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ABSTRACT

The semiconductor industry has been reaping the benefits of Moore’s law powered by Den-

nard’s voltage scaling for the past fifty years. However, with the end of Dennard scaling,

silicon chip manufacturers are facing a widespread plateau in performance improvements.

While the architecture community has focused its effort on exploring parallelism, such as

with multi-core, many-core and accelerator-based systems, chip manufacturers have been

forced to explore beyond-Moore technologies to improve performance while maintaining

power density. Examples of such technologies include monolithic 3D integration, car-

bon nanotube transistors, tunneling-based transistors, spintronics and quantum computing.

However, the infancy of the manufacturing process of these new technologies impedes

their usage in commercial products. The goal of this dissertation is to combine both ar-

chitectural and device-level efforts to provide solutions across the computing stack that

can overcome the reliability concerns of emerging technologies. This allows for beyond-

Moore systems to compete with highly optimized silicon-based processors, thus, enabling

faster commercialization of such systems. This dissertation proposes the following key

steps: (i) Multifaceted understanding and modeling of variation and yield issues that occur

in emerging technologies, such as carbon nanotube transistors (CNFETs). (ii) Design of

systems using suitable logic families such as pass transistor logic that provide high per-

formance. (iii) Design of a multi-granular fault-tolerant reconfigurable architecture that

enhances yield and performance. (iv) Design of a multi-technology, multi-accelerator het-

erogeneous system (v) Development of real-time constrained efficient workload schedul-

ing mechanism for heterogeneous systems. This dissertation first presents the use of pass

xii



transistor logic family as an alternate to the CMOS logic family for CNFETs to improve

performance. It explores various architectural design choices for CNFETs using pass tran-

sistor logic (PTL) to create an energy-efficient RISC-V processor. Our results show that

while a CNFET RISC-V processor using CMOS logic achieves a 2.9× energy-delay prod-

uct (EDP) improvement over a silicon design, using PTL along the critical path components

of the processor can boost EDP improvement by 5× as well as reduce area by 17% over

16 nm silicon CMOS. This document further builds on providing fault-tolerant and yield

enhancing solutions for emerging 3D integration compatible technologies in the context

of CNFETs. The proposed framework can efficiently support high-variation technologies

by providing protection against manufacturing defects at multiple granularities: module

and pipeline-stage levels. Based on the variation observed in a synthesized design, a reli-

able CNFET-based 3D multi-granular reconfigurable architecture, 3DTUBE, is presented

to overcome the manufacturing difficulties. For 0.4-0.7 V, 3DTUBE provides up to 6.0×

higher throughput and 3.1× lower EDP compared to a silicon-based multi-core design

evaluated at 1 part per billion transistor failure rate, which is 10,000× lower in compari-

son to CNFET’s failure rate. This dissertation then ventures into building multi-accelerator

heterogeneous systems and real-time schedulers that cater to the requirements of the ap-

plications while taking advantage of the underlying heterogeneous system. We introduce

optimizations like task pruning, hierarchical hetero-ranking and rank update built upon two

scheduler policies (MSstatic and MSdynamic), that result in a performance improvement of

3.5× (average) for real-world autonomous vehicle applications, when compared against

state-of-the-art schedulers. Adopting insights from the above work, this thesis presents a

multi-accelerator, multi-technology heterogeneous system powered by a multi-constrained

scheduler that optimizes for varying task requirements to achieve up to 6.1× better energy

over a baseline silicon-based system.
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CHAPTER 1

Introduction

Gordon Moore made the observation that as the transistor technology scales there will be

roughly double the number of transistors every two years improving performance. Dennard

scaling stated that the power density of a chip remains same with the reduction of transistor

size by half. However, around the early 2000’s we saw the end of Dennard scaling which had

guaranteed constant power density as the technology scales. This coupled with the thermal

and power limits led to single threaded performance and frequency stagnation. Although the

industry recuperated by relying on both architectural and device level innovations [2,3,4,5,6]

to sustain Moore’s Law like multicore processors, currently the power constraints limit us

from utilizing all the cores on the processor. Moreover, with physical scaling of silicon

(Si) predicted to end with the 5 nm node [7], extensive research is being conducted to

incorporate specialized hardware and the use of beyond-Moore technologies to sustain

Moore’s law. We have seen the emergence of various new technologies that continue

performance scaling while maintaining power density and can either supplement or replace

silicon-based transistors. Some prominent disruptive technologies are carbon-nanotube

transistor (CNFET), germanium-nanowire transistor, silicon carbide transistor and tunnel

transistor (TFET). However, there is no alternative technology at the moment that has the

capability to match the yield and performance of Si for existing designs. Furthermore, due

to the infancy of their manufacturing process, high defect densities, and variation issues,

chip designers are not encouraged to consider these emerging technologies as a stand-alone
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replacement for Si-based transistors. Extensive research on both the manufacturing as well

as architecture fronts are required to move innovation forward to create large scale chips

using these new technologies. However, aggressive manufacturing research will not be

done unless a product is marketed, and products cannot be developed profitably because

of the high variation in the manufacturing process, leading to a viscous cycle. The vision

of this dissertation is to develop solutions for high variation emerging technologies that

can overcome the reliability concerns of a new technology and compete with the highly

optimized state-of-the-art silicon-based processors, enabling faster commercialization of

these technologies to develop a competitive device-level heterogeneous system.

To accomplish this goal, we must overcome several challenges. The largest of these

barriers is related to high fault rates and yield issues observed in new technologies. For

example, carbon nanotube transistors, a prominent emerging technology, is affected by

manufacturing variability [8]. The latest process used to create carbon nanotube-based

designs demonstrates a high failure rate of 10 ppm (parts per million) [9]. As a result, to

achieve a yield of 99.73% (3-sigma process), it can only realize a maximum design size of

less than 300 transistors, which is negligible in comparison to the 800 million transistors in

Intel’s Core i7 processor. As shown in Figure 1.1, our proposed research calls for solutions

across the computing stack to efficiently deploy emerging technologies; build detailed

variation models, apply circuit level logic family optimizations, develop a fault-tolerant

multi-granular reconfigurable architecture and build an efficient function-level and device-

level heterogeneous system with effective real-time workload scheduling to achieve high

performance at a low energy cost.

1.1 Contributions

This dissertation proposes the use of pass transistor logic family as an alternate to com-

plementary metal-oxide semiconductor (CMOS) logic family for CNFETs to improve
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Figure 1.1: To overcome manufacturing issues in emerging technologies, solutions need to
be developed across the stack. This work presents solutions that target varying levels of the
computing stack

performance [10]. Although logic gates using CNFETs have been demonstrated to provide

up to an order of magnitude better energy-delay product (EDP) over silicon-based coun-

terparts, system-level design using CNFETs show significantly smaller EDP improvement

because of manufacturing issues, critical path of the design, output load capacitance and

corresponding drive strengths of gates. This work addresses this challenge by exploring

various architectural design choices using CNFET-based pass transistor logic (PTL) and cre-

ate an energy-efficient RISC-V processor. While silicon-based design traditionally prefers

complementary logic over PTL, CNFETs are ideal candidates for PTL due to their low

threshold voltage, low power dissipation, and equal strength p-type and n-type transistors.

Furthermore, a design flow framework that can be used for large-scale chip production

while mitigating yield and variation failures to bring up CNFET-based technology, using

a reliable reconfigurable architecture is proposed. Although CNFET is one of the most

promising competing technologies available, offering exceptional electrostatic properties,

due to the infancy of their manufacturing process, high defect densities, and variation

issues, chip designers are not encouraged to consider these emerging technologies as a

stand-alone replacement for Si-based transistors. Hence, to commercialize these new
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technologies, new architectural and circuit modifications that can work around high-fault

rates are required, improving performance comparable to Silicon, while the manufacturing

process is perfected. This work leverages the fact that CNFETs are perfect candidates for 3D

integration due to their low-temperature manufacturing process and low power consumption.

The proposed framework can efficiently support high-variation technologies by providing

protection against manufacturing defects at multiple granularities: module and pipeline-

stage levels [11]. To incorporate different CNFET manufacturing processes, this work also

builds a flexible variation model and a CMOS-based CNT design library that can be used to

synthesize physical CNFET-based processor designs over a range of 0.4 to 0.7 V.

Heterogeneous SoCs for autonomous vehicles (AVs), while necessary to meet stringent

performance and safety constraints, pose challenges for traditional task scheduling ap-

proaches. In this work, we present AVSched, a multi-level scheduler that exploits the highly

heterogeneous nature of the underlying SoC in conjunction with the characteristics of an

AV application [12]. AVSched’s goal is to improve a global objective function, exemplified

by a defined Quality-of-Mission (QoM) metric, providing a more holistic scheduling ap-

proach that investigates the full hardware-software AV stack to improve the overall mission’s

quality rather than focusing solely on the real-time requirements of individual kernels or

applications. Our evaluation shows that AVSched improves overall mission performance by

an average of 5.4×, 3.2×, 2.9× and 2.9× when compared to CPATH, RHEFT, 2lvl-EDF

and ADS (current, state-of-the-art real-time heterogeneous schedulers).

While heterogeneous SoCs are developed to cater to growing requirements of highly

heterogeneous applications, prior art has explored heterogeneity either at the function-level

or the device-level. This work explores combining the two to cater to performance and

energy requirements of common kernels in both server and embedded system applications.

In this work, we presented a function-level and device-level heterogeneous SoC, Shetero,

built to accelerate kernels using three different device technologies of silicon FETs, carbon

nanotube FETs and tunnel FETs. The goal of the work is to cater to performance, energy
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and energy-delay requirements of tasks using the different accelerators built using each

device technology based on their operational strengths. We show that Shetero in combination

with a scheduler-driven sleep-based power optimization allows for a 1.7-6.2× improvement

in system energy for varying task traces and arrival rates over a homogeneous Si-based

system with DVFS enabled.

1.2 Organization of the Dissertation

The rest of the document is organized as follows. Chapter 2 presents the key character-

istics and challenges of carbon nanotube-based transistors and motivates this dissertation.

Chapter 3 proposes circuit level design optimizations to reap the potential benefits of CN-

FETs [10]. Chapter 4 builds a variation model and design library for carbon nanotubes that

are used to present 3DTUBE, a multi-granular yield-enhancing reconfigurable 3D architec-

ture [11]. Chapter 5 presents a scheduling mechanism for heterogeneous system-on-chip

(SoC) architectures in the presence of real-time constraints. Chapter 6 presents the design

of a device-level heterogeneous system and evaluates it for various input requirements and

optimizations. Chapter 7 summarizes and concludes the dissertation.

All the work presented in this document has been done in collaboration with Subhankar

Pal, Siying Feng, Tutu Ajayi, Austin Rovinski, Hiwot Kassa, Javad Bagherzadeh and Jielun

Tan from University of Michigan and Augusto Vega, Alper Buyuktosunoglu, John-David

Wellman, Hubertus Franke and Pradip Bose from IBM Corp.
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CHAPTER 2

Carbon Nanotube Field-Effect Transistor

A carbon nanotube is a cylindrical rolled-up structure of a carbon hexagonal layer. A

carbon nanotube transistor is a nanowire transistor with gate-all-around structure. Due

to their similarities to Silicon-based Field-Effect Transistor (Si-FET), CNFETs exhibit

a linear region followed by a saturation region in the drain current, IDS , as a function

of increasing gate-source voltage, VGS [13]. CNFETs are one of the most promising

competing technologies available, offering high current-carrying capacity [14], high carrier

velocity [15], and exceptional electrostatics due to their ultra-thin body [16]. High mobility

makes CNFETs have low latency with the same dynamic power dissipation. The gate-all-

around structure enhances the gate controllability to channel potential, which results in steep

on-off switching and low leakage power dissipation. Moreover, the low process temperature

makes it possible for CNFETs to be used in monolithic 3D integration [17]. The high

thermal conductivity helps CNFET mitigate the power burden of 3D integration.

CNFETs have been shown to be excellent candidates for low voltage and near threshold

operations making them perfect candidates to be used in the design of sensors, IoT devices

and energy-constrained devices.

2.1 Fabrication

Historically, CNFET designs have been plagued by manufacturing issues, particularly when

creating a standard cell-based design. However, recent advances in fabrication techniques
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have made high-yield, reliable CNFET devices possible for both p-type and n-type transistors,

enabling the use of traditional Computer-Aided Design (CAD) flows.

Although CNFETs have faced several difficulties in efficient fabrication, recent tech-

niques have improved the feasibility of CNFET manufacturing. Shulaker et al. have

demonstrated highly aligned CNTs with a density (ρcnt) of about 100 CNTs/µm through

chemical vapor deposition. Their method involves growing CNTs on a quartz substrate and

repeatedly transferring them onto a wafer [18]. Hongsik et al. propose a technique where

they fabricate and purify CNTs separately and suspend them on the substrate. Following

this, they attract the CNTs into adhesive-filled trenches for alignment, resulting in a yield

density of 20 CNTs/µm [19]. Recently, Brady et al. have achieved a ρcnt ≈ 50 CNTs/µm

using the floating evaporative self-assembly (FESA) method [20]. Franklin et al. [21]

characterize multiple FETs fabricated with varying width from 3 µm to 15 nm on one CNT.

Data extracted from these FETs are used to make more realistic CNFET models [22].

2.2 Characterization

While integrated circuits are predominantly composed of Si-CMOS, CNFETs offer a large

number of advantages. In this section, we seek to quantify these benefits to understand how

CNFETs can be leveraged over Si-CMOS logic.

To investigate the characteristics of CNFETs, we compare CNFET with CMOS (CCNT)

to Si with CMOS (Si-CMOS) by using SPICE models of a minimum-sized 16 nm Si-CMOS

inverter and an equivalent width 16 nm CCNT inverter. In Figure 2.1, we demonstrate

the performance of the CNFET inverter using fan-out-of-four (FO4) analysis. Our char-

acterization in Figures 2.1(a)-(d) shows that CNFETs outperform silicon both in terms of

energy and EDP across the voltage range. However, CNFETs under-perform in comparison

to Si-CMOS in FO4 delay at higher supply voltages due to the high contact resistance in

CNFETs. This changes at lower voltages (approaching 0.4 V), where CNFETs edge out
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Figure 2.1: Comparison of FO4 inverter in CCNT and Si-CMOS

Si-FETs, because of CNFETs’ higher current properties at lower voltages. Figure 2.1(d), in

particular, shows that as the supply voltage decreases, the EDP advantage of CNFET over

Si-FET increases.

2.3 Need for Circuit-Level Enhancements

While previous works have theorized up to an order of magnitude in EDP improvement for

a CCNT-based inverter over Si-CMOS at low voltages [21,23], they used theoretical models

that did not include factors such as high contact resistance and variable CNT pitch, which are

present in CNFETs that can be fabricated today. These properties limit the gains of CNFETs
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to less than the theoretical numbers. Overall, we observed a 1.8× improvement in EDP at

0.4 V using models based on experimental data. Hence, this calls for more efficient design

techniques and a better-suited logic family to reclaim the order of magnitude improvements

that CNFETs can deliver. One of the key properties of CNFETs is their low threshold

voltage and low power dissipation, which lends very well to the use of a more efficient logic

family like pass transistor logic (PTL) [24]. CNFET-based systems can greatly improve

EDP through the use of multiple logic families, and in particular with the use of PTL [24].

2.4 Variation

Recent fabrication techniques have helped make large scale CNFET manufacturing processes

possible. However, CNFET manufacturing yields imperfections, due to the presence of

metallic carbon nanotubes (m-CNTs), imperfect m-CNT removal processes, chirality drift,

CNT doping variations in the source/drain extension regions, and density fluctuations due to

non-uniform inter-CNT spacing. Chemical synthesis of CNTs do not provide precise control

over the locations of individual CNTs and consequently, significant variations can exist in

the spacing between CNTs. This non-uniformity, which is expressed as CNT count density

variation, leads directly to spatial non-uniformity in the electronic properties of CNFETs,

and thus increased delay, signal level attenuation and failure. Moreover, a single defective

CNFET can cause faults on the gate level, such as higher leakage, less balanced rise/fall

delays or too much driver strength for either pull-up/pull-down path. However, one of the

most critical manufacturing issues and a major contributor to delay variation is the presence

of density variations in CNT growth. The lack of precise growth or placement of CNT

on a wafer along with the removal of m-CNTs lead to high variation in the CNT density.

Leveraging the availability of theoretical CNFET models, prior works have conducted

extensive studies on the impact of CNFET variations on yield and performance [8, 25]. In

particular, they focused on the variation associated with CNT count in a transistor [26,27,28],
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which was identified as the major contributor to the delay variation in CNFETs [29]. Prior

work has also been shown to improve the yield of the process at the layout or circuit

level [9, 23, 27]. Stanford’s Robust System Group also released a variation-aware Design

Kit [30]. However, these lower-level solutions target a particular cause of variation and are

not generic in nature and cannot be easily scaled to other emerging technologies. This calls

for a system level yield enhancing solution that can be used to model and countermeasure

any category of CNFET variation or reliability problem.

2.5 Need for Yield-Enhancing System-level Solution

For a technology to be deployed in a large-scale production, a high design yield of 3-

sigma or above is required for the product to be profitable. However, due to the infancy of

manufacturing processes of emerging technologies, we cannot achieve this yield without

compromising on compute area or size of design.

CNFETs are affected by manufacturing variability [8], and several significant challenges

must be conquered before the benefits of CNFETs can be reaped. The latest process used to

create carbon nanotube-based designs demonstrates a high failure rate of 10 ppm (parts per
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million) [8]. As can be seen in the Figure 2.2, for a process technology with a failure rate

of 10 ppm to achieve a yield of 99.73% (3-sigma process), it can only realize a maximum

design size of less than 300 transistors, which is negligible in comparison to the 800 million

transistors in the Intel Core i7 processor.

Deriving motivations from the row/column redundancy utilized in SRAM arrays [31], we

observe that by adding redundancy to the design, we can overcome the challenge of low yield

and realize larger designs. Just adding the redundancy of a second core improves the design

size by 20x as shown in Figure 2.2. Further, adding one additional spare at each pipeline-

stage level and module level improves the design size by 190x and 255x, respectively, over

the standalone, no reliability solution process. However, naively adding redundant cores,

pipeline stages or modules adds a very expensive area overhead. Hence, gaining insight

from these results, we later demonstrate, an efficient multi-core 3D architecture that can

be reconfigured at multiple granularities to provide an inherent redundancy to improve the

yield and performance of CNFET designs at a very small area overhead.
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CHAPTER 3

Design Optimization Using Pass Transistor Logic

3.1 Introduction

With the end of Dennard Scaling and the pending demise of Moore’s Law, silicon chip man-

ufacturers are facing a widespread plateau in performance improvements. Clock frequencies

and power have already stopped scaling due to the power wall [32], and many industry

experts predict physical scaling to end with the 5 nm node in 2021 [7].

Extensive research is being undertaken towards the discovery of new alternative technolo-

gies to continue performance scaling while maintaining power density, including spintronics,

quantum computing, and carbon nanotubes. CNFETs are one of the most promising com-

peting technologies available, offering high current-carrying capacity [14], high carrier

velocity [15], and exceptional electrostatics due to their ultra-thin body [16]. In addition,

CNFETs have made great strides in manufacturability in terms of both device scaling and

yield, and they require relatively few changes to the silicon manufacturing process [20].

