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Abstract

Statistical inference for nonlinear and non-Gaussian dynamic models of moderate and high di-

mensions is an open research area. Such models may require simulation-based methodology when

linearization and Gaussian approximations are not appropriate. The particle filter has allowed

likelihood-based inference for such problems when the dimension of the problem is small, but de-

grades in performance as the dimension of the model increases. This is due to the exponential growth

in the volumes to be represented by Monte Carlo simulations as dimension grows. In epidemiology,

this curse of dimensionality problem occurs when we jointly model the epidemiological dynamics

in a group of neighboring towns that are coupled via immigration or travel. In this dissertation, I

present two innovations that make methodological and practical progress in data analysis for non-

linear and non-Gaussian dynamic models with coupled disease models as the primary problem of

interest. All work was done jointly with my co-advisers Dr. Ionides and Dr. King as well as Dr.

Joonha Park and Allister Ho.

The first innovation is a group of simulation-based methods that take advantage of localization —

the idea that dependence between far enough spatial units in a spatially coupled model is negligible

— to make approximations enabling scalable likelihood estimation. I show theoretical results for

the methods and examples of its use on three different models, including a coupled measles model

in England.

The second innovation is the open-source R package spatPomp. This package builds on the

xiii



strengths of the pomp package for model development and testing while adding new components

that allow the implementation of new methods that are tailored for moderate- and high-dimensional

problems. Various algorithms and utility functions are implemented and the package is available

on the Comprehensive R Archive Network (CRAN) repository of packages.

xiv



Chapter 1

Introduction

1.1 Overview

In epidemiology and many other areas, we obtain data over time that give us partial information

about a dynamic process like the spread of a disease in a population. The data can be used to

support or discount candidate dynamic models for the process. Many epidemiological models are

formulated as deterministic ordinary differential equations (ODEs). ODEs are natural starting

points for modeling dynamic processes because they express the rates at which the states of the

model system change over time and how they depend on other states. Solving ODEs gives us tra-

jectories of the model system that can be compared to the data obtained from the dynamic process

being modeled. Nevertheless, it can be desirable to fit stochastic models instead of ODEs. For

instance, modeling transmission probabilistically allows us to explain why some viral introductions

into a fully susceptible population do not lead to an outbreak (Keeling and Rohani, 2009). It can

also allow us to achieve viral extinction in cases where the susceptible population is depleted whereas

solutions to ODEs often approach zero asymptotically. Stochastic models can hence fit our data
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better. Further, a problem with deterministic models is that they imply a level of predictability

which may not be justified. Unlike deterministic models, stochastic models allow us to express

uncertainty in estimated model quantities.

One class of stochastic models that is used for time series data analysis is the partially observed

Markov process (POMP) model class. Models in this class suppose the existence of a latent dynamic

model which is Markovian, i.e., all the information about the latent state is independent of all

historical latent state information conditional on the most recent latent state. The measurement

model that outputs the observed data conditional on the latent states shadows the latent process

and gives us information about the latent process. POMP models are convenient for modeling time

series data because the separation between the latent process model and the measurement model

allows the modeler to test model variations in either or both model components.

Given a POMP model, the information included in our data about the model is captured by the

evaluation of a statistical function called the likelihood function. Models that are more consistent

with the data have higher values of the likelihood function. Another quantity of interest for a POMP

model is the distribution of the latent state at a given time conditional on data observed until that

time. This distribution is called the filter distribution. Only rarely can we analytically compute an

evaluation of the likelihood function or the filter distribution at a given time for a POMP model

because they both involve integration over all possible latent states. Unless the POMP model

involves latent process and measurement densities that are Gaussian or the state-space is finite and

small, alternative methods must be found for estimating likelihoods and filter distributions.

In this dissertation we focus on a class of such methods that allows the user to provide an

implicit model for the latent process by specifying a simulator for the latent process which can be

used to perform numerical integration over simulated latent states. This is related to the concept
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of mechanistic modeling, which involves specifying a model for a dynamic system that describes

the mechanism that drives the dynamics. Compartment models in epidemiology (e.g. Susceptible-

Infected-Recovered, or SIR, models), which model transitions of people through different phases

of disease status are an example of mechanistic models. Stochastic Euler solutions of mechanistic

models can be used to simulate from the latent process. By providing Euler simulators for small

time-increments, the user can then allow for statistical inference of the mechanistic model by using

the approaches studied in this dissertation.

Methods for POMP models that only require a latent state transition simulator and a probability

model for the conditional distribution for measurements at observation times given the latent states

at those times are called plug-and-play (Bretó et al., 2009; He et al., 2010) methods. One such

method that sequentially estimates the filter distribution at the observation times and the likelihood

of the data is called the particle filter or sequential Monte Carlo (SMC) (Gordon et al., 1993). The

particle filter has the property that it provides unbiased estimates of the likelihood of the data

(Del Moral and Guionnet, 2001) and forms the basis for parameter estimation via iterated filtering

with parameter perturbations (Ionides et al., 2006, 2015).

The particle filter involves resampling Monte Carlo simulations (also called particles) according

to weights that signify the consistency of each particle to data. When the latent state space grows

in dimension (which is usually accompanied by growing measurement dimension), the volume of the

space to be represented by Monte Carlo simulations for numerical integration grows exponentially,

which leads to massive imbalance in the particle weights. The resampling step of the particle filter

then results in the representation of a high-dimensional space by a handful of particles (Bengts-

son et al., 2008). The consequences of this curse of dimensionality (COD) phenomenon are that

our high-dimensional filter distribution is approximated by very few particles and our likelihood

3



estimates have high variance.

In epidemiology, the COD problem occurs when we consider a joint model of disease dynamics

among, say, neighboring towns that have dependence via travel or immigration. Disease models for

a small town may, for instance, predict that there will be viral extinction but a sustained epidemic

could be observed due to continuous case importation from neighboring towns. In such cases, policy

recommendations could be improved by fitting a joint model.

1.2 Previous approaches

In the previous example, one way to move forward when inference on a joint model is difficult

would be to posit a model that treats the latent dynamics in the towns as independent with some

shared model parameters (e.g. infectious period) and some spatial unit-specific parameters (e.g.

town-specific reporting rate of cases) (Bretó et al., 2009). This allows us to use existing particle

filter-based methods to analyze our data and retain the mechanistic nature of our model. However,

approaches like this confine us to models without dynamic coupling that may compensate for model

misspecification by outputting parameter estimates that do not correspond to the physical quantities

they represent. For instance, suppose we have city-level time series data that comes from a coupled

disease model in which the latent dynamics of different cities are dependent (perhaps via travel

or immigration). If we fit a model that supposes independence between the city dynamics, the

model may prefer to explain a sustained outbreak in a city by assigning likelihoods to transmission

parameters that are higher than would be expected from understanding the science of the disease.

The model that generated the data, however, may have used importation of infectives from other

cities to sustain the outbreak.
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The ensemble Kalman filter (EnKF) (Evensen and van Leeuwen, 1996) allows more flexibility

by allowing us to specify latent state transition simulations that include coupling parameters that

induce dependence between spatial units. However, EnKF is a sequential method which relies on

an update step that assumes a Gaussian distribution for the latent state conditional on the data at

each observation time. While this approximation makes EnKF scale well with growing dimension

size, it can lead to bias (as shown in Chapter 4).

Outside of the plug-and-play class of methods, alternatives exist that involve making distribu-

tional assumptions about the latent process which make likelihood evaluation analytically tractable.

The Kalman filter, for example, assumes a Gaussian transition density to provide the likelihood un-

der a linear-Gaussian model. The likelihood of data from a Gaussian auto-regressive moving average

(ARMA) process, for example, can be evaluated using the Kalman filter. EnKF can serve as a plug-

and-play alternative in this case, up to Monte Carlo error, since we can supply a transition simulator

as well as a transition density. The standard Expectation-Maximization (EM) algorithm is another

method for evaluating likelihoods that requires an explicit transition density for the latent dynam-

ics and is, hence, non-plug-and-play. Ultimately non-plug-and-play approaches make assumptions

about the latent process that lead to analytical tractability of the likelihood evaluation problem at

the risk of biased estimates. Simulation-based techniques allow the user to focus more on specify-

ing the science of a disease and have an advantage when the disease dynamics are nonlinear and

non-Gaussian.
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1.3 Software as a home for methodology

The pomp package (King et al., 2016) was one of the outputs of a working group that focused

on building inference methodology and software for, among other things, low-dimensional POMP

models. Since its publication, the package has over 210 citations and is considered to be a ma-

jor software package in R for statistical inference for low-dimensional nonlinear and non-Gaussian

epidemiological models. As more attention is given to spatially coupled models, there has been a

growing need for methods and tools that can help us mitigate the COD problem discussed above.

Just as new methods that push existing boundaries are indispensable, so too are software tools that

allow easy model implementation and criticism using new methods. What has allowed pomp to be

successful in this respect?

First, the general abstraction of POMP models allows the user to implement various kinds

of POMP models (e.g. discrete- or continuous-time latent models). Second, the user can easily

provide components of the model only necessary for the methods to be used (e.g. specifying a

transition density is not required to use plug-and-play methods like the particle filter). Third, a

wide range of methods are implemented (Bayesian, frequentist, plug-and-play, non-plug-and-play,

full-information, feature-based) which have computationally expensive pieces of code written in C.

Fourth, extensive package documentation and case studies available from courses and modules make

it easy to pick up as a new user. Finally, it implements example POMP models that allow the user

to quickly test existing methods or even develop new ones.

The spatPomp package aims to emulate these advantages and be a home for statistical inference

for POMP models with spatial coupling. There have been various methodological contributions

from researchers that can enable complex model development and inference. Each method has its
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advantages and a class of problems that play to its advantages. Housing these approaches under

one software roof and modularizing their component pieces allows us to quickly develop and test

methods while giving the applied scientist a home for trying alternative methods.

1.4 Overview and contributions of this dissertation

1.4.1 Chapter 2

Estimation of the likelihood and the filter distribution can be accomplished by sampling from the

latent process model and using the conditional density of the data given the sampled latent states.

This is an example of a more general method called importance sampling, which samples from a

target distribution by sampling from a different distribution called the importance distribution and

attaching a proper importance weight to each sample from our importance distribution. In Chapter

2, I first introduce a method that uses the latent process model as the importance distribution but

uses an approximation of the proper importance weight in order to approximately sample from the

filter distribution and estimate the likelihood. I show that this method averts the COD. I then

introduce a derivative method that can be more stable. Instead of using the latent process model,

the so-called adapted distribution is used as the importance distribution. Since samples from this

distribution are adapted to our data, they allow us to focus our computational effort in regions

of the state space that are consistent with the data. However, sampling from this distribution

using importance sampling poses a COD problem as does estimating the proper importance weight

corresponding to it. The first problem is overcome by having independent bootstrap replicates

describing their own regions of the state space for the importance sampling. The second is mitigated

by using an approximation of the proper importance weight that uses a notion of localization in
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the time series data. I present a theoretical result for this method and illustrate all methods on a

linear-Gaussian system and a nonlinear chaotic model.

1.4.2 Chapter 3

Spatiotemporal inference for nonlinear and non-Gaussian dynamics is an active research area that

warrants a home for implementing new methodology and testing existing ones. Chapter 3 intro-

duces the open-source spatPomp package, which retains the flexibility of the pomp package for

model development while also extending its core functionalities to allow easy implementation of

new methodology. New methods may, for instance, require the user to provide components of the

measurement model other than the conditional density of the data given a latent state (like the

conditional expectation or variance). The need for such model components spurred development of

core pomp and spatPomp infrastructure that has allowed the implementation of several published

methods that did not have available open-source code. The chapter illustrates how to use the core

methods of the package on a linear-Gaussian system and also gives an example of how to develop

a nonlinear disease transmission model.

1.4.3 Chapter 4

The methods introduced in Chapter 2 are intended for likelihood estimation. However, a rigorous

examination of the following is required to better understand the methods:

• How do the methods scale with increasing dimension for a typical nonlinear and non-Gaussian

disease transmission model?

• How do the tuning parameters affect the performance of the methods?
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• Can these likelihood estimation algorithms be used for parameter estimation?

• How does the bias due to the approximations in the methods affect our inference task?

Chapter 4 provides the insights gained from extensive investigation of our methods on simulated

measles data.

It is my hope that the work that led to this dissertation sustains its usefulness through the new

methods and software that it produced. The immediate impact of the work is likely that there are

now new methods that are able to push the limits of statistical inference for moderate-dimensional

nonlinear and non-Gaussian problems. Given that this research area is still in its early stages, the

new methods can be useful on some subset of problems, which is gratifying in itself. Perhaps a

longer-term impact of the work is that spatPomp has eased the implementation and testing of new

methods. I have learned a great deal about new and existing methods by implementing them in

the package and conducting simulation studies. I describe two potential follow-up projects in my

concluding chapter which arose from extensive simulation studies that were not previously available.

I also show that a method that was not extensively used in applications, the block particle filter

(Rebeschini and van Handel, 2015), can be quite useful and will likely form the basis of some future

work among my collaborators. The signs are, therefore, that there is more to be done yet.
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Chapter 2

Bagged Filters for Partially Observed

Interacting Systems

2.1 Introduction

Bagging is a technique to improve numerically unstable estimators by combining an ensemble of

replicated bootstrap calculations (Breiman, 1996). In the context of nonlinear partially observed

dynamic systems, the bootstrap filter of Gordon et al. (1993) has led to a variety of particle fil-

ter (PF) methodologies (Doucet et al., 2001; Doucet and Johansen, 2011). We consider algorithms

combining an ensemble of replicated particle filters, and we use the name bagged filter. Standard PF

methods suffer from a curse of dimensionality (COD), defined as an exponential increase in compu-

tational requirement as the problem size grows, limiting its applicability to large systems (Bengtsson

et al., 2008; Snyder et al., 2015; Rebeschini and van Handel, 2015). The COD presents empirically

as numerical instability of the Monte Carlo algorithm for attainable numbers of particles. Much

previous research has investigated scalable approaches to filtering and inference with applications
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to spatiotemporal systems. Our bagged filters are in the class of plug-and-play algorithms, meaning

that they require as input a simulator for the latent dynamic process but not an evaluator of transi-

tion probabilities (Bretó et al., 2009; He et al., 2010). This simulation-based approach, also known

as likelihood-free (Brehmer et al., 2020) or equation-free (Kevrekidis and Samaey, 2009), facilitates

application to a wide class of models. The ensemble Kalman filter (Evensen and van Leeuwen, 1996;

Lei et al., 2010; Katzfuss et al., 2020) is a widely used plug-and-play method which uses simulations

to parameterize a Gaussian-inspired filtering rule. Another plug-and-play approach to combat the

COD is the block particle filter (Rebeschini and van Handel, 2015; Ng et al., 2002). Both ensemble

Kalman filter and block particle filter methods construct trajectories that can violate smoothness

and conservation properties of the dynamic model. By contrast, our bagged filters are built using

valid trajectories of the dynamic model, making localization approximations only when comparing

these trajectories to data.

The replicated stochastic trajectories in a bagged filter form an ensemble of representations of

the dynamic system. Unlike the particles in a particle filter or ensemble Kalman filter, the bagged

replicates are independent in a Monte Carlo sense. Bagged filters therefore bear some resemblance

to poor man’s ensemble forecasting methodology in which a collection of independently constructed

forecasts is generated using different models and methods (Ebert, 2001). Poor man’s ensembles

have sometimes been found to have greater forecasting skill than any one forecast (Leutbecher and

Palmer, 2008; Palmer, 2002; Chandler, 2013). One explanation for this phenomenon is that even

a hypothetically perfect model cannot provide effective filtering using methodology afflicted by the

COD. We show that bagged filter methodology can relieve this limitation. From this perspective,

the independence of the forecasts in the poor man’s ensemble, rather than the diversity of model

structures, may be the key to its success.
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In the simplest bagged filter, each replicate simulates a realization of the latent process model.

We call this the unadapted bagged filter (UBF) since the replicates in the ensemble depend on the

model but not on the data. UBF is described in Sec. 2.2, with a theoretical analysis presented in

Sec. 2.2.2. Each UBF replicate corresponds to a basic PF algorithm with a single particle. We show

that UBF formally beats the COD under a weak mixing assumption, though UBF can have poor

numerical behavior if a very large number of replicates are needed to reach this happy asymptotic

limit. Subsequent empirical results show that UBF may nevertheless be a useful algorithm in some

situations. In Sec. 2.3, we generalize UBF to construct an adapted bagged filter (ABF) where each

replicate tracks the data. The price of adaptation is that ABF no longer fully avoids the COD,

a limitation that can be controlled in certain situations by supplementing ABF with a technique

called intermediate resampling, to obtain the ABF-IR algorithm. Theoretical results for ABF and

ABF-IR algorithms are developed in Sec. 2.3.2. The algorithms are demonstrated in action and

compared with alternative approaches in Sec. 2.4.

2.2 The unadapted bagged filter (UBF)

2.2.1 Notation

Suppose the collection of units is indexed by the set {1, 2, . . . , U}, which is written as 1 :U . The

latent Markov process is denoted by {Xn, n ∈ 0 :N}, with Xn = X1:U,n taking values in a product

space XU . This discrete time process may arise from a continuous time Markov process {X(t), t0 ≤

t ≤ tN} observed at times t1:N , and in this case we set Xn = X(tn). The initial value X0 may

be stochastic or deterministic. Observations are made on each unit, modeled by an observable

process {Y n = Y1:U,n, n ∈ 1 :N} which takes values in a product space YU . Observations are
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modeled as being conditionally independent given the latent process. The conditional independence

of measurements applies over both time and the unit structure, so the collection
{
Yu,n, u ∈ 1:U, n ∈

1 : N
}

is conditionally independent given
{
Xu,n, u ∈ 1 : U, n ∈ 1 : N

}
. The unit structure for

the observation process is not necessary for all that follows (see Appendix 2.C). We suppose the

existence of a joint density fX0:N ,Y 1:N of X1:U,1:N and Y1:U,1:N with respect to some appropriate

measure, following a notational convention that the subscripts of f denote the joint or conditional

density under consideration. The data are y∗u,n for unit u at time n. This model is a special case

of a partially observed Markov process (POMP, Bretó et al., 2009), also known as a state space

model or hidden Markov model. The additional unit structure, not generally required for a POMP,

is appropriate for modeling interactions between units characterized by a spatial location, and so

we call the model a SpatPOMP. In the following, we use the ordering on the set of observations

corresponding to their unit labels 1 :U to define the set of observations preceding unit u at time n

as

Au,n =
{
(ũ, ñ) : 1 ≤ ñ < n or (ñ = n and ũ < u)

}
. (2.1)

The ordering of the spatial locations in (2.1) might seem artificial, and indeed densities such as

fXu,n|XAu,n will frequently be hard to compute or simulate from. The bagged filter algorithms we

study do not evaluate or simulate such transition densities but only compute the measurement model

on neighborhoods, unlike the filter of Beskos et al. (2017) built on the same factorization. We may

suppose that sufficiently distant units approach independence, in which case we say the system is

weakly coupled. To represent weak coupling, we suppose there is a neighborhood Bu,n ⊂ Au,n such

that the latent process on Au,n \Bu,n is approximately conditionally independent of Xu,n given data

on Bu,n.
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Our primary interest is estimation of the log likelihood for the data given the model, ` =

log fY 1:N (y∗1:N ), which is of fundamental importance in both Bayesian and non-Bayesian statistical

inference. A general filtering problem is to evaluate E
[
h(Xu,n) |YAu,n = y∗Au,n

]
for some function

h : X → R. Taking h(x) = fYu,n|Xu,n
(
y∗u,n |x

)
gives a filtering representation of the likelihood

evaluation problem. Further discussion on bagged filtering for other filtering problems is given

in Appendix 2.E. For likelihood-based inference, maximization plays an important role in point

estimation, confidence interval construction, hypothesis testing and model selection. An extension

of bagged filtering to likelihood maximization is demonstrated in Sec. 4.4.

Pseudocode for a UBF algorithm for likelihood evaluation is given below. The plug-and-play

property is evident because UBF requires as input a simulator for the latent coupled dynamic process

but not an evaluator of transition probabilities. The pseudocode for UBF adopts a convention

that implicit loops are carried out over all free indices, meaning indices with values that are not

explicitly specified. For example, the construction of wPu,n,i in UBF has an implicit loop over u, n

and i. However, the summation constructing `MC
u,n does not have an implicit loop over i since the

summation index i is specified explicitly and so is not a free index.
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UBF. Unadapted bagged filter.

input:

simulator for fX0(x0) and fXn|Xn−1(xn |xn−1)

evaluator for fYu,n|Xu,n(yu,n |xu,n)

number of replicates, I

neighborhood structure, Bu,n

data, y∗n

implicit loops:

u in 1 :U , n in 1 :N , i in 1 :I

algorithm:

simulate X0:N,i ∼ fX0:N (x0:N )

measurement weights, wMu,n,i = fYu,n|Xu,n(y∗u,n |Xu,n,i)

prediction weights, wPu,n,i = ∏
(ũ,ñ)∈Bu,n w

M
ũ,ñ,i

`MC
u,n = log

(∑I
i=1w

M
u,n,iw

P
u,n,i

)
− log

(∑I
i=1w

P
u,n,i

)
output:

log likelihood estimate, `MC = ∑N
n=1

∑U
u=1 `

MC
u,n

2.2.2 UBF theory

For each pair (U,N) we suppose there is a dataset y∗1:N and a model fX0:N ,Y 1:N . We are interested

in results that hold for all (U,N), but we do not require that the models for (U1, N1) 6= (U2, N2) are

related, except through satisfying regularity conditions. The following conditions impose require-
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ments that distant regions of space-time behave similarly and have only weak dependence. The

conditions are written non-asymptotically in terms of constants εA1, εA4 and Q which are used to

bound the asymptotic bias and variance in Theorem 1. Stronger bounds are obtained when the

conditions hold for small εA1, εA4 and Q.

Assumption A1. There is an εA1 > 0, independent of U and N , and a collection of neighborhoods

{Bu,n ⊂ Au,n, u ∈ 1 :U, n ∈ 1 :N} such that, for all u and n, any bounded real-valued function

|h(x)| ≤ 1, and any value of xBcu,n,

∣∣∣∣∣
∫
h(xu,n)fXu,n|YBu,n ,XBcu,n (xu,n | y∗Bu,n , xBcu,n) dxu,n

−
∫
h(xu,n)fXu,n|YBu,n (xu,n | y∗Bu,n) dxu,n

∣∣∣∣∣ < εA1. (2.2)

Assumption A2. For the collection of neighborhoods in Assumption A1, with B+
u,n = Bu,n∪ (u, n),

there is a constant b, depending on εA1 but not on U and N , such that

sup
u∈1:U, n∈1:N

∣∣B+
u,n

∣∣ ≤ b.

Assumption A3. There is a constant Q, independent of U and N , such that, for all u and n,

Q−1 < fYu,n|Xu,n(y∗u,n |xu,n) < Q

Assumption A4. There exists εA4 > 0, independent of U and N , such that the following holds.
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For each u, n, a set Cu,n ⊂ (1 :U)× (0 :N) exists such that (ũ, ñ) /∈ Cu,n implies B+
u,n ∩B+

ũ,ñ = ∅ and

∣∣fX
B+
ũ,ñ
|X
B+
u,n

− fX
B+
ũ,ñ

∣∣ < εA4 fX
B+
ũ,ñ

Further, there is a uniform bound |Cu,n| ≤ c.

The two mixing conditions in Assumptions A1 and A4 are subtly different. Assumption A1

describes a conditional mixing property dependent on the data, whereas A4 asserts a form of

unconditional mixing. Although both capture a similar concept of weak coupling, conditional and

unconditional mixing properties do not readily imply one another. Assumption A3 is a compactness

condition of a type that has proved useful in the theory of particle filters despite the rarity of its

holding exactly. Theorem 1 shows that these conditions let UBF compute the likelihood with a

Monte Carlo variance of order UNI−1 with a bias of order UNε.

Theorem 1. Let `MC denote the Monte Carlo likelihood approximation constructed by UBF. Con-

sider a limit with a growing number of bootstrap replicates, I → ∞, and suppose assumptions A1, A2

and A3. There are quantities ε(U,N) and V (U,N), with bounds |ε| < εA1Q
2 and V < Q4b U2N2,

such that

I1/2[`MC − `− εUN
] d−−−→
I→∞

N
[
0, V

]
, (2.3)

where d−−−→
I→∞

denotes convergence in distribution and N [µ,Σ] is the normal distribution with mean

µ and variance Σ. If additionally Assumption A4 holds, we obtain an improved variance bound

V < Q4b UN
(
c+ εA4 (UN − c)

)
. (2.4)

Proof. A complete proof is given in Appendix 2.A. Briefly, the assumptions imply a multivariate
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central limit theorem for {`MC
u,n , (u, n) ∈ 1 :U×1 :N} as I → ∞. The limiting variances and covari-

ances are uniformly bounded, using Assumptions A2 and A3. Assumption A1 provides a uniform

bound on the discrepancy between `u,n and mean of the Gaussian limit. This is enough to derive

(2.3). Assumption A4 gives a stronger bound on covariances between sufficiently distant units,

leading to (2.4).

Theorem 1 does not guarantee uniformity over U and N of the rate of convergence as I → ∞.

However, it does guarantee that the polynomial bounds in (2.3) and (2.4) hold for sufficiently large

I. The COD is characterized by exponential bounds, and so Theorem 1 shows a specific sense

in which UBF can avoid COD. Uniformity of the central limit convergence in Theorem 1 may be

expected to hold via a Berry-Esseen theorem, but extension of existing Berry-Esseen results for

dependent processes (Bentkus et al., 1997; Jirak, 2016) is beyond the scope of this article.

The approximation error for UBF can be divided into two sources: a localization bias due to con-

ditioning on a finite neighborhood, and Monte Carlo error. The localization bias does not disappear

in the limit as Monte Carlo effort increases. It does become small as the conditioning neighborhood

increases, but the Monte Carlo effort grows exponentially in the size of this neighborhood. The class

of problems for which these algorithms are useful are ones where a relatively small neighborhood

is adequate. Although the filtering inference is carried out using localization, the simulation of

the process is carried out globally which avoids the introduction of additional boundary effects and

ensures that the simulations comply with any constraint properties of the global process simulator.
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2.3 Adaptation and intermediate resampling

2.3.1 Concept

Theorem 1 shows that UBF can beat COD. However, UBF can perform poorly on long time series

unless weak temporal dependence allows simulated sample paths to remain relevant over the course

of a long time series. Later, in Sec. 4.2, we will find that UBF performs well on an epidemiological

model but less well on a geophysical model. It may in practice be necessary to select simulations

consistent with the data, much as standard PF algorithms do. We look for approaches that build

on the basic insight of UBF while having superior practical performance.

Whereas the full global filtering problem of drawing from fXn|Y 1:n may be intractable via im-

portance sampling methods, a version of this problem localized in space and time may nevertheless

be feasible. The conditional density, fXn|Y n,Xn−1 , is called the adapted density, and simulating from

this density is called adapted simulation. For models where Xn−1 is highly informative about Xn,

importance sampling for adapted simulation may be much easier than the full filter calculation.

The following adapted bagged filter (ABF) is constructed under a hypothesis that the adapted sim-

ulation problem is tractable, and it is applicable when the number of units is prohibitive for Monte

Carlo sampling from the full filter distribution but not for sampling from the adapted distribution.

In ABF, the adapted simulations are reweighted in a neighborhood of each unit and time point to

construct a local approximation to the filtering problem which leads to an estimate of the likelihood.

The pseudocode for ABF, below, reduces to UBF when using a single particle per repicate, J = 1.
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ABF. Adapted bagged filter.

input: same as for UBF plus

particles per replicate, J

implicit loops:

u in 1 :U , n in 1 :N , i in 1 :I, j in 1 :J

algorithm:

Initialize adapted simulation: XA
0,i ∼ fX0(x0)

For n in 1 :N

Proposals: XP
n,i,j ∼ fXn|X1:U,n−1

(
xn |XA

n−1,i

)
Measurement weights: wM

u,n,i,j = fYu,n|Xu,n

(
y∗u,n |XP

u,n,i,j

)
Adapted resampling weights: wA

n,i,j =
∏U

u=1 w
M
u,n,i,j

Resampling: P
[
r(i) = a

]
= wA

n,i,a

(∑J
k=1 w

A
n,i,k

)−1

XA
n,i = XP

n,i,r(i)

wP
u,n,i,j =

n−1∏
ñ=1

[ 1
J

J∑
k=1

∏
ũ:(ũ,ñ)∈Bu,n

wM
ũ,ñ,i,k

] ∏
ũ:(ũ,n)∈Bu,n

wM
ũ,n,i,j

End for

output:

`MC
u,n = log

(∑I
i=1
∑J

j=1 w
M
u,n,i,jw

P
u,n,i,j∑I

i=1
∑J

j=1 w
P
u,n,i,j

)

ABF remedies a weakness of UBF by making each boostrap filter adapted to the data. However,

this benefit carries a cost, since adapted simulation is not immune from the curse of dimensionality.

Therefore, we also consider an algorithm called ABF-IR which uses an intermediate resampling

technique to carry out the adapted simulation. Intermediate resampling involves assessing the

satisfactory progress of particles toward the subsequent observation at a collection of times between

observations. This is well defined when the latent process has a continuous time representation,
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{X(t)}, with observation times t1:N . We write S intermediate resampling times as

tn−1 = tn,0 < tn,1 < · · · < tn,S = tn.

Carrying out an intermediate resampling procedure can have favorable scaling properties when

S is proportional to U (Park and Ionides, 2020). In the case S = 1, ABF-IR reduces to ABF.

Intermediate resampling was developed in the context of sequential Monte Carlo (Del Moral and

Murray, 2015; Park and Ionides, 2020); however, the same theory and methodology can be applied

to the simpler and easier problem of adapted simulation. ABF-IR employs a guide function to

gauge the compatibility of each particle with future data. This is a generalization of the popular

auxiliary particle filter (Pitt and Shepard, 1999). Only an ideal guide function fully addresses COD

(Park and Ionides, 2020) and on nontrivial problems this is not available. However, practical guide

functions can nevertheless improve performance.

The implementation in the ABF-IR pseudocode constructs the guide gn,s,i,j using a simulated

moment method proposed by Park and Ionides (2020). The quantitiesXG
n,i,j , Vu,n,i, µIP

n,s,i,j , V meas
u,n,s,i,j ,

V proc
u,n,s,i and θu,n,s,i,j constructed in ABF-IR are used only to construct gn,s,i,j . Heuristically, we

use guide simulations to approximate the variance of the increment in each particle between time

points, and we augment the measurement variance to account for both dynamic variability and

measurement error. The guide function affects numerical performance of the algorithm but not its

correctness: it enables a computationally convenient approximation to improve performance on the

intractable target problem. Our guide function supposes the availability of a deterministic function
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approximating evolution of the mean of the latent process, written as

µ(x, s, t) ≈ E
[
X(t) |X(s) = x

]
.

