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ABSTRACT 

 

Internet of Things (IoT) have become omnipresent over various territories including 

healthcare, smart building, agriculture, and environmental and industrial monitoring. Today, IoT 

are getting miniaturized, but at the same time, they are becoming more intelligent along with the 

explosive growth of machine learning. Not only do IoT sense and collect data and communicate, 

but they also edge-compute and extract useful information within the small form factor. A main 

challenge of such miniaturized and intelligent IoT is to operate continuously for long lifetime 

within its low battery capacity. Energy efficiency of circuits and systems is key to addressing this 

challenge. This dissertation presents two different energy-efficient circuit designs: a 224pW 

260ppm/°C gate-leakage-based timer for wireless sensor nodes (WSNs) for the IoT and an energy-

efficient all analog machine learning accelerator with 1.2 µJ/inference of energy consumption for 

the CIFAR-10 and SVHN datasets. 

Wireless neural interface is another area that demands miniaturized and energy-efficient 

circuits and systems for safe long-term monitoring of brain activity. Historically, implantable 

systems have used wires for data communication and power, increasing risks of tissue damage. 

Therefore, it has been a long-standing goal to distribute sub-mm-scale true floating and wireless 

implants throughout the brain and to record single-neuron-level activities. This dissertation 

presents a 0.19×0.17mm2 0.74µW wireless neural recording IC with near-infrared (NIR) power 

and data telemetry and a 0.19×0.28mm2 0.57µW light tolerant wireless neural recording IC.
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CHAPTER 1   

Introduction 

 

1.1  Miniaturized and Intelligent Internet of Things 

Beginning from early mainframe computers in the 1950s, the computing platform has 

evolved to personal computers (PC) in the 1980s, smartphones in the 2000s, and now various kinds 

of Internet of Things (IoT). Development of complementary metal-oxide-semiconductor (CMOS) 

technology along with expansion of new hardware/software and increasing user demands for 

inexpensive and convenient access have driven the computing platform to be less expensive and 

physically smaller in size. Today, the IoT with smaller physical dimension relative to its 

predecessors have become ubiquitous over various applications that require seamless monitoring 

or sensing; e.g., healthcare, smart building, agriculture, and so on. Furthermore, recent research on 

millimeter-scale wireless sensor nodes [1]-[10] have enabled further shrinkage of IoT size, opening 

up new applications including medical implants, environmental monitoring, surveillance, and 

blockchain technology to the supply chain as shown in Fig. 1.1.  

Main challenge of the miniaturized sensor nodes and IoT, however, is their limited energy 

budget from small battery capacity. Since a large number of the miniaturized IoT should be 

deployed all over different application areas wirelessly, it is infeasible to externally supply power 
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to individuals. Therefore, the IoT devices require battery as their power source. However, 

miniaturization of the system size has also forced the battery size to be shrunk limiting overall 

system energy budget. For instance, sub-mm3 Li Thin-film battery has approximately 106 × lower 

energy capacity compared to the conventional alkaline AA battery with nearly 10 cm3 of volume 

[11]. In other words, the miniaturized device using the sub-mm3 Li Thin-film as a power source 

should consume only 10nW in average to achieve similar lifetime with the device using AA battery 

consuming 10mW in average. Therefore, energy-efficient and low power circuits and system 

design is key to addressing this challenge. 

Another recent technological trend has been the explosive growth of deep learning [12] 

and its wide usage across numerous applications; e.g., self-driving cars, autonomous machines, 

medicine, entertainment, security, and so on. Along with the proliferation of IoT devices, demand 

of machine learning accelerators designed for edge computing has increased. Within small form 

factor and limited energy budget, the intelligent IoT need to not only sense and collect data and 

communicate, but also edge-compute to perform inference or even training. Therefore, the 

importance of energy-efficient circuit and system design has grown to meet the demand of 

increased computational capability of such IoT.  

     

(a)                                                (b)                                             (c) 

Figure 1.1 Miniaturized sensor nodes and IoTs (a) Stacked audio sensor node [5], (b) Stacked 

pressure sensor node [6], (c) IBM 1mm3 computing platform [7]. 
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In chapter 2, an ultra-low power timer for wireless sensor nodes (WSNs) for the 

miniaturized IoT [13] is proposed. In chapter 3, an energy-efficient all analog machine learning 

accelerator for IoT edge computing [14] is presented. 

