
Fast, High-Order Accurate Integral Equation Methods

and Application to PDE-Constrained Optimization

by

Hai Zhu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2021

Doctoral Committee:

Associate Professor Eric Johnsen, Co-Chair
Associate Professor Shravan Veerapaneni, Co-Chair
Professor Silas Alben
Professor Robert Krasny

Hai Zhu

hszhu@umich.edu

ORCID iD: 0000-0002-8407-8643

© Hai Zhu 2021

To my family.

ii

ACKNOWLEDGEMENTS

My life at University of Michigan as a graduate student over the course of the past

six years has been truly invaluable. First and foremost, I would like to deeply thank my

advisor, Prof. Shravan Veerapaneni, for his constant encouragement and guidance, not only

on research, but also on career and life. Without his advice and support, this thesis would

not be possible, and I would never be where I am today. I am especially grateful for his

generosity with his time and wisdom, his persistence to aim for delivering high-quality work,

and the freedom he allowed in the research projects that I truly enjoy. It was an honor for

me to have him as my advisor. I am looking forward to work with him on the journey next

to make a larger impact.

I would also like to thank Prof. Eric Johnsen, Prof. Silas Alben, and Prof. Robert Krasny

for serving on my committee and providing valuable comments to my thesis. My gratitude

to them for sharing their knowledge and availability on this thesis. In addition to my thesis

committee, I want to extend my heartfelt thanks to Prof. Alex Barnett, Prof. Marc Bonnet,

Dr. Bowei(Bobbie) Wu, Dr. Hanliang Guo, and Dr. Ruowen Liu. My first paper was done

with Bobbie supervised Prof. Barnett and Prof. Veerapaneni. As a beginner, I was fortunate

to be brought into a project that addresses the close evaluation issue in simulating Stokes

flow, through which I sharpened my skills and laid a solid foundation in building integral

equation methods-based solvers. Later in applying fluid solvers, I learned the importance

of using adjoint-based sensitivity analysis to solve Stokes fluid optimization problems from

Prof. Bonnet, Hanliang, and Ruowen. I am particularly appreciative to Hanliang, who

iii

has been an excellent mentor and a great collaborator to me. It has been a very enriching

experience to learn from him over the past few years.

I am so grateful to the support of the Mathematics department, and the selfless help I

got from many incredible staff therein, especially Teresa, who has always greeted me with

great patience and generous care. The same gratitude also goes to my wonderful office

mates: Alexander Zaitzeff and Ryan Sandberg, to whom I won’t forget their kindness and

will always appreciate the priesthood blessings they gave me for healing and comforting;

Tianchen(Eric) Zhao, who is both my office mate and a member of our research group, to

all the musics we have listened together in the office.

I have been very fortunate to work in a friendly research community, with many excellent

individuals including former and current members from our research group.

I would like to thank all my friends and family for their support. Especially, I thank

my parents for their love and encouragement. Last but not least, I thank my fiancee Xuan

for her unconditional support for these many years, especially during my most difficult time

and the COVID-19 pandemic. We share all the joys and challenges together through this

journey.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Motivation and Problem Statement . 1
1.2 Integral Equation Formulation . 2
1.3 Contribution and Thesis Overview . 5

II. Product Integration Scheme for 2D Singular Layer Potentials 7

2.1 Introduction . 7
2.2 Mathematical preliminaries . 11

2.2.1 Boundary value problem and its integral equation formulation 12
2.2.2 Fundamental contour integrals . 15
2.2.3 Laplace layer potentials . 16
2.2.4 Stokes velocity layer potentials . 16

2.3 Nyström discretization and evaluation of layer potentials 18
2.3.1 Overview: discretization and the plain Nyström formula 18
2.3.2 Close-evaluation and self-evaluation corrections 21
2.3.3 Close-evaluation of potentials . 23
2.3.4 Computation of close-evaluation matrix blocks 28

2.4 Adaptive panel refinement . 29
2.5 Numerical results and discussion . 34
2.6 Conclusions . 41

III. Product Integration Scheme for 3D Singular Layer Potentials 43

3.1 Introduction . 43
3.2 Mathematical preliminaries . 48

3.2.1 Exterior algebra . 48
3.2.2 Exterior calculus on manifolds . 49
3.2.3 Integral equation formulation . 50

3.3 Density approximation and exact form construction 51
3.3.1 Stokes theorem and Poincaré’s lemma . 51

v

3.3.2 Approximation scheme using harmonic polynomials and quaternionic repre-
sentation . 55

3.4 Numerical scheme . 59
3.4.1 Close evaluation scheme for Laplace double-layer potentials 60
3.4.2 A generalization to evaluate the single-layer and the gradient of double-layer

Laplace potentials . 63
3.5 Numerical results and discussion . 64

3.5.1 Convergence properties of the quaternionic approximation 65
3.5.2 Laplace DLP evaluation test . 65
3.5.3 Laplace BVP test . 69

3.6 Conclusions . 70

IV. Product Integration Scheme for Volume Potentials on Irregular Domains 72

4.1 Introduction . 72
4.2 Mathematical Preliminaries . 74

4.2.1 Exterior calculus . 74
4.2.2 Integral equation formulation . 76

4.3 Scheme . 77
4.3.1 Volume Integral Scheme . 77
4.3.2 Volume Mesh . 81
4.3.3 Approximation . 83

4.4 Numerical Implementation . 86
4.4.1 Formal description of the volume integral solver 86
4.4.2 Formal description of the boundary integral solver 90
4.4.3 Couple singular and nearly-singular volume integral scheme with FMM . . . 91

4.5 Numerical results and discussion . 91
4.6 Conclusion . 96

V. Simulating Cilia-driven Mixing and Transport in Complex Geometries 98

5.1 Introduction . 98
5.2 Model and methods . 103

5.2.1 Model . 103
5.2.2 Cilia-channel interactions . 105
5.2.3 Cilia-channel-particle interactions . 108
5.2.4 Nyström discretization and close-evaluation of layer potentials 111

5.3 Results and discussions . 111
5.3.1 Mixing of tracers . 112
5.3.2 Finite size particles . 117

5.4 Conclusions and future work . 119

VI. Optimal Slip Velocities of Micro-swimmers with Arbitrary Axisymmetric Shapes 122

6.1 Introduction . 122
6.2 Problem Formulation and Numerical Solution . 125

6.2.1 Model . 125
6.2.2 Boundary integral method for the forward problem 127
6.2.3 Optimization problem and its reformulation 127

6.3 Results . 129
6.4 Conclusions . 137

VII. Optimal Ciliary Locomotion of Axisymmetric Microswimmers 139

vi

7.1 Introduction . 140
7.2 Problem Formulation . 142

7.2.1 Model . 142
7.2.2 Numerical algorithm for solving the forward problem 145
7.2.3 Optimization problem . 147
7.2.4 Sensitivity analysis . 148
7.2.5 Constraints on surface displacement . 152

7.3 Results and discussion . 154
7.3.1 Parameterization . 154
7.3.2 Spheroidal swimmers . 155
7.3.3 Non-spheroidal swimmers . 158

7.4 Conclusions and Discussions . 161

VIII. Concluding remarks . 165

8.1 Stability Improvement on 2D Product Integration Scheme 165
8.2 Product Integration Scheme in Axisymmetric Domains 166
8.3 Extension to Inhomogeneous Stokes Problems . 169

APPENDICES . 172

BIBLIOGRAPHY . 191

vii

LIST OF TABLES

Table

2.1 Results and statistics of solving the BVP in the vascular network in Figure 2.2 for various
tolerance ε. Errors εmax and εL2

are measured on a 2160× 2160 grid (spacing ≈ 2.5× 10−3)
by comparing to the solution obtained at ε = 10−10. CPU time and RAM used are measured
using [12]. 39

3.1 Laplace DLP close evaluation scheme using mean curvature as prescribed density in the
exterior of a smooth, warped torus surface parameterized by (θ, φ) ∈ [0, 2π)2, with wc =
0.065, wm = 3 and wn = 5. A cross-section on the Y Z-plane (φ = π/2) is chosen to study
the convergence. We report both the maximum relative error and the observed convergence
rate (p̂) across the same slice as the number of panels are increased. 67

5.1 List of numerical parameters. 112
F.6.1 (Left) Results on the performance of RK4 method applied to evolving the cilia inside a

Taylor-Couette device. (Right) Error terms for the particle center at final time T = 1. . . . 182

viii

LIST OF FIGURES

Figure

2.1 Snapshot from a simulation of bacterial supension flow in a microfluidic chip geometry, which
is inspired from the design proposed in [89]. A squirmer model [91] is used for modeling
the bacteria, which treats them as rigid bodies with a prescribed slip at the fluid-structure
interface. Thereby, we solve the Stokes equations with a no-slip boundary condition on the
microfluidic chip geometry, a prescribed tangential velocity on the squirmer boundaries and
an imposed parabolic flow profile at the inlet and outlet. We used 730, 080 discretization
points for the chip boundary, resulting in 1, 460, 160 degrees of freedom, and 128 discretiza-
tion points at each of the 120 squirmers. GMRES took about 10 hours to reach a relative
residual of 5.6×10−8, using an 8-core 3.6 GHz Intel Core i7 processor with 128 GB of RAM.
Color indicates the magnitude of fluid velocity. The estimated PDE relative L2−norm error
is 2× 10−5. 9

2.2 Solution of the Stokes equation in a nonsmooth circular vascular network with Dirichlet
boundary condition. We apply no-slip boundary condition at all branch walls, and it is
driven by a uniform flow from inner to outer circle. Color here indicates log of the magnitude
of fluid velocity. We used automatically generated panels for both smooth boundaries and
378 corners, resulting in 356, 580 degrees of freedom. GMRES took about 1 hour to reach
a relative residual of 7.61 × 10−11 on an 8-core 4.0 GHz Intel Core i7 desktop. The PDE
solution has a relative L2−norm error of 1 × 10−9. Three high-resolution log10 error plots
that correspond to different user-requested tolerance ε near the same reentrant corner are
shown on the left; here the short normal lines show panel endpoints, and the black dots
quadrature nodes. 12

2.3 Special handling of close evaluation branch cut when the panel is touching a reentrant corner.
(a) The target panel Λ′ is crossing the branch cut of the source panel Λ defined by (2.33),
resulting in wrong close evaluation values. (b) Changing the sign of φ in (2.33) flips the
branch cut to the other side; close evaluation at the targets are now correct. 27

2.4 (a) Linear shear flow past a starfish-shaped island. Streamlines of the flow and panel end-
points (small segments) are shown. Color represents estimated log10 error of the velocity
computed under tolerance ε = 10−12 (resulted in 2N = 2184 degrees of freedom). (b)
Convergence of the maximum relative error εmax versus requested tolerance ε, where the
traction field is computed along the (1, 2)-direction. (c) Convergence of the maximum error
εmax versus the square root of the number of nodes. 36

2.5 (a) Linear shear flow around a shuriken-shaped island with 8 corners. Streamlines of the
flow and panel endpoints (small segments) are shown. Color represents the log10 error of the
velocity computed under tolerance ε = 10−10 (resulted in 2N = 6640 degrees of freedom).
(b) Convergence of the maximum error εmax versus requested tolerance ε. (c) Convergence
of the maximum error εmax versus the square root of the number of nodes; root-exponential
convergence would result in a straight line. 36

2.6 (a) Streamlines of a shear flow past 50 randomly generated polygonal islands with a total
number of 253 corners. Color on the polygon boundaries indicate the magnitude of density σ.
(b) log10 of absolute error of the velocity, computed using 2N = 222140 degrees of freedom.
Error is measured on a 1000 × 1000 grid (spacing ∆x ≈ 8.3 × 10−3) by comparing to the
solution obtained with ε = 10−10. (c) Convergence of the maximum error εmax versus the
square root of the number of nodes. 37

ix

2.7 Error and timing of solving the vascular network BVP. (a) Convergence of errors in log-linear
scale. (b) Log-log scale plot of the total CPU time per GMRES iteration, which consists of
the FMM time, shown in (c), and the close correction time, shown in (d). 39

2.8 Convergence of a uniform flow past two touching disks that are d = 10−6 apart, and whose
radii are 1 and 0.1. The required number of unknowns in the adaptive scheme is much less
than the global scheme with uniform resolution; see Example 5. 41

3.1 One of the key advantages of the close evaluation scheme developed in this chapter is its ease
of handling arbitrary meshes. Here, we demonstrate its performance on the Stanford bunny
triangulation data [192]. We used the interactive sketch-based quadrangulation method
of [185] to create high-quality quad remeshings locally as shown on the top of the bunny.
We evaluate the DLP at targets that are located arbitrarily close to the surface as shown
on top in blue color. The surface is colored by the density function τ , which was set as
τ(x, y, z) = exy − 1 + x+ sin(x4 + 1/2y3) + y− 1/2y2 + 1/5y6 + z. (Middle and right) Given
this setup, we demonstrate the performance of the new scheme by considering one of the
quads, successively refining it two-fold and visualizing the errors due to direct evaluation of
DLP via high-order smooth quadrature rule (left half) and the new close evaluation scheme
(right half). We note that while the errors stagnate in a band close to the surface in the
case of smooth quadrature, the new scheme achieves uniform accuracy upto 10-digits. More
details on this experiment are provided in Section 3.5. 45

3.2 Schematic of our proposed product integration scheme for Laplace double-layer potential.
(a) is part of a parameterized “cruller” surface. (b) is one of the triangular sub panel,
denoted by D(nθ,nφ), from the rectangular panel in (a). (c) is the transformed triangular

patch D̃(nθ,nφ). (d) shows the quadrature nodes (red) on integration contour ∂D̃(nθ,nφ), the
boundary of the transformed triangular patch. 58

3.3 Left: Two examples of the function pairs (z, τ) constructed using the procedure outlined
in Sec 3.5.1. In each case, the z−component is plotted with color scaled by the density τ .
Middle: The density approximation scheme (3.21) is applied to each of these function pairs
and the max of the relative L∞ error is plotted here. The domain in (x, y) is subdivided in the
manner shown here, hD = 1/6, 1/10, 1/20, 1/30. The four skeletons on the corners illustrate
refinements of the triangular grids at four corresponding quadrants. Right: Convergence plot
of approximation error using p = 2, · · · , 7. Dashed lines of corresponding colors are plots of
expected error. For p > 7, the generalized higher-order approximation scheme in (3.24) was
employed. 66

3.4 Laplace DLP close evaluation scheme on a smooth, warped torus surface, using mean curva-
ture as prescribed density. Left: SurfaceM, with wc = 0.065, wm = 3 and wn = 5, showing
panel divisions (red lines) intersecting Y Z-plane and Nyström nodes (black). The color in-
dicates the magnitude of mean curvature. Middle: Cross-section view of the log10 relative
error in the exterior of M, in the Y Z-plane (φ = π/2), with 84× 112 patches. Right: Rate
of convergence of the relative errors across the same shown slice with respect to number of
panels along toroidal direction, for p = 2, · · · , 7. 67

3.5 Laplace DLP close evaluation on a cushion-shaped geometry. Left: Illustration of the surface
discretization with non-overlapping patches. The magnitude of mean curvature is indicated
by the color. The solution is evaluated on the shown slices. Middle: Cross-section view on
the plane φ = 3π/16 of the log10 relative error in the exterior of the cushion. The inset
plots the relative error corresponding to p = 7 as a function of the number of patches. Max
relative error is 4.1314× 10−12 with a total number of 6144 (32× 32× 6) patches. Current
surface discretization is shown by the ticks (′|′) along the surface. Right: The log10 relative
error in the exterior of the cushion on the plane φ = 27π/16 with a total number of 6144
patches. Max relative error is 1.4157× 10−10. 68

x

3.6 Solution of Laplace BVP in the interior of a torus, using an indirect DLP formulation (4.9).
Left: Density function plotted as a function of toroidal and poloidal directions. The inset at
the upper right corner shows the geometry whose surface color indicates the Dirichlet data
due to a few randomly placed sources (black dots) in the exterior. The solution is evaluated
on the shown slice. Here the shape parameters in (3.39) were set to wc = 0.065, wm = 3
and wn = 5. Middle: Cross-section view of the log10 relative error on the plane φ = π/8.
Max relative error is 7.1761× 10−5 with 12× 16 panels. Right: The log10 relative error on
the same shown slice with 36× 48 panels. Max relative error is 3.7405× 10−9. 69

3.7 Same setup as in Fig. 3.6 but with shape parameters wc = 0.1, wm = 3 and wn = 5 (higher
curvature). The max relative error is 1.6098× 10−4 with 12× 16 panels (middle) and with
36× 48 panels, it is 1.6667× 10−8 (right). 70

4.1 (a): a starfish geometry with uniform 2D volume grid; (b): Ωr′,ε; (c): L1(r′, r) in Ω; (d):
L1(r′, r) on ∂Ω and radial direction passing r′. 79

4.2 (a) volume mesh of a starfish geometry Ω; (b) smooth volume quadrature of an irregular
box Bk; (c) boundary panel distribution for singular volume quadrature; (d) boundary panel
distribution for nearly-singular volume quadrature . 82

4.3 Approximation scheme on regular and irregular boxes. 85
4.4 Relative L∞ Error: (Left) p = 5; (Middle) p = 7; (Right) convergence 93
4.5 (1st row): δ = 1/100 Absolute Error (max abs value 0.1784): (Left) p = 5; (Middle) p = 7;

(Right) convergence. (2nd row): δ = 1/10000 Absolute Error (max abs value 3.2643×10−3):
(Left) p = 5; (Middle) p = 7; (Right) convergence. 94

4.6 Volume quadrature and error for three dimensional Gauss transform 94
4.7 p=10 with 250 × 250 resolution (a) box size 0.2; (c) max relative error 2.1074e-11; (d) box

size 0.1; (f) max relative error 1.0017e-10; (g) box size 0.2; (i) max relative error 9.9970e-11. 95
4.8 94 islands, 17336 regular boxes, 2896 irregular boxes, and uniform volume mesh size of

0.1.([−7.6, 7.6]2). The number of sources and targets are Ns = 11718400, Nt = 222274. (c)
max relative error 5.5771e-10 (450× 450). 96

5.1 An illustration of the current simulation capabilities of the hybrid numerical developed in
this chapter. For the purposes of this illustration, we (a) took a generic microscopic image of
the cross-section of a Fallopian tube (source: NORM062), (b) extracted a subset of the fluid
domain and its boundary highlighted here, (c) seeded four patches of the boundary with
around four hundred cilia and solved the governing equations using the numerical method
developed in this work and (d) visualized the solution via streamlines in one of the patches.
Note: This example is for illustrative purposes only and must not be viewed as representative
of in vivo flows. Physiologically, the major direction of fluid flow in the Fallopian tube is
perpendicular to the cross-section as shown here; thereby, a three-dimensional simulation is
needed to fully characterize the flows. 100

5.2 Schematic figure. (a) N cilia uniformly distributed at the inner surface of the stationary
Taylor-Couette device. Np particles are freely suspended in the fluid domain Ω bounded by
{(x, y)|R2

2 < x2 + y2 < R2
1}. (b) The snapshots of the beating pattern extracted from [49].

Color-coded by its phase τ . 103
5.3 Uniformly seeded tracers mixed by cilia with different phase differences after 10 beating

cycles. (a) Initial seeding; (b) Nw = 0; (c) Nw = 1; (d) Nw = −9. 113
5.4 Mixing and transport performance. (a) Mixing efficiency as a function of cycles for different

number of waves (phase difference). (b) Mixing efficiency after 10 cycles as a function of the
number of waves Nw. (c) Total flux per cycle as a function of Nw. (d) Transport efficiency
as a function of Nw. 114

5.5 Uniformly seeded tracers mixed by cilia in a wavy channel. (a) Initial seeding. (b) Tracers
after 10 cycles for Nw = 10 (∆φ = 10π/16). (c) Mixing efficiency after 10 cycles as a function
of Nw. 116

xi

https://webpath.med.utah.edu/HISTHTML/NORMAL/NORM062.html

5.6 Tracers’ trajectories compared to rigid particles’ trajectories after one beating cycle. Tracers’
initial and ending positions are shown in black and red crosses respectively; particles’ initial
and ending positions are shown in open and solid circles. The trajectories of the tracers and
the particle centers are shown in solid and dashed lines respectively. (a)-(c): particle radius
is rp = 0.1; (d)-(f): particle radius is rp = 0.4. Left to right: Nw = 0, 1,−9. 118

5.7 Particle displacement over one beating cycle. (a-b) The radial (r) and the angular (θ)
positions of the particle (tracer) during one beating cycle with Nw = −9 (∆φ = −9π/16).
(c) The total displacement of the particle (tracer) after one beating cycle as a function of
Nw. Large (rp = 0.4) and small (rp = 0.1) particle results are shown in blue and red lines
respectively; tracer result is shown in red dash lines. 118

5.8 Shear deformation for tracers and rigid particles. Four tracers/particles initially seeded as
a square lattice translated by cilia driven flow. (a) A zoomed-in view of the Taylor-Couette
device with Nw = 2 (∆φ = 2π/16). Initial positions are shown in open diamonds/dashed
circles, final positions are shown in closed diamonds/circles. θt and θp denotes the bottom
angle of the deformed lattice after one beating cycle for tracers and particles respectively.
(b) θt (dashed line) and θp (solid line) as functions of Nw. (c) Displacements of the tracers
and particles over one cycles, averaged for all tracers (dashed line) and particles (solid line). 119

6.1 (a) Schematic of the micro-swimmer geometry. The shape is assumed to be axisymmetric,
obtained by rotating the generating curve γ about the e3 axis. (b) Biological swimmers
([122], Chap 4 Fig 4.6). (c) Scanning electron microscope (SEM) image of a single half-
coated Janus particle; inset: the dark-blue shows the location of the Pt cap. [35] (d) SEM
image of a phototactic swimmer, which consists of a haematite particle extruded from a
colloidal bead. [10] . 126

6.2 Optimal slip velocity compared to [116, Figure 4]. The aspect ratio of the prolate spheroid is
(1 + 2.52)1/2. Our numerical optimization is depicted in black solid curve, while dash curves
represent analytical solutions at different truncation levels L = 4 (red) and L = 10 (blue). . 130

6.3 Flow fields and the optimal slip velocity for a few swimmers with typical shapes: (a) Sphere,
(b) Prolate spheroid, (c) Oblate spheroid, (d) Wavy, (e) Spherocylinder, (f) Stomatocyte.
Insets show the optimal slip velocities as functions of arc-length along the generating curve.
The optimization is performed using 21 control points on the generating curve for represent-
ing the slip velocity. The colormap holds for both the slip velocity and the flow fields. . . . 131

6.4 A provides a simple prediction of the swimmer type. Swimmers with A < 0 are predicted
to be pushers (S < 0), and swimmers with A > 0 are predicted to be pullers (S > 0).
Swimmers in the first and third quadrants are correctly predicted. Shape families are shown
in Fig. 6.6 and the generating curves are given in Appendix I.9. 134

6.5 Active force density on the swimmer surface as functions of arc-length along the generating
curve. Normal and tangential components of the force densities are depicted by blue and
orange curves. Scaled optimal slip velocities 2uS∗κR/U are shown in dotted curves, where
κ is the local curvature of the generating curve. Insets are the shapes of the corresponding
swimmers. 135

6.6 Scaled minimal power loss of different shape families, plotted against the reduced volume
ν. Example shapes are color-coded by the optimal slip velocity. The dotted line shows the
approximation of power loss given by the slender body theory P ∼ µα2/3U2 [116]. 137

7.1 (a) Schematic of the microswimmer geometry. The shape is assumed to be axisymmetric,
obtained by rotating the generating curve γ about the e3 axis. The tip of the cilium rooted
at s0 at time t is given by s = α(s0, t). (b) Illustration of the algorithm for computing the
slip velocity at the quadrature points uS(sq, t). We first compute the “tip” position and the
corresponding tip velocities (open blue circles) of cilia rooted at the Nq quadrature points sq
(closed blue circles). We then obtain the slip velocities at sample points uniformly distributed
along the generating curve (open red squares) by a cubic interpolation. The slip velocity at
any arclength (black curve) are then obtained by a high-order B-spline interpolation from
the sample points. We have reduced the number of quadrature and sample points in this
figure (compared to values used in the numerical experiments) to avoid visual clutter. . . . 143

xii

7.2 Unconstrained optimization history of a spherical swimmer and a prolate swimmer with
a 2:1 aspect ratio. The optimal spherical swimmer has an efficiency ε ≈ 35% and swim
speed 〈U〉 ≈ 1.2. The optimal prolate swimmer has an efficiency ε ≈ 69% and swim speed
〈U〉 ≈ 1.5. (a) The efficiency as a function of iterations number. (b) & (c) The ciliary motions
of the optimal swimmers. (d) & (e) The time-averaged slip velocities (at Eulerian points)
are shown in solid curves. Dashed curves are the time-independent optimal slip velocities
of the given shape scaled by the swim speed [73]. Parameters used in the optimization:
m = 25, n = 2. Number of panels Np = 20, number of sample points Ns = 80, number
of time steps per period Nt = 50. Same below unless otherwise mentioned. Note that
the vertical axes of figures (b)&(c) are flipped so that the north pole (s = 0) appear on
the top of the figure. The corresponding waveforms are known as antiplectic metachronal
waves (tips are spread out during the effective stroke and close together during the recovery
stroke). The videos of the optimal ciliary motions can be found in the online supplementary
material (Movie 1 & 2). 156

7.3 Efficiency as a function of maximum displacement of ciliary tips. Blue and green symbols
represent spherical and prolate spheroidal swimmers (2:1 aspect ratio) respectively. Diamond
symbols are the optimal unconstrained case. Open symbols are optimization results of
spherical swimmers taken from [128, Figure 11]. 157

7.4 Ciliary motion (a) and mean slip velocity (b) for the optimal spherical swimmer with con-
straint (∆s/` ≈ 5.0%). The efficiency is ε ≈ 6.9%, and the swim speed is 〈U〉 ≈ 0.091.
The swimmer forms multiple waves in the equatorial region, leading to a high slip veloc-
ity at s ≈ 0.5`. The motion close to the poles is nearly zero. The dashed curve in (b) is
the time-independent optimal slip velocity of the spherical swimmer, scaled by the swim
speed. The video of the optimal ciliary motion can be found in the online supplementary
material (Movie 3). 158

7.5 Constrained optimizations could lead to more efficient ciliary motions for microswimmers
with a thin ‘neck’ on average. (a): Efficiencies of the microswimmers with various neck
widths. The median efficiencies of the time-dependent optimizations across 10 randomized
initial conditions are shown for each shape in cross symbols ‘×’. Unconstrained and con-
strained optimizations (c = 1) are depicted in blue and green, respectively. Efficiencies of
the microswimmers with time-independent slips are shown, using black circle symbols ‘◦’,
as a reference. (b)&(c): Ciliary motions of microswimmers with δ = 0.8 from unconstrained
and constrained optimizations from the same initial guess. The swimming efficiencies are
20% and 29%, respectively. (d)&(e): Mean slip velocity corresponding to the ciliary motions
in (b)&(c). Blue dashed curves are the optimal time-independent slip velocities scaled by
the swim speed. In these simulations, we increase the number of panels Np = 40 to resolve
the sharp shape change. The videos of the optimal ciliary motions can be found in the online
supplementary material (Movie 4 & 5) . 159

7.6 Statistical results of thin neck microswimmer of δ = 0.8 with various constraint c for 10
Monte-Carlo simulations. The unconstrained simulation is denoted by c =∞. (a) Efficien-
cies grouped by the constraint c. For each box, the central mark indicates the median of
the 10 random simulations, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The outliers are denoted by red + symbols. (b) Efficiencies
plotted against the maximum displacement ∆s/`. The numerical parameter Λ2 is set to be
104 by default. Occasionally the optimization might stop within merely a few iterations,
making the ciliary motion stuck in a very inefficient local minimum. Setting Λ2 to 103 for
these cases (most of the time) cures the problem. 161

F.6.1 Spatial validation. (a) Flow field generated by 60 stokeslets (red arrows) shown as stream-
lines. (b) The absolute error between the exact solution and the numerical solution with a
total of about 4000 Gaussian quadrature points, color-code represents log10(|uexa−unum|).
(c) The l∞-norm of the flow field shown as a function of the number of quadrature points. 181

xiii

H.8.1 (a) The absolute error between the exact solution and the numerical solution with a total of
400 Gaussian quadrature points; color-code represents log10(|uexa − unum|). (b) The L∞-
norm of the error in the flow field shown as a function of the number of quadrature points.
(c) The L∞-norm of the traction error shown as a function of the number of quadrature
points. 184

H.8.2 (a) Example of a panel with 10-point Gaussian nodes, and its neighbor panels. The red
asterisk is the target. (b) Three panels in (a) are combined into one big panel. The big
panel is further divided into two panels by the desired target. Blue grid is a 16th-order
Alpert quadrature rule. And black grid is an 8-point smooth quadrature rule. 185

H.8.3 Fluid drag of towing a prolate spheroid with unit speed. All spheroids are of the same
volume as the unit sphere. The red cross denotes the fluid drag of the optimal profile that
minimizes the fluid drag given by [150]. 186

K.11.1 Sensitivity to the initial Fourier coefficient. (a) Optimized efficiencies for the unconstrained
spherical swimmer with the initial first Fourier mode chosen from [0, 0.01], [0, 0.1], [0, 1]
respectively. (b)&(d) The initial and final waveforms of the case where the range is [0, 0.01].
(c)&(e) The initial and final waveforms of the case where the range is [0, 1]. 190

xiv

ABSTRACT

Over the last several decades, the development of fast, high-order accurate, and robust

integral equation methods for computational physics has gained increasing attention. Using

integral equation formulation as a global statement in contrast to a local partial differen-

tial equation (PDE) formulation offers several unique advantages. For homogeneous PDEs,

the boundary integral equation (BIE) formulation allows accurate handling of complex and

moving geometries, and it only requires a mesh on the boundary, which is much easier to

generate as a result of the dimension reduction. With the acceleration of fast algorithms like

the Fast Multipole Method (FMM), the computational complexity can be reduced to O(N),

where N is the number of degrees of freedom on the boundary. Using standard potential

theory decomposition, inhomogeneous PDEs can be solved by evaluating a volume potential

over the inhomogeneous source domain, followed by a solution of the homogeneous part.

Despite the advantages of BIE methods in easy meshing, near-optimal efficiency, and well

conditioning, the accurate evaluation of nearly singular integrals is a classical problem that

needs to be addressed to enable simulations for practical applications. In the first half of

this thesis, we develop a series of product integration schemes to solve this close evaluation

problem. The use of differential forms provides a dimensional-agnostic way of integrating

the nearly singular kernels against polynomial basis functions analytically. So the problem

of singular integration gets reduced to a matter of source function approximation. In 2D,

this procedure has been traditionally portrayed by building a connection to complex Cauchy

integral, then supplemented by a complex monomial approximation. In 3D, the closed

xv

differential form requirement leads to the design of a new function approximation scheme

based on harmonic polynomials and quaternion algebra. Under a similar framework, we

develop a high-order accurate product integration scheme for evaluating singular and nearly

singular volume integral equations (VIE) in complex domains using regular Cartesian grids

discretization. A high-order accurate source term approximation scheme matching smooth

volume integrals on irregular cut cells is developed, which requires no function extension.

BIE methods have been widely used for studying Stokes flows, incompressible flows at low

Reynolds’ number, in both biological systems and microfluidics. In the second half of this

thesis, we employ the BIE methods to simulate and optimize Stokes fluid-structure interac-

tions. In 2D, a hybrid computational method is presented for simulating cilia-generated fluid

mixing as well as the cilia-particle hydrodynamics. The method is based on a BIE formu-

lation for confining geometries and rigid particles, and the method of regularized Stokeslets

for the cilia. In 3D, we use the time-independent envelop model for arbitrary axisymmet-

ric microswimmers to minimize the power loss while maintaining a target swimming speed.

This is a quadratic optimization problem in terms of the slip velocity due to the linearity

of Stokes flow. Under specified reduced volume constraint, we find prolate spheroids to

be the most efficient micro-swimmer among various families of shapes we considered. We

then derive an adjoint-based formulation for computing power loss sensitivities in terms of a

time-dependent slip profile by introducing an auxiliary time-periodic function, and find that

the optimal swimmer displays one or multiple traveling waves, reminiscent of the typical

metachronal waves observed in ciliated microswimmers.

xvi

CHAPTER I

Introduction

1.1 Motivation and Problem Statement

The goal of this thesis is to develop fast and accurate integral equation methods-based

solvers for elliptic PDEs, including the Laplace, Stokes, and Poisson equation in complex

geometry, with a focus on recent developments in singular and nearly-singular layer and

volume potential evaluation. The applications we consider in this thesis include fluid mixing

and several PDE-constrained fluid optimization problems for microswimmers. These studies

have implications for understanding natural systems, as well as designing artificial ones for

accomplishing various physical tasks.

In the following, we introduce the PDEs which we are interested in solving. We consider

a domain Ω in Rd, where d = 2 or 3, with a smooth boundary Γ = ∂Ω.

The Laplace Dirichlet boundary value problem (BVP) in two and three dimensions is

given by the following equations:

(1.1) ∆u(r) = 0 in Ω, u(r) = g(r) on Γ.

This equation models processes that can be termed as potential problems. The solutions

of Laplace equation are the harmonic functions, which arise naturally in many problems in

physics, including electrostatics and fluid dynamics.

One generalization of the Laplace equation is the Poisson’s equation, which describes the

1

2

potential field in the presence an inhomogeneous source density distribution f(r) in Ω. The

potential field u(r) is a solution to the Poisson BVP, if it satisfies

(1.2) −∆u(r) = f(r) in Ω, u(r) = g(r) on Γ.

This is a critical task in many areas of computational physics and we do not have to emphasize

its importance.

We also consider the following BVP for a steady-state Stokes flow in Ω

−µ∆u(r) +∇p(r) = 0 and ∇ · u(r) = 0 in Ω,(1.3a)

u(r) = g(r) on Γ.(1.3b)

Here vector field u is the fluid velocity, p is the pressure in the fluid, µ is the coefficient of

viscosity of the fluid, and g indicates the specified velocity field on Γ. The first equation

models the balance of momentum, when the inertial convective forces are negligible relative

to viscous forces, and the second equation models the conservation of mass by enforcing the

incompressibility on the fluid.

The solution to all these problems are subject to appropriate conditions if Ω contains ∞.

Fast and accurate solvers for these equations serve as templates for solving more complex

equations, such as the incompressible Navier-Stokes equations and nonlinear elliptic PDEs.

1.2 Integral Equation Formulation

In this section, we discuss the integral equation formulation for homogeneous and inho-

mogeneous elliptic PDEs. One of the distinguished feature of BIE methods comparing to

finite difference and finite element methods is that the only unknowns in the formulation

lie on the domain boundary, which results in a dimension reduction in terms of the linear

system that needs to be solved.

3

The free-space Green’s function for the Laplace equation is given by

(1.4) G(r) =

 −
1

2π
log |r|, 2D,

1
4π|r| , 3D.

where r is a vector in Rd. And its partial derivative along some surface normal vector n is:

(1.5)
∂

∂n
G(r) =

 −
1

2π
r·n
|r|2 , 2D,

− 1
4π
r·n
|r|3 , 3D.

which represents a normally-oriented dipole. Using BIE formulation, the solution ansatz

u(r′) at some target point r′ is typically given by Laplace single- (SLP) or double-layer

(DLP) potentials, defined by

(1.6) u(r′) = S[τ](r′) :=

 −
1

2π

∫
Γ

(
log 1

|r′−r|

)
τ(r)dsr, 2D,

− 1
4π

∫
Γ

1
|r′−r|τ(r)dSr, 3D.

(1.7) u(r′) = D[τ](r′) :=

1

2π

∫
Γ

(r′−r)·nr

|r′−r|2 τ(r)dsr, 2D,

1
4π

∫
Γ

(r′−r)·nr

|r′−r|3 τ(r)dSr, 3D.

where r′ ∈ Ω is the target, and r ∈ Γ is the source. τ is a real, scalar, unknown density

function that needs to be solved on Γ. Since the above convolution kernels in (1.6) and (1.7)

are fundamental solutions to the Laplace equation, all that is left to ensure that the ansatz

solves the BVP is to enforce the boundary condition u = g in (1.1). To solve the unknown

density τ on Γ, we let r′ tend to Γ to obtain a BIE from (1.6) or (1.7). The integral in

(1.6) is weakly singular, and the DLP integral in (1.7) must be taken in the principal value

sense, therefore incurs a standard jump relation. A detailed discussion of the significance

and properties of these potentials will be deferred until later Chapters. The resulting BIE

is then

(1.8) S[τ](r′) = g(r′), ∀ r′ ∈ Γ,

4

or

(1.9) ± 1

2
τ(r′) +D[τ](r′) = g(r′), ∀ r′ ∈ Γ,

The limiting values of the DLP formulation satisfy the +1/2 jump relation for the exterior

BVP, and −1/2 for the interior BVP. Once we obtain the unknown density function τ on

Γ, by solving (1.8) or (1.9), we can evaluate the potential field u at any point in Ω by using

(1.6) or (1.7) respectively.

Similarly, we can use the free-space Green’s function for the Stokes equation, given by

(1.10) G(r) =

1

4πµ

(
I log 1

|r| + r⊗r
|r|2

)
, 2D,

1
8πµ

(
I 1
|r| + r⊗r

|r|3

)
, 3D.

and the double layer kernel, given by

(1.11) K(r) =

1
π
r·n
|r|2

r⊗r
|r|2 , 2D,

3
4π
r·n
|r|2

r⊗r
|r|3 , 3D.

to write down the Stokes single- or double-layer potentials ansatz:

(1.12) S[σ](r′) =

1

4πµ

∫
Γ

(
I log 1

|r′−r| + (r′−r)⊗(r′−r)
|r′−r|2

)
σ(r) dsr, 2D,

1
8πµ

∫
Γ

(
I 1
|r′−r| + (r′−r)⊗(r′−r)

|r′−r|3

)
σ(r) dSr, 3D.

(1.13) D[σ](r′) =

1
π

∫
Γ

(r′−r)·nr

|r′−r|2
(r′−r)⊗(r′−r)
|r′−r|2 σ(r) dsr, 2D,

3
4π

∫
Γ

(r′−r)·nr

|r′−r|2
(r′−r)⊗(r′−r)
|r′−r|3 σ(r) dSr, 3D.

where σ is an unknown vector density function that can be solved following the same pro-

cedure as in the case of Laplace.

For Poisson’s equation, one could solve (1.2) by direct evaluation of a particular solution

in the form of a volume integral

(1.14) uP (r′) = V [f] (r′) = − 1

2π

∫
Ω

log (|r′ − r|) f(r) dA,

5

then followed by solving a homogeneous Laplace problem with corrected boundary data

(1.15) −∆uH = 0 in Ω, uH = g − uP on Γ.

Throughout this thesis, we choose to use the single plus double layer formulation to rep-

resent the solution whenever possible, since it leads to a second-kind Fredholm equation,

and is able to represent both interior and exterior problem. For axisymmetric microswim-

mer simulations, we stick with Stokes SLP formulation for simplicity reasons. As for the

Laplace volume potential, we also restrict our discussion to the implementation of evaluating∫
Ω
G(r)dA. The extensions to high order derivatives are briefly discussed in Chapter VIII.

1.3 Contribution and Thesis Overview

One of the major problems plaguing integral equation methods-based solvers is that the

resulting solutions become inaccurate close to the interfaces. Naive smooth quadrature

does not work well as the integrals become nearly singular. The first half of this thesis,

including Chapter II to IV, is about developing product integration schemes for layer and

volume potentials to eliminate the error arising from these singular and nearly-singular kernel

integrations. We also benchmark the accuracy and computational efficiency of our proposed

schemes on a variety of typical problems therein.

The second half of this thesis, consisting of Chapter V to VII, focuses on understand-

ing hydrodynamic efficiency in microstructures, in which case flows are governed by Stokes

equation. These low-Reynolds locomotions have long been studied and analyzed to pro-

vide insights for designing artificial micro-swimmers, and to understand pathology of ciliary

dysfunction. Analytical ansatz can be limited only to ideal conditions, which could lead to

design choices departing significantly from optimal in experiments. We have successfully

applied our solvers to several studies, including simulating cilia-driven mixing and transport

in complicated microstructures in two dimensions, finding optimal slip velocities profile and

6

optimal ciliary locomotion of axisymmetric micro-swimmers with arbitrary shapes.

Finally, in Chapter VIII, we comment on some of the observations and directions that we

are currently pursuing.

CHAPTER II

Product Integration Scheme for 2D Singular Layer Potentials

Preamble. In this chapter, we present a fast, high-order accurate and adaptive bound-

ary integral scheme for solving the Stokes equations in complex—possibly nonsmooth—

geometries in two dimensions. We apply the panel-based quadratures of Helsing and cowork-

ers [80, 77, 138] to evaluate to high accuracy the weakly-singular, hyper-singular, and super-

singular integrals arising in the Nyström discretization, and also the near-singular integrals

needed for flow and traction evaluation close to boundaries. The resulting linear system

is solved iteratively via calls to a Stokes fast multipole method. We include an automatic

algorithm to “panelize” a given geometry, and choose a panel order, which will efficiently

approximate the density (and hence solution) to a user-prescribed tolerance. We show that

this adaptive panel refinement procedure works well in practice even in the case of complex

geometries with large number of corners, or close-to-touching smooth curves. In one exam-

ple, for instance, a model 2D vascular network with 378 corners required less than 200K

discretization points to obtain a 9-digit solution accuracy. This is joint work with Bowei

Wu, Alex Barnett and Shravan Veerapaneni, and is published in [211].

2.1 Introduction

Since the pioneering work of Youngren and Acrivos [96, 97], boundary integral equation

(BIE) methods have been widely used for studying various particulate Stokes flow systems

7

8

including drops, bubbles, capsules, vesicles, red blood cells and swimmers (e.g., see recent

works [178, 159, 29] and references therein). BIE methods exploit the linearity of Stokes

equations and offer several advantages such as reduction in dimensionality, exact satisfaction

of far-field boundary conditions, and ease of handling moving geometries. Development of

fast algorithms such as the fast multipole methods (FMMs) [62, 213, 205, 190, 54, 126],

Ewald summation methods [165, 119, 109, 3], and variants tailored to Stokes equations

[168, 217, 208, 207] further extended their scope for solving problems in physically-realistic

parameter regimes. Consequently, they are being used to investigate problems in a wide

range of physical scales, from microhydrodynamics of isolated particles to large-scale flows

generated by suspensions of particles (e.g., see [158, 136, 212]).

Despite their success, many numerical challenges still remain open for BIEs as applied

to particulate Stokes flow problems. Prominent among them is the accurate handling of

hydrodynamic interactions between surfaces that are almost in contact. For example, in

dense suspension flows, the constituent particles often approach very close to each other

or to the walls of the enclosing geometries (e.g., see Figure 2.1). To prevent artificial in-

stabilities in this setting, numerical methods often require adaptive spatial discretizations,

accurate nearly-singular integral evaluation schemes (noting that while this issue is specific

to BIEs, it manifests itself in other forms for other numerical methods) and accurate time-

stepping schemes. The primary focus of this chapter is addressing the first two issues for

two-dimensional problems.

In this work we apply specialized panel quadrature schemes that can accurately evaluate

layer potentials defined on a smooth open curve, and for target points arbitrarily close to,

or on, the curve. This helps the efficient tackling of dense particulate flows constrained in

large multiply-connected domains such as in Figure 2.1. In addition, we formulate a set

of rules for refining (or coarsening) the panels used to represent the boundaries, so that a

9

Figure 2.1: Snapshot from a simulation of bacterial supension flow in a microfluidic chip geometry, which
is inspired from the design proposed in [89]. A squirmer model [91] is used for modeling the bacteria,
which treats them as rigid bodies with a prescribed slip at the fluid-structure interface. Thereby, we solve
the Stokes equations with a no-slip boundary condition on the microfluidic chip geometry, a prescribed
tangential velocity on the squirmer boundaries and an imposed parabolic flow profile at the inlet and outlet.
We used 730, 080 discretization points for the chip boundary, resulting in 1, 460, 160 degrees of freedom, and
128 discretization points at each of the 120 squirmers. GMRES took about 10 hours to reach a relative
residual of 5.6×10−8, using an 8-core 3.6 GHz Intel Core i7 processor with 128 GB of RAM. Color indicates
the magnitude of fluid velocity. The estimated PDE relative L2−norm error is 2× 10−5.

user-specified error tolerance can be achieved automatically. One of the advantages of this

adaptive panel refinement procedure is that it can handle geometries with corners (as in

Figure 2.2) or nearly self-touching geometries, using the same quadrature schemes for both

weakly- and nearly-singular integrals.

Our work is closely related to two recent efforts, that of Barnett et al. [14] and Ojala–

Tornberg [139], both of which, in turn, are extensions to Stokes potentials of two distinct

quadrature schemes originating with the work of Helsing–Ojala [80]. In [14], three of the co-

authors developed high-order global quadrature schemes based on the periodic trapezoidal

rule (PTR) for the evaluation of Laplace and Stokes layer potentials defined on a smooth

closed planar curve, which achieved spectral accuracy for particles arbitrarily close to each

other. Nevertheless, a key limitation of these close evaluation schemes is that they only

work for closed curves and have uniform resolution on any part of a curve. Thereby, while

they are well-suited for moving rigid and deformable particles immersed in Stokes flow, new

10

machinery is needed for the constraining complex geometries such as those in Figures 2.1

and 2.2.

On the other hand, Ojala–Tornberg [139] developed a panel quadrature scheme, as is done

in this work. They applied high-order quadratures for logarithmic, Cauchy, and hypersin-

gular contour integrals pioneered by Helsing and Ojala in the context of Laplace boundary-

value problems [80, 77, 138]. The main distinction from our work is that [139] uses the

BIE framework of Kropinski [108], converting Stokes equations into a biharmonic equation,

then tailors it to a specific application (droplet hydrodynamics), whereas our scheme directly

tackles all the Stokes layer potentials using physical variables (single-layer, double-layer and

their associated pressure and traction kernels). Thereby, it can be integrated with existing

BIE methods developed for various physical problems (colloids, drops, vesicles, squirmers and

other suspensions) and flow conditions (imposed flow, pressure-, electrically- or magnetically-

driven flows, etc) more naturally. Our physical variable formulation also applies quadratures

for the above three contour integrals plus the super-singular integral; the resulting panel

quadratures are a subset of those developed recently for the (modified) biharmonic case [79,

Sec. 6]. Note that resolving nearly-singular integrals, and corner problems, is an active area

of research owing to its importance in solving several other linear elliptic partial differential

equations (PDEs), such as Laplace, Helmholtz and biharmonic equations, via BIEs; other

recent works that considered two-dimensional problems include [103, 15, 78, 30, 157, 4, 149].

The predominant class of algorithms for adaptive meshing found in the Stokes BIE lit-

erature are the reparameterization schemes (also called the resampling techniques) that are

dedicated to resolving boundary mesh distortions arising in deformable particle flow simu-

lations (see [199] for a review on this topic). The primary focus of this work, on the other

hand, is to determine an optimal distribution of boundary panels on a given domain, and

a choice of panel order p, so that a user-prescribed tolerance is met when computing the

11

solution. Prior work in this area has mostly been restricted to low-order boundary element

methods (BEMs); see [102] for a review. In the last 20 years, high-order hp-variants of BEM

have been tested for Laplace and Helmholtz problems on polygons (for example [85, 11]).

However, we are not aware of any Nyström hp-BIEs for the Stokes equations capable of

handling arbitrary complex geometries. To handle corners, the RCIP method developed by

Helsing [82] compresses the degrees of freedom used in a graded mesh, and has been recently

applied to the biharmonic case [79]. The recent research of Rachh–Serkh [156] exploits a

power-law basis resulting from analysis of the wedge problem to solve Stokes corner problems

via a BIE. Here, we take a more pedestrian approach to handling corner singularities via the

use of graded meshes. A prototypical example is shown in Figure 2.2.

This chapter is organized as follows. In Section 2.2, we define the multiply-connected

viscous flow boundary value problem, give the integral equation formulation, and formulate

the Stokes boundary integral operators in terms of Laplace and complex contour integrals.

In Section 2.3, we review panel quadrature rules for evaluating the Stokes layer potentials,

including key details about branch cuts and efficient filling of matrix blocks. We summarize

our algorithm for adaptively discretizing a given geometry in Section 2.4. We consider

several test cases and present results on the performance of our algorithms in Section 2.5,

including a demonstration of how the adaptive scheme can handle nearly-touching smooth

curves efficiently. We conclude in Section 2.6.

2.2 Mathematical preliminaries

In this section, we first state the PDE formulation for multiply-connected interior (as in

Figure 2.2) or exterior flow problems, reformulate them as a BIE and then represent the

resulting layer potentials in terms of contour integrals and Laplace potentials.

12

Figure 2.2: Solution of the Stokes equation in a nonsmooth circular vascular network with Dirichlet boundary
condition. We apply no-slip boundary condition at all branch walls, and it is driven by a uniform flow from
inner to outer circle. Color here indicates log of the magnitude of fluid velocity. We used automatically
generated panels for both smooth boundaries and 378 corners, resulting in 356, 580 degrees of freedom.
GMRES took about 1 hour to reach a relative residual of 7.61 × 10−11 on an 8-core 4.0 GHz Intel Core i7
desktop. The PDE solution has a relative L2−norm error of 1 × 10−9. Three high-resolution log10 error
plots that correspond to different user-requested tolerance ε near the same reentrant corner are shown on
the left; here the short normal lines show panel endpoints, and the black dots quadrature nodes.

2.2.1 Boundary value problem and its integral equation formulation

The fluid domain Ω in Figure 2.2 is a multiply-connected region bounded by NΓ closed

curves, {Γi, i = 1, . . . , NΓ}. Without loss of generality, let Γ1 be the all-enclosing boundary—

i.e., the outer circle in Figure 2.2—and let Γ = ∪NΓ
i=1Γi. Denoting the fluid viscosity by µ, the

velocity by u and the pressure by p, the governing boundary-value problem, in the vanishing

Reynolds number limit, is

−µ∆u+∇p = 0 and ∇ · u = 0 in Ω,(2.1a)

u = g on Γ.(2.1b)

13

The Dirichlet data g must satisfy the consistency condition
∫

Γ
g · nds = 0, where n is the

normal to Γ. For example, in Figure 2.2, the flow is driven by an outward flow condition at

the inner circle and an inward flow condition at the outer circle. Their magnitude is chosen

such that the consistency condition is respected. On the rest of the curves, a no-slip (g = 0)

boundary condition is enforced.

While there are many approaches for reformulating the Dirichlet problem (2.1) as a BIE

[152, 88], for simplicity, we use an indirect, combined-field BIE formulation that leads to a

well-conditioned and non-rank-deficient linear system. There are alternative indirect formu-

lations, combined-field BIE formulation works well in practice for both interior and exterior

problems. We make the following ansatz:

(2.2) u(r′) =

NΓ∑
i=1

Si[σ](r′) + Di[σ](r′) := S[σ](r′) + D[σ](r′) , r′ ∈ Ω,

where σ is an unknown vector “density” function to be determined, Si is the velocity Stokes

single layer potential (SLP) and Di is the double layer potential (DLP), defined by

Si[σ](r′) =
1

4πµ

∫
Γi

(
I log

1

|r′ − r|
+

(r′ − r)⊗ (r′ − r)

|r′ − r|2

)
σ(r) dsr, r′ ∈ Ω,(2.3)

Di[σ](r′) =
1

π

∫
Γi

(
(r′ − r) · nr
|r′ − r|2

(r′ − r)⊗ (r′ − r)

|r′ − r|2

)
σ(r) dsr, r′ ∈ Ω.(2.4)

Here, I is the 2-by-2 identity tensor, r = [x, y]T , σ = [σ1, σ2]T , and dsr is the arc length

element on Γ. As (2.2) indicates, we use S or D to denote the sum of layer potentials due

to all source curves. When combined with their associated pressure kernels (given in the

Appendix), the convolution kernels above are fundamental solutions to the Stokes equations

(2.1a); therefore, all that is left to ensure that the ansatz (2.2) solves the boundary-value

problem is to enforce the velocity boundary condition (2.1b).

