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ABSTRACT

Online learning is an area of machine learning that studies algorithms that make se-

quential predictions on data arriving incrementally. In this thesis, we investigate stability

of online learning algorithms in two different settings. First, we examine random pertur-

bation methods as a source of stability in bandit problems. Second, we study stability as a

key concept connecting online learning and differential privacy.

The first two chapters study the statistical properties of the perturbation technique in

both stochastic and adversarial multi-armed bandit problems. We provide the first general

analysis of perturbations for the stochastic multi-armed bandit problem. We also show that

the open problem regarding minimax optimal perturbations for adversarial bandits cannot

be solved in two ways that might seem very natural.

The next two chapters consider stationary and non-stationary stochastic linear bandits

respectively. We develop two randomized exploration strategies: (1) by replacing opti-

mism with a simple randomization when deciding a confidence level in optimism based

algorithms, or (2) by directly injecting the random perturbations to current estimates to

overcome the conservatism that optimism based algorithms generally suffer from. Further-

more, we study the statistical and computational aspects of both of these strategies.

While at a first glance it may seem that online learning and differential privacy have

little in common, there is a strong connection between them via the notion of stability since

the definition of differential-privacy is at its core, a form of stability. The final chapter

investigates whether the recently established equivalence between online and private learn-

ability in binary classification extends to multi-class classification and regression.

ix



CHAPTER 1

Introduction

Online learning is an area of machine learning that studies algorithms that make sequential
predictions on data arriving incrementally. This field is distinguished from standard batch

learning where the entire training instances are given to optimize the model. It is more
challenging to provide theoretical guarantees for online learning algorithms as the model
keeps changing with the data observed in a sequential fashion. In this thesis, we study the
stability of online learning algorithms in two different settings. First, we examine random

perturbation methods as a source of stability in bandit problems. Bandit problems are a
special and more challenging case of online learning in that no information is provided on
the rewards of alternative options in bandit setting. Second, we study stability as a key
concept connecting online learning and differential privacy.

Stability has been one of the major topics of interest in machine learning. The well-
known “No Free Lunch” theorems in mathematical learning theory show that one cannot
derive formal guarantees for learning algorithms without imposing some prior assumptions.
The mathematical reason for this is most learning problems are ill-posed, i.e., whatever is
being learned is not uniquely identified by the data. Regularization is a classical approach
to stabilizing and solving ill-posed inverse problems by adding a penalty function to an op-
timization problem to encourage simpler solutions. The alternative stabilization technique,
which has become essential in modern applications of machine learning is via controlled
injection of random perturbations into the learning process. Especially in online learn-
ing, stability arises as a central motif in two major families of online learning algorithms,
Follow-the-regularized-leader and Follow-the-perturbed-leader.

In standard methods in differential privacy such as Exponential and Gaussian mech-
anisms, random perturbations also play a key role in designing differential private algo-
rithms as they act as a source of stability in optimal online learning algorithms. Differential

privacy was introduced to study data analysis mechanism that do not reveal too much in-
formation on any single sample in batch learning. Although two subjects originated from

1



essentially different learning frameworks, stability has been recently regarded as the con-
cept of connecting online learning and differential privacy in the sense that the definition
of differential privacy is in and of itself a form of stability.

1.1 Multi-armed bandits

Beginning with the seminal work of Hannan (1957), researchers have been interested in
algorithms that use random perturbations to generate a distribution over available actions.
Kalai and Vempala (2005) showed that the perturbation idea leads to efficient algorithms
for many online learning problems with large action sets. Due to the Gumbel lemma (Hazan
et al., 2017), the well known exponential weights algorithm (Freund and Schapire, 1997)
also has an interpretation as a perturbation based algorithm that uses Gumbel distributed
perturbations.

There have been several attempts to analyze the regret of perturbation based algorithms
with specific distributions such as uniform, double-exponential, drop-out and random walk
(see, e.g., (Kalai and Vempala, 2005; Kujala and Elomaa, 2005; Devroye et al., 2013;
Van Erven et al., 2014)). These works provided rigorous guarantees but the techniques
they used did not generalize to general perturbations. Recent work (Abernethy et al., 2014)
provided a general framework to understand general perturbations and clarified the relation
between regularization and perturbation by understanding them as different ways to smooth
an underlying non-smooth potential function.

Abernethy et al. (2015) extended the analysis of general perturbations to the partial in-
formation setting of the adversarial multi-armed bandit problem. They isolated bounded

hazard rate as an important property of a perturbation and gave several examples of pertur-
bations that lead to the near optimal regret bound of O(

√
KT logK). Since Tsallis entropy

regularization can achieve the minimax regret of O(
√
KT ) (Audibert and Bubeck, 2009,

2010), the question of whether perturbations can match the power of regularizers remained
open for the adversarial multi-armed bandit problem.

1.2 Linear bandits

A multi-armed bandit is the simplest model of decision making that involves the explo-
ration versus exploitation trade-off (Lai and Robbins, 1985). Linear bandits are an exten-
sion of multi-armed bandits where the reward has linear structure with a finite-dimensional
feature associated with each arm (Abe et al., 2003; Dani et al., 2008). Two standard ex-
ploration strategies in stochastic linear bandits are upper confidence bound algorithm (Lin-
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UCB) (Abbasi-Yadkori et al., 2011) and linear Thomson sampling (LinTS) (Agrawal and
Goyal, 2013b). The former relies on optimism in face of uncertainty and is a determinis-
tic algorithm built upon the construction of a high-probability confidence ellipsoid for the
unknown parameter vector. The latter is a Bayesian solution that maximizes the expected
rewards according to a parameter sampled from the posterior distribution. Chapelle and
Li (2011) showed that linear Thompson sampling empirically performs better and is more
robust to corrupted or delayed feedback than LinUCB. From a theoretical perspective, it
enjoys a regret bound that is a factor of

√
d worse than minimax-optimal regret bound

Θ̃(d
√
T ) that LinUCB enjoys. However, the minimax optimality of optimism comes at a

cost: implementing UCB type algorithms can lead to NP-hard optimization problems even
for convex action sets (Agrawal, 2019).

Abeille et al. (2017) viewed linear Thompson sampling as a perturbation based algo-
rithm, characterized a family of perturbations whose regrets can be analyzed, and raised
an open problem to find a minimax-optimal perturbation. In addition to its significant role
in smartly balancing exploration with exploitation, a perturbation based approach to linear
bandits also reduces the problem to one call to the offline optimization oracle in each round.
Recent works (Kveton et al., 2019, 2020) have proposed randomized algorithms that use
perturbation as a means to achieve oracle-efficient computation as well as better theoretical
guarantee than LinTS, but there is still a gap between their regret bounds and the lower
bound of Ω(d

√
T ). This gap is logarithmic in the number of actions which can introduce

extra dependence on dimension for large action spaces.
A new randomized exploration scheme was proposed in the recent work of Vaswani

et al. (2020). In contrast to Hannan’s perturbation approach that injects perturbation di-
rectly into an estimate, they replace optimism with random perturbation when using confi-
dence sets for action selection in optimism based algorithms. This approach can be broadly
applied to multi-armed bandit and structured bandit problems, and the resulting algorithms
are theoretically optimal and empirically perform well since overall conservatism of opti-
mism based algorithms can be tackled by randomizing the confidence level.

Linear bandit problems were originally motivated by applications such as online ad
placement with features extracted from the ads and website users. However, users’ prefer-
ences often evolve with time, which leads to interest in the non-stationary variant of linear
bandits. Accordingly, adaptive algorithms that accommodate time-variation of environ-
ments have been studied in a rich line of works in both multi-armed bandit (Besbes et al.,
2014) and linear bandit. In the pioneering work of Cheung et al. (2019), the authors pro-
posed the SW-LinUCB algorithm to deal with changing environment via optimism based
approach with sliding-window least square estimator, and proved its dynamic regret bound
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of order Õ(d2/3B
1/3
T T 2/3). In later studies, Russac et al. (2019) developed D-LinUCB based

on the weighted least square estimator, and Zhao et al. (2020) designed Restart-LinUCB
and showed that this simple restarted strategy is sufficient to achieve the same dynamic re-
gret guarantee. Recently, Zhao and Zhang (2021) pointed out that the proof of a key lemma
in previous analysis (Cheung et al. (2019), Lemma 3) has serious technical flaw, provided
a fix for the analysis, and proved a new and slightly suboptimal dynamic regret of order
Õ(d7/8B

1/4
T T 3/4) for the three main algorithms (Cheung et al., 2019; Russac et al., 2019;

Zhao et al., 2020).
Luo et al. (2018) and Chen et al. (2019) studied fully adaptive and oracle-efficient al-

gorithms assuming access to an optimization oracle when total variation is unknown for
the learner. It is still open problem to design a practically simple, oracle-efficient and sta-
tistically optimal algorithm for non-stationary linear bandits. Since existing non-stationary
linear bandit algorithms are suboptimal in dynamic regret and non-randomized built upon
the optimism in the face of uncertainty, it remains open to construct the randomized explo-
ration methods, which might be able to enjoy computational efficiency as well as statistical
guarantee.

1.3 Differential privacy

Online learning and differentially-private (DP) learning have been well-studied in the ma-
chine learning literature. While these two subjects are seemingly unrelated, recent papers
have revealed a strong connection between online and private learnability via the notion
of stability (Abernethy et al., 2019; Agarwal and Singh, 2017; Gonen et al., 2019). The
notion of differential privacy is, at its core, less about privacy and more about algorithmic
stability since the output distribution of a DP algorithm should be robust to small changes
in the input. Stability also plays a key role in developing online learning algorithms such as
follow-the-perturbed-leader (FTPL) and follow-the-regularized-leader (FTRL) (Abernethy
et al., 2014).

Recently Alon et al. (2019) and Bun et al. (2020) showed that online learnability and
private PAC learnability are equivalent in binary classification. Alon et al. (2019) showed
that private PAC learnability implies finite Littlestone dimension (Ldim) in two steps; (i)
every approximately DP learner for a class with Ldim d requires Ω(log∗ d) thresholds (see
Section 2.6 for the definition of log∗), and (ii) the class of thresholds over N cannot be
learned in a private manner. Bun et al. (2020) proved the converse statement via a notion of
algorithmic stability, called global stability. They showed (i) every class with finite Ldim
can be learned by a globally-stable learning algorithm and (ii) they use global stability to
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derive a DP algorithm. In this work, we investigate whether this equivalence extends to
multi-class classification (MC) and regression, which is one of open questions raised by
Bun et al. (2020).

In general, online learning and private learning for MC and regression have been less
studied. In binary classification without considering privacy, the Vapnik-Chervonenkis di-
mension (VCdim) of hypothesis classes yields tight sample complexity bounds in the batch
learning setting, and Littlestone (1988) defined Ldim as a combinatorial parameter that was
later shown to fully characterize hypothesis classes that are learnable in the online setting
Ben-David et al. (2009). Until recently, however, it was unknown what complexity mea-
sures for MC or regression classes characterize online or private learnability. Daniely et al.
(2015) extended the Ldim to the MC setting, and Rakhlin et al. (2015) proposed the se-
quential fat- shattering dimension, an online counterpart of the fat-shattering dimension in
the batch setting (Bartlett et al., 1996).

Related works DP has been extensively studied in the machine learning literature (Dwork
and Lei, 2009; Dwork et al., 2014; Sarwate and Chaudhuri, 2013). Private PAC and agnos-
tic learning were formally studied in the seminal work of Kasiviswanathan et al. (2011),
and the sample complexities of private learners were characterized in the later work of
Beimel et al. (2013).

Dwork et al. (2014) identified stability as a common factor of learning and differential
privacy. Abernethy et al. (2019) proposed a DP-inspired stability-based methodology to
design online learning algorithms with excellent theoretical guarantees, and Agarwal and
Singh (2017) showed that stabilization techniques such as regularization or perturbation in
online learning preserve DP. Feldman and Xiao (2014) relied on communication complex-
ity to show that every purely DP learnable class has a finite Ldim. Purely DP learnability
is a stronger condition than online learnability, which means that there exist online learn-
able classes that are not purely DP learnable. More recently, Alon et al. (2019) and Bun
et al. (2020) established the equivalence between online and private learnability in a non-
constructive manner. Gonen et al. (2019) derived an efficient black-box reduction from
purely DP learning to online learning.

1.4 Thesis structure and contribution

The core material in this thesis is contained in five chapters. Each of these chapters has
been adapted from publications:
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• The results of Chapter 3 and 4 have been published in the electronic proceedings of
the Neural Information Processing Systems Conference (Kim and Tewari, 2019).

• The results of Chapter 5 and 6 have been published in the electronic proceedings of
the Conference on Uncertainty in Artificial Intelligence (Kim and Tewari, 2020).

• The results of Chapter 7 have been published in the electronic proceedings of the
Neural Information Processing Systems Conference (Jung et al., 2020).

We build Chapter 3 and 4 upon previous works (Abernethy et al., 2014, 2015) in two
distinct but related directions.

In Chapter 3, we provide the first unified regret analysis for perturbation algorithms
in the stochastic multi-armed bandit problem. Our regrets are instance optimal for sub-
Weibull perturbations with parameter 2 (with a matching lower tail bound), and all bounded
support perturbations where there is sufficient probability mass at the extremes of the sup-
port. Our analysis relies on the simple but powerful observation that Thompson sampling
with Gaussian priors and rewards can also be interpreted as a perturbation algorithm with
Gaussian perturbations. We are able to generalize both the upper bound and lower bound of
Agrawal and Goyal (2013a) in two respects; (1) from the special Gaussian perturbation to
general sub-Weibull or bounded perturbations, and (2) from the special Gaussian rewards
to general sub-Gaussian rewards.

In Chapter 4, we study the open problem of developing a perturbation based algorithm
that gives us minimax optimality. We do not resolve it but provide rigorous proofs that
there are barriers to two natural approaches to solving the open problem. (A) One cannot
simply find a perturbation that is exactly equivalent to Tsallis entropy. This is surprising
since Shannon entropy does have an exact equivalent perturbation, viz. Gumbel. (B) One
cannot simply do a better analysis of perturbations used before (Abernethy et al., 2015) and
plug the results into their general regret bound to eliminate the extra O(

√
logK) factor. In

proving the first barrier, we use a fundamental result in discrete choice theory. For the
second barrier, we rely on tools from extreme value theory.

In Chapter 5, we explicate, in the simpler stationary setting, the role of two perturbation
approaches in overcoming conservatism that UCB-type algorithms chronically suffer from
in practice. In one approach, we replace optimism with a simple randomization when using
confidence sets. In the other, we add random perturbations to the current estimate before
maximizing the expected reward. These two approaches result in randomized LinUCB
and Gaussian linear Thompson sampling for stationary linear bandits. We highlight the
statistical optimality versus oracle efficiency trade-off between them.
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In Chapter 6, we study the non-stationary environment and present two randomized
algorithms with exponential discounting weights, discounted randomized LinUCB (D-
RandLinUCB) and discounted linear Thompson sampling (D-LinTS) to gracefully adjust to
the time-variation in the true parameter. We explain the trade-off between statistical guar-
antee and oracle efficiency in that the former asymptotically achieves the same dynamic
regret bound as optimism based algorithms, but the latter enjoys computational efficiency
due to sole reliance on an offline optimization oracle for large or infinite action set.

We build Chapter 7 upon previous works (Alon et al., 2019; Bun et al., 2020) which re-
cently showed that online learnability and private PAC learnability are equivalent in binary
classification. In Chapter 7, we investigate whether this equivalence extends to multi-class
classification and regression. First, we show that private learnability implies online learn-
ability in both settings. Our extension involves studying a novel variant of the Littlestone
dimension that depends on a tolerance parameter and on an appropriate generalization of
the concept of threshold functions beyond binary classification. Second, we show that
while online learnability continues to imply private learnability in multi-class classifica-
tion, current proof techniques encounter significant hurdles in the regression setting. While
the equivalence for regression remains open, we provide non-trivial sufficient conditions
for an online learnable class to also be privately learnable.
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CHAPTER 2

Preliminaries

In this chapter, we present all preliminary materials including basic problem setups for
several bandit problems and foundations for learning theory.

2.1 Multi-armed bandit problems

In every round t starting at 1, a learner chooses an action At ∈ [K] , {1, · · · , K} out of
K arms and the environment picks a response in the form of a real-valued reward vector
gt ∈ [0, 1]K . While the entire reward vector gt is revealed to the learner in the full infor-
mation setting, the learner only receives a reward associated with his choice in the bandit
setting, while any information on other arms is not provided. Thus, we denote the reward
corresponding to his choice At as Xt = gt,At .

In stochastic multi-armed bandit, the rewards gt,i are sampled i.i.d from a fixed, but
unknown distribution with mean µi. Adversarial multi-armed bandit is more general in
that all assumptions on how rewards are assigned to arms are dropped. It only assumes that
rewards are assigned by an adversary before the interaction begins. Such an adversary is
called an oblivious adversary. In both environments, the learner makes a sequence of de-
cisions At based on historyHt−1 = (A1, X1, · · · , At−1, Xt−1) to maximize the cumulative
reward,

∑T
t=1Xt.

As a measure of evaluating a learner, Regret is the difference between rewards the
learner would have received had he played the best in hindsight, and the rewards he actu-
ally received. Therefore, minimizing the regret is equivalent to maximizing the expected
cumulative reward. We consider the expected regret in adversarial setting and the pseudo
regret in stochastic setting, respectively as

R(T ) = E[max
i∈[K]

T∑
t=1

gt,i −
T∑
t=1

gt,At ], and R′(T ) = T ·max
i∈[K]

µi − E[
T∑
t=1

Xt].
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Note that two regrets are the same where an oblivious adversary is considered. An online
algorithm is called a no-regret algorithm if for every adversary, the expected regret with
respect to every action At is sub-linear in T . Thus, it is of main interest in online learning
to study the rate of growth of regret for various algorithms in various environments.

We use follow-the-perturbed-leader (FTPL) to denote families of algorithms for both
stochastic and adversarial settings. The common core of FTPL algorithms consists in
adding random perturbations to the estimates of rewards of each arm prior to comput-
ing the current “the best arm” (or “leader”). However, the estimates used are different in
the two settings: stochastic setting uses sample means and adversarial setting uses inverse
probability weighted estimates.

For details for bandit problems, there are several references on bandit theory, and we
provide a few; Bubeck et al. (2012); Slivkins (2019) and Lattimore and Szepesvári (2020).

2.2 Stochastic linear bandit problems

Linear bandits are an extension of multi-armed bandits where the reward has linear struc-
ture with a finite-dimensional feature associated with each arm. Then an agent repeatedly
makes decisions based on user or patient information with the goal of maximizing cumu-
lative rewards. Such problems have numerous applications including online personaliza-
tion for recommendation systems (Li et al., 2010) and advertisement placement (Chapelle
et al., 2014), mobile health (Tewari and Murphy, 2017), adaptive clinical trials (Woodroofe,
1979), and dynamic pricing (Besbes and Zeevi, 2009). For instance, in online personaliza-
tion problems, we might serve content based on user history and demographic information
with the goal of maximizing user engagement with this recommendation service.

In this section, we introduce both stationary and non-stationary setup for stochastic
linear bandit problems.

2.2.1 Stationary setup

In stationary stochastic linear bandit, a learner chooses an action Xt from a given action
set Xt ⊂ Rd in every round t, and he subsequently observes a reward Yt = 〈Xt, θ

?〉 + ηt

where θ? ∈ Rd is an unknown parameter and ηt is a conditionally 1-subGaussian random
variable. For simplicity, assume that ‖θ?‖2 ≤ 1 and, for all x ∈ Xt, ‖x‖2 ≤ 1, and thus
|〈x, θ?〉|2 ≤ 1.

As a measure of evaluating a learner, the regret is defined as the difference between re-
wards the learner would have received had it played the best in hindsight, and the rewards
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actually received. Therefore, minimizing the regret is equivalent to maximizing the ex-
pected cumulative reward. Denote the best action in a round t as x?t = arg maxx∈Xt〈x, θ?〉
and the expected regret as

E[R(T )] = E
[ T∑
t=1

[〈x?t , θ?〉 − 〈Xt, θ
?〉]
]
.

2.2.2 Non-stationary setup

In each round t ∈ [T ], an action set Xt ∈ Rd is given to the learner and it has to choose an
action Xt ∈ Xt. Then, the reward Yt = 〈Xt, θ

?
t 〉+ ηt is observed to the learner where θ?t ∈

Rd is an unknown time-varying parameter and ηt is a conditionally 1-subGaussian random
variable. The non-stationary assumption allows unknown parameter θ?t to be time-variant
within total variation budgetBT =

∑T−1
t=1 ‖θ?t −θ?t+1‖2. It is a nice way of quantifying time-

variations of θ?t in that it covers both slowly-changing and abruptly-changing environments.
For simplicity, assume ‖θ?t ‖2 ≤ 1, for all x ∈ Xt, ‖x‖2 ≤ 1, and thus |〈x, θ?t 〉|2 ≤ 1.

In a similar way to stationary setting, denote the best action in a round t as x?t =

arg maxx∈Xt〈x, θ?t 〉 and denote the expected dynamic regret as

E[R(T )] = E
[ T∑
t=1

[〈x?t , θ?t 〉 − 〈Xt, θ
?
t 〉]
]

where Xt is chosen action at time t. The goal of the learner is to minimize the expected
dynamic regret.

2.3 PAC learning

Though we consider the settings beyond binary classification such as multi-class classifica-
tion and regression problems in chapter 7, the literature on PAC learning is vast and includes
several books (Shalev-Shwartz and Ben-David, 2014; Vapnik, 2013). They provided details
on learning framework, VC dimension, and PAC learnability for binary classification.

In multi-class classification problems with K ≥ 2 classes, we let X be the input
space and Y = [K] , {1, 2, · · · , K} be the output space, and the standard zero-one loss

`0−1(ŷ; y) = I(ŷ 6= y) is considered.
The regression problem is similar to the classification problem, except that the la-

bel becomes continuous, Y = [−1, 1], and the goal is to learn a real-valued function
f : X → Y that approximates well labels of future instances. We consider the absolute
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loss `abs(ŷ; y) = |ŷ − y| in this setting. Results under the absolute loss can be generalized
to any other Lipschitz losses with modified rates.

Let X be an input space, Y be an output space, and D be an unknown distribution
over X × Y . A hypothesis is a function mapping from X to Y . The population loss

of a hypothesis h : X → Y with respect to a loss function ` is defined by lossD(h) =

E(x,y)∼D
[
`
(
h(x); y

)]
. We also define the empirical loss of a hypothesis h with respect to

a loss function ` and a sample S =
(
(xi, yi)

)
1:n

as lossS(h) = 1
n

∑n
i=1 `

(
h(xi); yi

)
. The

distribution D is said to be realizable with respect to H if there exists h? ∈ H such that
lossD(h?) = 0.

Definition 2.3.1 (PAC learning). A hypothesis classH is PAC learnable with sample com-
plexity m(α, β) if there exists an algorithm A such that for any H-realizable distribution
D over X × Y , an accuracy and confidence parameters α, β ∈ (0, 1), if A is given input
samples S =

(
(xi, yi)

)
1:m
∼ Dm such that m ≥ m(α, β), then it outputs a hypothesis

h : X → Y satisfying lossD(h) ≤ α with probability at least 1 − β. A learner which
always returns hypotheses inside the class H is called a proper learner, otherwise is called
an improper learner.

2.4 Differential privacy

Differential privacy (DP), a standard notion of statistical data privacy, was introduced to
study data analysis mechanism that do not reveal too much information on any single sam-
ple in a dataset. There are several literature on differential privacy, and they include the
following books; Dwork et al. (2014), and Li et al. (2016).

Definition 2.4.1 (Differential privacy (Dwork et al., 2014)). Data samples S, S ′ ∈ (X×Y)n

are called neighboring if they differ by exactly one example. A randomized algorithm
A : (X × Y)n → YX is (ε, δ)-differentially private if for all neighboring data samples
S, S ′ ∈ (X × Y)n, and for all measurable sets T of outputs,

P
(
A(S) ∈ T

)
≤ eε · P

(
A(S ′) ∈ T

)
+ δ.

The probability is taken over the randomness of A. When δ = 0 we say that A preserves
pure differential privacy, otherwise (when δ > 0) we say that A preserves approximate
differential privacy.

Combining the requirements of PAC and DP learnability yields the definition of private
PAC learner.
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Definition 2.4.2 (Private PAC learning (Kasiviswanathan et al., 2011)). A hypothesis class
H is (ε, δ)-differentially private PAC learnable with sample complexitym(α, β) if it is PAC
learnable with sample complexity m(α, β) by an algorithm A which is (ε, δ)-differentially
private.

