Debye screening scale, which is the finite reach of the Coulomb

field in a plasma and cuts off the amplitude. To obtain the axion energy spectrum, this is to be
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Figure G.2: (Left) The abundances of hydrogen (black), helium (red), carbon (yellow), and oxygen
(green) in the center of the star as a function of time, for the simulation described in Fig. G.1. With
dashed-black vertical lines, we mark several points of interest: “WNh” indicates the time the star
enters the WNh phase, “He ignition” when its core undergoes helium ignition, and “WN”,“WC”,
and “WO” indicate the beginning of the WN, WC, and WO phases, respectively. (Right) The same
as in the left panel, but for surface abundances.

convolved with the photon density, such that

dLp
dE

(E) =
1

π2

E3

eE/T − 1
Γp(E)

=
g2
aγγ

8π3

ξ2T 3E

eE/T − 1

[(
E2 + ξ2T 2

)
ln

(
1 +

E2

ξ2T 2

)
− E2

]
,

(G.3)

where we have defined the dimensionless parameter ξ2 =
κ2

4T 2
. To obtain the axion emissivity

for a whole star, we integrate over the profiles produced with MESA, and we show results for this
calculation in the next section. Finally, the axion-induced photon spectrum at Earth is given by

dF

dE
(E) = Pa→γ(E)

1

4πd2

dLa
dE

(E) , (G.4)

with the conversion probability Pa→γ computed later.

G.1.3.2 Results for Template Star

In this section, we show our expectation for the axion luminosity from our template star.
In the left panel of Fig. G.5, we show the axion emissivity from the radial slices of the MESA

profile, using the model at the start of the WC evolutionary stage. As expected, the stellar core is
by far the most emissive due to its high temperature and density. We also show the temperature
profile in the star. Note that the axion volume emissivity does not have the same profile shape
as the temperature because the emissivity also depends on the density and composition which are
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Figure G.3: (Left) The stellar core temperature as a function of time for the simulation described
in Fig. G.1. (Right) The hydrogen and helium luminosities in the core through the CNO cycle and
the triple-alpha process, respectively. The dashed-black vertical lines retain their meanings from
Fig. G.2.
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Figure G.4: The stellar mass (black) and radius (red) as a function of time from the simulation
described in Fig. G.1. The dashed-black vertical lines retain their meanings from Fig. G.2.

highly nonuniform over the interior.
In the right panel of Fig. G.5, we show how the axion luminosity changes over the stellar

lifetime. We see that before helium ignition, the axion luminosity is rather low, and the axion
spectrum reaches its maximum around 10 keV, owing to the low core temperature—the star is still
hydrogen burning at core temperatures well below 10 keV. During helium ignition, the luminosity
increases quickly due to the sudden increase in temperature. During helium burning, the core
temperature continues to increase; for this reason, more evolved stars will be more luminous in
axions.
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Figure G.5: (Left) Axion volume emissivity over the interior of the star. In this figure we have taken
the stellar model to be the one at the start of the WC stage and fixed gaγγ = 10−12 GeV−1. For
comparison purposes, we also show the temperature profile. (Right) Axion luminosity spectrum
for those same stages marked in Fig. G.2.

G.1.4 Magnetic field model and conversion probability

When the axion-to-photon conversion probability pa→γ is sufficiently less than unity, it may be
approximated by [341]:

pa→γ =
g2
aγγ

4

∑

i=1,2

∣∣∣∣
∫ d

0

dr′Bi(r
′)ei∆ar′−i

∫ r′
0 dr′′∆||(r

′′)

∣∣∣∣
2

, (G.5)

where Bi, for i = 1, 2, denote the two orthogonal projections of the magnetic field onto axes
perpendicular to the direction of propagation. The integrals are over the line of sight, with the
source located a distance d from Earth, and r = 0 denoting the location of the source. We have
also defined ∆a ≡ −m2

a/(2E) and ∆||(r) ≡ −ωpl(r)
2/(2E), with E the axion energy and ωpl(r)

the location-dependent plasma mass. The plasma mass may be related to the number density of
free electrons ne by ωpl ≈ 3.7 × 10−12(ne/10−2 cm−3)−1/2 eV. To perform the integral we need
to know (i) the free electron density along the line of sight to the target, and (ii) the orthogonal
projections of the magnetic field along the line-of-sight. In this section we give further details
behind the electron-density and magnetic-field profiles used in this Letter.

The Quintuplet and Arches SSCs are both ∼30 pc away from the GC and thus are expected
to have approximately the same conversion probabilities for conversion on the ambient Galactic
magnetic fields. It is possible, however, that local field configurations near the GC could enhanced
the conversion probabilities for one or both of these sources. For example, the axions are expected
to travel through or close to the GC radio arc, which has a strong magnetic field∼mG over a cross-
section ∼(10 pc)2 [355]. Magnetic fields within the clusters themselves may also be important.

Our fiducial magnetic field model for Quintuplet and Arches is illustrated in the left panel of
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Fig. G.6. In the right panel we show the magnetic field profiles relevant for the Wd1 observations.
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Figure G.6: We denote the projections of the Galactic magnetic field onto the plane normal to the
propagation direction by B1, B2. (Left) The transverse magnetic field components in our fiducial
model (the JF12 model, black) and alternate model (PTKN11, orange) towards the Quintuplet and
Arches clusters. Note that in our fiducial B-field model we extend the JF12 model to distances
less than 1 kpc from the GC using the field values at 1 kpc. The true magnetic field values in the
inner kpc almost certainly surpass those from this conservative model (see text for details). (Right)
The two field components towards the Wd1 cluster, which is taken to be at a distance of 2.6 kpc
from the Sun. The conversion probabilities towards Wd1 are much larger in the alternate model
(PTKN11) than in our fiducial model (JF12), though we stress that random fields are not included
and could play an important role in the conversion probabilities towards Wd1.

The components of the B-field along the two transverse directions are denoted by B1 and B2. For
the Quintuplet and Arches analyses, the propagation direction is very nearly aligned with −x̂ (in
Galactic coordinates), so we may take B1 to point in the ẑ direction, towards the north Galactic
pole, and B2 to point in the direction ŷ (the approximate direction of the local rotation). Note that
the targets are slightly offset from the origin of the Galactic coordinate system, so the actual basis
vectors have small components in the other directions. As Wd1 is essentially within the plane of
the disk, one of the transverse components points approximately in the ẑ direction (B1).

The dominant magnetic field towards the GC within our fiducial B-field model is the vertical
direction (B1), which is due to the out-of-plane X-shaped halo component in the JF12 model [343,
344]. However, in the JF12 model that component is cut off within 1 kpc of the GC, due to the
fact that in becomes difficult to model the B-field near the GC. The B-field is expected to continue
rising near the GC – for example, in [353] it was claimed that the B-field should be at least 50 µG
(and likely 100 µG) within the inner 400 pc. However, to be conservative in our fiducial B-field
model we simply extend the B-field to the GC by assuming it takes the value at 1 kpc (about 3
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µG) at all distances less than 1 kpc from the GC. We stress that this field value is likely orders of
magnitude less than the actual field strength, but this assumption serves to make our results more
robust. The extended field model is illustrated in Fig. G.6.

To understand the level of systematic uncertainty arising from the B-field models we also show
in Fig. G.6 the magnetic field profiles for the alternative ordered B-field model PTKN11 [347].
This model has no out-of-plane component, but the regular B-field within the disk is stronger than
in the JF12 model. In the case of Quintuplet and Arches we find, as discussed below, that the
PTKN11 model leads to similar but slightly enhanced conversion probabilities relative to the JF12
model. On the other hand, the conversion probabilities in the PTKN11 model towards Wd1 are
significantly larger than in the JF12 model.

There is a clear discrepancy in Fig. G.6 between the magnetic field values observed at the solar
location, in both the JF12 model and the PTKN11 model, and the local magnetic field strength,
which is ∼3 µG [349]. The reason is that the magnetic field profiles shown in Fig. G.6 are only
the regular components; additional random field components are expected. For example, in the
JF12 model the average root-mean-square random field value at the solar location is∼6.6 µG [343,
344]. The random field components could play an important role in the axion-to-photon conversion
probabilities, especially for the nearby source Wd1, but to accurately account for the random field
components one needs to know the domains over which the random fields are coherent. It is
expected that these domains are ∼100 pc [344], in which case the random fields may dominate
the conversion probabilities, but since the result depends sensitively on the domain sizes, which
remain uncertain, we conservatively neglect the random-field components from the analyses in this
work (though this would be an interesting subject for future work).

To compute the conversion probabilities we also need the free-electron densities. We use the
YMW16 model [345] as our fiducial model, but we also compare our results to those obtained with
the older ne2001 model [346] to assess the possible effects of mismodeling the free-electron
density. In the left panel of Fig. G.7 we compare the free electron densities between the two
models as a function of distance away from the Sun towards the GC, while in the right panel we
show the free electron densities towards Wd1. The differences between these models result in
modest differences between the computed conversion probabilities, as discussed below.

Combining the magnetic field models in Fig. G.6 and the free-electron models in Fig. G.7
we may compute the axion-photon conversion probabilities, for a given axion energy E. These
conversion probabilities are presented in the left panels of Fig. G.8 (assuming gaγγ = 10−12 GeV−1

andma � 10−11 eV). In the top left panel we show the results for Quintuplet and Arches, while the
bottom left panel gives the conversion probabilities for Wd1, computed under both free-electron
models and various magnetic field configurations.

In the top left panel our fiducial conversion probability model is shown in solid black. Changing
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Figure G.7: (Left) The free electron density ne towards the GC in our fiducial model (YMW16) and
the alternate model (ne2001). (Right) As in the left panel but towards the Wd1 cluster. The free-
electron density gives the photon an effective mass and thus affects the axion-photon conversion
probability.

to the ne2001 model would in fact slightly enhance the conversion probabilities at most energies,
as shown in the dotted black, though the change is modest. Completely removing the B-field
within 1 kpc of the GC leads only to a small reduction to the conversion probabilities, as indicated
in red. Changing magnetic field models to that of [347] (PTKN11), while also removing the B-
field within the inner kpc, leads to slightly enhanced conversion probabilities, as shown in orange
(for both the YMW16 and ne2001 ne models). Note that the conversion probabilities exhibit
clear constructive and destructive interference behavior in this case at low energies, related to the
periodic nature of the disk-field component, though including the random field component it is
expected that this behavior would be largely smoothed out.

As discussed previously the magnetic field is expected to be significantly larger closer in to-
wards the GC than in our fiducial B-field model. As an illustration in blue we show the conversion
probabilities computed, from the two different free-electron models, when we only include a B-
field component of magnitude 50 µG pointing in the ẑ direction within the inner 400 kpc (explicitly,
in this case we do not include any other B-field model outside of the inner 400 kpc). The conver-
sion probabilities are enhanced in this case by about an order of magnitude across most energies
relative to in our fiducial model. The inner Galaxy also likely contains localized regions of even
strong field strengths, such as non-thermal filaments with ∼mG ordered fields. As an illustration
of the possible effects of such fields on the conversion probabilities, in Fig. G.8 we show in grey
the result we obtain for the conversion probability when we assume that the axions traverse the
GC radio arc, which we model as a 10 kpc wide region with a vertical field strength of 3 mG
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and a free-electron density ne = 10 cm−3 [355, 449]. Due to modeling uncertainties in the non-
thermal filaments and the ambient halo field in the inner hundreds of pc, we do not include such
magnetic-field components in our fiducial conversion probability model. However, we stress that
in the future, with a better understanding of the Galactic field structure in the inner Galaxy, our
results could be reinterpreted to give stronger constraints.

The Wd1 conversion probabilities change by over an order of magnitude going between the
JF12 and PTKN11 models, as seen in the bottom left panel of Fig. G.8, though it is possible that
this difference would be smaller when random fields are properly included on top of the JF12
model (though again, we chose not to do this because of sensitivity to the random-field domain
sizes).

The effects of the different conversion probabilities on the gaγγ limits may be seen in the top
right panel for Quintuplet (Arches gives similar results, since the conversion probabilities are the
same) and Wd1 in the bottom right panel of Fig. G.8. Note that the observed fluxes scale linearly
with pa→γ but scale like g4

aγγ , so differences between conversion probability models result in mod-
est differences to the gaγγ limits. Still, it is interesting to note that the Wd1 limits with the PTKN11
model are stronger than the fiducial Quintuplet limits, which emphasizes the importance of bet-
ter understanding the B-field profile towards Wd1. For Quintuplet (and also Arches) we see that
depending on the field structure in the inner ∼kpc, the limits may be slightly stronger and extend
to slightly larger masses (because of field structure on smaller spatial scales) than in our fiducial
B-field mode.

G.2 Extended Data Analysis Results

In this section we present additional results from the data analyses summarized in the main Letter.

G.2.1 Quintuplet

In this subsection we give extended results for the Quintuplet data analysis. Our main focus is to
establish the robustness of the flux spectra from the NuSTAR data analysis (shown in Fig. 8.2) that
go into producing the limits on gaγγ shown in Fig. 8.3.

