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Preface

I would like this thesis to be a useful and readable document for me, and possibly for someone

else who is interested in the same topic. I intend to make this thesis a place where I book-

keep my understanding on the cosmology, important derivations and conclusions, ideas, and

useful references. I did spend some efforts on trying to make the story self-consistent for

everyone in the first three chapters, although not sure how successful it is. I might be able

to see how this thesis works on serving the above purposes in one or two years by seeing if I

am or anyone else is going to look back on this manuscript.

Chapter 1-3, 6, 7 could be more useful to readers outside the Dark Energy Survey and

similar collaborations. Chapter 1-3 are reviews of limited aspects of modern cosmology

theory, which start from Einstein equations and other essential assumptions in ΛCDM model

and end with cosmic microwave background temperature spectrum and large scale structure

two-point correlation functions. Chapter 6 presents the constraint on a specific extended

cosmological model, where dark matter converts into dark radiation. Chapter 7 discusses

general concerns on the topic of the combined probes cosmology.

On the other hand, Chapter 4, 5 are more technical, focusing on the analysis details in

the Dark Energy Survey pipeline, including the baryonic effects in cosmic shear analysis and

the statistical interpretation for cosmological parameters and models.
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Abstract

Modern precision cosmology is undergoing rapid development thanks to the measurements

obtained from large scale cosmological surveys. This information both elucidates our knowl-

edge about the universe and brings in new challenges. The first challenge is to robustly

analyze the growing amount of data that need further compression and post-processes, in

order to produce the cosmological interpretation correctly. The second challenge is to pro-

pose and constrain extended cosmological models that can potentially resolve the tensions

appearing in the high-precision measurements. In this thesis, I first summarize modern cos-

mology theory predictions on background and perturbation level in chapter 13. Chapter 4-6

are about my research in the Dark Energy Survey on different topics. In Chapter 4, I present

my investigation on the theory systematic uncertainty caused by baryonic feedbacks in the

cosmic shear analysis, for the Dark Energy Survey Year-3 precision. The conclusion is that

introducing two extra halo parameters to describe the baryonic effect can protect us from

biasing the cosmological parameter constraints, but the gain on the constraint power from

the small scale is too small to worth doing so. Next, in chapter 5, I discuss several techni-

cal details in terms of the statistics being done to verdict the conclusions on the extended

cosmological parameters and models in DES Year-1 extensions paper. The conclusion is

that the kernel used for kernel density estimation should always be linearly corrected for

the Monte Carlo chains in a blinded cosmological analysis. In Chapter 6 I constrain on a

phenomenological model where dark matter converts to dark radiation at low redshifts, using

the Dark Energy Survey Year-1 data combined with external data. The conclusion is that

when combining all data sets less than 3.7% in fraction of the current amount of dark matter

could have been converted away. Furthermore, the extended model does not help much on

H0 or S8 tensions between early and late universe measurements, and it does not fit the data

better (or worse) than the ΛCDM model at current precision. Finally, in chapter 7, I further

the discussion on the problem of certain ΛCDM assumptions used in the combined-probe

analysis for extended cosmological models.

xiii



Chapter 1

Introduction

Although people tend to consider cosmology a long-standing research field, since human-

beings have a long history contemplating the birth, existence and the future of our universe,

modern cosmology is actually a young and lively developing intersection of astrophysics and

high-energy physics. In fact modern cosmology as a precision science, incorporating a solid

theory basis and rich observations, started only a mere 100 years ago. The foundation of

modern cosmology is considered to be Albert Einstein’s theory of general relativity [5], and

another cornerstone is set by the observation of the expanding universe by Edward Hubble [6].

In recent decades, the increasing amount of information we have obtained from cosmo-

logical observation has been stunning, which is the essential reason for the prosperity of

this research area. Physics is a discipline about building mathematical models to describe

the behavior of the universe. Only with quantitative observations constantly flowing in

could physicists have enough information to validate the established theories and to spot the

anomalies that lead to the new, more complete theories. In the 21st century, newly-observed

or high-precision cosmological signals include among others are: the large scale structure of

galaxy clustering [7–9], cosmic microwave background [10], Supernovae [11], gravitational

waves [12], black hole event horizons [13], 21 cm absorption feature [14], and strong gravita-

tional lensing [15]. Most of the observations so far confirm our standard cosmological model,

ΛCDM, while slight anomalies are apprearing with increasing statistical significance. For

this reason, how to interpret the large amount of information and to approach the statistical

and systematic uncertainties in cosmology are crucial questions for the future of this disci-

pline and for the entire physics community. With the current pace of incoming observations,

and if we can interpret them carefully and correctly, I personally am confident that our

understanding of the universe will take a leap in the next few decades.

In the following two sections I briefly introduce cosmology theory and observations, and

close the introduction by providing an overview of how this thesis is organized.
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1.1 Cosmology: Theory

In modern cosmology a theory, or a cosmological model, usually has to provide answers to

the following three questions:

• The expansion history of the universe. We have known since 1929 that our universe

is expanding, as that the distant galaxies are drifting away [6]. A cosmological model

needs to be able to provide an explanation and prediction for these observations.

• The metric perturbations on linear (large) scales. We observe the distribution of galaxy

clusters and find non-trivial statistical features in these tracers, such as halos and

filaments consist of the matter over-densities [16]. Again, a cosmological model has to

accommodate these large scale structures.

• The initial condition of the universe. Our universe is highly correlated on super-

horizon scales and the standard explanation for this is inflation [17]. A cosmological

model must further specify the model for the inflation and be able to set the initial

power of perturbations.

It is not difficult to see that the framework of cosmological models is built upon the de-

mands of explaining some of the most basic and uncontroversial observations of our universe.

Starting from a gravitational theory, physicists construct a cosmological model by specifying

the symmetry and the content of the universe. The most successful ”Standard Model” in

modern cosmology is the ΛCDM model, which adopts Einstein’s general relativity, assuming

a homogeneous, isotropic and flat universe, and claims that the components of the universe

are baryons, photons, dark matter and dark energy.

A detailed description of ΛCDM and its extensions is provided in the second chapter of

this thesis.

1.2 Cosmology: Large Scale Observations

Modern precision cosmology has constrained the parameters that specify the cosmological

model down to 1%-10% uncertainty. For example, we learned from the most recent Planck

2018 cosmic microwave background data that the matter (dark matter and baryons) takes

up 31.5% ± 1% of the total energy, and the age of our universe is 13.80 ± 0.02 Gyr [10].

The modern cosmological survey analysis is no longer straightforward mathematics, but

cooperative data engineering, a very involving pipeline of compressing the information and

statistically interpreting it. Here I briefly introduce the major probes in cosmology and

2



their surveys. These are mostly on large scales, where the measured objects spread over the

distances larger than galaxy cluster sizes. Arguably, it is how we conventionally categorize

them as ”cosmological” in certain context.

• Cosmic Microwave Background. CMB temperature and polarization anisotropy is the

most constraining cosmological probe in the current generation of surveys, due to

the cleanness of its signal. After leaving the last scattering surface, the photons are

traveling through an almost opaque medium in the universe. Modern CMB surveys

make high precision maps of the perturbation fields of background light in the sky,

compressing it into the power spectrum to extract their statistical distribution features,

then compare the power spectrum with theory predictions. Completed and current

CMB surveys include COBE [18], WMAP [19], Planck [10], SPT [20], and ACT [21].

Major next generation CMB missions are the space based CORE science program [22],

and the ground based CMB-S4 experiment [23].

• Galaxy clustering and weak lensing surveys. These are the surveys that this the-

sis mostly focuses on. The distribution of galaxies and mass perturbations are not

completely random in our universe, but infuse the features determined by the initial

condition and the expansion of the universe. The lowest order statistic description of

such distribution is the two-point correlation function or the dipole spectrum taken

from galaxy maps. Galaxy positions and shapes are usually affected by galaxy bias, so

the cleaner mass tracer, weak lensing shear, is used in later surveys to avoid the galaxy

bias uncertainty. An incomplete list of past and current galaxy clustering and weak

lensing surveys includes CFHTLS [24], SDSS [25], KiDS [7] and DES [9]. Major future

surveys are the space-based Euclid [26], Nancy Grace Roman Space Telescope [27], and

ground based DESI [28], Vera Rubin Observatory LSST [29].

• Supernovae. Type Ia Supernovae are proposed as ”standard candles” due to their

uniform absolute magnitude [30]. The supernova Hubble diagram is a powerful probe

to the late universe expansion history, which compiles the data of Supernovae redshifts

and luminosity distances. The type Ia supernovae redshifts can be obtained from

the spectral observations of their host galaxies and their calibrated or uncalibrated

distances can be inferred from their luminosity. There are many surveys observing

Type Ia supernovae, and a recent compilation of supernovae samples that is widely

used by the cosmologists is Pantheon [11].

• Baryonic Acoustic Oscillations. Before the decoupling of photons and baryons after

recombination, the two components are tightly coupled through Compton scattering.

3



Hence the sound horizon frozen at the last scattering surface is not preserved in the

fluctuation of photons, but also in the fluctuation in the baryons. We call this feature

in the galaxy clustering baryonic acoustic oscillations (BAO) [31]. The sound hori-

zon scale is a standard ruler, so BAO observed at different redshifts are often used

as geometry measurements. Most of the galaxy clustering and weak lensing surveys

mentioned before are also able to carry out BAO analysis. The most constraining BAO

measurements in the current generation are made by BOSS as a part of SDSS-III [8].

Other than the relatively mature large scale data products described above, gravitational-

wave standard sirens [32], and 21 cm intensity maps probing cosmic dawns [33] are also

promising future large scale observations.

1.3 The Outline of This Thesis

The goal of this thesis is to convey a coherent story of how we investigate the properties

of our universe based on inputs from large scale observations, and to give details on the

specific projects that the author contributed to for this big background purpose. In chapter

2, the standard model of modern cosmology, ΛCDM, will be described, describing ”What”

we are investigating about our universe. Chapter 3 is dedicated to ”How” we investigate

our universe, focusing on the galaxy clustering and weak lensing shear probes, which is the

expertise of the author. Chapter 4 focuses on the project of baryonic effect uncertainty

mitigation for Dark Energy Survey, which contributed to the DES-Y3 3x2pt data analysis.

Chapter 5 outlines the author’s work on DES extension model constraints. Chapter 6 is

concerned with constraining decaying dark matter model using DES combined with other

cosmological probes, which largely comes from the manuscript Chen (DES collab.) et al. [34].

The thesis ends with a consideration of future survey beyond-ΛCDM model analysis.

In summary, chapters 1-3 are based on fairly well-established work, and chapters 4-7 are

based on original work carried out by the author with colleagues.
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Chapter 2

Standard and Extended Cosmological

Models

In this chapter, I will give a detailed description of the currently most successful cosmological

model favored by various observations, ΛCDM, and some extensions to it.

2.1 Preview of the Full Story

Like summarized in the previous chapter, ΛCDM is a model stating that:

In our universe, the law of gravity is Einstein’s general relativity. Our uni-

verse has a homogeneous, isotropic and flat background metric. An inflationary

process set the initial conditions in our universe. The components of the universe

consist of baryons, photons, dark matter and dark energy.

Under these facts or assumptions, and the particle standard model description of the

interaction of baryonic matter and lights, the universe went through this time line (listing

only the most important nodes) :

• Inflation. Inflation was first proposed as a solution to the flatness and horizon problems

[17, 35]. If the universe starts from a hot plasma with only radiation and matter,

the time before last scattering (CMB) is not long enough to bring the photons in the

observed patch of the universe into causal connection, thus posing a question of why our

CMB is so isotropic down to the precision one in 105. Hence inflation, an exponentially

expanding period of the universe is needed to resolve this contradiction. If we travel

backward the timeline of inflation, the observed patch of the universe at present could

be contained in a small enough patch that is causally connected. Such rapid expansion

of the universe could be caused by the domination of the almost constant potential
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energy of a scalar named inflaton. The perturbations in the inflaton which is the

predominant component of the early universe energy density sets the initial condition

of the gravitational field perturbation. Thus the initial conditions were generated for

cold dark matter, baryons, and every particle and field observed today.

• Big Bang Nucleosynthesis. Several minites after the Big Bang, due to the rapid ex-

pansion of the universe, the hot primordial plasma becomes cold enough (107 − 109K)

for protons and neutrons to combine into atomic nuclei. Because the expansion rate

is high, the time for such nuclear reactions is short. Therefore only very light nuclides

like D, 3He, 4He and Li were synthesized during the BBN. The BBN depends sensi-

tively on baryon asymmetry, lepton asymmetry and universe’s expansion rate. Since

we probe the relic abundance of the above light nuclei by observing the interstellar

medium and high-redshift quasar absorption lines, BBN provides unique constraints

on the Standard Model beyond-Standard Models, as well as cosmology. [36]

• Recombination. As the universe further expands, the primordial plasma of baryons

and photons cools down to the temperature when protons can combine with electrons

to form neutral Hydrogen atoms. Because we have much more photons than baryons

in the universe (photon/baryon ratio ηbγ ≈ 10−9), and photons do not interact with

each other directly, and the universe after this epoch (around 370,000 yr, redshift ∼
1100) is mostly transparent to the photons. The the cosmic microwave background

decoupled from the baryons in this process is almost isotropic on the sky with current

temperature 2.7K, with tiny temperature anisotropies of order ∆T
T
≈ 10−5. There

is rich information in the CMB temperature anisotropy, as it was caused by physics

factors including the acoustic oscillation of the baryon-photon plasma before the last

scattering, initial gravitational perturbation, baryon masses, silk damping. The CMB

anisotropy measured by Planck gives us the tightest constraints on many properties of

the universe.

• Reionization. As the earliest stars started to form after the long dark age between the

recombination and redshift ∼ 20, the universe began to get reionized by the chemical

processes in stars and galaxies. This epoch is investigated by observing the high redshift

quasar absorption spectrum, and will likely be much better known to us with better

observations of the 21 cm signal of the neutral hydrogen surveys in the near future.

• Structure formation. In the late universe, the universe is cool enough that the pre-

dominant effect is posed by the gravitational interaction. Under the gravity of dark

matter, the perturbative overdensities in the universe start to collapse and to form
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halos and structures. Hence the distribution of mass and the galaxies that trace the

mass is not homogeneous, but contains statistically inhomogeneous features. Modern

cosmology surveys like the Dark Energy Survey (DES) take large-area sky maps of the

galaxy positions and shapes, then measure the statistically inhomogeneous features in

them. Cosmological models can predict the structure formation features through N-

body simulations or (semi-)analytical perturbative solutions. By cross-checking theory

and observation, late time structure formation provides us with a lot of information

about the universe, for example, the amount and the equation of state of the dark

energy.

Throughout the history above, the universe is expanding fueled by its energy density. An

illustration summarizing the history of the universe is presented in figure 2.1, taken from

chapter 1 of the book [1].

Figure 2.1: The history of the universe. Figure taken from Chapter 1 of [1].

2.2 Background Cosmology – Expansion History

This section mostly referred to the chapter 2 of Modern Cosmology (Dodelson 2003), skipping

the curved space time treatment and some other mathmatical details, . Throughout this

section I assume a flat universe, since curved case is considered an extension of ΛCDM,

which we discuss later.
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This section adopts natural units:

~ = c = kB = 1, (2.1)

and the conventional metric signature:

(−,+,+,+). (2.2)

It has been confirmed by observations that our universe is homogeneous and isotropic at

large spatial scales (L & 100 Mpc), and the background level smooth expansion of such a

universe is determined by the composition of the energy content. Specifically, the expansion

rate is determined by the fraction and the equation of state of each component that together

take up all the energy in this universe. I will start from the fundamental rule for the dynamics

of the universe, Einstein’s general relativity. General relativity theory was proposed by

Einstein in 1915, and it interprets the gravitational interaction as a geometrical curvature.

This is fundamental to our modern understanding of gravity. In Euclidean space, the square

of distance between two points is given by:

ds2
E = dx2 + dy2 + dz2. (2.3)

Conversely in Minkowski space, which has three dimensions of space and one dimension of

time, the distance between two points in spacetime is given by:

ds2 = −dt2 + dx2 + dy2 + dz2. (2.4)

From the simple expression of the above metric, it is easy to imagine that Minkowski space-

time is as ”straight and perpendicular” as Euclid space, except that it has one more dimen-

sion. Such metric is usually called ”flat” because it has no curvature. But just like there

exist spherical and more complicated shaped surfaces, our 4D spacetime could also have

non-trivial metrics. In general, we write the differential distance squared, and hence the

metric of a 4D spacetime, as:

ds2 =
3∑

µ,ν=0

gµνdx
µdxν . (2.5)

The
∑

sign in front of the expression is usually not explicitly written out, and by convention

the repetition of a dummy index means summing over its possible values. For Greek letters

like µ and ν, the range is often 0(time), 1, 2, 3(space). Since classically dxµ are commuta-

tive, the metric gµν is commonly written as a symmetric rank four matrix, with signature
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(−,+,+,+) as mentioned at the beginning of this section. Another completely equivalent

convention is (+,−,−,−). The Minkowski metric in equation 2.4 is a special case:

gµν = ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.6)

The general principle of relativity states that the laws of fundamental physics are the same in

all systems of reference. Formally, it means that under the general coordinate transformation:

dxµ =
∂xµ

∂x′ρ
dx′ρ. (2.7)

The corresponding metric transformation keeps the differential distance unchanged:

ds2 = gµνdx
µdxν = gµν

∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ; (2.8)

g′ρσ = gµν
∂xµ

∂x′ρ
∂xν

∂x′σ
, (2.9)

so that the form of physics equations does not change.

Skipping the splendidly smart processes through which Einstein (and his competitor

Hilbert) reached their conclusions, I present the Einstein equations here. So far these are

the minimal equations that satisfy the general principle of relativity.

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (2.10)

where Rµν is the Ricci curvature tensor, R = gµνRµν is the Ricci scalar, and Tµν is the

energy-momentum tensor of the matter field.

Einstein equations connect the geometry of the spacetime on the left to the matter energy

and momentum on the right side of the equations 2.10. Formally, in terms of the metric and

matter field Lagrangian, we can express these tensors as:

Γµνρ =
1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ), (2.11)

Rµν = ∂ρΓ
ρ
µν − ∂µΓρρν + ΓρρσΓσµν − ΓρµσΓσρν , (2.12)

T µν =
−2√
−g

δ(
√
−gLM)

δgµν
= −2

δLM
δgµν

+ gµνLM . (2.13)

Here g = det(gµν), and Γµνρ are called Christoffel symbols. We can raise and lower the
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contravariant and covariant indices by multiplying by the metric tensor:

Xµ... = gµνX ...
ν , (2.14)

Xµ... = gµνX
ν
..., (2.15)

where contravariant metric is defined by:

gµνg
νρ = δρµ. (2.16)

The Christoffel symbols play an important role in the covariant derivative. Under coordinate

transformation equation 2.7, unlike normal partial derivative, the covariant derivative ∇µ on

tensors transform covariantly with the coordinate system.

∇µφ = ∂µφ, (2.17)

∇ρT
µ
ν = ∂ρT

µ
ν + ΓµρσT

σ
ν − ΓσρνT

µ
σ. (2.18)

Before going into the background level solution of the Einstein equation 2.10, which is

the purpose of this section, there are some comments that I would like to add. The purpose

of this dissertation is to investigate the standard and the extended cosmological models.

The Einstein equation 2.10 could be derived by applying the principle of least action on

Einstein-Hilbert action:

S =
1

16π

∫
R
√
−gdx4 + SM , (2.19)

where SM is the action of the matter field. Again, we see the elegance and the simplicity of

Einstein’s general relativity here – it implies that if the curved spacetime itself has Lagrangian

energy, this potential energy is simply the Ricci curvature of the spacetime R. I personally

think we do not need to spoil this simplicity by resorting to modified gravity theories.

But on the other hand, the lack of a first principle derivation for R gravity action (in

classical general relativity) points to another way to state the same issue: Einstein’s general

relativity is far from the ”general theory” of gravity. By assuming higher order terms of the

gravitational action as the low-energy effective field theory of certain high-energy complete

quantum gravity, or embedding our 4D gravity in higher dimensional space gravitational

theory, we could admit more complicated expressions of the gravitational action that involve

R2,∇2R, etc. Each of these terms is motivated by a well-established formal theory, and

under the principle of least action leads to a variant of the Einstein equations 2.10. We will

see how these modified gravity theories as a popular subset of the extended cosmology could

be constrained by the cosmological observations.
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We now return to the smooth background level solution of Einstein equations in our

homogeneous and isotropic ”vanilla” universe. The generic time-dependent metric that sat-

isfies the homogeneous and isotropic conditions is the FLRW metric developed by Alexander

Friedmann, Georges Lemâıtre, Howard P. Robertson and Arthur Geoffrey Walker in 1920s:

ds2 = −c2dτ 2 = −c2dt2 + a(t)2dΣ2. (2.20)

Here although c = 1 in the natural units, I write it out to distinguish space and time

coordinates. dΣ2 is in positive, zero, or negative uniform curvature 3-dimensional space. In

hyperspherical coordinates,

dΣ2 =


dr2 + sin2(r)dΩ2, k = +1, elliptical space

dr2 + r2dΩ2, k = 0, flat space

dr2 + sinh2(r)dΩ2, k = −1, hyperbolic space

(2.21)

In ΛCDM cosmology, we assume a flat universe. Thus in Cartesian coordinate system, the

metric of such a homogeneous, isotropic, time-dependent universe is:

gµν =


−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2

 . (2.22)

We call a(t) the scale factor of the universe. The physical meaning of a is not difficult to see:

if two points are separated by distance x at time t0, then they will be separated by distance

a(t1)x/a(t0) at t1. The most convenient convention is to set our current time scale factor

a0 = 1.

As we will see in the following paragraphs, Einstein equations solution a(t) tell us that

in a flat universe, as long as we have an average positive energy density, our universe will

keep expanding forever. Namely, ȧ = da/dt is always positive given a positive initial value.

Meanwhile on the right hand side of the Einstein equations, at the background level, we

have a perfect isotropic fluid in the universe:

T µν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (2.23)
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where ρ is the energy density of the fluid, and p is the pressure.

Now we substitute the flat FLRW metric and perfect-fluid energy-momentum tensor into

the Einstein equations. The time-time and space-space components give us two equations:(
ȧ

a

)2

=
8πG

3
ρ (µ = 0, ν = 0), (2.24)

ä

a
= −4πG

3
(3p+ ρ) (µ = i, ν = i). (2.25)

The quantity ȧ
a

tells us the expansion rate of the universe, and we call it the Hubble parameter

or the Hubble rate, H ≡ ȧ
a
. The Hubble parameter fully describes the expansion history.

Equation 2.24 relates H to ρ:

H =
ȧ

a
= H0

√
ρ

ρc
, (2.26)

where the fiducial H0 ≈ 70 km/s/Mpc is the present-day value of the Hubble parameter

called Hubble constant, and ρc is the critical density, the current total energy density of the

universe when it is flat. These two parameters are introduced as a physically meaningful

way to specify the boundary condition of H rate solution at present time, when the scale

factor is set to be a = 1. H0 and ρc are connected by the Friedmann equation:

ρc =
3H2

0

8πG
. (2.27)

The physics in equation 2.26 is powerful, showing that the background level geometry of the

expanding universe is determined by the equation of state of the perfect isotropic fluid. To

see how it works, we need the continuity equation of the energy-momentum tensor and the

equation of state of a perfect isotropic fluid:

∇µT
µ
ν = 0, (2.28)

p = wρ. (2.29)

In FLRW metric equation 2.22, equation 2.28 becomes (only ν=0 component is non-trivial):

ρ̇+ 3H(ρ+ p) = ρ̇+ 3H(1 + w)ρ = 0. (2.30)

Integrating the above equation gives us, for w = const.:

ρ ∝ a−3(1+w). (2.31)
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For a perfect fluid that obeys continuity equation, its energy density decreases with the

expansion of the universe. The following statement is intuitive: consider our universe as a

spotted balloon being blown up, as its surface area gets larger, the spots are separated more

sparsely. However, we will see later in this section that when w ≤ −1, i.e. the fluid has

negative pressure, the opposite sens of scaling can happen.