2.5 Online learning

The online learning problem can be viewed as a repeated game between a learner and an
adversary. The literature on this subject is vast and includes several books, e.g. Cesa-
Bianchi and Lugosi (2006); Shalev-Shwartz and Ben-David (2014), and Hazan (2019).

Let T be a time horizon and H ⊂ YX be a class of predictors over a domain X . At
time t, the adversary chooses a pair (xt, yt) ∈ X ×Y , and the learner observes the instance
xt, predicts a label ŷt ∈ Y , and finally observes the loss `

(
ŷt; yt

)
. This work considers the

full-information setting where the learner receives the true label information yt. The goal
is to minimize the regret, namely the cumulative loss that the learner actually observed
compared to the best prediction in hindsight:

T∑
t=1

`
(
ŷt; yt

)
− min

h?∈H

T∑
t=1

`
(
h?(xt); yt

)
.

A class H is online learnable if for every T , there is an algorithm that achieves sub-linear
regret o(T ) against any sequence of T instances.

The Littlestone dimension is a combinatorial parameter that exactly characterizes on-
line learnability for binary hypothesis classes (Ben-David et al., 2009; Littlestone, 1988).
Daniely et al. (2015) further extended this to the multi-class setting. We need the notion
of mistake trees to define this complexity measure. A mistake tree is a binary tree whose
internal nodes are labeled by elements of X . Given a node x, its descending edges are
labeled by distinct k, k′ ∈ Y . Then any root-to-leaf path can be expressed as a sequence of
instances

(
(xi, yi)

)
1:d

, where xi represents the i-th internal node in the path, and yi is the
label of its descending edge in the path. We say that a tree T is shattered by H if for any
root-to-leaf path

(
(xi, yi)

)
1:d

of T , there is h ∈ H such that h(xi) = yi for all i ≤ d. The
Littlestone dimension of multi-class hypothesis class H, Ldim(H), is the maximal depth
of any H-shattered mistake tree. Just like binary classification, a set of MC hypotheses H
is online learnable if and only if Ldim(H) is finite.

The (sequential) fat-shattering dimension is the scale-sensitive complexity measure for
real-valued function classes (Rakhlin et al., 2015). A mistake tree for real-valued function
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class F is a binary tree whose internal nodes are labeled by (x, s) ∈ X × Y , where s is
called a witness to shattering. Any root-to-leaf path in a mistake tree can be expressed
as a sequence of tuples

(
(xi, εi)

)
1:d

, where xi is the label of the i-th internal node in the
path, and εi = +1 if the (i + 1)-th node is the right child of the i-th node, and otherwise
εi = −1 (for the leaf node, εd can take either value). A tree T is γ-shattered by F if for
any root-to-leaf path

(
(xi, εi)

)
1:d

of T , there exists f ∈ F such that εi (f(xi)− si) ≥ γ/2

for all i ≤ d. The fat-shattering dimension at scale γ, denoted by fatγ(F), is the largest d
such that F γ-shatters a mistake tree of depth d. For any function class F ⊂ [−1, 1]X , F
is online learnable in the supervised setting under the absolute loss if and only if fatγ(F)

is finite for any γ > 0 (Rakhlin et al., 2015).
The (sequential) Pollard pseudo-dimension is a scale-free fat-shattering dimension for

real-valued function classes. For every f ∈ F , we define a binary function Bf : X ×
Y → {−1,+1} by Bf (x, s) = sign (f(x)− s) and let F+ = {Bf | f ∈ F}. Then
we define the Pollard pseudo-dimension by Pdim(F) = Ldim(F+). It is easy to check
that fatγ(F) ≤ Pdim(F) for all γ. That being said, finite Pollard pseudo-dimension is
a sufficient condition for online learnability but not a necessary condition (e.g., bounded
Lipschitz functions on [0,1] separate the two notions).

2.6 Additional notation

We define a few functions in a recursive manner. The tower function twrt and the iterated

logarithm log(m) are defined respectively as

twrt(x) =

x if t = 0,

2twrt−1(x) if t > 0,
log(m) x =

log x if m = 1,

log(m−1) log x if m > 1.

Lastly, we use log∗ x to denote the minimal number of recursions for the iterated logarithm
to return the value less than or equal to one:

log∗ x =

0 if x ≤ 1,

1 + log∗ log x if x > 1.
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CHAPTER 3

Perturbation Method in Stochastic Multi-armed
Bandit Problems

In this chapter we investigate the optimality of perturbation based algorithms in the stochas-
tic multi-armed bandit problems. We propose FTPL algorithms for stochastic bandits and
provide a unified regret analysis for both sub-Weibull and bounded perturbations when re-
wards are sub-Gaussian. Our bounds are instance optimal for sub-Weibull perturbations
with parameter 2 that also have a matching lower tail bound, and all bounded support per-
turbations where there is sufficient probability mass at the extremes of the support.

Since the Uniform and Rademacher distribution are instances of these bounded sup-
port perturbations, one of our results is a regret bound for a randomized version of UCB
where the algorithm picks a random number in the confidence interval or randomly chooses
between lower and upper confidence bounds instead of always picking the upper bound.

This chapter is mainly motivated by Thompson sampling (Thompson, 1933), one of
the standard algorithms in stochastic settings. Especially, our analysis relies on the simple
but powerful observation that Thompson sampling with Gaussian priors and rewards can
also be interpreted as a perturbation algorithm with Gaussian perturbations. We are able
to generalize both the upper bound and lower bound of Agrawal and Goyal (2013a) in two
respects; (1) from the special Gaussian perturbation to general sub-Weibull or bounded
perturbations, and (2) from the special Gaussian rewards to general sub-Gaussian rewards.
We also provide a lower bound for the regret of this FTPL algorithm.

For our analysis, we assume, without loss of generality, that arm 1 is optimal, µ1 =

maxi∈[K] µi, and the sub-optimality gap is denoted as ∆i = µ1 − µi. Let µ̂i(t) be the
average reward received from arm i after round t written formally as µ̂i(t) =

∑t
s=1 I{As =

i}Xs/Ti(t) where Ti(t) =
∑t

s=1 I{As = i} is the number of times arm i has been pulled
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after round t. The regret for stochastic bandits can be decomposed into

R(T ) =
K∑
i=1

∆iE[Ti(T )].

The reward distributions are generally assumed to be sub-Gaussian with parameter 1 (Lat-
timore and Szepesvári, 2020).

Definition 3.0.1 (sub-Gaussian). A random variableZ with mean µ = E[Z] is sub-Gaussian
with parameter σ > 0 if it satisfies P(|Z − µ| ≥ t) ≤ exp(−t2/(2σ2)) for all t ≥ 0.

Lemma 3.0.1 (Hoeffding bound of sub-Gaussian (Hoeffding, 1994)). Suppose Zi, i ∈ [n]

are i.i.d. random variables with E(Zi) = µ and sub-Gaussian with parameter σ. Then

P(Z̄n − µ ≥ t) ∨ P(Z̄n − µ ≤ −t) ≤ exp(−nt2/(2σ2)) for all t ≥ 0, where Z̄n =∑n
i=1 Zi/n.

3.1 Upper confidence bound and Thompson sampling

The standard algorithms in stochastic bandit are upper confidence bound (UCB1) (Auer,
2002) and Thompson sampling (Thompson, 1933). The former algorithm is constructed
to compare the largest plausible estimate of mean for each arm based on the optimism in
the face of uncertainty so that it would be deterministic in contradistinction to the latter
one. At time t+1, UCB1 chooses an action At+1 by maximizing upper confidence bounds,
UCBi(t) = µ̂i(t) +

√
2 log T/Ti(t). Regarding the instance-dependent regret of UCB1,

there exists some universal constant C > 0 such that

R(T ) ≤ C
∑
i:∆i>0

(∆i + log T/∆i).

Thompson sampling is a Bayesian solution based on randomized probability matching
approach (Scott, 2010). Given the prior distribution Q0, at time t+ 1, it computes posterior
distribution Qt based on observed data, samples νt from posterior Qt, and then chooses
the arm At+1 = arg maxi∈[k] µi(νt). In Gaussian Thompson sampling where the Gaussian
rewards N (µi, 1) and the Gaussian prior distribution for each µi with mean µ0 and infinite
variance are considered, the policy from Thompson sampling is to choose an index that
maximizes θi(t) randomly sampled from Gaussian posterior distribution,N (µ̂i(t), 1/Ti(t))

as stated in Alg.1-(1). Also, its regret bound is restated in Theorem 3.1.1.
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Algorithm 1 Randomized probability matching algorithms via perturbation

Initialize: Ti(0) = 0, µ̂i(0) = 0 for all i ∈ [K]
for t = 1 to T do

for i = 1 to K do
(1) Gaussian Thompson sampling :θi(t− 1) ∼ N

(
µ̂i(t− 1), 1

1∨Ti(t−1)

)
(2) FTPL via unbounded perturbation : θi(t− 1) = µ̂i(t− 1) + 1√

1∨Ti(t−1)
· Zit

where Zits are randomly sampled from unbounded Z.

(3) FTPL via bounded perturbation : θi(t− 1) = µ̂i(t− 1) +
√

(2+ε) log T
1∨Ti(t−1)

· Zit
where Zits are randomly sampled from Z ∈ [−1, 1].

end for
Learner chooses At = arg maxi∈[K] θi(t− 1) and receives the reward of Xt ∈ [0, 1]

Update : µ̂At(t) =
µ̂At (t−1)·TAt (t−1)+Xt

TAt (t−1)+1
, TAt(t) = TAt(t− 1) + 1.

end for

Theorem 3.1.1 (Theorem 3 (Agrawal and Goyal, 2013a)). Assume that reward distribution

of each arm i is Gaussian with mean µi and unit variance. Thompson sampling policy via

Gaussian prior defined in Alg.1-(1) has the following instance-dependent and independent

regret bounds, for C ′ > 0,

R(T ) ≤ C ′
∑
∆i>0

(
log(T∆2

i )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT logK).

3.1.1 Viewpoint of follow-the-perturbed-leader

The more generic view of Thompson sampling is via the idea of perturbation. We bring an
interpretation of viewing this Gaussian Thompson sampling as follow-the-perturbed-leader
(FTPL) algorithm via Gaussian perturbation (Lattimore and Szepesvári, 2020). If Gaussian
random variables θi(t) are decomposed into the average mean reward of each arm µ̂i(t) and
scaled Gaussian perturbation ηit ·Zit where ηit = 1/

√
Ti(t), Zit ∼ N(0, 1). In a round t+1,

the FTPL algorithm chooses the action according to

At+1 = arg max
i∈[K]

µ̂i(t) + ηit · Zit.

3.2 Follow-the-perturbed-leader

We show that the FTPL algorithm with Gaussian perturbation under Gaussian reward
setting can be extended to sub-Gaussian rewards as well as families of sub-Weibull and
bounded perturbations. The sub-Weibull family is an interesting family in that it includes
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well known families like sub-Gaussian and sub-Exponential as special cases. We propose
perturbation based algorithms via sub-Weibull and bounded perturbation in Alg.1-(2), (3),
and their regrets are analyzed in Theorem 3.2.1 and 3.2.2.

Definition 3.2.1 (sub-Weibull (Wong et al., 2019)). A random variable Z with mean µ =

E[Z] is sub-Weibull (p) with σ > 0 if it satisfies P(|Z − µ| ≥ t) ≤ Ca exp(−tp/(2σp)) for
all t ≥ 0.

Theorem 3.2.1 (FTPL via sub-Weibull perturbation, Proof in Section A.1). Assume that

reward distribution of each arm i is 1-sub-Gaussian with mean µi, and the sub-Weibull (p)

perturbation Z with parameter σ and E[Z] = 0 satisfies the following anti-concentration

inequality,

P(|Z| ≥ t) ≥ exp(−tq/2σq)/Cb, for t ≥ 0 (3.1)

Then the follow-the-perturbed-leader algorithm viaZ in Alg.1-(2) has the following instance-

dependent and independent regret bounds, for p ≤ q ≤ 2 (if q = 2, σ ≥ 1) and

C ′′ = C(σ, p, q) > 0,

R(T ) ≤ C ′′
∑
∆i>0

([
log(T∆2

i )
]2/p

/∆i + ∆i

)
, R(T ) ≤ O(

√
KT (logK)1/p). (3.2)

Note that the parameters p and q can be chosen from any values p ≤ q ≤ 2, and the
algorithm can achieve smaller regret bound as p becomes larger. For nice distributions such
as Gaussian and double-exponential, the parameters p and q can be matched by 2 and 1,
respectively.

Corollary 3.2.1 (FTPL via Gaussian perturbation). Assume that reward distribution of each

arm i is 1-sub-Gaussian with mean µi. The follow-the-perturbed-leader algorithm via

Gaussian perturbation Z with parameter σ and E[Z] = 0 in Alg.1-(2) has the following

instance-dependent and independent regret bounds, for C ′′ = C(σ, 2, 2) > 0 and σ ≥ 1,

R(T ) ≤ C ′′
∑
∆i>0

(
log(T∆2

i )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT logK). (3.3)

Failure of bounded perturbation Any perturbation with bounded support cannot yield
an optimal FTPL algorithm. For example, in a two-armed bandit setting with µ1 = 1

and µ2 = 0, rewards of each arm i are generated from Gaussian distribution with mean
µi and unit variance and perturbation is uniform with support [−1, 1]. In the case where
we have T1(10) = 1, T2(10) = 9 during first 10 times, and average mean rewards are
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µ̂1 = −1 and µ̂2 = 1/3, then perturbed rewards are sampled from θ1 ∼ U [−2, 0] and
θ2 ∼ U [0, 2/3]. This algorithm will not choose the first arm and accordingly achieve a
linear regret. To overcome this limitation of bounded support, we suggest another FTPL
algorithm via bounded perturbation by adding an extra logarithmic term in T as stated in
Alg.1-(3).

Theorem 3.2.2 (FTPL algorithm via bounded support perturbation, Proof in Section A.3).
Assume that reward distribution of each arm i is 1-sub-Gaussian with mean µi, the per-

turbation distribution Z with E[Z] = 0 lies in [−1, 1] and for any ε > 0, there exists

0 < MZ,ε < ∞ s.t. P
(
Z ≤

√
2/(2 + ε)

)
/P
(
Z ≥

√
2/(2 + ε)

)
= MZ,ε. Then the follow-

the-perturbed-leader algorithm via Z in Alg.1-(3) has the following instance-dependent

and independent regret bounds, for C ′′′ > 0 independent of T,K and ∆i,

R(T ) ≤ C ′′′
∑
∆i>0

(
log(T )/∆i + ∆i

)
, R(T ) ≤ O(

√
KT log T ). (3.4)

Randomized confidence bound algorithm Theorem 3.2.2 implies that the optimism
embedded in UCB can be replaced by simple randomization. Instead of comparing upper
confidence bounds, our modification is to compare a value randomly chosen from con-
fidence interval or between lower and upper confidence bounds by introducing uniform
U [−1, 1] or Rademacher perturbation R{−1, 1} in UCB1 algorithm with slightly wider
confidence interval,

At+1 = arg max
i∈[K]

µ̂i(t) +
√

(2 + ε) log T/Ti(t) · Zit.

These FTPL algorithms via Uniform and Rademacher perturbations can be regarded as a
randomized version of UCB algorithm, which we call the RCB (randomized confidence
bound) algorithm, and they also achieve the same regret bound as that of UCB1. The RCB
algorithm is meaningful in that it can be arrived at from two different perspectives, either
as a randomized variant of UCB or by replacing the Gaussian distribution with Uniform in
Gaussian Thompson Sampling.

3.2.1 Regret lower bound

The regret lower bound of the FTPL algorithm in Alg.1-(2) is built on the work of Agrawal
and Goyal (2013a). Theorem 3.2.3 states that the regret lower bound depends on the lower
bound of the tail probability of perturbation. As special cases, FTPL algorithms via Gaus-
sian (q = 2) and Double-exponential (q = 1) make the lower and upper regret bounds
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matched, Θ(
√
KT (logK)1/q).

Theorem 3.2.3 (Regret lower bound, Proof in Section A.4). If the perturbation Z with

E[Z] = 0 has the lower bound of tail probability as P(|Z| ≥ t) ≥ exp[−tq/(2σq)]/Cb
for t ≥ 0, σ > 0, the follow-the-perturbed-leader algorithm via Z has the lower bound of

expected regret, Ω(
√
KT (logK)1/q).

3.3 Numerical experiments

We present some experimental results with perturbation based algorithms (Alg.1-(2),(3))
and compare them to the UCB1 algorithm in the simulated stochastic K-armed bandit. In
all experiments, the number of arms (K) is 10, the number of different episodes is 1000,
and true mean rewards (µi) are generated from U [0, 1] (Kuleshov and Precup, 2014). We
consider the following four examples of 1-sub-Gaussian reward distributions that will be
shifted by true mean µi; (a) Uniform, U [−1, 1], (b) Rademacher, R{−1, 1}, (c) Gaus-
sian, N (0, 1), and (d) Gaussian mixture, W · N (−1, 1) + (1 −W ) · N (1, 1) where W ∼
Bernoulli(1/2). Under each reward setting, we run five different algorithms; UCB1, RCB
with Uniform and Rademacher, and FTPL via Gaussian N (0, σ2) and Double-exponential
(σ) after we use grid search to tune confidence levels for confidence based algorithms and
the parameter σ for FTPL algorithms. All tuned confidence level and parameter are speci-
fied in Figure 3.1. We compare the performance of perturbation based algorithms to UCB1
in terms of average regret R(t)/t, which is expected to more rapidly converge to zero if the
better algorithm is used.1

The average regret plots in Figure 3.1 have the similar patterns that FTPL algorithms
via Gaussian and Double-exponential consistently perform the best after parameters tuned,
while UCB1 algorithm works as well as them in all rewards except for Rademacher reward.
The RCB algorithms with Uniform and Rademacher perturbations are slightly worse than
UCB1 in early stages, but perform comparably well to UCB1 after enough iterations. In
the Rademacher reward case, which is discrete, RCB with Uniform perturbation slightly
outperforms UCB1.

Note that the main contribution of this chapter is to establish theoretical foundations
for a large family of perturbation based algorithms (including those used in this section).
Our numerical results are not intended to show the superiority of perturbation methods but
to demonstrate that they are competitive with Thompson Sampling and UCB. Note that in
more complex bandit problems, sampling from the posterior and optimistic optimization

1https://github.com/Kimbaekjin/Perturbation-Methods-StochasticMAB
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can prove to be computationally challenging. Accordingly, this chapter paves the way for
designing efficient perturbation methods in complex settings, such as stochastic linear ban-
dits and stochastic combinatorial bandits, that have both computational advantages and low
regret guarantees. Furthermore, perturbation approaches based on the Double-exponential
distribution are of special interest from a privacy viewpoint since that distribution figures
prominently in the theory of differential privacy (Dwork et al., 2014; Tossou and Dimi-
trakakis, 2016, 2017).

(a) Uniform Reward, U [−1, 1] (b) Rademacher Reward,R{−1, 1}

(c) Gaussian Reward, N (0, 1) (d) Gaussian Mixture, 0.5 ·N (−1, 1)+0.5 ·N (1, 1)

Figure 3.1: Average regret for stochastic bandit algorithms in four reward settings
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CHAPTER 4

Perturbation Method in Adversarial
Multi-armed Bandit Problems

In this chapter we investigate the optimality of perturbation based algorithms in the ad-
versarial multi-armed bandit problems. We study two major families of online learning,
follow-the-Regularized-leader (FTRL) and follow-the-perturbed-leader (FTPL), as ways
of smoothings and introduce the gradient based prediction algorithm (GBPA) family for
solving the adversarial multi-armed bandit problem. Then, we mention an important open
problem regarding existence of an optimal FTPL algorithm.

The main contributions of this chapter are theoretical results showing that two natural
approaches to solving the open problem are not going to work. (A) One cannot simply find
a perturbation that is exactly equivalent to Tsallis entropy. This is surprising since Shannon
entropy does have an exact equivalent perturbation, viz. Gumbel. (B) One cannot simply
do a better analysis of perturbations used before (Abernethy et al., 2015) and plug the
results into their general regret bound to eliminate the extra O(

√
logK) factor. In proving

the first barrier, we use a fundamental result in discrete choice theory. For the second
barrier, we rely on tools from extreme value theory. We also make some conjectures on
what alternative ideas might work.

4.1 FTRL and FTPL as two types of smoothings and an
open problem

Following previous work (Abernethy et al., 2015), we consider a general algorithmic frame-
work, Alg.2. There are two main ingredients of GBPA. The first ingredient is the smoothed
potential Φ̃ whose gradient is used to map the current estimate of the cumulative reward
vector to a probability distribution pt over arms. The second ingredient is the construction
of an unbiased estimate ĝt of the rewards vector using the reward of the pulled arm only
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by inverse probability weighting. This step reduces the bandit setting to full-information
setting so that any algorithm for the full-information setting can be immediately applied to
the bandit setting.

Algorithm 2 Gradient-based prediction algorithm in bandit setting

Input: GBPA(Φ̃) is a differentiable convex function such that ∇Φ̃ ∈ ∆K−1 and ∇iΦ̃ >
0,∀i ∈ [K]
Initialize Ĝ0 = 0
for t = 1 to T do

A reward vector gt ∈ [0, 1]K is chosen by environment
Learner chooses At randomly sampled from the distribution pt = ∇Φ̃(Ĝt−1)
Learner receives the reward of chosen arm gt,At
Learner estimates reward vector ĝt =

gt,At
pt,At

eAt

Update : Ĝt = Ĝt−1 + ĝt
end for

If we did not use any smoothing and directly used the baseline potential Φ(G) =

maxw∈∆K−1
〈w,G〉, we would be running follow-the-leader (FTL) as our full informa-

tion algorithm. It is well known that FTL does not have good regret guarantees (Hazan
et al., 2016). Therefore, we need to smooth the baseline potential to induce stability in
the algorithm. It turns out that two major algorithm families in online learning, namely
follow-the-regularized-leader (FTRL) and follow-the-perturbed-leader (FTPL) correspond
to two different types of smoothings.

The smoothing used by FTRL is achieved by adding a strongly convex regularizer
in the dual representation of the baseline potential. That is, we set Φ̃(G) = R?(G) =

maxw∈∆K−1
〈w,G〉 − ηR(w), where R is a strongly convex function. The well known

exponential weights algorithm (Freund and Schapire, 1997) uses the Shannon entropy reg-
ularizer, RS(w) =

∑K
i=1wi log(wi). GBPA with the resulting smoothed potential be-

comes the EXP3 algorithm (Auer et al., 2002) which achieves a near-optimal regret bound
O(
√
KT logK) just logarithmically worse compared to the lower bound Ω(

√
KT ). This

lower bound was matched by implicit normalized forecaster with polynomial function
(Poly-INF algorithm) (Audibert and Bubeck, 2009, 2010) and later work (Abernethy et al.,
2015) showed that Poly-INF algorithm is equivalent to FTRL algorithm via the Tsallis en-
tropy regularizer, RT,α(w) =

1−
∑K
i=1 w

α
i

1−α for α ∈ (0, 1). It converges to Shannon entropy
as α approaches to 1, which is why Tsallis Entropy is considered as a generalization of
Shannon entropy. Therefore, FTRL via Tsallis entropy generalizes EXP3.

An alternate way of smoothing is stochastic smoothing which is what is used by FTPL
algorithms. It injects stochastic perturbations to the cumulative rewards of each arm and
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then finds the best arm. Given a perturbation distribution D and Z = (Z1, · · · , ZK) con-
sisting of i.i.d. draws fromD, the resulting stochastically smoothed potential is Φ̃(G;D) =

EZ1,··· ,ZK∼D [maxw∈∆K−1
〈w,G + ηZ〉]. Its gradient is

pt = ∇Φ̃(Gt;D) = EZ1,··· ,ZK∼D[ei? ] ∈ ∆K−1

where i? = arg maxiGt,i + ηZi.
In Section 4.3, we recall the general regret bound proved by Abernethy et al. (2015) for

distributions with bounded hazard rate. They showed that a variety of natural perturbation
distributions can yield a near-optimal regret bound of O(

√
KT logK). However, none of

the distributions they tried yielded the minimax optimal rate O(
√
KT ). Since FTRL with

Tsallis entropy regularizer can achieve the minimax optimal rate in adversarial bandits, the
following is an important unresolved question regarding the power of perturbations.

Open Problem Is there a perturbationD such that GBPA with a stochastically smoothed

potential using D achieves the optimal regret bound O(
√
KT ) in adversarial K-armed

bandits?

Given what we currently know, there are two very natural approaches to resolving the
open question in the affirmative.

• Approach 1: Find a perturbation so that we get the exactly same choice probability
function as the one used by FTRL via Tsallis entropy.

• Approach 2: Provide a tighter control on expected block maxima of random vari-
ables considered as perturbations by Abernethy et al. (2015).