We introduce the operator block notations Sijσ = Sj[σ](Γi) and Dijσ = Dj[σ](Γi), i.e.,

the layer velocity potentials due to a source curve Γj, with target restricted to the curve Γi.

When i = j, for the SLP case this integral is improper, and for the DLP the integral must be

14

taken in the principal value sense. By taking the limit as r′ approaches Γ (from the interior

or exterior for Γ1, and exterior for the rest of the curves), the standard jump relations for

the single and double layer potentials [152, 88] give the interior case of the following NΓ×NΓ

BIE system:

(2.5)

I/2 0 . . .

0 I/2 . . .
...

...
. . .

+

η(S11 + D11) S12 + D12 . . .

η(S21 + D21) S22 + D22 . . .
...

...
. . .

ησ(Γ1)

σ(Γ2)
...

 =

f(Γ1)

f(Γ2)
...

 ,

Here η = −1 for the exterior case, and η = 1 for the interior case. The I/2 blocks resulting

from the DLP mean that (2.5) is of Fredholm second kind. The admixture of SLP and DLP

in (2.2) insures that (2.5) there is no nullspace induced by each closed curve i = 2, . . . , NΓ

[76, Thm. 2.1] [152, p.128]. For the case η = +1 this is also true for Γ1, so that there is

no nullspace; in the case η = −1 where Γ1 encloses the entire geometry, it still introduces a

nullity of 1, associated with overall pressure changes. Note that the negation of the density

for the outer curve (first block column) results in all positive identity blocks. Once we obtain

the unknown density function σ on Γ, by solving (2.5), we can evaluate the velocity at any

point in the fluid domain by using 2.2.

We also consider the exterior boundary-value problem (see, e.g., Figure 2.6), which can

be thought of taking the above outer curve Γ1 to infinity, removing it from the problem.

The fluid domain Ω becomes the entire plane minus the closed interiors of the other curves;

these curves we may relabel as Γ = ∪NΓ
i=1Γi. There is also now a given imposed background

flow u∞(r′), which in applications is commonly a uniform, shear, or extensional flow. The

decay condition u(r′)− u∞(r′) = Λ log |r′|+O(1), for some Λ ∈ R2, must be appended to

(2.5) to give a well-posed BVP [88]. The representation (2.2) of the physical velocity is now

(2.6) u(r′) = u∞(r′) + (D[σ] + S[σ])(r′) .

The resulting BIE is given as the second case of (2.5). In the simplest case of physical no-slip

15

boundary conditions, the data in (2.5) is now f = −u∞|Γ, which one may check cancels the

velocity on all boundaries.

The rest of this section rewrites the Stokes potentials Sσ and Dσ in terms of four fun-

damental complex contour integrals. Laplace layer potentials are also used as a convenient

intermediate step. The motivation is to interface to the close-evaluation schemes of Helsing

and co-workers [80, 77, 138, 79], which will be used both for on-curve evaluation (discretiza-

tion of (2.5)) and near-to-curve evaluation of the representation (2.2).

2.2.2 Fundamental contour integrals

Let τ be a given, possibly complex, scalar density function on Γ. We associate R2 with

the complex plane C. Let nz be the outward-pointing unit vector at z ∈ Γ, expressed as a

complex number. Given a target point z′ ∈ Ω, we define the potentials

IL = IL[τ](z′) :=

∫
Γ

log |z′ − z|τ(z)|dz| =
∫

Γ

log |z′ − z|τ(z)

inz
dz , (real logarithmic)(2.7)

IC = IC [τ](z′) :=

∫
Γ

τ(z)

z − z′
dz , (Cauchy)(2.8)

IH = IH [τ](z′) :=

∫
Γ

τ(z)

(z − z′)2
dz , (Hadamard)(2.9)

IS = IS[τ](z′) :=

∫
Γ

τ(z)

(z − z′)3
dz . (supersingular)(2.10)

Note that, as functions of target point z′, IC , IH and IS are holomorphic functions in Ω,

that (d/dz′)IC [τ](z′) = IH [τ](z′), and (d/dz′)IH [τ](z′) = 2IS[τ](z′). In contrast, IL is not

generally holomorphic; yet, for τ real, IL is the real part of a holomorphic function. The

Stokes single- and double-layer traction kernels can be written in terms of Hadamard IH and

supersingular IS integrals respectively.

16

2.2.3 Laplace layer potentials

Now, let τ be a real, scalar, density function on Γ. The Laplace single- and double-layer

potentials are defined, respectively, by

(2.11) S[τ](r′) :=
1

2π

∫
Γ

(
log

1

|r′ − r|

)
τ(r)dsr,

(2.12) D[τ](r′) :=
1

2π

∫
Γ

(
∂

∂nr
log

1

|r′ − r|

)
τ(r)dsr =

1

2π

∫
Γ

(
(r′ − r) · nr
|r′ − r|2

)
τ(r)dsr,

where r′ ∈ Ω. In terms of the contour integrals (2.7) and (2.8), using r = [x, y]T , nr =

[n1, n2]T , z = x + iy, nz = n1 + in2, dsr = |dz| = dz/inz, and the restriction to τ real, we

can rewrite the SLP and DLP as

(2.13) S[τ](r′) =
−1

2π
IL[τ](z′) and D[τ](r′) = Re

i

2π
IC [τ](z′), z′ ∈ Ω.

We will also need the gradients and Hessians of Laplace layer potentials. The gradient of

the SLP has components

(2.14)
∂

∂x′
S[τ](r′) =

1

2π
Re (IC [τ/inz])(z

′),
∂

∂y′
S[τ](r′) =

−1

2π
Im (IC [τ/inz])(z

′) .

The gradient of the DLP requires the Hadamard kernel, and has components

(2.15)
∂

∂x′
D[τ](r′) =

−1

2π
Im IH [τ](z′),

∂

∂y′
D[τ](r′) =

−1

2π
Re IH [τ](z′) .

The Hessians, which also require IS, are discussed in Appendix A.1.

2.2.4 Stokes velocity layer potentials

As in [14], we rewrite the Stokes SLP in terms of Laplace potentials, and the DLP in

terms of Laplace and Cauchy potentials. Using the identity

(r′ − r)⊗ (r′ − r)

|r′ − r|2
σ =

(r′ − r)

|r′ − r|2
((r′ − r) · σ) = ((r′ − r) · σ)∇r′ log |r′ − r|,

17

we can rewrite the Stokes SLP in terms of the Laplace SLP (2.11) as

(2.16)

S[σ](r′) =
1

4πµ

{∫
Γ

(
log

1

|r′ − r|

)
σdsr +∇

∫
Γ

(
log

1

|r′ − r|

)
(r · σ)dsr

− x′∇
∫

Γ

(
log

1

|r′ − r|

)
σ1dsr − y′∇

∫
Γ

(
log

1

|r′ − r|

)
σ2dsr

}
,

where ∇ = ∇r′ is assumed from now on. Therefore, three Laplace potentials (and their

first derivatives) with real scalar density functions r ·σ, σ1, and σ2 need to be computed to

evaluate the Stokes SLP. Similarly, using the identity

(2.17) ∇
(

(r′ − r) · nr
|r′ − r|2

)
=

nr
|r′ − r|2

− 2((r′ − r) · nr)
r′ − r
|r′ − r|4

,

the Stokes DLP can be written as

(2.18)

D[σ](r′) =
1

2π

∫
Γ

nr
|r′ − r|2

((r′ − r) · σ)dsr +
1

2π
∇
∫

Γ

(r′ − r) · nr
|r′ − r|2

(r · σ)dsr

− 1

2π
x∇
∫

Γ

(r′ − r) · nr
|r′ − r|2

σ1dsr −
1

2π
y∇
∫

Γ

(r′ − r) · nr
|r′ − r|2

σ2dsr .

While the last three terms are gradients of Laplace DLPs, the first term requires a Cauchy

integral. More concisely, we can write (2.16) and (2.18) as

S[σ](r′) =
1

2µ

(
(S[σ1],S[σ2]) +∇S[r · σ]− x∇S[σ1]− y∇S[σ2]

)
(r′), r′ ∈ Ω,

(2.19)

D[σ](r′) =
(1

2π
Re
(
IC [τ1], IC [τ2]

)
+∇D[r · σ]− x∇D[σ1]− y∇D[σ2]

)
(r′), r′ ∈ Ω,

(2.20)

where, as above, a pair (·, ·) indicates two vector components, and a short calculation verifies

that the complex scalar density functions τ1 and τ2

(2.21) τ1 = (σ1 + iσ2)
Renz
nz

, τ2 = (σ1 + iσ2)
Imnz
nz

,

where nz is nr = [n1, n2]T interpreted as a complex number, makes the identity hold (i.e.

the first term in (2.20) equals the first term in (2.18)).

18

In summary, the procedure discussed in this section enables us to express the velocity

field anywhere in the fluid domain, represented by (2.2), in terms of fundamental contour

integrals. Similar formulae exist for the fluid pressure and hydrodynamic stresses, which are

commonly needed in several applications; we present these in Appendix A.1.

2.3 Nyström discretization and evaluation of layer potentials

2.3.1 Overview: discretization and the plain Nyström formula

Firstly, we need to specify a numerical approximation of the density function σ. For

simplicity, consider the case of an exterior BVP on a single closed curve Γ parameterized by

Z : [0, 2π)→ R2(or C), such that Γ = Z([0, 2π)). The Stokes BIE (2.5) is then

(2.22) (I/2 + D + S)σ = g,

where σ and g are 2-component vector functions on Γ.

Given the user requested tolerance ε, the boundary is split into nΛ disjoint panels Λi,

i = 1, . . . , nΛ, using the adaptive algorithm to be described in Section 2.4. Each panel will

have p nodes, giving N = pnΛ nodes in total, hence 2N scalar density unknowns. The

ith panel is Λi = Z([ai−1, ai]), where ai, i = 0, . . . , nΛ are the parameter breakpoints of

all panels (where anΛ
≡ a0(mod 2π)). Let the p-point Gauss–Legendre nodes and weights

on the parameter interval [ai−1, ai] be t
(i)
j and w

(i)
j respectively, for j = 1, . . . , p. Then, for

smooth vector functions g on Γ, the quadrature rule for
∫

Γ
g(r)dsr

(2.23)

∫ 2π

0

g(Z(t))

∣∣∣∣ d

dt
Z(t)

∣∣∣∣ dt ≈ nΛ∑
i=1

p∑
j=1

g(r
(i)
j)

∣∣∣∣ d

dt
r

(i)
j

∣∣∣∣ w(i)
j =:

N∑
`=1

g(r`)

∣∣∣∣ d

dt
r`

∣∣∣∣ w`
holds to high-order accuracy. In the last formula above {r`}N`=1 denotes the entire set of nodes

on Γ, t` = Z−1(r`) their preimage in parametric space [0, 2π], and w` their corresponding

weights.

The Nyström method [106, Sec. 12.2] is then used to approximately solve the BIE (2.22).

Broadly speaking, this involves substituting the quadrature rule (2.23) for the integral im-

19

plicit in the BIE, then enforcing the equation at the quadrature nodes themselves. The result

is the 2N -by-2N linear system,

(2.24) AΣ = g

where g := {g(r`)}N`=1 is the vector of 2-component values of the right-hand side g at

the N nodes, and Σ := {σ`}N`=1 is the vector of 2-component densities at the N nodes.

A = {Aij}i,j=1,...,nΛ
is a nΛ × nΛ block matrix, where each block Aij is a 2p× 2p submatrix

that represents the interaction from source panel Λj to target panel Λi. For targets that

are “far” (in a sense discussed below) from a given source panel, the formula for filling

corresponding elements of A is simple. Letting the index be `′ for such a target node, and `

for a source lying in such a panel, using the smooth rule (2.23) gives the matrix element

(2.25) A`′,` = (G(r`′ − r`) +K(r`′ − r`))
∣∣∣∣ d

dt
r`

∣∣∣∣ w` ,
(Nyström rule for y`′ “far” from panel containing y`) where G and K are the kernels ap-

pearing in (2.3)–(2.4). Recall that each element in (2.25) is a 2× 2 tensor, since G and K

are. This defines the plain (smooth) rule for matrix elements (note that we need not include

the diagonal I/2 from (2.22) since `′ = ` is never a “far” interaction).

Sections 2.3.2–2.3.4 will be devoted to defining “close” vs “far” and explaining how “close”

matrix elements are filled. Assuming for now that this has been done, the result is a dense

matrix A that is well-conditioned independent of N , because the underlying integral equa-

tion is of Fredholm second kind. Then an iterative solver for (2.24), such as GMRES,

often converges rapidly. The result is the vector Σ approximating the density at the nodes.

Assuming that (2.24) has been solved exactly, there is still a discretization error, whose con-

vergence rate is known to inherit that of the quadrature scheme applied to the kernel [106,

Sec. 12.2]. Given this, the density function may be evaluated at any point r ∈ Γ using either

the Nyström interpolant (which is global and hence inconvenient), or the local pth-order La-

20

grange interpolant from just the points on the panel in which r lies. When needed, we will

use the latter. The generalization of the above Nyström method to multiple closed curves is

clear.

Remark 2.3.1. When the problem size is large, the matrix-vector multiplication in (2.24),

which requires O(N2) time, can be rapidly computed using a fast multipole method (FMM)

in only O(N) time. This is because all but O(N) of the matrix elements involve the plain

rule (2.25), for which applying the matrix is equivalent to evaluation of a potential with

weighted source strengths. In our large examples (Figures 2.1 and 2.2), we use an OpenMP-

parallelized Stokes FMM code due to Rachh, built upon the Goursat representation of the

biharmonic kernel [154, 59].

Finally, once Σ has been solved for, the evaluation of the velocity u(r′) at arbitrary targets

r′ ∈ Ω is possible, by approximating the representation (2.2) or (2.6), as appropriate. By

linearity, this breaks into a sum of contributions from each source panel on each curve,

which may then be handled separately. Thus a given target r′ ∈ Ω may, again, fall “far” or

“close” to a given source panel (denoted by Λ = Z([a, b])). If it is “far” (according to the

same criterion as for matrix elements), then a simple plain rule is used. Letting uΛ be the

contribution to u from source panel Λ, this rule arises, as with (2.25), simply by substituting

(2.23) into the representation, giving the evaluation rule for x “far” from Λ

(2.26)

uΛ(r′) =

∫
Λ

(G(r′ − r) +K(r′ − r))σ(r)dsr

≈
p∑
j=1

(G(r′ − rj) +K(r′ − rj))
(∣∣∣∣ d

dt
rj

∣∣∣∣ wjσj) ,

where rj := Z(tj) are the nodes, and σj := σ(tj) the 2-component density values, belonging

to Λ. For large N , the FMM is ideal for the task of evaluating u at many targets, using

this plain rule. An identical quadrature rule may be applied to the representations in the

Appendix to evaluate pressure and traction at r′.

21

2.3.2 Close-evaluation and self-evaluation corrections

If a target (on-surface node or off-surface evaluation point) is close enough to a source

panel so that the error in using (2.25) exceeds the user tolerance, a close-evaluation formula

is needed. A special case is when the target is a node on the source panel itself, which we

call self-evaluation, and for which we use the same formulae. We quantify “close” and “far”

as follows. Given a panel Λj = Z([a, b]), a target point r′ is close to Λj if it lies inside the

ellipse

(2.27) |r′ − Z(a)|+ |r′ − Z(b)| = C S,

otherwise r′ is far from Λj. A panel Λi is close to Λj if any point r′ ∈ Λi lies inside the

ellipse (2.27), otherwise Λi is far from Λj. (Of course, Λj is close to itself.) In (2.27), S is

the arc length of Λj and C > 1 is a constant. For the numerical examples in Section 2.5 we

have picked C = 2.5, which is large enough to include all of both neighboring panels of Λj

most of the time.

The rationale for the above heuristic is based upon the accuracy of the plain rule (2.26)

(and its corresponding matrix element rule (2.25)). Examining (2.23), if the integrand

f(r`)
∣∣ d
dt
r`
∣∣ is analytic with respect to t within a Bernstein ellipse (for the parameter domain

[aj−1, aj] for this panel) of size parameter % > 1, then the error convergence for the Gauss–

Legendre rule for this panel is O(%−2p), i.e. exponential in the panel degree p [191, Theo-

rem 19.3]. Since in our case f(r) = (G(r′ − r) +K(r′ − r))σ(t), and G(r′−r)+K(r′−r)

is analytic for r′ 6= r, for such analyticity of the integrand, r′ must be outside the image of

this Bernstein ellipse under Z. In the case where the panel is approximately flat, this image

is approximated by the ellipse with foci Z(a) and Z(b), which gives the above geometric

“far” criterion. The choice of C is empirically made to achieve an exponential error conver-

gence rate in p no worse than that due to the next-neighboring panels discussed in Stage 1

22

of Section 2.4, in the case of panel shapes produced by the procedure in that section. Note

that σ(t) must also be assumed to be analytic in the ellipse; we expect this to hold again

because the panels will be sufficiently refined. For a more detailed error analysis of the plain

panel rule using the Bernstein ellipse, see [4, Sect. 3.1] and [2, Sec. 2.1].

So far we have presented (only in the “far” case) formulae for both filling Nyström matrix

elements (2.25), and for evaluation of the resulting velocity potential (2.26). We now make

the point that, in both the “far” and “close” cases, these are essentially the same task.

Remark 2.3.2 (Matrix-filling is potential evaluation). The matrix element formula (2.25) is

just a special case of the evaluation formula (2.26) for the on-surface target r′ = r`, and

with a Kronecker-delta density σj = δj,`. I.e., one can compute (the “far” contributions to)

Aσ from σ, as needed for each iteration in the solution of (2.24), simply via the evaluation

formula (2.26) with targets r′ as the set of nodes {r`}. This will also apply for the special

“close” formulae presented below; note that the diagonal blocks Aii when computed using

these quadratures will implicitly include the I/2 jump relation appearing in (2.22). Thus

from now on we present only formulae for evaluation; the corresponding matrix element

formulae are easy to extract (see Section 2.3.4).

Finally, to accelerate the computation, the close- and self-evaluations will be precomputed

as matrices (see Section 2.3.4) which include subtracting the incorrect entries using the plain

rule (2.25). The resulting “correction matrix” blocks are assembled and stored as a 2N -by-

2N sparse matrix. The entire application of A to the density vector is then performed using

the FMM with the plain rule (2.25), plus the action of this sparse matrix to replace the

“close” interactions with their accurate values. This matrix-vector multiplication is used to

solve the whole linear system iteratively via GMRES. We do this for our large-scale examples

in Section 2.5.

23

2.3.3 Close-evaluation of potentials

Since we will perform all Nyström matrix filling using the same formulae as for close-

evaluation of potentials (on- or off-surface), we now review formulae for the close-evaluation

task. As before, we consider a single target point r′ ∈ Ω which is “close” to the single source

panel Λ = Z([a, b]), on which a density σj is known at the nodes j = 1, . . . , p. Recall that

the p-point Gauss–Legendre nodes and weights for the parameter interval [a, b] are tj and

wj.

We make use of special panel quadratures developed for the Laplace double-layer case by

Helsing–Ojala [80, Sec. 5], for the logarithmic and hypersingular kernels by Helsing [77], and

its simple generalization to supersingular (one of those used by Helsing–Jiang [79, Sec. 6]).

They use high-order polynomial interpolation in the complex plane to approximate the den-

sity function, then apply a recurrence to exactly evaluate the near-singular integral for each

monomial basis function. In Section 2.2 we showed that all the needed Stokes potentials may

be written in terms of IL[τ](z′), IC [τ](z′), IH [τ](z′) and IS[τ](z′) from (2.7)–(2.10), involving

scalar Cauchy densities τ derived from the given Stokes density σ. Thus in the following

subsections we review close-evaluation of each contour integral in turn. We also describe in

more detail than in the original literature a recipe to handle branch cuts.

It turns out that monomial approximation is most stable when assuming that Z(a) = 1

and Z(b) = −1, i.e. the panel endpoints are ±1 in the complex plane [80]. Thus we start

by making this assumption, then in Sec. 2.3.3 review how to correct the results for a panel

with general endpoints.

Recall that σ, hence the derived scalar functions τ needed in the contour integrands,

is available only at the p nodes of Λ. In order to improve the accuracy of the complex

approximation for curved panels, firstly an upsampling is performed to m > p “fine” nodes,

using Lagrange interpolation in the parameter t ∈ [a, b] from the p nodes to the m fine

24

nodes. We find that m = 2p is beneficial without incurring significant extra cost. Let τ̃j,

j = 1, . . . ,m denote the fine density values, r̃j = Z(t̃j) ∈ Λ be the fine nodes, and z̃j be

complex representation of r̃j, where t̃j and w̃j are the m-point Gauss–Legendre nodes and

weights respectively for [a, b]. The following schemes now will use only the fine values and

nodes.

Close evaluation of the Cauchy potential

This method first appeared in [80, Sec. 4–5]. One approximates τ on the panel Λ in the

complex variable by the degree m− 1 polynomial

(2.28) τ(z) ≈
m∑
k=1

akz
k−1, z ∈ Λ .

The vector of complex coefficients a := {ak}mk=1 is conveniently found by using a dense direct

solve of the square Vandermonde system

(2.29) V a = τ̃ ,

with elements Vjk = z̃k−1
j , j, k = 1, . . . ,m, and right hand side τ̃ := {τ̃j}mj=1. It is known

that, for any arrangement of nodes z̃j other than those very close to the roots of unity,

the condition number of V grows exponentially with m [145]. However, as discussed in

[80, App. A], at least for m < 50, despite the extreme ill-conditioning, backward stability of

the linear solver insures that the resulting polynomial matches the values at the nodes to

close to machine precision. For this we use MATLAB mldivide which employs standard

partially-pivoted Gaussian elimination.

The remaining step is to compute the contour integral of each monomial,

(2.30) pk = pk(z
′) :=

∫ 1

−1

zk−1

z − z′
dz, k = 1, . . . ,m ,

which are, recalling (2.8), then combined using (2.28) to get

(2.31) IC [τ](z′) ≈
m∑
k=1

akpk .

25

By design, since the monomials are with respect to z in the complex plane (as opposed to,

say, the parameter t), Cauchy’s theorem implies that each pk is independent of the curve Λ

and depends only on the end-points. Specifically, for k = 1 we may integrate analytically by

deforming Λ to be the curve connecting −1 and 1, so

(2.32) p1 :=

∫ 1

−1

1

z − z′
dz = log(1− z′)− log(−1− z′)± 2πiNz′

where Nz′ ∈ Z is an integer winding number that depends on the choice of branch cut of the

log function. For the standard cut on the negative real axis then Nz′ = 0 when x is outside

the domain enclosed by the oriented curve composed of Λ traversed forwards plus [−1, 1]

traversed backwards, Nz′ = +1 (−1) when z′ is inside a region enclosed counterclockwise

(clockwise) [80]. However, since it is inconvenient and error-prone to decide Nx for points

on or very close to Λ and [−1, 1], we prefer to combine the two logs then effectively rotate

its branch cut by a phase φ ∈ R, by using

(2.33) p1 = iφ+ log
1− z′

eiφ(−1− z′)
,

where φ = −π/4 when the upwards normal of the panel points into Ω (as for an interior

curve), or φ = π/4 otherwise. This has the effect of pushing the branch cut “behind” the

panel (away from Ω; see Fig. 2.3), with the cut meeting ±1 at an angle φ from the real

axis. The potential is correct in the closure of Ω, including on the panel itself, without any

topological tests needed (hence the unified handling of close and self evaluations in Sec. 2.3.2).

This can fail if a panel is very curved (such a panel would be inaccurate anyway), or if a piece

of Ω approaches close to the back side of the panel (which can be prevented by adaptive

refinement as in Section 2.4). In practice we find that this is robust. However, we will

mention one special situation where (2.33) could fail and therefore careful adjustment of the

branch cut is critical; see Remark 2.3.3 below.

The following 2-term recurrence is easy to check by adding and subtracting z′zk−1 from

26

the numerator of the formula (2.30) for pk+1:

(2.34) pk+1 = z′pk + (1− (−1)k)/k .

For |z′| < 1.1 we find that the recurrence is sufficiently stable to use upwards from the

value p1 computed by (2.33), to get p2, . . . , pm. However, for targets outside this close

disc, especially for larger m, the upwards direction is unstable. Thus, here instead we use

numerical quadrature on (2.30) to get

(2.35) pm ≈
m∑
j=1

zm−1
j

zj − z′
d

dt
Z(t̃j)w̃j ,

then apply (2.34) downwards to compute pm−1, . . . , p2, and as before use p1 from (2.33).

Outside of the disc, no branch cut issues arise.

Remark 2.3.3 (branch cuts at corners). When a panel Λ is directly touching a corner, directly

applying (2.33) can fail no matter how much the panels are refined. In Figure 2.3a, the panel

on the opposite side of the corner, Λ′, is always behind Λ and lying across the branch cut

associated to Λ. Consequently, the close evaluation from Λ to Λ′ results in completely wrong

values, also leading to ill-conditioning of the whole system (2.24). Instead, one can simply

change the sign of φ in (2.33) to flip the branch cut to accommodate the targets on Λ′ (Figure

2.3b). In practice, we find that this is robust for corners of arbitrary angles.

Close evaluation of the logarithmic potential

This method first appeared in [77, Sec. 2.3]. For τ real, we can write the final form in

(2.7) as

(2.36) IL[τ](z′) = Re

∫
Λ

log(z − z′)τ(z)

inz
dz,

which shows that the quantity to approximate on Λ as a complex polynomial is τ(z)/inz.

Thus we find the coefficients in

(2.37)
τ(z)

inz
≈

m∑
k=1

bkz
k−1, z ∈ Λ ,

27

(a) (b)

panel endpoints

source

target

branch cut

panel endpoints

source

target

branch cut (flipped)

Figure 2.3: Special handling of close evaluation branch cut when the panel is touching a reentrant corner.
(a) The target panel Λ′ is crossing the branch cut of the source panel Λ defined by (2.33), resulting in wrong
close evaluation values. (b) Changing the sign of φ in (2.33) flips the branch cut to the other side; close
evaluation at the targets are now correct.

by solving (2.29) but with modified right hand side {τ̃j/inz̃j}mj=1. Defining

(2.38) qk :=

∫ 1

−1

zk−1 log(z − z′)dz, k = 1, . . . ,m

then (2.37) gives

(2.39)

∫ 1

−1

log(z − z′)τ(z)

inz
dz ≈

m∑
k=1

bkqk ,

whose real part is IL[τ](z′). Each qk is computed from pk of (2.30) as evaluated in Sec. 2.3.3,

via a formula easily proven by integration by parts, qk = −pk+1+log(1−z′)−(−1)k log(1+z′)
k

, therefore

(2.40) qk =

(
−pk+1 + iφ+ log 1−z′

eiφ(−1−z′)

)
/k , k even ,(

−pk+1 + log[(1− z′)(−1− z′)]
)
/k , k odd ,

where the latter form is that used in the code, needed to match the branch cut rotation used

for pk in (2.33). The final evaluation of IL is then via

(2.41) IL[τ](z′) ≈ Re
m∑
k=1

bkqk .

Close evaluation of the Hadamard and supersingular potentials

We apply formulae from [77, Sec. 2.2] (Hadamard) and [79, Sec. 6] (supersingular). The

double-layer Stokes velocity requires gradients of Laplace potentials (2.15), which require

28

IH [τ](z′). Also, the traction of the Stokes single-layer (A.1.5) involves IH applied to τ(z)/inz,

and the traction of the Stokes double-layer further involves IS (Appendix A.1).

Using the complex monomial expansion (2.28), we have

(2.42) IH [τ](z′) ≈
m∑
k=1

akrk, IS[τ](z′) ≈
m∑
k=1

aksk,

where

(2.43) rk :=

∫ 1

−1

zk−1

(z − z′)2
dz, sk :=

∫ 1

−1

zk−1

(z − z′)3
dz, k = 1, . . . ,m .

The following formulae can be shown by integration by parts, and enable rk and sk to be

found,

(2.44) rk = (k−1)pk−1 +
(−1)k−1

−1− z′
− 1

1− z′
, sk =

k − 1

2
rk−1 +

(−1)k−1

2(−1− z′)2
− 1

2(1− z′)2
,

using pk from (2.30) as computed in Sec. 2.3.3, and p0 = 0.

Review of transforming for general panel endpoints

To apply close-evaluation methods in the above three sections to a general panel Λ =

Z([a, b]), define the complex scale factor α0 := (Z(b) − Z(a))/2 and origin z0 = (Z(b) +

Z(a))/2. Then the affine map

z = s(z̃) :=
z̃ − z0

α0

takes z̃ to its scaled version z. Likewise, the factor d
dt
Z(t̃j) in (2.35) is replaced by d

dt
Z(t̃j)/α0.

Following Sec. 2.3.3 using these scaled target and fine nodes, no change in the result IC is

needed. However, the value of IH computed in Sec. 2.3.3 must afterwards be divided by α0,

and the value of IS divided by α2
0. The value of IL computed in Sec. 2.3.3 must be multiplied

by |α0|, and then have | d
dt
Z(t̃j)wj/α0| log |α0| subtracted.

2.3.4 Computation of close-evaluation matrix blocks

The above described how to evaluate IL[τ](z′), IC [τ](z′), IH [τ](z′) and IS[τ](z′) given

known samples τ̃j at a panel’s fine nodes. In practice it is useful to instead precompute a

29

matrix block A which takes any density values at a panel’s original p nodes yj to a set of n

target values of the contour integral. We review a result contained in [80, Eq. (51)] (where a

faster numerical method was also given in the Cauchy case). Consider the case of the Cauchy

kernel, and let A denote this n-by-p matrix. Let L be the m-by-p Lagrange interpolation

matrix from the nodes tj to fine nodes t̃j, which need be filled once and for all. Let P be the

n-by-m matrix with entries Pik = pk(z
′
i), given by (2.30), where {z′i}ni=1 is the set of desired

targets. In exact arithmetic one has

A = PV −1L .

However, since V is very ill-conditioned, filling V −1 and using it to multiply to the right is

numerically unstable. Instead an adjoint method is used: one first solves the matrix equation

V >X = P>, where > indicates non-conjugate transpose, then forms the product

A = X>L .

The matrix solve is done in a backward stable fashion via MATLAB’s mldivide; see [80,

App. A]. A further advantage of the adjoint approach is that if n is small, the solve is faster

than computing V −1.

The formulae for the logarithmic, Hadamard and supersingular kernels are analogous.

2.4 Adaptive panel refinement

In order to solve a BIE to high accuracy, it is necessary to set up panels such that the given

complex geometry is correctly resolved. In this section, we describe a procedure that adap-

tively refine the panels based solely on the geometric properties. Specifically, our refinement

algorithms take into account the accuracy of geometric representations (including arc length

and curvature), the location of corners, and the distance between boundary components. It

necessarily has some ad-hoc aspects, yet we find it quite robust in practice.

30

Suppose that for a user-prescribed tolerance ε, the goal is to find a partition Γ =
nΛ⋃
i=1

Λi

such that the error, ε, of evaluating boundary integral operators such as (2.22) satisfies ε / ε.

To this end, we describe our adaptive refinement scheme which proceeds with three stages.

In what follows, we again assume that the panel under consideration Λ = Z([a, b]) is rescaled

such that its two endpoints are ±1.

Stage 1: Choice of overall p. Given tolerance ε, the goal is to determine a number of

quadrature points, p, applied to all panels, such that the relative quadrature error on any

panel is O(ε). As mentioned above, the p-point Gauss–Legendre quadrature on [−1, 1] has

O(%−2p) error if the integrand can be analytically extended to a Bernstein ellipse of parameter

% > 1, where the semi-major axis of this ellipse is (% + %−1)/2 [191, Thm. 19.3]. Therefore,

making %−2p ≤ ε we obtain the first term of the right-hand side in

(2.45) p ≥
⌈

log10(1/ε)

2 log10 %

⌉
+ c,

where the second term accounts for unknown prefactors. Empirically we set c = 1.

To determine %, we require that the Bernstein %-ellipse of each panel encloses both its

immediate neighboring panels. This insures that, when applying the smooth quadrature rule

(2.23) between the nearest non-neighboring (“far”) panels that do not touch a corner, the

integrand continues to a function analytic inside the %-ellipse, so, by the above discussion,

the relative error is no worse than ε. (This will not apply to panels touching a corner, but

they are small enough to have negligible contributions.) Stages 2–3 below will place an upper

bound of λ on the ratio of the lengths (with respect to parameter) of neighboring panels.

Combining these two relations gives

(2.46)
%+ %−1

2
= 1 +

2

λ
.

One then solves (2.46) for % and substitutes it into (2.45) to obtain a lower bound for p.

31

For example, λ ≤ 3 holds in our examples, so % = 3, and therefore we have as sufficient the

simple rule p = dlog10(1/ε) + 1e.

Stage 2: Local geometric refinement. In this stage, panels are split based on local

geometric properties:

1. Corner refinement. Panels near a corner are refined geometrically so that each panel is

a factor λ shorter in parameter than its neighbor (see lines 8–11 of Algorithm 1).

To each corner is associated a factor λ ≥ 2. A rule of thumb is to use λ = 2 for sharper

corners (e.g. whose angle θ is close to 0 or 2π) which are harder to resolve, and use λ > 2

for “flatter” corners (e.g. θ closer to π) to reduce the number of panels without affecting

the overall achieved accuracy. In practice, we use λ = 3 for corners π/2 ≤ θ ≤ 3π/2;

for a problem with many flat corners, this can reduce the total number of unknowns by

a factor of about 2/3 (or about log3 2).

Near a corner, refinement stops when the panels touching the corner are shorter than

εα, where α is an empirical power parameter chosen for each corner. Recent theoretical

results for the plain double-layer formulation for the Stokes Dirichlet BVP state that

the density is a constant plus a bounded singular function with positive power for any

corner angle in (0, 2π) [156]. For our D + S formulation we observe a density behavior

consistent with this. This suggests choosing α = 1 for any corner angle, since the

constant term will dominate the error. In fact, for small (non-reentrant) angles we are

able to reduce α somewhat without loss of accuracy, hence do so, to reduce the number

of panels.

2. Curved panel refinement. Panels away from any corners are refined based on how well

the smooth geometric properties are represented by the interpolants on their p Legendre

nodes. We measure the accuracy of geometric representations by the interpolation errors

32

of a set of test functions on a set of test points. First, we define the set of test functions

G = {g1, g2, g3, . . .} to be approximated on the panel Λ. The following list of functions

are included in G whenever the necessary derivatives are available:

• g1(t) = Z(t), which resolves the geometry representation.

• g2(t) = | d
dt
Z(t)|, which resolves arc length, recalling that arc length is

S =

∫
Λ

ds =

∫ b

a

∣∣∣∣ d

dt
Z(t)

∣∣∣∣ dt

• g3(t) =

∣∣∣Im (d2

dt2
Z(t)/ d

dt
Z(t))

∣∣∣2
| d

dt
Z(t)| , which resolves bending, since bending energy is

E =

∫
Λ

κ2ds =

∫ b

a

∣∣∣∣∣ d
dt
Z(t)× d2

dt2
Z(t)∣∣ d

dt
Z(t)

∣∣3
∣∣∣∣∣
2 ∣∣∣∣ d

dt
Z(t)

∣∣∣∣ dt =

∫ b

a

∣∣∣Im (d2

dt2
Z(t)/ d

dt
Z(t))

∣∣∣2∣∣ d
dt
Z(t)

∣∣ dt

Next, we define the test points to be the m equally spaced points on [a, b], denoted

t̃Λj , j = 1, . . . ,m, and let tΛj , j = 1, . . . , p be the Legendre nodes. Then for each i = 1, 2, 3,

the relative error of approximating gi is

εi =
‖g̃i −M · gi‖
‖gi‖

,

where g̃i := (gi(t̃
Λ
1), . . . , gi(t̃

Λ
m)), gi := (gi(t

Λ
1), . . . , gi(t

Λ
p)), and M is the m × p interpo-

lation matrix from the Legendre nodes to the test points. The panels are refined until

maxi εi < εβ, where β > 0 is another power parameter, with default value β = 1.

The corner and curved panel refinement rules are applied to all panels recursively. The

complete procedure is summarized in Algorithm 1.

Stage 3: Global closeness refinement. At this final stage, panels are further refined if

they are (relatively) too close to any non-neighboring panels. Specifically, let Λleft and Λright

be the two immediate neighboring panels of Λ, and define Γfar := Γ \ (Λleft ∪ Λ ∪ Λright)

as all non-neighboring panels of Λ. Then the panel Λ is refined if d(Λ,Γfar), its distance

33

Algorithm 1 Local geometric refinement

Require: The current panel Λ = Z([a, b]); tolerance ε; corner information C = {tcj , λj , αj}kj=1; test func-
tion(s) G = {g1, g2, g3, . . .}; β is the tolerance exponent for the test functions (default value 1).

1: function Refine(Z([a, b]), ε, C,G, β)
2: Panel parametric length L = b− a
3: Panel arc length S =

∫ b
a
| d
dtZ|

4: if geometry has corners then
5: Let tci be the corner closest to [a, b]
6: if L < εαi or S < εαi then
7: return {a, b} . panel length reached lower limit, do not split

8: if tci is close enough to the panel [a, b] then
9: if a < tci < b then s = tci . split right at the corner

10: else if tci < a then s = a+ L/λi . split towards the corner

11: else if tci > b then s = b− L/λi . split towards the corner

12: if split point s is not defined then
13: gi = gi values at quadrature points
14: g̃i = gi values at test points
15: M = interpolation matrix from quadrature points to test points
16: ε = max

gi∈G
‖g̃i −M · gi‖/‖gi‖ . interpolation error of test function(s)

17: if ε > εβ then
18: s = (a+ b)/2 . split in half

19: if split point s is defined then
20: t1 = Refine(Z([a, s]), ε, C,G, β)
21: t2 = Refine(Z([s, b]), ε, C,G, β)
22: return t1 ∪ t2 . recursively refine panel

23: return {a, b} . do not split

from Γfar, is shorter than its arc length by a factor of 3 (see Lines 4–10 of Algorithm 2); see

Remark 2.5.1 for an alternative, less restrictive, refinement criterion.

In practice, the distance d(Λ,Γfar) can be approximated by mini,j |ri − rj|, where the

minimum is searched among all pairs of nodes ri ∈ Λ and rj ∈ Γfar. A kd-tree algorithm

[184] is used to accelerate this process for our large examples in Section 2.5, in which case the

elliptical close neighborhood (2.27) is also replaced by
⋃p
i=1 B(Zi, C S), the union of disks

around each node on Λ, for convenience.

The above refinement process is applied to each panel from the output of the previous

stage and repeats until no further splitting. The algorithm for this stage is summarized in

Algorithm 2. We note that since our algorithm is panel-based, it is agnostic as to whether

two touching panels belong to the same boundary component or not. Hence this algorithm

34

Algorithm 2 Global closeness refinement

Require: The refined panels Γ =
⋃
k Λk from Stage 2 (local geometric refinement).

1: function CloseRefine(Γ)
2: Initialize the output set t = ∅, which will contain the final panel endpoints
3: Initialize the set of new endpoints tnew = {endpoints of Γ =

⋃
k Λk}

4: while tnew 6= ∅ do . repeat until no further splitting

5: t = t ∪ tnew

6: tnew = ∅
7: Update panels Γ =

⋃
k Λk based on t . ready for a new round of refinement

8: for each panel Z([a, b]) ⊂ Γ do
9: Locate Λleft and Λright, the two immediate neighboring panels of Z([a, b])

10: Define Γfar = Γ \ (Λleft ∪ Z([a, b]) ∪ Λright)
11: Compute the distance d = d(Z([a, b]),Γfar)
12: Calculate S = arc length of Z([a, b])
13: if 1

3 S > d then

14: tnew = tnew ∪ {a+b
2 } . split in half

15: return final panel endpoints t

handles two situations simultaneously: the case of close-touching between different boundary

components, as well as the case of “self-touching” where a boundary component is almost

touching itself.

Remark 2.4.1 (Expected convergence rate with corners). The above three stages involve two

quantities—the panel order p, and a resulting number of panels per corner—both of which

grow linearly with log 1/ε. However, N is the product of these two quantities, thus, in

the presence of corners, one expects asymptotically N = O(log2 1/ε) as ε → 0. In other

words, the error converges root exponentially in N , i.e. as O(e−c
√
N). This matches the

theoretical convergence rate for hp-BEM on polygons by Heuer–Stephan [85]. This rate has

also recently been observed and proven for a geometrically graded “method of fundamental

solutions” approach to polygons by Gopal–Trefethen [57].

2.5 Numerical results and discussion

In what follows, numerical examples will be presented to test the overall solution scheme

presented so far. In each example, we solve a Dirichlet problem in the domain exterior to

the given geometries. The BIE formulation of the problem on Γ is (1
2

+ S + D)[σ] = g, as

35

described in Section 2.2.1.

The solution procedure is to first adaptively refine the representation of the geometry

using our refinement scheme (Section 2.4), then the BIE is discretized using the plain and

special quadratures (Section 2.3) and solved for the density σ, and finally the solution

u = u∞ + (S + D)[σ] is evaluated everywhere in the exterior domain (again making use of

special quadratures). In our examples the evaluation grid spacing will be ∆x = 0.02.

We mention that our solution scheme has been tested on boundary value problems with

boundary data extracted from an analytically known smooth flow u, and, as expected,

achieves superalgebraic convergence. However, in the presence of corners, such smooth test

problems do not involve the corner singularities that generically arise in physical problems.

For this reason, we only present results on physical flows such as imposed uniform or linear

shear flows. In all the examples, the exact solution is not known analytically; therefore, we

use the finest grid solution as the reference solution.

Example 1. Smooth domain. This example tests our scheme on a linear shear flow around

a smooth starfish-shaped island defined by function Z(t) = (1 + 0.3 cos 5t) [cos t, sin t]T , with

no-slip boundary condition u|Γ = 0 and u∞(x, y) = [−y, 0]T as |r| → ∞. We chose β = 0.8

(Line 17 of Algorithm 1), in order to reduce N . In addition to the velocity field, we have

also investigated the convergence of the pressure field and the traction field in the (1, 2)-

direction, both of which are obtained using our close evaluation scheme (Section 2.3.3 and

Appendix A.1). Our scheme achieved accuracies that match the requested tolerance (Figure

2.4b). All the solution fields converge super-algebraically with respect to the problem size

(Figure 2.4c).

Example 2. Domain with corners. The smooth geometry in Example 1 is now replaced

with a non-convex polygon. Figure 2.5 shows a linear shear flow around a “shuriken” domain

36

(a) (b) (c)

10
-12

10
-8

10
-4

10
-12

10
-8

10
-4

10
0

15 20 25 30 35
10

-12

10
-8

10
-4

10
0

velocity

pressure

traction

Figure 2.4: (a) Linear shear flow past a starfish-shaped island. Streamlines of the flow and panel endpoints
(small segments) are shown. Color represents estimated log10 error of the velocity computed under tolerance
ε = 10−12 (resulted in 2N = 2184 degrees of freedom). (b) Convergence of the maximum relative error εmax

versus requested tolerance ε, where the traction field is computed along the (1, 2)-direction. (c) Convergence
of the maximum error εmax versus the square root of the number of nodes.

(a) (b) (c)

10
-9

10
-6

10
-3

10
-9

10
-6

10
-3

20 30 40 50 60
10

-9

10
-6

10
-3

Figure 2.5: (a) Linear shear flow around a shuriken-shaped island with 8 corners. Streamlines of the flow
and panel endpoints (small segments) are shown. Color represents the log10 error of the velocity computed
under tolerance ε = 10−10 (resulted in 2N = 6640 degrees of freedom). (b) Convergence of the maximum
error εmax versus requested tolerance ε. (c) Convergence of the maximum error εmax versus the square root
of the number of nodes; root-exponential convergence would result in a straight line.

with eight corners, the outer four of which are reentrant (with respect to Ω) corners of angle

θ = 1.74π. With α = 0.5 for the flatter corners and α = 1.1 for the sharper ones, our

scheme achieved accuracies that match the requested tolerance (Figure 2.5b). Note that

the convergence with respect to problem size is super-algebraic (Figure 2.5c), and consistent

with root-exponential convergence, as expected for problems with corner singularities (see

Remark 2.4.1). We used the numerical solution obtained using ε = 10−10 as the reference

solution.

37

(a) (b) (c)

0

0.5

1

1.5

2

2.5

3

3.5

4

100 150 200 250 300 350

10
-8

10
-6

10
-4

10
-2

Figure 2.6: (a) Streamlines of a shear flow past 50 randomly generated polygonal islands with a total number
of 253 corners. Color on the polygon boundaries indicate the magnitude of density σ. (b) log10 of absolute
error of the velocity, computed using 2N = 222140 degrees of freedom. Error is measured on a 1000× 1000
grid (spacing ∆x ≈ 8.3 × 10−3) by comparing to the solution obtained with ε = 10−10. (c) Convergence of
the maximum error εmax versus the square root of the number of nodes.

Example 3. Multiple polygonal islands. This example models a porous media flow

through a collection of non-smooth, non-convex and closely packed boundaries: we set up 50

polygonal islands with a total number of 253 corners (Figure 2.6). The computational domain

has width ≈ 8 and the closest distance between the polygons is about 10−2. The background

flow is the same as in the previous examples. With α = 0.75 and λ = 2 for all corners, the

convergence (Figure 2.6c) is similar to the single-polygon island example (Figure 2.5b–c),

achieving more than 8 digits using approximately 800 degrees of freedom per corner. This

demonstrates the robustness of our adaptive scheme, that is, the performance is as good for

a more complex example as for a simple one.

Example 4. Artificial vascular network. We now turn to the example shown in Figure 2.2.

We construct an artificial vascular network (with 378 corners) that mimics those observed

in an eye of a zebra fish [6]. The flow in this network is driven by a uniform influx from

the circular wall at the center and a uniform outflux at the outer circular wall, such that

the overall volume is conserved; all other boundaries have a no-slip condition. We solve

the BIE for this problem using GMRES with a block diagonal preconditioner consisting of

the diagonal panel-wise blocks of the BIE system itself (i.e., the self-evaluation blocks for

38

each panel). The FMM is used for applying the matrix and for final flow evaluations; see

Remark 2.3.1. The sparse correction matrix (see Section 2.3.2) is applied via MATLAB’s

single-threaded built-in matrix-vector multiplication; its rows have been precomputed as

described in Section 2.3.4. All computations are done on an 8-core 4.0 GHz Intel Core i7

desktop.

For various tolerances ε, Table 2.1 shows: the relative L2-error εL2 , the relative maximum

error in velocity εmax, the total number of panels used nΛ, the number of degrees of freedom

2N , memory (RAM) usage, the number of GMRES iterations and time used, the setup time

for precomputing the close-correction matrices, and the percentage time for applying Stokes

FMM during GMRES. Several observations are in order:

1) Both εL2 and εmax decay super-algebraically with the number of degrees of freedom; this

data is plotted in Figure 2.7a. The closeness between εL2 and εmax shows that our scheme

has achieved high accuracies near the sharper reentrant corners (hard) that are similar to

those near the smooth edges (easy). This error analysis remains valid even in the zoomed-

in high-resolution error plots in Figure 2.2. Furthermore, the convergence performance of

this example is the same as the previous two examples—we achieved more than 8 digits,

with a ratio degrees of freedom
#corners

≈ 943, which is similar to the ratios in Example 2 (830) and

Example 3 (878). This once again demonstrates the robustness of our overall scheme to

problem complexity.

2) The number of GMRES iterations increases only because we have requested smaller tol-

erance: each additional digit needs about 100 more iterations. The GMRES conver-

gence rate is stable, which demonstrates that our second kind BIE formulation is well-

conditioned even in the presence of corners.

3) The fact that the Stokes FMM time is the main cost shows that our algorithm has achieved

39

ε εL2
εmax nΛ 2N RAM

(gb)
GMRES
iteration

GMRES
time(s)

setup
time(s)

%
FMM

1e-03 4.34e-04 5.43e-03 6549 52392 2.3 796 248 48 78.50
1e-04 2.20e-05 4.58e-04 8281 82810 2.9 919 458 63 77.86
1e-05 3.55e-06 7.21e-05 10301 123612 3.7 1091 759 84 75.92
1e-06 1.26e-06 7.15e-06 12061 168854 5.0 1282 1197 106 72.69
1e-07 2.53e-07 1.51e-06 14079 225264 6.9 1390 1670 135 70.91
1e-08 6.01e-09 1.58e-07 15839 285102 9.0 1501 2433 164 68.77
1e-09 1.44e-09 5.34e-08 17829 356580 12 1597 3195 204 66.16

Table 2.1: Results and statistics of solving the BVP in the vascular network in Figure 2.2 for various tolerance
ε. Errors εmax and εL2

are measured on a 2160 × 2160 grid (spacing ≈ 2.5 × 10−3) by comparing to the
solution obtained at ε = 10−10. CPU time and RAM used are measured using [12].

1 2 3

10
5

0.5

1

1.5

2

1 2 3

10
5

0.2

0.4

0.6

0.8

1

1.2

1 2 3

10
5

10
-1

10
0

200 300 400

10
-10

10
-8

10
-6

10
-4

10
-2

Figure 2.7: Error and timing of solving the vascular network BVP. (a) Convergence of errors in log-linear
scale. (b) Log-log scale plot of the total CPU time per GMRES iteration, which consists of the FMM time,
shown in (c), and the close correction time, shown in (d).

close to optimal efficiency for this discretization. The slight decrease of the percentage

FMM times at smaller ε is due to the fact that the FMM time grows only linearly with

N , while the close evaluation matrix-vector multiplication time grows like O(N3/2). The

latter estimate is obtained as follows. The number of matrix-vector multiplications grows

like O(nΛ) = O(log 1/ε) = O(p), where each matrix-vector product takes O(p2) time.

Note that N = nΛ × p = O(p2), so the total close evaluation time grows as O(p3) =

O(N3/2). (See Figure 2.7b–d.)

Example 5. Uniform versus adaptive for close-to-touching curves. Finally, to demonstrate

the advantage of using an adaptive scheme over a uniform discretization, let us consider a

uniform flow past two close-to-touching disks (Figure 2.8). The background flow is a constant

40

u∞ = [1, 0]T , the separation is d = 10−6, and the radii 1 and 0.1. For the uniform-resolution

scheme we use a global periodic trapezoid grid on each circle, where, in order to have similar

node spacings, the larger circle has 9 times as many points as the smaller one. Here, global

close-evaluation is done using the spectrally accurate quadrature from [14]. On the other

hand, the adaptive quadrature uses a grid that is determined by our adaptive refinement

scheme of Section 2.4, with one modification that much improves the scaling in the number

of refined panels (see Remark 2.5.1). We observe that, for more than 4 accurate digits, the

number of unknowns required by the adaptive scheme is much less than that of the uniform-

resolution scheme (Figure 2.8). The smoothness of the density function discussed in the

remark below suggests that, at fixed ε, the uniform scheme (and also the original refinement

scheme) needs N = O(1/
√
d) unknowns, whereas the modified adaptive scheme needs only

N = O(log(1/d)). It is hard to imagine improving upon the latter by much, so it is what we

recommend for closely-interacting curves. (See also Examples 4 and 6 in [16] for a “globally

adaptive” variant.)