G.2.1.1 Data and templates

First we take a closer look at the stacked data and models that go into the Quintuplet data analysis.
The stacked counts data in the vicinity of Quintuplet are shown in the left panel of Fig. G.9. We
show the counts summed from 10 - 80 keV. Note that the circle in that figure indicates 2′, which the
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radius of our fiducial analysis ROI.2 As in Fig. 8.1 we also indicate the locations of the individuals
stars in Quintuplet that may contribute axion-induced X-ray flux. The middle panel shows the
expected background flux from our background template. The template is generally uniform over
the ROI, with small variations. On the other hand, the right panel shows the axion-induced signal
counts template, normalized for gaγγ = 7×10−12 GeV−1, which is localized about the center of the
SSC. Note that the signal template is generated by accounting for the PSF of NuSTAR in addition
to the locations and predicted fluxes of the individual stars.

G.2.1.2 Axion Luminosity

We now show the axion luminosity and spectra that go into the right panel of Fig. G.9. For each
star in the cluster, we assign it a set of possible MESA models based on its spectral classification as
described in the main text. In the upper left panel of Fig. G.10, we show the mean expected axion
luminosity, as a function of energy, of the Quintuplet cluster, assuming gaγγ = 10−12 GeV−1. The
luminosity peaks around 40 keV, but the effective area of NuSTAR, also shown, rapidly drops
above 10 keV. Due to the much higher effective area at low energies, most of the sensitivity is
at lower energies. There is also considerable flux above 80 keV, although NuSTAR does not
have sensitivity at these energies. In the upper right panel, we show the median contribution of
each spectral classification in Quintuplet to this luminosity, summed over all stars with the given
classification. For all energies of interest, the WC stars dominate the cluster luminosity. This is
because WR stars have the hottest cores and there are 13 WC stars in Quintuplet (there is 1 WN
star). In the bottom panel, we show the 10 - 80 keV luminosity distribution for each spectral
classification, along with the 1σ containment bands and the mean expectation. The distribution
depends principally on whether or not core helium is ignited while the star is assigned a given
classification. The O, BSG, and WNh stars all can be either hydrogen or helium burning, in which
case they have 10 - 80 keV luminosities of ∼ 1031 or ∼ 1033 erg/s, respectively—recall that the
jump in temperature during helium ignition is a factor ∼ 3. The LBV phase is always core helium
burning, and the star may go supernova in this phase. The same is true of the WR phases WN and
WC, although the stars undergoing supernova in this phase are typically more massive.

The luminosities in Fig. G.10 are computed for our fiducial choices of Z = 0.035 and µrot =

150 km/s. To better understand the importance of these choices we show in Tab. G.1 how the
luminosities depend on the initial metallicity Z and mean rotation speed µrot. Note that each entry
in that table shows the luminosity summed over the stellar sub-types (with the number of stars
indicated), and except in the two last columns the luminosities are summed over all stars. The
uncertainties in the entries in Tab. G.1 come from performing 500 draws from the representative

2Note that ROIs for all of our analyses are centered upon the center of axion fluxes in RA and DEC, though the
distinction between the center of fluxes and the SSC center is minimal for all of our targets.
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O BSG LBV WNh WC + WN tot tot (10-80 keV)
Nstar 37 7 2 5 14 65 65

z = 0.018
µrot = 100 km/s

3.0+1.7
−1.5 × 1033 1.3+0.9

−0.9 × 1033 1.9+2.1
−1.7 × 1034 5.9+5.8

−5.8 × 1034 2.8+2.6
−0.8 × 1035 3.8+2.6

−1.0 × 1035 2.8+1.6
−0.6 × 1035

z = 0.035
µrot = 100 km/s

1.9+2.9
−0.9 × 1034 3.5+1.2

−1.2 × 1033 1.4+1.1
−0.7 × 1034 7.4+30

−7.3 × 1033 1.7+0.9
−0.4 × 1035 2.3+0.9

−0.5 × 1035 1.7+0.5
−0.3 × 1035

z = 0.035
µrot = 150 km/s

3.4+2.4
−2.3 × 1034 3.6+1.2

−1.3 × 1033 1.4+1.2
−0.8 × 1034 4.3+22

−4.2 × 1033 1.5+0.7
−0.3 × 1035 2.1+0.7

−0.4 × 1035 1.7+0.4
−0.3 × 1035

Table G.1: The number of stars Nstar for each stellar class in the Quintuplet cluster, along with
the predicted axion luminosities (all in erg/s). Note that Quintuplet is ∼30 pc away from the GC.
Except in the last column, the axion luminosities are summed over all energies. All entries assume
gaγγ = 10−12 GeV−1 and are summed over all stars for the given stellar class.

models and account for the variance expected from star-to-star within a given classification. As
discussed in the main text, the 10 - 80 keV luminosity could be ∼70% larger than in our fiducial
model, depending on the initial Z and µrot.

G.2.1.3 Injecting an axion signal

As a first test of the robustness of the Quintuplet analysis we inject a synthetic axion signal into the
real stacked data and then pass the hybrid real plus synthetic data through our analysis pipeline.
Our goal from this test is to ensure that if a real axion signal were in the data with sufficiently high
coupling to photons then we would be able to detect it. The results from this test are shown in
Fig. G.11.

The left panel of Fig. G.11 shows the best-fit grec.
aγγ as a function of the simulated ginj.

aγγ used to
produce the axion-induced counts that are added to the real NuSTAR stacked data. Importantly,
as we increase the injected signal strength the recovered signal parameter converges towards the
injected value, which is indicated by the dashed curve. Note that the band shows the 68% contain-
ment region for the recovered signal parameter from the analysis. As the injected signal strength
increases, so to does the significance of the axion detection. This is illustrated in the middle panel,
which shows the discovery TS as a function of the injected signal strength. Recall that the signif-
icance is approximately

√
TS. Perhaps most importantly, we also verify that the 95% upper limit

does not exclude the injected signal strength. In the right panel of Fig. G.11 we show the 95% up-
per limit found from the analyses of the hybrid data sets at different ginj

aγγ . Recall that all couplings
above the grec

aγγ curve are excluded, implying that indeed we do not exclude the injected signal
strength. Moreover, the 95% upper limit is consistent with the expectation for the limit under the
signal hypothesis, as indicated by the shaded regions at 1σ (green) and 2σ (yellow) containment.
Note that we do not show the lower 2σ containment region, since we power-constrain the limits.
These regions were computed following the Asimov procedure [195].
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G.2.1.4 Changing region size

As a systematic test of the data analysis we consider the sensitivity of the inferred spectrum as-
sociated with the axion model template to the ROI size. In our fiducial analysis, with spectrum
shown in Fig. 8.2, we use an ROI size of rmax = 2′. Here we consider changing the ROI size to
rmax = 1.5′ and 2.5′. The resulting spectra are shown in Fig. G.12. The spectrum does not appear
to vary significantly when extracted using these alternate ROIs, indicating that significant sources
of systematic uncertainty related to background mismodeling are likely not at play.

G.2.2 Westerlund 1

In this subsection we provide additional details and cross-checks of the Wd1 analysis.

G.2.2.1 Data and templates

In Fig. G.13 we show, in analogy with Fig. G.9, the data, background, and signal maps summed
from 15 - 80 keV. We note that the background templates are summed using their best-fit normal-
izations from the fits to the null hypothesis of background-only emission. The signal template is
noticeably extended in this case beyond a point-source template and is shown for gaγγ = 8×10−12

GeV−1 and ma � 10−11 eV. The location of the magnetar CXOU J164710.2–45521 is indicated
by the red star.

G.2.2.2 Axion Luminosity

We now show the axion luminosity and spectra that go into the right panel of Fig. G.13. In the
upper left panel of Fig. G.14, we show the mean expected axion luminosity, as a function of
energy, of the Wd1 cluster, assuming gaγγ = 10−12 GeV−1. In the upper right panel, we show the
contribution of each spectral classification in Wd1 to this luminosity, summed over all stars with
the given classification. For all energies of interest, the WN stars dominate the cluster luminosity,
although the WC stars are important as well. As in Quintuplet, this is due to the fact that WR stars
have the hottest cores, but in this case there are more WN stars than WC stars. In the bottom panel,
we show the 10 - 80 keV luminosity distribution for each spectral classification, along with the 1σ
bands and the mean expectation. Again, the more evolved stars produce more axion flux, because
their core temperatures increase with time. As in the case of Quintuplet, the O and BSG stars may
be pre- or post-helium ignition. The luminous blue variable (LBV), yellow hypergiant (YHG), and
cool red supergiant (RSG) stars are all post-helium ignition, although have generically cooler cores
than the WR stars. The WNh stars are entirely helium burning.
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O (B/R)SG/YHG LBV WNh WC/WN tot tot (10-80 keV)
Nstar 72 56 1 2 22 153 153

z = 0.018
µrot = 100 km/s

1.6+0.9
−0.6 × 1035 2.4+1.3

−0.8 × 1035 1.4+2.8
−1.3 × 1034 2.2+4.8

−1.5 × 1035 4.3+1.7
−1.4 × 1036 5.2+1.7

−1.4 × 1036 1.3+0.2
−0.2 × 1036

z = 0.035
µrot = 100 km/s

2.6+1.5
−1.1 × 1035 3.9+2.6

−1.5 × 1035 7.1+10
−6.5 × 1033 8.7+37

−4.5 × 1034 2.0+1.0
−0.7 × 1036 3.1+1.1

−0.9 × 1036 9.9+1.4
−1.4 × 1035

z = 0.035
µrot = 150 km/s

2.3+1.3
−1.0 × 1035 3.5+2.6

−1.5 × 1035 7.1+9.0
−6.5 × 1033 6.2+31

−2.8 × 1034 1.8+1.0
−0.7 × 1036 2.6+1.0

−0.8 × 1036 9.0+1.0
−1.0 × 1035

Table G.2: As in Tab. G.1 but for Wd1.

In Tab. G.2 we provide detailed luminosities for each of the stellar sub-types for different
choices of initial Z and µrot for Wd1, as we did in Tab. G.1. Note that we assume Z = 0.035

and µrot = 150 km/s for our fiducial analysis, even though it is likely that the initial Z is closer to
solar (in which case the luminosities would be enhanced, as seen in Tab. G.2).

G.2.2.3 Systematics on the extracted spectrum

In analogy to the Quintuplet analysis we may profile over emission associated with the background
template to measure the spectrum from 15 - 80 keV associated with the axion-induced signal
template shown in Fig. G.13. That spectrum is reproduced in Fig. G.15. For our default analysis
we use the ROI with all pixels contained with rmax = 2.0′ of the cluster center, except for those
in the magnetar mask, as indicated in Fig. G.13. However, as a systematic test we also compute
the spectrum associated with the axion-induced template for rmax = 2.5′ and 1.5′, as shown in
Fig. G.15. We measure a consistent spectrum across ROIs at these energies.

G.2.3 Arches

In this subsection we present results from the analysis of archival NuSTAR data for an axion-
induced signal from the Arches cluster. The Arches cluster is at a similar location, ∼30 pc from
the GC, as the Quintuplet cluster. Arches hosts even younger and more extreme (e.g., hotter and
more massive) stars than the nearby Quintuplet cluster. Indeed, it is estimated that all ∼105 spec-
troscopically classified stars within Arches may become core-collapse supernovae within the next
∼10 Myr [450]. A priori, the Arches and Quintuplet clusters should have similar sensitivities to
axions, though as we discuss below the axion prediction from Arches is less robust to uncertainties
in the initial metallicity than the Quintuplet prediction.

G.2.3.1 Axion Luminosity

We now describe the axion luminosity and spectra for Arches. In the upper left panel of Fig. G.16,
we show the mean expected axion luminosity, as a function of energy, of the Arches cluster, as-
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suming gaγγ = 10−12 GeV−1. The luminosity peaks at very low energies, although we could not
analyze these energies due to contamination from the molecular cloud. As shown by the upper
right panel, the Arches luminosity is dominated by the O stars, since the WNh stars are always
hydrogen burning with our assumed metallicity of Z = 0.035 and there are many more O stars
than WNh stars. In the bottom panel, we show the 10 - 80 keV luminosity distribution for the O
and WNh stars, along with the 1σ bands and the mean expectation.

However, unlike for the Quintuplet and Wd1 clusters we find that the Arches luminosity is a
strong function of the initial metallicity Z, as illustrated in Tab. G.3. As seen in that table, changing
the metallicity from Z = 0.035 to Z = 0.018 increases the flux by over an order of magnitude.
This is because at the higher metallicity values the WNh stars are typically not in the He burning
phase, while decreasing the initial metallicity slightly causes the WNh stars to enter the He burning
phase. Note that at solar initial metallicity (Z = 0.02, and also taking µrot = 100 km/s) we find
that the 10-80 keV flux is 8.7+9.4

−5.6 × 1034 erg/s, comparable to but slightly larger than that found
for Z = 0.018. Thus, it is possible that the sensitivity of the Arches observations is comparable to
that from Quintuplet, but given the larger uncertainties related to the stellar modeling of the Arches
stars the limit is, at present, less robust. We stress that the qualitative difference between Arches
and Quintuplet that is responsible for this difference is that Quintuplet has a large cohort of WC
and WN stars, which are robustly He burning, while Arches does not have any stars in these stellar
classes.