Prior work has investigated the impact of CNFETs on small-scale designs, such as

individual transistor properties or complementary gates [33, 34]. Bobba et al. have explored

the impact of replacing Si-FETs with CNFETs at the system level, designing an OpenRISC

processor [23]. However, their processor’s EDP improvement is much lower in comparison

to their gate-level EDP reduction over silicon. This is primarily due to the critical paths

within the design, output load capacitance and corresponding drive strengths of gates while

creating larger designs. The EDP improvement at system-level will further be diminished
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due to variation caused by the fabrication process. Hence, this calls for more efficient design

techniques and a better-suited logic family to reclaim the order of magnitude improvements

that CNFETs can deliver. One of the key properties of CNFETs is their low threshold

voltage and low power dissipation, which lends very well to the use of a more efficient logic

family like pass transistor logic (PTL) [24]. CNFET-based systems can greatly improve

EDP through the use of multiple logic families, and in particular with the use of PTL.

In this work, we take advantage of CNFETs’ exceptional electrical properties to explore

the architectural design considerations that need to be made when creating large-scale

CNFET designs using PTL. We build a RISC-V pipeline using both complementary logic

and PTL. Specifically, we compare several microprocessor components in 16 nm finFET-

based CMOS silicon (Si-CMOS), 16 nm CMOS CNFET (CCNT), and 16 nm PTL CNFET

(PTL-CNT). We then expand our analysis to a full RISC-V pipeline design and evaluate the

system-level impacts.

We show that the CNFET RISC-V pipeline achieves a mere 2.9× improvement in

energy-delay product over a silicon-based design at 0.4 V. We improve this by using PTL for

the critical path components and CCNT for the rest of the design, gaining a 5× improvement

in EDP and a 17% reduction in area over 16 nm silicon CMOS.

3.2 Motivation

Historically, CNFET designs have been plagued by manufacturing issues, particularly when

creating a standard cell-based design. However, recent advances in fabrication techniques

have made high-yield, reliable CNFET devices possible for both p-type and n-type transistors,

enabling the use of traditional CAD design flows. CNFETs use carbon nanotubes as the

channel medium between the source and the drain, instead of silicon. Hence, the behavior

of a CNFET is similar to a Si-FET: we observe a linear region followed by a saturation

region in the drain current, IDS , as a function of increasing gate-source voltage, VGS [13].
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In this section, we briefly discuss recent fabrication breakthroughs, provide an initial

characterization of the device, and demonstrate why PTL is a promising logic family for

CNFET-based designs.

3.2.1 CNFET Fabrication

Although CNFETs have faced several difficulties in efficient fabrication, recent techniques

have improved the feasibility of CNFET manufacturing. Shulaker et al. have demonstrated

highly aligned CNT with a density (ρcnt) of about 100 CNT/µm through chemical vapor

deposition. Their method involves growing CNT on a quartz substrate and repeatedly

transferring them onto a wafer [18]. Hongsik et al. propose a technique where they fabricate

and purify CNT separately and suspend them on the substrate. Following this, they attract

the CNT into adhesive-filled trenches for alignment, resulting in a yield density of 20

CNT/µm [19]. Recently, Brady et al. have achieved a ρcnt ≈ 50 CNT/µm using the floating

evaporative self-assembly method [20]. Franklin et al. [21] characterize multiple FETs

fabricated with varying width from 3 µm to 15 nm on one CNT. Data extracted from these

FETs are used to make more realistic CNFET models [22].

3.2.2 CNFET Characterization

While integrated circuits are predominantly composed of Si-CMOS, CNFETs offer a large

number of advantages. In this section, we seek to quantify these benefits to understand how

CNFETs can be leveraged over Si-CMOS logic.

3.2.2.1 Complementary Logic

To investigate the characteristics of CNFETs, we compare CCNT to Si-CMOS by using

SPICE models of a minimum-sized 16 nm Si-CMOS inverter and an equivalent width 16 nm

CCNT inverter. In Figure 3.1, we demonstrate the performance of the CNFET inverter

using fan-out-of-four (FO4) analysis. Our characterization in Figures 3.1(a)-(d) shows that
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CNFETs outperform silicon both in terms of energy and EDP across the voltage range.

However, CNFETs under-perform in comparison to Si-CMOS in FO4 delay at higher supply

voltages due to the high contact resistance in CNFETs. This changes at lower voltages

(approaching 0.4 V), where CNFETs edge out Si-FETs, because of CNFETs’ higher current

properties at lower voltages. Figure 3.1(d), in particular, shows that as the supply voltage

decreases, the EDP advantage of CNFET over Si-FET increases.

While previous work has theorized up to an order of magnitude in EDP improvement

for a CCNT-based inverter over Si-CMOS at low voltages [21, 23], they used theoretical

models that did not include factors such as the contact resistance and variable CNT pitch,

which are present in CNFETs that can be fabricated today. These properties limit the gains

of CNFETs to less than the theoretical numbers. Overall, we observed a 1.8× improvement

in EDP using models based on experimental data at 0.4 V.

3.2.2.2 Pass Transistor Logic (PTL)

Traditionally, Si-FET designs avoid using PTL because of the rapid threshold voltage drop

across each additional PTL gate. Restoring logic is often used to balance this drop, however

this negates the area, energy, and delay benefits of PTL. CNFETs possess three key properties

that Si-FETs do not: CNFETs have a very low threshold voltage, while having a low power

dissipation and equal strength PFETs and NFETs. With these key properties, CNFETs have

been shown to enable PTL as a viable logic family [24].

However, to build larger designs using PTL, restoring logic is required. Figure 3.2

demonstrates the impact of using PTL with CNFETs. We show the number of stages after

which a restoring buffer needs to be placed for cascaded full adders in both PTL-CNT and

PTL-Si. For silicon, PTL requires frequent restoring logic (every 2-4 stages), which only

worsens as the supply voltage decreases. PTL-CNT, however, requires much less frequent

buffering due to its low threshold voltage and requires 6× fewer buffers than PTL-Si at 0.4 V.

The buffering for PTL-CNT worsens as voltage increases, due to high contact resistance in
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Figure 3.1: Comparison of FO4 inverter in CCNT and Si-CMOS

the CNFETs, although the total amount of required buffering remains superior.

From this initial characterization, we find that CNFETs outperform comparable Si-FETs

in terms of EDP and are more amenable to PTL.

3.3 Related Work

Leveraging the availability of theoretical CNFET models, prior works have constructed

the basic building blocks of a processor using CNFETs. Cho et al. [33] compare various

CNFET-based standard cells against their counterparts made using Si-CMOS. Kumar et

al. [34] propose a low-power full adder using CNFETs, showing an 80% power reduction
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Figure 3.2: Restoring logic for cascaded full adders

in comparison to a Si-CMOS based one. Most of the work, however, has either been

fragmented at the transistor-level or involved small building blocks.

In the work by Ding et al. [24], the authors explore building basic PTL gates using

CNFETs. They also calculate the output voltage levels of a PTL-CNT single-bit adder

and subtractor, and demonstrate a functional multiplexer and D-latch. However, their work

neither studies scaling PTL to larger blocks, nor the challenges that accompany it.

Prior works have designed full systems based on CNFET technology. In the work by

Shulaker et al. [35], the authors fabricate and demonstrate a functional, Turing-complete,

subneg-based one-instruction-set computer at 1 µm. Further, Bobba et al. [23] show a 1.5×

improvement in EDP of an OpenRISC processor, built using yield-enhancing standard cells,

over Si-CMOS at 16 nm. However, these do not investigate the potential EDP improvement

in system-level design that CNFETs provide in gate-level designs, nor do they explore the

benefits of a suitable logic family, like PTL.

Our work is the first of its kind to construct an entire CNFET-based RISC-V processor

with all its critical-path components such as the full adder, ALU, multiplier, and registers

using PTL-CNT. We employ a pessimistic CNFET model to account for process variation,

yet are able to demonstrate EDP improvements exceeding those that have been reported

previously [23].
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3.4 RISC-V Processor Pipeline

To address the challenges of system-level design and optimize CNFET-based systems, we

build a single processor pipeline design using 3 different techniques: Si-CMOS, CCNT, and

a hybrid (CCNT + PTL-CNT) configuration.

For our analysis, we use the V-scale core, which is a 32-bit, single-issue, in-order, 3-stage

pipelined processor [36]. V-scale is an open-source design implemented in Verilog and is

comparable to an ARM Cortex-M0 core. It is based on the open RISC-V instruction set

architecture [37]. The critical modules of the core are implemented in each of the chosen

configurations (Si-CMOS, CCNT and PTL-CNT) and then integrated into the full system.

The processor’s ALU performs 14 different operations, including add/subtract, shift and

comparison. We first implement the full adder circuit in the three different configurations.

For comparison, we implement the 32-bit adder both as a ripple-carry and a Kogge-Stone

design. A ripple-carry adder (RCA) consists of 32 full adders cascaded one after another

and a Kogge-Stone adder (KSA) is a tree implementation of the carry-look ahead adder.

While the KSA is faster and more energy-efficient than an RCA, it has a larger routing

congestion and area [38]. Therefore, most present-day processors use sparse-tree adders that

are a hybrid of both KSA and RCA. However, PTL implementations of these adders require

custom addition of restoring logic between the stages, as discussed in Section 3.2.2.2, due

to varying loads seen by each transistor, especially for sparse-tree adder designs closer to a

KSA.

The multiplier is implemented as a 32-bit, two-stage array-based pipelined multiplier. It

uses carry-save adders, which are a row of full and half adders cascaded one after another.

As with the ripple-carry adder, the multiplier unit also requires restoring logic in the carry-

save adders when implemented in PTL. These buffer insertions are periodic and are placed

optimally to reduce the critical path delay and energy.
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3.5 Methodology

This section details the design methodology used for our evaluation. We include descriptions

of how our models were created and how we leveraged them to build standard cell libraries.

Finally, we detail how we use those libraries to create custom blocks and the final V-scale

pipeline.

3.5.1 Operating Voltage

Threshold voltage of the intrinsic CNT channel in a CNFET can be approximated to the

half bandgap, Eg, which is an inverse function of the diameter [15]. For a ±10% diameter

(1.2 nm) variation, we get a threshold voltage of 0.33-0.39 V. Hence, 0.4 V is selected to be

the lower bound of supply voltage scaling in the voltage study.

Simulations are performed using the 16 nm Virtual Source CNFET HSPICE model from

Stanford University’s Nanoelectronics Group [22]. The model is built on experimental data

collected from multiple transistors built on one CNT with varying channel lengths from

3 µm to 15 nm. However, the model assumes CNTs are perfectly aligned, equally spaced

and are of a fixed diameter. Hence, to address this, we choose slightly more pessimistic

design parameters, as described in the following subsections.

3.5.2 CNFET Design Parameters

The strength of a CNFET is determined by the width of the transistor, W , as well as the CNT

pitch, s. While high ρcnt has been reported in previous work, the control of s (= 1/ρcnt),

still remains to be mastered. Lee et al. predict that a density of 180 CNTs/µm is required to

meet the ITRS targets of off-state and on-state currents at the 5 nm technology node [39].

Considering these features of CNFETs, we study the effects of varying s and W on an

FO4 inverter’s delay and energy as shown in Figure 3.3. While the delay increases with

increasing CNT pitch (s), the energy increases with increasing transistor width (W ). We
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(a) Effect of pitch on delay (b) Effect of pitch on energy

(c) Effect of width on delay (d) Effect of width on energy

Figure 3.3: Varying pitch and width of the CNFET

also see that s has a minimal effect on energy. The decrease in delay from decreasing s

is countered by the increase in power due to an increase in the number of CNTs (NCNT ).

Similarly, increasingW has no effect on delay as the FO4 inverter sees an equivalent increase

in its output load capacitance. We choose a pessimistic pitch of 40 nm to incorporate worst

case variation of CNT pitch and removal of metallic-CNTs. This pitch value is used for the

rest of the CNFETs characterized in this work and is in line with contemporary fabrication

techniques.

Further, for ease of area comparison against Si-CMOS transistors, we approximately

match the width of the minimum-sized transistor in Si-CMOS to our minimum-sized

transistor, i.e., a 4-fin Si-FET of width 240 nm (about 60 nm contributed by each fin) is
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matched to a CNFET of width 200 nm, resulting in at least 5 CNTs per minimum sized

transistor.

3.5.3 Implementation

Since CNFETs have similar characteristics to Si-FETs, it is fairly straightforward to derive

basic CNFET gates from already existing Si-FET gates. Using these gates, we created a

CCNT standard cell library to analyze the system-level delay, energy and EDP improvement

over Si-CMOS. Similarly, we created a PTL-CNT library of the basic cells required for

the ALU and multiplier units. We performed synthesis of the processor using Synopsys

Design Compiler and preserved the boundaries around the ALU and multiplier units. These

components were separated so that they could be profiled individually. The gate-level netlist

obtained from synthesis was then converted into an HSPICE netlist for each unit, using the

CCNT and PTL-CNT standard cell libraries. 32-bit versions of an RSA and KSA adder, an

ALU and a multiplier were created using this methodology as well. The PTL-CNT versions

of these modules were further analyzed and restoring logic was inserted periodically for

RSA-based designs and optimally, depending on the varying output capacitance, for KSA

and the sparse-tree adder. Each of these building blocks were then evaluated at varying

voltages for delay and energy. We compare PTL-CNT results against both CCNT designs

as well as Si-CMOS results. Based on both delay and energy numbers, a hybrid design

of V-scale was made using PTL-CNT and CCNT modules. We maintain performance and

reduce area by using PTL-CNT modules for components along the critical paths of the

V-scale pipeline, while using low-energy CCNT modules for the rest of the chip.

3.6 Evaluation

In this section, we evaluate each of our core components implemented in Si-CMOS, CCNT,

and PTL-CNT. We then evaluate the overall performance of the V-scale pipeline implemented
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with Si-CMOS, CCNT, and hybrid CCNT/PTL-CNT.

3.6.1 Adder Analysis

We begin our analysis by studying a single full adder cell, then build both an RCA and KSA

adder. Finally, we analyze an ALU design that leverages a hybrid of RCA and KSA.

3.6.1.1 Full Adder

We compare a 20 transistor PTL-based full adder implementation against a traditional

CCNT-based 28 transistor mirror adder [38] as well as its counterpart in Si-CMOS. We

designed this 20T full adder to obtain a fast Sum and Cout with only two transistors on the

critical path, as shown in Figure 3.4. We reduced the load for Cout by de-multiplexing the

shared part of the circuit with Sum, creating two separate circuits to reduce degeneration

during cascading of the full adder for larger blocks, unlike the adder and subtractor built by

Ding et al. [24].

Figure 3.5 compares the effect of voltage scaling on the three full adder designs. The

results show that although the delay trends are similar, our PTL-CNT design clearly domi-

nates in terms of energy, leading to a 7-19× EDP reduction over Si-CMOS in the supply

voltage range of 0.7-0.4 V.
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Figure 3.4: Pass transistor-based full adder
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(a) (b)

(c) (d)

Figure 3.5: Improvement of PTL-CNT and CCNT over silicon for a full adder

3.6.1.2 32-bit Adder and ALU

We implemented an RCA, whose results are shown in Figure 3.6(a) and Table 3.1. In

addition, results for the KSA are shown in Figure 3.6(b) and Table 3.2. Our analysis shows

that the implementation of a 32-bit RCA using the full adder in PTL-CNT entails a high

EDP reduction over the CCNT and Si-CMOS implementations. Although some of the gains

seen in the full adder are consumed by the addition of restoring logic placed for PTL. The

PTL-CNT KSA implementation saw a smaller improvement in EDP compared to Si-CMOS.

This occurred because the KSA required significantly more restoring logic than the RCA,

more than offsetting the gains obtained in delay.
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(a) (b)

(c)

Figure 3.6: Improvement of PTL-CNT and CCNT over silicon for (a) ripple-carry adder, (b)
Kogge-Stone adder and (c) V-scale ALU

For the ALU design, we used Synopsys Design Compiler to generate a synthesized

netlist. The result, a sparse-tree adder, borrows elements from both KSA and RCA. We

implemented a similar sparse-tree adder for our final ALU implementation, to optimize for

both area and delay. Figure 3.6(c) and Table 3.3 present the results of the ALU design. We

find that the PTL-CNT ALU clearly outperforms the Si-CMOS ALU with an EDP reduction

of 3.6× at 0.4 V.
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Table 3.1: Ripple-carry adder design results

Volt.
(V)

Delay (ns) Energy (fJ)

PTL-CNT CCNT
Si-

CMOS
PTL-CNT CCNT

Si-
CMOS

0.4 1.9 2.9 3.1 2.4 6.5 14.4
0.5 1.2 2.0 1.4 4.2 10.5 23.3
0.6 1.0 1.6 0.9 8.0 16.2 34.5
0.7 1.0 1.4 0.7 22.0 24.4 48.3

Table 3.2: Kogge-Stone adder design results

Volt.
(V)

Delay (ns) Energy (fJ)

PTL-CNT CCNT
Si-

CMOS
PTL-CNT CCNT

Si-
CMOS

0.4 1.0 0.8 1.0 4.9 5.1 9.8
0.5 0.4 0.6 0.4 7.7 8.2 15.8
0.6 0.3 0.4 0.3 11.6 12.6 23.4
0.7 0.2 0.4 0.2 16.7 18.9 32.8

3.6.2 Multiplier

Results for the multiplier design are presented in Figure 3.7 and Table 3.4. We find a similar

trend at higher voltages. The PTL-CNT multiplier has an EDP gain of 1.6× at 0.4 V, which

is less than the 2× of the CCNT multiplier, due to the large overhead of restoring buffer

insertion in the PTL-CNT design. Hence, we choose a CCNT-based multiplier for the

pipeline design.

Table 3.3: V-scale ALU results

Volt.
(V)

Delay (ns) Energy (fJ)
PTL-CNT

Hybrid
CCNT

Si-
CMOS

PTL-CNT
Hybrid

CCNT
Si-

CMOS
0.4 2.1 3.2 3.5 20.5 25.4 43.5
0.5 1.2 2.2 1.6 38.3 44.4 72.7
0.6 1.0 1.8 1.0 73.4 79.1 109.6
0.7 0.9 1.5 0.7 127.4 118.5 156.5
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Table 3.4: Array multiplier results

Volt.
(V)

Delay (ns) Energy (fJ)

PTL-CNT CCNT
Si-

CMOS
PTL-CNT CCNT

Si-
CMOS

0.4 3.7 2.2 2.8 276.2 293.4 560.6
0.5 1.9 1.5 1.2 429.1 470.6 906.9
0.6 1.4 1.2 0.7 610.0 728.1 1351.4
0.7 1.1 1.1 0.5 930.7 1071.9 1902.7

Figure 3.7: Improvement of PTL-CNT and CCNT over silicon for the multiplier

3.6.3 Registers

Since a D-flip flop mostly consists of inverters and transmission gates, we only build Si-

CMOS and CCNT-based implementations. Though Si-CMOS performs better than CCNT

flip flops by a small margin at higher voltages, the CCNT flip flop wins back at 0.4 V with

an EDP gain of 1.8× as shown in Figure 3.8.