1.2  True Wireless Neural Recording  

Starting from 1970s, brain machine interfaces (BMI) [15] has been developed with an 

initial goal of restoring useful function of people who are paralyzed or disabled by neuromuscular 

disorders, such as spinal cord injury. Nowadays, active research on neural probe arrays have 

enabled high channel neural recording implants [16]-[21] (Fig. 1.2). However, implantable 

systems with these probe arrays use wires to connect the arrays to a bulky neural recording 

application-specific integrated circuit (ASIC).  The use of wires and large form factor of system 

increase potential risks of tissue damage, infection, and cerebrospinal fluid leakage. Since the brain 

       

 (a)                                                 (b)                                                  (c) 

   

                       (d)                                            (e)                                               (f)      

Figure 1.2 Electrode arrays and neural recording system (a) Utah electrode array [16], (b) 

NeuroNexus Michigan Probes [17], (c) Caltech 3D electrodes[18], (d) imec Neuropixels [19], 

(e) Standford NeuroRoots [20], and (f) Neuralink prototype [21]. 
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undergoes micro motion, even flexible wires can still create scraping and form scar tissue, making 

these systems unsuitable for long-term implantation.  

Therefore, miniaturized, and true floating wireless neural recording motes that do minimal 

damage have been a long-standing goal. Recently, several miniaturized and wireless neural 

implants have been proposed including near-field RF, ultrasonic, and near-infrared (NIR) based 

powering and data telemetry [22]-[27]. However, RF-based motes [22]-[23] require 0.5W of 

transceiver power to operate exceeding the safety exposure limits by 10× [23], while ultrasonic-

based motes remain relatively large in sizes (0.8mm3) due to a bulky ultrasound transducer [24]-

[25]. On the other hand, NIR-based approach using a photovoltaic (PV) cell and a light-emitting 

diode (LED) has shown promising wireless implementation shrinking down the mote sizes to 100s 

of microns [26]-[27]. Several challenges, however, still exist with NIR-based approach. One of the 

main challenges is its limited energy and area budget. NIR optical power density must be 

maintained under 190 µW/mm2 due to safety limit of the brain [28], and the total energy that the 

PV cell can harvest is also limited by its small area (i.e. 1.5µW of electrical power from 150 

µW/mm2 NIR light with PV size of 190×204µm2 [28]). Therefore, the energy efficient and highly 

compact neural recording circuit and system design is key to addressing this challenge.  

In chapter 4 and 5, two generations of sub-µW and sub-mm wireless neural recording IC 

for motor prediction with NIR power and data telemetry are proposed [29]-[30].  

Lastly, chapter 6 summarizes key contributions of the works presented from chapter 2 to 

chapter 5 and proposes future directions.  
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CHAPTER 2   

A Gate-Leakage-based Frequency-Locked Timer for 

Ultra-Low Power Sensor Nodes with Second-Order 

Temperature Dependency Cancellation 

 

2.1  Introduction 

Wake-up timers are a critical component of wireless sensor nodes (WSNs) for the Internet 

of Things. Since they are on even when the sensor node is in sleep mode, they must consume 

extremely low power. In addition, they should ensure high timing accuracy for synchronization 

between devices and general timekeeping while remaining compact, leading to a highly 

constrained design space. An RC oscillator [31] or frequency-locked oscillator [32] based on 

temperature-compensated resistors achieves frequency stability across temperature of <50ppm/°C. 

However, these approaches consume ~100 nW or more, which far exceeds the power budget of 

state-of-the-art ultra-low power sensors. Extending these approaches to sub-nW requires extremely 

large resistors, unacceptably increasing the area and cost. Recently, a switch-resistor based timer 

achieved a high effective resistance without increasing resistor size and obtained a temperature 

coefficient (TC) of 13.8 ppm/°C [33]. However, the approach requires large capacitors, and power 

consumption remains relatively high at 4.7 nW. An alternative to resistor-based timers is gate-
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leakage-based timers; several such timers have been proposed [34]-[35], providing sub-nW power 

consumption in compact silicon area. However, gate leakage exhibits significant first- and second-

order temperature dependence, complicating temperature compensation, and it is also sensitive to 

the gate voltage. As a result, previous gate leakage timers have TCs in excess of several hundred 

ppm/°C and line sensitivities (LS) >150%/V. The gate leakage timer in [35] achieves 31 ppm/°C 

but requires 10-point calibration, and its 660 pW power consumption does not include the power 

of a required auxiliary temperature sensor. Further, its LS is unacceptably high at 420%/V. 

