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ABSTRACT

The human brain functions through the coordination of a complex network of

billions of neurons. This network, when defined by the functions it dictates, is known

as functional brain connectivity. Associating brain networks with clinical symptoms

and outcomes has great potential for shaping future work in neuroimaging and clinical

practice. Resting-state functional magnetic resonance imaging (rfMRI) has commonly

been used to establish the functional brain network; however, understanding the links

to clinical characteristics is still an ongoing research question. Existing methods for

analysis of functional brain networks, such as independent component analysis and

canonical correlation analysis, have laid a good foundation for this research; yet most

methods do not directly model the node-level association between connectivity and

clinical characteristics, and thus provide limited ability for interpretation. To address

those limitations, this dissertation research focuses on developing efficient methods

that identify node-level associations to answer important research questions in brain

imaging studies.

In the first project, we propose a joint modeling framework for estimating func-

tional connectivity networks from rfMRI time series data and evaluating the pre-

dictability of individual’s brain connectivity patterns using their clinical characteris-

tics. Our goal is to understand the link between clinical presentations of psychiatric

disorders and functional brain connectivity at different region pairs. Our modeling

framework consists of two components: estimation of individual functional connec-

tivity networks and identifying associations with clinical characteristics. We propose

a model fitting procedure for jointly estimating these components via the alternating

xii



direction method of multipliers (ADMM) algorithm. The key advantage of the pro-

posed approach lies in its ability to directly identify the brain region pairs between

which the functional connectivity is strongly associated with the clinical character-

istics. Compared to existing methods, our framework has the flexibility to integrate

machine learning methods to estimate the nonlinear predictive effects of clinical char-

acteristics. Additionally, jointly modeling the precision matrix and the predictive

model estimates provides a novel framework to accommodate the uncertainty in es-

timating functional connectivity.

In the second project, we focus on a scalar-on-network regression problem which

utilizes brain functional connectivity networks to predict a single clinical outcome of

interest, where the regression coefficient is edge-dependent. To improve estimation

efficiency, we develop a two stage boosting algorithm to estimate the sparse edge-

dependent regression coefficients by leveraging the knowledge of brain functional or-

ganization. Simulations have shown the proposed method has higher power to detect

the true signals while controlling the false discovery rate better than existing ap-

proaches. We apply the proposed method to analysis of rfMRI data in the Adolescent

Brain Cognitive Development (ABCD) study and identify the important functional

connectivity sub-networks that are associated with general cognitive ability.

In the third project, we extend scalar-on-network regression via boosting in the

second project by relaxing the homogeneity constraints within the prespecified func-

tional connectivity networks. We adopt deep neural networks (DNN) to model the

edge-dependent regression coefficients in light of the edge-level and node level fea-

tures in the brain network, as well as the well-known brain functional organization.

In addition, the proposed DNN-based scalar-on-network regression has the flexibility

to incorporate the signal pattern from other imaging modalities into the model. We

develop an efficient model fitting method based on ADMM. The proposed method

is evaluated and compared with existing alternatives via simulations and analysis of

xiii



rfMRI and task fMRI data in the ABCD study.
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CHAPTER I

Introduction

The human brain coordinates behavior through the integrated activity of billions

of neurons acting in complex functional networks. Increasing interest in this field and

imaging advances have propelled research with the goal to understand these functional

networks and how they correspond to clinical presentations of disease. Resting-state

functional magnetic resonance imaging (rfMRI) is noninvasive imaging that captures

brain activity through variations in the blood-oxygen-level-dependent (BOLD) signal.

The functional connectivity network is defined by the correlation of the BOLD signals

across different regions of the brain.

Functional connectivity patterns across patients can help to identify those who are

at high risk of developing a psychiatric disorder or serve as a disease marker. For most

disorders this connection is still an open question, and therefore additional tools are

needed to analyze functional connectivity. Long-term, large scale, imaging studies,

such as the Adolescent Brain Cognitive Development (ABCD) study, are currently

being performed increasing the availability and richness of brain imaging data.

Careful considerations must be made when working with any brain imaging study.

For example the PNC cohort includes a smaller sample which may reduce the ability

to differentiate signal from noise in the brain images; however all the images were col-

lected at one location on one machine, therefore reducing outside sources of noise that
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occur when these elements vary subject to subject. This characteristic of the study

may also effect generalizability of results, which must also be carefully considered

according to the ways in which the study and imaging was administered.

Another important consideration to make is the way an image is summarized for

each individual to best capture the underlying activity and relate to other subjects.

The brain may be viewed in different ways, for example, the image may be summarized

by an even distribution of voxels throughout the brain without regard of the physical

surfaces in the brain (commonly referred to as volumetric images). In contrast, the

images could be summarized across location on the cortical surface of the brain,

which does take into account distance of locations across the folded cortex. There

is increasing evidence that accounting for cortical surface may improve results of

functional connectivity analysis, though both image types are still commonly used

[8, 2].

Some existing methods may be considered to address these questions. One initial

challenge of functional connectivity analysis is defining the connectivity network for

each individual. Broadly, this is done by quantifying the correlation between any

two nodes’ time series in the network. Using simple correlation may not adequately

answer connectivity questions, and partial correlation captures the relationship be-

tween any two nodes independent of all other nodes’ associations [81]. Other more

complex methods may also be considered to do this, one approach uses Bayesian

networks to estimate directed relationships between nodes. Bayesian networks uses

directed acyclic graphs, which labels the direction of the connection between nodes

[55]. Another common approach is using graphical models. Smith et al. [72] provides

a more detailed overview of functional connectivity methods.

Graphical models, such as graphical lasso, have frequently been used to estimate

the functional connectivity network[23, 95, 54]. There are many extensions to graph-

ical lasso that could be applied to functional connectivity, such as smoothly clipped

2



absolute deviation (SCAD) which uses a different penalty and Bayesian graphical

lasso which uses Bayesian methods [20, 80]. An alternative to graphical lasso is the

semiparametric method for high-dimensional undirected graphs detailed in Liu et al.

[49]. This method implements a semiparametric Gaussian copula to model the undi-

rected graph, relaxing the normality assumption commonly needed in other graphical

model estimation methods.

Current methods that connect functional connectivity to clinical characteristics

include independent component analysis, canonical correlation analysis, and scalar-

on-network regression. Some of these methods hinge upon dimension reductions

methods to overcome the computational challenges of working with brain imaging

data. Canonical correlation analysis is one example of this, in which the method

links correlation structures of two sets of variables. Applying this to rfMRI data, it

can link correlation structure among functional networks to correlation among groups

of symptoms [83]. A focus on dimension reduction helps when the problem is compu-

tationally intractable but limits the extent with which brain regions can be identified.

Another broad approach is using scalar on network or image on scalar regression.

One method proposed to do this is a classification method described in Relión et al.

[61], this method performs variable selection on the nodes and edges in a network

in order to classify the entire network. This is a similar idea to one of the methods

proposed here, yet the implementation is different. Group selection methods, like

group lasso, can be used to select functional networks that are associated with a

symptom or disorder, yet they have limited power to detect such associations.

Machine learning methods may also be considered to address such questions.

Support Vector Machine (SVM), random forest, and boosting are a few methods

that we will consider for prediction. SVM has been shown to have good performance

for classification in a wide variety of contexts, with some applications in neuroimaging

[17, 57]. Random forest similarly has been used for classification and prediction in a

3



range of applications [7]. The Alternating direction method of multipliers (ADMM)

algorithm was developed as a tool to solve distributed convex optimization problems,

and specifically beneficial in high-dimensional settings where there is a very large

number of features [5].

Boosting was developed to improve prediction by combining weak learners, with

its beginning in the AdaBoost algorithm [53]. This method evolved into various other

boosting methods including tree-based boosting, gradient boosting, and likelihood-

based boosting. L2 Boosting is one such form of boosting that uses the gradient

descent algorithm with L2 loss [9]; this form of boosting has been shown to perform

well in high-dimensional settings such as in brain imaging or genomic applications[26].

Deep neural networks (DNN) have been shown to achieve very high predictive

performance in applications as varied as speech recognition [56] to predicting crop

yield [42]. Imaging, in particular, has benefited greatly from deep learning methods

that efficiently utilize vast amounts of data for classification and regression problems

[39, 89, 62]. In medical imaging, DNN has been used to aid in diagnostics or disease

detection for several diseases like breast cancer [15], prostate cancer [48], and diabetic

retinopathy [32]. They have also been used to assist with treatment in many contexts

[47, 33]. DNN have been used for feature extraction with rfMRI images in previous

work [38] or identifying functional networks using rfMRI images [92]. The applications

are wide, but it is clear that DNN are a useful tool for medical imaging applications,

including rfMRI.

Methods incorporating multiple imaging modalities are increasingly needed as

imaging studies become more prevalent. To the best of our knowledge, there are very

few existing methods to incorporate resting-state and task fMRI data, like we propose

to do in this dissertation. Other approaches combine different imaging modalities,

such as multiple tasks [11, 60] or multimodal PET scans [85]. These methods also

have different approaches, like joint estimation procedures or simultaneous inference

4



across imaging modalities. Some assume the images are independent which may not

be realistic in all settings, such as combining multiple tasks or task and resting-state.

The remainder of this dissertation aims to to develop state-of-the-art statistical

methods to address some of the current questions in analysis of functional connectivity

data. The proposed new methods incorporate and build upon some existing methods

and algorithms, such as graphical models, SVM, ADMM, DNN, and boosting.
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CHAPTER II

On Predictability of Individual Functional

Connectivity Networks from Clinical

Characteristics

2.1 Introduction

It is widely acknowledged that the integrated behavior of the approximately 100

billion neurons of the human brain in connected networks provides the substrate for

complex behavior [68]. Growing interest in understanding the association between

abnormal brain development and vulnerability to psychiatric disorders or symptoms

has motivated recent research in functional brain connectivity, utilizing functional

magnetic resonance imaging (fMRI) [64, 29, 70, 75]. Correlated activity of low fre-

quency fluctuations of the blood-oxygenation level dependent (BOLD) signal provides

a putative marker of large-scale networks, which may be used to find patterns among

patients linked to specific clinical states. Identifying connectivity patterns associated

with patient characteristics is clinically relevant for classifying high risk patients or

identifying disease markers. Such fMRI scans, typically obtained while the brain is

‘at rest,’ i.e. not engaged in any particular task, capture dynamic activity across

the brain with complex spatial and temporal covariance patterns. Extracting clin-

ically meaningful information from these patterns represents important progress in

6



the analysis of fMRI images.

2.1.1 Motivating Data: The PNC Study

The motivating data set for this analysis is from the Philadelphia Neurodevelop-

mental Cohort (PNC) study [63]. The PNC is a community sample of 9,500 young

persons from an urban hospital who presented for care for a wide range of physical

and brain illnesses. Amongst this large sample, over 1,400 underwent neuroimaging,

from which subjects for the current study were derived. The open source data set

provides the opportunity to study the relationship between brain development and

psychiatric symptoms.

The PNC study has been used to investigate abnormal brain development with an

aim to identify youth at risk of developing psychiatric disorders [64, 41, 83]. Kessler

et al [41] used independent component analysis to generate “growth charts” for func-

tional brain network, linking this maturation to predict task outcomes. Xia et al. [83]

identified functional connectivity patterns associated with four categories of psy-

chopathology using canonical correlation analysis. These important findings assist

in furthering knowledge of the link between brain development and psychopathology;

in this work we aim to study this relationship at a more granular level of both con-

nectivity and patient symptoms and characteristics. Using novel methods we aim to

identify clinical characteristics that are predictive of functional connectivity.

2.1.2 Existing Methods

Several statistical methods have been proposed to estimate networks from these

fMRI data, graphical models being one popular choice; see [72] for a recent overview

of the functional connectivity methods. It has been shown that partial correlation,

inverse covariance estimation, and Bayes net methods, are able to capture accurate

connectivity estimation yet there are computational challenges in many cases. When
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Figure 2.1: Depiction of use of imaging data and clinical characteristics to predict
functional connectivity.

using undirected network estimation, there are often limitations regarding choice of

link strength [73]. Though the drawbacks of various methods may be known, it is often

difficult to compare approaches or decide on the best method given multiple options.

Most approaches for comparison of networks involve basic, summary characteristics of

a network. These summary metrics may not capture the true differences or similarities

across metrics. Here the proposed method aims to utilize connectivity in a different

way than existing methods to establish associations with clinical symptoms [73].

Understanding the predictive utility of functional connectivity is of critical inter-

est to clinicians. Diseases like depression and Alzheimer’s disease may be associated

with unique connectivity patterns, but research to demonstrate true predictive power

of these networks for clinical use is still in its infancy [70], [29]. On the other hand,

predicting connectivity using clinical characteristics may be more accurate than the

reverse; because the connectivity matrix is difficult to estimate, current methods that

use that to model phenotype may be unreliable or infeasible. Clinicians are ulti-
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mately interested in using connectivity to diagnosis or identify patients at greater

risk of disease, and establishing symptoms that are predictive of connectivity is a rea-

sonable step to advance this goal. Using clinical characteristics as predictors provides

an approach to identifying associations between multiple phenotypic characteristics

and functional brain connectivity, without relying on the accuracy of estimating a

potentially noisy connectivity matrix.

2.1.3 Contribution

This work aims to provide a broad framework for constructing a reliable func-

tional connectivity network and analyzing relationships with clinical characteristics

using machine learning methods. Specifically, we propose a three-level model to spec-

ify the association between the voxel-level fMRI times series, the region-level brain

networks and the clinical characteristics. We develop a fast computing method to

estimate the model parameters and make prediction on brain functional connectivity

by integrating different machine learning methods. A joint modeling framework is

then used to improve connectivity estimation from the results of modeling connectiv-

ity with clinical characteristics. We illustrate the proposed method on evaluating the

predictability of individual functional connectivity networks from the clinical char-

acteristics in the PNC study, identifying the important functional sub-networks that

are highly associated with psychiatry diseases such as Post-Traumatic Stress Dis-

order (PTSD) and Psychosis. We also perform a simulation study to evaluate the

performance of the proposed framework in terms of the selection and prediction ac-

curacy. In addition, we have developed an R package that implements the proposed

method and provides a user-friendly software to study the association between func-

tional brain networks and clinical characteristics, including the fMRI voxel-level time

series prepossessing and the graphical presentation of the model fitting results. The

R package will be freely available online after the paper is published and it is now
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available upon request and on GitHub.

2.2 Methods

In this work, we propose a general modeling framework for analysis of brain func-

tional connectivity and clinical characteristics. It consists of two major steps: 1)

individual functional connectivity network construction, 2) covariate feature screen-

ing and network prediction. To improve estimation these two components are then

iteratively jointly estimated using the ADMM algorithm.

Suppose we collect data from n subjects. We collect the resting-state fMRI signal

with T scans, where the whole brain regions consist of V voxels and R regions. Let

i (i = 1, . . . , n) index the subject, v (v = 1, . . . , V ) index the voxels, t (t = 1, . . . , T )

index the time scans. Let rv ∈ {1, . . . , R} be the region index for voxel v. Let

yi,v,t represent the observed resting state fMRI signals for subject i at voxel v and

time t. For each subject, we also collect p covariates of clinical characteristics. Let

j (j = 1, . . . , p) index the covariates and let xi,j denote the measurements of covariate

j for subject i. Write xi = (xi,1, . . . , xi,p)
>.

2.2.1 A Generative Modeling Framework

We consider a generative modeling framework to specify the associations between

the voxel-level fMRI time series, the region-level brain networks and the clinical char-

acteristics. We consider a three-level hierarchical model.

At Level 1, we summarize the voxel level brain activity into region level signals:

yi,v,t =
R∑
r=1

I(rv = r)α̃i,v,rỹi,r,t + εi,v,t, (2.1)

where ỹi,r,t represents the summarized neural activity in region r at time t for subject

i and αi,v,r’s are the weight coefficients that represent the contribution of voxel v to
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region r for subject i. We assume the random error εi,v,t with mean zero and constant

variance.