3.6.4 Full Pipeline

Figure 3.9 and Table 3.5 present the results of our full RISC-V pipeline design. We find that

the V-scale core built using CCNT shows a 1.0-2.9× improvement in EDP over a Si-CMOS

based core for a supply voltage range of 0.7-0.4 V. To improve this further, we analyzed

the critical path and found that the ALU and parts of the multiplier were on the critical

path. For that reason, we constructed a V-scale pipeline with the PTL-CNT versions of

the ALU components. We obtained a 2-5× reduction of EDP over Si-CMOS with this

implementation, which is also a 1.7-2× improvement over the entirely CCNT design. The
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(a) (b)

(c) (d)

Figure 3.8: Improvement of CCNT over silicon for the D-Flip Flop

results clearly show that CNFETs are a better fit for low voltage and energy-efficient designs,

and that judicial use of PTL can greatly improve the effectiveness of CNTs.

While the individual components show on average a∼2× improvement in EDP, the over-

all CPU pipeline shows a 5× improvement. This happens because the analysis for individual

components were done at the maximum frequency for those components. When integrated

into the entire pipeline, the critical path is comparatively longer than the propagation time

of each individual component on it, and hence those units only contribute leakage power

to the system’s power for rest of the clock cycle. Since Si-CMOS has a larger penalty for

leakage than CNFETs, this compounds to produce the 5× improvement. We also achieve a

17% reduction in area of the hybrid pipeline in comparison to the Si-CMOS configuration.
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Figure 3.9: Improvement of CCNT-PTL-CNT Hybrid and CCNT over silicon for the V-scale
pipeline

Table 3.5: V-scale pipeline results

Volt.
(V)

Delay (ns) Energy (fJ)
PTL-CNT

Hybrid
CCNT

Si-
CMOS

PTL-CNT
Hybrid

CCNT
Si-

CMOS
0.4 3.0 4.2 4.9 508.6 639.8 1578.0
0.5 1.9 2.8 2.2 747.6 947.9 2511.6
0.6 1.5 2.3 1.4 1044.2 1356.3 2832.0
0.7 1.4 2.0 1.0 1430.2 1908.4 3863.0

3.7 Conclusions

Although many breakthrough fabrication techniques to synthesize carbon nanotubes have

been invented, we still need circuit and architectural overhauls along with further fabrication

improvements to suit CNFETs while building larger blocks and systems to gravitate their

capabilities. Considering the low threshold voltage, low power dissipation and equal PFET

and NFET strength of carbon nanotubes, we built a RISC-V pipeline using pass transistor

logic-based CNT building blocks. We report the energy, delay and EDP of these smaller logic

blocks and build a whole pipeline using a hybrid of pass-transistor logic and complementary

logic for complex modules of the pipeline. The results clearly show that CNFETs are a

better fit for low-voltage and low-power designs. While individual blocks show up to 3.6×

improvement in EDP compared to 16 nm Si-CMOS based designs, the RISC-V V-scale

pipeline shows an EDP improvement of 5×, bringing us one step closer to the full potential

of CNFETs.
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CHAPTER 4

A Design Framework for High-Variation

Transistor Technology

With the gradual slowdown of Moore’s law, the semiconductor industry has seen the

emergence of various new technologies to supplement or replace silicon-based transistors.

Although physical scaling of silicon (Si) is predicted to end with the 5 nm node [7], there

is no alternative technology at the moment that has the capability to match the yield and

performance of Si for existing designs. Extensive research on both the manufacturing as

well as architecture fronts are required to move innovation forward to create large scale

chips using these new technologies. However, aggressive manufacturing research will not be

done unless a product is marketed and products cannot be developed profitably because of

the high variation in the manufacturing process, leading to a viscous cycle. Hence, to break

this causality dilemma, we as architects need to develop design flows for high variation

technologies that can overcome the reliability concerns of a new technology and compete

with the highly optimized state-of-the-art Si-based designs.

Carbon Nanotube Field Effect Transistor (CNFET) is a promising alternative to Si-

based devices due to its exceptional electrical, thermal and transport properties, such as

high carrier mobility, smaller gate capacitance and better current endurance [40]. Having

an order of magnitude better energy-delay product (EDP) compared to Si CMOS logic,

CNFET can be used to build highly energy-efficient integrated circuits [41]. CNFETs were

also demonstrated in Monolithic 3D-ICs by building CNFETs with Si CMOS gates [40].
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Figure 4.1: Path to sustenance for a disruptive technology [1]

Recently, CNFETs have also been adopted in the design and development of next-generation

of 3D Monolithic System-on-a-Chip technology to create densely integrated logic and

memory products [42].

However, the current CNFET manufacturing process is riddled with imperfections [43].

Chemical synthesis of CNTs does not provide precise control over the locations of individual

CNTs on the wafer and consequently, significant variations can exist in the spacing between

CNTs. This non-uniformity, which is expressed as CNT count variation, leads directly to

spatial non-uniformity in the electronic properties of CNFETs, resulting in increased delay,

signal level attenuation and failure. Moreover, a single defective CNFET can cause faults

on the gate level, such as higher leakage, less balanced rise/fall delays or too much driver

strength for either pull-up/pull-down path [44]. These problems exist because the technology

itself, albeit promising, is still developing from infancy.

As shown in Figure 4.1, for any disruptive technology to sustain growth and innovation,

it usually requires a low-end market with a low barrier of entry to gain initial sources

of revenue. With the initial investment, the technology can then improve to enter the

mainstream markets and eventually outperform existing technologies. For example, as
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observed by Christensen in [1], flash memory, a disruptive technology, costed 5-50× more

than the hard disk per megabyte of memory and was not as robust for writing. However, flash

chips achieve higher performance and reliability at lower power. Flash memory started in

small value networks, such as digital cameras and modems. Comparatively, disk drives are

too big, fragile and power consuming for these applications. After flash chips succeeded as

a niche, the industry began marketing specialized storage systems in portable packages, like

the thumb drive. Today, Solid State Drives, made using flash memory, comprise the fastest

growing segment of the storage, arriving to this stage because of the initial investments in

low-end markets.

Hence, to sustain the development of CNFET designs, it is necessary to introduce

architectural and circuit innovations that improve yield and help create designs for the

low-demand market, as shown in Figure 4.1. These solutions will help drive the demand

for CNFET products, increasing the number of products manufactured. The initial income

obtained can be leveraged by foundries to improve the process technology and expand future

leading to a stable CNFET market.

To achieve this goal, we first develop a flexible variation model based on CNT density

fluctuations, that allows the designer to mimic the yield obtained for different manufacturing

processes. Leveraging the fact that CNFETs are CMOS compatible, we built a 16 nm

CNFET standard cell library and characterized it for voltages varying from 0.4 V to 0.7 V,

creating a design library that can be used to synthesize logical designs. Furthermore, to

enable the commercialization of CNFET-based products, we propose the use of a multi-

granular reconfigurable 3D architecture, 3DTUBE, which improves yield and throughput of

high-variation designs. We show that for a failure rate of 10 ppm, the pipeline-stage level

and module-level solution achieves 2.0× and 2.5× improvement in performance over a

baseline 8-core OpenSPARC T1 processor with no reliability solution, respectively. We also

show by employing 3DTUBE for the current CNT process, we can achieve up to 6.0x higher

throughput and 3.1x lower Energy-Delay Product (EDP) than that of a 16 nm Silicon-based
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Figure 4.2: Compute size achieved for 99.73% yield if no reliability, core-level, pipeline-
stage level, or module-level solution is employed for varying fault rates. Dashed line denotes
the current process’s failure rate of a CNFET (10 ppm).

design at a minimal area cost of 7.4% and frequency overhead of 8.2% over an unprotected

multi-core design.

4.1 Motivation

Deploying technology in a large-scale production requires a high design yield of 3-sigma

or above for the product to be profitable. However, due to the infancy of manufacturing

processes of emerging technologies, we cannot achieve this yield without compromising on

size of design.

High variation observed in the manufacturing process [8] is a significant challenge to

be conquered before the benefits of CNFETs can be reaped. Manufacturing imperfections

leading to CNT count variation can affect CNFET performance and reliability. Despite

the strides that have been made in CNFET manufacturing process over the years, the latest

CNFET process demonstrates a high failure rate of 10 ppm (parts per million) [9]. As seen
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in Figure 4.2, for a technology with a failure rate of 10 ppm to achieve a yield of 99.73%

(3-sigma process), it can only realize a maximum design size of 300 transistors, which is

negligible in comparison to the 800 million transistors in the Intel Core i7 processor.

Deriving motivation from the row/column redundancy utilized in SRAMs [31], we

observe that by adding redundancy to the design, we can overcome the challenge of low

yield and realize larger designs. Adding a redundant second core improves the design size by

20× as shown in Figure 4.2. Further, adding redundancy at the pipeline-stage and module

level improves the size by 190× and 255×, respectively, over the no solution design. This

allows us to design small reliable CNT processors for the low-end market. However, naively

adding redundant components adds expensive overheads.

Gaining insight from these results and using the ability of CNFETs to be integrated into

monolithic 3D circuits [40], we later demonstrate in Section 4.3, an efficient multi-core 3D

architecture that can be reconfigured at multiple granularities to provide an inherent redun-

dancy that improves the yield and performance of CNFET designs at very low overheads.

4.2 Variation Model

Recent fabrication techniques have helped make large scale CNFET manufacturing processes

possible. However, the CNFET manufacturing is imperfect, due to the presence of metallic

carbon nanotubes (m-CNTs), imperfect m-CNT removal processes, chirality drift, CNT

doping variations in the source/drain extension regions, diameter variations and density

fluctuations due to non-uniform inter-CNT spacing [43]. Based on prior work [29], variation

in CNT count caused due to CNT density variations and m-CNT-induced variations is

the major contributor of delay degradation, up to 60% in CNFET circuits at the 16 nm

technology node [29]. The lack of precise growth or placement of CNT on a wafer along

with the removal of m-CNTs lead to high variation in the CNT density. Furthermore,

3DTUBE can be used to countermeasure any category of CNFET variation. Therefore, for
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the purposes of this work, we build a flexible variation model based on the fluctuations in

the number of CNT and analyze its impact on the yield and performance of CNFETs.

4.2.1 CNT Distribution

To model the CNT distribution observed in CNFETs and due to its prevalence in previous

studies [9, 27, 44], we adopted a Gaussian distribution function. Certain works have also

modeled the CNT count distribution as a Weibull distribution [28] or mixed joint distribu-

tion [26]. We defer the evaluation of these distributions to a future work. Our model uses

the distribution in the inter-CNT spacing, CNT pitch (s), to obtain the variation in number

of CNTs (N ). Hence, the distribution of N can be constructed using:

(µN , σ
2
N) = (W/µs,Wσ2

s/µ
3
s) (4.1)

where µN is the mean of N , σN is the standard deviation of N , W is the width of a

CNFET, µs is the mean of CNT pitch and σs is standard deviation of pitch.

Based on the failure rate of 10 ppm (probability of no CNTs using W = 2um, N = 9,

σN = 2.1) obtained from [9], for a minimum width transistor of 100 nm, we chose a µs of

20 nm and a σs of 10nm for our baseline model and consider a yield failure to occur when

N ≤ 0.25 CNTs. These parameters can be changed for improvements in the manufacturing

process.

4.2.1.1 Effect of CNT Distribution on Yield Failures

Yield failures occur when a transistor has a negligible number of CNTs making it non-

functional. To observe the effect of the distribution of CNTs in a device on yield failures,

we vary the standard deviation of the pitch from 5 nm to 10 nm (current process technology)

as shown in Figure 4.3. This trend shows that a small reduction in the standard deviation of

the CNT pitch can reduce yield failures significantly.
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Figure 4.3: Effect of CNT distribution (varying pitch sigma) on FO4 inverter 3σ delay and
yield failures for W = 100 nm and s = 20 nm

This analysis is used in Section 4.4 to decide the granularity of our solution. For a high

failure rate process, we require redundancy at a fine granularity to create large-scale designs.

4.2.1.2 Effect of CNT Distribution on Delay

The distribution of CNT can affect the strength of a transistor, which in turn affects the

delay of a gate and performance of a chip. As shown in Figure 4.3, with increasing standard

deviation of pitch, an FO4 (fan-out of 4) inverter’s 3σ delay is affected almost linearly,

implying that while the transistor yield rate can have a higher effect on the throughput of a

processor, delay variation affects the clock period and timing-based optimization.

4.2.2 Variation Suite

When creating huge designs, it is inefficient to obtain the critical paths and find the derate

in frequency due to variation in the process technology. Hence, we automate the process

by generating a variation suite, which contains the percentage variation in delay for a path

of length l, and average drive strength d. Note that the creation of this suite is a one-time
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Figure 4.4: 3σ-delay derate of statistical model in comparison to actual derate for FO4
inverter chains, of drive strength 1, of varying lengths from 1 to 20.

process for any technology node.

The derate value for a path of length, l, and average drive strength, d is calculated as

3σl,d/µl,d where, µl,d and σl,d are the mean and standard deviation of delay obtained from

a chain of l FO4 inverters of strength d. It has been shown that the delay derate reduces

with longer paths and larger gates [45]. Hence, by approximating the original path with the

variation seen in inverters, we are slightly pessimistic with our model.

Furthermore, to save design time spent on generating Monte Carlo results for various

combinations of depth and strength, we use a statistical model used in static timing tools [46]

to estimate the standard deviation for long inverter chains (l ≥ 5). We estimate the model

based on the following equations:

µl,d = l.µd (4.2)

σl,d = σd.

√
l.(1 + 2ρd(1−

1

l
)) (4.3)

where, µl,d and σl,d are the mean and standard deviation of delay for a path of length l
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and strength d, µd and σd are the mean and standard deviation of delay of an FO4 inverter

with drive strength d and ρd is the correlation between two adjacent FO4 inverters of strength

d, due to slew and load capacitance dependence. On evaluating our statistical model using

Monte Carlo simulations, we found that the model’s variation estimate is within 2% that of

the 3σ delay variation noticed in the original path for l ≥ 5 as show in Figure 4.4.

4.3 Architecture

Recent reliability solutions propose to break apart the hardware units of classic hard-wired

pipelines, dissolving them into a sea of redundant hardware components [47, 48]. Upon

fault detection, these designs can reconfigure the hardware by replacing faulty components

with new ones. These fine-grained reconfigurable and fault isolating systems can maintain

reliability in the presence of faults without sacrificing performance for 2D and 3D systems.

Furthermore, leveraging the feasibility of building monolithic CNFET 3D-ICs [40], we

adopt the solution, 3DFAR proposed by Bagherzadeh and Bertacco [48] to build our solution,

3DTUBE.

3DTUBE is a novel multi-granular, 3D reconfigurable reliability solution for CNT-based

processor designs, which leverages the system’s natural redundancy to provide robustness

against permanent failures. Each manufactured chip can be configured to route instructions

through functioning components and detour around failed pipeline stages or modules based

on the failure pattern seen in that particular chip, unlike traditional architectures that execute

instructions on fixed paths.

As shown in Figure 4.5, by replacing the direct connections at the boundary of each

pipeline-stage or module with interconnect switches, we create a network of resources in

which each component is connected to all instances of the subsequent stage. To minimize the

performance loss from inter-stage communications, we use multiplexer-based full crossbar

switches because of their non-blocking access to all their inputs, and small number of input
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Figure 4.5: Schematic of 3DTUBE, where identical components are stacked vertically, and
crossbars are inserted between stages. In this four-failure scenario, a regular 3D CMP would
only have one working core. In contrast, 3DTUBE dynamically reconfigures to connect
healthy units creating 2 complete cores (red and green stripes). Stages in orange are idle
units that could not be used to form functional pipelines.

and output ports that are not prohibitively expensive. By adaptively routing around failed

stages, we can salvage working units to effectively repair the system by creating logical

cores across the 3D structure to tolerate variation-based failures.

Based on the manufacturing defects (yield or timing failure) detected in a chip, the victim

unit (i.e., a pipeline stage or module) is isolated and an identical unit from another layer of

the 3D fabric, is used for execution. Hence, the logical core may comprise of elements from

various vertical layers. With reference to the example in Figure 4.5, in which 4 defects have

disabled units on different vertical layers, our architecture can build two complete cores

dynamically (red and green stripes), while a traditional solution (2D or 3D) would have only

one.

Figure 4.6 shows two ways in which the pipeline and the crossbar can be divided to create

a module-level architecture; parallel or serial decomposition. In parallel decomposition

(Figure 4.6.b), the logic and crossbar in each pipeline stage is divided into two parallel parts.

In this case no area or delay overhead associated with the crossbars is added compared to

the pipeline-level solution (Figure 4.6.a), except new set of control signals for the parallel

MUXes. In serial decomposition (Figure 4.6.c), the logic and crossbar in each pipeline stage

is divided into sequential parts. The area and delay overhead of the crossbars and vertical
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connections for n serial modules would be n times that of the pipeline-stage level solution

along with the new set of control signals for n different MUXes. Hence, we choose parallel

decomposition as our preferred approach to create the module-level solution. Depending on

the defect rate identified, we can adjust the granularity to modular level, pipeline-level or

core level obtaining higher yield.

Similar to 3DFAR, 3DTUBE’s cross-layer interconnect switches do not require any

buffering [48]. Propagation delays on vertical Through Silicon Vias (TSVs) are minimal

(more than an order of magnitude faster than in conventional 2D layouts) due to the much

shorter lengths to be traversed. Furthermore, to account for manufacturing issues associated

with a monolithic 3D-IC, if any of the switching MUX logic fails, the module or pipeline

associated with it (component whose input is the MUX’s output) in that specific layer would

be unusable, but similar stages in other layers, or other stages in that layer would still be

functional and can be used to create a logical core. If all MUXes fail, then it would lead to a
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failure of the entire system. However, as the MUX area is a small percentage of the design

compared to the stages, the probability of losing a MUX before the stage it is connected

to is negligible. Similarly, reliability is also important when using MIVs (or TSVs), as the

failure of a single MIV may cause system failures. Yield and reliability improvements for

these MIVs are achieved through a range of redundancy techniques and sparring along with

several diagnosis and repair mechanisms [49]. For our design, we account one spare MIV

for every 100 MIVs.

4.4 Design Flow for High-variation Technology

This section describes the various design flow steps for a high CNT-density variation

technology to be able to produce large scale designs with high yield and performance.

4.4.1 Standard Cell Library

The first step in any design flow is to create the basic building blocks, a standard cell library.

CNFETs use carbon nanotubes as the channel medium between the source and the drain,

instead of silicon. Leveraging the fact that the behavior of a CNFET is similar to a Si-FET,

i.e., we observe a linear region followed by a saturation region in the drain current, IDS ,

as a function of increasing gate-source voltage, VGS [13], we derive CNFET gates from an

already existing 16 nm Si-finFET cell library to create a 16 nm CNT-based standard cell

library. To do so, we match a minimum width 16 nm transistor in the Si-based library to a

100 nm width and 20 nm pitch CNFET, i.e., a minimum width CNFET has 5 CNTs.