Because the derivation of the above relationship used only the continuity equation, which

is obeyed by each non-interacting species, in a universe with various components we more

generally have:

ρi ∝ a−3(1+wi), (2.32)

H2 =
8πG

3

∑
i

ρi. (2.33)

Dividing the above equation 2.33 by equation 2.27, we get:

H2

H2
0

=
∑
i

Ωia
−3(1+wi), (2.34)

where the density parameter Ωi is defined as Ωi = ρi(a=1)
ρc

, the present-day fraction of the

energy density of a species to the total critical energy density. In a cold and nonreactive

universe, by measuring the composition of the current universe and learning their equations

of state, we can reconstruct the expansion history H(a) = ȧ/a of the universe. Furthermore,

the scale factor could be fairly easily determined by observing the redshift of a star or galactic

spectrum at that epoch:

z ≡ λobs − λemit

λemit

=
a(tobs)λcov − a(temit)λcov

a(temit)λcov

=
1− a
a

,

(2.35)

where λcov is the wavelength in the comoving coordinates in which the distance between two

points stays the same if there is no dynamics (constant distance ignoring the expansion).

The last equality above used the condition that the current, or observer scale factor a0 = 1,

and I denoted aemit as a.

Clearly, a = 1/(1 + z) from inverting the equation 2.35. By integrating H(a) = 1
a
da
dt

from

a = 1 to a = 1/(1 + z), one can get the distance to an astrophysical event, of which the
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signal is sent to us through the light:

χ =

∫ t(a=1)

t(a)

dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
, (Comoving distance). (2.36)

dA = aχ, (Angular− diameter distance). (2.37)

dL =
χ

a
, (Luminosity distance). (2.38)

These distances are used in different occasions. The comoving distance, which is fixed

between two points throughout the expansion of the universe, is useful when we want to

describe the dynamics of a system ignoring the physical scale change due to the expansion.

The angular-diameter distance dA is used when we observe angles to infer distances, with

the relationship θ = l
dA

where l is the physical size of a distant object. Lastly, given

an astrophysical source with luminosity L, the luminosity distance is used when we infer

distances from measurements of the fluxes, with the relationship F = L
4πd2L

.

Now we come back to the practical and realistic case study of equation 2.34, the standard

ΛCDM cosmology. In ΛCDM, when categorized in terms of the equation of state in equilib-

rium, the universe consists three types of energy: the non-relativistic matter, the relativistic

radiation, and the dark energy. The matter has no pressure, the radiation has p = ρ/3,

and the dark energy, often interpreted as a result of the cosmological constant, has negative

pressure p = −ρ. Thus we have:

wm = 0, ρm ∝ a−3. (2.39)

wr =
1

3
, ρr ∝ a−4. (2.40)

wΛ = −1, ρΛ = const.. (2.41)

Furthermore, in a flat ΛCDM universe,

H

H0

=
√

Ωma−3 + Ωra−4 + ΩΛ, where ΩΛ = 1− Ωm − Ωr. (2.42)

Before I expand what exactly makes up the matter, radiation, and dark energy in the

standard cosmology, I would like to first demonstrate how equation 2.42 determines the

expansion history. Because H > 0, our universe is expanding given its initial conditions,

namely the scale factor a is monotonically increasing. Mathematically the terms a−4, a−3

and a0 decrease at a descending rate as a increases. Thus we can make the prediction that

the relative abundance of matter increases against radiation with time, and the relative

abundance of dark energy increases against dark matter. Indeed, since the Big Bang our
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Figure 2.2: Left panel: the comoving distance as a function of redshift, in dark matter +
dark energy universe, and in dark matter only universe. Right panel: Type Ia supernova
effective magnitude, which is a logarithmic measure of with the luminosity distance, against
redshift. This panel is taken from the reference [2].

universe has gone through radiation dominated, matter dominated, and dark energy dom-

inated epoch in that order. The effect of different combinations of the density parameters

for dark matter and dark energy are illustrated in figure 2.2.

The matter and radiation components are easy to intuitively understand. The matter

includes Standard Model matter particles and dark matter, which are non-relativistic and do

not interact on large scales as the universe expands. They have zero pressure. Among them,

the Standard Model particles mainly consists of familiar baryons like protons and neutrons,

and the leptons like electrons. In the Standard Model, neutrinos are completely massless, so

they contribute to the radiation energy density in the following paragraphs.

The dark matter which, prior to 1990s had been widely accepted as a major bulk of energy

density in our universe today, in ΛCDM is claimed to be completely cold. In ΛCDM, dark

matter does not self-interact or interact with the Standard Model matter at a detectable level.

The only interaction dark matter feels is the gravity, hence it is only through gravity that we

can observe it. As early as in 1933, Fritz Zwicky inferred the extra mass in the Coma cluster

of galaxies by noticing the mismatch between the galaxies’ motion and the mass estimation

through brightness [37]. Vera Rubin, Kent Ford and Ken Freeman’s work in 1970s provided

strong evidence of dark mass by measuring the galaxy rotation curves [38]. If, you are still

skeptical and think that these observation effects can be due to stronger gravity at galaxy

scales or are pure observational caveats (like I did in my first year of PhD), let me remind

you of equation 2.42 and figure 2.2. Probes like Supernovae, CMB, and BAO, which sensitive

to the geometry of the expanding universe, tightly constrain the amount of dark matter and

dark energy in our universe to reproduce the observed Hubble diagram; See figure 2.2.
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The radiation density decays ∝ a−4, and becomes a less important component in terms

of the expansion history around z ∼ 3500, after the matter-radiation density equality. The

radiation usually refers to the photon plus the massless Standard Model neutrinos. They

have relativistic dynamics and pressure pr = 1/3ρr.

Dark energy is a less intuitive form of energy in the universe proposed to explain its

accelerating expansion. Equation 2.25 tells us that if we only have fluid with p > −1
3
ρ in our

universe, the expansion is always decelerating. However, since 1990s, observational evidences

have indicated an accelerating expansion of the universe [39,40]. One evidence is represented

by the Supernovae Hubble diagram as shown in the right panel of figure 2.2. Dark energy,

which has the equation of state p ≈ −ρ, provides the necessary negative-pressure component

to explain the acceleration. In the limit p = −ρ, dark energy constant energy density, and

does not dilute as the space expands, as if the energy is attached to the space itself. Dark

energy can be represented by an extra constant term in the Einstein equation:

Rµν −
1

2
gµνR + Λgµν = 8πGTµν , (2.43)

ρΛ =
Λ

8πG
, (2.44)

where Λ is usually called the cosmological constant. In quantum field theory, the cosmological

constant is predicted as the vacuum energy of the quantum fluctuations, but the theory

prediction is O(100) orders of magnitudes off from the cosmological measurements.

So far, we still know little about the dark energy, and there is no evidence to prove

or disprove the cosmological-constant hypothesis, which suggests dark energy is the phe-

nomenological name of a cosmological constant of some kind. The only things we can assert

about the dark energy are that it has negative pressure, w ∼ −O(1), and it takes up the

majority of energy density in our current universe. A variety of the extended ΛCDM models

contributed to explain Λ by modified gravity, dark sectors or other approaches.

2.3 Perturbative Cosmology – Photon Anisotropy and

Matter Inhomogeneity Spectra

In the last section, I have presented a picture of the smooth, homogeneous universe under-

going expansion in chemical equilibrium quietly. But we know there is much more than that

happening in our universe. Although it looks homogeneous on large scales, the universe does

have non-trivial distribution of galaxies inside dark matter halos, and non-trivial distribu-

tion of gas and stars inside galaxies. The cosmic microwave background (CMB) is almost
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isotropic over the whole celestial sphere at temperature 2.725K, but when measured with

high precision maps, CMB has anisotropic fluctuation with the magnitude ∆T ∼ 20µK.

The distributions of perturbation fields provide us with rich information about cosmology,

as their dynamics imprinted the interactions that have happened in the expansion history

of the universe.

In this section, I will focus on the inhomogeneity in the matter perturbation field and

the anisotropy in the photon temperature field, explain their definitions, and schematically

present how they were predicted by theory (ΛCDM). This last point is the most important

goal of this section. The perturbation theory is a huge topic that could be a full thesis in its

own right, so this chapter is kept basic and conceptual in the context of this theory+data

thesis.

2.3.1 Boltzmann Equations

This section referred to the formalism in reference [41] and [1].

The volume averaged dynamics of the matter and radiation field is determined by the

Einstein equation 2.10 and the energy-momentum current between particle species:

∇µT
µ
ν = Qν . (2.45)

It is obvious that the continuity equation 2.28 is the special case when Qν = 0. The total

energy-momentum tensor of the fluid in the universe is conserved, and the energy-momentum

tensor is also conserved for each decoupled species. However, we know that the departure

from equilibrium happens as the universe cools down, and it results in several drastically

changing epochs in the universe like the nucleosynthesis and recombination. The energy

and momentum flow from one species to another will naturally cause the transition in the

averaged number density and in the phase space distribution of the number density of particle

species. Other than this effect, in the universe in equilibrium, local collisions can still happen

and cause changes in the phase space number distribution.

In practice, in order to establish the anisotropy and inhomogeneity in the universe, we

need to solve the phase space distribution of particles determined by the Boltzmann equa-

tions. The physical meaning of Boltzmann equation is that the number density of a particle

species in the phase space changes as particles are created or destroyed by the collision pro-

cesses. Suppose the phase space distribution of a particle species is described by f(xi, pj, τ):

dN = f(xi, pj, τ)dx1dx2dx3dp1dp2dp3, (2.46)
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where xi, pj are the comoving coordinates and comoving conjugate momenta, and dτ = dt
a(t)

is the conformal time. The general energy-momentum tensor Tµν takes the form:

Tµν =

∫
dp1dp2dp3(−g)−1/2pµpν

p0
f(xi, pj, τ), (2.47)

where, recall, g = det(gµν). So the time component of the equation 2.45 should be consistent

with the momentum integrated Boltzmann equation. In terms of the space coordinates and

the momenta, the Boltzmann equation is:

df

dτ
=
∂f

∂τ
+
∂f

∂xi
dxi

dτ
+
∂f

∂pj

dpj
dτ

= C[f ]. (2.48)

The right hand side of the equation is the collision term, which is a functional of the phase

space distribution function. This term is determined by the Standard Model (or any other

non-gravitational) interactions felt by the particle species. For cold dark matter, which only

interacts through gravity, this term is zero. However, the left hand side of the Boltzmann

equation makes things not as simple as they seem. The momentum derivative
dpj
dτ

is deter-

mined by the geodesic equation of the particle, and it needs input from the local spacetime

metric perturbation. Thus the complete set of equations that need to be solved includes the

Boltzmann Equation 2.48 for each species in the universe, and the Einstein equation 2.10 per-

turbatively expanded in coordinates. In synchronous gauge, where g00, g0i are unperturbed

by definition, we can write the metric perturbation as hij:

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj. (2.49)

Let us take a step back to look at the system of equations at hand. The particle distribution

perturbative variables are defined in the phase space xi, pj and the metric perturbative

variables in the configuration space xi. When considering the total fluid in the universe,

the degrees of freedom include 10 symmetric energy-momentum tensor components plus 10

symmetric spacetime metric components. Einstein equations reduce 10 degrees of freedom,

and space-time gauge fix further 4 degrees of freedom, leaving 6 free variables. Without

losing generality, we could say these degrees of freedom are specified by the fluid features,

for example the equation of state factor w and its anisotropic stress.

Because we are not concerned about the local momentum of the particles in cosmology,

when processing Boltzmann and Einstein equations we integrate the magnitude of momen-

tum out. As for the coordinate space, we usually make Fourier transformation and express

everything in the k-space where the equations are easier to manipulate as ∇i → iki. For
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non-relativistic species, things are simple and we set pj = 0 everywhere. Then we are left

with a solution of the Boltzmann equation about the inhomogeneity of the matter distri-

bution in k-space. For relativistic species, the anisotropy of the momentum k̂ · p̂ becomes

important, and the Boltzmann equation needs to be solved in terms of a series of hierarchical

moments of the phase space distribution function. These moments, as we shall see in the

next subsection, corresponds to the CMB anisotropy spectrum.

The descriptive summary above should be sufficient for me to proceed into the obser-

vational cosmology with the CMB temperature and polarization spectrum and the matter

power spectrum in the next two subsections. I will leave the mathematical details about

the linear perturbative expansion and phase space Fourier transformations of the Boltzmann

and Einstein equations from this point on to reference [41]. In practice, cosmologists nu-

merically solve the Boltzmann and Einstein equations using the codes developed in recent

decades, like CAMB [42] and CLASS [43]. These codes are optimized in terms of efficiency

and precision. Most importantly, cosmologists can modify the codes directly related to the

physical equations, to tailor these Boltzmann solvers for the extended ΛCDM models. All

one needs to do is to derive the Boltzmann and Einstein equations in the notations adopted

by the codes’ original authors, then incorporate these modifications in the codes.

2.3.2 Photon Field Anisotropy

In the last subsection, I schematically introduced how to theoretically derive the perturbation

equations in cosmology. This subsection and the next discuss about the spectra of the

perturbation fields.

The cosmic microwave background, of photons that travel to us from the last scatter-

ing surface is on average, remarkably uniform. We can measure the tiny polarization and

temperature anisotropy with the current instruments. Here I will focus on the temperature

anisotropy to keep things basic in this subsection. The two point correlation function of the

temperature fluctuation can be defined as:

Θ(n̂) ≡ ∆T (n̂)

T̄
, (2.50)

C(θ) = 〈Θ(n̂1)Θ(n̂2)〉, (2.51)

where n̂ is the unit vector pointing to the observation direction, and cos(θ) = n̂1 · n̂2 for two
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points on the sky. We can expand Θ(n̂) into the spherical harmonics:

Θ(n̂) =
∞∑
`=0

m=∑̀
m=−`

a`mY`m(n̂), (2.52)

where a`m are complex coefficients, and Y`m are the Bessel functions of the second kind.

Then we define the angular power spectrum of the temperature anisotropy, as:

〈a`ma∗`′m′〉 = C`δ``′δmm′ , (2.53)

where δij is the Kronecker delta, and the bracket denotes averaging over the perturbation

field being drawn from the inflation. Substituting equations 2.52, 2.52 into equation 2.51,

we get:

C(θ) =
1

4π

∞∑
`=0

(2`+ 1)C`P`(cos(θ)), (2.54)

where P`(cos(θ)) are the Legendre polynomials. The angular power spectrum of the photon

temperature anisotropy C` can be theoretically predicted by solving the Boltzmann equation

of the photons. In general, the photons obey the unperturbed Bose-Einstein distribution f0:

f0(p, T ) =
gs
h3

1

ep/kBT − 1
, (2.55)

where gs is the number of spin degrees of freedom. When there is fluctuation in the temper-

ature, then

f(xi, p, nj, τ) = f0

(
p

1 + Θ(xi, nj, τ)
, T̄

)
, (2.56)

where T̄ is the background average temperature.Here we neglected the relatively rare distor-

tion of the frequency spectrum that might be introduced by the electron-photon scattering

after recombination, assuming Θ(xi, nj, τ) is independent on p. Thus we can make a linear

expansion to relate phase space distribution function solution to the temperature fluctua-

tion. Because the velocity of us observers is too slow compared to photons, the coordinate

conjugate k-space should be averaged out to obtain the C` angular power spectrum that we

measure.

2.3.3 Matter Field Inhomogeneity

Unlike the relativistically moving photons, the cold or baryonic matter phase space distribu-

tion is almost independent of the momentum magnitude and orientation. Instead, its density

depends on the space coordinate conjugate ~k, thus the inhomogeneity in the space is of more
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interest. At a given time, the dimensionless overdensity of matter field is defined as:

δm(~x) =
ρm(~x)

ρ̄m
, (2.57)

where ρm(~x) is the matter density field and ρ̄m is the background average matter density.

The two point correlation function of the over density is:

ξm(~x, ~x′) ≡ 〈δm(~x)δm(~x′)〉. (2.58)

We can make the Fourier tranform to get the matter power spectrum:

δm(~k) ≡
∫
δm(~x)ei

~k·~xd3x, (2.59)

Pm(~k,~k′) ≡ 1

(2π)3
〈δm(~k)δm(~k′)〉. (2.60)

Since our universe is isotropic and homogeneous,

Pm(~k,~k′) = δD(~k − ~k′)Pm(k), (2.61)

so that P (k) only depends on magnitude of vector ~k. Here δD(~k) is the Dirac-delta function.

Notice that P (k) has dimension ∼ k−3, and the dimensionless logarithmic band power could

be useful:

∆2
m(k) ≡ k3Pm(k)

2π2
. (2.62)

For a particle with constant mass, its overdensity δ(k) is proportional to phase space dis-

tribution f(k). Similar to the case of photons, in practice we use the Boltzmann codes to

numerically solve the matter fluctuation and translate them into the matter power spectrum.

However, I would like to give some approximated analytical solutions which are much less

accurate than the Boltzmann codes but still capture key features of the large scale struc-

ture growth. Schematically, the matter power spectrum could be broken down into three

components: the primordial power, the transfer function and the growth function.

Pm(k, a) = P 0
m(k)× T (k)×

(
D(a)

D(1)

)2

, (2.63)

where P 0
m(k) is the primordial matter power spectrum determined at the exit of inflation.

Here T (k) transfer function describes the effect resulted from different horizon-crossing time

for the modes. The modes that enter the horizon early, namely k > aH before the matter-

radiation equality evolves very differently from the modes that enter after matter-radiation
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equality. The pressure of the radiation significantly slows down the structure growth. And

lastly, D(a) is defined as:

D(a) ≡ δm(a)

δm(a∗)
, (2.64)

where a∗ is a late enough time when every mode is in the horizon and the growth of the

over-density becomes scale independent. In such epoch, where kτ >> 1, we can simplify the

Boltzmann and Einstein equations to get a linear growth equation:

d2δm
da2

+

(
d ln(H)

da
+

3

a

)
dδm
da
− 3ΩmH

2
0

2a5H2
δm = 0. (2.65)

We will see in the next chapter how P (k) is related to the direct observations in practice.

Unlike the clean CMB temperature C` that we can in principle measure out of a full sky map

of the cosmic microwave background photon, the theory predicted matter power spectrum

needs projection onto 2D planes (or mapping into the redshift space) to be compared with

the real world observations.

2.4 Summary and Extensions to ΛCDM Model

In this chapter, I tried to present a full picture of the framework of the modern cosmology

theory, taking ΛCDM model as an example. Starting from the theory of gravity, a cosmology

model serves to draw the expansion and structure formation history on a homogeneous and

isotropic spacetime canvas. I presented the timeline for the drastic (non-equilibrium) major

events that happened since the Big Bang. Skipping more involved mathematical details, I

schematically explained how the theories give quantitative predictions on the background and

perturbative level. All these predictions are in an amazing agreement with our observations

so far, and that is why ΛCDM is the most successful cosmological model today.

However, as I implied in the flow of ΛCDM story above, there are plenty of assumptions

for us to challenge and plenty of room for us to propose extensions to the vanilla-ΛCDM

model. We are doing this for a reason – despite the success of ΛCDM, some anomalies that

cannot be fully explained by ΛCDM have started to show up as the precision of observa-

tions rapidly improves. For example, the 3σ − 5σ discrepancy between the early universe

and late universe measurement of the Hubble constant has stimulated a hot debate in the

community [10, 44, 45]. Moreover, the Hubble constant measured by observing the redshift

and the distance to the nearby Supernovae takes the value (73.48± 1.66)km s−1 Mpc−1 [46],

while the model-fitting to the ΛCDM model of the CMB temperature anisotropy spectrum

constrains the Hubble constant to be (67.27 ± 0.60)km s−1 Mpc−1 [10]. The possibility
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of non-cosmological systematic error causing the Hubble tension still exists. But with the

growing number of independent early and late universe measurements of the Hubble constant

confirming the persistence of the tension (see a compilation of the current status in [44]),

the investigation on a possible theoretical resolution seems more necessary than ever. Al-

though not as statistically prominent as the Hubble tension, other surprises like the lower

amplitude of the matter fluctuation in cosmic shear surveys [7] and enhanced global 21 cm

signal absorption [47] appeared and are waiting for further confirmation [48].

Most of the extended cosmological models to ΛCDM model include one or more of the

following theoretical elements:

1. Non-default background metric. For example, a non-flat universe with constant posi-

tive curvature (de Sitter space) or negative curvature (anti-de Sitter space) is a very

popular extended model. Also under the microscope are the assumptions of the perfect

inhomogeneity and isotropy, and the number of space dimensions of our universe.

2. Modified gravity. As briefly mentioned before, the Hilbert-Einstein action, equation

2.19, is the simplest possible form of gravity. Higher order terms could be resulted from

an effective field theory of a UV complete theory. These theories alter the Einstein

equations.

3. More complicated composition and dynamics of the fluid in the universe. Theorists

have introduced new particle species to ΛCDM, and/or changed their equation of

motion and interactions. These theories alter the Boltzmann equations.

In this thesis, I present a state-of-art analysis of a phenomenological model where the dark

matter converts into the dark radiation. I am also involved deeply in the DES extensions

group, where curved spacetime, modified gravity, massive neutrinos and the time-varying

equation of state for dark energy are studied with combined cosmological probes. It is not

easy to find a model that cures the tensions while keeping the successful features of the

ΛCDM. But each time we experiment with a different model, we are one step closer to

finding the right handle to pull. Not only are the analysis techniques transferable to new

surveys and new models, but also we learn how the universe reacts to the different variations

we introduce into it – they are not easy to see through intuitively or even through analytical

calculations, given the complexity of the universe itself. This thesis hopefully contributes

one piece to the puzzle.
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Chapter 3

Large Scale Structure Observables

In the previous chapter, I presented how to predict the matter overdensity inhomogeneity,

described by matter power spectrum P (k), starting from the cosmological model. P (k) lives

in the 3D wave-number space, while in practice we are only able to measure the angular

distribution of the matter field, since all of our observations are performed from the Earth.

Hence in this chapter, I will present how we theoretically obtain the angular correlation

functions of the mass tracers for a galaxy survey. I will continue in the first half of the next

chapter, describing how to fuse theory predictions into a survey likelihood, using DES as the

example.

In this section I will start with the strategy of projecting an arbitrary mass tracer to the

angular 2D space, then present how it works for the galaxy position and the weak lensing

shear case by case. By a mass tracer, I mean a field roughly tracing the mass overdensity

defined in equation 2.57, but ”dressed” by other physics and systematics, denoted as δ(~x).