Remark 2.5.1 (Refinement for close-to-touching smooth curves). For viscous flow in the

region between two smooth curves separated by a small distance d, asymptotic analysis

gives that the width of the “bump” in fluid force scales as O(
√
d) [167]. By dimensional

analysis, if the sum of the two curvatures of the surfaces near the contact point is κ, then

the width in fact scales as O(
√
d/κ). Assuming that this also applies to the density σ,

this suggests a looser criterion for refinement: panels should be refined only when they are

longer than this width scale. This allows panels to come much closer than their length,

without being refined. In the case of close smooth curves, the test in line 13 of Algorithm 2

can thus be modified to (c′
√
κS)2 > d. We find that the constant c′ = 0.7 achieves the

requested tolerance. We derive the scaling of N as follows. Setting κ = 1 for simplicity,

a generic local model of the separation is h(t) ≈ d + t2 as a function of parameter t, and

41

0 1000 2000 3000 4000
10

-10

10
-8

10
-6

10
-4

10
-2

uniform

adaptive

Figure 2.8: Convergence of a uniform flow past two touching disks that are d = 10−6 apart, and whose radii
are 1 and 0.1. The required number of unknowns in the adaptive scheme is much less than the global scheme
with uniform resolution; see Example 5.

nΛ = O
(∫ 1

−1
dt/S(h(t))

)
where S(h) is the local panel size as a function of separation. The

original refinement scheme, S(h) = O(h), thus gives nΛ = O(d−1/2), whereas the modified

S(h) = O(
√
h) gives nΛ = O(log(1/d)).

2.6 Conclusions

Applying complex contour quadratures of Helsing and coworkers, we have presented a set

of panel quadrature rules for accurate evaluation of single- and double-layer Stokes velocity

potentials, and their associated pressures and tractions. They can be used for targets that

are either on or off the boundary, and can be located arbitrarily close to it. In addition,

we presented an adaptive panel refinement procedure that sets the length of panels on the

boundary (“h-adaptivity”), and the overall degree of approximation p (“p-adaptivity”), re-

quired to achieve a user-prescribed tolerance, purely using geometric information, even in

the case of close-touching smooth curves. This contrasts the approach of adapting based

on local density information, which would (at least for an iterative solver) demand multiple

BIE solutions. We demonstrated via numerical experiments that our algorithm achieves

super-algebraic convergence even for complex geometries with corners, and that the CPU

time grows linearly with problem size and is dominated by the cost of FMMs for large-scale

problems. Applications of our work include providing design tools for rapid prototyping of

42

microfluidic chips (for cell sorting, mixing or other manipulations e.g., [98]), shape optimiza-

tion (e.g., [24]) and simulating cellular-level blood flow in microvasculature.

We envision building a fast 2D particulate flow software library by utilizing the algorithms

developed in this work for the fixed complex geometry components (such as microfluidic chips

or vascular networks) and our global close evaluation schemes developed in [14] for the mov-

ing rigid or deformable particles (such as colloids, drops or vesicles). Incorporating corner

singularity representations such as the RCIP [82, 83], or analytic expansion quadratures

[156], are expected to significantly reduce the number of unknowns, increasing the perfor-

mance. Note that, by contrast, it is easy to check that adapting p on a per-panel basis (i.e.

full hp-adaptivity [85, 11]) is expected only to reduce the unknowns associated with corners

by a factor of at most two. Another key ingredient would be a fast direct solver for solving

the BIEs on the fixed geometries, similar to that developed in [127], wherein the boundary

integral operators were compressed by exploiting their low-rank structures, inverted as a pre-

computation step, and applied at an optimal O(N) cost at every time-step of the particulate

flow simulation as particles move through the fixed geometry. One open research question

in this context is: Can we update the compressed representations as the boundary panels are

refined (or coarsened) without rebuilding them? A similar question was recently investigated

in [215], where the authors report a 3× speedup when locally perturbing the geometry. We

plan to explore their approach and report its performance in the context of our adaptive

panel refinement procedure.

CHAPTER III

Product Integration Scheme for 3D Singular Layer Potentials

Preamble. In this chapter, we present a new approach for solving the close evaluation

problem in three dimensions. The approach introduced here converts these nearly-singular

integrals on a patch of the boundary to a set of non-singular line integrals on the patch

boundary using the Stokes theorem on manifolds. A function approximation scheme based

on harmonic polynomials is designed to express the integrand in a form that is suitable for

applying the Stokes theorem. As long as the data—the boundary and the density function—

is given in a high-order format, the double-layer potential and its derivatives can be evaluated

with high-order accuracy using this scheme both on and off the boundary. In particular, we

present numerical results demonstrating seventh-order convergence on a smooth, warped

torus example achieving 10-digit accuracy in evaluating double layer potential at targets

that are arbitrarily close to the boundary. The preprint is ready for review in [216].

3.1 Introduction

In this chapter, we describe a high-order accurate numerical algorithm for evaluating the

double-layer potential (DLP) for Laplace equation given by

(3.1) D[τ](r′) =

∫
M

∂G(r′ − r)

∂nr
τ(r)dSr

43

44

where G(r′ − r) = 1/4π|r′ − r| is the Green’s function for the Laplace equation, τ(r) is

a density function, M is a closed two-dimensional manifold in R3, which is equivalent to

boundary notation Γ in other chapters, and nr is its normal. Layer potentials such as the

DLP satisfy the underlying partial differential equation (PDE) by construction and are often

employed in mathematical analysis and numerical solution of PDEs [107]. Fast and accurate

numerical schemes for (3.1) are fundamentally important owing to the ubiquity of Laplace

equation in sciences and engineering. Moreover, they serve as templates for other linear

elliptic PDE solvers via potential theory.

In practical applications, one needs to evaluate (3.1) both on and off the surfaceM. If the

target r′ is located far off the surface, a smooth quadrature rule designed for the given surface

representation can be applied efficiently. However, the integrand in (3.1) becomes weakly-

singular for on-surface targets and nearly-singular for targets located close to the surface. In

both cases, specialized quadrature rules are necessary to achieve desired order of accuracy.

While the subject of developing high-order rules for weakly-singular integrals is a classical

one, nearly-singular integration is an active area of research. For two-dimensional problems

(whereM is a curve on the plane), significant progress has been made on accurate evaluation

schemes for nearly-singular integrals, some recent works include [155, 30, 157, 4, 211] (also see

references therein). In contrast, fewer number of works exist for high-order close evaluation

in the case of three-dimensional problems, owing to the complexity of handling a stronger

kernel singularity over high-order surface meshes.

Synopsis of the new approach. Consider a subdomain D ⊂ M. A surface integral on D

can be converted into a line integral on ∂D using the Stokes theorem on manifolds as long

as the integrand is an exact form [180]. Clearly, this condition is not necessarily satisfied in

the case of DLP (3.1) for an arbitrary τ . The main idea here is that we can construct basis

functions for approximating τ in D, which when multiplied by the kernel in (3.1) are exact

45

Figure 3.1: One of the key advantages of the close evaluation scheme developed in this chapter is its ease
of handling arbitrary meshes. Here, we demonstrate its performance on the Stanford bunny triangulation
data [192]. We used the interactive sketch-based quadrangulation method of [185] to create high-quality
quad remeshings locally as shown on the top of the bunny. We evaluate the DLP at targets that are located
arbitrarily close to the surface as shown on top in blue color. The surface is colored by the density function
τ , which was set as τ(x, y, z) = exy − 1 + x + sin(x4 + 1/2y3) + y − 1/2y2 + 1/5y6 + z. (Middle and right)
Given this setup, we demonstrate the performance of the new scheme by considering one of the quads,
successively refining it two-fold and visualizing the errors due to direct evaluation of DLP via high-order
smooth quadrature rule (left half) and the new close evaluation scheme (right half). We note that while the
errors stagnate in a band close to the surface in the case of smooth quadrature, the new scheme achieves
uniform accuracy upto 10-digits. More details on this experiment are provided in Section 3.5.

forms. Thereby, when the target r′ is close to D, we can apply this procedure to convert a

nearly-singular surface integral on D to a non-singular line integral on ∂D (assuming r′ is not

close to ∂D). In this chapter, we construct such basis functions using harmonic polynomials

and quaternion algebra. The scheme is relatively insensitive to the underlying high-order

surface discretization. Once the density function is expressed in our basis on D (e.g., via

collocation), the layer potential evaluation is carried out in a similar fashion as a product

integration scheme, with the caveat that some smooth line integrals on ∂D need to computed

numerically in addition.

Related work. Here, we restrict our discussion to closely related recent works; a more

extensive literature survey on singular and near-singular integration schemes can be found

in [74, 149, 133]. In the first class of methods, the issue of close evaluation is overcome

by exploiting the smoothness of DLP away from M. In the quadrature-by-expansion (QBX)

scheme, originally proposed in [15, 103], the DLP is approximated at centers away from M

using high-order local expansions, which are valid at points closer to or on M. Extension

46

of QBX to three-dimensional problems was recently explored in [171, 203, 204]. A related

algorithm is the hedgehog scheme of [133], which in turn is an extension of the earlier work

by Ying et al. [214]. Similar to QBX, hedgehog exploits the smoothness of (3.1) away from

the boundary and evaluates it at carefully chosen “check” points along a line passing through

the target located close to M and extrapolates the solution to the target.

Another popular class of methods are those based on singularity subtraction, wherein, the

kernel in (3.1) is split into a singular part and a smooth part, with the action of the former

treated analytically. While low-order variants are often used in practice for three-dimensional

problems, high-order extension was presented in [81] for toroidal geometries. Recently, an

alternative strategy, termed as harmonic density interpolation (HDI), is presented in [149]

which focuses on the density instead of the kernel. It regularizes the kernel singularities by

splitting the density into two parts: one whose convolution with the kernel can be treated

analytically and the other whose derivatives vanish to prescribed order as the target r′

approaches the source r. Lastly, regularized kernel methods for 3D close evaluation were

also developed recently in [18, 189]; high-order accuracy is achieved by introducing correction

terms to control the regularization error.

Our approach shares many of the desirable features of QBX and hedgehog schemes in-

cluding, prominently, the ease of integration with fast algorithms such as the fast multipole

method (FMM) [64] since it doesn’t modify the kernel and affects the local part evaluation

only. On the other hand, the fact that all the computational variables stay on the manifold

M in our scheme offers further advantages such as avoiding the need for optimizing auxiliary

parameters like local expansion centers or check points, which may be challenging in situ-

ations such as nearly self-touching geometries. Although both HDI and our scheme employ

harmonic polynomials for approximating the density function, their usage is fundamentally

different in both schemes. In [149], harmonic polynomial approximations are sought which

47

cancel the kernel singularity to high-order as r′ → r; it is unclear if such approximations can

be constructed to arbitrarily high-order in three-dimensions ([149] demonstrates third-order

convergence). In contrast, our scheme only requires smoothness of the density. Lastly, a key

advantage of our approach is that it works on any user supplied meshes without the need for

geometry processing; high-order convergence is guaranteed as long as the boundary and the

density function are specified in a high-order format (an example is shown in Figure 3.1).

In our view, our work is most closely related to the work of Helsing-Ojala [80], which

developed a panel-based close evaluation scheme in two dimensions by approximating the

density using monomial basis and evaluating their product with the nearly-singular kernels

via recurrences. This approach has been shown to offer rapid and accurate solution of sev-

eral elliptic problems [80, 14, 211]. The quaternionic harmonic polynomial approximation

scheme of the density, introduced in this work, can be viewed as a 3D analogue of their com-

plex monomial approximation scheme. Similarly, we also employ recurrences to evaluate the

product of nearly-singular kernels and polynomial basis functions. We note that the differ-

ential geometry framework presented here is applicable both for two- and three-dimensional

problems, thereby, is a unifying approach.

Limitations. In this work, we restrict our attention to the Laplace layer potentials only.

While our close evaluation scheme can be extended to other linear elliptic PDE kernels,

it is by no means trivial: the density approximation scheme needs to be tailored for each

individual kernel. We note, however, that there are alternative approaches to directly apply

our scheme to other PDE problems—e.g., Stokes potentials can be expressed as a linear

combination of Laplace potentials and their derivatives [190]. Lastly, the method described

in this chapter cannot be applied directly to globally parameterized surfaces (e.g., spherical

harmonic representations). One remedy is to maintain an auxiliary adaptive surface mesh

just for the purposes of close evaluation.

48

The remainder of this chapter is organized as follows. In Section 3.2, we review some

preliminaries on exterior calculus and describe the 3D close evaluation problem using the

language of exterior calculus. In Section 3.3, the key ideas of the product integration scheme

are outlined, followed by a presentation of our quaternionic approximation. Then in Sec-

tion 3.4, we present the overall implementation of our close evaluation scheme. We demon-

strate the performance of our algorithm on a variety of examples in Section 3.5, followed by

conclusions and discussion on future directions in Section 3.6.

3.2 Mathematical preliminaries

The use of exterior calculus greatly simplifies the presentation of our numerical algorithms

even though, strictly speaking, is not required for their development. In this section, we

review some basic concepts but refer the reader to [9, 180] (or other standard textbooks) for

a more thorough introduction to this subject.

3.2.1 Exterior algebra

If V is a vector space over R, we will denote by Altk(V) the space of alternating k-linear

maps V × · · · × V → R. We refer to such maps as alternating algebraic k-forms. A k-linear

map ω ∈ Altk(V) is called alternating if

(3.2) ω(v1, · · · ,vi, · · · ,vj, · · · ,vk) = −ω(v1, · · · ,vj, · · · ,vi, · · · ,vk).

Thus, an algebraic k-form on V assigns to a k-tuple (v1, · · · ,vk) of elements of V a real

number ω(v1, · · · ,vk), with the mapping linear in each argument, and reversing sign when

any two arguments are interchanged.

Given ω ∈ Altk(V) and η ∈ Altl(V), simple tensor product of ω and η is usually not an

alternating algebraic (k + l)-form. We instead employ the exterior product or wedge product

49

ω ∧ η ∈ Altk+l, defined by

(3.3)

(ω ∧ η)(v1, · · · ,vk+l)

=
∑

σ∈Shk,l

sgn(σ)ω(vσ(1), · · · ,vσ(k))η(vσ(k+1), · · · ,vσ(k+l)), vi ∈ V,

where Shk,l is the subset of (k, l) permutations of the set {1, 2, · · · , k + l} such that each

element σ ∈ Shk,l satisfies σ(1) < σ(2) < · · · < σ(k), and σ(k + 1) < σ(k + 2) < · · · < · · · <

σ(k + l). The exterior product is both bilinear and associative.

Throughout this chapter, V will be R3, and k will be 1 or 2. In R3, the canonical basis

e1, e2 and e3 gives rise to a natural dual basis of Alt1(R3), the space of covectors. This dual

basis will often be denoted by dx, dy and dz. These basis elements are linear maps (not to

be confused with infinitely small change in the variable). For example, dx(v) = e1 · v = v1.

The wedge product is also an operation connecting the various Altk(V) spaces. For example,

the basis for Alt2(R3) can be written using wedge products of Alt1(R3) basis elements as

dx ∧ dy, dy ∧ dz and dz ∧ dx.

3.2.2 Exterior calculus on manifolds

At each point r of a sufficiently smooth manifold M of dimension n, the tangent space

TrM is a vector space of dimension n (in our case, n = 2). We could think of this as a local

coordinate system. If the selection of a vector v(r) at r is made in each TrM, we obtain a

vector field.

Applying the exterior algebra construction to the tangent spaces, we obtain the exte-

rior forms bundle (r, η) with r ∈ M, η ∈ Altk(TrM). A differential k-form is a map ω

which associates to each r ∈ M an element ωr ∈ Altk(TrM). If the map r ∈ M →

ωr(v1(r), · · · ,vk(r)) ∈ R is smooth whenever the vi’s are smooth vector fields, then we say

that ω is a smooth differential k-form. We denote by Λk(M) the space of all smooth differ-

ential k-forms on M. As r moves around smoothly on M, ω provides a smoothly varying

50

algebraic k-form at each tangent space TrM.

The exterior product of differential forms can be defined pointwise from exterior product

of algebraic forms

(3.4) (ω ∧ η)r = ωr ∧ ηr.

If D is an oriented submanifold of M, and ω is a continuous k-form, then the integral∫
D
ω is well-defined.

The exterior derivative d is a linear operator that maps Λk(M) into Λk+1(M) for each

k ≥ 0. We give a formula for the case M is a domain in Rn. For given ω ∈ Λk(M) and

vectors v1, · · · ,vk, we obtain a smooth mapping M→ R given by r → ωr(v1, · · · ,vk). We

then define

(3.5) dωr(v1, · · · ,vk) =
k+1∑
j=1

(−1)j+1∂vjωr(v1, · · · , v̂j, · · · ,vk+1),

where the hat is used to indicate a suppressed argument. If ω ∈ Λk(M) and η ∈ Λl(M),

then

(3.6) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

3.2.3 Integral equation formulation

Consider the following interior Dirichlet problem for the Laplace equation in a three-

dimensional domain Ω bounded by M,

(3.7) ∆u = 0 in Ω, u = g on M.

We can employ an indirect integral equation formulation [107] for solving this problem,

wherein, we set u(r′) = D[τ](r′), the double-layer potential as defined in (3.1). This ansatz

satisfies the Laplace equation by construction and enforcing the boundary condition yields

51

the following boundary integral equation for the unknown τ :

(3.8) − 1

2
τ(r′) +D[τ](r′) = g(r′), ∀ r′ ∈M,

where the evaluation of D onM is performed in the principal value sense. Solving this BIE

for τ , one can evaluate the solution u at any target in the domain by using (3.1). Similarly,

other Laplace boundary value problems can be recast as BIEs using potential theory (e.g.,

see [107]).

Now, let’s express the DLP evaluation as integration of differential forms. On the manifold

M, we have [180, Thm. 5-6]:

(3.9) n1dSr = dy ∧ dz, n2dSr = dz ∧ dx, n3dSr = dx ∧ dy.

Therefore, the DLP (3.1) can be written as

(3.10)

D[τ](r′) =

∫
M

(r′ − r) · nr
4π|r′ − r|3

τ(r)dSr

=

∫
M

(x′ − x)τ(r)

4π|r′ − r|3
dy ∧ dz +

(y′ − y)τ(r)

4π|r′ − r|3
dz ∧ dx+

(z′ − z)τ(r)

4π|r′ − r|3
dx ∧ dy,

where r′ = (x′, y′, z′) and r = (x, y, z).

3.3 Density approximation and exact form construction

In this section, we systematically introduce the key ideas required to develop our nu-

merical scheme. We provide the necessary analytical and algebraic background employed in

Section 3.4. We briefly review Stokes theorem and Poincaré’s Lemma to illustrate our basic

ideas in Section 3.3.1, and introduce a quaternionic approximation scheme in Section 3.3.2.

3.3.1 Stokes theorem and Poincaré’s lemma

We will be relying on the Stokes theorem to evaluate (3.10) when r′ is close toM. Using

exterior calculus, one can summarize the Stokes theorem on a patch D in an elegant way

[180]:

52

Theorem 3.3.1. (Stokes theorem) If D is a compact oriented 2-manifold, for any smooth

1-form ω defined on D, the following holds,

(3.11)

∫
D

dω =

∫
∂D

ω.

Remark 3.3.1. The advantage of using Stokes theorem to reduce a surface integral of 2-form

dω on D to a line integral of 1-form ω is essentially two-fold. One is that we have localized

the work involved in evaluating layer potential on part of the integration surface. The other

comes from the benefit of dimensionality reduction. Essentially, this eliminates singularity

that populates the two dimensional manifold to only boundaries of its panel discretization,

which has a measure zero. This further helps in accurate evaluation of layer potentials when

targets are extremely close to or on the surface.

The key idea is to use Stokes theorem to evaluate the double-layer potential when a target

r′ is close to D. But Stokes theorem does not help with finding a suitable ω such that

(3.12)
(r′ − r) · nr
4π|r′ − r|3

τ(r)dSr ≈ dω.

To address the challenges in systematically finding ω, we introduce one additional tool in

differential geometry, Poincaré’s lemma [180, Thm. 4-11]: for every differential form on an

open star-shaped subset D of Rn, suppose dα = 0 for α ∈ Λk(D), then locally there is some

ω ∈ Λk−1(D) such that dω = α. The proof of the lemma considers a k−form,

(3.13) α =
∑

i1<···<ik

gi1,··· ,ikdx
i1 ∧ · · · ∧ dxik ,

and shows that (k − 1)-form ω defined by

(3.14) ω =
∑

i1<···<ik

k∑
l=1

(−1)(l−1)

(∫ 1

0

tk−1gi1,··· ,ik(tx)dt

)
xil dxi1 ∧ · · · ∧ ˆdxil ∧ · · · ∧ dxik

satisfies dω = α given dα = 0.

53

Based on this result, we can accomplish the 2-to-1 form conversion as written in (3.12).

This construction process can be viewed as finding the vector potential whose curl is a given

vector field.

A simplified version of the Poincaré’s Lemma relevant to our setting can be summarized

as follows.

Lemma 3.3.2. (2-to-1 form conversion) Consider a compact oriented 2-dimensional mani-

fold D in R3. Let

(3.15) α = g1(r)dy ∧ dz + g2(r)dz ∧ dx+ g3(r)dx ∧ dy,

be a differential 2-form on D. If dα = 0 (i.e., ∇ · (g1, g2, g3) = 0), then

(3.16)

ω =

(∫ 1

0

(tzg2(tr)− tyg3(tr)) dt

)
dx+

(∫ 1

0

(txg3(tr)− tzg1(tr)) dt

)
dy

+

(∫ 1

0

(tyg1(tr)− txg2(tr)) dt

)
dz

satisfies dω = α.

Proof. See Appendix B.2

Consequently, it is possible to convert a surface integral into a line integral as long as the

vector g is divergence-free. For example, if τ is a scalar in (3.12), it is clear that the above

Lemma applies since

∇ · r
′ − r

|r′ − r|3
= ∇ · ∇ 1

|r′ − r|
= −δ(r′, r),

where δ(r′, r) is the Dirac δ function. Therefore ∇ · r′−r
|r′−r|3 = 0 for r ∈ D, r′ ∈ Dc. In the

general case, our goal is to find a high-order approximation scheme for τ which makes the

vector (r′ − r)τ(r)/|r′ − r|3 divergence-free. Clearly, standard polynomial approximation

schemes (e.g., tensor-product monic polynomials) won’t yield the desired result. In the

next subsection, we present an approximation scheme based on harmonic polynomials and

quaternionic representations that accomplishes this task.

54

The key insight that motivates our approach is summarized in Lemma 3.3.3, but first let’s

review some preliminaries on quaternions. Let i, j and k be the standard quaternion units,

that is, they satisfy the identities

(3.17) i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

A quaternionic function g is comprised of a scalar part g0 and a vector part g = (g1, g2, g3),

and written as

g(r) = g0(r) + g1(r)i+ g2(r)j + g3(r)k.

Alternatively, one can write the quaternion in the pair form as g = (g0, g). For any given

vector g, we can define a quaternion g as above and if not specified, g0 = 0 is assumed by

default. Using (3.17), we can easily verify that the product of two quaternions g and h to

be

gh = (g0h0 − g · h, g0h+ h0g + g × h).

With these preliminaries, we can now state and prove the following lemma that motivates

our density approximation scheme.

Lemma 3.3.3. Let g = ∇ψ and f = ∇φ, where φ and ψ are some harmonic functions.

Then each component of the quaternionic 2-form gnrfdSr is exact.

Proof. Using the identities (3.17) and after some algebra, we obtain

gnrf = (− (g × nr) · f ,− (g · nr)f + (g × nr)× f)

The scalar part of g nr f dSr then becomes

− (g × nr) · f dSr = − (f × g) · nrdSr

Invoking the fact that both g and f are gradients of harmonic functions, we get

∇ · (f × g) = g · (∇×∇φ)− f · (∇×∇ψ) = 0,

55

thereby, confirming that the scalar part is an exact form (using Lemma 3.3.2). Similarly,

the first component of its vector part is given by

(n1 (g · f)− g1 (f · nr)− f1 (g · nr)) dSr = ((g · f) e1 − g1f − f1g) · nrdSr

Therefore, this term is also exact since

∇ · ((g · f) e1 − g1f − f1g) =
∂

∂x
(g · f)−∇g1 · f − g1∆φ−∇f1 · g − f1∆ψ = 0.

The following corollary applies this Lemma to help verify the divergence-free condition in

Lemma 3.3.2 to convert the double-layer integral into a 1-form integral.

Corollary 3.3.4. Let α be a quaternionic differential 2-form on D given by

(3.18) α = α0 + α1i+ α2j + α3k =
(r′ − r)nr
|r′ − r|3

f(r)dSr.

If the vector f(r) is the gradient of a harmonic function, then dαi = 0, i = 0, 1, 2, 3.

Proof. This result directly follows from Lemma 3.3.3 by setting g(r) = ∇ 1
|r′−r| and noting

that |r′ − r| = |r′ − r|.

3.3.2 Approximation scheme using harmonic polynomials and quaternionic representation

Our goal is to express the density τ in terms of some basis functions that allow us to apply

Corollary 3.3.4 to convert the DLP (3.10) to a 1-form using Lemma 3.3.2. From Corollary

3.3.4, it is clear that the elements of such a basis set essentially must be in quaternionic form

and their vector components must be gradients of some harmonic functions (notice that in

Corollary 3.3.4 we need to expand the quaternionic form (r′−r)nr
|r′−r|3 f(r)dSr before projecting

the surface elements). To construct such a basis set, we turn to harmonic polynomials (we

refer the reader to [51] for a review on this topic).

56

While there are 2p + 1 independent harmonic polynomials of degree p, we will chose p

of them for our construction. The only requirement is that their gradients must be linearly

independent, for example, the following set of harmonic polynomials for upto degree 7:

(3.19)

P1 ={z}, P2 = {x2 − z2, y2 − z2}, P3 = {x3 − 3xz2, y3 − 3yz2, xyz},

P4 ={x4 − 6x2z2 + z4, y4 − 6y2z2 + z4, 3x2yz − yz3, 3xy2z − xz3},

P5 ={x5 − 10x3z2 + 5xz4, y5 − 10y3z2 + 5yz4, x4y − 6x2yz2 + yz4,

xy4 − 6xy2z2 + xz4, −15x2y2z + 5x2z3 + 5y2z3 − z5},

P6 ={x6 − 15x4z2 + 15x2z4 − z6, y6 − 15y4z2 + 15y2z4 − z6,

x5y − 10x3yz2 + 5xyz4, xy5 − 10xy3z2 + 5xyz4

5x4yz − 10x2y3z + y5z, 5xy4z − 10x3y2z + x5z},

P7 ={x7 − 7xz6 + 35x3z4 − 21x5z2, y7 − 7yz6 + 35y3z4 − 21y5z2,

x6y − 15x4yz2 + 15x2yz4 − z6y, xy6 − 15xy4z2 + 15xy2z4 − xz6,

3x5y2 − 3x5z2 − 30x3y2z2 + 10x3z4 + 15xy2z4 − 3xz6,

3x2y5 − 3y5z2 − 30x2y3z2 + 15x2yz4 + 10y3z4 − 3yz6,

(3x5y − 10x3y3 + 3xy5)z}.

Then, we assign the gradients of each of these harmonic polynomials, expressed in quater-

nionic form, as the elements of the required basis set. Denoting this set by {f (k,1), · · · , f (k,k)},

k = 1, · · · , p, we can easily derive them from (3.19) as

(3.20)
∇P1 = {f (1,1) = k}, ∇P2 = {f (2,1) = xi− zk, f (2,2) = yj − zk},

∇P3 = {
(
x2 − z2

)
i− 2xzk,

(
y2 − z2

)
j − 2yzk, yzi+ xzj + xyk},

and so on. Therefore, in total, there are p(p + 1)/2 quaternionic functions in this basis

set. Moreover, the set ∇Pp is composed of homogenous, quaternionic polynomials of degree

(p−1). Thereby, a pth order convergent scheme is obtained when the set {∇Pk, k = 1, . . . , p}

is used for approximating smooth quaternionic functions.

57

Now, consider a triangular patch D ⊂M, as illustrated in Fig. 3.2(b). On this patch, we

use the basis functions {f (k,l)(r)} to approximate the density function as

(3.21) τ(r) + 0i+ 0j + 0k ≈
p∑

k=1

k∑
l=1

f (k,l)(r) c(k,l),

where the unknown coefficients c(k,l) are also quaternions, that is,

c(k,l) = c
(k,l)
0 + c

(k,l)
1 i+ c

(k,l)
2 j + c

(k,l)
3 k.

Therefore, there are 4 · p(p+1)
2

unknowns that need to be determined. They can be obtained,

for instance, by applying a standard collocation scheme. For a p-node composite tensor

product Gauss-Legendre quadrature in Fig. 3.2(c), there are (p2 + p)/2 quadrature nodes

on the pre-image of each triangular patch D, denoted as {r(k,l)|1 ≤ k ≤ l ≤ p}. Enforcing

(3.21) at these quadrature nodes will generate the required 4 · p(p+1)
2

number of equations.

Empirically, we found that the resulting square linear systems are invertible in general.

Remark 3.3.2. In our implementation, we perform a change of coordinates in each patch so

that r(1,1) becomes the origin (as illustrated in Fig. 3.2(c)). In this case, c(1,1) = τ(r(1,1))

is known, and there are only (p2 + p)/2 − 1 quaternionic unknowns (and corresponding

equations).

We are now ready to substitute the density approximated as in (3.21) into the DLP (3.10).

However, the double-layer kernel needs to be written in quaternionic form to take advantage

of Corollary 3.3.3. Following lemma summarizes the result.

Lemma 3.3.5. Let r and nr be the source location and the normal on D respectively, in

quaternionic form:

(3.22) r = 0 + xi+ yj + zk, nr = 0 + n1i+ n2j + n3k.

If the density is approximated as in (3.21), then the scalar part of

(3.23) −
∫
D

(r′ − r)nr
4π|r′ − r|3

(
p∑

k=1

k∑
l=1

f (k,l)(r)c(k,l)

)
dSr,

58

is a pth order convergent scheme to the DLP defined on D.

Proof. The proof follows from the following two observations: (i) owing to (3.21), only the

scalar part of
∑p

k=1

∑k
l=1 f

(k,l)c(k,l) remains and (ii) the scalar part of quaternion product

rnr is given by −r · nr.

(a) (b)

(c) (d)

Figure 3.2: Schematic of our proposed product integration scheme for Laplace double-layer potential. (a) is
part of a parameterized “cruller” surface. (b) is one of the triangular sub panel, denoted by D(nθ,nφ), from

the rectangular panel in (a). (c) is the transformed triangular patch D̃(nθ,nφ). (d) shows the quadrature

nodes (red) on integration contour ∂D̃(nθ,nφ), the boundary of the transformed triangular patch.

Finally, to construct basis functions upto an arbitrary order beyond p = 7, we can exploit

the fact that restricting harmonic polynomials to a unit sphere yields the standard spherical

harmonics [51]. Similar to (3.19), we can chose p of the 2p + 1 solid spherical harmonics of

degree p. For example, let (ρ, θ, φ) be the coordinates of a point in spherical coordinates,

59

then, we can set

(3.24) Pp = {ρp cos(kφ)P k
p (cos θ), k = 1, · · · , p},

where P k
p (cos θ) = (−1)k sink θ dk

d(cos θ)k
(Pp(cos θ)) are the associated Legendre polyno-

mials. When these functions are expressed in terms of the Cartesian coordinates, x =

ρ sin θ cosφ, y = ρ sin θ sinφ and z = ρ cos θ, we get a set of homogeneous harmonic polyno-

mials of degree p. For example, consider the case of p = 8, k = 2, we get the following after

using basic trigonometric identities:

(3.25)

ρ8 cos(2φ)P 2
8 (cos θ) =

315

16
ρ8 cos(2φ) sin2 θ

(
143 cos6 θ − 143 cos4 θ + 33 cos2 θ − 1

)
=

315

16

(
x2 − y2

) (
143z6 − 143z4(x2 + y2 + z2)

+33z2(x2 + y2 + z2)2 − (x2 + y2 + z2)3
)
.

The convergence results of the approximation using this basis upto order 10 are shown in

Fig. 3.3.

3.4 Numerical scheme

We now have all the tools necessary to build a high-order accurate close evaluation scheme.

Here, we will restrict our discussion to toroidal geometries parameterized by an infinitely-

differentiable, doubly-periodic function r(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ)), where (θ, φ) ∈

[0, 2π)2, with the understanding that the scheme can be generalized to other topologies and

problem settings (since it inherently works at the level of local patches). Such a surface can

be covered by the images of disjoint union of uniform rectangular patches in parameter space

as shown in Fig. 3.2(a). When target r′ is far fromM, we simply use the standard Nyström

discretization for evaluation of (3.1) based on a composite tensor-product Gauss-Legendre

quadrature (e.g., see [13]).

For both weakly-singular and nearly-singular integrals, our numerical scheme essentially

remains the same. Therefore, from here on, we do not distinguish whether the target is on

60

or off the surface. A high-level schematic description of the scheme is given in Fig. 3.2(b-d).

In a patch D where the double-layer potential is singular, we reduce the 2-form integration

to 1-form integration on ∂D. The steps involved in this conversion are described next.

3.4.1 Close evaluation scheme for Laplace double-layer potentials

The computation proceeds in two stages. In the first stage, which is target-independent,

the density function is expressed in terms of the quaternionic basis functions {∇Pk}. In the

second stage, which is target-dependent, a sequence of steps are outlined that accomplish

2-form to 1-form conversion of the DLP.

Stage 1: Precomputation Given the spatial discretization parameters, nθ and nφ, we cover

M with nθ-by-nφ rectangular patches, with a composite p-by-p Gauss-Legendre quadrature

on each patch as shown in Fig. 3.2(a). On a standard patch, we further divide it into two

triangular patches as shown in Fig. 3.2(a). For each triangular patch D, we first identify

the set of all close targets. A coordinate transform is applied on each such target r′ and the

sources in D such that r(1,1) becomes the origin (Fig. 3.2(c)). Points after transformation

are denoted as r̃′, and r̃(k,l), 1 ≤ l ≤ k ≤ p.

Enforcing (3.21) in the transformed coordinate system at the rest of the quadrature nodes,

we obtain the following system of vector equations:

(3.26)

p∑
k=2

k∑
l=1

A[f (k,l)](r̃(i,j))C(k,l) = U (i,j), 1 ≤ j ≤ i, 1 < i ≤ p,

where the operator A[·] acting on a quaternionic function f , the unknown coefficient vector

C and the right-hand-side vector U are given by

(3.27)

A[f] =

0 −f1 −f2 −f3

f1 0 −f3 f2

f2 f3 0 −f1

f3 −f2 f1 0

 , C(k,l) =

c0

c1

c2

c3

(k,l)

, and U (i,j) =

τ(r(i,j))− τ(r(1,1))

0

0

0

 .

61

Assembling the vector equations (3.26) for all (i, j) yields a square linear system of size

4 ·
(
p(p+1)

2
− 1
)

, for which we simply apply a direct solver. Therefore, this stage incurs a

computational cost of O(p6) per triangular patch D.

Stage 2: 2-to-1 form conversion and contour integration Once the quaternionic coefficients

c(k,l) for approximating the density are found in Stage 1, the next step is to substitute them

in (3.23) and proceed with converting this 2-form to quaternionic differential 1-form ω(k,l)

using Lemma 3.3.2. After the coordinate transformation, we can rewrite (3.23) as (we omit

˜ on r̃):

(3.28)
p∑

k=2

k∑
l=1

(
1

4π

∫
D̃

α(k,l)

)
c(k,l) +

1

4π

∫
D̃

α(1,1)τ(r(1,1)), where α(k,l) = −(r′ − r)nr
|r′ − r|3

f (k,l)dSr.

The quaternionic components of α(k,l) can be simplified to the following after carrying out

the product of quaternions on the right hand side:

(3.29) α
(k,l)
i =

1

|r′ − r|3
q

(k,l)
i · nr dSr, k = 2, · · · , p, 1 ≤ l ≤ k,

where i = 0, 1, 2, 3 corresponds is the index of the quaternion and each of the vectors q
(k,l)
i

are kth degree polynomials in r, which can be derived using quaternion product as

(3.30)

q
(k,l)
0 (r′, r) = f (k,l)(r)× (r′ − r) ,

q
(k,l)
1 (r′, r) = −

(
(r′ − r) · f (k,l)(r)

)
e1 + (x′ − x)f (k,l)(r) + f

(k,l)
1 (r) (r′ − r) ,

q
(k,l)
2 (r′, r) = −

(
(r′ − r) · f (k,l)(r)

)
e2 + (y′ − y)f (k,l)(r) + f

(k,l)
2 (r) (r′ − r) ,

q
(k,l)
3 (r′, r) = −

(
(r′ − r) · f (k,l)(r)

)
e3 + (z′ − z)f (k,l)(r) + f

(k,l)
3 (r) (r′ − r) .

The advantage of our density approximation scheme is now apparent: from (3.29), it is

clear that α
(k,l)
i is an exact form by construction and we can apply Lemma 3.3.2 to convert

62

it into a 1-form ω
(k,l)
i as follows:

(3.31)

ω
(k,l)
i =

(∫ 1

0

tzq
(k,l)
i,2 (r′, tr)− tyq(k,l)

i,3 (r′, tr)

|tr − r′|3
dt

)
dx

+

(∫ 1

0

txq
(k,l)
i,3 (r′, tr)− tzq(k,l)

i,1 (r′, tr)

|tr − r′|3
dt

)
dy

+

(∫ 1

0

tyq
(k,l)
i,1 (r′, tr)− txq(k,l)

i,2 (r′, tr)

|tr − r′|3
dt

)
dz

Notice that the numerators of each of the integrands in the 1-form above are polynomials of

degree (k + 1) in the variable t. Defining Mk(r
′, r) =

∫ 1

0
tk

|tr−r′|3 dt and using (3.30), we can

separate out the terms that depend on t and rewrite ω
(k,l)
i as

(3.32)
ω

(k,l)
i =

(
v

(k,l)
i,1 (r)Mk+1 + w

(k,l)
i,1 (r′, r)Mk

)
dx+

(
v

(k,l)
i,2 (r)Mk+1 + w

(k,l)
i,2 (r′, r)Mk

)
dy

+
(
v

(k,l)
i,3 (r)Mk+1 + w

(k,l)
i,3 (r′, r)Mk

)
dz,

where, for brevity, we omitted (r′, r) dependency on Mk. Here, v
(k,l)
i,j (r) are (k+ 1)th degree

polynomials in r and w
(k,l)
i,j (r′, r) are kth degree polynomials in r and linear in r′. The

explicit expressions for these can be easily derived from (3.30) and (3.31); for example, in

the case of i = 0, we have

(3.33)

v
(k,l)
0,1 (r) =

(
y2 + z2

)
f

(k,l)
1 (r)− xyf (k,l)

2 (r)− xzf (k,l)
3 (r)

w
(k,l)
0,1 (r′, r) = − (y′y + z′z) f

(k,l)
1 (r) + x′yf

(k,l)
2 (r) + x′zf

(k,l)
3 (r)

v
(k,l)
0,2 (r) = −xyf (k,l)

1 (r) +
(
x2 + z2

)
f

(k,l)
2 (r)− yzf (k,l)

3 (r)

w
(k,l)
0,2 (r′, r) = y′xf

(k,l)
1 (r)− (x′x+ z′z) f

(k,l)
2 (r)− y′zf (k,l)

3 (r)

v
(k,l)
0,3 (r) = −xzf (k,l)

1 (r)− yzf (k,l)
2 (r) +

(
x2 + y2

)
f

(k,l)
3 (r)

w
(k,l)
0,3 (r′, r) = z′xf

(k,l)
1 (r) + z′yf

(k,l)
2 (r)− (x′x+ y′y) f

(k,l)
3 (r)

Also see Appendix D.4 where we derive explicit formulas for all the quantities ω
(k,l)
i , v

(k,l)
i,j

and w
(k,l)
i,j in the case of a second-order scheme.

Therefore, the kernel singularity in the DLP is now encoded into the moments {Mk}. For

each source r and target r′, we evaluate these moments analytically via recurrences given in

63

Appendix C.3. Now, we can express the complete 1-form ω as a linear combination of each

individual 1-forms with coefficients C(k,l) and the constant term corresponding to k = 1 as

(3.34) ω = τ(r(1,1))ω
(1,1)
0 +

p∑
k=2

k∑
l=1

Ω(k,l)C(k,l),

where Ω(k,l) = [ω
(k,l)
0 , ω

(k,l)
1 , ω

(k,l)
2 , ω

(k,l)
3]. Then, we evaluate boundary path integral

∫
∂D̃
ω

using a high-order smooth quadrature rule (Gauss-Legendre). However, note that the 1-

forms (3.32) are still singular if r′ approaches r (as can be inferred from the base conditions

(C.3.3)). But since the sources now reside on ∂D, this situation can be avoided altogether

by simply choosing a larger patch.

The computational complexity of this stage is primarily dictated by the evaluation of

the moments {Mk}. For each target, evaluating the recurrences for these moments take

O(p) time for each of the O(p) sources on ∂D, bringing the total per-target cost to O(p2).

Therefore, the computational cost of both stages of the close evaluation per patch D is

O(p6 + ntargp
2), where ntarg is the number of targets that are considered to be close to D.

3.4.2 A generalization to evaluate the single-layer and the gradient of double-layer Laplace
potentials

In several applications, one needs to evaluate high-order derivatives of layer potentials

either as a post-processing step or, in some cases, as part of representing the solution it-

self. Lemma 3.3.3 simplifies this task for us since we can exploit the fact that the kernels

themselves are harmonic functions. For example, assuming the density is approximated as

in (3.21), it is easy to show that the scalar part of the integral

(3.35)

−
∫
M

1

|r′ − r|3

((
δ1j − 3

(x′ − x)(r′ − r)
|r′ − r|2

)
nr,

(
δ2j − 3

(y′ − y)(r′ − r)
|r′ − r|2

)
nr,(

δ3j − 3
(z′ − z)(r′ − r)
|r′ − r|2

)
nr

)(p∑
k=1

k∑
l=1

f (k,l)(r)c(k,l)

)
dSr,

is an approximation to ∇D(τ)(r). The requirements dα = 0 for converting the directional

derivatives of the double-layer potential to 1-form ω are satisfied based on the interchange-

64

ability of partial derivatives and exterior derivatives. However, constructing the 1-forms in

this case also requires us to evaluate integrals of the form Lk(r
′, r) =

∫ 1

0
tk

|tr−r′|5dt; recurrences

to evaluate these are provided in Appendix C.3.

Lastly, we consider the single-layer potential (SLP), given by S[τ](r′) =
∫
M

1
|r′−r|τ(r) dSr.

Since the SLP does not have a 2-form structure like the DLP as in (3.12), we instead write

it as

(3.36) S[τ](r′) =

∫
M

(r′ − r)nr
|r′ − r|3

nr(r′ − r)τ(r) dSr,

using quaternion algebra. Now, we can treat it the same way as a DLP but with a modified

density function. That is, we construct the following approximation,

(3.37) nr(r′ − r)τ(r) ≈
p∑

k=1

k∑
l=1

f (k,l)(r) c(k,l),

substitute in (3.36) and follow the close evaluation scheme as in Section 3.4.1. While it

appears like this approach requires us to perform the approximation (3.37) independently

for each target, since the term (r′ − r) is separable, we can just form it once per patch with

minor bookkeeping.

3.5 Numerical results and discussion

In this section, we present numerical results from a series of tests to validate the accu-

racy of our close evaluation scheme. We consider three different geometries of toroidal and

spherical topologies. First, we conduct a convergence test of the quaternionic approximation

algorithm presented in Section 3.3.2. We then test the performance of our DLP close evalu-

ation, first via self-convergence on three different geometries, followed by a boundary value

problem solve, whose exact solution is known analytically.

65

3.5.1 Convergence properties of the quaternionic approximation

Consider a local patch D and a smooth function τ defined on it. We can express the

coordinate functions of D and τ in terms of the tensor-product monic polynomials:

(3.38) r ≈ [x, y, z]T = [x, y,
∑

1≤k+l≤m

aDk,lx
kyl]T , τ(r) ≈

∑
1≤k′+l′≤m

aτk′,l′x
k′yl

′
,

where aDk,l and aτk′,l′ are the Taylor coefficients of the z−component and τ respectively, in

terms of x and y.

In this test, we provide empirical evidence that the quaternionic approximation scheme

employed in (3.21) is pth order convergent. To do so, we proceed as follows. In the do-

main (x, y) ∈ [−0.5, 0.5]2, we generate a sequence of the function pairs (z, τ) by setting

aDk,l = aτk′,l′ = 1 and the rest to zero for each admissible pairs of indices (i.e., such that

1 ≤ k + l ≤ m and 1 ≤ k′ + l′ ≤ m). Two such pairs are plotted in Fig. 3.3 (left).

Then, on each of these pairs, we construct the density approximation in quaternionic form

(3.21) via collocation by solving (3.26). We report the relative L∞ error between τ(r) and∑p
k=1

∑k
l=1 f

(k,l)(r) c(k,l) measured on a 250×250 target grid for four different hD, leg size of

right triangular patches, in Fig. 3.3 (middle). We observe that 9-digit accuracy is reached

as we reduce hD. Moreover, from Fig. 3.3 (right), we can see that the expected order of

convergence is attained asymptotically.

3.5.2 Laplace DLP evaluation test

Here, we consider the double-layer solution ansatz (3.1) for the exterior Laplace equation.

We begin with a cruller surface from Ref. [13] which is parameterized by an infinitely

differentiable, double 2π-periodic function r(θ, φ) : [0, 2π)2 → R3, followed by a cushion

surface from Ref. [149], which has a global parameterization in spherical coordinate r(θ, φ) :

[−π/2, π/2] × [0, 2π) → R3. Lastly, to demonstrate the applicability of our approach to

arbitrary parameterizations, we consider an input mesh without any analytic description of

66

Figure 3.3: Left: Two examples of the function pairs (z, τ) constructed using the procedure outlined in Sec
3.5.1. In each case, the z−component is plotted with color scaled by the density τ . Middle: The density
approximation scheme (3.21) is applied to each of these function pairs and the max of the relative L∞ error is
plotted here. The domain in (x, y) is subdivided in the manner shown here, hD = 1/6, 1/10, 1/20, 1/30. The
four skeletons on the corners illustrate refinements of the triangular grids at four corresponding quadrants.
Right: Convergence plot of approximation error using p = 2, · · · , 7. Dashed lines of corresponding colors
are plots of expected error. For p > 7, the generalized higher-order approximation scheme in (3.24) was
employed.

the geometry.

Example 1: “Cruller” geometry. This example demonstrates the handling of complex

geometries parameterized by doubly 2π-periodic functions. We consider a smooth, warped

torus surface M in Cartesian coordinates, given by

(3.39)

r = r(θ, φ) = ((a+ f (θ, φ) cos (θ)) cos (φ) , (a+ f (θ, φ) cos (θ)) sin (φ) , f (θ, φ) sin (θ))

where f(θ, φ) = b + wc cos(wnφ + wmθ), a = 1 and b = 1/2. We test the close evaluation

scheme using mean curvature H as density:

(3.40) τ(θ, φ) = H(θ, φ) =
1

2
(EN − 2FM +GL) /

(
EG− F 2

)
where the fundamental forms are given by E = rφ · rφ, F = rφ · rθ, G = rθ · rθ, L = rφφ ·n,

M = rφθ ·n, N = rθθ ·n, and the normal n = (rφ × rθ) /|rφ×rθ|. We discretizeM uniformly

with nθ-by-nφ rectangular patches and conduct a self-convergence study with reference values

computed using the close evaluation scheme with nθ = 108, nφ = 144. The results are shown

in Table 3.1 and Fig. 3.4. The errors are measured at targets located on the φ = π/2 plane

67

p = 3 4 5 6 7
nθ × nφ max Erel p̂ max Erel p̂ max Erel p̂ max Erel p̂ max Erel p̂
12× 16 3.70e-02 1.25e-02 6.30e-03 3.68e-03 1.32e-03
36× 48 6.72e-04 3.65 8.27e-05 4.57 6.05e-06 6.32 1.56e-06 7.07 2.51e-07 7.80
60× 80 4.92e-05 5.12 3.32e-06 6.30 3.36e-07 5.66 3.40e-08 7.50 1.35e-09 10.2
84× 112 1.79e-05 3.00 9.67e-07 3.67 4.59e-08 5.91 3.61e-09 6.66 9.37e-11 7.94

Table 3.1: Laplace DLP close evaluation scheme using mean curvature as prescribed density in the exterior of
a smooth, warped torus surface parameterized by (θ, φ) ∈ [0, 2π)2, with wc = 0.065, wm = 3 and wn = 5. A
cross-section on the Y Z-plane (φ = π/2) is chosen to study the convergence. We report both the maximum
relative error and the observed convergence rate (p̂) across the same slice as the number of panels are
increased.

(as shown in Fig. 3.4, left). We note that the expected order of convergence is observed

asymptotically.

Figure 3.4: Laplace DLP close evaluation scheme on a smooth, warped torus surface, using mean curvature
as prescribed density. Left: Surface M, with wc = 0.065, wm = 3 and wn = 5, showing panel divisions
(red lines) intersecting Y Z-plane and Nyström nodes (black). The color indicates the magnitude of mean
curvature. Middle: Cross-section view of the log10 relative error in the exterior of M, in the Y Z-plane
(φ = π/2), with 84× 112 patches. Right: Rate of convergence of the relative errors across the same shown
slice with respect to number of panels along toroidal direction, for p = 2, · · · , 7.

Example 2: “Cushion” geometry. In this example, we consider the cushion surface M

from Ref. [149] defined by

(3.41) M = r(θ, φ) = (f (θ, φ) cos (θ) cos (φ) , f (θ, φ) sin (θ) cos (φ) , f (θ, φ) sin (φ))

where f(θ, φ) = (4/5 + 1/2 (cos (2θ)− 1) (cos (4φ)− 1))1/2. The density τ is set to the mean

curvature (3.40). As in [149], we discretize M using a set of non-overlapping patches and

tensor product grids in each patch (Fig. 3.5, left). The DLP is evaluated on two planes,

intersecting the surface at φ = 3π/16 and φ = 27π/16, as shown in 3.5. The relative

68

errors are plotted as the number of patches are increased for the case of p = 7. While the

experimental setup is slightly different from that in [149], our goal is to showcase that several

more digits of accuracy can be obtained using higher order close evaluation schemes. For

example, from Fig. 3.5, we observe that around 10-digits of accuracy (or better) can be

achieved at targets that are arbitrarily close to the surface on both the planes.

Figure 3.5: Laplace DLP close evaluation on a cushion-shaped geometry. Left: Illustration of the surface
discretization with non-overlapping patches. The magnitude of mean curvature is indicated by the color.
The solution is evaluated on the shown slices. Middle: Cross-section view on the plane φ = 3π/16 of the
log10 relative error in the exterior of the cushion. The inset plots the relative error corresponding to p = 7
as a function of the number of patches. Max relative error is 4.1314 × 10−12 with a total number of 6144
(32 × 32 × 6) patches. Current surface discretization is shown by the ticks (′|′) along the surface. Right:
The log10 relative error in the exterior of the cushion on the plane φ = 27π/16 with a total number of 6144
patches. Max relative error is 1.4157× 10−10.

Example 3: “Bunny” geometry. Finally, we showcase that when a smooth surface is

given without (θ, φ) parameterization, a local correction could still be implemented to higher

order based on a local set of control points and a high order polynomial interpolation.