This chapter proposes a 224-pW gate-leakage-based frequency locked timer with first- and 

second-order temperature dependency cancellation, yielding a TC of 260 ppm/°C across −5 to 

95°C. Supply insensitive reference voltage generators and an on-chip low dropout (LDO) regulator 

decrease LS to 0.93%/V for 1.1−3.3 V, which marks a 150× improvement compared to previous 

gate-leakage-based timers. 

 

2.2  Gate-Leakage-based Frequency-Locked Timer 

The proposed design uses a frequency locked oscillator scheme [32]-[33] in which current 

I1, set by the gate leakage of a standard-Vth NMOS N1, is matched with current I2, using modulation 

of the frequency of a switched capacitor C2 (Fig. 2.1). The measured temperature dependence of 

N1 gate leakage shows both first- and second-order components (Fig. 2.2). It is essential to cancel 

both components to achieve a good TC.  
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Figure 2.2 Measured gate leakage current across temperature in 55nm CMOS.  
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2.3  First- and Second-order Temperature Dependance Cancellation 

In the proposed design, we use two tuning mechanisms. We cancel the first-order 

dependence by varying V2 in a proportional to temperature (PTAT) fashion using a voltage 

reference with tunable temperature dependence (Fig. 2.1, right). This PTAT reference consists of 

two PMOS diode stacks, each with different threshold voltages and sizes to create a first-order 

dependence on temperature (Fig. 2.3b). Switches control the high-Vt PMOS size, which tunes the 

slope of VPTAT from 0.5 to 0.68%/°C (simulation).   

To cancel the second-order dependence, we use a 2T voltage reference, which has intrinsic 

convex temperature dependence [36] (Fig. 2.3a). However, the convexity of this reference is fixed 

and is not easily tuned to cancel the second-order dependence of gate leakage. Hence, we leverage 

the exponential dependence of gate leakage on voltage to provide this tuning mechanism, as 

follows: First, we remove first-order dependence by tuning the native NMOS and High-Vt PMOS 

sizes, resulting in V2T = V2T,0+α(T-T0)
2. We then amplify V2T, and a mux structure selects the 

output voltage VREF = V1 = kmux(V2T,0+ α(T-T0)
2) where kmux varies with the mux selection. Note 

that this does not change the relative magnitude of the convexity of V1. However, gate leakage I1 

is exponentially dependent on V1, resulting in I1∝exp(βkmuxV2T,0)×exp(βkmuxα(T- T0)
2). Hence, 

by changing kmux (i.e., the mux setting) we can modulate the relative magnitude of the convexity 

of I1, which allows us to cancel the second-order temperature dependence of the gate leakage. Fig.  

2.3c shows simulation results of this approach. After both first- and second-order temperature 

dependencies are canceled, only third- and higher-order terms remain. Finally, the center 

frequency (0th order) is adjusted by tuning C2 in Fig. 2.1.  
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2.4  VCO with Switched Capacitor Voltage Doubler 

Two PMOS devices (P1 and P2, Fig. 2.1) implement the current mirror. The devices are 

high threshold thick-oxide PMOS transistors operating in subthreshold with VDS >5 kT/q, which 

significantly reduces mismatch between I1 and I2. The low power voltage controlled oscillator 

(VCO) in Fig. 2.1 provides the timer’s output frequency and is composed of stacked high threshold 

inverters to minimize short circuit current (Fig. 2.4). The voltage range of VCTRL across 

temperature, 0.67-0.9 V, is too narrow and situated at too high a voltage to compensate the VCO 

frequency across temperature. We double the voltage range and shift it lower using switch 

capacitor C4, obtaining VCTRL' with range 0.2-0.65 V. Capacitors C3-C5 also generate the dominant 

pole of the frequency lock scheme. 
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Figure 2.3 (a) Proposed convex voltage generator (b) PTAT voltage generator and (c) simulation 

result of first- and second-order cancellation.  
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2.5  Line Sensitivity Enhancement 

Gate leakage has high voltage sensitivity, leading to strong frequency dependence on 

supply voltage in previous gate-leakage-based timers. The proposed design addresses this by 

placing native NMOS transistors in the convex voltage generator and PTAT voltage generator, 

enabling low line sensitivity (1.3%/V and 2.2%/V, respectively, simulation). An on-chip LDO 

further reduces supply voltage dependence while consuming only 18 pW (simulation). 