Further, the guide requires that the measurement model has known conditional mean and variance

as a function of the model parameter vector θ, written as

hu,n(xu,n) = E
[
Yu,n |Xu,n = xu,n

]
→vu,n(xu,n, θ) = Var

(
Yu,n |Xu,n = xu,n ;θ

)

Also required for ABF-IR is an inverse function ←vu,n such that

→vu,n
(
xu,n,

←v u,n(V, xu,n, θ)
)

= V.
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ABF-IR. Adapted bagged filter with intermediate resampling.

input: same as for ABF plus
number of intermediate timesteps, S
measurement variance parameterizations, ←vu,n and →vu,n
approximate process and observation mean functions, µ and hu,n

implicit loops:
u in 1 :U , n in 1 :N , i in 1 :I, j in 1 :J , j in 1 :J

algorithm:
Initialize adapted simulation: XA

0,i ∼ fX0(x0)
For n in 1 :N

Guide simulations: XG
n,i,j ∼ fXn|Xn−1

(
xn |XA

n−1,i
)

Guide sample variance: Vu,n,i = Var
{
hu,n

(
XG
u,n,i,j

)
, j in 1 :J

}
gR
n,0,i,j = 1 and XIR

n,0,i,j = XA
n−1,i

For s in 1 :S
Intermediate proposals: XIP

n,s,i,j ∼ fXn,s|Xn,s−1

(
· |XIR

n,s−1,i,j
)

µIP
n,s,i,j = µ

(
XIP

n,s,i,j , tn,s, tn
)

V meas
u,n,s,i,j =→v u(θ, µIP

u,n,s,i,j)
V proc
u,n,s,i = Vu,n,i

(
tn − tn,s

)/(
tn − tn,0

)
θu,n,s,i,j =←v u

(
V meas
u,n,s,i,j + V proc

u,n,s,i, µ
IP
u,n,s,i,j

)
gn,s,i,j = ∏U

u=1 fYu,n|Xu,n
(
y∗u,n |µIP

u,n,s,i,j ;θu,n,s,i,j
)

Guide weights: wGn,s,i,j = gn,s,i,j
/
gR
n,s−1,i,j

Resampling: P
[
r(i, j) = a

]
= wGn,s,i,a

(∑J
k=1w

G
n,s,i,k

)−1

XIR
n,s,i,j = XIP

n,s,i,r(i,j) and gR
n,s,i,j = gn,s,i,r(i,j)

End For
Set XA

n,i = XIR
n,S,i,1

Measurement weights: wMu,n,i,j = fYu,n|Xu,n
(
y∗u,n |XG

u,n,i,j

)
wP
u,n,i,j =

n−1∏
ñ=1

[ 1
J

J∑
a=1

∏
ũ:(ũ,ñ)∈Bu,n

wMũ,ñ,i,a

] ∏
ũ:(ũ,n)∈Bu,n

wMũ,n,i,j

End for
output:

`MC
u,n = log

(∑I
i=1

∑J
j=1w

M
u,n,i,jw

P
u,n,i,j∑I

i=1
∑J
j=1w

P
u,n,i,j

)
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This guide function is applicable to spatiotemporal versions of a broad range of population

and compartment models used to model dynamic systems in ecology, epidemiology, and elsewhere.

Other guide functions could be developed and inserted into the ABF-IR algorithm, including other

constructions considered by Park and Ionides (2020).

One might wonder why it is appropriate to keep many particle representations at intermediate

timesteps while resampling down to a single representative at each observation time. Part of the

answer is that adaptive simulation can fail when one resamples down to a single particle too often

(Appendix 2.D).

2.3.2 ABF-IR theory

We start by considering a deterministic limit for infinite Monte Carlo effort and explaining why

the ABF and ABF-IR algorithms approximately target the likelihood function, subject to suitable

mixing behavior. Subsequently, we consider the scaling properties as Monte Carlo effort increases.

We adopt a convention that densities involving Yu,n are implicitly evaluated at the data, y∗u,n,

and densities involving Xu,n are implicitly evaluated at xu,n unless otherwise specified. We write

A+
u,n = Au,n ∪ (u, n), matching the defintion B+

u,n = Bu,n ∪ (u, n). The essential ingredient in all the

algorithms is a localization of the likelihood, which may be factorized sequentially as

fY1:U,1:N =
N∏
n=1

U∏
u=1

fYu,n|YAu,n =
N∏
n=1

U∏
u=1

fY
A+
u,n

fYAu,n

.
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In particular, the approximations assume that the full history Au,n can be well approximated by a

neighborhood Bu,n ⊂ Au,n. UBF approximates fYu,n|YAu,n by

fYu,n|YBu,n =
fY

B+
u,n

fYBu,n

=

∫
fY

B+
u,n
|X
B+
u,n

fX
B+
u,n

dxB+
u,n∫

fYBu,n |XBu,nfXBu,n dxBu,n
.

For B ⊂ 1 :U × 1 :N , define B[m] = B ∩
(
1 :U × {m}

)
. ABF and ABF-IR build on the following

identity,

fYAu,n=
∫
fX0

[
n∏

m=1
fXm|Xm−1,Ym

fY
A

[m]
u,n
|Xm−1

]
dx0:n,

where fXm|Xm−1,Y m is called the adapted transition density. The adapted process (i.e., a stochastic

process following the adapted transition density) can be interpreted as a one-step greedy procedure

using the data to guide the latent process. Let g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N ) be the joint density of the

adapted process and the proposal process,

g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N ) = fX0(x0)×

N∏
n=1

fXn|Xn−1,Y n

(
xn |xn−1,y

∗
n

)
fXn|Xn−1

(
xPn |xn−1

)
. (2.5)

Using the convention that an empty density fY∅ evaluates to 1, we define

γB =
N∏
m=1

fY
B[m] |Xm−1

(
y∗B[m] |Xm−1

)
.

Denoting Eg for expectation for (X0:N ,X
P
1:N ) having density gX0:N ,X

P
1:N

, we have

fYu,n|YAu,n =
Eg
[
γ
A+
u,n

]
Eg
[
γAu,n

] .
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Estimating this ratio by Monte Carlo sampling from g is problematic due to the growing size of

Au,n. Thus, ABF and ABF-IR make a localized approximation,

Eg
[
γ
A+
u,n

]
Eg
[
γAu,n

] ≈ Eg
[
γ
B+
u,n

]
Eg
[
γBu,n

] . (2.6)

The conditional log likelihood estimate `MC
u,n in ABF and ABF-IR come from replacing the expecta-

tions on the right hand side of (2.6) with averages over Monte Carlo replicates of simulations from

the adapted process. To see that we expect the approximation in (2.6) to hold when dependence

decays across spatiotemporal distance, we can write

γAu,n = γBu,n γBcu,n

γ
A+
u,n

= γ
B+
u,n
γBcu,n ,

where Bc
u,n is the complement of Bu,n in Au,n. Under our assumptions, the term corresponding to

γBcu,n approximately cancels in the numerator and denominator of the right hand side of (2.6).

Since ABF is ABF-IR with S = 1, we focus attention on ABF-IR. At a conceptual level, the

localized likelihood estimate in ABF-IR has the same structure as its UBF counterpart. How-

ever, ABF-IR additionally requires the capability to satisfactorily implement adapted simulation.

Adapted simulation is a local calculation, making it an easier task than the global operation of

filtering. Nevertheless, adapted simulation via importance sampling is vulnerable to COD for suffi-

ciently large values of U . For a continuous time model, the use of S > 1 is motivated by a result that

guided intermediate resampling can reduce, or even remove, the COD in the context of a particle

filtering algorithm (Park and Ionides, 2020). Assumptions B1–B4 below are analogous to A1–A4
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and are non-asymptotic assumptions involving εB1 > 0, εB4 > 0 and Q > 1 which are required to

hold uniformly over space and time. Assumptions B5–B7 control the Monte Carlo error arising from

adapted simulation. B5 is a stability property which asserts that the effect of the latent process on

the future of the adapted process decays over time. Assumption B6 is a non-asymptotic bound on

Monte Carlo error for a single step of adapted simulation. The scaling of the constant C0 with U ,

N and S in Assumption B6 has been studied by Park and Ionides (2020), where it was established

that setting S = U can lead to C0 being constant, when using an ideal guide function, or slowly

growing with U otherwise. The ε−3
B6 error rate in Assumption B6 follows from balancing the two

sources of error defined in the statement of Theorem 2 of Park and Ionides (2020). Assumption B7

can be guaranteed by the construction of the algorithm, if independently generated Monte Carlo

random variables are used for building the guide function and the one-step prediction particles. The

asymptotic limit in Theorem 2 arises as the number of replicates increases.

Assumption B1. There is an εB1 > 0, independent of U and N , and a collection of neighborhoods

{Bu,n ⊂ Au,n, u ∈ 1 :U, n ∈ 1 :N} such that the following holds for all u and n, and any bounded

real-valued function |h(x)| ≤ 1: if we write A = Au,n, B = Bu,n, fA(xA) = fYA|XA(y∗A|xA), and

fB(xB) = fYB |XB (y∗B|xB),

∣∣∣∣∣∣
∫
h(x)

Eg
[
fA
(
XP
A

)
fXu,n|XA[n] ,Xn−1

(
x|XP

A[n] ,Xn−1
)]

Eg
[
fA
(
XP
A

)] −

Eg
[
fB
(
XP
B

)
fXu,n|XB[n] ,Xn−1

(
x|XP

B[n] ,Xn−1
)]

Eg
[
fB
(
XP
B

)]
dx

∣∣∣∣∣∣ < εB1.

Assumption B2. The bound supu∈1:U,n∈1:N
∣∣B+

u,n

∣∣ ≤ b in Assumption A2 applies for the neighbor-

hoods defined in Assumption B1. This also implies there is a finite maximum temporal depth for
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the collection of neighborhoods, defined as

dmax = sup
(u,n)

sup
(ũ,ñ)∈Bu,n

|n− ñ|.

Assumption B3. Identically to Assumption A3, Q−1 < fYu,n|Xu,n(y∗u,n |xu,n) < Q.

Assumption B4. We use subscripts of g to denote marginal and conditional densities derived from

(2.20). Suppose there is an εB4, independent of U and N , such that the following holds. For each

u and n, a set Cu,n ⊂ (1 :U)× (0 :N) exists such that (ũ, ñ) /∈ Cu,n implies B+
u,n ∩B+

ũ,ñ = ∅ and

∣∣gXP
B
ũ,ñ
∪Bu,n

− gXP
B
ũ,ñ

gXP
Bu,n

∣∣ < (1/2) εB4 gXP
B
ũ,ñ
∪Bu,n

∣∣gXP
B
ũ,ñ
|X0:N

gXP
Bu,n
|X0:N

− gXP
B
ũ,ñ
∪Bu,n

|X0:N

∣∣
< (1/2) εB4 gXP

B
ũ,ñ
∪Bu,n

|X0:N

Further, there is a uniform bound |Cu,n| ≤ c.

Assumption B5. There is a constant K, independent of U and N , such that, for any 0 ≤ d ≤ dmax,

any n ≥ K + d, and any set D ⊂ (1 :U)× (n :n− d),

∣∣gXD|Xn−d−K
(xD |x

(1)
n−d−K)− gXD|Xn−d−K

(xD |x
(2)
n−d−K)

∣∣
< εB5 gXD|Xn−d−K

(xD |x
(1)
n−d−K)

holds for all x(1)
n−d−K , x(2)

n−d−K , and xD.
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Assumption B6. Let h be a bounded function with |h(x)| ≤ 1. Let XIR
n,S,j,i be the Monte Carlo

quantity constructed in ABF-IR, conditional on XA
n−1,S,i = xA

n−1,S,i. There is a constant C0(U,N, S)

such that, for all εB6 > 0 and xA
n−1,S,i, whenever the number of particles satisfies J > C0(U,N, S)/ε3B6,

∣∣∣∣∣∣E
[ 1
J

J∑
j=1

h(XIR
n,S,j,i)

]
− Eg

[
h(Xn) |Xn−1 = xA

n−1,S,i
]∣∣∣∣∣∣< εB6.

Assumption B7. For 1 ≤ n ≤ N , the Monte Carlo random variable XA
n,i is independent of wMu,n,i,j

conditional on XA
n−1,i.

Theorem 2. Let `MC denote the Monte Carlo likelihood approximation constructed by ABF-IR, or

by ABF since this is the special case of ABF-IR with S = 1. Consider a limit with a growing number

of bootstrap replicates, I → ∞, and suppose assumptions B1, B2, B3, B5, B6 and B7. Suppose the

number of particles J exceeds the requirement for B6. There are quantities ε(U,N) and V (U,N)

with |ε| < Q2εB1 + 2Q2b(εB5 + (K + dmax)εB6
)

and V < Q4bU2N2 such that

I1/2[`MC − `− εUN
] d−−−→
I→∞

N
[
0, V

]
. (2.7)

If additionally Assumption B4 holds, we obtain an improved rate of

V < Q4bNU
{
c+

(
εB4 + 3εB5 + 4(K + dmax) εB6

)(
NU − c

)}
(2.8)

Proof. A full proof is provided in Sec. Appendix 2.B. The extra work to prove Theorem 2 beyond the

argument for Theorem 1 is to bound the error arising from the importance sampling approximation

to a draw from the adapted transition density. This bound is constructed using Assumptions B5,

B6 and B7. The remainder of the proof follows the same approach as Theorem 1, with the adapted
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process replacing the unconditional latent process.

The theoretical results foreshadow our empirical observations (Secs. 3.5 and 4.2) that the rel-

ative performance of UBF, ABF and ABF-IR is situation-dependent. Assumption A4 is a mixing

assumption for the unconditional latent process, whereas Assumption B4 replaces this with a mixing

assumption for the adapted process conditional on the data. For a non-stationary process, Assump-

tion A4 may fail to hold uniformly in U whereas the adapted process may provide stable tracking

of the latent process (Sec. Appendix 2.D). When Assumption A4 holds, UBF can benefit from not

requiring Assumptions B5, B6 and B7. Adapted simulation is an easier problem than filtering, but

nevertheless can become difficult in high dimensions, with the consequence that Assumption B6

could require large C0. The tradeoff between ABF and ABF-IR depends on the effectiveness of the

guide function for the problem at hand. Intermediate resampling and guide function calculation

require additional computational resources, which will necessitate smaller values of I and J . In

some situations, the improved scaling properties of ABF-IR compared to ABF, corresponding to a

lower value of C0, will outweigh this cost.

2.4 Examples

We compare the performance of the three bagged filters (UBF, ABF and ABF-IR) against each

other and against alternative plug-and-play approaches. The plug-and-play property facilitates

numerical implementation for general classes of models, and all the algorithms and models under

consideration are implemented in the spatPomp R package (Asfaw et al., 2021b). Ensemble Kalman

filter (EnKF) methods propagate the ensemble members by simulation from the dynamic model and

then update the ensemble to assimilate observations using a Gaussian-inspired rule (Evensen and
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van Leeuwen, 1996; Lei et al., 2010). The block particle filter (BPF, Rebeschini and van Handel,

2015; Ng et al., 2002) partitions the latent space and combines independently drawn components

from each partition. BPF overcomes COD under weak coupling assumptions (Rebeschini and van

Handel, 2015). Unlike these two methods, our bagged filters modify particles only according to

the latent dynamics. Thus, our methods satisfy any conservation laws, continuity or smoothness

that arise when simulating from the dynamic model. We also compare with a guided intermediate

resampling filter (GIRF, Park and Ionides, 2020), one of many variants of the particle filter designed

to scale to larger numbers of units than are possible with a basic particle filter.

First, in Sec. 2.4.1, we consider a spatiotemporal Gaussian process for which the exact likelihood

is available via a Kalman filter. We see in Fig. 2.1 that ABF-IR can have a considerable advantages

over UBF and ABF for problems with an intermediate level of coupling. Then, in Sec. 2.4.2,

we compare performance on the Lorenz-96 model, a highly coupled system used to test inference

methods for geophysical applications.

2.4.1 Correlated Brownian motion

Suppose X(t) = ΩW (t) where W (t) = W1:U (t) comprises U independent standard Brownian

motions, and Ωu,ũ = ρd(u,ũ) with d(u, ũ) being the circle distance,

d(u, ũ) = min
(
|u− ũ|, |u− ũ+ U |, |u− ũ− U |

)
.

Set tn = n for n = 0, 1, . . . , N with initial value X(0) = 0 and suppose measurement errors are

independent and normally distributed, Yu,n = Xu,n + ηu,n with ηu,n ∼ N (0, τ2). The parameter ρ

determines the strength of the spatial coupling.
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Figure 2.1 – Log likelihood estimates for correlated Brownian motions of various dimensions. UBF,
ABF and ABF-IR are compared with a guided intermediate resampling filter (GIRF), standard
particle filter (PF), block particle filter (BPF) and ensemble Kalman filter (EnKF). The exact
likelihood was computed via a Kalman filter (KF).

Fig. 2.1 shows how the bagged filters scale on this Gaussian model, compared to a standard

particle filter (PF), a guided intermediate resampling filter (GIRF), a block particle filter (BPF),

and an ensemble Kalman filter. For our numerical results, we use τ = 1, ρ = 0.4 and N = 50. In

this case, the exact likelihood is computable via the Kalman filter (KF). Since EnKF is based on a

Gaussian approximation, it is also exact in this case, up to a small Monte Carlo error. The GIRF

framework encompasses lookahead particle filter techniques, such as the auxiliary particle filter

(Pitt and Shepard, 1999), and intermediate resampling techniques (Del Moral et al., 2017). GIRF

methods combining these techniques were found to perform better than either of these component

techniques alone (Park and Ionides, 2020). Thus, GIRF here represents a state-of-the-art auxiliary

particle filter that targets the complete joint filter density for all units. We use the general-purpose,

plug-and-play implementation of GIRF provided by the spatPomp R package (Asfaw et al., 2021a);
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Figure 2.2 – Correlated Brownian motion simulation used in the analysis

for a Gaussian model, one can calculate an ideal guide function for GIRF but that was not used.

PF works well for small values of U in Fig. 2.1 and rapidly starts struggling as U increases. GIRF

behaves comparably to PF for small U but its performance is maintained for larger U . ABF and

ABF-IR have some efficiency loss, for small U , relative to PF and GIRF due to the localization

involved in the filter weighting, but for large U this cost is paid back by the benefit of the reduced

Monte Carlo variability. UBF has a larger efficiency loss for small U , but its favorable scaling

properties lead it to overtake ABF for larger U . BPF shows stable scaling and modest efficiency

loss. This linear Gaussian SpatPOMP model provides a simple scenario to demonstrate scaling

behavior. For filters that cannot take direct advantage of the Gaussian property of the model, we

see that there is a tradeoff between efficiency at low U and scalability. This is unavoidable, since

there is no known algorithm that is simultaneously fully efficient (up to Monte Carlo error), scalable,

and applicable to general SpatPOMP models.
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To help visualize the correlated Brownian motion model, Fig. 2.2 shows one of the simulations

used for the results in Fig. 2.1 above. Table 2.1 gives the algorithmic settings used for the filters and

corresponding computational resource requirements. Broadly speaking, IJ for ABF and ABF-IR

should be compared with I for UBF, J for PF, and JG for GIRF. The computational effort allocated

to each algorithm in Table 2.1 is given in core minutes. UBF, ABF and ABF-IR parallelize readily,

which is less true for PF and GIRF. Therefore, the UBF, ABF and ABF-IR implementations run

on all available cores (36 for this experiment) whereas the PF and GIRF implementations run on a

single core. If sufficient replications are being carried out to utilize all available cores, comparison

of core minute utilization is equivalent to comparison of total computation time. However, a single

replication of UBF, ABF or ABF-IR proceeds more quickly due to the parallelization.

ABF-IR and GIRF have computational time scaling quadratically with U in this example,

whereas the other methods scale linearly. This is because the number of intermediate steps used,

S, grows linearly with U .

The main purpose of this example is not to provide a comparison between the functional capabil-

ities of the methods on interesting scientific problems. It is a toy example without the complexities

that the methods are intended to address. This simple example does show clearly the quick decline

of PF and the slower declines of GIRF and ABF as dimension increases.
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UBF ABF ABF-IR GIRF PF BPF EnKF
particles, J — 400 200 1000 100000 20000 10000
bootstrap replications, I 40000 400 200 — — — —
guide simulations, G — — — 50 — — —
lookahead lag, L — — — 2 — — —
intermediate steps, S — — U/2 U — — —
neighborhood, Bu,n
or block size

{
(u-1,n),(u-2,n),

(u,n-1),(u,n-2)
} — — 3 —

forecast mean, µ(x, s, t) — — x — — —
measurement mean, hu,n(x) — — x — — x

τ = ←vu,n(V, x) — —
√
V — — —

V = →vu,n(τ, x) — — τ2 — — τ2

effort (core mins, U = 100) 0.9 2.1 4.2 0.3 0.3 0.2 0.0
effort (core mins, U = 80) 1.4 3.2 12.1 0.7 0.6 0.3 0.1
effort (core mins, U = 60) 2.2 6.0 32.0 1.9 1.3 0.6 0.2
effort (core mins, U = 30) 4.0 11.6 87.1 6.1 3.2 1.3 0.4
effort (core mins, U = 10) 7.6 26.1 311.6 47.1 9.1 3.2 1.1

Table 2.1 – Algorithmic settings for the correlated Brownian motions numerical example. Com-
putational effort is measured in core minutes for running one filter, corresponding to a point on
Figure 2.1. The time taken for computing a single point using the parallel UBF, ABF and ABF-IR
implementations is the effort divided by the number of cores, here 40. The time taken for comput-
ing a single point using the single-core GIRF, PF, BPF and EnKF implementations is equal to the
effort in core minutes.
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2.4.2 A Lorenz-96 example

Our primary motivation for ABF and ABF-IR is application to population dynamics arising in eco-

logical and epidemiological models. Geophysical models provide an alternative situation involving

spatiotemporal data analysis. We compare methods on the Lorenz-96 model, a nonlinear chaotic

system providing a toy model for global atmospheric circulation (Lorenz, 1996; van Kekem and

Sterk, 2018). We consider a stochastic Lorenz-96 model with added Gaussian process noise (Park

and Ionides, 2020) defined as the solution to the following system of stochastic differential equations,

dXu(t) =
{(
Xu+1(t)−Xu−2(t)

)
·Xu−1(t)−Xu(t) + F

}
dt+ σpdBu(t), u ∈ 1:U. (2.9)

We define X0 = XU , X−1 = XU−1, and XU+1 = X1 so that the U spatial locations are placed on

a circle. The terms {Bu(t), u ∈ 1 :U} denote U independent standard Brownian motions. F is a

forcing constant, and we use the value F = 8 which was demonstrated by Lorenz (1996) to induce

chaotic behavior. The process noise parameter is set to σp = 1. The system is started with initial

state Xu(0) drawn as an independent normal random variable with mean 5 and standard deviation

2 for u ∈ 1:U . This initialization leads to short transient behavior. Observations are independently

made for each dimension at tn = n for n ∈ 1 :N with Gaussian measurement noise of mean zero

and standard deviation τ = 1,

Yu,n = Xu(tn) + ηu,n ηu,n ∼ N(0, τ2). (2.10)

We used an Euler-Maruyama method for numerical approximation of the sample paths of {X(t)},

with timestep of 0.005. A simulation from this model is shown in Fig. 2.4.
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The ensemble Kalman filter (EnKF) is a widely used filtering method in weather forecasting

for high dimensional systems (Evensen and van Leeuwen, 1996). EnKF involves a local Gaussian

approximation which is problematic in highly nonlinear systems (Ades and Van Leeuwen, 2015).

Methods that make local Gaussian assumptions like EnKF are necessary to scale up to the dimen-

sions of the problems in weather forecasting. Figure 2.3 shows that for a small number of units,

the basic particle filter (PF) and GIRF out-perform EnKF. Then, as the number of spatial units

increases, the performance of PF rapidly deteriorates whereas GIRF continues to perform well up

to a moderate number of units. UBF, ABF, and particularly ABF-IR, scales well despite under-

performing EnKF on this example. The additive Gaussian observation and process noise in the

Lorenz-96 model is well suited to the approximations involved in EnKF. By contrast, it is less clear

how to apply EnKF to discrete population non-Gaussian models such as the measles example in

Chapter 4 and how effective the resulting approximations might be.
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Figure 2.3 – Log likelihood estimates for a Lorenz-96 model of various dimensions. UBF, ABF and
ABF-IR are compared with a guided intermediate resampling filter (GIRF), a standard particle
filter (PF), a block particle filter (BPF) and an ensemble Kalman filter (EnKF).

5 10 15 20 25

10
20

30
40

50

time

un
it

−5

0

5

10

Figure 2.4 – One Lorenz ’96 simulation used for Figure 2.3
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UBF ABF ABF-IR GIRF PF EnKF BPF
particles, J 1 400 200 1000 100000 10000 10000
bootstrap replicates, I 40000 400 200 — — — —
guide simulations, G — — — 50 — — —
lookahead lag, L — — — 2 — — —
intermediate steps, S — — U/2 U — — —
neighborhood, Bu,n
or block size

{
(u,n-1),(u,n-2),

(u-1,n),(u-2,n)
} — — — 4

forecast mean, µ(x, s, t) — — ODE model — — —
measurement mean, hu,n(x) — — x — x —
τ = ←vu,n(V, x) — —

√
V — — —

V = →vu,n(τ, x) — — τ2 — τ2 —
effort (core mins, U = 4) 34.5 5.2 5.1 2.0 2.0 0.2 0.2
effort (core mins, U = 6) 40.9 7.3 8.2 3.0 2.9 0.3 0.3
effort (core mins, U = 10) 54.5 11.2 16.3 5.0 4.8 0.5 0.5
effort (core mins, U = 16) 75.5 16.8 33.7 8.3 7.6 0.8 0.9
effort (core mins, U = 50) 202.3 48.6 174.8 34.4 23.7 2.5 2.7

Table 2.2 – Algorithmic settings for the Lorenz-96 numerical example. Computational effort is
measured in core minutes for running one filter, corresponding to a point on Figure Figure 2.3. The
time taken for computing a single point using the parallel UBF, ABF and ABF-IR implementations
is the effort divided by the number of cores, here 36. The time taken for computing a single point
using the single-core GIRF, PF, EnKF and BPF implementations is equal to the effort in core
minutes.
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2.5 Discussion

The pseudocode presented for the bagged filters describes how the outputs are calculated given

the inputs, but does not prescribe details of how these quantities are calculated. There is scope

for implementations to trade off memory, computation and communication by varying decisions on

how the loops defined in the pseudocode are coded, including decisions on memory over-writing and

parallelization. This chapter focuses on the logical structure of the algorithms, leaving room for

future research on implementation-specific considerations.

Plug-and-play inference based on sequential Monte Carlo likelihood evaluation has proved suc-

cessful for investigating highly nonlinear partially observed dynamic systems of low dimension aris-

ing in analysis of epidemiological and ecological population dynamics (Bretó, 2018; Pons-Salort and

Grassly, 2018; de Cellès et al., 2018; Marino et al., 2019). This chapter develops a methodological

extension motivated by the analysis of interacting biological populations. Similar challenges related

to nonlinear non-Gaussian dynamic models arise in geophysical modeling. Relative to biological

systems, geophysical applications are characterized by a greater number of spatial locations, better

mathematical understanding of the underlying processes, and lower stochasticity. From this litera-

ture, the locally weighted particle filter of Poterjoy (2016) is perhaps closest to our approach, but the

local weights of Poterjoy (2016) are used to construct a localized Kalman gain which is motivated

by a Gaussian approximation comparable to EnKF. EnKF arose originally via geophysical research

(Evensen and van Leeuwen, 1996) and has since become used more widely applied for inference on

SpatPOMP models (Katzfuss et al., 2020; Lei et al., 2010). However, EnKF can fail entirely even

on simple POMP models if the structure is sufficiently non-Gaussian. For example, let Xn be a

one-dimensional Gaussian random walk, and let Yn given Xn = xn be normally distributed with
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mean 0 and variance x2
n. The linear filter rule used by EnKF to update the estimate of Xn given Yn

has mean zero for any value of Xn, since Xn and Yn are uncorrelated. Therefore, the EnKF filter

estimate of the latent process remains essentially constant regardless of the data. Models of this

form are used in finance to describe stochastic volatility. EnKF could be applied more successfully

by modifying model, such as replacing Yn by |Yn|, but for complex models it may be unclear whether

and where such problems are arising. Our results show that there is room for improvement over

EnKF on a spatiotemporal epidemiology model, though in our example there is no clear advantage

for BF methods over BPF.

Latent state trajectories constructed in our BF algorithms are all generated from the model

simulator, appropriately reweighted and resampled, and so are necessarily valid sample paths of

the model. For example, spatial smoothness properties of the model through space, or conservation

properties where some function of the system remains unchanged through time, are maintained in

the BF trajectories. This is not generally true for the block particle filter (since resampling blocks

can lead to violations at block boundaries) or for EnKF (since the filter procedure perturbs particles

using a linear update rule that cannot respect nonlinear relationships). The practical importance

of smoothness and conservation considerations will vary with the system under investigation, but

this property of BF gives the scientific investigator one less thing to worry about.

The algorithms UBF, ABF, ABF-IR, GIRF, PF, BPF, and EnKF compared in this article

all enjoy the plug-and-play property, facilitating their implementations in general-purpose software.

The numerical results for this paper use the abf, abfir, girf, pfilter, bpfilter and enkf methods

via the open-source R package spatPomp (Asfaw et al., 2021b) that provides a spatiotemporal

extension of the R package pomp (King et al., 2016). UBF was implemented using abf with J = 1

particles per replicate. The source code for this paper will be contributed to an open-source scientific
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archive upon acceptance for publication.
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2.6 Appendix for Chapter 2

2.A Proof of Theorem 1

We use the total variation bound in Assumption A1 via the following Proposition 1, which replaces

conditioning on XBcu,n with conditioning on YBcu,n . The bound in (2.11) could be used in place of

Assumption A1.

Proposition 1. Under the conditions of Assumption A1, (2.2) implies

∣∣∣∣ ∫ h(xu,n)fXu,n|YAu,n (xu,n | y∗Au,n) dxu,n −
∫
h(xu,n)fXu,n|YBu,n (xu,n | y∗Bu,n) dxu,n

∣∣∣∣ < εA1 (2.11)

Proof. For notational compactness, we suppress the arguments xu,n, xBcu,n , y∗Au,n , y∗Bu,n matching

the subscripts of conditional densities. Using the conditional independence of the measurements

given the latent process, we calculate

∣∣∣∣ ∫ h(xu,n)fXu,n|YAu,n dxu,n −
∫
h(xu,n)fXu,n|YBu,n dxu,n

∣∣∣∣
=

∣∣∣∣ ∫ {∫ h(xu,n)fXu,n|YBu,n ,XBcu,n dxu,n −
∫
h(xu,n)fXu,n|YBu,n dxu,n

}
fXBcu,n |YAu,n

dxBcu,n

∣∣∣∣
≤

∫ ∣∣∣∣ ∫ h(xu,n)fXu,n|YBu,n ,XBcu,n dxu,n −
∫
h(xu,n)fXu,n|YBu,n dxu,n

∣∣∣∣ fXBcu,n |YAu,n dxBcu,n
<

∫
εA1 fXBcu,n |YAu,n

dxBcu,n = εA1.