4.2 Barrier against first approach: discrete choice theory

The first approach is motivated by a folklore observation in online learning theory, namely,
that the exponential weights algorithm (Freund and Schapire, 1997) can be viewed as FTRL
via Shannon entropy regularizer or as FTPL via a Gumbel-distributed perturbation. Thus,
we might hope to find a perturbation which is an exact equivalent of the Tsallis entropy
regularizer. Since FTRL via Tsallis entropy is optimal for adversarial bandits, finding such
a perturbation would immediately settle the open problem.

The relation between regularizers and perturbations has been theoretically studied in
discrete choice theory (McFadden, 1981; Hofbauer and Sandholm, 2002). For any pertur-
bation, there is always a regularizer which gives the same choice probability function. The
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converse, however, does not hold. The Williams-Daly-Zachary Theorem provides a char-
acterization of choice probability functions that can be derived via additive perturbations.

Theorem 4.2.1 (Williams-Daly-Zachary Theorem (McFadden, 1981)). Let C : RK → SK
be the choice probability function and derivative matrix

DC(G) =

(
∂Cᵀ

∂G1

,
∂Cᵀ

∂G2

, · · · , ∂C
ᵀ

∂GK

)ᵀ

.

The following 4 conditions are necessary and sufficient for the existence of perturbations Zi
such that this choice probability function C can be written inCi(G) = P(arg maxj∈[K] Gj+

ηZj = i) for i ∈ [K].

1. DC(G) is symmetric

2. DC(G) is positive definite

3. DC(G) · 1 = 0

4. All mixed partial derivatives of C are positive, (−1)j
∂jCi0

∂Gi1 ···∂Gij
> 0 for each j =

1, ..., K − 1.

We now show that if the number of arms is greater than three, there does not exist
any perturbation exactly equivalent to Tsallis entropy regularization. Therefore, the first
approach to solving the open problem is doomed to failure.

Theorem 4.2.2 (Proof in Section B.1). When K ≥ 4, there is no stochastic perturbation

that yields the same choice probability function as the Tsallis entropy regularizer.

4.3 Barrier against second approach: extreme value the-
ory

The second approach is built on the work of Abernethy et al. (2015) who provided the-state-
of-the-art perturbation based algorithm for adversarial multi-armed bandits. The frame-
work proposed in this work covered all distributions with bounded hazard rate and showed
that the regret of GBPA via perturbation Z ∼ D with a bounded hazard is upper bounded
by trade-off between the bound of hazard rate and expected block maxima as stated below.

Theorem 4.3.1 (Theorem 4.2 (Abernethy et al., 2015)). Assume the support of D is un-

bounded in positive direction and hazard rate hD(x) = f(x)
1−F (x)

is bounded, then the ex-

pected regret of GBPA(Φ̃) in adversarial bandit is bounded by η · E[MK ] + K suphD
η

T ,
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where suphD = supx:f(x)>0 hD(x). The optimal choice of η leads to the regret bound

2
√
KT · suphD · E[MK ] where MK = maxi∈[K] Zi.

Abernethy et al. (2015) considered several perturbations such as Gumbel, Gamma,
Weibull, Fréchet and Pareto. The best tuning of distribution parameters (to minimize upper

bounds on the product suphD · E[MK ]) always leads to the bound O(
√
KT logK), which

is tantalizingly close to the lower bound but does not match it. It is possible that some of
their upper bounds on expected block maxima E[MK ] are loose and that we can get closer,
or perhaps even match, the lower bound by simply doing a better job of bounding expected
block maxima (we will not worry about supremum of the hazard since their bounds can
easily be shown to be tight, up to constants, using elementary calculations in Appendix
B.2). We show that this approach will also not work by characterizing the asymptotic (as
K → ∞) behavior of block maxima of perturbations using extreme value theory. The
statistical behavior of block maxima, MK = maxi∈[K] Zi, where Zi’s is a sequence of
i.i.d. random variables with distribution function F can be described by one of three ex-
treme value distributions: Gumbel, Fréchet and Weibull (Coles et al., 2001; Resnick, 2013).
Then, the normalizing sequences {aK > 0} and {bK} are explicitly characterized (Lead-
better et al., 2012). Under the mild condition, E

(
(MK − bK)/aK

)
→ EZ∼G[Z] = C as

K → ∞ where G is extreme value distribution and C is constant, and the expected block
maxima behave asymptotically as E[MK ] = Θ(C · aK + bK). See Theorem B.2.1-B.2.3 in
Section B.2.1 for more details.

Table 4.1: Asymptotic expected block maximum of five different distributions based on extreme
value theory. Gumbel-type and Fréchet-type are denoted by Λ and Φα respectively. The Gamma
function and the Euler-Mascheroni constant are denoted by Γ(·) and γ respectively.

Distribution Type sup h E[MK]

Gumbel(µ = 0, β = 1) Λ 1 logK + γ + o(1)
Gamma(α, 1) Λ 1 logK + γ + o(logK)
Weibull(α ≤ 1) Λ α (logK)1/α + o((logK)1/α)
Fréchet (α > 1) Φα ∈ ( α

e−1
, 2α) Γ(1− 1/α) ·K1/α

Pareto(xm = 1, α) Φα α Γ(1− 1/α) · (K1/α − 1)

The asymptotically tight growth rates (with explicit constants for the leading term!) of
expected block maximum of some distributions are given in Table 4.1. They match the
upper bounds of the expected block maximum in Table 1 of Abernethy et al. (2015). That
is, their upper bounds are asymptotically tight. Gumbel, Gamma and Weibull distribution
are Gumbel-type (Λ) and their expected block maximum behave as O(logK) asymptot-
ically. It implies that Gumbel type perturbation can never achieve optimal regret bound
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despite bounded hazard rate. Fréchet and Pareto distributions are Fréchet-type (Φα) and
their expected block maximum grows as K1/α. Heuristically, if α is set optimally to logK,
the expected block maxima is independent of K while the supremum of hazard is upper
bounded by O(logK).

Conjecture If there exists a perturbation that achieves minimax optimal regret in adver-

sarial multi-armed bandits, it must be of Fréchet-type.

Fréchet-type perturbations can still possibly yield the optimal regret bound in pertur-
bation based algorithm if the expected block maximum is asymptotically bounded by a
constant and the divergence term in regret analysis of GBPA algorithm can be shown to
enjoy a tighter bound than what follows from the assumption of a bounded hazard rate.

The perturbation equivalent to Tsallis entropy (in two armed setting) is of Fréchet-
type Further evidence to support the conjecture can be found in the connection between
FTRL and FTPL algorithms that regularizer R and perturbation Z ∼ FD are bijective in
two-armed bandit in terms of a mapping betweenFD? andR,R(w)−R(0) = −

∫ w
0
F−1
D? (1−

z)dz, where Z1, Z2 are i.i.d random variables with distribution function, FD, and then
Z1 − Z2 ∼ FD? . The difference of two i.i.d. Fréchet-type distributed random variables is
conjectured to be Fréchet-type. Thus, Tsallis entropy in two-armed setting leads to Fréchet-
type perturbation, which supports our conjecture about optimal perturbations in adversarial
multi-armed bandits. See Section B.3 for more details.
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CHAPTER 5

Randomized Exploration in Stationary
Stochastic Linear Bandits

In this chapter we examine randomized algorithms in stationary stochastic linear bandits
and explicate the role of two perturbation approaches in overcoming conservatism that
UCB-type algorithms chronically suffer from in practice. In one approach, we replace op-
timism with a simple randomization when using confidence sets. In the other, we add ran-
dom perturbations to the current estimate before maximizing the expected reward. These
two approaches result in randomized LinUCB and Gaussian linear Thompson sampling for
stationary linear bandits. We highlight the statistical optimality versus oracle efficiency
trade-off between them.

A learner chooses an action Xt from a given action set Xt ⊂ Rd in every round t, and
he subsequently observes a reward Yt = 〈Xt, θ

?〉 + ηt where θ? ∈ Rd is an unknown pa-
rameter and ηt is a conditionally 1-subGaussian random variable. To learn about unknown
parameter θ? from history Ht−1 = {(Xl, Yl)1≤l≤t−1}, algorithms rely on l2-regularized
least-squares estimate of θ?, θ̂lst , and confidence ellipsoid centered from θ̂lst . We define
θ̂lst = V −1

t,λ

∑t−1
l=1 XlYl, where Vt,λ = λId +

∑t−1
l=1 XlX

T
l and λ is a positive regularization

parameter.

5.1 Randomized exploration

The standard solutions in stationary stochastic linear bandit are optimism based algorithm
(LinUCB, Abbasi-Yadkori et al. (2011)) and linear Thompson sampling (LinTS, Agrawal
and Goyal (2013b)). While the former obtains the theoretically optimal regret bound
Õ(d
√
T ) matched to lower bound Ω(d

√
T ), the latter empirically performs better in spite

of its regret bound
√
d worse than LinUCB (Chapelle and Li, 2011). In finite-arm setting,

the regret bound of Gaussian linear Thompson sampling (Gaussian-LinTS) is improved
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by
√

(logK)/d as a special case of follow-the-perturbed-leader-GLM (FPL-GLM, Kve-
ton et al. (2020)). Also, a series of randomized algorithms for linear bandit were pro-
posed in recent works: linear perturbed history exploration (LinPHE, Kveton et al. (2019))
and randomized linear UCB (RandLinUCB, Vaswani et al. (2020)). They are categorized
in terms of regret bounds, randomness, and oracle access in Table 5.1, where we denote
K = maxt∈[T ] |Xt| in finite-arm setting.

There are two families of randomized algorithms according to the way perturbations
are used. The first algorithm family is designed to choose an action by maximizing the
expected rewards after adding the random perturbation to estimates. Gaussian-LinTS, Lin-
PHE, and FPL-GLM are in this family. But they are limited in that their regret bounds,
Õ(d
√
T logK), depend on the number of arms, and lead to Õ(d3/2

√
T ) regret bounds

when the action set is infinite. The other family including RandLinUCB is constructed by
replacing the optimism with simple randomization when choosing a confidence level to
handle the chronic issue that UCB-type algorithms are too conservative. This randomized
version of LinUCB matches optimal regret bounds of LinUCB as well as the empirical
performance of LinTS.

Table 5.1: Comparison of algorithms in stationary stochastic linear bandits : regret bound, random-
ness, and oracle access

Algorithm Regret bound Randomness Oracle access

LinUCB (Abbasi-Yadkori et al., 2011) Õ(d
√
T ) No No

LinTS (Agrawal and Goyal, 2013b) Õ(d3/2
√
T ) Yes Yes

Gaussian LinTS (Kveton et al., 2020) Õ(d
√
T logK) Yes Yes

LinPHE (Kveton et al., 2019) Õ(d
√
T logK) Yes Yes

RandLinUCB (Vaswani et al., 2020) Õ(d
√
T ) Yes No

Oracle point of view We assume that the learner has access to an algorithm that returns a
near-optimal solution to the offline problem, called an offline optimization oracle. It returns
the optimal action that maximizes the expected reward from a given action space X ⊂ Rd

when a parameter θ ∈ Rd is given as input.

Definition 5.1.1 (Offline optimization oracle). There exists an algorithm, A.M.O., which
when given a pair of action space X ⊂ Rd, and a parameter θ ∈ Rd, computes

A.M.O.(X , θ) = arg max
x∈X
〈x, θ〉.
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Both the non-randomized LinUCB and RandLinUCB are required to compute spectral
norms of all actions ‖x‖V −1

t,λ
in every round so that they cannot be efficiently implemented

with an infinite set of arms. The main advantage of the algorithms in the first family such as
Gaussian-LinTS, LinPHE, and FPL-GLM is that they rely on an offline optimization oracle
in every round t so that the optimal action can be efficiently obtained within polynomial
times from large or even infinite action set.

5.1.1 Improved regret bound of Gaussian LinTS

In FTL-GLM, it is required to generate perturbations and save d-dimensional feature vec-
tors {Xl}t−1

l=1 in order to obtain perturbed estimate θ̃t in every round t, which causes compu-
tation burden and memory issue for storage. However, once perturbations are Gaussian in
the linear model, adding univariate Gaussian perturbations to historical rewards is the same
as perturbing the estimate θ̂t by a multivariate Gaussian perturbation because of its linear
invariance property, and the resulting algorithm is approximately equivalent to Gaussian
linear Thompson sampling (Agrawal and Goyal, 2013b) as follows.

θ̃t = θ̂t + V −1
t,λ

t−1∑
l=1

XlZ
(t)
l , Z

(t)
l ∼ N (0, a2)

≈ θ̂t + V
−1/2
t,λ Z(t), Z(t) ∼ N (0, a2Id) : Gaussian-LinTS.

It naturally implies the regret bound of Gaussian-LinTS is improved by
√

(logK)/d with
finite action sets (Kveton et al., 2020).

5.1.2 Equivalence between Gaussian LinTS and RandLinUCB

Another perspective of Gaussian-LinTS algorithm is that it is equivalent to RandLinUCB
with decoupled perturbations across arms due to linearly invariant property of Gaussian
random variables:

〈x, θ̃t〉 = 〈x, θ̂t〉+ xTV
−1/2
t,λ Z(t), Z(t) ∼ N (0, a2Id)

= 〈x, θ̂t〉+ Zt,x‖x‖V −1
t,λ
, Zt,x ∼ N(0, a2) : Decoupled RandLinUCB.

If perturbations are coupled, we compute the perturbed expected rewards of all actions
using randomly chosen confidence level Zt ∼ N(0, a2) instead of Zt,x. In the decoupled
RandLinUCB where each arm has its own random confidence level, more variations are
generated so that its regret bound have extra logarithmic gap that depends on the number
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of decoupled actions.
In other words, the standard (coupled) RandLinUCB enjoys minimax-optimal regret

bound due to coupled perturbations. However, there is a cost to its theoretical optimality:
it cannot just rely on an offline optimization oracle and thus loses computational efficiency.
We thus have a trade-off between efficiency and optimality described in two design princi-
ples of perturbation based algorithms.
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CHAPTER 6

Randomized Exploration in Non-Stationary
Stochastic Linear Bandits

This chapter considers non-stationary stochastic linear bandit problems. The origin of lin-
ear bandit problems were motivated by applications such as online ad placement with fea-
tures extracted from the ads and website users. In practice, however, users’ preferences of-
ten evolve with time, which leads to interest in the non-stationary variant of linear bandits.
To accommodate time-variation of environments, the reward Yt = 〈Xt, θ

?
t 〉+ηt is observed

to the learner where θ?t ∈ Rd is an unknown time-varying parameter and ηt is a condi-
tionally 1-subGaussian random variable. The non-stationary assumption allows unknown
parameter θ?t to be time-variant within total variation budget BT =

∑T−1
t=1 ‖θ?t − θ?t+1‖2.

In this chapter, we present two randomized algorithms with exponential discounting
weights for non-stationary environment, discounted randomized LinUCB (D-RandLinUCB)
and discounted linear Thompson sampling (D-LinTS) to gracefully adjust to the time-
variation in the true parameter. We explain the trade-off between statistical guarantee and
oracle efficiency in that the former asymptotically achieves dynamic regret Õ(d7/8B

1/4
T T 3/4),

which is the same as that of three mainstream algorithms such as SW-LinUCB (Cheung
et al., 2019), D-LinUCB (Russac et al., 2019), and Restart-LinUCB (Zhao et al., 2020), but
the latter enjoys computational efficiency due to sole reliance on an offline optimization or-
acle for large or infinite action set. However it incurs an extra (logK)3/8 gap in its dynamic
regret bound, where K is the number of actions.

In addition, we run multiple simulation studies based on Criteo live traffic data (Diemert
et al., 2017) to evaluate the empirical performances of D-RandLinUCB and D-LinTS.
We observe that when high dimension and a large set of actions are considered, the two
show outstanding performance in tackling conservatism issue that the non-randomized D-
LinUCB struggles with.
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6.1 Optimism based algorithm

In a stationary stochastic environment where the reward has a linear structure, linear upper
confidence bound algorithm (LinUCB) follows a principle of optimism in the face of uncer-
tainty (OFU). Under this OFU principle, three recent works of Cheung et al. (2019); Russac
et al. (2019); Zhao et al. (2020) proposed sliding window linear UCB (SW-LinUCB), dis-
counted linear UCB (D-LinUCB), and restarting linear UCB (Restart-LinUCB) which are
non-stationary variants of LinUCB to adapt to time-variation of θ?t . First two algorithms
rely on weighted least-squares estimators with equal weights only given to recent w ob-
servations where w is length of a sliding-window, and exponentially discounting weights,
respectively. The last algorithm proceeds in epochs, and is periodically restarted to be
resilient to the drift of underlying parameter θt.

Three non-randomized algorithms based on three different approaches are known to
achieve the dynamic regret bounds Õ(d7/8B

1/4
T T 3/4) using Bandit-over-Bandit (BOB) mech-

anism (Cheung et al., 2019) without the prior information on BT , but share inefficiency
of implementation with LinUCB (Abbasi-Yadkori et al., 2011) in that the computation
of spectral norms of all actions are required. Furthermore, they are built upon the con-
struction of a high-probability confidence ellipsoid for the unknown parameter, and thus
they are deterministic and their confidence ellipsoids become too wide when high di-
mensional features are available. In this section, randomization exploration algorithms,
discounted randomized LinUCB (D-RandLinUCB) and discounted linear Thompson sam-
pling (D-LinTS), are proposed to handle computational inefficiency and conservatism that
both optimism-based algorithms suffer from. The dynamic regret bound, randomness, and
oracle access of algorithms are reported in Table 6.1.

Table 6.1: Comparison of algorithms in non-stationary stochastic linear bandits : regret bound,
randomness, and oracle access

Algorithm Regret bound Randomness Oracle access

D-LinUCB (Russac et al., 2019) O(d
7
8B

1
4
T T

3
4 ) No No

SW-LinUCB (Cheung et al., 2019) O(d
7
8B

1
4
T T

3
4 ) No No

Restart-LinUCB (Zhao et al., 2020) O(d
7
8B

1
4
T T

3
4 ) No No

D-RandLinUCB [Algorithm 3] O(d
7
8B

1
4
T T

3
4 ) Yes No

D-LinTS [Algorithm 4] O(d
7
8 (logK)

3
8B

1
4
T T

3
4 ) Yes Yes
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6.2 Weighted least-squares estimator

First, we study the weighted least-squares estimator with discounting factor 0 < γ < 1. In
the round t, the weighted least-squares estimator is obtained in a closed form,

θ̂wlst = arg max
θ

t−1∑
l=1

γt−l(Yl − 〈Xl, θ〉)2 +
λ

2
‖θ‖2

2 = W−1
t,λ

t−1∑
s=1

γ−lXlYl

where Wt,λ =
∑t−1

l=1 γ
−lXlX

T
l + λγ−(t−1)Id.

Additionally, we define W̃t,λ =
∑t−1

l=1 γ
−2lXlX

T
l + λγ−2(t−1)Id. This form is closely

connected with the covariance matrix of θ̂wlst . For simplicity, we denote Vt = Wt,λW̃
−1
t,λWt,λ.

Lemma 6.2.1 (Weighted least-sqaures confidence ellipsoid, Theorem 1 (Russac et al.,
2019)). Assume the stationary setting where θ?t = θ?. For any δ > 0,

P
(
∀t ≥ 1, ‖θ̂wlst − θ?‖Wt,λW̃

−1
t,λWt,λ

≤ βt
)
≥ 1− δ

where βt =
√
λ+

√
2 log(1/δ) + d log(1 + (1−γ2t)

λd(1−γ2)
).

While Lemma 6.2.1 states that the confidence ellipsoid

Ct = {θ ∈ Rd : ‖θ − θwlst ‖Wt,λW̃
−1
t,λWt,λ

≤ βt}

contains true parameter θ?t with high probability in stationary setting, the true parame-
ter θ?t is not necessarily inside the confidence ellipsoid Ct in the non-stationary setting
because of variation in the parameters. We alternatively define a surrogate parameter

θ̄t = W−1
t,λ (
∑t−1

l=1 γ
−lXlX

T
l θ

?
l + λγ−(t−1)θ?t ), which belongs to Ct with probability at least

1− δ, which is formally stated in Lemma 6.4.1.

6.3 Randomized exploration

In this section, we propose two randomized algorithms for non-stationary stochastic linear
bandits, discounted randomized LinUCB (D-RandLinUCB) and discounted linear Thomp-
son sampling (D-LinTS). To gracefully adapt to environmental variation, the weighted
method with exponentially discounting factor is directly applied to both RandLinUCB and
Gaussian-LinTS, respectively. The random perturbations are injected to D-RandLinUCB
and D-LinTS in different fashions: either by replacing optimism with simple randomization
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in deciding the confidence level or perturbing estimates before maximizing the expected re-
wards.

6.3.1 Discounted randomized linear UCB

Following the optimism in face of uncertainty principle, D-LinUCB (Russac et al., 2019)
chooses an action by maximizing the upper confidence bound of expected reward based
on θ̂wlst and confidence level a. Motivated by the recent work of Vaswani et al. (2020),
our first randomized algorithm in non-stationary linear bandit setting is constructed by
replacing confidence level a with a random variable Zt ∼ D and this non-stationary variant
of RandLinUCB algorithm is called discounted randomized LinUCB (D-RandLinUCB,
Algorithm 3),

D-LinUCB : Xt = arg max
x∈Xt
〈x, θ̂wlst 〉+ a‖x‖V −1

t

D-RandLinUCB : Xt = arg max
x∈Xt
〈x, θ̂wlst 〉+ Zt‖x‖V −1

t
.

Algorithm 3 Discounted randomized linear UCB (D-RandLinUCB)
Input: λ > 0, 0 < δ < 1, 0 < γ < 1, and a > 0
Initialize W = λId, W̃ = λId, b̄ = 0, and θ̂ = 0.
for t = 1 to T do

Randomly sample Zt from a distribution D(δ, a)

Obtain UCB(x) = xT θ̂ + Zt
√
xTW−1W̃W−1x

Xt = arg maxx∈Xt UCB(x)
Play action Xt and receive reward Yt
Update W = γW +XtX

T
t + (1− γ)λId,

W̃ = γ2W̃ +XtX
T
t + (1− γ2)λId,

b̄ = γb̄+XtYt, θ̂ = W−1b̄.
end for

6.3.2 Discounted linear Thompson sampling

The idea of perturbing estimates via random perturbation in LinTS algorithm can be di-
rectly applied to non-stationary setting by replacing θ̂lst and Gram matrix Vt,λ with the
weighted least-squares estimator θ̂wlst and its corresponding matrix Vt = Wt,λW̃

−1
t,λWt,λ.

We call it discounted linear Thompson sampling (D-LinTS, Algorithm 4). The motivation
of D-LinTS arises from its equivalence to D-RandLinUCB with decoupled perturbations
Zx,t for all x ∈ Xt in round t as
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f̃t(x) = 〈x, θ̃wlst 〉 = 〈x, θ̂wlst 〉+ xTW−1
t,λ W̃

1/2
t,λ Z

(t)

= 〈x, θ̂wlst 〉+ Zx,t‖x‖V −1
t

where Z(t) ∼ N (0d, a
2Id), Zx,t ∼ N (0, a2). Perturbations above are decoupled in that

random perturbation are not shared across every arm, and thus they obtain more variation
and accordingly (logK)3/8 larger regret bound than that of D-RandLinUCB algorithm that
is associated with coupled perturbations Zt. By paying a logarithmic regret gap in terms of
K at a cost, the innate perturbation of D-LinTS allows itself to have an offline optimization
oracle access in contrast to D-LinUCB and D-RandLinUCB. Therefore, D-LinTS algorithm
can be efficient in computation even with an infinite action set.

Algorithm 4 Discounted linear Thompson sampling (D-LinTS)
Input: λ > 0, 0 < γ < 1, and a > 0
Initialize W = λId, W̃ = λId, b̄ = 0 and θ̂ = 0.
for t = 1 to T do

Obtain θ̃ = θ̂ +W−1W̃ 1/2Z, Z ∼ N (0, a2Id)
Oracle : Xt = arg maxx∈Xt〈x, θ̃〉
Play action Xt and receive reward Yt
Update W = γW +XtX

T
t + (1− γ)λId,

W̃ = γ2W̃ +XtX
T
t + (1− γ2)λId,

b̄ = γb̄+XtYt, θ̂ = W−1b̄.
end for

6.4 Analysis

We construct a general regret bound for linear bandit algorithm on the top of prior work
of Kveton et al. (2019). The difference from their work is that an action set Xt varies
from time t and can have infinite arms. Also, non-stationary environment is considered
where true parameter θ?t changes within total variation BT . The expected dynamic regret is
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decomposed into surrogate regret and bias arising from total variation.