The 2D angular distribution of mass, projected along the radial direction, is given by:

δ(~θ) =

∫ χ∞

0

dχW (χ)δ(~x(χ, ~θ)), (3.1)

where ~x are the comoving configuration space coordinates, and χ∞ is the comoving distance

at z →∞. Here the weight function W is normalized to 1:∫ χ∞

0

dχW (χ) = 1. (3.2)

The 2D conjugate to ~θ is the 2D multipole vector ~l:

δ(~l) =

∫
d2θe−i

~l·~θδ(~θ), (3.3)
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and the angular power spectrum then becomes:

C(l) =
1

(2π)2

∫
d2l′〈δ(~l)δ(~l′)〉

=
1

(2π)2

∫
d2l′

∫
d2θ

∫
d2θ′e−i(

~l·~θ+~l′·~θ′)

×
∫ χ∞

0

dχW (χ)

∫ χ∞

0

dχ′W (χ′)

∫
d3k

(2π)3
P (k)ei

~k·[~x(χ,~θ)−~x′(χ′,~θ′)],

(3.4)

where we used the definition of 3D power spectra:

〈δ(~x)δ(~x′)〉 =

∫
d3k

(2π)3
P (k)ei

~k·(~x−~x′). (3.5)

The integrals over l′, θ, θ′ and the two k components along the angular direction, k1, k2, are

all sample trivial Gaussian or Dirac-delta function integrals, so without losing any generality,

C(l) =

∫ χ∞

0

dχ
W (χ)

χ2

∫ χ∞

0

dχ′W (χ′)

∫ ∞
−∞

dk3

(2π)
P

(√
k2

3 + l2/χ2

)
eik3[χ−χ′]. (3.6)

We need to do some approximations to simplify the integral over k3. Notice that when

we deal with small angles, which is usually the case in the galaxy surveys, l ∼ θ−1 is

large, so l/χ >> 1/χ. Meanwhile, for the characteristic comoving distances spanned by

the weighting function W (χ), if k3 is so large that k3χ >> 2π then the plane wave eik3χ

would be very oscillatory. Such mode’s peaks and valleys cancel out in the integral over the

comoving distance (redshift). Thus only the modes with small k3 << 1/χ << l/χ contribute

considerably to small angle correlations, i.e. large l moments. Hence we can carry out the

Limber approximation and obtain [49]:

C(l) =

∫ χ∞

0

dχ
W 2(χ)

χ2
P

(
(l +

1

2
)/χ

)
. (3.7)

3.1 Galaxy Clustering Two-point Correlation Function

Galaxies tend to form in the gravitational potential wells, hence they trace the overdensity

of the matter. We can relate the matter overdensity and the galaxy number overdensity by

the galaxy bias:

δg(k, z) = b(k, z)δm(k, z). (3.8)

In the simplest linear model the galaxy bias b(k, z) is usually assumed to be a constant.

The weight function for a galaxy sample is determined by the angular number density of
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the galaxies:

W (χ) =
ng(z(χ))∫
dzng(z)

dz

dχ
. (3.9)

In tomographic galaxy surveys like DES, we partition galaxy samples into several redshift

bins, thus have multiple ni(z) distributions centered at raising order of redshift. This fact

will only change the weight function square W 2(χ) in equation 3.7 to W a(χ)W b(χ), where

a and b are the indices of the redshift bin. Substituting the weight function for the galaxy

clustering and the galaxy overdensity into equation 3.7, the angular moments for the galaxy

clustering between two tomographic redshift bins take the form [50]:

Cab
gg(l) =

∫
dχ
qag (

l+1/2
χ
, χ)qbg(

l+1/2
χ
, χ)

χ2
Pm

(
l + 1/2

χ
, z(χ)

)
, (3.10)

qag (k, χ) = ba(k, z(χ))
nag(z(χ))∫
dznig(z)

dz

dχ
. (3.11)

And the angular two-point correlation function is [51]:

wab(θ) =

∫
dl

2π
lJ0(lθ)Cab

gg(l), (3.12)

where J0(lθ) is the zeroth order Bessel function of the first kind.

3.2 Weak Lensing Shear Two-point Correlation Func-

tions

In this section I will introduce the weak lensing shear angular spectrum. It will be a longer

and more complicated journey than the previous section on galaxy clustering, as we need to

start from the physics of weak lensing.

In general relativity, gravitational force is equivalent to the curved spacetime. In an-

other word, gravity bends light. The matter overdensity in the universe correlates with the

fluctuation of the gravitational potential, and the scalar perturbed metric could be written

as:

ds2 = (−1− 2Ψ(x))dt2 + a2(t)(1 + 2Φ(x))d~x2, (3.13)

where x are 4D spacetime coordinates, ~x are 3D space coordinates. Furthermore, in the late

universe dominated by matter, we do not have anisotropic stress and the Einstein equation

tells us Ψ = −Φ.

We want to know how the light that traveled to us from a distant source is bent by the
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gravitational fluctuations, and how the image is distorted. More quantitatively, supposing a

light source is located at ~θS, and is observed to be at ~θO, we can quantify the weak lensing

effect by:

Aij ≡
∂θiS
∂θjO

. (3.14)

The following derivations assumes a small deviation angle and small gravitational fluctua-

tion. The space coordinates in the frame aligned with the line of sight can be written as

(χθ1, χθ2, χ). The geodesic equation is:

d2xi

dλ2
= −Γiµν

dxµ

dλ

dxν

dλ
. (3.15)

We can simplify the transverse geodesic equation to the following form given the perturbed

metric in equation 3.13:
d2

dχ2

(
χθi
)

= 2Φ,i. (3.16)

Using the boundary condition that θi(χ) = θiS and θi(0) = θiO, we obtain from integrating

the transverse geodesic equation:

θiS = θiO + 2

∫ χ

0

dχ′Φ,i(~x(χ′))

(
1− χ′

χ

)
. (3.17)

We are going to substitute this solution to equation 3.14. In the integral term, the only

dependence on θiO comes from ~x in Φ,i(~x(χ′)), and because the deviation angle is small, we

can adopt the approximation
∂Φ,i(~x(χ′))

∂θjO
= Φ,ij(~x(χ′))χ′. Thus we get:

Aij − δij = 2

∫ χ

0

dχ′Φ,ij(~x(χ′))χ′
(

1− χ′

χ

)
=

(
−κ− γ1 −γ2

−γ2 −κ+ γ1

)
. (3.18)

In the parametrization of the symmetric matrix Aij − δij introduced by the second equality,

parameter κ is called the convergence, describing the magnification of the lensed image, and

γ1, γ2 are the two components of the shear, describing the distortion of the lensed image.

The derivations so far are for a single source. When we have a number density distribu-

tion of the galaxies, to obtain the convergence κ and the distortion shear we do the radial

integration over the n(z) galaxy sample:

ψij = 2

∫ χ∞

0

dχ
nκ(z(χ))∫
dznκ(z)

dz

dχ

∫ χ

0

dχ′Φ,ij(~x(χ′))χ′
(

1− χ′

χ

)
=

(
−κ− γ1 −γ2

−γ2 −κ+ γ1

)
.

(3.19)
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The correlation between ψij components give us the convergence and shear correlations,

as they are linear combinations of ψij. We denote the 2D vector ~l = (l cos(φl), l sin(φl)),

and similarly for ~θ to explicitly express the components of ψij. The 2D moments for the

convergence κ = (ψ11 + ψ22)/2 can be calculated from:

〈ψijψlm〉 = (2π)2δ2(~l −~l′)Pψ
ijlm, (3.20)

Pκ(~l) =
1

4
(Pψ

2222 + Pψ
1111 + 2Pψ

2211) =
(l + 1/2)4

4

∫ χ∞

0

dχ
g2(χ)

χ6
PΦ((l + 1/2)/χ, z), (3.21)

where the lensing kernel function g(χ) and the gravitational potential power spectrum PΦ

are defined as:

〈Φ(~k)Φ(~k′)〉 = (2π)3δ3(~k − ~k′)PΦ(k), (3.22)

g(χ) ≡ 2χ

∫ χ∞

χ

dχ′
(

1− χ

χ′

)
nκ(z(χ))∫
dznκ(z)

dz

dχ
, (3.23)

and we used Limber approximation.

We have two components for the shear, γ1 and γ2, which could also be linearly expressed

by ψij thus their correlation functions:

Pγ1(
~l) =

1

4
(Pψ

2222 + Pψ
1111 − 2Pψ

2211) = cos2(2φl)Pκ(l), (3.24)

Pγ2(
~l) = Pψ

1212 = sin2(2φl)Pκ(l). (3.25)

Then we can Fourier transform a moments spectrum back to a angular two point correlation

function through:

wX(θ) =

∫
dl2

(2π)2
ei
~l·~θPX(~l). (3.26)

In practice, instead a fixed coordinate system, we usually decompose the shear into tangential

and cross direction, γt and γ×, which could be done by setting the 2D coordinate system for

each pair of convergence such that φθ = 0. In such coordinates, γt ≡ −γ1, γ× ≡ −γ2 [52],

as illustrated in 3.1. Accordingly, the two point correlation functions of the shear are also

between two components. Since 〈γtγ×〉 = 0, we usually adopt the two correlation functions

ξ± defined as:

ξ± = 〈γtγt〉 ± 〈γ×γ×〉. (3.27)

Remembering that φθ = 0 in γt, γ× decomposition, the Fourier transformation equation 3.26
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Figure 3.1: For an observer, γt is the component of the shear defined along the inverse of
vector ~θ, and γ× is the component perpendicular to ~θ.

gives us:

ξab+ (θ) =

∫
ldl

2π
J0(lθ)P ab

κ (l), (3.28)

ξab− (θ) =

∫
ldl

2π
J4(lθ)P ab

κ (l), (3.29)

P ab
κ (l) =

(l + 1/2)4

4

∫ χ∞

0

dχ
ga(χ)gb(χ)

χ6
PΦ((l + 1/2)/χ, z), (3.30)

where J0 and J4 are the zeroth and fourth Bessel function of the first kind. Here we consider

two samples cross-correlated like in the previous section for the galaxy clustering.

In real world, we use the ellipticity of the galaxy image as an estimator of the shear.

With moments measured from a galaxy image, the ellipticities are:

qij ≡
∫
dθIobs(θ)θiθj, (3.31)

ε1 ≡
q11 − q22

q11 + q22

, (3.32)

ε2 ≡
2q12

q11 + q22

. (3.33)

In the case where the unlensed (original) image of the galaxy is circular and all the distortions
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are small under weak lensing, we find the approximation:

ε1 ' 2γ1, ε2 ' 2γ2. (3.34)

One might worry that since we observe the galaxies edge-on most of the time, the original

image is not circular anyway. But remember that we are statistically measuring the two point

correlation functions. If the orientations of the galaxies are uncorrelated with each other, this

randomly generated ellipticity will not have any effect on the correlation function. However,

during the formation of the galaxies, some of them are indeed correlated with their the

orientations. This factor brings in an important systematic uncertainty in the weak lensing

measurements, called the intrinsic alignment, and it can be modeled at linear and nonlinear

level [53,54].

3.3 Galaxy-Galaxy Lensing Two Point Correlation Func-

tion

We call the two point correlation function of the tangential shear and the galaxy position

the galaxy-galaxy lensing function. It takes one kernel from the galaxy sample, W (χ), and

another kernel from the weak lensing shear, g(χ):

γabt (θ) =

∫
ldl

2π
J2(lθ)

(l + 1/2)2

2

∫ χ∞

0

dχ
ga(χ)W b(χ)

χ4
PΦm((l + 1/2)/χ, z), (3.35)

where PΦm is the 3D k-space cross correlation spectrum for the matter overdensity and

gravitational potential field.
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Chapter 4

Baryonic Effects on the DES Cosmic

Shear Analysis (Original Work)

In last chapter, I derived predictions for some large scale structure observables. From this

chapter on, the contents are mostly based on the original work carried out by myself with

collaborators in the Dark Energy Survey, and will present more technical details. This

chapter starts with an overview of the Dark Energy Survey, which serves as background

information also for the following chapters. After the DES introduction, I will focus on

my major contribution to the DES Year-3 key paper – the effort to mitigate the impact of

baryonic systematics on the DES Year-3 cosmic shear analysis.

4.1 DES Overview

The Dark Energy Survey is one of the currently ongoing photometric galaxy surveys, together

with the Kilo-Degree Survey (KiDS) [55], Hyper Suprime Cam (HSC) [56]. DES has already

finished its six years of data taking, covering ∼ 5000 deg2 of the sky as shown in figure 4.1,

and recording information about ∼ 300 million galaxies. At the time the projects in this

thesis were carried out, DES was still processing its large scale structure data products from

Year-3 galaxy maps. All of the projects in this thesis use real DES Year-1 data product or

synthetic DES Year-3 data products, as will be specified in the introductory or methodology

sections of the following chapters.

The key cosmological data product of DES is something we call the 3x2pt data product,

which is a combined measurement (joint covariance matrix) of the galaxy clustering, weak

lensing shear, and the galaxy-galaxy lensing two-point correlation functions. Their theory

predictions have been calculated in the previous section. The methodology including the

covariance matrix calculation and the validation tests for the 3x2pt combined likelihood is
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Figure 4.1: The observing stragegy footprint of DES. See
https://www.darkenergysurvey.org/the-des-project/survey-and-operations/ .

presented in the paper [50], and the measurements of the data products are summarized in

[51,52,57]. The following paragraphs will provide a brief summary of the above information.

In the galaxy-galaxy lensing context, the source galaxies are lensed by the lens galaxies.

Hence there is physically meaningful correlation between the image-distortion, namely the

shear, of the source galaxies and the position of the lens galaxies. The source and lens galaxy

number densities are denoted by nκ and ng in chapter 3. The 3x2pt correlation functions

are measured from m redshift bins of the source galaxy catalog and n redshift bins of the

lens galaxy catalog, where m and n are dependent on the algorithm used to categorize the

galaxy samples into redshift bins.

For the lens galaxies, DES Year-1 used the redMaGiC [58] algorithm to construct galaxy

position samples and to derive the photometric redshift estimates (photo-z) for the lens pop-

ulation nag(z). The lens galaxies are binned into five redshift ranges, z = [(0.15− 0.3), (0.3−
0.45), (0.45− 0.6), (0.6− 0.75), (0.75− 0.9)].

For the source galaxies, DES Year-1 used METACALIBRATION [59, 60] to measure the

galaxy shape samples and the source galaxy population naκ(z) photo-z. The catalog from

METACALIBRATION is cross-checked with another algorithm IM3SHAPE [61], validating its

use for cosmological analysis purpose [52, 62]. We have four redshift bins for the source

galaxies z = [(0.2− 0.43), (0.43− 0.63), (0.63− 0.9), (0.9− 1.3)].

The redshift distributions of the resulting lens and source galaxy populations are illus-

trated in figure 4.2.
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Figure 4.2: The lens and source galaxy population distribution against redshift. The catalogs
produced by redMaGiC and METACALIBRATION are used for DES Year-1 cosmology analysis.

Given the galaxy position and shape measurements, we use the Landy-Szalay estimator

to obtain the two-point correlations [63]:

ξ̂ =
DD− 2DR + RR

RR
(4.1)

where ξ̂ is the estimator for any sort of two-point, DD is the number of pairs with a separation

in an log-spaced angular bin [θ, θe∆], RR is the same for a randomly distributed catalog,

and DR is the cross-correlated pair counts between data and random distributions. DES

measure each of the 3x2pt spectrum using treecorr algorithm [64] 1, in 20 log-spaced angular

bins in the range 2.5′ < θ < 250′.

In DES Year-1 3x2pt, we have 5 auto-correlated galaxy clustering two-point functions

wa(θ),
∑4

n=1 n × 2 = 20 weak lensing cosmic shear two-point functions ξab± , and 4 × 5 =

20 galaxy-galaxy lensing two-point functions. In total, we have 45 angular 2pt function

measurements and 45× 20 = 900 data points. The 400 measurements of DES Year-1 cosmic

shear correlations are shown in figure 4.3. The points in the grey area are removed from

the cosmology analysis due to the systematic uncertainties mainly caused by the baryonic

1https://github.com/rmjarvis/TreeCorr
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effects. As we can see from figure 4.3, these systematics forced us to abandon a considerable

amount of the information that could potentially help constrain cosmology. Later in this

chapter I will investigate how we balance between the constraining power and the systematic

bias due to baryonic effects, under DES Year-3 precision.

We use the Bayesian statistics to carry out the cosmological parameters analysis. In

order to do so, we utilize the Monte Carlo or nonlinear regression algorithms to maximize the

posterior for the best-fit parameter matching the measured data. The posterior is expressed

by the following equation in terms of the prior and the measured data likelihood at a point

p in the n-dimensional parameter space:

P (p|D) =
P(p)L(D|M(p))

P (D)
, (4.2)

where D is a measured data vector, for example the 900 data points in the 3x2pt analysis; p

is a point in the full varying parameter space, including the cosmological parameters and the

nuisance parameters modeling the systematics; M(p) is the theory prediction for D given

parameters p. The left-hand side of this equation is the posterior of the parameters given

a measurement, P(p) is the prior information on the parameters before measurement, L

is the likelihood, and P (D) is the probability only dependent on data, called the Bayesian

evidence. The calculation of P (D) requires an integral over the full parameter space. Such

an integral is difficult to compute, because the the dimension of the full parameter space

is usually too high. For this reason, in practice most of the time we just treat P (D) as a

normalization factor, when we are mainly interested in the parameter posteriors. However,

the Bayesian evidence could provide important information in the model selections.

Assuming Gaussianity, we can calculate the likelihood of the measured data vector D

with the model parameters p.

L(D|p) ∝ exp

(
−1

2

[
(D−M(p))TC−1(D−M(p))

])
(4.3)

where C is the covariance matrix. In DES Year-1 analysis, the covariance matrix is theoret-

ically calculated using the software COSMOLIKE [65]. The final covariance matrix used

in the analysis consists of Gaussian and non-Gaussian contributions computed analytically

using the four-point correlation functions. The non-Gaussian part is mainly induced by the

non-linear density field at small scales and employs a halo model in its derivation. The

Gaussian part can be expressed by the product of two-point correlation functions, and is

inversely proportional to the number of measured modes in [θ, θe∆] range [50, 66]. Hence

for DES Year-3 which has three times the survey volume as DES Year-1, the error bar
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Figure 4.3: DES Year-1 measurement of cosmic shear two-point correlation functions ξ±.
The points in the grey area were cut out from the cosmology analysis, due to the lack of
knowledge on the systematic uncertainties caused by the baryonic effect.
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σYear−3 ∼
√
C ∼ N

−1/2
modes ∼ V

−1/2
survey ∼ σYear−1√

3
. This is just the leading order improvement on

the constraining power of DES Year-3 analysis. Y3 GOLD photometric data set also im-

proved the althorithms for photometric calibration, objects classification etc. comparing to

Y1 GOLD data set, as discussed in detail in [67].

The rest of this chapter investigates that under Year-3 precision, i.e. using the covariance

calculated under Year-3 conditions, how cosmic shear constraints on cosmological parameters

are affected by the baryonic feedback and how the corresponding systematic uncertainties

should be approached in the DES Year-3 analysis. Note that since this project happened

when other analysis choices of Year-3 were being developed at the same time, the Year-3

covariance matrix used in the tests which depends on the cosmology is not exactly the same

as the finalized version. The survey volume factor mentioned in the previous paragraph is

predominant comparing to other details in the pipeline engineering, hence the covariance

matrix used in this study is expected to capture the change in precision with sufficient

accuracy.

4.2 Baryonic Feedback in Cosmic Shears

The cosmic shear two-point correlation function or harmonic space spectrum, as presented

in the previous chapter, is a powerful measurement of the two-dimensional projection of

the matter power spectrum in three-dimensional k-space. The matter power spectrum that

captures structure formation features in the universe can be very reliably predicted by solv-

ing the perturbation equations at linear scale. However, perturbation equations are only

accurate when the perturbations to density are small with δ << 1. When this condition

fails, higher order terms like δ2 become important and the equation becomes nonlinear. In

late universe, nonlinear effects on the matter power spectrum starts to show up for wave

numbers k & 0.1h Mpc−1. On smaller scales, i.e. larger wave number k, we need to emulate

the N-body simulation measurements [68,69] or use empirically fitted Halo models [70,71] to

predict nonlinear matter power spectrum. Nonlinear matter power spectrum has a little bit

higher theoretical uncertainty than the linear scale physics due to their complexity, but still

considered to be precise enough for the current generation observations, with better than

∼ 5% precision at scales k < 1hMpc−1 depending on the methodology.

These calculations are feasible thanks to the simplicity of dark matter interaction. The

dark matter dominates the matter density in our universe, and it feels gravity only on cosmo-

logical scales. A bigger challenge for current generation of precision cosmology experiments is

presented when considering the effect of baryonic interactions on structure formation. Stan-

dard Model interactions are much stronger than gravitational interaction, hence as expected
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they redistribute the matter perturbation field in more dramatic ways that are not calculable

through linear perturbation theories. The most prominent baryonic effects that redistribute

the total matter density field are the active galactic nuclei (AGN) or Supernovae feedback

that in general expels the gas content, and the central galaxy or gas cooling that results in

a steeper density profile towards halo centers [72]. These baryonic processes could alter the

matter power spectrum at scales 0.1hMpc−1 . k . 10hMpc−1 by as much as 10%−20% [73].

This number has large uncertainty, much larger than the precision requirement . 5% on the

prediction of the matter power spectrum for the current generation weak lensing surveys.

Astrophysicists have been trying to develop the simulations with hydrodynamic fluid solvers

to elucidate the baryonic feedback effects. But even in hydrodynamic simulations, the bary-

onic effects varies in different simulation suites due to different sub-grid recipe parameters.

The scale of AGN and other baryonic events are too small to be resolved under current

simulation precision so sub-grid recipe is necessary. Such sub-grid recipe parameters de-

scribing the magnitude and other features of the baryonic feedback lack theory predictions

and high-resolution observations to cross-check with. Hence the baryonic feedback is a major

cause of the systematic uncertainty in weak lensing surveys at small scales. The possible

realizations of the baryonic effects from several hydrodynamic simulations are illustrated in

figure 4.4. The y-axis of figure 4.4 shows the difference between the baryon-contaminated

and dark-matter-only synthetic cosmic shear measurements, where the baryonic feedback

predicted by different simulation suites are implemented into the synthetic data as described

in sub-section 4.3.1.

As the leading current generation weak lensing survey, the DES explored several strategies

to mitigate the baryonic systematics. I contributed to these effort by testing one of the

strategies for the DES analysis pipeline, which uses a halo model built to describe the

baryonic effects on nonlinear matter power spectrum. The final goal is to determine the best

way to approach the baryonic uncertainty for DES Year-3 cosmology analysis.

To start, I will present the (incomplete) list of options for the purpose of mitigating

the baryonic effects, then continue on to the specific strategy we tested in the methodology

section.

Baryonic Effect Mitigation Strategies

1. Parametrized Baryon Models. People have spent extensive efforts trying to accu-

rately model the baryon effect on the matter power spectrum. Unlike PCA, most of

the baryonic parameters introduced by this type of the models have physical meanings.

Hence these baryonic parameters are better-motivated to be constrained in combined
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Figure 4.4: The baryonic effect on cosmic shear ξ± depicted by the difference between bary-
onic and dark-matter-only synthetic data (y-axis). They are generated based on the com-
parison between the hydrodynamic and dark-matter-only simulations of OWLS AGN, eagle,
BAHAMAS-Theat = 8.0WMAP−9 and Illustris suites. The dashed vertical lines are the DES
Year-3 scale cuts. The survey measurement uncertainty is theoretically calculated based on
DES Year-3 footprint. 38



observations, for example cosmic shear with X-ray clustering. They could possibly set

priors on the baryonic effect for future surveys. The baryonification, or the baryon

correction model (BCM) is a promising model which describes the rescaling of power

spectrum due to baryonic physics, by the parameters characterizing the gas, galaxy

fraction and their density profiles in halos [72]. Mead el al. proposed another halo

model in 2015 that could capture the nonlinear and baryonic features of the matter

power spectrum in ΛCDM, massive neutrino, w(a) dark energy, and modified gravity

cosmology [74, 75]. Mead’s halo model introduces seven halo parameters, but most

of them are fixed to the best-fit values of the (DMO) N-body Cosmic Emu suite of

simulations [76]. The baryonic effects are claimed to be captured by varying two

halo parameters among the seven, validated against the hydrodynamic OWLS simu-

lations [77]. In this chapter I will examine how efficient they are at mitigating the

baryonic systematics in DES Year-3 cosmology analysis.