 

2.6  Measurement Results 

The proposed gate-leakage-based timer was implemented in 55nm CMOS (MIFS C55DDC) 

in 0.057 mm2. Fig. 2.5 show the measured frequency variation from −5 to 95°C for five typical 

corner dies. Fig. 2.5a gives results with no tuning, while Fig. 2.5b has 2-pt calibration to cancel 

first-order dependence. Fig. 2.5c uses the proposed second-order cancelation with 3-pt calibration, 

yielding measured TCs of 175−343 ppm/°C, which is 5× better than first-order cancelation only. 

The timer consumes 224 pW at 25°C with 90 Hz output frequency; power increases to 1.2 nW at 
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Figure 2.4 Diagram of stacked inverter VCO with switched capacitor voltage doubler. 
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95°C (Fig. 2.8). Line sensitivity is 0.33−1.29%/V across 1.1−3.3 V supply voltage for the five dies 

(Fig. 2.6). Fig. 2.11 compares TC, LS, and energy per cycle to those of previous sub-nW timers 

and resistor-based timers. 
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Figure 2.5 Measured frequency variation over temperature: (a) without calibration (b) with 2-

pt and (c) with 3-pt calibration.  
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Figure 2.7 Simulated power breakdown of timer.  
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Figure 2.6 Measured line sensitivity of output clock frequency.  
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Figure 2.8 Measured power consumption.  
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Figure 2.9 Measured Allan deviation.  
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Figure 2.10 Die Photo.  
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2.7  Conclusion 

The proposed timer is Pareto optimal in terms of TC and LS vs. power among the listed 

works, enabling a new ultra-low power timer design space. Energy per cycle of 2.49 pJ/cycle is 

comparable to the best reported among the listed works. 

Table 2.1 Comparison table 

 

a. Average over multiple samples

b. Calculated from Fig15.
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Figure 2.11 Comparison scatter plots with previous work (best-reported dies): (a) temperature 
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CHAPTER 3   

An Energy-Efficient All-Analog ResNet Accelerator 

 

3.1  Introduction 

The development of machine learning hardware, along with deep learning algorithms, has 

allowed significant breakthroughs in a number of areas, including image classification, motion 

detection, and speech recognition. The proliferation of IoT devices has increased the demand of 

machine learning accelerators designed for edge computing and has reinforced the importance of 

energy efficiency of such accelerators. Most notably, the vast amount of energy consumed by 

frequent memory access [38]to load data (weights, features, and parameters) during inference must 

be reduced to meet the limited energy budget of edge computing. Recently, various in-memory 

and mixed-signal approaches [39]-[47] have attempted to address this issue and reduce energy 

consumption by replacing frequent memory read accesses and digital computations with in-

memory and analog computations. In addition, recent studies have proposed modified training 

methods for mixed-signal-based accelerators with low bit precision [48] and in-situ methods for 

minimizing accuracy degradation due to process variation [49]. However, all of these approaches 

include digital-to-analog converters (DAC) and analog-to-digital converters (ADC) at the front 

and back of each hidden layer to store and broadcast features in digital representation [41]-[48] 

(Fig.  3.1a). Further, they implement the required nonlinear (NL) functions in the digital domain 
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[45]. The DACs/ADCs are energy bottlenecks, especially when high precision of weight or 

activation is required. The energy overhead gets even worse when implementing deep 

convolutional neural networks (CNNs) [50] that consist of many layers. Hence, prior in-memory 

or mixed-signal designs have been largely restricted to simple shallow networks. Other approaches 

implementing binarized CNN (BNN) [51] in a mixed-signal domain have been proposed using 

XNOR [52]-[53] for multiplication and charge-sharing techniques for addition [54]-[56]. BNN has 

the benefit of reducing computation complexity to a single bit, and as such, these mixed-signal 

accelerators reduce the DAC and ADC energy overhead since they only have a single bit precision 

for both weights and activations. However, the BNN works well only for moderately sized 

networks (e.g., AlexNet [57] and nine-layer networks with 328 KB [55]/ 295 KB [56] of weights) 

and has a critical limit on the scalability to support very large networks that are difficult to train 

with binary weights.  