The bunny geometry is taken from a standard mesh library. We use an interactive high-

quality quad remeshing tool developed in [185] to return a collection of patches and nodes

within. We then construct a 6th order polynomial approximation to each patch, and generate

Gauss-Legendre quadrature nodes for naive evaluation and boundaries of each patch for

applying our close evaluation scheme. We use a randomly chosen density function τ(x, y, z) =

exy − 1 + x+ sin(x4 + 1/2y3) + y − 1/2y2 + 1/5y6 + z on the bunny surface. The results on

one patch are shown in Fig. 3.1 to demonstrate the performance.

69

3.5.3 Laplace BVP test

For this numerical experiment, we solve Laplace interior boundary value problems (BVP)

inside two cruller (3.39) domains, one with higher curvature compared to the other, as shown

in Figs. 3.6 and 3.7. The boundary data is generated from a superposition of randomly

distributed point sources located exterior to the domain, i.e., we evaluate the function g(r) =∑Ns
j=1 G(r − rj)hj, where r ∈ M, the sources rj are located in the exterior and the source

strengths hj are set to some random values. Starting from this boundary data, the BIE

(4.9) can be solved for unknown density function τ . We use the quadrature scheme and BIE

solver developed in [13] for this purpose. The resulting density τ for both geometries are

plotted in Fig. 3.6 (left) and Fig. 3.7 (left). The numerical solution of the BVP is evaluated

on the φ = π/8 plane using our close evaluation scheme with p = 7. It is then compared

against the exact solution uexact(r
′) =

∑Ns
j=1G(r′ − rj)hj, where r′ ∈ Ω. We can make the

following observations from Figs. 3.6 and 3.7: (i) the accuracy is uniform throughout the

interior (that is, no degradation at targets close to the boundary), (ii) similar to the exterior

problem case, order of convergence is consistent with the basis function space used, and (iii)

level of accuracy achieved is consistent with the complexity of the geometry.

Figure 3.6: Solution of Laplace BVP in the interior of a torus, using an indirect DLP formulation (4.9).
Left: Density function plotted as a function of toroidal and poloidal directions. The inset at the upper right
corner shows the geometry whose surface color indicates the Dirichlet data due to a few randomly placed
sources (black dots) in the exterior. The solution is evaluated on the shown slice. Here the shape parameters
in (3.39) were set to wc = 0.065, wm = 3 and wn = 5. Middle: Cross-section view of the log10 relative error
on the plane φ = π/8. Max relative error is 7.1761 × 10−5 with 12 × 16 panels. Right: The log10 relative
error on the same shown slice with 36× 48 panels. Max relative error is 3.7405× 10−9.

70

Figure 3.7: Same setup as in Fig. 3.6 but with shape parameters wc = 0.1, wm = 3 and wn = 5 (higher
curvature). The max relative error is 1.6098× 10−4 with 12× 16 panels (middle) and with 36× 48 panels,
it is 1.6667× 10−8 (right).

3.6 Conclusions

In summary, we presented a high-order technique for evaluating nearly singular integrals

for Laplace layer potentials in three dimensions and demonstrated its efficacy on a range

of test problems. This scheme has modest requirements: it can work on any user-supplied

surface mesh directly to solve the close evaluation problem up to the level of accuracy com-

mensurate with that of the given data. Moreover, to some extent, this scheme is dimension-

agnostic. It is intriguing to note that if we carry out the same steps for two-dimensional

DLPs, we will likely recover the scheme of Helsing-Ojala [80]. There, nearly singular inte-

grals were computed using a quadrature scheme that employs piecewise complex monomial

approximation on panels, Cauchy’s theorem and recurrence relations. In our case, we can use

harmonic polynomials in two dimensions—which are closely related to complex monomials—

for density approximation and the DLP can be transformed from a 1-form line integral to

0-form antiderivative evaluation (i.e., using (3.13) and (3.14)).

We plan to extend our work on several fronts. Our immediate next step is to integrate

the close evaluation routine with an open-source FMM package (e.g., [63]) and test its per-

formance on large-scale examples. Another natural direction is to consider various other

elliptic PDE kernels including Helmholtz, Stokes and Navier kernels. As indicated earlier,

71

such a task is non-trivial since the density approximation likely needs to be modified and new

recurrences for 1-forms need to be derived. Lastly, accurate three-dimensional close evalua-

tion schemes open up possibilities to investigate physical phenomena that are otherwise hard

to simulate including chain formation and chaotic behavior in vesicle electrohydrodynamics

[196, 210], flows through complex geometries [127, 211] and self-assembly of active particles

[212, 105]. We plan to generalize these previous works to large-scale three-dimensional flows

with arbitrary particle shapes.

CHAPTER IV

Product Integration Scheme for Volume Potentials on Irregular
Domains

Preamble. In this chapter, we extend our close evaluation idea for layer potential evalua-

tion to computing volume potentials for Gaussian and Laplace kernel in complex domains.

By applying Green’s theorem, these smooth or singular domain integrals on a volume mesh

is converted to a set of line integrals on the boundary skeleton of the volume mesh. This new

approach allows easier solver development in complex domains, without drastic refinement on

leaf level boxes near the domain boundary. We address two fundamental difficulties encoun-

tered in solving inhomogeneous elliptic PDEs. One is a unified high order evaluation scheme

for both singular and nearly-singular volume potential on irregular leaf boxes, provided a

high order body force representation is given. Secondly, a novel approximation scheme on

irregular boxes is employed, which allows a more stable computation on approximation co-

efficients without requiring any extension of body force outside irregular domain. We then

present various numerical experiments on the Poisson problem in complex geometries.

4.1 Introduction

Here, we describe a high-order accurate numerical scheme for evaluating the volume po-

tentials of the form

(4.1) V [f] (r′) =

∫
Ω

G(r′ − r) f(r) dA,

72

73

where Ω is an irregular two-dimensional domain, f is a given density function and G is

the Green’s function that satisfies an underlying partial differential equation (PDE). In

particular, we will focus on two kernels:

G(r) =

− 1

2π
log |r| (Poisson kernel),

e−
|r|2
δ (Gaussian kernel).

Accurate volume potential schemes can be useful for solving non-linear equations using

potential theory. One of the main advantages of this approach is in most cases no solve is

required. However, they have not gained traction in solving nonlinear PDEs. One of the

main reasons is the close evaluation problem. Recent advances in the field overcame the

close evaluation problem and there are now several options for two-dimensional [155, 157, 4,

211, 77, 139, 80, 14, 103, 15, 78, 30, 157, 4, 149] and three-dimensional problems [171, 203,

204, 133, 214, 81, 149, 18, 189]. This motivated a resurgence of interest in evaluating volume

potentials and applying potential theory to solve nonlinear problems [206, 60, 1].

Existing schemes include: (1) embedded boundary method, FEM + BIE [20]; (2) Smooth

function extension and apply FFT: PUX [48], Fourier Continuation [28]; (3) application

to Navier-Stokes [1], which generalized [61]. There also exists FMM accelerated adaptive

box-codes: Harper-Greengard-Zorin [112], PVFMM[126] in 3D; Ethridge-Greengard [43],

Greengard-Lee[61] in 2D.

Product integration schemes separate the issue of singular evaluation with function ap-

proximation: once the density is approximated, singular integration with polynomials is

computed analytically. For a regular box domain, this can be done for a number of kernels

including Laplace and Gaussian kernels. However, a recursive integration on irregular do-

mains is hard to do. In this paper, employing differential geometry tools, we show how to do

74

product integration partially on irregular domains. To to keep things simple and illustrate

the ideas, in this paper we only consider regular Cartesian grids.

The structure of this article is as follows. In Section 4.2, we review some preliminaries on

exterior calculus and the integration equation formulation. In Section 4.3, we introduce the

ideas of the product integration scheme, volume discretization, and a source term approxi-

mation scheme that matches inner product in the sense of volume integral. In Section 4.4, we

present the overall implementation of the volume integral, its coupling with FMM, and briefly

go through the boundary integral solver for the homogeneous solution. In Section 4.5, we

conduct numerical experiments on Gauss transform and several Poisson problems, followed

by conclusions and discussion on future direction in Section 4.6.

4.2 Mathematical Preliminaries

4.2.1 Exterior calculus

Here, we apply exterior calculus as a key tool, previously used in Chapter IV, to handle

volume integral of arbitrary irregular domain discretizations in a unified manner. While

the use of exterior calculus was shown to be capable of evaluating nearly-singular surface

integrals to high accuracy in our previous work, here we focus more on showcasing its strength

in advancing a unified common framework for computing high order volume quadrature rules

in arbitrary domain Ω. This also relies on the general Stokes’ theorem using differential forms

and exterior derivatives,

Theorem 4.2.1. (Stokes theorem) If Ω is a compact oriented 2-manifold, for any smooth

1-form ω defined on Ω, the following holds,

(4.2)

∫
Ω

dω =

∫
∂Ω

ω.

where ω is a smooth 1-form defined on Ω, and d(∗) is the exterior derivative operator.

75

In our setting, it follows from the general Stokes’ theorem that if function M and N are

piecewise smooth on Ω and having continuous partial derivatives, then

(4.3)

∮
∂Ω

M(x, y) dy −N(x, y) dx =

∫
Ω

(
∂M

∂x
+
∂N

∂y

)
dxdy

To go backwards of this equality relation, we use the Poincaré’s lemma [180, Thm. 4-11],

with also the benefit of easily extending this to higher dimensions. A simplified version of

the Poincaré’s Lemma relevant to our setting can be summarized as follows:

Lemma 4.2.2. (2-to-1 form conversion) If Ω is a compact oriented 2-dimensional manifold

in R2, denote a 2-form α = g(x, y) dx ∧ dy, where g(x, y) = ∂M
∂x

+ ∂N
∂y

, then M(x, y) =

x
(∫ 1

0
t g(tx, ty) dt

)
, N(x, y) = y

(∫ 1

0
t g(tx, ty) dt

)
in (4.3), i.e.

(4.4)

∫
Ω

α =

∫
Ω

g(x, y) dx ∧ dy =

∮
∂Ω

x

(∫ 1

0

t g(tx, ty) dt

)
dy − y

(∫ 1

0

t g(tx, ty) dt

)
dx

Proof. Here α = g(x, y) dx ∧ dy is the 2-form dω in Thm. 4.2.1. It is straightforward to

verify g(x, y) = ∂M
∂x

+ ∂N
∂y

:

(4.5)
∂M

∂x
+
∂N

∂y
=

∫ 1

0

2t g(tx, ty) dt+ x

(∫ 1

0

t2
∂

∂x
g(tx, ty) dt

)
+ y

(∫ 1

0

t2
∂

∂y
g(tx, ty) dt

)
=

∫ 1

0

d

dt

(
t2 g(tx, ty)

)
dt = t2 g(tx, ty)

∣∣∣∣1
0

= g(x, y)

Similarly, if Ω is a compact oriented 3-dimensional manifold in R3, α = g(x, y, z) dx∧dy∧dz is

a 3-form, where g(x, y, z) = ∂M
∂x

+ ∂N
∂y

+ ∂P
∂z

, then we have M(x, y, z) = x
(∫ 1

0
t2 g(tx, ty, tz) dt

)
,

N(x, y, z) = y
(∫ 1

0
t2 g(tx, ty, tz) dt

)
, and P (x, y, z) = y

(∫ 1

0
t2 g(tx, ty, tz) dt

)
, i.e.

(4.6)

∫
Ω

α =

∫
Ω

g(x, y, z) dx ∧ dy ∧ dz

=

∮
∂Ω

x

(∫ 1

0

t2 g(tx, ty, tz) dt

)
dy ∧ dz + y

(∫ 1

0

t2 g(tx, ty) dt

)
dz ∧ dx

+ z

(∫ 1

0

t2 g(tx, ty) dt

)
dx ∧ dy

76

4.2.2 Integral equation formulation

To be more specific, we consider solving well-posed Dirichlet problem for the Poisson’s

equation in a two-dimensional multiply connected domain Ω,

(4.7) −∆u = f in Ω, u = g on ∂Ω.

Using the linearity of the differential operator ∆, the Poisson problem is split into a homo-

geneous part uH solved with a Laplace single layer boundary integral formulation, and a

particular part uP , where the solution is obtained by evaluating a volume potential over the

forcing term. The particular solution

(4.8) uP (r′) = V [f] (r′) = − 1

2π

∫
Ω

log (|r′ − r|) f(r) dA

satisfies (4.7) with a different boundary data. The homogeneous solution is then acquired

by setting a Laplace single-layer potential solution ansatz uH(r′) = S[µ](r′) to the following

Dirichlet problem with modified boundary condition:

(4.9) −∆uH = 0 in Ω, uH = g − uP on ∂Ω.

Enforcing the boundary condition yields boundary integral equation S[µ](r′) = g(r′)−uP (r′)

for the unknown µ.

In short, we first evaluate volume potential particular solution uP (r′), and obtain the

boundary data g(∂Ω)−uP (∂Ω) for the reduced homogeneous problem (4.9). We then obtain

the solution uH to (4.9) using a indirect boundary integral formulation. The solution to the

Poisson’s equation (4.7) is then the sum of the two solutions, u(r′) = uH(r′) + uP (r′) for

r′ ∈ Ω. If f and Ω are simple, u may be calculated analytically or using FFT-based method.

However, they are usually not as applicable for highly irregular discretizations of a domain.

77

4.3 Scheme

In the first subsection, we introduce our volume potential evaluation scheme for smooth

and singular kernel in general in some complex geometry Ω. In the second subsection,

we discuss the volume discretization scheme used in our numerical experiments. In the last

subsection, we give details on the approximation scheme on both regular and irregular boxes.

4.3.1 Volume Integral Scheme

Quadrature scheme for Gaussian kernel

For smooth kernel like Gaussian, a volume quadrature scheme depending on ∂Ω and 0,

the origin of local coordinate system, can be computed:

(4.10) v(r′) =

∫
Ω

e−
|r′−r|2

δ f(r) dA =

∮
∂Ω

Mδ(r
′, r) dy −Nδ(r

′, r) dx,

where Ω ⊂ R2, Mδ(r
′, r) = x

∫ 1

0
te−

|r′−tr|2
δ f(tr) dt and Nδ(r

′, r) = y
∫ 1

0
te−

|r′−tr|2
δ f(tr) dt.

Remark 4.3.1. If Ω ⊂ R3, then we have

(4.11)

v(r′) =

∫
Ω

e−
|r′−r|2

δ f(r) dV

=

∮
∂Ω

Mδ(r
′, r) dy ∧ dz +Nδ(r

′, r) dz ∧ dx+ Pδ(r
′, r) dx ∧ dy,

Mδ = x
∫ 1

0
t2e−

|r′−tr|2
δ f(tr) dt, Nδ = y

∫ 1

0
t2e−

|r′−tr|2
δ f(tr) dt, Pδ = z

∫ 1

0
t2e−

|r′−tr|2
δ f(tr) dt.

In our numerical implementation, we use volume quadrature nodes {t`rj}, where {t`}p1 is

a pth order Gauss-Legendre quadrature nodes on [0, 1], and {rj}N1 are panel-based pth order

Gauss-Legendre quadrature nodes discretization of ∂Ω. The quadrature weight associated

with each volume quadrature node t`rj are given explicitly in Section 4.4.1.

This fixed quadrature is inaccurate when the integration kernel is sharply peaked near

the evaluation point. We use analytic integration to resolve this. We denote Iα(r′, r, δ) =∫ 1

0
tαe−

|r′−tr|2
δ dt

(4.12) Iα(r′, r, δ) =
r′ · r
|r|2

Iα−1(r′, r, δ) +
(α− 1) δ

2|r|2
Iα−2(r′, r, δ)− δ

2|r|2
e−
|r′−tr|2

δ

78

All the higher order Iα can be computed from I0 and I1

(4.13)

I0(r′, r, δ) =

√
πδ

2|r|
e
|r′·r|2

δ|r|2
− |r
′|2
δ

(
erf

(
|r|√
δ
− r′ · r√

δ|r|

)
+ erf

(
r′ · r√
δ|r|

))
I1(r′, r, δ) =

√
πδ (r′ · r)

2|r|3
e
|r′·r|2

δ|r|2
− |r
′|2
δ

(
erf

(
|r|√
δ
− r′ · r√

δ|r|

)
+ erf

(
r′ · r√
δ|r|

))
− δ

2|r|2

(
e−
|r′−r|2

δ − e−
|r′|2
δ

)
where erf (z) = 2√

π

∫ z
0
e−t

2
dt is the error function.

Quadrature scheme for Laplace single layer kernel

For singular kernel, analytic expressions of 1-forms for each body force basis function need

to be worked out. This is a direct result of kernel singularity, which renders naive Chebyshev

quadrature inaccurate when any fixed order nodes ti ∈ [0, 1] were used in shrinking the

boundary ∂Ω. It is inevitable to develop specialized adaptive quadrature nodes depending

on the location of target singularity.

(4.14)

u(r′) =

∮
∂Ω

−y
(∫ 1

0

t log (|r′ − tr|) f(tr) dt

)
dx+ x

(∫ 1

0

t log (|r′ − tr|) f(tr) dt

)
dy

For basis element xmyn, we need to compute Lα(r′, r) = 2
∫ 1

0
tα log (|r′ − tr|) dt where

0 ≤ α ≤ m+ n+ 1.

(4.15)

Lα(r′, r) =
2α (r′ · r)

(α + 1) |r|2
Lα−1(r′, r)− (α− 1) |r′|2

(α + 1) |r|2
Lα−2(r′, r)

+
|r′ − r|2

(α + 1) |r|2
log |r′ − r|2 +

2 (r′ · r)

α (α + 1) |r|2
− 2

(α + 1)2

For the case r′ = (0, 0), no recursion is needed, and this formula reduces to

(4.16) Lα(r′, r) =
1

α + 1
log |r|2 − 2

(α + 1)2

79

For the case r′ 6= (0, 0), to get this recursion start, we need L0(r′, r) and L1(r′, r):

(4.17)

L0(r′, r) =

(
1− r

′ · r
|r|2

)
log |r′ − r|2 +

r′ · r
|r|2

log |r′|2

+ 2
|r′ × r|
|r|2

tan−1

(
|r|2 |r′ × r|

|r′ × r|2 − (|r|2 − (r′ · r)) (r′ · r)

)
− 2

L1(r′, r) =
r′ · r
|r|2

L0(r′, r) +
|r′ − r|2

2|r|2
log |r′ − r|2 − |r

′|2

2|r|2
log |r′|2 +

r′ · r
|r|2

− 1

2

A volume quadrature scheme can be worked out based on these analytic 1−form. Before

that, we must attend a few details to justify that Lα(r′, r) are 1-forms of the proper sort to

be used in singular volume potential evaluation. The feasibility of applying Stokes’ theorem

to singular volume potential are presented in the following lemmas, which is generalized by

considering a slight perturbation of the domain to get rid of the singularity. Here, we restrict

our discussion to Laplace kernel only.

(a) (b) (c) (d)

Figure 4.1: (a): a starfish geometry with uniform 2D volume grid; (b): Ωr′,ε; (c): L1(r′, r) in Ω; (d):
L1(r′, r) on ∂Ω and radial direction passing r′.

Corollary 4.3.1. Let Ω be a bounded star-shaped domain with respect to (0, 0), Ωr′,ε be a

perturbed subset of Ω, such that Ωr′,ε is still star-shaped with respect to (0, 0), and for a given

target r′ ∈ Ω and r′ 6= (0, 0),

r′ 6∈ Ωr′,ε,

∫
Ω\Ωr′,ε

dA < ε

, as shown in Fig.4.1(a)(b), then

(4.18) uε(r
′) =

∫
Ωr′,ε

log (|r′ − r|) f(r) dA =

∮
∂Ωr′,ε

P (r′, r) dx+Q(r′, r) dy

P (r′, r) = −y
(∫ 1

0
t log (|r′ − tr|) f(tr) dt

)
, Q(r′, r) = x

(∫ 1

0
t log (|r′ − tr|) f(tr) dt

)
.

80

Proof. Since Ωr′,ε is a star-shaped domain with piecewise smooth, simple closed boundary

∂Ωr′,ε, and Laplace single-layer kernel G(r′, r) is non-singular, P (r′, r) and Q(r′, r) are

continuously differentiable functions of r on Ωr′,ε. It follows Theorem 4.2.1 to conclude

uε(r
′) =

∮
∂Ωr′,ε

P (r′, r) dx+Q(r′, r) dy.

Lemma 4.3.2. Let Ω, Ωr′,ε be the same star-shaped domains as in Corollary 4.3.1, u(r′) =∫
Ω

log (|r′ − r|) f(r) dV , uε(r
′) =

∫
Ωr′,ε

log (|r′ − r|) f(r) dV , where f(r) is a smooth source

function, then

(4.19) |u(r′)− uε(r′)| =

∣∣∣∣∣
∫

Ω\Ωr′,ε

log (|r′ − r|) f(r) dA

∣∣∣∣∣→ 0, as ε→ 0

Proof. We subdivide Ω\Ωr′,ε into an ε-ball centered at r′ and the rest of it where the Laplace

kernel is bounded by log |ε|. If we consider the volume integral using a local polar coordinate

system at r′ within the ε-ball, the integrand function behaves like ρ log |ρ|, where ρ = |r′−r|.

Since ρ log |ρ| approached 0 as ρ → 0, and bounded on the ε-ball, we conclude the volume

integral on this ε-ball is O(ε). On the other hand, the integrand function is bounded by

M log(ε) outside the ε-ball, where M depends on source term f(r), we have the volume

integral is O (|ε log(ε)|). Thus we obtain |u(r′)− uε(r′)| → 0, as ε→ 0.

Theorem 4.3.3. Let Ω be a bounded star-shaped domain with respect to (0, 0), f(r) be a

smooth source function, then

(4.20) u(r′) =

∫
Ω

log (|r′ − r|) f(r) dA =

∮
∂Ω

P (r′, r) dx+Q(r′, r) dy

P (r′, r) = −y
(∫ 1

0
t log (|r′ − tr|) f(tr) dt

)
, Q(r′, r) = x

(∫ 1

0
t log (|r′ − tr|) f(tr) dt

)
.

Proof. Take ε→ 0 in previous lemma and corollary.

81

Lemma 4.3.4. For any r′ ∈ Ω, P (r′, r) and Q(r′, r) in Theorem 4.3.3 are continuously

differentiable on Ω except on sr′, where 1 ≤ s ≤ |r∗|/|r′|, r∗ is the intersection of sr′ and

∂Ω, as shown in Fig.4.1(c)(d)

Proof. Given r′ ∈ Ω, r 6∈ {sr′|1 ≤ s ≤ |r∗|/|r′|}, we can define star-shaped perturbation

Ωr′,ε, P (r′, r) and Q(r′, r), where the upper limit of ε depends on |r′ − r|, and derivatives

of Lα (r′, r) in equation (4.15) are bounded by c
|r′−r| . Therefore by taking ε → 0, we get

continuously differentiable limit of P (r′, r) and Q(r′, r) with respect to r defined on Ω.

Remark 4.3.2. It is probably not surprising that we have some remnants as a result of

the singularity of the Laplace kernel, but with far less severe conditions. This suggests

an adaptive panel distribution along ∂Ω clustering around r∗ to resolve the cusp of 1-

forms. This cusp along radial direction sr′ can be shown by computing the derivative of∫ 1

0
t log (|r′ − tr|) f(tr) dt along along direction r

′

⊥, perpendicular to sr′. This can be seen

easily from the following,

(4.21)
lim
ε→0

∫ 1

0
log
(
(1− st)2 + ε2

)
dt−

∫ 1

0
log
(
(1− st)2) dt

ε

= lim
ε→0
O(ε) + 2

(
tan−1

(
s− 1

ε

)
+ tan−1

(
1

ε

))
= ±2π

Here the rest of the integrand, tf(str′ + εr
′

⊥), does not affect the nature of the logarithm

part when taking directional derivative.

4.3.2 Volume Mesh

Generate volume mesh {Bk}

Fig 4.2(a) illustrate the volume mesh generated from a uniform Cartesian grid. We start

from a grid of uniform volume discretization boxes {B̂k} (grey dash-line mesh) that covers

Ω. Then we use {Bk = B̂k ∩ Ω} as our volume mesh. Besides the size of B̂k and whether

the forcing term is well resolved, the quality of representing ∂Bk will also affect the overall

performance of our smooth and singular volume quadrature scheme(Section 4.3.1). Here we

82

rely on an analytical formula of ∂Ω and root finding to define a parametric representation

for ∂Bk to at least 12 digits.

(a) (b) (c) (d)

Figure 4.2: (a) volume mesh of a starfish geometry Ω; (b) smooth volume quadrature of an irregular box
Bk; (c) boundary panel distribution for singular volume quadrature; (d) boundary panel distribution for
nearly-singular volume quadrature

Assume f is given only inside some complex domain, then there are some extra remarks

on the quality of volume mesh.

Remark 4.3.3. No additional volume mesh refinement was used in our numerical experiments.

While this is generally true to achieve certain accuracy if we keep reducing size of B̂k for fixed

geometry, irregular boxes B̂k∩Ω of weird ratio can always happen for problems with moving

geometries. A more advanced algorithm to generate volume mesh adaptively is needed.

This could be handled by inspecting geometry properties of each irregular box itself, and is

independent of Ωc. In other words, no extension on the forcing term is required, and this

usually can be fixed without dramatic mesh refinement.

Remark 4.3.4. Volume quadrature nodes need to be inside the domain. That is {t`rj| rj ∈

∂Bk, j ≤ M ; t` G-L on [0, 1], ` ≤ p} ⊂ Bk, and ∪Bk = Ω. In all of our numerical experi-

ments, we assume Ω has been resolved by ∪Bk, so that if we use centroid of each box Bk as

reference, then t∂Bk ⊂ Bk for t ∈ [0, 1]. This usually can be done with a reasonably refined

uniform volume mesh.

Remark 4.3.5. We also avoid the case when ∂Ω crosses one side of ∂B̂k multiple times.

This could be an indication of whether the complex geometry Ω has been fully resolved.

83

Although the quadrature algorithm does not put any extra condition on how ∂Ω interacts

with B̂k. To keep track of ∂B̂k, we found it useful to enforce this condition when generating

a volume mesh, especially when a parametric description of ∂B̂k is needed, or to compute

cusp locations beforehand.

Remark 4.3.6. Whether Ω is complex or not, it is almost unavoidable to have irregular box

Bk = B̂k ∩ Ω of volume being only a tiny fraction of a regular box B̂k. In our numerical

experiments, this does not affect the accuracy and stability by much.

Boundary discretization of ∂Bk

For smooth kernels like Gaussian, we use Gauss-Legendre panel quadrature to discretize

∂Bk on irregular box Bk, as shown in Fig 4.2(b). Each side of ∂Bk has one panel, and t ∈ [0, 1]

is then discretized into one panel, both with panel order 2p for better accuracy. (On regular

square box, we use standard p× p product Chebyshev quadrature.)

For Laplace single layer kernel, Lα(r′, r) will develop a cusp on ∂Ω. Boundary discretiza-

tion {rj} changes according to the location of target r′. Depending on the target point r′

location (Fig 4.2(c)), it is required to add additional panel distribution clustering around the

intersection point r∗ to resolve the cusp. Finding the primitive variable is done by building

a high order inverse map from phase angle of r′ to parametric space ∂B−1
k (r∗), which is built

on a bisection root finding in parametric space for a order p Gauss-Legendre nodes in phase

angle.

4.3.3 Approximation

We first scale all boxes Bk to be [−1, 1]2, in the case of Bk is irregular, the scaling factor

is chosen based on B̂k. For an irregular box, we further use the smooth volume quadrature

to compute its centroid, and shift Bk accordingly so that (0, 0) becomes its new centroid for

convenience.

84

On regular box [−1, 1]2, we use product of one-dimension pth order Chebyshev nodes to

sample f(r), and compute its approximation.

(4.22) f(x, y) ≈
p−1∑
n=0

p−1∑
m=0

ĉn,mTn(x)Tm(y)

where Tn(x) = cos (n arccos (x)).

On irregular box Bk, deriving p2 approximation coefficients {ĉn,m} for the product of

Chebyshev basis won’t follow generalizations of one dimensional slice. Taking advantage of

our accurate high order volume quadrature scheme for smooth kernel in Section 4.3.1, we

solve a linear system formed by applying volume integral (a bilinear form a(·, ·)) to Chebyshev

polynomials on Bk to get approximation coefficient. Firstly, we use product of Chebyshev

polynomials Tn(x)Tm(y) as basis function on irregular box Bk of any shape. Then we impose

a natural bilinear form for integrable function on Bk

(4.23) a (φ(x, y), ψ(x, y)) =

∫
Bk
φ(x, y)ψ(x, y) dA

a(φ(x, y), ψ(x, y)) can be computed accurately using the high order smooth volume quadra-

ture we developed. We then enforce the condition that the difference between f(r) and its

approximation is orthogonal to all basis functions on Bk:

(4.24) a

(
f(x, y)−

p−1∑
n=0

p−1∑
m=0

ĉn,mTn(x)Tm(y), Tn0(x)Tm0(y)

)
= 0, n0,m0 < p

The principle is that it should make no difference whether we evaluate volume integral of

f(x, y) or its approximation
∑p−1

n=0

∑p−1
m=0 ĉn,mTn(x)Tm(y), when they are convolved with some

polynomial of order less than p.

Since analytic 1-forms Iα (r′, r, δ) and Lα(r′, r) are derived for monic polynomials. All

coefficients {ĉn,m} for Chebyshev polynomials are further mapped to coefficients for product

of monic polynomials, denoted as {cn,m}.

85

Remark 4.3.7. Tn(x)Tm(y) are no longer orthogonal polynomials on irregular Bk. As a result,

we need to solve a linear system to get approximation coefficients. This is not the case on

regular boxes. An analogue of Gram-Schmidt process could be worked out if stability issue

ever comes up. In our numerical experiments, the approximation scheme works very well

to achieve 10 digits accuracy in computing u(r′) when coupled with the volume quadrature

scheme, and it is robust to various irregular box shapes when order p ≤ 10.

Remark 4.3.8. Another remark we want to make is that for simplicity reasons, we did not

explore the effects of weight functions (ρ = 1 for all our numerical experiments). Therefore

even in the case of Bk deforming to regular box, the approximation coefficients wouldn’t be

exactly the same as coefficients from regular box.

Figure 4.3: Approximation scheme on regular and irregular boxes.

86

4.4 Numerical Implementation

Our proposed volume potential evaluation scheme combines a hybrid function approxima-

tion scheme (Chebyshev on regular box, matching inner product on irregular box) with a hy-

brid layer potential evaluation scheme (fixed numerical quadrature for far evaluation/smooth

kernel, semi-analytical quadrature for nearly-singular and singular kernel/sharply peaked

Gaussian). In this section, we summarize the steps to implement our numerical evaluation

scheme.

Turning to the structure of implementing the solver for Poisson’s equation, Section 4.4.1

demonstrates the volume integral solver to get a particular solution for Poisson’s equation

(uP in Section 4.2.2). In Section 4.4.2, we present an efficient and accurate general boundary

integral solver for Laplace equation see [80][211] (uP in Section 4.2.2). We briefly explain the

coupling with FMM to enable anO(N) complexity computational framework in Section 4.4.3,

where N is the number of domain discretization nodes.

In Section 4.5, we conduct numerical experiments on both interior and exterior problems.

Since the volume integral solver is comprised of summing up layer potential contributions

from all boxes {Bk}, they fall into the evaluation of either a local regular or an irregular

patch for both interior and exterior problems. We restrict our discussion to an interior

configuration as shown in Fig.4.2, with the understanding that the volume solver works

exactly the same for exterior problems of interest, assuming Ω is bounded.

4.4.1 Formal description of the volume integral solver

In this section, we describe the implementation of the volume integral solver for the

particular solution uP (r′) from (4.8).

Stage 1: domain and boundary discretization As discussed in Section 4.3.2, given a two-

dimensional domain Ω, and mesh size, we start with a uniform grid of square boxes {B̂k}

87

containing Ω. Then the intersection sets {Bk} = {B̂k ∩ Ω} which shares a fraction of ∂Ω as

part of its boundary, as shown in Fig.4.2(a), is our volume mesh.

To apply the contour integral on ∂Bk, we define a parametric representation of ∂Bk

analytically by gluing together sides of regular boxes and the shared piece of ∂Ω in a coun-

terclockwise way (∂Bk is colored in red as illustrated in Fig.4.2(b)).

At this stage, we set up the fixed smooth volume quadrature on irregular box Bk (on regu-

lar box, we use product of pth order Chebyshev quadrature rule). Assume {(t`, w`)}p1 denotes

the pth order Gauss-Legendre quadrature nodes and weights on [0, 1]; {(rj,wj, τj)∂Bk}
pNk
1

denotes the entire set of panel quadrature nodes, weights and the corresponding tangent

vectors on ∂Bk, where Nk is the number of sides of Bk, then we have the volume quadrature

nodes and weights (We drop the subscript ∂Bk in all the following notations of (rj,wj, τj)∂Bk

without ambiguity):

(4.25) {(t`rj, t`w`wj|rj × τj|)}`,j

Here we assume each box Bk is rescaled and uses a local coordinate system, with its centroid

being the origin, as discussed in the approximation scheme in Section 4.3.3. This is essentially

shrinking ∂Bk according to the centroid to get a smooth volume quadrature.

Stage 2: source approximation To form an approximation of source distribution function

f(r) on irregular Bk with no extension outside Ω. We use product of one-dimensional

Chebyshev polynomials {ηα(r)} = {Tn(x)Tm(y)} as our basis for both regular and irregular

boxes, where α = np+m.

Using smooth volume quadrature (4.25), and inner product defined by bilinear form (4.23)

on Bk, we set up the p2 × p2 Gram matrix A on Bk:

(4.26) Aαβ = a (ηα(r), ηβ(r)) ≈
p∑
`=1

pNk∑
j=1

ηα(t`rj) ηβ(t`rj)t`w`wj|rj × τj|,

88

and the p2 × 1 right hand side vector g, where

gα = a (ηα(r), f(r)) ≈
p∑
`=1

pNk∑
j=1

ηα(t`rj) f(t`rj)t`w`wj|rj × τj|.

We then get the approximation coefficients ĉ by solve this linear system ĉ = A−1g, s.t.

f(r) ≈
∑

α ĉαηα(r). These coefficients {ĉα} are then transformed into coefficients {cα} for

monomial basis.

To get coefficients for product of Chebyshev polynomial on a regular box, we sample

p × p product Chebyshev nodes on each square patch, and then apply transformation

2
p

cos
(
π((1:p)−1)′(2(p:−1:1)−1)

2p

)
on p× p sampled density f(r) from both dimensions.

Stage 3: volume potential evaluation For smooth kernels like Gaussian and far interaction

of the Laplace kernel, computing the volume potential is the same as computing inner product

in Stage 2 using a smooth volume quadrature. For close interaction of the Laplace kernel

or sharply peaked Gaussian, i.e. for target points r′ within a (1 + δ)λ ball with respect to

the centroid of Bk as shown in Fig 4.2(d), the conversion from volume integral to boundary

integral using Lα(r′, r) and Iα(r′, r, δ) in Section 4.3 is what enables our semi-analytical

layer potential evaluation scheme.

For sharply peaked Gaussian, its thin support gets projected to ∂Bk, where 1-form

Iα(r′, r, δ) needs to be integrated. For Laplace kernel, the logarithmic singularity gives

rise to a cusp along sr′ (Lemma 4.3.4), which will intersect ∂Bk at some point denoted as

r∗. This means for each new target r′, we must rebuild a panel discretization to adapt

to this intersection r∗. Let {(r̃j, w̃j, τ̃j)}pÑk1 denotes the new set of panel quadrature and

tangent vectors on ∂Bk associated with target r′, as shown in Fig.4.2(c) (Ñk equals Nk plus

additional panels required to resolve cusp; we drop the subscript ∂Bk). Then we compute

1-forms Ln+m+1 (r′, r̃j), associated with monomial basis element xnym, using the recursive

relation (4.15).

89

Finally, we compute

(4.27)

∫
Bk

log
(
|r′ − r|2

)
xnym dA =

∮
∂Bk

Ln+m+1 (r′, r)
(
−xnym+1 dx+ xn+1ym dy

)
≈

pN̂k∑
j=1

Ln+m+1 (r′, r̃j) x̃
n
j ỹ

m
j w̃j|r̃j × τ̃j|,

and combine them using coefficient c from Stage 2 to get uP (r′). For sharply peaked Gaus-

sian, the same step follows with the flexibility of no need to compute the precise center of

its projected support on ∂Bk. Though we are integrating around a collection of adjacent

contours, there won’t be cancellation on the boundaries of adjacent Bk, unless the density

approximation is constructed under the same local coordinate system.

Stage 4: build singular and nearly-singular volume potential evaluation matrix (optional)

By constructing the volume potential evaluation matrix, computing a particular solution

for multiple source function f(r) within a fixed domain becomes a problem of local sparse

matrix vector product, then coupled with FMM for far interaction. On a regular or irregular

box Bk, we follow the volume potential evaluation procedure described in previous stage to

build the matrix of singular and nearly-singular volume potential contribution from every

monic polynomial in the basis for all requested target points close to Bk. Then depending on

whether the box is regular or irregular, a matrix representation of the approximation scheme

can be worked out, which maps sampled f(r) from p2 Chebyshev nodes or the smooth volume

quadrature nodes on irregular box to p2 approximation coefficients {ĉn,m}. On regular boxes,

the volume potential matrix is formed by the multiplication of the evaluation matrix from

monic polynomials to close targets, the map from {ĉn,m} to {cn,m}, and the approximation

matrix using Chebyshev polynomials. On irregular boxes, we keep the approximation matrix

separated from the other two. This allows forming evaluation matrix of column size p2 for

both regular and irregular boxes. And in our experiments, we discard coefficients with

magnitude less than 10−9 on irregular boxes.

90

Similar to the close evaluation scheme we developed for Laplace layer potential in Chap-

ter III, the product integration scheme for two-dimensional volume potential share a similar

computational complexity. For each target, O(p) moments are evaluated via recurrences for

O(p) sources on ∂Bk. Forming and inverting the approximation matrix both cost O(p6),

which is independent of number of targets. Overall, the computational cost of the scheme is

O(p6 + ntargp
2), where ntarg is the number of targets that are considered to be close to Bk.

4.4.2 Formal description of the boundary integral solver

In this section, we briefly overview the boundary integral solver for the evaluation of

homogeneous solution uH(r′) from (4.9). For a more thorough implementation of the product

integration rules, we refer the reader to [80][211] and references cited in these papers.

We form a uniform panel distribution of pth order Gauss-Legendre quadrature rule, de-

noted as {
(
r′j, w

′
j

)
∂Ω
}, for the homogeneous problem (4.9) when ∂Ω is smooth, and an adap-

tive panel distribution when ∂Ω has corners. Using the volume potential results from previous

Stage on r′j, we then enforce the corrected boundary condition for the homogeneous problem:

(4.28) uH
(
r′j
)

= g
(
r′j
)
− uP

(
r′j
)

We then consider a single layer potential ansatz:

(4.29) uH(r′j) = S[τ](r′j) = − 1

2π

∫
∂Ω

log
(
|r′j − r|

)
τ(r) dsr

By enforcing the boundary condition S[τ](r′j) = uH
(
r′j
)
, we can solve for unknown density τ .

If r′j is far away from a source panel, the smooth layer potential evaluation is approximated

by the Gauss-Legendre quadrature rule. For target r′j that fall close to a source panel, the

integral kernel is nearly-singular, therefore we adapt a panelwise close evaluation scheme

proposed in [80], where the density function µ is approximated by a high-order polynomial

interpolation in the complex plane, and the exact integrals of the single layer kernel against

these polynomial basis functions are worked out via a two-term recurrence.

91

4.4.3 Couple singular and nearly-singular volume integral scheme with FMM

In this section, we describe the coupling of our local singular volume potential evalua-

tion scheme with Fast Multipole Method (FMM) [64], and refer the reader to [211] on the

integration of singular layer potential evaluation scheme into the FMM framework. This

completes the description of the O(N) fast Poisson solver.

We call target point r′ and Bk “close” if d (r′, rk,c), the distance between r′ and the

centroid rk,c of Bk, is smaller than some prescribed tolerance (1 + δ)λ (we use δ = 0.4 in

our experiments), where λ is the maximum distance between vertices of Bk and rk,c. For

these target points, the Laplace kernel G (r′, r) becomes singular or nearly-singular, we

use the semi-analytic product integration scheme described in Section 4.4.1. As for targets

outside this close disc, but within about grid size distance to the center of B̂k, we use

an upsampling of the smooth volume quadrature to improve accuracy, when building the

evaluation matrix. For targets well-separated from Bk, both the kernel function and the

source density are smooth, therefore the contribution from product Chebyshev quadrature

or smooth quadrature (4.25) can be rapidly computing using FMM.

To summarize, a Nyström method is used to approximately compute uP (r′), which results

in a matrix-vector multiplication. When the problem size is large, the Nyström matrix is

never formed explicitly. Smooth quadrature rule, i.e. product Chebyshev quadrature and

(4.25), are accelerated by FMM to compute interaction from all volume source points to all

target points. Then a local correction term is added to uP (r′) using a sparse singular or

nearly-singular matrix vector multiplication.

4.5 Numerical results and discussion

In this section, we report the numerical accuracy and performance results for a series

of tests to validate the overall solution scheme. First, we investigate the convergence of

92

the approximation scheme presented in Section 4.3.3 in the volume on geometries similar

to Fig 4.2. We then perform self-convergence test on Gaussian kernel in two and three

dimensions. Lastly, we test the performance of the Poisson solver on smooth and polygonal

domains, and use FMM for applying the volume potential matrix to extend it to a multiple

inclusion setting. We mention that the domain and boundary discretization for computing

the volume and layer potentials in our numerical experiments are both uniform, except for

boundaries with corner. Although the homogeneous part of the solution using boundary

integral formulation achieves the expected order of convergence, we need to inspect the

quality of the uniformly generated volume mesh in order to perform a similar convergence

test on the particular solution, i.e. the size of box is chosen for better convergence results.

1. This example tests our approximation scheme in Section 4.3.3 on a smooth starfish-

shaped domain defined by function Z(t) = (1 + 0.3 cos 5t) [cos t, sin t]T . We first choose

some arbitrary function f(r) = sin (3x+ 0.1)+cos (4y + 0.2)+sin (5 (x− 0.1) (y − 0.2))

as the test source density. Then we discretize Ω uniformly for different mesh size h and

perform the approximation scheme for various order p. We report the relative L∞ error

measured on a 50× 500 polar target grid.

This experiment shows that our approximation scheme is able to achieve 7 − 8 digit

accuracy as we refine the volume mesh. We would like to point out that the approx-

imation scheme is built upon the idea to match inner product in the volume integral

sense, therefore a steady pointwise error uniformly inside Ω indicates that on each box

Bk, the absolute error of a smooth volume integral will decrease as the area of the box

decreases. Also we observe that when using the smooth quadrature to compute
∫

Ω
dA,

the area of Ω, the accuracy is around 11− 12 digits.

93

Figure 4.4: Relative L∞ Error: (Left) p = 5; (Middle) p = 7; (Right) convergence

2. Here, we first consider the two dimensional Gaussian kernel for δ = 1/100 and δ =

1/10000, f(r) = sinx+cos y+2 cos
(√

2x
)
y2−2 cos

(√
2x
)
+sin

(√
3x2y

)
(3x4 + 12x2y2)

−2
√

3 cos
(√

3x2y
)
y. We report the convergence using absolute error for comparison,

since u(r′) is much smaller for δ = 1/10000. Top three figures in Fig 4.5 shows the

result using a numerical quadrature as in Fig 4.2(b) when δ = 1/100. Bottom three

figures in Fig 4.5 shows the result using product integration scheme on a boundary

panel discretization similar to Fig 4.2(c) but without panels adapting to cusp, when

δ = 1/10000.

The error plot for δ = 1/100 using a smooth volume quadrature behaves as expected.

However, the error plot and acceleration of convergence rate in the convergence plot

for δ = 1/10000 suggests that for even thinner support of Gaussian, the support of

the resulting 1-form won’t be resolved with a fixed boundary panel quadrature on ∂Bk,

which could be addressed in a cusp-like way as in the singular volume potential case.

94

Figure 4.5: (1st row): δ = 1/100 Absolute Error (max abs value 0.1784): (Left) p = 5; (Middle) p = 7;
(Right) convergence. (2nd row): δ = 1/10000 Absolute Error (max abs value 3.2643× 10−3): (Left) p = 5;
(Middle) p = 7; (Right) convergence.

Lastly, we briefly test the feasibility and performance of the scheme on three dimensional

Gaussian kernel for δ = 1/10. As shown in Fig 4.6, the spheroid is divided into 8

irregular boxes according to their octants. Unlike Laplace kernels, both two dimensional

and three dimensional Gaussians share the same kernel structure, which allows the semi-

analytic product integration scheme to be easily extended to three dimensions. Here,

f(r) is taken to be the summation of product of monic polynomials with order less or

equal than 4, so that no three dimensional approximation scheme is needed.

Figure 4.6: Volume quadrature and error for three dimensional Gauss transform

95

3. We now solve the Poisson equation (4.7) for ue(r) = sin x + cos y + cos
(√

2x
)
y2 +

sin
(√

3x2y
)
. We assume f(r) is only known within Ω. The left column in Fig 4.7 shows

smooth volume quadrature nodes and weights for different geometries. Comparing to

exact solution ue(r), the numerical solution we get from our Poisson solver is about 10

digit accuracy in both smooth and polygonal domains, without using any extension on

f(r) and drastic refinement on the volume mesh.

Figure 4.7: p=10 with 250× 250 resolution (a) box size 0.2; (c) max relative error 2.1074e-11; (d) box size
0.1; (f) max relative error 1.0017e-10; (g) box size 0.2; (i) max relative error 9.9970e-11.

4. Finally, we solve the Poisson equation (4.7) on a Ω that has a boundary of a collection of

94 interior smooth islands plus 1 exterior square. These islands were generated randomly

using a limited range of parameters, and then perturbed to ensure the quality of the

96

volume mesh. Here, we use ue(r) = sin(x) + cos(y + 0.1) + sin(xy) + cos(x) sin(y).

And we report the time for applying the correction is less than 1 percent comparing to

applying FMM under the current problem settings.

Figure 4.8: 94 islands, 17336 regular boxes, 2896 irregular boxes, and uniform volume mesh size of
0.1.([−7.6, 7.6]2). The number of sources and targets are Ns = 11718400, Nt = 222274. (c) max rela-
tive error 5.5771e-10 (450× 450).

4.6 Conclusion

We have demonstrated an accurate and high order product integration scheme for com-

puting the particular solution of Poisson problem via volume potential. The Poisson solver

scales linearly with the number of degrees of freedom in the domain. The scheme proceeds

by constructing a high order approximation of the forcing function on both regular and ir-

regular boxes, and applying general Stokes’ theorem to the singular or nearly singular kernel

analytically to convert the domain integral to a line integral on the boundary. We report

the performance and error results on a variety of examples. In all numerical experiments,

we achieve around 10 digit accuracy. Similarly, we have also considered applying the scheme

to Gauss transform in both two and three dimensions.

Clearly, a number of questions arise about the computational scheme outlined here: The

grid size must resolve the geometry; wouldn’t it lead to too many boxes? What if non-star

shaped irregular boxes are encountered? Wouldn’t the irregular boxes be extremely small or

have high aspect ratio? All of these concerns can be addressed by adaptive mesh refinement

97

and some variation of overset grids, implementing which is left to future work. Adaptive

mesh refinement, say based on quad tree representations in 2D and octrees in 3D, is sufficient

to address all the above questions. Work is currently in progress towards these direction.

CHAPTER V

Simulating Cilia-driven Mixing and Transport in Complex
Geometries

Preamble. Cilia and flagella are self-actuated microtubule-based structures that are present

on many cell surfaces, ranging from the outer surface of single-cell organisms to the internal

epithelial surfaces in larger animals. In this chapter, we develop a hybrid numerical method

that employs a boundary integral method for handling the confining geometries and the

constituent rigid particles and the method of regularized Stokeslets for handling the cilia. We

provide several examples demonstrating the effects of confining geometries on cilia-generated

fluid mixing as well as the cilia-particle hydrodynamics. This is joint work with Hanliang

Guo and Shravan Veerapaneni, and is published in [211]. My contribution in this study is

developing the boundary integral solver.

5.1 Introduction

Cilia are microscopic hair-like structures that protrude from cell surfaces. Motile cilia

possess sophisticated internal structures, generally known as the “9+2” structures (see [52]

for more details), that enable active periodic ciliary beatings. Being one of the most pre-

served structures in nature, cilia can be found in almost every phylum in the animal kingdom,

from unicellular eukaryotes to invertebrate metazoans and vertebrates. Cilia play significant

roles in small animals such as unicellular organisms and invertebrate metazoans, including

98

99

locomotion, generating water currents for feeding, and more [58, 174, 123, 195]. In verte-

brates, cilia are mostly found on the epithelial cell surfaces of internal organs, including the

respiratory tract, brain, ear and oviduct [5, 86, 201, 46, 45, 140], as the role in locomotion

is replaced by muscles.

The beating of individual cilium usually presents an asymmetric pattern that consists of

a straight power stroke and a curly recovery stroke. This asymmetric pattern could break

the famous “scallop theorem” ([153]) in viscous fluid at the individual level. Additionally,

cilia are usually found in dense groups. Each cell could feature hundreds of cilia in the

respiratory tracts [179]. Interestingly, healthy cilia usually do not beat either in-phase or

completely randomly. Instead, they beat in an orchestrated wavelike fashion: the so-called

metachronal waves. Simply put, the metachronal waves are formed by all cilia performing

similar beating patterns, but deforming in time with a small phase difference with respect

to their neighbors. The metachronal wave is an effective approach to transport fluid, as it

breaks the scallop theorem at the collective level.

The study of ciliary/flagellar propulsion of micro-swimmers dates back to 1950s when G.I.

Taylor [186] modeled the flagellum of a sperm cell to an infinite sinusoidal traveling wave

and studied analytically the relations between the swimming velocity and the wavenumber,

the beating amplitude, and the traveling wave velocity. We refer the reader to [113] and

[50] for a more detailed review on this topic. Ciliary transport in the airway systems has

also received much attention due to its native relations with some human diseases [47, 188].

Numerous studies have been carried out using various numerical methods, including resistive

force theory [49], slender body theory [67, 66, 65], immersed boundary method [38, 121, 95],

immersed boundary-lattice Boltzmann method [115, 117, 33], finite element method [131],

and the method of regularized stokeslet (MRS) [176, 177, 175, 39, 71, 135].

Ciliary mixing, on the other hand, has not been an active area of study until the last

100

(a) (b)

(c) (d)

Figure 5.1: An illustration of the current simulation capabilities of the hybrid numerical developed in this
chapter. For the purposes of this illustration, we (a) took a generic microscopic image of the cross-section of a
Fallopian tube (source: NORM062), (b) extracted a subset of the fluid domain and its boundary highlighted
here, (c) seeded four patches of the boundary with around four hundred cilia and solved the governing
equations using the numerical method developed in this work and (d) visualized the solution via streamlines
in one of the patches. Note: This example is for illustrative purposes only and must not be viewed as
representative of in vivo flows. Physiologically, the major direction of fluid flow in the Fallopian tube is
perpendicular to the cross-section as shown here; thereby, a three-dimensional simulation is needed to fully
characterize the flows.

decade. Admittedly, mixing in viscous dominant fluid is inherently difficult due to the lack

of turbulence [143, 8]. Nevertheless, in vivo experiments of zebrafish embryo showed the

transition of a unidirectional flow to vortical flows above and below the cilium tip [183],

suggesting that the unidirectional transport is far from the sole purpose of the ciliary flow.