O (B/R)SG/YHG LBV WNh WC/WN tot tot (10-80 keV)
Nstar 96 0 0 13 0 109 109

z = 0.018
µrot = 100 km/s

2.3+0.2
−0.1 × 1033 0 0 8.7+6.5

−5.2 × 1034 0 8.9+6.5
−5.2 × 1034 6.6+5.6

−3.6 × 1034

z = 0.035
µrot = 100 km/s

3.9+1.8
−1.9 × 1035 0 0 3.9+217

−0.6 × 1032 0 7.2+16
−4.9 × 1033 5.7+23

−2.8 × 1033

z = 0.035
µrot = 150 km/s

3.5+2.1
−1.6 × 1033 0 0 3.6+125

−0.3 × 1032 0 4.7+12
−2.2 × 1033 3.7+13

−2.4 × 1033

Table G.3: As in Tab. G.1 but for Arches.

G.2.3.2 Data analysis, results, and systematic tests

We reduce and analyze 370 ks of archival NuSTAR data from Arches. The Arches
observations (IDs 40010005001, 40101001004, 40101001002, 40202001002,

40010003001) were performed as part of the same GC survey as the Quintuplet observations
as well as for dedicated studies of the Arches cluster below 20 keV. Note that we discard data
from the Focal Plane Module B instrument for observations 40101001004, 40101001002,
40202001002, and 40010003001 because of ghost-ray contamination. We perform astromet-
ric calibration using the low-energy data on the Arches cluster itself, which is a bright point source
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above 3 keV.
In the Arches analysis it is known that there is a nearby molecular cloud that emits in hard

X-rays [451]. We follow [451] and model emission associated with this extended cloud as a 2D
Gaussian centered at R.A.=17h45m50.62s, Dec.=−28◦49′47.17′′ with a FWHM of 72.4′′. The hard
X-ray spectrum associated with the molecular cloud has been observed to extend to approximately
40 keV [451]; indeed, we see that including the molecular cloud template, with a free normalization
parameter, at energies below 40 keV affects the spectrum that we extract for the axion template,
but it does not significantly affect the spectrum extraction above 40 keV. The non-thermal flux
associated with the molecular cloud is expected to be well described by a power-law with spectral
index Γ ≈ 1.6 and may arise from the collision of cosmic-ray ions generated within the star cluster
with gas in the nearby molecular cloud [452]. With this spectral index the molecular cloud should
be a sub-dominant source of flux above∼20 keV, and we thus exclude the 10-20 keV energy range
from the Arches analysis, though e.g. including the 15-20 keV bin results in nearly identical results
(as does excluding the 20 - 40 keV energy range).

The molecular cloud template is illustrated in the bottom left panel of Fig. G.17. In that figure
we also show the data, background templates, signal template, and background-subtracted counts,
as in Fig. G.9 for the Quintuplet analysis. Note that we profile over emission associated both the
background template and with the halo template when constraining the flux in each energy bin
associated with the signal template.

As a systematic test of our signal extraction procedure we show in Fig. G.18 (left panel) the
spectrum extracted for axion emission from the Arches cluster both with and without the halo
template. The two spectra diverge below ∼20 keV but give consistent results above this energy.
Similarly, we find that the spectrum is relatively insensitive to the ROI size for energies above∼20
keV, as shown in the right panel of Fig. G.18, which is analogous to the Quintuplet Fig. G.12.

In Fig. G.19 we show the 95% upper limit we obtain on gaγγ from the Arches analysis, using
the conservative modeling with Z = 0.035 and µrot = 150 km/s. We find no evidence for an
axion-induced signal from this search. Note that, as in indicated in Fig. G.18, we do not include
data below 20 keV in this analysis.

G.3 Initial metallicity determination for Quintuplet and
Arches

In our fiducial analysis we assumed the cluster metallicity was Z = 0.035, which we take as the
highest allowed metallicity in the Quintuplet cluster. In this subsection we show how we arrived
at this value. The cluster metallicity is an important parameter in that it affects the mass loss rates
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in the stellar winds, the lifetime of individual evolutionary stages, and the surface abundances.
Here we use measurements of the nitrogren abundances of WNh stars in the Arches cluster to
estimate the uncertainty on the cluster metallicities. The nitrogen abundance during the WNh
phase reaches a maximum that depends only on the original CNO content, and as such is a direct
tracer of stellar metallicity (and increases with increasing metallicity). Ref. [329] measured the
nitrogen abundance in the WNh stars in the Arches cluster at present to be 0.0157 ± 0.0045.
We run MESA simulations of the Arches WNh stars on a grid of metallicities from Z = 0.01

to Z = 0.04 and find this measurement implies that the Arches initial metallicity is between
Z = 0.018 and Z = 0.035. The results are shown in Fig. G.20, where we see that the nitrogen
abundance during the WNh phase intersects with the measurement only for the initial metallicities
in that range. Although there are no measurements of the Quintuplet WNh nitrogren abundance,
note that a similar abundance was found in the nearby GC SSC of 0.0143 ± 0.0042 [453]. Given
the similarity of these two measurements, we assume the same metallicity range for Quintuplet as
computed for Arches.

G.4 Variation of upper limits with initial conditions

In this section we show the variation in the upper limits as we vary over our initial conditions
Z ∈ (0.018, 0.035) and µrot ∈ (50, 150) km/s. These initial conditions represent the dominant
uncertainties in our stellar modeling. Recall that in our fiducial analysis we assume the initial
metallicity and rotation giving the most conservative upper limits: Z = 0.035 and µrot = 150

km/s. Fig. G.21 shows, for both Quintuplet and Wd1, how our 95% upper limit varies as we
scan over Z and µrot. In particular, the shaded blue regions show the minimum and maximum
limit obtained when varying Z and µrot. Note that our fiducial limits, solid black, are the most
conservative across most axion masses, though the effect of the Z and µrot is relatively minimal,
especially for Wd1.
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Figure G.8: (Left Column) The axion-photon conversion probabilities pa→γ , assuming gaγγ =
10−12 GeV−1, computed as a function of the axion energy E (and assuming ma � 10−10 eV)
using the formula given in (G.5). (Top Left) The conversion probabilities for axions produced in
the Quintuplet or Arches clusters for different modeling assumptions for the Galactic magnetic
field and free-electron density. Our fiducial result is shown in solid black. Note that the plasma
mass, induced by the free-electron density, becomes more important at lower axion energies and
induces the lower-energy features. The dashed black curve shows the effect of changing from the
YMW16 free-electron model to the ne2001 model. Removing the B-field within the inner kpc
leads to the results in red, while only modeling a 50 µG field in the inner 400 pc leads to the results
in blue. Changing to the PTKN11 model (and masking the inner kpc) gives the results in orange.
We estimate that if the axions traverse the GC radio arc, located near the Quintuplet and Arches
clusters, the conversion probabilities could be enhanced to the values shown in grey. (Bottom Left)
As in the top left panel but for axions emitted from the Wd1 cluster. (Right Column) The effects
of the different conversion probability models on the 95% upper limits on gaγγ for Quintuplet
(top right) and Wd1 (bottom right). Note that Arches is similar to Quintuplet, since they are both
assumed to have the same conversion-probability models.

297



−2 −1 0 1 2
RA- RA0 [arcmin]

−2

−1

0

1

2

D
ec

-
D

ec
0

[a
rc

m
in

]

0

10

20

30

40

50

10
-

80
ke

V
ct

s

−2 −1 0 1 2
RA- RA0 [arcmin]

−2

−1

0

1

2

D
ec

-
D

ec
0

[a
rc

m
in

]

0

10

20

30

40

50

10
-

80
ke

V
b

kg
ct

s

−2 −1 0 1 2
RA- RA0 [arcmin]

−2

−1

0

1

2

D
ec

-
D

ec
0

[a
rc

m
in

]

gaγγ = 7× 10−12 GeV−1

0

10

20

30

40

50

10
-

80
ke

V
si

g
ct

s

Figure G.9: (Left) As in Fig. 8.1, but for the total observed counts between 10 - 80 keV instead
of the background-subtracted counts. (Center) The best-fit background model, summed from 10 -
80 keV, for the Quintuplet data set shown in the left panel. (Right) The predicted axion-induced
signal template from Quintuplet, in counts, normalized for an axion with gaγγ = 7× 10−12 GeV−1

and ma � 10−11 eV.
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Figure G.10: (Upper Left) The Quintuplet axion spectrum assuming gaγγ = 10−12 GeV−1 (black)
plotted against the NuSTAR effective area (blue). The analysis range, from 10 - 80 keV, is shaded
in red. (Upper Right) The individual contributions of each stellar classification to the Quintuplet
axion spectrum. The analysis range is again shaded. (Bottom) The 10-80 keV luminosity distribu-
tion assigned to each stellar classification (per star) in Quintuplet. In red we show the frequency
with which each luminosity occurs, while the black error bars show the mean and 1σ band.
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Figure G.13: As in Fig. G.9, but for the Wd1 cluster NuSTAR analysis. The red star indicates the
location of the magnetar CXOU J164710.2–45521, which is masked at 0.5’. Also shown is the
background-subtracted count data, as in Fig. 8.1.
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Figure G.14: (Upper Left) The Wd1 axion spectrum assuming gaγγ = 10−12 GeV−1 (black) plotted
against the NuSTAR effective area (blue). The analysis range, from 15 - 80 keV, is shaded in gray.
(Upper Right) The individual contributions of each stellar classification to the Wd1 axion spectrum.
The analysis range is again shaded. (Bottom) The 10-80 keV luminosity distribution assigned to
each stellar classification in Wd1. In red we show the frequency with which each luminosity
occurs, while the black error bars show the mean and 1σ band.
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Figure G.16: (Upper Left) The Arches axion spectrum assuming gaγγ = 10−12 GeV−1 (black)
plotted against the NuSTAR effective area (blue). The analysis range, from 20 - 80 keV, is shaded
in gray. (Upper Right) The individual contributions of each stellar classification to the Arches axion
spectrum. The analysis range is again shaded. (Bottom) The 10-80 keV luminosity distribution
assigned to each stellar classification in Arches. In red we show the frequency with which each
luminosity occurs, while the black error bars show the mean and 1σ band.
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Figure G.17: (Top Panel) As in Fig. G.9, but for the Arches cluster. (Bottom left) We show the best-
fit emission associated with the halo template that describes emission from the nearby molecular
cloud. (Bottom right) As in in Fig. 8.1, but for Arches.
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Figure G.18: (Left) The Arches spectrum measured with and without the halo template. Note that
we use the spectrum with the halo template in our fiducial analysis, though the difference between
the two results is relatively minor above ∼20 keV. (Right) As in Fig. G.12 but for the Quintuplet
analysis. Note that these spectra are computed while profiling over halo emission. Above ∼20
keV the different ROIs produce consistent results.
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is found from this search.
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Figure G.20: (Left) The evolution of the nitrogen abundance Z(N) over time from MESA simu-
lations of a non-rotating 85 M� star with initial metallicity Z = 0.01 to Z = 0.04. The bolded
sections of the lines correspond to the WNh phase. The gray shaded region indicates the measure-
ments of nitrogren abundances of the Arches WNh stars from [329].
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Figure G.21: (Left) The variation to the 95% upper limit found by varying the initial metallicity
and rotation in the range Z ∈ (0.018, 0.035) and µrot ∈ (50, 150) km/s for the Quintuplet analysis.
The blue region indicates the maximum and minimum limit found, while the black curve shows
our fiducial limit. (Right) As in the left panel but for Wd1.
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APPENDIX H

X-Ray Searches for Decaying Dark Matter in the
Milky Way

H.1 Data Reduction and Analysis

In this section, we detail our process for data reduction and analysis.

H.1.1 Data Reduction

We selected all XMM-Newton observations performed until September 5, 2018. For each of these
observations, we retrieved the raw data products from the XMM-Newton Science Archive. For
data reduction, we used the XMM-Newton Extended Source Analysis Software (ESAS) package,
which is a part of the Science Analysis System [454] (SAS) version 17.0, and used for modeling
sources covering the full XMM-Newton field-of-view and diffuse backgrounds.

The data reduction process is described in detail in Ref. [378]; here, we summarize the impor-
tant steps and point out any differences. To reduce a given observation, we obtain the list of science
exposures (i.e. pointings taken in a mode usable for scientific purposes) from the summary files.
For each exposure (independent of camera), we generate an event list and filter this list to only
include events which were recorded during a period of low-background, which cuts contamination
from soft-proton flares. We then mask point sources in the field of view which contribute in any
energy range (c.f. Ref. [378] where we only masked point sources in the 3-4 keV range). We also
mask data from CCDs operating in anomalous states. From the filtered and masked data products
we create the photon-count data, the ancillary response file (ARF), and the redistribution matrix
file (RMF).