To address these challenges, this chapter introduces the first multi-layer (total, 18), all 

analog NN accelerator in 28-nm CMOS with 32.2 KB of weight storage, implementing not only 

convolution but also NL function, storage of value for subsequence use, and routing between layers 

all in the analog domain. Weights and activations are in 4-bit and 3-7-bit precision, respectively, 

thereby offering significantly better precision compared to BNNs. This work makes the following 

contributions: 

• Energy-efficient all-analog structure without any DAC or ADC overhead between hidden 

layers (Fig. 3.1b): (1) activations are represented in the pulse-width domain with 3-7 bit 

precision; (2) convolution is performed using analog integration in the charge domain on the 

bit-lines to  convert to voltage using a charge integrating amplifier to represent the activation 

output; (3) activation values are stored and broadcasted in the voltage domain by sample-
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and-hold (S/H) buffers; (4) NL functions (such as sigmoid and recta-linear) are performed 

while transforming the voltage domain back to the pulse-width domain using a simple 

comparator and a purposefully shaped voltage ramp; and (5) resulting output pulses are then 

routed to subsequent layers for their activation or to the final inference outputs. 

• Fully pipelined structures (18 layers) for a fast throughput rate of 325K image/sec with 

CIFAR-10 and SVHN datasets [58]-[59], which is more than 830× faster than conventional 

mixed-signal approaches [55]-[56]. 

• Energy consumption per inference of 1.2 µJ over CIFAR10 and SVHN datasets, which is 

3× lower than prior mixed-signal approaches [55]-[56]. 

• The first implementations of a deep ResNet [60]-[61] fully in the analog domain including 

convolution, batch normalization (BN), rectified linear units (ReLU), average pooling and 

fully-connect (FC) layer. 

• Linearity enhancement of analog convolution by maintaining a constant read bit line (RBL) 

voltage. 

• Evaluation of linearity, noise, effective bit precision, accuracy, and energy efficiency of 

the proposed accelerator using transistor-level SPICE simulation and Matlab. 

The rest of the chapter describes the proposed AA-ResNet accelerator and implementation 

details and provides an evaluation and conclusion.  
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3.2  Main Concept of the AA-ResNet   

 In this section, we first describe the main concept of the AA-ResNet with analog 

operations of a single layer. Then we present the overall architecture of the AA-ResNet accelerator. 

 

 

 
(a) 

 

 

 
(b) 

 

 

Figure 3.1 Comparison of (a) conventional approaches with in-memory/mixed-signal computing 

and (b) proposed all-analog approaches. 
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3.2.1  Convolution in Pulse-to-Charge Domain   

For every layer, the input activations are represented in the pulse-width domain as shown 

in Eq (1): 

𝑥𝑖,𝑗,𝑑
 𝑙 

= ∆𝑡𝑖,𝑗,𝑑
 𝑙 

                       (1) 

 

where 𝑥𝑖,𝑗,𝑑
 𝑙 

 is the input activation value of the i-th row, j-th column, d-th depth of l-th layer, and 

∆𝑡𝑖,𝑗,𝑑
 𝑙 

 is the corresponding pulse width. 

In the proposed analog convolution, the weights of kernels, 𝑤𝑖,𝑗,𝑑,𝑘
 𝑙 

, represented by Eq (2), 

are the product of the 4-bit sign-and-magnitude digital values 𝑊𝑖,𝑗,𝑑,𝑘
 𝑙 

 stored in the 6T SRAM 

arrays and the weight control DC current 𝐼𝐿𝑆𝐵
 𝑙 

 that charges capacitors in the analog integrators (see 

Fig. 3.2). In Eq (2), k represents the kernel index. 