At Level 2, we model the region-level brain functional connectivity network. We

consider a Gaussian copula graphical model. We transform each region specific signal

ỹi,r,t into a latent variable zi,r,t according to the marginal distribution. We assume

those latent variables follow a multivariate normal distribution. In particular, we

have

ỹi,r,t = F−1
i,r {Φ(zi,r,t)}, zi,t = (zi,1,t, . . . , zi,R,t)

> ∼ N(0,Ω−1
i ), (2.2)

where Ωi = {ωi,r,r′} is anR×R precision matrix. The function Fi,r(·) is the cumulative

distribution function of ỹi,r,t and Φ(·) is the cumulative distribution function of the

standard Gaussian distribution.

At Level 3, we impose sparsity on the precision matrix Ω. We introduce a latent

selection indicator ai,r,r′ ∈ {0, 1} for each region pair (r, r′) to indicate whether the

region r and r′ are function connected for subject i; and for each region pair, we

model the conditional distribution of ai,r,r′ given the clinical characteristics xi through

a logistic regression model:

ωi,r,r′ = ω̃i,r,r′ai,r,r′ , logit{E(ai,r,r′)} = gr,r′(xi), (2.3)

where gr,r′(·) is an unknown function representing the log odds of region r and r′

being functional connected for subject i with clinical characteristics xi.

2.2.2 Individual functional connectivity network estimation

We consider two fast computing methods for Level 1 estimation: averaging voxel

level signals within each region and using principal component analysis (PCA) to

summarize region level. Specifically in the first case, taking a simple average of
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voxels uses α̃i,v,r = 1. We will assume equal weight across all voxels and average

within regions:

ỹi,r,t =
1∑

v I(rv = r)

∑
v:rv=r

yi,v,t, (2.4)

An alternative estimation approach uses principal component analysis to assign weights,

that procedure estimates α̃i,v,rỹi,v,t with the first principal component.

Our network estimation for Level 2 implements the Meinshausen and Bühlmann

method of estimating a sparse graphical model [91]. We have selected this method

in part due to the flexibility to relax the normality assumption often imposed on

observations in graphical models. Through fitting semi-parametric Gaussian copula

models, this approach aims to better recover the true underlying undirected graph

structure [49].

In particular, let Φ−1(·) be the quantile function of the standard Gaussian distri-

bution. We have zi,r,t = Φ−1 {Fi,r (ỹi,r,t)} and the connectivity matrix is estimated as

Ω̂i = arg min
Ω

[tr{ΩST (Zi)} − log |Ω|+ λ‖Ω‖1] , (2.5)

where ST (Zi) is the sample covariance of the transformed region-level connectivity

signals Zi = (zi,1, . . . , zi,R), |Ω| is the determinant of Ω = {ωr,r′}, λ is a regularization

parameter and ‖Ω‖1 =
∑

r,r′ |ωr,r′| is the entry-wise L1 norm. The solution of (2.5)

enjoys the sparsity, thus we estimate the latent connectivity indicator to obtain the

functional connectivity matrix for the entire brain Ai = (ai,r,r′) with

ai,r,r′ = I(ωi,r,r′ 6= 0),

We use this network construction as the connectivity outcome when fitting the pre-

diction models in the Level 3 estimation.
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2.2.3 Prediction of Network Features

We can estimate the relationship between the covariates and connectivity of re-

gions r and r′, gr,r′(·) using the initial estimate of the functional connectivity network.

Although the framework presented in Section 2.2.1 is flexible and may incorporate

more general models, we start from a linear model for simplicity:

logit{E(ai,r,r′)} =

p∑
j=1

βr,r′,jxi,j, (2.6)

where xi,j is the measured value for covariate j of subject i.

With a large number of region pairs and covariates to consider, it may be difficult

to perform model estimation. A more efficient approach is to carry out a screening

mechanism before fitting edgewise prediction models. We proposed to implement the

elastic net regression to screen out clinical variables that are not associated with a

given edge connection. We only consider predicted edges where at least five percent

of subjects have a connection.

Machine learning methods are increasingly popular for predictive modeling. We

consider two common machine learning methods to predict edgewise connectivity:

SVM and random forests [17, 6].

When performing SVM we aim to minimize the following loss function for each

region pair r, r′:

min
θr,r′

{
1

2
w>r,r′wr,r′ + cr,r′

n∑
i=1

ξi,r,r′

}
,

such that (2ai,r,r′ − 1){w>r,r′ φ(xi) + b} ≥ 1− ξi,r,r′ , (2.7)

where θr,r′ = {wr,r′ , br,r′ , {ξi,r,r′}ni=1} and φ(x) is a vector of features in the trans-

formed feature space derived from the kernel k(x,x′), such that k(x,x′) = φ(x)·φ(x′).

In this setup wr,r′ denotes the weight vector used to maximize the margin around the
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hyperplane separating subjects with and without a connected edge between region

pairs r and r′ in the network. The penalty term cr,r′
∑n

i=1 ξi,r,r′ is used to penalize for

observations that are misclassified.

Random forest implements a series of decision trees, where individual trees form

based on minimizing the residual sum of squares. In particular, for each region pair

r, r′, we aim to predict the functional connectivity ai,r,r′ using clinical characteristics

xi using classification probability mr,r′(x) = Pr(ai,r,r′ = 1 | xi = x). We model

mr,r′(x) as an ensemble of M randomized regression trees, i.e.

mr,r′(x) =
1

M

M∑
j=1

m(x, Tr,r′,j), m(x, Tr,r′,j) =
S∑
s=1

pr,r′,j,sI(x ∈ Ar,r′,j,s), (2.8)

where m(x, Tr,r′,j) is the classification probability given xi = x by the jth tree for

region pairs r, r′. Each tree Tr,r′,j consists of a tree-based partition {Ar,r′,j,s}Ss=1 of the

sample space X with X =
⋃S
s=1Ar,r′,j,s and Ar,r′,j,s ∩ Ar,r′,j,s′ = ∅ for s 6= s′ and the

corresponding classification probability pr,r′,j,s for partition Ar,r,′j,s.

For the tuning parameters, we use the standard settings for SVM, using the normal

kernel function and soft margin classification, and tune the number of trees and num-

ber of candidate variables at each split for random forest. Cross validated Area under

the curve (AUC) is used to evaluate the predictive performance of edge classification.

The procedure of estimating the functional connectivity network and then fitting

prediction models to each edge will be referred to as the 2-step update. These esti-

mates will be used as the initial values in the iterative algorithm detailed in the next

section.

2.2.4 ADMM Algorithm

Jointly estimating the individual functional connectivity network and the model

estimates for prediction of network features is done using the ADMM algorithm. Let
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Si = ST (Zi), G(xi;θ) = {gr,r′(xi;θ)}R×R and L(xi;θ) = {lr,r′(xi;θ)} be three R×R

matrices, where lr,r′(xi;θ) = log[1 + exp{gr,r′(xi;θ)}]. The algorithm minimizes the

following objective function

minimize
Θ

n∑
i=1

[− log det Ωi + tr(ΩiSi) + λ‖Ωi‖1 − γtr{(2Ai − 1)Ωi}

−tr{AiG(xi;θr,r′)}+ L(xi;θr,r′)] (2.9)

where Θ = {{Ωi}ni=1, {Ai}ni=1,θ}. Ωi is an R×R symmetric positive definite matrix,

Ai ∈ {0, 1}R×R is a R × R binary matrix, and θ is the parameter in the logistic

regression. λ and γ are tuning parameters. Note that the term −tr{AiG(xi;θ)} +

L(xi;θ) is equal to the negative log-likelihood of logistic regression for network edge

predictions. To estimate Ω and A, in each iteration of the ADMM algorithm, we

minimize the object function in three steps with respect to Ω, θ, and A. Each is

sequentially updated and then iterated until the algorithm converges. Suppose the

initial values are Ω
(0)
i , A

(0)
i and θ(0).

2.2.4.1 Minimize with respect to Ω

In the kth iteration (k = 1, 2, . . . ,), we first update Ω
(k)
i by minimizing the objec-

tive function with respect to Ωi and fixing Ai at the previous iteration, i.e. A
(k−1)
i ,

for i = 1, . . . , n,

min
{Ωi}ni=1

n∑
i=1

[
− log(det(Ωi)) + tr(ΩiSi) + λ‖Ωi‖1 − γ · tr{(2A

(k−1)
i − 1}Ωi)

]
(2.10)

To implement the ADMM algorithm, we introduce Y
(k)
i and let Z

(k)
i = Ω

(k)
i −Y

(k)
i ,

we now minimize the following objective function with respect to Ωi

Ωk
i = arg min

Ωi

{
− log(det(Ωi)) +

µ

2

∥∥∥∥Ωi +

(
Z

(k−1)
i −Y

(k−1)
i +

1

µ
Si −

γ

µ
(2A

(k−1)
i − 1)

)∥∥∥∥2
}
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Taking the derivative with respect to Ωi, and defining Yi−Z
(k−1)
i − 1

µ
Si+

γ
µ
(2Ai−

1) = UiΛiU
>
i with Λi = diag(λ1, . . . , λR) results in the following equations to solve

Ω
(k)
i .

0 = −Ω−1
i + µΩi − µ{Y(k−1)

i − Z
(k−1)
i +

1

µ
Si +

γ

µ
(2Ai − 1)}

0 = −F−1
µ (Λi) + µFµ(Λi)− µΛi

The solution takes the form:

Ω
(k)
i = UiFµ(Λi)U

>
i =

1

2
Ui

{
diag

(
λi1 +

√
λ2
i1 +

4

µ
, . . . , λiR +

√
λ2
iR +

4

µ

)}
U>i ,

(2.11)

where Fµ(Λi) = diag{fi1, . . . , fiR} with fir = 1
2

(
λir +

√
λ2
ir + 4

µ

)
for r = 1, . . . , R.

2.2.4.2 Minimize with respect to θ

Next to update θ(k) we minimize the objective function (eq. 2.9) with respect to

θ, given the current estimates Ω
(k)
i and A

(k−1)
i . This update is the same as solving

for θ in logistic regression using the negative log likelihood.

min
θ

n∑
i=1

[
−tr{A(k−1)

i G(xi;θ)}+ L(xi;θ)
]

(2.12)

For each node pair (r, r′) this becomes:

θ
(k)
r,r′ = arg min

θr,r′

n∑
i=1

[
− a(k−1)

r,r′,i gr,r′(xi;θ) + log (1 + exp{gr,r′(xi;θ)})
]

(2.13)

If we suppose gr,r′(xi;θ) = xiθ, such as in the case of logistic regression, we can

obtain the logistic regression estimates for θ. Similarly the log-odds can be estimated

from SVM or random forest instead of logistic regression.
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2.2.4.3 Minimize with respect to Ai

Next to update A
(k)
i we minimize the objective function (2.9) with respect to Ai,

fixing estimates of Ω
(k)
i and θ(k).

min
Ai

n∑
i=1

[
γ tr{(2Ai − 1)Ω

(k)
i } − tr{AiG(xi;θ

(k))}+ L(xi;θ
(k))
]

(2.14)

Note that Ai ∈ {0, 1}R×R. For each region pair (r, r′), we minimize this function

by comparing the objective function for ai,r,r′ = 0 and ai,r,r′ = 1 given the values in

Ai at all other pairs.

Equivalently, we can minimize the following for each subject i at each pair (r, r′):

a
(k)
i,r,r′ = arg min

ai,r,r′∈{0,1}

[
ai,r,r′{2γωi,r,r′ − gr,r′(xi,θ(k))} − ωi,r,r′

]
(2.15)

Combining these steps the full algorithm is presented in Algorithm 1.
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Data: {Ω(1)
i ,A

(1)
i ,xi}ni=1; Number of iterations K; Updating rate µ; Penalty term λ

and tuning parameter γ.

Result: {Ω(K)
i ,A

(K)
i }ni=1

begin

Initialize Ω
(1)
i and A

(1)
i

for k = 1, . . . ,K do

for i = 1, . . . , n do

Y
(k)
i = UFµ(Λi)U

> = 1
2U
(
diag

(
λir +

√
λ2ir + 4

µ

))
U>

Ω
(k)
i =


Y

(k)
i + Z

(k)
i − λ

µ if Y
(k)
i + Z

(k)
i ≥ λ

µ

Y
(k)
i + Z

(k)
i + λ

µ if Y
(k)
i + Z

(k)
i ≤ λ

µ

0 otherwise

Update Z
(k)
i = Z

(k)
i + µ (Ω

(k)
i − Y

(k)
i ).

end

for each pair (r, r′) do

Estimate gr,r′(x;θ(k−1)) using logistic regression, SVM, or random forest.

end

for i = 1, . . . , n do

Fk = tr{γ (2A
(k)
i − 1)Ω

(k)
i −A

(k)
i G(xi;θ

(k))}

for each (r, r′) do

if a
(k)
i,r,r′ = 0 then

if Fk + γ ω
(k)
(r,r′) − xiθ

(k)
r,r′ < Fk then

ai,r,r′ = 1

end

else

if Fk − γ ω(k)
(r,r′) < Fk then

ai,r,r′ = 0

end

end

end

end

end

end

Iterate until the estimates converge. The choices of initial values for Ω and A and

θ are described in Sections 2.2.2 and 2.2.3. Iteratively updating these estimates could
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improve the predictive performance and power to detect true associations compared

to the proposed framework without ADMM.

The choice of λ impacts the level of sparsity when estimating Ω. Individual level

λi is used to control the sparsity of the initial estimates of Ωi in step 2.2.2. We have

opted to use the same subject specific λi in the ADMM algorithm, though the results

do not change significantly in simulation for a common population level λ. Similarly

the ratio between λ and µ impacts the sparsity of the estimate for Ω, so µ is chosen

to satisfy the desired level of sparsity. γ is used to control the similarity between

A and Ω. For this reason we increase γ over iterations of k, presumably as the two

estimates converge towards the same sparsity pattern this parameter enforces that

relationship.

2.3 Simulation

2.3.1 Performance of the two-step update

The prediction procedure, detailed in Section 2.2, was evaluated using simulated

data based on the real data application. True signals in the clinical variables were

simulated by generating a β vector and using the observed clinical covariates to gen-

erate the corresponding time series data for 346 subjects. The ability to recover the

true signals was evaluated by comparing the subset of variables selected by elastic

net to those with true non-zero signals in β. This performance was summarized using

sensitivity, specificity, and false discovery rate (FDR). FDR is defined as the propor-

tion of true signals identified out of all selected variables. The performance of the

prediction procedure was evaluated using AUC, comparing the ability to correctly

classify edges as connected or not.

The data generation process was as follows: simulate β, use observed clinical

variables and simulated β to assign connectivity to each edge for each subject, simulate
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precision matrix Ω from a mixture of normal distributions with mean 3 or -3 and

standard deviation 1 for connected edges, ensure Ω is positive definite, and finally

simulate T time points for each node of each subject from a multivariate normal

distribution with mean zero and covariance Ω.

Simulation was also used to understand how characteristics of the fMRI data

impacts the Gaussian copula network estimation, implemented using the R package

huge [91]. We considered how a differing number of time points in the fMRI and a

different network size affected the ability to recover the connectivity matrix. Table

2.1 presents the results for each of the settings considered. We compared results using

huge to other network construction methods, clime and tiger, and found that huge

outperformed other existing methods for estimating sparse graphical models [45]. Due

to space limitations, we did not report the detailed results here.

# of Nodes
# of time % of connected edges % of edges not connected

points recovered recovered

50
120 47% 99%
1000 54% 98%

264
120 12% 99%
1000 51% 99%
5000 73% 99%

Table 2.1: Results of simulation evaluating how well the connectivity estimation can
recover the simulated connectivity network.

Though we do not achieve high power with this process, we consistently see good

control in the false discovery rate; edges that are assigned to be connected are typically

correctly labeled, and more frequently those incorrectly labeled are among edges that

are connected in truth and not connected in the network estimate. This leads to the

conclusion that signals identified from this procedure are likely to be true associations,

though some true associations may be missed.

In Table 2.2 (a-c) we present the number of subjects that are correctly and in-
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correctly identified as having a connection at a given edge, using SVM to predict

connectivity. We compare the results to both the true simulated network and the

network estimate. This is an example using one edge across 346 subjects.

True Network
# connected # not connected

Connectivity Matrix
Estimate

# connected 15 0
# not connected 10 321

(a) Comparison of network estimated through graphical modeling to the true simulated
network.