Assumption A4 is needed only to ensure that the variance bound in Theorem 1 is essentially

O(UN) rather than O(U2N2). Both these rates avoid the exponentially increasing variance char-
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acterizing the curse of dimensionality. Lower variance than O(UN) cannot be anticipated for any

sequential Monte Carlo method since the log likelihood estimate can be written as a sum of UN

terms each of which involves its own sequential Monte Carlo calculation.

Proof of Theorem 1. Suppose the quantities wMu,n,i and wPu,n,i constructed in Algorithm UBF are

considered i.i.d. replicates of jointly defined random variables wMu,n and wPu,n, for each (u, n) ∈

1 :U × 1 :N . Also, write

∆MP
u,n = 1√

I

I∑
i=1

(
wMu,n,iw

P
u,n,i − E[wMu,nwPu,n]

)
, ∆P

u,n = 1√
I

I∑
i=1

(
wPu,n,i − E[wPu,n]

)
,

Then, using the delta method (e.g., Section 2.5.3 in Liu (2001)) we find

`MC
u,n = log

(∑I
i=1w

M
u,n,iw

P
u,n,i∑I

i=1w
P
u,n,i

)

= log
(
E[wMu,nwPu,n] + I−1/2∆MP

u,n

)
− log

(
E[wPu,n] + I−1/2∆P

u,n

)
= log

(
E[wMu,nwPu,n]
E[wPu,n]

)
+ I−1/2

(
∆MP
u,n

E[wMu,nwPu,n] −
∆P
u,n

E[wPu,n]

)
+ oP

(
I−1/2) (2.12)

The joint distribution of
{
(∆MP

u,n ,∆P
u,n), (u, n) ∈ 1 :U×1 :N

}
follows a standard central limit theorem

as I → ∞. Each term has mean zero, with covariances uniformly bounded over (u, n, ũ, ñ) due to

Assumption A3. Specifically,

Var


∆MP
u,n

∆P
u,n

∆MP
ũ,ñ

∆P
ũ,ñ

=


Var(wMu,nwPu,n) Cov(wMu,nwPu,n, wPu,n) Cov(wMu,nwPu,n, wMũ,ñwPũ,ñ) Cov(wMu,nwPu,n, wPũ,ñ)

Cov(wMu,nwPu,n, wPu,n) Var(wPu,n) Cov(wPu,n, wMũ,ñwPũ,ñ) Cov(wPu,n, wPũ,ñ)

Cov(wMu,nwPu,n, wMũ,ñwPũ,ñ) Cov(wPu,n, wMũ,ñwPũ,ñ) Var(wMũ,ñwPũ,ñ) Cov(wMũ,ñwPũ,ñ, wPũ,ñ)

Cov(wMu,nwPu,n, wPũ,ñ) Cov(wPu,n, wPũ,ñ) Cov(wMũ,ñwPũ,ñ, wPũ,ñ) Var(wPũ,ñ)


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Note that

log
[
E[wMu,nwPu,n]
E[wPu,n]

]
= log


∫
fYu,n|Xu,n(y∗u,n |xu,n,i) fYBu,n |XBu,n (y∗Bu,n |xBu,n) fX

B+
u,n

(xB+
u,n

) dxB+
u,n∫

fYBu,n |XBu,n (y∗Bu,n |xBu,n) fXBu,n (xBu,n) dxBu,n


= log

[
fYu,n|YBu,n (y∗u,n | y∗Bu,n)

]
,

where B+
u,n = Bu,n ∪ (u, n). Now, define

∆`
u,n =

(
∆MP
u,n

E[wMu,nwPu,n] −
∆P
u,n

E[wPu,n]

)

Summing over all (u, n) ∈ 1 :U × 1 :N , we get

√
I

`MC −
∑

(u,n)∈ 1 :U×1 :N
log fYu,n|YBu,n (y∗u,n | y∗Bu,n)

 =
∑

(u,n)∈ 1 :U×1 :N
∆`
u,n + o(1). (2.13)

Now,

Cov
(
∆`
u,n,∆`

ũ,ñ

)
= Cov

(
wMu,nw

P
u,n

E[wMu,nwPu,n] −
wPu,n

E[wPu,n] ,
wMũ,ñw

P
ũ,ñ

E[wMũ,ñwPũ,ñ]
−

wPũ,ñ
E[wPũ,ñ]

)
.

Since ∣∣∣∣∣ wMu,nw
P
u,n

E[wMu,nwPu,n] −
wPu,n

E[wPu,n]

∣∣∣∣∣ < Q2b,

we have ∣∣Cov
(
∆`
u,n,∆`

ũ,ñ

)∣∣ < Q4b,

implying that

Var

 ∑
(u,n)∈1 :U×1 :N

∆`
u,n

 < Q4bU2N2. (2.14)

If, in addition, (u, n) and (ũ, ñ) ∈ Au,n are sufficiently separated in the sense of Assumption A4,
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then Lemma 1 shows that Assumption A4 implies

∣∣Cov
(
∆`
u,n,∆`

ũ,ñ

)∣∣ < εA4Q
4b.

The number of insufficiently separated neighbors to (u, n) is bounded by c, and so we obtain

Var

 ∑
(u,n)∈S

∆`
u,n

 < Q4b UN
(
c+ εA4 (UN − c)

)
. (2.15)

Now we proceed to bound the bias in the Monte Carlo central limit estimator of `. Putting h(xu,n) =

fYu,n|Xu,n(y∗u,n |xu,n) into Assumption A1, using Assumption A3, gives

∣∣fYu,n|YBu,n (y∗u,n | y∗Bu,n)− fYu,n|YAu,n (y∗u,n | y∗Au,n)
∣∣ < εA1Q.

Noting that

|a− b| < δ, a > Q−1 and b > Q−1 implies | log(a)− log(b)| < δQ, (2.16)

we find ∣∣ log fYu,n|YBu,n (y∗u,n | y∗Bu,n)− log fYu,n|YAu,n (y∗u,n | y∗Au,n)
∣∣ < εA1Q

2. (2.17)

Summing over (u, n), we get

∣∣∣∣∣∣`−
∑

(u,n)∈S
log fYu,n|YBu,n (y∗u,n | y∗Bu,n)

∣∣∣∣∣∣ < εA1Q
2UN. (2.18)

Together, the results in (2.13), (2.14), (2.15) and (2.18) confirm the assertions of the theorem.
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2.B Proof of Theorem 2

Lemma 1. Suppose U and V are random variables with joint density satisfying

∣∣fV |U (v |u)− fV (v)
∣∣ < εfV (v). (2.19)

Suppose |g(U)| < a and |h(V )| < b for some real-valued function g and h. Then, Cov
(
g(U), h(V )

)
<

abε.

Proof. The result is obtained by direct calculation, as follows.

Cov
(
g(U), h(V )

)
= E

[
g(U)E

[
h(V )− E[h(V )]

∣∣∣U]]
=

∫ {∫
g(u)h(v)

(
fV |U (v |u)− fV (v)

)
dv

}
fU (u) du

<

∫ {∫
abεfV (v) dv

}
fU (u) du

= abε.

Let g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N ) be the joint density of the adapted process and the proposal process,

g
X0:N ,X

P
1:N

(x0:N ,x
P
1:N ) = fX0(x0)

N∏
n=1

fXn|Xn−1,Y n

(
xn |xn−1,y

∗
n

)
fXn|Xn−1

(
xPn |xn−1

)
. (2.20)

For B ⊂ 1 :U × 1 : N , define B[m] = B ∩
(
1 :U × {m}

)
and set

γB =
N∏
m=1

fY
B[m] |Xm−1

(
y∗B[m] |Xm−1

)
, (2.21)
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using the convention that an empty density fY∅ evaluates to 1. If we denoting Eg for expectation

for (X0:N ,X
P
1:N ) having density gX0:N ,X

P
1:N

, (2.21) can be written as

γB = Eg
[
fYB |XB

(
y∗B |XP

B

) ∣∣∣X0:N

]
,

so we have

Eg
[
γB
]

= Eg
[
fYB |XB

(
y∗B|XP

B

)]
.

Two useful identities are

fXu,n|YAu,n
(
xu,n|y∗Au,n

)
=

Eg
[
fYAu,n |XAu,n

(
y∗Au,n |X

P
Au,n

)
f
Xu,n|X[n]

Au,n
,Xn−1

(
xu,n|XP

A
[n]
u,n

,Xn−1
)]

Eg
[
fYAu,n |XAu,n

(
y∗Au,n |X

P
Au,n

)] ,

fYu,n|YAu,n
(
y∗u,n|y∗Au,n

)
=

Eg
[
γ
A+
u,n

]
Eg
[
γAu,n

] .

Proposition 2. Setting h(x) = fYu,n|Xu,n(y∗u,n|x), assumptions B1 and B3 imply

∣∣∣∣∣ Eg
[
γ
A+
u,n

]
Eg
[
γAu,n ]

−
Eg
[
γ
B+
u,n

]
Eg
[
γBu,n ]

∣∣∣∣∣ < Qε. (2.22)

Proof. Using the non-negativity of all terms to justify interchange of integral and expectation,

∫
h(x)Eg

[
fYBu,n |XBu,n (y∗Bu,n |X

P
Bu,n)fXu,n|X

B
[n]
u,n

,Xn−1(x|XP

B
[n]
u,n
,Xn−1)

]
dx

= Eg
[ ∫

fYu,n|Xu,n(y∗u,n|x)fXu,n|X
B

[n]
u,n

,Xn−1(x|XP

B
[n]
u,n
,Xn−1)dx · fYBu,n |XBu,n (y∗Bu,n |X

P
Bu,n)

] (2.23)
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But by the construction of g,

fXu,n|X
B

[n]
u,n

,Xn−1(x|XP

B
[n]
u,n
,Xn−1) = gXP

u,n|XP

B
[n]
u,n

,Xn−1
(x|XP

B
[n]
u,n
,Xn−1)

= gXP
u,n|XP

Bu,n
,Xn−1

(x|XP
Bu,n ,Xn−1).

Thus (2.23) becomes

Eg
[ ∫

fYu,n|Xu,n(y∗u,n|x)gXP
u,n|XBPu,n

,Xn−1(x|XP
Bu,n ,Xn−1)dx · fYBu,n |XBu,n (y∗Bu,n |X

P
Bu,n)

]
= Eg

[
Eg
[
fYu,n|Xu,n(y∗u,n|XP

u,n)|XP
Bu,n ,Xn−1

]
· fYBu,n |XBu,n (y∗Bu,n |X

P
Bu,n)

]
= Eg

[
fY

B+
u,n
|X
B+
u,n

(y∗
B+
u,n
|XP

B+
u,n

)
]

= EgγB+
u,n
.

Applying the same argument for the special case of Bu,n = Au,n, we substitute into Assumption B1

to complete the proof with the fact that h < Q.

The mixing of the adapted process in Assumption B4 replaces the mixing of the unconditional

process in Assumption A4. Though mixing of the adapted process may be hard to check, one may

suspect that the adapted process typically mixes more rapidly than the unconditional process. As-

sumption B4 is needed only to ensure that the variance bound in Theorem 2 is essentially O(UN)

rather than O(U2N2). Either of these rates avoids the exponentially increasing variance charac-

terizing the curse of dimensionality. Lower variance than O(UN) cannot be anticipated for any

sequential Monte Carlo method since the log likelihood estimate can be written as a sum of UN

terms each of which involves its own sequential Monte Carlo calculation. The following Proposition 3

gives an implication of Assumption B4.
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Proposition 3. Assumption B4 implies that, if (ũ, ñ) /∈ Cu,n,

Covg
(
γBu,n , γBũ,ñ

)
< εB4Q

|Bu,n|+|Bũ,ñ|. (2.24)

Proof. Write γ = γBu,n and γ̃ = γBũ,ñ
. Also, writeB = Bu,n, B̃ = Bũ,ñ and fB(xPB) = fYB |XB (y∗B |xPB).

Then,

E[γγ̃] =
∫ [∫

fB(xPB)gXP
B |X0:N

(xPB |x0:N ) dxPB
]

×
[∫

f
B̃

(xP
B̃

)gXP
B̃
|X0:N

(xP
B̃
|x0:N ) dxP

B̃

]
gX0:N (x0:N ) dx0:N

=
∫ ∫

fB(xPB) f
B̃

(xP
B̃

)
{∫

gXP
B |X0:N

(xPB |x0:N )

× gXP
B̃
|X0:N

(xP
B̃
|x0:N ) gX0:N (x0:N ) dx0:N

}
dxPB dx

P
B̃

(2.25)

Putting the approximate conditional independence requirement of Assumption B4 into (2.25), we

have

∣∣∣E[γγ̃]−
∫
fB(xPB) f

B̃
(xP
B̃

) gXP
BX

P
B̃
|X0:N

(xPB, xPB̃ |x0:N ) gX0:N (x0:N ) dxPB dxPB̃ dx0:N
∣∣∣

< (1/2) εB4Q
|B|+|B̃|.

This gives

∣∣∣E[γγ̃]−
∫
fB(xPB) f

B̃
(xP
B̃

) gXP
BX

P
B̃

(xPB, xPB̃) dxPB dxPB̃
∣∣∣ < (1/2) εB4Q

|B|+|B̃|. (2.26)

Then, using the approximate unconditional independence requirement of Assumption B4 combined
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with the triangle inequality, (2.26) implies

∣∣∣E[γγ̃]−
∫
fB(xPB) f

B̃
(xP
B̃

) gXP
B

(xPB) gXP
B̃

(xP
B̃

) dxPB dxPB̃
∣∣∣ < εB4Q

|B|+|B̃|. (2.27)

We can rewrite (2.27) as ∣∣E[γγ̃]− E[γ]E[γ̃]
∣∣ < εB4Q

|B|+|B̃|, (2.28)

proving the proposition.

Assumption B5 is needed to ensure the stability of the Monte Carlo approximation to the adapted

process. It ensures that any error due to finite Monte Carlo sample size has limited consequences

at sufficiently remote time points. One could instead propose a bound that decreases exponentially

with K, but that is not needed for the current purposes. The following Proposition 4 is useful for

taking advantage of Assumption B5.

Proposition 4. Suppose that f is a non-negative function and that for some ε > 0,

|f(x)− f(x′)| < εf(x′)

holds for all x, x′. Then for any two probability distributions where the expectations are denoted by

E1 and E2 and for any random variable X, we have

|E1f(X)− E2f(X)| ≤ εE2f(X).
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Proof. Let the two probability laws be denoted by P1 and P2. We have

|E1f(X)− E2f(X)| =
∣∣∣∣∫ f(x)P1(dx)−

∫
f(x′)P2(dx′)

∣∣∣∣
≤
∣∣∣∣∫ ∫ f(x)P1(dx)P2(dx′)−

∫ ∫
f(x′)P1(dx)P2(dx′)

∣∣∣∣
≤
∫ ∫

|f(x)− f(x′)|P1(dx)P2(dx′)

≤
∫
εf(x′)P2(dx′) = εE2f(X).

.

Assumption B6 controls the Monte Carlo error for a single time interval on a single bootstrap

replicate. In the case S = 1, ABF-IR becomes ABF and this assumption is one of many alternatives

for bounding error from importance sampling. The purpose behind the selection of Assumption B6 is

to draw on the results of Park and Ionides (2020) for intermediate resampling, and our assumption is

a restatement of their Theorem 2. When S = 1, the curse of dimensionality for importance sampling

has the consequence that C0 grows exponentially with U . However, Park and Ionides (2020) showed

that setting S = U can lead to situations where C0(U,N, S) in Assumption B6 grows polynomially

with U . Here, we do not place requirements concerning the dependence of C0 on U , N and S since

our immediate concern is a limit where I and J increase. Nevertheless, the numerical results are

consistent with the theoretical and empirical results obtained for intermediate resampling in the

context of particle filtering by Park and Ionides (2020).

The Monte Carlo conditional independence required by Assumption B7 would hold for ABF-IR if

the guide variance Vu,n,i were calculated using an independent set of guide simulations to those used

for evaluating the measurement weights wMu,n,i,j . For numerical efficiency, the ABF-IR algorithm

implemented here constructs a shared pool of simulations for both purposes rather than splitting
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the pool up between them, in the expectation that the resulting minor violation of Assumption B7

has negligible impact.

Proof of Theorem 2. First, we set up some notation. For Bu,n and wMu,n,i,j constructed by ABF-IR,

define

γMC,i
Bu,n

=
n∏

m=1

 1
J

J∑
j=1

∏
(ũ,m)∈B[m]

u,n

wMũ,m,i,j

 and γ̄MC
Bu,n = 1

I

I∑
i=1

γMC,i
Bu,n

. (2.29)

The Monte Carlo conditional likelihoods output by ABF-IR can be written as

`MC
u,n = log γ̄ MC

B+
u,n
− log γ̄ MC

Bu,n
. (2.30)

We proceed with a similar argument to the proof of Theorem 1. Since γMC,i
Bu,n

are i.i.d. for i ∈ 1 :I,

we can suppose they are replicates of a Monte Carlo random variable γMC
Bu,n

. We define

∆+
u,n = 1√

I

I∑
i=1

(
γMC,i

B+
u,n
− E

[
γMC
B+
u,n

])
, ∆u,n = 1√

I

I∑
i=1

(
γMC,i
Bu,n

− E
[
γMC
Bu,n

])
.

The same calculation as (2.12) gives

`MC
u,n = log

E
[
γMC
B+
u,n

]
E
[
γMC
Bu,n

]
+ I−1/2

 ∆+
u,n

E
[
γMC
B+
u,n

] − ∆u,n

E
[
γMC
Bu,n

]
+ oP

(
I−1/2) (2.31)

The joint distribution of
{
(∆+

u,n,∆u,n), (u, n) ∈ 1 :U×1 :N
}

follows a standard central limit theorem

as I → ∞. Each term has mean zero, with variances and covariances uniformly bounded over

(u, n, ũ, ñ) due to Assumption B3. From Proposition 2, using the same reasoning as (2.17),

∣∣∣∣∣∣log

Eg
[
γ
A+
u,n

]
Eg
[
γAu,n

]
− log

Eg
[
γ
B+
u,n

]
Eg
[
γBu,n

]
∣∣∣∣∣∣ < εB1Q

2. (2.32)
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Now we use Lemma 2 and (2.16) to obtain

∣∣∣∣∣∣log

Eg
[
γ
B+
u,n

]
Eg
[
γBu,n

]
− log

E
[
γMC
B+
u,n

]
E
[
γBu,n

]
∣∣∣∣∣∣

≤
∣∣∣logEg

[
γ
B+
u,n

]
− logE

[
γ
B+
u,n

]∣∣∣+ ∣∣∣logEg
[
γBu,n

]
− logE

[
γBu,n

]∣∣∣
< 2Q2b(εB5 + (K + dmax)εB6

)
. (2.33)

The proof of the central limit result in (2.7) is completed by combining (2.31), (2.32) and (2.33). To

show (2.8) we check that ∆u,n and ∆ũ,ñ are weakly correlated when (u, n) and (ũ, ñ) are sufficiently

separated. By the same reasoning as the proof of Theorem 1, it is sufficient to show that γMC
Bu,n

and γMC
Bũ,ñ

are weakly correlated. These Monte Carlo quantities approximate γBu,n(X0:n−1) and

γBũ,ñ
(X0:ñ−1) with X drawn from g. Let us suppose n ≥ ñ, and write du,n = n − inf(v,m)∈Bu,nm.

First, we consider the situation n− ñ > K + du,n, in which case we can use the Markov property to

give

Cov
(
γMC
Bu,n

, γMC
Bũ,ñ

)
< E

[
γMC
Bũ,ñ

]
sup
x

{
E
[
γMC
Bu,n

∣∣XA
n−du,n−K,1 = x

]
− E

[
γMC
Bu,n

]}
(2.34)

Then, the triangle inequality followed by applications of Assumption B5 and Lemma 2 gives

∣∣∣E[γMC
Bu,n

∣∣XA
n−du,n−K,1 = x

]
− E

[
γMC
Bu,n

]∣∣∣
≤
∣∣∣Eg[γBu,n∣∣Xn−du,n−K = x

]
− Eg

[
γBu,n

]∣∣∣
+
∣∣∣E[γMC

Bu,n

∣∣XA
n−du,n−K,1 = x

]
− Eg

[
γBu,n

∣∣Xn−du,n−K = x
]∣∣∣

+
∣∣∣E[γMC

Bu,n

]
− Eg

[
γBu,n

]∣∣∣
≤ Qb

(
2εB5 + 2

(
K + du,n

)
εB6

)
(2.35)
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Putting (2.35) into (2.34), we get

Cov
(
γMC
Bu,n

, γMC
Bũ,ñ

)
< Q2b

(
2εB5 + 2

(
K + du,n

)
εB6

)
. (2.36)

Now we address the situation n − ñ ≤ K + du,n. We apply Lemma 2 on the union Bu,n ∪ Bũ,ñ for

which the temporal depth is bounded by d ≤ K + du,n + dũ,ñ. This gives

∣∣∣E[γMC
Bu,nγ

MC
Bũ,ñ

]
− Eg

[
γBu,nγBũ,ñ

] ∣∣∣ < Q2b
(
(2K + du,n + dũ,ñ)εB6 + εB5

)
. (2.37)

From Proposition 3, if (ũ,ñ) /∈ Cu,n,

Covg
(
γBu,n , γBũ,ñ

)
< εB4Q

2b. (2.38)

Now, we establish that Cov
(
γMC
Bu,n

, γMC
Bũ,ñ

)
is close to Covg

(
γBu,n , γBũ,ñ

)
.

∣∣∣Cov
(
γMC
Bu,n , γ

MC
Bũ,ñ

)
− Covg

(
γBu,n , γBũ,ñ

)∣∣∣
≤
∣∣∣E[γMC

Bu,nγ
MC
Bũ,ñ

]
− Eg

[
γBu,nγBũ,ñ

] ∣∣∣
+
∣∣∣E[γMC

Bu,n

](
E
[
γMC
Bũ,ñ

]
− Eg

[
γBũ,ñ

])∣∣∣
+
∣∣∣E[γBũ,ñ](E[γMC

Bu,n

]
− Eg

[
γBu,n

])∣∣∣
< Q2b

(
(2K + du,n + dũ,ñ)εB6 + εB5 + 2(εB5 + (K + dmax)εB6)

)
.

< Q2b
(
3εB5 + 4(K + dmax) εB6

)
(2.39)

Using (2.39) together with (2.38) to bound the UN(UN−c) off-diagonal covariance terms completes

the derivation of (2.8).
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Lemma 2. Suppose Assumptions B3, B5, B6 and B7. Suppose the number of particles J exceeds

the requirement for B6. If we write dB = max(u1,n1),(u2,n2)∈B |n1 − n2| for B ⊂ 1 :U × 1 :N , then

for any B,

∣∣∣E[γMC
B

∣∣XA
n−dB−K,1 = x

]
− Eg

[
γB
∣∣Xn−dB−K = x

] ∣∣∣ < Q|B|(K + dB)εB6, ∀x ∈ XU ,

and ∣∣∣E[γMC
B

]
− Eg

[
γB
] ∣∣∣ < Q|B|(εB5 + (K + dB)εB6). (2.40)

Proof. Suppose that max(u′,n′)∈B n
′ = n. Define ηn(xn) = 1 and, for 0 ≤ m ≤ n− 1,

ηm(xm) = Eg

 n∏
k=m+1

γB[k]

∣∣∣Xm = xm

 . (2.41)

We have a recursive identity

ηm(Xm) = Eg
[
γB[m+1] ηm+1(Xm+1)

∣∣∣Xm

]
. (2.42)

By taking the expectation of (2.41), we have

Eg
[
η0(X0)

]
= Eg

[
γB
]
. (2.43)

Note that g has marginal density fX0 for X0. We analyze an ABF-IR approximation to (2.42).

The function ηm+1(x) is not in practice computationally available for evaluation via ABF-IR, but
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the recursion nevertheless leads to a useful bound. Let XA
m+1[j](xm) correspond to the variable

XIR
m+1,S,1,j constructed by ABF-IR conditional onXA

m,1 = xm. Equivalently, XA
m+1[j](xm) matches

the variable XA
m+1,1 in ABF-IR if the assignment XA

m+1,1 = XIR
m+1,S,1,1 is replaced by XA

m+1,1 =

XIR
m+1,S,1,j conditional on XA

m,1 = xm. We define an approximation error em(xm) by

ηm(xm) = 1
J

J∑
j=1

fY
B[m+1] |Xm

(y∗B[m+1] |xm) ηm+1
(
XA

m+1[j](xm)
)

+ em(xm). (2.44)

From Assumptions B3 and B6, E
∣∣em(xm)

∣∣ < εB6Q
∣∣B[m+1:n]

∣∣ uniformly over xm, Thus, setting

rm = E|em(XA
m,1)|, we have

rm < εB6Q
∣∣B[m+1:n]

∣∣
. (2.45)

Now, setting K ′ = K + du,n, we commence to prove inductively that, for n−K ′ ≤ m ≤ n,

∣∣∣∣∣ ηn−K′(x)−E
[
ηm(XA

m,1)
m∏

k=n−K′+1
fY

B[k] |Xk−1(y∗B[k] |XA
k−1,1)

∣∣∣XA
n−K′,1 = x

] ∣∣∣∣∣ < (m−n+K ′)εB6Q
|B|.

(2.46)

First, suppose that (2.46) holds for m. From (2.44) and (2.45),

∣∣∣∣∣∣ηm(xm)− E

 1
J

J∑
j=1

fY
B[m+1] |Xm

(y∗B[m+1] |xm) ηm+1
(
XA

m+1[j](xm)
)∣∣∣∣∣∣ < εB6Q

∣∣B[m+1:n]
∣∣
. (2.47)

Since the particles are exchangeable, the expectation of the mean of J particles can be replaced

with the expectation of the first particle. Plugging in xm = XA
m,1 gives us

∣∣∣ηm(XA
m,1)− fY

B[m+1] |Xm

(
y∗B[m+1] |XA

m,1
)
E
[
ηm+1

(
XA

m+1,1
)∣∣∣XA

m,1

]∣∣∣ < εB6Q
∣∣B[m+1:n]

∣∣ (2.48)

57



Putting (2.48) into (2.46), for m ≤ n, and taking an iterated expectation with respect to XA
m,1,

we find that (2.46) holds also for m + 1. Since (2.46) holds trivially for m = n −K ′, it holds for

n−K ′ ≤ m ≤ n by induction. Then, noting ηn(x) = 1, we have from (2.46) that

∣∣∣∣∣∣ηn−K′(x)− E

 n∏
k=n−K′+1

fY
B[k] |Xk−1

(
y∗B[k] |XA

k−1,1
)∣∣∣∣∣∣XA

n−K′,1 = x

∣∣∣∣∣∣ < K ′εB6Q
|B|.

Integrating the above inequality over x with respect to the law of XA
n−K′,1, we obtain

∣∣∣∣∣∣E[ηn−K′(XA
n−K′,1)]− E

 n∏
k=n−K′+1

fY
B[k] |Xk−1

(
y∗B[k] |XA

k−1,1
)∣∣∣∣∣∣ < K ′εB6Q

|B|. (2.49)

But under Assumption B7, we have

E

 n∏
k=n−K′+1

fY
B[k] |Xk−1

(
y∗B[k] |XA

k−1,1
) = E

[
γMC
B

]
. (2.50)

Assumption B5 says

|ηn−K′(x(1)
n−K′)− ηn−K′(x

(2)
n−K′)| < εB5 ηn−K′(x

(2)
n−K′). (2.51)

Application of Proposition 4 to (2.51) gives

∣∣∣Eg[ηn−K′(Xn−K′)
]
− E

[
ηn−K′(XA

n−K′,1)
]∣∣∣ < εB5 Eg

[
ηn−K′(Xn−K′)

]
< εB5Q

|B|. (2.52)

Combining (2.49), (2.50), and (2.52) completes the proof of Lemma 2.
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2.C A generalization to models without latent unit structure

Variations of the algorithms in the main text apply when there is no latent unit structure. In

this case, the observation vector Y n = (Y1,n, . . . , YU,n) consists of a collection of measurements

on a general latent vector Xn. We may have the structure that Y1,n, . . . , YU,n are conditionally

independent given Xn, but even this is not essential to the approach. This is most readily seen in

the context of the unadapted bagged filter, giving rise to the generalized unadapted bagged filter

(G-UBF) algorithm defined as follows.

Algorithm G-UBF (Generalized unadapted bagged filter).

input:

Simulator for fXn|Xn−1(xn|xn−1)

Evaluator for fYu,n|Xn(y∗u,n |xn)

Number of bootstrap filters, I

Neighborhood structure, Bu,n, for u ∈ 1 :U and n ∈ 1 :N

Data, y∗u,n for u ∈ 1 :U and n ∈ 1 :N

output:

Log likelihood estimate, `MC = ∑N
n=1

∑U
u=1 `

MC
u,n

For i in 1 :I

simulate Xsim
n,i from the dynamic model, for n ∈ 1 :N

End For

Prediction weights, wPu,n,i = fYBu,n |X1:n(y∗Bu,n |X
sim
1:n,i)

Measurement weights, wMu,n,i = fYu,n|Xn,YBu,n (y∗u,n |Xsim
n,i , y

∗
Bu,n

)

Conditional log likelihood estimate, `MC
u,n = log

(∑I
i=1w

M
u,n,iw

P
u,n,i

)
− log

(∑I
ĩ=1w

P
u,n,̃i

)
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The algorithm G-UBF operates on an arbitrary POMP model. G-UBF therefore provides a

potential approach to extending methodologies from SpatPOMP models to models that have some

similarity to a SpatPOMP without formally meeting the definition. For example, there may be col-

lections of interacting processes at different spatial scales in a spatiotemporal system. Alternatively,

the potential outcomes of the latent process may vary between spatial units, such as when modeling

interactions between terrestrial and aquatic ecosystems. We do not further explore G-UBF here.
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2.D Adapted simulation for an Euler approximation

We investigate the adapted simulation process by considering a continuous-time limit where it

becomes a diffusion process. We find that adapted simulation can effectively track the latent process

when the measurement error is on an appropriate scale. However, when the measurement error is

large compared to the latent process noise, adapted simulation can fail in situations where filtering

succeeds. We work with a one-dimensional POMP model having a latent process constructed as an

Euler approximation,

Xn+1 = Xn + µ(Xn)δ + σ
√
δεn+1, (2.53)

which provides a numerical solution to a one-dimensional stochastic differential equation,

dX(t) = µ
(
X(t)

)
dt+ σ dU(t),

where {U(t)} is a standard Brownian motion. We will consider several different measurement

processes.

2.E Measurement error on the same scale as the process noise

Here, we consider the measurement model

Yn+1 = µ(Xn)δ + σ
√
δεn+1 + τ

√
δ ηn+1. (2.54)
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This is an approximation to the increment Y (t+δ)−Y (t) of a continuous time measurement model

dY (t) = dX(t) + τ dV (t), (2.55)

where {V (t)} is a standard Brownian motion independent of {U(t)}. The measurement model

(2.55) makes inference on X(t) given Y (t) a continuous time version of the filtering problem. A

feature of this model is that Y (t) does not directly track the level of the state, since the solution

with initial conditions Y (t0) = X(t0) and V (t0) = 0 is

Y (t) = X(t) + τV (t).