E[R(T )] =
T∑
t=1

E[〈x?t −Xt, θ
?
t 〉]

=
T∑
t=1

E[〈x?t −Xt, θ̄t〉] +
T∑
t=1

E[〈x?t −Xt, θ
?
t − θ̄t〉]

≤
T∑
t=1

E[〈x?t −Xt, θ̄t〉] + 2
T∑
t=1

‖θ?t − θ̄t‖2

6.4.1 Surrogate instantaneous regret

To bound the surrogate instantaneous regret E[〈x?t −Xt, θ̄t〉], we newly define three events
Ewls, Econc

t , and Eanti
t :

Ewls = {∀(x, t) ∈ X̄T ; |〈x, θ̂wlst − θ̄t〉| ≤ c1‖x‖V −1
t
},

Econc
t = {∀x ∈ Xt; |f̃t(x)− 〈x, θ̂wlst 〉| ≤ c2‖x‖V −1

t
},

Eanti
t = {f̃t(x?t )− 〈x?t , θ̂wlst 〉 > c1‖x?t‖V −1

t
},

where X̄T = {(x, t) : x ∈ Xt, t ∈ [T ]}. The choice of f̃t(x) is made by algorithmic
design, which decides choices on both c1 and c2 simultaneously. In round t, we consider
the general algorithm which maximizes perturbed expected reward f̃t(x) over action space
Xt. The following theorem is a extension of Theorem 1 (Kveton et al., 2019) to the time-
evolving environment.

Theorem 6.4.1. Assume we have λ > 0 and c1, c2 ≥ 1 satisfying P (Ewls) ≥ 1 − p1,

P (Econc
t ) ≥ 1 − p2, and P (Eanti

t ) ≥ p3, and c3 = 2d log( 1
γ
) + 2 d

T
log(1 + 1

dλ(1−γ)
). Let

A be an algorithm that chooses arm Xt = arg maxXt f̃t(x) at time t. Then the expected

surrogate instantaneous regret of A, E[〈x?t −Xt, θ̄t〉] is bounded by

p2 + (c1 + c2)
(
1 +

2

p3 − p2

)
Et
[
‖Xt‖V −1

t

]
.

Proof. Firstly, we newly define ∆x = 〈x?t − x, θ̄t〉 in round t. Given history Ht−1, we
assume that event Ewls holds and let S̄t = {x ∈ Xt : (c1 + c2)‖x‖V −1

t
≥ ∆x and ∆x ≥ 0}

be the set of arms that are under-sampled and worse than x?t given θ̄t in round t. Among
them, let Ut = arg minx∈S̄t ‖x‖V −1

t
be the least uncertain under-sampled arm in round t.

By definition of the optimal arm, x?t ∈ S̄t. The set of sufficiently sampled arms is defined
as St = {x ∈ Xt : (c1 + c2)‖x‖V −1

t
≤ ∆x and ∆x ≥ 0} and let c = c1 + c2. Note that any
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actions x ∈ Xt with ∆x < 0 can be neglected since the regret induced by these actions are
always negative so that it is upper bounded by zero. Given historyHt−1, Ut is deterministic
term while Xt is random because of innate randomness in f̃t. Thus surrogate instantaneous
regret can be bounded as,

∆Xt = ∆Ut + 〈Ut, θ̄t〉 − 〈Xt, θ̄t〉

≤ ∆Ut + f̃t(Ut)− f̃t(Xt) + c‖Xt‖V −1
t

+ c‖Ut‖V −1
t

≤ c‖Xt‖V −1
t

+ 2c‖Ut‖V −1
t
.

Thus, the expected surrogate instantaneous regret can be bounded as,

Et[∆Xt ] = Et[∆XtI{Econc
t }] + Et[∆XtI{Ēconc

t }]

≤ cEt[‖Xt‖V −1
t

] + 2c‖Ut‖V −1
t

+ Pt(Ē
conc
t )

≤ cEt[‖Xt‖V −1
t

] + 2c‖Ut‖V −1
t

+ p2

≤ cEt[‖Xt‖V −1
t

] + 2c
Et[‖Xt‖V −1

t
]

Pt(Xt ∈ S̄t)
+ p2

= c(1 +
2

Pt(Xt ∈ S̄t)
)Et[‖Xt‖V −1

t
] + p2

≤ c(1 +
2

p3 − p2

)Et[‖Xt‖V −1
t

] + p2

The third inequality holds because of definition of Ut that is the least uncertain in S̄t and
deterministic as follows,

Et[‖Xt‖V −1
t

] ≥ Et[‖Xt‖V −1
t
|Xt ∈ S̄t] · Pt(Xt ∈ S̄t)

≥ ‖Ut‖V −1
t
· Pt(Xt ∈ S̄t).

The second last inequality holds since on event Els
t ,

Pt(Xt ∈ S̄t) ≥ Pt
(
∃x ∈ S̄t : f̃t(x) ≥ max

y∈St
f̃t(y)

)
≥ Pt

(
f̃t(x

?
t ) ≥ max

y∈St
f̃t(y)

)
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≥ Pt
(
f̃t(x

?
t ) ≥ max

y∈St
f̃t(y), Econc

t

)
≥ Pt

(
f̃t(x

?
t ) ≥ 〈x?t , θ̄t〉, Econc

t

)
≥ Pt

(
f̃t(x

?
t ) ≥ 〈x?t , θ̄t〉)− Pt

(
Ēconc
t

)
≥ p3 − p2.

The fourth inequality holds since for any y ∈ St, f̃t(y) ≤ 〈y, θ̄t〉+c‖y‖V −1
t
≤ 〈y, θ̄t〉+∆y =

〈x?t , θ̄t〉.

In the following three lemmas, the probability of events Ewls, Econc
t , and Eanti

t can be
controlled with optimal choices of c1 and c2 for D-RandLinUCB and D-LinTS algorithms.

Lemma 6.4.1 (Proposition 3, Russac et al. (2019)). For λ > 0, and

c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2,

then, the event Ewls holds with probability at least 1− 1/T .

Lemma 6.4.2 (Concentration). Given historyHt−1,

(a) D-RandLinUCB : f̃t(x) = 〈x, θ̂wlst 〉 + Zt · ‖x‖V −1
t

where Zt ∼ N (0, a2), and c2 =

a
√

2 log(T/2). Then, P (Ēconc
t ) ≤ 1/T .

(b) D-LinTS : f̃t(x) = 〈x, θ̂wlst 〉 + xTW−1
t,λ W̃

1/2
t,λ Z

(t), where Z(t) ∼ N (0, a2Id), and c2 =

a
√

2 log(KT/2). Then, P (Ēconc
t ) ≤ 1/T .

Proof. (a) We have f̃t(x) = 〈x, θ̂wlst 〉+ Zt‖x‖−1
Vt

in D-RandLinUCB algorithm, and thus

P (Ēconc
t ) = 1− P (Econc

t )

= 1− P (∀x ∈ Xt; |f̃t(x)− 〈x, θ̂wlst 〉| ≤ c2‖x‖V −1
t

)

= 1− P (∀x ∈ Xt; |Zt| · ‖x‖V −1
t
≤ c2‖x‖V −1

t
)

= 1− P (|Zt| ≤ c2) ∵ Lemma C.1.1

≤ 1/T, where c2 = a
√

2 log(T/2).

(b) Given history Ht−1, we have f̃t(x) = 〈x, θ̂wlst 〉 + xTW−1
t,λ W̃

1/2
t,λ Z

(t) is equivalent to
f̃t(x) = 〈x, θ̂wlst 〉 + Zt,x · ‖x‖−1

Vt
where Zt,x ∼ N (0, a2) by the linear invariant property of
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Gaussian distributions. Thus,

P (Ēconc
t ) = 1− P (Econc

t )

= 1− P (∀x ∈ Xt; |f̃t(x)− 〈x, θ̂wlst 〉| ≤ c2‖x‖V −1
t

)

= 1− P (∀x ∈ Xt; |Zt,x| · ‖x‖V −1
t
≤ c2‖x‖V −1

t
)

= 1− P (∀x ∈ Xt; |Zt,x| ≤ c2) ∵ Lemma C.1.1

≤ 1/T, where c2 = a
√

2 log(KT/2).

Lemma 6.4.3 (Anti-concentration). GivenHt−1,

(a) D-RandLinUCB : f̃t(x) = 〈x, θ̂wlst 〉+Zt‖x‖V −1
t

, whereZt ∼ N (0, a2). Then, P (Eanti
t ) ≥

e−1/4/(8
√
π) when we have a2 = 14c2

1.

(b) D-LinTS : f̃t(x) = 〈x, θ̂wlst 〉+xTW−1
t,λ W̃

1/2
t,λ Z

(t) where Z(t) ∼ N (0, a2Id). If we assume

a2 = 14c2
1, then P (Eanti

t ) ≥ e−1/4/(8
√
π) .

Proof. (a) We denote perturbed expected reward as f̃t(x) = 〈x, θ̂wlst 〉 + Zt‖x‖−1
Vt

for D-
RandLinUCB. Thus,

P (Eanti
t ) = P (f̃t(x

?
t )− 〈x?t , θ̂wlst 〉 > c1‖x?t‖V −1

t
)

= P (Zt ≥ c1)

≥ exp
(
− 7c2

1/(2a
2)
)
/(8
√
π)

= e−1/4/(8
√
π) where a2 = 14c2

1.

(b) In the same way as the proof of Lemma 6.4.2 (b), f̃t(x) = 〈x, θ̂wlst 〉+ xTW−1
t,λ W̃

1/2
t,λ Z

(t)

is equivalent to f̃t(x) = 〈x, θ̂wlst 〉+ Zt,x · ‖x‖−1
Vt

where Zt,x ∼ N (0, a2). Thus,

P (Eanti
t ) = P (f̃t(x

?
t )− 〈x?t , θ̂wlst 〉 > c1‖x?t‖V −1

t
)

= P (Zt,x?t ≥ c1)

≥ exp
(
− 7c2

1/(2a
2)
)
/(8
√
π)

= e−1/4/(8
√
π) where a2 = 14c2

1.

6.4.2 Dynamic regret

The dynamic regret bound of general randomized algorithm is stated below.

Theorem 6.4.2 (Dynamic regret). Assume we have c1, c2 ≥ 1 satisfying P (Ewls) ≥ 1−p1,

P (Econc
t ) ≥ 1− p2, and P (Eanti

t ) ≥ p3, and c3 = 2d log( 1
γ
) + 2 d

T
log(1 + 1

dλ(1−γ)
). Let A
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be an algorithm that chooses arm Xt = arg maxXt f̃t(x) at time t. The expected dynamic

regret of A is bounded as for any integer D > 0,

E[R(T )] ≤ (c1 + c2)
(
1 +

2

p3 − p2

)√
c3T

+ T (p1 + p2) + d+ 2

√
d

λ
D3/2BT +

4

λ

γD

1− γ
T.

Proof. The dynamic regret bound is decomposed into two terms, (A) expected surrogate
regret and (B) bias arising from time variation on true parameter,

E[R(T )] ≤
T∑
t=1

E[〈x?t −Xt, θ̄t〉] + 2
T∑
t=1

‖θ?t − θ̄t‖2.

The expected surrogate regret term (A) is bounded by

T∑
t=d+1

E[〈x?t −Xt, θ̄t〉I{Ewls}] + T · P (Ēwls) + d

≤ (c1 + c2)
T∑
t=1

(
1 +

2

p3 − p2

)
Et
[
‖Xt‖V −1

t

]
+ T (p1 + p2) + d

≤ (c1 + c2)
T∑
t=1

(
1 +

2

p3 − p2

)
Et
[

min(1, ‖Xt‖V −1
t

)
]

+ T (p1 + p2) + d

≤ (c1 + c2)
(
1 +

2

p3 − p2

)√
c3T + T (p1 + p2) + d

The first inequality holds due to Theorem 6.4.1. The second inequality works because both
dynamic regret and surrogate regret are upper bounded by 2T and c1 + c2 ≥ 2. Also, the
last inequality holds by Lemma C.2.1 in Section C.2. For any integer D > 0, the bias term
(B) is bounded as

(B) = 2
T∑
t=1

‖W−1
t,λ

t−1∑
l=1

γ−lXlX
T
l (θ?l − θ?t )‖2

≤ 2
T∑
t=1

‖W−1
t,λ

t−1∑
l=t−D

γ−lXlX
T
l (θ?l − θ?t )‖2

+ 2
T∑
t=1

‖W−1
t,λ

t−D−1∑
l=1

γ−lXlX
T
l (θ?l − θ?t )‖2
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≤ 2
T∑
t=1

t−1∑
m=t−D

‖W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l (θ?m − θ?m+1)‖2

+
T∑
t=1

2

λ
‖
t−D−1∑
l=1

γt−l−1XlX
T
l (θ?l − θ?t )‖2

≤ 2

√
dD

λ

T∑
t=1

t−1∑
m=t−D

‖θ?m − θ?m+1‖2 +
4

λ

γD

1− γ
T

≤ 2

√
d

λ
D3/2BT +

4

λ

γD

1− γ
T.

The second inequality holds by interchanging the order of summations andW−2
t,λ 4 (γ

t−1

λ
)2Id.

The second last inequality works by Lemma C.2.2

With the optimal choice of c1, c2 and a derived from Lemma 6.4.1-6.4.3, the dynamic
regret bounds of D-RandLinUCB and D-LinTS are stated below.

Corollary 6.4.1 (Dynamic regret of D-RandLinUCB). Suppose

c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2,

c2 = a
√

2 log(T/2), and a2 = 14c2
1.

Let A be D-RandLinUCB (Algorithm 3). If BT is known, then with optimal choice of

D =
log T

1− γ
, γ = 1− d−

1
4B

1
2
T T
− 1

2 ,

the expected dynamic regret of A is asymptotically bounded by O(d
7
8B

1
4
T T

3
4 ) as T →∞.

If BT is unknown, D-RandLinUCB together with Bandits-over-Bandits mechanism en-

joys the expected dynamic regret of O(d
7
8B

1
4
T T

3
4 ).

Corollary 6.4.2 (Dynamic regret of D-LinTS). Suppose

c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2,

c2 = a
√

2 log(KT/2), and a2 = 14c2
1.

Let A be D-LinTS (Algorithm 4). If BT is known, then with optimal choice of

D =
log T

1− γ
, γ = 1− d−

1
4 (logK)−

1
4B

1
2
T T
− 1

2 ,
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the expected dynamic regret of A is asymptotically bounded by O(d
7
8 (logK)

3
8B

1
4
T T

3
4 ) as

T →∞.

If BT is unknown, D-LinTS together with Bandits-over-Bandits mechanism enjoys the

expected dynamic regret of O(d
7
8 (logK)

3
8B

1
4
T T

3
4 ).

The detailed proof of Theorem 6.4.2 and Corollary 6.4.1 and 6.4.2 for the known BT

are deferred to Appendix C.2. The details for the case of unknown BT are deferred to
Appendix C.3.

Note that exponentially discounting weights can be replaced by sliding window strategy
or restarted strategy to accommodate to evolving environment. We can construct sliding-
window randomized LinUCB (SW-RandLinUCB) and sliding-window linear Thompson
sampling (SW-LinTS), or restarting randomized LinUCB (Restart-RandLinUCB) and restart-
ing linear Thompson sampling (Restart-LinTS) via two perturbation approaches, and they
maintain the trade-off between oracle efficiency and theoretical guarantee. With unknown
total variation BT , we can also utilize Bandits-over-Bandits mechanism by applying the
EXP3 algorithm over these algorithms with different window sizes (Cheung et al., 2019)
or epoch sizes (Zhao et al., 2020; Zhao and Zhang, 2021), respectively.

6.4.3 Trade-off between oracle efficiency and theoretical guarantee

Corollary 6.4.1 shows that D-RandLinUCB does not match the lower bound for dynamic
regret, Ω(d2/3B

1/3
T T 2/3), but it achieve the same dynamic regret bound as that of three non-

randomized algorithms such as SW-LinUCB, D-LinUCB and Restart-LinUCB. However,
D-RandLinUCB is computationally inefficient as D-LinUCB in large action space since
the spectral norm of each action in terms of matrix V −1

t should be computed in every round
t. In contrast, D-LinTS algorithm relies on offline optimization oracle access via pertur-
bation and thus can be efficiently implemented in infinite-arm setting, and even contextual
bandit setting. As a cost of its oracle efficiency, D-LinTS achieves the dynamic regret
bound (logK)3/8 worse than that of D-RandLinUCB in finite-arm setting. There exist two
variations in D-LinTS; algorithmic variation generated by perturbing an estimate θ̂wlst and
environmental variation induced by time-varying environments. Two variations are hard
to distinguish from the learner’s perspective, and thus the effect of algorithmic variation
is alleviated by being partially absorbed in environmental variation. This is why D-LinTS
and D-LinUCB produce d3/8 gap of dynamic regret bounds with infinite set of arms which
is less than d1/2 gap between regret bounds of LinUCB and LinTS in the stationary envi-
ronment.
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6.5 Numerical experiments

In simulation studies1, we evaluate the empirical performance of D-RandLinUCB and D-
LinTS. We use a sample of 30 days of Criteo live traffic data (Diemert et al., 2017) by
10% downsampling without replacement. Each line corresponds to one impression that
was displayed to a user with contextual variables as well as information of whether it was
clicked or not. We kept campaign variable and categorical variables from cat1 to cat9

except for cat7. We experiment with several dimensions d = 10, 20, 50 and the number of
arms K = 10, 100. Among all one-hot coded contextual variables, d feature variables were
selected by Singular Value Decomposition for dimensionality reduction. We construct two
linear models and the model switch occurs at time 4000. The parameter θ? in the initial
model is obtained from linear regression model and we obtain true parameter θ? in the
second model by switching the signs of 60% of the components of θ?. In each round, K
arms given to all algorithms are equally sampled from two separate pools of 10000 arms
corresponding to clicked or not clicked impressions. The rewards are generated from linear
model with additional Gaussian noise of variance σ2 = 0.15.

We compare randomized algorithms D-RandLinUCB and D-LinTS to discounted linear
UCB (D-LinUCB) as a benchmark. Also, we compare them to linear Thompson sampling
(LinTS) and oracle restart LinTS (LinTS-OR). An oracle restart knows about the change-
point and restarts the algorithm immediately after the change. In D-RandLinUCB, we use
truncated normal distribution with zero mean and standard deviation 2/5 over [0,∞) as D
to ensure that its randomly chosen confidence bound belongs to that of D-LinUCB with
high probability. Also, we use non-inflated version by setting a = 1 when implementing
both LinTS and D-LinTS (Vaswani et al., 2020). The regularization parameter is λ = 1, the
time horizon is T = 10000 and the cumulative dynamic regret of algorithms are averaged
over 100 independent replications in Figure 6.1.

We observe the following patterns in Figure 6.1. First, two randomized algorithms, D-
RandLinUCB and D-LinTS outperform the non-randomized one, D-LinUCB when action
space is quite large (K = 100) in figure 6.1b, 6.1d, and 6.1f. In the setting where the
number of arms is small (K = 10), however, non-randomized algorithm (D-LinUCB)
performs better than two randomized algorithms once relatively high-dimension feature is
considered (figure 6.1c and 6.1e), while three nonstationary algorithms show almost similar
performance when feature is low-dimensional (figure 6.1a).

Second, D-RandLinUCB always works better than D-LinTS in all scenarios. Though
D-LinTS can enjoy oracle efficiency in computational aspect, it has slightly worse regret

1https://github.com/baekjin-kim/NonstationaryLB
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bound than D-RandLunUCB. The difference in theoretical guarantees can be empirically
evaluated in this result. The poor performance of D-LinUCB in large action space is due
to its very large confidence bound so that the issue regarding conservatism can be partially
tackled by randomizing a confidence level in D-RandLinUCB.

Lastly, the interesting observation in figure 6.1f, non-randomized algorithm D-LinUCB
shows better performance in recovering a reliable estimator after experiencing a change
point than other two competitors in the initial phase. It takes longer time for randomized
algorithms to recover their performance. This is because the agent cannot distinguish which
factor causes this nonstationarity it is experiencing: either randomness inherited from al-
gorithm nature or environmental change. However, randomized algorithms eventually beat
the non-randomized competitor in the final phase.
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(a) d = 10,K = 10 (b) d = 10,K = 100

(c) d = 20,K = 10 (d) d = 20,K = 100

(e) d = 50,K = 10 (f) d = 50,K = 100

Figure 6.1: Plots of cumulative dynamic regret for algorithms under d = 10, 20, 50 and K =
10, 100.
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CHAPTER 7

On the Equivalence between Online and Private
Learnability beyond Binary Classification via

Stability

Alon et al. (2019) and Bun et al. (2020) recently showed that online learnability and private
PAC learnability are equivalent in binary classification. Alon et al. (2019) showed that
private PAC learnability implies finite Littlestone dimension (Ldim) in two steps; (i) every
approximately DP learner for a class with Ldim d requires Ω(log∗ d) thresholds (see Section
2.6 for the definition of log∗), and (ii) the class of thresholds over N cannot be learned in a
private manner. Bun et al. (2020) proved the converse statement via a notion of algorithmic
stability, called global stability. They showed (i) every class with finite Ldim can be learned
by a globally-stable learning algorithm and (ii) they use global stability to derive a DP
algorithm.

We investigate whether this equivalence extends to multi-class classification and regres-
sion. Our main technical contributions are as follows.

• In Section 7.1, we develop a novel variant of the Littlestone dimension that depends
on a tolerance parameter τ , denoted by Ldimτ . While online learnable regression
problems do not naturally reduce to learnable MC problems by discretization, this
relaxed complexity measure bridges online MC learnability and regression learnabil-
ity in that it allows us to consider a regression problem as a relatively simpler MC
problem (see Proposition 7.1.1).

• In Section 7.2, we show that private PAC learnability implies online learnability in
both MC and regression settings. We appropriately generalize the concept of thresh-
old functions beyond the binary classification setting and lower bound the number
of these functions using the complexity measures (see Theorem 7.2.1). Then the ar-
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gument of Alon et al. (2019) that an infinite class of thresholds cannot be privately
learned can be extended to both settings of interest.

• In Section 7.3, we show that while online learnability continues to imply private
learnability in MC (see Theorem 7.3.1), current proof techniques based on global

stability and stable histogram encounter significant obstacles in the regression prob-
lem. While this direction for regression setting still remains open, we provide non-
trivial sufficient conditions for an online learnable class to also be privately learnable
(see Theorem 7.3.3).

7.1 A link between multi-class and regression problems

As a tool to analyze regression problems, we discretize the continuous space Y into in-
tervals and consider the problem as a multi-class problem. Specifically, given a function
f ∈ [−1, 1]X and a scalar γ, we split the interval [−1, 1] into d 2

γ
e intervals of length γ

and define [f ]γ(x) to be the index of interval that f(x) belongs to. We can also define
[F ]γ = {[f ]γ | f ∈ F}. In this way, if the multi-class problem associated with [F ]γ is
learnable, we can infer that the original regression problem is learnable up to accuracy
O(γ). Quite interestingly, however, the fact that F is (regression) learnable does not im-
ply that [F ]γ is (multi-class) learnable. For example, it is well known that a class F of
bounded Lipschitz functions on [0,1] is learnable, but [F ]1 includes all binary functions on
[0, 1], which is not online learnable.

In order to tackle this issue, we propose a generalized zero-one loss in multi-class prob-
lems. In particular, we define a zero-one loss with tolerance τ ,

`0−1
τ (ŷ; y) = I(|y − ŷ| > τ).

Note that the classical zero-one loss is simply `0−1
0 . This generalized loss allows the learner

to predict labels that are not equal to the true label but close to it. This property is well-
suited in our setting since as far as |y − ŷ| is small, the absolute loss in the regression
problem remains small.

We also extend the Littlestone dimension with tolerance τ . Fix a tolerance level τ .
When we construct a mistake tree T , we add another constraint that each node’s descending
edges are labeled by two labels k, k′ ∈ [K] such that `0−1

τ (k; k′) = 1. Let Ldimτ (H) be the
maximal height of such binary shattered trees. (Again, Ldim0(H) becomes the standard
Ldim(H).)

We record several useful observations. The proofs can be found in Appendix D.1.
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Algorithm 5 Standard optimal algorithm with tolerance τ (SOAτ )
1: Initialize: V0 = H
2: for t = 1, · · · , T do
3: Receive xt
4: For k ∈ [K], let V (k)

t = {h ∈ Vt−1 | h(xt) = k}
5: Predict ŷt = arg maxk Ldimτ (V

(k)
t )

6: Receive true label yt and update Vt = V
(yt)
t

7: end for

Lemma 7.1.1. LetH ⊂ [K]X be a class of multi-class hypotheses.