4.4.2 Library Generation

Using the 16 nm CNFET standard cell library, Stanford’s CNFET Verilog-A model [22]

and Cadence’s library characterization tool, Liberate, we generate a design library required

to synthesize designs in Synopsys’s Design Compiler for operating voltages varying from
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Table 4.1: Synthesis results of an OpenSPARC T1 core optimized for delay

Volt. Delay (ns) Energy (pJ) EDP reduction
(V) CNT Si CNT Si CNT over Si
0.4 0.65 5.00 7.00 3.97 4.36
0.5 0.50 1.50 9.97 8.65 2.60
0.6 0.40 1.00 14.40 12.81 2.22
0.7 0.35 0.45 20.23 19.87 1.26

0.4 V to 0.7 V . For a fair comparison of CNT designs generated using this flow, we also

generate the design library for the Si-based 16 nm standard cell library.

We demonstrate the results obtained from synthesizing a SPARC-ISA based OpenSPARC

T1 in-order CPU core, with no variation, using both the CNT-based and Si-based design

libraries for varying voltages in Table 4.1.

4.4.3 Design Methodology

We use Stanford’s CNFET Verilog-A model [22] to create the 16 nm CNFET standard cell

library from a 16 nm Si-based finFET standard cell library as described in Section 4.4.1.

Using this CNFET cell library and the Verilog-A model, we generate a design library. We

also add the variation model to the Verilog-A model as described in Section 4.2. We can

use this variation equipped model for both yield and delay analysis of designs. We then

generate the variation-suite for path lengths 1 - 5 and drive strength from 1 to 32 using

3-sigma Monte Carlo simulation. For longer path lengths, we use the statistical model to

derive an approximate 3-sigma delay variation.

Next, we synthesize an RTL design using the design library to generate a timing report

and obtain critical paths to be processed by the variation suite to obtain derated paths (timing

of paths adjusted with delay variation). The derated paths and the yield rate of the process are

used to derive the granularity at which 3DTUBE must operate to optimize for design yield

and performance. For failure rates greater than 1.6× 10−6, we would build a module-level

system, and failure rate less than that, a pipeline-stage-level 3DTUBE.
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4.5 Evaluation

This section evaluates the usage of 3DTUBE and compares its performance at multiple

granularities against baseline 3D CNFET and Si designs.

4.5.1 Performance and EDP Analysis

We evaluate 3DTUBE on an OpenSPARC T1 processor which implements the 64-bit SPARC

V9 architecture [50]. The OpenSPARC T1 processor contains 8 in-order, five-stage pipelined,

single-threaded cores. Each SPARC core has a 16 KB L1 instruction cache, an 8 KB data

cache, and fully-associative Instruction and Data Translation Look-aside Buffers (TLB).

The 8 cores are connected through a crossbar to an on-chip unified 3 MB L2 cache. This

processor can achieve an IPC of 1.68 for the SPECJBB 2005 benchmark [50]. The physical

design of each core comprises of a total of 80k transistors.

We evaluate the pipeline-level and module-level solutions for operating voltages varying

from 0.4 V to 0.7 V by considering two baselines; one, a Si-based design of the OpenSPARC

T1 processor evaluated at 1 ppb transistor failure rate and two, a CNT-based design of

the processor with no reliability solution. The resulting throughput of our solutions in

comparison to the two baselines for differing failure rates can be seen in Figure 4.7. We

show the comparison of EDP for two granularities evaluated at 10 ppm over the Si-based

baseline at 1 ppb in Table 4.2.

Table 4.2: EDP reduction of 3DTUBE for an 8-core design at 10 ppm failure rate over the
Si-based design evaluated at 1 ppb failure rate

Volt. EDP Reduction of 3DTUBE over Si
(V) Pipeline-level Module-level
0.4 2.5 3.1
0.5 1.5 1.9
0.6 1.3 1.6
0.7 0.7 0.9

At 0.7 V, for a transistor failure rate of 10 ppm, the module-level design achieves
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Figure 4.7: Performance of baseline, pipeline-stage level, and module level solutions of
3DTUBE for varying transistor failure rate. Dashed line denotes the current process’s failure
rate of a CNFET (10 ppm). Si-based design is evaluated at a failure rate of 1 ppb.

a throughput of 3.1 GOPS (Giga operations per second), pipeline-stage design achieves

2.4 GOPS while the CNT-based baseline achieves 1.3 GOPS throughput for the SPECJBB

benchmark, i.e., by employing the module-level technique, we achieve 2.5× higher through-

put over the CNT-based baseline. Although, at 0.4 V, the module-level 3DTUBE design

achieves a 6.0× higher throughput and 3.1× lower EDP, at 0.7 V, it achieves the same

throughput at 12% higher EDP compared to the silicon-based baseline.

As shown in the Figure 4.7, we can use the module-level optimization for failure rates

above 1.6 ppm and the pipeline-stage level optimization to improve throughput for failure

rates above 0.1 ppm. For failure rates below 0.1 ppm, the performance of all three designs

saturates due to the size of OpenSPARC T1 design. The range of failure rate for the

deployment of either levels is highly dependent on the size of the design and is determined

during design flow.
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4.5.2 Frequency and Area Overhead

To evaluate our architecture, based on detailed measurements done on a physical design, we

analyzed the propagation delays for two layouts of a 4-core OpenSPARC T1 processor: first,

a 2D layout with the 4 cores in a 2x2 formation with switches placed at the center of the

formation and second, a 3D layout with the 4 cores stacked above each other as shown in

Figure 4.5. The worst-case propagation delay for signals going from the output of one stage,

through an interconnect switch and to the input of the next stage, for the 2D layout is 20×

higher when compared to the 3D layout. This vast difference is due to the much shorter

distances that must be traversed to reach a corresponding unit in the three-dimensional

solution. Based on these findings, our interconnect switch designs and checkers only add

an 8.2% frequency overhead. Furthermore, the pipeline-stage-level framework incurs an

overhead of 7.4% in area. The area overhead contains the area of crossbars between stages

and TSVs to route the signals across 3D layers. Since propagation delays of the vertical

connections are low due to the much shorter lengths to be traversed, we can avoid buffering

by accommodating a small increase in clock period for TSVs and MUX-based crossbars in

our design. The only real overhead comes with the extra control logic needed as the number

of layers increases. For parallel decomposition-based module-level 3DTUBE, the only area

and delay overhead in addition to the pipeline-stage level solution is generated from new set

of control signals which is acceptable for a small number of modules in each stage.

4.6 Related Work

Leveraging the availability of theoretical CNFET models, prior works have conducted

extensive studies on the impact of CNFET variations on yield and performance [8, 25]. In

particular, they focused on the variation associated with CNT count in a transistor [26,27,28],

which was identified as the major contributor to the delay variation in CNFETs [29]. Hence,

to evaluate the effect of our variation tolerant design framework, we also base our variation
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model on the variation associated with number of CNTs. Moreover, our model is flexible to

consider future improvements in the process.

Prior works have also shown improvement in the yield of the process at the layout or

circuit level [9, 23, 27]. Stanford’s Robust System Group also released a variation-aware

Design Kit [30]. However, these lower-level solutions target a particular cause of variation

and are not generic in nature. Even though we focus on CNT density variations in this

work, by optimizing and enhancing yield at the system level, our solution, 3DTUBE, can be

used to model and countermeasure any category of CNFET variation or reliability problem.

Furthermore, our solution can be employed in conjunction with the circuit-level and layout-

level solutions to improve yield and performance. Moreover, our work also generates a

design library, that can be used to create large designs quickly while optimizing for the

effects of variation seen at the system level.

Many reliability solutions exist for Si-based processors, but they are created for failure

rates in the order of 1 ppb (parts per billion) [47, 48]. Scaling these solutions for a high-

variation technology like CNFET, can lead to expensive overheads. Although, 3DTUBE

borrows its ideas from [48], by leveraging the feasibility of building monolithic CNFET

3D ICs, 3DTUBE can support redundancy at multiple granularities tolerating failures in

high-variation technologies at a minimal overhead.

4.7 Conclusion

Although breakthrough fabrication techniques to realize carbon nanotube transistors (CN-

FETs) have been invented, the process is still at its infancy and has a high failure rate. We

require circuit and architectural reliability solutions to improve the yield and help commer-

cialize CNFET designs, that can provide investment for fast-paced fabrication improvements.

In this work, we propose the use of a 3D reconfigurable architecture, 3DTUBE, that can

provide failure protection at multiple granularities; module and pipeline-stage levels, to
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improve yield and throughput of high-variation designs. We show that for a failure rate of

10 ppm, the pipeline-stage and module level solutions achieve 2× and 2.5× improvement in

throughput over a CNT-based 8-core OpenSPARC T1 processor with no reliability solution,

respectively, at a minimal area cost of 7.4% and frequency overhead of 8.2%. Furthermore,

3DTUBE can achieve up to 6.0× higher throughput and up to 3.1× lower EDP compared to

a silicon-based design evaluated at 1 ppb transistor failure rate, which is 10,000× lower in

comparison to CNFET’s failure rate.
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CHAPTER 5

Scheduling Techniques for Real-Time

constrained Heterogeneous SoCs

The increasing use of heterogeneous chip multiprocessors in recent years has reached

unprecedented levels, especially in the context of IoT and distributed edge computing.

Traditional homogeneous platforms have shown fundamental limitations when it comes to

enabling high-performance yet-ultra-low-power computing, regardless of the application

domain of interest. For example, in the specific context of next generation of connected

and autonomous vehicles, the computation capabilities that are required onboard are on par

with the requirements of a “traditional” high-performance computer, but operating within

much stringent power limitations. By combining the right set of hardware resources (cores,

accelerators, chip interconnects and memory technology) along with an adequate software

stack (operating system and programming interface), heterogeneous chips have become an

effective high-performance and low-power computing alternative.

With the growing prominence of fully autonomous vehicles (ground, aerial, surface

and underwater), major investments are being made into developing applications to make

these vehicles efficient and safe. In order to ensure functionally correct and safe operation,

the complexity of state-of-the-art full-stack hardware-software platforms for autonomous

vehicles (AVs) have progressively increased over the last decade — specifically in the

form of highly-heterogeneous hardware systems driven by highly-heterogeneous software

applications. The resulting “nominal” hardware-software platform for AVs consists of
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domain-specific (embedded) systems-on-chips (SoCs) with multiple acceleration engines

specifically catering to ultra-efficient execution of application kernels for perception, plan-

ning, control, and communication. Examples of these platforms include NVIDIA’s DRIVE

AGX [51] and Tesla’s Full Self-Driving Chip (FSD Chip) [52]. In this context, the existing

work focuses mostly on: (i) optimal SoC platforms for AVs to comply with stipulated per-

formance, efficiency and resiliency metrics, and (ii) the development of AV applications that

can meet the increasing functionality and safety requirements for autonomy. Little attention

has been paid to the aspect of process scheduling for AV applications on heterogeneous

SoCs. The de facto approach relies on schedulers developed for:

1. Heterogeneous systems (traditional distributed systems and not SoCs, therefore low

variation in execution time across processing elements) [53, 54].

2. Real-time constrained applications [55, 56].

3. Real-time constrained applications based on the ones listed in 1) above [57, 58, 59].

However, none of these schedulers use dynamic runtime information from the system to

efficiently schedule real-time applications on heterogeneous SoCs. Moreover, these sched-

ulers operate in a greedy manner, trying to meet the real-time requirements of individual

processes or applications without any consideration of a global objective function, defined

as the Quality-of-Mission (QoM) metric for AV applications. We define the QoM as a

composite metric encompassing both the mission performance and the fraction of mission

completed safely, i.e., while meeting the real-time and safety constraints. To demonstrate

the value of considering the QoM, we examine the following two schedulers:

1. Quality-of-Mission-agnostic approach: The tasks of an AV application, represented as

directed-acyclic graphs (DAG), are statically scheduled using the earliest-finish-time and

lower-bound approach detailed in [59]. During execution, based on the safety-criticality

level of a DAG (a specification that indicates how critical the timely execution of a task
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Figure 5.1: Left-axis: Mission speedup of Quality-of-Mission aware scheduler (“QoM-
aware”) over the Quality-of-Mission agnostic scheduler (“QoM-agnostic”) and Right-axis:
PE utilization of “QoM-agnostic” and “QoM-aware”, when evaluated under three congestion
scenarios: rural, semi-urban and urban.

is for safe AV operation), the tasks are re-ordered to execute on the fastest processing

element (PE).

2. Quality-of-Mission-aware approach: Tasks are ranked taking into account the tempo-

ral density of safety-critical DAGs in the system, real-time constraints (deadline and

criticality-level) along with their heterogeneous execution profiles and dynamic runtime

information. This allows the scheduler to make “smarter” scheduling decisions across

PEs in highly heterogeneous SoCs while navigating through dynamic environments, as

we propose in this work.

Figure 5.1 presents the evaluation of these scheduler variants under progressively more

congested navigation conditions (rural, semi-urban and urban). The figure evaluates the

schedulers on two metrics: (i) the overall mission time while meeting all real-time constraints

and (ii) the percentage of mission completed safely when the AV is operating at the maximum

safe speed achievable among the two schedulers. The schedulers are evaluated on a simulated

platform with eight general-purpose cores, two GPUs, and one fixed-function hardware

accelerator. To complete a mission (e.g., safely navigate from a starting location “A” to a

destination “B”), the SoC executes a series of applications, composed of tasks (or kernels,

or processes). Examples of AV tasks include perception, planning and control.
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Figure 5.1 reveals that scheduling decisions can drastically affect the safe speed of the

AV, and consequently its overall mission completion time across varying congestion levels.

The “QoM-aware” scheduler outperforms the “QoM-agnostic” scheduler in terms of mission

time by 6.3×, 4.4× and 2.0× for the rural, semi-urban and urban scenarios, respectively.

Similarly, when “QoM-agnostic” is operated at the speed safely achieved by “QoM-aware”,

it can complete only up to 17% of the mission before leading to a hazard. This motivates the

fact that a holistic approach that is aware of the heterogeneity in hardware and applications

along with dynamic run-time information helps make better scheduling decisions even in

a highly congested urban-like scenario. Moreover, using this information, the scheduler

can stall or prune less-critical applications in favor of more critical ones, or prioritize the

execution of a given task on an accelerator over other tasks which may need to use the same

accelerator – the approach followed by “QoM-aware”. The key observation here is that

real-time constrained execution of AV applications without accounting for hardware

heterogeneity and dynamic runtime information does not necessarily translate into

the best overall mission performance (e.g., mission time).

In this work, we propose a “QoM-aware” scheduler called AVSched. AVSched is a

multi-level scheduler that leverages the synergy between the underlying heterogeneous

hardware platform and the applications’ runtime characteristics to satisfy the growing

throughput demand of AVs, while meeting the specified real-time and safety constraints.

Specifically, AVSched proposes two scheduling policies: MSstatic and MSdynamic and

scheduling optimizations like task-traffic reduction, hierarchical hetero-ranking and rank

update. The first step in the operation of AVSched involves profiling the application tasks

across all the possible PEs in the SoC1. This information is then used by AVSched to guide

its scheduling decisions. AVSched also uses safety criticality information provided by

the application, which is key to comply with safety specifications. Runtime information,

gathered from hardware monitors in the SoC, are used by AVSched during its operation to

1Note that offline application profiling is a common approach across most of the schedulers considered in
this work.
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Figure 5.2: AVSched’s operation workflow, including the off-line profiling and run-time
scheduling stages.

keep track of real-time deadlines of the application, and to estimate data movement costs,

waiting times of ready tasks, available slack for a DAG, and the power consumed by a

completed task. These monitors include, but are not limited to, the status of PEs (available

or busy), estimated completion time for the tasks running on busy PEs, and the execution

profile of completed tasks.

Moreover, efficient design space exploration of various processing elements (PEs) in the

SoC can be achieved by using AVSched to optimize for the mission time, PE utilization and

energy consumption for AV applications constrained by different environmental conditions

as shown in Figure 5.3.

Specifically, the novelty of this work is as follows.

1. We demonstrate that hardware heterogeneity along with the application’s runtime informa-

tion is key in determining the scheduler’s effectiveness while unveiling new opportunities

for “smarter” task scheduling.
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2. We propose AVSched, a multi-level scheduler that follows a holistic approach to optimize

the Quality-of-Mission (QoM), while meeting real-time safety constraints in autonomous

vehicles. The scheduler exploits the highly-heterogeneous nature of the underlying SoC

and dynamic run-time information (like maximum/minimum slack available and task

wait times) to make better scheduling decisions.

3. We introduce optimizations like task pruning, hierarchical hetero-ranking and rank

update built upon two AVSched policies (MSstatic and MSdynamic), that result in a

performance improvement of 3.5× (average) for real-world AV applications, when

compared against state-of-the-art schedulers.

4. We demonstrate significant reductions in mission time, energy consumption and SoC area,

obtained with AVSched in a design space exploration (DSE) loop. We show that AVSched

on average reduces the accelerator resource requirement of an efficient SoC to safely

complete AV missions by 1.9× in comparison to prior state-of-the-art schedulers [58,59].

5.1 Background and Motivation

5.1.1 Autonomous Vehicle Applications

To achieve high levels of safety, reliability and precision, AV applications are constituted

of highly heterogeneous tasks that can be divided into three types based on their function:

perception, planning and control [60]. Through perception tasks, AVs sense the environment

and perform obstacle detection, localization and classification to determine further action.

Planning tasks are implemented to make decisions that help achieve the vehicle’s goals

such as reaching a destination or searching an unknown location while ensuring safety and

mission quality. Lastly, control tasks such as traction control, acceleration, braking, steering,

and lane keeping are executed to follow the planned actions. We describe the characteristics

of and models for AV applications in the following paragraphs.
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5.1.1.1 High Heterogeneity in Execution Time

Heterogeneous system-on-chip (SoC) is a single chip comprising of many processing

elements (PEs). PEs are a mix of varied compute units like general-purpose processors

CPUs, special-purpose processors GPUs and hardware accelerators. Heterogeneous SoC

designs are extensively used in mobile and automotive industries. Increasingly they are also

being adopted by domains dominated by homogeneous architectures like datacenters [61].

Heterogeneous SoCs are widely being adopted due to the heterogeneous characteristic

of applications. They improve performance and power of applications while minimizing

communication and data movement costs between PEs. The domain-specific SoC presents

its own challenges. Although the SoC reduces data movement cost, they have limited

compute resources due to power-constraints. Furthermore, task execution times can vary by

a magnitude of hundreds across PEs on a heterogeneous AV SoC [62]. In our experiments,

we observed task execution times can vary by up to 300× across PEs when executed on
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a heterogeneous SoC (Section 5.4). Therefore, to make heterogeneity-aware scheduling

decisions, we rely on an offline timing profile created for each task that can be stored on-chip

along with the application binary. A task’s timing profile comprises both the intra-PE

execution cost as well as the inter-PE data movement cost of inputs/outputs for all eligible

PEs.

5.1.1.2 Application Model

For AVs, all applications and their conforming tasks are fixed at runtime, i.e., the addition of

a new application (with its offline timing profile) would be provided as a software update to

the AV. Based on the type of AV and its mission, these tasks are executed according to a

fixed control-flow graph (CFG), where edges in the graph are dynamically decided based on

the inputs and decisions made during runtime. We derive directed-acyclic graphs (DAGs) as

subgraphs from these CFGs that are statically known, although the arrival and execution

of these DAGs are dynamic and determined during vehicle operation. These dynamically

arriving static DAGs constitute the input to the scheduler. A DAG contains nodes and edges.