2. Principle Component Analysis. This method carries out principle component

analysis on several suites of hydrodynamic simulations, and takes the first one or a

few principle components to span a linear space in hope that it captures the baryonic

effect features for general cases. Huang et al.’s work explored this method on DES

Year 1 data extensively [78]. In general, it is a powerful tool to deal with baryonic

systematics, while one of its short-comings is the lack of physics interpretation of the

principle component amplitude constraints.

3. Simulation-Built Emulators. If we can measure the matter power spectra from

enough realizations of hydrodynamic simulations, sampling the cosmological parame-

ter space densely enough, we can interpolate the spectrum as a function of the cosmo-

logical parameters. Such cosmological emulators have been built for several suites of

hydrodynamical simulations, including but not limited to the Mira-Titan universe [68]

and the Coyote universe [79,80]. The advantage of emulators is their relatively reliable

numerical simulations of the universe from first principles, despite that the baryonic

effects still vary in a (narrower and narrower) range based on sub-grid recipe choices.

However, due to the expensiveness of the high-resolution hydrodynamic simulations,

the emulator predictions on matter power spectrum are only able to cover a very nar-

row range of the cosmology. For this reason, in the real data analysis where we need to

sample a wide area of the cosmological parameter space, we can not use the emulator as

our theoretical prediction currently. In any case, the node simulations of the emulators

provide accurate measurements of the power spectra with baryonic effects. They are

the perfect ingredients necessary for the model building efforts for the baryonic effects
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described in the parametrized baryon models paragraph.

4. Scale Cuts. Lastly, we come to the computationally most economical strategy to

mitigate baryonic effects. Since the baryonic effects only impact observables below

certain physical distance scales, to avoid the corresponding systematics we can just

cut the small scales out from the data set used for cosmological analysis. There are

multiple ways to determine the scale cuts, from roughly restoring the physical scale

in the angular space [50] to cleaner x-cuts decoupling the lensing kernels [81]. The

DES Year 1 analysis used the scale-cut strategy [9], and I will show by the end of this

chapter that for DES Year 3 precision, this is still the most economical and reliable

way of handling the baryonic systematics.

4.3 Methodology

We carried out the baryonic systematics tests by runing full Monte Carlo chain on DES

Year-1 analysis pipeline. The analysis pipeline and the samplers for Monte Carlo process is

described in appendix A. The baseline ΛCDM analysis pipeline has 26 varying parameters,

while wCDM introduces one more cosmological parameter w, and the HMcode introduces

another two halo model parameters A and η0, as listed in table 4.1 and table 4.2.

In all of the validation tests in this project, we used the covariance matrix calculated by

COSMOLIKE for DES Year-3 precision, as of the version produced by the analysis group in

April 2019. All the data vectors are synthetic and are generated at the cosmology near the

bestfit of the DES Year-1+Planck result. The synthetic data vectors are calculated from the

theory prediction pipeline (See appendix A), with no noise added.

HMcode is the code calculating the nonlinear power spectrum from Mead’s halo model

as mentioned in the previous section [74,75]. It is claimed to be able to capture the baryonic

effects in the nonlinear matter power spectrum by varying two halo parameters, the minimum

halo concentration A and the constant part of the halo bloating parameter η0. The definition

of these two parameters will be briefly summarized in the following paragraphs. In short,

they are designed to give more freedom to the halo density profile due to the uncertain

redistribution of the matter field from baryonic feedback.

To start with, the halo model prediction of the matter power spectrum can be represented

by a smooth combination of the one-halo and two-halo terms:

∆2(k) =
[
(∆2

2H)α + (∆2
1H)α)

]1/α
, (4.4)

where the two-halo term is basically the linear matter power spectrum damped at quasi-
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Table 4.1: Cosmological and nuisance parameters in DES-Y1 3x2pt baseline ΛCDM analysis,
and their priors. The center values listed in the flat priors are the values at which the testing
synthetic data vectors are generated. The baseline synthetic data vector is generated by the
fiducial DES pipeline at center values, and the baryonic synthetic data vector on this basis is
contaminated by the baryonic effects measured from simulations, as described in subsection
4.3.1. The definition of the nuisance parameters can be found in appendix A.

Parameter Prior
Cosmological

Ωm flat (0.1, 0.295, 0.9)
h flat (0.55, 0.6881, 0.9)
Ωb flat (0.03, 0.04680.07)
ns flat (0.87, 0.9676, 1.07)
As flat (5× 10−10, 2.26× 10−9, 5× 10−9)
Ωνh

2
0 flat (0.0006, 0.0006155, 0.01)

σ8 (derived) center value 0.8345

S8 = σ8

√
Ωm/0.3 (derived) center value 0.8275

Lens Galaxy Bias
b1 flat(0.8, 1.45, 3.0)
b2 flat(0.8, 1.55, 3.0)
b3 flat(0.8, 1.65, 3.0)
b4 flat(0.8, 1.8, 3.0)
b5 flat(0.8, 2.0, 3.0)

Intrinsic Alignment
AIA(z) = AIA[(1 + z)/1.62]ηIA

AIA flat (-5.0, 0.0, 5.0)
ηIA flat (-5.0, 0.0, 5.0)

Lens photo-z shift (red sequence)
∆z1

l Gauss (0.0, 0.007)
∆z2

l Gauss (0.0, 0.007)
∆z3

l Gauss (0.0, 0.006)
∆z4

l Gauss (0.0, 0.01)
∆z5

l Gauss (0.0, 0.01)
Source photo-z shift

∆z1
s Gauss (0.0, 0.016)

∆z2
s Gauss (0.0, 0.013)

∆z3
s Gauss (0.0, 0.011)

∆z4
s Gauss (0.0, 0.022)

Shear calibration
mi, (i = 1, ...4) Gauss (0.012, 0.023)

linear scales, and the one-halo term is determined by the density profile of the halo. The
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Table 4.2: Varying parameters in addition to the defaults in table 4.1. In wCDM cosmolgy
where dark energy is allowed to have the equation of state parameter w 6= −1.0, we vary w
in the flat prior listed here. When we push to smaller scales of the cosmic shear analysis, we
use HMcode to replace takahashi-halofit and introduce two more halo parameters.

Parameter Prior
Cosmological

w flat (−2.0,−1.0,−0.33)
Halo Model – HMcode

A flat (1.0, 3.13, 7.5)
η0 flat (0.4, 0.603, 1.0)

halo density profile in HMcode starts from the NFW profile [82]:

ρ(r) =
ρN

(r/rs)(1 + r/rs)2
, (4.5)

where the scale radius is usually determined by rs = rv/c, with rv being the virial radius of

the halo and c being the concentration. Their first baryonic Halo parameter A is defined as

the minimum halo concentration:

c(M, z) = A
1 + zf (M)

1 + z
, (4.6)

where zf (M) is the formation redshift of the halo as a function of halo mass M . Since z of our

observation are always smaller than zf (M), A is by definition the minimum concentration

of the halo. The variation of A will change the scale of the core of a NFW-profile halo.

To obtain the one-halo term of the power spectrum in the wave-number space, we need

the Fourier transformed density profile:

W (k,M) =
1

M

∫ rv

0

sin(kr)

kr
4πr2ρ(r,M)dr (4.7)

Here [75] introduces another halo parameter to capture the bloating effect on the halo due

to the baryonic feedback. This adaption to the baryonic effects is done by rescaling the halo

density profile used for the one-halo term in the power spectrum:

W (k,M)→ W (νηk,M). (4.8)

The peak threshold ν ≡ δc(z)/σ(M, z). δc(z) is the critical over-density, defined as the

linearly evolved over-density at redshift z for an initial over-density δi that completed its

nonlinear spherical collapse at redshift z. σ(M, z) is the matter over-density field filtered on
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a comoving radius R that M = 4π
3
R3ρ̄ (the density is also the comoving one).

σ(R, z) =

∫ ∞
0

∆2(k, z)

(
3j1(kR)

kR

)2

d ln k (4.9)

η could have higher order dependence on σ8, where σ8 is the filtered over-density field defined

above with R = 8h−1 Mpc. In the default HMcode setting we only vary the zeroth-order

term, η0, for baryonic effects.

In the original paper [74,75], HMcode’s ability to model the baryonic feedback by varying

halo parameters A and η0 is tested on several simulations in the OWLS suite with different

sub-grid baryonic event recipes. HMcode is also adopted for the cosmology anlaysis or

validation tests in several recent weak lensing surveys, including KiDS-450 [55] and HSC

first-year [83]. Thus we would like to test if HMcode could also help DES Year-3 to mitigate

the baryonic effects.

There are two criteria to consider in the baryonic analysis choices. The first is the

minimization of the bias on cosmological parameters. If our theory predicted data vectors

generated from the prior parameter space do not include a good fitting to the real universe

measurement, the cosmological parameters that we are most interested in might be biased.

The second criteria is the maximization of the constraining power on cosmological parame-

ters. It can be achieved by including more data points into the analysis. By pushing scale

cuts to smaller angles, we are likely to see the increase in both the constraining power and the

bias. Because as figure 4.4 shows, the amplitudes of baryonic effects grow at smaller scales.

We need to experiment on different analysis choices to find a balance between the bias and

the constraining power on Ωm and σ8, the two best-constrained cosmological parameters in

DES survey.

4.3.1 Baryon Contaminated Simulated Data Vectors

We need a synthetic and controllable realization of the baryon effects on the data vectors to

test our anlaysis recipes. To do so, as described in Huang el al. [84], we take the measured

ratio between the hydrodynamic simulated matter power spectrum and the corresponding

dark-matter-only (DMO) simulated matter power spectrum, then multiply this ratio to the

theory predicted nonlinear matter power spectrum in a cosmology.

P th,baryon
m =

P sim,hydro
m

P sim,DMO
m

P th,DMO
m (4.10)

The 3x2pt data vector derived from such baryonic contaminated matter power spectrum

43



is labeled as synthetic baryonic data vector, and the 3x2pt derived from DMO nonlinear

matter power spectrum is labeled as synthetic DMO, or the baseline data vector. The

Cosmosis module that processes such baryonic decoration of the nonlinear matter power

spectrum can be found in the repository https://bitbucket.org/joezuntz/cosmosis-standard-

library/src/des-y3/structure/.

4.3.2 Analysis Choices

We run MCMC chains on the synthetic baryonic or DMO data vectors to investigate the

influence of our analysis choices on the cosmological parameter constraining power and bias.

The DES analysis pipeline is described in the appendix A. The controlled variation in our

analysis choices are mainly on these three factors:

1. The nonlinear module. DES fiducial Year-1 analysis uses takahashi-halofit [71] to

model the nonlinear matter power spectrum, which assumes dark matter only cosmol-

ogy. We implemented the HMcode based on dark matter + baryonic halo model [75]

into the Cosmosis, and use it as an alternative nonlinear module.

2. The halo (baryonic) parameters. After validating with multiple hydrodynamic

simulations, the general baryonic effect is claimed be described by the two halo pa-

rameters A and η0 of the HMcode [74], so marginalizing over them can help mitigate

the baryonic systematics. [75] has also provided fiducial bestfit values of them to be

A = 3.13 and η0 = 0.603 in DMO case (fittings to all cosmic emu simulations [79,80]).

We can choose between varying HMcode parameters A ∈ [1.0, 7.5], η0 ∈ [0.4, 1.0] with

flat priors, or fixing HMcode parameters A = 3.13, η0 = 0.603. The prior range is de-

termined from [74] Figure 6, which should cover the 2σ credible interval of the fitting

to OWLS suite of simulations, covering the dark-matter-only case and several other

ansatzs for the baryonic feedback.

3. Scale cuts. We try to push to smaller scales for the cosmic shears and include more

data points in our 3x2pt analysis. We did this by multiplying a smaller-than-one factor

with the Year-1 scale cuts illustrated in figure 4.3. Naturally, as the scale cuts on ξ−

are larger to start with, when we push to smaller scales there will be more data points

joining in the analysis from ξ− than from ξ+. The corresponding number of data points

for different scale cut choices are summarized in table 4.3.

After running full analysis pipeline on different combinations of the simulated data vectors

and analysis choices, we reach the conclusions in the next section.
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Scale Cuts # of pts in 3x2pt # of pts in cosmic shear

Y1 cuts 457 227
0.7× Y1 cosmic shear 497 267
0.5× Y1 cosmic shear 514 284
0.3× Y1 cosmic shear 550 320
0.1× Y1 cosmic shear 590 370

Table 4.3: The number of measurements when applying different scale cuts on ξ±(θ).
Throughout 3x2pt tests, the scale cuts on w(θ) and γt(θ) are unchanged from the Year-
1 cuts, because the small scale systematics on these two are dominated by the physics other
than baryonic effects.

4.4 Results

Figure 4.5: The baryonic systematics tests investigating the constraining power and bias on
cosmological parameters when we push to smaller scales. The baseline synthetic data vector
is generated by HMcode, fixing halo parameters A = 3.13, η0 = 0.603. eagle data vector is
generated by contaminating the baseline data vector by the baryonic effect measured from
eagle simulations. The blue bars in the figure are the standard deviations of Ωm and S8

in the Monte Carlo chains with different analysis choices. The orange crosses are the 1D
marginalized peak deviations from the fiducial values. Because there are projection effects in
the high-dimensional parameter space, the bias should be compared with the baseline chain
on the left. The first three chains in the figure use DES Year-1 scale cuts, and the rest of
them subsequently use 0.7, 0.5, 0.3, 0.1× Year-1 cosmic shear scale cuts, keeping the galaxy
clustering and galaxy-galaxy lensing scale cuts unchanged. Other than the second chain
which used HMcode but fixing the halo parameters, other chains vary A ∈ [1.0, 7.5], η0 ∈
[0.4, 1.0].

The result of analysis-choice tests are illustrated in the figure 4.5. The blue bars are
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Figure 4.6: Similar tests as figure 4.5, except for that we generate DMO baseline data
vector using takahashi-halofit, vary w0 in wCDM cosmology, and contaminate baseline data
vector with stronger baryonic feedback measured from OWLS-AGN simulations. There are
difference between takahashi-halofit and HMcode even in the DMO case, so these chains
cannot be compared directly to the baseline run in figure 4.5. But the trend from left to
right, from larger scale to smaller scale in this stronger baryonic feedback case demonstrates
the same conclusion as before: the cosmological parameters are protected from baryonic bias,
however we do not gain much constraining power on them from the baryon-affected small
scale physics.

the standard deviation of Ωm and S8 in the MCMC chain, characterizing the constraint

power. The orange crosses are the marginalized 1D peak bias from the truth value of the

parameter. Note that because there are projection effects in the high-dimensional parameter

space, the biases should be compared with the baseline run one, where we have the dark

matter only data vector in ΛCDM uncontaminated by any baryonic effects. The results in

figure 4.5 used eagle simulation measurements to contaminate the data vectors. We see that

after introducing two extra halo parameters to capture the baryonic features, when including

smaller scale data into the analysis we are protected from extreme bias, with the difference

of cosmological parameter 1D peak values between baryonic and dark-matter-only validation

tests < 0.2σ. So HMcode does help mitigating the bias due to the baryonic effects.
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However, the blue bars denoting the constraint power did not shrink notably up until 0.3

times Year-1 cosmic shear scale cuts. Another similar set of tests for wCDM data vectors

contaminated by OWLS-AGN simulation is illustated in Figure 4.6. Again in a different

cosmology, OWLS-AGN tests confirm the result that smaller scale cosmic shear measurements

do not contribute much to the constraining power on Ωm and S8. Qualitatively speaking,

given the increase of the number of data points from DES Year-1 scale cuts to 0.1 times

Year-1 cosmic shear scale cuts listed in table 4.3, we expect the uncertainty to shrink ∼ 12%

percent based on the principle of σ ∼ 1√
Npts

. However for both Ωm and S8, which are the

two tightest-constrained cosmological parameters for DES, the Monte Carlo chains obtain

only ∼ 6% shrinkage in the standard deviation for these two parameters. Large amount of

the additional information at small scales only contribute to the constraints on the nuisance

halo parameters, as shown in figure 4.7. Taking the definition of figure of merit (FoM) to

be [3]:

FoM = (detC)−1/2 (4.11)

The increase of FoMΩm−S8 is . 3.0%, while FoMA−η0 multiplies by O(1) factors when we

push to smaller scales.

Such small gain in the constraining power of Ωm and S8 is even approaching the uncer-

tainty due to the Monte Carlo sampler, i.e. the choice of using polychord, multinest or emcee

sampler, and the statistical fluctuation between each realization of the Monte Carlo chains.

Meanwhile, the analysis choices using more data points and more time consuming nonlinear

code (HMcode) are increasingly CPU-time expensive. So for DES Year-3 anlaysis, the most

economical and conservative analysis choice is still to exert the scale cuts that exclude the

baryonic scales.

DES Year-3 has higher precision than Year-1 thanks to its larger survey area. We need to

determine new scale cuts for the Year-3 analysis. In Year-1, the scale cuts on cosmic shear

data vector are determined by removing any data point where the OWLS-AGN baryonic

feedback contribution exceeds 2% [52]. The scales determined by this criterion are then

validated by the testing chains. For DES Year-3, I proposed a better-motivated criterion

to determine the scale cuts. Instead of the percentage of the baryonic effect contribution,

we use the ∆χ2 between the dark matter only and baryon contaminated data vector as a

measure of the baryonic systematics.

∆χ2
baryon = (Dbaryon −DDMO)TC−1 (Dbaryon −DDMO) (4.12)

Schematically, ∆χ2 is a measure of the deviation due to certain systematics in the units

of statistical uncertainty. This quantity is what directly affects the likelihood thus the
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Figure 4.7: The comparison on the constraining power gain pushing to smaller scales between
halo parameters and cosmological parameters. The halo parameters, as expected, are very
loosely constrained at larger scales because the cosmology there lacks sensitivity to them.
When pushing to smaller scales, the figure of merit of halo parameters increases significantly.
Meanwhile, for initially well-constrained cosmological parameters, small scale data did not
help much. The increase in figure of merit (FoM) . 3.0%, where the FoM is defined as in [3].

parameter constraints.

We generate scale cuts that restrict the ∆χ2 caused by OWLS-AGN baryonic feedback

to be smaller than 0.25, 0.5, 1.0, 1.5 and 2.0, then ran validation tests on them. In the

most unfortunate case, regardless of the degrees of freedom of the data vector or the model

parameter space, ∆χ2 = 1.0 could be projected into . 1.0σ bias on a single parameter. So

the limitation on the systematic uncertainty induced ∆χ2 should be tested on this order

of magnitude regardless of the degrees of freedom. The passing criterion for the chain-run

validation tests is that the bias on parameters Ωm, S8 and w0 due to the baryonic effect is

smaller than 0.3σ. The scale cuts satisfying this criterion is the ∆χ2 < 0.5 one, and it is

used for the final cosmic shear only and 3x2pt Year-3 analysis.
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Chapter 5

Extended Model Constraints in DES

(Original Work)

This chapter is focused on my contribution to DES Year-1 extended model anlaysis in ref-

erence [85]. DES Year-1 extended model paper constrained four well-known extensions to

ΛCDM models: the curved space, the extra relativistic species, the time-dependent dark

energy equation of state, and the modified gravity. My work focused on securing the cor-

rect statistics for the cosmological parameter reports in table 5.1, and producing the max a

posteriori (MAP) ∆χ2 for model comparisons.

5.1 Overview on the DES Year-1 Extended Model Anal-

ysis

In this section I briefly introduce the models and the data in the DES Year-1 extended model

analysis. The details about the analysis pipeline and the systematics validation can be found

in [85]. The fiducial analysis pipeline on which the extension analyses are based on has also

been introduced in chapter 4 and appendix A, and the 26 varying parameters of the ΛCDM

analysis pipeline are listed in table 4.1 1.

5.1.1 Extension Models

1. Curved universe. In ΛCDM cosmology, we assumed a flat universe as a result of

the slow-roll inflation. In this work the departure from zero curvature is characterized

1Some center values for the nuisance parameters Gaussian priors are calibrated with the real photo-z
data, but they are not very important for the topics here. Interested reader could refer to [85].
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by the density parameter of curvature Ωk ∈ [−0.25, 0.25], with flat prior. Ignoring the

amount of the radiation in late universe today, we have

H(a)

H0

=
[
Ωma

−3 + (1− Ωm − Ωk) + Ωka
−2
]1/2

(5.1)

The impact of the above equation on the expansion and the structure growth are

modeled by Einstein-Boltzmann codes with non-zero Ωk.

2. Extra relativistic species. The Standard Model contains three neutrino species,

which are the only (decoupled) relativistic species in the late time in ΛCDM cosmology.

As they are thermally produced in the early universe, the abundance of the relativistic

species can be calculated from the photon abundance measured from CMB. Given

current accurately measured CMB temperature, the number density of the relativistic

species is expressed as:

n = Neff × 113cm−3 (5.2)

where Neff the effective number of relativistic species is defined by the above equation.

Because the neutrinos are slightly coupled in the e± annihilation era, which is the

major event determining the photon abundance, the effective non-integer Neff = 3.046

in the Standard Model accounts for this correction. A larger Neff would imply extra

species of relativistic particles, for example the sterile neutrinos. In this work, we take

a flat prior for Neff ∈ [3.0, 9.0].

3. Dynamical dark energy. Although in ΛCDM the acceleration of the expansion of the

universe is predicted to be caused by the cosmological constant introduced in equation

2.44, so far we do not have much knowledge about the nature of dark energy. Many

of the candidate energy-momentum tensor with negative pressure have been studied

in the literature. So in the DES Year-1 extension paper, as an extension to ΛCDM

cosmology which has w = −1.0 constant equation of motion parameter, we investigate

a two-parameter equation of motion for dark energy:

w(a) = w0 + wa(1− a) (5.3)

In such so-called flat waCDM cosmology, the Hubble parameter becomes:

H(a)

H0

=
[
Ωma

−3 + (1− Ωm)a−3(1+w0+wa)e−3wa(1−a)
]1/2

(5.4)

Again, the Boltzmann code CAMB accepts (w0, wa) parametrization, and models the
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expansion history and structure growth for us. We set flat priors for w0 ∈ [−2.0,−0.33]

and wa ∈ [−3.0, 3.0].

4. Modified gravity. A popular explanation to the accelerated expansion of the universe

is modified gravity. There are various formal proposals for the modified gravity [86–88],

and for the observation analysis the µ − Σ approximation we adopted below is an

efficient description for the majority of cosmologically-motivated gravity theories. In

Newtonian gauge, the gravitational perturbation can be characterized by φ and ψ

(notice that they are subtly different from the Ψ and Φ defined in chapter 2 as Ψ has

a different sign):

ds2 = a2(−(1 + 2ψ)dt2 + (1− 2φ)dx2) (5.5)

In general relativity and with no anisotropic stress at late times, ψ = φ. µ−Σ modified

gravity is defined by the following generalization of the Poisson equation:

k2ψ = −4πGa2(1 + µ(a))ρmδm (5.6)

k2(ψ + φ) = −8πGa2(1 + Σ(a))ρmδm (5.7)

For simplicity, we introduce the two extension parameters µ0 and Σ0 by the functional

form:

µ(z) = µ0
ΩΛ(z)

ΩΛ

, Σ(z) = Σ0
ΩΛ(z)

Ωλ

(5.8)

where ΩΛ(z) is the time-dependent density parameter of the dark energy, and ΩΛ is the

current value. This way µ(z) and Σ(z) are specified by a total of two extra parameters

µ0 and Σ0.