1. Ldimτ (H) is decreasing in τ .

2. SOAτ (Algorithm 5) makes at most Ldimτ (H) mistakes with respect to `0−1
τ .

3. For any deterministic learning algorithm, an adversary can force Ldim2τ (H) mis-

takes with respect to `0−1
τ .

Equipped with the relaxed loss, the following proposition connects regression learn-
ability to multi-class learnability with discretization. We emphasize that even though the
regression learnability does not imply multi-class learnability with the standard zero-one
loss, learnability under `0−1

τ can be derived. In addition to that, it can be shown that finite
Ldimτ ([F ]γ) implies finite fatγ(F).

Proposition 7.1.1. LetF ⊂ [−1, 1]X be a regression hypothesis class and suppose fatγ(F) =

d. Then we have for any positive integer n,

Ldimn([F ]γ/2(n+1)) ≥ d ≥ Ldimn([F ]γ/n).

Proof. Since fatγ(F) = d, in the online learning setting an adversary can force any deter-
ministic learner to suffer at least γ/2 absolute loss for d rounds. If we think of this problem
as a multi-class classification problem using the hypothesis class [F ]γ/2(n+1), using the
same strategy, the adversary can force any deterministic learner to make mistakes with re-
spect to `0−1

n for d rounds. Note that the adversary reveals less information to the learner in
the discretized multi-class problem. Then Lemma 7.1.1 implies Ldimn([F ]γ/2(n+1)) ≥ d.

On the other hand, suppose Ldimn([F ]γ/n) > d and let T be the binary shattered tree
with tolerance n. For each node, we can set the witness point to be the middle point
between the two labels of descending edges, and the resulting tree is γ-shattered by F .
This contradicts the fact that fatγ(F) = d, and hence we obtain d ≥ Ldimn([F ]γ/n).
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There exist a few works that used regression models in multi-class classification (Rakesh
and Suganthan, 2017; Yang et al., 2005). To the best of our knowledge, however, our
work is the first one that studies regression learnability by transforming the problem into
a discretized classification problem along with a novel bridge, Littlestone dimension with

tolerance.

7.2 Private learnability implies online learnability

In this section, we show that if a class of functions is privately learnable, then it is on-
line learnable. To do so, we prove a lower bound of the sample complexity of privately
learning algorithms using either Ldim(H) for the multi-class hypotheses or fatγ(F) for the
regression hypotheses. Alon et al. (2019) proved this in the binary classification setting
first by showing that any large Ldim class contains sufficiently many threshold functions
and then providing a lower bound of the sample complexity to privately learn threshold
functions. We adopt their arguments, but one of the first non-trivial tasks is to define ana-
logues of threshold functions in multi-class or regression problems. Note that, a priori, it is
not clear what the right analogy is. Let us first introduce threshold functions in the binary
case. We say a binary hypothesis class H has n thresholds if there exist {xi}1:n ⊂ X and
{hi}1:n ⊂ H such that hi(xj) = 1 if i ≤ j and hi(xj) = 0 if i > j. We extend this as
below.

Definition 7.2.1 (Threshold functions in multi-class problems). Let H ⊂ [K]X be a hy-
pothesis class. We say H contains n thresholds with a gap τ if there exist k, k′ ∈ [K],
{xi}1:n ⊂ X , and {hi}1:n ⊂ H such that |k − k′| > τ and hi(xj) = k if i ≤ j and
hi(xj) = k′ if i > j.

Definition 7.2.2 (Threshold functions in regression problems). Let F ⊂ [−1, 1]X be a
hypothesis class. We say F contains n thresholds with a margin γ if there exist {xi}1:n ⊂
X , {fi}1:n ⊂ F , and u, u′ ∈ [−1, 1] such that |u − u′| ≥ γ and |fi(xj) − u| ≤ γ

20
if i ≤ j

and |fi(xj)− u′| ≤ γ
20

if i > j.

In Definition 7.2.2, we allow the functions to oscillate with a margin γ
20

which is arbi-
trary. Any small margin compared to |u − u′| would work, but this number is chosen to
facilitate later arguments.

Next we show that complex hypothesis classes contain a sufficiently large set of thresh-
old functions. The following theorem extends the results by Alon et al. (2019, Theorem 3).
A complete proof can be found in Appendix D.2.
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Algorithm 6 COLORANDCHOOSE

1: Input: multi-class hypothesis classH ⊂ [K]X , shattered binary tree T , tolerance τ
2: Choose an arbitrary hypothesis h0 ∈ H
3: Color each vertex x of T by h0(x) ∈ [K]
4: Find a color k such that the sub-tree T ′ ⊂ T of color k has the largest height
5: Let x0 be the root node of T ′

6: Let x1 be a child of x0 such that the edge (x0, x1) is labeled as k′ with |k − k′| > τ
2

7: Let T ′′ be a sub-tree of T ′ rooted at x1

8: LetH′ = {h ∈ H | h(x0) = k′}
9: Output: k, k′, h0, x0,H′, T ′′

Theorem 7.2.1 (Existence of a large set of thresholds). Let H ⊂ [K]X and F ⊂ [−1, 1]X

be multi-class and regression hypothesis classes, respectively.

1. If Ldim2τ (H) ≥ d, thenH contains b logK d
K2 c thresholds with a gap τ .

2. If fatγ(F) ≥ d, then F contains b γ2

104 log100/γ dc thresholds with a margin γ
5
.

Proof sketch. We begin with the multi-class setting. Suppose d = KK2t. It suffices to
show H contains t thresholds. Let T be a shattered binary tree of height d and tolerance
2τ . Letting H0 = H and T0 = T , we iteratively apply COLORANDCHOOSE (Algorithm
6). Namely, we write

kn, k
′
n, hn, xn,Hn, Tn = COLORANDCHOOSE(Hn−1, Tn−1, 2τ). (7.1)

Observe that for all n, we can infer hn(xn) = hn(x) = kn for all internal vertices x of
Tn (∵ line 4 of Algorithm 6) and h(xn) = k′n for all h ∈ Hn (∵ line 8 of Algorithm 6).

Additionally, it can be shown that the height of Tn is no less than 1
K

times the height of
Tn−1 (see Lemma D.2.1 in Appendix D.3). This means that the iterative step (7.1) can be
repeated K2t times since d = KK2t. Then there exist k, k′ and indices {ni}ti=1 such that
kni = k and k′ni = k′ for all i.

It is not hard to check that the functions {hni}1:t and the arguments {xni}1:t form thresh-
olds with labels k, k′. Since |k−k′| > τ (∵ line 6 of Algorithm 6), this completes the proof.

The result in the regression setting can also be shown in a similar manner using Propo-
sition 7.1.1.

Alon et al. (2019, Theorem 1) proved a lower bound of the sample complexity in order
to privately learn threshold functions. Then the multi-class result (with τ = 0) of Theorem
7.2.1 immediately implies that ifH is privately learnable, then it is online learnable. For the
regression case, we need to slightly modify the argument to deal with the margin condition
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in Definition 7.2.2. The next theorem summarizes the result, and the proof appears in
Appendix D.2.

Theorem 7.2.2 (Lower bound of the sample complexity to privately learn thresholds).
Let F = {fi}1:n ⊂ [−1, 1]X be a set of threshold functions with a margin γ on a do-

main {xi}1:n ⊂ X along with bounds u, u′ ∈ [−1, 1]. Suppose A is a ( γ
200
, γ

200
)-accurate

learning algorithm for F with sample complexity m. If A is (ε, δ)-DP with ε = 0.1 and

δ = O( 1
m2 logm

), then it can be shown that m ≥ Ω(log∗ n).

Combining Theorem 7.2.1 and 7.2.2, we present our main result.

Corollary 7.2.1 (Private learnability implies online learnability). Let H ⊂ [K]X and F ⊂
[−1, 1]X be multi-class and regression hypothesis classes, respectively. Let Ldim(H) =

fatγ(F) = d. Suppose there is a learning algorithm A that is ( 1
16
, 1

16
)-accurate for H

(( γ
200
, γ

200
)-accurate for F) with sample complexity m. If A is (ε, δ)-DP with ε = 0.1 and

δ = O( 1
m2 logm

), then m ≥ Ω(log∗ d).

7.3 Online learnability implies private learnability

In this section, we show that online-learnable multi-class hypothesis classes can be learned
in a DP manner. For regression hypothesis classes, we provide sufficient conditions for
private learnability.

7.3.1 Multi-class classification

Bun et al. (2020) proved that every binary hypothesis class with a finite Ldim is privately
learnable by introducing a new notion of algorithmic stability called global stability as
an intermediate property between online learnability and differentially-private learnability.
Their arguments can be naturally extended to MC hypothesis classes, which is summarized
in the next theorem.

Theorem 7.3.1 (Online MC learning implies private MC learning). Let H ⊂ [K]X be a

MC hypothesis class with Ldim(H) = d. Let ε, δ ∈ (0, 1) be privacy parameters and let

α, β ∈ (0, 1/2) be accuracy parameters. For n = Od

( log(1/βδ)
αε

)
, there exists an (ε, δ)-DP

learning algorithm such that for every realizable distribution D, given an input sample

S ∼ Dn, the output hypothesis f = A(S) satisfies lossD(f) ≤ α with probability at least

1− β.
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While we consider the realizable setting in Theorem 7.3.1, a similar result also holds in
the agnostic setting. The extension to the agnostic setting is discussed in Appendix D.3.3
due to limited space.

As a key to the proof of Theorem 7.3.1, we introduce global stability (GS) as follows.

Definition 7.3.1 (Global stability (Bun et al., 2020)). Let n ∈ N be a sample size and
η > 0 be a global stability parameter. An algorithm A is (n, η)-GS with respect to D if
there exists a hypothesis h such that PS∼Dn

(
A(S) = h

)
≥ η.

Theorem 7.3.1 can be proved in two steps. We first show that every MC hypothesis
class with a finite Ldim is learnable by a GS algorithm A (Theorem 7.3.2). Then we prove
that any GS algorithm can be extended to a DP learning algorithm with a finite sample
complexity.

Theorem 7.3.2 (Online MC learning implies GS learning). Let H ⊂ [K]X be a MC hy-

pothesis class with Ldim(H) = d. Let α > 0, and m =
(
(4K)d+1 + 1

)
× [d logK

α
]. Then

there exists a randomized algorithm G : (X × [K])m → [K]X such that for a realizable

distribution D and an input sample S ∼ Dm, there exists a h such that

P
(
G(S) = h

)
≥ K − 1

(d+ 1)Kd+1
and lossD(h) ≤ α.

Next, we give a brief overview on how to construct a GS learner G and a DP learner M
in order to prove Theorem 7.3.1. The complete proofs are deferred to Appendix D.3.

7.3.1.1 Online multi-class learning implies globally-stable learning

Let H be a MC hypothesis class with Ldim(H) = d and D be a realizable distribution
over examples

(
x, c(x)

)
where c ∈ H is an unknown target hypothesis. Recall that H

is learnable by SOA0 (Algorithm 5) with at most d mistakes on any realizable sequence.
Prior to building a GS learnerG, we construct a distributionDk by appending k tournament

examples between random samples from D, which force SOA0 to make at least k mistakes
when run on S drawn from Dk. Using the fact that SOA0 identifies the true labeling
function after making d mistakes, we can show that there exists k ≤ d and a hypothesis
f : X → [K] such that

PS∼Dk,T∼Dn
(
SOA0(S ◦ T ) = f

)
≥ K−d.

A GS learner G is built by firstly drawing k ∈ {0, 1, · · · , d} uniformly at random and
then running the SOA0 on S ◦ T where S ∼ Dk, T ∼ Dn. The learner G outputs a good
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hypothesis that enjoys small population loss with probability at least K−d

d+1
. We defer the

detailed construction of Dk and proofs to Appendix D.3.

7.3.1.2 Globally-stable learning implies private multi-class learning

Let G be a (η,m)-GS algorithm with respect to a target distribution D. We run G on k in-
dependent samples of size m to non-privately produce a long list H := (hi)1:k. The Stable

Histogram algorithm is a primary tool that allows us to publish a short list of frequent hy-
potheses in a DP manner. The fact that G is GS ensures that some good hypotheses appear
frequently in H . Then Lemma 7.3.1 implies that these good hypotheses remain in the short
list with high probability. Once we obtain a short list, a generic DP learning algorithm
(Kasiviswanathan et al., 2011) is applied to privately select an accurate hypothesis.

Lemma 7.3.1 (Stable Histogram (Dwork et al., 2006; Korolova et al., 2009)). Let X be

any data domain. For n ≥ O( log(1/ηβδ)
ηε

), there exists an (ε, δ)-DP algorithm HIST which

with probability at least 1 − β, on input S = (xi)1:n outputs a list L ⊂ X and a sequence

of estimates a ∈ [0, 1]|L| such that (i) every x with FreqS(x) ≥ η appears in L, and (ii)

for every x ∈ L, the estimate ax satisfies |ax − FreqS(x)| ≤ η where FreqS(x) :=
∣∣{i ∈

[n] | xi = x}
∣∣/n.

7.3.2 Regression

In classification, Global Stability was an essential intermediate property between online
and private learnability. A natural approach to obtaining a DP algorithm from an online-
learnable real-valued function class F is to transform the problem into a multi-class prob-
lem with [F ]γ for some γ and then construct a GS learner using the previous techniques.
If [F ]γ is privately-learnable, then we can infer that the original regression problem is also
private-learnable up to an accuracy O(γ).

Unfortunately, however, finite fatγ(F) only implies finite Ldim1([F ]γ), and Ldim([F ]γ)

can still be infinite (see Proposition 7.1.1). This forces us to run SOA1 instead of SOA0,
and as a consequence, after making Ldim1([F ]γ) mistakes, the algorithm can identify the
true function up to some tolerance. Therefore we only get the relaxed version of GS prop-
erty as follows; there exist k ≤ d and a hypothesis f : X → [K] such that

PS∼Dk,T∼Dn
(
SOA1(S ◦ T ) ≈1 f

)
≥ (γ/2)d

where f ≈1 g means supx∈X
∣∣f(x) − g(x)

∣∣ ≤ 1. If we proceed with this relaxed con-
dition, it is no longer guaranteed the long list H contains a good hypothesis with suffi-
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ciently high frequency. This hinders us from using Lemma 7.3.1, and a private learner
cannot be produced in this manner. The limitation of proving the equivalence in regression
stems from existing proof techniques. With another method, it is still possible to show that
online-learnable real-valued function classes can be learned by a DP algorithm. Instead,
we provide sufficient conditions for private learnability in regression problems.

Theorem 7.3.3 (Sufficient conditions for private regression learnability). Let F ⊂ YX be

a real-valued function class such that fatγ(F) <∞ for every γ > 0. If one of the following

conditions holds, then F is privately learnable.

1. Either F or X is finite.

2. The range of F over X is finite (i.e.,
∣∣{f(x) | f ∈ F , x ∈ X}

∣∣ <∞).

3. F has a finite cover with respect to the sup-norm at every scale.

4. F has a finite sequential Pollard Pseudo-dimension.

We present the proof of Condition 4, and proofs of other conditions are deferred to
Appendix D.3.4.

Proof of Condition 4. Assume for contradiction that there exists γ such that Ldim([F ]γ) =

∞. Then we can obtain a shattered tree T of an arbitrary depth. Choose an arbitrary node x.
Note that its descending edges are labeled by k, k′ ∈ [d2/γe]. We can always find a witness
to shattering s between the intervals corresponding to k and k′. With these witness values,
the tree T must be zero-shattered by F . Since the depth of T can be arbitrarily large, this
contradicts to Pdim(F) being finite. From this, we can claim that Ldim([F ]γ) ≤ Pdim(F)

for any γ. Then using the ideas in Section 7.3.1, we can conclude that [F ]γ is private-
learnable for any γ. Therefore the original class F is also private-learnable.

We emphasize that Conditions 3 and 4 do not imply each other. For example, a class of
point functions Fpoint := {I(· = x) | x ∈ X} does not have a finite sup-norm cover because
any two distinct functions have the sup-norm difference one, but Pdim(Fpoint) = 1. A class
FLip of bounded Lipschitz functions on [0, 1] has an infinite sequential Pollard pseudo-
dimension, but FLip has a finite cover with respect to the sup-norm due to compactness of
[0, 1] along with the Lipschitz property.

54



CHAPTER 8

Conclusion

Online learning is a well-developed branch of machine learning that studies how the learner
dynamically updates models as new data instances arrive in a sequential fashion. This
thesis investigates the notion of stability in online learning in the following two directions.
First, we examine the random perturbation techniques as a source of stability along with
regularization techniques in bandit problems. Second, we consider differential privacy and
study stability as the concept of connecting online learning and differential privacy.

In Chapter 3, we studied the statistical optimality of perturbation technique in stochas-
tic multi-armed bandit problems. We provide a unified regret analysis for both sub-Weibull
and bounded perturbations when rewards are sub-Gaussian. Our bounds are instance op-
timal for sub-Weibull perturbations with parameter 2 that also have a matching lower tail
bound, and all bounded support perturbations where there is sufficient probability mass at
the extremes of the support. We believe that this chapter paves the way for similar extension
for more complex settings, e.g., stochastic linear bandits, stochastic partial monitoring, and
Markov decision processes.

In Chapter 4, we showed that the open problem regarding minimax optimal pertur-
bations for adversarial multi-armed bandit problems cannot be solved in two ways that
might seem very natural from discrete choice model and extreme value theory, respectively.
While our results are negative, they do point the way to a possible affirmative solution of
the problem. They led us to a conjecture that the optimal perturbation, if it exists, will be
of Fréchet-type.

In Chapter 5, we examined stationary stochastic linear bandits and explicate the role of
two perturbation approaches in overcoming conservatism that UCB-type algorithms chron-
ically suffer from in practice. In one approach, we replace optimism with a simple ran-
domization when using confidence sets. In the other, we add random perturbations to the
current estimate before maximizing the expected reward. These two approaches result in
randomized LinUCB and Gaussian linear Thompson sampling for stationary linear bandits.
We highlight the statistical optimality versus oracle efficiency trade-off between them.
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In Chapter 6, we considered non-stationary stochastic linear bandits, developed two
randomized exploration strategies, and investigated the trade-off between theoretical guar-
antee and computational efficiency embedded in two design principles of randomized algo-
rithms constructed (1) by replacing optimism with a simple randomization when deciding
a confidence level in UCB-type algorithms, or (2) by adding the random perturbations to
estimates.

In Chapter 7, it has been recently shown that online learning and differential-private
learning are equivalent in binary classification via the notion of stability, and we inves-
tigated whether this equivalence extends to multi-class classification and regression. We
proved that private learnability implies online learnability in the MC and regression set-
tings. We also showed the converse in the MC setting and provided sufficient conditions
for an online learnable class to also be privately learnable in regression problems.

8.1 Future work

There are a few general directions of bandit and differential privacy research which may be
particularly interesting in the future.

8.1.1 Best of both worlds in nonstationary stochastic linear bandit :
parameter-free and optimal in total variation and number of dis-
tribution changes

In nonstationary bandit settings, we measure the nonstationarity of the environment by
the total number of distribution changes S or by the total variation V . It is well-known
that Auer et al. (2002) and Besbes et al. (2014) investigate the classical multi-armed ban-
dit problem and develop adaptive algorithms with prior knowledge about the amount of
nonstationarity S and V , respectively. Auer et al. (2019) proposes the first parameter-free
algorithm with dynamic regret that is optimal in relevant parameters T,K, S and V . In the
contextual bandit problem, Chen et al. (2019) suggests a fully adaptive, minimax-optimal
and oracle-efficient algorithm assuming access to an optimization oracle when S and V are
unknown for the learner. This algorithm relies on ILOVETOCONBANDITS algorithm of
Agarwal et al. (2014) and replay phases for detection purpose.

Nonstationarity in linear bandit has been only studied with prior information of total
variation V via sliding window (Cheung et al., 2019), exponential discounting weights
(Russac et al., 2019; Kim and Tewari, 2020), and restarting regularly (Zhao et al., 2020).
It is a very interesting open problem to develop a parameter-free algorithm with optimal
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dynamic regret in relevant parameters T,K, S and V . Furthermore, it remains open to
examine the adaptive algorithm in non-stationary infinite-horizon MDP setting without
knowledge of three quantities: number of distribution switches, total variance and diameter.

8.1.2 Sublinear algorithms in nonstationary kernelized linear bandit
: weighting, sliding window, and regularly restarting

We formalize the task of optimizing an unknown, noisy reward function f that is expensive
to evaluate as a bandit problem. If the unknown reward function is linear, it represents the
standard linear bandit problem. The reward function is either sampled from a Gaussian
process in Bayesian optimization or a fixed function in an RKHS with a bounded norm
in frequentist setting. Srinivas et al. (2010) developed GP-UCB algorithm with sub-linear
regret in T . The result and analysis were later improved in Valko et al. (2013) and Chowd-
hury and Gopalan (2017). Bogunovic et al. (2016) considered the sequential Bayesian
optimization problem with bandit feedback when reward function is allowed to vary with
time. This work is quite limited in that reward function is generated from a Gaussian pro-
cess that evolves according a simple Markov model. In nonstationary (time-varying) linear
bandit problems, Cheung et al. (2019); Russac et al. (2019), and Zhao et al. (2020) devel-
oped no-regret algorithms based on approaches of sliding window, exponential discounting
weights, and restarting regularly, respectively. It would be an interesting open problem to
investigate a fully adaptive algorithm with optimal dynamic regret in the setting where the
time-varying environment is captured by the RKHS norm by V =

∑T−1
t=1 ‖ft − ft−1‖H.

They might be based on three approaches used in nonstationary linear bandits. Also, it
remains open to develop an adaptive algorithm in the piecewise stationary kernelized linear
bandits.

8.1.3 Perturbation based algorithm under corrupted or delayed ban-
dit feedback

It would be interesting to study perturbation methods in bandit problems under more real-
istic assumptions, delayed or corrupted feedback, which is motivated from my internship
project at Twitter. In many ad systems like Twitter’s, positive responses of users are only
observed after a possibly long and random delay after ad is served, making it challenging
to build a representative dataset of ad engagements in real time. Also, ad systems are some-
times exposed to click fraud via malware that effectively sabotage an ad campaign run by
a competitor, and cause a typical online advertising platform to reject those ads from con-
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sideration. Though perturbation approaches have been empirically observed to be robust to
corrupted or delayed environment, theoretical guarantees are not available yet since their
innate randomness makes their mathematical analysis difficult.

Lykouris et al. (2018) first studied the corrupted setting for multi-armed bandits. This
were improved by Gupta et al. (2019) and Zimmert and Seldin (2019) and later extended
to linear bandit (Li et al., 2019; Bogunovic et al., 2021), Gaussian bandit (Bogunovic et al.,
2020), and reinforcement learning (Lykouris et al., 2019). The algorithms for complex
bandits extended from the classical multi-armed bandits are designed based on successive
arm elimination and achieve regret bounds multiplied by a corruption level C, though it
is ideal to the regret of a robust stochastic algorithm degrade with an additive term O(C).
It remains widely open to develop optimal algorithms, especially randomized ones, and
analyze their regret bounds for linear bandit, Gaussian Process bandit, and reinforcement
learning under corrupted feedback.

8.1.4 Open problems in differential privacy

We have a few suggestions for future work on differential privacy. First, we need to un-
derstand whether online learnability implies private learnability in the regression setting.
Second, like Bun et al. (2020), we create an improper DP learner for an online learnable
class. It would be interesting to see if we can construct proper DP learners. Third, Go-
nen et al. (2019) provide an efficient black-box reduction from pure DP learning to online
learning. It is natural to explore whether such efficient reductions are possible for approxi-

mate DP algorithms for MC and regression problems. Finally, there are huge gaps between
the lower and upper bounds for sample complexities in both classification and regression
settings. It would be desirable to show tighter bounds and reduce these gaps.
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APPENDIX A

Detailed Proofs for Stochastic Multi-armed
Bandits

In this section, the proofs omitted in Chapter 3 are presented.