We map a task in a CFG to a node in the DAG and dependencies between tasks as edges.

Note that a task is a unit of work that can execute independently when all its dependencies

(both data and control) are resolved. The DAGs can be generated using compiler techniques

for extraction of basic blocks from the CFG.

5.1.1.3 Safety Criticality Level of Applications

Depending on the environment in which the AV is operating, each iteration of the control-

flow graph can execute at a different safety-criticality level. For autonomous driving

applications, ISO 26262 identifies four Automotive Safety Integrity Levels (ASIL): A, B,

C, and D [63]. ASIL-A represents the lowest criticality level (i.e., operations which can

result in no injuries), and D represents the highest criticality level (i.e., operations that can

result in the highest degree of automotive hazard). Similarly, unmanned aerial vehicle tasks,
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have criticality levels assigned based on the Design Assurance Level (DAL) [64]. For the

safe and reliable operation of AVs, it is absolutely necessary to comply with these criticality

levels. In this work, we consider DAGs to belong to two criticality levels:

Non-Critical DAGs: those with criticality 1 (crit=1) that arrive periodically to the

system. They are equivalent to ASIL A, e.g., object recognition on a blind-spot camera

while traveling straight on a single-lane road.

Critical DAGs: those with criticality 2 (crit=2), that are classified as critical in two ways:

• Promoted DAGs: If no crit=1DAG meets its deadline within a time period Tcrit, then the

scheduler can promote it to crit=2 in order to provide redundancy and avoid potential

hazards in the AV operation, e.g., a path-planning operation that uses GPS to calibrate the

location of the AV while it is moving along a straight line.

• Highly-critical DAGs that represent applications of ASIL levels which can result in a clear

safety hazard (B, C, and D) would be crit=2 DAGs, e.g., forward-camera perception of

a stop sign during forward motion.

For safe AV operation, DAGs with crit=2 must be executed within specific hard deadlines

to avoid potential hazards. DAGs with crit=1 have firm deadlines, i.e., if executed within

their deadlines they could help improve the mission. Otherwise, the output of the DAG is

not useful.

5.1.2 Congestion in Environmental Conditions

The safety and resilience of AVs are of significant importance, due to the high toll they

can have on human lives and infrastructure [65, 66]. Hence, the assessment of AV systems

operating in varying dynamic scenarios is absolutely necessary [67, 68, 69]. The congestion

of an environment is determined by the temporal density of crit=2 DAGs encountered

during execution. This can be influenced by conditions like the weather, traffic and terrain.

For example, in the case of autonomous driving, the vehicle might encounter several
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crosswalks while driving from point A to point B in an urban area. In this case, the AV

passing each crosswalk could be accompanied by the arrival of a crit=2 DAG. Therefore,

the more congested the environment (e.g., more crosswalks), the higher the number of

crit=2 DAGs that the AV will have to execute. Based on the traffic experienced by an AV,

we determine three congestion scenarios; rural, semi-urban and urban, however, these can

be extended to congestion scenarios caused by any other environmental conditions.

5.1.3 Application Deadline and Speed of the AV

The speed of the AV determines the rate at which DAGs arrive at the scheduler. Each DAG

is also associated with a real-time deadline, determined by the speed of the vehicle (the

faster the AV travels, the tighter the deadline), congestion in the environment and criticality

of the application. Hence, the speed of the AV is directly proportional to the rate at which

DAGs arrive, and inversely proportional to the deadline. The maximum arrival rate at which

the AV meets 100% critical deadlines is considered equivalent to the maximum safe speed at

which the AV can operate in each congestion scenario.

5.1.4 Quality-of-Mission (QoM) Metrics

Various figures of merit can be used to measure an AV’s mission quality. In this work, we

use universal metrics that can be applied to all autonomous vehicles, similar to the ones

adopted in [70]. We choose the following QoM metrics to evaluate our scheduler for varying

congestion scenarios:

• Mission time to complete the objective of the mission, e.g., navigation time from location

A to location B, while complying with safety requirements of meeting deadlines for all

DAGs with crit=2.

• Fraction (or %) of mission completed at a given speed before missing the first crit=2

DAG deadline. For example, if the best scheduler can complete a mission safely while
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Figure 5.4: Effect of SoC heterogeneity, calculated as the coefficient of variation in PE
peak performance, on mission speedup and PE utilization of a Quality-of-Mission-aware
scheduler (“QoM-aware”) over a Quality-of-Mission agnostic (“QoM-agnostic”). We
increase heterogeneity in the system by considering varying PE configurations in the SoC.

operating at a maximum speed of S, then this metric for the scheduler being evaluated is

calculated as the % of total critical DAGs of the mission an AV running at speed S can

complete before it fails to meet the deadline of a critical task leading to a hazard.

5.1.5 Domain-Specific Systems-on-Chips

High heterogeneity in AV applications, real-time constraints, and the demand to process

multiple critical applications call for the use of highly heterogeneous systems. These SoC

platforms consist of multiple processing elements (PEs) with different performance and

efficiency characteristics; namely, CPUs, GPUs, accelerators, etc. [52, 71, 72, 73]. Het-

erogeneous SoCs accelerate the execution of a task by providing increased computational

capabilities, reduced data movement cost between PEs, and reduced need to offload compu-

tation to cloud servers (or other vehicles, in case of connected vehicle systems [74, 75]), in

addition to higher energy efficiency.

The heterogeneity in PEs (Table 5.4) results in new challenges and opportunities when

allocating on-chip resources or making task scheduling decisions. To illustrate the need

for global schedulers that are aware of the heterogeneity in an AV SoC, we compare the

quality-of-mission agnostic scheduler (“QoM-agnostic”) with the quality-of-mission aware

scheduler (“QoM-aware”), as described in Section 5, for different hardware configurations.
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Table 5.1: Real-Time and Heterogeneous Schedulers.

Prior Art Input Ranking Type,
Parameters

Hetero-
Aware

QoM-
Aware

CPATH [54]
Single

Dynamic DAG
Dynamic

Critical path length × ×

RHEFT [57]
Multiple

Static DAGs
Static, Earliest finish time,

relative laxity degree × ×

2lvl-EDF [58]
Multiple

Static DAGs
Dynamic

Earliest deadline first × ×

ADS [59]
Multiple

Static DAGs
Static, Earliest finish time,

criticality × ×

AVSched Multiple
Static DAGs

Dynamic, Deadline,
PE variation, criticality ! !

We use the coefficient of variation [76] of the PE’s peak performance as a proxy for the

heterogeneity level in the SoC. Figure 5.4 shows that as we increase heterogeneity (by

diversifying the PEs), “QoM-aware” is able to improve performance by up to 7.6× over

“QoM-agnostic”. By leveraging this heterogeneity information, “QoM-aware” is also able to

improve PE utilization by up to 2.2× over “QoM-agnostic”. The takeaway is that synergis-

tic exploitation of the underlying hardware, the application’s real-time requirements

(deadline and criticality) and dynamic runtime information can significantly improve

mission time and hardware utilization.

5.1.6 State-of-the-Art Real-Time and Heterogeneous Schedulers

The processing time of any task comprises of four components: the transfer of input data

to the PE that will execute the task (data movement time), the time required to make the

scheduling decision (scheduling decision time), the time spent while the task is waiting

to be executed on the scheduled PE (waiting time), and the time to execute the task on

the scheduled PE (execution time). In order to minimize the mission time of an AV, it

is critical to reduce all four components. While data movement and execution time are

significantly reduced with the use of heterogeneous SoCs, all four components are also

highly dependent on the scheduling algorithm. Prior schedulers developed for heterogeneous
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data-center architectures do help curtail the processing time, but are neither hetero-aware

(do not efficiently schedule tasks with high-variation in timing profile on an SoC) nor do they

optimize for stringent real-time and safety constraints. Furthermore, schedulers developed

for real-time-constrained applications are not flexible enough to provide the best QoM

metrics or efficiently utilize the underlying hardware. Table 5.1 provides a comparison of

this work with prior art and briefly discusses them here.

CPATH [54] is a scheduler that prioritizes tasks in the DAG based on a bottom-cost longest-

path approach and submits high priority tasks to fast cores and low priority tasks to slow

cores with work-stealing enabled. CPATH aims to optimize the response time of a single

DAG. When applied to a multi-DAG application with real-time constraints, it fails to meet

deadlines at higher arrival rates of DAGs. In contrast, our work targets to meet deadlines in

safety-critical multi-DAG scenarios.

RHEFT [57] schedules multiple DAGs by calculating the latest start time and sub-deadline

of each task and pre-scheduling all DAGs using a rank based on HEFT [53] and the relative

laxity degree. However, RHEFT does not consider safety constraints leading to higher

mission time. In contrast, AVSched employs efficient non-critical DAG pruning boosted by

hierarchical heterogeneous ranking to improve mission time.

2lvl-EDF schedules tasks with the earliest deadline on the earliest finish time PE, as

described in [58]. Similar to RHEFT, it neither considers safety constraints of tasks nor the

variation in the timing profile of tasks on the heterogeneous SoC with respect to deadlines.

ADS schedules ranked DAGs based on [53] and dynamically prioritizes tasks with higher

criticality levels, as described in [59]. However, ADS neither predicts when to prune non-

critical tasks, nor is hetero-aware. AVSched is able to outperform this policy by pruning

non-critical tasks, which is enabled by AVSched’s hierarchical heterogeneous ranking

optimization.

None of these prior schedulers operate efficiently on highly-heterogeneous SoCs while

optimizing for the real-time requirements of the application and improving overall AV
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mission performance. Our work targets to fill this void.

5.2 AVSched: Mission & Heterogeneity-Aware Scheduler

AVSched is a multi-level scheduler that exploits the heterogeneous nature of domain-specific

SoCs to improve QoM and PE utilization for AV applications. Specifically, AVSched

consists of two levels: Meta-Sched and Task-Sched. Meta-Sched translates the

mission and application (DAG) level information to tasks, while Task-Sched performs

the actual task-to-PE assignment and resource management. The two layers communicate

using a set of data structures: a ready queue, a completed queue and a prune list.

As depicted in Figure 5.5, when DAGs arrive for execution, Meta-Sched tracks task

dependencies, prioritizes ready tasks based on a rank, and performs non-critical task pruning.

Task-Sched receives ready tasks from Meta-Sched and updates the ranks of the tasks,

populates the prune list, assigns tasks to PEs, and sends information about completed tasks

back to Meta-Sched.

5.2.1 Meta-Sched and Task-Sched Operations

This section describes Meta-Sched and Task-Sched operation and introduces the

various scheduling features in AVSched. Some key terms are defined in Table 5.2.

Table 5.2: Description of parameters used in AVSched.

Abbreviation Parameter Description
WCET / BCET/ ACET Task’s worst/best/avg.-case execution time across all PEs
EET Task’s estimated execution time
PT Sum of all WCET of tasks in the path
CPT Sum of all WCET of tasks in the critical path

CPST
Sum of all WCET of tasks in the segment of the path
that intersects the critical path

NCPST
Sum of all WCET of tasks in the segment of the path
that does not intersect the critical path

SD / SDR / SR Task’s sub-deadline / sub-deadline ratio / slack ratio
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5.2.1.1 Dependency Tracking

Meta-Sched processes DAGs to find ready tasks. A task is determined as ready when

all its parent nodes in the DAG have completed execution, i.e., it has no incomplete depen-

dencies (incoming edges) in the DAG. Therefore, when a task completes execution on a

PE, Meta-Sched resolves edges to the child tasks and marks those with no remaining

dependencies as ready.

5.2.1.2 Task Prioritization

Each application (DAG) arriving at Meta-Sched has an associated deadline and criticality.

Moreover, these DAGs have varying structures in terms of the number of tasks, types of

tasks (execution profile) and dependencies (edges). Therefore, to make an informed task

scheduling decision (i.e., considering the real-time constraints of the DAG and mission

performance), Meta-Sched assists Task-Sched by assigning ranks to ready tasks and

ordering them. The rank encodes DAG- and mission-level information as it is determined

using the deadline of the parent DAG (the DAG to which the task belongs), criticality and

structure, and the task’s execution profile. A task’s rank is calculated as:

Rank =
Criticality

Slack
; Slack = SD − EET (5.1)

where, Criticality is the criticality of the task determined by that of the parent DAG, and

Slack is the task’s effective slack calculated by Meta-Sched as the task’s sub-deadline

(SD) minus its estimated execution time (EET ). Therefore, tasks with higher criticality

and smaller slack to their deadline are given higher priority. We explore multiple rank

assignment policies based on the way SD and EET are computed. We use the parent

DAG’s structure and the task’s execution profile to determine SD, i.e., for the path within

the parent DAG on which the task lies, we find the worst-case execution time (WCET )

of the path and of the task. The WCET of a task is the time required execute the task

61



Task-Sched

TS

Meta-Sched

Active DAGs

DAG arrival

Generate ready 
tasks

Update 
rank using 

MSstat/MSdyn

Update DAG's slack from 
completed task info

Determine 
PE 

assignment

PE busyNo

Assign 
to PE

Prune DAGYes

No

Prune taskYes

No

Task 
completion, 
addition to 

CompletedQ

Ordered 
ReadyQ

Assign rank and 
insert into ReadyQ

MSstat
1.  Obtain SDRtask, DeadlineDAG 
     from DAG info
2.  SDtask = SDRtask x DeadlineDAG
3.  Apply Hybrid Ranking

MSdyn
1.  Obtain SRtask, SlackDAG from 
     DAG info
2.  SDtask = SRtask x SlackDAG
3.  Apply Hybrid Ranking

Crit 
task

Yes

Crit task
in system

No

No

Yes

Wait

Change 
assignment 
to slow PE

Add to 
Prune 
List

1.  Get estimated    
     completion 
     time of tasks 
     ahead in queue

2.  Get finish time 
     of busy PEs

3.  Calculate finish 
     time of task on 
     all eligible PEs 

4.  Assign task to 
     PE with fastest 
     finish time

Yes

Figure 5.5: AVSched operations showing Meta-Sched (mission & DAG processor) and
Task-Sched (task scheduler & hardware manager), and their synchronization using the
ready and completed queues, and prune list.

on the slowest PE. Therefore, by using WCET to calculate SD, AVSched allows for the

tasks to be scheduled on any available PE in the system, whereas using average or best-case

execution time (BCET ) can bias the scheduler’s decision towards faster PEs. Depending

on the way SD is calculated, AVSched policies are classified into MSstatic and MSdynamic.

MSstatic: In the MSstatic policy, we determine SD as a weighted ratio of the DAG’s

deadline (DeadlineDAG). This weighted ratio, called the task’s sub-deadline ratio (SDR),

is calculated as the task’s WCET relative to its path’s execution time. Since each DAG and

timing profile of the tasks in it are statically known, SDRs can be calculated offline and
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stored along with the timing profile of the DAG. For a given DAG, the path time (PT ) is

calculated as the sum of the WCET s of the tasks in that path. The critical path time (CPT )

is the one with the largest PT . A task’s SDR and SD calculation are based on the path of

the DAG on which it lies:

• If the task lies on the critical path or on a path that does not intersect with the critical path,

SDR is calculated as the ratio of the WCET of the task to the path time PT :

SDR =
WCET

PT
; SD = SDR×DeadlineDAG (5.2)

• If the task lies on a path which intersects with the critical path, then the path is divided into

two segments, the critical path segment (taking a critical-path segment time, CPST ) and

the non-critical path segment (with non-critical-path segment time, NCPST ). For tasks

on the NCPS, we first calculate the deadline allocated to the NCPS, DeadlineNCPS ,

as the DeadlineDAG minus DeadlineCPS . Using Equation 5.2,

DeadlineCPS =
CPST

CPT
×DeadlineDAG (5.3)

DeadlineNCPS = DeadlineDAG −DeadlineCPS (5.4)

For tasks on the NCPS, SDR and SD are calculated similarly, using a path time of

NCPST and deadline of DeadlineNCPS as:

SDR =
WCET

NCPST
; SD = SDR×DeadlineNCPS (5.5)

If a given task’s sub-deadline SD can be calculated using several of the above methods,

we pessimistically assign it the smallest of the computed SD values. To illustrate with an

example, Figure 5.6 shows a small, 7-task DAG. Let path P0, the path consisting of tasks 0,

63



Task 0 1 2 3 4 5 6

CPU 500 200 300 100 400 100 200

GPU 100 40 100 - 100 50 50

Accel 20 10 - 10 50 5 -

1

34

56

0

2

Figure 5.6: Left: A 7-task DAG containing three paths: P0, P1 and P2. P0 contains tasks 0,
2, 4 and 6; P1 contains tasks 1, 4 and 6; and P2 contains tasks 1, 3 and 5. Right: Timing
profile for each task on three types of PEs: CPU, GPU and an accelerator. Using the timing
profile, we determine that P0 is the critical path, P1 intersects the critical path, and P2 is
independent of it.

2, 4 and 6 be the critical path. P1 contains tasks 1, 4 and 6 and P2 is composed of tasks 1, 3

and 5. While P1 intersects the critical path, P2 does not. Therefore, SDs for tasks on P0

and P2, are calculated using Equation 5.2. Since the SD for task 1 on the NCPS of P1, SD

can also be calculated using Equation 5.5, we assign it the lower value of the two.

MSdynamic: In this policy, we assign the task’s sub-deadline based on a dynamic metric

of the DAG. Specifically, SD is calculated using the DAG’s available slack (SlackDAG):

the deadline remaining for a DAG during execution, when that ready task’s rank is being

calculated, as opposed to MSstatic that uses a static distribution of the DAG’s deadline to

calculate the task’s SD. Therefore, MSdynamic accounts for tasks in the DAG that might

have exceeded their sub-deadlines. MSdynamic adjusts the SD of ready tasks based on the

available slack of the DAG by calculating a task’s WCET relative to the execution time of

tasks remaining in the task’s path:

SR =
WCET∑
WCETi

; SD = SR× SlackDAG. (5.6)

where, SR is the task’s slack ratio and WCETi is the WCET of each remaining task i

that lies on the same path as the task, including the task itself. If a task lies on multiple

paths, then lowest SR calculated across all paths is selected. For the DAG in Figure 5.6, we
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Algorithm 1: Heterogeneous Ranking
1 foreach task in ReadyQ do
2 max slack = SD −BCET
3 min slack = SD −WCET
4 if min slack >= 0 then
5 eff slack = min slack
6 else if max slack >= 0 then
7 eff slack = max slack
8 else
9 eff slack = 1/max slack

10 end
11 end
12 task.rank = criticality/eff slack
13 sort readyQ based on task.rank

calculate SD and SR of the tasks using Equation 5.6. Since task 1 lies on two paths, P1 and

P2, its SR is calculated twice, and we choose it to be smaller of the two.

Heterogeneous Ranking: Most prior schedulers either use the WCET or the average-case

execution time (ACET ) to compute EET . However, due to the large variation in execution

time of a task across different PEs, we instead introduce a heterogeneous rank (abbreviated

as hetero-rank) that dynamically chooses EET to be either WCET or BCET , based on

the deadline and execution time of the task. This allows us to prioritize tasks closer to

their deadlines based on the underlying hardware characteristics. It also allows to prioritize

tasks that have just missed their deadline (smaller negative slack) over a task that missed its

deadline long ago (large negative slack). The precise algorithm is presented in Algorithm 1.