More recently, [135] showed, using the squid-vibrio symbiotic systems, that long and short

cilia that grow on the same ciliated organ serve different functions. Specifically, the long

cilia beating with metachronal waves focus on the fluid transport and size-selective functions,

while the short cilia with random phase differences enhance the fluid mixing with zero net flow

on average. Other works have also been able to show enhanced mixing using artificial cilia

https://webpath.med.utah.edu/HISTHTML/NORMAL/NORM062.html

101

(e.g., see [44, 170, 34, 164]). Numerically, [121] studied the fluid mixing generated by a single

cilium using the immersed boundary method and found distinct transport region and mixing

region higher and lower than the cilium tip, respectively. [39] studied the fluid transport and

mixing by a doubly-periodic array of cilia in a half-space bounded by a plane using MRS and

its image systems. They systematically vary the phase differences between neighboring cilia

and found consistent results in terms of the transport and mixing regions. Their results also

showed that metachronal waves enhance not only fluid transport but also mixing. Recent

works have also considered transport and mixing of multi-phase fluid in airway systems using

the immersed boundary-lattice Boltzmann method [32]. The results are qualitatively similar

to that of [39], although tracers in different fluid layers are prevented from mixing due to

surface tension effects present at the interface. More recently, [162] developed a large-scale

simulation technique making using of the kernel-independent FMM and applied it on dense

cilia carpets beating in phase; [181] took a different route, wherein, instead of treating each

cilium explicitly, they proposed an elegant coarse-grained model with anisotropic Brinkman

equation and solved the cilia-driven transport problem using immersed boundary method.

We note that all of the aforementioned computational works considered simple geometries

and idealized boundary conditions such as periodic, free-space or half-space (bounded by

a plane wall) flows. While such mathematical simplifications are important for problem

tractability, the real environments that cilia beat in are far more complex. For example,

[45] showed that the complex flow of cerebrospinal fluid (CBF) in the delicate mice brain

ventricles is regulated by the motile cilia; other human organs where cilia play important roles

such as the tracheal and the Fallopian tubes present no less complex geometries [19, 114].

Engineering applications such as manufacturing micro-fluidic devices that could transport

and/or mix the fluid are also designed to have complex geometries (see, e.g. [100]). To the

best of our knowledge, no work to date has been focused on solving the cilia-driven flow

102

in arbitrary complex geometries. Leveraging on recent advances in the boundary integral

methods (BIMs) for Stokes flow, in this work, we develop methods for simulating active

cilia-driven flow of rigid particles in complex geometries. They are applicable in the regime

where the hydrodynamics of the cilia-geometry and cilia-particle interactions are dominated

by viscous effects and inertia could be neglected.

Specifically, we use the BIM for solving the Stokes equations inside the confining complex

geometry and for evolving the rigid particles and the MRS for simulating the ciliary dynamics.

Applying the boundary conditions at the fluid-structure interfaces leads to a set of coupled

integro-differential equations at every time-step. We use the recently developed Nyström

method in [211] for discretizing the boundary integrals in these equations. This method is

both h−adaptive and p−adaptive; that is, both the size of the boundary panels (h) and

the degree of approximation per panel (p) are chosen automatically to achieve a prescribed

error tolerance in the solution. Another advantage of this method is that the nearly singular

integrals that arise due to the proximity of the walls, cilia and/or rigid particles are computed

to high accuracy. A fourth-order explicit Runge-Kutta method is used for evolving both the

cilia and the rigid particles.

The current capabilities of this hybrid method are demonstrated by simulating the cilia-

driven flow within the planar cross-section of a Fallopian tube as shown in figure 5.1. Note

that while the method can handle such arbitrary shapes, for simplicity and ease of analysis,

the results section in this chapter only considers flows in relatively classical geometries (e.g.,

Taylor-Couette channel, see figure 5.2(a)). We emphasize here that such geometries are still

difficult to handle using existing methods such as MRS with image systems.

The chapter is organized as follows. We give the problem formulation and describe our

numerical solvers in Section 5.2. Analysis of the mixing and transport properties of actuated

cilia in complex domains will be presented in Section 5.3, followed by conclusions and future

103

work in Section 5.4.

5.2 Model and methods

In this section, we first describe the problem formulation for the specific case of cilia-

driven flow of rigid particles suspended in a Taylor-Couette device. Then, we show how to

recast it as a set of mixed boundary integral and discrete equations with unknowns residing

on the cilia, particle and wall boundaries only (thus leading to dimensionality reduction).

Lastly, we describe a numerical method for discretizing and solving these equations.

5.2.1 Model

0

2π

x

y

R1 R2

(a) (b)

γ
m

effective stroke

l

Γ

Ω
ζ(s,τ)

τ

π

Figure 5.2: Schematic figure. (a) N cilia uniformly distributed at the inner surface of the stationary Taylor-
Couette device. Np particles are freely suspended in the fluid domain Ω bounded by {(x, y)|R2

2 < x2 + y2 <
R2

1}. (b) The snapshots of the beating pattern extracted from [49]. Color-coded by its phase τ .

Consider a thin gap of fluid confined between two stationary concentric circles of radius

R1 and R2 with R1 > R2. The fluid domain is denoted by Ω = {(x, y) | R2
2 < x2 + y2 < R2

1}.

Np rigid particles are immersed in the fluid; N cilia of length ` are uniformly distributed on

the surface of the inner circle (see figure 5.2(a)). Following [49], the kinematics ζ of each

cilium in its body frame can be approximated by a truncated Fourier series in time τ and

a Taylor series in arc-length s. The resulting beating pattern is shown in figure 5.2(b). We

apply proper rotations and translations to ζ to obtain the position of the l-th cilium r̂ such

104

that the cilia are uniformly distributed along the inner circle and are oriented perpendicular

to the circle. Specifically, the position of the l-th cilium at arc-length s and time t is given

by

(5.1) r̂l(s, t) =

(
cos(θl) sin(θl)

− sin(θl) cos(θl)

)
ζ(s, τl) +R2

(
sin(θl)

cos(θl)

)
,

where θl = 2π(l − 1)/N and τl = 2πt+ (l − 1)∆φ. By construction, the 1st cilium is rooted

at (x, y) = (0, R2) and the index of the cilium increases clockwise. Here ∆φ is a constant

phase difference between neighboring cilia. Specifically, all cilia beat in synchrony if ∆φ = 0;

0 < ∆φ < π yields a wave that travels in the opposite direction as the effective stroke

(antiplectic waves) and vice versa for −π < ∆φ < 0 (symplectic waves). We note here that

the stationary Taylor-Couette device is chosen to construct a “periodic” domain without the

periodic kernels.

In the low Reynolds number regime, the fluid dynamics is governed by the non-dimensional

incompressible Stokes equation

(5.2) −∇p(r) +∇2u(r) = 0, ∇ · u = 0, ∀ r ∈ Ω.

Here p is the pressure, u is the velocity. Taking advantage of the small aspect ratio of

the cilia, we assume that the fluid velocity along the cilia is consistent with the prescribed

beating pattern, namely

(5.3) u(s, t) =
dr̂(s, t)

dt
, for 0 < s ≤ `.

A no-slip boundary condition is applied on the wall boundaries, that is,

(5.4) u(r) = 0, ∀ r ∈ Γ.

On the other hand, given the translational velocity Um and the angular velocity ωm of the

m-th rigid particle (1 ≤ m ≤ Np), a no-slip boundary condition on γm implies

(5.5) u(r) = Um + ωm(r − rcm)⊥, ∀ r ∈ γm,

105

where rcm is the centroid of the particle and the perp operator (·)⊥ acts on vectors in R2 and

is defined by r⊥ =

(
−y
x

)
.

Since the inertia is negligible in viscous dominant fluid, the particles need to also satisfy

the no-net-force and no-net-torque conditions [101]. Particularly, in the absence of external

forces and torques, we have

(5.6)

∫
γm

g(r) dsr = 0 and

∫
γm

g(r) · (r − rcm)⊥ dsr = 0,

where g denotes the hydrodynamic traction on the particle boundaries.

Throughout this chapter, we normalize lengths by the typical length of cilia `c = 20µm,

time by the typical beating period Tc ≈ 1/30s, and force by Fc = µ`2
c/Tc = 12pN, where

µ = 10−3Pa · s is the water viscosity.

5.2.2 Cilia-channel interactions

We start by considering the simpler case where there are no rigid particles immersed in

the fluid. By virtue of linearity of the Stokes equation, the fluid velocity can be written as

(5.7) u(r′) = uc(r′) + uΓ(r′), ∀ r′ ∈ Ω,

where uc and uΓ represent the disturbance flow due to the cilia and the boundary Γ respec-

tively. We then take a hybrid approach: the governing equations for uc are solved using

MRS whereas those of uΓ are solved using a BIM. The MRS is widely used in flagella-driven

flow simulation due to its ease of implementation. The BIM offers an accurate and scalable

methodology for Stokes flow simulation within complex geometries. Both approaches follow

from our previous work in [71] and [211] respectively.

We use an indirect integral equation formulation, also known as the combined field integral

equation formulation [152], for the confining geometry Γ, which begins with an ansatz that

the velocity is a sum of single and double layer potentials:

(5.8) uΓ(r′) = (SΓ + DΓ)[σ](r′), ∀ r′ ∈ Ω,

106

where σ is an unknown density function, S and D are the Stokes single- and double-layer

operators respectively, defined as

(5.9) SΓ[σ](r′) :=

∫
Γ

G(r′ − r)σ(r)dsr and DΓ[σ](r′) :=

∫
Γ

K(r′ − r)σ(r) dsr.

The convolution kernels G (Stokeslet) and K (stresslet) are the fundamental solutions to

Stokes equations (5.2), given as,

G(r′ − r) =
1

4π

(
I log

1

|r′ − r|
+

(r′ − r)⊗ (r′ − r)

|r′ − r|2

)
,

K(r′ − r) =
1

π

(r′ − r) · nr
|r′ − r|2

(r′ − r)⊗ (r′ − r)

|r′ − r|2

(5.10)

where nr is the outer normal vector of the surface Γ at r. By definition, (5.8) satisfies the

Stokes equations and what remains is to enforce the no-slip boundary condition (5.4). To

simplify the formulation, we reverse the order of the discretization points on the inner circle

so that the fluid domain can be considered “interior” to both outer and inner circles. Taking

the limit as the target r′ approaches Γ from the interior and using standard jump conditions

for the layer potentials (e.g., see [111], Chapter 3), we arrive at the following equation:

(5.11)

(
−1

2
I + SΓ + DΓ

)
[σ](r′) = −uc(r′), ∀ r′ ∈ Γ.

The above is a second-kind integral equation (SKIE) for the unknown density function σ.

The main advantage of SKIEs is that they result in a well-conditioned linear system when

discretized. However, this system has a null-space of dimension one in the direction normal

to the boundary, which needs to be eliminated via standard techniques (e.g., see [172], we

can perturb a rank deficient matrix to a nonsingular one with probability 1). Particularly, we

eliminate the null-space by adding the components of the normal vector of each quadrature

point in the first column of the resulted discretization matrix. A more popular approach

for obtaining SKIE in this context is the completed double-layer formulation of Power and

Miranda [151]. We chose the above for simplicity (we will employ the same formulation

107

for particles as well). Note, however, that the right hand side vector uc in (5.11) is also

unknown; we discuss its formulation next.

We discretize each cilium into Ns uniformly placed beads along the arc-length. Specif-

ically, the position of the m-th bead for one cilium is at arclength s = m`/Ns with 1 ≤

m ≤ Ns. We treat each bead along the cilia as a 2D free-space regularized force. The flow

field can then be reconstructed using the method of regularized stokeslet [36]. Assuming the

position and strength of the n-th regularized forces are rn and fn, the flow field generated

by such a force distribution is given by

(5.12) uc(r′) =
NNs∑
n=1

G̃(r′ − rn)fn,

where G̃ is the regularized version of the Green’s function G given in (5.10), defined in the

Appendix E.5. From here on, a regularized operator will be denoted using the symbol˜as

above. Since the representation (5.12) can be viewed as a discrete, regularized analogue of

the layer potentials (5.9), we will use a similar notation; that is, we let

(5.13) S̃c[f](r′) :=
NNs∑
n=1

G̃(r′ − rn)fn.

Since the cilia beating pattern is assumed to be given a priori, the force density f is unknown.

This will be determined by enforcing the no-slip boundary condition at the cilia-fluid interface

(5.3). Together with (5.11), the system of equations for the two unknown densities can then

be summarized in the matrix form as

(5.14)

(
−1

2
I + SΓ,Γ + DΓ,Γ S̃c,Γ
SΓ,c + DΓ,c S̃c,c

)(
σ

f

)
=

(
0
dr
dt

)
.

Here, with a slight abuse of notation, we denoted the single-layer potential defined on Γ

(sources) evaluated at the discrete points on the cilia (targets) by SΓ,c. Other operators are

defined analogously. Once we solve this matrix equation, we can evaluate the velocity field

at any point r′ in the fluid domain by using (5.7).

108

Notice that the operator
(
−1

2
I + SΓ,Γ + DΓ,Γ

)
in the matrix equation (5.14) remains fixed

as the cilia beat, since Γ is stationary. Therefore, it is computationally efficient to simply

compute its inverse (once discretized) as a precomputation step before time-stepping for

the evolution of cilia. In large-scale systems (such as in Figure 5.1), one can accelerate this

precomputation, and application of inverse at every time-step, using a low-rank factorization

based fast direct solver as done recently for similar problems in [127].

5.2.3 Cilia-channel-particle interactions

We now extend our formulation to include rigid particles suspended in ciliary-driven flow

in confining geometries. For notational simplicity, we consider the case where only a single

rigid particle with boundary γ is present. In this case, the velocity in the fluid domain can

be decomposed into three components due to disturbance flows created by the cilia, the

stationary wall and the particle respectively as

(5.15) u(r′) = uc(r′) + uΓ(r′) + uγ(r′), ∀ r′ ∈ Ω.

Similar to earlier treatment, uc and uΓ are given by (5.12) and (5.8) respectively. For

uγ, we use the same ansatz as in (5.8), that is, we write:

(5.16) uγ(r′) = (Sγ + Dγ)[σ](r′), ∀ r′ ∈ Ω.

The vector density function σ defined on γ again is an unknown that needs to be determined

by applying the boundary conditions on the particle boundaries. By taking the limit of (5.16)

as r′ approaches γ from the exterior and applying the rigid body velocity condition (5.5)

yields the following BIE,

(5.17)

(
1

2
I + Sγ + Dγ

)
[σ](r′) = −uc(r′)− uΓ(r′) +U + ω(r′ − rc)⊥, ∀ r′ ∈ γ.

Again, the above is a SKIE for the unknown σ defined on γ. The rigid body translational

and rotational velocities (U , ω) are also unknown a priori and need to be solved for by

109

applying the force- and torque-free conditions (5.6) on γ. To do so, we need to evaluate the

hydrodynamic traction on γ based on the velocity representation (5.15) which can now be

written in its full form as

(5.18) u(r′) = S̃c[f](r′) + (SΓ + DΓ)[σ](r′) + (Sγ + Dγ)[σ](r′).

The traction force at γ can be computed using the formula g(r′) = −p(r′)nr′ + (∇u(r′) +

∇uT (r′)) ·nr′ , where n is the outward normal to γ. We can avoid computing the derivatives

numerically by plugging (5.18) into this formula and evaluating the derivatives of the integral

kernels analytically. For notational convenience, we define the velocity vector U ∗ and the

operators L and C as

(5.19) U ∗ =

(
U

ω

)
, Lγ g :=

(∫
γ
g(r)dsr∫

γ
g(r) · (r − rc)⊥dsr

)
and CU ∗ := U+ω(r−rc)⊥.

Since the force- and torque-free conditions (5.6) does not require the pointwise values for

the traction, we can utilize the identity that the action of Lγ on the Stokes double-layer

potentials in (5.18) produces the zero vector (e.g., see [152, 16]). What remains is to evaluate

the traction force due to the single-layer potentials in (5.18). The traction associated to the

single layer potential Sγ[σ], for example, is given by

(5.20) TS
γ [σ](r′) := nr′

∫
γ

T (r′ − r)σ(r)dsr,

where

(5.21) T (r′ − r) = − 1

π

(r′ − r)⊗ (r′ − r)⊗ (r′ − r)

|r′ − r|4
,

The regularized traction kernel is given in Appendix E.5. Based on these definitions, we can

now write the force- and torque-free conditions on the rigid particles as

(5.22) Lγ
(
−1

2
σ(r′) + TS

γ [σ](r′) + TS
Γ[σ](r′) + T̃S

c[f](r′)

)
= 0, ∀ r′ ∈ γ.

110

Therefore, together with (5.17), this equation is sufficient to determine the unknowns σ

and U ∗ residing on γ. The coupled system of equations for all the unknowns can now be

summarized in the matrix form as

(5.23)

−1

2
I + SΓ,Γ + DΓ,Γ Sγ,Γ + Dγ,Γ S̃c,Γ 0

SΓ,γ + DΓ,γ
1
2
I + Sγ,γ + Dγ,γ S̃c,γ −C

SΓ,c + DΓ,c Sγ,c + Dγ,c S̃c,c 0

Lγ TΓ,γ Lγ
(
−1

2
I + Tγ,γ

)
Lγ T̃c,γ 0

σ(Γ)

σ(γ)

f

U ∗

 =

0

0
dr

dt
0

 .

While the above matrix form is helpful in understanding the overall formulation, in practice,

we may invert smaller systems depending on the nature of the problem. For example, as

discussed earlier, if the number of unknowns on Γ is large compared to others, it would be

beneficial to form its inverse as a precomputation step. All the layer potentials in this system

matrix lead to N−body sums when discretized, thereby, require fast algorithms to accelerate

their computation for large problem sizes. Many such algorithms are now well-established;

we use the open-source fast multipole method (FMM) implementation of [53]. Note that

solving this system gives all the unknowns at a particular time snapshot only; we then have

to update the position of cilia using (5.1) and the position of the rigid particle using U ∗.

Finally, the formulation generalizes to multiple rigid particles in a trivial manner. We let

γ denote the union of all the particle boundaries i.e., γ =
⋃Np
m=1 γm, where, as before, γm is

the boundary of the m-th particle. Then, the definition of the boundary integral operators

introduced so far hold as is; for example,

(5.24) Sγ[σ](r′) =

∫
γ

G(r′ − r)σ(r)dsr :=

Np∑
m=1

∫
γm

G(r′ − r)σ(r)dsr.

The operators and variables in (5.19), on the other hand, must be defined separately for

each particle and the system (5.23) needs to be modified accordingly by concatenating the

unknowns on all the particle boundaries.

111

5.2.4 Nyström discretization and close-evaluation of layer potentials

Given a single closed curve Γ parameterized by Z(α) : [0, 2π) → R2, such that Γ =

Z([0, 2π)), we split the curve uniformly into nΛ disjoint panels Λi, i = 1, . . . , nΛ. In each

panel, we use p quadrature nodes so that there are NΓ = pnΛ discrete points on the curve.

The standard Gauss-Legendre quadrature, with nodes {ti}NΓ
i=1 and associated weights {wi}NΓ

i=1,

offers high-order accuracy for integrating any smooth function g on Γ,

(5.25)

∫
Γ

g(r)dSr =

∫ 2π

0

g(Z(α))

∣∣∣∣ ddαZ(α)

∣∣∣∣ dα ≈ NΓ∑
i=1

g(Z(αi))

∣∣∣∣ ddαZ ′(αi)
∣∣∣∣ wi.

Now consider the task of computing the velocity u(r′) at a target r′ ∈ Ω by evaluating

(5.8). If r′ is far away from a source panel Λ, the contribution of Λ to u is obtained by simply

using the quadrature rule (5.25) since the integrand is smooth in this case. However if r′ is

close to Λ, one could expect the integral kernels in (5.9) to be much more rapidly changing

functions of r ∈ Γ than σ. In fact, the error in a fixed smooth quadrature rule grows

exponentially to O(1) as target r′ approaches Γ. These inaccuracies may lead to numerical

instabilities. Therefore we adapt a local panelwise close evaluation scheme proposed in

Chapter II to accurately handle nearly singular hydrodynamic interactions. This is done

by first rewriting velocity field u represented by Stokes single or double layer potential in

terms of complex contour integrals with different types of singularity and then using a high-

order polynomial interpolation in complex plane to approximate the density function σ. We

may integrate analytically the resulting contour integral of each monomial using a two-term

recurrence. This specialized panel quadrature scheme provides uniform accuracy for targets

arbitrarily close to, or on, the curve.

5.3 Results and discussions

The numerical parameters used in this section are listed in Table 5.1. With these choices

of the parameters, we are able to achieve a close to machine-precision accuracy with the

112

Parameter Symbol non-dimensional value

Number of cilia N 32

Number of regularized stokeslets per cilium Ns 20

Regularization parameter ε 1/80

Radius of the outer wall R1 5

Radius of the inner wall R2 3

Quadrature points on the channel walls ≈ 3000

Quadrature points on each particle 128

Panel order 16

Number of waves Nw −10,−9,−8, · · · , 10

Phase difference ∆φ π
16Nw

Time step ∆t 1/200

Table 5.1: List of numerical parameters.

spatial scheme and a fourth order convergence with the temporal scheme. The numerical

validations are shown in the Appendix.

5.3.1 Mixing of tracers

We first apply the numerical method to study the mixing of passive tracers. Specifically,

we uniformly seed 5000 tracers inside the channel and color them blue or green as shown in

figure 5.3(a). We track the tracers for 10 beating cycles and visualize the positions of the

passive tracers in figure 5.3(b-d) for three different phase differences between neighboring

cilia. We use the number of waves formed by the cilia Nw as a proxy of the phase difference

∆φ to make sure that there are always complete waves in the channel. One can convert

between the two variables using the relation ∆φ = π
16
Nw. The waves travel in the counter-

clockwise direction if Nw > 0, which corresponds to the antiplectic metachronal waves, and

vice versa for Nw < 0, which corresponds to the symplectic metachronal waves. Clearly, in

the case of cilia beating in synchrony (Nw = 0), the tracers are barely mixed - a shear region

could be identified between the tips of the cilia and the outer channel wall, consistent with

113

previous numerical results [121, 39]. Note that although all the cilia are beating in synchrony,

the asymmetry between the effective and recovery strokes drives the flow over one cycle. The

mixing performance becomes much stronger as the phase difference becomes non-zero. Two

representative cases are shown in figure 5.3(c)&(d) with Nw = 1 and Nw = −9. In the case

of Nw = 1, the mixing region becomes much larger compare to the synchronized case while

a small shear region is still observable close to the outer channel wall. On the other hand,

the mixing region completely dominates the shear region when Nw = −9. Note that the

diminished shear region and the mixing region above the ciliary tips have not been reported

before in other geometries. The authors speculate that this is due to the narrowness of the

channel and the no-slip boundary condition on the channel walls. Additionally, the fact that

the fluid domain is closed and there is a lack of “fresh” supply of fluid could also be a reason

for the diminished shear region.

Figure 5.3: Uniformly seeded tracers mixed by cilia with different phase differences after 10 beating cycles.
(a) Initial seeding; (b) Nw = 0; (c) Nw = 1; (d) Nw = −9.

To quantify the mixing performance, following [182], we use the shortest distance between

particles of different colors as a measure. Let Nt be the total number of tracers of each color,

i, j be the indices of the blue and green tracers respectively. The mixing number could be

defined as

(5.26) m =

(
Nt∏
i=1

min
j

(|ri − rj|)2

)1/Nt

.

Note that the mixing number m is positive by definition; a well mixed state has a mixing

114

number close to 0.

-.5

0

.5

1

1.5

2

F
lu

x
 p

er
 c

y
cl

e

-3.4

-3

-2.6

-2.2

-1.8

ln
(m

/m
o
)

0 1 2 3 4 5 6 7 8 9 10
Cycles

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
ln

(m
/m

o
)

(a) (b)

(c)

-10

-5

0

5

10
Nw

-10 -5 10
Nw

0 5

-10 -5 10
Nw

0 5 -10 -5 10
Nw

0 5
0

5

10

15
×10-4(d)

T
ra

n
sp

o
rt

 e
ff

ic
ie

n
cyQ

η

Figure 5.4: Mixing and transport performance. (a) Mixing efficiency as a function of cycles for different
number of waves (phase difference). (b) Mixing efficiency after 10 cycles as a function of the number of
waves Nw. (c) Total flux per cycle as a function of Nw. (d) Transport efficiency as a function of Nw.

In figure 5.4(a) we show the mixing number normalized by the initial mixing number

mo = m|t=0 as a function of beating cycles in semi-logarithm axes. A wide range of phase

differences are depicted by the different line colors. The mixing numbers decrease fast in the

first couple of cycles and start to plateau afterwards. For all phase differences, the mixing

number decreases as a function of cycles, indicating that the ciliary beating keeps mixing the

fluid. The case that all cilia beat in synchrony (Nw = 0) has the worst mixing performance,

consistent with the “scallop theorem” [153]. The mixing numbers after 10 beating cycles

are shown in figure 5.4(b) as a function of number of waves Nw. The case that yields the

best mixing performance is Nw = −9, corresponds to a phase difference ∆φ = −9π/16. It

115

is also evident that the mixing performance is relatively robust to the phase difference. In

fact, almost all mixing numbers reach as low as e−3.4 ≈ 0.03 after normalization except for

the two cases where Nw = 0 and −1 (∆φ = 0 and −π/16). Note that this is in contrast to

what has been observed previously in [39] for an idealized geometry where they found the

mixing performances are sensitive to the phase differences and two clear local extrema were

identified.

We continue by examining the transport performance of the ciliary flow in the channel.

We quantify the transport by evaluating the total flux Q going through a vertical cross-

section {(x, y)|x = 0, R2 < y < R1} over one beating cycle. To be consistent with the

ciliary effective stroke direction, we take the positive x-direction as the positive direction for

the flux at this cross-section. By virtue of incompressibility, the flux going through different

cross-sections are equal to each other, which we verified in our simulations (results not shown

here). The total flux per cycle is shown in figure 5.4(c) as a function of phase differences.

Similar to the mixing performance, having all cilia beating in synchrony generates almost no

transport due to the scallop theorem. Additionally, antiplectic waves (Nw > 0) in general

perform better than symplectic waves (Nw < 0). The case that generates the largest flux is

Nw = 7 (∆φ = 7π/16 ≈ 0.44π), which is similar to what authors in [39] report, albeit in

different geometries. To determine the transport efficiency, we follow the previous works of

[142, 42, 40] and [71], and define the dimensionless transport efficiency η as

(5.27) η = µ`−1Q
2

W
,

where W = 1
Nc

∑Nc
i

∫ T
0

∫ `
0

max(0, q ·α)dsdt is the power loss over one beating cycle averaged

over per cilium, α = ‖ ˙t(s)‖ t×ṫ
‖t×ṫ‖ is the angular velocity vector, q = t′′ × t+ t×

∫ `
s
f(s̃, t)ds̃

is the internal moments generated along each cilium, and only positive works are accounted

for. The results show that the phase difference that optimizes transport efficiency, ∆φ =

3π/16 ≈ 0.19π, is smaller compare to that optimizes the total flux, due to the high power

116

loss at larger phase differences (power loss results not shown here). Overall, the transport

efficiency in viscous fluid remains small, consistent with previous works.

To further illustrate the effects of geometries on the mixing performance, we study the

mixing results of ciliary beating inside a “wavy channel”. Specifically, we perturb the outer

channel wall such that the boundary can be written as z = x+iy = R1(1+0.1 cos(5θ))√
1+0.12/2

exp(iθ), θ ∈

[0, 2π) in complex form. The coefficient in the denominator is to scale the channel such that

the fluid domain has the same area compared to the regular circular channels. The coefficient

of the cosine term perturbs the radius of the outer boundary by about ±10%. In other words,

the narrowest and the widest channel widths are about 1.5 and 2.5 unit length. The initial

seeding and the tracer positions after 10 beating cycles are shown in figure 5.5(a)&(b) with

Nw = 10, which yields the best mixing results as shown in figure 5.5(c). When compared

to figure 5.4, it is clear that not only the number of waves that yields the best mixing

performance changes from −9 to 10, but also the overall mixing performance is negatively

affected by the presence of the wavy channel – indicated by the mixing number ln(m/mo)

increased from −3.4 to about −2.8 (in other words, m/mo increased from e−3.4 ≈ 0.03 to

e−2.8 ≈ 0.06). The effect of the wall perturbation on mixing is even apparent to the eye: in

figure 5.5(b), at each of the humps on the outer wall, a shear region could be observed which

does not exist in the case of the regular Taylor-Couette geometry.

-3

-2.5

-2

-1.5

ln
(m

/m
o
)

(∆φ= 10π /16)

(a) (b) (c)

Nw = 10

-10 -5 10

Nw

0 5

Figure 5.5: Uniformly seeded tracers mixed by cilia in a wavy channel. (a) Initial seeding. (b) Tracers after
10 cycles for Nw = 10 (∆φ = 10π/16). (c) Mixing efficiency after 10 cycles as a function of Nw.

117

5.3.2 Finite size particles

In this subsection we study the full cilia-channel-particle problem and compare the results

with passive tracers, in an effort to showcase the effects of the particle size in such problems.

(See Section 5.2.3 on rigid particle discretization with no-slip, zero net force and net torque

condition.)

We start by uniformly seeding 20 circular particles of radius rp inside the channel and

trace their centroids within one ciliary beating cycle. With small particle size, as shown

in the top row of figure 5.6, the differences between the passive tracers and the finite size

particles are hardly visible, as expected. With large particle size, however, the difference

becomes much more evident. Specifically, in the first two phase differences (∆φ = 0, π/16),

the motions of the large particles are close to those of the passive tracers, albeit having

noticeable shorter distance traveled (dashed curves have shorter lengths compare to solid

curves). In the case of large phase difference (∆φ = −9π/16), the difference between the

trajectories of the large particles and the tracers are even more evident.

The radial and azimuthal positions of the tracer and particle initially centered at (0, 4.5)

are shown in figure 5.7 (a)&(b). It is clear that while the differences between the tracer

trajectories and small particle trajectories are minimal, large particles deviate from the

tracer trajectory since the beginning. Particularly, the movements of the tracers and the

small particles consist of significant deviations in the radial direction, the large particle

experiences limited radial deviation throughout the cycle and move in the azimuthal direction

only. The net displacement of the particle over one beating cycle is shown in figure 5.7(c) as

a function of Nw. The net displacement of the large particle is almost always smaller than

those of the tracers and the small particles except for two special cases where Nw = −3 and

5. Specifically, the net displacement of the particle decreases as much as 40% in the case

where Nw = 1.

118

Synchronous Antiplectic Simplectic

(∆φ = 0) (∆φ = π / 16) (∆φ = - 9π / 16)

(a) (b) (c)

(d) (e) (f)

Nw = 0 Nw = 1 Nw = - 9

Figure 5.6: Tracers’ trajectories compared to rigid particles’ trajectories after one beating cycle. Tracers’
initial and ending positions are shown in black and red crosses respectively; particles’ initial and ending
positions are shown in open and solid circles. The trajectories of the tracers and the particle centers are
shown in solid and dashed lines respectively. (a)-(c): particle radius is rp = 0.1; (d)-(f): particle radius is
rp = 0.4. Left to right: Nw = 0, 1,−9.

t t

d

(a) (b) (c)

r

×π

0 0.2 0.4 0.6 0.8 1
4

4.2

4.4

4.6

4.8

0 0.2 0.4 0.6 0.8 1

0.44

0.46

0.48

0.5

θ

-10 -5 0 5 10

Nw

0

0.2

0.4

0.6

0.8

1

Figure 5.7: Particle displacement over one beating cycle. (a-b) The radial (r) and the angular (θ) positions
of the particle (tracer) during one beating cycle with Nw = −9 (∆φ = −9π/16). (c) The total displacement
of the particle (tracer) after one beating cycle as a function of Nw. Large (rp = 0.4) and small (rp = 0.1)
particle results are shown in blue and red lines respectively; tracer result is shown in red dash lines.

We conclude this section by studying the effects of the particle sizes in a shear flow. In

particular, we seed a cluster of 4 particles of radius 0.1 in a square lattice fashion inside the

channel. The zoomed-in view is shown in figure 5.8(a). We track the motion of the 4 particles

119

over one beating cycle and measure the angle formed by the bottom 3 particles θp as a metric

of shear deformation. Passive tracers with the same initial positions are also simulated, with

the bottom angle denoted by θt. θp and θt are shown in figure 5.8(b) as functions of Nw. In

general, the two angles follow the same trend as we sweep through Nw. A noticeable fact

is that θp is almost always closer to 90◦ compare to θt, meaning that the finite-size of the

particle is resisting shear deformation when they are in close proximity. Lastly, we track the

displacement of each particle over one cycle and average across all particles as a measure

of net transport. The average displacement as a function of Nw is shown in figure 5.8(c).

Interestingly, having a finite-size does not always result in a smaller or a larger displacement.

In fact, for most cases where Nw > 0 or Nw ≤ −7, the cluster of finite-size particles moves

farther than the passive tracers; whereas the cluster of passive tracers move farther than

particles when −6 ≤ Nw < 0. The differences between the displacements of the particles

and the tracers reach 10% in most cases.

0

20

40

60

80

100

120

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

3

3.5

4

4.5

5

θ

θtθp

(a) (b)

0

0.2

0.4

0.6

0.8

1

av
er

ag
e

d
is

p
la

ce
m

en
t

(c)

x

y

-10 -5 10
Nw

θp

θt

no shear (90°)

0 5 -10 -5 100 5
Nw

Figure 5.8: Shear deformation for tracers and rigid particles. Four tracers/particles initially seeded as a
square lattice translated by cilia driven flow. (a) A zoomed-in view of the Taylor-Couette device with
Nw = 2 (∆φ = 2π/16). Initial positions are shown in open diamonds/dashed circles, final positions are
shown in closed diamonds/circles. θt and θp denotes the bottom angle of the deformed lattice after one
beating cycle for tracers and particles respectively. (b) θt (dashed line) and θp (solid line) as functions of
Nw. (c) Displacements of the tracers and particles over one cycles, averaged for all tracers (dashed line) and
particles (solid line).

5.4 Conclusions and future work

We presented a hybrid numerical method for simulating cilia-driven particulate flows in

complex domains. It features a well-conditioned BIE scheme for handling the moving rigid

120

particles and stationary walls and the method of regularized Stokeslets for handling the cilia.

We emphasize that, due to the linearity of Stokes flow, each of the computational modules

can be replaced with alternative formulations (e.g., a slender-body theory for handling cilia)

or software implementations.

We applied this method to showcase several examples with varying degree of complexity.

In particular, we systematically studied the mixing of fluid tracers inside a ciliary Taylor-

Couette device. The mixing results are qualitatively different from earlier results obtained

using ideal geometries. Specifically, we demonstrated a case where the mixing region com-

pletely dominated the transport region which hasn’t been shown before. We also showed

that a slight perturbation in the geometry could lead to a global change in the mixing per-

formance: the mixing number increased by about a factor of 2 with the perturbation of the

geometry (from e−3.4 ≈ 0.03 to e−2.8 ≈ 0.06). We believe the strong influence of the geometry

on the mixing performance is a clear indication that efficient numerical methods that can

resolve complex geometry flows are essential for bringing critical insights into ciliary flows

observed in natural and engineering applications. Furthermore, we studied the transport

of finite-size particles inside the confining geometry. In particular, we showed that small

particles in general behave consistently with fluid tracers (this is a limiting case where the

particle size is zero), while large particles impede ciliary-generated movements, as can be

expected. Additionally, we demonstrated that finite-size particles in close proximity resist

shear deformation.

We are currently working on extending our work on several fronts. First, we will extend

our method to two-way coupled systems, specifically to deformable particles interacting

with elastic cilia, capitalizing on prior works such as [70] and [198, 160]. Conceptually, our

computational scheme can be extended in a straightforward manner to accommodate other

two-way coupled models such as [37, 17, 31]. Specifically, in most of the two-way coupled

121

models, the force density along the ciliary centerline, f , is a function of configuration or

time. Consequently, one can treat f as known and move the related terms in (5.14) to the

right-hand-side and solve for σ only. The ciliary dynamics could then be computed via the

no-slip boundary condition (5.3). We plan to explore these in the near future. Second, we

will consider shape optimization problems, such as optimizing the confining geometry for

a given ciliary function (e.g., fluid transport, mixing, etc.) using ideas proposed in [24].

Extension of this to work to three-dimensional problems is another natural direction.

CHAPTER VI

Optimal Slip Velocities of Micro-swimmers with Arbitrary
Axisymmetric Shapes

Preamble. This chapter presents a computational approach for determining the optimal

slip velocities on any given shape of an axisymmetric micro-swimmer suspended in a viscous

fluid. The objective is to minimize the power loss to maintain a target swimming speed,

or equivalently to maximize the efficiency of the micro-swimmer. Owing to the linearity

of the Stokes equations governing the fluid motion, we show that this PDE-constrained

optimization problem reduces to a simpler quadratic optimization problem, whose solution is

found using a high-order accurate boundary integral method. We consider various families of

shapes parameterized by the reduced volume and compute their swimming efficiency. Among

those, prolate spheroids were found to be the most efficient micro-swimmer shapes for a given

reduced volume. We propose a simple shape-based scalar metric that can determine whether

the optimal slip on a given shape makes it a pusher, a puller or a neutral swimmer. This is

joint work with Hanliang Guo, Ruowen Liu, Marc Bonnet and Shravan Veerapaneni, and is

published in [73]. My contribution in this study is developing the boundary integral solver.

6.1 Introduction

The squirmer model [118, 21] is widely adopted by mathematicians and physicists over

the past decades to model ciliated micro-swimmers such as Opalina, Volvox and Parame-

122

123

cium [113]. On a high level, this continuum model, sometimes referred to as the envelope

model, effectively tracks the motion of the envelope formed by the tips of the densely-packed

cilia, located on the swimmer body, while neglecting the motion below the tips. Individual

and collective ciliary motions could be mapped to traveling waves of the envelope on the

surface. Assuming no radial displacements of the surface and time-independent tangential

velocity led to the simpler steady squirmer model [147], wherein, a prescribed slip velocity on

the boundary propels the squirmer. While the model was originally designed for spherical

shapes, it has since been adapted to more general shapes and has recently been shown to

capture realistic collective behavior of suspensions [110].

Shape is also a key parameter in the design of artificial micro-swimmers for promising

applications such as targeted drug delivery. In particular, the squirmer model is often em-

ployed to study the propulsion of phoretic particles, which are micro- to nano-meter sized

particles that propel themselves by exploiting the asymmetry of chemical reactions on their

surfaces [7, 56]. A classical example is the Janus sphere [87], which consists of inert and

catalytic hemispheres. When submerged in a suitable chemical solution, the asymmetry be-

tween the chemical reactions on the two hemispheres creates a concentration gradient. The

gradient creates an effective steady slip velocity on the surface via osmosis that naturally

suits the squirmer model. Besides the classical Janus spheres and bi-metallic nanorods [146],

more sophisticated shapes have also been proposed recently, such as two-spheres [194, 144],

spherocylinder [193], matchsticks [132] and microstars [173]. Interestingly, [193] showed that

special shapes of phoretic particles exhibit novel properties such as ‘edge-following’ when

put close to chemically patterned surfaces.

Studying the efficiency of biological micro-swimmers is pivotal to understanding natural

systems and designing artificial ones for accomplishing various physical tasks. The mechan-

ical efficiency [118] of the spherical squirmer can be directly computed, as its rate of viscous

124

energy dissipation, or power loss, can be written in terms of the modes of the squirming

motion. [128] found the optimal swimming strokes of unsteady spherical squirmers by em-

ploying a pseudo-spectral method for solving the Stokes equations that govern the ambient

fluid and a numerical optimization procedure. Their approach, however, does not readily

generalize to arbitrary shapes. On the other hand, [116] analytically investigated the effi-

ciency of micro-swimmers of prolate spheroids shapes with a time-independent ‘treadmilling’

slip velocity and found that the optimal efficiency increases unboundedly with the aspect ra-

tio. [202] optimized the steady slip velocity and the shape at the same time, with constraints

on its volume and maximum curvature. The work considered power loss inside the squirmer

surface, which could be an order of magnitude higher than the outside power loss [99, 94].

However, it assumed that the tangential force on the squirmer surface is linear to its local

slip velocity, which is not always the case for microswimmers.

In this chapter, we address the following broader questions: Given an axisymmetric shape

of a steady squirmer, what is the slip velocity that maximizes its swimming efficiency? The

optimization problem, being quadratic, is reduced to a linear system of equations solved by

a direct method, while forward exterior flow problems are solved using a boundary integral

method. Those combined features produce a simple and efficient solution procedure. We

introduce the optimization problem and our numerical solver in Section 6.2, present the

optimal solution for various shape families, summarize the correlations between the shapes

and the optimal slip velocities, and propose a shape-based scalar metric to predict whether

the optimized swimmer would be a pusher or a puller in Section 6.3, followed by conclusions

and a discussion on future research directions in Section 6.4.

125

6.2 Problem Formulation and Numerical Solution

6.2.1 Model

Consider an axisymmetric micro-swimmer whose boundary Γ can be obtained by rotating

a curve γ about e3 axis as shown in Fig. 6.1(a). Using the arc-length s ∈ [0, `] to parameterize

the generating curve, its coordinate functions can be written as γ(s) = (x(s), 0, z(s)). Here,

we restrict our attention to shapes of spherical topology, therefore, all shapes considered

satisfy the conditions x(0) = x(`) = 0 and x(s) > 0, ∀ s ∈ (0, `). We assume that the micro-

swimmer is suspended in an unbounded viscous fluid domain. The governing equations for

the ambient fluid in the vanishing Reynolds number limit are given by the Stokes equations:

(6.1) − µ∇2u+∇p = 0, ∇ · u = 0,

where µ is the fluid viscosity, p and u are the pressure and flow field respectively. In the

absence of external forces and imposed flow fields, the far-field boundary condition simply is

(6.2) lim
r→∞

u(r) = 0.

A tangential slip uS defined on γ propels the micro-swimmer forward with a translational

velocity U in the e3 direction. Its angular velocity as well as the translational velocities in

the e1 and e2 directions are zero by symmetry. Consequently, the boundary condition on γ

is given by

(6.3) u = uSτ + Ue3,

where τ is the unit tangent vector on γ. Note that, in order to avoid singularities, the slip

must vanish at the end points:

(6.4) uS(0) = uS(`) = 0.

Due to the axisymmetry of Γ, the required no-net-torque condition on the freely-suspended

micro-swimmer is automatically satisfied while the no-net-force condition reduces to one

126

θ(a) (b) (c)

(d)

1µm

1µm

Figure 6.1: (a) Schematic of the micro-swimmer geometry. The shape is assumed to be axisymmetric,
obtained by rotating the generating curve γ about the e3 axis. (b) Biological swimmers ([122], Chap 4
Fig 4.6). (c) Scanning electron microscope (SEM) image of a single half-coated Janus particle; inset: the
dark-blue shows the location of the Pt cap. [35] (d) SEM image of a phototactic swimmer, which consists of
a haematite particle extruded from a colloidal bead. [10]

scalar equation

(6.5)

∫
Γ

f(r) · e3 dSr = 2π

∫
γ

f3(r)xdsr = 0,

where f is the active force density on the micro-swimmer surface (negative to fluid traction)

and f3 is its e3 component.

We quantify the performance of the micro-swimmer with slip velocity uS by its power loss

while maintaining a target swimming speed U . The power loss is defined by

(6.6) P =

∫
Γ

f · u dSr = 2π

∫
γ

f · (uSτ + Ue3)xdsr.

Note that P (different from Stokes pressure integral operator P[σ]) can be made arbitrarily

small by lowering the swimming speed U . It is therefore necessary to compare the power

loss of different swimmers that have the same swimming speed U . We note that a lower P

with a fixed shape and swimming speed U corresponds to a higher efficiency, η = CDU
2/P ,

as defined by [118], where CD is the drag coefficient of the given swimmer.

127

6.2.2 Boundary integral method for the forward problem

Before stating the optimization problem, we summarize our numerical solution procedure

for (6.1) – (6.3). Again, we fix the swimming speed U , referred to from here onwards as

the“target swimming speed”, and assume that the tangential slip uS is given. In general, an

arbitrary pair of uS and U does not satisfy the no-net-force condition (6.5). This condition

will be treated as a constraint in our optimization problem. Therefore, the goal is to find the

active force density f given the velocity on the boundary γ as in (6.3). We use the single-

layer potential ansatz [152], which expresses the velocity as a convolution of an unknown

density function σ with the Green’s function for the Stokes equations G, from which the

force density can be determined by convolution with the traction kernel T :

(6.7) u(r′) =

∫
Γ

G(r′ − r)σ(r) dSr, f(r′) = −1

2
σ (r′) + nr′

∫
Γ

T (r′ − r)σ (r) dSr,

where n is the unit normal vector pointing into the fluid. We can solve for σ by taking

the limit of r′ → Γ in the above ansatz and substituting in (6.3). The boundary integrals

in (6.7) become weakly singular on Γ, requiring specialized quadrature rules. Here, we use

the approach of [197] which performs an analytic integration in the θ−direction reducing

the integrals to convolutions on the generating curve and applies a high-order quadrature

rule designed to handle the log−singularity of the resulting kernels. More details on the

numerical scheme are provided in Appendix H.8.

6.2.3 Optimization problem and its reformulation

The goal is to find a slip profile uS∗(s) that minimizes the power loss P while maintaining

the target swimming speed U of a given axisymmetrical micro-swimmer. Let J be the

objective function, here equated to P defined in (6.6), and F be the net force functional:

(6.8) J(uS) := 2π

∫
γ

f(uS) · (uSτ + Ue3)xds, F (uS) := 2π

∫
γ

f(uS) · e3 xds.

128

They are slip velocity functionals as their values are completely determined by uS. The

optimization problem can now be stated as follows:

(6.9) uS∗ = arg min
uS∈U

J(uS) subject to F (uS) = 0,

with U being the space of the all possible slip velocities satisfying (6.4). Notice that the

no-net-force condition (6.5) is added as a constraint here.

By (6.3) and linearity of the Stokes equation (6.1), the forward solution u and the net force

F are affine in uS (u is linear in uS if F = 0). Consequently, J(uS) is a quadratic functional

and (6.9) is inherently a quadratic optimization problem. To make it more explicit, consider

a discretized version of the slip optimization problem where uS is sought in the form

(6.10) uS(r) =
m∑
k=1

Uξk u
S
k(s),

for some set of m basis functions uS
k satisfying (6.4). We adopt a B-spline formulation for

these basis functions (see Appendix G.7 for more details). Let (u0, p0,f0) and (uk, pk,fk)

(with 1 ≤ k ≤ m) denote the solutions of the forward problem (6.1) with u = e3 and

u = uS
kτ being their boundary conditions on γ, respectively.

The net force F (uS) is then given by F (uS) = 2πUF(ξ), where

(6.11) F(ξ) :=

∫
γ

(
f0 +

m∑
k=1

ξkfk

)
· e3 xds = F0 + F Tξ.

Here ξ = (ξ1, . . . , ξm)T, F = (F1, . . . , Fm)T, and Fk =
∫
γ
fk · e3 xds for k = 0, 1, · · · ,m.

Similarly, we have J(uS) = 2πU2J (ξ), where

(6.12) J (ξ) :=

∫
γ

(
f0 +

m∑
k=1

ξkfk

)
·

(
e3 +

m∑
j=1

ξju
S
jτ

)
xds = ξTAξ + 2ξTF + F0.

The elements of the m×m matrixA are given by Akj =
∫
γ
fk ·uS

jτ xds. We have used the fact

that
∫
γ
f0 ·uS

kτ xds =
∫
γ
fk ·e3 xds for the linear term by the reciprocal theorem [75]. We note

that A is symmetric, also by the reciprocal theorem. Physically speaking, ξTAξ represents

129

the scaled power loss of the swimmer being held still with its slip velocity parameterized by

ξ, implying that A is positive-definite; ξTF is the scaled power loss of the active force along

the swimming direction; F0 is the scaled power loss of towing a rigid body with the same

shape as the micro-swimmer at unit speed.

Now, the discretized optimization problem becomes

(6.13) min
ξ∈Rm

J (ξ) subject to F(ξ) = 0.

Introducing the Lagrangian L(ξ, λ) := J (ξ) − 2λF(ξ), the slip optimization problem is

reduced to solving the first-order stationarity equations for L given by

(6.14)

(
A −F
−F T 0

) (
ξ

λ

)
=

(
−F
F0

)
.

Note that forming the matrix requires (m + 1) solves of the forward problem (6.1) with

appropriate boundary conditions. Since the micro-swimmer is assumed to be rigid, the

single layer potential operator as well as the traction operator, required for forming A and

F , are both fixed for a given shape. Therefore, we only need to form them once.

6.3 Results

We tested the convergence of our numerical solvers rigorously; the boundary discretization

for all the numerical examples presented here is chosen so that at least 6-digit solution

accuracy is attained (determined via self-convergence tests). The optimal slip velocity for a

particular prolate spheroid tested against the (truncated) analytical solution given by [116] is

shown in Fig. 6.2. Our numerical solution is indistinguishable against the analytical solution

at their finer truncation level L = 10. Additional validation results can be found in the

Appendix H.8.

Here we focus on analysis of the optimal solutions for various micro-swimmer shape fami-

lies. Let V be the volume enclosed by the swimmer. We normalize lengths by the radius of a

130

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 6.2: Optimal slip velocity compared to [116, Figure 4]. The aspect ratio of the prolate spheroid
is (1 + 2.52)1/2. Our numerical optimization is depicted in black solid curve, while dash curves represent
analytical solutions at different truncation levels L = 4 (red) and L = 10 (blue).

sphere of equivalent volume i.e., by R = (3V/4π)1/3, and velocities by the swimming speed U .

A simple calculation shows that, for a micro-swimmer submerged in water of size R = 5µm

and the speed of one body-length per second, the Reynolds number (Re) ≈ 5×10−5; thereby,

confirming the validity of the Stokes equation (6.1). We will use the dimensionless reduced

volume, defined by ν = 6
√
πV/A3/2 where A is the surface area of the given shape, to char-

acterize each shape family. The largest possible value of ν, attained by spheres, is ν = 1,

while for example ν decreases monotonically for spheroids as the aspect-ratio is increased.

We first consider six different micro-swimmer shapes and plot their optimal slip profiles

obtained by solving (6.14) in Fig. 6.3. In each case, we also show the flow fields in both the

body and lab frames. The optimal slip velocities plotted against the arclength, measured

from north pole to south pole, are shown in the insets. In the case of a sphere (Fig. 6.3(a)),

we recover the standard result that the optimal profile is a sine curve [128]. The optimal slip

velocity of the prolate swimmer, shown in Fig. 6.3(b), ‘flattens’ the sine curve in the middle

while that of the oblate swimmer, shown in Fig. 6.3(c), ‘pinches’ the sine curve. Additionally,

the peak value of the optimal slip velocity is low for the prolate swimmer, and high for the

oblate swimmer, compared to the spherical swimmer.