True Network
# connected # not connected

Predicted Network
# connected 7 4

# not connected 18 317

(b) Comparison of true simulated network to the predicted connectivity using SVM.

Connectivity Matrix Estimate
# connected # not connected

Predicted Network
# connected 6 5

# not connected 9 326

(c) Comparison of network estimated through graphical modeling to the predicted con-
nectivity using SVM.

Table 2.2: Simulation results for network estimation using the prediction procedure
and huge.

Table 2.2 presents the accuracy of the network estimate compared to the true

network connectivity in addition to the predicted network compared to the estimated

and true network. Table 2.2a shows that the network estimate has a very low false

discovery rate, with no edges incorrectly identified as connected. Using the network

estimate to perform the prediction, we can evaluate the performance of the prediction

results (Table 2.2c). This simulation provides evidence that we can be confident in

the network estimate and prediction results compared to the true underlying network

structure. Though some signals of connected edges are missed, those identified as

connected most often are connected in the underlying network.
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Simulation was also used to evaluate the ability to recover true signals among the

clinical characteristics. When simulating 3,814 edges we observed an average FDR of

about 11%. Average sensitivity is only 5% and specificity is 99%. The true signal is

sparse, among 286 variables there are 20 true non-zero signals randomly selected for

each edge. Again we conclude that there is low power in the procedure but good false

discovery control. The variables selected are likely to be true associations, although

many true signals will be missed. We expect this to be the case when using a relatively

large network structure compared to a small number of subjects.

2.3.2 Performance of the ADMM algorithm

Potential improvement due to using a joint estimation procedure was quantified

through simulation. We considered a toy example for demonstration purposes with a

small network with 10 nodes and a sample of 100 subjects. Because the estimates from

the two-step update are the initial values for the ADMM algorithm, the performance

depends on how well the 2-step estimation performs, detailed in section 2.3.1.

In this simulation setting the estimation of both A and θ are evaluated. Esti-

mation of A is evaluated using sensitivity, specificity, and FDR in terms of correctly

identifying the connected and not connected edges. Similarly estimation of θ is evalu-

ated in terms of sensitivity, specificity, and FDR, but defined in terms of the accuracy

of clinical characteristics with non-zero effect estimates.

Table 2.3 compares three methods using the ADMM algorithm: logistic regression,

SVM, and random forest. Each is also compared to the initial values of the algorithm,

obtained via the 2-step update using graphical lasso and SVM. The results in Table

2.3 are the average of 100 iterations of the simulated setting. Increasing the effect

size of non-zero signal in the simulation leads to higher sensitivity across all the

methods, though it does not reduce FDR of A estimation in most cases. Increasing

the sample size also seems to lead to improved sensitivity and lower FDR in some
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Setting A Estimation θ Estimation

N β Method Sens Spec FDR Sens Spec FDR

100 3

Logistic 0.61 0.86 0.50 0.52 0.68 0.21
SVM 0.57 0.80 0.60 0.23 0.92 0.12

RF 0.33 0.97 0.37 0.18 0.93 0.12

2-step 0.20 0.73 0.63 0.00 1.00 0.00

100 5

Logistic 0.73 0.86 0.50 0.64 0.63 0.20
SVM 0.67 0.77 0.60 0.32 0.88 0.12

RF 0.43 0.97 0.32 0.24 0.91 0.12

2-step 0.20 0.74 0.63 0.00 1.00 0.00

300 5

Logistic 0.87 0.86 0.42 0.97 0.48 0.21
SVM 0.77 0.74 0.60 0.48 0.77 0.19

RF 0.49 0.98 0.28 0.41 0.87 0.11

2-step 0.69 0.98 0.12 0.00 1.00 0.00

Table 2.3: Performance of ADMM algorithm using different methods to perform the
prediction: logistic regression, SVM, and random forest (RF). Several simulation
settings are presented with a different sample size (N) and average effect size of non-
zero Ω (β). Estimation of the adjacency matrix (A) is evaluated as an average of the
following metrics over 100 iterations: sensitivity (Sens), specificity (Spec), and FDR.
Accuracy of the selected clinical characteristics (θ) is measured using sensitivity,
specificity, and FDR.

cases (logistic regression and random forest). In terms of identifying covariates that

are truly associated with connectivity patterns (θ Estimation in Table 2.3), increasing

sample size leads to much higher power with an increase in sensitivity from 0.52 with

100 subjects to 0.97 using 300 subjects when applying logistic regression in the ADMM

algorithm. In terms of the false discovery rate among these covariates, it is not too

large with a maximum of about 20% across all methods. SVM and random forest

seem to perform better than logistic regression in terms of controlling FDR, which

leads to slightly lower power in terms of lower sensitivity. With these simulation

settings the 2-step update does not identify any variables to be included using elastic

net, which demonstrates that incorporating the ADMM algorithm provides a more

sensitive approach.
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2.4 Data Application

2.4.1 PNC Data

Extensive assessment of behavior, life events, demographics and neuropsycholog-

ical performance was obtained on all subjects in the PNC, in addition to performing

resting state fMRIs. The sample has children with mental illnesses as well as healthy

individuals, and all subjects underwent a structured neuropsychiatric interview to es-

tablish the presence, duration and effect of multiple psychiatric symptoms (if present)

on functioning. The broad range of psychiatric disorders assessed included: depres-

sion, mania, simple phobia, social phobia, generalized anxiety, separation anxiety,

social anxiety, panic disorder, obsessive-compulsive disorder, post traumatic stress

disorder (PTSD), eating disorders, and psychosis.

MRI data for the resting state scans were obtained with BOLD-sensitive image

acquisitions over 6 minutes, with 120 frames, each 2 seconds in duration. Voxel size

was 3 by 3 in the transverse plane and 3 in the axial plane, yielding approximately

100,000 voxels in the brain [63]. Each voxel constituted a time series. The number

of measurements in the time series and the temporal sampling rate are both fixed

by the type of MRI performed. Data preprocessing was done to correct for timing

differences in the acquisition, realign individual subject scans, and map the images

to a common anatomical space so that the images could be combined and analyzed

across subjects. This preprocessing occurred with the pipeline used for the 1000

Functional Connectomes Project.

Subjects with excessive movement (defined as subjects with greater than 0.25 mm

volume-to-volume displacement) or poor scan quality were excluded from the analysis,

which yielded 500 scans from the original 1,442 subjects scanned. Images were also

spatially filtered to reduce residual anatomic variability, and for each time voxel, a

time series was extracted and bandpass filtered (0.1 - 0.01 hz) to remove physiological
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artifact from respirations and heart rate. In addition, regressors for white matter and

cerebral spinal fluid were obtained, and variability from these additional sources of

noise was removed. From a set of a priori nodes (see Figure 2.3), a time series

from each node (10 mm sphere) was extracted, and a cross-correlation matrix of

Pearson r-values was obtained and Z-transformed for each of the 264 nodes with every

other node. The PNC data was obtained from the NCBI database of Genotypes and

Phenotypes (dbGaP), a publicly available database. Informed consent was obtained

for all subjects who participated in the PNC study; the original publication states

“Participants had been previously enrolled in a genomics study at CAG and they

and/or their parents had provided informed consent (assent) to be re-contacted for

participation in additional studies such as this one. The institutional review boards

of both the University of Pennsylvania and the Children’s Hospital of Philadelphia

approved all study procedures” [63].

2.4.2 Analysis Pipeline for PNC Data Analysis

Preprocessing of the PNC imaging data was done to reduce bias from motion

and other known confounders. Additional steps were taken to reduce the sample and

network size based on missingness and variability. The entire procedure using the

PNC data is summarized in Figure 2.2.

Figure 2.2 shows the steps performed to manipulate the data into a workable

form, as well as steps for data reduction. The rfMRI data was converted from time

series for each node into the individual connectivity estimates (Panel A-B). Then the

connectivity estimates were stacked across subjects (Panel C). We reduced the brain

network to edges with sufficient variability for modeling, removing those connected

in fewer than five percent of subjects (Panel D). For the clinical characteristics we

reduced the subset of potential variables based on missingness; if a given variable was

missing in more than five percent of subjects it was removed from the analysis (Panel
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Figure 2.2: Procedure for PNC data analysis.

E-F). This conveniently reduced the number of variables (p) to fewer than the sample

size (n), reducing to an n > p problem. Lastly Panel G depicts the final model

fitted associating the connectivity across subjects at a given edge and the clinical

characteristics.

2.4.3 Brain Networks of Interest

For the analysis that follows, we used an a priori anatomic parcellation of the

brain, which utilized 264 nodes organized into 13 different functional modules (FM),

identified by Power et al. in the 2011 paper Functional Network Organization of the

Human Brain [59].

The networks, made up of several regions, identified in this paper align well with
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others proposed, such as the default mode network [28], dorsal and ventral attention

[22], and fronto-parietal task control. The authors classified the remaining subnet-

works by associated functions, including visual processing, memory, sensory and mo-

tor control, auditory, and somatosensory. Compared to voxel-based approaches to

connectivity, these networks should minimize connectivity contributions from image

smoothness, which causes adjacent voxels in an image to have very high correlation

coefficients, irrespective of functional connections. Compared to anatomically defined

nodes, such as automated anatomic labeling (AAL [79]) these units more likely reflect

intrinsic functional organization in the brain and may be more meaningful probes of

functional brain networks.

# Function # Function

1 Sensory/somatomotor Hand 8 Fronto-parietal Task Control
2 Sensory/somatomotor Mouth 9 Salience
3 Cingulo-opercular Task Control 10 Subcortical
4 Auditory 11 Ventral attention
5 Default Mode 12 Dorsal attention
6 Memory Retrieval 13 Cerebellar
7 Visual −1 Uncertain

Table 2.4: Power brain functional modules and associated brain functions [59].

Figure 2.3 shows the location of the nodes in the power parcellation, and colors

indicate membership to the thirteen identified functional networks.

2.4.4 Predictability of Network

The ability to predict the entire functional brain network was evaluated in ad-

dition to the ability to predict connectivity within the subnetworks of interest. We

found that the ability to capture the entire brain network was very limited using the

machine learning methods tested, SVM and random forest. The average performance

of predicting a connection was no better than choosing at random, with an average
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Figure 2.3: Power 264 node spatial parcellation. Each color represents one of the 13
functional brain networks of interest. Generated using BrainNet Viewer [84].

AUC of 0.5 when using 5-fold cross validation. However, when looking within specific

regions we do see fairly high predictive performance for some. In the final iteration of

the ADMM algorithm, only 480 edges had any clinical variables selected for inclusion

in a model, so the following results reflect the performance within that subset of the

network. Note that the ‘truth’ for computation of AUC was defined as the estimate

of A from the ADMM algorithm before updating with random forest or SVM results,

since we do not know the true underlying connectivity as we did in the simulations.

We observed the greatest ability to detect connected edges on average in the

subcortical network (10) using random forest. Table 2.5 contains the average AUC,

range of AUC from first to the third quartile, and the maximum AUC for a given edge

within each network for both methods, random forest and SVM. Though on average

the AUC within some networks was not high, we did have good performance (AUC

> 0.95) for some edges in the following functional networks: somatomotor hand,

auditory, default mode, visual, fronto-parietal task control, salience, and subcortical.

These networks had the highest maximum AUC observed, but the most edges with

good performance were in the somatomotor hand, default mode, and visual networks.

The variables selected in the model with high predictive performance (highest AUC)

for connectivity in the sensory and somatomotor hand include: race, indicator of liver
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disease, indicator of infectious disease, four questions from the Structured Interview of

Psychosis-risk Syndromes survey, an indicator of social anxiety, and questions from

the Penn Age Differentiation Test, Penn Emotion Differentiation Test, and Visual

Object Learning Test. Some of these variables are expected to be associated with

this brain network, whereas the link between other variables is less obvious, as the

sensorimotor network is not commonly associated with psychopathology. However,

serious mental disorders, such as schizophrenia and bipolar disorder, show imbalances

in this network [3, 52]. This finding provides an example where this technique might

identify new associations between psychopathology and network dysfunction.

One model with AUC > 0.95 predicting connectivity for an edge from the vi-

sual network includes the following variables: indicator of vision problems and two

components of the 1-Back trials. These variables are expected to be associated with

activation in the visual processing network, and confirm these known associations.
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Functional Brain Module
SVM Random Forest

Mean (Q1- Q3) Max Mean (Q1- Q3) Max

1 Sensory/somatomotor Hand 0.45 (0.45, 0.52) 0.59 0.67 (0.52, 0.89) 1.00

2 Sensory/somatomotor Mouth 0.34 (0.32, 0.40) 0.40 0.54 (0.38, 0.62) 0.86

3 Cingulo-opercular Task Control 0.44 (0.44, 0.48) 0.60 0.60 (0.55, 0.73) 0.76

4 Auditory 0.47 (0.46, 0.50) 0.69 0.69 (0.57, 0.80) 1.00

5 Default Mode 0.47 (0.45, 0.53) 0.59 0.63 (0.48, 0.77) 1.00

6 Memory retrieval 0.49 (0.49, 0.49) 0.49 0.45 (0.45, 0.45) 0.45

7 Visual 0.45 (0.41, 0.51) 0.57 0.64 (0.52, 0.70) 1.00

8 Fronto-parietal Task Control 0.49 (0.46, 0.51) 0.60 0.54 (0.43, 0.55) 1.00

9 Salience 0.41 (0.44, 0.50) 0.57 0.69 (0.49, 0.85) 1.00

10 Subcortical 0.57 (0.55, 0.59) 0.59 0.83 (0.66, 1.00) 1.00

11 Ventral Attention 0.40 (0.35, 0.46) 0.49 0.66 (0.55, 0.76) 0.79

12 Dorsal attention 0.49 (0.44, 0.54) 0.56 0.60 (0.41, 0.71) 0.83

13 Cerebellar 0.54 (0.54, 0.54) 0.54 0.44 (0.44, 0.44) 0.44

Table 2.5: Mean AUC for edges contained within each functional module from two
methods, SVM and random forest.

The variables selected for two models with the best predictive performance are

presented in Tables 2.6 and 2.7.
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Variable Description Estimate

Race Self-reported ethnicity of participant (EA, AI) -0.63
MED807 Liver disease 0.33
MED809 Infectious disease -4.25
SIP015 SIPS feeling odd things going on -0.09
SIP016 SIPS feeling able to predict the future -0.07
SIP018 SIPS Feeling different due to superstitions -0.10
SOC001 Feeling afraid in social settings -0.04
PADT Penn Age Differentiation Test -0.34
PADT Number of correct responses with no age difference -0.01
PEDT Penn Emotion Differentiation Test -1.30
VOLT Visual Object Learning Test 0.18

Table 2.6: Variables selected for the model with AUC = 1.00 (using random for-
est) from network 1, associated with sensory somatomotor hand control. SIPS is the
Structured Interview of Psychosis-risk Syndromess; PADT is the Penn Age Differen-
tiation Test; PEDT is the Penn Emotion Discrimination Test; VOLT is the Visual
Object Learning Test.

Variable Description Estimate

MED622 Vision problems -0.75

PFMT Penn Face Memory Test -0.18

PEIT Penn Emotion Identification -1.09

LNB Number of correct responses to 1-back trials 0.12

LNB Number of incorrect responses to 1-back trials -0.05

Table 2.7: Variables selected for the model with AUC = 1.00 (using random forest)
from network 7, associated with visual processing. PFMT is the Penn Face Memory
Test; PEIT is the Penn Emotion Identification Test; LNB is the Penn Letter N-Back
test which tests working memory.