The measurement error, τV (t), has variance τ2t that increases with t. However, under appropriate

conditions, information on changes in {X(t)} obtained via {Y (t)} are enough to trackX(t) indirectly

via the filtering equations. For the POMP given by (2.53) and (2.54), we can calculate exactly

the adapted simulation distribution fXn+1|Yn+1,Xn . It is convenient to work conditionally on Xn,

allowing us to treatXn and µ(Xn) as constants, with Xn+1 and Yn+1 therefore being jointly normally

distributed. A Gaussian distribution calculation then gives the conditional moments. First, we find

E
[
Xn+1|Yn+1, Xn

]
= Xn + µ(Xn)δ + E

[
σ
√
δεn+1

∣∣σ√δεn+1 + τ
√
δηn+1

]
= Xn + µ(Xn)δ + σ2

σ2 + τ2
(
σ
√
δεn+1 + τ

√
δηn+1

)
= Xn + µ(Xn)δ + σ2

σ2 + τ2
(
Yn+1 − µ(Xn)δ

)
.
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Then,

Var
[
Xn+1

∣∣Yn+1, Xn
]

= Var
[
σ
√
δεn+1

∣∣σ√δεn+1 + τ
√
δηn+1

]
= σ2δ − σ4δ2

σ2δ + τ2δ

= δ
σ2τ2

σ2 + τ2 .

Call the adapted simulation process {An, n = 1, 2, . . . }, defined conditionally on {Yn, n = 1, 2, . . . }.

We see from the above calculation that An can be constructed by the recursion

An+1 = An + µ(An)δ + σ2

σ2 + τ2

(
µ(Xn)δ + σ

√
δ εn+1 + τ

√
δ ηn+1 − µ(An) δ

)
+ στ√

σ2 + τ2

√
δ ζn+1

where {ζn} is an iid standard normal sequence independent of {εn, ηn}. To study how well the

adapted simulation tracks {Xn}, we subtract Xn+1 from both sides to get

[An+1 −Xn+1] = [An −Xn] + [µ(An)− µ(Xn)]δ − σ
√
δ εn+1

+ σ2

σ2 + τ2

(
[µ(Xn)− µ(An)]δ + σ

√
δ εn+1 + τ

√
δ ηn+1

)
+ στ√

σ2 + τ2

√
δ ζn+1

= [An −Xn] + 2σ2 + τ2

σ2 + τ2 [µ(Xn)− µ(An)]δ

+σ2τ
√
δηn+1 − στ2√δεn+1

σ2 + τ2 + στ√
σ2 + τ2

√
δ ζn+1.

An tracks Xn when the process {An −Xn, n = 1, 2, . . . } is stable. This happens when µ(x)− µ(y)

is negative when x is sufficiently larger than y. For example, a stable autoregressive process with

µ(x) = −ax gives a stable adapted filter process.
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2.F Independent measurement error on a scale that gives a finite limiting amount

of information about X(t) from measurements on a unit time interval

We now consider the measurement model

Yn+1 = Xn+1 + τ√
δ
ηn+1

= Xn + µ(Xn) δ + σ
√
δ εn+1 + τ√

δ
ηn+1, (2.56)

where {εn, ηn} is a collection of independent standard normal random variables. The conditional

mean is now

E
[
Xn+1|Yn+1, Xn

]
. = Xn + µ(Xn)δ + E

[
σ
√
δεn+1

∣∣∣σ√δεn+1 + τ√
δ
ηn+1

]
= Xn + µ(Xn)δ + σ2δ

σ2δ + τ2/δ

(
σ
√
δεn+1 + τ

√
δ ηn+1

)
(2.57)

Using (2.56) and (2.57) gives

E
[
Xn+1|Yn+1, Xn

]
= Xn + µ(Xn)δ + σ2δ2

σ2δ2 + τ2

(
Yn+1 −Xn − µ(Xn) δ

)
.

In the limit as δ → 0, the contribution from the measurement is order δ2 and is therefore negligible.

Although the observation process is meaningfully informative about the latent process, the adapted

simulation fails to track the latent process in this limit. Intuitively, this is because the adapted

simulation is trying to track differences in the latent process, but for this model the signal to noise

ratio for the difference in each interval of length δ tends to zero.
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2.G Independent measurements of the latent process with measurement error

on a scale that gives a useful adapted process as δ → 0

We now consider the measurement model

Yn+1 = Xn+1 + τηn+1

= Xn + µ(Xn)δ + σ
√
δεn+1 + τηn+1. (2.58)

The conditional mean is now

E
[
Xn+1|Yn+1, Xn

]
. = Xn + µ(Xn) δ + E

[
σ
√
δεn+1

∣∣σ√δεn+1 + τηn+1
]

= Xn + µ(Xn)δ + σ2δ

σ2δ + τ2
(
σ
√
δεn+1 + τηn+1

)
(2.59)

Using (2.58) and (2.59) gives

E
[
Xn+1|Yn+1, Xn

]
= Xn + µ(Xn)δ + σ2δ

σ2δ + τ2

(
Yn+1 −Xn − µ(Xn)δ

)
= Xn + µ(Xn)δ + σ2

τ2 δ
(
Yn+1 −Xn − µ(Xn) δ

)
+ o(δ)

In the limit as δ → 0, the adapted simulation has a diffusive drift toward the value of the latent

process.

For disease models, incidence data can arguably be considered as noisy measurements of the

change of a state variable (number of susceptibles) that is not directly measured. This could corre-

spond to a situation where the measurement error is on the same scale as the process noise (Appendix

2.E). Alternatively, we could think of weekly aggregated incidence as a noisy measurement of the
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infected class, in which case the measurement error could match the scaling in Appendix 2.G.

The model in Appendix 2.F is a cautionary tale, warning us against carrying out adapted

simulation on short time intervals. An interpretation is that one should not carry out adapted

simulation unless a reasonable amount of information has accrued. When each observation has low

information, a particle filter may enable solution to the filtering problem without particle depletion.

It is when the data are highly informative that the curse of dimensionality makes basic particle

filters ineffective, opening up demand for alternative methods.

We are now in a better position to understand why it may be appropriate to keep many particle

representations at intermediate timesteps while resampling down to a single representative at each

observation time, as ABF and ABF-IR do. We have seen that adaptive simulation can fail when

observations occur frequently. Resampling down to a single particle too often can lose the ability

for the adapted process to track the latent process. This implies that adapted simulation should

not be relied upon more than necessary to ameliorate the curse of dimensionality: once proper

importance sampling for filtering problem becomes tractable in a sufficiently small spatiotemporal

neighborhood, one should maintain weighted particles on this spatiotemporal scale rather than

resorting to adapted simulation.

2.H Bagged filters for functions of the latent states

The theory and methodology in the main article focused on filtering for likelihood estimation. Here,

we describe extensions to other filtering problems. Let {φk : XU → R, k in 1 :K} be a collection

of functions where φk depends only on a subset of units Φk ⊂ 1 :U . We suppose that there exist

neighborhoods

B′k,n ⊂ A′n = (1:U)× (0 :n) (2.60)
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such that φk(Xn) is approximately independent of {Yu,n : (u, n) ∈ B′ck,n} given {Yu,n : (u, n) ∈ B′k,n},

where B′ck,n is a complement in A′n. Unlike the sets Au,n and Bu,n defined for likelihood estimation,

the sets A′n and B′k,n can include any locations at time n. We consider Monte Carlo estimation of

φk,n = E
[
φk(Xn)

∣∣Y 1:n
]
, k in 1 :K. (2.61)

For example, if we set φu(xn) = xu,n and K = U , the collection of quantities {φu,n} estimated in

(2.61) corresponds to a vector of filter means. Setting φk(xn) = xuk,n xũk,n enables calculation of a

collection of filter covariances between units uk and ũk for k in 1 :K.

We consider bagged filtering approaches to estimation of {φk,n, k in 1 : K}. Although each

φk,n is required to have only local dependence, some global quantities such as filter means and

their variances across all units, can be expressed in terms of collections of such quantities. For

bagged filtering to operate successfully, the neighborhoods {B′k,n} should not be large. Since B′k,n

will typically be larger than {Φk}, this rules out estimation of filtered quantities that cannot be

adequately represented by a collection of localized filtering calculations. We now present variants

of the pseudocode in the main text, targeted at estimation of {φk,n, k in 1 :K}. We do not prove

theorems about these algorithms, but we conjecture from their similarity to the algorithms in the

main text that comparable theoretical results should exist. Table 2.3 lists the inputs, outputs and

ranges of the implicit loops for the following algorithms.
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Latent state estimation via bagged filters.
input:
collection of functions, φk
neighborhoods, B′k,n
simulator for fX0(x0) and fXn|Xn−1(xn |xn−1)
evaluator for fYu,n|Xu,n(yu,n |xu,n)
number of replicates, I
data, y∗1:N
ABF and ABF-IR: particles per replicate, J
ABF-IR: number of intermediate timesteps, S
ABF-IR: measurement variance parameterizations, ←vu,n and →vu,n
ABF-IR: approximate process and observation mean functions, µ and hu,n
output:
filter estimate, φMC

k,n

implicit loops:
u in 1 :U , n in 1 :N , i in 1 :I, j in 1 :J , k in 1 :K

Table 2.3 – Notation for bagged filter for latent state estimation: inputs, outputs and implicit
loops.
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UBF. Unadapted bagged filter for latent state estimation.

Simulate X0:N,i ∼ fX0:N (x0:N )

Measurement weights, wMu,n,i = fYu,n|Xu,n(y∗u,n |Xu,n,i)

Filtering weights, wFk,n,i = ∏
(ũ,ñ)∈B′

k,n
wMũ,ñ,i

φ
MC
k,n =

∑I
i=1 φk(Xn,i)wFk,n,i∑I

i=1w
F
k,n,i

ABF. Adapted bagged filter for latent state estimation.

Initialize adapted simulation: XA
0,i ∼ fX0(x0)

For n in 1 :N

Proposals: XP
n,i,j ∼ fXn|X1:U,n−1

(
xn |XA

n−1,i
)

Measurement weights: wMu,n,i,j = fYu,n|Xu,n
(
y∗u,n |XP

u,n,i,j

)
Adapted resampling weights: wA

n,i,j = ∏U
u=1w

M
u,n,i,j

Resampling: P
[
r(i) = a

]
= wA

n,i,a

(∑J
q=1w

A
n,i,q

)−1

XA
n,i = XP

n,i,r(i)

wFk,n,i,j =
n−1∏
ñ=1

[ 1
J

J∑
q=1

∏
ũ:(ũ,ñ)∈B′

k,n

wMũ,ñ,i,q

] ∏
ũ:(ũ,n)∈B′

k,n

wMũ,n,i,j

End for

φ
MC
k,n =

∑I
i=1

∑J
j=1 φk(XP

n,i,j)wFk,n,i,j∑I
i=1

∑J
j=1w

F
k,n,i,j
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ABF-IR. Adapted bagged filter with intermediate resampling

for latent state estimation.

Initialize adapted simulation: XA
0,i ∼ fX0(x0)

For n in 1 :N

Guide simulations: XG
n,i,j ∼ fXn|Xn−1

(
xn |XA

n−1,i

)
Guide sample variance: Vu,n,i = Var

{
hu,n

(
XG

u,n,i,j

)
, j in 1 :J

}
gR

n,0,i,j = 1 and XIR
n,0,i,j = XA

n−1,i

For s in 1 :S

Intermediate proposals: XIP
n,s,i,j ∼ fXn,s|Xn,s−1

(
· |XIR

n,s−1,i,j

)
µIP

n,s,i,j = µ
(
XIP

n,s,i,j , tn,s, tn
)

V meas
u,n,s,i,j =→v u(θ, µIP

u,n,s,i,j)

V proc
u,n,s,i = Vu,n,i

(
tn − tn,s

)/(
tn − tn,0

)
θu,n,s,i,j =←v u

(
V meas

u,n,s,i,j + V proc
u,n,s,i, µ

IP
u,n,s,i,j

)
gn,s,i,j =

∏U
u=1 fYu,n|Xu,n

(
y∗u,n |µIP

u,n,s,i,j ; θu,n,s,i,j

)
Guide weights: wG

n,s,i,j = gn,s,i,j

/
gR

n,s−1,i,j

Resampling: P
[
r(i, j) = a

]
= wG

n,s,i,a

(∑J
q=1 w

G
n,s,i,q

)−1

XIR
n,s,i,j = XIP

n,s,i,r(i,j) and gR
n,s,i,j = gn,s,i,r(i,j)

End For

Set XA
n,i = XIR

n,S,i,1

Measurement weights: wM
u,n,i,j = fYu,n|Xu,n

(
y∗u,n |XG

u,n,i,j

)
wF

k,n,i,j =
n−1∏
ñ=1

[ 1
J

J∑
q=1

∏
ũ:(ũ,ñ)∈B′

k,n

wM
ũ,ñ,i,q

] ∏
ũ:(ũ,n)∈B′

k,n

wM
ũ,n,i,j

End for

φ
MC
k,n =

∑I
i=1
∑J

j=1 φk(XP
n,i,j)wF

k,n,i,j∑I
i=1
∑J

j=1 w
F
k,n,i,j
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Chapter 3

Partially Observed Markov Processes with

Spatial Structure via the R Package

spatPomp

3.1 Introduction

A partially observed Markov process (POMP) model consists of incomplete and noisy measure-

ments of a latent Markov process. A POMP model in which the latent process has spatial as well

as temporal structure is called a spatiotemporal POMP or SpatPOMP. Many biological, social and

physical systems have the spatiotemporal structure, dynamic stochasticity and imperfect observ-

ability that characterize SpatPOMP models. The spatial structure of SpatPOMPs adds complexity

to the problems of likelihood estimation, parameter inference and model selection for nonlinear and

non-Gaussian systems. The objective of the spatPomp package is to facilitate model development

and data analysis in the context of the general class of SpatPOMP models, enabling scientists to
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separate the scientific task of model development from the statistical task of providing inference

tools. Thus, spatPomp brings together general purpose methods for carrying out Monte Carlo sta-

tistical inference for such systems. More generally, spatPomp provides an abstract representation

for specifying SpatPOMP models. This ensures that SpatPOMP models formulated with the pack-

age can be investigated using a range of methods, and that new methods can be readily tested on

a range of models. In its current manifestation, spatPomp is appropriate for data analysis with

a moderate number of spatial units (up to around 100 spatial units) having nonlinear and non-

Gaussian dynamics. In particular, spatPomp is not targeted at very large spatiotemporal systems

like those that are common in geophysical data assimilation. The data assimilation research testbed

(Anderson et al., 2009, DART) is a notable software facility that has contributed to projects that

study such large systems. Spatiotemporal systems with Gaussian dynamics can be investigated

with spatPomp, but a variety of alternative methods and software are available in this case (Wikle

et al., 2019; Sigrist et al., 2015; Cappello et al., 2020).

The spatPomp package builds on the pomp package described by King et al. (2016). Mathemati-

cally, a SpatPOMP model is also a POMP model, and this property is reflected in the object-oriented

design of spatPomp: The package is implemented using S4 classes (Chambers, 1998; Genolini,

2008; Wickham, 2019) and the basic class ‘spatPomp’ extends the class ‘pomp’ provided by pomp.

Among other things, this allows us to test new methods against extensively tested methods in low-

dimensional settings, use existing convenience functions, and apply methods for POMP models on

SpatPOMP models. However, standard Monte Carlo statistical inference methods for nonlinear

POMP models break down with increasing spatial dimension (Bengtsson et al., 2008), a manifesta-

tion of the curse of dimensionality. Therefore, effective inference approaches must, in practice, take

advantage of the special structure of SpatPOMP models. Figure 3.1 illustrates the use case of the
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spatPomp package relative to the pomp package and methods that use Gaussian approximations

to target models with massive dimensionality. The difficulty of statistical inference for a dynamic

model can be thought of as a combination of its nonlinearity and its dimensionality, so methods for

nonlinear dynamics of small dimensions can work well for linear and Gaussian problems of relatively

high dimensions. This means that the boundaries of the methods and packages in Figure 3.1 can

extend beyond the edges shown in the figure. Nevertheless, it is useful to situate models in this

nonlinearity-dimensionality problem space so that candidate methods and software packages can

become clearer.

pomp

spatPomp

Nonlinearity

D
im

en
sio

n

KF
EnKF

PF

Figure 3.1 – Diagram illustrating the use case for the spatPomp package. For statistical inference
of models that are approximately linear and Gaussian, the Kalman Filter (KF) is an appropriate
method. If the nonlinearity in the problem increases moderately but the dimension of the problem is
very large (e.g. geophysical models), the ensemble Kalman Filter (EnKF) and similar methods are
useful. In low-dimensional but very nonlinear settings, the particle filter (PF) and related methods
are useful and the pomp package targets such problems. The spatPomp package and the methods
implemented in it are intended for statistical inference for nonlinear models that are of moderate
dimension. The nonlinearity in these models (e.g. epidemiological models) is too large for Gaussian
approximations and the dimensionality is large enough to cause the particle filter to be unstable.

A SpatPOMP model is characterized by the transition density for the latent Markov process and

unit-specific measurement densities1. Once these elements are specified, calculating and simulating
1We use the term “density” in this article to encompass both the continuous and discrete cases. Thus, when latent
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from all joint and conditional densities are well defined operations. However, different statistical

methods vary in the operations they require. Some methods require only simulation from the

transition density whereas others require evaluation of this density. Some methods avoid working

with the model directly, replacing it by an approximation, such as a linearization. For a given

model, some operations may be considerably easier to implement and so it is useful to classify

inference methods according to the operations on which they depend. In particular, an algorithm

is said to be plug-and-play if it utilizes simulation of the latent process but not evaluation of

transition densities (Bretó et al., 2009; He et al., 2010). The arguments for and against plug-

and-play methodology for SpatPOMP models are essentially the same as for POMP models (He

et al., 2010; King et al., 2016). Simulators are relatively easy to implement for most SpatPOMP

models; plug-and-play methodology facilitates the investigation of a variety of models that may

be scientifically interesting but mathematically inconvenient. On the other hand, approaches that

leverage explicit transition densities are sometimes more computationally efficient than those that

rely on Monte Carlo methods. Nevertheless, the utility of plug-and-play methods has been amply

demonstrated in scientific applications. In particular, plug-and-play methods implemented using

pomp have proved capable for state-of-the-art inference problems for POMP models (e.g., King

et al., 2008; Bhadra et al., 2011; Shrestha et al., 2011, 2013; Earn et al., 2012; Roy et al., 2013;

Blackwood et al., 2013a,b; He et al., 2013; Bretó, 2014; Blake et al., 2014; Martinez-Bakker et al.,

2015; Bakker et al., 2016; Becker et al., 2016; Buhnerkempe et al., 2017; Ranjeva et al., 2017; Marino

et al., 2019; Pons-Salort and Grassly, 2018; Becker et al., 2019; Kain et al., 2020). Although the

spatPomp package provides a general environment for methods with and without the plug-and-play

variables or measured quantities are discrete, one can replace “probability density function” with “probability mass
function”.
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property, development of the package to date has emphasized plug-and-play methods.

The remainder of this paper is organized as follows. Section 3.2 defines mathematical notation

for SpatPOMP models and relates this to their representation as objects of class ‘spatPomp’ in the

spatPomp package. Section 3.3 introduces simulation and several spatiotemporal filtering methods

currently implemented in spatPomp. Section 3.4 introduces some parameter estimation algorithms

currently implemented in spatPomp which build upon these simulation and filtering techniques. Sec-

tion 3.5 constructs a simple linear Gaussian SpatPOMP model and uses this example to illustrate

the statistical methodology. Section 3.6 discusses the construction of spatially structured compart-

ment models for population dynamics, in the context of coupled measles dynamics in UK cities;

this demonstrates the kind of nonlinear stochastic system primarily motivating the development of

spatPomp. Finally, Section 3.7 discusses extensions and applications of spatPomp.

3.2 SpatPOMP models and their representation in spatPomp

We now set up notation for SpatPOMP models. This notation is similar to that of POMP models

(King et al., 2016), but we provide all the details here for completeness. A visually intuitive

schematic illustrating SpatPOMPs is given in Figure 3.2. The notation allows us to eventually

define a SpatPOMP model in terms of its three main components: a model for one-step transitions

of the latent states, a model for the measurements at an observation time conditional on the latent

states at that time, and an initializer for the latent state process. Suppose there are U units labeled

1 :U = {1, 2, . . . , U}. Let T be the set of times at which the latent dynamic process is defined.

The SpatPOMP framework and the spatPomp package permit the timescale T to be a discrete or

continuous subset of R. In either case, T must contain a set of N observation times, t1:N = {tn : n =
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1, . . . , N}, where t1 < t2 < · · · < tN . In the examples below, we take T = [t0, tN ], with t0≤t1 being

the time at which we begin modeling the dynamics of the latent Markov process. The unobserved,

latent Markov process is written as {X(t ;θ) : t ∈ T} where X(t ;θ) =
(
X1(t ;θ), . . . , XU (t ;θ)

)
, with

Xu(t ;θ) taking values in some space RDX and θ a Dθ-dimensional real-valued parameter which we

write as θ = θ1:Dθ ∈ RDθ . For some purposes it is adequate to consider the latent process only

at the finite collection of times at which it is observed. We write Xn = X(tn ;θ), noting that we

sometimes choose to suppress the dependence on θ. We can also write Xn = (X1,n, . . . , XU,n) =

X1:U,n. The initial value X0 = X(t0 ;θ) may be stochastic or deterministic. The observable process

{Y n = Y1:U,n, n ∈ 1 :N} takes values in RU .

X1,0 · · · XU,0 X1,1 · · · XU,1

X0 X1

Y1,1 · · · YU,1

Y 1

· · ·

· · · X1,N · · · XU,N

XN

Y1,N · · · YU,N

Y N

· · ·

· · ·

Figure 3.2 – Diagram illustrating spatially coupled partially observed Markov process (SpatPOMP)
models. The latent dynamic model is {X(t ;θ) : t ∈ T}. During observation times t1:N = {tn :
n = 1, . . . , N}, the values of the latent process are denoted X1, . . . , XN . The partial and noisy
observations at these times are denoted Y 1, . . . , Y N . A SpatPOMP model specifies that X(t) is
itself a collection of latent states from U spatially coupled dynamics that each produce observations
at the observation times. Ultimately, defining a SpatPOMP model is equivalent to defining three
models: a model for the one-step transition of the latent process, a model for each spatial unit’s
measurements at an observation time conditional on the latent states for that unit at that time,
and a model for the initial latent state, X0.

Observations are modeled as conditionally independent given the latent process. This conditional

independence of measurements applies over both space and time, so Yu,n is conditionally independent
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of {Yũ,ñ, (ũ, ñ) 6= (u, n)} given Xu,n. We suppose the existence of a joint density fX0:N ,Y 1:N of

X1:U,0:N and Y1:U,1:N with respect to some reference measure. We use the same subscript notation

to denote other marginal and conditional densities. The data, y∗1:U,1:N = (y∗1, . . . , y∗N ), are modeled

as a realization of this observation process. Spatially or temporally dependent measurement errors

can be modeled by adding suitable latent variables.

The SpatPOMP structure defined above is equivalent to the following factorization of the joint

density in terms of the initial density, fX0(x0; θ), together with the conditional transition probability

density,

fXn|Xn−1(xn |xn−1 ;θ), and the unit-specific measurement densities, fYu,n|Xu,n(yu,n|xu,n ;θ) for 1 ≤

n ≤ N , 1 ≤ u ≤ U :

fX0:N ,Y 1:N (x0:N ,y1:N ; θ) = fX0(x0; θ)
N∏
n=1

fXn|Xn−1(xn|xn−1; θ)
U∏
u=1

fYu,n|Xu,n(yu,n|xu,n ;θ).

This formalism allows the transition density, fXn|Xn−1 , and unit-specific measurement density,

fYu,n|Xu,n , to depend on n and u, so we allow for the possibility of temporally and spatially inho-

mogeneous models.

3.2.1 Implementation of SpatPOMP models

A SpatPOMP model is represented in spatPomp by an S4 object of class ‘spatPomp’. Slots in

this object encode the components of the SpatPOMP model, and can be filled or changed using

the constructor function spatPomp() and various other convenience functions. Methods for the

class ‘spatPomp’ use these components to carry out computations on the model. Table 3.1 gives

the mathematical notation corresponding to the elementary methods that can be executed on a
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Method Argument to Mathematical terminology
spatPomp()

dunit measure dunit measure Evaluate fYu,n|Xu,n(yu,n |xu,n ;θ)
runit measure runit measure Simulate from fYu,n|Xu,n(yu,n |xu,n ;θ)
eunit measure eunit measure Evaluate eu,n(x, θ) = E[Yu,n |Xu,n = x ;θ]
vunit measure vunit measure Evaluate vu,n(x, θ) = Var[Yu,n |Xu,n = x ;θ]
munit measure munit measure mu,n(x, V, θ) = ψ solves vu,n(x,ψ) = V , eu,n(x,ψ) = eu,n(x, θ)
rprocess rprocess Simulate from fXn|Xn−1(xn |xn−1 ;θ)
dprocess dprocess Evaluate fXn|Xn−1(xn |xn−1 ;θ)
rmeasure rmeasure Simulate from fY n|Xn

(yn |xn ;θ)
dmeasure dmeasure Evaluate fY n|Xn

(yn |xn ;θ)
rprior rprior Simulate from the prior distribution π(θ)
dprior dprior Evaluate the prior density π(θ)
rinit rinit Simulate from fX0(x0 ;θ)
timezero t0 t0
time times t1:N
obs data y∗1:N
states — x0:N
coef params θ

Table 3.1 – Model component methods for class ‘spatPomp’ objects. A translation into mathematical
notation for SpatPOMP models is also included. For example, the rprocess method is set using
the rprocess argument to the spatPomp constructor function.

class ‘spatPomp’ object. Class ‘spatPomp’ inherits from the class ‘pomp’ defined by the pomp

package. One of the main ways in which spatPomp extends pomp is the addition of unit-level

specifications of the measurement model. This reflects the modeling assumption that measurements

are carried out independently in both space and time, conditional on the current value of the latent

process which is known as the state of the dynamic system. There are five unit-level functionalities

of class ‘spatPomp’ objects: dunit measure, runit measure, eunit measure, vunit measure and

munit measure. Each functionality corresponds to an S4 method. The set of instructions performed

by each method are supplied by the user via an argument to the spatPomp() constructor function

of the same name. (See Table 3.1 for details).

Only functionalities that are required to run an algorithm of interest need to be supplied in
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advance. dunit measure evaluates the probability density of the measurement of a spatial unit

given its latent state vector, whereas runit measure simulates from this conditional distribution.

Given the latent state, eunit measure and vunit measure give the expectation and variance of the

measurement, respectively. They are used by the ensemble Kalman filter (EnKF, Section 3.3.3) and

iterated EnKF (Section 3.4.2). munit measure returns a parameter vector corresponding to given

moments (mean and variance), used by one of the options for a guided particle filter (Section 3.3.1).

3.2.2 Initial conditions

Specification of the initial condition X0 = X(t0; θ) of a SpatPOMP model is similar to that of a

POMP model, and is carried out using the rinit argument of the spatPomp() constructor function.

The initial distribution fX0(x0 ;θ) may sometimes be a known property of the system but in general

it must be inferred. If the transition density for the dynamic model, fXn|Xn−1(xn |xn−1 ;θ), does not

depend on time and possesses a unique stationary distribution, it may be natural to set fX0(x0 ;θ)

to be this stationary distribution. When no clear scientifically motivated choice of fX0(x0 ;θ) exists,

one can treat X0 as a component of the parameter set to be estimated. In this case, fX0(x0 ;θ)

concentrates at a point which depends on θ.

3.2.3 Covariates

Scientifically, one may be interested in the impact of a vector-valued covariate process {Z(t)} on

the latent dynamic system. For instance, the transition density, fXn|Xn−1 , and the measurement

density, fY n|Xn
, can depend on this observed process. The covariate process might be shared

between units, or might take unit-specific values. spatPomp allows modeling and inference for

spatiotemporal processes that depend on an observed covariate process. If such a covariate exists the
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user can supply a class ‘data.frame’ object to the covar argument of the spatPomp() constructor

function. This data.frame will have a column for time, spatial unit, and each of the covariates.

If any of the variables in the covariates data.frame is common among all units the user must

supply the variable names as class ‘character’ vectors to the shared covarnames argument of the

spatPomp() constructor function. Otherwise, all covariates are assumed to be unit-specific, meaning

that they generally take on different values for each unit. spatPomp manages the task of presenting

interpolated values of the covariates to the elementary model functions at the time they are called.

An example implementing a SpatPOMP model with covariates is presented in Section 3.6.

3.2.4 Naming units and components of the state

One of the requirements for creating a new class ‘spatPomp’ object is a class ‘data.frame’ object

containing observations for each spatial unit at each time. This long-format data.frame is supplied

to the data argument of the spatPomp() constructor function. The package does not presuppose

data at all units at all observation times. Missing data in some or all of the observations for any

given observation times are preserved, which allows the user to describe a measurement model that

handles missingness. The name of the data column containing observation times is supplied to

the times argument; the name of the column containing the unit names is supplied to the units

argument. The t0 argument, for which the user supplies the initial time of the dynamics in the time

unit of the measurements, is the last of the four required arguments for the spatPomp() constructor.

The resulting class ‘spatPomp’ object stores the unit names as a vector in a slot called unit names.

Internally, only the positions of the names in the unit names vector are used to keep track of units.

In other words, the units are labeled 1 through U just as in our mathematical notation, and these

labels can be used to construct measurement or process models that differ between units. The
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text labels in unit names are re-attached for user-readable outputs like simulation plots and class

‘data.frame’ outputs.

Another important argument to the spatPomp() constructor is unit statenames. This argu-

ment expects a class ‘character’ vector of length DX containing names of the components of any

unit’s latent state at a given time. For example, to implement a SpatPOMP model studying the

population dynamics between frogs and dragonflies in neighboring spatial units, the user can provide

unit statenames = c(‘F’,‘D’). The package then expects that unit-level model components will

use ‘F’ and ‘D’ in their instructions.

Other name vectors, unit obsnames and unit covarnames, are used internally to keep track of

data and covariates that have corresponding values for each unit. These need not be supplied in

the spatPomp() constructor, however, since the data and covariate data.frame objects provided

by the user implicitly supply them.

3.2.5 Specifying model components using C snippets

The spatPomp package utilizes the C snippet facility in pomp which allows users to specify the

model components in Table 3.1 using inline C code. The package is therefore able to perform

computationally expensive calculations in C while outputting results in higher-level R objects. The

code below illustrates the creation of a C snippet unit measurement density using the Csnippet()

function.

R> example_dunit_measure <- Csnippet("

+ // define measurement standard deviation for first unit

+ double sd0 = sd*1.5;

+ // Quantities u, Y, X, sd and lik are available in the context
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+ // in which this snippet is executed.