Hierarchical Ranking: In order to differentiate between tasks with different criticalities and

execution patterns across the different hetero-rankings, we introduce a hierarchical ranking

scheme (denoted as rank type) and describe it in Algorithm 2. Note that for a critical task

that has negative slack, we set its rank type to the maximum (5). For a non-critical task

in the same scenario, we set its rank type to the minimum (0). This allows AVSched to

prioritize critical tasks on fast PEs and execute non-critical ones on slower PEs, with the goal

of improving overall mission performance while respecting safety constraints. Similarly,

critical tasks with smaller slacks are prioritized over critical tasks with larger slacks and

vice-versa for non-critical tasks, so that fast PEs are not expended to meet non-critical task
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Algorithm 2: Hierarchical Heterogeneous Ranking
1 foreach task in ReadyQ do
2 max slack = SD −BCET
3 min slack = SD −WCET
4 if task.crit = 2 then
5 if min slack >= 0 then
6 eff slack = min slack; task.rank type = 3
7 else if max slack >= 0 then
8 eff slack = max slack; task.rank type = 4
9 else

10 eff slack = 1/max slack; task.rank type = 5
11 end
12 else
13 if min slack >= 0 then
14 eff slack = min slack; task.rank type = 2
15 else if max slack >= 0 then
16 eff slack = max slack; task.rank type = 1
17 else
18 eff slack = 1/max slack; task.rank type = 0
19 end
20 end
21 end
22 task.rank = criticality/eff slack
23 sort readyQ based on task.rank type and task.rank

deadlines in the presence of critical tasks. Based on these rank assignments, Meta-Sched

orders ready tasks into the ready queue.

5.2.1.3 Rank Update

Task-Sched receives ordered ready tasks from Meta-Sched. Before the task assign-

ment, the ranks of the tasks waiting in the ready queue are updated to subtract the time

elapsed since previous update from the current effective slack (Slack). The tasks are then

re-ordered according to the updated ranks. Updating the ready tasks’ ranks can also help in

finding non-critical tasks that might not meet their deadline, which can then be considered

candidates for pruning, reducing the overall system task traffic. Task-Sched passes these

tasks to Meta-Sched for potentially pruning their parent DAGs using the prune list.
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5.2.1.4 Task Assignment

Task-Sched uses a task assignment policy to assign ordered ready tasks in the ready

queue to eligible PEs (i.e., PEs that can execute the task). Furthermore, once a task completes

execution, it is pushed into the completed queue along with information about the PE on

which it was executed and the timestamp at which it completed execution. In this work, we

introduce a non-blocking task assignment policy, called TS,

that schedules a task in the ready queue to the PE that will result in the earliest estimated

finish time for the task, factoring in the execution time of the task, current busy status of the

PE and all tasks ahead of this task in the ready queue that are potentially scheduled to the

same PE as shown in Figure 5.5. TS chooses the task to be scheduled using a non-blocking

task assignment policy within a window of size w, thus searching w tasks past the head of the

queue that could potentially be waiting for the earliest estimated finish time PE to become

available. TS is also aware of the timing profile and criticality of each task. Therefore, if the

task is non-critical and critical tasks are present in the system, TS can effectively improve

utilization by scheduling this task on available slow PEs (Figure 5.5).

5.2.1.5 Completed Task Information

Once a task completes execution, Task-Sched pushes it into the completed queue along

with information about the PE on which it was executed and the timestamp at which it

completed execution. This information is used by Meta-Sched for dependency tracking

and to obtain the data movement cost of children tasks.

5.2.1.6 Deadline Tracking and Task Pruning

Meta-Sched can elect to prune DAGs, i.e., not execute them at all/any further, thus

eliminating non-critical tasks that will not meet their deadlines in order to reduce traffic

in the system. After the execution of each task, when Meta-Sched searches the existing

DAGs for ready tasks, it also calculates the estimated slack available for each DAG, assuming
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that ready tasks can execute at their best-case execution time (BCET ). If the estimated slack

available is negative and the DAG has crit=1, the entire DAG is pruned. Meta-Sched

also prunes DAGs based on the tasks in the prune list, identified during the rank update

process. Note that in Algorithm 2, Meta-Sched prunes DAGs that have rank type 0 or 1,

only if there are critical DAGs in the system.

5.2.2 Summary of Cumulative AVSched Features

In summary, AVSched introduces the following scheduling policies and optimizations.

5.2.2.1 Task-Sched policy, TS

A non-blocking scheduler, that schedules ready tasks to the PE with the fastest projected

finish time. TS also schedules non-critical tasks to the slowest PEs, if critical tasks are

present in the system.

5.2.2.2 Two-level scheduling policies

With pruning of non-critical tasks estimated to miss their deadlines. These scheduling

policies prioritize ready tasks based on their rank, calculated using the criticality, sub-

deadline and estimated execution time of the task, and use TS for their Task-Sched.

MSstatic determines the sub-deadline of a task statically from the parent DAG’s deadline.

MSstatic performs best when the deadlines of DAGs are significantly large, i.e., when DAGs

complete execution with large remaining slack and all tasks complete within their assigned

sub-deadlines.

MSdynamic uses the task’s parent DAG’s available slack, computed during execution, to

dynamically calculate the sub-deadline of the task. Due to this ability to adapt to changes

in execution time of tasks, including missing task deadlines, MSdynamic performs best for

stringent DAG deadlines.
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5.2.2.3 Scheduling optimizations for MSstatic and MSdynamic

: Heterogeneous ranking accounts for the variation in execution time of a task on the

heterogeneous SoC using dynamic calculation of the rank via Algorithm 1.

Hierarchical ranking uses the criticality of the tasks along with hetero-ranking to improve

overall mission performance by incorporating the state of the system.

Rank update revises the task ranks to incorporate time waiting in the ready queue or when

critical tasks are encountered. This feature also identifies non-critical tasks that will not

meet their deadlines and should be pruned.

5.3 Experimental Methodology

5.3.1 Hardware Description

To evaluate AVSched, we first profile (offline) a set of AV kernels on an NVIDIA Jetson TX1

board, which is representative of an SoC used in real-world AV systems. This information

is then used to simulate a heterogeneous SoC with multiple PEs. We assume that the

simulated SoC has variants of the Arm Cortex-A57 CPU and the NVIDIA Maxwell GPUs

with 256 CUDA cores, and fixed-function accelerators for certain tasks. We consider three

systems, named SysA, SysB and SysC , the hardware descriptions of which are shown in

Table 5.3. Note that SysC is composed of hypothetical PEs and is only used to demonstrate

the benefit of AVSched with highly-heterogeneous systems. We consider a unified memory

(shared physical address space) between the PEs in the simulated SoC, since we profiled

the applications the TX1 that has unified memory between the CPUs and GPUs; AVSched,

however, is not limited to this specific choice.
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Table 5.3: System Description of SoC for Workload Evaluation.

Workload System Description

Synthetic SysA

8 single-core Arm Cortex-A57 CPUs
2 NVIDIA Maxwell GPUs
1 CNN/FFT accelerator [77, 78]

SysB

8 single-core Arm Cortex-A57 CPUs
2 NVIDIA Maxwell GPU
1 tracking accelerator [62]
1 localization accelerator [62]
1 detection accelerator [62]

Real-World

SysC

4 single-core Arm Cortex-A57 CPUs
4 single-core 25% faster CPUs (hypothetical)
1 NVIDIA Maxwell GPU
1 2× faster GPU (hypothetical)
1 tracking accelerator [62]
1 localization accelerator [62]
1 detection accelerator [62]

5.3.2 Application Task Profile

5.3.2.1 Synthetic Application Tasks

Our synthetic applications are comprised of three types of tasks: 2D Fast Fourier Transform

(fft), 2D convolution (conv) and Viterbi decoding (decoder), taken from the Mini-ERA

benchmark suite [79], which simulates a simplified AV with minimal environmental con-

ditions. These tasks are representative of common AV applications, such as radar/LIDAR

processing, vision/image processing and radio communication kernels. For fft, we use the

FFTW3 [80] implementation for the CPU and cuFFT for the GPU. For conv, we use the Arm

Compute Library implementation [81] powered by Neon SIMD extensions for the CPU, and

cuDNN 5.1 for the GPU. We also obtain timing profiles of fft and conv for the accelerator

designs from [77, 78]. Finally, for decoder, we use the GNURadio Viterbi function for the

CPU [79] and a PyCUDA accelerated implementation [82] on the GPU.

5.3.2.2 Real-World Application Tasks

We consider two real-world AV benchmarks; ADSuite and MAVBench.
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ADSuite [62] provides an autonomous driving application comprised of kernels like object

detection (DET), object tracking (TRA), localization (LOC), mission planning and motion

planning. For DET, we use YOLOv3 [83], a DNN-based detection algorithm, on a series

of 7 images derived from the VOC dataset [84]. We use the Tiny-YOLOv3 pre-trained

set of weights, which is much faster and lightweight, but less accurate compared to the

regular YOLO model. For TRA, we use GOTURN [85], a DNN-based single object tracking

algorithm, on a series of 14 videos in the ALOV++ dataset [86]. For LOC, we use ORB-

SLAM [87], a highly-ranked vehicle localization algorithm, on 3 sequences from the KITTI

datasets [88]. Further, for our GPU evaluation, we adopt the ORB-SLAM implementation

in [89], where the hot paths are rewritten using CUDA. We also obtain timing profile of

DET, TRA and LOC on their respective accelerators from [62]. For motion and mission

planning, we use the op local planner and op global planner [90] kernels in

Autoware [91]. The fusion kernel combines the coordinates of the objects being tracked

with the AV location. It has a small latency, for which we only consider CPU execution.

MAVBench [70] provides a set of computational kernels that form the building blocks

of many aerial vehicle applications. For some of the kernels, we use different algorithms

than the ones in [70], to better exploit the heterogeneity in our hardware. Specifically, for

the perception, tracking and localization kernels, we reuse our ADSuite implementations.

For occupancy map generation, we use OctoMap [92] and GPU-Voxels [93] for the CPU

and GPU implementations, respectively. OctoMap performs 3D occupancy grid mapping,

and GPU-Voxels is a CUDA-based library for robotics planning and monitoring tasks. We

generate a map composed of 200×200×200 voxels. Point cloud generation and collision

check consume O(10)-O(1000)× lower latency in comparison to other kernels (Table

I in [70]), and so we only employ CPU implementations for these. For the shortest-

path planners, we use the CPU-based parallel RRT (pRRT) [94] implementation in the

Open Motion Planning Library (OMPL) [95], on the “Cubicle” benchmark. For the GPU

implementation, we use a Poisson-disk samples-based GPU algorithm [96]. For frontier
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exploration, we use the RRT ROS package that implements a multi-robot RRT-based map

exploration algorithm [97], on the “single simulated house” scenario. Finally, we consider

only CPU execution for path tracking as it has a low latency.

We consider two applications from MAVBench in this work, namely Package Delivery,

where an aerial AV navigates through an obstacle-filled environment to reach its destination,

deliver a package and return to its origin, and 3D Mapping, that instructs the aerial AV to

build a 3D map of an unknown polygonal environment specified by its boundaries.

5.3.2.3 Data Movement Cost

In order to build a realistic input model to evaluate AVSched, we profiled the data movement

time across each pair of PE types in the system. We consider the cost for data movement

within a PE to be zero, i.e., if two dependent tasks execute on the same PE, there is no

additional data movement overhead. The data movement cost is characterized for CPU cores

that have private L1 caches. Data movement between a CPU core and a GPU is assumed to

be equivalent to the time to flush the parent tasks’ output from the CPU’s caches into main

memory, thereby allowing the GPU to directly load the input data of the child task from

the same memory location, since the CPU and GPU share the same physical address space.

The data movement cost from a GPU to a different PE is encapsulated in the timing profile

of the task on the GPU. For an accelerator, we consider the data movement cost from/to

the accelerator to be the direct-memory access (DMA) transfer cost since many accelerator

designs have their own local memory. We derived empirical data movement cost for the

CPU and GPU by profiling the TX1 board, and use DMA transfer rates from published

specifications [98] for the accelerators.

In profiling the data movement time, we consider the cost for data movement within a PE

to be zero — i.e., if two dependent tasks execute on the same PE, there is no additional data

movement overhead. The data movement cost between CPU cores is assumed equivalent to

flushing the parent task’s dirty data from the private L1 caches. Data movement between
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a CPU core and a GPU would be the time equivalent to moving the parent task’s output

from the CPU’s caches into main memory, allowing the GPU to directly load from the same

location for the input data of the child task. We pessimistically evaluate these to be the time

to flush the CPU’s data caches. Furthermore, since many accelerator designs have their

own local memory, we consider the data movement cost from/to an accelerator to have an

additional direct-memory access (DMA) transfer cost. Thus, if a child task C, scheduled to

run on accelerator, has parent tasks A and B running on a CPU core and on an accelerator,

respectively, the net data movement cost is:

timecf,A + timeDMA,A + 2 · timeDMA,B (5.7)

where timecf,A is the cache-flush time for A from CPU to main memory, timeDMA,A is the

time to DMA A’s output data from main memory to the accelerator, and timeDMA,B is the

time to DMA B’s output data from the GPU to main memory (assumed equal to the time to

DMA from main memory to the accelerator). We derived empirical data for the CPU and

GPU by profiling the TX1 board and use data from the AXI specification [98] to compute

the communication cost for accelerators using a simple model.

5.3.2.4 Resource Contention

The execution of a task on a given PE in a realistic SoC is naturally impacted by the volume

of parallel tasks executing across the PEs, i.e., the contention that the given PE faces due to

resources shared with other PEs in the system, such as conflicts at the interconnect network,

reduced effective cache capacity if there is no data sharing, etc. We used gem5 [99] to

simulate a system with N + 1 PEs, in order to model the contention due to N PEs. The

cache hierarchy and memory are modeled after the TX1 SoC. We constructed an analytical

model of the contention cost across the problem sizes used in the evaluated applications,

which we used while simulating the benchmarks on AVSched.
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Figure 5.7: Incremental improvement in mission time and PE utilization on SysA of (a)
1-level task scheduler TS over TS-greedy (b) 2-level task schedulers with ranking (MSx)
over TS, (c) hetero-ranking enabled MSx over MSx, (d) hier/hetero-ranking enabled MSx
over hetero-ranked MSx, (e) update, hier/hetero-ranking enabled MSx over hier/hetero-
ranked MSx. Note that MS1 is MSstatic and MS2 is MSdynamic

5.3.3 Energy and Power Model

Power/Energy Estimations. We profiled the average power consumption of each task

by measuring the power consumed on the VDD rails of the CPU and GPU of the TX1

board. For the accelerators, we use the estimated power values reported in the prior work

(Section 5.3.1). To compute the end-to-end energy of the SoC with AVSched, we sum the

energy consumed by each task on a PE.

Dynamic Voltage-Frequency Scaling (DVFS). We apply DVFS techniques, similar to

those in [100, 101], on the PEs to recuperate low utilization using a fraction of the available

slack considering each task’s sub-deadline, which is dependent on the scheduling policy –

MSstatic or MSdynamic (Section 5.2.1). Prior to a task being scheduled onto a PE, the target

clock frequency is selected based on: (i) the estimated slack, (ii) the current clock frequency,

and (iii) a factor fslack that defines the fraction of slack to be recuperated. Note that naı̈vely

applying DVFS on the full estimated slack (fslack=1) may lead to deadline violations and

consequently failure of the mission — e.g., if a task Ti, running on a GPU, is slowed down
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too much, a critical task Ti+1, that was formerly waiting on this GPU, could be scheduled

onto a slower core. For the purposes of this work, we pessimistically apply a static value

for fslack across all DAGs and tasks in a DAG. In the real world, DVFS governors can be

integrated within the scheduler to dynamically select fslack per task based on the current PE

utilization.

We enable DVFS only for the CPU and GPUs, since we observed that DVFS for even

small values of fslack on accelerators leads to low energy savings and mission failures. We

use voltage (VDD) and clock frequency (f ) points from the embedded DVFS tables in the

TX1 to obtain scaling factors for the PE voltage and clock. We further assume in our

evaluation that the execution time of a task scales linearly with the PE’s operating frequency.

Finally, we assume the power to scale as V 2.5
DD for estimations of energy savings using

DVFS [102].

5.3.4 Trace generation

5.3.4.1 Synthetic DAG Traces

To evaluate the generality of AVSched, we generate synthetic traces of DAGs arriving at

the scheduler that represent applications executed by AVs for varying congestion scenarios.

Each entry of the trace consists of the arrival time, type, criticality and deadline of the DAG.

The type of DAG is determined by the composition of the tasks and dependencies

between them. We generate different types of DAGs consisting of 5 to 10 tasks of three

types of tasks (fft, conv and decoder). A DAG can have a criticality level of 1 or 2, and

the fraction of crit=2 DAGs in the trace reflects the congestion in the environment. Each

DAG’s deadline is set as the critical path time (CPT ). We generate 1,000 DAG traces for

the three congestion scenarios (urban, semi-urban and rural) with crit=2 DAG fractions

of 50%, 20%, and 10% for urban, semi-urban and rural, respectively. We then evaluate these

traces at varying DAG arrival rates (AV speeds) to determine the best QoM metrics.
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Table 5.4: Timing and power profile of evaluated kernels on each PE-type.

Suite Task Type Execution Time Power (mW)
CPU GPU ASIC CPU GPU ASIC

Mini-ERA
2D Convolution 583∗ 349∗ 180∗ 634 2225 445
Viterbi Decoder 1021∗ 20∗ - 864 1228 -
2D FFT 3193∗ 97∗ 4∗ 1036 6364 4

ADSuite /
MAVBench

Object Detection 3531† 156† 96† 3654 467 28
Object Tracking 1825† 17† 2† 5600 12790 590
Localization 165† 95† 10† 6133 4457 22
Mission Planning 0001† - - 3534 - -
Motion Planning 0008† - - 4222 - -

ADSuite Fusion 0.1† - - 505 - -

MAVBench

Occupancy Map Gen
+ Point Cloud Gen 976† 761† - 2995 3533 -

Shortest Path Planner 1005† 379† - 3302 3533 -
Collision Check 1† - - 500 - -
Path Tracking 1† - - 501
Frontier Exploration 397† - - 5980 - -

*in micro-seconds †in milli-seconds

5.3.4.2 Real-World Application Traces

ADSuite and MAVBench have kernel components that make up the end-to-end applications’

control flow graphs (CFGs). To generate DAGs, we took the CFGs of both ADSuite and

MAVBench and studied scenarios that can lead to the execution of different sets of kernels.