Several variables were frequently selected across models with good performance

of classifying connected nodes, these include: indicator of ear/nose/throat problems,

indicator of metabolic disease, separation anxiety, having thoughts of suicide, and

results from the Penn Conditional Exclusion Test. The Penn Conditional Exclusion

Test is designed to assess executive functioning ability.
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Figure 2.4: Proportion of models which a variable in the group was selected across
edges in each functional module.
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Figure 2.4 presents the proportion of models for each functional module that

selected at least one of the clinical characteristics in the groups. The groups and

abbreviations are as follows: demographics, overall medical metrics (health), Atten-

tion Deficit Disorder (ADD), Conduct Disorder (CDD), Depression (DEP), Eating

Disorder (EAT), Generalized Anxiety Disorder (GAD), Children’s Global Assessment

Scale (GAF), Mania/Hypomania (MAN), other medical conditions (MED), Obses-

sive Compulsive Disorder (OCD), Oppositional Defiant Disorder (ODD), Panic Disor-

der (PAN), Specific Phobia (PHB), Psychosis (PSY), Post-Traumatic Stress (PTD),

general probes about counseling and emotions (SCR), Separation Anxiety (SEP),

Structured Interview for Prodromal Symptoms (SIP), Social Anxiety (SOC), Suicide

(SUI), Penn Age Differentiation Test (PADT), Penn Facial Memory Test (PFMT),

Penn Emotion Identification Test (PEIT), Penn Word Memory Test (PWMT), Penn

Verbal Reasoning Test (PVRT), Penn Emotion Differentiation Test (PEDT), Penn

Matrix Reasoning Test (PMAT), Tap hand trials (TAP), Visual Object Learning Test

(VOLT), Letter N-Back test (LNB), Penn Conditional Exclusion Test (PCET), Penn

Continuous Performance Test (PCPT), Penn Line Orientation Test (PLOT), Wide

Range Assessment Test (WRAT), and Penn Motor Praxis Test (MP). These variable

groupings were defined by the surveys and tools used to collect the data in the PNC

study.

2.4.5 Association Analysis

Beyond the ability to predict connectivity in the network, it is often useful to

understand characteristics or symptoms associated with levels of connectivity in the

resting state brain. One of the main goals of the PNC study was to establish associ-

ations between brain development and psychiatric diseases. Another important way

to interpret the results, is to identify variables that were frequently associated with

higher connectivity within each of the thirteen functional networks.
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(a) Fronto-parietal Task Control (b) Subcortical

Figure 2.5: Edges associated with SIPS or psychosis variables within fronto-parietal
task control and subcortical functional networks.

We can build a brain network associated with one disease or symptom of interest.

For example, the network built of edges associated with psychosis spans all thirteen

functional networks; for specific diseases we may be interested in how connectivity

of a specific network, rather than the entire brain, relates to the disorder of interest.

Figure 2.5 shows the edges within the fronto-parietal task control network that are

associated with psychosis variables (variables from the SIPS and psychosis surveys).

This brain network has been identified in previous studies of schizophrenia [69]. We

identified fronto-parietal task control and subcortical networks as most frequently

associated with SIPS or psychosis variables. The subcortical networks, specifically

the striatum, heavily enervated by dopaminergic projections from the midbrain, and

thalamic nuclei, have been implicated in the pathophysiology of schizophrenia [36,

82, 16].

When we consider Post-traumatic Stress Disorder (PTSD), we see associations

similar to those previously observed in other studies. Connections associated with

PTSD span four behavioral networks. Previous research has shown that men with

PTSD have differing rates of connectivity between the right amygdala and other

subnetworks of the brain when compared to control patients [75]. Figure 2.6 presents

these connections across the four functional networks associated with PTSD.
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Figure 2.6: Network for indicator of Post-traumatic Stress Disorder. Nodes colored
by corresponding functional networks.

2.5 Discussion

In this work, we present the framework for predicting functional connectivity with

clinical characteristics, and demonstrate that it is feasible to predict some subnetworks

in the brain. Many clinical characteristics identified in the PNC application are con-

sistent with previous findings, as the simulation results suggest the ability to identify

some true signals among clinical characteristics. Other findings suggest novel associa-

tions between behavioral measures and brain networks. While the field of psychiatry

has traditionally relied on diagnostic categories, dating back to clinical observations

made in the late 19th century, there has been increasing recognition for new meth-

ods of classification, such as theoretical constructs derived from neuroscience research

[37]. The framework illustrated here is an atheoretical, purely data-driven approach

that, lacking constraining assumptions, has the potential to provide new insights into

brain and behavior correlations. Though it is difficult to detect associations with rel-

atively few subjects compared to network size and number of clinical characteristics,

this work provides a way to identify subnetworks that are predictive given clinical

characteristics of interest.
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Future extensions of this work may involve making valid statistical inferences on

parameters and predictions. In addition, changing the graph estimation procedure

or voxel level summary could influence the ability to predict connectivity. These

extensions may provide further insight into the relationship between functional brain

connectivity and behavioral phenotypes, relevant for psychopathology.
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CHAPTER III

Scalar-on-network Regression via Boosting

3.1 Introduction

Brain function is dictated by the coordinated activity of many functional networks

consisting of billions of neurons. These networks are captured through the resting-

state functional magnetic resonance imaging (rfMRI), which measures neural activity

via the blood oxygen level dependent (BOLD) signal when the subject is at rest, or

when no particular task is performed. The synchronized activation of brain regions

defines a functional module. Often in brain imaging, the Power 264 spatial parcella-

tion is used to summarize the hundreds of thousands of voxels captured in images into

regions of interest in the brain. This spatial parcellation is used to estimate resting

state functional networks that are well defined and reproducible, as shown by Power

et al. [59]. Many of these regions of interest have previously been associated with var-

ious functions of the brain, such as visual processing or task control, and the networks

formed by their connectivity can provide further insight into brain functioning.

Functional brain connectivity has a wide range of clinical applications: pat-

terns in functional connectivity have been associated with Alzheimer’s Disease, de-

velopment of psychosis, depression, and other psychiatric and neurological diseases

[76, 66, 30, 21]. Current use of functional connectivity in clinical practice aims to com-

pare patterns in groups of patients impacted or not impacted by a disorder, whereas
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using connectivity patterns diagnostically or prognostically for individual patients is

an ongoing research area for most diseases. With diverse clinical applications there

are also diverse methodological approaches to consider. In some applications models

have image responses and scalar predictors, commonly referred to as image-on-scalar

regression [14, 93]. This approach may provide insight into spatial patterns and het-

erogeneity across individuals. For example, spatial varying coefficient models can be

used to characterize the association between patient characteristics, like age, and neu-

roimaging networks [94, 46, 88]. In addition, image-on-scalar regression may reveal

common patterns in connectivity across subjects or identify an underlying population-

level pattern [90].

Other research focuses on optimizing estimation of functional networks from the

time series resulting from imaging data, such as [81, 49, 58]. The first two examples

focus on correlation-like metrics to establish the functional network, whereas the

third paper proposes a Bayesian approach to generate a directed graph estimate of

connectivity. Depending on the goals of the study directed graphs may be useful,

although undirected estimates tend to be more believable especially when working

with resting-state data. This paper will use a correlation-based metric to estimate

the functional network, which we take to be well estimated for the context of this

paper.

Another way to utilize functional connectivity is to use the connectivity patterns

to predict clinical outcomes. Some existing literature using this framework relies on

dimension reduction methods to make the statistical methods more tractable. Some

examples include [19] which summarizes the use of independent component analysis

(ICA) with rfMRI data and [83] which utilizes canonical correlation analysis to es-

timate the correlation between dimensions of psychopathology and brain structures.

Alternatively, scalar-on-image may be employed to address similar questions. Several

Bayesian methods have been developed to perform high dimensional variable selection
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in the scalar-on-image context [44, 31, 40, 25]. The recent work by [31] leverages the

properties of a spike-and-slab prior and transitivity of associations between nodes in

the brain to perform variable selection.

This chapeter focuses on scalar-on-network regression; the main distinction from

existing work is incorporation of the natural grouping across regions of interest in the

brain employed in a machine learning algorithm. This has the benefit of providing

interpretable associations that may be used to inform clinical practice. In this work,

we will propose a two-stage modeling approach in which the first stage summarizes

the image at the functional network level and the second stage selects individual edges

that are associated with the outcome.

3.1.1 Motivating Data: ABCD Study

The ABCD Study is a longitudinal study aiming to understand how brain develop-

ment is impacted by substance use. It is an ongoing multi-site study done across the

U.S. following adolescents for about ten years, with current follow up of about three

years. There are 10,000 children enrolled, and a subset of about 1,800 had rfMRI

data released in conjunction with the first release of data. Additional information on

these children, including their age (in months), gender, race, parents’ education level,

parents’ marital status, and family income will also be utilized in addition to their

rfMRI data. One of the outcomes of interest in this study is general cognitive ability,

measured by a neurocognitive battery of twelve tests and summarized using Bayesian

principal component analysis [77], and one motivating question for this research is

how to relate a measure of cognition to changes in functional connectivity.
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Figure 3.1: Illustration of the scalar-on-network regression framework and the process
of converting time series data into network data from the rfMRI images.

Figure 3.1 illustrates the rfMRI data processing and general workflow to identify

brain connectivity patterns associated with cognitive functioning. The rfMRI voxel-

level data is summarized into 264 regions of interest (ROIs) as defined by the Power

spatial parcellation [59], with a time series at each ROI (Figure 3.1 A-B). Here,

the ROIs are grouped into thirteen known functional modules and one uncategorized

group based on Power et al. [59] grouping, though alternative network partitions could

be considered such as Smith et al. [71]. Node membership to functional modules like

the default mode network (FM 5) is well accepted, whereas some other functional

modules, such as the Power memory retrieval network (FM 6), are less understood

and may differ more depending on the network partition. The correlation between

any two ROIs is then used to construct a connectivity matrix for each subject, and

each ROI is grouped into a functional module (Figure 3.1 C). The association between

some clinical outcome or characteristic (Figure 3.1 D) and the connectivity patterns

by functional modules are then analyzed (Figure 3.1 E). In the real data there are

more functional modules, this is simplified to illustrate the method more clearly.

40



3.1.2 Existing Methods

In the first stage of the proposed method, we consider selecting groups of edges

together rather than a single edge associated with the outcome. This can be viewed

as a group selection method, similar to group lasso [87]. Another method that uses

a similar scalar-on-network regression approach, but for classification, is proposed

in Relión et al. [61]. This method uses a penalty similar to group lasso to select

edges and nodes within the network to perform classification, working differently

than the method proposed here which allows more general regression. Other work

has aimed to investigate a similar question of identifying brain regions associated

with a clinical outcome but utilizing dimension reduction to address the complexity

of brain networks, such as the work done by [74] using principal component analysis.

Most existing literature in neuroimaging that addresses a similar question, relies on

dimension reduction to efficiently model and estimate associations; however, this leads

to some trade-offs between loss of information and precision. In this work, we aim

to identify some weak signals that may be missed by methods such as those that

perform dimension reduction.

The proposed method utilizes a previously developed boosting algorithm, intended

for variable selection in high dimensional settings [10]. Boosting was developed to

improve prediction by combining weak learners, with its beginning in the AdaBoost

algorithm [53]. This method evolved into various other boosting methods including

tree-based boosting, gradient boosting, and likelihood-based boosting. L2 Boosting is

one such form of boosting that uses the gradient descent algorithm with squared error

loss [9]; this form of boosting has been shown to perform well in high-dimensional

settings such as in brain imaging or genomic applications [26].

In this work we develop a two-stage boosting algorithm to estimate the sparse

edge-dependent regression coefficients by leveraging the knowledge of brain functional

organization. This proposed method has higher power to detect the true signals while
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controlling the false discovery rate better than existing approaches, when the edge-

wise predictive effects within the sub-networks appear to be homogeneous. This

method differs from existing approaches by not relying on dimension reduction to

handle the large brain network structure, while still maintaining computational effi-

ciency. Analyzing the ABCD rfMRI data identifies several edges that are consistently

selected as associated with general cognitive functioning, most of these edges belong

to four functional modules: default mode, cingulo-opercular task control, visual, and

dorsal attention.

3.2 Methods

3.2.1 Scalar-on-network Regression

Suppose the data set consists of n subjects. Let i (i = 1, . . . , n) be the index of

subjects. For each subject i, we observe a scalar outcome variable, denoted as yi ∈ R

and the subject-specific brain functional network consisting of q ROIs (nodes). Let

(j, k) be the index of node pairs (edges) in the network for 1 ≤ k < j ≤ q. Let

I = {(j, k) : 1 ≤ k < j ≤ q} be the whole edge set of interest in the network. Let

xijk ∈ R represents the functional connectivity measure between nodes j and k for

subject i. We refer to Xi = {xijk : (j, k) ∈ I} as a fully connected network for

subject i. In addition, for each subject, we collect a set of pA additional covariates

that may affect the outcome variable. Let zil denote the lth (l = 1, . . . , pA) additional

covariate. Write zi = (zi1, . . . , zipA)>. In our motivating example, for each subject i,

yi is the general cognitive ability score and Xi represents the lower triangular part of

the correlation matrix of the region-level rfMRI time series on 264 Power ROIs. The

additional covariates zi include age, gender, socioeconomic status, etc. We consider
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a scalar-on-network regression model as follows:

yi = α0 +

pA∑
l=1

αlzil +
∑

(k,j)∈I

βjkxijk + εi, (3.1)

where α0 is the intercept; the coefficient βjk captures the effect of edge (j, k) in the

network on the outcome variable; and parameters {αl}pAl=1 reflect the confounding

effects of the additional covariates (non-network) predictors. The term εi represents

the random noise. We assume that E(εi) = 0 and Var(εi) = σ2.

When a natural group structure is present and known in the network, we may want

to leverage this information to improve the estimation of βjk and more accurately

select non-zero βjk. One way to utilize this information is to impose group structure

on the nodes or edges of the network Xi. Based on the group information, we can

partition I into G disjoint groups, i.e., I =
⋃G
g=1 Ig and Ig ∩ Ig′ = ∅. We refer to

{xijk : (j, k) ∈ Ig} as the sub-network g for subject i. We may hypothesize that the

effect of edges within each of these sub-networks on the outcome is similar.

Applying this to the setting of functional brain connectivity, we may expect that

edges spanning within each functional module, e.g. the default mode network, have

a similar effect on cognition or that none of the edges spanning another functional

module have an effect on cognition. With this assumption, for group g = 1, . . . , G,

we decompose the effect of each edge in the group g as follows: for (j, k) ∈ Ig,

βjk = β̄g + ωjk, (3.2)

where β̄g represents the average effect of the sub-network g and ωjk represents the

individual edge effect. To ensure the model identifiability, we impose a constraint on

ωjk, i.e., ∑
(j,k)∈Ig

ωjk = 0, (3.3)
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which implies that β̄g = m−1
g

∑
(j,k)∈Ig βjk with mg being the number of edges in sub-

network g. If βjk is similar for all edges within sub-network g, then ωjk will be close

to zero for all pairs (j, k) ∈ Ig. By combining (3.1), (3.2) and (3.3), we have the

following scalar-on-network regression model with sub-network partition:

yi = α0 +

pA∑
l=1

αlzil +
G∑
g=1

λgx̄ig +
∑

(j,k)∈I

ωjkxijk + εi, (3.4)

where λg = mgβ̄g represents the total effect of the sub-network g and x̄ig = m−1
g

∑
(j,k)∈Ig xijk

the average of functional connectivity measurements of the edges in sub-network g.

Figure 3.2 illustrates an example of partitioning the edges and corresponding

effects into groups, where 15 nodes are grouped by brain functional modules and

generate six sub-networks (groups of edges). In this setup, the dark blue edges repre-

senting those contained within the first functional module will have the effect β̄1 +ωjk

on cognition.

Figure 3.2: Example of network Xi with 15 nodes to illustrate how the edges in the
network are partitioned by group (G = 6), using the functional modules to identify
groups.

We will use the group effect λg to select groups which have a meaningful effect on
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the outcome. As a secondary step we can estimate ωjk to more accurately estimate

the effect of each specific edge on the outcome.

3.2.2 Algorithm

The following two working models will be used to model the generative modeling

framework described in Section 3.2.1. The final result will estimate the parameters

in model (3.4), capturing the individual and group effect components. Let zi0 = 1 for

i = 1, . . . , n.

Working Model 1 (WM1):

yi =

pA∑
l=0

αlzil +
G∑
g=1

λgx̄ig + ε̃i, (3.5)

where ε̃i =
∑

(j,k)∈I ωjkxijk + εi.

Working Model 2 (WM2):

ỹi =

pA∑
l=0

αlzil +
∑

(j,k)∈I

ωjkxijk + εi, (3.6)

where ỹi = yi −
∑G

g=1 λgx̄ig.

The first working model will be used to obtain estimates for λg; the second model

will be conditional on the estimate of λg and ωjk will be updated.