We set flat priors on the modified gravity parameters µ0 ∈ [−3.0, 3.0] and Σ0 ∈
[−3.0, 3.0]. The expansion history and the linear perturbations of this extension are

modeled by a version of the Boltzmann code modified for the modified gravity, MG-

CAMB 2.

5.1.2 Data Sets

We used three of data set combinations to constrain the extension cosmology: DES-only,

External-only, and DES+External data sets. Here I briefly introduce each of them.

2https://aliojjati.github.io/MGCAMB/mgcamb.html
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DES data.

We use the publicly released DES Year-1 ”3x2pt” data product including galaxy clustering,

galaxy-galaxy lensing and cosmic shear two-point correlation functions described in chapter

4 for our analysis [89]. For the curved space, extra relativistic species, and dynamical dark

energy constraints, we use DES Year-1 key paper scale cuts. For the modified gravity tests,

we use more stringent scale cuts that only preserve the linear scales. In this case we are left

with 334 data points in 3x2pt.

External data.

1. CMB & CMB lensing. In this work we use Planck 2015 CMB likelihoods. We use the

Planck TT lite likelihood for multipoles 30 ≤ ` ≤ 2508, and low-multipole 2 ≤ ` ≤ 30

likelihood compiled for TT,EE,BB and TE. We also used the CMB lensing likelihood

from temperature map only, for 8 ≤ ` ≤ 2048.

2. BAO + RSD. We use baryonic acoustic oscillation and redshift space distortion mea-

surements of BOSS Data Release 12 [90] . The BOSS DR12 likelihood include the

measurements of H(zi), dA(zi) and f(zi)σ8(zi) at redshifts zi = 0.38, 0.51, 0.61, with

the joint covariance matrix. Here f is the linear growth rate f ≡ d ln(D)/d ln(a) of

the matter perturbation. We also separately included the measurement of DV (z) ≡
[cz(1 + z)2D2

A(z)/H(z)]1/3 and fσ8(z) from 6dF galaxy survey [91] and from SDSS

DR7 main galaxy sample [92], at redshift z = 0.106 and z = 0.15 respectively.

3. Supernovae. In this work we use the binned luminosity distance-redshift measurements

for Pantheon SNe Ia sample [93]. The redshift range is between 0.01 < z < 2.3.

5.2 The Statistical Details in the Analysis

The parameter spaces of cosmological models are usually of very high-dimension and not

necessarily Gaussian. For example DES Year-1 ΛCDM analysis has 26 varying parameters

and and the Ω−σ8 contour constrained by 3x2pt measurement is banana-shaped. Hence the

regression analysis on the cosmological parameters is highly non-linear and need to be carried

out by Monte Carlo (MC) techniques. The sampling algorithms that are often adopted

include the Metropolis-Hastings algorithms [94] and the nested-sampling algorithms [95,96].

Metropolis-Hastings algorithms usually save more sample points and make better estimations

for the model parameter posterior shapes. On the other hand, nested-sampling algorithms

are good at Bayesian evidence calculation, which is a value Metropolis-Hastings algorithms
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cannot produce. Despite the way that the samples are randomly drawn from the parameter

space, at the end of the day, we need to estimate the probability distribution from the

Monte Carlo samples. There are multiple publicly available packages designed for this task,

including ChainConsumer3, GetDist4, anesthetic5, etc. We use GetDist for the production of

the results in the DES Year-1 extension paper listed in table 5.1. One valuable feature of

GetDist is the linear and higher order correction to the kernel in kernel density estimation,

as described in detail in subsection 5.2.1. Subsection 5.2.2 discusses max a posteriori ∆χ2

interpretation for model comparison.

Table 5.1: The summary of extended cosmological parameter constraints and the ∆χ2 of
each extended model comparing to ΛCDM model. The center values are the peak of the
1D marginalized probability density, and the ± values denote the 68% credential level. The
δχ2 are reported for DES, External, and DES+External data sets for each extension model’s
max a posteriori (MAP) parameter comparing to ΛCDM’s MAP parameter.

5.2.1 Hard Prior Boundary Strategy for Kernel Density Estima-

tion

To obtain a relatively smooth posterior distribution from the scattered MC chain samples

and to infer the credential level from the estimated distribution, we usually use kernel den-

sity estimation (KDE) to approximate the marginalized probability density function of a

3https://samreay.github.io/ChainConsumer/index.html
4https://getdist.readthedocs.io/en/latest/index.html
5https://github.com/williamjameshandley/anesthetic
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parameter [97]:

f̂(x) =
1

n

n∑
i=1

Kh(x−Xi) (5.9)

where Xi are the sampled parameter sequences in the chain, n is the total number of the

samples in the chain, x is an arbitrary parameter sequence, and Kh(x − Xi) is the kernel

function. Kh is usually chosen to be the Gaussian function centering at zero with width

parameter h, for example in the ChainConsumer codes. By tuning h, Gaussian kernel is

sufficient to approximate the 1D marginalized posterior shapes in most of the cases. However,

as pointed out in [97], the symmetry of the Gaussian kernel brings in a caveat when the

posterior is cut off by the hard boundary of the prior. The simplest solution is to use a non-

symmetric kernel [98] for KDE, and the first order correction of the non-symmetric kernel

takes the form:

K ′h(x) = Kh(x)(A0 + Aa1xa + ...) (5.10)

where xa is each individual parameter of the parameter vector (sequence) x.

The linear correction to KDE has important effects when our constraint on an extended

cosmological parameter pushes against the hard boundary. For example in figure 5.1, DES

and DES+external data constrain Neff down to the Standard Model lower bound 3.0 for three

neutrino species. The right panel is the old version of the plot made by the ChainConsumer

code, which was the default for the DES Year-1 key paper. Because it only uses the symmetric

kernel for KDE, the peaks of the marginalized posterior for Neff constrained by external and

DES+external data are biased away from the boundary. Even worse, the 1 − σ credential

level for DES sets a fake lower bound for Neff . The symmetric kernel wrongfully estimates a

non-zero probability density across the hard boundary set by the prior, so the marginalized

1D peak of the probability is biased to the right of the boundary. In contrast, the left panel

is the result from GetDist using the linearly corrected kernel. We see that the marginalized

posterior estimation by GetDist concretely respected the hard boundary set by the prior. As

shown in table 5.1, we also obtain only the upper bound of the Neff for all the data sets

as it should be. So getting the symmetry of the KDE right is not just a trivial choice that

only affects the aesthetics of the plot, it indeed affects the robustness of the credential level

reports when the posterior is pushing against the prior boundary.

In fact, the finding on Neff constraint has warned us that we should always use higher

order corrected kernel for KDE no matter if we were seeking an upper bound or not. To

avoid a priori bias, most of the cosmological surveys practice blinding nowadays. We only

noticed our wrong-doing on N[eff] because of our a priori knowledge here, which is a little

bit harmful to the blindness. The real data in principle have the possibility to (surprisingly)
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constrain any cosmological parameters against our a priori knowledge, especially at present

time when various tensions are showing up between surveys. So we should make sure to

evolve or abandon the outdated codes that only implemented the simplest KDE process.

3.2 4.0 4.8 5.6 6.4
Neff

DES
EXT
DES+EXT

Figure 5.1: The constraints on the effective number of the relativistic species Neff using
DES, External, and DES+External data sets. Both panels used the same three Monte Carlo
chains as labeled in the legend. Left panel: the Neff constraints analyzed by GetDist. Here
the KDE kernel adopted the linear correction in equation 5.10, thus was able to approach the
non-symmetric probability density distribution near the boundary of Neff = 3.0. Right panel:
the old plot made by ChainConsumer KDE, which only has Gaussian kernel. The different
normalization is only a plotting choice. Near the boundary, the symmetric Gaussian kernel
failed to resume the peak of the probability distribution at the boundary.

5.2.2 MAP ∆χ2 Model Comparison

Other than the constraints on the extended parameters, another important answer we are

seeking in the extension model analysis is how good these extended models fit to the data,

comparing to ΛCDM. This will give us a metric of the ”goodness” of our model at describing

the real universe. In chapter 6, we will see several more advanced statistical metrics for the

purpose of model comparison, but due to the variety of the models studied at the same time

in the DES extension paper, we kept things simple to the most widely used max a posteriori

∆χ2 comparison between extension models and ΛCDM model.

Suppose χ2
A,MAP and χ2

B,MAP are the χ2 for all combined likelihoods at the max a posteriori
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sample point in the Monte Carlo chain run for model A and the chain for model B,

∆χ2 = χ2
A,MAP − χ2

B,MAP (5.11)

If ∆χ2 < 0, it means that in the parameter space of model A we can find a better fit to the

data vector than the parameter space of model B. It does not conclusively say that model

A is better than model B, because ∆χ2 needs to be punished by extra degrees of freedom

to serve as reliable model comparison metric, like Akaike information criterion (AIC) or

Bayesian information criterion (BIC). The ∆χ2 in table 5.1 reported for the four extended

models are so small that we do not need further effort to recognize that none of the models

tested here is a sufficiently better fit than ΛCDM for either DES, External, or DES+External

data sets. This is expected given the extension parameter constraints are not violating the

ΛCDM default values: Ωk = 0, Neff = 3.046, w0 = −1.0, wa = 0.0, and Σ0 = 0.0, µ0 = 0.0;

See table 5.1. Chances still exist when the constraints on these extended parameters get

tighter with future higher-precision measurements.

Some subtleties I want to mention here are the details in how we obtain the MAP χ2, as

it was widely acknowledged as the first glance on model comparison issues. Again, remember

that we are trying to estimate the properties of a smooth posterior distribution from the

scattered MC samples. Especially when we are using the nested samplers, which typically

has O(10) times less sample points than the Metropolis-Hasting samplers, the sparsity of the

scatters in the very high dimensional parameter space makes it very difficult to read out the

maximum posterior directly from the sampled points. We need to run an optimizer on the

maximum posterior point iteratively to reach a better estimation of the MAP point. In DES

Year-1 extensions we used the maxlike sampler in cosmosis to achieve a stable MAP posterior

value. In this process, we saw an improvement of posterior ∼ 0.5 from the sampled point

value to the maxlike value. The drifting of MAP parameters could also reach several O(0.1)σ.

All of this points to the fact that MAP point might have larger degeneracy and uncertainty

in the parameter space than one might presume due to the highly nonlinear correlations

between the parameters. Hence the N-dimensional space single-point MAP values should

not be read into as conclusively as the marginalized quantities, like mean values and credible

intervals, which are more statistically stable.
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Chapter 6

Dark Matter to Dark Radiation

Conversion Model (Original Work)

This chapter is based on paper [34]. Although the main-body of the paper was proposed,

investigated, and written by myself, this work is definitely completed by the joint effort

of many people in the DES collaboration, as shown in the author list of the paper. The

contribution from the DES Year-1 extension group that validated the default analysis pipeline

is especially indispensable to this work.

6.1 Introduction

Over the past few years, there has been a notable improvement in both the variety and

precision of cosmological probes. Signals predicted long ago, such as gravitational waves and

global 21-cm absorption, were finally observed, providing new insights and solidifying our

understanding of the universe. The enhanced precision of relatively mature observational

techniques such as measurements of galaxy clustering, weak lensing, and anisotropies in the

cosmic microwave background (CMB) temperature and polarization fields has allowed us to

test the ΛCDM paradigm to an unprecedented degree.

Recent cosmological observations have revealed a discrepancy in the inferred Hubble con-

stant at & 4σ level between early- and late-universe probes [44,45,99]. With a strengthening

of the various steps in the local distance-ladder measurements of H0, as well as tightening

constraints of medium-to-high redshift probes such as strong and weak gravitational lensing,

the Hubble tension is becoming more significant [100–103] and enormous effort has been de-

voted to understanding its origin. A number of theories have thus far been proposed to help

ameliorate or resolve the tension [104–114], but so far none have done so to a satisfactory

degree.
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A parallel development over the last few years has been the consistently lower value of

the amplitude of mass fluctuations σ8 measured in gravitational lensing compared to that

measured by the CMB experiments [55, 89, 115–118]. While not currently statistically as

strong as the Hubble tension, the persistence of the σ8 measurement discrepancies, as well

as their possible origin as a mismatch between the geometrical measures and the growth of

structure expected in the currently-dominant ΛCDM paradigm, deserves special attention.

It would be very exciting, and compelling, if both the H0 and σ8 tensions were solved

simultaneously, though the success of extant models on this front is at best mixed [119–124].

One possible explanation for why weak lensing surveys measure a smaller amplitude of

fluctuations than the CMB is that the present-day matter content has decreased at a higher

rate than predicted by ΛCDM model. Models where dark matter converts into a new species

with radiation properties that is not directly detectable (hence ‘dark radiation’) can enable

such a trend. These models also have the potential to reconcile the Hubble tension, as they

predict a smaller matter content as time evolves. Accordingly, dark energy dominates faster

than in ΛCDM in these models, giving a larger late-time acceleration rate (indicated by a

higher H0). Therefore, decaying or annihilating dark matter models, such as those studied

previously in Refs. [125–142], offer a tantalizing hope of resolving the H0 and σ8 tensions

simultaneously.

In this paper, we are specifically interested in the class of models where the energy

density in dark matter monotonically converts into dark radiation, with the bulk of the

activity happening at low redshift (late time). Our motivation is to investigate whether a

model where dark matter converts to dark radiation — henceforth, a DMDR model — can

satisfy the twin requirements of both being favored by the data and helping alleviate the

Hubble and σ8 tensions.

In general, interacting dark matter models have the potential to resolve some observa-

tions in cosmology that might be otherwise difficult to explain in the standard ΛCDM model.

Because models with beyond-cold-dark-matter particle content often wash out small-scale

structure [143,144], they are well positioned to help alleviate the well-documented challenges

observed on small scales (the core/cusp, missing-satellites and too-big-to-fail problems of

CDM [145]). The Integrated Sachs–Wolfe (ISW) effect has been measured to have an am-

plitude significantly higher than that predicted in ΛCDM when stacking large voids in the

large-scale structure [146, 147]; the decrease of dark matter would suppress the Weyl po-

tential on large scales, thus enhancing the ISW effect and could thus help to explain this.

Finally, cosmic rays from unidentified sources, specifically the galactic positron excess at ∼
300 GeV [148] and the ∼3.5 keV [149] X-ray line from nearby galaxies, have been hypothe-

sized to be sourced by the decay of dark matter [150–154] (although they may be inconsistent
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with some specific dark matter particle models [155, 156]). All of these lines of inquiry mo-

tivate further study of the properties of, and constraints on, the DMDR conversion classes

of models. For example, Wang et al. [150, 157] investigated a decaying dark matter model

that could be mapped into the parameter space of the phenomenological DMDR conver-

sion scenario studied in this paper, and showed that their model can mitigate some of the

aforementioned small-scale CDM challenges.

On the theory side, dark matter – dark radiation conversion is predicted in various

physically-motivated scenarios [133, 158, 159]. In particle-dark-matter theories, an unsta-

ble dark matter component is predicted in various extensions of the Standard Model. For

example, in non-minimal supersymmetric models, the dark sector has a spectrum of parti-

cles analogous to particles in the Standard Model, and heavier particles can decay into the

lightest supersymmetric particle [160] which could have the relativistic and nonreactive-to-

visible-matter properties of dark radiation [161] (equivalent to sterile neutrino). In some

other cases, supersymmetric sectors directly include bosons like dark photons. More gen-

erally, beyond-Standard-Model physics including fifth-force type additional interactions can

naturally accommodate dark matter and dark radiation couplings. Some have proposed such

coupled models as a mechanism to solve the 21 cm absorption anomaly seen by the EDGES

experiment [47, 162]. Furthermore, inspiraling and colliding primordial black holes (PBHs)

— dark-matter candidates in their own right [163] — could transfer energy from dark matter

to gravitational waves, which are also a form of dark radiation [136, 164]. PBHs could also

evaporate into beyond-standard-model relativistic species through Hawking radiation [165].

Various constraints on PBH abundance were extensively studied by the dynamical, lensing,

evaporation and accretion footprints of the PBHs [163, 166], but several mass windows re-

main unconstrained, and previously ‘closed’ windows sometimes re-open when revisited with

improved analysis tools [167–169].

Any of the aforementioned theoretical models could underlie a phenomenological dark

matter-dark radiation conversion model. The key signature of such a model, compared to

the standard ΛCDM model, is the decreased fraction of dark matter in favor of both dark

radiation and dark energy.

Our goal is to study a phenomenological cosmological DMDR model using the state-

of-the-art cosmological observations. In this work we utilize the CMB temperature, po-

larization, and lensing potential angular power spectra measured by Planck [99], together

with type Ia supernovae from Pantheon [93], baryon acoustic oscillations (BAO) from the

BOSS [90], MGS [92], and 6dFGS [91] surveys, and tomographic galaxy clustering and weak

lensing measured by the Dark Energy Survey (DES) [89].

This work is presented as follows. We introduce our DMDR model in section 6.2, stressing
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its signatures in the CMB and matter power spectrum. In section 6.3, we present the details

of our analysis pipeline, including the datasets we use and the theoretical predictions of the

DMDR model. In section 6.4, we report combined constraints on the DMDR model from

DES-Y1 and external data, along with model comparison between DMDR and ΛCDM. We

conclude in section 6.5.

6.2 The DMDR model

Our specific implementation of the dark matter – dark radiation conversion model is based

on the phenomenological model studied by Bringmann et al. [136], hereafter B18. We focus

on the case where the conversion process accelerates in time, and the major departures

from ΛCDM happen at late times, as shown in figure 6.1. To obtain a phenomenological

model with this behavior, we impose an additional boundary condition onto the original B18

three-parameter ansatz to obtain a steeper rate of dark matter conversion in the recent past

(z . 10); see the next subsection. Overall, our DMDR model introduces two additional

parameters compared to ΛCDM.

We now describe the background equations for the model, followed by the description of

its perturbations.

6.2.1 Background Equations

The background evolution of the DMDR model is specified by the ansatz of the decreasing

dark matter density and the modified continuity equation

ρdm(a) =
ρ0

dm

a3

[
1 + ζ

1− aκ

1 + ζaκ

]
(6.1)

1

a3

d

dt
(a3ρdm) = − 1

a4

d

dt
(a4ρdr) = −Q (6.2)

where ρdm and ρdr are dark matter and dark radiation energy densities, ρ0
dm is the dark

matter density today, a is the scale factor, and we introduce two new parameters1:

1. ζ, the total amount of dark matter that has already converted into dark radiation,

divided by the amount of dark matter at current time.

1The original ansatz in B18 has three parameters: ζ, κ, at, where the last parameter is the characteristic
scale factor when the conversion happened. Here we set the mathematical condition ρdma

3 = 0 as a → ∞
to obtain an accelerated decreasing curve near a = 1. This condition leads to an identity among the three
parameters, 1− ζaκt = 0. We then substitute at = exp(− log(ζ)/κ) back into the B18 ansatz, arriving at our
equation (6.1) which contains the remaining parameters ζ and κ. Keeping ζ or at in our model is equivalent;
we made the choice based on the fact that ζ is a more physically intuitive parameter in this case.
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2. κ, the parameter characterizing the conversion rate. The duration of the conversion

roughly corresponds to O(1/κ) orders of magnitude change in the scale factor.

Equation (6.1) provides an ansatz for the time evolution of the comoving density of dark

matter. In our late-time DMDR conversion model, the bulk of the conversion occurs around

the present time (a ' 1). Equation (6.2) specifies that the energy transfers from dark matter

to dark radiation. It also determines the energy transfer flux, Q, as a function of the scale

factor a, taking the derivative of equation (6.1).

Like the original B18 model, our DMDR model has the generality to cover a wide class of

decaying/annihilating dark matter models. For most of the popular decaying/annihilating

dark matter models with smooth and simple transition curve, in the a < 1 region a specific

value of κ that numerically mimic the transition curve of the dark matter density can be

found. Note, since the condition of accelerating conversion rate in the near past is similar to

pushing the transition time (labeled by the maximum dark-matter conversion rate) to the

future, in the single-body decaying dark matter scenario it suggests a very small decay rate,

Γ� H−1
0 .

To illustrate the evolution of background quantities, we first discuss the fiducial cosmo-

logical model. We fix the non-DMDR cosmological parameters to the following values based

on DES-Y1 fiducial values: matter and baryon densities relative to critical Ωm = 0.3028

and Ωb = 0.04793, scaled Hubble constant h = 0.6818, spectral index and amplitude of pri-

mordial density fluctuations ns = 0.9694 and As = 2.198 × 10−9, physical neutrino density

Ωνh
2 = 0.0006155 (corresponding to the sum of the neutrino masses of 0.058 eV), and optical

depth to reionization τ = 0.06972. These parameters, which are common to both DMDR

and ΛCDM models, are also adopted in the illustrations and Fisher forecasts throughout the

following sections. We stress that the values of the standard cosmological parameters such

as h and Ωm are by definition set at the present time. Thus the high-z region of the DMDR

models in these figures has higher dark matter density. The detailed effect of the DMDR

parameters ζ and κ is illustrated in the first batch of Figures in this paper, which we now

describe.

Figure 6.1 shows how the density of dark matter evolves with scale factor, relative to

ΛCDM, for different conversion rates. Varying ζ scales the curves up and down; in the

illustrative plots that follow we choose ζ = 0.1. We show the matter density evolution for

four different values of the conversion rate κ; results in figure 6.1 and subsequent figures

shows rapid changes in the dark matter density in a & 0.1, suggesting that we may be able

to place constraints on such models using current LSS observations.

Figure 6.2 shows how the density of dark radiation evolves with scale factor for different

conversion rates, relative to ΛCDM. As the conversion rate parameter κ increases, the density
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of dark radiation in the late universe increases faster. When the dark radiation is produced in

the nearer past (for higher κ), it dilutes less than if produced over a longer span of time (lower

κ); thus there is more dark radiation at a = 1 in a larger-κ universe. One may worry that

large-κmodels may be automatically ruled out because they apparently lead to a high number

of effective relativistic species ∆Neff = ρdr/ρν , but note that the conversion to dark radiation

happens at very low redshifts in our DMDR model and thus renders a simple comparison

with ∆Neff constraints derived from the CMB impossible. Hence a detailed analysis of the

combination of CMB, LSS and geometric probes is necessary. A more direct impact of dark

radiation will be on the expansion history, however, and this will be constrained by the

supernova data in our analysis. For the hypergeometric function required to calculate the

background density of the dark radiation, we used the special function routine by Shanjie

Zhang and Jianming Jin [170].

Figure 6.3 shows how the Hubble expansion rate evolves with scale factor for different

conversion rates, relative to ΛCDM. Note that we implicitly hold the present-day values

of Ωm and h constant in this plot. Then, increasing the conversion rate of dark matter κ

increases the amount of dark matter at a < 1 relative to today, and hence leads to a more

rapid expansion rate, so that HDMDR(a)/HLCDM(a) > 1 as seen in figure 6.3.

6.2.2 Perturbation Equations

In order to get the matter and radiation perturbation power spectra, we next need to write

down the linear perturbation equations of motion for both dark matter and dark radia-

tion, then implement them in the Boltzmann numerical solver CAMB [171]. We adopt the

synchronous gauge throughout this section, following the convention of CAMB. The metric

perturbation in synchronous gauge is [172]:

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj], (6.3)

where τ is the comoving time, and hij with i, j = 1, 2, 3 is the metric perturbation.