Next, we consider three shapes corresponding to different shape families. In Fig. 6.3(d),

131

we consider the ‘wavy’ configuration obtained by adding high-order axisymmetric modes to

the spherical shape. The optimal slip velocity follows the general trend for that of (a), while

lower slip velocities are observed at the troughs, qualitatively consistent to those obtained

in [202]. The spherocylinder (Fig. 6.3(e)) resembles closely the prolate spheroid of Fig. 6.3(b)

with the same aspect ratio, its optimal slip velocity being nearly the same (albeit with a

slightly narrower plateau and higher peak slip velocity). Finally, we investigate the optimal

slip velocity of the stomatocyte shape (Fig. 6.3(f)), which is the only non-convex shape among

those considered here. Similar to that of the oblate swimmer, the general slip velocity is like

a pinched sine wave. However, one distinguishing feature is that slip velocity is nearly zero

over part of its surface, namely the cup-like region in its posterior.

-3 0 3 -3 0 3 -3 0 3
-3

3

0

-3

3

0

-3 0 3 -3 0 3 -3 0 3
0

2

1

0

2

1

2

0
0 1

2

0
0 1

2

0
0 1

2

0
0 1

2

0
0 1

2

0
0 1

(a) (b) (c)

(d) (e) (f)

Lab frameBody frame

A
B

A
B

Figure 6.3: Flow fields and the optimal slip velocity for a few swimmers with typical shapes: (a) Sphere,
(b) Prolate spheroid, (c) Oblate spheroid, (d) Wavy, (e) Spherocylinder, (f) Stomatocyte. Insets show the
optimal slip velocities as functions of arc-length along the generating curve. The optimization is performed
using 21 control points on the generating curve for representing the slip velocity. The colormap holds for
both the slip velocity and the flow fields.

The optimal slip velocity strongly depends on the local geometry of the micro swimmer.

132

Generally speaking, the optimal slip velocity is high if the material point is far away from

the axis of symmetry. This could be seen most clearly in the cases of spheroids Fig. 6.3(a)-

(c). Specifically, the peak value of the optimal slip velocity is the highest for the oblate

spheroid and lowest for the prolate spheroid among the three. Intuitively, an object that

has a larger radius would endure a higher fluid drag compare to one with a smaller radius

when moving in the same speed. Thus extra effort, in the form of slip velocity, would need

to be put in to balance the drag. Additionally, the slip velocity is high when the orientation

of the generating curve aligns with the swimming direction (axis of symmetry), and low

otherwise. This is understandable as the slip velocity is constructed to be tangential to the

generating curve, and a slip velocity perpendicular to the swimming direction generates little

swimming velocity at the cost of additional power loss. This could be seen most clearly in

the wavy shape Fig. 6.3(d). Specifically, comparing the two points A & B marked in the

panel, although point B has a larger radius than point A, the slip velocity of point B is lower

because the orientation of the generating curve is almost perpendicular to the swimming

direction.

Additionally, we note that the optimal slip velocity is proportional to the target swimming

speed U due to linearity of the Stokes equations. As a consequence, while the results only

showcase micro-swimmers propelling themselves in the positive e3 direction, the optimal

solution uS∗ for swimming in the opposite direction is merely a change of sign.

Micro-swimmers can be loosely classified as pushers that repel fluid from the body along

the axis of symmetry, pullers that draw fluid to the body along the axis of symmetry,

or neutral swimmers that do not repel or draw fluid along the axis of symmetry [113].

At first sight, the flow fields for all optimal swimmers studied here seem to be neutral

swimmers. A closer look into the stresslet tensor Str, however, reveals a more interesting

story. For axisymmetric swimmer whose swimming direction is e3, the stresslet tensor could

133

be simplified to Str = S(e3e3− 1
3
I), where I is the identity matrix. The sign of S characterizes

whether the swimmer is a pusher (S < 0) or a puller (S > 0).

It is easy to prove by contradiction that the optimal ‘front-back symmetric’ swimmers can

not be pushers nor pullers: flipping the direction of the slip velocity would make a pusher

into a puller of the same shape with an equal (minimal) power loss, contradict to the unique

solution guaranteed by the quadratic nature of the problem. However, the contradiction does

not apply for ‘front-back asymmetric’ swimmers as flipping the swimming direction would

essentially change the shape of the swimmer. In fact, the optimal ‘front-back asymmetric’

swimmers are not always neutral. For example, the stomatocyte shown in Fig. 6.3(f) is a

puller where the stagnation point in the lab frame’s flow field is in front of the micro-swimmer.

Conventionally, pusher and puller particles have been associated with ‘tail-actuated’ swim-

mers (e.g. spermatozoa) and ‘head-actuated’ swimmers (e.g. Chlamydomonas reinhardtii)

respectively [166]. It is however not immediately clear whether a micro-swimmer should be

a pusher (tail-actuated) or a puller (head-actuated) to optimize its efficiency when given an

arbitrary shape. Here, capitalizing on our earlier observation on the dependence of local

geometry and optimal slip velocity, we propose a shape-based scalar metric A that can be

used to predict whether the optimal swimmer for a given shape is a pusher or puller without

the need of optimization. Simply speaking, A quantifies the relative ‘nominal actuation’ of

the ‘head’ part and the ‘tail’ part of the swimmer based solely on the swimmer shape:

(6.15) A = log

(∫
γh
τ · e3 x

2ds/
∫
γh
xds∫

γt
τ · e3 x2ds/

∫
γt
xds

)
,

where the generating curve γ is divided into two curves γ = γh ∪ γt; γh represents the

generating curve of the head part and γt represents the generating curve of the tail part.

The numerator and denominator inside the logarithm function are the surface averages of

the nominal actuation for the head and tail part respectively. The nominal actuation is

stronger if the generating curve aligns with the swimming direction better (larger τ · e3),

134

-0.2 -0.1 0 0.1 0.2
-25

-20

-15

-10

-5

0

5

10

15

20

25

Spherical harmonics

Snowman

Wavy

Stomatocyte

Figure 6.4: A provides a simple prediction of the swimmer type. Swimmers with A < 0 are predicted to be
pushers (S < 0), and swimmers with A > 0 are predicted to be pullers (S > 0). Swimmers in the first and
third quadrants are correctly predicted. Shape families are shown in Fig. 6.6 and the generating curves are
given in Appendix I.9.

or if the material point is farther away from the axis of symmetry (larger x). For front-

back symmetric shapes, we naturally divide γ in the middle thus A ≡ 0; for front-back

asymmetric shapes, we divide γ at the arclength where x is the largest along the generating

curve s∗ = arg maxs∈γ x(s), or the average s∗ if arg max returns more than one s∗. Positive A

corresponds to shapes whose head part actuates stronger than its tail part, which indicates

that the micro-swimmer is likely to be a puller; similarly negative A indicates that the

micro-swimmer is likely to be a pusher.

The predictions based on A for various families of asymmetric shapes are shown in Fig. 6.4.

Specifically, most of the shapes are correctly predicted as they lie in the first and the third

quadrants; the ones that are misclassified, on the other hand, have close-to-zero A and S,

which means the head and tail are similarly actuated and the optimal swimmers are close

to neutral.

Next, we study the optimal active force density f corresponding to the same shapes. Its

normal and tangential components are plotted in Fig. 6.5. We note that by the no-net-force

condition (6.5), the power loss reduces to P = 2π
∫
γ
f · (uSτ)xds, implying that only the

135

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

0 0.25 0.5 0.75 1
-15

-10

-5

0

5

10

15

(a) (b) (c)

(d) (f)

normal

tangential

Figure 6.5: Active force density on the swimmer surface as functions of arc-length along the generating
curve. Normal and tangential components of the force densities are depicted by blue and orange curves.
Scaled optimal slip velocities 2uS∗κR/U are shown in dotted curves, where κ is the local curvature of the
generating curve. Insets are the shapes of the corresponding swimmers.

tangential component contributes to the power loss. The change in tangential forces as a

function of arclength loosely resembles that of the optimal slip velocity, mediated by the

local curvature of the generating curve. Qualitatively, a low local curvature suppresses the

traction relative to the slip velocity, and a high local curvature amplifies it. Slip velocities

scaled by their local curvatures are shown in black dotted curves for a reference.

In Fig. 6.6, we plot the minimal power loss as a function of the reduced volume for various

shape families. The power loss is scaled by the minimal power loss of a spherical swimmer

with the same volume Jo = 12πµRU2 with R = (3V/4π)1/3. The minimal power loss for

prolate spheroids monotonically decreases as the shape gets more slender; in contrast, it is

well-known that the shape with the minimal fluid drag is one with approximately 2:1 aspect

ratio [150]. By slender body theory, the power loss of a prolate spheroids scales as ∼ µα2/3U2,

where α is the aspect ratio (see [116]). On the other hand, the minimal power loss for oblate

136

spheroids grows rapidly as the reduced volume is increased. Shapes of the spherocylinder

family behave similarly to the prolate spheroids, and converge to the spherical case when

the length of the cylinder reduces to 0, as expected. It is however worth pointing out that

spherocylinder costs more power loss than prolate spheroids with the same reduced volume;

this relates to the fact that the peak slip velocity for spherocylinder is higher than that of the

prolate spheroids (Fig. 6.3 (b)&(e)). The stomatocyte family is constructed by ‘pulling’ the

rim of the shape, effectively making the shape ‘taller’ and curls deeper and deeper inside. We

find that ‘taller’ shapes require lower power loss for this shape family, which is qualitatively

consistent with the spheroid family. Finally, we note that the power loss of the snowman

family (two spheres attaching with each other) is quite robust to the relative sizes of the two

spheres. The power loss is only about 25% higher than that of a single sphere in the limit

case where the two spheres are of the same size.

A few other examples that take more generic shapes are also shown in Fig. 6.6. The

optimal slip velocities are colored on their surfaces while their power loss is shown in the form

of scatter points. The generating curves of these shapes are formed by spherical harmonics.

We note that the optimal performance of shapes that appear similar can be very different.

For example, the difference in power loss between examples 6 and 8 is about 150% of the

spherical swimmer, or 60% of example 6. This result is a strong indicator that the slip

velocity of the artificial swimmer, as well as its shape, must be carefully designed to achieve

good performance.

We note that the minimal power loss for all the shape families considered here are bounded

from below by the curve for prolate spheroids. However, since the current work does not

optimize shape, whether the prolate spheroids are universally optimal remains to be tested.

137

0

1

2

3

4
1 5

2 6

3 7

4 8

×100%

0 21.00.7 0.8 0.9

9

10

11

125 9

6

3

1

2

4 10

11

12

Stomatocyte

Spherocylinder

Snowman

Spheroids

7

8

Figure 6.6: Scaled minimal power loss of different shape families, plotted against the reduced volume ν.
Example shapes are color-coded by the optimal slip velocity. The dotted line shows the approximation of
power loss given by the slender body theory P ∼ µα2/3U2 [116].

6.4 Conclusions

In this work, we provided a solution procedure for the PDE-constrained optimization

problem of finding the optimal slip profile on an axisymmetric micro-swimmer that minimizes

the power loss required to maintain a target swimming speed. While it can be extended to

other objective functions, we exploited the quadratic nature of the power loss functional in

the control parameters to simplify and streamline the solution procedure. In the general case,

an adjoint formulation and iterative optimization algorithms can be employed. Regardless of

the formulation, however, the use of boundary integral method to solve the Stokes equations

greatly reduces the computational cost due to dimensionality reduction. Solving any of the

examples presented in this work, for example, required only a few seconds on a standard

laptop. Extending our procedure to fully three-dimensional (non-axisymmetric) shapes is

straightforward; the key technical challenge is incorporating a high-order boundary integral

solver, for which open-source codes are now available (e.g., see [55]).

138

Based on our numerical results, we came up with a heuristic metric that can classify the

optimal swimming pattern for a given shape. It measures relative actuation of the ‘head’

and the ‘tail’ of the swimmer and predicts whether the optimal swimmer is head-actuated

(puller) or tail-actuated (pusher). This metric could inform the early design of optimal slip

for a given shape without the need for carrying out numerical optimization.

The optimization procedure developed in this work can directly be employed in the design

pipeline of autophoretic particles. For example, in the case of diffusiophoresis, the computed

optimal slip profile for a given shape can be used to formulate the chemical coating pattern

of the phoretic particles. We acknowledge that the cost function for such optimization may

need to be modified accordingly to reflect the chemical nature of the problem [163]. Another

natural extension of this work is to relax the steady slip assumption and consider time-

periodic squirming motion as done in [128]. This would be particularly useful for studying

the ciliary locomotion of micro-organisms with arbitrary shapes. Furthermore, building

on the recent work of [24], we are developing solvers for the shape optimization problem

of finding the most efficient micro-swimmer shapes under specified area, volume or other

physical constraints.

CHAPTER VII

Optimal Ciliary Locomotion of Axisymmetric Microswimmers

Preamble. Many biological microswimmers locomote by periodically beating the densely-

packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms

of ciliated microswimmers have been extensively studied both from the analytical and the

numerical point of view, the optimization of the ciliary motion of microswimmers has received

limited attention, especially for non-spherical shapes. In this chapter, using an envelope

model for the microswimmer, we numerically optimize the ciliary motion of a ciliate with

an arbitrary axisymmetric shape. The forward solutions are found using a fast boundary

integral method, and the efficiency sensitivities are derived using an adjoint-based method.

Our results show that a prolate microswimmer with a 2:1 aspect ratio shares similar optimal

ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-

fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be

qualitatively different from that of the spherical microswimmer, and adding a constraint to

the cilia length is found to improve, on average, the efficiency for such swimmers. This is

joint work with Hanliang Guo, Ruowen Liu, Marc Bonnet and Shravan Veerapaneni. The

preprint is ready for review in [72]. My contribution in this study is developing the boundary

integral solver.

139

140

7.1 Introduction

Many swimming microorganisms propel themselves by periodically beating the active

slender appendages on the cell surfaces. These slender appendages are known as cilia or

flagella depending on their lengths and distribution density. Eukaryotic flagella, such as the

ones in mammalian sperm cells and algae cells, are often found in small numbers, whereas cil-

iated swimmers such as Paramecium and Opalina present more than hundreds of cilia densely

packed on the cell surfaces [25, 209]. Besides the locomotion function for microswimmers,

cilia inside mammals serve various other functions such as mucociliary clearance in the air-

way systems and transport of egg cells in fallopian tubes (see [169], and reference therein).

Cilia are also found to be critical in transporting cerebrospinal fluid in the third ventricle of

the mouse brain [45] and in creating active flow environments to recruit symbiotic bacteria

in a squid-vibrio system [135].

Owing to the small length scale of cilia, the typical Reynolds number is close to zero.

In this regime, inertia is negligible and the dynamics are dominated by the viscous effects.

As a result, many effective swimming strategies familiar to our everyday life become futile.

For example, waving a rigid tail back-and-forth will not generate any net motion over one

period. This is known as the time reversibility, or the ‘scallop theorem’, which states that

a reciprocal motion cannot generate net motion [153]. Microswimmers therefore need to go

through non-time-reversible shape changes to overcome and exploit drag [113].

Ciliated microswimmers break the time-reversibility on two levels. On the individual

level, each cilium beats in an asymmetric pattern: during the effective stroke, the cilium

pushes the fluid perpendicular to the cell surface like a straight rod, and then moves almost

parallel to the cell surface in a curly shape during the recovery stroke, in preparation for

the next effective stroke. On the collective level, neighboring cilia beat with a small phase

difference that produces traveling waves on the cell surface, namely the metachronal wave.

141

Existing evidence suggests that the optimal ciliated swimmers exploit the asymmetry on the

collective level more than that on the individual level [128, 71].

In this chapter, we study the (hydrodynamic) swimming efficiency of ciliated microswim-

mers of an arbitrary axisymmetric shape. Specifically, the swimming efficiency is understood

as the ratio between the ‘useful power’ against the total power. The useful power could be

computed as the power needed to drag a rigid body of the same shape as the swimmer

with the swim speed while the total power is the rate of energy dissipation through viscous

stresses in the flow to produce this motion [118]. The goal of this chapter is to find the op-

timal ciliary motion that maximizes the swimming efficiency for an arbitrary axisymmetric

microswimmer.

Studies of ciliated microswimmers can be loosely classified into two types of models. One

type is known as the sublayer models in which the dynamics of each cilium is explicitly

modeled, either theoretically [25, 23] or numerically [67, 68, 69, 142, 42, 40, 71, 94, 141].

The other type is known as the envelope model (commonly known as the squirmer model if

the slip profile is time-independent), which takes advantage of the densely-packing nature of

cilia, and traces the continuous envelope formed by the cilia tips. The envelope model has

been extensively applied to study the locomotion of both single and multiple swimmers (e.g.,

see [118, 21, 92, 90, 128, 27, 41, 73, 134]), as well as the nutrient uptake of microswimmers

(e.g., [124, 125, 129, 130]). While originally developed for spherical swimmers, the envelope

model has been generalized to spheroidal swimmers (e.g., [93, 187]).

In particular, in a seminal work, [128] studied the optimal beating stroke for a spherical

swimmer using the envelope model. Specifically, the material points on the envelope were

assumed to move tangentially on the surface in a time-periodic fashion, hence the swim-

mer retains the spherical shape. The flow field, power loss, swimming efficiency as well as

their sensitivities, thereby, were computed explicitly using spherical harmonics. Their opti-

142

mization found that the envelope surface deforms in a wave-like fashion, which significantly

breaks the time-symmetry at the organism level similar to the metachronal waves observed

in biological microswimmers.

Since most biological microswimmers do not have spherical shapes, there is a need for

extending the previous work to more general geometries. Such an extension, however, is

hard to carry out using semi-analytical methods. Therefore, in this chapter, we develop a

computational framework for optimizing the ciliary motion of a microswimmer with arbitrary

axisymmetric shape. We employ the envelope model, wherein, the envelope is restricted to

move tangential to the surface so the shape of the microswimmer is unchanged during the

beating period. We use a boundary integral method to solve the forward problem and derive

an adjoint-based formulation for solving the optimization problem.

This chapter is organized as follows. In Section 7.2, we introduce the optimization prob-

lem, derive the sensitivity formulas and discuss our numerical solution procedure. In Sec-

tion 7.3, we present the optimal unconstrained and constrained solutions for microswimmers

of various shape families. Finally, in Section 7.4, we discuss our conclusions and future

directions.

7.2 Problem Formulation

7.2.1 Model

Consider an axisymmetric microswimmer whose boundary Γ is obtained by rotating a

generating curve γ of length ` about e3 axis, as shown in Figure 7.1(a). We adopt the classic

envelope model [118] and assume that the ciliary tips undergo time-periodic tangential move-

ments along the generating curve. Let s = α(s0, t) be the ciliary tip’s arclength coordinate

on the generating curve γ at time t for a cilium rooted at s0. The tangential slip velocity of

143

0 10.2 0.4 0.6 0.8

0 10.2 0.4 0.6 0.8

0

-0.5

0.5

1.0

1.5

-1.0

slip vel at tips

slip vel at sample points

slip vel along the arclength

(b)(a)

root

tip

Figure 7.1: (a) Schematic of the microswimmer geometry. The shape is assumed to be axisymmetric, obtained
by rotating the generating curve γ about the e3 axis. The tip of the cilium rooted at s0 at time t is given
by s = α(s0, t). (b) Illustration of the algorithm for computing the slip velocity at the quadrature points
uS(sq, t). We first compute the “tip” position and the corresponding tip velocities (open blue circles) of cilia
rooted at the Nq quadrature points sq (closed blue circles). We then obtain the slip velocities at sample
points uniformly distributed along the generating curve (open red squares) by a cubic interpolation. The
slip velocity at any arclength (black curve) are then obtained by a high-order B-spline interpolation from
the sample points. We have reduced the number of quadrature and sample points in this figure (compared
to values used in the numerical experiments) to avoid visual clutter.

this material point in its body-frame is thus

(7.1) uS(s, t) = uS(α(s0, t), t) = ∂tα(s0, t).

In addition to the time-periodic condition, the ciliary motion α needs to satisfy two more

conditions to avoid singularity [128]. First, the slip velocities should vanish at the poles

(7.2) α(0, t) = 0 and α(`, t) = `, ∀ t ∈ R+,

and second, α should be a monotonic function, that is,

(7.3) ∂s0α(s0, t) > 0, ∀ (s0, t) ∈ [0, `]× R+.

The last condition ensures the slip velocity is unique at any arclength s; in other words,

crossing of cilia is forbidden. While in reality, cilia do cross, this condition is enforced to

ensure validity of the continuum model.

144

In the viscous-dominated regime, the flow dynamics is described by the incompressible

Stokes equations at every instance of time

(7.4) − µ∇2u+∇p = 0, ∇ · u = 0,

where µ is the fluid viscosity, p and u are the fluid pressure and velocity fields respectively.

In the absence of external forces and imposed flow field, the far-field boundary condition is

simply

(7.5) lim
r→∞

u(r, t) = 0.

The free-swimming microswimmer also needs to satisfy the no-net-force and no-net-torque

conditions. Owing to the axisymmetric assumption, the no-net-torque condition is satisfied

by construction, and the no-net-force condition is reduced to one scalar equation

(7.6)

∫
Γ

f(r, t) · e3dSr = 2π

∫
γ

f3(r, t)xdsr = 0,

where x is the e1 component of r, f is the active force density the swimmer applied to the

fluid (negative to fluid traction) and f3 is its e3 component.

Given any ciliary motion α(s0, t) that satisfies (7.2) & (7.3), there is a unique tangential

slip velocity uS(s, t) defined by (7.1). Such a slip velocity propels the microswimmer at a

translational velocity U(t) in the e3 direction, determined by (7.6). Its angular velocity

as well as the translational velocities in the e1 and e2 directions are zero by symmetry.

Consequently, the boundary condition on γ is given by

(7.7) u(r(s), t) = uS(s, t)τ (s) + U(t)e3,

where τ is the unit tangent vector on γ. Thereby, the instantaneous power loss P (t) can be

written as

P (t) =

∫
Γ

f(r, t) · u(r, t) dΓ

= 2π

[∫
γ

f(s, t) · τ (s)uS(s, t)x ds+ U(t)

∫
γ

f(s, t) · e3 x ds

]
.(7.8)

145

The second term on the right-hand-side is zero provided that the no-net-force condition (7.6)

is satisfied.

Following [118], we quantify the performance of the microswimmer by its swimming effi-

ciency ε, defined as

(7.9) ε =
CD〈U〉2

〈P 〉
,

where P = P (t) and U = U(t) are the instantaneous power loss and swim speed, 〈·〉 denotes

the time-average over one period, and CD is the drag coefficient defined as the total drag

force of towing a rigid body of the same shape at a unit speed along e3 direction. The

coefficient CD depends on the given shape γ only; for example, CD = 6πµa in the case of a

spherical microswimmer with radius a.

In our simulations, we normalize the radius of the microswimmer to unity, and the period

of the ciliary motion to 2π. It is worth noting that the swimming efficiency (7.9) is size and

period independent, thanks to its dimensionless nature. The Reynolds number of a ciliated

microswimmer of radius 100µm and frequency 30Hz submerged in water can be estimated

as Re ∼ 10−4, confirming the applicability of Stokes equations.

7.2.2 Numerical algorithm for solving the forward problem

Before stating the optimization problem, we summarize our numerical solution procedure

for the governing equations (7.4) – (7.7). By the quasi-static nature of the Stokes equa-

tion (7.4), the flow field u(r, t) can be solved independently at any given time, and the

time-averages can be found using standard numerical integration techniques (e.g., trape-

zoidal rule). Here we adopt a boundary integral method (BIM) at every time step. A similar

BIM implementation was detailed in our recent work [73] which studied the optimization of

time-independent slip profiles. The main procedures are summarized below.

We use the single-layer potential ansatz, which expresses the velocity as a convolution of

146

an unknown density function σ with the Green’s function for the Stokes equations:

u(r′) =
1

8π

∫
Γ

(
1

|r′ − r|
I +

(r′ − r)⊗ (r′ − r)

|r′ − r|3

)
σ(r) dSr.(7.10)

The force density can then be evaluated as a convolution of σ with the (negative of) traction

kernel:

f(r′) =
1

2
σ (r′) +

3

4π

∫
Γ

(
(r′ − r)⊗ (r′ − r)

|r′ − r|5

)
((r′ − r) · nr′)σ (r) dSr.(7.11)

We convert these weakly singular boundary integrals into convolutions on the generating

curve γ by performing an analytic integration in the orthoradial direction, and apply a high-

order quadrature rule designed to handle the log−singularity of the resulting kernels [197].

The Stokes flow problem defined at any time t by equations (7.4) – (7.7) is then recast

as the BIM system for the unknowns σ and U(t) obtained by substituting (7.10) in (7.7)

and (7.11) in (7.6). The numerical solution method consists in discretizing γ into Np non-

overlapping panels, each panel supporting the nodes of a 10-point Gaussian quadrature

rule. The single-layer operator is approximated in Nyström fashion, by collocation at the

Nq = 10Np quadrature nodes, while the values of σ are sought at the same quadrature nodes.

The resulting BIM system is

(7.12)

(
S −B
C 0

)(
σ

U(t)

)
=

(
uS

0

)
,

where the vectors σ = σ(sq, t) and uS = uS(sq, t) are the unknown density and the given

slip velocity at all quadrature nodes sq, S is the axisymmetric single-layer potential operator

(which is fixed for a given shape γ), B is the column vector reproducing e3 at each quadrature

node, C is the row vector such that C[σ] =
∫

Γ
f(r) · e3dS is the total traction force in the

e3 direction.

The algorithm to obtain the slip velocity at the quadrature nodes at a given time uS(sq, t)

is summarized in Figure 7.1(b). Specifically, we start by computing the corresponding ciliary

147

tip position s = α(sq, t) and the slip velocity uS(s, t) from (7.1). These tip positions s can

be highly nonuniform, depending on the form of α, which could be difficult for the forward

solver. To circumvent this difficulty and to find a smooth representation of the slip velocities

on the quadrature points, we first find the slip velocities at Ns sample points uniformly

distributed along the generating curve by interpolating uS(s, t) (we use the routine PCHIP in

MATLAB); the slip velocities at the quadrature nodes uS(sq, t) are then in turn interpolated

from the Ns sample points using high-order B-spline bases. An alternative approach could

be to follow the position and the slip velocity of each material point. In other words, one

can use uS(s, t) directly on the right-hand-side of (7.12), which will bypass the interpolation

steps mentioned above. However, it requires re-assembly of the matrix S at every time step,

significantly increasing the computational cost.

7.2.3 Optimization problem

The goal of this work is to find the optimal ciliary motion for a given arbitrary axisym-

metric shape, that is, the ciliary motion α?(s0, t) that maximizes the swimming efficiency

ε:

(7.13) α? = arg max
α∈A

ε(α),

where A is the space of all possible time-periodic ciliary motion satisfying (7.2) & (7.3). It

is, however, not easy to define and manipulate finite-dimensional parameterizations of α that

remain in that space. To circumvent this difficulty, we follow the ideas in [128] and represent

α in terms of a time-periodic function ψ(x, t), such that

(7.14) α(s0, ψ) =
`
∫ s0

0
[ψ(x, t)]2dx∫ `

0
[ψ(x, t)]2dx

,

where ` is the total length of the generating curve γ. Note that α is also (implicitly) a

function of time t, through ψ = ψ(x, t). It is easy to verify that α given by (7.14) satisfies

148

the boundary conditions (7.2) and the monotonicity requirement (7.3) for any choice of ψ.

Conversely, for any α satisfying (7.2) and (7.3), there is at least one ψ that provides α. As

a result, the optimization problem is recast as finding

(7.15) ψ? = arg max
ψ

ε(ψ),

where ψ(·, t) is only required to be square-integrable over [0, `] for any t.

We use a quasi-Newton BFGS method [137] to optimize the ciliary motion via ψ, which

requires repeated evaluations of efficiency sensitivities with respect to perturbations of ψ.

The sensitivities of power loss and swim speed are derived using an adjoint-based method,

while the efficiency sensitivity is found using the quotient rule thereafter. The adjoint-based

method exhibits a great advantage against the traditional finite difference method when

finding the sensitivities, as regardless of the dimension of the parameter space, the objective

derivatives with respect to all design parameters can here be evaluated on the basis of one

solve of the forward problem for each given ciliary motion α. The derivations are detailed

below.

7.2.4 Sensitivity analysis

We start by finding the sensitivities in terms of the slip profile uS. The sensitivities in

terms of the auxiliary unknown ψ will be found subsequently by a change of variable. As the

concept of adjoint solution in general rests on duality considerations, we recast the forward

flow problem in weak form for the purpose of finding the sought sensitivities of power loss

and swim speed, even though the numerical forward solution method used in this work does

not directly exploit that weak form. Specifically, we recast the forward problem (7.4) – (7.7)

in mixed weak form (see, e.g., [26, Chap. 6]). That is, find (u, p,f , U) ∈ V × P ×F × R,

149

such that

(7.16)

(a) a(u,v)− b(v, p)− b(u, q)− 〈f ,v〉Γ = 0 ∀(v, q) ∈ V × P

(b) 〈g, e3〉ΓU + 〈g, uSτ 〉Γ − 〈g,u〉Γ = 0 ∀g ∈ F

(c) 〈f , e3〉Γ = 0

where the bilinear forms a and b are defined by

(7.17) a(u,v) :=

∫
Ω

2µD[u] : D[v] dV, b(v, q) :=

∫
Ω

q divv dV,

and D[u] := (∇u + ∇Tu)/2 is the strain rate tensor. 〈·, ·〉Γ is a short-hand for the inner

product on Γ. For example, 〈f ,v〉Γ =
∫

Γ
f · v dΓ. Similarly, with a slight abuse of notation,

the power loss functional could be written as P (uS) := 〈f , uSτ + Ue3〉Γ, where U := U(uS)

is the swim speed functional.

The Dirichlet boundary condition (7.7) is (weakly) enforced explicitly through (7.16 b),

rather than being embedded in the velocity solution space V , as this will facilitate the

derivation of slip derivative identities; this is in fact our motivation for using the mixed weak

form (7.16). Condition (7.16 c) is the no-net-force condition (7.6).

First-order sensitivities of functionals at uS are defined as directional derivatives, by con-

sidering perturbations of uS of the form

(7.18) uS
η = uS + ην

for some ν in the slip velocity space and η ∈ R. Then, the directional (or Gâteaux) derivative

of a functional J(uS) in the direction ν, denoted by J̇(uS; ν), is defined as

(7.19) J̇(uS; ν) = lim
η→0

1

η

(
J [uS

η]− J [uS]
)
.

For the power loss functional, we obtain (since the derivative of uS in the above sense is ν)

(7.20) Ṗ (uS; ν) = 〈ḟ , uSτ + Ue3〉Γ + 〈f , ντ 〉Γ + 〈f , e3〉ΓU̇ ,

150

where ḟ and U̇ are the derivatives of the active force f and swim speed U solving prob-

lem (7.16), considered as functionals on the slip velocity uS:

(7.21) ḟ = lim
η→0

1

η

(
f [uS

η]− f [uS]
)
, U̇ = lim

η→0

1

η

(
U [uS

η]− U [uS]
)
.

Differentiating the weak formulation (7.16) of the forward problem with respect to uS

leads to the weak formulation of the governing problem for the derivatives (u̇, ḟ , ṗ, U̇) of the

solution (u,f , p, U)

(7.22)

(a) a(u̇,v)− b(u̇, q)− b(v, ṗ)− 〈ḟ ,v〉Γ = 0 ∀(v, q) ∈ V × P

(b) 〈ντ , g〉Γ + U̇〈e3, g〉Γ − 〈u̇, g〉Γ = 0 ∀g ∈ F

(c) 〈ḟ , e3〉Γ = 0

Here we have assumed without loss of generality that the test functions in (7.16) verify

v̇ = 0, ġ = 0, and q̇ = 0, which is made possible by the absence of boundary constraints in

V .

At first glance, evaluating Ṗ (uS; ν) in a given perturbation ν appears to rely on solving the

derivative problem (7.22). However, a more effective approach allows to bypass the actual

evaluation of ḟ . Let the adjoint problem be defined by

(7.23)
(a) a(û,v)− b(û, q)− b(v, p̂)− 〈f̂ ,v〉Γ = 0 ∀(v, q) ∈ V × P ,

(b) 〈e3, g〉Γ − 〈û, g〉Γ = 0 ∀g ∈ F ,

i.e. (û, p̂) are the flow variables induced by prescribing a unit velocity e3 on Γ. For later

convenience, we let F0 denote the (nonzero) net force exerted on Γ by the adjoint flow:

(7.24) F0 := 〈f̂ , e3〉Γ.

Problem (7.23) in strong form is defined by equations (7.4) – (7.7) with U = 1, uS = 0. In

fact, F0 takes the same value as the drag coefficient CD in (7.9).

151

Then, combining the derivative problem (7.22) with the forward problem (7.16) or the

adjoint problem (7.23) with appropriate choices of test functions allows to derive expressions

of Ṗ (uS; ν) and U̇(uS; ν) which do not involve the forward solution derivatives.

Specifically, set the test functions to (v, q, g) = (u̇, ṗ, ḟ) in equations (7.16a,b) of the

forward problem and (v, q, g) = (u, p,f) in equations (7.22a,b) of the derivative problem.

Then, the combination (7.22a) + (7.22b)− (7.16a)− (7.16b) is evaluated, to obtain

(7.25) 〈ḟ , uSτ + Ue3〉Γ = 〈f , ντ 〉Γ + 〈f , e3〉ΓU̇ .

Substituting (7.25) into (7.20), and recalling the no-net-force condition (7.6), we have

(7.26) Ṗ (uS; ν) = 2〈f , ντ 〉Γ = 4π

∫
γ

(f · τ) νx ds.

Likewise, setting the test functions to (v, q, g) = (u̇, ṗ, ḟ) in the adjoint problem (7.23)

and (v, q, g) = (û, p̂, f̂) in equations (7.22a,b) of the derivative problem (7.22), then evalu-

ating (7.22a) + (7.22b)− (7.23a)− (7.23b), yields

(7.27) 0 = 〈f̂ , ντ 〉Γ + 〈f̂ , U̇e3〉Γ − 〈ḟ , e3〉Γ = 〈f̂ , ντ 〉Γ + F0U̇ .

Note that 〈ḟ , e3〉Γ = 0 according to (7.22c). Rearranging terms in (7.27), we have

(7.28) U̇(uS; ν) = − 1

F0

〈f̂ , ντ 〉Γ = −2π

F0

∫
γ

(f̂ · τ) νx ds.

The sensitivity formulas (7.26) & (7.28), however, are not practically applicable in this

form to the current optimization problem, because the constraints (7.2) & (7.3) are not easy

to enforce on parameterizations of the unknown slip profiles uS. For this reason, we rewrite

the quantities of interest as functionals of ψ, and the connection between ψ and α is given

by (7.14). Specifically, the slip profile is

(7.29) uS(s, t) = ∂tα(s0, ψ) = ∂ψα(s0, ψ; ψ̇) = ∂ψα
(
β(s, ψ), ψ; ψ̇

)
= vS(s, ψ),

152

where ψ̇ := ∂tψ, and β(s, ψ) is the inverse function of α, i.e., s0 = β(s, ψ). The average

power loss and swim speed functionals are written as

(7.30) 〈P〉(ψ) := 〈P 〉(uS), 〈U〉(ψ) := 〈U〉(uS) with uS(s, t) = vS(s, ψ).

On applying the change of variables s = α(s0, ψ) in the integrals (7.26) & (7.28) and

average over one period, we obtain

〈Ṗ〉(ψ; ψ̂) = 2

∫ 2π

0

∫
γ

f(α) · τ (α)x1(α) v̇S(s, ψ; ψ̂) ∂sα ds0 dt,(7.31)

〈U̇〉(ψ; ψ̂) = − 1

F0

∫ 2π

0

∫
γ

f̂(α) · τ (α)x1(α) v̇S(s, ψ; ψ̂) ∂sα ds0 dt,(7.32)

where v̇S(s, ψ; ψ̂) is the directional derivative of uS with respect to ψ and in the direction ψ̂.

Specifically, we can show that

(7.33) v̇S(s, ψ; ψ̂) ∂sα(s0, ψ)ds0 =
{
∂sα(s0, ψ)

[
∂2
ψα
(
s0, ψ; ψ̂, ψ̇

)
+ ∂ψα

(
s0, ψ;

˙̂
ψ
)]

−∂ψsα
(
s0, ψ; ψ̇

)
∂ψα

(
s0, ψ; ψ̂

)}
ds0.

The derivation and the explicit expression of each term in (7.33) are given in the Appendix.

Finally, the efficiency sensitivity in terms of ψ readily follows by the quotient rule

(7.34) ε̇(ψ; ψ̂) = CD
2〈U〉〈U̇〉〈P〉 − 〈U〉2〈Ṗ〉

〈P〉2
.

7.2.5 Constraints on surface displacement

The unconstrained optimization problem (7.15) introduced above has the tendency to

converge to unphysical/unrealistic strokes, where each cilium effectively ‘covers’ the entire

generating curve. For a more realistic model, we should add a constraint on the length

of the cilium. To this end, and again following [128], we replace the initial unconstrained

optimization problem (7.15) with the penalized optimization problem

(7.35) ψ? = arg max
ψ

E(ψ), E(ψ) = ε(ψ)− C(ψ)

153

where the (non-negative) penalty term C(ψ), defined as

(7.36) C(ψ) =

∫ `

0

H(A(ψ)− c)ds0,

serves to incorporate the kinematical constraint A(ψ) ≤ c in the optimization problem. The

functional A(ψ) in (7.36) is a measure of the amplitude of the displacement of individual

material points for the stroke (through α), and c is a threshold parameter to bound A(ψ)

(a smaller c corresponding to a stricter constraint). H is a smooth non-negative penalty

function defined by

(7.37) H(u) = Λ1 [1 + tanh (Λ2u)]u2,

which for large enough Λ2 approximates u 7→ 2Λ1u
2Y (u) (Y being the Heaviside unit step

function). The multiplicative parameter Λ1 then serves to tune the severity of the penalty

incurred by violations of the constraint A(ψ) ≤ c. We use Λ1 = 104 and Λ2 = 104 in

our numerical simulations unless otherwise mentioned. The optimization results are not

sensitive to the choice of Λ1 and Λ2. A small caveat of the penalty function (7.37) is that it

has a (small) bump at Λ2u ≈ −1.109. This bump would occasionally trap the optimizations

into local extrema that have significantly lower efficiencies, depending on the initial guesses.

Perturbing Λ2 for such cases helps to alleviate the problem.

The physically most relevant definition of A would be the actual displacement amplitude

of an individual point, i.e., ∆s = [αmax(s0) − αmin(s0)]/2. The strong nonlinearity of this

measure, however, is not appropriate for the computation of the gradient. Following [128],

we measure the displacement by its variance in time:

(7.38) A(ψ) = 〈(α(s0, ψ)− 〈α〉(s0))2〉.

The maximum displacement ∆s will be found post-optimization for the optimal ciliary mo-

tion α? to better illustrate our results in Section 7.3.

154

Like the initial problem (7.15), the penalized problem (7.35) is solvable using uncon-

strained optimization methods, and we again adopt a quasi-Newton BFGS algorithm to

optimize the ciliary motion. Applying the chain rule to the penalty functional C(ψ), we

obtain the derivative of the penalty term in the direction of ψ̂ as

(7.39) Ċ(ψ; ψ̂) =

∫ `

0

Ḣ(A(ψ)− c)Ȧ(ψ; ψ̂)ds0.

The derivative of the penalized objective functional E(ψ) is therefore

(7.40) Ė(ψ; ψ̂) = ε̇(ψ; ψ̂)− Ċ(ψ; ψ̂),

where ε̇ and Ċ are given by equations (7.34) and (7.39), respectively.

7.3 Results and discussion

7.3.1 Parameterization

We parametrize ψ(s0, t) such that

(7.41) ψ(s0, t) =
m∑
k=1

ξk(t)Bk(s0),

where Bk are the 5th order B-spline basis functions and their coordinates ξk(t) are expanded

as trigonometric polynomials ξk(t) = a0k/2 +
∑n

j=1[ajk cos jt + bjk sin jt] to ensure time-

periodicity. Taken together, we have

(7.42) ψ(s0, t) =
m∑
k=1

[
a0k

2
+

n∑
j=1

(ajk cos jt+ bjk sin jt)

]
Bk(s0)

so that the finite-dimensional optimization problem seeks optimal values for the m(2n + 1)

coefficients a0k, ajk and bjk. The initial guesses are chosen to be low frequency waves with

small wave amplitudes. To obtain such initial waves, the coefficients of the zeroth Fourier

mode a0k/2 are randomly chosen from a uniform distribution within [0, 1], the first Fourier

modes a1k and b1k are randomly chosen from a uniform distribution within [0, 0.01], and the

coefficients for higher order Fourier modes j > 1 are set to 0. To evaluate the gradient of

155

E(ψ) with respect to the design parameters a0k, ajk and bjk, we use (7.40) with ψ̂ taken as the

basis functions of the adopted parameterization (7.42), i.e. ψ̂(s0, t) = Bk(s0)/2, ψ̂(s0, t) =

Bk(s0) cos jt and ψ̂(s0, t) = Bk(s0) sin jt, respectively. In terms of parameterization, local

minima are multiple in the parameter space, since multiplying optimal parameters by a

constant factor yields the same optimum for α.

7.3.2 Spheroidal swimmers

By way of validation, we start with optimizing the ciliary motion of a spherical mi-

croswimmer. The efficiency ε as a function of iteration number for the unconstrained opti-

mization (7.15) is shown in Figure 7.2(a) in blue. The maximum efficiency is about 35%.

The ciliary motion of the optimal spherical microswimmer is shown in Figure 7.2(b). Each

curve follows the arclength coordinate of a cilium tip over one period. We observe, similar

to the results of [128], clearly distinguished strokes within the beating period. In particular,

cilia travel downward ‘spread out’ during the effective stroke (corresponding to a stretching of

the surface), but travel upward ‘bundled’ together during the recovery stroke in a shock-like

structure (corresponding to a compression of the surface). This type of waveform is known as

an antiplectic metachronal wave [104, 22]. We note that this optimal ciliary motion produces

an efficiency higher than the 23% efficiency obtained numerically by [128, Fig. 11]. This

is due to a larger maximum displacement ∆s ≈ 0.45` in our optimizations (translated to a

maximum angle of 81 degrees vs 53 degrees). Our optimization result aligns well with their

results using the analytical ansatz [128, Fig. 14]. Additionally, we found that increasing the

number of Fourier mode n increases the maximum displacement as well as the efficiency; the

optimal ciliary motion of higher n also exhibits a higher slope for the shock-like structures

(results not shown here). This is again consistent with their analytical ansatz, which shows

that the efficiency approaches 50% in the limit of the maximum displacement approaches 90

degrees, and the corresponding ‘width’ of the shock in this limit is infinitely small. The mean

156

iterations

0 10.2 0.4 0.6 0.8 0 10.2 0.4 0.6 0.8

0

1

0

1

0

2

0

2

(a) (b)

(c)

(d)

(e)

0

10

20

30

40

50

60

70

0 10 20 30 40

%

Figure 7.2: Unconstrained optimization history of a spherical swimmer and a prolate swimmer with a 2:1
aspect ratio. The optimal spherical swimmer has an efficiency ε ≈ 35% and swim speed 〈U〉 ≈ 1.2. The
optimal prolate swimmer has an efficiency ε ≈ 69% and swim speed 〈U〉 ≈ 1.5. (a) The efficiency as a
function of iterations number. (b) & (c) The ciliary motions of the optimal swimmers. (d) & (e) The
time-averaged slip velocities (at Eulerian points) are shown in solid curves. Dashed curves are the time-
independent optimal slip velocities of the given shape scaled by the swim speed [73]. Parameters used in
the optimization: m = 25, n = 2. Number of panels Np = 20, number of sample points Ns = 80, number
of time steps per period Nt = 50. Same below unless otherwise mentioned. Note that the vertical axes of
figures (b)&(c) are flipped so that the north pole (s = 0) appear on the top of the figure. The corresponding
waveforms are known as antiplectic metachronal waves (tips are spread out during the effective stroke and
close together during the recovery stroke). The videos of the optimal ciliary motions can be found in the
online supplementary material (Movie 1 & 2).

slip velocity of the Eulerian points within each period are almost identical to the optimal

time-independent slip velocity scaled by the swim speed, as shown in Figure 7.2(d).

The optimal unconstrained prolate spheroidal microswimmer with a 2:1 aspect ratio has

an efficiency ε ≈ 69%, about twice as high as the spherical microswimmer as shown in

Figure 7.2(a). This roughly two-fold increase in efficiency is also observed in the optimal

time-independent microswimmers [73]. The optimal ciliary motion is very close to that

of the spherical swimmer (Fig. 7.2(b)&(c)) , while the mean slip velocity of the Eulerian

points are between the optimal time-independent slip velocity of the same shape and those

of a spherical swimmer, as shown in Figure 7.2(e). As a sanity check, swapping the ciliary

motions obtained from optimizing the spherical swimmer and the prolate swimmer leads in

both cases to lower swimming efficiencies. Specifically, a spherical swimmer with the ciliary

motion shown in Figure 7.2(c) has 34% swimming efficiency and a prolate swimmer with the

ciliary motion shown in Figure 7.2(b) has 65% swimming efficiency (compared to 35% and

157

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

%

Figure 7.3: Efficiency as a function of maximum displacement of ciliary tips. Blue and green symbols
represent spherical and prolate spheroidal swimmers (2:1 aspect ratio) respectively. Diamond symbols are
the optimal unconstrained case. Open symbols are optimization results of spherical swimmers taken from
[128, Figure 11].

69% using the ‘true’ optimal ciliary motions, respectively).

We then turn to the case in which the cilia length is constrained by prescribing a bound

on the displacement variance (7.38). We control the maximum variance by tuning c in

(7.36), and the efficiencies are plotted against the maximum displacement ∆s = [αmax(s0)−

αmin(s0)]/2 scaled by the total arclength ` in Figure 7.3. Three different random initial

guesses are used for each c. The unconstrained optimization results for the spherical and

prolate spheroidal swimmers are also shown in the figure for reference. Notably, for both

the unconstrained swimmers, the length of the cilia is roughly half the total arclength of

the generating curve (∆s ≈ `/2). In other words, a cilium rooted at the equator would

be able to get very close to both poles during the beating cycle. In general, a smaller

variance (tighter constraint) leads to a lower efficiency, as expected. The efficiency results

of spherical microswimmers closely match those reported by [128]. The efficiencies of the

prolate spheroidal microswimmer under constraints are also shown in Figure 7.3. Similar

to the spherical microswimmer, the efficiency increases roughly linearly with the scaled cilia

length ∆s/`, and converges to the kinematically unconstrained optimal microswimmer as

the maximum variance c is increased.

158

0.0

1.0
0.00

0.04

0.08
0.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

0.12

0.16

Figure 7.4: Ciliary motion (a) and mean slip velocity (b) for the optimal spherical swimmer with constraint
(∆s/` ≈ 5.0%). The efficiency is ε ≈ 6.9%, and the swim speed is 〈U〉 ≈ 0.091. The swimmer forms multiple
waves in the equatorial region, leading to a high slip velocity at s ≈ 0.5`. The motion close to the poles is
nearly zero. The dashed curve in (b) is the time-independent optimal slip velocity of the spherical swimmer,
scaled by the swim speed. The video of the optimal ciliary motion can be found in the online supplementary
material (Movie 3).

It is noteworthy that adding a constraint in the cilia length not only limits the wave

amplitudes, but also breaks the single wave with larger amplitude into multiple waves with

smaller amplitudes (Fig. 7.4(a)), which resemble the metachronal waves of typical ciliated

microswimmers such as Paramecium. More interestingly, the mean slip velocity in the con-

strained case can be qualitatively different from the time-independent optimal slip velocity,

as shown in Figure 7.4(b). In particular, the mean slip velocity around the equator is signif-

icantly higher than the time-independent slip velocity, while the mean slip velocity near the

poles are closer to zero. This can be inferred from the ciliary motions, as the cilia only move

slightly near the poles, whereas multiple waves with significant amplitudes travel around the

equator within one period.

7.3.3 Non-spheroidal swimmers

We then investigate the effects of shapes on the optimal ciliary motions and the swimming

efficiencies. In particular, we examine whether a single wave travelling between north and

south poles always maximizes the swimming efficiency, and whether adding a constraint in

the cilia length is always detrimental to the swimming efficiency.

159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

10

20

30

40

50

60

70

80

90

100
%(a)

time-independent

time-dependent

unconstrained

constrained

0 0.2 0.4 0.6 0.8 1

0

1

0

1

(b)

(c)

0

0

(d)

(e)
1.5

2

0 10.2 0.4 0.6 0.8

Figure 7.5: Constrained optimizations could lead to more efficient ciliary motions for microswimmers with
a thin ‘neck’ on average. (a): Efficiencies of the microswimmers with various neck widths. The median
efficiencies of the time-dependent optimizations across 10 randomized initial conditions are shown for each
shape in cross symbols ‘×’. Unconstrained and constrained optimizations (c = 1) are depicted in blue
and green, respectively. Efficiencies of the microswimmers with time-independent slips are shown, using
black circle symbols ‘◦’, as a reference. (b)&(c): Ciliary motions of microswimmers with δ = 0.8 from
unconstrained and constrained optimizations from the same initial guess. The swimming efficiencies are
20% and 29%, respectively. (d)&(e): Mean slip velocity corresponding to the ciliary motions in (b)&(c).
Blue dashed curves are the optimal time-independent slip velocities scaled by the swim speed. In these
simulations, we increase the number of panels Np = 40 to resolve the sharp shape change. The videos of the
optimal ciliary motions can be found in the online supplementary material (Movie 4 & 5)

We consider a family of shapes whose generating curves are given by:

(x, z) = R(θ)(sin θ, cos θ),

where R(θ) = (1 + δ cos 2θ) is a function that makes the radius non-constant, and θ ∈ [0, π]

is the parametric coordinate. For 0 < δ < 1, the radius is the smallest at θ = π/2,

corresponding to a ‘neck’ around the equator. In the limit δ = 0, the generating curve

reduces to a semicircle and the swimmer reduces to the spherical swimmer.

The optimization results are depicted in Figure 7.5 for 0 ≤ δ ≤ 0.8. Some corresponding

shapes are shown as insets. The median efficiencies of ten Monte Carlo simulations are

plotted for each δ value, and compared against the time-independent efficiencies. For all

three cases (constrained, unconstrained, and time-independent), the efficiencies increase as

δ increases from 0 to 0.3. This is because increasing δ in this regime makes the shape more

elongated. Increasing δ further reduces the efficiencies as the ‘neck’ at the equator becomes

more and more pronounced. Additionally, the unconstrained microswimmers, on average,

160

have better efficiencies than the microswimmers with kinematic-constraints for 0 ≤ δ ≤ 0.6.

Interestingly, unconstrained optimization may result in worse ciliary motions on average

when the shape is highly curved, compared to its kinematically-constrained counterpart.

Specifically, the constrained microswimmers have higher median efficiencies for δ ≥ 0.7. We

note that the unconstrained optimizations are likely to be trapped in local optima where

the ciliary motion forms a single wave (Fig. 7.5(b)), whereas the constrained optimizations

are ‘forced’ to find the ciliary motion with multiple waves split at the equator (Fig. 7.5(c)),

because of the constrained cilia length. Additionally, our numerical results show that a single

wave travelling between the north and south poles is not as efficient as two separate waves

travelling within each hemisphere for this shape. Figures 7.5(d)&(e) show that the single

wave generates a high mean slip velocity at the position where the generating curve bends

inward (the equator), whereas the two separate waves generate a mean slip velocity similar

to that obtained from the time-independent optimization. In a way, the constraint in cilia

length is helping the optimizer to navigate the parameter space.