A.1 Proof of Theorem 3.2.1

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi +
∆i

3
, yi = µ1− ∆i

3
such

that µi < xi < yi < µ1 and define two types of events, Eµ
i (t) = {µ̂i(t) ≤ xi}, and Eθ

i (t) =

{θi(t) ≤ yi}. Intuitively, Eµ
i (t) and Eθ

i (t) are the events that the estimate µ̂i and the sample
value θi(t) are not too far above the mean µi, respectively. E[Ti(T )] =

∑T
t=1 P(At = i) is

decomposed into the following three parts according to events Eµ
i (t) and Eθ

i (t),

E[Ti(T )] =
T∑
t=1

P(At = i, (Eµ
i (t))c)︸ ︷︷ ︸

(a)

+
T∑
t=1

P(At = i, Eµ
i (t), (Eθ

i (t))
c)︸ ︷︷ ︸

(b)

+
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t)︸ ︷︷ ︸
(c)

)

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ 1 +
T−1∑
k=1

P((Eµ
i (τk + 1))c)

≤ 1 +
T−1∑
k=1

exp
(
− k(xi − µi)2

2

)
≤ 1 +

18

∆2
i

. (A.1)
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The probability in part (b) is upper bounded by 1 if Ti(t) is less thanLi(T ) =
σ2[2 log(T∆2

i )]
2/p

(yi−xi)2 ,
and by Ca/(T∆2

i ) otherwise. The latter can be proved as below,

P(At = i, (Eθ
i (t))

c|Eµ
i (t))

≤ P(θi(t) > yi|µ̂i(t) ≤ xi)

≤ P
( Zit√

Ti(t)
> yi − xi|µ̂i(t) ≤ xi

)
≤ Ca · exp

(
− Ti(t)

p/2(yi − xi)p

2σp
)
≤ Ca
T∆2

i

if Ti(t) ≥ Li(T ).

The third inequality holds by sub-Weibull (p) assumption on perturbation Zit. Let τ be the
largest step until Ti(t) ≤ Li(T ), then part (b) is bounded as,

(b) ≤ Li(T ) +
T∑

t=τ+1

Ca/(T∆2
i ) ≤ Li(T ) + Ca/∆

2
i .

Regarding part (c), define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) where Ht−1

is defined as the history of plays until time t− 1. Let δj denote the time at which j-th trial
of arm 1 happens.

Lemma A.1.1 (Lemma 1 (Agrawal and Goyal, 2013a)). For i 6= 1,

(c) =
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t))

≤
T∑
t=1

E
[1− pi,t

pi,t
I(At = 1, Eµ

i (t), Eθ
i (t))

]
≤

T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]
.

Proof. See Section A.2.

The average rewards from the first arm, µ̂1(δj + 1), has a density function denoted by
φµ̂1,j

.

E
[1− pi,δj+1

pi,δj+1

]
=E
[ 1

P(θ1(δj + 1) ≥ yi|Hδj+1)
− 1
]

=

∫
R

[ 1

P
(
x+ Z√

j
> µ1 − ∆i

3

) − 1
]
φµ̂1,j

(x)dx

The above integration is divided into three intervals, (−∞, µ1 − ∆i

3
], (µ1 − ∆i

3
, µ1 − ∆i

6
],
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and (µ1 − ∆i

3
,∞). We denote them as (1), (2) and (3), respectively.

∫ µ1−
∆i
3

−∞

[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3
)
) − Cb]φµ̂1,j

(x)dx

=

∫ ∞
0

[ 1

P(Z > u)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ u = −

√
j
(
x− µ1 +

∆i

3

)
≤
∫ ∞

0

[
Cb · exp

( uq
2σq
)
− Cb

] 1√
j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du

=

∫ ∞
0

[ ∫ u

0

G′(v)dv
] 1√

j
φµ̂1,j

(
− u√

j
+ µ1 −

∆i

3

)
du ∵ G(u) = Cb · exp

( uq
2σq
)

≤
∫ ∞

0

exp
(
−

(v +
√
j∆i

3
)2

2

)
·G′(v)dv ∵ Fubini’s Theorem & sub-Gaussian

=

∫ ∞
0

exp
(
−

(v +
√
j∆i

3
)2

2

)
· Cb

qvq−1

2σq
exp

( vq
2σq
)
dv

≤ CbMq,σ exp
(
− j∆2

i

18

)
∵ ∃ 0 < Mq,σ <∞ if q < 2 or (q = 2, σ ≥ 1)

(1) =

∫ µ1−
∆i
3

−∞

[[ 1

P
(
Z > −

√
j(x− µ1 + ∆i

3
)
) − Cb]φµ̂1,j

(x) + (Cb − 1)φµ̂1,j
(x)
]
dx

≤ CbMq,σ exp
(
− j∆2

i

18

)
+ (Cb − 1) exp

(
− j∆2

i

18

)
(2) =

∫ µ1−
∆i
6

µ1−
∆i
3

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j

(x)dx

≤ 2P(Z < 0) · P
(
µ1 −

∆i

3
≤ µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2P

(
µ̂1,j ≤ µ1 −

∆i

6

)
≤ 2 exp

(
− j∆2

i

72

)
(3) =

∫ ∞
µ1−

∆i
6

2P
(
Z < −

√
j(x− µ1 +

∆i

3
)
)
φµ̂1,j

(x)dx

≤ 2P
(
Z < −

√
j∆i

6

) ∫ ∞
µ1−

∆i
6

φµ̂1,j
(x)dx ≤ 2P

(
Z < −

√
j∆i

6

)
≤ 2Ca exp

(
− jp/2∆p

i

2 · (6σ)p
)

(c) =
T−1∑
j=0

(1) + (2) + (3) <
18Cb(Mq,σ + 1) + 126

∆2
i

+
4Ca(6σ)p

∆p
i

(A.2)
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Combining parts (a), (b), and (c),

E[Ti(T )] ≤ 1 +
144 + Ca + 18Cb(Mq,σ + 1)

∆2
i

+
4Ca(6σ)p

∆p
i

+
σ2[2 log(T∆2

i )]
2/p

(yi − xi)2

We obtain the following instance-dependent regret that there exists C ′′ = C(σ, p, q) inde-
pendent of K, T , and ∆i such that

R(T ) ≤ C ′′
∑
∆i>0

(
∆i +

1

∆i

+
1

∆p−1
i

+
log(T∆2

i )
2/p

∆i

)
. (A.3)

The optimal choice of ∆ =
√
K/T (logK)1/p gives the instance independent regret bound

R(T ) ≤ O(
√
KT (logK)1/p).

A.2 Proof of Lemma A.1.1

Proof. First of all, we will show the following inequality holds for all realizations Ht−1 of
Ht−1,

P(At = i, Eθ
i (t), E

µ
i (t)|Ht−1) ≤ 1− pi,t

pi,t
· P(At = 1, Eθ

i (t), E
µ
i (t)|Ht−1). (A.4)

To prove the above inequality, it suffices to show the following inequality in (A.5). This is
because whether Eµ

i (t) is true or not depends on realizations Ht−1 of history Ht−1 and we
would consider realizations Ht−1 where Eµ

i (t) is true. If it is not true in some Ht−1, then
inequality in (A.4) trivially holds.

P(At = i|Eθ
i (t), Ht−1) ≤ 1− pi,t

pi,t
· P(At = 1|Eθ

i (t), Ht−1) (A.5)

Considering realizations Ht−1 satisfying Eθ
i (t) = {θi(t) ≤ yi}, all θj(t) should be smaller

than yi including optimal arm 1 to choose a sub-optimal arm i.

P(At = i|Eθ
i (t), Ht−1)

≤ P(θj(t) ≤ yi,∀j ∈ [K]|Eθ
i (t), Ht−1)

= P(θ1(t) ≤ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθ
i (t), Ht−1)

= (1− pi,t) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθ
i (t), Ht−1) (A.6)
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The first equality above holds since θ1 is independent of other θj,∀j 6= 1 and events Eθ
i (t)

givenHt−1. In the same way it is obtained as below,

P(At = 1|Eθ
i (t), Ht−1)

≥ P(θ1(t) > yi ≥ θj(t),∀j ∈ [K] \ {1}|Eθ
i (t), Ht−1)

= P(θ1(t) ≥ yi|Ht−1) · P(θj(t) ≤ yi,∀j ∈ [K] \ {1, i}|Eθ
i (t), Ht−1)

= pi,t · P(θj(t) ≤ yi, ∀j ∈ [K] \ {1, i}|Eθ
i (t), Ht−1) (A.7)

Combining two inequalities (A.6) and (A.7), inequality (A.5) is obtained. The rest of proof
is as followed.

T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t)) ≤
T∑
t=1

E[P(At = i, Eµ
i (t), Eθ

i (t)|Ht−1)]

≤
T∑
t=1

E
[1− pi,t

pi,t
· P(At = 1, Eµ

i (t), Eθ
i (t)|Ht−1)

]
≤

T∑
t=1

E
[
E
[1− pi,t

pi,t
· I(At = 1, Eµ

i (t), Eθ
i (t))|Ht−1

]]
≤

T∑
t=1

E
[1− pi,t

pi,t
· I(At = 1, Eµ

i (t), Eθ
i (t))

]
≤

T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

δj+1∑
t=δj+1

I(At = 1, Eµ
i (t), Eθ

i (t))
]

≤
T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

]

A.3 Proof of Theorem 3.2.2

Proof. For each arm i 6= 1, we will choose two thresholds xi = µi + ∆i

3
, yi = µ1 − ∆i

3

such that µi < xi < yi < µ1 and define three types of events, Eµ
i (t) = {µ̂i(t) ≤ xi},

Eθ
i (t) = {θi(t) ≤ yi}, and Eµ

1,i(t) = {µ1 − ∆i

6
−
√

2 log T
T1(t)

≤ µ̂1(t)}. The last event is to

control the behavior of µ̂1(t) not too far below the mean µ1. E[Ti(T )] =
∑T

t=1 P(At = i)

63



is decomposed into the following four parts according to events Eµ
i (t), Eθ

i (t), and Eµ
1,i(t),

E[Ti(T )] =
T∑
t=1

P(At = i, (Eµ
i (t))c)︸ ︷︷ ︸

(a)

+
T∑
t=1

P(At = i, Eµ
i (t), (Eθ

i (t))
c)︸ ︷︷ ︸

(b)

+
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t), (E
µ
1,i(t))

c)︸ ︷︷ ︸
(c)

+
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t), E
µ
1,i(t))︸ ︷︷ ︸

(d)

.

Let τk denote the time at which k-th trial of arm i happens. Set τ0 = 0.

(a) ≤ E[
T−1∑
k=0

τk+1∑
t=τk+1

I(At = i)I((Eµ
i (t))c)] ≤ E[

T−1∑
k=0

I((Eµ
i (τk + 1))c)

τk+1∑
t=τk+1

I(At = i)]

≤ 1 +
T−1∑
k=1

P((Eµ
i (τk + 1))c) ≤ 1 +

T−1∑
k=1

exp(−k(xi − µi)2

2
) ≤ 1 +

18

∆2
i

.

The second last inequality above holds by Hoeffding bound of sample mean of k sub-
Gaussian rewards, µ̂i(t) in Lemma 3.0.1. The probability in part (b) is upper bounded by
1 if Ti(t) is less than Li(T ) = 9(2+ε) log T

∆2
i

and is equal to 0, otherwise. The latter can be
proved as below,

P(At = i, (Eθ
i (t))

c|Eµ
i (t))

≤ P(θi(t) > yi|µ̂i(t) ≤ xi)

≤ P
(
Zit >

√
Ti(t)(yi − xi)2

(2 + ε) log T
|µ̂i(t) ≤ xi

)
= 0 if Ti(t) ≥ Li(T ).
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The last equality holds by bounded support of perturbation Zit. Let τ be the largest step
until Ti(t) ≤ Li(T ), then part (b) is bounded by Li(T ). Regarding part (c),

(c) =
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t), (E
µ
1,i(t))

c)

≤
T∑
t=1

P((Eµ
1,i(t))

c) =
T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
−
√

2 log T

s
≥ µ̂1,s

)
=

T∑
t=1

T∑
s=1

P
(
µ1 −

∆i

6
≥ µ̂1,s +

√
2 log T

s

)
=

T∑
t=1

1

T

T∑
s=1

exp
(
− s∆2

i

72

)
≤ 72

∆2
i

Define pi,t as the probability pi,t = P(θ1(t) > yi|Ht−1) whereHt−1 is defined as the history
of plays until time t− 1. Let δj denote the time at which j-th trial of arm 1 happens. In the
history where the event Eµ

1,i(t) holds, then P(θ1(t) > yi|Ht−1) is strictly greater than zero
because of wide enough support of scaled perturbation by adding an extra logarithmic term
in T . For i 6= 1,

(d) =
T∑
t=1

P(At = i, Eµ
i (t), Eθ

i (t), E
µ
1,i(t)) ≤

T−1∑
j=0

E
[1− pi,δj+1

pi,δj+1

I(Eµ
1,i(δj + 1))

]

=
T−1∑
j=0

E
[1− P

(
µ̂1,j +

√
(2+ε) log T

j
Z ≥ µ1 − ∆i

3

)
P
(
µ̂1,j +

√
(2+ε) log T

j
Z ≥ µ1 − ∆i

3

) I
(
µ̂1,j ≥ µ1 −

∆i

6
−

√
2 log T

j

)]

=
T−1∑
j=0

P
(
Z ≤

√
2

2+ε
−

√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε
−

√
j∆i

6
√

(2+ε) log T

) ∵ µ̂1,j = µ1 −
∆i

6
−

√
2 log T

j

=

Mi(T )∑
j=0

P
(
Z ≤

√
2

2+ε
−

√
j∆i

6
√

(2+ε) log T

)
P
(
Z ≥

√
2

2+ε
−

√
j∆i

6
√

(2+ε) log T

)
≤Mi(T ) ·

P
(
Z ≤

√
2

2+ε

)
P
(
Z ≥

√
2

2+ε

) = Mi(T ) · CZ,ε ∵ maximized when j = 0

The first inequality holds by Lemma A.1.1, and the last equality works since the term
inside expectation becomes zero if j ≥ Mi(T ) =

(
36(
√

2 +
√

(2 + ε))2 log T
)
/∆2

i . This
is because the lower bound of perturbed average rewards from the arm 1 becomes larger
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than yi for j ≥Mi(T ). Combining parts (a), (b), (c) and (d),

E[Ti(T )] ≤ 1 +
90

∆2
i

+
9(2 + ε) log T

∆2
i

+ CZ,ε ·
36(
√

2 +
√

(2 + ε))2 log T

∆2
i

Thus, the instance-dependent regret bound is obtained as below, there exist a universal
constant C ′′′ > 0 independent of T,K and ∆i,

R(T ) = C ′′′
∑
∆i>0

(
∆i +

log(T )

∆i

)
.

The optimal choice of ∆ =
√
K log T/T , the instance-independent regret bound is derived

as it follows,

R(T ) ≤ O(
√
KT log T )

A.4 Proof of Theorem 3.2.3

Proof. The proof is a simple extension of the work of Agrawal and Goyal (2013a). Let
µ1 = ∆ =

√
K/T (logK)1/q, µ2 = µ3 = · · · = µK = 0 and each reward is generated from

a point distribution. Then, sample means of rewards are µ̂1(t) = ∆ and µ̂i(t) = 0 if i 6= 1.
The normalized θi(t) sampled from the FTPL algorithm (Algorithm 1-(2)) is distributed as√
Ti(t) · (θi(t)− µ̂i(t)) ∼ Z.
Define the event Et−1 = {

∑
i 6=1 Ti(t) ≤ c

√
KT (logK)1/q/∆} for a fixed constant c.

If Et−1 is not true, then the regret until time t is at least c
√
KT (logK)1/q. For any t ≤ T ,

P(Et−1) ≤ 1/2. Otherwise, the expected regret until time t, E[R(t)] ≥ E[R(t)|Ec
t−1] ·

1/2 = Ω(
√
KT (logK)1/q). If Et−1 is true, the probability of playing a suboptimal is at

least a constant, so that regret is Ω(T∆) = Ω(
√
KT (logK)1/q).

P(∃i 6= 1, θi(t) > µ1|Ht−1) = P(∃i 6= 1, θi(t)
√
Ti(t) > ∆

√
Ti(t)|Ht−1)

= P(∃i 6= 1, Z > ∆
√
Ti(t)|Ht−1)

≥ 1−
∏
i 6=1

(
1− exp

(
− (
√
Ti(t)∆/σ)q/2

)
/Cb

)
Given realization Ht−1 of history Ht−1 such that Et−1 is true, we have

∑
i 6=1 Ti(t) ≤
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c
√
KT (logK)1/q

∆
and it is minimized when Ti(t) = c

√
KT (logK)1/q

(K−1)∆
for all i 6= 1. Then,

P(∃i 6= 1, θi(t) > µ1|Ht−1) ≥ 1−
∏
i 6=1

(
1− exp

(
−
(√

Ti(t)∆
)q

2σq
)
/Cb

)
= 1−

(
1− σ(q,K)

K

)K−1

where σ(q,K) = exp
(
cq/2

2νq
( K
K−1

)q/2
)
/Cb. Accordingly,

P(∃i 6= 1, At = i) ≥ 1

2

(
1−

(
1− σ(q,K)

K

)K−1
)
· 1

2
→ p? ∈ (0, 1).

Therefore, the regret in time T is at least Tp?∆ = Ω(
√
KT (logK)1/q).
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APPENDIX B

Detailed Proofs for Adversarial Multi-armed
Bandits

In this section, the proofs omitted in Chapter 4 are presented.

B.1 Proof of Theorem 4.2.2

Proof. Fix η = 1 without loss of generality in FTRL algorithm via Tsallis entropy. For any
α ∈ (0, 1), Tsallis entropy yields the following choice probability,Ci(G) =

(
1−α
α

) 1
α−1 (λ(G)−

Gi)
1

α−1 , where
∑K

i=1 Ci(G) = 1, λ(G) ≥ maxi∈[K] Gi. Then for 1 ≤ i 6= j ≤ K, the first
derivative is negative as shown below,

∂Ci(G)

∂Gj

=
(1− α

α

) 1
α−1

1

α− 1

(λ(G)−Gi)
1

α−1
−1(λ(G)−Gj)

1
α−1
−1∑K

l=1(λ(G)−Gl)
1

α−1
−1

< 0.

and it implies that DC(G) is symmetric. For, 1 ≤ i 6= j 6= k ≤ K, the second partial
derivative, ∂

2Ci(G)
∂Gj∂Gk

is derived as

Ci(G) ·
(

(
K∑
l=1

(λ(G)−Gl)
2−α
α−1 )(

1

λ(G)−Gi

+
1

λ(G)−Gj

+
1

λ(G)−Gk

)

−
K∑
l=1

(λ(G)−Gl)
3−2α
α−1

)
.

If we set 1/(λ(G) − Gi) = Xi, the term except for the term Ci(G) is simplified to∑K
i=1X

2−α
1−α
i · (X1 + X2 + X3) −

∑K
i=1 X

3−2α
1−α
i where

∑K
i=1X

1
1−α
i =

(
α

1−α

) 1
α−1 . If we

set K = 4, C(G) = (ε, ε, ε, 1− 3ε), and Xi = C1−α
i

1−α
α

, then it is equal to

(1− α
α

) 3−2α
1−α
(
6ε3−2α + 3ε1−α(1− 3ε)2−α − (1− 3ε)3−2α

)
. (B.1)
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So, there always exists ε > 0 small enough to make the value of (B.1) negative where
α ∈ (0, 1), which means condition (4) in Theorem 4.2.1 is violated.

B.2 Asymptotic expected block maxima and supremum of
hazard rate

B.2.1 Extreme value theory

Theorem B.2.1 (Proposition 0.3 (Resnick, 2013)). Suppose that there exist {aK > 0} and

{bK} such that

P((MK − bK)/aK ≤ z) = FK(aK · z + bK)→ G(z) as K →∞ (B.2)

whereG is a non-degenerate distribution function, thenG belongs to one of families; Gum-

bel, Fréchet and Weibull. Then, F is in the domain of attraction ofG, written as F ∈ D(G).

1. Gumbel type (Γ) with G(x) = exp(− exp(−x)) for x ∈ R.

2. Fréchet type (Φα) with G(x) = 0 for x > 0 and G(x) = exp(−x−α) for x ≥ 0.

3. Weibull type (Ψα) with G(x) = exp(−(−x)α) for x ≤ 0 and G(x) = 1 for x > 0.

Let γK = F←(1− 1/K) = inf {x : F (x) ≥ 1− 1/K}.

Theorem B.2.2 (Proposition 1.1 (Resnick, 2013)). Type 1 - Gumbel (Λ)

1. If F ∈ D(Γ), there exists some strictly positive function g(t) s.t. limt→ωF
1−F (t+x·g(t))

1−F (t)
=

exp(−x) for all x ∈ R with exponential tail decay. Its corresponding normalizing se-

quences are aK = g(γK) and bK = γK , where g = (1− F )/F ′.

2. If limx→∞
F ′′(x)(1−F (x))

{F ′(x)}2 = −1, then F ∈ D(Λ).

3. If
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
(MK − bK)/aK

)
= −Γ(1)(1). Accordingly,

EMK behaves as −Γ(1)(1) · g(γK) + γK .

Theorem B.2.3 (Proposition 1.11 (Resnick, 2013)). Type 2 - Fréchet (Φα)

1. If F ∈ D(Φα), its upper end point is infinite, ωF = ∞, and it has tail behavior that

decays polynomially limt→∞
1−F (tx)
1−F (t)

= x−α, for x > 0, α > 0. Its corresponding normal-

izing sequences are aK = γK and bK = 0.

2. If limx→∞
xF ′(x)
1−F (x)

= α for some α > 0, then F ∈ D(Φα).

3. If α > 1 and
∫ 0

−∞ |x|F (dx) < ∞, then limK→∞ E
(
MK/aK

)
= Γ

(
1 − 1/α

)
. Accord-

ingly, EMK behaves as Γ
(
1− 1

α

)
· γK .
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B.2.2 Gumbel distribution

Gumbel has the following distribution function, the first derivative and the second deriva-
tive, F (x) = exp(−e−x), F ′(x) = e−xF (x), and F ′′(x) = (e−x − 1)F ′(x). Then we
have

lim
x→∞

F ′′(x)(1− F (x))

{F ′(x)}2 = −1,

thus this is Gumbel-type distribution by Theorem B.2.2, F ∈ D(Λ).
If g(x) = ex(ee

−x − 1), then normalizing constants are obtained as

bK = − log(− log(1− 1/K)) ∼ logK,

aK = g(bK) = (1− F (bK))/(exp(−bK)F (bK)) = 1 + 1/K + o(
1

K
).

Accordingly, EMK = −Γ(1)(1) · (1 + 1
K

) + logK + o(1/K).
Its hazard rate is derived as h(x) = F ′(x)

1−F (x)
= e−x

exp(e−x)−1
, and since it increases mono-

tonically and converges to 1 as x goes to infinity, it has an asymptotically tight bound 1.

B.2.3 Gamma distribution

For x > 0, the first derivative and the second derivative of distribution function are given
as F ′(x) = (xα−1e−x)/Γ(α) and F ′′(x) = −F ′(x)(1 + (α − 1)/t) ∼ −F ′(x). It satisfies
F ′′(1−F (x))

(F ′(x))2 ∼ −1−F (x)
F ′(x)

→ −1 so it is Gumbel-type by Theorem B.2.2, F ∈ D(Λ). It has
g(x)→ 1 and thus aK = 1. Since F ′(bK) ∼ 1− F (bK) = 1/K, then we have

(α− 1) log bK − bK − log Γ(α) = − logK.

Thus, we have bK = logK + (α− 1) log logK − log Γ(α). Accordingly,

EMK = −Γ(1)(1) + logK + (α− 1) log logK − log Γ(α).

Its hazard function is expressed by h(x) = (xα−1 exp(−x))/[
∫∞
x
tα−1 exp(−t)dt]. It

increases monotonically and converges to 1, and thus has an asymptotically tight bound 1.

B.2.4 Weibull distribution

The Weibull distribution function and its first derivative are obtained as as F (x) = 1 −
exp(−(x+ 1)α + 1) and F ′(x) = α(x+ 1)α−1(1− F (x)). Its second derivative is (α−1

x+1
−

α(x + 1)α−1) · F ′(x). The second condition in Theorem B.2.2 is satisfied, and thus F ∈
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D(Λ) and g(x) = x−α+1/α. Corresponding normalizing constants are derived as bK =

(1 + logK)1/α − 1 ∼ (logK)1/α and aK = g(bK) = (logK)1/α−1/α. So,

EMK = −Γ(1)(1) · (logK)1/α−1/α + (logK)1/α.

Its hazard rate function is h(x) = α(x + 1)α−1 for x ≥ 0. If α > 1, it increases
monotonically and becomes unbounded. If the case for α ≤ 1 is only considered, then the
hazard rate is tightly bounded by α.

B.2.5 Fréchet distribution

The first derivative of Fréchet distribution function is F ′(x) = exp(−x−α)αx−α−1 for
x > 0 and the second condition in Theorem B.2.3 is satisfied as

lim
x→∞

xF ′(x)

1− F (x)
= lim

x→∞

αx−α

exp(x−α)− 1
→ α.

Thus, it is Fréchet-type distribution (Φα) so that bK = 0 and aK = [− log(1−1/K)]−1/α =

[1/K + o(1/K)]−1/α ∼ K1/α. So, EMK = Γ(1− 1/α) ·K1/α.
The hazard rate is h(x) = αx−α−1 1

exp(x−α)−1
. It is already known that supremum of

hazard is upper bound by 2α in Appendix D.2.1 in Abernethy et al. (2015). Regarding the
lower bound of a hazard rate, supx>0 h(x) ≥ h(1) = α/(e− 1).