+ if (u==0) lik = dnorm(Y, X, sd0, give_log);

+ else lik = dnorm(Y, X, sd, give_log);

+ "

+ )

The example C snippet above illustrates a key difference in the practical use of the five unit-

level model components in Table 3.1 compared to the components inherited from pomp that access

the entire state and measurement vectors. All the filtering and inference algorithms in spatPomp

assume the conditional independence of the spatial unit measurements given the state corresponding

to the unit.

fY n|Xn
(yn |xn ;θ) =

U∏
u=1

fYu,n|Xu,n(yu,n |xu,n ;θ)

When we specify the unit-level model components we can thus assume that the segments of

the measurement and state vectors for the current unit are passed in during the execution of the

unit-level model component. This allows the user to declare the unit-level model components by

using the unit statenames and unit obsnames without having to specify the names of the relevant

components of the latent state and observation. For instance, the example C snippet uses X instead

of X1, X2, etc. Similarly, it uses Y instead of Y1, Y2, etc.

The variable u, which takes a value between 0 and U-1, is passed in to each unit-level model

component. This allows the user to specify heterogeneity in the unit-level model components across

units. Since C uses zero-based numbering, a user interested in introducing model heterogeneity for

a unit must find the position of the unit in the unit names slot and subtract one to get the corre-

sponding value of u. The user can then use standard conditioning logic to specify the heterogeneity.

For instance, when the example dunit measure C snippet above is executed for spatial unit 1, the
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u is passed in as 0, Y will have the value of the measurement from unit 1 (or Y1) and X will have

the value of the latent state in unit 1 (or X1). This example C snippet is coded so that the first

unit has a measurement error inflated relative to that of the other units. As in pomp, the give log

variable is a logical flag indicating whether the desired output is on log scale: in this example, it

is passed to the log argument of dnorm. Setting give log=TRUE allows the calling algorithm to

maintain accuracy when measurement densities become very small; the same convention is followed

by all base R probability distribution functions.

Not all of the model components need to be supplied for any specific computation. In particular,

plug-and-play methodology by definition never uses dprocess. An empty dprocess slot in a class

‘spatPomp’ object is therefore acceptable unless a non-plug-and-play algorithm is attempted. In the

package, the data and corresponding measurement times and units are considered necessary parts

of a class ‘spatPomp’ object whilst specific values of the parameters and latent states are not.

3.2.6 Examples included in the package

The construction of a new class ‘spatPomp’ object is illustrated in Section 3.6. To provide some

examples of class ‘spatPomp’ objects, the spatPomp package includes functions bm(), lorenz()

and measles(). These functions create class ‘spatPomp’ objects with user-specified dimensions

for a correlated Brownian motion model, the Lorenz-96 atmospheric model (Lorenz, 1996), and a

spatiotemporal measles SEIR model, respectively. These examples can be used to better understand

the components of class ‘spatPomp’ objects as well as to test filtering and inference algorithms for

future development.

For instance, we can create four correlated Brownian motions each with ten time steps as follows.

The correlation structure and other model details are discussed in Section 3.5.
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R> U <- 4; N <- 10

R> bm4 <- bm(U = U, N = N)

The above code results in the creation of the bm4 object of class ‘spatPomp’ with simulated data.

This is done by bringing together pre-specified C snippets and adapting them to a four-dimensional

process. One can inspect many aspects of bm4, some of which are listed in Table 3.1, by using the

corresponding accessor functions:

R> obs(bm4)

R> unit_names(bm4)

R> states(bm4)

R> as.data.frame(bm4)

R> plot(bm4)

R> timezero(bm4)

R> time(bm4)

R> coef(bm4)

R> rinit(bm4)

The measles() example is described in Section 3.6 to demonstrate user-specified model con-

struction.

3.3 Simulation and filtering: Elementary SpatPOMP methods

Once the user has encoded one or more SpatPOMP models as objects of class ‘spatPomp’, the

package provides a variety of algorithms to assist with data analysis. Methods can be divided

into two categories: elementary operations that investigate a model with a fixed set of parameter

values, and inference operations that estimate parameters. This section considers the first of these
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categories.

A basic operation on a SpatPOMP model is to simulate a stochastic realization of the latent

process and the resulting data. This requires specifications of rprocess and rmeasure. Applying

the simulate function to an object of class ‘spatPomp’ by default returns another object of class

‘spatPomp’, within which the data y∗1:N have been replaced by a stochastic realization of Y 1:N . The

corresponding realization of X0:N is accessible via the states slot, and the params slot is filled

with the value of θ used in the simulation. Optionally, simulate can be made to return a class

‘data.frame’ object by supplying the argument format=‘data.frame’ in the call to simulate.

Section 3.6 provides an example of constructing a class ‘spatPomp’ object and simulating from it.

Evaluating the conditional distribution of latent process variables given currently available data

is an elementary operation called filtering. Filtering also provides an evaluation of the likelihood

function for a fixed parameter vector. The curse of dimensionality associated with spatiotemporal

models can make filtering for SpatPOMP models computationally challenging. A widely used time-

series filtering technique is the particle filter, available as pfilter in the pomp package. However,

most particle filter algorithms scale poorly with dimension (Bengtsson et al., 2008; Snyder et al.,

2015). Thus, in the spatiotemporal context, successful particle filtering requires state-of-the-art

algorithms. Currently the spatPomp package contains implementations of five such algorithms, four

of which are described below. Spatiotemporal data analysis using mechanistic models is a nascent

topic, and future methodological developments are anticipated. Since the mission of spatPomp is

to be a home for such analyses, the package developers welcome contributions and collaborations

to further expand the functionality of spatPomp. In the remainder of this section, we describe and

discuss some of the filtering methods currently implemented in the package.
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3.3.1 The guided intermediate resampling filter (GIRF)

The guided intermediate resampling filter (GIRF, Park and Ionides, 2020) is an extension of the

auxiliary particle filter (APF, Pitt and Shepard, 1999). GIRF is appropriate for moderately high-

dimensional SpatPOMP models with a continuous-time latent process. All particle filters compute

importance weights for proposed particles and carry out resampling to focus computational effort on

particles consistent with the data (see reviews by Arulampalam et al., 2002; Doucet and Johansen,

2011; Kantas et al., 2015). In the context of pomp, the pfilter function is discussed by King et al.

(2016). GIRF combines two techniques for improved scaling of particle filters: the use of a guide

function and intermediate resampling.

The guide function steers particles using importance weights that anticipate upcoming observa-

tions. Future measurements are considered up to a lookahead horizon, L. APF corresponds to a

lookahead horizon L = 2, and a basic particle filter has L = 1. Values L ≤ 3 are typical for GIRF.

Intermediate resampling breaks each observation interval into S sub-intervals, and carries out

reweighting and resampling on each sub-interval. Perhaps surprisingly, intermediate resampling can

facilitate some otherwise intractable importance sampling problems (Del Moral and Murray, 2015).

APF and the basic particle filter correspond to S = 1, whereas choosing S = U gives favorable

scaling properties (Park and Ionides, 2020).

In Algorithm 1 the F , G and P superscripts indicate filtered, guide and proposal particles,

respectively. The goal for the pseudocode in Algorithm 1, and subsequent algorithms in this paper, is

a succinct description of the logic of the procedure rather than a complete recipe for efficient coding.

The code in spatPomp takes advantage of memory overwriting and vectorization opportunities that

are not represented in this pseudocode.
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Algorithm 1: girf() in spatPomp, run as girf(P, Np = J, Ninter =S, Nguide =K,
Lookahead =L), using notation from Table 3.1 where P is a class ‘spatPomp’ object with
definitions for rprocess, dunit measure, rinit, skeleton, obs and coef.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for
fYu,n|Xu,n(yu,n |xu,n ;θ), and µ(x, s, t ;θ); data, y∗1:N ; parameter, θ; number of
particles, J ; number of guide simulations, K; number of intermediate timesteps, S;
number of lookahead lags, L.

1 initialize: simulate XF,j
0,0 ∼ fX0( · ;θ) and set gF,j0,0 = 1 for j in 1 :J

2 for n in 0 :N − 1 do
3 sequence of guide forecast times, L = (n+ 1):min(n+ L,N)
4 guide simulations, XG,j,k

L ∼ fXL|Xn

(
· |XF,j

n,0 ;θ
)

for j in 1 :J , k in 1 :K
5 guide residuals, εj,k0,` = XG,j,k

` − µ
(
XF,j

n , tn, t` ;θ
)

for j in 1 :J , k in 1 :K, ` in L
6 for s in 1 :S do
7 prediction simulations, XP,j

n,s ∼ fXn,s|Xn,s−1

(
· |XF,j

n,s−1 ;θ
)

for j in 1 :J
8 deterministic trajectory, µP,jn,s,` = µ

(
XP,j

n,s , tn,s, t` ;θ
)

for j in 1 :J , ` in L

9 pseudo guide simulations, X̂j,k
n,s,` = µP,jn,s,` + εj,ks−1,` − ε

j,k
s−1,n+1 +

√
tn+1−tn,s
tn+1−tn,0 ε

j,k
s−1,n+1

for j in 1 :J , k in 1 :K, ` in L
10 discount factor, ηn,s,` = 1− (tn+` − tn,s)/{(tn+` − tmax(n+`−L,0)) · (1 + 1L=1)}

11 gP,jn,s =
∏
` inL

U∏
u=1

[
1
K

K∑
k=1

fYu,`|Xu,`

(
y∗u,` | X̂

j,k
u,n,s,` ;θ

)]ηn,s,`
for j in 1 :J

12 for j in 1 :J , wjn,s =

 fY n|Xn

(
yn |X

F,j
n,s−1 ;θ

)
gP,jn,s

/
gF,jn,s−1 if s = 1 and n 6= 0

gP,jn,s

/
gF,jn,s−1 else

13 log likelihood component, cn,s = log
(
J−1 ∑J

k=1w
k
n,s

)
14 normalized weights, w̃jn,s = wjn,s

/∑J
k=1w

k
n,s for j in 1 :J

15 select resample indices, r1:J with P [rj = k] = w̃kn,s for j in 1 :J
16 XF,j

n,s = X
P,rj
n,s , gF,jn,s = g

P,rj
n,s , εj,ks,` = ε

rj ,k
s−1,` for j in 1 :J , k in 1 :K, ` in L

17 end
18 set XF,j

n+1,0 = XF,j
n,S and gFn+1,0,j = gFn,S,j for j in 1 :J

19 end
output: log likelihood, `GIRF = ∑N−1

n=0
∑S
s=1 cn,s, and filter particles, XF,1:J

N,0
complexity: O

(
JLUN(K + S)

)
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We call the guide in Algorithm 1 a bootstrap guide function since it is based on resampling the

Monte Carlo residuals calculated in step 5. Another option of a guide function in girf is the simu-

lated moment guide function developed by Park and Ionides (2020) which uses the eunit measure,

vunit measure and munit measure model components together with simulations to calculate the

guide. The expectation of Monte Carlo likelihood estimates does not depend on the guide function,

so an inexact guide approximation may lead to loss of numerical efficiency but does not affect the

consistency of the procedure.

The intermediate resampling is represented in Algorithm 1 by the loop of s = 1, . . . , S in step 6.

The intermediate times are defined by tn,s = tn + (tn+1 − tn) · s
/
S and we write Xn,s = X(tn,s).

The resampling weights (step 12) are defined in terms of guide function evaluations gP,jn,s . The only

requirement for the guide function to achieve unbiased estimates is that it satisfies gF,j0,0 = 1 and

gP,jN−1,S = fY N |XN

(
y∗N |X

F,j
N−1,S ;θ

)
, which is the case in Algorithm 1. The particular guide function

calculated in step 11 evaluates particles using a prediction centered on a function

µ(x, s, t ;θ) ≈ E[X(t) |X(s) = x ;θ].

We call µ(x, s, t ;θ) a deterministic trajectory associated with X(t). For a continuous time Spat-

POMP model, this trajectory is typically the solution to a system of differential equations that

define a vector field called the skeleton (Tong, 1990). In spatPomp, the argument to skeleton is

a map or vector field which is numerically solved to obtain µ(x, s, t ;θ). It can be specified using

complied C code via a C snippet argument to spatPomp, as demonstrated in Section 3.6. The fore-

cast spread around this point prediction is given by the simulated bootstrap residuals constructed

in step 5.
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3.3.2 Adapted bagged filter (ABF)

The adapted bagged filter (Ionides et al., 2021) combines many independent particle filters. This is

called bagging, (bootstrap aggregating), since a basic particle filter is also called a bootstrap filter.

The adapted distribution is the conditional distribution of the latent process given its current value

and the subsequent observation (Johansen and Doucet, 2008). In the adapted bagged filter, each

bootstrap replicate makes a Monte Carlo approximation to a draw from the adapted distribution.

Thus, in the pseudocode of Algorithm 2, XA,i
0:N is a Monte Carlo sample targeting the adapted

sampling distribution,

fX0(x0 ;θ)
N∏
n=1

fXn|Y n,Xn−1(xn |y∗n,xn−1 ; θ). (3.1)

Each adapted simulation replicate is constructed by importance sampling using proposal particles

{XP,i,j
n }. The ensemble of adapted simulation replicates are then weighted using data in a spa-

tiotemporal neighborhood of each observation to obtain a locally combined Monte Carlo sample

targeting the filter distribution, with some approximation error due to the finite spatiotemporal

neighborhood used. This local aggregation of the bootstrap replicates also provides an evaluation

of the likelihood function.

On a given bootstrap replicate i at a given time n, all the adapted proposal particles XP,i,1:J
n

in step 3 are necessarily close to each other in state space because they share the parent particle

XA,i
n−1. This reduces imbalance in the adapted weights in step 5, which helps to battle the curse

of dimensionality that afflicts importance sampling. The combination of the replicates for the

filter estimate in step 11 is carried out using only weights in a spatiotemporal neighborhood, thus

avoiding the curse of dimensionality. For any point (u, n), the neighborhood Bu,n should be specified
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as a subset of Au,n = {(ũ, ñ) : ñ < n or (ũ < u and ñ = n)}. If the model has a mixing property,

meaning that conditioning on the observations in the neighborhood Bu,n is negligibly different from

conditioning on the full set Au,n, then the approximation involved in this localization is adequate.

Steps 1 through 7 do not involve interaction between replicates and therefore iteration over i

can be carried out in parallel. If a parallel backend has been set up by the user, the abf method will

parallelize computations over the replicates using multiple cores. The user can register a parallel

backend using the doParallel package (Wallig and Weston, 2020, 2019) prior to calling abf.

R> library("doParallel")

R> registerDoParallel(3) # Parallelize over 3 cores

The neighborhood is supplied via the nbhd argument to abf as a function which takes a point in

space-time, (u, n), and returns a list of points in space-time which correspond to Bu,n. An example

with Bu,n = {(u− 1, n), (u, n− 1)} follows.

R> example_nbhd <- function(object, unit, time){

+ nbhd_list = list()

+ if(time>1) nbhd_list <- c(nbhd_list, list(c(unit, time-1)))

+ if(unit>1) nbhd_list <- c(nbhd_list, list(c(unit-1, time)))

+ return(nbhd_list)

+ }

ABF can be combined with the guided intermediate resampling technique used by GIRF to give

an algorithm called ABF-IR (Ionides et al., 2021) implemented as abfir.
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Algorithm 2: abf() in spatPomp, run as abf(P, replicates = I, Np = J, nbhd=Bu,n),
using notation from Table 3.1 where P is a class ‘spatPomp’ object with definitions for
rprocess, dunit measure, rinit, obs and coef.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for
fYu,n|Xu,n(yu,n |xu,n ;θ); data, y∗1:N ; parameter, θ; number of particles per replicate,
J ; number of replicates, I; neighborhood structure, Bu,n

1 initialize adapted simulation, XA,i
0 ∼ fX0(· ;θ) for i in 1 :I

2 for n in 1 :N do
3 proposals, XP,i,j

n ∼ fXn|Xn−1

(
· |XA,i

n−1 ;θ
)

for i in 1 :I, j in 1 :J
4 wi,ju,n = fYu,n|Xu,n

(
y∗u,n |XP,i,j

u,n ;θ
)

for u in 1 :U , i in 1 :I, j in 1 :J
5 adapted resampling weights, wA,i,jn = ∏U

u=1w
i,j
u,n for u in 1 :U , i in 1 :I, j in 1 :J

6 set XA,i
n = XP,i,j

n with probability wA,i,jn

(∑J
k=1w

A,i,k
n

)−1
for i in 1 :I

7 wP,i,ju,n =
n−1∏
ñ=1

 1
J

J∑
k=1

∏
(ũ,ñ)∈Bu,n

wi,kũ,ñ

 ∏
(ũ,n)∈Bu,n

wi,jũ,n for u in 1 :U , i in 1 :I, j in 1 :J

8 end

9 filter weights, wF,i,ju,n =
wi,ju,n w

P,i,j
u,n∑I

p=1
∑J
k=1w

P,p,k
u,n

for u in 1 :U , n in 1 :N , i in 1 :I, j in 1 :J

10 conditional log likelihood, `u,n = log
(∑I

i=1
∑J
j=1w

F,i,j
u,n

)
for u in 1 :U , n in 1 :N

11 set XF,j
u,n = XP,i,k

u,n with probability wF,i,ku,n e−`u,n for u in 1 :U , n in 1 :N , j in 1 :J
output: filter particles, XF,1:J

n , for n in 1 :N ; log likelihood, `ABF = ∑N
n=1

∑U
u=1 `u,n

complexity: O(IJUN)
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Algorithm 3: enkf() in spatPomp, run as enkf(P, Np = J), using notation from Ta-
ble 3.1 where P is a class ‘spatPomp’ object with definitions for rprocess, eunit measure,
vunit measure, rinit, coef and obs.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for eu(Xu,n, θ) and
vu(Xu,n, θ); parameter, θ; data, y∗1:N ; number of particles, J .

1 initialize filter particles, XF,j
0 ∼ fX0 ( · ;θ) for j in 1 :J

2 for n in 1 :N do
3 prediction ensemble, XP,j

n ∼ fXn|Xn−1

(
· |XF,j

n−1; θ
)

for j in 1 :J
4 centered prediction ensemble, X̃P,j

n = XP,j
n − 1

J

∑J
k=1X

P,k
n for j in 1 :J

5 forecast ensemble, Ŷ j
n = eu(XP,j

u,n, θ) for j in 1 :J
6 forecast mean, Yn = 1

J

∑J
j=1 Ŷ

j
n

7 centered forecast ensemble, Ỹ j
n = Ŷ

j
n − Yn for j in 1 :J

8 forecast measurement variance, Ru,ũ = 1u,ũ
1
J

∑J
j=1 vu

(
XP,j

u,n, θ
)

for u, ũ in 1 :U
9 forecast estimated covariance, ΣY = 1

J−1
∑J
j=1(Ỹ j

n)(Ỹ j
n)T +R

10 prediction and forecast sample covariance, ΣXY = 1
J−1

∑J
j=1(X̃P,j

n )(Ỹ j
n)T

11 Kalman gain, K = ΣXY Σ−1
Y

12 artificial measurement noise, εjn ∼ Normal(0, R) for j in 1 :J
13 errors, rjn = Ŷ

j
n − y∗n for j in 1 :J

14 filter update, XF,j
n = XP,j

n +K
(
rjn + εjn

)
for j in 1 :J

15 `n = log
[
φ
(
y∗n ;Yn,ΣY

)]
where φ(· ;µ,Σ) is the Normal(µ,Σ) density.

16 end
output: filter sample, XF,1:J

n , for n in 1 :N ; log likelihood estimate, `EnKF = ∑N
n=1 `n

complexity: O(JUN)
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3.3.3 The ensemble Kalman filter (EnKF)

Algorithm 3 is an implementation of the ensemble Kalman filter (EnKF)(Evensen, 1994; Evensen

and van Leeuwen, 1996). The EnKF makes a Gaussian approximation to assimilate Monte Carlo

simulations from a state prediction model with data observed in the corresponding time step. The

EnKF has two steps: the prediction and the filtering steps; the latter is known the “analysis” step

in the geophysical data-assimilation literature. The prediction step advances Monte Carlo particles

to the next observation time step by using simulations from a possibly non-linear transition model.

In the filtering step, the sample estimate of the state covariance matrix and the linear measurement

model are used to make a Gaussian approximation to the conditional distribution of the state given

the data.

In step 8 of Algorithm 3, the conditional variance of the measurement at the current time

step is approximated by constructing a diagonal covariance matrix whose diagonal elements are

the sample average of the theoretical unit measurement variances at each unit. This is written

using an indicator function 1u,ũ which takes value 1 if u = ũ and 0 otherwise. The vunit measure

model component aids in this step whereas eunit measure specifies how we can construct forecast

data (step 5) that can be used to later update our prediction particles in step 14. In step 12 we

add artificial measurement error to arrive at a consistent sample covariance for the filtering step

(Evensen, 1994; Evensen and van Leeuwen, 1996), writing Normal(µ,Σ) for independent draws from

a multivariate normal random variable with mean µ and variance matrix Σ.

EnKF achieves good dimensional scaling relative to a particle filter (by avoiding the resampling

step) at the expense of a Gaussian approximation in the filtering update rule. Adding hierarchical

layers to the model representation can help to make the EnKF approximation applicable in non-
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Gaussian contexts (Katzfuss et al., 2020). Since we envisage spatPomp primarily for situations

with relatively low dimension, this implementation does not engage in regularization issues required

when the dimension of the observation space exceeds the number of particles in the ensemble.

Our EnKF implementation supposes we have access to the functions

eu,n(x, θ) = E
[
Yu,n |Xu,n=x ;θ

]
vu(x, θ) = Var

(
Yu,n |Xu,n=x ;θ

)

If the measurements are unbiased, eu,n(xu, θ) will simply extract the measured components of xu.

The measurements in a SpatPOMP do not necessarily correspond to specific components of the

state vector, and enkf permits arbitrary relationships subject to the constraint that the user can

provide the necessary eu,n(x, θ) and vu(x, θ) functions. These functions can be defined during the

construction of a class ‘spatPomp’ object by supplying C snippets to the arguments eunit measure

and vunit measure respectively. For common choices of measurement model, such as Gaussian or

negative binomial, eu,n and vu,n are readily available. In general, the functional forms of eu,n and

vu,n may depend on u and n. Users can specify more general functional forms in spatPomp since

the variables u and t are defined for the C snippets. Similarly, both the mathematical notation

in Section 3.2 and the spatPomp implementation permit arbitrary dependence on covariate time

series.

3.3.4 Block particle filter

Algorithm 4 is an implementation of the block particle filter (BPF Rebeschini and van Handel,

2015), also called the factored particle filter (Ng et al., 2002). BPF partitions the units into a
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collection of blocks, B1, . . . ,BK . Each unit is placed in exactly one block. BPF generates proposal

particles by simulating from the joint latent process across all blocks, exactly as the particle filter

does. However, the resampling in the filtering step is carried out independently for each block,

using weights corresponding only to the measurements in the block. Different proposal particles

may be successful for different blocks, and the block resampling allows the filter particles to paste

together these successful proposed blocks. BPF supposes that spatial coupling conditional on the

data occurs primarily within blocks, and is negligible between blocks.

The user has a choice of specifying the blocks using either the block list argument or block size,

but not both. block list takes a class ‘list’ object where each entry is a vector representing the

units in a block. block size takes an integer and evenly partitions 1 :U into blocks of size approx-

imately block size. For example, if there are 4 units, executing bpfilter with block size=2 is

equivalent to setting block list=list(c(1,2),c(3,4)).

3.4 Inference for SpatPOMP models

We focus on iterated filtering methods (Ionides et al., 2015) which provide a relatively simple way

to coerce filtering algorithms to carry out parameter inference, applicable to the general class of

SpatPOMP models considered by spatPomp. The main idea of iterated filtering is to extend a

POMP model to include dynamic parameter perturbations. Repeated filtering, with parameter

perturbations of decreasing magnitude, approaches the maximum likelihood estimate. Here, we

present iterated versions of GIRF, EnKF and the unadapted bagged filter (UBF), a version of ABF

with J = 1. These algorithms are known as IGIRF (Park and Ionides, 2020), IEnKF (Li et al.,

2020) and IUBF (Ionides et al., 2021) respectively. SpatPOMP model estimation is an active area
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for research (for example, Katzfuss et al., 2020) and spatPomp provides a platform for developing

and testing new methods, in addition to new models and data analysis.

3.4.1 Iterated GIRF for parameter estimation

Algorithm 5 describes igirf(), the spatPomp implementation of IGIRF. This algorithm carries

out the IF2 algorithm of Ionides et al. (2015) with filtering carried out by GIRF, therefore its

implementation combines the mif2 function in pomp with girf (Algorithm 1). For Algorithm 5,

we unclutter the pseudocode by using a subscript and superscript notation for free indices, meaning

subscripts and superscripts for which a value is not explicitly specified in the code. We use the

convention that a free subscript or superscript is evaluated for all values in its range, leading to an

implicit ‘for’ loop. This does not hold for capitalized subscripts and superscripts, which describe

the purpose of a Monte Carlo particle, matching usage in Algorithm 1.

The quantity ΘP,m,j
n,s gives a perturbed parameter vector for θ corresponding to particle j on

iteration m at the sth intermediate time between n and n + 1. The perturbations in Algorithm 5

are taken to follow a multivariate normal distribution, with a diagonal covariance matrix scaled by

σn,dθ . Normal perturbations are not theoretically required, but this is a common choice in practice.

The igirf function permits perturbations to be carried out on a transformed scale, specified using

the partrans argument, to accommodate situations where normally distributed perturbations are

more natural on the log or logistic scale, or any other user-specified scale. For regular parameters,

i.e. parameters that are not related to the initial conditions of the dynamics, it may be appropriate

to set the perturbation scale independent of n. If parameters are transformed so that a unit scale

is relevant, for example using a logarithmic transform for non-negative parameters, a simple choice

such as σn,dθ = 0.02 may be effective. Initial value parameters (IVPs) are those that determine only
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the latent state at time t0, and these should be perturbed only at the beginning of each iteration m.

The matrix σ0:N,1:Dθ can be constructed using the rw.sd function, which simplifies the construction

for regular parameters and IVPs. The cooling.fraction.50 argument takes the fraction of rw.sd

by which to perturb the parameters after 50 iterations of igirf. If set to 0.5, for instance, the

default behavior is to lower the perturbation standard deviation geometrically so that it is halved

by the 50th iteration of igirf.

3.4.2 Iterated EnKF for parameter estimation

Algorithm 6 is an implementation of the iterated ensemble Kalman filter (IEnKF) which extends

the IF2 approach for parameter estimation by replacing a particle filter with an ensemble Kalman

filter. As described in Section 3.4.1, we employ a free index notation whereby superscripts and

subscripts that are not otherwise specified have an implicit ‘for’ loop.

We note a caveat in using IEnKF. If the forecast mean Ŷ is not dependent on a parameter

component, that component of the parameter is not updated by the Kalman gain on average. For

example, in Brownian motion, the forecast Ŷ is independent of the measurement variance parameter

τ , and so IEnKF is ineffective in estimating τ . By contrast, for geometric Brownian motion, which

is obtained by exponentiating Brownian motion, IEnKF can estimate τ because high values of τ

lead to higher values of Ŷ on average. In this case, if the average forecast is different from the

observed data, the τ parameter gets updated accordingly to reduce the error. Therefore, IEnKF

may need to be coupled with other parameter estimation methods (such as IGIRF) to estimate

parameters that do not affect the forecast mean.
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3.4.3 Iterated UBF for parameter estimation

Algorithm 7 also extends the IF2 approach by using an ABF-inspired particle filter. We start with

Nθ copies of our starting parameter set and iteratively perturb the parameter set and evaluate a

conditional likelihood at each observation time using ABF with J = 1 (also called the unadapted

bagged filter, or UBF). The parameter sets yielding the top p quantile of the likelihoods are resam-

pled for pertubation and likelihood evaluation in the next time step.

3.4.4 Inference algorithms inherited from pomp

Objects of class ‘spatPomp’ inherit methods for inference from class ‘pomp’ objects implemented in

the pomp package. As discussed earlier, IF2 (Ionides et al., 2015) enables parameter estimation in

the frequentist sense and has been used in numerous applications. It can be used to check the capa-

bilities of newer and more scalable inference methods on smaller examples for which IF2 is known

to be effective. Extensions for Bayesian inference of the currently implemented high-dimensional

particle filter methods (GIRF, ABF, EnKF, BPF) are not yet available. Bayesian inference is avail-

able in spatPomp using the approximate Bayesian computing (ABC) method inherited from pomp,

abc(). ABC has previously been used for spatiotemporal inference (Brown et al., 2018) and can

also serve as a baseline method. However, ABC is a feature-based method that may lose substantial

information compared to full-information methods that work with the full likelihood function.

3.5 Demonstrating data analysis tools on a toy model

We illustrate key capabilities of spatPomp using a model for correlated Brownian motions. This

allows us to demonstrate a data analysis in a simple context where we can compare results with
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a standard particle filter as well as validate all methods against the exact solutions which are

analytically available. Here we defer the details of model construction by using a model pre-

specified within the package. Section 3.6 proceeds to develop a model exemplifying the kinds of

nonlinear, non-Gaussian spatiotemporal dynamics of moderately high dimension, which are the

target of spatPomp. Consider spatial units 1, . . . , U located evenly around a circle, with dist(u, ũ)

being the circle distance,

dist(u, ũ) = min
(
|u− ũ|, |u− ũ+ U |, |u− ũ− U |

)
.

We investigate a SpatPOMP where the latent process is a U -dimensional Brownian motion X(t)

having correlation that decays with distance. Specifically,

dXu(t) =
U∑
ũ=1

ρdist(u,ũ)dWũ(t),

where W1(t), . . . ,WU (t) are independent Brownian motions with infinitesimal variance σ2, and

|ρ| < 1. Using the notation in Section 3.2, we suppose our measurement model for discrete-time

observations of the latent process is

Yu,n = Xu,n + ηu,n

where ηu,n iid∼ Normal(0, τ2). The model specification is completed by specifying the initial condi-

tions, {Xu(0), u ∈ 1 : U}. A class ‘spatPomp’ object which simulates from this model for U = 10

with N = 20 evenly-spaced observations that are one unit time apart can be simulated using bm()

and plotted using plot(), yielding the plot in Figure 3.3 as follows:
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Algorithm 4: bpfilter() in spatPomp, run as bpfilter(P, Np = J, block list =B )
using notation from Table 3.1 where P is a class ‘spatPomp’ object with definitions for
rprocess, dunit measure, rinit, obs, coef.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); number of particles, J ;
evaluator for fYu,n|Xu,n(yu,n |xu,n ;θ); data, y∗1:N ; parameter, θ; blocks, B1:K ;

1 initialization, XF,j
0 ∼ fX0 ( · ;θ) for j in 1 :J

2 for n in 1 :N do
3 prediction, XP,j

n ∼ fXn|Xn−1

(
· |XF,j

n−1; θ
)

for j in 1 :J
4 block weights, wjk,n =

∏
u∈Bk

fYu,n|Xu,n
(
y∗u,n |XP,j

u,n ;θ
)

for j in 1 :J , k in 1 :K

5 resampling indices, rjk,n with P
[
rjk,n = i

]
= w̃ik,n

/∑J
q=1w

q
k,n for j in 1 :J , k in 1 :K

6 resample, XF,j
Bk,n = X

P,rj,k
Bk,n for j in 1 :J , k in 1 :K

7 end
output: log likelihood, `BPF(θ) = ∑N

n=1
∑K
k=1 log

(
1
J

∑J
j=1w

j
k,n

)
, filter particles XF,1:J

1:N
complexity: O(JUN)
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Figure 3.3 – Output of the plot() method on a class ‘spatPomp’ object. This object represents a
simulation from a 10-dimensional correlated Brownian motions model with 20 observations that are
one unit time apart.
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Algorithm 5: igirf() in spatPomp, run as igirf(P, params = θ0, Ngirf =M, Np = J,
Ninter =S, Nguide =K, Lookahead =L), rw.sd = σ0:N,1:Dθ, cooling.fraction.50 = a
using notation from Table 3.1 where P is a class ‘spatPomp’ object with definitions for
rprocess, dunit measure, skeleton, rinit and obs

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for
fYu,n|Xu,n(yu,n |xu,n ;θ), and µ(x, s, t ;θ); data, y∗1:N ; starting parameter, θ0;
iterations, M ; particles, J ; lookahead lags, L; intermediate timesteps, S; random
walk intensities, σ0:N,1:Dθ ; cooling fraction in 50 iterations, a.

note: free indices are implicit ‘for’ loops, calculated for j in 1 :J , k in 1 :K,
` in (n+ 1):min(n+ L,N), u in 1 :U , dθ, d′θ in 1 :Dθ.