To better understand the effects of constraints on the highly curved shapes, we present

the statistical results of the thin neck microswimmer (δ = 0.8) with various constraints in

Figure 7.6. In general, the highest efficiency from the Monte Carlo simulations increases with

the constraint for c ≤ 0.8, similar to the case of spheroidal swimmers (Figure 7.3). Keep

increasing c has limited effect on the highest efficiencies, indicating that the constraint is no

longer limiting the optimal ciliary motion. The median efficiencies (red horizontal lines), on

the other hand, decreases with the constraint if c ≥ 0.8, consistent with the observation from

Figure 7.5. It is worth noting that the constrained optimization is more likely to get stuck

in very low efficiencies (e.g., the lowest outlier for c = 0.8), possibly due to the secondary

bump of the penalty function C mentioned earlier.

All data points from the optimization are plotted in Figure 7.6(b) as function of the

161

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0
0

10

20

30

%

5

15

25

35

0

10

20

30

%

5

15

25

35

0.1 0.2 0.3 0.4 0.50

(a) (b)

Figure 7.6: Statistical results of thin neck microswimmer of δ = 0.8 with various constraint c for 10 Monte-
Carlo simulations. The unconstrained simulation is denoted by c = ∞. (a) Efficiencies grouped by the
constraint c. For each box, the central mark indicates the median of the 10 random simulations, and the
bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The outliers are
denoted by red + symbols. (b) Efficiencies plotted against the maximum displacement ∆s/`. The numerical
parameter Λ2 is set to be 104 by default. Occasionally the optimization might stop within merely a few
iterations, making the ciliary motion stuck in a very inefficient local minimum. Setting Λ2 to 103 for these
cases (most of the time) cures the problem.

maximum displacement ∆s. The efficiencies grow almost linearly until ∆s ≈ 0.25`, as in

the case of spheroidal swimmers, and decrease for larger ∆s. This is another evidence that

the optimal ciliary motion for this shape consists of two separate waves traveling within

each hemisphere. We want to emphasize that unconstrained optimization can still reach the

optimal ciliary motion, as shown in the box of c =∞. However it is more likely to reach the

sub-optimal ciliary motion compared to the constrained cases.

7.4 Conclusions and Discussions

In this chapter, we extended the work of [128] and studied the optimal ciliary motion for

a microswimmer with arbitrary axisymmetric shape. In particular, the forward problem is

solved using a boundary integral method and the sensitivities are derived using an adjoint-

based method. The auxiliary function ψ is parameterized using high-order B-spline basis

functions in space and a trigonometric polynomial in time. We studied the constrained and

unconstrained optimal ciliary motions of microswimmers with a variety of shapes, including

spherical, prolate spheroidal, and concave shapes which are narrow around the equator. In

162

all cases, the optimal swimmer displays (one or multiple) traveling waves, reminiscent of the

typical metachronal waves observed in ciliated microswimmers. Specifically, for the spherical

swimmer with limited cilia length (Fig. 7.4(a)), the ratio between the metachronal wavelength

close to the equator and the cilia length could be estimated as λMW/∆s ≈ 0.2`/0.05` = 4.

This ratio lies in the higher end of the data collected in [200, Table 9] for biological ciliates,

which reports ratio ranging between 0.5 to 4. Our slightly high ratio estimate may not be

surprising after all, as the envelope model prohibits the crossing between neighboring cilia.

We showed that the optimal ciliary motions of prolate microswimmer with a 2:1 aspect

ratio are very close to the ones of spherical microswimmer, while the swimming efficiency

can increase two-fold. The mean slip velocity of unconstrained microswimmers also tend to

follow the optimal time-independent slip velocity, which can be easily computed using our

recent work [73].

Most interestingly, we found that constraining the cilia length for some shapes may lead

to a better efficiency on average, compared to the unconstrained optimization. It is our

conjecture that this counter-intuitive result is because the constraint effectively reduces the

size of the parameter space, hence lowering the probability of being trapped in local optima

during the optimization. Although the concave shapes studied in Section 7.3.3 are somewhat

non-standard, they allows us to gain insights into the effect of local curvature on optimal

waveform. Incidentally, these shapes are also observed for ciliates in nature (e.g. during the

cell division process).

It is worth pointing out that works on sublayer models (explicitly modeling individual

cilia motions) have reported swimming or transport efficiencies in the orders of 0.1 ∼ 1%

(see, e.g., [40, 94, 141]), much lower than the optimal efficiency reported here and others

using the envelope models. This large difference can possibly be attributed to the fact that

the envelope model we adopted here considers only the energy dissipation outside the ciliary

163

layer (into the ambient fluid), while sublayer models in general considers energy dissipation

both inside and outside the ciliary layer. Research has shown that the energy dissipation

inside the layer could be as high as 90 ∼ 95% of the total energy dissipation, due to the

large shear rate inside the layer (see, e.g., [99, 94]). We note that it is possible to incorporate

energy dissipation inside the ciliary layer in the envelope model, as previously done by

Vilfan, albeit for a time-independent slip profile. Additionally, the difference could also be

due to modeling assumptions on the cilia length and the number of cilia. In particular, the

cilia length considered in sublayer models are usually below 1/10 of the body length. [141]

showed that the swimming efficiency increases with the cilia length as fast as powers of 3

in the short cilia limit, and the number of cilia also has a significant positive effect on the

swimming efficiency (the envelope model assumes a ciliary continuum). Factoring all three

factors (energy inside/outside, cilia length, number of cilia) could bridge the gap between

the results obtained from these two types of models.

It is without a doubt that maximizing the hydrodynamic swimming efficiency is not the

sole objective for biological microswimmers. Other functions such as generating feeding

currents [161, 148] and creating flow environment to accelerate mixing for chemical sens-

ing [183, 170, 39, 135] are also important factors to consider as a microswimmer. The effect

of such multi-tasking on the ciliary dynamics is not well understood. Nevertheless, our work

provides an efficient framework to investigate the hydrodynamically optimal ciliary motions

for microswimmers of any axisymmetric shape, and could provide insights into designing

artificial microswimmers.

A straightforward extension of our work is to allow more general ciliary motions, e.g.,

including deformations normal to the surface. Such a swimmer will display time-periodic

shape changes and the optimization will require the derivation of shape sensitivities. Addi-

tionally, the computational cost would also increase significantly because the matrix in (7.12)

164

needs to be updated at every time step. Our framework is also open to many generalizations

and could for example help in accounting for the multiple factors mentioned above, such as

mixing for chemical sensing, in the study of optimal ciliary dynamics.

CHAPTER VIII

Concluding remarks

The product integration schemes for singular layer and volume potential developed in

this thesis have obvious extensions. In this concluding chapter, we give some brief comments

on the possibilities of further improving the schemes, or extending the technologies to more

complex problems. Some of which are on going research work.

8.1 Stability Improvement on 2D Product Integration Scheme

In this section, we begin with elaborating on dimension-agnostic claim, and how to re-

cover the scheme of Helsing-Ojala [80], as discussed in Section 3.6. Then, we will discuss a

new recursion for the product integration scheme using Chebyshev polynomial as basis func-

tion. This change makes a difference in both near singular kernel integration and density

approximation.

Assume τ = 1, we first rewrite Laplace DLP as differential 1-form

(8.1)

∫
Γ

(r′ − r) · nr
|r′ − r|2

dsr =

∫
Γ

y′ − y
|r′ − r|2

dx− x′ − x
|r′ − r|2

dy

Then apply Poincaré to accomplish 1-form to 0-form conversion

(8.2)

∫
Γ

y′ − y
|r′ − r|2

dx− x′ − x
|r′ − r|2

dy =

[(∫ 1

0

y′ − ty
|r′ − tr|2

dt

)
x−

(∫ 1

0

x′ − tx
|r′ − tr|2

dt

)
y

]∣∣∣∣Γ(1)

Γ(−1)

We still use the gradient of harmonic polynomial as our basis function, and borrow the

algebra of complex number. It is easy to verify that results similar to Lemma 3.3.3 hold.

165

166

It is natural to choose basis {zk−1 = f (k,1) + if (k,2), k = 1, 2, · · · }. For high order 1-form to

0-form conversion, we have

(8.3)

pk =

∫
Γ

i
(
z′ − z

)
nz

|z′ − z|2
(
f (k,1) + 1if (k,2)

)
dsr

=i

∫
Γ

{
(y′ − y) f (k,1) − (x′ − x) f (k,2)

|r′ − r|2
dx− (x′ − x) f (k,1) + (y′ − y) f (k,2)

|r′ − r|2
dy

+i
(x′ − x) f (k,1) + (y′ − y) f (k,2)

|r′ − r|2
dx+ i

(y′ − y) f (k,1) − (x′ − x) f (k,2)

|r′ − r|2
dy

}
=1i

{(∫ 1

0

1

|r′ − tr|2
(
(y′ − ty)f (k,1)tk−1 − (x′ − tx)f (k,2)tk−1

)
dt

)
x(∫ 1

0

1

|r′ − tr|2
(
(x′ − tx)f (k,1)tk−1 + (y′ − ty)f (k,2)tk−1

)
dt

)
y

}∣∣∣∣Γ(1)

Γ(−1)

−
{(∫ 1

0

1

|r′ − tr|2
(
(x′ − tx)f (k,1)tk−1 + (y′ − ty)f (k,2)tk−1

)
dt

)
x(∫ 1

0

1

|r′ − tr|2
(
(y′ − ty)f (k,1)tk−1 − (x′ − tx)f (k,2)tk−1

)
dt

)
y

}∣∣∣∣Γ(1)

Γ(−1)

If Γ(−1) = −1 + 0 · i, Γ(1) = 1 + 0 · i, then pk+1 − (x′ + y′i)pk =
∫ 1

0
tk−1dt+

∫ 1

0
(−t)k−1dt =

1−(−1)k

k
. We get the recursion for monomial basis function. If instead, we switch to using

Chebyshev polynomial Tk(z) as basis function, the resulting recursion can be worked out

(8.4) p̃k+1 = 2(x′ + y′i)p̃k − p̃k−1 +

(
1

k
− 1

k − 2

)
−
(

(−1)k

k
− (−1)k−2

k − 2

)
We omit the details here. When forward recursion fails for points outside |z| ≤ 1, there is a

stable solving process which works similar to the backward recursion in the case of monomial

basis function. Various tweaks to the original kernel implementation are needed to adapt to

this new formulation. We plan to release the code soon as an improvement to the original

2d close evaluation scheme using monomial as basis function.

8.2 Product Integration Scheme in Axisymmetric Domains

Here we consider an axisymmetric Janus particle suspended in a fluid with viscosity µ

in free space Ω∞. Let {Ω,Γ} denote the domain and boundary of the particle respectively.

167

The chemical concentration C is determined by solving a Laplace Neumann boundary value

problem:

∇2C = 0 in Ω∞,(8.5a)

lim
‖r‖→∞

C(r) = 0,
∂

∂n
C = −A(θ) on Γ,(8.5b)

where θ ∈ [0, π] is the polar angle measured from the south pole to north pole on the

generating curve γ.

We follow the standard approach for this problem representing it as a single layer potential

defined on Γ to solve for the concentration C. Solutions to this Neumann problems can be

obtained through the use of a single layer potential:

(8.6) C(r) = S[µ](r), on Γ

Taking the appropriate limits as r → Γ for the concentration flux, we obtain the following

system of boundary integral equations:

(8.7)

(
−1

2
I +K

)
[µ](r′) = −A r ∈ Γ

Upon solution of the Neumann problem in (8.7), we then evaluate ∇C and the resulting

slip velocities for the given particle configuration.

The problem we address here is how to evaluate these two layer potential accurately for

axisymmetric geometry and field, when the kernel is singular or near-singular. We assume

symmetry in the azimuthal direction ϕ ∈ [0, 2π]. Without loss of generality, we assume that

the targets on the surface are located at the cross-section ϕ = 0. The positions and normal

directions take the following form

(8.8) r′ =
(
ρ′

0
z′

)
, n′ =

(
n′ρ
0
n′z

)
, r =

(
ρ cosϕ
ρ sinϕ
z

)

168

The single layer potential can be written as

(8.9)

S[µ](r′) =
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ
1(

(ρ′ − ρ cosϕ)2 + (ρ sinϕ)2 + (z′ − z)2)1/2
µ(θ) ρ |rθ|

=
1

4π

∫ π

0

√
2

χ+ 1
EllipticK

(
2

χ+ 1

)(
2

√
ρ

ρ′

)
µ(θ)|rθ| dθ

K[µ](r′) =− 1

4π

∫ 2π

0

dϕ

∫ π

0

dθ
(ρ′ − ρ cosϕ)n′ρ + (z′ − z)n′z(

(ρ′ − ρ cosϕ)2 + (ρ sinϕ)2 + (z′ − z)2)3/2
µ(θ) ρ |rθ|

=− 1

4π

∫ π

0

√
2

χ+ 1

(
EllipticK

(
2

χ+ 1

)(
n′ρ
ρ′

√
ρ

ρ′

)
+EllipticE

(
2

χ+ 1

)(
2

(ρ′ − ρ)n′ρ + (z − z′)n′z
|r′ − r|2

√
ρ

ρ′
−
n′ρ
ρ′

√
ρ

ρ′

))
µ(θ)|rθ| dθ

where r′ = ρ′ + iz′, n′ = n′ρ + in′z, r = ρ+ iz, and χ = 1 + |r′−r|2
2ρ′ρ

.

We use the kernel-split idea from [84]. First, we introduce a set of notations:

1. half-integer degree Legendre functions of the second kind Dn− 1
2

(χ). We need D− 1
2

(χ)

to rewrite EllipticK
(

2
χ+1

)
:

(8.10)

√
2

χ+ 1
EllipticK

(
2

χ+ 1

)
= D− 1

2
(χ)

2. hypergeometric function 2F 1 (a, b; c;x) =
∑∞

k=0
(a)k(b)k

(c)k

xk

k!
. This is related to the coeffi-

cient of singular part of EllipticK
(

2
χ+1

)
:

(8.11) D− 1
2

(χ) = −1

2
log (χ− 1) 2F 1

(
1

2
,
1

2
; 1;

1− χ
2

)
+ R (χ)

Here 1−χ
2

is approximated by

(8.12)
1− χ

2
=
|r′ − r|2

4ρ′ρ
≈ T (r′, r) =

|r′ − r|2

4ρ′2

3∑
k=0

(
ρ′ − ρ
ρ′

)k
And 2F 1 (a, b; c;x) =

∑∞
k=0

(a)k(b)k
(c)k

xk

k!
, |x| < 1, is truncated after four terms

(8.13)
2F 1 (a, b; c;x) ≈ 1 +

1

22
x+

1

26
x2 +

1

3 · 25
x3

169

The EllipticE part prevents smooth quadrature from converging for targets near but off-

surface, although it has a limiting value. Therefore we use the following relation:

(8.14)√
2 (χ+ 1)EllipticE

(
2

χ+ 1

)
=χ

√
2

χ+ 1
EllipticK

(
2

χ+ 1

)
−D− 1

2
(χ)

=− 1

2
log
(
|r′ − r|2

)(|r′ − r|2
4ρ′ρ

− 1

8

(
|r′ − r|2

4ρ′ρ

)2

+
3

64

(
|r′ − r|2

4ρ′ρ

)3

− 25

1024

(
|r′ − r|2

4ρ′ρ

)4
)

+ R̃ (χ)

Then split the kernel into log singularity, Cauchy singularity, and smooth part. This kernel

split idea also applies to the singularity in axisymmetric Stokes kernel, which we omit the

detailed formula here. Currently, we only have a prototype solver for Stokes single layer

potential. For Stokes double layer potential, pressure, and traction kernels, the splitting

could involve more complicated cross terms, which requires further derivation.

8.3 Extension to Inhomogeneous Stokes Problems

Here we use two dimensional Stokes kernel as an example to introduce the way of extending

our current product integration scheme for volume potentials to other types of singularities.

This is for constructing a particular solution to the following BVP for a inhomogeneous

Stokes flow

−µ∆u(r) +∇p(r) = f(r) and ∇ · u(r) = 0 in Ω,(8.15a)

u(r) = g(r) on Γ.(8.15b)

The particular solution is given by the volume integral of G(r) = −I log |r| + r⊗r
|r|2 con-

volved with a vector source function f(r) in Ω:

(8.16) u(r′) =

∫
Ω

G(r′ − r)f(r)dA

170

Integrating log |r| part follows exactly the routines introduced in Chapter IV for Poisson’s

equation. Here we rewrite the second terms as partial derivatives of log |r|:

(8.17)

∫
Ω

(x′ − x) (x′ − x)

|r′ − r|2
f1(r)dA

≈
∫

Ω

(x′ − x) (x′ − x)

|r′ − r|2
∑
i,j

ci,jx
iyjdA

=x′
∫

Ω

x′ − x
|r′ − r|2

∑
i,j

ci,jx
iyjdA−

∫
Ω

x′ − x
|r′ − r|2

∑
i,j

ci,jx
i+1yjdA

=
∑
i,j

ci,j

{
x′
∫

Ω

x′ − x
|r′ − r|2

xiyjdA−
∫

Ω

x′ − x
|r′ − r|2

xi+1yjdA

}
=
∑
i,j

ci,j

{
x′

∂

∂x′

∫
Ω

log |r′ − r|xiyjdA− ∂

∂x′

∫
Ω

log |r′ − r|xi+1yjdA

}
To convert ∂

∂x′

∫
Ω

log |r′ − r|xiyjdA and ∂
∂x′

∫
Ω

log |r′ − r|xi+1yjdA into 1-forms on ∂Ω, we

can using the following recursion.

We present the recursion needed in this case

(8.18)

Lα,x =
2α

α + 1

[
x

|r|2
Lα−1(r′, r) +

r′ · r
|r|2

Lα−1,x(r
′, r)

]
− α− 1

α + 1

[
x′

|r|2
Lα−2(r′, r) +

|r′|2

|r|2
Lα−2,x

]
+

1

α + 1

[
4(x′ − x)

|r|2
log |r′ − r|+ 2(x′ − x)

|r|2

]
+

2

α(α + 1)

x

|r|2

(8.19)

Lα,y =
2α

α + 1

[
y

|r|2
Lα−1(r′, r) +

r′ · r
|r|2

Lα−1,y(r
′, r)

]
− α− 1

α + 1

[
y′

|r|2
Lα−2(r′, r) +

|r′|2

|r|2
Lα−2,y

]
+

1

α + 1

[
4(y′ − y)

|r|2
log |r′ − r|+ 2(y′ − y)

|r|2

]
+

2

α(α + 1)

y

|r|2

To get this recursion started

(8.20)

L0,x(r
′, r) =− 2

x

|r|2
log |r′ − r|+ 2

(
1− r

′ · r
|r|2

)
x′ − x
|r′ − r|2

+ 2
x

|r|2
log |r′|

+ 2
r′ · r
|r|2

x′

|r′|2
+ 2

sign(r′ × r)y

|r|2

[
tan−1 |r|2 − r′ · r

|r′ × r|
+ tan−1 r′ · r

|r′ × r|

]
+ 2
|r′ × r|
|r|2

[
−x|r′ × r| − (|r|2 − r′ · r) sign(r′ · r)y

|r′ × r|2 + (|r|2 − r′ · r)2

+
x|r′ × r| − (r′ · r)sign(r′ × r)y

|r′ × r|2 + (r′ · r)2

]

171

(8.21) L1,x(r
′, r) =

x

|r|2
L0(r′, r) +

r′ · r
|r|2

L0,x(r
′, r) + 2

x′ − x
|r|2

log |r′ − r| − 2
x′

|r|2
log |r′|

(8.22)

L0,y(r
′, r) =− 2

y

|r|2
log |r′ − r|+ 2

(
1− r

′ · r
|r|2

)
y′ − y
|r′ − r|2

+ 2
y

|r|2
log |r′|+ 2

r′ · r
|r|2

y′

|r′|2

+ 2
sign(r′ × r)x

|r|2

[
tan−1 |r|2 − r′ · r

|r′ × r|
+ tan−1 r′ · r

|r′ × r|

]
+ 2
|r′ × r|
|r|2

[
−y|r′ × r| − (|r|2 − r′ · r) sign(r′ · r)x

|r′ × r|2 + (|r|2 − r′ · r)2

+
y|r′ × r| − (r′ · r)sign(r′ × r)x

|r′ × r|2 + (r′ · r)2

]

(8.23) L1,y(r
′, r) =

y

|r|2
L0(r′, r) +

r′ · r
|r|2

L0,x(r
′, r) + 2

y′ − y
|r|2

log |r′ − r| − 2
y′

|r|2
log |r′|

Then the rest, i.e. domain discretization, source term approximation, follows pretty much

the discussion from Chapter IV. We have chosen the 2D analytic “body force flow” solution in

[20], given by: (there are typos in the originally provided solution u = 2{−x2y, xy2}, p =

sin(xy), f = 4µ{y(1 + cos(xy)),−x(1 + cos(xy))})

(8.24) u = {−x2y, xy2}, p = 2µ sin(xy), f = 2µ{y(1 + cos(xy)),−x(1− cos(xy))}

This can be generalized to solving the modified Stokes equations with a forcing term:

α2u(r)− µ∆u(r) +∇p(r) = f(r) and ∇ · u(r) = 0 in Ω,(8.25a)

u(r) = g(r) on Γ.(8.25b)

In addition to velocity, there is more work to be done to get a robust solver for computing

pressure and traction in the presence of inhomogeneous forcing term to get a complete set

of solution variables. Finally, we also plan on exploring the possibilities of extending this

product integration scheme to a formulation of using space-time fundamental solution for

unsteady Stokes flow.

APPENDICES

172

173

A.1 Pressure and traction in terms of contour integrals

Here, we give formulae for the traction vector T induced at a target point with given

surface normal, and the associated pressure field p, when the velocity field is represented

by a Stokes single or double layer potential. The goal is to write the traction and pressure

in terms of the four contour integrals of Sec. 2.2.2, to which close-evaluation methods of

Sec. 2.3.3 may then be applied. This enables uniformly accurate force calculations on bodies,

or solution of traction BVPs. We use the notation of Sec. 2.2: recall that nr′ and nr are

the normal vectors at the target r′ and source r respectively, ρ = |r′− r|, and I denotes the

2× 2 identity operator. We also denote d = r′ − r.

We first consider the single layer potential (2.3). Its traction is

(A.1.1) TS[σ](r′) = − 1

π

∫
Γ

d · nr′
ρ2

d⊗ d
ρ2

σ(r) dsr,

which turns out to be the negative of the Stokes DLP (2.4) with nr replaced by nr′ . While

(2.17) is no longer useful in this case, we can instead write the traction as

(A.1.2) TS[σ](r′) = − 1

π

∫
Γ

(d · σ(r))
d

ρ4
(d · nr′) dsr

and use the slightly different identity

(A.1.3) ∇r′
(
d · σ
ρ2

)
=
σ

ρ2
− (d · σ)

2d

ρ4

to write the traction kernel as

(A.1.4)

TS[σ](r′) =
−1

2π

∫
Γ

d · nr′
ρ2

σ dsr +
1

2π
(r′ · nr′)∇

∫
Γ

d · σ
ρ2

dsr

− 1

2π
n′1∇

∫
Γ

d · σ
ρ2

x dsr −
1

2π
n′2∇

∫
Γ

d · σ
ρ2

y dsr ,

where (n′1, n
′
2) =: nr′ are the two components of nr′ . As did in the case of velocity potentials,

we can concisely write (A.1.4) as

(A.1.5)

TS[σ] =
(
(S[σ1])n + i(S[σ2])n

)
+

1

2π

(
Re(z′/n′z)IH [σ/nz]− n′1IH [σx/nz]− n′2IH [σy/nz]

)
,

174

where all the R2 vectors are now understood as complex numbers in C, the over line in IH [·]

denotes the complex conjugate of IH [·] and the dot product r′ · nr′ = Re(z′/n′z) is due to

the fact that 1 = |nr′|2 = n′zn
′
z.

The single layer pressure associated to (2.3) is

(A.1.6) PS[σ](r′) =
1

2π

∫
Γ

d · σ
ρ2

dsr ,

which again in the complex plane can be written as

(A.1.7) PS[σ] = Re
i

2π
IC [σ/nz].

We now turn to the Stokes double layer potential (2.4). The traction kernel and its

associated pressure kernel are given by [120, (5.27)] [16, (3.37)],

(A.1.8)

TD[σ](r′) =
µ

π

∫
Γ

(
−8
d⊗ d
ρ6

(d · nr′)(d · nr) +
d⊗ nr′
ρ4

(d · nr) +
d⊗ d
ρ4

(nr′ · nr)

+I
1

ρ4
(d · nr′)(d · nr) +

nr ⊗ d
ρ4

(d · nr′) +
nr′ ⊗ nr

ρ2

)
σ(r) dsr

PD[σ](r′) =
µ

π

∫
Γ

(
−nr · σ(r)

ρ2
+ 2

d · σ(r)

ρ4
(r · nr)

)
dsr.

The corresponding boundary integral operators TD[σ](r′) and PD[σ](r′) are hyper-singular.

Following some intricate derivation, we can express this operator in terms of the Laplace

double layer potential:

(A.1.9)

1

µ
TD[σ] =− 2 (r′ · nr′∇∇D[σ]− n′1∇∇D[xσ]− n′2∇∇[yσ])

+ 3I(nr′ · ∇D)[σ]− (nr′ ⊗∇D)[σ]− (∇D ⊗ nr′)[σ]

+

(
1

−1

)
(nr′ · ∇D + nr′ ⊗∇D −∇D ⊗ nr′)

[
n̄z
nz
σ

]
,

PD[σ] =− 2µ

(
∂

∂x′
D[σ1] +

∂

∂y′
D[σ2]

)

=
µ

π
(Im (IH(σ1)) + Re (IH(σ2))) .

175

Here n̄z
nz
σ = [n̄z

nz
σ1,

n̄z
nz
σ2]T , ∇ is short for ∇r′ , and ∇∇ is the Hessian tensor. The gradients of

Laplace double-layer potentials needed above are expressed in terms of Hadamard integrals

using (2.15). The Hessians are given in terms of supersingular integrals as follows:

(A.1.10) ∇∇D[σ](r′) =

(
Re i

π
(IS(σ1)) (r′) −Im i

π
(IS(σ2)) (r′)

−Im i
π

(IS(σ1)) (r′) −Re i
π

(IS(σ2)) (r′)

)
.

The close evaluation formulae for these are in Sec. 2.3.3.

To validate the above formulae, we include in Fig. 2.4(b–c) the convergence of the max-

imum error in pressure and traction for the smooth domain of Example 1 from Sec. 2.5.

The convergence rate is very similar to that of velocity albeit a loss of 1–2 digits, which is

expected due to the extra derivatives.

B.2 Proof of Lemma 3.3.2

Proof. Denoting P (r) =
∫ 1

0
(tzg2(tr)− tyg3(tr)) dt, Q(r) =

∫ 1

0
(txg3(tr)− tzg1(tr)) dt, and

R(r) =
∫ 1

0
(tyg1(tr)− txg2(tr)) dt, the exterior derivative of (3.16), ω = P (r)dx+Q(r)dy+

R(r)dz, is

(B.2.1) dω =

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz +

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

The first term, ∂R
∂y
− ∂Q

∂z
, can be expanded as

∂

∂y

(∫ 1

0

(tyg1(tr)− txg2(tr)) dt

)
− ∂

∂z

(∫ 1

0

(txg3(tr)− tzg1(tr)) dt

)
=

∫ 1

0

(
tg1(tr) + t2yg1,y(tr)− t2xg2,y(tr)

)
dt−

∫ 1

0

(
t2xg3,z(tr)− tg1(tr)− t2zg1,z(tr)

)
dt

=

∫ 1

0

(
2tg1(tr) + t2yg1,y(tr) + t2zg1,z(tr)− t2x (g2,y(tr) + g3,z(tr))

)
dt

=

∫ 1

0

(
2tg1(tr) + t2yg1,y(tr) + t2zg1,z(tr) + t2xg1,x(tr)

)
dt (since ∇ · g = 0)

=

∫ 1

0

d

dt
(t2g1(tr))dt = g1(r).

Treating the other two terms, ∂P
∂z
− ∂R

∂x
and ∂Q

∂x
− ∂P

∂y
, similarly, we get the result dω =

g1dy ∧ dz + g2dz ∧ dx+ g3dx ∧ dy.

176

C.3 Recurrence relations for evaluating moments

Here, we present recurrence relations for evaluating moments of high-order monic poly-

nomials w.r.t certain kernels that arise in 1-form construction. Together with Mk that is

required in (3.32), we need Lk and Nk, defined below, for evaluating other Laplace layer

potentials:

(C.3.1)

Lk(r
′, r) =

∫ 1

0

tk

|tr − r′|5
dt, Mk(r

′, r) =

∫ 1

0

tk

|tr − r′|3
dt, Nk(r

′, r) =

∫ 1

0

tk

|tr − r′|
dt

Using integration by parts and after some algebra, we can arrive at the following recurrences

for evaluating the above moments:

(C.3.2)

Lk = 2r′·r
|r|2 Lk−1 − |r

′|2
|r|2 Lk−2 + 1

|r|2Mk−2

Mk = r′·r
|r|2Mk−1 + k−1

|r|2 Nk−2 − 1
|r|2

tk−1

|tr−r′|

∣∣∣1
0

Nk = 2k−1
k

r′·r
|r|2Nk−1 − k−1

k
|r′|2
|r|2 Nk−2 + 1

|r|2
tk−1|tr−r′|

k

∣∣∣1
0

The base conditions for these recurrences can also easily be derived as

(C.3.3)

N0 =
1

|r|
(
log
(
|r||r − r′|+ |r|2 − (r′ · r)

)
− log (|r′||r| − (r′ · r))

)
,

N1 =
1

|r|2
(|r − r′| − |r′|) +

(r′ · r)N0

|r|2
,

M0 =
|r|

|r|2|r′|2 − (r′ · r)2

(
|r|2 − (r′ · r)

|r||r − r′|
+
r′ · r
|r||r′|

)
,

M1 =
1

(r′ · r)2 − |r′|2|r|2

(
−r′ · r + |r′|2

|r − r′|
− |r′|

)
,

L0 =
1(

|r′|2|r|2 − (r′ · r)2)2

(
|r|2 |r|

2 − r′ · r
|r − r′|

− 1

3

(|r| − r′ · r)3

|r − r′|3
+ |r|2r

′ · r
|r′|

− 1

3

(r′ · r)3

|r′|3

)
,

L1 = − 1

|r|2

(
1

3

1

|r − r′|3
− 1

3

1

|r′|3

)
+

(r′ · r)

|r|2
L0.

177

D.4 Second-order approximation scheme for Laplace double-layer potential

Here, we provide further details on the steps outlined in Section 3.4.1 by considering the

simpler p = 2 case and give explicit formulas for all the intermediate operators and functions.

Stage 1: Precomputation Recall that the first step is the change of coordinates wherein

r(1,1) becomes the origin and rest of the quadrature nodes are transformed accordingly. In

the case of p = 2, there are eight unknowns, four elements each of the vectors C(2,1) and C(2,2)

(defined in (3.27)). We can explicitly write the two vector equations obtained by applying

(3.26) as

(D.4.1)
A[f (2,1)](r̃(2,1))C(2,1) + A[f (2,2)](r̃(2,1))C(2,2) = U (2,1),

A[f (2,1)](r̃(2,2))C(2,1) + A[f (2,2)](r̃(2,2))C(2,2) = U (2,2).

From (3.27), we can expand the matrix operators as

(D.4.2) A[f (2,1)](r) =

0 −x 0 z

x 0 z 0

0 −z 0 −x
−z 0 x 0

 and A[f (2,2)](r) =

0 0 −y z

0 0 z y

y −z 0 0

−z −y 0 0

 .

Stage 2: 2-to-1 form conversion and contour integration The 1-form ω for linear case can

be carried out relatively easy. We only have two quaternionic 2-forms (we omit ˜ in r̃):

(D.4.3)

α
(2,1)
0 = (y′−y)z

|r′−r|3 dy ∧ dz + −(z′−z)x−(x′−x)z
|r′−r|3 dz ∧ dx+ (y′−y)x

|r′−r|3 dx ∧ dy

α
(2,1)
1 = (x′−x)x+(z′−z)z

|r′−r|3 dy ∧ dz + (y′−y)x
|r′−r|3 dz ∧ dx+ (z′−z)x−(x′−x)z

|r′−r|3 dx ∧ dy

α
(2,1)
2 = (y′−y)x

|r′−r|3 dy ∧ dz + (z′−z)z−(x′−x)x
|r′−r|3 dz ∧ dx+ −(y′−y)z

|r′−r|3 dx ∧ dy

α
(2,1)
3 = −(x′−x)z+(z′−z)x

|r′−r|3 dy ∧ dz + −(y′−y)z
|r′−r|3 dz ∧ dx+ −(z′−z)z−(x′−x)x

|r′−r|3 dx ∧ dy

178

(D.4.4)

α
(2,2)
0 = (y′−y)z+(z′−z)y

|r′−r|3 dy ∧ dz + −(x′−x)z
|r′−r|3 dz ∧ dx+ −(x′−x)y

|r′−r|3 dx ∧ dy

α
(2,2)
1 = (z′−z)z−(y′−y)y

|r′−r|3 dy ∧ dz + (x′−x)y
|r′−r|3 dz ∧ dx+ −(x′−x)z

|r′−r|3 dx ∧ dy

α
(2,2)
2 = (x′−x)y

|r′−r|3 dy ∧ dz + (y′−y)y+(z′−z)z
|r′−r|3 dz ∧ dx+ (z′−z)y−(y′−y)z

|r′−r|3 dx ∧ dy

α
(2,2)
3 = −(x′−x)z

|r′−r|3 dy ∧ dz + −(y′−y)z+(z′−z)y
|r′−r|3 dz ∧ dx+ −(z′−z)z−(y′−y)y

|r′−r|3 dx ∧ dy

where superscript of α denotes which basis the differential 2-form corresponds to, and sub-

script corresponds to index of its quaternion pair form. Corresponding 1-forms are then

given by,

(D.4.5)

ω
(2,1)
0 = ((xy2 + 2xz2)M3 − (y′xy + z′xz + x′z2)M2) dx

+ ((yz2 − x2y)M3 + (y′x2 − y′z2)M2) dy

+ ((−2x2z − y2z)M3 + (z′x2 + x′xz + y′yz)) dz

ω
(2,1)
1 = (−xyzM3 − (z′xy − y′xz − x′yz)M2) dx

+ ((x2z + z3)M3 + (z′x2 − 2x′xz − z′z2)M2) dy

+ (−yz2M3 + (−y′x2 + x′xy + z′yz)M2) dz

ω
(2,1)
2 = ((x2z − y2z − z3)M3 + (−x′xz + y′yz + z′z2)M2) dx

+ (2xyzM3 − 2y′xzM2) dy

+ ((−x3 − xy2 + xz2)M3 + (x′x2 + y′xy − z′xz)) dz

ω
(2,1)
3 = (−x2yM3 + (x′xy + cyz − y′z2)M2) dx

+ ((x3 + xz2)M3 − (x′x2 + 2z′xz − x′z2)M2) dy

+ (−xyzM3 + (z′xy + y′xz − x′yz)M2) dz

179

(D.4.6)

ω
(2,2)
0 = ((xz2 − xy2)M3 + (x′y2 − x′z2)M2) dx

+ ((−x2y − 2yz2)M3 + (x′xy + z′yz + y′z2)M2) dy

+ ((x2z + 2y2z)M3 + (−z′y2 − x′xz − y′yz)) dz

ω
(2,2)
1 = (−2xyzM3 + 2x′yzM2) dx

+ ((x2 − y2z + z3)M3 + (−x′xz + y′yz − z′z2)M2) dy

+ ((x2y + y3 − yz2)M3 + (−x′xy − y′y2 + z′yz)M2) dz

ω
(2,2)
2 = ((−y2z − z3)M3 − (z′y2 − 2y′yz − z′z2)M2) dx

+ (xyzM3 + (z′xy − y′xz − x′yz)M2) dy

+ (xz2M3 + (−y′xy + x′y2 − z′xz)) dz

ω
(2,2)
3 = ((−y3 − yz2)M3 + (y′y2 + 2z′yz − y′z2)M2) dx

+ (xy2M3 − (y′xy + z′xz − x′z2)M2) dy

+ (xyzM3 + (−z′xy + y′xz − x′yz)M2) dz

Now we have expression for the complete 1-form ω,

(D.4.7) ω = τ
(
r(1,1)

)
ω

(1,1)
0 +Ω(2,1)C(2,1) +Ω(2,2)C(2,2),

where Ω(k,l) = [ω
(k,l)
0 , ω

(k,l)
1 , ω

(k,l)
2 , ω

(k,l)
3]. Lastly, the contour integral

∫
∂D̃
ω is evaluated on

each transformed patch.

E.5 Regularized forces

The following is the formula for regularized Stokeslet:

(E.5.1) G̃ij(r
′ − r) =

1

4π

(
δij

(
log

1

dε + ε
− ε (dε + 2ε)

dε (dε + ε)

)
+ (xi − yi)(xj − yj)

dε + 2ε

dε(dε + ε)2

)
,

180

where dε =
√
|r′ − r|2 + ε2, ε is the regularization parameter, and δ is Kronecker delta. Its

associated regularized pressure kernel is

P̃j(r
′ − r) =

(
r′j − rj

)
2π

d2
ε + ε2 + εdε
d3
ε (dε + ε)

.(E.5.2)

To the best of our knowledge, the traction kernel T̃ijk(r
′, r) associated with the regularized

force has not been given explicitly for the 2D regularized force used in [36]. After some

lengthy but straightforward derivation following T̃ijk = −δijP̃k +
(
G̃ik,j + G̃jk,i

)
, we obtain

the formula

T̃ijk(r
′ − r) =−

(r′i − ri)(r′j − rj)(r′k − rk)
π

d2
ε + 3εdε + ε2

d3
ε(dε + ε)3

− [δij(r
′
k − rk) + δik(r

′
j − rj) + δkj(r

′
i − ri)]

ε2(2dε + ε)

2π(dε + ε)2d3
ε

.

(E.5.3)

It is easy to see that T̃ijk converges to the singular traction kernel Tijk in the limit ε → 0;

the correction term induced by the regularization appears at O(ε2) and higher orders of ε.

F.6 Numerical Validation

To validate our boundary integral method, we construct a boundary value problem and

test the algorithm against the exact solution. Specifically, we place 50 stokeslets with random

strengths inside the inner channel boundary and one stokeslet with random strength at the

center of each of the 10 particles as shown in figure F.6.1(a). The flow field uexa(Ω) created

by these stokeslets can be found by evaluating directly using the free-space Green’s function.

To obtain the numerical solution, we set the rigid body velocity vector U ∗ to be zero and

treat the flow field on the channel walls and the particle surfaces, given by uexa(∂Ω), as the

boundary conditions on ∂Ω where ∂Ω ≡ Γ∪γ. Symbolically, one can think of uexa as uc and

substitute it into (7.12) to solve for the corresponding density function µ. The numerical

solution unum(Ω) = uΓ + uγ is then found by substituting µ into (5.8) and (5.16).

The logarithm of absolute error between uexa and unum is shown in figure F.6.1(b) with

about 4000 Gauss-Legendre quadrature points on Γ and γ in total. It is noticeable that the

181

algorithm has at least a 14-digit accuracy for most of the locations, and 12-digit accuracy

is achieved even close to the particles. The l∞-norm of the error as a function of number of

quadrature points is shown in figure F.6.1(c).

-5

-4

-3

-2

-1

0

1

2

3

4

5

-16

-15.5

-15

-14.5

-14

-13.5

-13

-12.5

5 10 15 20 25 30 35 40
-14

-12

-10

-8

-6

-4

-2

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

lo
g

1
0
(m

ax
 |u

er
r|)

npxx

yy

(a) (b) (c)

×100

Figure F.6.1: Spatial validation. (a) Flow field generated by 60 stokeslets (red arrows) shown as streamlines.
(b) The absolute error between the exact solution and the numerical solution with a total of about 4000
Gaussian quadrature points, color-code represents log10(|uexa − unum|). (c) The l∞-norm of the flow field
shown as a function of the number of quadrature points.

Next, we place N = 32 cilia with phase difference ∆φ = 2π/N = π/16 as in (5.1) and

use a standard Runge-Kutta 4th order (RK4) scheme to march forward in time. Due to the

lack of an exact solution in this case, we test the self convergence rate with respect to ∆t.

We monitor the motion of a rigid particle of radius rp = 0.4 initially centered at (0, 4.5)

for a full cycle t ∈ [0, 1] and for ∆t = {0.04, 0.02, 0.01}. The particle is discretized using

128 quadrature points. At the final time T = 1, we measure the following quantities in

Table F.6.1:

Ex(T,∆t) = − log2 |x∆t
c (T)− x∆t/2

c (T)|

Ey(T,∆t) = − log2 |y∆t
c (T)− y∆t/2

c (T)|

EΘ(T,∆t) = − log2 |Θ∆t(T)−Θ∆t/2(T)|

(F.6.1)

where Θ(t) =
∫ t

0
ωdt is the orientation of the particle. The convergence rate for a passive

tracer is also reported in Table F.6.1, with Ex and Ey only.

182

Particle ∆t = 0.04 ∆t = 0.02 ∆t = 0.01

Ex(T,∆t) 13.9948 17.0434 21.6549

Ey(T,∆t) 14.6581 17.9964 22.6611

EΘ(T,∆t) 13.8062 17.6920 21.6093

Tracer ∆t = 0.04 ∆t = 0.02 ∆t = 0.01

Ex(T,∆t) 12.4986 16.5527 22.1399

Ey(T,∆t) 12.0234 16.2576 21.3125

Table F.6.1: (Left) Results on the performance of RK4 method applied to evolving the cilia inside a Taylor-
Couette device. (Right) Error terms for the particle center at final time T = 1.

G.7 Parameter space

We parametrize the slip velocity using a piecewise B-spline approximation. The slip

velocity uS(t) is determined by (M + 1) control points, uS(ti) = ϕi for i = 0, · · · ,M , and

is interpolated by B-spline basis functions between the control points. Here t ∈ [0, π] is a

reparametrization of the arc-length s. In theory, we only need to assign control points for ti

between 0 and π to generate an admissible slip velocity by symmetry. In practice, however, we

assign control points in the full period ti ∈ [0, 2π] and impose periodic boundary conditions

to determine the spline coefficients, as detailed below.

Let M = 2N + 2, where N is the number of free control points between 0 and π. Let all

control points be equally spaced, we have ti = 2πi/M , i = 0, · · · ,M . To make sure the slip

velocity is axisymmetric, we assign ghost control points ϕi = −ϕM−i for N + 1 < i < 2N + 2

and enforce zero conditions at the poles ϕi = 0, for i = 0, N + 1, 2N + 2.

The general B-spline formulation of order 5 is given by

(G.7.1) uS(t) :=
M−1∑
k=−5

ξkBk(t), t ∈ [0, 2π],

where Bk(t) = B∗k,5(M
2π
t) is a modified k-th B-spline basis function, and B∗k,p is the standard

183

k-th B-spline basis function of degree p, given by recurrence

B∗k,0(t) =

1, k ≤ t < k + 1

0, otherwise

(G.7.2)

B∗k,p(t) =
t− k
p

B∗k,p−1(t) +
p+ k + 1− t

p
B∗k+1,p−1(t).(G.7.3)

In order to obtain the (M + 5) B-spline coefficients ξk from the (M + 1) control points ϕi,

we need four more equations to close the system. Specifically, we use the periodic boundary

conditions of the derivatives

(G.7.4)
dnuS

dtn
(0) =

dnuS

dtn
(2π), n = 1, 2, 3, 4.

These system of equations uniquely determine the B-spline coefficient ξk from the control

points ϕi. The slip velocity uS(t) along the generating curve could then be found by substi-

tuting ξk into (G.7.1).

H.8 Numerical validation

The Green’s function G and the traction kernel T used in the ansatz (6.7) are defined by

(H.8.1) G (r′ − r) =
1

8πµ

(
I

1

|r′ − r|
+

(r′ − r)⊗ (r′ − r)

|r′ − r|3

)
,

(H.8.2) nr′T (r′ − r) = − 3

4π

(r′ − r)⊗ (r′ − r)

|r′ − r|5
(r′ − r) · nr′ .

Due to the rotational symmetry of Γ, we can transform the layer potentials (6.7) into convo-

lutions on the generating curve γ by integrating analytically in the θ-direction. The integral

184

0 100 200 300 400
10-8

10-4

100

0 100 200 300 400
10-10

10-5

100

0 42
0

2

4

x

z

-8

-14

-10

-12

lo
g
1
0
(m
ax
|u
er
r|)

lo
g
1
0
(m
ax
|f
er
r|)

log
10
(|u

err
|)(a) (b) (c)

np np

Figure H.8.1: (a) The absolute error between the exact solution and the numerical solution with a total of
400 Gaussian quadrature points; color-code represents log10(|uexa − unum|). (b) The L∞-norm of the error
in the flow field shown as a function of the number of quadrature points. (c) The L∞-norm of the traction
error shown as a function of the number of quadrature points.

kernels take the following form ([197]):

(H.8.3)

Gγ(r
′ − r) =

1

8πµ

∫ 2π

0

(
cos θ
|r′−r| + (x cos θ−x′)(x−x′ cos θ)

|r′−r|3
(x cos θ−x′)(z−z′)

|r′−r|3
(x−x′ cos v)(z−z′)

|r′−r|3
1

|r′−r| + (z−z′)2

|r′−r|3

)
dθ,

nr′Tγ(r
′ − r) = − 3

4π

∫ 2π

0

(
(x cos θ−x′)(x−x′ cos θ)

|r′−r|5
(x cos θ−x′)(z−z′)

|r′−r|5
(x−x′ cos θ)(z−z′)

|r′−r|5
(z−z′)2

|r′−r|5

)

(n1 (x cos θ − x′) + n3 (z − z′)) dθ.

The velocity and traction can then be transformed as: u (r′) =
∫
γ
Gγ (r′ − r)σ (r)x dsr,

f (r′) = −1
2
σ (r′)+nr′

∫
γ
Tγ (r′, r)σ (r)x dsr. The analytic solution of the integrals (H.8.3)

can be found in [197] and [152].

To validate our boundary integral method, we construct a boundary value problem and

test the algorithm against the exact solution. As is standard practice, we consider the flow

field generated by a set of axisymmetric Stokeslets and the corresponding traction:

(H.8.4) uexa(r
′) =

N∑
k=1

Gγ(r
′ − rk)σkxk, fexa(γ) = nγ

N∑
k=1

Tγ(γ − rk)σk(k)xk,

where {rk} and {σk} are the location and strength of the k-th Stokeslet. We randomly

choose 5 Stokeslets whose locations and strengths are given in Fig. H.8.1(a) by the black

arrows and substitute them into (H.8.4) as our reference case.

185

(a)

(b)

Figure H.8.2: (a) Example of a panel with 10-point Gaussian nodes, and its neighbor panels. The red asterisk
is the target. (b) Three panels in (a) are combined into one big panel. The big panel is further divided into
two panels by the desired target. Blue grid is a 16th-order Alpert quadrature rule. And black grid is an
8-point smooth quadrature rule.

To obtain the numerical solution, we first evaluate the reference flow field on the gen-

erating curve uexa(γ), then treat uexa(γ) as the boundary condition to obtain the density

vector σ. The generating curve γ is discretized into non-overlapping panels γ =
∑Np

p=1 Λp.

Then on each panel, we place the nodes of a 10-point Gaussian quadrature. The integral

operator can then be approximated by the standard Nyström matrix at these collocation

points. The logarithmic singularity is resolved with Alpert quadrature using node loca-

tions off the Gauss-Legendre grid [74], as illustrated in Fig. H.8.2(a) &(b). Integrals of

Gγ (r′ − r) and Tγ (r′ − r) at the desired target, endpoints of two panels in Fig. H.8.2(b),

are approximated using correction nodes. Note that two end panels need to be further

split adaptively corresponding to north and south poles, until the first and last Gaus-

sian nodes have adjacent neighbors. We subsequently use the density vector σ to evalu-

ate the numerical solution unum(r′) outside the microswimmer’s surface. The traction on

the generating curve is evaluated from the same density vector σ using the traction kernel

fnum(γ) = −1
2
σ(γ) + nγ

∫
γ
Tγ(γ − r)σ (r)x dsr.

The absolute error of the numerical solution unum is shown in Fig. H.8.1(a). As can be

observed from Fig. H.8.1(b) &(c), our forward solver achieves 10-digit accuracy in the flow

field and 6-digit accuracy for traction with 400 quadrature points on the generating curve.

For all the test cases presented in Section 7.3, 600 Gauss-Legendre quadrature points were

used.

As a further validation of our numerical scheme, we computed the fluid drag of a family

186

1 1.5 2 2.5 3 3.5 4

Aspect ratio

17.5

18

18.5

6̟

19

19.5

F
lu

id
 d

ra
g

Figure H.8.3: Fluid drag of towing a prolate spheroid with unit speed. All spheroids are of the same volume
as the unit sphere. The red cross denotes the fluid drag of the optimal profile that minimizes the fluid drag
given by [150].

of prolate and oblate spheroids. The shape that yields the minimal fluid drag is a prolate

spheroid with a roughly 2 : 1 aspect ratio (Fig. H.8.3), consistent with the optimal shape

obtained previously in [150].

I.9 Generating curves of the shapes used in the chapter

Here, for reproducibility purposes, we list equations of all the generating curves used in

this paper. In all cases below, i =
√
−1, t ∈ [0, π] is the polar angle, the equations are

defined on the complex plane and the axis of symmetry is the imaginary axis.

• Spheroids: z = α−1/3 sin(t) + iα2/3 cos(t), α is the aspect ratio.

• Wavy shapes: z = (1 + 0.15 cos(kt) exp(i(π/2− t))), k ∈ {3, 4, 5, 6} is the order of the

perturbation.

• Stomatocyte: z = (1.5 + cos t)(sin(λπ sin t) + i cos(λπ sin t)) − 0.5i, λ ∈ [0.4, 0.95]

controls the vertical ‘stretchiness’ of the shape.

• Harmonics: z = ρ(t) sin t − iρ(t) cos t, where ρ(t) = 1 + rY m
n (t, 0), where Y m

n (θ, ϕ)

187

is the spherical harmonics of degree n and order m, evaluated at the colatitude θ and

longitude ϕ.

• Spherocylinder shapes were generated by simply attaching semi-spherical caps to a

cylinder with the same radius and subsequently smoothing using B-splines upto order

5.

• Snowman shapes were generated by two spheres of different radii glued together with

the centroid distance set to 90% of the sum of the radii, followed by smoothing.

J.10 Derivations of sensitivities

In this Appendix, we include the detail derivations that lead to (7.33) and the explicit

expressions of the terms therein.

Recall that the power loss and the swim speed can be written as functionals of ψ, as

shown in (7.30). The sensitivities of 〈P〉 and 〈U〉 can thus be formulated by considering

perturbed versions of ψ as in

(J.10.1) ψη(x, t) = ψ(x, t) + ηψ̂(x, t), i.e. ψη = ψ + ηψ̂,

so that the perturbed location sη at time t of the material particle initially located at s0 is

given by

(J.10.2) sη = α(s0, ψη),

the functional α being unchanged. Similar to (7.29), the perturbed slip velocity uS
η(s, t)

satisfies

(J.10.3) uS
η(s, t) = ∂ψα

(
β(s, ψη), ψη; ψ̇η

)
= υS(s, ψη),

where β, the inverse function of α, is also unchanged.