Most often, dark radiation is treated as a new species of massless neutrinos (e.g. [136,

173]). This conjecture works fine in the scenario with no massive neutrinos, but it produces

an incorrect matter power spectrum that evolves discontinuously away from ΛCDM when

massive neutrinos are present. Such behavior is expected because dark radiation (unlike

the massless neutrinos) does not interact with massive neutrinos nor does it share the same

temperature and entropy with them. In CAMB, the distribution of the energy between neu-

trino species are specified by a set of time-independent degeneracy numbers, but this is not
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Figure 6.1: Temporal evolution of the comoving dark matter density (in units of current dark
matter density ρ0

DM. The legend shows the assumed values of ζ, the fraction of dark matter
that has converted into dark radiation since the early universe relative to current density,
and κ, the conversion rate of dark matter. We fixed the standard cosmological parameters
to their fiducial values as reported in section 6.2.1.
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Figure 6.2: Same as figure 6.1, but now showing the temporal evolution of the dark radiation
density.

applicable to the model with energy transfer from dark matter to dark radiation.2 Therefore,

2In the all-massless neutrino case the problem of incorrect time-independent degeneracy numbers could
be hidden, because there is no need to partition the energy for the massless species sharing the same equation
of motion.
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Figure 6.3: Same as figure 6.1, but now showing time evolution in the ratio between DMDR
and ΛCDM Hubble parameter.

as long as the model does not allow for dark matter to massless neutrino conversion, the

two species are physically distinct and treating dark radiation as a new type of a massless

neutrino is incorrect. Thus we choose to treat dark radiation as an independent perturbation

component in the Boltzmann equations.

In our model, we assume the dark matter to always be cold, meaning that the conversion

process to the dark radiation does not provide enough recoil kinetic energy to heat up

the dark matter. At the same time, dark radiation in our model does not self-interact or

dissipate energy via interactions with dark matter, standard-model particles, or photons after

their production, so that dark radiation simply free-streams. As a result, the phase-space

perturbation equations for the dark radiation differ from the massless-neutrino ones only by

a collision term. Adopting the perturbation-expansion notation from [172], we have

dN = f(xi, Pj, τ)dx1dx2dx3dP1dP2dP3 (6.4)

f(xi, Pj, τ) = f0(q)
[
1 + Ψ(xi, q, nj, τ)

]
(6.5)

F (~k, n̂, τ) =

∫
q2dqqf0(q)Ψ(~k, q, n̂, τ)∫

q2dqqf0(q)
(6.6)

where xi are comoving coordinates, Pi are their conjugate momentum, dN is the particle

number in the phase space differential volume. Here the momentum variable Pi is replaced

by q and ni variables through Pi = (δij + 1
2
hij)qnj in the second equation, and k-space is
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Fourier transformed from x-space.

The dark radiation phase-space equation of motion reads

∂Fdr(~k, n̂, τ)

∂τ
+ ikµFdr(~k, n̂, τ) = −2

3
ḣ(~k, τ) (6.7)

−4

3
(ḣ(~k, τ) + 6η̇(~k, τ))P2(k̂ · n̂) +

(
∂Fdr(~k, n̂, τ)

∂τ

)
C

,

where (∂Fdr(~k, n̂, τ)/∂τ)C is the additional collision term due to the conversion between

dark matter and dark radiation, to be contrasted with the collisionless massless neutrino

equations.

We adopt a simple form for the collision perturbation equation involving no dependence

on polarization or momentum anisotropy. Specifically,(
∂Fdr(~k, n̂, τ)

∂τ

)
C

=
Q(a)a

ρdr(a)
(−Fdr(~k, n̂, τ) + δdm(~k, τ)). (6.8)

where Q is defined in equation (6.2). When writing down the equation (6.8), we adopted

the minimal form for the perturbation variation of the conversion term Q:

δQ = Qδdm. (6.9)

In principle, the form of δQ is determined by the microphysics of the dark matter-

dark radiation conversion process. The minimal form above has been adopted by previous

literature [134, 135, 174], and B18 has demonstrated that the current generation cosmology

observations do not have high enough precision to distinguish the detailed δQ perturbation,

by carrying out case studies on Sommerfeld enhancement and single-body decay process.

After harmonic expansion of equation (6.7), we get the hierarchy equations for dark

radiation. Along with the dark matter perturbation equations, the full set of perturbation

equations in DMDR model reads [172,173,175,176]:
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δ′dm + kZ =
a

ρ̄dm

(Qδdm − δQ) = 0 [Dark Matter] (6.10)

δ′dr = −4

3
kZ − kqdr −

aQ
ρ̄dr

(δdr − δdm) [Dark Radiation, ` = 0] (6.11)

q′dr =
k

3
δdr −

2

3
kβ2πdr −

aQ
ρ̄dr

qdr [Dark Radiation, ` = 1] (6.12)

π′dr =
2

5
kqdr −

3

5
kβ3J

dr
3 +

8

15
kσ − aQ

ρ̄dr

πdr [Dark Radiation, ` = 2] (6.13)

Jdr′

` =
k

2`+ 1
[`Jdr

`−1 − β`+1(`+ 1)Jdr
`+1]− aQ

ρ̄dr

Jdr
` ,[Dark Radiation, ` > 2] (6.14)

where J` are the harmonic expansions of the phase space perturbation, Jdr
0 ≡ δdr, J

dr
1 ≡

qdr = 4
3
θdr/k, Jdr

2 ≡ πdr = Πdr/ρ̄dr in CAMB convention; Z and σ are the metric perturbation

coefficients, and β` are the harmonic expansion coefficients of the gradient operator defined

in reference [173]. Further details of this derivation are included in Appendix B.2.

The modifications described above are relevant for the continuity equations. For the

Einstein equations, the correction is rather straightforward: we simply add the dark-radiation

perturbations to the total energy-momentum perturbations.

6.2.3 CMB and Matter Power Spectrum

We now have the ingredients necessary to numerically compute the CMB polarized temper-

ature anisotropies and matter perturbation power spectra, and thus derive the observable

quantities that can be compared to data. We implement the background and perturba-

tion equations in the previous two subsections in the Einstein–Boltzmann code CAMB [171]

which is used in the cosmosis pipeline that we discuss in more detail below.3

Figure 6.4 illustrates the relative differences between the DMDR and ΛCDM matter

power spectra and their CMB spectra. As with the background-evolution illustrations above,

we fix the parameters common to both DMDR and ΛCDM model to their fiducial values

listed in section 6.2.1, and we only vary DMDR-specific parameters ζ and κ. This ensures

that the two cosmologies always converge at late times (see also figure 6.1). In the early

universe, DMDR has more dark matter than ΛCDM, and this makes the matter and CMB

power spectra resemble those in a ΛCDM cosmology, but with more dark matter. This, in

turn, shows up as the small-scale power enhancement, as well as the phase shift in the case

3DMDR-CAMB using the background and perturbation equations in this work can be found here:
https://bitbucket.org/anqich/ddm-camb/src/master/. Please email the corresponding author to get access
if it is needed.
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Figure 6.4: Relative difference in the matter power spectrum (upper panel) and CMB TT
spectrum (lower panel) between DMDR and ΛCDM. We explore the same four sets of (ζ, κ)
values as in the previous three figures. In the left panel, the white region (between the two
shaded regions) denotes roughly the scales used by the DES 3x2pt analysis.

of the CMB power spectrum.

A distinctive feature in DMDR is the dip in the matter power spectrum at k ∼ 10−2,

the scale corresponding to the horizon crossing at matter–radiation equality. This feature

is mostly due to the different expansion history in a higher dark-matter density universe

in DMDR. Although we see an increase in the matter power around k ∼ 0.1h/Mpc, and

might worry that it could boost the amplitude of mass fluctuations σ8 and thus exacerbate

the LSS tension with CMB, note that this is not the case because we have artificially held

most of the cosmological parameters fixed. In fact, DMDR can be qualitatively compared

and contrasted with the early dark energy (EDE) models [105,122]. While the EDE models
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which have a larger dark-matter-to-dark-energy ratio after recombination than ΛCDM, the

DMDR model have a smaller such ratio relative to ΛCDM. This works in the direction of

reconciling the σ8 tension.

In the CMB temperature power spectrum shown on the right in figure 6.4, the decreasing

dark matter density leads to an increase in the late integrated Sachs–Wolfe (ISW) effect

caused by the decrease of the gravitational potential as dark matter converts into dark

radiation (an exception is the κ = 2 case which we discuss separately below). Late-ISW

effect is caused by the decrease of Weyl potential in the dark-energy-dominant epoch as

the expansion of universe accelerates. In ΛCDM, the decrease of the Weyl potential only

happens in the dark-energy-dominated epoch while the potential remains constant in dark

matter epoch, but in the DMDR model the late-ISW effect also accumulates in the dark-

matter-dominated epoch. This is because the Weyl potential is mainly contributed to by

dark matter and a decreasing comoving density of dark matter leads to a decreasing Weyl

potential even before dark energy takes over. Although DMDR imprints in the late-ISW

effect are probably buried in the cosmic variance, it does gives these models an additional

signature that can be sought in e.g. studies of the ISW imprints in the large voids [147].

The red curve in figure 6.4 requires further discussion. This is the case where the dark

matter converts at very late times (z ' O(1)) and rapidly. Therefore, the increased dark-

energy-to-dark-matter ratio that is characteristic of DMDR model occurs too late for the

late-time ISW to fully benefit from it. In addition, a DMDR model with the same present-

day Ωm as a ΛCDM model has more matter relative to dark energy at z > 0; therefore,

contributions to late-time ISW occur later in DMDR than in ΛCDM. These two effects

combine to severely suppress the late-time ISW effect in high-κ DMDR models.

Lastly, we also present the DMDR effect on the lensing potential power spectrum for

CMB; see figure 6.5. We observe an increase of the lensing potential at small scales (large

multipoles L) that mimics the amplified large k modes of matter power spectrum seen in

figure 6.4.

6.2.4 Nonlinear Matter Power Spectrum Strategies and DES-Y1

Scales Used

Obtaining accurate theoretical predictions for nonlinear clustering in cosmological models

outside of ΛCDM is typically challenging, as these predictions require running suites of

cosmological simulations designed specifically for the extended models. This situation can be

contrasted to that in ΛCDM (and its simplest extension that assume a free but constant dark

energy equation of state, wCDM), where the modeling of nonlinear matter power spectrum
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Figure 6.5: Relative difference in the CMB lensing potential spectrum between DMDR and
ΛCDM, as a function of κ for ζ = 0.1.

has been extensively studied with N-body simulations [77, 79, 177] and analytical fits or

models [71, 178–180]. Limited previous studies of the small-scale structure formation in

DMDR include simulations of a less general class of decaying dark matter models than

the one we adopt here [134], and the demonstration that relativistic species have negligible

contribution to the gravitational physics of the small-scale structure formation [181]. One

potentially useful alternative to running simulations is recent work [182] which proposes to

accurately model beyond-ΛCDM models by suitably rescaling the ΛCDM result in order to

get one into the desired new model. These results are potentially useful and we may study

and implement some of them in the future, but they are currently not validated to the level

sufficient to enable us to model the nonlinear clustering in our DMDR cosmological model.

We therefore choose to limit our analysis to purely-linear scales, thus following the same

strategy as in the DES-Y1 modified gravity analysis [85] (see also reference [183]). To sum-

marize, we start with the difference between the nonlinear and linear-theory predictions of

the observed data in the standard ΛCDM model at best-fit values of cosmological parameters,

dNL − dlin. Using also the full error covariance of DES-Y1, C, we calculate the quantity

∆χ2 ≡ (dNL − dlin)T C−1 (dNL − dlin) (6.15)

and identify the single data point that contributes most to this quantity. We remove that

data point, and repeat the process masking out dNL < dlin region until ∆χ2 < 1. The

resulting set of 334 (compared to the DES-Y1 3x2pt baseline 457) data points that remain

constitutes our fiducial choice of linear-only scales.
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6.2.5 Expectations and Forecasts

Before analyzing the data, we perform a forecast of the expected constraints. We do so in

order to understand the parameter degeneracy structure, especially in regards to the new

parameters ζ and κ. We would also like to understand what constraints are expected on these

parameters. However, not all the likelihoods we plan to use in the real-data analysis have

the corresponding mock likelihoods available. So for the forecast, we only use the DES-Y1

3x2pt and the Planck 2018 TT-TE-EE-lite data centered at the fiducial ΛCDM cosmology.

The likelihood of simulated Planck data vector was calculated by implementing a wrapper

of the work of reference [184] in cosmosis.

To obtain the forecasts on parameter constraints, we adopt the Fisher matrix methodol-

ogy. The Fisher matrix is defined as

Fij =
∑
mn

∂vm
∂pi

[C−1]mn
∂vn
∂pj

+ [I−1]ij (6.16)

evaluated at the fiducial cosmology, where vm are the theoretically predicted data values,

pi are the cosmological and nuisance parameters, Cij is the covariance matrix of the data,

and Iij is the covariance matrix of parameter priors. Fisher matrix calculations typically

incorporate Gaussian priors on the parameters. Because we have flat priors on some of our

parameters (see table 6.1), we adopt Gaussian priors of which the variance scales with the

range (hence variance) of the flat priors that we have. Such Gaussian prior approximations

are illustrated by black lines in figure 6.6. Thus we add Iij = δijVar[P(pi)], where δij is

the Kronecker Delta and P(pi) any one of the Gaussian approximation of the flat priors

from table 6.1. We center the cosmological parameters at the values listed in section 6.2.1.

For the near-fiducial ΛCDM Fisher calculation, we adopt the DMDR parameter values of

ζ = 10−4 and κ = 1.0, where all the cosmological observables have negligible difference from

ΛCDM due to small ζ yet is sensitive enough to the two additional parameters. We use the

cosmosis4 [185] Fisher sampler to forecast the constraints on the DMDR parameters.

In the Fisher forecast results shown in figure 6.6, we observe that:

• The DMDR model breaks the tight correlation between Ωm and h for Planck. In

ΛCDM Ωm and h are strongly anticorrelated because Ωmh
2 is tightly constrained by the

morphology of the acoustic peaks in the CMB spectrum. In DMDR, the background

evolution has more freedom given by the variation of ζ and κ, thus weakening this

degeneracy by adding more degrees of freedom in this 2D space.

• Furthermore, DES has a different degeneracy direction from Planck in the Ωm–h plane,

4https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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Figure 6.6: The DMDR Fisher forecasts showing 95% C.L. contours assuming simulated
DES-Y1 3x2pt data, simulated Planck 2018 data, and the combination of both, all generated
close to ΛCDM cosmology. The forecast is done assuming a Gaussian surface around the
fiducial ΛCDM cosmology, specified by the same parameters in section 6.2.1. The combined
datasets noticeably increased the constraint power, especially on the fraction of converted
dark matter ζ. The ΛCDM model’s degeneracy between h and Ωm (note a very thin red
contour in that plane) opened up in DMDR.

so that when the two probes are combined the degeneracy in this space is significantly

reduced. Because ζ is significantly correlated with Ωm, this degeneracy breaking greatly

helps in constraining ζ.

• In figure 6.6 we assumed a DMDR cosmology very close to ΛCDM (with ζ = 10−4).

In that case, there is effectively no constraint on the conversion rate κ, as expected.

Note again that the Fisher forecasts above are centered at ζ = 10−4, κ = 1.0 (near) ΛCDM.

We have checked that, as the fiducial values of both ζ and κ increase away from their
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ΛCDM values of zero, the forecasted constraints strengthen. Such behavior in Fisher matrix

forecasts is not uncommon and occurs when the dependence of the measured quantities on

the parameters of interest is nonlinear. Nevertheless, the constraints presented in figure 6.6

give us a rough idea of what to expect from the real data. We have also checked that

increasing the fiducial converted fraction to ζ = 0.1 only modestly strengthens constraints

on κ.

We now proceed to describe our data and methodology.

6.3 Methodology

We follow the general scheme for the ΛCDM extension model analysis of the DES-Y1 3x2pt

combined probes, which was described in detail in the DES-Y1 extensions paper [85]. In this

section we will mainly focus on the methodology and systematics tests results specifically

for the DMDR model, for full details, see references [85,89].

6.3.1 Theory Prediction Pipeline

Our theory predictions for the DES 3x2pt data vector are derived from the 2D projection of

the 3D matter and Weyl potential power spectra, incorporating complexities like nonlinear

physics, galaxy bias, intrinsic alignments, photo-z bias, and shear calibration bias. The

detailed derivation of 3x2pt theory prediction were described in Sec. IV.A of Ref. [89]. Here

we only go through the procedures that are specifically modified for the DMDR model.

We first modify the Boltzmann code CAMB by implementing the equations described in

section 6.2, and refer to this modified version as DMDR-CAMB. We also add a flag on σ8

to ensure numerical stability in the nonlinear subroutine of DMDR-CAMB by attributing

zero likelihood to models with σ8 > 1.4 or σ8 < 0.4. The resulting filter prior σ8 ∈ [0.4, 1.4],

is about ∼ 10σ wide on each side of the fiducial value (relative to the DES-Y1 ΛCDM

analysis [89], σ8 = 0.807+0.062
−0.041), and thus not expected to affect the overall constraints.

Next, the relation between the different cosmological quantities in the flat universe is

enforced differently in DMDR comparing to ΛCDM because of a larger fraction of radiation

density. The flat-universe relation is

Ωm + ΩΛ + Ωdr = 1. (6.17)

Specifically, while in ΛCDM the flatness condition implies ΩΛ = 1 − Ωm, in flat DMDR we

enforce ΩΛ = 1− Ωm − Ωdr instead.
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Finally we improve upon the usual assumption that the Weyl potential Φ is completely

contributed by matter in the late universe, Φ = 3
2
ΩmH

2
0δm/ac

2. Recall the Weyl potential

defined via the metric potentials φ and ψ in Newtonian gauge:

Φ = (φ+ ψ)/2

ds2 = a2(−(1 + 2ψ)dt2 + (1− 2φ)dx2).
(6.18)

The assumption that the Φ power spectrum is proportional to the matter power spectrum

is only reliable for negligible amounts of relativistic species in the late universe, which holds

in ΛCDM but can break in DMDR models with large ζ. At super-horizon scales, Φ diverges

from the local matter perturbation. Our strategy is to take the appropriate ratio between

the linear Weyl potential power spectrum P lin
ΦΦ and the linear matter power spectrum P lin

δδ ,

and then modify the shear clustering, galaxy clustering, and galaxy–galaxy power spectra.

The Weyl-corrected (WC) power spectra are:

PWC
XX = RWeyl PXX (6.19)

PWC
gX = R

1/2
WeylPgX , (6.20)

with the dimensionless Weyl-correction factor defined as

RWeyl ≡
P lin

ΦΦ[
3
2
ΩmH2

0 (z + 1)2/c2
]2 1

P lin
δδ

(6.21)

where X ∈ {γ, IA} is a component of the correlation function that needs the Weyl correction

(specifically, the shear and intrinsic alignments), and g stands for the galaxy position 5. Hence

PWC
XX , P

WC
gX are building blocks for the corresponding projected (two-dimensional) angular

correlation functions; for example PWC
δδ is used for the calculation of 2D lensing shear power.

The physical reason that the IA and shear components require the gravitational potential

correction is that these processes are directly determined by the gravitational field; galaxy

shear is formed by the bending of light in the gravitational field, and IA is induced by the

tidal gravitational field generated by nearby mass.

The Weyl potential and Newtonian potential in principle differ because they depend

on different gravitational fields. In practice, we find that their relative difference is < 1%

throughout the expansion history in a not-strongly-anisotropic metric in both DMDR and

ΛCDM. We are thus justified to calculate the correction ratio in equation (6.21) from the

5Here P lin
ΦΦ has the same dimension as P lin

δδ , for the output from CAMB multiplies the gravitational
potential spectra by k4.
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Weyl-potential power spectrum. We further assume that Weyl potential correction is linear

and commutes with intrinsic alignments and galaxy bias (this dramatically simplifies the

implementation in the code). While this is not guaranteed to be true, given the current

linear modeling of intrinsic alignments and galaxy bias any leading-order adjustment is likely

absorbed by the nuisance parameters. Any scale-dependent caveats of this assumption should

be further suppressed by the fact that we adopt conservative scale cuts to limit the impact

of uncertainties in the modeling of nonlinearities,

Lastly, as discussed in section 6.2.4, we adopt Takahashi et al. halofit prescription [71]

to produce the nonlinear matter power spectrum. Since it is designed by the halo model

under the ΛCDM cosmology, we enforce the robustness of our analysis by cutting out the

data points at nonlinear scales.

In Appendix B.1 we include a comparison between Y1 analysis pipeline and our DMDR

pipeline when both are applied to the ΛCDM mock data vector. It illustrates that the

pipeline modifications do not induce noticeable bias (. 0.1σ).

6.3.2 Parameters and Priors

The DES 3x2pt data analysis applied to the DMDR model includes a total of 28 parame-

ters; they are listed in table 6.1. There are eight cosmological parameters and 20 nuisance

parameters. DMDR introduces two additional cosmological parameters to the usual six

(Ωm, h,Ωb, ns, As,Ωνh
2): the fraction of the converted dark matter ζ and the dark matter

conversion rate κ. When combining DES 3x2pt data set with the external data sets, three

more parameters, the reionization optical depth τ , supernova absolute magnitude M , and

the Planck-lite likelihood nuisance parameter aPlanck are added into the variables. Their

priors are presented in table 6.2.

The prior on ζ is flat in the range ζ ∈ [0.0, 1.0]. This range is bounded by the limit when

there is no dark matter conversion, and the limit when half of the dark matter has converted

since the primordial time. The latter choice is based on the fact that the early-time Planck

measurement of the matter density, Ωm = 0.3166±0.0084 [99], is within 20% of the late-time

DES measurement, Ωm = 0.264+0.032
−0.019. Hence, there is no indication that a large fraction of

the dark matter has converted at z . 1000; this conclusion is also in line with previous

work [134,135,140,186].

The prior on the conversion rate κ is also flat, with the range κ ∈ [10−7, 2]. We set the

lower bound very slightly above zero in order to ensure numerical stability of the modified

code, and checked that in this small-κ limit the observables agree with those of ΛCDM. The

upper prior limit is determined by the fact that neither the matter power spectrum nor the
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CMB angular power spectrum varies at a detectable level when κ > 2. This, in turn, can be

understood from the evolution of the dark matter density illustrated in figure 6.1. When the

conversion rate is as high as 2, new physics happened well after recombination and in the late

stages of structure formation, allowing the DMDR model to mimic a ΛCDM universe with a

higher density of dark matter. Thus models with κ & 2 display a strong degeneracy between

the new parameters (ζ, κ) and Ωm, and are difficult to constrain tightly. It is important to

keep this in mind when interpreting the κ posterior when it is pushed to the upper prior

bound.

The cosmological parameters have flat priors that are nearly the same as in DES-Y1 (there

are a few very minor differences between the two), and the nuisance parameters that model

tomographic intrinsic alignments effect, photo-z uncertainty, shear calibration, and galaxy

bias have the same Gaussian priors as in the DES-Y1 3x2 analysis [89]. We also impose a

hard filter on the derived parameter σ8 within [0.4, 1.4] as described in section 6.3.1.

6.3.3 Datsets

Our cosmological parameters analysis will be performed on DES-Y1 3x2pt datasets, external

datasets, and the combination of all datasets separately.

We first describe the DES-Y1 ”3x2pt” measurements; here 3x2pt refers to three sets of

two-point correlation functions as follows. Let i and j denote source-redshift bins (out of

four total), and a and b denote the lens bins (out of five total). The correlation functions

that form a set of observables that we call the ”data vector” are:

• ξij±(θ), the correlation between galaxy shear measured in source bins i and j;

• γibt (θ), the cross correlation between the galaxy shear in source bin i and the galaxy

positions in lens bin a;

• wab(θ) the correlation between galaxy positions in lens bins a and b.