1 initialize parameters, ΘF,0,j
N−1,S = θ0

2 for m in 1 :M do
3 initialize parameters, ΘF,m,j

0,0 ∼ Normal
(
ΘF,m−1,j
N−1,S , a2m/50 Σivp

)
for[

Σivp
]
dθ,d

′
θ

= σ2
ivp,dθ1dθ,d′θ

4 initialize filter particles, simulate XF,j
0,0 ∼ fX0

(
· ;ΘF,m,j

0,0

)
and set gF,jn,0 = 1

5 for n in 0 :N − 1 do
6 guide simulations, XG,j,k

` ∼ fX`|Xn

(
· |XF,j

n,0 ;ΘF,m,j
n,0

)
7 guide residuals, εj,k0,` = XG,j,k

` − µ
(
XF,j

n,0, tn, t` ;ΘF,m,j
n,0

)
8 for s in 1 :S do
9 perturb parameters, ΘP,m,j

n,s ∼ Normal
(
ΘF,m,j
n,s−1 , a

2m/50 Σn
)

for[
Σn
]
dθ,d

′
θ

= σ2
n,dθ

1dθ,d
′
θ
/S

10 prediction simulations, XP,j
n,s ∼ fXn,s|Xn,s−1

(
· |XF,j

n,s−1 ;ΘP,m,j
n,s

)
11 deterministic trajectory, µP,jn,s,` = µ

(
XP,j

n,s , tn,s, t` ;ΘP,m,j
n,s

)
12 pseudo guide simulations,

X̂
j,k
n,s,` = µP,jn,s,` + εj,ks−1,` − ε

j,k
s−1,n+1 +

√
tn+1−tn,s
tn+1−tn,0 ε

j,k
s−1,n+1

13 discount factor, ηn,s,` = 1− (tn+` − tn,s)/{(tn+` − tmax(n+`−L,0)) · (1 + 1L=1)}

14 gP,jn,s =
min(n+L,N)∏
`=n+1

U∏
u=1

[
1
K

K∑
k=1

fYu,`|Xu,`

(
y∗u,` | X̂

j,k
u,n,s,` ;ΘP,m,j

n,s

)]ηn,s,`

15 wjn,s =

 fY n|Xn

(
yn |X

F,j
n,s−1 ;ΘF,m,j

n,s−1
)
gP,jn,s

/
gF,jn,s−1 if s = 1, n 6= 0

gP,jn,s

/
gF,jn,s−1 else

16 normalized weights, w̃jn,s = wjn,s

/∑J
k=1w

k
n,s

17 resampling indices, r1:J with P [rj = k] = w̃kn,s

18 set XF,j
n,s = X

P,rj
n,s , gF,jn,s = g

P,rj
n,s , εj,ks,` = ε

rj ,k
s−1,`, ΘF,m,j

n,s = ΘP,m,rj
n,s

19 end
20 end
21 end

output: Iterated GIRF parameter swarm, ΘF,M,1:J
N−1,S

Monte Carlo maximum likelihood estimate: 1
J

∑J
j=1 ΘF,M,j

N−1,S
complexity: O

(
MJLUN(K + S)

)
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Algorithm 6: ienkf() in spatPomp, run as ienkf(P, params = θ0, Nenkf =M, Np = J,
cooling.fraction.50 = a, rw.sd = σ0:N,1:Dθ), using notation from Table 3.1 where P is
a class ‘spatPomp’ object with definitions for rprocess, eunit measure, vunit measure,
rinit, and obs.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for eu,n(x, θ) and
vu,n(x, θ); data, y∗1:N ; number of particles, J ; number of iterations, M ; starting
parameter, θ0; random walk intensities, σ0:N,1:Dθ ; cooling fraction in 50 iterations,
a.

note: free indices are implicit ‘for’ loops, calculated for j in 1 :J , u and ũ in 1 :U , dθ and
d′θ in 1 :Dθ.

1 initialize parameters, ΘF,0,j
N = θ0

2 for m in 1 :M do
3 initialize parameters, ΘF,m,j

0 ∼ Normal
(
ΘF,m−1,j
N , a2m/50 Σ0

)
for

[
Σn
]
dθ,d

′
θ

= σ2
n,dθ

1dθ,d
′
θ

4 initialize filter particles, simulate XF,j
0 ∼ fX0

(
· ;ΘF,m,j

0

)
.

5 for n in 1 :N do
6 perturb parameters, ΘP,m,j

n ∼ Normal
(
ΘF,m,j
n−1 , a2m/50 Σn

)
7 prediction ensemble, XP,j

n ∼ fXn|Xn−1

(
· |XF,j

n−1; ΘP,m,j
n

)
8 process and parameter ensemble, ZP,j

n =
(
XP,j

n

ΘP,m,j
n

)
9 centered process and parameter ensemble, Z̃P,j

n = ZP,j
n − 1

J

∑J
k=1Z

P,k
n

10 forecast ensemble, Ŷ j
u,n = eu(XP,j

u,n,ΘP,m,j
n )

11 centered forecast ensemble, Ỹ j
n = Ŷ

j
n − 1

J

∑J
k=1 Ŷ

k
n

12 forecast measurement variance, Ru,ũ = 1u,ũ
1
J

∑J
j=1 vu(XP,j

u,n,ΘP,m,j
n )

13 forecast sample covariance, ΣY = 1
J−1

∑J
j=1(Ỹ j

n)(Ỹ j
n)T +R

14 prediction and forecast sample covariance, ΣZY = 1
J−1

∑J
j=1(Z̃P,j

n )(Ỹ j
n)T

15 Kalman gain: K = ΣZY Σ−1
Y

16 artificial measurement noise, εjn ∼ Normal(0, R)
17 errors, rjn = Ŷ

j
n − y∗n

18 filter update: ZF,j
n =

(
XF,j

n

ΘF,m,j
n

)
= ZP,j

n +K
(
rjn + εjn

)
19 end
20 end
21 set θM = 1

J

∑J
j=1 ΘF,M,j

N

output: Monte Carlo maximum likelihood estimate, θM .
complexity: O(MJUN)
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Algorithm 7: iubf() in spatPomp, run as iubf(P, params = θ0, Nubf =M,
Nrep per param = I, Nparam =Nθ, nbhd=Bu,n, prop=p, cooling.fraction.50 = a,
rw.sd = σ0:N,1:Dθ), using notation from Table 3.1 where P is a class ‘spatPomp’ object with
definitions for rprocess, dunit measure, rinit, obs and coef.

input: simulator for fXn|Xn−1(xn |xn−1 ;θ) and fX0(x0 ;θ); evaluator for
fYu,n|Xu,n(yu,n |xu,n ;θ); data, y∗1:N ; starting parameter, θ0; number of replicates per
parameter, I; number of parameters, Nθ; neighborhood structure, Bu,n; number of
iterations, M ; resampling proportion, p; random walk intensities, σ0:N,1:Dθ ; cooling
fraction in 50 iterations, a.

1 initialize parameters, ΘF,0,t
N = θ0

2 for m in 1 :M do
3 initialize parameters, ΘF,m,t

0 = ΘF,m−1,t
N for t in 1 :Nθ

4 initialize filter particles, XF,m,t,i
0 ∼ fX0

(
· ;ΘF,m,t

0

)
for t in 1 :Nθ, for i in 1 :I.

5 for n in 1 :N do
6 perturb parameters, ΘP,m,t,i

n ∼ Normal
(
ΘF,m,t
n−1 , a2m/50 Σn

)
for t in 1 :Nθ, i in 1 :I,

where
[
Σn
]
dθ,d

′
θ

= σ2
n,dθ

1dθ,d
′
θ

7 proposals, XP,m,t,i
n ∼ fXn|Xn−1

(
· |XF,m,t,i

n−1 ;ΘP,m,t,i
n

)
for t in 1 :Nθ, i in 1 :I

8

9 wt,iu,n = fYu,n|Xu,n
(
y∗u,n |XP,m,t,i

u,n ;ΘP,m,t,i
n

)
for u in 1 :U , t in 1 :Nθ, i in 1 :I

10 wP,t,iu,n =
n−1∏
ñ=1

 ∏
(ũ,ñ)∈Bu,n

wt,iũ,ñ

 ∏
(ũ,n)∈Bu,n

wt,iũ,n for u in 1 :U , t in 1 :Nθ, i in 1 :I

11 parameter log likelihoods, rtn =
U∑
u=1

log
(∑I

i=1w
t,i
u,n w

P,t,i
u,n∑I

ĩ=1w
P,t,̃i
u,n

)
for t in 1 :Nθ,

12 Select the highest pNθ weights: find s with
{s(1), . . . , s(pNθ)} =

{
t : ∑Nθ

t̃=1 1{rt̃ > rt} < pNθ

}
13 Make 1/p copies of successful parameters, ΘF,m,t

n = ΘF,m,s(dpte)
n for t in 1 :Nθ

14 Set XF,m,t,i
n = XP,m,s(dpte),i

n

15 end
16 end

output: Iterated UBF parameter swarm: ΘF,M,1:Nθ
N

Monte Carlo maximum likelihood estimate: 1
Nθ

∑Nθ
t=1 ΘF,M,1:Nθ

N .
complexity: O(MNθIUN)
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Figure 3.4 – Output of the plot() method with argument type = "h".

R> bm10 <- bm(U=10, N=20)

R> plot(bm10, nrow = 2)

An alternate heat map representation, as shown in Figure 3.4, may also help identify shared

patterns among the different units. This can be obtained by supplying the type = "h" argument

instead of the default type = "l".

R> plot(bm10, type = "h")

Such plots can help the user qualitatively assess dynamics within and between the units. plot()

visualizes the results of coercing bm10 into a class ‘data.frame’ object by using the as.data.frame(bm10)

method. More customized plots can thus be created by using the many plotting options in R for

class ‘data.frame’ objects. A detailed description of the components of the bm10 object can be

obtained by invoking the spy() method from pomp as follows (the output is suppressed to conserve

space):
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R> spy(bm10)

3.5.1 Computing the likelihood

bm10 contains all the necessary model components for likelihood estimation using the algorithms

discussed in Section 3.3. The standard particle filter, GIRF, ABF, EnKF and BPF can be run to

estimate the likelihood of the data at a given parameter set. Here, we use the parameter set that

was used to simulate bm10 and show one likelihood evaluation for each method.

R> theta <- coef(bm10)

R> theta

rho sigma tau X1_0 X2_0 X3_0 X4_0 X5_0 X6_0 X7_0 X8_0

0.4 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

X9_0 X10_0

0.0 0.0

R> logLik(pfilter(bm10, params=theta, Np=1000))

[1] -391.7841

R> logLik(girf(bm10, params=theta, Np=100, Nguide=10, Ninter=10, lookahead=1))

[1] -381.0272

R> logLik(abf(bm10, params=theta, Nrep=100, Np=10))

[1] -391.0623

R> logLik(enkf(bm10, params=theta, Np=1000))

[1] -374.0955

R> logLik(bpfilter(bm10, params=theta, Np=1000, block_size=2))

[1] -379.5812

We see considerable differences in these initial log likelihood estimates. These might be explained

by Monte Carlo variability or bias, and additional investigation is needed to make an assessment.
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Figure 3.5 – Scaling of various methods on a correlated Brownian motions example. A: RMSE of
log likelihood estimates from ABF, BPF, EnKF, GIRF and particle filter on correlated Brownian
motions of various dimensions. For a given dimension, we run each method 5 times and calculate
the RMSE against the exact log likelihood (obtained via Kalman filter). Error bars represent the
variability of the RMSE. B: Log likelihood estimates from ABF, BPF, EnKF, GIRF and particle
filter compared to the exact likelihood obtained via Kalman filter (in black).
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Both Monte Carlo uncertainty and bias are typical of spatiotemporal filtering applications because of

two main factors. First, approximations that give a filtering method scalability have non-negligible

impact, primarily bias, on the resulting likelihood estimates. Second, in high-dimensional filtering

problems, a Monte Carlo filter can be expected to have non-negligible uncertainty in the likelihood

estimate even for methods designed to be scalable. This variability translates to a negative bias in

log likelihood estimates, even for methods that are unbiased for the likelihood in the natural scale,

due to Jensen’s inequality. Overall, all the filters we study have negative bias because they make

probabilistic forecasts which involve some approximation to the true forecast distribution under the

postulated model. The log likelihood is a proper scoring rule for forecasts, meaning that the exact

probabilistic forecast has a higher expected log likelihood than an approximation, if the model is

correctly specified (Gneiting et al., 2007).

In practice, we execute multiple runs of each Monte Carlo filtering algorithm to assess the Monte

Carlo variance. Bias is harder to assess, except in toy models when a precise likelihood evaluation

is computationally tractable.

Figure 3.5 illustrates the result of a more practical exercise of likelihood evaluation. We often

start with a model for a small U and evaluate the likelihood many times for each algorithm to

quantify the Monte Carlo variability. We then develop our model for increasing U . As U grows the

relative performances of the algorithms can vary, so we evaluate the likelihood using all possible

methods with several repetitions for a fixed U . On this toy problem with analytically evaluable

likelihood, we can compare all likelihood evaluations with the exact likelihood computed using the

Kalman filter. As can be seen from Figure 3.5, as the difficulty of the problem increases through the

increase in the value of U , we quickly enter the regime in which the particle filter does worse than

the methods designed specifically for SpatPOMP models. ABF trades off a slowly growing bias
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Table 3.2 – Comparison of the computational resources used by the filtering algorithms.

Method Resources
(core-minutes)

Particles
(per replicate)

Replicates Guide
particles

Lookahead

Particle Filter 1.02 2000 - - -
ABF 28.67 30 500 - -
GIRF 111.82 500 - 40 1
EnKF 0.82 1000 - - -
BPF 1.06 1000 - - -

for a reduced variance by conditioning on a local neighborhood; GIRF reduces variance by using

guide functions at intermediate time points to guide prediction particles towards regions of high

probability, but this can be computationally costly; BPF approximates the joint filter distribution

by resampling independently between blocks of units; EnKF uses a Gaussian-inspired update rule

to improve computational efficiency, and on this Gaussian problem the Gaussian approximation

made by EnKF is valid, leading to strong performance. In general, since each filtering method has

its strengths and limitations, it is worthwhile on a new problem to try them all.

Users will also need to keep in mind considerations about computational resources used up by

the available algorithms. Computing resources used by each algorithm for Figure 3.5 are given in

Table 3.2. Each algorithm was allowed to use 8 CPU cores to evaluate all the likelihoods and the

algorithmic settings were fixed as shown in the table. The time-complexity of GIRF is quadratic

in U , due to the intermediate time step loop shown in the pseudocode in Section 3.3.1, whereas

the other algorithms scale linearly with U for a fixed algorithmic setting. In addition, GIRF is

less scalable than the other filter methods designed for SpatPOMP models. However, a positive

feature of GIRF is that it shares with PF the property that it targets the exact likelihood, i.e.,

it is consistent for the exact log likelihood as the number of particles grows and the Monte Carlo

variance apporaches zero. GIRF may be a practical algorithm when the number of units prohibits
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PF but permits effective use of GIRF. ABF is implemented such that each bootstrap replicate is

run on a CPU core and the results are combined at the end. Since the result from each core is a

U ×N matrix, the user should supply more memory if U and/or N are very large. EnKF and BPF

generally run the quickest and require the least memory. However, the Gaussian and independent

blocks assumptions, respectively, of the two algorithms must be reasonable to obtain likelihood

estimates with low bias.

3.5.2 Parameter inference

The correlated Brownian motions example also serves to illustrate parameter inference using IGIRF.

Suppose we have data from the correlated 10-dimensional Brownian motions model discussed above.

We are interested in estimating the model parameters σ, τ , ρ. The initial conditions, {Xu(0), u ∈

1 :U}, can be considered to be known such that these parameters will not undergo perturbations

in IGIRF.

We must construct a starting parameter set for our search.

R> start_params <- c(rho = 0.8, sigma = 0.4, tau = 0.2,

+ X1_0 = 0, X2_0 = 0, X3_0 = 0, X4_0 = 0, X5_0 = 0,

+ X6_0 = 0, X7_0 = 0, X8_0 = 0, X9_0 = 0, X10_0 = 0)

We can now run igirf(). Note that we set the parameter perturbation standard deviation to

zero for the initial conditions, which allows us to only estimate our parameters of interest.

R> igirf_out <- igirf(

+ bm10,

+ params=start_params,

+ Ngirf=30,

109



+ Np=1000,

+ Ninter=10,

+ lookahead=1,

+ Nguide=50,

+ rw.sd=rw.sd(rho=0.02, sigma=0.02, tau=0.02,

+ X1_0=0, X2_0=0, X3_0=0, X4_0=0,

+ X5_0=0, X6_0=0, X7_0=0, X8_0=0, X9_0=0, X10_0=0),

+ cooling.type = "geometric",

+ cooling.fraction.50=0.5

+ )

The output of igirf() is an object of class ‘igirfd spatpomp’. We can view the final parameter

estimate and obtain a likelihood evaluation at this estimate.

R> coef(igirf_out)[c('rho','sigma','tau')]

rho sigma tau

0.5560766 0.9642862 1.2031939

R> logLik(igirf_out)

[1] -383.996

To get a more accurate likelihood evaluation at the final estimate, the user can run the filtering

algorithms with greater computational effort. Since our model is linear and Gaussian, the maximum

likelihood estimate of our model and the likelihood at this estimate can be found analytically. The

maximum log likelihood is -373.02. An enkf run at our igirf() parameter estimate yields a log

likelihood estimate of -380.91. This shortfall is a reminder that Monte Carlo optimization algorithms

should usually be replicated, and may be best used with inference methodology that accommodates

Monte Carlo error, as discussed in Section 3.5.3.

A useful diagnostic of the parameter search is the record of improvement of our parameter
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Figure 3.6 – The output of the plot() method on an object of class ‘igirfd spatPomp’. This object
encodes our model for correlated Brownian motions and the plot produces convergence traces for
ρ, σ and τ , and the corresponding log likelihoods. Over 30 iterations igirf() has allowed us to get
within a neighborhood of the maximum likelihood.

estimates during the course of an igirf() run. Each iteration within an igirf run provides a

parameter estimate and a likelihood evaluation at that estimate. The plot method for a class

‘igirfd spatPomp’ object shows the convergence record of parameter estimates and their likelihood

evaluations.

R> plot(igirf_out, params = c("rho", "sigma", "tau"), ncol = 2)

As shown in Figure 3.6, igirf() has allowed us to explore the parameter space and climb

significantly up the likelihood surface to within a small neighborhood of the maximum likelihood.

The run took 5.88 minutes on one CPU core for this example with 10 spatial units. For larger models,

one may require starting multiple searches of the parameter space at various starting points by using

parallel runs of igirf() on a larger machine with multiple cores.
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3.5.3 Monte Carlo profiles

Proper interpretation of a parameter estimate requires uncertainty estimates. For instance, we

may be interested in estimating confidence intervals for the coupling parameters of spatiotemporal

models. These are parameters that influence the strength of the dependence between the latent

dynamics in different spatial units. In our correlated Brownian motions example, ρ plays this role.

The dependence between any two units is moderated by the distance between the units and the

value of ρ.

We can often estimate confidence intervals for parameters like τ and σ which drive the dynamics

of each spatial unit. However, coupling parameters can be hard to detect because any signal can be

overwhelmed by the inevitably high variance estimates of high-dimensional models. Full-information

inference methods like IGIRF which are able to mitigate high variance issues in the filtering step

can allow us to extract what limited information is available on coupling parameters like ρ. Here

we will construct a profile likelihood for ρ with a 95% confidence interval that adjusts for Monte

Carlo error.

A profile over a model parameter is a collection of maximized likelihood evaluations at a range of

values of the profiled parameter. For each fixed value of this parameter, we maximize the likelihood

over all the other parameters. We often use multiple different starting points for each fixed value

of the profiled parameter.

Let us first design our profile over ρ by setting the bounds over all other model parameters

from which we will draw starting values for likelihood maximization. It can sometimes be useful

to transform the other parameters to an unconstrained scale by using pomp::partrans(). For

instance, parameters whose natural values are constrained to the non-negative real numbers can be
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log-transformed to maximize them over the unconstrained real line.

R> # center of our hyperbox of starting parameter sets

R> theta <- c("rho" = 0.7, "sigma"=0.7, "tau"=0.6,

+ "X1_0"=0, "X2_0"=0, "X3_0"=0, "X4_0"=0, "X5_0"=0,

+ "X6_0"=0, "X7_0"=0, "X8_0"=0, "X9_0"=0, "X10_0"=0)

R> # set bounds of hyperbox of starting parameter sets for

R> # all non-profiled parameters (use estimation scale to set this)

R> estpars <- setdiff(names(theta),c("rho"))

R> theta_t <- pomp::partrans(bm10,theta,"toEst")

R> theta_t_hi <- theta_t_lo <- theta_t

R> theta_t_lo[estpars] <- theta_t[estpars] - log(2) # lower bound

R> theta_t_hi[estpars] <- theta_t[estpars] + log(2) # upper bound

R> theta_lo <- pomp::partrans(bm10, theta_t_lo, "fromEst")

R> theta_hi <- pomp::partrans(bm10, theta_t_hi, "fromEst")

theta lo and theta hi effectively specify a “hyperbox” from which we can draw starting pa-

rameter sets for our maximization. Next, we use pomp::profile design() to sample our starting

points from this hyperbox. The first argument is the name of the parameter to be profiled over and

is set to a range of feasible values for that parameter. The second and third arguments take the

hyperbox bounds and the final argument is used to determine how many unique starting positions

must be drawn for each value of ρ.

R> pomp::profile_design(

+ rho=seq(from=0.2,to=0.5,length=10),

+ lower=theta_lo,

+ upper=theta_hi,

+ nprof=5

+ ) -> pd
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pd is now a class ‘data.frame’ object representing random starting positions for our maximiza-

tions. Since we 3 starting points for each value of ρ and 10 different values of ρ, we expect 30 rows

in pd.

R> dim(pd)

[1] 30 14

R> head(pd)[c('rho','sigma','tau')]

rho sigma tau

1 0.2000000 0.8949604 0.4172217

2 0.2000000 0.5589302 0.8485934

3 0.2000000 0.9093869 0.9267436

4 0.2333333 0.9045623 0.3579629

5 0.2333333 0.9893592 1.1255378

6 0.2333333 0.8490907 0.8455325

We can now run igirf() at each starting point. We can run these jobs in parallel using foreach

and %dopar% from the foreach package (Wallig and Weston, 2020) and collecting all the results

together using bind rows from dplyr (Wickham et al., 2020). Once we get a final parameter

estimate from each igirf run, we can estimate the likelihood at this point by running, say, enkf(),

10 times and appropriately averaging the resulting log likelihoods.

R> foreach (

+ p=iter(pd,"row"),

+ .combine=dplyr::bind_rows

+ ) %dopar% {

+ library(spatPomp)

+ igirf_out <- igirf(bm10,

+ params=p,
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+ Ngirf=bm_prof_ngirf,

+ Np=1000,

+ Nguide = 30,

+ rw.sd=rw.sd(sigma=0.02, tau=0.02),

+ cooling.type = "geometric",

+ cooling.fraction.50=0.5)

+

+ ## 10 EnKF log likelihood evaluations

+ ef <- replicate(10,

+ enkf(igirf_out,

+ Np = 2000))

+ ll <- sapply(ef,logLik)

+ ## logmeanexp to average log likelihoods

+ ## se=TRUE to estimate Monte Carlo variability

+ ll <- logmeanexp(ll, se = TRUE)

+

+ # Each igirf job returns one row

+ data.frame(

+ as.list(coef(igirf_out)),

+ loglik = ll[1],

+ loglik.se = ll[2]

+ )

+ } -> rho_prof

rho prof now contains parameter estimates that result from running igirf on each starting

parameter in pd and the corresponding log likelihood estimates.
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R> dim(rho_prof)

[1] 30 17

R> print(head(rho_prof)[c("rho","sigma","tau","loglik")], row.names = F)

rho sigma tau loglik

0.2000000 1.1821368 0.9660797 -379.4979

0.2000000 0.8896483 1.2138036 -382.4032

0.2000000 1.0181503 0.9965749 -378.5496

0.2333333 1.5835910 0.7610113 -383.6311

0.2333333 1.0532616 0.8215984 -380.4950

0.2333333 1.1643568 0.9578773 -377.6221

We can can now use the Monte Carlo adjusted profile confidence interval methodology of Ionides

et al. (2017) to construct a 95% confidence interval for ρ.

R> rho_prof_mcap <- mcap(

+ lp=rho_prof[,"loglik"],

+ parameter=rho_prof[,"rho"]

+ )

R> rho_prof_mcap$ci

[1] 0.2663664 0.4879880

The 95% estimated confidence interval for ρ is, therefore, (0.266,0.488). Note that the data in

bm10 are generated from a model with ρ = 0.4.

3.6 A spatiotemporal model of measles transmission

A complete spatPomp workflow involves roughly two major steps. The first is to obtain data, pos-

tulate a class of models that could have generated the data and bring these two pieces together
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via a call to spatPomp(). The second step involves evaluating the likelihood at specific parame-

ter sets and/or maximizing likelihoods under the postulated class of models and/or constructing a

Monte Carlo adjusted confidence interval and/or performing a hypothesis test by comparing max-

imized likelihoods in a constrained region of parameter space with maximized likelihoods in the

unconstrained parameter space. We have shown examples of the second major step in a spatPomp

workflow in Section 5. We now show how to bring our data and models together via a compartment

model for coupled measles dynamics in the 5 largest cities in England in the pre-vaccine era.

Compartment models for population dynamics divide up the population into categories (called

compartments) which are modeled as homogeneous. The rate of flow of individuals between a

pair of compartments may depend on the count of individuals in other compartments. Compart-

ment models have widespread scientific applications, especially in the biological and health sciences

(Bretó et al., 2009). Spatiotemporal compartment models can be called patch models or metapop-

ulation models in an ecological context, since the full population is divided into a “population” of

sub-populations. We develop a spatiotemporal model for disease transmission dynamics of measles

within and between multiple cities, based on the model of Park and Ionides (2020) which adds spa-

tial interaction to the compartment model presented by He et al. (2010). We use this example to

demonstrate how to construct spatiotemporal compartment models in spatPomp. The measles()

function in spatPomp constructs such an object, and here we consider the key steps in this construc-

tion. Beyond the examples in the pomp and spatPomp packages, previous analyses using pomp

with published open-source code provide additional examples of compartment models (Marino et al.,

2019).
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3.6.1 Mathematical model for the latent process

Before discussing how to code the model, we first define it mathematically in the time scale T =

[0, T ]. First we describe how we model the coupling (via travel) between cities. Let vuũ denote the

number of travelers from city u to ũ. Here, vuũ is constructed using the gravity model of Xia et al.

(2004):

vuũ = G · dist
P̄ 2 ·

Pu · Pũ
dist(u, ũ) ,

where dist(u, ũ) denotes the distance between city u and city ũ, Pu is the average population for city

u across time, P̄ is the average population across cities, and dist is the average distance between a

randomly chosen pair of cities. In this version of the model, we model vuũ as fixed through time and

symmetric between any two arbitrary cities, though a natural extension would allow for temporal

variation and asymmetric movement between two cities. The gravitation constant G is scaled with

respect to P̄ and dist. The measles model divides the population of each city into susceptible (S),

exposed (E), infectious (I), and recovered/removed (R) compartments.

Next we discuss the dynamics within each city, including where the vuũ terms eventually feature

in (3.2). The latent state process is {X(t ;θ), t ∈ T} = {
(
X1(t ;θ), . . . , XU (t ;θ)

)
, t ∈ T} with

Xu(t ;θ) =
(
Su(t ;θ), Eu(t ;θ), Iu(t ;θ), Ru(t ;θ)

)
. The number of individuals in each compartment

for city u at time t are denoted by Su(t), Eu(t), Iu(t), and Ru(t). The population dynamics are

described by the following set of stochastic differential equations:

dSu(t) = dNBS,u(t) − dNSE,u(t) − dNSD,u(t)

dEu(t) = dNSE,u(t) − dNEI,u(t) − dNED,u(t)

dIu(t) = dNEI,u(t) − dNIR,u(t) − dNID,u(t)


for u = 1, . . . , U .
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Here, NSE,u(t), NEI,u(t), and NIR,u(t) denote the cumulative number of transitions, between the

compartments identified by the subscripts, up to time t in city u. When these are modeled as

integer-valued, the system of differential equations has step function solutions. The recruitment of

susceptible individuals into city u is denoted by the counting process NBS,u(t). Here, B denotes

a source of individuals that can enter the susceptible population, primarily modeling births. Each

compartment also has an outflow, written as a transition to D, primarily representing death, which

occurs at a constant per-capita rate µ. The number of recovered individuals Ru(t) in city u is

defined implicitly given the known census population Pu(t) = Su(t) + Eu(t) + Iu(t) +Ru(t). Ru(t)

plays no direct role in the dynamics, beyond accounting for individuals not in any of the other

classes.