𝑤𝑖,𝑗,𝑑,𝑘
 𝑙 

= 𝑊𝑖,𝑗,𝑑,𝑘
 𝑙 

∙ 𝐼𝐿𝑆𝐵
 𝑙 

                                  (2) 
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Figure 3.2 A single layer(L1) structure of proposed AA-ResNet accelerator. 
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The input activation value (i.e., pulse width) determines the on-time of the DC current 𝐼𝐿𝑆𝐵
 𝑙 

 

in Eq (2). The accumulated charge is proportional to the DC current level 𝐼𝐿𝑆𝐵
 𝑙 

 , the stored weight 

value, and the time period the current is turned on (i.e., the input pulse width). Therefore, the 

accumulated charge represents the multiplication of the input and weight. Multiple (e.g., 3×3×d as 

shown in Fig. 3.2) wires are shorted together at the input of an analog integrator, which merges all 

of the charge flowing through the tied wires. Thus, the total integrated charge is equivalent to the 

convolution output, as shown in Eq (3a) and (3b). Because the DC current has only a single polarity 

(pull down), a pair of the integrators integrate charge for the positive and negative convolution 

value separately; Eq (3a) and (3b). 

𝑄 𝑖,𝑗,𝑘
  𝑙 = ∑ ∑ ∑ |𝑊

𝑖′,𝑗′ ,𝑑,𝑘

 𝑙 
| ∙ 𝐼𝐿𝑆𝐵

 𝑙 ∙ ∆𝑡
𝑖 𝑖′−2,𝑗 𝑗′−2,𝑑

 𝑙 
                       𝑖′=1,2,3𝑗′=1,2,3𝑑 (3a) 

       𝑠𝑖𝑔𝑛 (𝑊
𝑖′,𝑗′,𝑑,𝑘

 𝑛 
) ≥ 0                                                                                                                           

𝑄 𝑖,𝑗,𝑘
− 𝑙 = ∑ ∑ ∑ |𝑊

𝑖′,𝑗′ ,𝑑,𝑘

 𝑙 
| ∙ 𝐼𝐿𝑆𝐵

 𝑙 
∙ ∆𝑡

𝑖 𝑖′−2,𝑗 𝑗′−2,𝑑

 𝑙 
𝑖′=1,2,3𝑗′=1,2,3𝑑    (3b) 

   𝑠𝑖𝑔𝑛 (𝑊
𝑖′,𝑗′,𝑑,𝑘

 𝑛 
) < 0                                                                                                                                    

𝑦𝑖,𝑗,𝑘
 𝑙 = 𝑄𝑖,𝑗,𝑘

  𝑙 
− 𝑄𝑖,𝑗,𝑘

− 𝑙                                                                    (3c) 

  

The final convolution result 𝑦𝑖,𝑗,𝑘
 𝑙 

 is obtained by the difference of charge accumulated in 

the capacitors of a pair of integrators as in Eq (3c). The positive and negative convolution results 

𝑄𝑖,𝑗,𝑘
  𝑙 

 and 𝑄𝑖,𝑗,𝑘
− 𝑙 

 are separately stored in the form of electric charge or voltage, while subtraction 

for 𝑦𝑖,𝑗,𝑘
 𝑙 

 is performed in the pulse domain after voltage-to-pulse conversion as explained in section 

3.2.3. 
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In the proposed design, we also implement the addition of convolution results with the 

bypassed input activations. This feedforward shortcut is the key idea of ResNet [60]-[61] that 

improves accuracy of very deep networks through residual learning. The shortcut connection of 

ResNet, 𝑦𝑖,𝑗,𝑘
 𝑙 = 𝑤⃗⃗  𝑙 ∙ 𝑥  𝑙 +𝑥𝑖,𝑗,𝑘

 𝑙−1 
is also calculated in the charge domain by tying the 6T SRAM 

arrays and current path for 𝑥𝑖,𝑗,𝑘
 𝑙−1 

to the input of the integrators. The detailed circuit implementation 

of residual learning is discussed in section 3.3.1. 

 

3.2.2  Sampling and Holding in Charge-to-Pulse Domain 

The convolution results are stored in the analog (charge) domain and broadcasted at the 

proper timing to the NL function blocks and the next layers. The charge on the capacitors (Fig. 