Instead of simply using an average of the edges within a group to define Zi,

we may consider a weighted average of the edges. This will allow us to weaken

the assumption of homogeneity among the effects of edges within each group. One

alternative formulation of Zi we may consider is:

1. Identify strong signals within each group, using lasso to identify these.
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2. Average the weak effects with the strong effects to upweight those weak effects

to be more similar to the strong signals.

3. Average across weighted weak signals and the strong signal edges to define Zi.

Alternately, it may be more efficient to consider using the first working model to

screen out groups that do not have an effect on the outcome. Then the individual

level updates of ωjk may not be added to the group level effect λg. In this setting, we

define the second working model as the following.

WM2*:

yi =

pA∑
l=0

αlzil +
∑

(j,k)∈S

ωjkxijk + εi, (3.7)

where S =
⋃
g:λg 6=0 Ig is the subset of edges where the total effects of sub-network g

is nonzero, i.e. λg 6= 0, which can be estimated from the first stage. If there is more

homogeneity among the effect of edges within groups, we expect this alternative

approach to be more efficient.

One way to implement the group selection is by using the L2 boosting algorithm

[10]. The algorithm can be adapted to update a group of variables at the same time;

in this case we minimize the loss function over a group of variables rather than just

one at a time. For simplicity, we start from the case without confounding effects, i.e.

αl = 0 for l = 0, 1, . . . , pA. See the following algorithm:
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Data: {xi, yi}ni=1; Number of iterations M and M ′; Updating rate υ

Result: {λg} and {ωjk}

begin

Initialize λg = 0 (g = 1, . . . , G) and ωjk = 0 for (j, k) ∈ I.

for m = 1, . . . ,M do

for g = 1, . . . , G do

Compute the first partial derivative with respect to λg:

L1(g) =
∑n

i=1(yi −
∑G

g′=1 λg′ x̄ig′)x̄ig.

end

Find g∗ = argming |L1(g)|.

Calculate the second partial derivative with respect to g∗:

L2(g∗) = −
∑n

i=1 x̄
2
ig∗

Update λg∗ = λg∗ − υ mg∗ L2(g∗)−1L1(g∗)

end

Next estimate the ωjk for edges (j, k) ∈ Ig where λg 6= 0.

for i = 1, . . . , n do

ỹi = yi −
∑G

g=1 λgx̄ig.

end

Initialize ωjk = 0, (j, k) ∈ S =
⋃
g:λg 6=0 Ig.

for m = 1, . . . ,M ′ do

for g = 1, . . . , G do

Compute the first partial derivative with respect to ω:

L1(j, k) =
∑n

i=1{ỹi −
∑

(j′,k′)∈S ωj′k′xij′k′}xijk.

end

Find (j∗, k∗) = argmin(j∗,k∗) |L1(j, k)|.

Calculate the second partial derivative with respect to ωj∗k∗ :

L2(j∗, k∗) = −
∑n

i=1 x
2
ij∗k∗

Update ωj∗k∗ = ωj∗k∗ − υL2(j∗, k∗)−1L1(j∗, k∗)

end

end
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The first loop over M iterations is used to estimate WM1 and the second loop for

M ′ iterations estimates WM2* conditional on λ̂g estimates from the first stage.

One of the difficulties observed in simulations with respect to tuning parameters

is that the step size will vary depending on the sample size. One way to make step

size sample size free is to use the average log likelihood instead of the sum of the

log likelihood when updating λ and ω. The other important tuning parameter is the

number of iterations to run the algorithm at each stage. In the first stage, we are less

concerned about overfitting because we may be able to correct for this in the second

stage; for that reason, we use AIC to determine the stopping point. In the second

stage, we use BIC or EBIC to determine the stopping point, because these tend to

stop sooner than AIC and lead to less overfitting [13].

This method has been implemented as an R package using Rcpp and is available

on GitHub at https://github.com/EmilyLMorris/GroupBoosting.

3.2.3 Handling Adjustment Variables

Estimation of the adjustment variables can be handled in different ways; one

approach is to treat them as nuisance parameters. When estimating these effects is

not of interest, we can simply regress out the effect of the additional covariates. In

this approach, the response (yi) in the algorithm is replaced with the residuals (εi)

obtained from the regression model

yi =

pA∑
l=0

αlzil + εi (3.8)

This approach in the simulation studies will be referred to as ‘Group Boosting

with Residuals.’

In some settings, the association between these covariates and the outcome is also

of interest in addition to the image associations. To address this, the covariates can
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also be included in the first step of the boosting algorithm for selection. The only

change in the algorithm is that at each step, instead of selecting the optimal g, the

optimal g or l will be selected. Either the estimate for one group or one adjustment

variable is selected and updated at each step. Then similar to the groups selected

in the first step of the algorithm, any selected adjustment variables will be included

for possible selection again in the second step. This approach will be referred to as

‘Group Boosting with Adjustment Variables’.

3.2.4 Theoretical Properties

This section summarizes the main theoretical properties of this method. Broadly,

we show that the first stage of the group boosting algorithm provides a close approx-

imation to the true values when edges in the network are not grouped. The deviation

from the true value is a function of the average value of β, the max deviation within a

group from βg, and the expected value of the squared summation of all the elements in

group g. We also argue that we can use Buhlmann’s proof of consistency for boosting

in high dimensional settings [10]. The properties will be investigated separately for

two cases: homogeneity of the effects within groups and heterogeneity of the effects

within each group.

We will denote the summary of edges within a given group as Zig and the individual

covariates as Xijk, such that Zig =
∑

jk∈g Xijk

mg
. The networks are defined by g and mg

is the number of edges in group g.

The properties of this method vary based on the assumptions made on the group

effects. In some cases, one may expect the effect of all edges in a given region to be

the same, whereas in other cases more heterogeneity may be assumed. Consider the

following cases: one homogeneous group, one heterogeneous group, multiple homoge-

neous groups, and multiple heterogeneous groups.

Suppose for the simplest case that all the edges belong to one group and each
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edge has the same effect on the outcome. The only difference between this approach

and standard L2Boosting without group selection is that we force all the variables to

have the same effect on the outcome - homogeneity within a single group. First we

will assume this to the be the true underlying model, so we are estimating with a

correctly specified model, where we assume β1 = β2 = . . . = βmg . In the case that the

true model is β1 = . . . = βmg , this approach may be more efficient because we force

the estimates to be equal within the group.

In this case, we can show that the expected difference between the true Z and the

estimated Z̃ is zero, Z̃ E{‖Z − Z̃‖2
2} = 0. This result expands to the case where we

have multiple groups and the effect within each group is homogeneous. In this case

we also see that the expected squared error of ‖Z − Z̃‖ is zero.

If we don’t assume that the effect is homogeneous within every group, the expected

difference of ‖Z− Z̃‖ is bounded. Define the heterogeneity among a group of edges as

the difference from the average effect, then we can define βjk = β̄g + δjk, where β̄g is

the average effect of an edge in group g on the outcome. δjk represents the deviation

of the effect of edge (j, k) on the outcome from the average of the group’s effect. If

we assume

E

{∑
(j,k)∈g δjkxijk∑

xijk

}
= 0 (3.9)

and that |δjk| < ε for all (j, k) ∈ g, then ‖Z − Z̃‖ is bounded by a function of the

average value of β within groups, the max deviation any β has from the average (ε),

and the expected value of the square of the summation of all elements in group g.

See Appendix A.1 for more detailed derivations of these properties.

E

{
n∑
i=1

(Zi − Z̃i)2

}
=

n

mg

(β̄gε
2 + 2ε3 + 3β̄−1

g ε4 + 2β̄−2
g ε5 + β̄−3

g ε6)E


(∑
jk∈g

xijk

)2


(3.10)
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Our working model framework can be written as two linear regression models.

Bühlmann et al. [10] proves consistency for L2 boosting with linear models in the

high dimensional setting. In the simple case when the model is not misspecified,

the effect size within groups is entirely homogeneous, we can apply the theory and

corresponding proof established by Buehlmann to show consistency. The conditions

assumed for that theorem to hold are satisfied in this setting.

A1. pn = O(exp(Cn1−ξ), for sample size n, number of possible predictors pn, fixed

constant C, and 0 < ξ < 1.

A2. supn∈N
∑pn

j=1 |βj,n| <∞.

A3. sup1≤j≤pn,n∈N‖X(j)‖∞ <∞

A4. E|ε|s <∞, for some s > 4/ξ

A1 will hold for a fixed network size that is not too large in relation to sample

size n. Assumption A2 will hold for any setting where the number of nodes in the

network is known and finite, if the number of j such that βj,n 6= 0 is independent of

n itself and is a finite number. We believe the networks to be relatively sparse and

the effect sizes to be bounded so assumptions A3 and A4 are reasonable to assume.

With these assumptions the main theorem from Bühlmann et al. [10] for consis-

tency is

Theorem III.1.

EX |F̂ (mn)
n (X)− fn(X)|2 = op(1)

as n→∞, where F̂
(mn)
n (X) is the boosting estimate for fn(X), F̂ (m)(X) = F̂ (m−1)(X)+

νβ̂ŝmx
ŝm, F̂ (1) = νĝ(X), and ŝ = argmin1≤j≤p

∑n
i=1(Ui−β̂jX(j)

i )2, m denotes the step,

and ν denotes the step size.
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We can apply this theorem to our setting, showing that the group level boosting

algorithm can accurately estimate the functional form of fn in the case that the group

selection model is not misspecified, ie λg = mgβjk for any (j, k) ∈ g.

3.3 Simulation Studies

Our simulation procedure involves: simulating n random graphs as the adjacency

matrix for each subject, defining true β with signal among dense groups and sparse

groups, and obtaining true y = βX + ε. We will repeat this 100 times for each simu-

lation setting considered to evaluate the average performance under those conditions.

The performance will be evaluated with selection criteria (sensitivity, specificity, and

false discovery rate) and estimation criteria (mean squared error). The false discovery

rate (FDR) is defined as the ratio of false positives to the total number of selected

edges.

Existing methods considered in simulation include: lasso, elastic net, and group

lasso. All the existing methods were compared using the following R packages: glmnet

[24] and gglasso [86]. Cross validation was used for each of the existing methods to

select the tuning parameters.

First, we consider three relatively small simulation settings that demonstrate how

the method will perform in three general settings: (1) small sample size compared to

network size with a homogeneous effect within groups, (2) the same network size and

assumptions as the first setting but with a larger sample size, and (3) same network

size as previous two settings and with the larger sample size of the second setting

but without assuming a homogeneous effect within groups. In the first two settings

if a group has non-zero signal, then the effect size is the same for all edges in that

group; the last setting allows some heterogeneity of the effect within groups, meaning

about 80% of the edges within a group have the same effect on the outcome. All three

of these settings, presented in Table 3.1, are for a network with 20 nodes, resulting
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in 190 edges for selection. The number of groups with non-zero signal differs across

these three settings, in the first setting three of six groups have non-zero signal. In

the second setting three of fifteen groups have non-zero signal, and finally in the

third setting 80% of edges in five of fifteen groups have non-zero signal. The results

summarized from 100 iterations of simulated datasets are presented in Table 3.1.

Simulation Setting
Method Sensitivity Specificity FDR MSE

n q Homogeneous

100 20 Yes

Group Boosting R 0.42 (0.04) 0.99 (0.03) 0.04 (0.11) 6.20 (0.64)

Group Boosting AV 0.31 (0.16) 1.00 (0.01) 0.01 (0.04) 27.49 (8.27)

Lasso 0.10 (0.07) 0.99 (0.04) 0.09 (0.16) 26.89 (7.62)

Elastic Net 0.32 (0.06) 0.98 (0.04) 0.07 (0.12) 8.66 (0.66)

Group Lasso 0.07 (0.03) 1.00 (0.01) 0.06 (0.12) 26.82 (7.55)

500 20 Yes

Group Boosting R 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.09 (0.02)

Group Boosting AV 1.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.04 (0.01)

Lasso 1.00 (0.00) 0.93 (0.04) 0.38 (0.13) 0.05 (0.01)

Elastic net 1.00 (0.00) 0.89 (0.05) 0.49 (0.10) 0.06 (0.02)

Group lasso 0.52 (0.04) 0.89 (0.03) 0.66 (0.06) 2.10 (0.05)

500 20 No

Group Boosting R 0.99 (0.01) 1.00 (0.00) 0.02 (0.04) 0.19 (0.05)

Group Boosting AV 1.00 (0.00) 0.98 (0.01) 0.13 (0.05) 0.07 (0.02)

Lasso 1.00 (0.00) 0.92 (0.04) 0.39 (0.11) 0.14 (0.03)

Elastic net 1.00 (0.00) 0.88 (0.05) 0.48 (0.11) 0.15 (0.03)

Group lasso 0.62 (0.08) 0.89 (0.03) 0.60 (0.08) 1.87 (0.32)

Table 3.1: Results from 100 simulated datasets. This table presents the average (sd)
in each column for selection sensitivity, specificity, and false discovery rate (FDR)
defined as proportion of false positives over the number of false and true positive edges
selected, and mean squared error of the effect estimate (MSE). ‘Group Boosting R’
denotes the method that regresses out the adjustment variables using the residuals and
‘Group Boosting AV’ allows the adjustment variables to be selected in the boosting
algorithm. ‘n’ denotes the number of subjects and ‘q’ denotes the number of nodes
in the network.

The first simulation setting demonstrates that our proposed method has greater

sensitivity while still maintaining good specificity and well controlled FDR. This

case with n < p is challenging for many traditional methods, reflected in the results
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from lasso. The two group boosting methods differ only in the way they treat the

adjustment variables. The first row shows the results, when covariates are regressed

out before implementing the two-stage boosting algorithm. ‘Group boosting AV’

instead treats each adjustment variable as its own group in the first stage and allows

them to each be selected individually and included in the model. In this case, the

approach regressing out the effect performs better; this is not surprising given the

simulated adjustment variables are correlated with some edges in the network.

Figure 3.3 shows how the estimated βjk compare to the simulated values. Panels

(A) and (C) show the setting where we assume a homogeneous effect within groups,

like in the first two settings presented in Table 3.1. Panels (B) and (D) compare the

simulated and estimated values in a setting where only 80% of edges within a group

have an effect on the outcome, such as in the third setting in Table 3.1.
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Figure 3.3: Simulated and estimated β values for two settings: assuming a homo-
geneous effect within groups and allowing some heterogeneity of the effect within
groups. The shading represents the effect size.

The number of adjustment variables, and the correlation of these variables with

the image, also varies some across these settings. In the first setting (n = 100) there

are 5 adjustment variables in addition to the image, and they are correlated with

some edges in the brain network, with an average correlation of 0.45. In the two

other settings (n = 500) there are only three adjustment variables with an average

correlation of 0.10 with the image.

All three of these settings reveal that the group boosting method can perform well

in terms of sensitivity and specificity, while also controlling FDR. Though some of the

existing methods are able to achieve high sensitivity and high specificity, FDR is also

quite high among these methods. Interestingly, lasso and elastic net are outperforming
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group lasso in these scenarios.

In order to understand the expected performance of our results in the real data

application, we will also simulate a setting that has a similar ratio of network size to

sample size. This setting has 1,000 subjects, 150 nodes with 15 regions. This results

in a total of 11,180 edges belonging to 120 groups. We will assume homogeneity

among the effect size in each group, similar to the first simulation setting. The signal

to noise ratio is 0.08, and there are 5 adjustment variables with a true effect on the

outcome. Results from this setting are shown in Table 3.2.

Simulation Setting
Method Sensitivity Specificity FDR MSE

n q Homogeneous

1000 100 Yes

Group Boosting R 0.78 (0.07) 0.99 (0.01) 0.46 (0.15) 0.55 (0.08)

Lasso 0.17 (0.08) 0.99 (0.00) 0.51 (0.18) 0.49 (0.02)

Elastic net 0.16 (0.09) 0.99 (0.00) 0.46 (0.23) 0.49 (0.02)

Group lasso 0.01 (0.01) 1.00 (0.00) 0.70 (0.40) 0.52 (0.01)

1810 264 No

Group Boosting R 0.56 (0.10) 1.00 (0.00) 0.10 (0.20) < 0.01 (0.00)

Lasso 0.38 (0.05) 1.00 (0.00) 0.74 (0.07) < 0.01 (0.00)

Elastic net 0.42 (0.04) 1.00 (0.00) 0.77 (0.05) < 0.01 (0.00)

Group lasso < 0.01 (0.01) 1.00 (0.00) 1.00 (0.00) < 0.01 (0.00)

Table 3.2: Results from 100 simulated datasets. This table presents the average (sd)
in each column for selection sensitivity, specificity, and false discovery rate (FDR)
defined as proportion of false positives over the number of false and true positive edges
selected, and mean squared error of the effect estimate (MSE). ‘Group Boosting R’
denotes the method that regresses out the adjustment variables using the residuals.
‘n’ denotes the number of subjects and ‘q’ denotes the number of nodes in the network.