The reduced data contains 11,805 observations, with 21,388 and 8,190 individual MOS and PN
exposures, totaling 438 Ms and 109 Ms of data. Given our focus is on searching for DM emission
in otherwise dark regions of the sky, we place a cut on these data sets to isolate the astrophysically
quietest amongst them. In particular, we construct the integrated flux from 2 − 10 keV in all
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exposures, and determine the median value for MOS and PN separately as 0.09 photons/keV/s
and 0.39 photons/keV/s. All observations with integrated fluxes higher than these median values
are excluded. This cut will remove observations with above average astrophysical emission, but
also those where there is large instrumental or quiescent particle background (QPB) emission (c.f.
Ref. [378] where a separate cut on the QPB emission was performed). For regions of the sky that
are not focused on a bright Galactic or extra-galactic source, the QPB counts should dominate
over the extra-galactic X-ray background [455]. However, the QPB is time-dependent and will
vary over exposures because of e.g. flaring activity (which, as described in the SM, we filter for).
Further, we emphasize that even in the most optimistic scenario, a DM UXL will only provide an
exceptionally small contribution to the total integrated flux, and thus this cut will not bias against
a potential signal. In addition to removing these bright exposures, we place two additional cuts.
Firstly, all exposures with less than 500s of data are removed, as the flux in such short exposures
can be poorly characterized. Finally, we exclude all observations within 2◦ of the plane of the
Milky Way, which excises only a small amount of the expected DM signal, but a much larger
fraction of the expected astrophysical emission associated with emission from our own galaxy.
The cuts leave 215 Ms (57 Ms) of the total 438 Ms (109 Ms) of full-sky (|b| ≥ 2◦) exposure time
for MOS (PN).

Exposure passing all three cuts are then divided into 30 rings, each of width 6◦ from the GC as
described in the main body. The rings, numbered 1-30 starting from the GC, are used to form our
signal ROI (rings 1-8) and background ROI (rings 20-30).

H.1.2 Public Data Products

The processed data used to perform the analysis in this work is made fully publicly available at
github.com/bsafdi/XMM BSO DATA. There we provide all the data required to reproduce our re-
sults. In particular, we provide the data after the cuts described above in each ring for the MOS and
PN cameras separately. The instrument response files, appropriately weighted across the exposures
in each ring, are provided.

H.1.3 Analysis

In this section we provide additional details behind the analysis framework used to interpret the
data products described above in the context of the decaying DM model. First, we describe how
we analyze the flux data in the individual annuli, and then we detail how those results are joined to-
gether to constrain the DM lifetime. Lastly, we describe how we test for and incorporate systematic
uncertainties.
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H.1.3.1 Construction of the profile likelihood

Let us first focus on the analysis of the (either MOS or PN) data in an individual ring k ∈ [1, 8]. The
data set dk in this ring consists of background subtracted count rates dki in each energy channel i.
The count rates have units of cts/s/keV, as illustrated in e.g. Fig. H.1, with Poisson counting uncer-
tainties σki that arise from combining the statistical uncertainties in the signal and background data
sets in the large-count limit, where the uncertainties become normally distributed. Our goal is then
to compute the log-likelihood log p(dk|θ) as a function of the model parameters θ = {Asig, θnuis},
which consist of our parameter of interest, Asig, and our nuisance parameters θnuis. The nuisance
parameters include background line amplitudes, Aj , with j indexing the different lines at energies
Ej , and also hyperparameters for the GP model. In our fiducial analysis the only GP model hyper-
parameter is the amplitude of the double-exponential kernel AGP. Note that, as described shortly,
in determining the instrumental line list we also assign nuisance parameters to the locations of the
lines. Our goal is to construct the profile likelihood log p(dk|Asig) = maxθnuis

log p(dk|θ).
Before describing the log-likelihood function in detail, we note that because we are in the large-

count limit, so that the statistical fluctuations are normally distributed, we may interchangeably use
the concept of modeling the data as the sum of model components and subtracting model compo-
nents from the data and considering the residuals. In the small-count limit, where the Poisson
fluctuations are not nearly Gaussian, this approach would not be appropriate.

The log-likelihood function that we use is a modification of the zero-mean GP marginal likeli-
hood. The modification that we implement incorporates the background lines and the signal line
of interest. For a given set of model parameters {Asig, Aj} we construct the modified data vector1

yki (θ) ≡ dki − Asigµ
k
sig,i −

∑

j

Ajµ
k
j,i −

〈
dki − Asigµ

k
sig,i −

∑

j

Ajµ
k
j,i

〉
i
, (H.1)

where µsig is the spectral template of the signal line of interest, with fixed normalization, as
obtained by appropriately summing the forward modeling matrices of the individual exposures
that compose the observations within the ring of interest, k. Similarly, µkj,i denotes the fixed-
normalization spectral template of the jth background line, at energy Ej , in ring k (recall that i
labels the detector energy channel). The quantity 〈· · · 〉i in (H.1) denotes the average over energy
bins i, which implies that by construction the yki (θ) have zero mean when averaged over the full
energy range of the analysis. We postulate that the yki are described by GP models, so that we may

1Note that the line energies Ej are fixed in all analyses except those of the background ROI data for constructing
our lists of instrumental lines; in those analyses only, the Ej are also model parameters.
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use the GP marginal likelihood to compute the hyperparameter AGP:

log p(dk|θ) = −1

2
yk

T [
K + (σk)2I

]−1
yk − 1

2
log |K + (σk)2I| − n

2
log(2π) . (H.2)

Above, n is the number of energy channels, and all matrix operations are taken in the space of en-
ergy channels, with (σk)2I denoting the diagonal matrix with entries (σki )2. The matrix K denotes
the GP kernel. We implement the non-stationary kernel

K(E,E ′) = AGP exp

[
−(E − E ′)2

2EE ′σ2
E

]
, (H.3)

which has the hyperparameters AGP and σE . Note that later in the appendices we show that similar
results are obtained using the more standard double exponential kernel, but we chose the form of
the kernel in (H.3) for reasons discussed below.

It is worth emphasizing that we have made the choice to describe the residuals of the
background-subtracted data, after also subtracting the contributions from the instrumental lines,
by a zero-mean GP model. An alternative strategy would be to allow the GP model to have an
energy-dependent mean. Equivalently, we could include a parametric model component (such as
a power-law or exponential) to model the clear upward trend in the data at low energies observed
in e.g. Fig. H.1, with the GP model then describing fluctuations about that parametric component.
Such an approach would likely result in smaller values of the hyperparameterAGP and, potentially,
increased sensitivity. Such a hybrid parametric plus GP modeling approach could be explored in
future work.

Our goal is to look for narrow lines on top of a smooth continuum flux. We know that even a
narrow line will manifest itself as a broader feature in the detector-level data due to the detector re-
sponse. So the correlation-length of the GP kernel has a lower-bound set by the detector resolution.
Because the energy resolution δE of XMM-Newton increases linearly with energy (i.e., δE/E is
roughly constant), a stationary kernel with a fixed correlation length is not adequate and a kernel
of the form in (H.3) is more natural. However, we expect the continuum to be much smoother,
even before the smearing induced by the detector resolution. A common approach in GP literature
when the hyperparameters are not motivated from some other considerations is to fit them to the
data. This approach leads to the best-fit values σE ≈ 0.608 (σE ≈ 0.77) for MOS (PN) in the
first annulus, with comparable results in the annuli further from the Galactic Center. However, we
chose to fix σE = 0.3 because this is an intermediate value between the lower-bound of a narrow
line given by the energy resolution and the best-fit result reflecting the smoothness of the observed
continuum. This choice leads to more conservative limits, since for smaller values of σE the GP
model is able to capture smaller-scale fluctuations in the data, absorbing what would otherwise be
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attributed to narrow lines.
Lastly, note that while the marginal likelihood in (H.2) is defined within the context of Bayesian

statistics, as it is obtained by integrating the likelihood times prior distribution for the formal GP
model parameters, we will use the likelihood to perform frequentist parameter inference. This ap-
proach is called the “hybrid approach” in [404]. As noted in [404], the asymptotic expectations for
the distribution of the TS constructed from the marginal likelihood may differ from the frequentist
expectations [172], because of the use of the Bayesian marginal likelihood, and so in principle
the p-values and upper-limit criteria should be calibrated on Monte Carlo (MC). However, as we
show below, we find through MC simulations that in our examples the TS statistical distributions
follow the asymptotic frequentist expectations to high accuracy. With that in mind, we briefly re-
view the asymptotic expectations for translating discovery TS values to p-values and forming 95%
one-sided upper limits.

As discussed in the main Letter, the TS in favor of the signal model is given by

t = −2
[

max
θ

log p(dk|θ)−max
θnuis

log p(dk|{Asig = 0,θnuis}
]
, (H.4)

where the second term is the maximum marginal likelihood for the null model without a signal
line. When searching for evidence of DM, the discovery TS is set to zero for unphysical model
parameters (in that case, sin2(2θ) < 0), but for the purpose of testing for systematic uncertainties
it is useful to allow for both positive and negative signal amplitudes. The discovery TS is asymp-
totically χ2 distributed with one degree of freedom under the null hypothesis (see, e.g., [172]). In
addition to searching for evidence of the signal model over the null hypothesis using t, we also
set 95% one-sided upper limits using the likelihood ratio. We define the profile likelihood ratio
q(Asig) by

q(Asig) = −2
[

max
θnuis

log p(dk|{Asig,θnuis})−max
θ

log p(dk|θ)
]
, (H.5)

where in the first term we maximize the log-likelihood over the nuisance parameters θnuis at fixed
signal parameter Asig. Let Âsig be the best-fit signal parameter; i.e., q(Âsig) = 0. Then, the
95% one-sided upper limit A95%

sig is given by the value A95%
sig > Âsig which satisfies q(A95%

sig ) ≈
−2.71 [172].

Note that the profile likelihood in (H.5) is computed as a function of the signal normalization
Asig at fixed UXL energy (or, equivalently, fixed DM mass). All of the analyses presented in the
main Letter are performed in this way (i.e., we have a grid of different UXL energies to probe and
then for each fixed energy we compute the profile likelihood as a function of the signal-strength
amplitude). In Sec. H.3.1, however, we consider our ability to localize a putative signal in ma and
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sin2(2θ) using synthetic data. In that analysis, and that analysis only, we simultaneously constrain
the mass and the signal strength.
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Figure H.1: Examples of the signal region spectra for MOS (top panels) and PN (bottom panels)
in Ring 1 (left panels) and Ring 8 (right panels) with and without background subtraction in red
and black, respectively. The background-region spectra are shown in grey. Many of the large
instrumental features that are removed when looking at the background-subtracted data. Note that
for visual clarity these spectra have been down-binned by a factor of 4.

H.1.3.2 Instrumental and astrophysical background lines

Several instrumental and astrophysical background spectral lines are expected to contribute to the
observed flux spectra. Here, we outline the procedure by which we obtain our candidate instru-
mental and astrophysical background lines, with the complete list of included lines for MOS and
PN presented in Tab. H.1 and Tab. H.2, respectively.

We adopt an initial instrumental line list for PN and MOS from Refs. [456, 457]. We then
analyze the stacked data, for MOS and PN independently, in the background ROI in order to
test for the presence of each candidate line. We use an analysis framework analogous to that we
use in the background-subtracted signal ROI data: in particular, our analysis of the background
ROI data incorporates GP modeling for the continuum emission, in addition to the set of putative
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Energy [keV] Origin Type Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8

2.46 S Astro. 12.5 0.7 7.2 0.7 2.0 5.5 0.9 5.4
2.62 S Astro. 36.8 7.6 4.3 1.9 0.0 2.1 0.0 6.1
3.12 Ar Astro. 15.0 1.1 8.8 2.8 0.0 3.5 0.0 0.9

3.90 Ca Astro. 0.3 0.0 0.0 9.8 0.0 0.2 4.1 0.0

5.42 Cr Inst. 8.9 7.7 22.1 0.1 0.0 1.2 7.2 0.0

5.92 Mn Inst. 1.8 1.0 3.6 0.3 0.4 2.5 10.0 1.7

6.42 Fe Inst. 0.1 7.1 82.0 0.3 1.5 0.0 2.7 7.2
6.67 Fe Astro. 55.4 1.7 0.0 4.3 5.9 2.5 0.0 0.0

6.97 Fe Astro. 5.9 0.0 0.5 4.3 0.3 0.2 0.4 0.2

7.08 Fe Inst. 1.5 0.0 4.1 0.2 2.1 1.3 0.0 2.2

7.48 Ni Inst. 2.0 0.1 11.9 0.1 0.0 0.1 3.1 4.7
8.06 Cu Inst. 1.1 0.9 0.3 0.1 0.0 0.2 0.4 0.1

Table H.1: The list of spectral lines of instrumental and astrophysical origins which are included
in our background model for the MOS camera. For the line in each ring, we provide the value of
∆χ2 associated with the addition/removal of the line from the best-fit background model which
is obtained after our line-dropping procedure. Bolded values indicate the inclusion of a line in a
ring’s background model.

instrumental lines. We test for known instrumental lines in the vicinity of: 4.51 keV (Ti Kα), 5.41
keV (Cr Kα), 5.90 keV (Mn Kα), 5.95 keV (Cr Kβ), 6.40 keV (Fe Kα), 6.49 keV (Mn Kβ), 7.06
keV (Fe Kβ), 7.47 keV (Ni Kα), 8.04 keV (Cu Kα). During this process, we allow the central
location of the background lines to float by up to 25 eV. Lines which are detected with t > 16 (4σ
local significance) in the background data analysis are accepted at their best-fit energy as a new
component of our residual background model. In MOS, we accept instrumental lines at energies:
5.42 keV, 5.915 keV, 6.425 keV, 7.07 keV, 7.485 keV, and 8.06 keV. In PN, we accept instrumental
lines at 4.52 keV , 5.42 keV, 5.95 keV, and 6.39 keV.