B.2.6 Pareto distribution

The modified Pareto distribution function is F (x) = 1 − 1
(1+x)α

for x ≥ 0. The second

condition in Theorem B.2.3 is met as limx→∞
xF ′(x)
1−F (x)

= limx→∞
αx

1+x
→ α > 1. Thus, it is

Fréchet-type distribution (Φα), and has normalizing constants, bK = 0 and aK = K1/α−1.
Accordingly, EMK ≈ Γ(1− 1/α) · (K1/α − 1).

Its hazard rate is h(x) = α
1+x

for x ≥ 0 so that it is tightly bounded by α.

B.3 Two-armed bandit setting

In this section we consider two-armed bandit setting and study both Shannon entropy and
Tsallis entropy in FTRL algorithm.
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B.3.1 Shannon entropy

There is a mapping betweenR and FD? ,

R(w)−R(0) = −
∫ w

0

F−1
D? (1− z)dz. (B.3)

Let R(w) be one-dimensional Shannon entropic regularizer, R(w) = −w logw − (1 −
w) log(1−w) forw ∈ (0, 1) and its first derivative isR′(w) = log 1−w

w
= F−1

D? (1−w). Then
FD?(z) = exp(z)

1+exp(z)
, which can be interpreted as the difference of two Gumbel distribution

as follows,

P(arg max
w∈∆1

〈w, (G1 + Z1, G2,+Z2)〉 = 1)

= P(G1 + Z1 > G2 + Z2))

= P(Y > G2 −G1) where Y = Z1 − Z2 ∼ D?

= 1− FD?(G2 −G1)

=
exp(G1)

exp(G1) + exp(G2)
.

If Z1, Z2 ∼ Gumbel(α, β) and are independent, then Z1 − Z2 ∼ Logistic(0, β). There-
fore, the perturbation, FD? is not distribution function for Gumbel, but Logistic distribution
which is the difference of two i.i.d Gumbel distributions. Interestingly, the logistic distribu-
tion turned out to be also Gumbel types extreme value distribution as Gumbel distribution.
It is naturally conjectured that the difference between two i.i.d Gumbel types distribution
with exponential tail decay must be Gumbel types as well. The same holds for Fréchet-type
distribution with polynomial tail decay.

B.3.2 Tsallis entropy

Theorem 4.2.2 states that there does not exist a perturbation that gives the choice proba-
bility function same as that from FTRL via Tsallis entropy when K ≥ 4. In two-armed
setting, however, there exists a perturbation equivalent to Tsallis entropy and this perturba-
tion naturally yields an optimal perturbation based algorithm.

Let us consider Tsallis entropy regularizer in one dimensional decision set expressed
by R(w) = 1

1−α(−1 + wα + (1 − w)α) for w ∈ (0, 1) and its first derivative is R′(w) =
α

1−α(wα−1 − (1 − w)α−1) = F−1
D? (1 − w). If we set u = 1 − w, then the implicit form of

distribution function and density function are given as FD?( α
1−α((1− u)α−1 − uα−1)) = u

and fD?( α
1−α((1 − u)α−1 − uα−1)) = 1

α((1−u)α−2+uα−2)
. As u converges to 1, then z =
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α
1−α((1 − u)α−1 − uα−1) goes to positive infinity. This distribution satisfies the second
condition in Theorem B.2.3 so that it turns out to be Fréchet-type.

lim
z→∞

zfD?(z)

1− FD?(z)
= lim

u→1

α
1−α((1− u)α−1 − uα−1)

(1− u)× α((1− u)α−2 + uα−2)
=

1

1− α
.

If the conjecture above holds, the optimal perturbation that corresponds to Tsallis entropy
regularizer must be also Fréchet-type distribution in two armed bandit setting. This result
strongly support our conjecture that the perturbation in an optimal FTPL algorithm must
be Fréchet-type.
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APPENDIX C

Detailed Proofs for Non-stationary Stochastic
Linear Bandit

In this section, the proofs omitted in Chapter 6 are presented.

C.1 Useful Lemma

Lemma C.1.1 (Concentration and anti-concentration of Gaussian distribution (Abramowitz
and Stegun, 1964)). Let Z be the Gaussian random variable with mean µ and variance σ2.

For any z > 0,

1

4
√
π

exp(−7z2

2
) ≤ P (|Z − µ| > zσ) ≤ 1

2
exp(−z

2

2
).

C.2 Proof of Theorem 6.4.2

Proof of Theorem 6.4.2. The dynamic regret bound is decomposed into two terms, (A)

expected surrogate regret and (B) bias arising from variation on true parameter.

E[R(T )] =
T∑
t=1

E[〈x?t −Xt, θ
?
t 〉] =

T∑
t=1

E[〈x?t −Xt, θ̄t〉] +
T∑
t=1

E[〈x?t −Xt, θ
?
t − θ̄t〉]

≤
T∑
t=1

E[〈x?t −Xt, θ̄t〉] + 2
T∑
t=1

‖θ?t − θ̄t‖2 = (A) + (B)
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The expected surrogate regret term (A) is bounded as,

(A) =
T∑
t=1

E[〈x?t −Xt, θ̄t〉] ≤
T∑

t=d+1

E[〈x?t −Xt, θ̄t〉] + d

≤
T∑

t=d+1

E[〈x?t −Xt, θ̄t〉I{Ewls}] + T · P (Ēwls) + d

≤
T∑

t=d+1

E[〈x?t −Xt, θ̄t〉I{Ewls}] + Tp1 + d

≤ (c1 + c2)
(
1 +

2

p3 − p2

)
Et
[ T∑
t=d+1

min(1, ‖Xt‖V −1
t

)
]

+ T (p1 + p2) + d

∵ Theorem 6.4.1

≤ (c1 + c2)
(
1 +

2

p3 − p2

)√
c3T + T (p1 + p2) + d ∵ C-S ineq. & Lemma C.2.1

Lemma C.2.1 (Corollary 4, Russac et al. (2019)). For any λ > 0,

T∑
t=d+1

min(1, ‖Xt‖2
V −1
t

) ≤ c3T

where c3 = 2d log(1/γ) + 2 d
T

log(1 + 1
dλ(1−γ)

).

The bias term (B) is bounded in terms of total variation, BT . We first bound the indi-
vidual bias term at time t. For any integer D > 0,

‖θ?t − θ̄t‖2 = ‖W−1
t,λ

t−1∑
l=1

γ−lXlX
T
l (θ?l − θ?t )‖2

≤ ‖W−1
t,λ

t−1∑
l=t−D

γ−lXlX
T
l (θ?l − θ?t )‖2 + ‖W−1

t,λ

t−D−1∑
l=1

γ−lXlX
T
l (θ?l − θ?t )‖2

≤ ‖W−1
t,λ

t−1∑
l=t−D

γ−lXlX
T
l

t−1∑
m=l

(θ?m − θ?m+1)‖2 + ‖
t−D−1∑
l=1

γ−lXlX
T
l (θ?l − θ?t )‖W−2

t,λ

≤ ‖W−1
t,λ

t−1∑
m=t−D

m∑
l=t−D

γ−lXlX
T
l (θ?m − θ?m+1)‖2 +

1

λ
‖
t−D−1∑
l=1

γt−l−1XlX
T
l (θ?l − θ?t )‖2

≤
t−1∑

m=t−D

‖W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l (θ?m − θ?m+1)‖2 +

2

λ

γD

1− γ
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≤
t−1∑

m=t−D

λmax

(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
‖θ?m − θ?m+1‖2 +

2

λ

γD

1− γ

≤
√
dD

λ

t−1∑
m=t−D

‖θ?m − θ?m+1‖2 +
2

λ

γD

1− γ

The third inequality holds due to W−2
t,λ 4 (γ

t−1

λ
)2Id. The last inequality works by Lemma

C.2.2. By combining individual bias terms over T rounds, we can derive the upper bound
of bias term (B) as,

(B) = 2
T∑
t=1

‖θ?t − θ̄t‖2

≤ 2
T∑
t=1

√
dD

λ

t−1∑
m=t−D

‖θ?m − θ?m+1‖2 +
4

λ

γD

1− γ
T

≤ 2

√
d

λ
D3/2BT +

4

λ

γD

1− γ
T

Lemma C.2.2. For t−D ≤ m ≤ t− 1,

λmax

(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
≤
√
dD

λ
.

Proof. Denote by B(1) = {x|‖x‖2 = 1} the unit ball.

λmax

(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
= sup

z∈B(1)

∣∣∣zTW−1
t,λ

( m∑
l=t−D

γ−lXlX
T
l

)
z
∣∣∣

=
∣∣∣zT?W−1

t,λ

( m∑
l=t−D

γ−lXlX
T
l

)
z?

∣∣∣ z? : optimizer

≤ ‖z?‖W−1
t,λ

∥∥∥ m∑
l=t−D

γ−lXlX
T
l z?

∥∥∥
W−1
t,λ

≤ ‖z?‖W−1
t,λ

∥∥∥ m∑
l=t−D

γ−lXl‖Xl‖2‖z?‖2

∥∥∥
W−1
t,λ

≤ γ(t−1)/2

√
λ

∥∥∥ m∑
l=t−D

γ−lXl

∥∥∥
W−1
t,λ

≤ γ(t−1)/2

√
λ

m∑
l=t−D

∥∥∥γ−lXl

∥∥∥
W−1
t,λ

≤
√
D

λ

√√√√γt−1

m∑
l=t−D

‖γ−lXl‖2
W−1
t,λ

≤
√
dD

λ

76



In this proof, we utilized the fact that for any x, we have ‖x‖W−1
t,λ
≤ ‖x‖2/

√
λγ−(t−1) =

‖x‖2γ(t−1)/2
√
λ

. The last step makes use of the following result: for anym ∈ {t−D, · · · , t−1},

γt−1

m∑
l=t−D

‖γ−lXl‖2
W−1
t,λ

=
m∑

l=t−D

tr(γ−lXT
l W

−1
t,λXl)

= tr
(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
≤ tr

(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
+

t−1∑
s=m+1

γ−lXT
l W

−1
t,λXl + λγ−t

d∑
i=1

eTi W
−1
t,λ ei

= tr
(
W−1
t,λ

m∑
l=t−D

γ−lXlX
T
l

)
+ tr

(
W−1
t,λ

t−1∑
l=m+1

γ−lXlX
T
l

)
+ tr

(
W−1
t,λ λγ

−t
d∑
i=1

eie
T
i

)
= tr(Id) = d

Therefore, the expected dynamic regret is bounded as,

E[R(T )] ≤ (A) + (B)

≤ (c1 + c2)
(
1 +

2

p3 − p2

)√
c3T + T (p1 + p2) + d+ 2

√
d

λ
D3/2BT +

4

λ

γD

1− γ
T

In Corollary 6.4.1, the choices of a, c1, c2, and c3 are

a2 = 14c2
1, c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2

c2 = a
√

2 log(T/2), and c3 = 2d log(1/γ) + 2
d

T
log(1 +

1

dλ(1− γ)
).

With optimal choice of

D =
log T

1− γ
, γ = 1− d−

1
4B

1
2
T T
− 1

2 ,

the dynamic regret of the D-RandLinUCB algorithm is asymptotically upper bounded by
O(d

7
8B

1
4
T T

3
4 ) as T →∞ as T →∞.
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In Corollary 6.4.2, the choices of a, c1, c2, and c3 are

a2 = 14c2
1, c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2

c2 = a
√

2 log(KT/2), and c3 = 2d log(1/γ) + 2
d

T
log(1 +

1

dλ(1− γ)
).

With optimal choice of

D =
log T

1− γ
, γ = 1− d−

1
4 (logK)−

1
4B

1
2
T T
− 1

2 ,

the dynamic regret of the D-LinTS algorithm is asymptotically upper bounded by
O(d

7
8 (logK)

3
8B

1
4
T T

3
4 ) as T →∞.

C.3 Adapting to unknown non-stationarity

The optimal discounting factor γ? requires prior information of non-stationarity measure
BT , which is unavailable in general. We make up for the lack of this information via run-
ning the EXP3 algorithm as a meta algorithm to adaptively choose the optimal discounting
factor. This method of adapting to unknown non-stationarity is called as Bandits-over-
Bandits (BOB) (Cheung et al., 2019).

The BOB mechanism divides the entire time horizon into [T/H] blocks of equal length
H rounds, and specifies a set J ⊂ [H] from which each critical window size Di is drawn
from. For each block i, the BOB mechanism selects a critical window size Di and starts
a new copy of D-RandLinUCB algorithm. On top of this, the BOB mechanism separately
maintains the EXP3 algorithm to carefully control the selection of critical window size for
each block, and the total reward of each block is used as bandit feedback for the EXP3
algorithm.

We set H = d
1
4T

1
2 and we consider D-RandLinUCB algorithm together with BOB

mechanism. The details for D-LinTS algorithm will be skipped since its dynamic regret
bound can be obtained in a very similar fashion. With choices of parameters,

a2 = 14c2
1, c1 =

√
2 log T + d log(1 +

1− γ2(T−1)

λd(1− γ2)
) + λ1/2,

c2 = a
√

2 log(T/2), and c3 = 2d log(1/γ) + 2
d

T
log(1 +

1

dλ(1− γ)
)
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the expected dynamic regret bound is bounded as

E[R(T )] ≤ (c1 + c2)
(
1 +

2

p3 − p2

)√
c3T + T (p1 + p2) + d+ 2

√
d

λ
D3/2BT +

4

λ

γD

1− γ
T

(C.1)

≤ Õ
(√

dD3/2BT +
dT√
D

)
, (C.2)

where D is called critical window size in the sense that the observations outside this
critical window size would not affect the order of regret bound (only by constant in-
stead). This quantity is closely related to discounting factor γ in the following equation,
D = (log T )/(1−γ). That is, to find the optimal discounting factor is equivalent to finding
the optimal critical window size.

E[RegretT (BOB)] =E[
T∑
t=1

〈x?t , θt〉 −
T∑
t=1

〈Xt, θt〉]

=E
[ T∑
t=1

〈x?t , θt〉 −
[T/H]∑
i=1

iH∧T∑
t=(i−1)H+1

〈Xt(D†), θt〉
]

︸ ︷︷ ︸
(a)

+ E
[ [T/H]∑

i=1

iH∧T∑
t=(i−1)H+1

〈Xt(D†)−Xt(Di), θt〉
]

︸ ︷︷ ︸
(b)

where D† is the best critical window size to approximate the optimal critical window size
D? in the pool J = {H0, [H

1
∆ ], [H

2
∆ ], · · · , H} for some positive integer ∆, and we can

set H = [d
1
4T

1
2 ] and ∆ = [logH]. Recall that D? = d

1
4B
− 1

2
T T

1
2 log T . It suffices to bound

terms (a) and (b).
The term (a) is bounded using Equation C.2,

(a) = E
[ [T/H]∑

i=1

iH∧T∑
t=(i−1)H+1

〈x?t −Xt(D†), θt〉
]

=

[T/H]∑
i=1

Õ
(√

dD
3/2
† BT (i) +

dH√
D†

)
= Õ

(√
dD

3/2
† BT +

dT√
D†

)

79



where BT (i) =
∑iH∧T−1

t=(i−1)H+1 ‖θt − θt+1‖ is the total variation in block i.
Next, we bound the term (b) as below. The number of rounds in a block is [T/H] and

the number of possible options of Di is |J | = ∆ + 1.

(b) ≤ Õ(
√
H|J |T )

where this inequality follows by the same argument as in the sliding window based ap-
proach (Cheung et al., 2019).

Combining term (a) and (b), the regret of the BOB mechanism is

E[RegretT (BOB)] = Õ
(√

dD†
3/2BT +

dT√
D†

+
√
H|J |T

)
.

Case 1 : D? ≤ H . This condition implies that there exists ε1 and ε2 such that BT =

Ω̃(dε1T ε2) where at least one of ε1 and ε2 is positive, and thusD† can automatically approx-
imate to the nearly optimal critical window size D?. Then, the dynamic regret of the BOB
mechanism becomes

E[RegretT (BOB)] = Õ
(√

dD†
3/2BT +

dT√
D†

+
√
H|J |T

)
= Õ

(√
dD?3/2H

1
∆BT +

dT√
D?H−

1
∆

+ d
1
8T

3
4 ∆

1
2

)
= Õ

(
d

7
8B

1
4
T T

3
4 + d

1
8T

3
4 ∆

1
2

)
= Õ

(
d

7
8B

1
4
T T

3
4

)
.

Case 2 : D? > H . This condition implies that BT = Õ(1). Under this situation, D†
equals to H , which is the critical window size closest to D?, then the dynamic regret of the
BOB mechanism becomes

E[RegretT (BOB)] = Õ
(√

dD†
3/2BT +

dT√
D†

+
√
H|J |T

)
= Õ

(√
dH3/2BT +

dT√
H

+
√
H|J |T

)
= Õ

(
d

7
8BTT

3
4 + d

7
8T

3
4 + d

1
8T

3
4 ∆

1
2

)
= Õ

(
d

7
8B

1
4
T T

3
4

)
.

The last inequality holds by the condition BT = Õ(1).
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APPENDIX D

Detailed proofs for Differential Private
Learnability

In this chapter, the proofs omitted in Chapter 7 are presented.

D.1 Section 7.1 details

We prove Lemma 7.1.1.

Lemma 7.1.1 (restated). LetH ⊂ [K]X be a class of multi-class hypotheses.

1. Ldimτ (H) is decreasing in τ .

2. SOAτ (Algorithm 5) makes at most Ldimτ (H) mistakes with respect to `0−1
τ .

3. For any deterministic learning algorithm, an adversary can force Ldim2τ (H) mis-
takes with respect to `0−1

τ .

Proof. Part 1 follows by observing that if T is a binary shattered tree with tolerance τ , then
so is it with tolerance τ ′ < τ .

For part 2, assume SOAτ makes a mistake at round t. We claim that Ldimτ (Vt+1) <

Ldimτ (Vt). If Ldimτ does not decrease, we can infer that

Ldimτ (V
(ŷt)
t ) = Ldimτ (V

(yt)
t ) = Ldimτ (Vt) =: d.

Then we can find binary trees T1 and T2 of height d that are shattered by V (ŷt)
t and V (yt)

t ,
respectively. By concatenating T1 and T2 with a root node xt and its edges labeled by ŷt
and yt, we can obtain a binary tree T of height d+1 that is shattered by Vt. This contradicts
to Ldimτ (Vt) = d and proves our assertion.
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To prove part 3, let T be a binary shattered tree of height Ldim2τ (H). For a given
node x, suppose the adversary shows x to the learner. Since the descending edges have
labels apart from each other by more than 2τ , the adversary can choose a label that incurs
a mistake with respect to `0−1

τ . Thus by following down the tree T from the root node, the
adversary can force Ldim2τ (H) mistakes.

D.2 Section 7.2 details

In this section, the proofs omitted in Section 7.2 are presented.

D.2.1 Proof of Theorem 7.2.1

We first define sub-trees. Let T be a binary tree. Any node of T becomes its sub-tree of
height 1. For h > 1, choose a node x and let T1 and T2 be the trees that are rooted at its
two children. A sub-tree of height h is obtained by aggregating a sub-tree of height h − 1

of T1 and a sub-tree of height h − 1 of T2 at the root node x. Note that if the original tree
T is shattered by some hypothesis class, then so is any sub-tree of it.

Next we prove a helper lemma.

Lemma D.2.1. Suppose there are n colors C = {ci}1:n and n positive integers {di}1:n. Let

T be a binary tree of height −(n − 1) +
∑n

i=1 di whose vertices are colored by C. Then

there exists a color ci such that T has a sub-tree of height di in which all internal vertices

are colored by ci.

Proof. We will prove by induction on
∑n

i=1 di. If di = 1 for all i, then the height of T
becomes 1, and the statement holds trivially. Now suppose the lemma holds for any di’s
whose summation is less than N and let T have the height N − n + 1. Without loss of
generality, we may assume that the root node x0 is colored by c1. We consider two sub-
trees T1, T2 of height N − n whose root nodes are children of x0. Let e1 = d1 − 1 and
ei = di for i > 1. Since

∑n
i=1 ei = N − 1, by the inductive assumption each Tj has a

sub-tree of height eij in which all internal vertices are colored by cij . If ij 6= 1 for some j,
then we are done because eij = dij . If ij = 1 for all j = 1, 2, then merging these two trees
with the node x0 forms a sub-tree of height e1 + 1 = d1 of color c1. This completes the
inductive argument.

Now we are ready to prove Theorem 7.2.1.

Theorem 7.2.1 (restated). Let H ⊂ [K]X and F ⊂ [−1, 1]X be multi-class and regression
hypothesis classes, respectively.
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1. If Ldim2τ (H) ≥ d, thenH contains b logK d
K2 c thresholds with a gap τ .

2. If fatγ(F) ≥ d, then F contains b γ2

104 log100/γ dc thresholds with a margin γ
5
.

Proof. We begin with the multi-class setting. Suppose d = KK2t. It suffices to show H
contains t thresholds. Let T be a shattered binary tree of height d and tolerance 2τ . Letting
H0 = H and T0 = T , we iteratively apply COLORANDCHOOSE (Algorithm 6). Namely,
we write

kn, k
′
n, hn, xn,Hn, Tn = COLORANDCHOOSE(Hn−1, Tn−1, 2τ). (D.1)

Observe that for all n, we can infer hn(xn) = hn(x) = kn for all internal vertices x of Tn
(∵ line 4 of Algorithm 6) and h(xn) = k′n for all h ∈ Hn (∵ line 8 of Algorithm 6).

Additionally, Lemma D.2.1 ensures that the height of Tn is no less than 1
K

times the
height of Tn−1. This means that the iterative step (D.1) can be repeated K2t times since
d = KK2t. Then there exist k, k′ and indices {ni}ti=1 such that kni = k and k′ni = k′ for all
i.

It is not hard to check that the functions {hni}1:t and the arguments {xni}1:t form thresh-
olds with labels k, k′. Since |k−k′| > τ (∵ line 6 of Algorithm 6), this completes the proof.

Now we move on to the regression setting. Proposition 7.1.1 implies that

Ldim20([F ]γ/50) ≥ Ldim24([F ]γ/50) ≥ d.

Then using the previous result in the multi-class setting, we can deduce that [F ]γ/50

contains n := b γ2

104 log100/γ dc thresholds with a gap 10. This means that there exist k, k′ ∈
[100
γ

], {xi}1:n ⊂ X , and {[fi]γ/50}1:n ⊂ H such that |k − k′| ≥ 10 and

[fi]γ/50(xj) =

k if i ≤ j

k′ if i > j
.

Let u, u′ be the middles points of the intervals that correspond to the labels k, k′. Then it is
easy to check that |u− u′| ≥ γ/5 and

fi(xj) ∈

[u− γ
100
, u+ γ

100
) if i ≤ j

[u′ − γ
100
, u′ + γ

100
) if i > j

.

This proves the theorem.
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D.2.2 Proof of Theorem 7.2.2

Theorem 7.2.2 (restated). Let F = {fi}1:n ⊂ [−1, 1]X be a set of threshold functions with
a margin γ on a domain {xi}1:n ⊂ X along with bounds u, u′ ∈ [−1, 1]. Suppose A is a
( γ

200
, γ

200
)-accurate learning algorithm for F with sample complexity m. If A is (ε, δ)-DP

with ε = 0.1 and δ = O( 1
m2 logm

), then it can be shown that m ≥ Ω(log∗ n).

Proof. The proof consists of two main lemmas. Lemma D.2.2 proves that there is a large
homogeneous set (see Definition D.2.1). Then Lemma D.2.4 yields the lower bound of the
sample complexity when there exists a large homogeneous set. In particular, from these
two lemmas, we can deduce that

log(m) n

2O(m logm)
≤ 2O(m2 log(2)m).

This means that there exists a constant c such that

log(m) n ≤ ecm
2 logm.

Observing that log∗
(

log(m) n
)
≥
(

log∗ n
)
−m and log∗

(
2O(m2 log(2)m)

)
= O(log∗m), we

can check the desired inequality m ≥ Ω(log∗ n).

D.2.2.1 Existence of a large homogenous set

SupposeA is a learning algorithm over a finite domain D. The hypothesis class consists of
threshold functions over D with bounds u, u′. According to Definition 7.2.2, u and u′ can
be in an arbitrary order as long as |u− u′| > γ. But for simpler presentation, without loss
of generality, we will assume u > u′. Also, let ū = u+u′

2
. We define the following quantity:

AS(x) = Pf∼A(S)

(
f(x) ≥ ū

)
.