This simulation setting shows that it is difficult to achieve high sensitivity and

specificity while still controlling FDR when the dimension of the network is large in

relation to the sample size. The group boosting approach still outperforms the other

methods by having higher sensitivity and similar specificity, FDR, and MSE. The

run time for Group Boosting is longer compared to the existing methods, but is still
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feasible for obtaining results and runs in roughly 10 minutes in the setting with 1,000

subjects and 100 nodes.

The final simulation setting was designed to resemble the ABCD data used for

the real data application. The observed precision matrices are used to simulate the

outcome, with a similar signal to noise ratio as observed in the ABCD data with

general intelligence factor as the response. The network has 264 nodes, and the

sample size is 1,810. This setting again demonstrates that the group boosting method

outperforms existing methods in terms of sensitivity and FDR (see Table 3.2). In this

case the FDR is well controlled and the sensitivity is higher than the other methods,

so we are quite confident in the associations identified through the selected edges. We

can also observe that it takes approximately an hour to run the proposed method on

data the same size as our real data application, slower than the existing methods but

still computationally feasible.

3.4 Real Data Application

Data from the first release of the ABCD study was used to evaluate the perfor-

mance of this method on real world data. This study is a longitudinal study designed

to follow adolescents for ten years to understand how substance use impacts brain

development. The first release contains cross sectional data of the baseline character-

istics of the children, all aged nine to ten, as well as rfMRI imaging. The outcome of

interest is general cognitive ability.

This data contains 1,810 subjects with some descriptive information such as study

site, age, race/ethnicity, parents’ education level, parents’ marital status, family in-

come, and general psychopathology score. The brain network has been summarized

into 264 regions, which we will use as the network nodes. Power et al. [59] catego-

rized those 264 regions into 13 functional modules. We will use those as the grouping

structure for the network edges (see Table 3.3).
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# Function # Function

1 Sensory/somatomotor Hand 8 Fronto-parietal Task Control

2 Sensory/somatomotor Mouth 9 Salience

3 Cingulo-opercular Task Control 10 Subcortical

4 Auditory 11 Ventral attention

5 Default Mode 12 Dorsal attention

6 Memory Retrieval 13 Cerebellar

7 Visual −1 Uncertain

Table 3.3: Functional brain networks and associated brain functions as identified
using resting state and task oriented fMRI by Power et al. [59].

General cognitive functioning was measured from the neurocognitive battery ad-

ministered as part of the study, which consisted of seven measures based on the NIH

toolbox and five additional tasks. Bayesian probabilistic principal components anal-

ysis (BPPCA) was used to summarize these measures into three broad categories of

cognition: general ability, executive function, and learning and memory [77]. For this

analysis we will use the general cognitive ability component as the outcome.

Since many factors, separate from brain imaging, are expected to impact general

intelligence we will include the following adjustment variables: age, gender, race/eth-

nicity (white, Asian, Black, Hispanic, or other), parents’ education level (high school

diploma or GED, some college, Bachelor’s degree, or post-graduate degree), family

income (less than 50K, between 50K and 100K, or more than 100K), and parents’

marital status. We will use the approach of regressing out the effect of these variables

before then using the boosting algorithm to select edges associated with the general

cognitive ability.

In order to define groups for the stage 1 selection of associated edges, we observed
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that the assumption of homogeneity may be too strong when strictly using the thirteen

previously identified functional modules. To overcome this challenge, we combined

these groups with grouping edges based on the coefficient estimate from Lasso. There

were 376 edges selected by Lasso when using the entire dataset, and these edges were

grouped into 57 groups, enforcing homogeneity in the estimated effect of these groups.

Combining with the 105 groups defined by the Power functional modules, we have

a total of 162 groups. To assess how sensitive this method is to the choice of group

partition of nodes in the network, we considered other group partition strategies as

well. For these we used the coordinates to spatially group the nodes within each

functional module, testing a range of the number of spatial clusters in each functional

module.

The proposed method will be compared to using Lasso directly to perform selection

and to fitting a linear regression including only the confounding variables. Some of

the confounding variables, such as the psychopathology factor, are expected to highly

influence cognitive ability so considering these variables only provides a benchmark

for how much additional information the brain image provides.

The ABCD data will be split 100 times into 80% training and 20% testing sets in

order to compare the performance of these methods on average and to evaluate repro-

ducibility of selected edges. We will report the average predicted R2 and predicted

MSE (and standard deviation), defined as the difference between the predicted cog-

nition score and true cognition score among the testing data, across these iterations.

Additionally we will assess the stability of the selected subset of edges over different

splits, to see whether it is sensitive to the subset of patients included in the training

set.
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3.4.1 Results

Using this method, we identified 20 edges that are associated with general cog-

nitive ability. These edges span 10 functional modules from 15 of the 162 groups.

The most frequently identified functional modules are the default mode (involved in

8 edges), visual (5 edges), cingulo-opercular task control network (5 edges), and dor-

sal attention (4 edges). Figure 3.4 presents the selected edges spanning these four

networks, the default mode network seems especially important. Interestingly, the

work done by [74] also found that interactions between the default mode and task

controls networks were implicated in cognitive ability, similar to our findings.

Figure 3.4: Nodes and edges identified as associated with cognition, split by most
frequently identified functional modules.
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When evaluating the 100 splits into testing and training data, we found that the

group boosting algorithm was much more stable than lasso. In boosting, over 90%

(31 out of 34) of the edges selected across all 100 iterations were selected in more than

one split of the data; in Lasso, only 63% (997 of 1590) of the total edges identified

were selected more than once, see Figure 3.5. Boosting identified 6 edges selected

across all 100 splits and 18 selected in at least half of the splits. These edges span the

following functional modules: sensory/somatomotor hand (1), sensory/somatomotor

Mouth (2), cingulo-opercular task control (3), default mode (5), visual (7), salience

(9), subcortical (10), and dorsal attention (12). The functional modules that have

the most edges selected spanning them include: cingulo-opercular task control (3),

default mode (5), visual (7), and dorsal attention (12). All 18 of these edges are

present in the 20 edges identified using the entire dataset as described previously.

Figure 3.5: Stability of the edge selection for lasso and boosting. Histogram of the
proportion of iterations each edge was selected scaled by the total number of edges
selected by the corresponding method.

Other metrics we compared were the predicted R2 and MSE. Group boosting per-

formed similarly to lasso, with the average R2 for group boosting = 0.302 (sd = 0.033)

and average R2 for lasso = 0.293 (sd = 0.032). Of the 100 splits, group boosting had
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a better R2 in 75 of the iterations. Sripada et al. [74] found an R2 = 0.10 in their

analysis predicting cognition using a dimension reduction approach. This suggests

that considering the network directly, rather than components from a dimension re-

duction approach, improves performance. MSE of the coefficient estimates results

were similar with group boosting slightly outperforming lasso, the average MSE for

group boosting = 0.504 (sd = 0.026) and the lasso average MSE = 0.508 (sd = 0.026).

Though the predictive performance is similar, the stability of selected edges gives us

more confidence in the association of the selected edges identified, compared to that

of lasso. Not only do we want to see good prediction performance, we also aim to

understand the functional networks associated with cognitive functioning.

We may consider the proportion of variation explained by each functional module

to understand how much each of these networks contributes. Table 3.4 presents these

results, showing that the edges contained in or spanning the default mode network

seems to contribute the most in terms of variation explained.
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Functional Module
Number of % Variation

AAL Regions
Edges/Variables Explained

Default Mode 7 8.12 Superior frontal gyrus, Middle frontal
gyrus, Inferior frontal gyrus, Superior
frontal gyrus, Lingual gyrus, Superior
occipital gyrus, Fusiform gyrus, Pre-
cuneus, Middle temporal gyrus

Visual 5 3.80 Precental gyrus, Calcarine fissure and
surrounding cortex, Lingual gyrus, Su-
perior occipital gyrus, Middle occipi-
tal gyrus, Postcentral gyrus, Precuneus,
Middle temporal gyrus

Cingulo-opercular
task control

4 3.75 Supplementary motor area, Insula, Me-
dian cingulate and paracingulate gyri,
Postcentral gyrus, Supramarginal gyrus,
Temporal pole: superior temporal gyrus

Dorsal Attention 4 2.77 Middle frontal gyrus, Insula, Lingual
gyrus, Superior occipital gyrus, Middle
temporal gyrus

Adjusted Variables 15 14.70

Table 3.4: Summary of contribution of edges from the most frequently identified func-
tional modules, in terms of proportion of variation explained and associated AAL116
regions.

We compared the results of two additional group partitions, determined using the

spatial coordinates of the nodes within each functional module. The fitted R2 was

similar to that of the primary analysis. The specific edges identified were different,

although many of the functional modules they belonged to were similar. For example,

when we split the functional modules into three clusters each, we identified several

edges spanning the default mode, visual, and dorsal attention networks. The edges

identified using the full data, regardless of the group partition we chose, seemed to

share many of the same functions.

3.5 Discussion

This work introduces a two-stage boosting algorithm to perform scalar-on-network

regression, utilizing structure of subnetworks. The utility of this method has been
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demonstrated through simulations, with higher sensitivity and better controlled false

discovery rate compared to commonly used existing regularization and group variable

selection methods. rfMRI data from the ABCD study was used to identify associations

between cognition and ROIs in the default mode, cingulo-opercular task control,

visual, and dorsal attention networks. The analysis reveals stable and reproducible

associations among edges spanning these functional modules.

Future work will involve relaxing the homogeneity assumption. Assuming the ef-

fect size is very homogeneous within groups may be too strong for some real data

brain imaging applications, in that case relaxing this assumption may improve the

ability to detect true associations. Other extensions to this method could be consid-

ered as well, such as implementing a tree-based boosting method rather than the L2

boosting algorithm implemented in this work.

64



CHAPTER IV

Scalar-on-network Regression via Deep Neural

Networks

4.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) has increasingly been used to

study how patterns in brain activation relate to psychiatric diseases and disease pro-

gression. The complex nature of brain functioning necessitates the development of

new methods to understand these associations. As one of the most popular imag-

ing technologies, fMRI measures the blood oxygen level dependent (BOLD) signal at

hundreds of thousands of voxels in the brain over a period of time; fMRI may cap-

ture the brain activity at rest, also known as resting-state fMRI (rfMRI), or while a

specific task is being performed, known as task-oriented fMRI. Both of these imaging

modalities are important for assessing brain functions and specifically for psychiatric

disease progression.

The statistical approaches for analyzing the task fMRI data and the rfMRI data

are quite different due to the nature of imaging acquisition and the goal of analysis.

The task fMRI focuses on identifying the brain activation regions that are related to

certain brain functions. The task fMRI time series across individuals can be aligned

in time based on the task stimuli. From a typical statistical analysis for the task
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fMRI data, e.g., statistical parametric mapping (SPM), the individual-level contrast

maps or t-maps can be constructed for examining differences in brain activity under

different task conditions. The rfMRI aims to study brain activity at rest, i.e., when a

explicit task is not being performed. Due to this design, the rfMRI time series across

individuals are not directly comparable, while it has been of interest to study the

regional interactions of brain activity for single individuals or a group of individu-

als. In particular, the rfMRI data can be summarized as the functional connectivity

measures or functional brain networks between regions, e.g., the correlation matrix

of averaged BOLD time series at region level.

In this chapter, we perform a novel statistical association analysis between the

scalar outcome variable (e.g., neurocognitive functions) and functional connectivity

brain networks (e.g., correlation matrices) from rfMRI data. We aim to perform the

network feature selection, i.e., to identify the important region pairs in which the func-

tional connectivity measure is strongly associated with the outcome variable, while

integrating multiple sources of information including well-known brain functional net-

works and task fMRI brain activation patterns. We are interested in exploring how

much the task fMRI brain activation patterns may facilitate to improve the network

feature selection.

4.1.1 Existing Methods

Previous research has taken different approaches to perform association analysis

between scalar outcome and brain networks. One such study, used a dimension re-

duction method to understand the association between general cognitive ability and

75 components of the brain network, identified via brain basis set modeling [74].

This research provides a good foundation for understanding broadly which functional

networks of the brain are associated with cognition, yet the interpretation of the

components is limited.
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A more flexible modeling strategy that can take into account all the information

from the brain network, rather than just the more important components, may be

able to improve upon these findings. The deep neural networks (DNN) provide great

flexibility for modeling the edge-dependent regression coefficients in the scalar-on-

network regression integrating multiple sources of information into the model. Deep

learning methods have been shown to have a very good predictive performance in

many different applications and the benefit of a flexible framework [65, 67].

4.1.2 Motivating Data: ABCD Study

The ABCD study aims to provide more insight into brain development in adoles-

cents, and specifically to show the ways in which it can be a marker of neurocognitive

functioning. This study has collected rfMRI and task-oriented fMRI data for about

11,000 children aged nine or ten in the first release of data, as well as demographic

information and behavior tasks aiming to understand higher-order cognitive functions

[50].

Previous work [78] shows that DNN have the potential to identify brain regions

that are highly associated with cognitive functioning with greater precision than ex-

isting methods. Extending this work to incorporate multiple imaging modalities pro-

vides the framework to combine multiple sources of information that are believed to be

important in the underlying associations between brain functioning and neurocogni-

tive disease. The flexible nature of DNNs allows the incorporation of additional node

and edge information as inputs in the neural nets, such as summary information from

task-oriented imaging. In this work we will propose an algorithm to perform scalar

on network regression with DNN, extending the previous work, while also incorpo-

rating multiple imaging modalities. By using DNN, we hope to relax the assumption

of homogeneity within groups that was integral to ensure good performance in the

second chapter.

67



This application could particularly benefit from incorporating task fMRI, because

of the known associations between differences in performance of certain tasks and ad-

diction [35]. For example, one study of adolescents detected differences in activation

patterns among teens performing an inhibition task predictive of substance use in

the next 18 months [51]. Another study found patterns of deactivation in the default

mode network when performing verbal Stroop tests for subjects with internet addic-

tion compared to other subjects [18]. The monetary incentive delay task has also

been established to be effective in demonstrating differences in brain activity among

addicted or at-risk subjects [4].

In this analysis, we aim to identify connectivity patterns that are associated with

the Child Behavior Checklist (CBCL) score among children in the ABCD study.

To do this, we will utilize both task-oriented fMRI and rfMRI, summarized at the

cortical surface level. Unlike the previous two chapters, which utilized volumetric

data. Surface-based metrics have some advantages over volumetric summaries, such

as better accounting for differences in individuals’ cortical structure [2, 8].

Figure 4.1 presents the process of incorporating multiple sources of data into

the scalar-on-network regression model. Panel A shows the location of nodes in the

cortical surface rfMRI data. The nodes are colored by membership in 13 functional

networks, like the default mode or cingulo-opercular networks. Panel B shows how

the time series corresponding to each node are used to establish the connectivity

patterns (Panel C) for each subject. Panels A-C are the processing steps for the

rfMRI data. Panel D shows the images from task MRI for each subject, and the

activation levels for each location on the cortex are averaged across subjects. These

activation patterns are included in the data used as an input in the neural networks

(Panels E and F). Other node or edge-level characteristics like the coordinates of the

parcels and an indicator of membership in the 13 functional networks are also used

as inputs for the neural networks (Panel E). Panel F presents the structure of the
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Figure 4.1: Flowchart depicting how the three sources of data, rfMRI, task fMRI,
and patient characteristics, relate to estimate the final equation (panel H).
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neural networks: inputs are those in Panel E, two hidden layers, and the output are

the coefficients for the eventual scalar-on-network regression. The outcome of the

data application in this work is the Child Behavior Checklist Externalizing score, and

Panel G shows a histogram of this outcome across subjects. Finally Panel H shows

how these components relate in the scalar-on-network regression model.