After constructing our list of instrumental background lines we include them in our analyses
of the signal-ROI background-subtracted data sets. In particular, each line is given an intensity
nuisance parameter in each ring. Given our procedure of subtracting the background flux from
the signal region, variability in the instrumental lines between observations can result in the best fit
instrumental line intensity in our data set having a positive or negative normalization. Accordingly,
we allow the normalization of the instrumental lines to be either positive or negative.

We also develop an initial list of candidate astrophysical background lines following [379],
by selecting those with emissivities greater than 5 × 10−19 photons/cm3/s at a temperature of 1
keV, which is the approximate temperature of the hot component of the Galactic Center, using the
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Energy [keV] Origin Type Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8

2.46 S Astro. 15.3 0.7 12.5 3.9 0.0 3.5 1.1 6.8
2.62 S Astro. 19.0 4.5 9.1 5.1 0.0 0.0 0.1 4.4
3.12 Ar Astro. 6.4 2.8 6.5 13.7 0.0 1.1 0.0 0.0

3.90 Ca Astro. 3.9 0.0 0.5 3.8 0.0 6.0 0.2 0.5

4.52 Ti Inst. 0.6 0.7 0.8 0.6 0.1 0.3 0.5 0.0

5.42 Cr Inst. 0.7 0.0 0.4 7.3 0.7 1.9 2.4 6.6
5.93 Cr Inst. 0.8 1.0 0.5 4.7 0.1 1.7 3.6 0.7

6.39 Fe Inst. 0.0 0.1 3.2 1.2 0.0 1.6 9.3 0.0

6.67 Fe Astro. 79.2 5.5 8.9 2.8 0.8 2.3 0.3 2.3

6.97 Fe Astro. 0.0 0.0 0.4 0.0 0.3 0.0 0.7 0.0

Table H.2: The list of spectral lines of instrumental and astrophysical origins which are included
in our background model for the PN camera. For the line in each ring, we provide the value of
∆χ2 associated with the addition/removal of the line from the best-fit background model which
is obtained after our line-dropping procedure. Bolded values indicate the inclusion of a line in a
ring’s background model.

AtomDB database [458]. We include additional iron lines that are known to produce emission in
the inner Galaxy [459]. Taking this preliminary list, we then inspect the innermost ring and deter-
mine all lines which appear with TS t > 3 in either PN or MOS. If such a line meets this criteria in
either PN or MOS then we add it to our list of putative astrophysical lines for both instruments. As
with their instrumental counterparts, the astrophysical lines are treated with independent nuisance
parameters describing their intensity in each annuli. However, for astrophysical background lines,
we restrict intensities to values greater than or equal to zero.

The procedure described above leads to a list of astrophysical and instrumental lines, which
are shown in Tabs. H.1 and H.2. However, this does not mean that we included all of the those
lines in every ring when performing our UXL search. In each annulus we analyze the background-
subtracted data to determine which of the lines in Tabs. H.1 and H.2 are detected with moderate
significance (we use the criteria t > 3) in the background-subtracted data set. Note that in Tabs. H.1
and H.2 we indicate whether the line is included in each annulus. To determine the significance
of a given line we proceed iteratively, starting with the full list of lines and then calculating the
change in the maximum likelihood when a given line is removed from the model.

In Fig. H.2 we illustrate example fits for our fiducial analyses to the data without the inclusion of
an UXL. These fits are to the same background-subtracted data as illustrated in Fig. H.1, as labeled.
In black we show the combined best-fit model, which is the sum of the GP model contribution
(dark red) and the contributions from the individual astrophysical and instrumental lines (colored
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curves). Note that the number of background lines differs between each of the annuli because the
important background lines are determined independently for each annulus.
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Figure H.2: The same background-subtracted data sets illustrated in Fig. H.1 (also down-binned),
but now shown along with their best-fits under the null hypothesis. The best-fit model prediction is
shown in black, which may be decomposed into the contribution from the GP model (dark red) and
the contributions from the individual background lines (colored curves). Note that the background
lines to include in the analysis are determined independently in each annulus, as described in the
text.

H.1.3.3 The joint likelihood and background mismodeling

After constructing the profile log likelihoods qk(Asig) in each energy annulus (k = 1, 2, · · · , 8) we
then convert from Asig, which has units of cts/cm2/s/sr, to sin2(2θ) using the relation

Φ ≈ 0.26 photons/cm2/s/sr×
( mχ

7.0 keV

)4
(

D

1029 keV/cm2

)(
sin2(2θ)

10−10

)
. (H.6)

To do so we use the background-subtracted D-factors, as discussed in the main Letter. Then, at
each test mass point for the DM model we construct the joint profile likelihood

qjoint

(
sin2(2θ)

)
=

8∑

k=1

qk
(

sin2(2θ)
)
, (H.7)
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for both MOS and PN independently. Later, we will also combine the MOS and PN profile likeli-
hoods to construct our final joint profile likelihood that we use to search for evidence of decay DM.
First, however, we analyze the joint MOS and PN profile likelihoods independently for evidence
of background mismodeling.

We test and account for possible background mismodeling by extending the background model
to include a component that is totally degenerate with the signal. This is a conservative approach
that would remove all sensitivity to a UXL if the amplitude for this additional signal-like com-
ponent were left free. Therefore we penalize the amplitude of such a signal like feature in the
background model with a zero-mean Gaussian likelihood with variance hyperparameter σ2

spur . The
approach we follow was developed and implemented in [279–281] within the context of searches
for narrow spectral features in γ-ray astronomy and in the context of the Higgs boson search by
the ATLAS experiment, where it is called the “suprious signal” [402]. We extend the likelihood
to include two “spurious signal” nuisance parameters, one for the MOS data and one for the PN
data. The MOS and PN likelihoods are then combined to produce the joint likelihood that we use
for probing the DM model.

After extending the background model to include a signal-like component constrained by σ2
spur,

the resulting profile likelihood (for either the MOS or PN data) is given by

q̃joint

(
sin2(2θ)

)
= maxAspur

[
qjoint

(
sin2(2θ) + Aspur

)
− (Aspur)

2

σ2
spur

]
, (H.8)

where qjoint is defined in (H.7). Note that the profile likelihood now depends on the hyperparameter
σ2

spur, which determines the strength of the spurious-signal nuisance parameter For example, in the
limit σ2

spur → 0 the nuisance parameter becomes fixed at zero (Aspur → 0) and the modified profile
likelihood q̃ approaches the un-modified likelihood q. However, in the opposite limit σ2

spur → ∞
we completely lose constraining power and q̃joint

(
sin2(2θ)

)
→ 0 for all sin2(2θ).

In practice, we determine the value of the hyperparameter at each test mass point independently.
The philosophy is that if there is evidence that the background model is not properly describing the
data in the immediate energy side-bands around a mass point of interest, then we should account
for the possibility, through Aspur, of similar background mismodeling at our mass point of interest.
Specifically, we implement the following approach. At a given mass point mm

χ , where m is the
index that labels the mass point, we consider the subset of test mass points in a 2 keV window
aroundmm

χ , masking: (i) a 0.4 keV window in mass aroundmm
χ and (ii) masking 0.1 keV windows

around the locations are all background lines that were included in the analyses of the annuli. Each
test mass point within this side-band window has a best-fit sin2(2θ) from the likelihood analysis
without the inclusion of the spurious-signal nuisance parameter. The ensemble of best-fit points in
the side-band window is denoted by {sin2(2θ)}m. We compute the variance over this ensemble of
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best-fit points, Var
[
{sin2(2θ)}m

]
observed

. The observed variance is then compared to the expected
variance Var

[
{sin2(2θ)}m

]
expected

, and specifically we set

σ2
spur,m = max

[
0,Var

[
{sin2(2θ)}m

]
observed

− Var
[
{sin2(2θ)}m

]
expected

]
, (H.9)

where σ2
spur,m denotes the hyperparameter at the mass point mm

χ . The expected side-band best-fit
variance Var

[
{sin2(2θ)}m

]
expected

is computed from 500 MC simulations of the null hypothesis.
The null hypothesis model is that given by the fit of the background model to the data without any
extra UXL signal components.

We expect σ2
spur,m to be non-zero if there is background mismodeling in the energy side-band,

which increases the variance of observed best-fit points relative to the expectation under the null
hypothesis. However, sometimes σ2

spur,m will be non-zero simply because of statistical fluctuations
in the observed side-bands, in which case the nuisance parameter will weaken the limits more
than intended. However, this occasional weakening of the limits is worth the advantage of having
an analysis framework that is more robust to mismodeling. Indeed, we know that there is an
opportunity for some degree of background mismodeling because we have chosen to only include
background lines that pass some significance threshold, and thus the aggregate effect of the sub-
threshold lines could lead to mismodeling that could be partially mitigated by Aspur.

In Fig. H.3 we illustrate the values of σ2
spur,m (labeled MOS Syst. and PN Syst.) that we find

from the data analyses of the MOS and PN data. We compare the hyperparameter to the statistical
uncertainty on sin2(2θ), labeled MOS Stat. and PN Stat. Note that the statistical uncertainties
are computed from the Hessian of the log-likelihood, for that data set, about the best-fit coupling
at a fixed UXL energy, without the inclusion of Aspur. For both MOS and PN we see that the
background mismodeling uncertainties, as captured by Aspur, may dominate the statistical uncer-
tainties at some low energies, though the nuisance parameter appears more important for PN than
for MOS.

It is interesting to consider the ensemble of discovery TSs in favor of the DM model across
all tested mass points. We denote this distribution of TSs without the spurious-signal by T, while
with the inclusion of the spurious-signal nuisance parameter we call this distribution Tsys. We
expect Tsys to have fewer high-TS points than T. In the left and center panels of Fig. H.4 we
illustrate the distributions of TSs for both T (labeled Data) and Tsys (labeled Data w/ Nuisance
Parameter) for MOS and PN, respectively. More specifically, in that figure we illustrate the survival
fractions for the distributions, which show the faction of TSs in T or Tsys with a value above the
TS indicated on the x-axis. Asymptotically we expect, up to the caveat that we used the Bayesian
marginal likelihood of the GP to define our TSs, that the TSs should be χ2 distributed [172]. The
survival function of the χ2 distribution is shown in Fig. H.4. We verify with a large number of MC
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Figure H.3: The spurious-signal hyperparameter σ2
spur,m (labeled MOS Sys. and PN Sys.), as

computed in (H.9), as a function of the DM mass. For both MOS and PN the nuisance parameter
Aspur is predominantly active at low energies, and it plays a more significant role in PN than in
MOS. We compare the hyperparameter to the statistical uncertainties (labeled MOS Stat. and PN
Stat.), which are computed from the Hessian of the log-likelihood (without the spurious-signal)
about the best-fit mixing angle at a fixed energy. We note that several of the sharp variations of
the expected sensitivity shown in Fig. 9.3 arise as a result of the variations of the spurious signal
hyperparameter shown here.

simulations that the that the null-distribution of TSs is indeed χ2-distributed for both MOS and PN
datasets. The results of these tests are labeled “Monte Carlo” in Fig. H.4 and overlap with the χ2

distribution, providing evidence that we are in the asymptotic regime [172].
Because there are a finite number of samples in T and locations spaced within the detector

energy resolution are correlated, the survival function for the observed data is not expected to
follow the χ2-distribution exactly. The green and gold bands in Fig. H.4 show the 68% and 95%
containment regions for the survival fraction computed over 500 MC realizations of T. We expect
that the data should fall within these bands if no signal is present, which is analogous to the green
and gold bands for the significance in Fig. H.5. In the left and center panels of Fig. H.4 we may see
that the distributions of T for MOS and PN are broadly consistent with the MC expectations. The
distributions of Tsys, as expected, fall off slightly faster at large values of the TS. The right panel
of Fig. H.4 shows the survival fraction for the combined analysis where we combine the MOS and
PN profile likelihoods, with and without the spurious-signal. The most significant test point has
a significance slightly above 2σ local significance, which is less than 1σ in global significance.
Thus, we conclude that there is no evidence for decaying DM in our analysis above our 5σ global
predetermined detection threshold.

The effect of the spurious-signal nuisance parameter on the individual MOS and PN limits is

317



10−2 10−1 100 101

t

10−3

10−2

10−1

100
S

u
rv

iv
al

F
ra

ct
io

n
MOS

Data

Data w/ Nuisance

Monte Carlo

χ2 Distribution

10−2 10−1 100 101

t

PN

10−2 10−1 100 101

t

Joint

Figure H.4: (Left) The survival function of the test statistic for discovery in the analysis of the
MOS data. Under the null hypothesis, and for a large number of samples, the survival fractions are
expected to follow the χ2 distribution, as verified by MC (as labeled). At a finite number of samples
the expected chi-square distributions are found from MC to be expected to be contained within the
green and gold shaded regions at 68% and 95% confidence, respectively. The negligible effect
of the systematic nuisance parameter can be seen by comparing the survival function without the
nuisance parameter (red, labelled “Data”) and with the nuisance parameter (blue, labeled “Data w/
Nuisance Parameter”). (Center) As in the left panel, but for the PN analysis. (Right) The survival
function for the joint analysis of MOS and PN data. In blue, the survival function for the joined
PN and MOS analysis without systematic nuisance parameters; in red, the survival function for the
joint analysis when the PN and MOS results are corrected by their independently-tuned systematic
nuisance parameters prior to joining.

illustrated in Fig. H.5. The inclusion of the nuisance parameter slightly decreases the discovery
TSs at low masses and also causes a slight weakening of the limits. Note that the expectations
under the null hypothesis are indicated for the spurious-signal-corrected analysis in that figure.