The definition of homogenous sets (Definition D.2.1) and Lemma D.2.2 are adopted
from Alon et al. (2019). Assume that X is linearly ordered. Given a training set S =(
(xi, yi)

)
1:m

, we say S is increasing if x1 ≤ · · · ≤ xm. Additionally, we say S is balanced

if yi = u′ for all i ≤ m
2

and yi = u for all i > m
2

. Given x ∈ X , we define ordS(x) =∣∣{i | xi ≤ x}
∣∣. Lastly, we use SX to denote (xi)1:m.

Definition D.2.1 (m-homogeneous set). A set D′ ⊂ D is m-homogeneous with respect to
a learning algorithm A if there are numbers pi ∈ [0, 1] for 0 ≤ i ≤ m such that for every
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increasing balanced sample S ∈ (D′ × {u, u′})m and for every x ∈ D′ \ SX

|AS(x)− pi| ≤
1

100m
,

where i = ordS(x).

The following theorem is a well-known result in Ramsey theory. It was originally
introduced by Erdos and Rado (1952) and rephrased by Alon et al. (2019).

Theorem D.2.1 (Alon et al. (2019, Theorem 11)). Let s > t ≥ 2 and q be integers, and let

N ≥ twrt(3sq log q). Then for every coloring of the subsets of size t of a universe of size

N using q colors, there is a homogeneous subset 1 of size s.

The next lemma states that we can find a large homogeneous set.

Lemma D.2.2 (Existence of a large homogeneous set). LetA be a learning algorithm over

a domain D with |D| = n. Then there exists a set D′ ⊂ D which is m-homogeneous with

respect to A such that

|D′| ≥ log(m) n

2O(m logm)
.

Proof. We first define a coloring on the (m+ 1)-subsets of D. Let B = {x1 < x2 < · · · <
xm+1} be an (m + 1)-subset. For each i ∈ [m + 1], let B(i) = B \ {xi}. Then by labeling
the first half of B(i) by u′ and the second half by u, we get a balanced increasing training
set S(i). Then we compute pi that is of the form t

100m
and closest to AS(i)(xi) (in case of

ties, choose the smaller one). Then we color B by the tuple (pi)1:m+1.
This scheme includes (100m + 1)m+1 colors, and Theorem D.2.1 provides that there

exists a set D′ of size larger than

log(m) n

3(100m+ 1)m+1(m+ 1) log(100m+ 1)
=

log(m) n

2O(m logm)

such that all (m + 1)-subsets of D′ have the same color. It is easy to verify that this set is
indeed m-homogeneous with respect to A according to Definition D.2.1.

D.2.2.2 Large homogeneous set implies the lower bound

Recall that PAC learning is defined with respect to lossD (see Definition 2.3.1). When lossD
is replaced by lossS , we say an algorithm A empirically learns a training set S. Bun et al.
(2015, Lemma 5.9) prove that if a hypothesis class is PAC learnable, then there exists an
empirical learner as well.

1A subset of the universe is homogeneous if all of its t-subsets have the same color.
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Lemma D.2.3 (Empirical learner). SupposeA is an (ε, δ)-DP PAC learner for a hypothesis

class H that is (α, β)-accurate and has sample complexity m. Then there is an (ε, δ)-DP

and (α, β)-accurate empirical learner forH with sample complexity 9m.

The next is the main lemma.

Lemma D.2.4 (Large homogeneous sets imply lower bounds on sample complexity). Sup-

pose a learning algorithm A is (ε, δ)-DP with sample complexity m. Let X = [N ] be

m-homogeneous with respect to A. If ε = 0.1, δ ≤ 1
1000m2 logm

, and A empirically learns

the threshold functions with a margin γ over X with ( γ
200
, γ

200
)-accuracy, then

N ≤ 2O(m2 log(2) m).

Proof. The proof is done by combining Lemma D.2.5 and Lemma D.2.6, which come
below.

This is the first helper lemma to prove Lemma D.2.4. It adopts Alon et al. (2019,
Lemma 12).

Lemma D.2.5. LetA, X,m,N as in Lemma D.2.4 and assume N > 2m. Then there exists

a family P = {Pi}1:N−m of distributions over {−1, 1}N−m that satisfies the following two

properties.

1. Pi and Pj are (ε, δ)-indistinguishable for all i 6= j.

2. There exists r ∈ [0, 1] such that for all i, j ∈ [N −m],

Pv∼Pi(vj = 1)

≤ r − 1
10m

if j < i

≥ r + 1
10m

if j > i
.

Proof. Let (pi)0:m be the probability list associated with m-homogeneous set X = [N ].
We first prove that there exists i∗ such that pi∗ − pi∗−1 ≥ 1

4m
. Fix an increasing balanced

training set S :=
(
(xi, yi)

)
1:m
∈
(
X × {u, u′}

)m such that xi − xi−1 ≥ 2 for all i, which
is possible by the assumption N > 2m. By the definition of threshold functions with a
margin γ, we can infer

min
f

lossS(f) ≤ γ

20
= 0.05γ,

where the minimum is taken over the threshold functions with a margin γ.
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Furthermore, since A is an (α = γ
200
, β = γ

200
)-accurate empirical learner, we can

bound the expected loss of A(S) as

Ef∼A(S)lossS(f) ≤ α + β + min
f

lossS(f) ≤ 0.06γ. (D.2)

Also, we can lower bound the expected empirical loss by using the quantity AS(xi) as
follows (recall that we assumed u > u′)

Ef∼A(S)lossS(h) ≥ 1

m
· γ

2

m/2∑
i=1

[AS(xi)] +
m∑

i=m/2+1

[1−AS(xi)]

 . (D.3)

Combining (D.2) and (D.3), we can show that there exists j ≤ m
2

such that AS(xj) ≤ 1
4
.

Let S ′ = (S \ {(xj, yj)}) ∪ {(xj + 1, yj)}. Since A is (ε = 0.1, δ ≤ 1
1000m2 logm

)-DP, we
have

pj−1 −
1

100m
≤ AS′(xj) ≤

1

4
eε + δ ≤ 0.3,

which implies that pj−1 ≤ 0.3 + 1
100m

≤ 1
3
. Similarly, we can find k > m

2
such that

pk+1 ≥ 2
3
. Then we can find i∗ ∈ [j, k + 1] such that pi∗ − pi∗−1 ≥ 1

4m
, which proves our

assertion.
Now we construct P = {Pi}1:N−m. Given i, let

B(i) = {1, · · · , i∗ − 1} ∪ {i∗ + i} ∪ {i∗ +N −m+ 1, · · · , N} ⊂ X.

Observe that B(i) and B(j) only differ by one item at the position i∗. Then define S(i) to be
the balanced increasing training set built upon B(i). Given a hypothesis f , we can compute
a N −m dimensional binary vector v ∈ {−1, 1}N−m such that

vj = I (f(i∗ − 1 + j) ≥ ū) , where ū =
u+ u′

2
.

This mapping induces a distribution over {−1, 1}N−m fromA(S(i)), which we define to be
Pi.

Due to DP property of A, Pi and Pj are (ε, δ)-indistinguishable. Furthermore, our
construction of i∗ ensures the second property with r = pi−1+pi

2
. This completes the proof.

The second helper lemma is shown by Alon et al. (2019, Lemma 13).
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Lemma D.2.6. Suppose the family P as in Lemma D.2.5 exists. Then,

N −m ≤ 21000m2 log(2) m.

D.3 Section 7.3 details

In this section, the proofs omitted in Section 7.3 are presented.

D.3.1 Proof of Theorem 7.3.2

Let H be a multi-class hypothesis class with Ldim(H) = d and D be a realizable dis-
tribution over examples (x, c(x)) where c ∈ H is an unknown target hypothesis. The
globally-stable (GS) leaner G for H will make use of the Standard Optimal Algorithm
(SOA0, Algorithm 5).

SOA0 can be simply extended to non-realizable sequences as follows.

Definition D.3.1 (Extending the SOA0 to non-realizable sequences). Consider a run of
SOA0 on examples

(
(xi, yi)

)
1:m

, and let ht denote the predictor used by the SOA0 after
observing the first t examples. Then after observing (xt+1, yt+1), proceed as below.

• If
(
(xi, yi)

)
1:t+1

is realizable by some h ∈ H, then apply the usual update rule of the
SOA0 to obtain ht+1.

• Else, set ht+1 as ht+1(xt+1) = yt+1, and ht+1(x) = ht(x) for every x 6= xt+1. That is
to say, ht+1 no longer belongs toH.

This update rule keeps updating the predictor ht to agree with the last example while
observing the sequences which are not necessarily realized by a hypothesis in H. Due to
this extension, our resulting algorithm possibly becomes improper.

The finite Littlestone class is online learnable by SOA0 (Algorithm 5) with at most
d mistakes on any realizable sequence. Prior to building a GS learner G, we define a
distribution Dk as in Algorithm 7.

Let k be such that Dk is well-defined and consider a sample S drawn from Dk. The
size of Dk is k · (n + 1), and they consist of k · n instances randomly drawn from D and
k examples generated in Item 3(iv) of Algorithm 7. We call these k examples tournament

examples. Due to the construction of Dk, SOA0 always errs in tournament rounds, which
means that SOA0 makes at least k mistakes when run on S ◦ T where S ∼ Dk, T ∼ Dn.
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Algorithm 7 Distribution Dk
1: D0 : output an empty set with probability 1
2: Let k ≥ 1. If there exists an f satisfying PS∼Dk−1,T∼Dn

(
SOA0(S ◦ T ) = f

)
≥ K−d,

or if Dk−1 is undefined, then Dk is undefined
3: Else, Dk is defined recursively as follows
4: (i) Randomly sample S0, S1 ∼ Dk−1 and T0, T1 ∼ Dn
5: (ii) Let f0 = SOA0(S0 ◦ T0) and f1 = SOA0(S1 ◦ T1)
6: (iii) If f0 = f1, go back to step (i)
7: (iv) Else, pick x ∈ {x | f0(x) 6= f1(x)} and sample y ∼ [K] uniformly at random
8: (v) If f0(x) 6= y, output S0 ◦ T0 ◦ (x, y) and S1 ◦ T1 ◦ (x, y) otherwise

A natural way to obtain a GS learning algorithm G is to run the SOA0 on this carefully
chosen sample S ◦ T . In fact, the output enjoys both global stability in multi-class learning
and good generalization as follows.

Lemma D.3.1 (Global Stability). There exist k ≤ d and a hypothesis f : X → [K] such

that

PS∼Dk,T∼Dn
(
SOA0(S ◦ T ) = f

)
≥ K−d.

Proof. Assume for contradiction that Dd is well-defined and for every f ,

PS∼Dk,T∼Dn
(
SOA0(S ◦ T ) = f

)
< K−d.

In each tournament example (xi, yi), the label yi is drawn uniformly at random from [K].
Accordingly, with probability K−d over S ∼ Dd, all d tournament examples are consistent
with the true labeling function c and thus S◦T becomes consistent with c. Since the number
of total mistakes of SOA0 should be no more than d, we can deduce that SOA0(S ◦T ) = c.
This implies that

PS∼Dk,T∼Dn
(
SOA0(S ◦ T ) = c

)
≥ K−d,

which is a contradiction, and hence completes the proof.

Lemma D.3.2 (Generalization). Let k be such that Dk is well-defined. Then for every f

such that

PS∼Dk,T∼Dn
(
SOA0(S ◦ T ) = f

)
≥ K−d

satisfies lossD(f) ≤ d logK
n

.

Proof. Let f be such hypothesis and let α = lossD(f). We will argue thatK−d ≤ (1−α)n.
Then the following result is derived, α ≤ d logK

n
using the fact that (1− α)n ≤ e−nα.

By the property of SOA0, SOA0(S◦T ) is consistent with T . Thus, if SOA0(S◦T ) = f ,
then it must be the case that f is consistent with T . By assumption, SOA0(S ◦ T ) = f
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holds with probability at least K−d and f is consistent with T with probability (1 − α)n

where n is the size of T . This gives the desired inequality.

One challenge associated with the distribution Dk is computational limitation. It may
require an unbounded number of samples from the target distribution D, since during gen-
eration of tournament examples the number of samples drawn from D depends on how
many times Item 3(i)-(iii) will be repeated. To handle this practical issue, we suggest a
Monte-Carlo Variant of Dk, D̃k, by setting an upper bound N of random samples drawn
from D as an input parameter. Algorithm 8 summarizes how we construct the distribution
D̃k.

Algorithm 8 Distribution D̃k
1: Let n be the auxiliary sample size and N be an upper bound on the number of samples

from D
2: D̃0 : output an empty set with probability 1
3: Let k ≥ 1. D̃k is defined recursively by the following processes
4: (?) Throughout the process, if more thanN examples are drawn fromD, then output

“Fail”
5: (i) Randomly sample S0, S1 ∼ D̃k−1 and T0, T1 ∼ Dn
6: (ii) Let f0 = SOA0(S0 ◦ T0) and f1 = SOA0(S1 ◦ T1)
7: (iii) If f0 = f1, go back to step (i)
8: (iv) Else, pick x ∈ {x | f0(x) 6= f1(x)} and sample y ∼ [K] uniformly at random
9: (v) If f0(x) 6= y, output S0 ◦ T0 ◦ (x, y) and S1 ◦ T1 ◦ (x, y) otherwise

The next step is to specify the upper bound N . The following lemma characterizes the
expected sample complexity of sampling from Dk.

Lemma D.3.3 (Expected sample complexity of sampling from Dk). Let k be such that Dk
is well-defined and Mk be the number of samples from D when generating S ∼ Dk. Then

we have EMk ≤ 4k+1 · n.

Proof. Initially, EM0 = 0 since D0 outputs an empty set with probability 1. It suffices to
show that for all 0 < i < k, EMi+1 ≤ 4EMi + 4n to conclude the desired inequality by
induction.

Let R be the number of times Item 3(i) was executed during generation of S ∼ Di+1,
and R is distributed geometrically with a success probability θ, where

θ = 1− PS0,S1,T0,T1

(
SOA0(S0 ◦ T0) = SOA0(S1 ◦ T1)

)
= 1−

∑
f

(
PS,T

(
SOA0(S ◦ T ) = f

))2

≥ 1−K−d.
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The last inequality holds because i < k and hence Di is well-defined, which implies that
PS,T

(
SOA0(S ◦ T ) = f

)
≤ K−d for all f .

Let Mi+1 be a random variable expressed as Mi+1 =
∑∞

j=1 M
(j)
i+1 where

M
(j)
i+1 =

0, if R < j

the number of examples from D in the j-th execution of Item 3(i), if R ≥ j
.

Thus, we have

EMi+1 =
∞∑
j=1

EM (j)
i+1 =

∞∑
j=1

(1− θ)j−1 · (2EMi + 2n)

=
1

θ
· (2EMi + 2n) ≤ 4EMi + 4n,

where the last inequality holds since θ ≥ 1−K−d ≥ 1/2 since K ≥ 2 and d ≥ 1.

Equipped with Lemma D.3.1,D.3.2, and D.3.3, we are ready to prove Theorem 7.3.2.

Theorem 7.3.2 (restated). Let H ⊂ [K]X be a MC hypothesis class with Ldim(H) = d.
Let α > 0, and m =

(
(4K)d+1 + 1

)
× [d logK

α
]. Then there exists a randomized algorithm

G : (X × [K])m → [K]X such that for a realizable distribution D and an input sample
S ∼ Dm, there exists a h such that

P
(
G(S) = h

)
≥ K − 1

(d+ 1)Kd+1
and lossD(h) ≤ α.

Proof. The globally-stable algorithm G is defined in Algorithm 9.

Algorithm 9 Algorithm G

1: Input : target distribution D̃k, auxiliary sample size n = [d logK
α

], and the sample
complexity upper bound N = (4K)d+1 · n

2: Draw k ∈ {0, 1, · · · , d} uniformly at random
3: Output : h = SOA0(S ◦ T ), where T ∼ Dn, S ∼ D̃k

The sample complexity of G is |S| + |T | ≤ N + n =
(
(4K)d+1 + 1

)
× [d logK

n
]. By

Lemma D.3.1 and D.3.2, there exists k? ≤ d and f ? such that

PS∼Dk? ,T∼Dn
(
SOA(S ◦ T ) = f ?

)
≥ 1

Kd
, lossD(f ?) ≤ d logK

n
≤ α.

Let Mk? denote the number of random examples from D during generation of S ∼ Dk? .
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We obtain the following inequality from Lemma D.3.3 and Markov’s inequality,

P
(
Mk? > (4K)d+1 · n

)
≤ P

(
Mk? > Kd+1 · 4k?+1 · n

)
≤ K−(d+1).

Accordingly,

PS∼D̃k? ,T∼Dn
(
SOA0(S ◦ T ) = f ?

)
≥ PS∼Dk? ,T∼Dn

(
SOA0(S ◦ T ) = f ? and Mk? ≤ (4K)d+1 · n

)
≥ PS∼Dk? ,T∼Dn

(
SOA0(S ◦ T ) = f ?

)
− P

(
Mk? > (4K)d+1 · n

)
≥ K−d −K−(d+1) = (K − 1)K−(d+1)

Since k = k? with probability 1
d+1

, G outputs f ? with probability at least K−1
(d+1)Kd+1 .

D.3.2 Globally-stable learning implies private multi-class learning

In this section, we utilize the GS algorithm from the previous section to derive a DP learn-
ing algorithm with a finite sample complexity. Theorem 7.3.1 establishes that online multi-
class learnability implies private multi-class learnability, which can be proved by combin-
ing Theorem 7.3.2 and Theorem D.3.1.

Theorem D.3.1 (Globally-stable learning implies private multi-class learning). Let H ⊂
[K]X be a multi-class hypothesis class. Let G : (X × [K])m → [K]X be a randomized

algorithm such that for a realizable distribution D and S ∼ Dm, there exists a hypothesis

h such that P
(
G(S) = h

)
≥ η and lossD(h) ≤ α/2. Then for some n = O(m log(1/ηβδ)

ηε
+

log(1/ηβ)
αε

), there exists an (ε, δ)-DP algorithm M which for n i.i.d. samples from D, outputs

a hypothesis ĥ such that lossD(ĥ) ≤ α with probability at least 1− β.

To construct a private learnerM , we first introduce standard tools in the DP community
such as Stable Histogram and Generic Private Learner.

Lemma 7.3.1 (Stable Histogram, restated). LetX be any data domain. For n ≥ O( log(1/ηβδ)
ηε

),
there exists an (ε, δ)-DP algorithm HIST which with probability at least 1 − β, on input
S = (x1, · · · , xn) outputs a list L ∈ X and a sequence of estimates a ∈ [0, 1]|L| such that

1. Every x with FreqS(x) ≥ η appears in L, and

2. For every x ∈ L, the estimate ax satisfies |ax − FreqS(x)| ≤ η,

where FreqS(x) =
∣∣{i ∈ [n] | xi = x}

∣∣/n.

92



Lemma D.3.4 (Generic Private Learner, (Bun et al., 2020)). LetH ⊂ [K]X be a collection

of multi-class hypotheses. For n = O( log |H|+log(1/β)
αε

), there exists an (ε, 0)-DP algorithm

GENERICLEARNER : (X × [K])n → H satisfying the following; let D be a distribution

over X × [K] such that there exists an h? ∈ H with lossD(h?) ≤ α. Then on input S ∼ Dn,

GENERICLEARNER outputs, with probability at least 1− β, a hypothesis ĥ ∈ H such that

lossS(ĥ) ≤ 2α.

Now we are ready to prove Theorem D.3.1.

Proof of Theorem D.3.1. The learning algorithmM is built on top of the Stable Historgram
and the Generic Private Learner as described in Algorithm 10. According to Lemma 7.3.1
and D.3.4, we choose parameters

k = O
( log(1/ηβδ)

ηε

)
, n′ = O

( log(1/ηβ)

αε

)
.

Algorithm 10 Differentially-Private Learner M
1: Let S1, · · · , Sk each consist of i.i.d. samples of size m from D. Run G on each batch

of samples producing h1 = G(S1), · · · , hk = G(Sk)
2: Run the Stable Histogram algorithm HIST on input H = (h1, · · · , hk) using privacy

(ε/2, δ) and accuracy (η/8, β/3), publishing a list L of frequent hypotheses
3: Let S ′ consist of n′ i.i.d. samples from D. Run GENERICLEARNER(S ′) using L with

privacy ε/2 and accuracy (α/2, β/3) to output a hypothesis ĥ

We show that the algorithm M is (ε, δ)-DP. During the executions of G(S1), · · ·G(Sk),
a change to one entry in a certain Si changes at most one outcome hi ∈ H . Thus, differ-
ential privacy for this step is observed by taking expectations over the coin tosses of all
the executions of G. Then the differential privacy for overall algorithm holds by simple
composition of differentially-private HIST and GENERICLEARNER.

Next, we prove that the algorithmM is accurate. By standard generalization arguments,
we have with probability at least 1− β/3,

∣∣FreqH(h)− PS∼Dm
(
G(S) = h

)∣∣ ≤ η

8

for every h ∈ [K]X as long as k ≥ O(log(1/β)/η). Conditioned on this event, by accu-
racy of HIST, with probability 1 − β/2, it produces a list L containing h? together with a
sequence of estimates that are accurate to within an additive error η/8. Then, h? appears in
L with an estimate ah? ≥ η − η/8− η/8 = 3η/4.
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Now remove from L every item h with ah ≤ 3η
4

. Since every estimate is accurate
within η/8, h appears in L such that FreqH(h) ≥ 3η

4
− η

8
= 5η

8
. Since sum of frequencies

is less than 1, the number of list L should be less than 2/η (i.e. |L| ≤ 2/η). This list
contains h? such that lossD(h?) ≤ α. Hence the GENERICLEARNER identifies h? with
lossD(h?) ≤ α/2 with probability at least 1− β/3.

D.3.3 Extension to the agnostic setting

Theorem 7.3.1 showed that online MC learnability continues to imply private MC learn-
ability in the realizable setting. A similar result also holds even when the realizability
assumption is violated, which is called agnostic setting.

Corollary D.3.1 (Agnostic setting : Online MC learning implies private MC learning).
Let H ⊂ [K]X be a MC hypothesis class with Ldim(H) = d. Let ε, δ ∈ (0, 1) be pri-

vacy parameters and let α, β ∈ (0, 1/2) be accuracy parameters. For n = Od

( log(1/βδ)
α2ε

)
,

there exists (ε, δ)-DP learning algorithm such that for every distribution D, given an input

sample S ∼ Dn, the output hypothesis f = A(S) satisfies

lossD(f) ≤ min
h∈H

lossD(h) + α

with probability at least 1− β.

Proof. Alon et al. (2020, Theorem 6) propose an algorithm, APrivateAgnostic, which trans-
forms a private learner in the realizable setting to a private learner that can operate in the
agnostic setting. The main idea is based on the standard sub-sampling method, and as a
result, the transformed agnostic learner has a larger sample complexity by a factor of 1/ε.
Then Corollary D.3.1 is shown by applying APrivateAgnostic to the realizable learner used
in Theorem 7.3.1.

D.3.4 Proof of Theorem 7.3.3

We complete the proof of Theorem 7.3.3. The proof for Condition 4 is given in the main
body.

Theorem 7.3.3 (restated). LetF ⊂ YX be a real-valued function class such that fatγ(F) <

∞ for every γ > 0. If one of the following conditions holds, then F is privately learnable.

1. Either F or X is finite.

2. The range of F over X is finite (i.e.,
∣∣{f(x) | f ∈ F , x ∈ X}

∣∣ <∞).
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3. F has a finite cover with respect to the sup-norm at every scale.

4. F has a finite sequential Pollard Pseudo-dimension.

Proof. 1. If |F| < ∞, then for sample complexity n = O( log |F|+log(1/β)
αε

) we directly run
the ε-DP Generic Private Learner to output with probability at least 1 − β, a hypothesis
f̂ ∈ F such that lossS(f̂) ≤ α. Next, assume that X is finite. The finiteness of X does not
imply finite |F| because Y is continuous, but we can discretize F at some scale γ, which
gives us a finite MC hypothesis class [F ]γ . It is private-learnable by ε-DP Generic Private
Learner, and then the original class F is also privately-learnable within accuracy γ.

2. Observe that this regression problem is essentially a MC problem. Furthermore,
Ldim(F) by considering it as a MC problem is bounded above by fatγ(F), where γ is
the minimal gap between consecutive values in the range of F over X . This means that
Ldim(F) is finite, and hence by the argument of Section 7.3.1, F is privately learnable.

3. Given an accuracy α, F has n finite covers with a radius r < α. We construct a set
of representative function as F ′ = {f1, · · · , fn} ⊂ F by arbitrarily choosing a represen-
tative fi from the i-th cover, and then run ε-DP Generic Private Learner on F ′ to output a
hypothesis f̂ ∈ F with a small population loss.
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