4.2 Methods

The proposed method provides a framework for using deep neural networks to

model functional connectivity patterns using brain network characteristics, and cor-

tical surface coordinates. This framework, though developed for the analysis of func-

tional brain connectivity, can be generalized to networks of other types as well. In the

cortical surface context, nodes in the network are parcels along the cortical surface

defined by the Gordon spatial parcellation [27] and edges are connectivity patterns

between any two parcels.

Suppose the data consists of n subjects and let i(i = 1, . . . , n) denote the subject

index. We are interested in relating functional connectivity measures of q brain

regions, denoted as {xijk : (j, k) ∈ S}, to a scalar outcome, denoted as yi, where

S = {(j, k) : 1 ≤ k < j ≤ q} is the whole edge set of interest in the functional

connectivity network.

Consider the scalar-on-network regression model

yi = β0 +

pA∑
l=1

αlzil +
∑

(j,k)∈S

βjkxijk + εi (4.1)

where E(εi) = 0 and V ar(εi) = σ2. We consider regression coefficients βjk to be

edge-dependent which is specific to a node pair (j, k).

In some network applications, the entire network can be partitioned into several

subnetworks or groups, i.e., S =
⋃R
r=1 Sr and Sr ∩ Sr′ = ∅. For example, the Gordon
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spatial parcellation used with cortical surface data, categorizes each parcel into one of

thirteen functional networks. This partition may be leveraged in the modeling stage

if it is assumed that there are similar effects within groups, or it may be used to aid

in interpretation of results. In this analysis, to relax the assumption made in the

previous chapter of a similar effect within groups, we don’t directly use the partition

when estimating the neural network.

In many cases the linear relationship between yi and xijk forced in (4.1) is too

rigid. Model performance may be improved if we relax the assumption of linearity

and model with a more flexible nonlinear model. Consider estimating βjk as follows

βjk = g(ujk;θ); ujk = {vj, vk, wjk}. (4.2)

The function g(·) is modeled as a multi-layer feed forward neural network, where

ujk = {vj, vk, wjk} and θ represents the weight parameters. The input of the neural

network contains the coordinates of the parcels as well as other characteristics specific

to the locations j and k, denoted by vectors {vj, vk}. Other inputs can be edge specific

characteristics, such as an indicator of membership to functional regions. Additionally

task-oriented fMRI characteristics can be summarized at the node or edge-level and

incorporated as inputs in the neural network for each βjk. Node-level task fMRI

information is summarized as the average activation across subjects at that parcel,

and edge-level information is summarized as the average full or partial correlation

between two parcels across subjects. Including task fMRI statistics as inputs in the

neural network will improve estimation if the task images impact the association

between clinical outcome and the resting-state images, essentially an interaction.
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4.2.1 Estimation

To estimate parameters in (4.1), we consider the following constrained optimiza-

tion problem with the L1 penalty to induce the sparsity in regression coefficients.

Q(Θ) =
1

2
‖y − Zα−Xβ‖2

2 + λ‖β‖1 subject to β = g(ujk;θ), (4.3)

where λ is a tuning parameter and Θ = (α,β,θ). In order to solve the objective

function we use the ADMM algorithm which introduces η constrained by η = β, and

then solves the objective function in (4.4).

Q(Θ) =
1

2
‖y − Zα−Xβ‖2

2 + λ‖η‖1 + τ>(β − η)

+
ρ1

2
‖η − β‖2

2 + ζ> (β − g(ujk;θ)) +
ρ2

2
‖β − g(ujk;θ)‖2

2, (4.4)

where λ, ρ1, and ρ2 are tuning parameters and Θ = (α,β,η,θ). The neural network

used to estimation g(ujk; θ) is a feed forward network with two hidden layers, using

the ReLU activation function. The first hidden layer has 50 nodes and the second

hidden layer has 25 nodes.

Similar to the solution using ADMM in Chapter II and ADMM for lasso [5], we

can obtain the following solutions for the parameters at iteration t for t = 1, 2, . . . ,:

β(t) =
{
X>X + (ρ1 + ρ2)I

}−1 {
X>(y − Zα(t−1)) + ρ1η

(t−1) − τ (t−1)+

ρ2g(ujk;θ
(t−1))− ζ(t−1)

}
,

η(t) = Sλ/ρ1

{
β(t−1) +

τ (t−1)

ρ1

}
,

ζ(t) = ζ(t−1) + ρ2{β(t−1) − g(ujk; θ)},

τ (t) = τ (t−1) + ρ1{β(t−1) − η(t−1)},

where Sλ(x) = (x− λ)I(x > λ) + (x+ λ)I(x < −λ) for λ > 0 is the soft thresholding
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function. The ADMM algorithm is more efficient if the starting values of the param-

eters are closer to the final estimates. In order to obtain a reasonable starting value,

lasso estimates are used for α̂l, (l = 1, . . . , pA) and β̂jk, (1 ≤ k ≤ j ≤ q).

Data: {xi, yi, zi}ni=1; Max number of iterations T ; Tuning

parameter λ, ρ1, ρ2.

Result: {βjk}

begin

Initialize βjk = β̂jk,lasso and θ.

for t = 1, . . . , T do

Train the NN

Loss = 1
2
‖y − Zα−Xβ‖2

2 + λ‖η‖1 + τ>(β − η)

+ρ1
2
‖η − β‖2

2 + ζ> (β − g(ujk;θ)) + ρ2
2
‖β − g(ujk;θ)‖2

2

Update α = (Z>Z)−1Z>(y −Xβ)

Update β =(
X>X + (ρ1 + ρ2)I

)−1 (
X>(y − Zα) + ρ1η − τ + ρ2g(ujk;θ)− ζ

)
Update η = Sλ/ρ1(β + τ

ρ1
)

Update τ = τ + ρ1(β − η)

Update θ = argminθ‖β + ζ
ρ2
− g(ujk;θ)‖2

2

Update ζ = ζ + ρ2 (β − g(ujk;θ))

end

end

Both ρ1 and ρ2 may depend on the sample size. From our experiences, ρ1 = 1.5n

and ρ2 = 0.01n are a good choice in practice. The feature selection is based on the

choice of λ so this is chosen using the 5-fold cross validation. The proposed method is

referred to as SoNR-NN (scalar on network regression - neural networks). The Adam

algorithm [43], a stochastic gradient descent method, is used to solve for θ in the

algorithm. In this application, the neural network has two hidden layers and uses the

ReLU activation function. The first hidden layer has 50 nodes and the second hidden
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layer has 25 nodes.

4.3 Simulations

Simulations were used to evaluate the predictive performance of the proposed

method. The simulations were designed according to the rfMRI data in the ABCD

study. The outcome variable was simulated from the model yi =
∑pA

l=0 αlzil +∑
(j,k)∈S βjkxijk + εi with variance of εi set to define a signal to noise ratio of about

0.60. The predictors, i.e. the functional connectivity networks of 418 regions for

{xijk} and 16 additional individual characteristics for {zil}, were extracted from the

ABCD data, see details in Section 4.4. The true regression coefficients were specified

in light of the analysis of rfMRI data in the ABCD study. In particular, the lasso

estimate was used as the true value of αl. For the true value of βjk, the largest 1,000

estimated effect size were adopted as the non-zero effects and all other effects were

set to be zero. The sample size is 4,322, the same number of subjects analyzed in the

ABCD study.

The proposed method is compared to Lasso, and evaluated in terms of variable

selection accuracy as well as predictive performance. The predicted R2 is obtained by

simulating a testing set used to test 100 iterations of different training sets. Selection

accuracy is evaluated using sensitivity, specificity, and false discovery rate (FDR),

which is defined as the ratio of correctly selected variables to the total number of

selected variables.

One simulation design is based on rfMRI volumetric data from the ABCD study

and does not incorporate task fMRI data. This simulation demonstrates that the

method can achieve much higher sensitivity compared to existing methods like Lasso,

even without including multiple imaging modalities (see Table 4.1). Another impor-

tant note is that FDR is well controlled, less than 10% for both methods.

The other simulation design does incorporate task fMRI from the ABCD data.
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Table 4.1: Results from two simulations based on ABCD imaging. The evaluation
metrics are presented as proportions and the table presents the average of 100 itera-
tions.

Method Predicted R2 Sensitivity Specificity FDR

Volumetric
SoNR-NN 0.82 0.24 0.83 0.04

Lasso 0.76 0.02 0.99 0.07

Cortical Surface
SoNR-NN 0.23 0.41 0.97 0.12

Lasso 0.22 0.12 0.99 0.19

This simulation setting gives insight into the results from the real data analysis, using

the same data sources. We can see again that the proposed method has much higher

sensitivity. FDR is still well controlled, with the proportion of falsely selected edges

still less than 15% of all the selected edges.

4.4 Data Application

4.4.1 ABCD fMRI Data

Cortical surface data from rfMRI and task fMRI were obtained for a sample

of 4,322 subjects from the ABCD study [12]. We limited the sample to subjects

performed the same task in the first round of imaging, those who had the Monetary

Incentive Delay (MID) task-oriented fMRI. This task was selected as one of three for

the ABCD study because of previously observed differences in subjects suffering from

addiction [4]. These images are summarized into several different contrast maps, here

we focus on the contrast between small reward anticipation vs neutral anticipation.

Summarizing the fMRI data at the cortical surface rather than by volume may

have some advantages, such as improved sensitivity and better alignment for individ-

uals [8, 2]. The Gordon parcellation of about 32,000 parcels is used to determine the

locations on the folded cortex [27]. Rather than 3D coordinates like in volumetric

data, we use spherical coordinates to capture the locations on the folded cortex.
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The functional labels for the Gordon parcellation are mostly consistent with those

used with the Power parcellation of volumetric data, with a few exceptions [27]. Table

4.2 presents the functional label and corresponding abbreviation used in Figure 4.1.

Abrv. Function Abrv. Function

DM Default Mode CP Cingulo-parietal

SMH Sensory/somatomotor Hand CO Cingulo-opercular Task Control

SMM Sensory/somatomotor Mouth RT Retrosplenial Temporal

VIS Visual VA Ventral attention

FP Fronto-parietal Task Control SAL Salience

AUD Auditory DA Dorsal attention

NONE Uncertain

Table 4.2: Functional brain networks and associated brain functions as identified
using resting state and task oriented fMRI by Gordon et al. [27].

In the estimation of βjk = g(vj, vk, wjk;θ), the parcels defined by the Gordon 418

spatial parcellation represent nodes j and k. Then node level feature vj may contain

the spherical coordinates of parcel j and an indicator of membership in a functional

network (see Table 4.2); vj may also include average task fMRI information at loca-

tion j across all subjects. In our application the node-level task fMRI features were

summarized as the average contrast between small reward anticipation and neutral

anticipation at each parcel across patients from the MID task. Edge characteristics

included in wjk are an indicator of whether the two nodes belong to the same func-

tional network and the average correlation between the task contrast maps for those

two nodes across subjects.
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4.4.2 ABCD Clinical Data

In addition to the rfMRI images, we will adjust for five subject characteristics in

the model (Z). The variables include: sex, age (in months) race, parental education

level, and parents’ marital status. Several of these categorical variables are incorpo-

rated as indicators of having any of the categories so this results in the following 16

covariates: female or male, race is split into white, Black, Native American, Chinese,

Japanese, or other race (note that subjects could choose more than one race category),

age in months, parental education is split into less than a high school diploma, high

school diploma or GED, attended some college, Associate’s degree, Bachelor’s degree,

post-graduate degree, or unknown, and parents’ marital status is simply married or

not.

The outcome of interest is the CBCL externalizing score. The CBCL was de-

veloped in 1991 as a screening tool to identify behavioral and emotional problems

in children or adolescents [1]. Children with severe affective and behavioral dysreg-

ulation can be identified using a profile from the CBCL, and these children are at

greater risk of adverse outcomes like future substance use, suicide, and severe psychi-

atric symptoms [34]. Because one of the main long-term goals of the ABCD study

is to evaluate brain development related to substance use, this score is an important

metric to track, especially among the children when they are still young. At the time

of this analysis, less than 2% of the subjects had reported consuming a full drink of

alcohol or trying any substances, so a risk factor for future substance use such as the

CBCL score is used instead.

4.4.3 Results

The SoNR-NN model fitting was compared to the performance of Lasso. The

SoNR-NN model included three additional components of information from the task

fMRI across subjects: (1) average value of the task contrast maps across subjects for
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each node; (2) average correlation between two nodes of the task contrast map; and

(3) the standard deviation of the task contrast maps for each node.

Method Fitted R2 Predicted R2

SoNR-NN 0.105 0.095

Lasso 0.075 0.058

Table 4.3: Results from the ABCD analysis, comparing SoNR-NN to Lasso in terms
of fitted and predicted R2. Predicted R2 is an average of 5 splits into 80% training
and 20% testing splits.

From Table 4.3, we observe that this method can improve the fitted R2 and pre-

dicted R2 substantially compared to using Lasso. The model including all considered

inputs to the neural network, including task fMRI, identified 172 edges that are asso-

ciated with the CBCL externalizing score. The inputs with the largest impact are the

coordinates of the nodes (see Table 4.4). We also note that including the standard

deviation of task contrasts at each node and the correlation between task contrasts

seem to contribute more information than simply the average task contrast at each

node. This implies that the variation of task contrast across subjects and the corre-

lation between nodes interacts more with the resting-state data impacting the CBCL

score. Using other MID contrasts or other tasks, such as the stop signal task which

is also collected by the ABCD study, may reveal a different association.
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Figure 4.2: Parcels associated with the CBCL externalizing score, identified from
the full data analysis that belong to the four most commonly associated functional
networks. The nodes are colored according to the degree, ie the number of connections
that node has with other nodes. The top row presents the nodes with a positive
effect, ie higher connectivity is associated with higher CBCL score, and the bottom
row presents the nodes with a negative effect, ie lower connectivity is associated with
higher CBCL score.

Inputs Proportion of Variation Explained (%)

Node level spatial coordinates 41.66

Node pair functional network indicator 6.65

Node level mean of task contrast map 2.60

Node pair correlation of task contrast map 17.16

Node level SD of task contrast map 13.61

Table 4.4: ANOVA of neural network inputs to evaluate importance of each compo-
nent.

The functional networks most frequently associated with the CBCL externalizing

score are: default mode (42% of selected edges are contained within or span this

network), Cingulo-opercular (23%), visual (20%), and dorsal attention (19%).

79



Figure 4.3: Heatmap showing the proportion of positive or negative edges detected
within and across each of the functional networks. Color denotes the proportion of
edges identified which have a positive (blue) or negative (red) association with the
CBCL score.

Figure 4.3 shows on average which regions higher or lower connectivity is associ-

ated with an increased CBCL score. The blue regions are those in which a greater

proportion of edges identified have a positive association with the behavioral score,

meaning higher connectivity is associated with higher behavioral score. Conversely,

red regions are those in which a larger proportion of edges identified in that functional

network have a negative association with the CBCL score.

4.5 Discussion

This work proposes an approach to analyze resting-state fMRI data in conjunc-

tion with task fMRI, in order to identify regions of brain connectivity associated

with a clinical outcome. Analysis of the ABCD data established association between

the default mode, visual, Cingulo-opercular, dorsal attention, and somatomotor hand

80



networks and the child behavior checklist outcome, which is known to be associated

with future substance use [34]. The proposed method is able to detect more associ-

ated edges in the brain network, and reveals that node level variation and node pair

correlation of the task contrast maps have more impact on the association between

the behavioral outcome and the resting-state functional connectivity measures.

Additional analyses of different tasks or different contrast maps could provide fur-

ther insight into the benefits of combining resting-state and task fMRI. Additionally,

applying this method to substance use directly to the ABCD data in a few years,

rather than the CBCL externalizing score, could reveal a different association.
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CHAPTER V

Discussion and Future Work

This work has introduced three new methods for analyzing functional brain con-

nectivity and identifying patterns that are associated with clinical characteristics and

outcomes. Each chapter explores a different setting where these connections may

provide further insights into the development or progression of cognitive ability and

psychiatric diseases. Developments in big data analysis and brain imaging have paved

the way for new research in this area, and these methods demonstrate the potential

ways that brain imaging can be used to influence future research and eventually clin-

ical practice. These methods may also be generalized other network settings outside

of neuroimaging. The first method may be used in any setting where one would like

to relate some vector of predictors to connectivity patterns in a network. The latter

two methods may be applied to settings in which a scalar outcome is regressed on

a sparse network. Though they have designed with functional connectivity in mind,

these methods are not limited to brain imaging applications.