Such scenarios can arise from the vehicle changing route and leading to the execution of

the mission planning kernels, and so on. Using the set of kernels executed in the CFG

for a particular scenario, we generated DAGs with varying deadlines and criticalities. For

ADSuite as described in [62], we set the deadline of each critical path task to be 100 ms. As

no such information is provided for the MAVBench applications, each DAG’s deadline is

set as the CPT . We again generate 1,000 DAG traces and choose the same crit=2 DAG

fractions for urban, semi-urban, rural scenarios.
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5.3.5 Simulation Platform

To explore multiple AV workloads and flexible SoC configurations that are not offered by a

fixed real-world system, AVSched is implemented on the STOMP open-source scheduler

evaluation platform [103]. STOMP is a queue-based discrete-event simulator used for early-

stage evaluation of task scheduling mechanisms in heterogeneous platforms. To evaluate our

DAG-based schedulers, we augmented STOMP to accept DAG-based inputs, while using

the underlying queue-based simulator to schedule ready tasks. We also added real-time

parameters, such as deadlines and safety criticalities. We realistically model the simulated

SoC by providing STOMP with the power and timing profile of tasks obtained from the

Jetson TX1 platform (Table 5.4). STOMP also provides the flexibility to add a deviation to

the execution time to account for contention on shared resources like memory and buses,

which we added as described in Section 5.3.2.4.

5.4 Evaluation

In this section, we evaluate AVSched for both synthetic and real-world application traces

derived from the AV benchmark suites: Mini-ERA [79], ADSuite [62] and MAVBench [70].

We also incrementally evaluate the features of AVSched and compare against state-of-the-art

schedulers, namely 2lvl-EDF [58], CPATH [54], RHEFT [57] and ADS [59] in terms of the

QoM metrics (Section 5.1.4) and overall PE utilization.

5.4.1 Offline Profiling

The offline timing profiles generated for key kernels of both the synthetic and real-world

applications for representative input data sizes are shown in Table 5.4.
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5.4.2 Single-Level Task Scheduler Evaluation

Using the synthetic traces and offline timing profile, we first evaluate for varying en-

vironmental conditions our task scheduler, TS, against a commonly used greedy non-

blocking task scheduler that assigns tasks to the next available PE with least execution time,

TS-greedy [104]. The QoM results for these schedulers are shown in Figure 5.7(a). We

see that for all congestion levels, TS achieves 7.8% better mission time over TS-greedy.

Although TS-greedy has better utilization due to the greedy algorithm, TS’s improved

mission performance along with its ability to improve utilization when combined with the

rank update optimization of AVSched. We thus consider TS as our Task-Sched policy

for AVSched.

5.4.3 AVSched Optimizations

AVSched introduces two-level schedulers, MSstatic and MSdynamic along with multiple

optimizations, with the use of Meta-Sched. We evaluate MSstatic and MSdynamic with

these optimizations (hetero-rank ordering, hierarchical ranking and rank update) incremen-

tally to analyze the benefits from each, under varying congestion levels. These features are

evaluated with the DAG pruning optimization, i.e., AVSched prunes non-critical DAGs that

are unlikely to meet deadlines to reduce task traffic.

5.4.3.1 Two-level schedulers

Mission time improvement of the two types of two-level scheduling policies (MSstatic and

MSdynamic along with the pruning optimization) over TS for different environments is

shown in Figure 5.7(b). MSstatic and MSdynamic achieve speedups of up to 2.5× and 2.6×

over TS, respectively.
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5.4.3.2 Hetero- and Hierarchical Ranking

Employing hetero-ranking for MSstatic and MSdynamic can help achieve a further reduction

in mission time by up to 1.2× for both, as shown in Figure 5.7(c). Applying the hierarchical

ranking feature over and above the hetero-ranking helps to improve mission performance by

up to 1.4× and 2.1× for MSstatic and MSdynamic, respectively, as shown in Figure 5.7(d).

These optimizations have negligible effect on utilization as they all use TS without load-

balancing of non-critical tasks to slow PEs as the underlying task scheduler.

5.4.3.3 Rank Update and Load Balancing

AVSched enables a rank update optimization before a task is assigned to a PE to help

improve the scheduling decision for tasks that have been waiting in the ready queue and

whose deadlines are approaching. Figure 5.7(e) shows the benefits of additionally using the

rank update feature over the two-level schedulers MSstatic and MSdynamic with hierarchical

ranking. Mission time is improved by 1.6× and 1.5×, respectively. Since both MSstatic and

MSdynamic are dependent on the sub-deadline of the task, updating the ranks help prioritize

tasks that have been waiting in the ready queue while their deadlines approach. Moreover,

TS’s ability to balance slow PE utilization with non-critical tasks helps improve utilization

by 2.3× and 2.1× for MSstatic and MSdynamic, respectively.

5.4.4 Scheduler Evaluation for Real-World Applications

For each of the real-world applications, we compare AVSched against prior baseline sched-

ulers (CPATH, RHEFT, 2lvl-EDF and ADS) in terms of QoM metrics and PE utilization.

5.4.4.1 QoM Metrics Comparison

For ADSuite (Figure 5.8(a)), AVSched with MSstatic achieves 1.8-10.1×, improvement

in mission time for SysB, and 1.9-7.1× improvement in mission time for SysC , over the
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Figure 5.8: Comparison of mission performance and PE utilization of AVSched against
prior-work schedulers for (a) ADSuite, (b) 3D Mapping, and (c) Package Delivery. Left:
SysB. Right: SysC .

baseline schedulers. In terms of % mission completed, for SysB (not shown), the state-of-

the-art schedulers complete just 38%, 5% and 7% of the mission at the maximum safe speed

of AVSched for the rural, semi-urban and urban scenarios, respectively, before missing the

deadline for a critical DAG. Furthermore, AVSched can achieve 1.7-4.2× and 1.4-2.8×

better PE utilization over the baselines for SysB and SysC , respectively.

AVSched with MSdynamic achieves up to 1.9-5.8× improvement in mission time for

SysB, and 2.0-12.7× improvement in mission time for SysC , over the state-of-the art

schedulers, for 3D Mapping as shown in Figure 5.8(b). For the mission completed metric for
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SysB , at the maximum safe speed achieved by AVSched, ADS and 2lvl-EDF are each able

to complete a maximum of 9% of the mission. Moreover, in terms of utilization, AVSched

achieves up to 1.7× and 2.8× better PE utilization for SysB and SysC , respectively. This

improvement is lower than that for ADSuite, because 3D Mapping has a high CPU utilization

and low accelerator and GPU utilization, since many tasks execute only on the CPU.

The mission time for Package Delivery is shown in Figure 5.8(c). AVSched with

MSdynamic achieves 2.0-6.6× improvement in mission time for SysB, and up to 2.1-24.6

improvement in mission time for SysC , over the baseline schedulers. In terms of mission

completion (not shown), ADS achieves a maximum of 38% mission at the maximum safe

speed of AVSched for SysB . AVSched achieves up to 3.2× better average PE utilization for

SysB.

Note that many of the tasks executed in 3D Mapping and Package Delivery only have

CPU implementations (Table 5.4). As developers produce heterogeneous versions of these

tasks, we expect AVSched to exhibit higher improvements in terms of QoM metrics and

PE utilization over the baseline schedulers. Moreover, AVSched with MSdynamic performs

significantly better for ADSuite in comparison to the baseline schedulers, as the deadlines

for this application are more stringent (∼400 ms) in comparison to MAVBench (∼2000 ms).

5.4.4.2 Scheduler Overhead

We also evaluated the overhead of AVSched, i.e., the time spent for dependency tracking,

meta information update, task prioritization and task assignment, running on the host Arm

processor on the TX1. We observed this overhead to be no more than 19% and 6% of the

total mission time for ADSuite and MAVBench, respectively.

5.4.4.3 Energy and Available Slack

As discussed in Section 5.3.3, we adopt a scheme that dynamically recuperates a fraction

(fslack) of the slack savings enabled by AVSched on a per-task basis (Section 5.3.3). Fig-
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Figure 5.9: Top. Slack, energy savings and mission overhead for AVSched with DVFS
enabled across the three applications. Bottom. Per-PE utilization for each application.
Results are shown for the rural congestion. The execution run corresponding to the fslack

value with best energy savings is reported here. Note that the utilization values for two
accelerators (DET and TRA) are zero because the latter two applications do not have any
tasks that use these PEs.

ure 5.9 (top) shows that our DVFS policy allows AVSched to achieve energy savings of

36%, 22% and 8% for ADSuite, 3D Mapping and Package Delivery, respectively, while

increasing the mission time by just 0.4-1.3%. Note that this is at the maximum safe speed

of the AV. At 85% of the AV’s maximum safe speed, we observe energy savings of up to

46.6% (average PE utilization improvement of up to 18.9%) (not shown).

We also show the per-PE utilization with and without DVFS in Figure 5.9 (bottom), for

each of the three applications. Much of the overall energy savings comes from DVFS on the

CPU cores since the CPU is typically the slowest and consumes the most power (Table 5.4).

DVFS improves the utilization of CPUs by 4% on average for ADSuite, yielding the highest

energy savings among the applications. DVFS may also reduce the utilization of a subset of

the slower cores whenever there are changes to the schedule such that tasks that previously

were executed on these PEs now migrate to a faster PE. We observe this in the context of
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Package Delivery and Mapping, where migration of tasks from CPU to GPU contributes to

reduced utilization for the slower CPUs, and yet lowers the overall energy consumption.

5.4.4.4 SoC Design Optimization

As described in the Introduction of Chapter 5, having a scheduler-in-the-loop enables design

space exploration to determine the best architectural configuration and level-of-heterogeneity

for a given AV application. We used AVSched to determine the best SoC configuration

that optimizes upon mission time, energy consumption and PE utilization when executing

the three AV applications evaluated in this work. We explore a set of design points in

Figure 5.10 and pick the best SoC configuration as the one with the minimum energy–

mission time product and smallest number of PEs (best PE utilization). Across ADSuite, 3D

Mapping and Package Delivery, the best SoC configurations are (8, 1, 1, 2, 2), (0, 0, 2, 4, 8)

and (0, 0, 2, 4, 8), respectively, where (A,B,C,D,E) denotes A detection accelerators, B

tracking accelerators, C localization accelerators, D GPUs and E CPU cores.

5.5 Related Work

Autonomous vehicles pose the challenge to execute highly heterogeneous applications within

stringent real-time and safety constraints. Prior work proposes the use of heterogeneous

SoCs to help meet the performance constraints of individual tasks within the heterogeneous

applications [52, 62]. However, during runtime, multiple critical applications and tasks are

required to be executed simultaneously within their deadlines [105].

A plethora of work exists on scheduling algorithms for heterogeneous systems. Much of

the prominent schedulers focus on optimizing the makespan, i.e., execution time of a single

DAG [53, 54, 106]. Tong et al. use Q-learning along with heterogeneous earliest finish time

(HEFT) algorithm from [53] to reduce the makespan of a DAG [107]. Shetti et al. propose

HEFT-NC [108] to optimize ranking and task selection of HEFT [53] by considering global
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Figure 5.10: Normalized product of energy, mission time for varying SoC configurations
for ADSuite, 3D Mapping and Package Delivery using AVSched in an urban scenario. We
evaluate AVSched on SoC configurations that have varying CPU core count, GPU count,
detection accel. count (for ADSuite – other PE types are at one count) and localization accel.
count (for 3D Mapping and Package Delivery – other PE types are at zero count) to achieve
the SoC configuration with the best energy and mission time (denoted in green).

and local processor information. However, as these schedulers are not optimized for the

real-time requirements of the AVs and are not built for multiple DAG execution, they would

need to be operated on AVs running at very low speeds to meet deadlines for all the critical

DAGs of the mission.

To schedule for a multi-DAG scenario on heterogeneous systems, Xu et al. develop

the reverse HEFT scheduling algorithm [57]. However, this algorithm is not feasible for

dynamic systems as it requires a priori knowledge of arrival times of all DAGs. Real-time

schedulers like earliest deadline first (EDF) and deadline monotonic (DM) cater to the

needs of a real-time system where all tasks have a fixed priority, and the criticality of

tasks is not considered [105]. However, AVs are categorized as cyber-physical systems

and require schedulers that can schedule for mixed criticalities and multiple DAGs [109].

In this regard, Xie et al. [59] propose two dynamic schedulers; fairness-based dynamic
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scheduler (FDS MIMF) and an adaptive dynamic scheduler (ADS MIMF), to optimize

the makespan of the DAGs and to achieve low deadline miss ratio (DMR) by considering

safety and criticality of the system values for high-criticality DAGs, respectively. Wu and

Ryu [58], present the best speed fit EDF scheduler that prioritizes tasks according to the

earliest deadline and assigns the task to the best possible PE while considering the execution

profile of the task, similar to the 2lvl-EDF implementation in this work. However, none of

these work consider that meeting real-time deadlines does not translate to safe completion

of mission at the least mission time, i.e., while operating the AV at the maximum safe speed.

Moreover, use of HEFT-like algorithms for task scheduling on a highly heterogeneous SoC

leads to low utilization in slow PEs. AVSched caters to both the requirements of an AV i.e.,

to meet real-time deadlines for critical DAGs and reduce overall mission time.

5.6 Conclusion

Heterogeneous SoCs for autonomous vehicles (AVs), while necessary to meet stringent per-

formance and safety constraints, pose challenges for traditional task scheduling approaches.

In this chapter, we presented AVSched, a multi-level scheduler that exploits the highly

heterogeneous nature of the underlying SoC in conjunction with the characteristics of an

AV application. AVSched’s goal is to improve a global objective function, exemplified by a

defined Quality-of-Mission (QoM) metric, providing a more holistic scheduling approach

that looks into the full hardware-software AV stack to improve the overall mission’s quality

rather than focusing solely on the real-time requirements of individual kernels or applications.

Our evaluation shows that AVSched improves overall mission performance by an average of

5.4×, 3.2×, 2.9× and 2.9×when compared to CPATH, RHEFT, 2lvl-EDF and ADS (current,

state-of-the-art real-time heterogeneous schedulers). Furthermore, AVSched achieves an

average of 52.4% higher hardware utilization, while meeting 100% of critical deadlines on

real-world applications of autonomous driving and aerial vehicles. Collaterally, AVSched
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can maximize the slack of individual kernels and applications, which can be exploited to

improve the power-performance efficiency of the SoC through means such as dynamic

voltage-frequency scaling (DVFS), without degrading the Quality-of-Mission metrics.
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CHAPTER 6

Device-level Heterogeneous System

6.1 Introduction

Albeit manufacturing issues in emerging technologies exist, emerging devices can be utilized

efficiently if designed to run suitable applications. Carbon nanotube transistors (CNFETs)

and tunneling-based transistors (TFETs) have energy-delay and energy advantages in the

near-threshold voltage region. 2D material transistors such as MoS2 FETs have lower

leakage current than Si FETs. Emerging technologies such as Ge nanowire, carbon nanotube,

and 2D materials have low process temperature, which enables monolithic 3D integration.

This leads to the design of device-level heterogeneous systems with various emerging

devices. To balance performance and energy of the system while taking advantage of the

various emerging devices’ properties, co-optimization in device level and architecture level

is necessary.

Previous studies about configuring heterogeneous hardware with emerging devices

showed the benefits of co-optimization at the architecture, transistor, and memory cell levels.

CMOS-TFET hybrid multicore processor was investigated by adopting heterogeneous thread-

to-core mapping, dynamic work partitioning, dynamic power partitioning, and application-

to-core mapping [110, 111]. Inside a single CPU and GPU core, configuring some of the

components with TFETs provided further EDP benefits [112]. Monolithic 3D integration of

CNFETs, 2D materials, RRAM, and STT-MRAM achieved 1000× energy-delay product
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improvement in abundant data computing [113].

We would like to propose a heterogeneous hardware system that can further utilize the

benefits of co-optimization in various devices and heterogeneous architecture. To design an

efficient heterogeneous hardware system, we propose the following features:

• Design of heterogeneous systems with multiple accelerators with various emerging

devices. Depending on the applications, each processing element consists of different

configurations of different emerging devices.

• Optimization for different workloads and multiple domains like communication,

vision, autonomous vehicle application, mobile computing, and server application.

6.2 Background and Motivation

6.2.1 Task Requirements

Along with catering to the growing heterogeneity in the applications and kernels, modern

systems must also cater to varying real-time and energy requirements. We consider the

kernels to arrive with three types of task requirements;

Type-D: Tasks with a high-performance requirement

Type-E: Tasks with a low energy requirement

Type-ED: Tasks that need to operate at the optimal EDP point.

6.2.2 Emerging Compute Technologies

Dennard scaling and Moore’s law have led the innovation of the semiconductor industry

for decades. However, the Si CMOS technology is approaching its physical and structural

limits. Beyond Si transistors such as carbon nanotube field-effect transistors (CNFETs) and

tunneling field-effect transistors (TFETs) are candidates that can provide the breakthrough

to the Si CMOS technology’s limitations. The unique properties and advantages of these
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emerging technologies will benefit the power and speed of the hardware system while

allowing for scaling of transistor size, density, and geometry. Furthermore, the device-level

heterogeneous system of the beyond Si transistors and Si CMOS can provide additional

opportunity for metric optimization by exploiting each transistors’ strengths.

6.2.2.1 Carbon Nanotube Field-Effect Transistor (CNFET)

CNFETs have a cylindrical rolled-up structure of a carbon hexagonal layer as a one-

dimensional nanowire channel [6]. CNFETs’ high mobility and gate-all-around structure

lead CNFET processors to have better energy-delay product (EDP) than Si CMOS pro-

cessors [6]. This makes CNFETs a strong candidate for low power, low supply voltage,

near-threshold, and highly energy-efficient computing [11]. The low process temperature

enables CNFETs to be adopted for monolithic 3D integration. However, the immaturity

of the manufacturing process generates yield issues and density variations [6]. The high

contact resistance of the CNFETs makes them have inferior performance than Si CMOS at

high supply voltage [10].

6.2.2.2 Tunnel Field-Effect Transistor (TFET)

TFETs have a steep subthreshold slope because of their band-to-band tunneling current-

conducting mechanism [6]. Along with Si, III-V materials such as GaSb and InAs are

also used to manufacture TFETs. The low off-state leakage current, low threshold voltage,

and low supply voltage make TFETs suitable for low power applications. TFETs can

be integrated with the Si CMOS, which show the opportunity for fine-grained TFET-Si

CMOS heterogeneous processors [112]. However, TFETs cannot replace Si CMOS in the

high-performance application domain because of their low on-state current at high supply

voltage [112].
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Figure 6.1: Comparison of FO4 inverter in Si, CNFET and TFET. We evaluate (a) delay
across all operable voltages, (b) the trade-off between power and delay, (c) trade-off between
energy and delay and (d) trade-off between energy-delay product and delay.

6.2.3 FO4 Inverter characterization

To understand the strengths of each technology, we profile FO4 inverters for Si, CNFET

and TFET. Each FO4 inverter is built with a channel length of 14 nm and minimum width

possible per technology.

As shown in Figure 6.1(a), Si-based FO4 inverter achieves the smallest delay at 0.8 V.

However, as the operating voltage is reduced CNFET-based FO4 inverter has a lower delay

than the Si-based FO4 inverter. Since, CNFET and TFET have lower threshold voltages,
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they can operate at smaller voltages (0.2 V) than possible with Si. TFET starts to outperform

Si in terms of delay at voltages below 0.3 V.

When we analyze the trade-off of delay with power and energy in Figure 6.1(b,c),

although Si can achieve the highest performance, it also consumes higher power and energy.

For a small trade-off in delay, CNFET can outperform Si in terms of power dissipated and

energy consumed. However, TFETs can operate with very low power dissipation and energy

consumption, emerging as low-power and low-energy devices. CNFETs on the other hand

are optimized for both delay and energy and therefore are devices with best energy-delay

product as shown in Figure 6.1(d).