The five redshift bins of the lens galaxy catalog are processed using redMaGiC [187]

z = [(0.15 ∼ 0.3), (0.3 ∼ 0.45), (0.45 ∼ 0.6),

(0.6 ∼ 0.75), (0.75 ∼ 0.9)],

while the four redshift bins of the source galaxy catalog, obtained using the process called

METACALIBRATION [188], are

z = [(0.2 ∼ 0.43), (0.43 ∼ 0.63), (0.63 ∼ 0.9), (0.9 ∼ 1.3)].
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Table 6.1: Cosmological and nuisance parameters in DES-Y1 3x2pt analysis, and their priors.
Parameter Prior

Cosmological
Ωm flat (0.1, 0.9)
h flat (0.55, 0.91)
Ωb flat (0.03,0.07)
ns flat (0.87, 1.07)
As flat (5× 10−10, 5× 10−9)
Ωνh

2
0 flat (0.0006, 0.01)

ζ flat (0.0, 1.0)
κ flat (1× 10−7, 2.0)
σ8 (derived) ∈ (0.4, 1.4)

Lens Galaxy Bias
bi, (i = 1, ...5) flat(0.8, 3.0)

Intrinsic Alignment
AIA(z) = AIA[(1 + z)/1.62]ηIA

AIA flat (-5, 5)
ηIA flat (-5, 5)

Lens photo-z shift (red sequence)
∆z1

l Gauss (0.008, 0.007)
∆z2

l Gauss (-0.005, 0.007)
∆z3

l Gauss (0.006, 0.006)
∆z4

l Gauss (0.00, 0.01)
∆z5

l Gauss (0.00, 0.01)
Source photo-z shift

∆z1
s Gauss (-0.001, 0.016)

∆z2
s Gauss (-0.019, 0.013)

∆z3
s Gauss (0.009, 0.011)

∆z4
s Gauss (-0.018, 0.022)

Shear calibration
mi, (i = 1, ...4) Gauss (0.012, 0.023)

Table 6.2: Additional parameters used in the analysis with external datasets, along with
their priors.

Parameter Prior
Cosmological

τ flat (0.01, 0.2)
Supernovae Parameter

M flat (−20.0, −18.0)
Planck-lite Nuisance Parameter
aPlanck Gauss (1.0, 0.0025)
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Each tomographic two-point correlation function has 20 log-spaced angular bins in the range

2.5′ < θ < 250′, and a total of 45 tomographic angular correlation functions in each theta-

bin, for a total of 20 × 45 = 900 data points. Cutting out small angular scales to avoid

uncertainties with modeling nonlinearities (see section 6.2.4) leaves 334 measurements. We

refer the reader for other details, including those of theoretical modeling, to [89]. Treatment

of some details specific for the DMDR is discussed in section 6.3.1.

Now we describe the external datasets that we adopt; they are:

• Cosmic microwave background (CMB): Planck 2018 high-` TT, TE, EE, polarization

modes temperature spectra with ` ≥ 30 from Plik-lite likelihood, and TT, EE of the

low-`, ` ≤ 29 from Commander and SimAll likelihood, plus lensing potential C`s with

multipoles 8 ≤ L ≤ 400 from SMICA likelihood. [99, 189]

• Type Ia supernovae: we adopt the binned Pantheon SNe Ia dataset [93] covering the

redshift range 0.01 < z < 2.3.

• Baryon acoustic oscillation (BAO): we adopt the BOSS DR12 [90] measurements of

Hrs/r
fid
s , Dmr

fid
s /rs at redshifts [0.38, 0.51, 0.61], the SDSS-MGS [92] measurement of

α = (DV /D
fid
V )(rfid

s /rs) at redshift 0.15, and the 6dFGS [91] measurement of rs/DV

at redshift 0.106. The BOSS DR12 data come with a full covariance matrix, while all

other data points only have diagonal uncertainties.

We do not include the redshift space distortion (RSD) measurements that we previously

used in the DES+External data analysis [85]. We make this choice because DMDR allows for

a scale-dependent growth of linear density perturbations, and the bias on fσ8 measurements

could be significant when the default ΛCDM templates are used in the compression of RSD

information in the presence of a scale-dependent growth [190,191].

6.3.4 Samplers

For our principal results — constraints in the multi-dimensional parameter space — we

use Polychord [96]. Polychord is a nested sampler with outstanding performance on

Bayesian evidence estimation, which is useful for tension and model comparison analysis. We

set Polychord live points = 250, num repeats = 60, and tolerance = 0.1. This combination

of settings was optimized to obtain precise and accurate results — especially in regards to

the Bayesian-evidence computation — given our available CPU time.

We also need to run a number of chains for our systematic tests (shown further below

in figure 6.7). High-quality nested-sampler runs are too time-consuming to be used for

these runs. We thus make use of a couple of alternative numerical tools. First, we use
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the Multinest [95] sampler, which is faster than Polychord. We use the Multinest

sampler with settings live points = 250, efficiency = 0.3 and tolerance = 0.01. Second, we

adopt our own importance sampler.

We use these two in conjunction as follows. We first run a baseline chain on uncon-

taminated theory predicted data vector, and save 334 3x2pt data points for each sam-

ple in the chain file. For the importance sampling, we re-weight the samples by a factor

wnew = [Lnew/Lold]wold, where Lold is the old likelihood from the MCMC chain, and Lnew is

the new likelihood calculated using the systematics contaminated data vector and the theory

3x2pt saved for the MCMC samples. In this way, the importance sampler can produce a

chain for certain systematic tests in minutes, as opposed to days which running the theoreti-

cal pipeline at each sample would take. This process is therefore very CPU-time-efficient, but

is only valid in cases when importance sampling is representative on the baseline samples,

and when the parameter space remains the same. Because sample systematics considered

in our tests happen to lead to small deviations from the fiducial model — thanks to our

adoption of linear-only scales and nuisance parameters to model general systematics — this

assumption is justified. Quantitatively, the criterion for the effectiveness of the importance

sampling is given by the effective sample size (ESS) given by ESS = (
∑
w)2/

∑
(w2). We

regard importance sampling as trustworthy if post-importance sampling ESS preserves ' 0.8

of the baseline ESS, and this is satisfied for all of our systematic tests that use importance

sampling.

In summary, for the real data chains we used Polychord as the sampler. The systematic

tests using the importance sampler are the baryonic, non-Limber, magnification and RSD

non-Limber effects. The IA systematics are modeled by nuisance parameters, so they cannot

use importance sampling. We run multinest chain for the two IA systematics validation.

Now we proceed to the validation of pipeline robustness against systematics.

6.3.5 Systematics Tests

Systematic errors, both theoretical and observational, are always a worry for large-scale

structure analyses. To address this, we adopt a two-pronged strategy. First, we restrict

ourselves to linear scales only, as described in section 6.2.4. Second, we perform a battery

of validation tests by adding various systematic effects to the data and monitoring how the

results on the key cosmological parameters change. We now describe this latter strategy.

We start from a noiseless ΛCDM mock data vector for DES and Planck; that is, corre-

sponding power spectra that contain no stochastic noise and are centered on the concordance

theory model. The Planck mock likelihood is based on the compressed likelihood work [184],
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centered at ΛCDM fiducial cosmology. The DES likelihood is identical to the one adopted

in this analysis, using theory predicted mock data files. We calculate the cosmological con-

straints from this baseline case. We then add the systematic effects described in Sec. IV.A of

DES-Y1 extended-models paper [85], corresponding to baryonic effects, Limber approxima-

tion, magnification bias, Limber approximation with redshift space distortion, two intrinsic

alignment models and nonlinear galaxy bias, to generate systematics contaminated data vec-

tors. In each of those cases, we redo the cosmological analysis and evaluate the errors on the

key parameters.

Figure 6.7: The effect of different systematics biases on ζ for DES-only (top) and DES+EXT
(bottom) analysis. The only systematics that show a visible impact are the magnification
and intrinsic alignments for the DES-only data, causing a ≈ 0.5σ bias on ζ. All other
systematics studied here lead to negligible biases.

The results are shown in figure 6.7 for the DES-only case (upper panel) and DES+EXTERNAL

dataset (lower panel). We see that the systematics are causing at most 0.5σ bias in dark

matter converted fraction ζ in DES-only analysis, and no noticeable bias is observed when

for the combination of DES and External dataset. The slight deviation (∼ 0.2σ) between

the best-fit value of ζ and the assumed ΛCDM input ζ = 0.0 is most likely due to the fact
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that we ran this test with synthetic DES likelihood but real BAO and supernovae data, and

the latter two are not enforced to recover the input-model parameter values.

Because the fiducial simulated data vector is at the ΛCDM cosmology, κ is not constrained

and no interesting conclusion could be made on systematic bias. We therefore conclude that

our results are robust to some of the key systematic errors, at least to the extent that our

systematic models represent the real-world errors.

6.3.6 Blinding

We blinded our real data analysis in the following way. After obtaining the MCMC chain

on the real data, before unblinding the cosmological results, we added a random number

scaled by the variance of the parameter to the MCMC samples. During the blinded stage of

the analysis, we carried out the postprocesses including 2-D contour plots and marginalized

parameter constraints on these shifted samples. Our blinding preserves the shape of the

contours with random shifting. Thus before proceeding to unblinding, we checked that the

contour shapes are reasonable for the data constraining power, and the last few samples have

the likelihoods at correct order of magnitude (they are usually not the MAP). In the end

we unblinded the cosmological results by resuming the raw samples of the real data MCMC

chain. No change to the pipeline was done after unblinding, for the results reported in the

next section. The real data analysis pipeline is completely consistent with the systematics

test in the above subsection.

6.4 Results

We now present our constraints on DMDR cosmology, followed by the tension and model-

comparison results.

6.4.1 Constraints on DMDR model

The constraints on DMDR parameters ζ and κ are shown in figure 6.8, and their 1D marginal-

ized statistics summarized in table 6.3. For the converted dark matter fraction ζ, we find:

ζ < 0.32 DES-only, 65% C.L. (6.22)

< 0.030 External-only, 65% C.L. (6.23)

< 0.037 DES+External, 65% C.L. (6.24)
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Figure 6.8: Constraints by DES-only, External-only, and DES+External data on the con-
verted dark matter fraction ζ and rate κ, along with those on Ωm, S8, and h.

Note that we see a slightly looser constraint on ζ with DES+External dataset than

External-only dataset. This is somewhat counter-intuitive, as our forecast predicted that

weak lensing and galaxy clustering would tighten the constraint on ζ by anchoring the matter

density at low redshift. However the Fisher forecast of course assumes Gaussian likelihood in

all parameters. In the presence of non-Gaussianities, especially in a high-dimensional space,

combined constraints are often (slightly) worse than those from individual probes.

No constraint on conversion rate κ is obtained; see the bottom right of figure 6.8. This

agrees with the expectation that κ is unconstrained in the limit when the amount of converted

dark matter, ζ, is very small.

We can see a raising posterior profile towards the upper bound of the κ prior. Although
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not statistically meaningful, such posterior profile suggest that we possibly underestimated

the prior upper bound. Other explanations include the IA systematics and high-dimensional

parameter space geometry. In any case, higher κ, namely even faster conversion that happens

at extremely low-z is still open for investigation. However exploration of this avenue requires

a more specific analysis, similar to one in models with a late dark-energy transition [192]

in order to take the distance-ladder calibration into consideration. Hence we leave this for

future work.

Other cosmological parameters that are of interest because they are tightly constrained

or exhibit tensions between surveys — h, Ωm and S8 = σ8

√
Ωm/0.3 — are also illustrated

in the triangle plot figure 6.8, and summarized in table 6.3.

6.4.2 Model Comparison and Tensions

As the tension between early and late universe surveys draws more and more attention in

the cosmology community, there has been increasing number of works dedicated to quantify

the concordance and discordance into statistical metrics [193–195]. In this work, we quote

Bayesian evidence and maximum a posteriori (MAP) χ2 difference as the model-comparison

metrics, and use the ”suspiciousness” metric defined in reference [194]. We also report the

one-dimensional differences in units of error bars for the parameters suspected to be tension,

i.e. h,Ωm and S8. We stress that we avoid combining any datasets that are known to be in

tension, such as Planck and distance ladder (for h) or Planck and DES (for S8).

We now report the model-comparison results.

• χ2 at MAP Cosmology. A very traditional criterion of the goodness of a model is the

χ2 evaluated at the maximum a posteriori parameter values χ2
MAP = (d−M)TC−1(d−

M)|MAP, where d is the full dataset, M is the theory prediction evaluated at the

maximum posterior sample, and C is the covariance matrix of the full dataset. A

preferred model should have smaller MAP χ2, and be punished by the number of extra

parameters. Due to the non-gaussianity and the different normalization scheme of

different survey likelihoods, we choose to report the effective χ2 defined as:

χ2
MAP = −2 logL|MAP. (6.25)

We ran an optimizer three times, adopting the scipy optimizer with Nelder–Mead

method to calculate the MAP from the Polychord chain samples; from these we

report the best final MAP value. The χ2 difference between the DMDR and ΛCDM
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model is

∆χ2
MAP = −0.6 DES-only

= +0.8 External-only (6.26)

= +0.1 DES+External.

as summarized in table 6.4. Therefore our DMDR model does not give a substantially

better global fit to the data than ΛCDM.

• Bayesian Evidence Ratio. Bayesian evidence Z is defined as

Z =

∫
L(d|θ)Π(θ)dθ (6.27)

where L is the likelihood, d is the data vector, and θ are the model parameters. We

report Z reported by the nested sampler Polychord, with statistics done by Anes-

thetic [196].6 The evidence ratio could be interpreted as the probability of two

models given data through [197]:

P (DMDR|d, I)

P (ΛCDM|d, I)
=
P (DMDR|I)

P (ΛCDM|I)

Z(DMDR)

Z(ΛCDM)
(6.28)

where I is the prior that these two models are in the consideration. Assuming no prior

preference for either DMDR or ΛCDM, namely P (DMDR|I) = P (ΛCDM|I), the ratio

of DMDR and ΛCDM probabilities is equal to the ratio of their respective evidences

Z. These, in turn, are reported by the Polychord sampler; their ratio is

K =
Z(DMDR)

Z(ΛCDM)
= 0.31 DES-only

= 0.03 External-only (6.29)

= 0.09 DES+External.

We interpret the Bayesian evidence ratio in terms of the Jeffreys’ scale (making this also

consistent with DES-Y1 paper [89]). Assuming an equal prior on ΛCDM and DMDR

model, 0.31 < K < 1.0 would indicate no conclusive preference for either model,

0.1 < K < 0.31 would imply substantial evidence favouring ΛCDM, 0.031 < K < 0.1

would imply strong evidence favouring ΛCDM, and K < 0.031 would imply very strong

evidence favouring ΛCDM [198,199].

6https://github.com/williamjameshandley/anesthetic
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Under Jeffreys’ scale, our results therefore indicate that the DES-Y1-only dataset does

not prefer either DMDR or ΛCDM, while the External-only dataset very strongly

disfavors the DMDR model. Finally the combination of all datasets strongly disfavors

DMDR.

• Suspiciousness. This tension statistic [194] has the merit of being less affected by

the choice of the priors than Bayesian evidence. Suspiciousness S is defined in terms

of the Bayesian evidence ratio R and information ratio I:

logS = logR− log I, (6.30)

where

R =
ZAB
ZAZB

(6.31)

log I = DA +DB −DAB (6.32)

D =

∫
P(θ) log

P(θ)

Π(θ)
dθ, (6.33)

where D is the Kullback–Leibler divergence of the posterior against prior, quantifying

the information gained by the data. The calculation of suspiciousness requires our

knowledge of the posterior P , prior Π, and evidence Z from MCMC chains. Here A

and B stand for the DES-Y1 and External datasets that we are comparing, and AB

for their combination. We report the logS calculated by Anesthetic [196]:

logS = −2.21, p = 0.08 DMDR

logS = −2.93, p = 0.04 ΛCDM
(6.34)

where each p-value is interpreted as the probability that datasets A and B can be both

described by the parameters of the model. We therefore find that DMDR reduces the

tension between DES and the external data, as indicated by a higher p-value, at the

expense of two new parameters.

• Hubble and S8 tensions. We now specifically investigate the impact of the new

freedom in DMDR to two widely discussed tensions in ΛCDM: the 4-5σ tension in

the (scaled) Hubble constant h between CMB and local measurements, and the 2-3σ

tension in S8 between CMB and weak lensing plus clustering. We take the probability

distribution of the parameter difference ∆h = hA− hB or, alternatively, ∆S8 = S8,A−
S8,B, from the 1D marginalized probability distribution obtained by different datasets.
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Figure 6.9: Upper panel: Cosmological parameters Ωm, S8, σ8, h constraints in DMDR model,
reported for DES, External, and DES+External datasets, together with the local Hubble
measurement [4] in pink. Lower panel: same plot in the ΛCDM cosmology. By comparing
the panels involving σ8, S8 on both sides, we can see how DMDR reduced the tension in the
matter density fields between DES and the CMB+Supernovae+BAOs.

Here A and B are the two datasets between which we want to estimate the tension

(in either h or S8). For a cosmological parameter of interest θ, we integrate over

the interval bounded by the ∆θ values that have the equal posterior, and one of the

boundaries is ∆θ = 0. Thus we get the tension probability p:

p =

∫ eq−post

∆θ=0

P (∆θ = θA − θB)d∆θ. (6.35)

We then interpret p into z − σ tension using

p = erf

(
z√
2

)
. (6.36)

For the tension in the Hubble parameter, the datasetA is the full DES+CMB+Supernovae+BAO

data, while dataset B is the Gaussian-distributed constraint on h from the distance-

ladder measurement [4]. For the ∆S8 tension, our A dataset is the DES-Y1 3x2pt only

data, while B is the CMB+Supernovae+BAO External dataset. The zoomed-in con-

straints on Ωm, S8, σ8 and h are illustrated in figure 6.9, over-plotted with the distance

ladder measurement of H0 from [4]. We find that:
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– When comparing the DES+External datasets with local Hubble measurement

in [4], h = 0.7403± 0.0142, the tension in h assuming either DMDR or ΛCDM is

3.8σ.

– When comparing DES-Y1 dataset with External dataset, the tension in S8 is 1.9σ

for DMDR model, slightly reduced from 2.3σ for ΛCDM model.

Hence our DMDR model does not substantially alleviate the Hubble tension, but does

help in reducing the S8 tension.

6.5 Conclusions

In this work, we test a late-time dark matter to dark radiation conversion model, dubbed

the DMDR model, against cosmological data. Our model is specified by two new parameters

defined in equations (6.1) and (6.2): the fraction of dark matter that has converted ζ, and the

rate of its conversion (to dark radiation) κ. We work out the perturbation equations in this

model, and incorporate them in the Einstein–Boltzmann code CAMB [171]. Our analysis

pipeline is modified for the DMDR model in the following respects. 1) we scale-dependently

correct the shear and intrinsic alignment terms in the two-point correlation functions to

account for the non-trivial relation between gravitational field and matter density perturba-

tion field, and 2) we adopt conservative scale cuts to protect the analysis against systematic

errors due to the modeling of clustering on nonlinear scales. In our analysis, we principally

consider the DES-Y1 ”3x2pt” (weak lensing and galaxy clustering) data. We also study the

impact of adding external datasets: Planck-2018 CMB power spectra (TT, TE, EE, and

lensing spectrum); Pantheon compilation of type Ia supernovae data; and compressed BAO

measurements from BOSS-DR12, MGS and 6dFGS surveys.

The constraint on the fraction of the converted dark matter obtained from all data

combined is ζ < 0.037. We find no constraint on the conversion rate parameter κ as expected

in the limit when ζ → 0. We further find that the evidence-ratio test applied with the

full combined data does not favor the DMDR model compared to ΛCDM. DMDR does

however reduce the suspiciousness tension metric between DES-Y1 and the combination of

CMB, Supernovae and BAO data, raising the probability that DES and external data are

concordant from 4% to 8%. Finally, DMDR does not help in alleviating the Hubble tension,

but does reduce the tension in the DES and external-data measurements of S8 = σ8

√
Ωm/0.3,

making it go from 2.3σ (in ΛCDM) to 1.9σ (in DMDR).

We stress that the above conclusions are drawn for the late-universe dark matter-dark

radiation conversion model introduced in section 6.2.1. Further generalizations of this cata-

86



logue [125, 126, 128–142], for example where dark matter is a composition of some fraction

of interacting dark matter and cold dark matter, or where the transition time is short, or

the transition occurs in the early universe, were not considered in this work. These variants

could in principle better fit the background evolution of the universe than the model we

studied, and are thus a promising target for further investigations.

There are several other directions in which our analysis could be extended. One possibility

is to model the nonlinear matter power spectrum in real and redshift space in DMDR models

[182, 200, 201]. This could be particularly helpful for DES Year-3 and Year-6 data which

have more statistical power and where pushing to smaller, nonlinear scales could improve

the constraints. Another future direction is to enable the use of the uncompressed BAO data

(that is, the broadband galaxy and quasar power spectra). This would benefit not only the

DMDR model but also other beyond-ΛCDM models, and could become an important analysis

tool for future surveys such as those to be undertaken by DESI, the Rubin Observatory

(LSST), Euclid, and the Roman Space Telescope.

Our investigation also has limitations on the observational probes that we used. As we are

assembling this paper, several higher-precision new data release are already available from

different surveys. Further more, the high-redshift observations, for example the Lyman-α

BAO measurements from high-z quasars, and the 21-cm signal background plus spectrum,

could be very helpful for constraining such beyond-ΛCDM models like DMDR. In this kind

of models slow transitions are proposed to happen in the unknown era between the current

time z < 1 and recombination.

In summary, many forthcoming investigations are waiting to be done on the theoretical,

analytical, and the observational side for the beyond-ΛCDM cosmology.
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Chapter 7

Closing Remarks: Combined Probes

Constraining Extended Cosmology in

the Future

The major content of this chapter is dedicated to review the effect of ΛCDM assumptions in

the cosmological survey when applied to extended models analysis. These are the evolving

ingredients for a cosmological SNOWMASS-2021 review letter. This chapter ends with a

summary of the thesis.

In response to the Hubble tension between late and early universe measurements, a grow-

ing number of extended cosmological models beyond ΛCDM model have been proposed and

examined [106,109,134,202–204] . To obtain strong constraints on the model parameters and

to explore their possible remedy of the tensions, many of these tests are done by combining

published measurements from different surveys. However, the data analysis of current high-

precision cosmological and astrophysical probes is complicated and uses many assumptions

of ΛCDM in the analysis pipeline. Some of these assumptions are as obvious as the ΛCDM

background geometry, while others are hidden in the details. The misuse of measured data

based on ΛCDM assumptions on the beyond-ΛCDM models where these assumptions break

down could result in misleading conclusions [122, 205]. To combat this, theorists should

be cautious when analyzing their models, and observers should be clear about the specific

assumptions in the published key paper results.