H.2 Extended Results

In this section we present extended results for the analyses that go into producing Fig. 9.3. First,
we provide a measure of the goodness-of-fit of our null model to the data, quantified through the
χ2 per degree of freedom (dof), in each annulus for the PN and MOS data sets in Tab. H.3. Note
that we also quote the p-value associated with the χ2 per dof, with smaller numbers indicating a
worse null-model fit. We observe acceptable p-values (p & 0.1) in all rings except for Ring 3 of
the PN data set, which realizes a p-value associated with the χ2/dof of p ≈ 5.7× 10−6. We would
not expect to observe a p-value this small in any of the 16 rings. For example, Fig. H.3 shows some
evidence for mild systematic uncertainties at low energies in the PN data, though these are captured
through our spurious-signal formalism. We also note that there is some indication that the poor
χ2/dof in PN Ring 3 arises from statistical fluctuations on scales much smaller than the detector
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Figure H.5: As in Fig. 9.3, but for the MOS (left panel) and PN (right panel) analyses individ-
ually and with and without the spurious-signal nuisance parameter. The 1σ and 2σ expectations
are shown only for the case with the spurious-signal nuisance parameter. The limits without the
nuisance parameter are slightly stronger at low masses. The sharp variations in the expected sen-
sitivity, especially visible in the PN results, arise from how the spurious-signal hyperparameter is
determined through the sliding window procedure.

energy resolution; for example, down-binning that data set to bins of width 45 eV, which is still
smaller by a factor of a few relative to the energy resolution across the full energy range, improves
the p-value associated with the χ2/dof to p ≈ 4 × 10−3. As an additional test, we compare the
results obtained without the spurious-signal formalism in the joint analysis of the PN data with
and without the inclusion of the data in Ring 3. These results are presented in Fig. H.6, and are
qualitatively unchanged by the inclusion or exclusion of the PN Ring 3 data set. We also provide
best-fit normalizations for our GP kernels, presented in Tab. H.4.
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Figure H.6: A comparison of all results obtained in the joint analysis of PN data with and without
the inclusion of Ring 3, which may be subject to systematic mismodeling. Note that for this
comparison we do not profile over the spurious-signal nuisance parameter.

In Fig. H.7 we present the main result in Fig. 9.3 in terms of the DM lifetime instead of in
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Figure H.7: As in Fig. 9.3, but interpreted as limits on the DM lifetime. This figure applies for DM
whose decays produce a single mono-energetic photon at energy mχ/2. If the DM decay produces
two photons (as in an axion model), then the lifetime limits are twice as strong.

terms of sin2(2θ). The result in Fig. H.7 is more general than in Fig. 9.3 since it holds for more
general DM models beyond the sterile neutrino model. Note, however, that this figure applies
to DM whose decays produces one mono-energetic photon at energy mχ/2. Axion-like models
produce two photons during the decay, in which case the limits are twice as strong as those shown
in Fig. H.7.

Instrument Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8

MOS [χ2/dof] 1133.6/1093 1069.6/1096 1190.7/1091 1114.2/1096 1157.7/1098 1073.2/1097 1083.4/1095 1100.1/1095

MOS [p-value] 0.19 0.71 0.02 0.34 0.10 0.69 0.59 0.45

PN [χ2/dof] 860.7/894 845.2/897 1091.8/894 873.2/893 915.5/899 920.8/897 838.1/897 874.5/896

PN [p-value] 0.77 0.89 5.7× 10−6 0.65 0.34 0.25 0.92 0.68

Table H.3: The goodness-of-fit of the null model fit in each annulus for PN and MOS data sets
as measured by the χ2 divided by the number of degrees of freedom (dof). With the exception of
Ring 3 of the PN data set, this measure indicates an acceptable goodness-of-fit to the data under
the null, as quantified through the p-value (see text for details).

Instrument Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8

MOS 6.9× 10−3 1.6× 10−3 1.1× 10−3 3.4× 10−3 6.6× 10−4 1.9× 10−3 9.0× 10−4 1.5× 10−3

PN 2.3× 10−2 5.3× 10−3 5.7× 10−3 9.1× 10−3 2.0× 10−3 4.2× 10−3 2.0× 10−4 1.1× 10−2

Table H.4: The best fit normalization of the GP kernel for each ring in PN and MOS. We present√
AGP in units of photons/cm2/s/keV for AGP defined in (H.3).

Next, we show our results from the analyses to the individual MOS and PN annuli. In Figs. H.8
through H.15 we show the best-fit fluxes and significances (times the sign of the excess or deficit)
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for the UXLs for all of the annuli and for both MOS and PN. Note that the shaded grey regions
denote the masks that we use to avoid searching for UXLs in the direct vicinity of background
lines included in the analyses.
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Figure H.8: (Upper Left) The best-fit signal flux, and 1 and 2σ uncertainties, as a function of the
central UXL energy across our full energy range for the innermost MOS ring. (Lower Left) The
corresponding significance in favor of the signal model, multiplied by the sign of the best fit UXL
normalization at that energy, along with the 1/2σ expectations under the null hypothesis. (Right
Panel) As in the left panel but for the innermost PN annulus.

The distribution of discovery TSs that we observe in the individual annuli all appear consistent
with expectations from MC, as illustrated in Fig. H.16 for MOS and Fig. H.17 for PN. These
figures illustrate the survival fractions of TSs, as in Fig. H.4, but at the level of the individual
annuli instead of the joint analysis. Note that the MC expectations are constructed independently
for each annulus and each data set. These results do not include the systematic nuisance parameter
since that is only included at the level of the joint likelihood, after combining the results from all
of the individual annuli.

H.3 Synthetic signal tests for the fiducial analysis

In this section we verify that our analysis framework has the ability to discover real signals if they
are present in the data. We do so by injecting a synthetic signal into the real data and analyzing
the hybrid data set with our full analysis. We also demonstrate the full analysis as applied to fully
synthetic data generated with varying injected signal strengths.
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Figure H.9: As in Fig. H.8 but for annulus 2.

H.3.1 Signal injection in real data

For injection tests in the real data, we chose a DM mass mχ = 7.0 keV and a mixing angle
sin2(2θ) = 2.5 × 10−11. We chose this mixing angle because we expect such a signal to be
detected at approximately 5σ significance. We forward model this signal through the appropriate
MOS and PN detector responses, draw Poisson counts, and then add these counts to the actual
data sets. The results of the data analysis of the hybrid data are illustrated in Fig. H.18. In the top
panel we show the 95% upper limits for MOS, PN, and the joint analysis, with and without the
systematic nuisance parameter. Note that the injected signal is indicated by the red star. The upper
limits weaken at the injected signal point, as expected, and do not exclude the injected signal
coupling. In the second row we show the corresponding detection significances. The signal is
detected at nearly 5σ in MOS alone and at around 2σ in PN. The systematics nuisance parameter
slightly reduces the significance of the discovery, but by a minimal amount since we mask a 0.4
keV window around the test mass when determining the systematics nuisance parameter. In the
third row we show how the discovery of the injected signal extends the survival function to higher
TS values. Lastly, in the bottom row we show the 1, 2, and 3 σ best-fit regions in the mχ-sin2(2θ)

plane for the DM candidate. In red we mark the location of the injected signal, which is recovered
appropriately.
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Figure H.10: As in Fig. H.8 but for annulus 3.

H.3.2 Signal injection in synthetic background data

For injection tests on the real data, we first generate synthetic data according to the best-fit null
models for each of the eight rings studied in MOS and PN data sets. We then inject a synthetic sig-
nal at a specified value of sin2(2θ) on top of the null-model realizations using the same procedure
as applied for the signal injection on the real data and repeat our full analysis procedure in search
of the injected signal with the exception that we do not apply a nuisance parameter tuning and cor-
rection. We perform 1000 independent realizations and analyses for each value of sin2(2θ, and we
repeat this procedure for 30 values of sin2(2θ) between 10−13 and 10−10 for two different neutrino
masses: 7.0 keV and 11.5 keV. The results of the data analysis of the hybrid data are illustrated
in Fig. H.19. In the top row, we show ensemble statistics for the 95% upper limits as a function
of injected signal strength for the two neutrino masses studied in this test. In the bottom row, we
show the ensemble statistics of the recovered detection test statistic as a function of the injected
signal strength. The upper limits weaken with increasing injected signal strength without exclud-
ing the true value of the injected signal. Moreover, the detection test statistic smoothly increases
as a function of increasing injected signal strength. Critically, at large injected signal strength, the
test statistic safely exceeds TS ≈ 30, which is the approximate threshold for a 5σ detection after
correcting for the look-elsewhere effect.
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Figure H.11: As in Fig. H.8 but for annulus 4.

H.4 Systematic Analysis Variations

Our fiducial result, which is illustrated in Fig. 9.3, made a number of physics-level and analysis-
level choices. These choices are justified in the main text and the supplementary results of the
proceeding sections of the SM. Still, it is worthwhile to consider how our results change for differ-
ent physics and analysis assumptions and choices, as this gives an indication of the robustness of
the limits and significances shown in Fig. 9.3.

H.4.1 Alternate DM Density Profiles

In the main text, and in particular in Fig. 9.3, we adopted the conservative DM profile that was
shown in Fig. 9.1. As already described, the present expectation is that in the absence of baryons,
the DM halo is well described by an NFW profile. Baryons are then expected to contract this
profile, increasing the DM density towards the GC, and potentially also introducing a core on top
of this. For our fiducial analysis we conservatively assumed an uncontracted NFW halo, using the
most conservative parameters determined within the 68% best fit region of [416]. In particular, we
used an NFW profile with rs = 19.1 kpc and normalized to a local DM density of ρDM = 0.29

GeV/cm3.
In Fig. H.20, we show our main results if instead we repeat the analysis for the best fit NFW

profile determined in Ref. [416], which corresponds to rs = 15.6 kpc and ρDM = 0.31 GeV/cm3, as
well as showing results for the more realistic contracted profile. There is not a parametric form for
the contracted profile, however, Ref. [416] provides a best fit model for the DM mass distribution,
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Figure H.12: As in Fig. H.8 but for annulus 5.

which we use to infer the density and then D-factor. The model only provides an estimate down
to 1 kpc from the GC, within which we conservatively assume the density profile is completely
cored.

As the figure demonstrates, adopting a more realistic contracted DM profile strengthens our
limits by roughly a factor of 2. Importantly, however, changing the profile does not appreciably
change the distribution of significance, and we continue to see no clear evidence for an UXL.

H.4.2 Dependence on the GP model

For our fiducial analysis we use the GP kernel given in (H.3) with the choice σE = 0.3. This choice
was made so that the residual background model has the ability to adjust on scales around one order
of magnitude larger in scale than the energy resolution of the detectors, which are δE/E ∼ 0.03.
In this section we verify that our results do not depend in detail upon the particular value chosen.

First, we consider a small modification to our default analysis by taking σE = 0.2 and σE = 0.4.
The results of these analyses are shown in Figs. H.21 and H.22. As a further modification of our
GP modeling procedure, we repeat our analysis with the relative scale of our kernel promoted to
a nuisance parameter that we independently profile in each annulus in both instruments between
the range of 0.15 and 0.9. We report the resulting best-fit GP scales in Tab. H.5. Results for this
analysis are shown in Fig. H.23. In those figures we show the 95% upper limits (upper panel),
significances (middle panel), and survival fraction of significances (bottom panel). We give the
results both with an without nuisance parameters. There is a slight trend where increasing σE

325



−0.2

0.0

0.2

F
lu

x
[c

ts
/c

m
2
/s

/s
r]

MOS Annulus 6

3 4 5 6 7 8

E [keV]

−2

0

2

S
ig

n
ifi

ca
n

ce
(√
t)

PN Annulus 6

3 4 5 6 7

E [keV]

Figure H.13: As in Fig. H.8 but for annulus 6.

leads to a corresponding strengthening of the sensitivity, though this difference is minor compared
to other choices in the analysis. In general, the results appear robust to the choice of σE .

Instruments Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7 Ring 8

MOS 0.60 0.90 0.90 0.34 0.81 0.90 0.42 0.90

PN 0.77 0.84 0.59 0.90 0.66 0.28 0.90 0.54

Table H.5: The best-fit scale σE , determined under the null model, when this scale is treated as
profiled nuisance parameter. In all cases except Ring 6 of PN data, the best-fit scale is larger than
the scale of the kernel used in our fiducial analysis, indicating that our fiducial choice of σE = 0.3
was conservative and endowed the GP model with sufficient flexibility.

Next, we consider changing the GP modeling more significantly by adopting an alternate kernel.
In particular, we consider the standard (and stationary) double exponential kernel

K(E,E ′) = AGP exp

[
−(E − E ′)2

2σ2

]
, (H.10)

which has the hyperparameter σ2. Note that our fiducial kernel, given in (H.3), has the property
whereby the correlation length increases with the energy resolution of the detector. The kernel
in (H.10), on the other hand, has a fixed correlation length as a function of energy. In Figs. H.24
and H.25 we show the results of using the double exponential kernel with scale length σ2 = 0.5

keV2 and σ2 = 1.0 keV2, respectively. As with our fiducial kernel, in this case we also find that
increasing σ slightly increases the limits. However, the differences between the double-exponential
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Figure H.14: As in Fig. H.8 but for annulus 7.

kernel results and our fiducial results are minor and most evident at high DM masses, mχ, where
the two kernels predict the largest differences. In particular, we find no evidence for decaying DM
with the alternate kernels and similar 95% upper limits. The systematic uncertainty associated with
this choice is generally less than other aspects of the analysis such as our assumptions regarding
the DM density profile.