188

Notice that uS and uS
η given by (7.29) and (J.10.3) are evaluated at the same time t and

current location s (the latter being thus reached from different initial positions β(s, ψ) and

β(s, ψη)). This allows us to define the directional derivative υ̇S(s, ψ; ψ̂) of uS with respect to

ψ in the direction ψ̂, as a total derivative with respect to η:

(J.10.4) υ̇S(s, ψ; ψ̂) := lim
η→0

1

η

[
uS
η(s, t)− uS(s, t)

]
=

d

dη
∂ψα

(
β(s, ψη), ψη; ψ̇η

)∣∣∣
η=0

Carrying out the above differentiation in a straightforward way, we find

(J.10.5) υ̇S(s, ψ; ψ̂) = ∂ψsα
(
β(s, ψ), ψ; ψ̇

)
∂ψβ

(
s, ψ; ψ̂

)
+ ∂ψψα

(
β(s, ψ), ψ; ψ̇ , ψ̂

)
+ ∂ψα

(
β(s, ψ), ψ;

˙̂
ψ
)
.

Moreover, for any ψ, the functions α and β are linked through

(J.10.6) s = α (β(s, ψ), ψ)

which, upon taking the directional derivative in the direction ψ̂ and using the chain rule,

yields

(J.10.7) 0 = ∂sα (β(s, ψ), ψ) ∂ψβ
(
s, ψ; ψ̂

)
+ ∂ψα

(
β(s, ψ), ψ; ψ̂

)
.

The above equality allows us to eliminate ∂ψβ from (J.10.5), to obtain

υ̇S(s, ψ; ψ̂) = −∂ψsα
(
β(s, ψ), ψ; ψ̇

) ∂ψα
(
β(s, ψ), ψ; ψ̂

)
∂sα (β(s, ψ), ψ)

+ ∂ψψα
(
β(s, ψ), ψ ; ψ̇ , ψ̂

)
+ ∂ψα

(
β(s, ψ), ψ;

˙̂
ψ
)
.(J.10.8)

In practice, the slip velocity derivative υ̇S given by (J.10.8) is more conveniently expressed

in the initial arclength variable s0 = β(s, ψ). Moreover, in the event that ψ(s0, t) = 0 for

some s0 and t, υ̇S given by (J.10.8) blows up since ∂sα(β(s, ψ), ψ) = 0 in this case, whereas

υ̇Sds remains finite if expressed in terms of s0 (since ds = ∂sα(s0, ψ)ds0). Upon effecting the

189

change of variable s = α(s0, ψ) in the integrals (7.26) and (7.28), we obtain

〈Ṗ〉(ψ; ψ̂) = 4π

〈∫
γ

R(α(s0, ψ))f(α(s0, ψ), t) · τ (α(s0, ψ)) υ̇S(s, ψ; ψ̂) ∂sα(s0, ψ)ds0

〉(J.10.9)

〈U̇〉(ψ; ψ̂) =
−2π

F0

〈∫
γ

R(α(s0, ψ)) f̂(α(s0, ψ)) · τ (α(s0, ψ)) υ̇S(s, ψ; ψ̂) ∂sα(s0, ψ)ds0

〉(J.10.10)

where, thanks to (J.10.8), we have used

υ̇S(s, ψ; ψ̂)ds = υ̇S(s, ψ; ψ̂) ∂sα(s0, ψ)ds0

=
{
∂sα(s0, ψ)

[
∂2
ψα
(
s0, ψ; ψ̂, ψ̇

)
+ ∂ψα

(
s0, ψ;

˙̂
ψ
)]

− ∂ψsα
(
s0, ψ; ψ̇

)
∂ψα

(
s0, ψ; ψ̂

) }
ds0.(J.10.11)

This completes our derivation of (7.33).

For the ciliary motion (7.14) used here, introducing the shorthand notation I(f, g; s) :=∫ s
0
f(x)g(x)h, we have

α(s0, ψ) =
`I(ψ, ψ; s0)

I(ψ, ψ; `)
(J.10.12)

∂sα(s0, ψ) =
`ψ2(s0)

I(ψ, ψ; `)
(J.10.13)

∂ψα
(
s0, ψ; ψ̂

)
=

2`I(ψ, ψ̂; s0)

I(ψ, ψ; `)
− 2α(s0, ψ)

I(ψ, ψ̂; `)

I(ψ, ψ; `)
(J.10.14)

∂sψα
(
s0, ψ; ψ̇

)
=

2`ψ(s0)ψ̇(s0)

I(ψ, ψ; `)
− 2`

I(ψ, ψ̇; `)ψ2(s0)

(I(ψ, ψ; `))2(J.10.15)

∂2
ψα
(
s0, ψ ; ψ̂, ψ̇

)
=

2`I(ψ̂, ψ̇; s0)

I(ψ, ψ; `)
− 2α(s0, ψ)

I(ψ̂, ψ̇; `)

I(ψ, ψ; `)

− 2I(ψ, ψ̂; `)

I(ψ, ψ; `)
∂ψα

(
s0, ψ; ψ̇

)
− 2I(ψ, ψ̇; `)

I(ψ, ψ; `)
∂ψα

(
s0, ψ; ψ̂

)
.(J.10.16)

K.11 Initial coefficient sensitivity

In our optimizations, the initial guesses are chosen to be low-frequency waves with small

wave amplitudes. This is obtained by choosing the coefficients of the first Fourier modes

190

from a uniform distribution within [0, 0.01] (to restrict the initial wave amplitudes), and

setting the coefficients of the higher modes to 0 (to discourage high-frequency waves).

Restricting our attention to low-frequency waves effectively sets a time scale in our prob-

lem. That is, it helps us to focus on the ciliary motion within one beating cycle which is

given by the base mode. While cilia beating twice as fast (beating two cycles in the same

time span) could double the swim speed, the efficiency would remain unchanged because of

the simultaneous increase of the power loss.

Due to the high-dimensional nature of the problem (hundreds of degrees of freedom),

many local optima exist. As shown in Figure K.11.1(a), a large initial range of the Fourier

coefficient (e.g., [0, 1]) increases the risk of the optimizer getting stuck close to an unsuitable

local optimum. For example, an initial waveform as shown in Figure K.11.1(c) can only be

optimized to a waveform shown in Figure K.11.1(e), which has a swimming efficiency as low as

2%. On the other hand, the initial wave with small amplitudes (as shown in Figure K.11.1(b))

could almost always be optimized to the waveform with swimming efficiency ε ≈ 35%.

0

1

0

1

(b)

(c)
0

1

0

1

(d)

(e)

0 10.2 0.4 0.6 0.8 0 10.2 0.4 0.6 0.8

(a)

0

40

10

20

30

%

Initial Fourier coefficient range
0.01 0.1 1

Figure K.11.1: Sensitivity to the initial Fourier coefficient. (a) Optimized efficiencies for the unconstrained
spherical swimmer with the initial first Fourier mode chosen from [0, 0.01], [0, 0.1], [0, 1] respectively. (b)&(d)
The initial and final waveforms of the case where the range is [0, 0.01]. (c)&(e) The initial and final waveforms
of the case where the range is [0, 1].

BIBLIOGRAPHY

191

192

BIBLIOGRAPHY

[1] Ludvig af Klinteberg, Travis Askham, and Mary Catherine Kropinski. A fast integral equation method
for the two-dimensional Navier-Stokes equations. Journal of Computational Physics, 409:109353, 2020.

[2] Ludvig af Klinteberg and Alex H Barnett. Accurate quadrature of nearly singular line integrals in two
and three dimensions by singularity swapping. BIT Numerical Mathematics, 61(1):83–118, 2021.

[3] Ludvig af Klinteberg, Davoud Saffar Shamshirgar, and Anna-Karin Tornberg. Fast Ewald summation
for free-space Stokes potentials. Research in the Mathematical Sciences, 4(1):1, 2017.

[4] Ludvig af Klinteberg and Anna-Karin Tornberg. Adaptive quadrature by expansion for layer potential
evaluation in two dimensions. SIAM J. Sci. Comput., 40(3):A1225—A1249, 2018.

[5] Björn A Afzelius. A human syndrome caused by immotile cilia. Science, 193(4250):317–319, 1976.

[6] Yolanda Alvarez, Maria L Cederlund, David C Cottell, Brent R Bill, Stephen C Ekker, Jesus Torres-
Vazquez, Brant M Weinstein, David R Hyde, Thomas S Vihtelic, and Breandan N Kennedy. Genetic
determinants of hyaloid and retinal vasculature in zebrafish. BMC developmental biology, 7(1):114,
2007.

[7] John L Anderson. Colloid transport by interfacial forces. Annual review of fluid mechanics, 21(1):61–
99, 1989.

[8] Hassan Aref. Chaotic advection of fluid particles. Philosophical Transactions of the Royal Society of
London. Series A: Physical and Engineering Sciences, 333(1631):273–288, 1990.

[9] Douglas Arnold, Richard Falk, and Ragnar Winther. Finite element exterior calculus, homological
techniques, and applications. Acta numerica, 15:1–155, 2006.

[10] Antoine Aubret and Jérémie Palacci. Diffusiophoretic design of self-spinning microgears from colloidal
microswimmers. Soft matter, 14(47):9577–9588, 2018.

[11] Markus Bantle and Stefan Funken. Efficient and accurate implementation of hp-BEM for the Laplace
operator in 2D. Applied Numerical Mathematics, 95:51 – 61, 2015. Fourth Chilean Workshop on
Numerical Analysis of Partial Differential Equations (WONAPDE 2013).

[12] Alex Barnett. memorygraph: a MATLAB/octave unix tool to record true memory and CPU usage vs
time. https://github.com/ahbarnett/memorygraph, 2018.

[13] Alex Barnett, Leslie Greengard, and Thomas Hagstrom. High-order discretization of a stable time-
domain integral equation for 3D acoustic scattering. Journal of Computational Physics, 402:109047,
2020.

[14] Alex Barnett, Bowei Wu, and Shravan Veerapaneni. Spectrally accurate quadratures for evaluation
of layer potentials close to the boundary for the 2D Stokes and Laplace equations. SIAM Journal on
Scientific Computing, 37(4):B519–B542, 2015.

[15] Alex H Barnett. Evaluation of layer potentials close to the boundary for Laplace and Helmholtz
problems on analytic planar domains. SIAM Journal on Scientific Computing, 36(2):A427–A451,
2014.

193

[16] Alex H Barnett, Gary R Marple, Shravan Veerapaneni, and Lin Zhao. A unified integral equation
scheme for doubly periodic Laplace and Stokes boundary value problems in two dimensions. Commu-
nications on Pure and Applied Mathematics, 71(11):2334–2380, 2018.

[17] PV Bayly and SK Dutcher. Steady dynein forces induce flutter instability and propagating waves in
mathematical models of flagella. Journal of The Royal Society Interface, 13(123):20160523, 2016.

[18] J Thomas Beale, Wenjun Ying, and Jason R Wilson. A simple method for computing singular or nearly
singular integrals on closed surfaces. Communications in Computational Physics, 20(3):733–753, 2016.

[19] Saskia Bermbach, Karina Weinhold, Thomas Roeder, Frank Petersen, Christian Kugler, Torsten Gold-
mann, Jan Rupp, and Peter König. Mechanisms of cilia-driven transport in the airways in the absence
of mucus. American journal of respiratory cell and molecular biology, 51(1):56–67, 2014.

[20] George Biros, Lexing Ying, and Denis Zorin. A fast solver for the Stokes equations with distributed
forces in complex geometries. Journal of Computational Physics, 193(1):317–348, 2004.

[21] John R Blake. A spherical envelope approach to ciliary propulsion. Journal of Fluid Mechanics,
46(01):199–208, 1971.

[22] John R Blake. A model for the micro-structure in ciliated organisms. Journal of Fluid Mechanics,
55(01):1–23, 1972.

[23] John R Blake and Michael A Sleigh. Mechanics of ciliary locomotion. Biological Reviews, 49(1):85–125,
1974.

[24] Marc Bonnet, Ruowen Liu, and Shravan Veerapaneni. Shape optimization of Stokesian peristaltic
pumps using boundary integral methods. Advances in Computational Mathematics, 46(2):1–24, 2020.

[25] Christopher Brennen and Howard Winet. Fluid mechanics of propulsion by cilia and flagella. Annual
Review of Fluid Mechanics, 9(1):339–398, 1977.

[26] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods. Springer-Verlag, 1991.

[27] Douglas R Brumley, Marco Polin, Timothy J Pedley, and Raymond E Goldstein. Metachronal waves in
the flagellar beating of volvox and their hydrodynamic origin. Journal of the Royal Society Interface,
12(108):20141358, 2015.

[28] Oscar P Bruno and Jagabandhu Paul. Two-dimensional fourier continuation and applications. arXiv
preprint arXiv:2010.03901, 2020.

[29] Spencer H Bryngelson and Jonathan B Freund. Global stability of flowing red blood cell trains.
Physical Review Fluids, 3(7):073101, 2018.

[30] Camille Carvalho, Shilpa Khatri, and Arnold D Kim. Asymptotic analysis for close evaluation of layer
potentials. Journal of Computational Physics, 355:327–341, 2018.

[31] Brato Chakrabarti and David Saintillan. Spontaneous oscillations, beating patterns, and hydrodynam-
ics of active microfilaments. Physical Review Fluids, 4(4):043102, 2019.

[32] Sylvain Chateau, Umberto d’Ortona, Sébastien Poncet, and Julien Favier. Transport and mixing
induced by beating cilia in human airways. Frontiers in physiology, 9:161, 2018.

[33] Robin Chatelin and Philippe Poncet. A parametric study of mucociliary transport by numerical
simulations of 3d non-homogeneous mucus. Journal of Biomechanics, 2016.

[34] Chia-Yuan Chen, Chia-Yun Chen, Cheng-Yi Lin, and Ya-Ting Hu. Magnetically actuated artificial
cilia for optimum mixing performance in microfluidics. Lab on a Chip, 13(14):2834–2839, 2013.

[35] Udit Choudhury, Arthur V Straube, Peer Fischer, John G Gibbs, and Felix Höfling. Active colloidal
propulsion over a crystalline surface. New Journal of Physics, 19(12):125010, 2017.

194

[36] Ricardo Cortez. The method of regularized Stokeslets. SIAM Journal on Scientific Computing,
23(4):1204–1225, 2001.

[37] Gabriele De Canio, Eric Lauga, and Raymond E Goldstein. Spontaneous oscillations of elastic filaments
induced by molecular motors. Journal of The Royal Society Interface, 14(136):20170491, 2017.

[38] Robert H Dillon, Lisa J Fauci, Charlotte Omoto, and Xingzhou Yang. Fluid dynamic models of
flagellar and ciliary beating. Annals of the New York Academy of Sciences, 1101(1):494–505, 2007.

[39] Yang Ding, Janna C Nawroth, Margaret J McFall-Ngai, and Eva Kanso. Mixing and transport by
ciliary carpets: a numerical study. Journal of Fluid Mechanics, 743:124–140, 2014.

[40] Jens Elgeti and Gerhard Gompper. Emergence of metachronal waves in cilia arrays. Proceedings of
the National Academy of Sciences, 110(12):4470–4475, 2013.

[41] Jens Elgeti, Roland G Winkler, and Gerhard Gompper. Physics of microswimmers - single particle
motion and collective behavior: a review. Reports on progress in physics, 78(5):056601, 2015.

[42] Christophe Eloy and Eric Lauga. Kinematics of the most efficient cilium. Physical Review Letters,
109(3):038101, 2012.

[43] Frank Ethridge and Leslie Greengard. A new fast-multipole accelerated Poisson solver in two dimen-
sions. SIAM Journal on Scientific Computing, 23(3):741–760, 2001.

[44] Francis Fahrni, Menno WJ Prins, and Leo J van IJzendoorn. Micro-fluidic actuation using magnetic
artificial cilia. Lab on a Chip, 9(23):3413–3421, 2009.

[45] Regina Faubel, Christian Westendorf, Eberhard Bodenschatz, and Gregor Eichele. Cilia-based flow
network in the brain ventricles. Science, 353(6295):176–178, 2016.

[46] Lisa J Fauci and Robert Dillon. Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech., 38:371–
394, 2006.

[47] Manfred Fliegauf, Thomas Benzing, and Heymut Omran. When cilia go bad: cilia defects and cil-
iopathies. Nature reviews Molecular cell biology, 8(11):880–893, 2007.

[48] Fredrik Fryklund, Erik Lehto, and Anna-Karin Tornberg. Partition of unity extension of functions on
complex domains. Journal of Computational Physics, 375:57–79, 2018.

[49] Glenn R Fulford and John R Blake. Muco-ciliary transport in the lung. Journal of Theoretical Biology,
121(4):381–402, 1986.

[50] Eamonn A Gaffney, Hermes Gadêlha, David J Smith, John R Blake, and Jackson C Kirkman-Brown.
Mammalian sperm motility: observation and theory. Annual Review of Fluid Mechanics, 43:501–528,
2011.

[51] Jean Gallier. Notes on spherical harmonics and linear representations of Lie groups. preprint, 2009.

[52] IR Gibbons. Cilia and flagella of eukaryotes. J Cell Biol, 91(3):107s–124s, 1981.

[53] Zydrunas Gimbutas and Leslie Greengard. FMMLIB2D, Fortran libraries for fast multipole methods
in two dimensions, 2012. http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html.

[54] Zydrunas Gimbutas and Leslie Greengard. Computational software: Simple FMM libraries for electro-
statics, slow viscous flow, and frequency-domain wave propagation. Communications in Computational
Physics, 18(2):516–528, 2015.

[55] Zydrunas Gimbutas and Shravan Veerapaneni. A fast algorithm for spherical grid rotations and its
application to singular quadrature. SIAM Journal on Scientific Computing, 35(6):A2738–A2751, 2013.

[56] Ramin Golestanian, Tanniemola B Liverpool, and Armand Ajdari. Designing phoretic micro-and
nano-swimmers. New Journal of Physics, 9(5):126, 2007.

195

[57] Abinand Gopal and Lloyd N. Trefethen. Solving Laplace problems with corner singularities via rational
functions. SIAM Journal on Numerical Analysis, 57(5):2074–2094, 2019.

[58] James Gray. Ciliary Movement. Cambridge University Press, London, 1928.

[59] A Greenbaum, L Greengard, and A Mayo. On the numerical solution of the biharmonic equation in
the plane. Physica D, 60(1–4):216–225, 1992.

[60] Leslie Greengard and Shidong Jiang. A new mixed potential representation for unsteady, incompress-
ible flow. SIAM Review, 61(4):733–755, 2019.

[61] Leslie Greengard and Mary Catherine Kropinski. An integral equation approach to the incompressible
Navier–Stokes equations in two dimensions. SIAM Journal on Scientific Computing, 20(1):318–336,
1998.

[62] Leslie Greengard, Mary Catherine Kropinski, and Anita Mayo. Integral equation methods for Stokes
flow and isotropic elasticity in the plane. Journal of Computational Physics, 125(2):403–414, 1996.

[63] Leslie Greengard, Michael O’Neil, Manas Rachh, and Felipe Vico. Fast multipole methods for the
evaluation of layer potentials with locally-corrected quadratures. Journal of Computational Physics:
X, page 100092, 2021.

[64] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of Compu-
tational Physics, 73(2):325–348, 1987.

[65] Shay Gueron and Konstantin Levit-Gurevich. Energetic considerations of ciliary beating and the ad-
vantage of metachronal coordination. Proceedings of the National Academy of Sciences, 96(22):12240–
12245, 1999.

[66] Shay Gueron, Konstantin Levit-Gurevich, Nadav Liron, and Jacob J Blum. Cilia internal mechanism
and metachronal coordination as the result of hydrodynamical coupling. Proceedings of the National
Academy of Sciences, 94(12):6001–6006, 1997.

[67] Shay Gueron and Nadav Liron. Ciliary motion modeling, and dynamic multicilia interactions. Bio-
physical journal, 63(4):1045, 1992.

[68] Shay Gueron and Nadav Liron. Simulations of three-dimensional ciliary beats and cilia interactions.
Biophysical journal, 65(1):499, 1993.

[69] Boris Guirao and Jean-Francois Joanny. Spontaneous creation of macroscopic flow and metachronal
waves in an array of cilia. Biophysical Journal, 92(6):1900–1917, March 2007.

[70] Hanliang Guo, Lisa Fauci, Michael J Shelley, and Eva Kanso. Bistability in the synchronization of
actuated microfilaments. Journal of Fluid Mechanics, 836:304–323, 2018.

[71] Hanliang Guo, Janna C Nawroth, Yang Ding, and Eva Kanso. Cilia beating patterns are not hydro-
dynamically optimal. Physics of Fluids, 26(9):091901, 2014.

[72] Hanliang Guo, Hai Zhu, Ruowen Liu, Marc Bonnet, and Shravan Veerapaneni. Optimal ciliary loco-
motion of axisymmetric microswimmers. arXiv preprint arXiv:2103.15642, 2021.

[73] Hanliang Guo, Hai Zhu, Ruowen Liu, Marc Bonnet, and Shravan Veerapaneni. Optimal slip velocities
of micro-swimmers with arbitrary axisymmetric shapes. Journal of Fluid Mechanics, 910, 2021.

[74] Sijia Hao, Alex Barnett, Per-Gunnar Martinsson, and P Young. High-order accurate methods for
Nyström discretization of integral equations on smooth curves in the plane. Advances in Computational
Mathematics, 40(1):245–272, 2014.

[75] John Happel and Howard Brenner. Low Reynolds number hydrodynamics with special applications to
particulate media. Noordhoff, 1973.

196

[76] F.-K. Hebeker. Efficient boundary element methods for three-dimensional exterior viscous flows. Nu-
mer. Methods Partial Differential Equations, 2:273–297, 1986.

[77] J Helsing. Integral equation methods for elliptic problems with boundary conditions of mixed type. J.
Comput. Phys., 228:8892–8907, 2009.

[78] J Helsing and A Holst. Variants of an explicit kernel-split panel-based Nyström discretization scheme
for Helmholtz boundary value problems. Adv. Comput. Math., 41(3):691–708, 2015.

[79] J Helsing and S Jiang. On integral equation methods for the first Dirichlet problem of the biharmonic
and modified biharmonic equations in nonsmooth domains. SIAM J. Sci. Comput., 40(4):A2609–
A2630, 2018.

[80] J. Helsing and R. Ojala. On the evaluation of layer potentials close to their sources. Journal of
Computational Physics, 227:2899–2921, 2008.

[81] Johan Helsing. A higher-order singularity subtraction technique for the discretization of singular
integral operators on curved surfaces. arXiv preprint arXiv:1301.7276, 2013.

[82] Johan Helsing. Solving integral equations on piecewise smooth boundaries using the RCIP method: a
tutorial. Abstract and Applied Analysis, 2013:Article ID 938167, 2013.

[83] Johan Helsing and Shidong Jiang. On integral equation methods for the first Dirichlet problem of the
biharmonic and modified biharmonic equations in nonsmooth domains. SIAM Journal on Scientific
Computing, 40(4):A2609–A2630, 2018.

[84] Johan Helsing and Anders Karlsson. An explicit kernel-split panel-based nyström scheme for integral
equations on axially symmetric surfaces. Journal of Computational Physics, 272:686–703, 2014.

[85] N Heuer and E P Stephan. The hp-version of the boundary element method on polygons. J. Integral
Equ. Appl., 8(2):173–212, 1996.

[86] Rolla B Hill. Bloom and fawcett: A textbook of histology. JAMA, 256(10):1366–1367, 1986.

[87] Jonathan R Howse, Richard AL Jones, Anthony J Ryan, Tim Gough, Reza Vafabakhsh, and Ramin
Golestanian. Self-motile colloidal particles: from directed propulsion to random walk. Physical review
letters, 99(4):048102, 2007.

[88] G. C. Hsiao and W. L. Wendland. Boundary integral equations, volume 164 of Applied Mathematical
Sciences. Springer, 2008.

[89] S Elizabeth Hulme, Sergey S Shevkoplyas, Javier Apfeld, Walter Fontana, and George M Whitesides.
A microfabricated array of clamps for immobilizing and imaging c. elegans. Lab on a Chip, 7(11):1515–
1523, 2007.

[90] Takuji Ishikawa and Timothy J Pedley. Coherent structures in monolayers of swimming particles.
Physical review letters, 100(8):088103, 2008.

[91] Takuji Ishikawa and TJ Pedley. The rheology of a semi-dilute suspension of swimming model micro-
organisms. Journal of Fluid Mechanics, 588:399–435, 2007.

[92] Takuji Ishikawa, MP Simmonds, and Timothy J Pedley. Hydrodynamic interaction of two swimming
model micro-organisms. Journal of Fluid Mechanics, 568:119–160, 2006.

[93] Kenta Ishimoto and Eamonn A Gaffney. Squirmer dynamics near a boundary. Physical Review E,
88(6):062702, 2013.

[94] Hiroaki Ito, Toshihiro Omori, and Takuji Ishikawa. Swimming mediated by ciliary beating: comparison
with a squirmer model. Journal of Fluid Mechanics, 874:774–796, 2019.

197

[95] P G Jayathilake, D V Le, Zhijun Tan, H P Lee, and B C Khoo. A numerical study of muco-ciliary
transport under the condition of diseased cilia. Computer Methods in Biomechanics and Biomedical
Engineering, 18(9):944–951, 2015.

[96] Youngren G. K. and A. Acrivos. Stokes flow past a particle of arbitrary shape: a numerical method of
solution. Journal of Fluid Mechanics, 69:377–403, May 1975.

[97] Youngren G. K. and A. Acrivos. On the shape of a gas bubble in a viscous extensional flow. Journal
of Fluid Mechanics, 76:433–442, August 1976.

[98] Gökberk Kabacaoğlu and George Biros. Optimal design of deterministic lateral displacement device
for viscosity-contrast-based cell sorting. Physical Review Fluids, 3(12):124201, 2018.

[99] Stuart R Keller and Theodore Y Wu. A porous prolate-spheroidal model for ciliated micro-organisms.
Journal of Fluid Mechanics, 80(2):259–278, 1977.

[100] Syed N Khaderi, CB Craus, Jeanette Hussong, N Schorr, J Belardi, J Westerweel, O Prucker, J Rühe,
JMJ Den Toonder, and PR Onck. Magnetically-actuated artificial cilia for microfluidic propulsion.
Lab on a Chip, 11(12):2002–2010, 2011.

[101] Sangtae Kim and Seppo J Karrila. Microhydrodynamics: principles and selected applications. Courier
Corporation, 2013.

[102] Eisuke Kita and Norio Kamiya. Error estimation and adaptive mesh refinement in boundary element
method, an overview. Engineering Analysis with Boundary Elements, 25(7):479–495, 2001.

[103] Andreas Klöckner, Alexander Barnett, Leslie Greengard, and Michael O’Neil. Quadrature by ex-
pansion: A new method for the evaluation of layer potentials. Journal of Computational Physics,
252:332–349, 2013.

[104] E W Knight-Jones. Relations between metachronism and the direction of ciliary beat in Metazoa.
Quarterly Journal of Microscopical Science, 95:503–521, 1954.

[105] Ryan Kohl, Eduardo Corona, Vani Cheruvu, and Shravan Veerapaneni. Fast and accurate solvers for
simulating Janus particle suspensions in Stokes flow. arXiv preprint arXiv:2104.14068, 2021.

[106] Rainer Kress. Linear Integral Equations, volume 82 of Applied Mathematical Sciences. Springer, 2nd
edition, 1999.

[107] Rainer Kress, V Maz’ya, and V Kozlov. Linear integral equations, volume 82. Springer, 1989.

[108] M. C. A. Kropinski. An efficient numerical method for studying interfacial motion in two-dimensional
creeping flows. Journal of Computational Physics, 171(2):479–508, 2001.

[109] Amit Kumar and Michael D Graham. Accelerated boundary integral method for multiphase flow in
non-periodic geometries. Journal of Computational Physics, 231(20):6682–6713, 2012.

[110] K Kyoya, D Matsunaga, Y Imai, T Omori, and T Ishikawa. Shape matters: Near-field fluid mechanics
dominate the collective motions of ellipsoidal squirmers. Physical Review E, 92(6):063027, 2015.

[111] Olga Aleksandrovna Ladyzhenskaya. The mathematical theory of viscous incompressible flow, volume 2.
Gordon and Breach New York, 1969.

[112] Harper Langston, Leslie Greengard, and Denis Zorin. A free-space adaptive FMM-based PDE solver in
three dimensions. Communications in Applied Mathematics and Computational Science, 6(1):79–122,
2011.

[113] Eric Lauga and Thomas R Powers. The hydrodynamics of swimming microorganisms. Reports on
Progress in Physics, 72(9):096601, 2009.

198

[114] Kate Lawrenson, Maria Notaridou, Nathan Lee, Elizabeth Benjamin, Ian J Jacobs, Christopher Jones,
and Simon A Gayther. In vitro three-dimensional modeling of fallopian tube secretory epithelial cells.
BMC cell biology, 14(1):43, 2013.

[115] W L Lee, P G Jayathilake, Zhijun Tan, D V Le, H P Lee, and B C Khoo. Muco-ciliary transport:
effect of mucus viscosity, cilia beat frequency and cilia density. Computers & Fluids, 49(1):214–221,
2011.

[116] Alexander M Leshansky, Oded Kenneth, Omri Gat, and Joseph E Avron. A frictionless microswimmer.
New Journal of Physics, 9(5):145, 2007.

[117] Zhe Li, Julien Favier, Umberto D’Ortona, and Sébastien Poncet. An immersed boundary-lattice
boltzmann method for single-and multi-component fluid flows. Journal of Computational Physics,
304:424–440, 2016.

[118] James Lighthill. On the squirming motion of nearly spherical deformable bodies through liquids at
very small reynolds numbers. Communications on Pure and Applied Mathematics, 5(2):109–118, 1952.

[119] Dag Lindbo and Anna-Karin Tornberg. Spectrally accurate fast summation for periodic Stokes poten-
tials. Journal of Computational Physics, 229(23):8994–9010, 2010.

[120] Y Liu. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge
University Press, 2009.

[121] Sarah Lukens, Xingzhou Yang, and Lisa Fauci. Using lagrangian coherent structures to analyze fluid
mixing by cilia. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(1):017511, 2010.

[122] Denis Lynn. The ciliated protozoa: characterization, classification, and guide to the literature. Springer
Science & Business Media, 2008.

[123] Hans Machemer. Mechanoresponses in protozoa. In Sensory Perception and Transduction in Aneural
Organisms, pages 179–209. Springer, 1985.

[124] Vanesa Magar, Tomonobu Goto, and Timothy J Pedley. Nutrient uptake by a self-propelled steady
squirmer. The Quarterly Journal of Mechanics and Applied Mathematics, 56(1):65–91, 2003.

[125] Vanesa Magar and Timothy J Pedley. Average nutrient uptake by a self-propelled unsteady squirmer.
Journal of fluid mechanics, 539:93–112, 2005.

[126] Dhairya Malhotra and George Biros. PVFMM: A parallel kernel independent FMM for particle and
volume potentials. Communications in Computational Physics, 18(3):808–830, 2015.

[127] Gary Marple, Alexander H. Barnett, Adrianna Gillman, and Shravan K. Veerapaneni. A fast algorithm
for simulating multiphase flows through periodic geometries of arbitrary shape. SIAM Journal on
Scientific Computing, 38(5):B740–B772, 2016.

[128] Sébastien Michelin and Eric Lauga. Efficiency optimization and symmetry-breaking in a model of
ciliary locomotion. Physics of Fluids, 22(11):111901, 2010.

[129] Sébastien Michelin and Eric Lauga. Optimal feeding is optimal swimming for all péclet numbers.
Physics of Fluids, 23(10):101901, 2011.

[130] Sébastien Michelin and Eric Lauga. Unsteady feeding and optimal strokes of model ciliates. Journal
of Fluid Mechanics, 715:1–31, 2013.

[131] Sorin M Mitran. Metachronal wave formation in a model of pulmonary cilia. Computers & structures,
85(11):763–774, 2007.

[132] Adam R Morgan, Alan B Dawson, Holly S Mckenzie, Thomas S Skelhon, Richard Beanland, Henry PW
Franks, and Stefan AF Bon. Chemotaxis of catalytic silica–manganese oxide ‘matchstick’ particles.
Materials Horizons, 1(1):65–68, 2014.

199

[133] Matthew J Morse, Abtin Rahimian, and Denis Zorin. A robust solver for elliptic PDEs in 3D complex
geometries. Journal of Computational Physics, page 110511, 2021.

[134] Babak Nasouri, Andrej Vilfan, and Ramin Golestanian. Minimum dissipation theorem for microswim-
mers. Physical Review Letters, 126(3):034503, 2021.

[135] Janna C Nawroth, Hanliang Guo, Eric Koch, Elizabeth AC Heath-Heckman, John C Hermanson,
Edward G Ruby, John O Dabiri, Eva Kanso, and Margaret McFall-Ngai. Motile cilia create fluid-
mechanical microhabitats for the active recruitment of the host microbiome. Proceedings of the Na-
tional Academy of Sciences, 114(36):9510–9516, 2017.

[136] Ehssan Nazockdast, Abtin Rahimian, Denis Zorin, and Michael Shelley. A fast platform for simulating
semi-flexible fiber suspensions applied to cell mechanics. Journal of Computational Physics, 329:173–
209, 2017.

[137] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

[138] R. Ojala. A robust and accurate solver of Laplace’s equation with general boundary conditions on
general domains in the plane. J. Comput. Math., 30(4):433–448, 2012.

[139] Rikard Ojala and Anna-Karin Tornberg. An accurate integral equation method for simulating multi-
phase Stokes flow. Journal of Computational Physics, 298:145–160, 2015.

[140] Emilie W Olstad, Christa Ringers, Jan N Hansen, Adinda Wens, Cecilia Brandt, Dagmar Wachten,
Emre Yaksi, and Nathalie Jurisch-Yaksi. Ciliary beating compartmentalizes cerebrospinal fluid flow in
the brain and regulates ventricular development. Current Biology, 29(2):229–241, 2019.

[141] Toshihiro Omori, Hiroaki Ito, and Takuji Ishikawa. Swimming microorganisms acquire optimal ef-
ficiency with multiple cilia. Proceedings of the National Academy of Sciences, 117(48):30201–30207,
2020.

[142] Natan Osterman and Andrej Vilfan. Finding the ciliary beating pattern with optimal efficiency. Pro-
ceedings of the National Academy of Sciences, 108(38):15727–15732, 2011.

[143] Julio M Ottino and JM Ottino. The kinematics of mixing: stretching, chaos, and transport, volume 3.
Cambridge university press, 1989.

[144] Jérémie Palacci, Stefano Sacanna, Anäıs Abramian, Jérémie Barral, Kasey Hanson, Alexander Y
Grosberg, David J Pine, and Paul M Chaikin. Artificial rheotaxis. Science advances, 1(4):e1400214,
2015.

[145] V Y Pan. How bad are Vandermonde matrices? SIAM J. Matrix Anal. Appl., 37(2):676–694, 2016.

[146] Walter F Paxton, Kevin C Kistler, Christine C Olmeda, Ayusman Sen, Sarah K St. Angelo, Yanyan
Cao, Thomas E Mallouk, Paul E Lammert, and Vincent H Crespi. Catalytic nanomotors: autonomous
movement of striped nanorods. Journal of the American Chemical Society, 126(41):13424–13431, 2004.

[147] Timothy J Pedley. Spherical squirmers: models for swimming micro-organisms. IMA Journal of
Applied Mathematics, 81(3):488–521, 2016.

[148] Rachel E Pepper, Marcus Roper, Sangjin Ryu, Nobuyoshi Matsumoto, Moeto Nagai, and Howard A
Stone. A new angle on microscopic suspension feeders near boundaries. Biophysical journal,
105(8):1796–1804, 2013.

[149] Carlos Pérez-Arancibia, Luiz M Faria, and Catalin Turc. Harmonic density interpolation methods for
high-order evaluation of laplace layer potentials in 2D and 3D. Journal of Computational Physics,
376:411–434, 2019.

200

[150] Olivier Pironneau. On optimum profiles in Stokes flow. Journal of Fluid Mechanics, 59(1):117–128,
1973.

[151] Henry Power and Guillermo Miranda. Second kind integral equation formulation of Stokes’ flows past
a particle of arbitrary shape. SIAM Journal on Applied Mathematics, 47(4):689–698, 1987.

[152] Constantine Pozrikidis et al. Boundary integral and singularity methods for linearized viscous flow.
Cambridge university press, 1992.

[153] Edward M Purcell. Life at low reynolds number. Am. J. Phys, 45(1):3–11, 1977.

[154] M Rachh. bhfmm2d: parallel Fortran code for the biharmonic FMM in 2D, 2012.

[155] Manas Rachh, Andreas Klöckner, and Michael O’Neil. Fast algorithms for Quadrature by Expansion
I: Globally valid expansions. Journal of Computational Physics, 345:706–731, 2017.

[156] Manas Rachh and Kirill Serkh. On the solution of the Stokes equation on regions with corners.
Communications on Pure and Applied Mathematics, 73(11):2295–2369, 2020.

[157] Abtin Rahimian, Alex Barnett, and Denis Zorin. Ubiquitous evaluation of layer potentials using
quadrature by kernel-independent expansion. BIT Numerical Mathematics, 58(2):423–456, 2018.

[158] Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chandramowlishwaran, Dhairya Malho-
tra, Logan Moon, Rahul Sampath, Aashay Shringarpure, Jeffrey Vetter, Richard Vuduc, Denis Zorin,
and George Biros. Petascale direct numerical simulation of blood flow on 200k cores and heterogeneous
architectures. In Proceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–11, 2010.

[159] Abtin Rahimian, Shravan K Veerapaneni, Denis Zorin, and George Biros. Boundary integral method
for the flow of vesicles with viscosity contrast in three dimensions. Journal of Computational Physics,
298:766–786, 2015.

[160] Abtin Rahimian, Shravan Kumar Veerapaneni, and George Biros. Dynamic simulation of locally
inextensible vesicles suspended in an arbitrary two-dimensional domain, a boundary integral method.
Journal of Computational Physics, 229(18):6466–6484, 2010.

[161] Hans Ulrik Riisg̊ard and Poul S Larsen. Particle capture mechanisms in suspension-feeding inverte-
brates. Marine Ecology Progress Series, 418:255–293, 2010.

[162] Minghao W Rostami and Sarah D Olson. Fast algorithms for large dense matrices with applications
to biofluids. Journal of Computational Physics, 2019.

[163] Benedikt Sabass and Udo Seifert. Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer.
The Journal of chemical physics, 136(6):064508, 2012.

[164] Aref Saberi, Shuaizhong Zhang, Carola van den Bersselaar, Harkamaljot Kandail, Jaap MJ den Toon-
der, and Nicholas A Kurniawan. A stirring system using suspended magnetically-actuated pillars for
controlled cell clustering. Soft matter, 15(6):1435–1443, 2019.

[165] David Saintillan, Eric Darve, and Eric SG Shaqfeh. A smooth particle-mesh Ewald algorithm for
Stokes suspension simulations: The sedimentation of fibers. Physics of Fluids, 17(3):033301, 2005.

[166] David Saintillan and Michael J Shelley. Theory of active suspensions. In Complex Fluids in biological
systems, pages 319–355. Springer, 2015.

[167] Ashok S Sangani and Guobiao Mo. Inclusion of lubrication forces in dynamic simulations. Physics of
fluids, 6(5):1653–1662, 1994.

[168] Ashok S Sangani and Guobiao Mo. An O(N) algorithm for Stokes and Laplace interactions of particles.
Physics of Fluids, 8(8):1990–2010, 1996.

201

[169] Peter Satir and Søren Tvorup Christensen. Overview of structure and function of mammalian cilia.
Annual Review of Physiology, 69(1):377–400, 2007.

[170] A R Shields, B L Fiser, B A Evans, M R Falvo, S Washburn, and R Superfine. Biomimetic cilia arrays
generate simultaneous pumping and mixing regimes. Proceedings of the National Academy of Sciences,
107(36):15670–15675, September 2010.

[171] Michael Siegel and Anna-Karin Tornberg. A local target specific quadrature by expansion method for
evaluation of layer potentials in 3D. Journal of Computational Physics, 364:365–392, 2018.

[172] Josef Sifuentes, Zydrunas Gimbutas, and Leslie Greengard. Randomized methods for rank-deficient lin-
ear systems. Electronic Transactions on Numerical Analysis, 44(Electronic Transactions on Numerical
Analysis), 2015.

[173] Juliane Simmchen, Alejandro Baeza, Albert Miguel-Lopez, Morgan M Stanton, Maria Vallet-Regi,
Daniel Ruiz-Molina, and Samuel Sánchez. Dynamics of novel photoactive agcl microstars and their
environmental applications. ChemNanoMat, 3(1):65–71, 2017.

[174] Michael A Sleigh. The Biology of Cilia and Flagella. Macmillan Co., New York, 1962.

[175] David J Smith. A boundary element regularized Stokeslet method applied to cilia-and flagella-
driven flow. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
465(2112):3605–3626, 2009.

[176] David J Smith, John R Blake, and Eamonn A Gaffney. Fluid mechanics of nodal flow due to embryonic
primary cilia. Journal of The Royal Society Interface, 5(22):567–573, 2008.

[177] David J Smith, Eamonn A Gaffney, and John R Blake. Modelling mucociliary clearance. Respiratory
physiology & neurobiology, 163(1):178–188, 2008.

[178] Chiara Sorgentone and Anna-Karin Tornberg. A highly accurate boundary integral equation method
for surfactant-laden drops in 3D. Journal of Computational Physics, 360:167–191, 2018.

[179] Nathalie Spassky and Alice Meunier. The development and functions of multiciliated epithelia. Nature
reviews Molecular cell biology, 18(7):423, 2017.

[180] Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus.
CRC Press, 2018.

[181] David B. Stein and Michael J. Shelley. Coarse graining the dynamics of immersed and driven fiber
assemblies. Phys. Rev. Fluids, 4:073302, Jul 2019.

[182] ZB Stone and HA Stone. Imaging and quantifying mixing in a model droplet micromixer. Physics of
Fluids, 17(6):063103, 2005.

[183] W Supatto, S E Fraser, and J Vermot. An all-optical approach for probing microscopic flows in living
embryos. Biophysical journal, 95:L29–L31, 2008.

[184] Andrea Tagliasacchi. kdtree code. https://www.mathworks.com/matlabcentral/fileexchange/21512-
ataiya-kdtree, 2017.

[185] Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-Hornung. Sketch-
based generation and editing of quad meshes. ACM Transactions on Graphics (TOG), 32(4):1–8,
2013.

[186] Geoffrey Taylor. Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society
of London. Series A, 209(1099):447–461, 1951.

[187] Mario Theers, Elmar Westphal, Gerhard Gompper, and Roland G Winkler. Modeling a spheroidal
microswimmer and cooperative swimming in a narrow slit. Soft Matter, 12(35):7372–7385, 2016.

202

[188] Ann E. Tilley, Matthew S. Walters, Renat Shaykhiev, and Ronald G. Crystal. Cilia dysfunction in
lung disease. Annual Review of Physiology, 77(1):379–406, 2015.

[189] Svetlana Tlupova and J Thomas Beale. Regularized single and double layer integrals in 3D Stokes
flow. Journal of Computational Physics, 386:568–584, 2019.

[190] Anna-Karin Tornberg and Leslie Greengard. A fast multipole method for the three-dimensional Stokes
equations. Journal of Computational Physics, 227(3):1613–1619, 2008.

[191] Lloyd N Trefethen. Approximation theory and approximation practice, volume 128. SIAM, 2013.

[192] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages 311–318, 1994.

[193] William E Uspal, Mikhail N Popescu, Mykola Tasinkevych, and Siegfried Dietrich. Shape-dependent
guidance of active janus particles by chemically patterned surfaces. New Journal of Physics,
20(1):015013, 2018.

[194] Leonardo F Valadares, Yu-Guo Tao, Nicole S Zacharia, Vladimir Kitaev, Fernando Galembeck, Ray-
mond Kapral, and Geoffrey A Ozin. Catalytic nanomotors: Self-propelled sphere dimers. Small,
6(4):565–572, 2010.

[195] H van den Ende, A Musgrave, and Klis F. M. The role of flagella in the sexual reproduction of
chylamydomonas gametes. In Ciliary and flagellar membranes, pages 129–148. Springer, 1990.

[196] Shravan Veerapaneni. Integral equation methods for vesicle electrohydrodynamics in three dimensions.
Journal of Computational Physics, 326:278–289, 2016.

[197] Shravan K Veerapaneni, Denis Gueyffier, George Biros, and Denis Zorin. A numerical method for sim-
ulating the dynamics of 3d axisymmetric vesicles suspended in viscous flows. Journal of Computational
Physics, 228(19):7233–7249, 2009.

[198] Shravan K Veerapaneni, Denis Gueyffier, Denis Zorin, and George Biros. A boundary integral method
for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d. Journal of
Computational Physics, 228(7):2334–2353, 2009.

[199] Shravan K. Veerapaneni, Abtin Rahimian, George Biros, and Denis Zorin. A fast algorithm for simu-
lating vesicle flows in three dimensions. J. Comput. Phys., 230(14):5610–5634, 2011.

[200] Marcos F Velho Rodrigues, Maciej Lisicki, and Eric Lauga. The bank of swimming organisms at the
micron scale (boso-micro). Plos one, 16(6):e0252291, 2021.

[201] P Verdugo, WI Lee, SA Halbert, RJ Blandau, and PY Tam. A stochastic model for oviductal egg
transport. Biophysical journal, 29(2):257, 1980.

[202] Andrej Vilfan. Optimal shapes of surface slip driven self-propelled microswimmers. Physical review
letters, 109(12):128105, 2012.

[203] Matt Wala and Andreas Klöckner. A fast algorithm for quadrature by expansion in three dimensions.
Journal of Computational Physics, 388:655–689, 2019.

[204] Matt Wala and Andreas Klöckner. Optimization of fast algorithms for global Quadrature by Expansion
using target-specific expansions. Journal of Computational Physics, 403:108976, 2020.

[205] Haitao Wang, Ting Lei, Jin Li, Jingfang Huang, and Zhenhan Yao. A parallel fast multipole accelerated
integral equation scheme for 3D Stokes equations. International journal for numerical methods in
engineering, 70(7):812–839, 2007.

[206] Jun Wang, Leslie Greengard, Shidong Jiang, and Shravan Veerapaneni. Fast integral equation methods
for linear and semilinear heat equations in moving domains. arXiv preprint arXiv:1910.00755, 2019.

203

[207] Lei Wang, Svetlana Tlupova, and Robert Krasny. A treecode algorithm for 3D Stokeslets and stresslets.
Advances in Applied Mathematics and Mechanics, 11:737–756, 2019.

[208] Xin Wang, Joe Kanapka, Wenjing Ye, Narayan R Aluru, and Jacob White. Algorithms in FastStokes
and its application to micromachined device simulation. IEEE Transactions on computer-aided design
of integrated circuits and systems, 25(2):248–257, 2006.

[209] George B Witman. Introduction to cilia and flagella. In Ciliary and flagellar membranes, pages 1–30.
Springer, 1990.

[210] Bowei Wu and Shravan Veerapaneni. Electrohydrodynamics of deflated vesicles: budding, rheology
and pairwise interactions. Journal of Fluid Mechanics, 867:334–347, 2019.

[211] Bowei Wu, Hai Zhu, Alex Barnett, and Shravan Veerapaneni. Solution of Stokes flow in complex
nonsmooth 2d geometries via a linear-scaling high-order adaptive integral equation scheme. Journal
of Computational Physics, 410:109361, 2020.

[212] Wen Yan, Eduardo Corona, Dhairya Malhotra, Shravan Veerapaneni, and Michael Shelley. A scal-
able computational platform for particulate Stokes suspensions. Journal of Computational Physics,
416:109524, 2020.

[213] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole method in two and
three dimensions. Journal of Computational Physics, 196(2):591–626, 2004.

[214] Lexing Ying, George Biros, and Denis Zorin. A high-order 3D boundary integral equation solver for
elliptic PDEs in smooth domains. Journal of Computational Physics, 219(1):247–275, 2006.

[215] Yabin Zhang and Adrianna Gillman. A fast direct solver for boundary value problems on locally
perturbed geometries. Journal of Computational Physics, 356:356–371, 2018.

[216] Hai Zhu and Shravan Veerapaneni. High-order close evaluation of Laplace layer potentials: A differ-
ential geometric approach. arXiv preprint arXiv:2105.12683, 2021.

[217] A.Z. Zinchenko and R.H. Davis. An efficient algorithm for hydrodynamical interaction of many de-
formable drops. Journal of Computational Physics, 157(2):539–587, 2000.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Motivation and Problem Statement
	Integral Equation Formulation
	Contribution and Thesis Overview

	Product Integration Scheme for 2D Singular Layer Potentials
	Introduction
	Mathematical preliminaries
	Boundary value problem and its integral equation formulation
	Fundamental contour integrals
	Laplace layer potentials
	Stokes velocity layer potentials

	Nyström discretization and evaluation of layer potentials
	Overview: discretization and the plain Nyström formula
	Close-evaluation and self-evaluation corrections
	Close-evaluation of potentials
	Close evaluation of the Cauchy potential
	Close evaluation of the logarithmic potential
	Close evaluation of the Hadamard and supersingular potentials
	Review of transforming for general panel endpoints

	Computation of close-evaluation matrix blocks

	Adaptive panel refinement
	Numerical results and discussion
	Conclusions

	Product Integration Scheme for 3D Singular Layer Potentials
	Introduction
	Mathematical preliminaries
	Exterior algebra
	Exterior calculus on manifolds
	Integral equation formulation

	Density approximation and exact form construction
	Stokes theorem and Poincaré's lemma
	Approximation scheme using harmonic polynomials and quaternionic representation

	Numerical scheme
	Close evaluation scheme for Laplace double-layer potentials
	A generalization to evaluate the single-layer and the gradient of double-layer Laplace potentials

	Numerical results and discussion
	Convergence properties of the quaternionic approximation
	Laplace DLP evaluation test
	Laplace BVP test

	Conclusions

	Product Integration Scheme for Volume Potentials on Irregular Domains
	Introduction
	Mathematical Preliminaries
	Exterior calculus
	Integral equation formulation

	Scheme
	Volume Integral Scheme
	Quadrature scheme for Gaussian kernel
	Quadrature scheme for Laplace single layer kernel

	Volume Mesh
	Generate volume mesh {Bk}
	Boundary discretization of Bk

	Approximation

	Numerical Implementation
	Formal description of the volume integral solver
	Formal description of the boundary integral solver
	Couple singular and nearly-singular volume integral scheme with FMM

	Numerical results and discussion
	Conclusion

	Simulating Cilia-driven Mixing and Transport in Complex Geometries
	Introduction
	Model and methods
	Model
	Cilia-channel interactions
	Cilia-channel-particle interactions
	Nyström discretization and close-evaluation of layer potentials

	Results and discussions
	Mixing of tracers
	Finite size particles

	Conclusions and future work

	Optimal Slip Velocities of Micro-swimmers with Arbitrary Axisymmetric Shapes
	Introduction
	Problem Formulation and Numerical Solution
	Model
	Boundary integral method for the forward problem
	Optimization problem and its reformulation

	Results
	Conclusions

	Optimal Ciliary Locomotion of Axisymmetric Microswimmers
	Introduction
	Problem Formulation
	Model
	Numerical algorithm for solving the forward problem
	Optimization problem
	Sensitivity analysis
	Constraints on surface displacement

	Results and discussion
	Parameterization
	Spheroidal swimmers
	Non-spheroidal swimmers

	Conclusions and Discussions

	Concluding remarks
	Stability Improvement on 2D Product Integration Scheme
	Product Integration Scheme in Axisymmetric Domains
	Extension to Inhomogeneous Stokes Problems

	APPENDICES
	BIBLIOGRAPHY