Strictly speaking, there is no clear-cut boundary between the statement of ”doing your

theoretical model predictions right” and the point of ”alleviating the ΛCDM assumptions in

the surveys”. Here, the focus on the later aims to elucidate some profound technical details

that might have been overlooked by the working groups using the publicly published and

deeply post-processed cosmological/astrophysical survey results.
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Baryonic acoustic oscillation (BAO) Recently the impact of fiducial cosmology as-

sumptions on BAO measurements are discussed in several papers [206, 207]. A standard

methodology for the recent BAO analysis is to reconstruct the galaxy power spectrum in a

fiducial cosmology, then extract the sharpened BAO features from the reconstructed galaxy

over-densities [208]. In this way, the BAO feature that has been smeared by the bulk flow

of the astrophysical objects is recovered. The paper by P. Carter et al. [206] discussed the

effect of fiducial cosmology assumption in the reconstruction process, and summarized three

approximations that extended models should obey to avoid bias when using the fiducial BAO

measurements. Among these approximations, the first thing that we should pay attention

to is the re-scaling of the redshift-distance relationship, at least on the scales relevant to

the BAO survey. If the redshift-distance relationship rescaling is more complicated than a

linear factor multiplication in the redshift range of the galaxy samples, the configuration

space distortion introduced by placing the galaxy at wrong distance is likely be unable to be

captured by the Alcock–Paczynski (AP) parameters. The other approximations are mainly

related to whether the power spectrum template used in the BAO information compression

is inclusive enough to mitigate the cosmology dependence. These assumptions need further

detailed analytic or simulation validation per model. The reassuring news is that in most

of the cases studied so far, BAO measurement bias is below current precision for models.

Both [206, 207] warned that this might be no longer true in higher precision next genera-

tion measurements due to fiducial cosmology assumption, even just in ΛCDM with varying

cosmological parameters.

The inverse distance ladder approach of the BAO measurements is also worth mentioning.

In this method, the sound horizon rs is taken as a standard ruler thus the BAO measured

angle corresponding to rs at given redshift calibrates the distance to the observation. In this

way we can get the constraint on H0. Some literature cites this method as a ”late universe” or

”cosmology independent” measurement of H0, which is not exactly true. There is no way to

constrain H0 without any early universe physics assumption on rs, when the only information

we know is H0rs (maybe plus Ωbh
2, which still does not specify the sound speed completely).

This is an indicator that ΛCDM or fixed early universe is an essential presumption in inverse

distance ladder H0 constraints. Actually, in several strictly classical distance ladder BAO

analyses [209, 210] without any cosmological assumptions (not inverse, anchored to the late

universe supernovae or strong lensing), rs is found to be systematically smaller than the

Planck CMB result. Given these, it is not surprising that the inverse distance ladder BAO

constraint on H0 is on the early universe side of the current H0 tension.

90



Redshift space distortion (RSD) It has been discussed extensively for some relatively

more established beyond-ΛCDM model, like f(R) modified gravity, that the compressed

RSD survey results typically reported in the form of fσ8(z) values might be not applicable

to extended model constraints [205, 211, 212]. By definition, the growth factor and the

fluctuation of matter field are scale insensitive in standard ΛCDM [63].

f(z) ≡ d lnD(z)

d ln a
(7.1)

σ2
8(z) ≡

∫ ∞
0

∆2(k, z)

(
3j1(kR)

kR

)2

d ln k, where R = 8h−1Mpc (7.2)

where j1(kR) is the spherical Bessel function of the first kind. The definition of D(z) and

∆2(k) are introduced in chapter 2. The estimate of fσ8(z) is usually based on a fixed fiducial

cosmology template of the redshift-space power spectrum [213,214], because we expect this

quantity to be only dependent on the amplitude of the measured RSD. When the fiducial

template cannot mitigate the scale-dependent features in the clustering, fσ8 measurement

could be biased. The robustness of RSD estimate of fσ8 against certain modified gravity

simulations have been tested by [205,211,212]. Specifically, these studies found that the bias

tends to be non-negligible for the models with scale dependent growth rates deviating from

standard ΛCDM. This might be due to the fact that the multiplicative template parameters

cannot absorb such scale dependent deviations from the fiducial cosmology. This finding

is likely to appear in other beyond-ΛCDM models which introduce scale-dependent growth

rate in the scale range sensible to the RSD measurements ( 0.01hMpc−1 . k . 0.2hMpc−1),

and the RSD compression into fσ8 constraints should therefore be handled carefully.

Weak lensing In weak lensing, the main limitation of a fiducial cosmology assumption

usually comes from the modeling of nonlinear matter power spectrum. Most halo model

calculations used in fiducial pipelines for weak lensing analyses assume the same non-linear

regime clustering physics as GR and ΛCDM. When testing a beyond-ΛCDM (and GR)

model, the nonlinear regime should either be removed from the analysis or the nonlinear

modeling should be validated – e.g. by using N-body simulations or perturbation theory

calculations [215,216].

Another place where beyond-ΛCDM modeling is needed is in the default analysis pipeline

of the weak lensing surveys, for example the one used in DES [50], the lensing kernel takes

the form:

qκ(χ) =
3H2

0 Ωm

2c2

χ

a(χ)

∫ χh

χ

dχ′
nκ(z(χ′)dz/dχ′

n̄κ

χ′ − χ
χ′

(7.3)

This is based on the late universe where: 1. the matter is the predominant contributor to
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the gravitational potential, and 2. the gravity is ruled by the standard general relativity. The

lensing kernel above thus relates the matter overdensity to the potential using the Poisson

equation:

Φ =
4πGρma

2δm
k2

(7.4)

However, when the two conditions above break down in extended cosmologies, for example

in certain modified gravity theories, the correct thing to do is to use equation 3.30 to di-

rectly project the Weyl potential power spectrum to 2D harmonic space to obtain the shear

spectrum. This way the Poisson equation is not presumed, thus the matter power spectrum

and the Weyl potential power spectrum are not necessarily linearly related by the factor(
4πGρma2

k2

)2

. There are multiple ways to realize this adjustment to the analysis pipeline, the

simplest being to correct the matter power spectrum used in ΛCDM pipeline by the ratio:

RWeyl(k, z) =

(
k2(1 + z)2

4πGρm

)2
PWeyl(k, z)

Pm(k, z)
(7.5)

Where PWeyl(k, z) is the 3D k-space spectrum for Weyl potential perturbation as defined in

chapter 3 for general gravitational potentials.

CMB The CMB theory prediction for the extended cosmological models should be straight-

forward if the Boltzmann codes are modified correctly for new Einstein and Boltzmann equa-

tions. When using a CMB lensing likelihood and/or high-` lensed TT,EE, TE likelihoods,

one should note that the nonlinear matter power spectrum is expected to be different from

the ΛCDM modeling, thus its importance on the CMB observables. The nonlinear matter

power spectrum or the Weyl potential power spectrum used for CMB lensing calculation

should be treated as is described above in the ”Weak lensing” paragraph. Alternatively, we

limit our analysis to the linear scales, and here in CMB they mean not-too-high `s. Figure

7.1 illustrates the effect of nonlinear large scale structure on the lensed CMB temperature

spectrum and the CMB lensing spectrum, where takahashi-halofit is used as the nonlinear

model. The blue shade is the cosmic variance σ =
√

2
(2`+1)

C`. The difference between lin-

early and nonlinearly lensed TT spectrum exceeds the cosmic variance for ` & 3000. This

difference shows up for L & 400 in CMB lensing spectrum, roughly the complement of the

conservative multipole range of the Planck 2018 CMB lensing likelihood [217].

Supernovae and distance ladder In many of the papers discussing the extended cos-

mology resolution to the Hubble tension, the distance ladder measurements of H0 are incor-

porated into the analysis as a Gaussian likelihood. Recently several works [218, 219] have
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Figure 7.1: The lensing effect on CMB power spectra modeled by linear and nonlinear
matter power spectra. Left panel: CMB TT spectrum and the relative differences. Right
panel: CMB lensing potential spectrum and the relative differences. The legend ”lin-lens”
means that the CMB lensing potential spectrum is modeled by the linear matter power
spectrum; ”nl-lens” means that the CMB lensing potential spectrum is modeled by the
nonlinear matter power spectrum; and ”none-lens” means that the CMB TT spectrum is
not lensed at all (Cpp(L) = 0). The blue shade depicts the cosmic variance range. There is
no critical difference between ` and L notation of the moments and they are just kept the
same as Planck 2018 papers conventions.

warned against this practice due to the caveat on extremely late universe transitional models.

The reason for this is that local late universe measurements of H0 depend on observations

of astrophysical objects that extend into the Hubble flow. For example the SH0ES [220]

results, that have been most frequently quoted, uses Pantheon supernovae sample in the

redshift range 0.023 < z < 0.15. Hence the distance ladder H0 actually calibrates the abso-

lute magnitude of the supernovae sample that includes higher redshifts objects. If a model

predicts a higher Hubble constant can be achieved by extremely late transitional effect at

z < 0.02, as with the example of red curve in figure 1 of [218], it is not actually resolving

the Hubble tension. [221] gives the simplest method to correctly combine the distance ladder

measurement of H0:

L = LSN ×N (M, M̄(H0), σ2
M(σH0)) (7.6)

i.e. to include the distance ladder H0 measurement as the supernovae absolute magnitude

prior.

This detail should be especially noted for extended cosmological models which deviate

from ΛCDM phenomenology in late time (below several redshifts). However, note that
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the consequence is not as severe as implied by [219] if the transition is not restrained to

z < 0.02. The main point of the discussion above is that the H0 measured at late time is not

exactly the value at z = 0, and thus should be related to the supernovae absolute magnitude

calibration at the same range of low redshifts. This means that the models which hide all

the new physics at such low redshifts that are irrelevant to the 0.02 . z . 0.2 Hubble flow

measurements are naturally off the mark, as for example, the red curve in figure 1 of [192].

If a model has no drastic jump in the Hubble constant at z < 0.02, but a gradual change

throughout several redshifts, the low redshift Hubble measurement z ∼ O(0.1) could still be

a reasonable anchor of current time H0, and should be equivalent to equation 7.6. To keep

things safer, Equation 7.6 is still recommended for any future analysis using distance ladder

H0 combined with supernovae sample.1

Summary and Conclusion

In this thesis, I have presented works on 1. the systematics in DES weak lensing cosmic

shear measurements and 2. constraining ΛCDM and extended cosmological models using

combined probes. Aiming at better fundamental physics parameter constraints, extensive

studies have been carried out in service of precision analyses of cosmological surveys. In

chapter 2, an overview of the stories in modern cosmology theory was presented, in the

ΛCDM model background. In chapter 3, theory predictions of the galaxy clustering, weak

lensing cosmic shear, and galaxy-galaxy lensing statistics were derived. Starting in chapter

4 the focus shifted to DES analysis, where the baryonic systematics in the cosmic shear

analysis were investigated and the strategy for handling these systematics for DES Year-3

was determined. Chapter 5 focused on another aspect of the cosmological survey analysis,

namely the statistical interpretations of the final results. This topic was investigated in the

process of constraining the extended cosmologies using DES Year-1 combined with external

data sets. Chapter 6 presented an analysis constraining a dark matter to dark radiation

conversion model using DES and external data. Many details about the theory prediction

and the full analysis pipeline on such extension models are discussed. Finally, in chapter

7, based on the experience of working on multiple probes constraining the DMDR model, I

discussed the caveats of assuming ΛCDM in the cosmological surveys analysis pipelines.

We can see from the pretty facial materials in this chapter that analyzing the standard

1A rather irrelevant remark: in any case, I am personally objective to the idea of using the distance
ladder Hubble measurement as Gaussian likelihood together with the early universe measurments like CMB
or BAO inverse distance ladder, although most of the people are doing so. They are measurements that
are currently in tension, hence should be confronted against each other but not combined, before we find a
model or systematics that could accommodate both. The order should not be carried out inversely.
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and extended cosmological models for combined probes in the current and next generation

cosmological surveys is not merely a case of just introducing extra parameters into the

calculation. I hope that this thesis has made points about how important some previously

overlooked subtleties are for unveiling the true, exciting new physics. Theoretical models

are fairly flexible modules in this kind of analyses, and we could look for the promising ones

from the theorists’ proposals. However, to concretely rule out or confirm a model we have

to understand extremely well what we are doing with the real world observations, and to

understand what the theoretical models imply phenomenologically. I am optimistic that

such efforts would be very rewarding in the next generation precision cosmology, potentially

providing much new information about our universe.
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Appendix A

DES Analysis Pipeline

This appendix presents the DES Cosmosis analysis pipeline of the measured 3x2pt data

vector. In order to obtain the constraint on the cosmological parameters, we need to sample

through the parameter space based on the sampling strategy provided by a Monte Carlo

sampler. At each sample point that specifies a sequence of the parameter values, we calculate

the theory predicted data vector M(p) using the pipeline that will be described in section

A.1 and obtain the posterior using equation 4.2. Section A.2 will introduce the sampler

settings used in DES Year-1 analysis.

A.1 Cosmosis Pipeline Producing Single Likelihood

Here I list the Cosmosis DES Year-1 pipeline modules with their inputs and outputs.

1. consistency. Input: Cosmological parameters specifying a cosmology. Output: The rest

of the cosmological parameters derived from the input in a consistent cosmology.

This module ensures that the input cosmology parameters have no contradictions and

computes the required derived parameters for the following modules. The most impor-

tant physics consistency it checks is that
∑

i Ωi = 1.

2. camb. Input: cosmological parameters. Output: linear matter power, distances, σ8, linear

cold dark matter transfer function.

camb is the code solving Boltzmann and Einstein equations, where the most physics

happens. Linear matter power spectrum and CMB spectra are calculated by this

module. DES Year-1 implemented Jan 2015 version of CAMB into Cosmosis.

3. halofit. Input: linear matter power. Output: nonlinear matter power.
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Uses halo model to calculate nonlinear matter power spectrum from linear matter

power spectrum.

4. growth. Input: Ωm,ΩΛ, w and wa Output: growth function D(z) and f(z), as defined

in chapter 2 and 7.

This module uses late time approximated perturbation equation to solve for the linear

growth factor of matter over-density in a flat universe. The growth factor f is used in

RSD likelihoods later.

5. extrapolate. Input: linear and nonlinear matter power. Output: extrapolated linear and

nonlinear matter power.

6. fits nz. Input: None. Output: source and lens galaxy n(z)

Reads in the n(z) measurements for source and lens galaxies.

7. lens photoz bias, source photoz bias. Input: source or lens n(z), and photo-z errors for

source or lens galaxies per bin. Output: shifted n(z)

These modules read in the lens or source photo-z bias parameter ∆zi and shifts the

number density ni(z)→ ni(z −∆zi).

8. unbiased galaxies. Input: nonlinear matter power. Output: galaxy power.

Copies matter power spectrum into galaxy power spectrum, assuming no galactic bias.

9. bias neutrinos.Input: Cosmological parameters. Output: galactic bias.

This module calculates the galactic bias bν(z, k) due to the neutrino free-streaming.

10. multiply pk. Input: nonlinear matter power, bν(z, k). Output: galaxy power, matter-

galaxy power.

This module calculates galaxy power spectrum and matter-galaxy cross power spec-

trum by multiplying nonlinear matter power spectrum with b2
ν(z, k) and bν(z, k). It

overwrites the unbiased galaxy power saved in the upstream of pipeline.

11. IA. Input: Ωm, intrinsic alignment amplitude A, nonlinear matter power, linear matter

power, matter-galaxy power. Output: intrinsic alignment power, matter-IA power, galaxy-

IA power.

In DES Year-1 pipeline this module is configured to use the corrected Bridle & King

method to calculate intrinsic alignment of the galaxies.
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12. ia z field. Input: intrinsic alignment power law parameter α, intrinsic alignment power,

matter-IA power, and galaxy-IA power. Output: z-dependent intrinsic alignment power,

matter-IA power, and galaxy-IA power.

This module decorates IA power with (1 + z)2α and matter-IA, galaxy-IA power with

(1 + z)α.

13. pk to cl. Input: matter-galaxy power, nonlinear matter power, galaxy power, intrinsic

alignment power, matter-IA power, galaxy-IA power. Output: C(`) spectrum for cosmic

shear-galaxy position, shear-shear, position-position, IA-IA, shear-IA, position-IA correla-

tions.

This module carries out the Limber approximated integral for 3D power spectrum in

k−space to obtain 2D `−space spectra.

14. bin bias. Input: bin-wise galactic bias parameter, galaxy C(`). Output: galaxy C(`)

multiplied by galactic bias.

This module applies bin-wise linear galactic bias on galaxy C(`)s.

15. add intrinsic Input: C(`) spectrum for cosmic shear-galaxy position, shear-shear, IA-IA,

shear-IA, position-IA correlations. Output: C(`) spectrum for shear-shear and shear-

position, with intrinsic alignment corrections.

This module adds intrinsic alignment corrections into shear-shear and shear-position

spectrum:

shearshear = shearshear + IAIA + 2shearIA (A.1)

shearposition = shearposition + positionIA (A.2)

The order of the correlation pair is commutative.

16. shear m bias. Input: bin-wize shear calibration parameter mi, shear-shear and shear-

position C(`). Output: shear calibration corrected shear-shear and shear-position C(`).

This module multiplies shear-shear Cij(`) by (1 +mi)(1 +mj) and shear-position Cia

by (1 +mi), where i, j are redshift bin numbers for source galaxy catalogs and a is one

for a lens galaxy catalog.

17. 2pt gal, 2pt gal shear, 2pt shear. Input: C(`)s for galaxy position-position, shear-position

and shear-shear correlations. Output: angular space 2pt-correlation functions for position-

position, shear-position and shear-shear, i.e. the 3x2pt data vector including w(θ), γt(θ)

and ξ±(θ).
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These three modules integrate the product of C(`) spectra with the corresponding

Bessel functions to get 2pt-correlation functions in θ space, as described in equations

3.12, 3.35, 3.28 and 3.29.

18. 2pt like. Input: The 3x2pt measurements and the covariance matrix. Output: 2pt

Likelihood.

This module calculates the 3x2pt likelihood as equation 4.3 using the measurement D

and the covariance matrix C produced by DES survey Year-1 results.

A.2 Samplers

To infer the constraint on cosmological parameters, we sample through the parameter space,

run the pipeline in the previous section A.1 at each sample point, and get an ensemble of the

posteriors as expressed in equation 4.2. DES Year-1 key paper and extensions paper used

two kind of samplers, Multinest and Emcee.

Multinest sampler [95] is a nested sampler. Such samplers are designed to find the col-

lection of sample points in equal-likelihood prior volumes, so that the integral over equal-

likelihood prior volumes could give us a reasonable estimation of the Bayesian evidence. The

down side of nested samplers is that they typically converge much slower than the Monte-

Carlo Markov Chain (MCMC) samplers with simpler algorithms, and save less samples in

the chain. We used Multinest sampler with setting: number of live points = 500, efficiency

= 0.3, and tolerance = 0.1. The typical number of the saved samples in a converged chain

is ∼ 20, 000.

Emcee sampler [222] is a MCMC sampler. It modified the Metropolis-Hasting algorithm

by using parallel multiple walkers, and by raising the proposals for these walkers in a cor-

related way so that the chain converges more efficiently. In DES Year-1, in the case that a

model’s parameter space is having difficulty to converge for a Multinest chain, we use Em-

cee sampler. We cannot calculate the Bayesian evidence from Emcee sampler outputs. We

found that for DES Year-1 analysis, typically 300,000 samples burn-in is sufficient to get a

stabilized Emcee chain [50], with number of walkers = 110. The typical number of samples

in a burnt-in chain is ∼ 500, 000.
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Appendix B

DMDR appendices

B.1 Pipeline Comparison on ΛCDM

We want to make sure that, any cosmological parameters constraints that are found differ-

ent from the DES-Y1 3x2pt Key paper [89] ones are physical, namely caused by the DMDR

model, but not due to the pipeline choices variance. Hence we run full multinest MCMC

chains on the same ΛCDM simulated data vector, using DES-Y1 analysis pipeline and our

DMDR analysis pipeline with ζ = 0.0, κ = 1.0 fixed (ΛCDM subspace, so κ value is irrele-

vant). The results are shown in figures B.1 and B.2 for DES only and DES+External Data.

In both cases, except for the parameters that are not effectively constrained like h, Ωνh
2

and ns for DES only data, the posteriors from two pipelines agree with each other at . 0.1σ

level.

B.2 Dark Radiation Hierarchy equations

In B18, perturbation equations were derived from the perturbation expansion of the energy–

momentum tensor for dark matter and dark radiation,

T dm
µν = ρ̄dm(1 + δdm)udm

µ udm
ν (B.1)

T dr
µν =

4

3
ρ̄dr(1 + δdr)u

dr
µ u

dr
ν +

ρ̄dr(1 + δdr)

3
gµν + Πdr

µν (B.2)
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Figure B.1: Comparison of the constraints using DES-Y1 analysis pipeline (blue) and our
DMDR analysis pipeline with new parameters fixed (ζ = 0.0, κ = 1.0; red contours). We
use a simulated ΛCDM data vector on which we apply the multinest MCMC chains for
both runs.
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Figure B.2: Same as figure B.1, but for DES-Y1+External simulated data.
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where in synchronous gauge udm
µ = a(1,~0), udr

µ = a(1, ~vdr). For such dark matter and dark

radiation, we can write the continuity equations and Einstein equations:

∇νT dm
µν = −∇νT dr

µν = −Qudm
µ (B.3)

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (B.4)

where udm
µ is the proper velocity of the dark matter. Note that the right-hand side of the

continuity equation has a collision term instead of zero for CDM. In B18 the dark radiation

is only expanded up to δdr, θdr = ∂iv
i
dr and one anisotropy shear Πdr

ij = (∂i∂j − 1
3
δij∇2)Πdr,

which is sufficient when dark radiation self-interacts or continues to interact with dark matter

after produced so the higher ` terms damp out.

In our work, we assume dark radiation to be a completely free-streaming relativistic

species and write down the full phase space perturbation hierarchy equations for it, which

differs from the massless neutrino ones by a collision term. The phase space dynamics of the

dark radiation with collision terms are [172]:

∂Fdr(~k, n̂, τ)

∂τ
+ ikµFdr(~k, n̂, τ) = −2

3
ḣ(~k, τ)− 4

3
(ḣ(~k, τ)

+ 6η̇(~k, τ))P2(k̂ · n̂) +

(
∂Fdr(~k, n̂, τ)

∂τ

)
C

(B.5)

The phenomenology of the microphysics of the dark matter to dark radiation conversion

process is mostly demonstrated in the collision term(
∂Fdr(~k, n̂, τ)

∂τ

)
C

=
a

ρdr(a)
(−Q(a)Fdr(~k, n̂, τ) + δQ), (B.6)

especially its perturbation part δQ which depends on the details of the interacting physical

quantities like particle momentum. However, from several case studies in B18 on Sommerfeld

enhancement and single-body decay processes, it seems that the precision of the current

generation of cosmological observations is not sufficient to discriminate between the specific

forms of δQ. Hence we assume the simplest form of the collision perturbation δQ = Qδdm,

without dependence on polarization or momentum anisotropy:(
∂Fdr(~k, n̂, τ)

∂τ

)
C

=
Q(a)a

ρdr(a)
(−Fdr(~k, n̂, τ) + δdm(~k, τ)) (B.7)
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Expanding Fdr in equation (B.7) into harmonics, we get

Fdr(~k, n̂, τ) =
∞∑
l=1

(−i)l(2l + 1)Fdrl(~k, τ)Pl(k̂ · n̂). (B.8)

Noticing that only Fdr(~k, n̂, τ) itself needs expansion while other terms in equation (B.7) are

constant to the orientation variable k̂ · n̂, we get the hierarchy equation [172,173,175,176]:

(Jdr
l )′ =

k

2l + 1
[lJdr

l−1 − βl+1(l + 1)Jdr
l+1]

+
8

15
kσδl2 −

4

3
kZδl0 −

aQ

ρ̄dr

Jdr
l

(B.9)

where Jdr
0 ≡ δdr, J

dr
1 ≡ qdr = 4

3
θdr/k, Jdr

2 ≡ πdr = Πdr/ρ̄dr in CAMB convention, δl0, δl2 are

Dirac delta-functions. Equations l = 0, l = 1 agree with the Eqs. (14) and (15) in B18.
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