A full comparison of the limits obtained under all the described GP kernel modeling choices is
presented in Fig. H.26. The choice of GP kernel and treatment of its scale as a fixed or profiled
parameter is shown to have a marginal impact on our limit-setting procedure.

It is worth noting that the upper limit in Fig. H.26 from the analysis where σE is profiled over
a nuisance parameter is, at some mass points, stronger than the upper limits in those analyses
where σE is fixed. This may seem counterintuitive, since the common assumption is that profiling
over nuisance parameters will lead to weaker constraints than in analyses where those nuisance
parameters are fixed. The key point, however, is that the previous sentence is only correct if the
nuisance parameters are fixed at their best-fit values; as may be seen in e.g. Tab. H.5, our fixed-
σE analyses do not have σE fixed at their best-fit values. Instead, our fixed σE analyses fix this
hyperparameter away from its best fit value such that the analysis is forced to give the GP model
more freedom than it would otherwise want, allowing for more conservative limits in the fixed-σE
analyses.
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Figure H.15: As in Fig. H.8 but for annulus 8.

H.4.3 Unmodeled lines in the vicinity of 3.5 keV

Our results have a significant impact on the decaying DM interpretation of the previously-observed
3.5 keV line from nearby galaxies and galaxy clusters [379–383]. Ref. [378] used a similar method
to that presented in this work to argue that the non-observation of the UXL in XMM-Newton BSOs
excluded the decaying DM origin of the 3.5 keV line. However, subsequent works [460, 461]
questioned the validity of the results in [378] for three primary reasons: (i) the use of a narrow
energy range, (ii) the possible importance of instrumental or astrophysical lines in the analysis
region, (iii) the D-factor profile chosen with a local DM density of 0.4 GeV/cm3. These points
were addressed extensively in the response [384], and we do not review the arguments here for
how these points are addressed within the context of the analysis in [378].

Here we point out that the analysis in this work provides a probe of the decaying DM origin of
the 3.5 keV line that is more robust to systematic uncertainties than [378] and that the null results
from this work strongly disfavor the decaying DM interpretation of the 3.5 keV line. Ref. [378]
performed a similar analysis to this work, but the analysis focused on the limited mass range from
6.7 to 7.4 keV. As in this work [378] used XMM-Newton blank sky data, with a comparable ex-
posure time within the signal ROI to that in this work. As mentioned in the main text, Ref. [378]
used a joint likelihood over individual exposures, as opposed to this work where we stack the data
in rings and construct the joint likelihood in individual rings. Use of the ringed data facilitates
our background subtraction and GP modeling procedures, in part because the number of counts in
each ring is large enough that we may make the Gaussian approximation to the Poisson likelihood.
This work also performs a more systematic accounting of astrophysical and instrumental lines that
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Figure H.16: As in Fig. H.4 but for the individual MOS annuli. Note that the systematic nuisance
parameter has not been applied since that is only incorporated in the joint likelihood that combines
the results from the individual annuli.

are not fully removed by the background subtraction process. Because we analyze a wide en-
ergy range in this analysis, we are able to use energy side-bands to determine the hyperparameter
for the spurious-signal contribution to the likelihood, which accounts for residual mismodeling.
Thus while the limit presented in this work in Fig. 9.3 is slightly weaker than the fiducial limit
from [378], it is more robust to mismodeling. Furthermore, we use a more conservative D-factor
profile in this work, though astrophysical uncertainties on the DM density profile are not suffi-
ciently large to explain why a decaying DM signal would have appeared in nearby galaxies and
clusters but not in this work (see [384] for a discussion of this point).

Still, in this section we investigate the potential for mismodeling in the vicinity of 3.5 keV. In
particular, [462] argued that lines may be present near 3.32 and 3.68 keV in both the MOS and
PN data. Note that in [378] these possible lines were tested for and their inclusion did not change
the central conclusion of that work. Moreover, there is no robust evidence to-date for these lines
in the MOS and PN data sets. For completeness, however, we investigate how the inclusion of
these lines affects the results of the analysis in this work. Importantly, following our normal line-
dropping procedure neither the 3.32 nor the 3.68 keV lines meet our criterion for inclusion in any
of the rings for either MOS or PN. This itself serves as evidence for the non-importance of these
line candidates on our conclusions. However, as a systematic test we perform an analysis where
we include these two lines in all of our rings for both MOS and PN, while performing the normal
line-dropping procedure for the rest of the background lines. We treat the amplitude of these lines
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Figure H.17: As in Fig. H.16 but for the PN data sets.

as a nuisance parameter which is allowed to take arbitrarily large positive or negative values.
A summary of the full results of the analysis which includes these additional lines is provided

in Fig. H.27. No new detections are made. The limits obtained by this analysis in the 6-8 keV
range are compared with the results obtained in our fiducial analysis in Fig. H.28, which reveals
small but unimportant changes in our limits.

H.4.4 Analysis of Fully Stacked Data

In the main body, we divided our signal ROI into rings and modeled the flux independently in each
ring. The motivation behind this choice was to incorporate spatial information into the analysis,
particularly as we expect the flux of an actual DM decay signal to steadily increase towards the
GC. Here we show the results of an alternative approach where instead of modeling the data ring-
by-ring, we instead combine the data in the innermost three rings of the signal ROI and model
that directly. We effectively are then left with a single combined ring, which we analyze using our
fiducial procedure.

In Fig. H.29 we show the resulting limit in the case where we also subtract the background-
ROI flux from the stacked signal region data. While there are small differences, the resulting
sensitivity and limits from this simpler approach are in good qualitative agreement to those of our
default analysis. In detail, the result here are slightly weaker, which is as expected because there
is less information in the signal ROI (we use fewer rings and by stacking the spatial information is
partially erased).
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Next, in Fig. H.30 we repeat this procedure but without subtracting the background flux. The
differences are now more noticeable - the expected and resulting limit undergoes larger fluctu-
ations and there are several mildly significant excesses. This emphasizes the importance of the
background subtraction procedure in simplifying the data, particularly around bright instrumental
lines.

H.4.5 Parametric Modeling without Background Subtraction

In this section, we detail an alternate analysis to the one presented in the main body of this paper
and provide a comparison between the fiducial and alternate analysis in a representative example
over the 8-9 keV mass range. The alternate framework uses the same data as used in our primary
analysis. However, a more traditional approach is adopted for the background modeling. Firstly,
we consider the unsubstracted data in each ring within the signal ROI. The flux within each annulus
is then modeled as follows. The background and putative signal lines are treated identically to our
fiducial approach, but the smooth background contribution is modeled parametrically using an
unfolded second order polynomial, rather than with a GP model. The three parameters that define
the quadratic background component are treated as nuisance parameters and profiled over. As
the quadratic background has less freedom than the GP model, we restrict to a smaller energy
range. Specifically, we determine the energy range by fitting a Gaussian to the detector response
at a given putative signal energy, and we define our energy range to extend 5 standard deviations
out from the signal energy in either direction. In the 8-9 keV DM mass range, this corresponds
to an approximate energy range of 0.60 keV. Furthermore, background lines within 7 standard
deviations of the signal energy are included in the model. Thus, in the 8-9 keV mass range, the
only line included is the 4.52 keV instrumental line for all PN annuli. We do not include the
systematic nuisance parameter modeling for this example.

While our background modeling is significantly different in this case, we find again that our
results are qualitatively unchanged compared to our fiducial analysis. To provide a representative
example, in Fig. H.31 we show the comparison between our fiducial analysis (without the system-
atics nuisance parameter to facilitate the comparison) and this alternate approach over the mass
range 8-9 keV. As can be seen, the expected sensitivity of the two approaches is almost identical.
This is a significant further demonstration that our specific choice of background model is not
underpinning our sensitivity.
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Figure H.18: The results of the analysis of the hybrid data that consists of the real MOS and PN
data plus a synthetic DM signal. The DM signal is generated with mass mχ = 7.0 keV and mixing
angle sin2(2θ) = 2.5×10−11 as described in the text. The top, middle, and third rows are analogous
to Figs. H.4 and H.5, but for the hybrid data set. The last row shows the 1, 2, and 3 σ recovered
parameter space for the signal in the mass and mixing angle plane. The best-fit recovered signal
is indicated in dark blue, while the red star denotes the true value injected. The synthetic signal
is appropriately recovered, adding confidence that our analysis procedure has the ability to detect
real DM signals if present in the data.
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Figure H.19: (Top Row) In red, the median 95th percentile upper limit on the recovered signal as
a function of the injection signal strength at two neutrino masses evaluated on synthetic data. We
additionally indicate the 1 and 2σ containment intervals for the ensemble of upper limits realized
at each injected signal strength. Note that these upper limits are not power constrained. These
results demonstrate that our analysis framework places robust upper limits that do not rule out
an injected signal. (Bottom Row) In black, the median recovered detection test statistic for a sig-
nal injected in the synthetic data as a function of the injected signal strength, with the 1 and 2σ
containment intervals also indicated. Under the null hypothesis, the detection test statistic should
follow a χ2-distribution; the median and 1σ and 2σ percentile values of the χ2-distribution are in-
dicated by dashed grey lines. These results demonstrate that our detection test statistic follows its
theoretically expected distribution under the null hypothesis (sin2(2θinj) = 0) and that our analysis
framework can robustly identify a signal which is present in the data. The results are smoothed
with a Savitzky–Golay filter for clarity.
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Figure H.20: As in Fig. 9.3, but for three different DM density profiles, all based upon Ref. [416].
In solid curve we show our fiducial results, corresponding to the uncontracted NFW profile with
a conservative density. The dashed curve then shows our results using the best fit NFW profile,
whereas in dashed we show the stronger limits that would be obtained with a contracted DM
distribution. Details of the distributions are provided in the text.
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Figure H.21: The analogues of Figs. H.4 and H.5, but changing the kernel correlation length to
σE = 0.2 (c.f. our fiducial value of σE = 0.3). The differences between the σE = 0.2 and 0.3
results are minor.
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Figure H.22: As in Fig. H.21 but with σE = 0.4. The limit is slightly strengthened, although again
the differences are not significant.
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Figure H.23: As in Fig. H.21 but with σE treated as a profiled nuisance parameter. The results
demonstrate that even providing our background model this additional freedom does not have a
significant impact on the limit.
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Figure H.24: As in Fig. H.21 but with the alternate GP kernel, in (H.10), with σ2 = 0.5 keV2.
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Figure H.25: As in Fig. H.24 but with σ2 = 1.0 keV2. Adopting a large scale length again slightly
strengthens the limits, although again the systematic variation of our results with the kernel is
relatively small.
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Figure H.26: A comparison of the limits obtained across the full mass range for each variation
of the GP correlation-length hyperparameter considered. In particular we show results for varia-
tions of the relative-scale and fixed-scale kernels (denoted σE and σ2 respectively), as well as the
relative-scale kernel where the scale profiled independently in each annulus.
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Figure H.27: As in Fig. H.21, but with the fiducial GP kernel at σE = 0.3 and the inclusion of
3.32 and 3.68 keV lines in all analyzed annuli. The newly masked region associated with these
two lines is highlighted in light red.
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Figure H.28: A close inspection of the limits set in our fiducial analysis and the modified analysis
that includes a 3.32 and 3.68 keV line in each annulus. We compare the limits set in these two
analyses both with (solid lines) and without (dashed lines) the inclusion of our systematic nuisance
parameter designed to test for and correct possible mismodeling.
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Figure H.29: The same results as presented in Figs. H.4 and H.5, however on a modified data set
where instead of analyzing the signal ROI divided into eight individual rings, we stack the inner
three rings into a single annulus. As in our primary approach, we subtract the background ROI flux
from the signal-region data. The results are comparable to, although slightly weaker than, those
from our fiducial approach, consistent with the reduced information available.
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Figure H.30: As in Fig. H.29, however considering the stacked signal ROI without subtracting the
background. The limit is noticeably worse, and several excesses appear, highlighting the impor-
tance of the background subtraction.
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Figure H.31: Here we compare our fiducial results using a GP model, shown in black, to the
result of an approach where the continuum background contribution is modeled with a second
order polynomial, shown in red, as described in the text. Both results are shown without imposing
a systematic nuisance parameter. While our fiducial approach uses the background-subtracted
signal-ROI data, the alternate approach uses the un-subtracted data. We see that in both cases the
expected and resulting limits are in qualitative agreement, demonstrating that our choice of GP
modeling in our fiducial analysis does not drive the sensitivity of our results.
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[227] Stefan Knirck, Jan Schütte-Engel, Alexander Millar, Javier Redondo, Olaf Reimann, An-
dreas Ringwald, and Frank Steffen. A First Look on 3D Effects in Open Axion Haloscopes.
JCAP, 08:026, 2019.

359



[228] Andrei Derevianko. Detecting dark-matter waves with a network of precision-measurement
tools. Phys. Rev. A, 97(4):042506, 2018.