On Predictability of Individual Functional Connectivity Networks from Clinical

Characteristics (Chapter II) introduces a joint modeling approach to estimating in-

dividual connectivity networks and associations between clinical characteristics the

connectivity patterns. This chapter demonstrates how machine learning algorithms

can be used to improve power to detect novel associations amid often noisy imaging
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data. Estimating individual connectivity networks is still an active area of research

and joint estimation is one way to leverage information across subjects to improve

this estimation. Importantly, we are also able to identify clinical characteristics as-

sociated with connectivity patterns, which is an important and difficult feature of

imaging studies. With noisy imaging data, often the false discovery rate of associa-

tions is high without dimension reduction methods. The proposed method does not

rely on dimension reduction to identify reliable, interpretable associations between

specific regions of interest in the brain and clinical characteristics.

When this method was applied to analysis of the PNC data, we identified regions

of the brain where connectivity patterns were highly predictable given the subset

of clinical characteristics collected in that study. Associations identified between the

subcortical network and SIPS survey questions are consistent with previous literature

[36, 82, 16], in addition to some novel associations identified. This gives further

confidence in the methods used, as reproducibility is both difficult and critical in

brain imaging studies.

The next chapter III, Scalar on Network Regression via Boosting, demonstrates the

utility of a boosting algorithm to identify associations between clinical outcomes and

functional connectivity patterns. The proposed method provides higher sensitivity

to detect associations between connectivity and clinical outcomes, while ensuring the

false discovery rate is low. Identifying associations that are reproducible is one of the

main strengths of this method. It also leverages the natural group structure in light

of the well-known functional brain networks, to efficiently screen out any regions that

are not associated with the outcome of interest.

Applying this method the the ABCD study, we identified specific edges within

several functional networks that are associated with general cognitive ability. The

most frequently identified functional networks are consistent with previous studies

of cognitive ability, yet identifying specific edges in the network established by the
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Power spatial parcellation provides a more granular level of specificity compared to

most existing methods.

Finally, Scalar on Network Regression via Deep Neural Networks (Chapter IV)

builds upon the ideas of the boosting method in the previous chapter. This method

similarly detects associations between connectivity patterns and a clinical outcome.

The main difference is that by using neural networks, we can incorporate additional

node and edge-wise information beyond simple membership to a group or functional

network. In this context, task fMRI was incorporated to determine if there is an

interaction between resting-state and task fMRI that could be leveraged to improve

the prediction of clinical outcomes given connectivity patterns.

This method when applied to the ABCD study identifies 172 edges that are pre-

dictive of the CBCL score, an important risk factor for future substance use. This

method was also able to show that including task fMRI information is possible, though

in this setting not necessary to improve upon performance of existing methods. Us-

ing coordinates of parcels in the image alone, greatly improved the power to detect

associations compared to Lasso.

In summary, this work presents three new methods for analyzing brain functional

connectivity, and demonstrates their utility through simulations and with applications

to the PNC and ABCD studies. Several future directions can be pursued. First, as

one important consideration with brain imaging data analysis, image pre-processing

procedure may impact the performance of methods. For example, registering the raw

imaging data into the volumetric space or on the cortical surface may affect the ability

to detect brain signals. Further research is needed to study how the proposed methods

are sensitive to the different image pre-processing procedures. Second, incorporating

more information and knowledge into the proposed methods may potentially obtain

a more scientifically meaningful result. For example, in Chapter III using a more

informative grouping of nodes in the brain network may improve the power of the
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method and identify more region pairs that are strongly associated with the clinical

outcome of interests, since it relies partially on the assumption of similar effects within

groups. In addition, the computational algorithms for the proposed methods may be

sensitive to the choices of tuning parameters, e.g., the learning rate in ADMM and

the neural network architecture in the DNN method, as well as the initial values.

The current proposed algorithm cannot guarantee the global optimal solution. It is

of great interest to develop a data-adaptive and more robust method to choose those

parameters.
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APPENDIX A

Theoretical Properties

A.1 Theoretical Properties of Chapter 3: Scalar on network

regression via boosting

This section summarizes the main theoretical properties of the method proposed in

Chapter 2: scalar on network regression via boosting (Section 3.2). Broadly, we show

that the first stage of the group boosting algorithm provides a close approximation

to the true values when edges in the network are not grouped. The deviation from

the true value is a function of the average value of β, the max deviation within a

group from βg, and the expected value of the squared summation of all the elements

in group g. The properties will be investigated separately for two cases: homogeneity

of the effects within groups and heterogeneity of the effects within each group.

We will denote the summary of edges within a given group as Zig and the individual

covariates as Xijk, such that Zig =
∑

jk∈g Xijk

mg
. The networks are defined by g and mg

is the number of edges in group g.

The properties of this method vary based on the assumptions made on the group

effects. In some cases, one may expect the effect of all edges in a given region to be
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the same, whereas in other cases more heterogeneity may be assumed. Consider the

following cases: one homogeneous group, one heterogeneous group, multiple homoge-

neous groups, and multiple heterogeneous groups.

A.1.1 Scenario 1: Homogeneous effect within groups

Suppose for the simplest case that all the edges belong to one group. The only

difference between this approach and standard L2Boosting without group selection is

that we force all the variables to have the same effect on the outcome - homogeneity

within a single group. First we will assume this to the be the true underlying model,

so we are estimating with a correctly specified model, where we assume β1 = β2 =

. . . = βmg . In the case that the true model is β1 = . . . = βmg , this approach may be

more efficient because we force the estimates to be equal within the group.

We know the true relationship between Zi and xijk is Zi =
∑

(j,k)∈g βjkxijk

λ1
. We will

estimate Zi with Z̃i =
∑

(j,k)∈g Xijk

mg
, the model we will use for group selection is

Y = λ0 + λ1Z̃

Consider the expected difference between the true Z and the estimate Z̃:

E{‖Z − Z̃‖2
2} = E


(∑

(j,k)∈g βjkxijk

λ1

−
∑

(j,k)∈g xijk

mg

)2
 (A.1)
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If we take the derivative with respect to 1
λ1

we can obtain:

∂(Z − Z̃)2

∂λ1

= 2

(∑
(j,k)∈g βjkxijk

λ1

−
∑

(j,k)∈g xijk

mg

) ∑
(j,k)∈g

βjkxijk

 (A.2)

0 = 2

(∑
(j,k)∈g βjkxijk

λ1

−
∑

(j,k)∈g xijk

mg

) ∑
(j,k)∈g

βjkxijk

 (A.3)

=
(
∑

(j,k)∈g βjkxijk)
2

λ1

−
(
∑

(j,k)∈g xijk)(
∑

(j,k)∈g βjkxijk)

mg

(A.4)

1

λ1

= E

{ ∑
(j,k)∈g xijk

mg(
∑

(j,k)∈g βjkxijk)

}
(A.5)

In the simplest case if βjk = βg for all (j, k) ∈ g then this simplifies to be

1

λ1

= E

{ ∑
(j,k)∈gXijk

mgβg
∑

(j,k)∈gXijk

}
=

1

mgβg
(A.6)

We can see in this very simple case that the expected value of the difference

between our estimated group effect and the true value is:

E{‖Z − Z̃‖2
2} = E


n∑
i=1

(∑
(j,k)∈g βjkxijk

λ1

−
∑

(j,k)∈g xijk

mg

)2
 (A.7)

= E


n∑
i=1

(
βg
∑

(j,k)∈g xijk

mgβg
−
∑

(j,k)∈g xijk

mg

)2
 (A.8)

= 0 (A.9)

Therefore in scenario 1, where we assume the effect within group is entirely ho-

mogeneous and we have only one group, the expected squared error of estimating Z̃

E{‖Z − Z̃‖2
2} is zero. We can see that this result expands to the case where we have

multiple groups and the effect within each group is homogeneous. In this case we also

see that the expected squared error of ‖Z − Z̃‖ is zero.
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A.1.2 Scenario 2: Heterogeneous effect within groups

In this second scenario, we now relax the assumption that the effect of edges

within a group are exactly the same. Allowing some heterogeneity of the effect within

groups is more realistic, though we will still assume the effects are similar within a

given group.

The general form of λg is

1

λg
= E

{ ∑
(j,k)∈g xijk

mg

∑
(j,k)∈g βjkxijk

}

If we consider the heterogeneity among a group of edges as the difference from the

average effect, we can define βjk = β̄g + δjk, where β̄g is the average effect of an edge

in group g on the outcome. δjk represents the deviation of the effect of edge (j, k)

on the outcome from the average of the group’s effect. Now we can define λ in the

following way,

1

λg
= E

{ ∑
(j,k)∈gXijk

mgβ̄g
∑

(j,k)∈gXijk +mg

∑
(j,k)∈g δjkXijk

}
(A.10)

λg =
1

E
{ ∑

(j,k)∈g Xijk

mg β̄g
∑

(j,k)∈g Xijk+mg
∑

(j,k)∈g δjkXijk

} (A.11)

We would like to obtain the upper bound for the difference between Z and Z̃ in

order to quantify the approximation error of this approach.

Taylor series expansion can be used to show the following approximation

E

(
1

X

)
≈ E

(
1

E(X)
− (X − E(X))

E(X)2
+

(X − E(X))2

E(X)3

)
(A.12)

=
1

E(X)
+
V ar(X)

E(X)3
(A.13)

Now if we take ′X ′ to be mgβ̄
∑
X+mg

∑
δX∑

X
= mgβ̄ + mgug, where ug =

∑
j∈g δjXj∑

Xj
,
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then we get

1

λ
= E

( ∑
X

mgβ̄
∑
X +mg

∑
δX

)
≈ 1

E(mgβ̄ +mgug)
+
V ar(mgβ̄ +mgug)

E(mgβ̄ +mgug)3
(A.14)

=
1

mgβ̄ +mgE(ug)
+

m2
gV ar(ug)

[mgβ̄ +mgE(ug)]3
(A.15)

We can use this to evaluate an approximation of the distance between Z and Z̃.

E‖Z − Z̃‖2
2 = E

{∑
i

(∑
Xβ

λg
−
∑
X

mg

)2
}

(A.16)

≈ E

{∑
i

(∑
X(β̄g + δ)

(
1

mgβ̄g +mgE(ug)
+

m2
gV ar(ug)

[mgβ̄g +mgE(ug)]3

)
−
∑
X

mg

)2
}

(A.17)

= n E


(
β̄g
∑
X +

∑
δX

mgβ̄g +mgE(ug)
+
m2
gV ar(ug)

∑
X(β̄g + δ)

[mgβ̄g +mgE(ug)]3
−
∑
X

mg

)2

(A.18)

= n E


(
β̄g
∑
X + ug

∑
X

mgβ̄g +mgE(ug)
−
∑
X

mg

+
m2
gV ar(ug)

∑
X(β̄g + δ)

[mgβ̄g +mgE(ug)]3

)2


(A.19)

= n E


(∑

X

mg

(
β̄g + ug

β̄g + E(ug)
− 1

)
+
m2
gV ar(ug)

∑
X(β̄g + δ)

[mgβ̄g +mgE(ug)]3

)2

(A.20)

= n E

{(∑
X

mg

(
β̄g + ug

β̄g + E(ug)
− 1

)
+
V ar(ug)(β̄g + ug)

∑
X

mg(β̄g + E(ug))3

)2
}

(A.21)

= n E

{(∑
X

mg

(
β̄g + ug

β̄g + E(ug)
− 1 +

V ar(ug)(β̄g + ug)

(β̄g + E(ug))3

))2
}

(A.22)
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E(ug) = E

{∑
(j,k)∈g δjkxijk∑

xijk

}
(A.23)

V ar(ug) = V ar

{∑
(j,k)∈g δjkxijk∑

xijk

}
(A.24)

If we assume that E(ug) = 0 then this becomes

E

{
n∑
i=1

(Zi − Z̃i)2

}
= E

{
n∑
i=1

(∑
jk xijk

mg

(
β̄g + ug

β̄g + E(ug)
− 1 +

V ar(ug)(β̄g + ug)

(β̄g + E(ug))3

))2
}

(A.25)

= n E

{(∑
jk xijk

mg

(
β̄g + ug
β̄g

− 1 +
V ar(ug)(β̄g + ug)

(β̄g)3

))2
}
(A.26)

= n E


(∑

jkXjk

mg

(
ug
β̄g

+
V ar(ug)(β̄g + ug)

β̄3
g

))2
 (A.27)

= n E


(∑

jkXjk

mgβ̄g

(
ug +

V ar(ug)(β̄g + ug)

β̄2
g

))2
 (A.28)

Under the assumption that E(ug) = 0, V ar(ug) = E(u2
g)−E(ug)

2 = E(u2
g). If we
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also take |δjk| < ε for all (j, k) ∈ g. So the equation becomes:

= n E


(∑

jk xijk

mgβ̄g

(
ug +

E(u2
g)(β̄g + ug)

β̄2
g

))2
 (A.29)

=
n

mgβ̄3
g

E


(∑

jk

xijk
(
ugβ̄

2
g + β̄gE(u2

g) + ugE(u2
g)
))2

 (A.30)

=
n

mg

(
β̄g + β̄−3

g E(u2
g)

2 + 2 β̄−1
g E(u2

g)
)
E


(∑
jk∈g

δjkxijk

)2


+
n

mg

(
2 E(u2

g) + 2 β̄−2
g E(u2

g)
2
)
E

{(∑
jk∈g

δjkxijk

)(∑
jk∈g

xijk

)}

+
n

mg

β̄−1
g E(u2

g)
2E


(∑
jk∈g

xijk

)2
 (A.31)

<
n

mg

(
β̄g + β̄−3

g ε4 + 2 β̄−1
g ε2

)
ε2E


(∑
jk∈g

xijk

)2


+
n

mg

(
2 ε2 + 2 β̄−2

g ε4
)
εE


(∑
jk∈g

xijk

)2


+
n

mg

β̄−1
g ε4E


(∑
jk∈g

xijk

)2
 (A.32)

=
n

mg

(β̄gε
2 + 2ε3 + 3β̄−1

g ε4 + 2β̄−2
g ε5 + β̄−3

g ε6)E


(∑
jk∈g

xijk

)2
 (A.33)

The deviation of Z from Z̃ can be summarized by the average value of β, the max

deviation any β from the average (ε), and the expected value of the square of the

summation of all elements in group g.
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APPENDIX B

Sensitivity Analyses

B.1 Sensitivity Analysis of Grouping in ABCD analysis

Two additional node groupings were tested to understand how sensitive the results

are to the choice of grouping. Both of these groups were determined using the node

coordinates in combination with the functional network structure. One clustered each

functional network into 3 groups based on the spatial location of nodes, and the other

grouped them into 5 groups per functional network based on spatial coordinates.

We found that the edges identified did not directly overlap the ones identified in the

primary analysis, however the functional networks represented did have substantial

overlap. Additionally, these two groupings had a large proportion of overlap between

each other, among groups and edges. Using spatial coordinates to group the nodes,

regardless of the number of clusters, identified very similar edges as associated with

cognition. The main functional networks identified by this partition were: default

mode, cingul-opercular task control, and visual networks.
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Figure B.1: Figure showing the functional networks identified by different group
partitions of the network nodes. ‘Count’ shows the number of edges identified. The
dark blue columns are those that overlap between the two groups determined using
spatial coordinates, and the light blue denotes those that overlap with the groups
identified in the primary analysis.

The figure shows how edges spanning the default mode network and the visual

network or cingulo-opercular task control network are identified across all three group

partitions. It also shows how the edges identified are quite consistent across the two

groupings determined using spatial coordinates, despite dividing into different number

of clusters. In terms of predicted R2, all three of these performed similarly (FN +

lasso had a fitted R2 of 0.320; 3 clusters within each functional network had a fitted

R2 of 0.310; 5 clusters within each functional network had a fitted R2 of 0.314).
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