Therefore, we can build a system using the three technologies to cater to tasks with

requirements such as high performance, low power/energy, and least energy-delay product.

6.3 System Description

6.3.1 SoC Design

With the imminent “end” of Moore’s Law, recent years have witnessed a surge of highly

heterogeneous computing platforms composed of specialized accelerator units. This trend

is also driven by the heterogeneity of the workloads that execute on those computing

platforms, which come hand in hand with performance, efficiency and reliability constraints

pertaining to specific application domains. While most heterogeneous systems have catered

to the requirements of the application through architectural solutions, we can provide better

scalability with the introduction of new technologies into the heterogeneous system. We

call such systems as device-level, function-level heterogeneous systems. Moreover, due to

the compatibility of the manufacturing process of CNFETs and TFETs with the Si-CMOS

technology [110, 113], we can build efficient device-level heterogeneous SoCs that can take

advantage of lower data movement costs through modern SoC interfaces.

For our work, we build a system with accelerators for three kernels from MachSuite [114],
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floating-point fft, integer gemm and integer stencil. Furthermore, as shown in Fig-

ure 6.2 each accelerator is also designed using the three technologies of Si, TFET and

CNFET to cater to type-D, type-E and type-ED tasks. Using the methodology de-

scribed in Chapter 5, we determine the number of accelerators of each kernel and device

type, using the task characteristics, requirements and arrival rate. We also use AXI-based

DMA interfaced accelerators as described in Shao et al. [115].

6.3.2 Scheduling Policy

We introduce a heterogeneous scheduling mechanism to address the added complexity

introduced with each technology catering to a different task requirement.

First, the task scheduler reorder tasks in the ready queue according to the tasks’ arrival

time and the tasks’ priority. We assign the highest priority to type-D tasks, followed by

type-ED tasks and type-E tasks.

Each task at the head of the ready queue is then assigned to the PE with fastest completion

time for type-D tasks. Type-E tasks are assigned to the PE with the smallest Power ×

Fastest Completion T ime. Similarly, type-ED tasks are assigned to the PE with the
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smallest Power × Fastest Completion T ime2.

Moreover, to save on leakage energy caused due to the steep slope devices, we introduce a

scheduler driven, sleep-based power optimization. When no task is scheduled on the CNFET

and TFET-based accelerators, the scheduler provides hints to the power management system

to power gate the accelerator when it is idle for time Tthreshold, and power it back on after

time Tsleep.

6.4 Methodology

6.4.1 Spice Simulation

We first build standard cell libraries of CNFET and TFET by referencing the GF 12nm

standard cell library using the methodology from Amarnath et al. [10]. Following this,

we perform HSpice simulation to characterize the power and delay of each technologies’

digital circuit components. The list of the components is 2-bit logical xor gate, and gate,

or gate, 32-bit integer adder, 32-bit integer adder, 32-bit left shifter, 32-bit right shifter,

register, single-precision 3-stage pipelined floating-point adder and multiplier. We feed the

characterized power and delay numbers into the gem5-Aladdin framework [115] to obtain

accelerator characteristics through a design space exploration done for each accelerator.

6.4.2 Accelerator Characterization

Gem5-Aladdin [115] is a pre-RTL performance and power modeling tool that enables rapid

design-space exploration of accelerator designs. Among the parameters varied are the degree

of loop unrolling, number of ports connecting to local memory (i.e., scratchpad) and the

partitioning scheme for individual data structures. We augmented gem5-Aladdin to explore

additional design points by selecting different circuit-level designs based on the device

type, voltage, and clock period. The latencies for clocked modules are considered as the
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input clock period times the number of pipeline stages (fixed to three, in our work). The

combinational modules are appropriately pipelined as needed, since these can have critical

path delays greater than the specified clock period.

We use gem5-Aladdin to generate accelerator designs for three kernels from Mach-

Suite [114], a collection of kernels that are popular candidates for hardware accelera-

tor. These are fft/strided (floating-point), stencil/stencil2d (integer) and

gemm/blocked (integer). In order to curb the simulation time, we only perform gem5-

Aladdin simulation for the (VDD, f) that are Pareto-optimal on the voltage-frequency charac-

terization curve. We record the power, energy and energy-delay product (EDP), in addition

to the accelerator latency, for each of the kernels and device types.

6.4.3 Heterogeneous System Setup

Using the accelerator latency, power, energy and energy-delay product (EDP), we build a

hetero-system with three accelerators for each type of kernel: fft, gemm and stencil.

Additionally, using [116,117], we also build each accelerator using the different technologies

of Si, TFET and CNFET to meet task requirements of high performance, low energy and

optimal EDP, respectively. We compare this system against a baseline Si-system that uses

DVFS for each accelerator to meet the high performance, low energy and optimal EDP

requirements.

6.4.4 Task Traces

We build four different 1000-task traces based on the amount of Type-D and Type-E

tasks in the trace along with 500 Type-ED tasks. Based on the number of Type-D tasks

in the remaining 500 tasks, we consider four traces TR1 (20%), TR2 (40%), TR3 (60%) and

TR4 (80%).
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6.4.5 Metrics of Evaluation

To evaluate our systems, we consider multiple metrics of evaluations. For the gates, modules

and standalone accelerators, we consider delay/latency, power, energy and energy-delay

product (EDP). For the system, level evaluation, we additionally also compare the tasks’

response time and overall execution time of the task traces.

6.5 Evaluation

6.5.1 Module Characterization

We present the characterization of 32-bit integer adder and multiplier and single precision

floating-point 3-stage adder and multiplier for each of the three technologies of Si, CNFFT

and TFET.

6.5.1.1 32-bit Integer Adder

The characterization of a 32-bit integer adder designed as a sparse tree adder for each of the

three technologies is shown in Figure 6.3. Si is able to achieve the fastest module with a

delay of 0.3 ns at 0.8 V. This is 27% and 4.9× faster than the CNFET and TFET modules

operating at 0.7 V, respectively.

In terms of power and energy, TFET-based adder is the best with a power of 40 nW and

energy consumption of 1.9 fJ. In comparison to CNFET and Si, TFET consumes 7× and

11.5× lower power and 1.6× and 2.5× lower energy, respectively.

Due to its moderate energy consumption and performance, CNFET achieves the best

EDP which is 43% and 20% better than Si and TFET, respectively.
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Figure 6.3: Comparison of 32-bit integer adder in Si, CNFET and TFET. We evaluate (a)
delay across all operable voltages, (b) the trade-off between power and delay, (c) trade-off
between energy and delay and (d) trade-off between energy-delay product and delay.

6.5.1.2 32-bit Integer Multiplier

The characterization of a 32-bit integer multiplier for each of the three technologies is shown

in Figure 6.4. Similar to the 32-bit integer adder, Si is able to achieve the fastest module

with a delay of 0.5 ns at 0.8 V. This is 55% and 5.4× faster than the CNFET and TFET

modules operating at 0.7 V, respectively.

In terms of power and energy, TFET-based adder is the best with a power of 40 nW

and energy consumption of 2.9 fJ. In comparison to CNFET and Si, TFET consumes 25×
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Figure 6.4: Comparison of 32-bit integer multiplier in Si, CNFET and TFET. We evaluate (a)
delay across all operable voltages, (b) the trade-off between power and delay, (c) trade-off
between energy and delay and (d) trade-off between EDP and delay.

and 360× lower power and 5.2× and 20.8× lower energy, respectively. CNFET achieves

the best EDP which is 4× and 1.6× better than Si and TFET, respectively. Note that each

technologies best point achieves better improvement in the case of the multiplier module

over the adder module due to increased design and time complexity of the multiplier module.
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Figure 6.5: Comparison of single precision floating point adder in Si, CNFET and TFET.
We evaluate (a) the trade-off between power and delay, (b) trade-off between energy and
delay and (c) trade-off between EDP and delay.

6.5.1.3 Single Precision Floating-Point Adder

For the evaluation of the single precision floating-point three-stage adder, we study the

trade-off of power, energy and energy-delay product against the adder latency. The results

are shown in Figure 6.5. TFET achieves 2.6×, 2.1× lower power and 24×, 16.4× lower

energy than Si and CNFET, respectively. CNFET achieves 11% and 15%lower EDP than Si

and TFET-based adders.
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Figure 6.6: Comparison of single precision floating point multiplier in Si, CNFET and
TFET. We evaluate (a) delay across all operable voltages, (b) the trade-off between power
and delay, (c) trade-off between energy and delay and (d) trade-off between EDP and delay.

6.5.1.4 Single Precision Floating-Point Multiplier

The evaluation of the single precision floating-point three-stage multiplier is shown in

Figure 6.6. TFET achieves 64% and 36% lower energy than Si and CNFET, respectively.

CNFET achieves 39% and 96%lower EDP than Si and TFET-based multipliers.
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Figure 6.7: Comparison of metrics for (a) single precision fft accelerator, (b) 32-bit integer
gemm and (c) 32-bit integer stencil accelerator. CNFET-based designs are compared
against Si-based design operating at the best EDP. TFET-based designs are compared against
Si-based design operating at the best energy.

6.5.2 Accelerator Characterization

We compare CNFET-based and TFET-based accelerators against Si-based design operating

at the best EDP and the best energy, respectively. The results for delay, power, energy and

EDP of each accelerator are shown in Figure 6.7. TFET achieves an energy improvement of

up to 1.7×. CNFET achieves an EDP improvement of up to 1.8×.

6.5.3 System Evaluation

We compare the device-level, function-level heterogeneous system built with accelerators

for fft, gemm and stencil using Si, CNFET and TFET technologies (Shetero) against

the baseline function-level heterogeneous system in Si with DVFS enabled to operate at

100



0

1

2

TR1 TR2 TR3 TR4

x 
Im

pr
ov

em
en

t

Trace Type

Response Time (Type D) Energy (Type E) EDP (Type ED)

Figure 6.8: Comparison of response time for Type-D tasks, energy for Type-E tasks and
EDP for Type-ED tasks of hetero-system over baseline Si-system.

the best delay, energy and EDP operational points (Shomo). The results for improvement in

response time for Type-D tasks, energy for Type-E tasks and EDP for Type-ED tasks

are shown in Figure 6.8. We achieve the same performance as the Shomo system for the

task-D tasks, while achieving 1.6× energy improvement and 1.7× EDP improvement

for the task-E and task-ED tasks, respectively. Also note, that the benefits across the

different types of tasks do not vary due to the fact that all the benefits observed are from the

use of different technologies and the scheduling overheads are not included.

We also evaluate the system Shetero with the detailed sleep optimization in comparison

to the Shomo system without the sleep optimization as shown Figure 6.9. We observe that as

the task arrival rate increases, there is a minimal degradation in execution time (<0.01%).

However, Shetero is able to achieve up to 6.2× for TR1 trace (maximum Type-E tasks)

and up to 2.6× for TR4 trace (maximum Type-D tasks).

6.6 Conclusion

Heterogeneous SoCs are developed to cater to growing requirements of highly heteroge-

neous applications. Prior art has explored heterogeneity either at the function-level or the

device-level. This work explores combining the two to cater to performance and energy
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Figure 6.9: Comparison of (a) total execution time and (b) energy consumption of the
hetero-system over Si-system for varying task arrival rates. Note that the hetero-system
employs fine grained power management to reduce idle leakage energy.

requirements of common kernels in both server and embedded system applications.

In this work, we presented a function-level and device-level heterogeneous SoC, Shetero,

built to accelerate kernels, like fast Fourier transform, general matrix multiplication and

convolution-based stencil kernels, using three different device technologies of silicon FETs,

carbon nanotube FETs and tunnel FETs. The goal of the work is to cater to performance,

energy and energy-delay requirements of tasks using the different accelerators built using

each device technology based on their operational strengths.

We show that Shetero achieves 1.6× energy improvement and 1.7× EDP improvement

for the task-E and task-ED tasks, respectively, while achieving the same performance

for task-D tasks, over a homogeneous Si-based system with DVFS enabled. Furthermore,

combining the system with a scheduler-driven sleep-based power optimization allows for a

1.7-6.2× improvement in system energy for varying task traces and arrival rates.
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CHAPTER 7

Conclusion

This thesis develops solutions at multiple levels of the compute stack to help enable emerging

technologies to be beneficially used in semiconductor products while mitigating variation

and yield issues to continue performance scaling at reduced power consumption. At the

device-level, we modeled variation observed in carbon-nanotube transistors (CNFETs) and

studied its effect on performance and energy consumption. At the circuit-level, we proposed

utilization of pass transistor logic for CNFET as an alternate to CMOS logic family to

reap benefits of CNFETs shown through theoretical models. At the architecture-level, we

proposed 3DTUBE, a yield enhancing, multi-granular reconfigurable 3D framework to

improve performance in the presence of failures. At the system-level, we build a multi-

accelerator and multi-technology heterogeneous systems. Lastly, at the operating system-

level, we use efficient workload scheduling that optimize for varying performance and

energy constraints of the heterogeneous systems.
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“Criticality-aware dynamic task scheduling for heterogeneous architectures,” Proceed-
ings of the 29th ACM on International Conference on Supercomputing, 2015, pp.
329–338.

[107] Tong, Z., Deng, X., Chen, H., Mei, J., and Liu, H., “QL-HEFT: a novel machine learn-
ing scheduling scheme base on cloud computing environment,” Neural Computing
and Applications, 03 2019, pp. 1–18.

[108] Shetti, K. R., Fahmy, S. A., and Bretschneider, T., “Optimization of the HEFT
Algorithm for a CPU-GPU Environment,” 2013 International Conference on Parallel
and Distributed Computing, Applications and Technologies, 2013, pp. 212–218.

[109] Capota, E. A., Stangaciu, C. S., Micea, M. V., and Curiac, D.-I., “Towards Mixed
Criticality Task Scheduling in Cyber Physical Systems: Challenges and Perspectives,”
Journal of Systems and Software, 2019.

[110] Swaminathan, K., Kultursay, E., Saripalli, V., Narayanan, V., Kandemir, M. T., and
Datta, S., “Steep-slope devices: From dark to dim silicon,” IEEE Micro, Vol. 33,
No. 5, 2013, pp. 50–59.

[111] Swaminathan, K., Liu, H., Sampson, J., and Narayanan, V., “An examination of
the architecture and system-level tradeoffs of employing steep slope devices in 3D
CMPs,” 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), IEEE, 2014, pp. 241–252.

[112] Gopireddy, B., Skarlatos, D., Zhu, W., and Torrellas, J., “HetCore: TFET-CMOS
hetero-device architecture for CPUs and GPUs,” 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), IEEE, 2018, pp. 802–
815.

[113] Aly, M. M. S., Gao, M., Hills, G., Lee, C.-S., Pitner, G., Shulaker, M. M., Wu,
T. F., Asheghi, M., Bokor, J., Franchetti, F., et al., “Energy-efficient abundant-data
computing: The N3XT 1,000 x,” Computer, Vol. 48, No. 12, 2015, pp. 24–33.

[114] Reagen, B., Adolf, R., Shao, Y. S., Wei, G.-Y., and Brooks, D., “Machsuite: Bench-
marks for accelerator design and customized architectures,” 2014 IEEE International
Symposium on Workload Characterization (IISWC), IEEE, 2014, pp. 110–119.

[115] Shao, Y. S., Xi, S. L., Srinivasan, V., Wei, G.-Y., and Brooks, D., “Co-designing
accelerators and soc interfaces using gem5-aladdin,” 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–12.

112



[116] “STOMP,” https://github.com/IBM/stomp.

[117] Vega, A., Wellman, J.-D., Franke, H., Buyuktosunoglu, A., Bose, P., Amarnath, A.,
Kassa, H., Pal, S., and Dreslinski, R., “STOMP: Agile Evaluation of Scheduling
Policies in Heterogeneous Multi-Processors,” DOSSA-3 Workshop@ HPCA, 2021.

113


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Contributions
	Organization of the Dissertation

	Carbon Nanotube Field-Effect Transistor
	Fabrication
	Characterization
	Need for Circuit-Level Enhancements
	Variation
	Need for Yield-Enhancing System-level Solution

	Design Optimization Using Pass Transistor Logic
	Introduction
	Motivation
	CNFET Fabrication
	CNFET Characterization
	Complementary Logic
	Pass Transistor Logic (PTL)


	Related Work
	RISC-V Processor Pipeline
	Methodology
	Operating Voltage
	CNFET Design Parameters
	Implementation

	Evaluation
	Adder Analysis
	Full Adder
	32-bit Adder and ALU

	Multiplier
	Registers
	Full Pipeline

	Conclusions

	A Design Framework for High-Variation Transistor Technology
	Motivation
	Variation Model
	CNT Distribution
	Effect of CNT Distribution on Yield Failures
	Effect of CNT Distribution on Delay

	Variation Suite

	Architecture
	Design Flow for High-variation Technology
	Standard Cell Library
	Library Generation
	Design Methodology

	Evaluation
	Performance and EDP Analysis
	 Frequency and Area Overhead

	Related Work
	Conclusion

	Scheduling Techniques for Real-Time constrained Heterogeneous SoCs
	Background and Motivation
	Autonomous Vehicle Applications
	High Heterogeneity in Execution Time
	Application Model
	Safety Criticality Level of Applications

	Congestion in Environmental Conditions
	Application Deadline and Speed of the AV
	Quality-of-Mission (QoM) Metrics
	Domain-Specific Systems-on-Chips
	State-of-the-Art Real-Time and Heterogeneous Schedulers

	AVSched: Mission & Heterogeneity-Aware Scheduler
	Meta-Sched and Task-Sched Operations
	Dependency Tracking
	Task Prioritization
	Rank Update
	Task Assignment
	Completed Task Information
	Deadline Tracking and Task Pruning

	Summary of Cumulative AVSched Features
	Task-Sched policy, TS
	Two-level scheduling policies
	Scheduling optimizations for MSstatic and MSdynamic


	Experimental Methodology
	Hardware Description
	Application Task Profile
	Synthetic Application Tasks
	Real-World Application Tasks
	Data Movement Cost
	Resource Contention

	Energy and Power Model
	Trace generation 
	Synthetic DAG Traces
	Real-World Application Traces

	Simulation Platform

	Evaluation
	Offline Profiling
	Single-Level Task Scheduler Evaluation
	AVSched Optimizations
	Two-level schedulers
	Hetero- and Hierarchical Ranking
	Rank Update and Load Balancing

	Scheduler Evaluation for Real-World Applications
	QoM Metrics Comparison
	Scheduler Overhead
	Energy and Available Slack
	SoC Design Optimization


	Related Work
	Conclusion

	Device-level Heterogeneous System
	Introduction
	Background and Motivation
	Task Requirements
	Emerging Compute Technologies
	Carbon Nanotube Field-Effect Transistor (CNFET)
	Tunnel Field-Effect Transistor (TFET)

	FO4 Inverter characterization

	System Description
	SoC Design
	Scheduling Policy

	Methodology
	Spice Simulation
	Accelerator Characterization
	Heterogeneous System Setup
	Task Traces
	Metrics of Evaluation

	Evaluation
	Module Characterization
	32-bit Integer Adder
	32-bit Integer Multiplier
	Single Precision Floating-Point Adder
	Single Precision Floating-Point Multiplier

	Accelerator Characterization
	System Evaluation

	Conclusion

	Conclusion
	Bibliography