A continuous time latent process model is defined as the limit of the Euler scheme in Box 8

as the Euler time increment approaches zero. We use tildes to distinguish the numerical solution

from the continuous time model. The scheme involves initializing numerical analogues S̃u(0), Ẽu(0),

Ĩu(0), R̃u(0) = Pu(0)− S̃u(0)− Ẽu(0)− Ĩu(0) and executing the one-step transitions in the Box at

time increments of δ until time T . In the limit as δ approaches zero, this results in a model with

infinitesimal mean and variance given by

E [NSE,u(t+ dt)−NSE,u(t)] ≈ µSE,u(t)Su(t)dt+ o(dt)

V [NSE,u(t+ dt)−NSE,u(t)] ≈
[
µSE,u(t)Su(t) + µ2

SE,u(t)S2
u(t)σ2

SE

]
dt+ o(dt),

where µSE,u(t) = β(t)

 Iu
Pu

+
∑
ũ6=u

vuũ
Pu

{
Iũ
Pũ
− Iu
Pu

} .
(3.2)

We use an integrated noise process with independent Gamma distributed increments that we use to

model extrademographic stochasticity on the rate of transition from susceptible classes to exposed
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Algorithm 8: Euler increment for our measles model. An Euler increment between times
sm = mδ to sm+1 = sm + δ of an Euler scheme whose limit as δ approaches zero is our
continuous-time measles latent process model. For notational convenience, Q1, Q2, Q3, Q4
and Q5 represent susceptible (S), exposed (E), infectious (I), recovered (R) and natural
death (D) statuses, respectively. We keep track of changes to S̃u, Ẽu, Ĩu and R̃u, the
numerical analogues of Su, Eu, Iu and Ru in our mathematical model, by updating each
compartment using dynamic rates and our population covariate. The dynamics are coupled
via µSE,u terms that incorporate travel of infectives from other units. Here, Gamma(α, β)
is the gamma distribution with mean αβ and variance αβ2. More information about
the gamma, multinomial and Poisson distributions can be found in Casella and Berger
(1990). The instructions in this box are encoded in the measles rprocess C snippet in
the following subsection.

For u in 1 :U :
1. Draw unbiased, independent, multiplicative noise for each µSE,u(sm+1),

∆ΓQ1Q2,u ∼ Gamma( δ
σ2
Q1Q2

, σ2
Q1Q2

).
Define ∆ΓQiQj ,u = δ, for (i, j) 6= (1, 2)

2. Draw one-step transitions from S̃u(sm), Ẽu(sm) and Ĩu(sm):(
∆ÑQ1Q2,u,∆ÑQ1Q5,u, S̃u(sm)−∆ÑQ1Q2,u −∆ÑQ1Q5,u

)
∼

Multinomial
(
S̃u(sm), pQ1Q2,u, pQ1Q5,u, 1− pQ1Q2,u − pQ1Q5,u

)
;(

∆ÑQ2Q3,u,∆ÑQ2Q5,u, Ẽu(sm)−∆ÑQ2Q3,u −∆ÑQ2Q5,u

)
∼

Multinomial
(
Ẽu(sm), pQ2Q3,u, pQ2Q5,u, 1− pQ2Q3,u − pQ2Q5,u

)
;(

∆ÑQ3Q4,u,∆ÑQ3Q5,u, Ĩu(sm)−∆ÑQ3Q4,u −∆ÑQ3Q5,u

)
∼

Multinomial
(
Ĩu(sm), pQ3Q4,u, pQ3Q5,u, 1− pQ3Q4,u − pQ3Q5,u

)
, where

pQiQj ,u =
(
1− exp(∑k µQiQk,u(sm+1)∆ΓQiQk,u)

)
µQiQj ,u(sm+1)∆ΓQiQj ,u∑

k µQiQk,u(sm+1)∆ΓQiQk,u

3. New entries into susceptible class via birth:
∆ÑBQ1,u ∼ Poisson(µBQ1,u(sm+1) · δ)

4. Update compartments by the one-step transitions:
S̃u(sm+1) = S̃u(tn)−∆ÑQ1Q2,u −∆ÑQ1Q5,u + ∆ÑBQ1,u

Ẽu(sm+1) = Ẽu(tn)−∆ÑQ2Q3,u −∆ÑQ2Q5,u + ∆ÑQ1Q2,u

Ĩu(sm+1) = Ĩu(tn)−∆ÑQ3Q4,u −∆ÑQ3Q5,u + ∆ÑQ2Q3,u

R̃u(sm+1) = P (sm+1)− S̃u(sm+1)− Ẽu(sm+1)− Ĩu(sm+1)
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classes, following Bretó et al. (2009). Extrademographic stochasticity permits overdispersion (Mc-

Cullagh and Nelder, 1989) which is often appropriate for stochastic models of discrete populations.

The ‘≈’ in the above two approximations is a consequence of extrademographic noise, and as σSE

becomes small it approaches equality (Bretó and Ionides, 2011). Here, β(t) denotes the seasonal

transmission coefficient (He et al., 2010).

3.6.2 Mathematical model for the measurement process

The discrete set of observation times is t1:N = {tn, n = 1, . . . , N}. The observations for city u

are bi-weekly new case counts. The observation process {Y n = Y1:U,n, n ∈ 1 :N} can be written

{Y n = cases1:U,n, n ∈ 1 :N}. We denote the number of true transitions from compartment I

to compartment R accumulated between an observation time and some time t before the next

observation time to be Cu(t) = NIR,u(t)−NIR,u(btc), where btc is the greatest element of t1:N that

is less than t.

Our measurement model assumes that a certain fraction, ρ, called the reporting probability, of

the transitions from the infectious compartment to the recovered compartment were, on average,

counted as reported cases. Our measurement model is:

casesu,n |Cu(tn) = c ∼ Normal(ρ c, ρ (1− ρ) c+ (ψ ρ c)2),

where ψ is an overdispersion parameter that allows us to have measurement variance that is greater

than the variance of the binomial distribution with number of trials c and success probability ρ.
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3.6.3 Construction of a measles spatPomp object

The construction of class ‘spatPomp’ objects is similar to the construction of class ‘pomp’ objects

discussed by King et al. (2016). Here, we focus on the distinctive features of SpatPOMP models.

Suppose for our example below that we have bi-weekly measles case counts from U = 5 cities

in England as reported by Dalziel et al. (2016) in the object measles cases of class ‘data.frame’.

Each city has about 15 years (391 bi-weeks) of data with no missing data. The first few rows of

this data are shown here. We see the column corresponding to time is called year and is measured

in years (two weeks is equivalent to 0.038 years).

year city cases

1950.000 LONDON 96

1950.000 BIRMINGHAM 179

1950.000 LIVERPOOL 533

1950.000 MANCHESTER 22

1950.000 LEEDS 17

1950.038 LONDON 60

We can construct a spatPomp object by supplying three minimal requirements in addition to

our data above: the column names corresponding to the spatial units and times of each observation

(‘city’ and ‘year’ in this case) and the time at which the latent dynamics are supposed to begin.

Here we set this to two weeks before the first recorded observations.

R> measles5 <- spatPomp(

+ data=measles_cases,

+ units='city',

+ times='year',

122



+ t0=min(measles_cases$year)-1/26)

We can successively add each model component to measles5 with a call to spatPomp() on

measles5 with the argument for each component. To avoid repetition, we will construct all of our

model components and supply them all at once in a later call to spatPomp().

First, we consider covariates. Suppose that we have covariate information for each city at each

observation time in a class ‘data.frame’ object called measles covar. In this case, we have census

population and lagged birthrate data. We consider lagged birthrate because we assume children

enter the susceptible pool when they are old enough to go to school.

year city pop lag_birthrate

1950.000 LONDON 3389306.0 70571.23

1950.000 BIRMINGHAM 1117892.5 24117.23

1950.000 LIVERPOOL 802064.9 19662.96

1950.000 MANCHESTER 704468.0 15705.46

1950.000 LEEDS 509658.5 10808.73

1950.038 LONDON 3388407.4 70265.20

If covariate information is not reported at the same frequency as the measurement data, spat-

Pomp will linearly interpolate the covariate data, as is the default behavior in pomp.

For ease of access, the spatial unit names are mapped to the entries 1, . . . , U . The mapping for

each unit can be found by extracting the unit’s position in:

R> unit_names(measles)

We now move from preparing our covariates to writing our model components. We shall use C

snippets to specify our model components due to the computational advantages discussed in Section

123



3.2.5. spatPomp compiles the C snippets when building the class ‘spatPomp’ object. Before coding

up our model components let us specify some global variables in C that will be accessible to all

model components. The globals argument to a spatPomp() call can be used to supply these. A

global argument that is automatically created based on the units column of our observed data is

the U variable, which encodes the number of spatial units. Since the movement matrix
(
vu,ũ

)
u,ũ∈1 :U

is calculable up to the parameter G. We can then define a two-dimensional C array, called v by g

that supplies each
(vu,ũ
G

)
u,ũ∈1 :U in a C snippet called measles globals.

R> measles_globals <- Csnippet("

+ const double v_by_g[5][5] = {

+ {0,2.205,0.865,0.836,0.599},

+ {2.205,0,0.665,0.657,0.375},

+ {0.865,0.665,0,1.118,0.378},

+ {0.836,0.657,1.118,0,0.580},

+ {0.599,0.375,0.378,0.580,0}

+ };

+ ")

We now construct a C snippet for initializing the latent process at time t0, which corresponds

to t 0 above. This involves drawing from fX0(x0 ;θ). The parameter vector θ includes initial

proportions of the population in each of the four compartments for each city. The names of these

initial value parameters (IVPs) will be passed in alongside other parameters to the paramnames

argument of the spatPomp() constructor with names S1 0, . . . , S5 0, E1 0, . . . , E5 0, I1 0, . . . ,

I5 0 and R1 0, . . . , R5 0. We can use spatPomp Csnippet() to assign the latent states Su(0),

Eu(0), Iu(0), and Ru(0) to the numbers implied by the corresponding IVPs. We do this via the

unit statenames argument of spatPomp Csnippet(), which, in our example below, receives the
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vector c("S", "E", "I", "R", "C", "W"). This function recognizes that all Su(0), u ∈ 1 :U are

stored contiguously in a C array (with names S1, . . . , S5) and gives us access to S1 via S[0]. S2,

. . . , S5 can then be accessed as S[1], . . . , S[U-1]. Similarly, it provides us access to E1, I1 and R1

via E[0], I[0] and R[0].

The unit ivpnames argument of spatPomp Csnippet() serves a similar purpose. If the user pro-

vides paramnames to the spatPomp() constructor that includes IVP names stored contiguously, their

corresponding values are also stored in a C array that can be traversed easily. Setting unit ivpnames

= c("S") then gives us access to the initial value parameters corresponding to the susceptible class

for all units (i.e. S1 0, . . . , S5 0) via S 0[0], . . . , S 0[U-1]

Finally, the unit covarnames argument of spatPomp Csnippet() similarly allows us to have

access to pop1, which is the population covariate for our first city, via pop[0]. The populations of

other cities can then be found via pop[1], . . . , pop[U-1]

These arguments to spatPomp Csnippet() allow us to have a code argument that focuses on

specifying the model component. Here, we are able to write a few lines relating the latent states

for each city at the initial time to the population in each city and the IVPs.

R> measles_rinit <- spatPomp_Csnippet(

+ unit_statenames = c("S", "E", "I", "R", "C", "W"),

+ unit_ivpnames = c("S", "E", "I", "R"),

+ unit_covarnames = c("pop"),

+ code = "

+ for (int u=0; u<U; u++) {

+ S[u] = nearbyint(pop[u]*S_0[u]);

+ E[u] = nearbyint(pop[u]*E_0[u]);

+ I[u] = nearbyint(pop[u]*I_0[u]);
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+ R[u] = nearbyint(pop[u]*R_0[u]);

+ W[u] = 0;

+ C[u] = 0;

+ }

+ "

+ )

The array variable called C above corresponds to Cu(t) defined above. The W array variable

corresponds to the integrated white noise process with independent gamma increments that helps

us model extrademographic stochasticity in the latent process. We will later provide C and W to the

unit accumvars argument of the spatPomp() constructor. In pomp parlance, C and W are referred

to as accumulator variables because they store changes over the course of a measurement period

instead of over the full time scale.

The rprocess C snippet has to encode only a rule for a single Euler increment from the process

model. Further, spatPomp provides C definitions of all parameters (e.g. amplitude) in addition to

the state variables and covariates, so the user need only define additional variables used.

R> measles_rprocess <- spatPomp_Csnippet(

+ unit_statenames = c("S", "E", "I", "R", "C", "W"),

+ unit_covarnames = c("pop", "lag_birthrate"),

+ code = "

+ double beta, br, seas, foi, dw, births;

+ double rate[6], trans[6];

+ int u,v;

+

+ // school term-time seasonality

+ t = (t-floor(t))*365.25;
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+ if ((t>=7&&t<=100) || (t>=115&&t<=199) ||

+ (t>=252&&t<=300) || (t>=308&&t<=356))

+ seas = 1.0+amplitude*0.2411/0.7589;

+ else

+ seas = 1.0-amplitude;

+

+ // transmission rate

+ beta = R0*(gamma+mu)*seas;

+

+ for (u= 0 ; u < U ; u++) {

+ br = lag_birthrate[u];

+

+ // expected force of infection

+ foi = (I[u])/pop[u];

+ for (v=0; v < U ; v++) {

+ if(v != u)

+ foi += g * v_by_g[u][v] * (I[v]/pop[v] -

+ I[u]/pop[u]) / pop[u];

+ }

+

+ // white noise (extrademographic stochasticity)

+ dw = rgammawn(sigmaSE,dt);

+ rate[0] = beta*foi*dw/dt; // stochastic force of infection

+ rate[1] = mu; // natural S death

+ rate[2] = sigma; // rate of ending of latent stage

+ rate[3] = mu; // natural E death

+ rate[4] = gamma; // recovery

+ rate[5] = mu; // natural I death

+
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+ // Poisson births

+ births = rpois(br*dt);

+

+ // transitions between classes

+ reulermultinom(2,S[u],&rate[0],dt,&trans[0]);

+ reulermultinom(2,E[u],&rate[2],dt,&trans[2]);

+ reulermultinom(2,I[u],&rate[4],dt,&trans[4]);

+

+ S[u] += births - trans[0] - trans[1];

+ E[u] += trans[0] - trans[2] - trans[3];

+ I[u] += trans[2] - trans[4] - trans[5];

+ R[u] = pop[u] - S[u] - E[u] - I[u];

+ W[u] += (dw - dt)/sigmaSE; // standardized i.i.d. white noise

+ C[u] += trans[4]; // true incidence

+ }

+ "

+ )

The measurement model is chosen to allow for overdispersion relative to the binomial distribution

with success probability ρ. Here, we show the C snippet defining the unit measurement model. The

lik variable is pre-defined and is set to the evaluation of the unit measurement density in either

the log or natural scale depending on the value of give log.

R> measles_dunit_measure <- spatPomp_Csnippet(

+ code = "

+ double m= rho*C;

+ double v = m*(1.0-rho+psi*psi*m);

+ lik = dnorm(cases,m,sqrt(v),give_log);

+ "
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+ )

spatPomp will then multiply the unit measurement densities over u ∈ 1 :U to compute the

measurement density at each time. The user may rather directly supply dmeasure that returns

the product of unit-specific measurement densities. We do so and store the resulting C snippet in

measles dmeasure, but do not show the code here. This may be used, for instance, to run pfilter

in pomp. We use Csnippet() since the argument to the

The runit measure argument of the spatPomp() constructor can be supplied a C snippet for

generating data for a point in time and space given the latent state at that point. This is useful for

simulating data from a model. We construct such a C snippet here.

R> measles_runit_measure <- Csnippet("

+ double cases;

+ double m= rho*C;

+ double v = m*(1.0-rho+psi*psi*m);

+ cases = rnorm(m,sqrt(v));

+ if (cases > 0.0) cases = nearbyint(cases);

+ else cases = 0.0;

+ ")

We construct the corresponding rmeasure and store it in the measles rmeasure variable. To

run the methods EnKF, IEnKF, GIRF and IGIRF, we must supply more specifications about the

measurement model. The first two require eunit measure whereas the last two require skeleton

and additionally eunit measure, vunit measure, munit measure when kind=‘moment’ is the de-

sired kind of guide function for GIRF. As was the case with dunit measure and runit measure,

the C snippets for eunit measure, vunit measure and munit measure can be written assuming
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that the unit statenames and the u and t variables have been pre-defined. Within the C snippet

for eunit measure, a variable named ey is defined which should be coded to compute the quantity

E[Yu,n |Xu,n] that eunit measure is tasked to obtain. Similarly, since vunit measure computes

a unit measurement variance given the parameter set and the unit states, a variable named vc is

pre-defined and should take the value of the computed variance. Finally, munit measure returns a

moment-matched parameter set given the existing parameter set, the unit states, and an empirically

computed variance. Variables with the names of the parameters prefixed by M (e.g. M tau) are pre-

defined and assigned to the existing parameter values. The user need only change the parameters

that would take on a new value after moment-matching.

For our measles example, eunit measure multiplies the latent modeled cases by the reporting

rate.

R> measles_eunit_measure <- spatPomp_Csnippet(

+ code = "

+ ey = rho*C;

+ "

+ )

vunit measure computes the variance of the unit observation given the unit states and param-

eter set.

R> measles_vunit_measure <- spatPomp_Csnippet(

+ code = "

+ double m = rho*C;

+ vc = m*(1.0-rho+psi*psi*m);

+ "

+ )
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munit measure computes a moment-matched size parameter given an empirically calculated

variance.

R> measles_munit_measure <- spatPomp_Csnippet(

+ code = "

+ double binomial_var;

+ double m;

+ m = rho*C;

+ binomial_var = rho*(1-rho)*C;

+ if(vc > binomial_var) M_psi = sqrt(vc - binomial_var)/m;

+ "

+ )

The skeleton model component allows the user to specify a system of differential equations,

also called a vector field, which can be numerically solved to evaluate a deterministic trajectory

of the latent process at requested times (King et al., 2016). spatPomp Csnippet() provides an

argument called unit vfnames which provides pointers to vector field values for the corresponding

states. The time derivatives for the susceptible classes for our five spatial units, DS1, . . . , DS5 can

then be assigned using DS[0], . . . , DS[U-1].

R> measles_skel <- spatPomp_Csnippet(

+ unit_statenames = c("S", "E", "I", "R", "C", "W"),

+ unit_vfnames = c("S", "E", "I", "R", "C", "W"),

+ unit_covarnames = c("pop", "lag_birthrate"),

+ code = "

+ double beta, br, seas, foi;

+ int u,v;

+
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+ // term-time seasonality

+ t = (t-floor(t))*365.25;

+ if ((t>=7&&t<=100) || (t>=115&&t<=199) ||

+ (t>=252&&t<=300) || (t>=308&&t<=356))

+ seas = 1.0+amplitude*0.2411/0.7589;

+ else

+ seas = 1.0-amplitude;

+

+ // transmission rate

+ beta = R0*(gamma+mu)*seas;

+

+ // deterministic skeleton for each unit

+ for (u = 0 ; u < U ; u++) {

+ br = lag_birthrate[u];

+ foi = I[u]/pop[u];

+ for (v=0; v < U ; v++) {

+ if(v != u)

+ foi+=g*v_by_g[u][v]*(I[v]/pop[v]-I[u]/pop[u])/pop[u];

+ }

+

+ DS[u] = br - (beta*foi + mu)*S[u];

+ DE[u] = beta*foi*S[u] - (sigma+mu)*E[u];

+ DI[u] = sigma*E[u] - (gamma+mu)*I[u];

+ DR[u] = gamma*I[u] - mu*R[u];

+ DW[u] = 0;

+ DC[u] = gamma*I[u];

+ }

+ "

+ )
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Finally we declare the names of states and parameters. This will allow the compilation of the

model components which refer to these names.

R> measles_unit_statenames <- c('S','E','I','R','C','W')

R> measles_covarnames <- paste0(rep(c("pop","lag_birthrate"),each=U),1:U)

R> measles_statenames <- paste0(rep(measles_unit_statenames,each=U),1:U)

As discussed above, some unit statenames may be used to keep track of accumulations of

other unit statenames over an observation time period. The spatPomp() constructor provides an

argument called unit accumvars to handle this behavior. Among other things, this extends pomp’s

feature of resetting such variables to zero at the beginning of a measurement period.

A parameter can sometimes be classified as an initial value parameter (IVP) that determines only

the initial condition, or a regular parameters (RP) that contributes to the process or measurement

model throughout the observed time interval. This classification, when it exists, can be helpful since

there are inferential consequences. Precision on estimates of IVPs may not grow with increasing

number, N , of observations, whereas for RPs we expect increasing information with increasing N .

R> measles_IVPnames <- paste0(measles_statenames[1:(4*U)],"_0")

R> measles_RPnames <- c("R0","amplitude","gamma","sigma","mu",

+ "sigmaSE","rho","psi","g")

R> measles_paramnames <- c(measles_RPnames,measles_IVPnames)

The pieces of the SpatPOMP are now combined by a call to spatPomp.
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R> measles5_full <- spatPomp(

+ data = measles5,

+ covar = measles_covar,

+ unit_statenames = measles_unit_statenames,

+ unit_accumvars = c("C","W"),

+ paramnames = measles_paramnames,

+ rinit = measles_rinit,

+ rprocess = euler(measles_rprocess, delta.t=2/365),

+ skeleton=vectorfield(measles_skel),

+ dunit_measure = measles_dunit_measure,

+ eunit_measure = measles_eunit_measure,

+ vunit_measure = measles_vunit_measure,

+ munit_measure = measles_munit_measure,

+ runit_measure = measles_runit_measure,

+ dmeasure = measles_dmeasure,

+ rmeasure = measles_rmeasure,

+ globals = measles_globals

+ )

3.6.4 Simulating measles data

Suppose we wanted to simulate data from our model for measles dynamics in the U =5 cities

and that we have a parameter set m5 params at which we are simulating. We can compare our

simulations to the data using the code below and the plot() method on the class ‘spatPomp’ objects

resulting from the simulation and the measles5 full object (which includes the true observations)

respectively. For epidemiological settings, it helps to set the argument log=TRUE of the plot()

method to focus more on seasonal trends and less on spikes in case counts. The resulting plots
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are shown in Figure 3.7. This figure may indicate room for improvement in the current parameter

vector or model structure. As discussed before, such plots can be customized by working directly

with the class ‘data.frame’ output of as.data.frame().

R> m5_params

R0 amplitude gamma sigma mu sigmaSE rho

5.68e+01 5.54e-01 3.04e+01 2.89e+01 2.00e-02 2.00e-02 4.88e-01

psi g S1_0 S2_0 S3_0 S4_0 S5_0

1.16e-01 1.00e+02 2.97e-02 2.97e-02 2.97e-02 2.97e-02 2.97e-02

E1_0 E2_0 E3_0 E4_0 E5_0 I1_0 I2_0

5.17e-05 5.17e-05 5.17e-05 5.17e-05 5.17e-05 5.14e-05 5.14e-05

I3_0 I4_0 I5_0 R1_0 R2_0 R3_0 R4_0

5.14e-05 5.14e-05 5.14e-05 9.70e-01 9.70e-01 9.70e-01 9.70e-01

R5_0

9.70e-01

R> m5_sim <- simulate(measles5_full, params=m5_params)

3.7 Conclusion

The spatPomp package is designed to be both a tool for data analysis based on SpatPOMP models

and a principled computational framework for the ongoing development of inference algorithms. The

model specification language provided by spatPomp is very general, and implementing a SpatPOMP

model in spatPomp makes a wide range of inference algorithms available. These two features

facilitate objective comparison of alternative models and methods.

As a development platform, spatPomp is particularly convenient for implementing algorithms

with the plug-and-play property, since models will typically be defined by their rprocess simulator,
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Figure 3.7 – Comparing our measles simulated data to real data. A: Bi-weekly observed measles case
counts in the five largest cities in England. B: Simulations from the measles SEIR model encoded
in the class spatPomp object called measles5 full. The figure indicates that the parameter vector
and/or the model structure of our SEIR model need to be altered to get patterns similar to those
observed in the data.
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together with rmeasure and often dunit measure, but can accommodate inference methods based

on other model components such as dprocess if they are available. As an open-source project,

the package readily supports expansion, and the authors invite community participation in the

spatPomp project in the form of additional inference algorithms, improvements and extensions of

existing algorithms, additional model/data examples, documentation contributions and improve-

ments, bug reports, and feature requests.

Complex models and large datasets can challenge computational resources. With this in mind,

key components of the spatPomp package are written in C, and spatPomp provides facilities for users

to write models either in R or, for the acceleration that typically proves necessary in applications,

in C. Multi-processor computing also becomes necessary for ambitious projects. The two most

common computationally intensive tasks are the assessment of Monte Carlo variability and the

investigation of the roles of starting values and other algorithmic settings on optimization routines.

These analyses require only embarrassingly parallel computations and need no special discussion

here.

Practical modeling and inference for spatiotemporal partially observed systems, capable of han-

dling scientifically motivated nonlinear, non-stationary stochastic models, is the last open problem

of the challenges raised by Bjørnstad and Grenfell (2001). Recent studies have underscored the

need for deeper analyses of spatially coupled dynamics (Dalziel et al., 2016), more mechanistic spa-

tial coupling models (Lau et al., 2020), more ways to incorporate covariate information of spatial

coupling via cellular data records (Wesolowski et al., 2012, 2015) and more statistical inference

methodology that can handle increasing spatial dimension (Lee et al., 2020). The spatPomp pack-

age addresses these challenges by combining access to modern algorithmic developments with a

suitable framework for model specification. The capability to carry out statistically efficient infer-
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ence for general spatiotemporal systems will promote the development, criticism, refinement and

validation of new spatiotemporal models. Nonlinear interacting systems are hard to understand

intuitively even when there are relatively few units. Even the single-unit case, corresponding to a

low-dimensional nonlinear stochastic dynamic system with a low-dimensional observation process,

has rich mathematical theory. Statistically efficient inference for this low-dimensional case was not

generally available before the recent development of iterated filtering and particle Markov Chain

Monte Carlo methods, and application of these methods has been assisted by their implementations

in pomp. We anticipate there is much to be gained scientifically by carrying out modeling and

inference for spatiotemporal processes with relatively few spatial units but nevertheless surpassing

the capabilities of previous software. Facilitating this task is the primary goal of spatPomp.
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Chapter 4

Analyzing Simulated Measles Data Using

Bagged Filters

Data analysis for spatiotemporal systems featuring nonlinear, nonstationary mechanisms and partial

observability has been a longstanding open challenge for ecological and epidemiological analysis

(Bjørnstad and Grenfell, 2001). A compartment modeling framework for spatiotemporal population

dynamics divides the population at each spatial location into categories, called compartments, which

are modeled as homogeneous. Spatiotemporal compartment models can be called patch models or

metapopulation models in an ecological context. Ensemble Kalman filter (EnKF) methods provide a

state-of-the-art approach to inference for metapopulation models (Li et al., 2020) despite concerns

that the approximations inherent in the EnKF can be problematic for models that are highly

nonlinear or non-Gaussian (Ades and Van Leeuwen, 2015). Our bagged filter methodologies have

theoretical guarantees for arbitrarily nonlinear and non-Gaussian models, while having improved

scaling properties compared to particle filters.

In this chapter, we put our bagged filters to the test on a nonlinear and non-Gaussian disease
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model that typifies our problems of interest. We use simulated data for this exercise for two main

reasons. First, knowing the model parameters that generated the data allows us to check if our

methods will assign higher likelihoods to these parameters. The bias in the likelihood estimates

from our methods could conceivably lead to bias in a parameter estimation procedure that is based

on our methods. Second, our new methods have tuning parameters (e.g. the size of the space-time

neighborhood) whose impact on our methods merits understanding. Knowing the true mechanism

that generated the data allows us to reason about how our methods are trying to reconcile the

model with the data without worrying about whether the model is misspecified.

4.1 Mathematical models for measles transmission and case data

4.1.1 Mathematical model for the latent process

We consider a spatiotemporal model for disease transmission dynamics of measles within and be-

tween multiple cities, based on the model of Park and Ionides (2020) which adds spatial interaction

to the compartment model presented by He et al. (2010). The model compartmentalizes the pop-

ulation of each city into susceptible (S), exposed (E), infectious (I), and recovered/removed (R)

categories. The number of individuals in each compartment city u at time t are denoted by integer-

valued random variables Su(t), Eu(t), Iu(t), and Ru(t). The population dynamics are written in

terms of counting processes N••,u(t) enumerating cumulative transitions in city u, up to time t,

between compartments identified by the subscripts. We model the U largest cities in the UK, or-

dered in decreasing size so that u = 1 corresponds to London. We vary U to test methodologies

on a hierarchy of filtering challenges. Our model is described by the following system of stochastic
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differential equations, for u = 1, . . . , U ,

dSu(t) = dNBS,u(t) − dNSE,u(t) − dNSD,u(t)

dEu(t) = dNSE,u(t) − dNEI,u(t) − dNED,u(t)

dIu(t) = dNEI,u(t) − dNIR,u(t) − dNID,u(t)

Here, NBS,u(t) models recruitment into the susceptible population, and N•D,u(t) models emigration

and death. The total population Pu(t) = Su(t) + Eu(t) + Iu(t) + Ru(t) is calculated by smoothing

census data and is treated as known. The number of recovered individuals Ru(t) in city u is therefore

defined implicitly. NSE,u(t) is modeled as negative binomial death processes (Bretó et al., 2009;

Bretó and Ionides, 2011) with over-dispersion parameter σSE , and rate given by

E
[
NSE,u(t+ dt)−NSE,u(t)

]
= β(t)Su(t)

[ (Iu + ι

Pu

)
+
∑
ũ6=u

vuũ
Pu

{(
Iũ
Pũ

)
−
(
Iu
Pu

)} ]
dt+ o(dt), (4.1)

where β(t) models seasonality driven by high contact rates between children at school, described by

β(t) =


(
1 + a(1− p)p−1) β̄ during school term,

(
1− a

)
β̄ during vacation

with p = 0.759 being the proportion of the year taken up by the school terms, β̄ is the mean

transmission rate, and a measures the reduction of transmission during school holidays. In (4.1), α

is a mixing exponent modeling inhomogeneous contact rates within a city, and ι models immigration

of infected individuals which is appropriate when analyzing a subset of cities that cannot be treated
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as a closed system. The number of travelers from city u to ũ is denoted by vuũ. Here, vuũ is

constructed using a gravity model inspired by that of Xia et al. (2004),

vuũ = G · dist
P̄ 2 ·

Pu · Pũ
dist(u, ũ) ,

where dist(u, ũ) denotes the distance between city u and city ũ, Pu is the average population for city

u across time, P̄ is the average population across cities, and dist is the average distance between a

randomly chosen pair of cities. Here, we model vuũ as fixed through time and symmetric between any

two arbitrary cities, though a natural extension would allow for temporal variation and asymmetric

movement between two cities. The transition processes NEI,u(t), NIR,u(t) and N•D,u(t) are modeled

as conditional Poisson processes with per-capita rates µEI , µIR and µ•D respectively, and we fix

µ•D = 50 year−1. The birth process NBS,u(t) is an inhomogeneous Poisson processes with rate

µBS,u(t), given by interpolated census data.

4.1.2 Mathematical model for the measurement process

To complete the model specification, we must describe the measurement process. Let Zu,n =

NIR,u(tn)−NIR,u(tn−1) be the number of removed infected individuals in the nth reporting interval.