[229] D. Lynden-Bell and R. M. Lynden-Bell. Ghostly streams from the formation of the Galaxy’s
halo. Monthly Notices of the Royal Astronomical Society, 275(2):429–442, 07 1995.

[230] V Belokurov, D Erkal, N W Evans, S E Koposov, and A J Deason. Co-formation of the disc
and the stellar halo. Monthly Notices of the Royal Astronomical Society, 478(1):611–619,
06 2018.

[231] Amina Helmi, Carine Babusiaux, Helmer H. Koppelman, Davide Massari, Jovan Veljanoski,
and Anthony G. A. Brown. The merger that led to the formation of the Milky Way’s inner
stellar halo and thick disk. Nature, 563(7729):85–88, October 2018.

[232] M. Malnou, D.A. Palken, B.M. Brubaker, Leila R. Vale, Gene C. Hilton, and K.W. Lehnert.
Squeezed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X,
9(2):021023, 2019.

[233] Samuel K. Lee and Annika H.G. Peter. Probing the Local Velocity Distribution of WIMP
Dark Matter with Directional Detectors. JCAP, 04:029, 2012.

[234] K.A. van Bibber and S.D. Kinion. Experimental searches for galactic halo axions. Phil.
Trans. Roy. Soc. Lond. A, 361:2553–2567, 2003.

[235] Heidi Jo Newberg et al. Sagittarius tidal debris 90 kpc from the Galactic center. Astrophys.
J. Lett., 596:L191–L194, 2003.

[236] Brian Yanny et al. A Low latitude halo stream around the Milky Way. Astrophys. J., 588:824,
2003. [Erratum: Astrophys.J. 605, 575–577 (2004)].

[237] Steven R. Majewski, M.F. Skrutskie, Martin D. Weinberg, and James C. Ostheimer. A 2mass
all-sky view of the Sagittarius dwarf galaxy: I. Morphology of the Sagittarius core and tidal
arms. Astrophys. J., 599:1082–1115, 2003.

[238] Lina Necib, Bryan Ostdiek, Mariangela Lisanti, Timothy Cohen, Marat Freytsis, Shea
Garrison-Kimmel, Philip F. Hopkins, Andrew Wetzel, and Robyn Sanderson. Evidence
for a Vast Prograde Stellar Stream in the Solar Vicinity. Nature Astron., 4(11):1078–1083,
2020.

[239] Ciaran A.J. O’Hare, Christopher McCabe, N. Wyn Evans, GyuChul Myeong, and Vasily
Belokurov. Dark matter hurricane: Measuring the S1 stream with dark matter detectors.
Phys. Rev. D, 98(10):103006, 2018.

[240] G.C. Myeong, N.W. Evans, V. Belokurov, N.C. Amorisco, and S. Koposov. Halo Sub-
structure in the SDSS-Gaia Catalogue : Streams and Clumps. Mon. Not. Roy. Astron. Soc.,
475(2):1537–1548, 2018.

[241] G. C. Myeong, N. W. Evans, V. Belokurov, J. L. Sand ers, and S. E. Koposov. Discovery
of new retrograde substructures: the shards of ω Centauri? MNRAS, 478(4):5449–5459,
August 2018.

360



[242] Til Piffl et al. The RAVE survey: the Galactic escape speed and the mass of the Milky Way.
Astron. Astrophys., 562:A91, 2014.

[243] Ralph Schönrich, James Binney, and Walter Dehnen. Local kinematics and the local stan-
dard of rest. MNRAS, 403(4):1829–1833, April 2010.

[244] Michal Maciejewski, Mark Vogelsberger, Simon D. M. White, and Volker Springel. Bound
and unbound substructures in Galaxy-scale dark matter haloes. MNRAS, 415(3):2475–2484,
August 2011.

[245] Farhan Feroz and M.P. Hobson. Multimodal nested sampling: an efficient and robust al-
ternative to MCMC methods for astronomical data analysis. Mon. Not. Roy. Astron. Soc.,
384:449, 2008.

[246] F. Feroz, M.P. Hobson, E. Cameron, and A.N. Pettitt. Importance Nested Sampling and the
MultiNest Algorithm. Open J. Astrophys., 2(1):10, 2019.

[247] J. Buchner, A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, M. Brightman, A. Merloni,
M. Salvato, J. Donley, and D. Kocevski. X-ray spectral modelling of the AGN obscuring
region in the CDFS: Bayesian model selection and catalogue. A&A, 564:A125, April 2014.

[248] Riccardo Catena and Piero Ullio. A novel determination of the local dark matter density.
JCAP, 1008:004, 2010.

[249] Fabio Iocco, Miguel Pato, Gianfranco Bertone, and Philippe Jetzer. Dark Matter distribution
in the Milky Way: microlensing and dynamical constraints. JCAP, 11:029, 2011.

[250] Zeeshan Ahmed et al. Quantum Sensing for High Energy Physics. In First workshop on
Quantum Sensing for High Energy Physics, 3 2018.

[251] Luca Di Luzio, Andreas Ringwald, and Carlos Tamarit. Axion mass prediction from mini-
mal grand unification. Phys. Rev. D, 98(9):095011, 2018.

[252] Max Tegmark, Anthony Aguirre, Martin Rees, and Frank Wilczek. Dimensionless con-
stants, cosmology and other dark matters. Phys. Rev., D73:023505, 2006.

[253] D. Horns and M. Meyer. Indications for a pair-production anomaly from the propagation of
VHE gamma-rays. JCAP, 1202:033, 2012.

[254] Manuel Meyer, Dieter Horns, and Martin Raue. First lower limits on the photon-
axion-like particle coupling from very high energy gamma-ray observations. Phys. Rev.,
D87(3):035027, 2013.

[255] Alessandro De Angelis, Marco Roncadelli, and Oriana Mansutti. Evidence for a new light
spin-zero boson from cosmological gamma-ray propagation? Phys. Rev. D, 76:121301,
2007.

[256] Clare Burrage, Anne-Christine Davis, and Douglas J. Shaw. Active Galactic Nuclei Shed
Light on Axion-like-Particles. Phys. Rev. Lett., 102:201101, 2009.

361



[257] C. Gatti et al. The Klash Proposal: Status and Perspectives. In 14th Patras Workshop on
Axions, WIMPs and WISPs, 11 2018.

[258] Stephen J. Asztalos et al. Large scale microwave cavity search for dark matter axions. Phys.
Rev. D, 64:092003, 2001.

[259] S. J. Asztalos et al. A SQUID-based microwave cavity search for dark-matter axions. Phys.
Rev. Lett., 104:041301, 2010.

[260] C. Hagmann, P. Sikivie, N. S. Sullivan, and D. B. Tanner. Results from a search for cosmic
axions. Phys. Rev., D42:1297–1300, 1990.

[261] S. De Panfilis, A. C. Melissinos, B. E. Moskowitz, J. T. Rogers, Y. K. Semertzidis, Walter
Wuensch, H. J. Halama, A. G. Prodell, W. B. Fowler, and F. A. Nezrick. Limits on the
Abundance and Coupling of Cosmic Axions at 4.5-Microev ¡ m(a) ¡ 5.0-Microev. Phys.
Rev. Lett., 59:839, 1987.

[262] C. Hagmann, D. Kinion, W. Stoeffl, K. van Bibber, E. Daw, H. Peng, Leslie J Rosenberg,
J. LaVeigne, P. Sikivie, N. S. Sullivan, D. B. Tanner, F. Nezrick, Michael S. Turner, D. M.
Moltz, J. Powell, and N. A. Golubev. Results from a high-sensitivity search for cosmic
axions. Phys. Rev. Lett., 80:2043–2046, Mar 1998.

[263] V. Anastassopoulos et al. New CAST Limit on the Axion-Photon Interaction. Nature Phys.,
13:584–590, 2017.

[264] Hooman Davoudiasl, Dan Hooper, and Samuel D. McDermott. Inflatable dark matter. Phys-
ical Review Letters, 116(3), Jan 2016.

[265] Peter W. Graham and Adam Scherlis. Stochastic axion scenario. Phys. Rev. D,
98(3):035017, 2018.

[266] Prateek Agrawal, Gustavo Marques-Tavares, and Wei Xue. Opening up the QCD axion
window. JHEP, 03:049, 2018.

[267] Luca Visinelli and Paolo Gondolo. Axion cold dark matter in non-standard cosmologies.
Phys. Rev. D, 81:063508, 2010.

[268] Raymond T. Co, Francesco D’Eramo, and Lawrence J. Hall. Supersymmetric axion grand
unified theories and their predictions. Phys. Rev., D94(7):075001, 2016.

[269] Marco Farina, Duccio Pappadopulo, Fabrizio Rompineve, and Andrea Tesi. The photo-
philic QCD axion. JHEP, 01:095, 2017.

[270] Super conducting systems inc. http://www.superconductingsystems.com.

[271] S. Henry, M. Pipe, A. Cottle, C. Clarke, U. Divakar, and A. Lynch. Characterisation of
superconducting capillaries for magnetic shielding of twisted-wire pairs in a neutron electric
dipole moment experiment. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 763:155–162, 2014.

362

http://www.superconductingsystems.com


[272] M. Frigo and S.G. Johnson. The design and implementation of fftw3. Proceedings of the
IEEE, 93(2):216–231, 2005.

[273] Paul J. McMillan and James J. Binney. The uncertainty in galactic parameters. Monthly
Notices of the Royal Astronomical Society, 402(2):934–940, Feb 2010.

[274] Derek F. Jackson Kimball et al. Overview of the Cosmic Axion Spin Precession Experiment
(CASPEr). Springer Proc. Phys., 245:105–121, 2020.

[275] M. Silva-Feaver, S. Chaudhuri, H. Cho, C. Dawson, P. Graham, K. Irwin, S. Kuenstner,
D. Li, J. Mardon, H. Moseley, R. Mule, A. Phipps, S. Rajendran, Z. Steffen, and B. Young.
Design overview of DM Radio pathfinder experiment. IEEE Transactions on Applied Su-
perconductivity, 27(4):1–4, June 2017.

[276] Alexander V Gramolin, Deniz Aybas, Dorian Johnson, Janos Adam, and Alexander O
Sushkov. Search for axion-like dark matter with ferromagnets. Nature Physics, 2020.

[277] COMSOL Multiphysics® v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden.

[278] Magnicon. http://www.magnicon.com/.

[279] M. Ackermann et al. Search for Gamma-ray Spectral Lines with the Fermi Large Area
Telescope and Dark Matter Implications. Phys. Rev. D, 88:082002, 2013.

[280] Andrea Albert, German A. Gomez-Vargas, Michael Grefe, Carlos Munoz, Christoph
Weniger, Elliott D. Bloom, Eric Charles, Mario N. Mazziotta, and Aldo Morselli. Search
for 100 MeV to 10 GeV γ-ray lines in the Fermi-LAT data and implications for gravitino
dark matter in µνSSM. JCAP, 10:023, 2014.

[281] M. Ackermann et al. Updated search for spectral lines from Galactic dark matter interactions
with pass 8 data from the Fermi Large Area Telescope. Phys. Rev. D, 91(12):122002, 2015.

[282] Dark Matter New Initiatives FY2019. https:
//science.osti.gov/-/media/hep/pdf/Awards/
Dark-Matter-New-Initiatives-FY-2019--List-of-Awards.pdf?
la=en&hash=7134EDEA489651A3097DC8DB8C59069384A4538E.

[283] J. L. Ouellet et al. Probing the QCD Axion with DMRadio-m3. Snowmass 2021 Letter of
Interest, CF2(217), 2020.

[284] S. Chaudhuri et al. DMRadio-GUT: Probing GUT-scale QCD Axion Dark Matter. Snow-
mass 2021 Letter of Interest, CF2(219), 2020.

[285] A. F. Leder et al. Magnet R&D for Low-Mass Axion Searches. Snowmass 2021 Letter of
Interest, AF5(244), 2020.

[286] S. E. Kuenstner et al. Radio Frequency Quantum Upconverters: Precision Metrology for
Fundamental Physics. Snowmass 2021 Letter of Interest, IF1(193), 2020.

363

http://www.magnicon.com/
https://science.osti.gov/-/media/hep/pdf/Awards/Dark-Matter-New-Initiatives-FY-2019--List-of-Awards.pdf?la=en&hash=7134EDEA489651A3097DC8DB8C59069384A4538E
https://science.osti.gov/-/media/hep/pdf/Awards/Dark-Matter-New-Initiatives-FY-2019--List-of-Awards.pdf?la=en&hash=7134EDEA489651A3097DC8DB8C59069384A4538E
https://science.osti.gov/-/media/hep/pdf/Awards/Dark-Matter-New-Initiatives-FY-2019--List-of-Awards.pdf?la=en&hash=7134EDEA489651A3097DC8DB8C59069384A4538E
https://science.osti.gov/-/media/hep/pdf/Awards/Dark-Matter-New-Initiatives-FY-2019--List-of-Awards.pdf?la=en&hash=7134EDEA489651A3097DC8DB8C59069384A4538E


[287] Richard A. Battye, Bjoern Garbrecht, Jamie I. McDonald, Francesco Pace, and Sankar-
shana Srinivasan. Dark matter axion detection in the radio/mm-waveband. Phys. Rev. D,
102(2):023504, 2020.
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