Suppose that cases are quarantined once they are identified, so that reported cases comprise a

fraction ρ of these removal events. The case report y∗u,n is modeled as a realization of a discretized

conditionally Gaussian random variable Yu,n, defined for y > 0 via

P
[
Yu,n=y | Zu,n=z

]
= Φ

(
y + 0.5; ρz, ρ(1− ρ)z + ψ2ρ2z2)

−Φ
(
y − 0.5; ρz, ρ(1− ρ)z + ψ2ρ2z2) (4.2)

142



where Φ(·;µ, σ2) is the Normal(µ, σ2) cumulative distribution function, and ψ models overdispersion

relative to the binomial distribution. For y = 0, we replace y − 0.5 by −∞ in (4.2).

This model includes many features that have been proposed to be relevant for understanding

measles transmission dynamics (He et al., 2010). Our plug-and-play methodology permits consider-

ation of all these features, and readily extends to the investigation of further variations. Likelihood-

based inference via plug-and-play methodology therefore provides a framework for evaluating which

features of a dynamical model are critical for explaining the data (King et al., 2008). By contrast,

Xia et al. (2004) developed a linearization for a specific spatiotemporal measles model which is nu-

merically convenient but not readily adaptable to assess alternative model choices. Fig. 4.1 shows a

simulation from our model, showing that trajectories from this model can capture some features of

the system that have been hard to understand: how can it be that disease transmission dynamics

between locations have important levels of interaction yet are not locked in synchrony (Becker et al.,

2020)? The development of new methods and software allows us to investigate coupled dynamic

models like this one in a scientific context. For the moment, we take our model for granted and test

our methods on data that are simulated from it.

4.2 Scaling with dimension

We first assess the scaling properties of the filters on the measles model by evaluating the likelihood

over varying numbers of units, U , for fixed parameters.

Table 4.1 gives the model parameter values and Table 4.2 gives the algorithmic settings used for

the filters. The times in Table 4.2 give the total time required by each algorithm to calculate all its

results for Fig. 4.2 using 36 cores. The expected forecast function µ(x, s, t) needed for ABF-IR and
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Figure 4.1 – Comparing Log(reported cases +1) for measles simulated data to real data. (A) The
measles simulation used for the likelihood slice; (B) The corresponding UK measles data. The
simulation shares the biennial pattern, with most but not all cities locked in phase most of the time.
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Figure 4.2 – Log likelihood estimates for simulated data of various dimensions. UBF, ABF and
ABF-IR are compared with a guided intermediate resampling filter (GIRF), a standard particle
filter (PF), a block particle filter (BPF) and an ensemble Kalman filter (EnKF).

parameter value unit description
β̄ 1560.6 year−1 mean contact rate
µ−1
•D 50.0 year mean duration in the population
µ−1
EI 7.0 day latent period
µ−1
IR 7.0 day infectious period

σSE 0.150 year1/2 process noise
a 0.500 — amplitude of seasonality
α 1 — mixing exponent
τ 4 year delay from birth to entry into susceptibles
ρ 0.5 — reporting probability
ψ 0.15 — reporting overdispersion
G 400 — gravitation constant

Su(0), u ∈ 1 : U 0.032 — initial susceptible fraction
Eu(0), u ∈ 1 : U 0.00005 — initial exposed fraction
Iu(0), u ∈ 1 : U 0.00004 — initial infectious fraction

Table 4.1 – Parameters for the spatiotemporal measles transmission model
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GIRF was computed using a numerical solution to the deterministic skeleton of the stochastic model,

i.e, a system of ODEs with derivative matching the infinitesimal mean function of the stochastic

dynamic model. In the specifications of hu
(
x), ←v u(V, x, θ) and →v u(θ, x), the latent process value x

contains a variable C giving the cumulative removed infections in the current observation interval.

In Table 4.2, we see that the effort allocated to UBF, ABF and PF scales linearly with U , since

the number of bootstrap replications and particles is fixed in this experiment. GIRF computational

effort scales quadratically in U . Its effort is dominated by the guide simulations (which are lin-

ear in U) for each observation interval and within each observation interval, there are additional

U -dimensional simulations in the intermediate time steps. The effort allocated to ABF-IR scales

also with U2. ABF-IR is more parsimonious with guide simulations (all particles in one bootstrap

replication share the same guide simulations) and so the intermediate timestep calculations dom-

inate the effort. To obtain stable variance in the log likelihood estimate, the number of particles

and bootstrap replications would have to grow with U . However, given a constraint on total com-

putational resources, the number of particles and bootstrap replications would have to shrink as

U increases. The limit studied in this experiment is a balance between the two: the assumption

is that one is prepared to invest a growing amount of computational effort as the data grow, but

this should not grow too fast. ABF-IR was permitted the greatest computational effort, but the

following two considerations balance this:

1. Parallelization. UBF, ABF and ABF-IR are trivially parallelizable. The value of paralleliza-

tion depends, among other things, on how many replications are being computed simultane-

ously and on how many cores are available. Nevertheless, it is helpful that the core minute

effort requirement for ABF and ABF-IR can be divided by the number of available cores
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to give the computational time. Parallelizations of GIRF and PF can be constructed (Park

and Ionides, 2020) but these involve non-trivial interaction between processors leading to

additional algorithmic complexity and computational overhead.

2. Memory. The intermediate timestep calculations in ABF-IR and GIRF do not add to the

memory requirement, and the memory demands of UBF, ABF and ABF-IR are distributed

across the parallel computations. A basic PF implementation for a large model can become

constrained by its memory requirement (linear in the number of particles) before it can match

the processor effort employed by the other algorithms.

In Fig. 4.2, the log likelihood per unit per time increases with U because city size decreases with

U . Smaller cities have fewer measles cases, resulting in a narrower and taller probability density

function. Fig. 4.2 shows a rapid decline in the performance of the particle filter (PF) beyond

U = 4. This is a challenging filtering problem, with dynamics including local fadeouts and high

stochasticity in each city stabilized at the metapopulation level by the coupling. In this example,

GIRF performs poorly suggesting that the simulated moment guide function is less than successful.

We used the general-purpose implementation of GIRF in the spatPomp package, and there might be

room for improvement by developing a model-specific guide function. ABF-IR uses the same guide

function, and this may explain why ABF-IR performs worse than ABF here, though ABF-IR is

much less sensitive than GIRF to the quality of the guide. ABF and UBF are competing with BPF

as winners on this challenge. The bagged filters and BPF have substantial advantages compared

to EnKF, amounting to more than 0.2 log likelihood units per observation. We suspect that the

limitations of EnKF on this problem are due to the nonlinearity, non-Gaussianity, and discreteness

of fadeout and reintroduction dynamics.
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UBF ABF ABF-IR GIRF EnKF PF BPF
particles, J 1 500 200 2000 10000 100000 20000
replicates, I 20000 500 200 — — — —
guide simulations, K — — — 40 — — —
lookahead lag, L — — — 1 — — —
intermediate steps, S — — U/2 U — — —
neighborhood, Bu,n
or block size

{
(u, n− 1), (u, n− 2)

}
— — — 2

measurement mean, hu,n
(
x) — — ρC — —

V =→v u,n(ψ, ρ, x) — — ρ(1− ρ)C + ρ2C2ψ2 — —

forecast mean, µ(x, s, t) — — ODE model — — —
ψ =←v u,n(V, x) — —

√
V−ρ(1−ρ)C

ρC — — —
effort (core mins, U = 2) 28.4 11.5 6.4 2.6 0.3 3.2 0.8
effort (core mins, U = 4) 35.7 19.0 19.0 5.5 0.6 5.9 1.5
effort (core mins, U = 8) 52.5 35.0 60.1 12.7 1.2 11.5 2.9
effort (core mins, U = 16) 87.9 66.7 217.8 36.3 2.4 22.5 5.8
effort (core mins, U = 32) 155.2 133.3 1032.1 133.7 4.7 45.3 11.6

Table 4.2 – Algorithmic settings for the measles example calculations in Figures 4.2 and 4.3. Com-
putational effort is measured in core minutes for running one filter, corresponding to a point on
Figure 4.2. The time taken for computing a single point using the parallel UBF, ABF and ABF-IR
implementations is the effort divided by the number of cores, here 36. The time taken for computing
a single point using the single core GIRF, EnKF, PF and BPF implementations is equal to the effort
in core minutes.
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Figure 4.3 – Likelihood slices over the coupling parameter for measles. Likelihoods for the measles
model with U = 40 cities are computed via (A) ABF; (B) BPF; (C) EnKF. The solid perpendicular
lines construct 95% Monte Carlo adjusted confidence intervals (Ionides et al., 2017). The true
parameter value is identified by a blue dashed line.
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Fig. 4.3(A) demonstrates an application of ABF to the task of computing a slice of the likelihood

function over the coupling parameter, G, for simulated data with U = 40. This slice varies G while

fixing the other parameters at the values used for the simulation. Fig. 4.3(B) shows a similar plot

calculated using BPF with comparable computational effort. Both ABF and BPF are successful

here, though BPF is more computationally efficient. By contrast, Fig. 4.3(C) shows that EnKF

has substantial bias in estimating G, as well as considerably lower likelihood. Likelihood slices

have less inferential value than likelihood profiles, but provide a computationally and conceptually

simpler setting that can be insightful. Scientifically, the slices in Fig. 4.3 give an upper bound on the

identifiability of G from such data, since the likelihood slice provides statistically efficient inference

when all other parameters are known.

All the algorithms have various tuning parameters that could influence the results. Generaliz-

able conclusions are hard to infer from numerical comparisons of complex algorithms on complex

models. Experimentation with different methods, and their tuning parameters, is recommended

when investigating a new model. Some investigations of alternatives are presented below.

4.3 Varying tuning parameters

4.3.1 Varying the neighborhood tuning parameter

We compared five different neighborhoods for the measles model:
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Figure 4.4 – Effect of varying neighborhoods on ABF likelihood estimates. Log likelihood estimates
for simulated data from the measles model using ABF, with varying neighborhoods.

NBHD1 One co-located lag {(u, n− 1)}

NBHD2 Two co-located lags {(u, n− 1), (u, n− 2)}

NBHD3 Three co-located lags {(u, n− 1), (u, n− 2), (u, n− 3)}

NBHD4 Two co-located lags and the previous city {(u, n− 1), (u, n− 2), (u− 1, n)}

NBHD5 Two co-located lags and London {(u, n− 1), (u, n− 2), (1, n)}

We filtered simulated data for U = 40 and N = 130, with 10 replications. We used ABF with

200 particles on each of 1000 bootstrap replications. The results are shown in Fig. 4.4. Larger

neighborhoods should increase the expected likelihood, but their increased Monte Carlo variability

can decrease the expected log likelihood due to Jensen’s inequality. In this case, we see that a

neighborhood of two co-located lags provides a reasonable bias-variance tradeoff. The time taken

for the above calculation was insensitive to the size of the neighborhood. The total run time for

each neighborhood in Fig. 4.4 was 223.0 mins for NBHD1, 225.5 mins for NBHD2, 225.4 mins for
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Figure 4.5 – Effect of varying replicates and particles for ABF likelihood estimation. Log likelihood
estimates for simulated data from the measles model are computed using ABF, with varying number
of replicates and particles.

NBHD3, 218.6 mins for NBHD4, 234.8 mins for NBHD5.

4.3.2 Replicates versus particles

It is necessary in practice to decide whether computational resources are best directed toward a

large number of replicates, I, or a large number of particles per replicate, J . Computational effort

for ABF and ABF-IR is approximately proportional to JI, and UBF corresponds to ABF with

J = 1. Suitable algorithmic parameters may depend on the model under consideration, and here

we consider resource allocation for the measles model above using simulated data with U = 40

and N = 104. From Figure 4.2, we know that this implementation of the model is well suited to

ABF and UBF. ABF-IR performs less well, and the weak performance of GIRF suggests that the

weakness may be due to an inadequate guide function. Figure 4.5 investigates the tradeoff between
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UBF and ABF by plotting evaluated log likelihood against I with J chosen to give approximately

a constant computational effort. Algorithmic settings and run times are reported in Table 4.3. For

our implementation, choosing J very low and I correspondingly high led to greater computation

time, perhaps because the code was written to parallelize nicely when J is relatively large.

We interpret the bimodal curve as follows. When ABF is carried out with an inadequate number

of particles for each bootstrap replicate, the algorithm cannot make a good representation of a draw

from the adapted distribution. In that case, there is an advantage to using UBF, which does

not attempt to carry out adapted simulation. For very small numbers of particles per replicate,

the ABF algorithm behaves like a not-quite-properly-weighted version of UBF. Large numbers of

particles per replicate presumably lead to improved Monte Carlo representation of draws from

the adapted distribution, but computational cost constraints prevent combining this with a large

number of replicates. We see a mode around 500 particles per replicate where ABF out-performs

UBF. On this problem, UBF is relatively successful, presumably because the measles dynamics in

each city are strongly attracted toward relatively few stable cycles (annual epidemics, or peaks in

odd years, or peaks in even years) and a tractable number of simulations can represent all these

scenarios. The Lorenz model of Sec. 2.4.2 provides an alternative situation, where adaptation has

more advantages. Also, the plug-and-play guide function appears to operate successfully in the

Lorenz model, as evidenced by relatively strong performance from ABF-IR and GIRF.

One may observe the dip between the two modes in Figure 4.5 and ask how one may diagnose if

one is in that situation. First, the bimodal pattern seen here applies to the specific measles model

and neighborhood structure of ABF and UBF applied in this example. Our general advice for

likelihood estimation is to start with a moderately large neighborhood (with points in space-time

with the same time component and points from previous times) and a large enough Monte Carlo
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J I time
2000 500 70.7
1000 1000 71.3
500 2000 72.4
250 4000 75.0
100 10000 80.9
50 20000 93.8
25 40000 114.9
10 40000 71.4
5 40000 56.1
2 40000 47.7
1 40000 43.0

Table 4.3 – Bootstrap replications and particles per replicate for Figure 4.5.

effort (I and J) to minimize bias. The user can then pare down the neighborhood to understand

what minimal neighborhood structure is required for the problem at hand. Second, the function of

I is to reduce the variance in our likelihood estimates whereas J controls the quality of our adapted

simulations. The main lesson from Figure 4.5 is that both functions must be done well if we choose

J > 1. The surefire way to do so is to ramp up both values in our exploratory analysis and record

our results. We can then gradually decrease both until we are satisfied with both our computational

investment and our estimates’ bias and variance for the specific problem.

4.4 Likelihood maximization and profile likelihood

Our focus with the bagged filters is on evaluating the likelihood function for SpatPOMP models

via filtering. Although the likelihood function is fundamental for inference, evaluation alone is

not sufficient. Likelihood maximization enables calculation of the maximum likelihood estimate,

profile likelihood confidence intervals, likelihood ratio tests and likelihood-based model selection

criteria. Iterated filtering methodology (Ionides et al., 2006, 2011, 2015) provides an approach to
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Figure 4.6 – Likelihood profile over coupling parameter using IABF. An iterated bagged filter used
to maximize the likelihood, compute a profile likelihood, and hence construct a confidence interval.
The profiling is carried out over the coupling parameter, G. We use data for U = 20 cities each
with N = 208 bi-weeks to construct the interval.

extending filtering algorithms to likelihood maximization algorithms. Here, we demonstrate one

such extension in the context of bagged filters. The results of applying an iterated bagged filter

algorithm on the measles model are shown by constructing a 95% profile confidence interval for the

coupling parameter, G, in Fig. 4.6. The algorithm is described next. This demonstration provides

a proof of concept to motivate future work.

Iterated filtering approaches apply filtering to a modified version of the model where parameters

are perturbed at each time point. The filtering procedure directs the perturbed parameters toward

values consistent with the data. At the end of each filtering operation, a parameter updating rule is

applied and a new filtering iteration is started with reduced perturbation variance. Under suitable

conditions, iterative procedures of this type converge to a neighborhood of a maximum likelihood

parameter despite the presence of Monte Carlo filtering error. We implemented an iterated bagged

filter procedure, described by the pseudocode below.

The pseudocode is presented for an iterated adapted bagged filter (IABF) but the iterated un-
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Table 4.4 – IABF inputs and outputs.

input: same as ABF algorithm in Chapter 2 plus
Number of maximization iterations, M
Number of parameter vectors, K
Perturbation variance, Σ
Variance reduction factor after 50 iterations, α
Starting parameters, θ(0)

1:K
Resampling proportion, p

output:
Parameter estimates approaching the maximum likelihood estimate, θ(M)

1:K
implicit loop:

k in 1 :K, i in 1 :I

IABF. Iterated adapted bagged filter.
For m in 1 :M
θF0,1:K = θ

(m−1)
1:K

Initialize adapted simulation: XF
0,i,k ∼ fX0

(
x0 ;θF0,k

)
For n in 1 :N
θPn,k ∼ Normal

[
θFn−1,k, α

2m/50Σ
]

XP
n,i,j,k ∼ fXn|Xn−1

(
xn |XF

n−1,i,k ;θPn,k
)

Measurement weights: wMu,n,i,j,k = fYu,n|Xu,n
(
y∗u,n |XP

u,n,i,j,k ;θPn,k
)

Adapted resampling weights: wAn,i,j,k = ∏U
u=1w

M
u,n,i,j,k

State resampling: P
[
r(i, k) = a

]
= wAn,i,a,k

(∑J
ξ=1w

A
n,i,ξ,k

)−1

XA
n,i,k = XP

n,i,r(i,k),k

wPu,n,i,j,k =
n−1∏
ñ=1

[ 1
J

J∑
ξ=1

∏
ũ:(ũ,ñ)∈Bu,n

wMũ,ñ,i,ξ,k

] ∏
ũ:(ũ,n)∈Bu,n

wMũ,n,i,j,k

`MC
n,k =

U∑
u=1

log
(∑I

i=1
∑J
j=1w

M
u,n,i,j,kw

P
u,n,i,j,k∑I

i=1
∑J
j=1w

P
u,n,i,j,k

)
Select the highest pK likelihoods: find s with
{s(1), . . . , s(dpKe)} =

{
k : ∑K

k̃=1 1{`MC
n,k̃

> `MC
n,k } < (1− p)K

}
Make 1/p copies of successful parameters, θFn,k = θPn,s(dpke)
XF

n,i,k = XA
n,i,s(dpke)

End for
θ

(m)
k = θFN,k

End for
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adapted filter (IUBF) corresponds to the case J = 1 and the iterated bagged filter with intermediate

resampling (IABF-IR) follows by adding the intermediate resampling procedure used by ABF-IR.

The filtering step of IABF uses ABF to estimate the likelihood at the K perturbed parameter sets.

The selection step does not resample parameters based on these estimated likelihood. Rather, it

selects the parameters with the top p quantile of likelihoods and copies them appropriately to get

K new parameters for the next filtering step. This quantile-based resampling allows us to maintain

the diversity of the K parameter sets and avoid parameter degeneracy, whereby very few parameters

are resampled, leading to an inefficient search of parameter space.

For simplicity, this description assumes that parameters are transformed so that their values

are unconstrained. Our software implementation, provided in the R package spatPomp (Asfaw

et al., 2021b), provides facilities for carrying out such transformations. The Gaussian distribution

used for perturbations, and the geometric perturbation variance reduction factor, α, are convenient

specifications but are not required in theory (Ionides et al., 2015). As another simplification, the

pseudocode for IABF represents the logical structure of the algorithm without attending to issues of

memory management and parallelization. For implementation issues, we refer to spatPomp (Asfaw

et al., 2021b).

In Figure 4.6, we use this IABF implementation to construct a profile likelihood for the measles

model. We use J = 1, I = 30000, K = 250, p = 0.8, α = 0.5, M = 15 and Σ set to be a diagonal

matrix with perturbation variance for each non-initial value parameter set to 0.02. For this exercise,

we fix the initial value parameters at their true values.

Monte Carlo methods for computing and maximizing the log likelihood suffer from bias and

variance, both of which can be considerable for large datasets and complex models. Appropriate

inference methodology, such as Monte Carlo adjusted profile (MCAP) confidence intervals, can
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accommodate substantial Monte Carlo variance so long as the bias is slowly varying across the

statistically plausible region of the parameter space (Ionides et al., 2017; Ning et al., 2021). Fig. 4.6

constructs an MCAP 95% confidence interval for the coupling parameter, G, using an iterated un-

adapted bagged filter to maximize over the parameters, a, β̄, σSE , ψ, µEI and µIR. This simulation

study, carried out with U = 20 and N = 208, shows that G is identifiable via likelihood-based

inference in the absence of assumptions about these parameters.

4.5 Two insights from experiments

In this section, we show first how inference on subsetted measles data can lead to unexpected results.

We then illustrate how the localization bias in likelihood estimation can have nontrivial implications

for inference.

4.5.1 Implications of subsetting measles data

One result that we were not expecting is illustrated in Figure 4.7. Simulated data for 40 cities

was generated using the measles model described in Section 4.1. We took a subset of the data

for the largest ten cities and constructed an ABF slice of the coupling parameter, G, and the

reproductive number parameter, R0. The values of these parameters used to generate the data

were 400 and 30.6 respectively. We were surprised to find that ABF assigned higher likelihoods to

values of G and R0 higher than the values that generated the data. It turns out that subsetting ten

cities from data generated by a 40-city model and fitting the data results in much higher coupling

and transmissibility parameters. The subsetted data “prefer” greater transmission by having more

travelers and higher infectivity. Though we see this phenomenon in a simulation study, we believe
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Figure 4.7 – Illustration of the effect of subsetting data on inference. Subsetting data for 10 cities
from a 40-city simulation and evaluating a likelihood slice results in higher likelihood for “false”
parameters that imply higher coupling and transmission. (a) and (b) correspond to likelihood slices
along the coupling (G) and the transmission (R0) parameters when 10-city data is subsetted from
data generated by a 40-city model. (c) and (d) represent likelihood slices along the same parameters
when data is simulated from a 10-city model instead. The true parameter values used to generate
the data in both cases are G = 400 and R0 = 30.6
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Figure 4.8 – Illustrating the impact of small neighborhood ABF bias on parameter inference. (a)
corresponds to an IABF run using a neighborhood Bu,n = {(u, n − 1), (u, n − 2)} whereas (b)
corresponds to a run with Bu,n = {(u − 1, n), . . . , (u − 9, n), (u, n − 1)}. In both cases, the ABF
likelihood is increasing throughout the iterations. However, the large bias in likelihood evaluation
in (a) results in parameter estimates that have much lower true likelihoods than the parameter
estimates from (b). This is illustrated by parameter estimates in (b) that are closer to the parameters
that generated the data: σ = 1, τ = 1 and ρ = 0.4.

it could have implications for studies that treat a collection of cities like a closed system.

4.5.2 Implications of ABF bias for inference

In this section, we show how the localization bias in likelihood estimation can have unexpected

implications for inference and provide general guidance.

In Figure 4.8 we illustrate the progress of two parameter inference runs using IABF on a 10-

dimensional simulated Brownian time series data (please check Section 3.5 for a complete description

of this model). The coupling, process noise and measurement noise parameters used to simulate the

data were ρ = 0.4, σ = 1 and τ = 1, respectively. For the IABF runs we used I = 100, J = 40 and
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K = 100 for M = 30 iterations with starting parameters ρ = 0.7, σ = 0.5 and τ = 0.5. Importantly,

for Figure 4.8a we set the neighborhood Bu,n = {(u, n − 1), (u, n − 2)} whereas for Figure 4.8b

Bu,n = {(u − 1, n), . . . , (u − 9, n), (u, n − 1)}. Since we are working with a fully Gaussian system,

the MLE and its true log likelihood of -733.06 can be found analytically from the data. Figures 4.8a

and 4.8b each illustrate the progress of the inference algorithm as the iterations proceeded. The log

likelihood plot in each subplot corresponds to an estimate of the log likelihood of the data at the

parameter estimates reached at the end of an iteration.

There are a few things to notice. Critically, in the case of Figure 4.8a the measurement noise

parameter estimate went down from a starting point of 0.5 to a final estimate of about 0.32 while

the process noise parameter started at 0.5 and went up to 1.22. The coupling parameter dropped

from 0.7 to 0.21. All the while, the ABF likelihood is increasing from about -831.79 at the end of

the first iteration to -761.49 at the end of the thirtieth iteration. The true log likelihood of the

data at the final parameter estimate can be analytically evaluated to be -794.08 whereas the true

log likelihood at the starting parameter set is -1272.52.

On the other hand, in 4.8b, the measurement noise parameter estimate went up to 1.08 and the

process noise went up to 0.94. The final coupling parameter estimate was 0.28. Here again, the

ABF likelihood increased throughout from -1437.90 to -775.40.

Two unexpected observations about the two IABF runs are that estimates of the measurement

noise parameter are on opposite sides of the starting point and that the run in Figure 4.8a seems

to overestimate the log likelihood throughout the iterations. Both of these outcomes result from

the bias in ABF likelihood evaluation. For Figure 4.8a, Bu,n was set to a neighborhood in space-

time that did not take into account any current observations at time n such that resampling within

each bootstrap filter was based on the consistency of the current prediction particle with the current
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data. In other words, all prediction particles had prediction weights equal to 1. This means that the

algorithm does not target the correct distribution when it resamples from the prediction particles.

The quantity being maximized using the iterated algorithm (the ABF likelihood) is different from

the true likelihood and the outputted parameter set is not the MLE. On the other hand, the run

corresponding to Figure 4.8b uses a larger neighborhood in space-time that uses observations from

the current time. The prediction weights are now closer to the proper importance weights and the

ABF likelihood is less biased for the true likelihood.

This phenomenon can be thought of as a bias-variance trade-off. A smaller space-time neighbor-

hood leads to large bias in the likelihood evaluation whereas a larger neighborhood leads to higher

variance of the likelihood estimates (more numbers being multiplied to get prediction weights) but

lower bias. This experiment suggests that users of our bagged filter methods should generally start

with large enough neighborhoods in space-time that include points with the same time coordinate

(i.e. Bu,n should include Bũ,n for some ũ < u). This may lead to high variance estimates, but

this can be countered with higher Monte Carlo effort. Otherwise, starting with too small of a

neighborhood can lead to considerable bias in our parameter estimates.
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Chapter 5

Concluding Thoughts

For applied statisticians with an interest in epidemiology, an open area of research is methodology

for fitting coupled mechanistic POMP models to disease data. Such models allow the analyst

to construct a model that is as faithful to the science of the disease transmission mechanism as

possible without losing the ability to criticize and develop them via likelihood-based inference. In

this thesis, I have contributed to this area by working on new methodology and new software.

Below, I summarize these contributions in greater detail and discuss future directions.

Bagged filters

The bagged filter algorithms intorduced in Chapter 2 use independent filters to approximately

sample from the adapted distribution. By avoiding resampling among the bootstrap replicates, the

bagged filter algorithms maintain a diversity of regions of the state space that are explored. In

a later step, the filter weights are calculated locally in space and time, which allows us to trade

off some bias in likelihood evaluation for reduced variance in our likelihood estimates. I presented

theoretical results showing that, under some assumptions, the asymptotic variance of the bagged
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filter likelihood estimator scales polynomially in the number of spatial units being studied. This is

a significant improvement over the exponential rate seen in the bootstrap filter (Rebeschini and van

Handel, 2015). I also show simulation results that show the bagged filter performing competitively

with other existing methods in three different models.

Chapter 4 contains a more extensive study of our methods on a model that exemplifies our target

problem: a nonlinear and non-Gaussian measles model for cities and towns in the United Kingdom

and Wales. I show that the bagged filters scale favorably with the number of spatial units in the

coupled model. I also show how the methods depend on their tuning parameters and give general

advice about how a user can decide on such parameters. The inferential promise of the bagged

filters is shown in a likelihood slice over the coupling parameter for the model. Inspired by this,

an iterated bagged filter algorithm with parameter perturbations is introduced. This algorithm

is shown to produce a 95% confidence interval for the coupling parameter that contains the true

parameter value in a simulation study with twenty cities and towns. I also show two simulation

studies that show the impact of bagged filter bias on inference and the dangers of parameter inference

using data that assumes a closed population.

Exploring subsetting bias

An exploration of the hazard associated with fitting mechanistic models that assume a closed popu-

lation is a possible next step for this research. He et al. (2010) account for importation of infectious

cases in an uncoupled model by incorporating a parameter for the mean number of infectives visiting

a city at a given time. However, this is approach does not mechanistically link the latent states in

different spatial units dynamically. A true data analysis that compares two models where coupling

does and does not exist from a subset of towns and cities could help us observe the difference in
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parameter estimates and the extent to which a fully coupled model fits the data better. This could

be done by incorporating a U × U matrix, κ, that “switches off” coupling in the force of infection

equation among some spatial units. The corresponding equation to 4.1 would be:

E
[
NSE,u(t+ dt)−NSE,u(t)

]
= β(t)Su(t)

[ (Iu + ι

Pu

)α
+
∑
ũ6=u

κuũ
vuũ
Pu

{(
Iũ
Pũ

)α
−
(
Iu
Pu

)α}]
dt+ o(dt)

We can then run the IABF algorithm introduced in section 4.4 for parameter inference to maximize

the likelihoods under two configurations of the κ matrix.

Beyond IABF

IABF shows that the bagged filter methods can be used for parameter inference but is computa-

tionally expensive. The algorithm requires on the order of 10000 bootstrap replicates per starting

parameter set. A modest exploration of parameter space requires a number of starting parameter

sets on the order of 100. Even an implementation of IABF that parallelizes over all the cores of a

machine could only complete the profile confidence interval calculation in section 4.4 by occupying

thirty nodes of the Great Lakes cluster for two weeks. The computation cost of Figure 4.6 came to

about $3000, an untenable expense. Further, we expect the number of replicates per parameter set

to increase with the number of spatial units being studied. Ultimately, this mixed result points to

a need to either formulate an algorithm that uses the bagged filter idea that is less computationally

expensive or acknowledge this weakness and focus on a different method altogether. An algorithm

that is gradient-based (instead of getting a precise likelihood estimate for each parameter set, we

could get a noisy estimate that informs us about the direction in which to move our parameters)
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could yield an algorithm that is less demanding. Alternatively, one could follow one of the leads

uncovered by the simulation studies: that the block particle filter is very competitive for all the

problems on which we have tested it. An iterated block particle filter would require block-specific

parameter sets since resampling is performed at the block level. Spatially correlated parameter

perturbations that pull block parameters to the average of the parameters across blocks at the

resampling steps can help ensure that parameter estimates in different blocks do not diverge.

The spatPomp package

I disucss the spatPomp package in Chapter 3. I demonstrate how one can perform a data analysis

on a simple correlated Brownian motions example. I also show how to construct a coupled measles

transmission SpatPOMP model, which forms the basis for a data analysis.

So far, one of the most useful purposes of this package is that a new method (e.g. an iterated block

particle filter) can be implemented and tested in a matter of 1-2 weeks. There are already numerous

example methods that have been implemented that each take advantage of the modularity of model

components. The open-source nature of the package allows users to contribute new methods and

the process of submission to the Comprehensive R Archive Network (CRAN) has ensured that the

package is widely available across multiple platforms.

The package’s main future work is support for multivariate observations for each spatial unit. The

epidemiological applications on which we have used the package involve spatial units that each have

a time series of case counts. However, multivariate observations for, say, multi-strain viruses like

the dengue virus will become more commonplace and require some generalization of the available

methods.

Overall, there are various open areas in which to contribute to this field. I anticipate new methods
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will keep being proposed until a standard method is found. I look forward to contributing to this

field in any way that I can.
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