3.1) for the integrator pairs 𝑄 𝑖,𝑗,𝑘
  𝑙 

 and 𝑄 𝑖,𝑗,𝑘
− 𝑙 

 can be directly converted into the voltage level 

𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
  𝑙 

 and 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
− 𝑙 

, respectively, as in Eq (4a) and (4b), since the analog integrators hold the 

bottom plate of the integrator capacitors to a constant voltage of 
1

2
∙ 𝑉𝐷𝐷 . The voltages 

𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
  𝑙  𝑎𝑛𝑑 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘

− 𝑙  are sampled when the charge integration is complete. The buffers hold the 

sampled voltage to be fed into the NL block (Fig. 3.2). 

𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
  𝑙 =

1

𝐶
∙ 𝑄 𝑖,𝑗,𝑘

  𝑙 +
1

2
∙ 𝑉𝐷𝐷                                                   (4a) 

𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
− 𝑙 

=
1

𝐶
∙ 𝑄 𝑖,𝑗,𝑘

− 𝑙 
+

1

2
∙ 𝑉𝐷𝐷                                                   (4b) 
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3.2.3  NL function in Voltage-to-Pulse Domain 

In the proposed approach, NL function is performed in the analog domain, converting the 

convolution output from voltage to the pulse-width domain (Fig. 3.1). In the NL block, a ramp 

voltage, which monotonously rises in time, is compared with 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
  𝑙 

 and 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
− 𝑙 

 using a 

comparator. The binary output of the comparator encodes the NL function value in the pulse-width 

domain (Fig. 3.3).  

 

Various non-linear functions such as sigmoid and ReLU can be realized by properly 

shaping the ramp voltage that monotonously rises with a non-constant slope. In the proposed 

design, ReLU with batch normalization (BN) is implemented using the ramping voltages 𝑉𝑅𝐴𝑀𝑃,𝑘
  

and 𝑉𝑅𝐴𝑀𝑃,𝑘
−  generated by the ramp voltage generator structure discussed in section 3.3.3.  

 

𝑉𝑅𝐴𝑀𝑃,𝑘
 (∆𝑡𝑖,𝑗,𝑘

  𝑙 ) = 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
  𝑙                                                           5𝑎  

𝑉𝑅𝐴𝑀𝑃,𝑘
− (∆𝑡𝑖,𝑗,𝑘

− 𝑙 ) = 𝑉𝐼𝑁𝑇 𝑖,𝑗,𝑘
− 𝑙                                                           5𝑏  
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Figure 3.3 Time domain mapping of non-linear voltage. 
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 We define ∆𝑡𝑖,𝑗,𝑘
  𝑙 

and ∆𝑡𝑖,𝑗,𝑘
− 𝑙 

as the time between the start of the comparison and the point 

where 𝑉𝑅𝐴𝑀𝑃,𝑘
  (𝑉𝑅𝐴𝑀𝑃,𝑘

− ) exceeds VINT 𝑖,𝑗,𝑘
  𝑙 

 (VINT 𝑖,𝑗,𝑘
− 𝑙 

).  

 ∆𝑡𝑖,𝑗,𝑘
 𝑙 1 = {

∆𝑡𝑖,𝑗,𝑘
  𝑙 − ∆𝑡𝑖,𝑗,𝑘

− 𝑙 , ∆𝑡𝑖,𝑗,𝑘
  𝑙 ≥ ∆𝑡𝑖,𝑗,𝑘

− 𝑙 

0, ∆𝑡𝑖,𝑗,𝑘
  𝑙 < ∆𝑡𝑖,𝑗,𝑘

− 𝑙 
                                               6  

Using the logic gates in Fig. 3.1, the final output pulse width ∆𝑡𝑖,𝑗,𝑘
 𝑙 1 

 is obtained by the 

difference between ∆𝑡𝑖,𝑗,𝑘
  𝑙 

 and ∆𝑡𝑖,𝑗,𝑘
− 𝑙 

 as in Eq (6), realizing ReLU. Note that until this point, the 

negative and positive convolution results are separately maintained. This final output pulse width 

∆𝑡𝑖,𝑗,𝑘
 𝑙 1 

 is streamed into the next layer representing the input activation 𝑥𝑖,𝑗,𝑘
 𝑙 1 

 as in Eq (1). 

 

3.2.4  Overall Structure 

The proposed accelerator implements a modified ResNet [58]-[59] that consists of 16 

convolution + BN + ReLU layers, an average pooling layer, and a fully connected (FC) layer as 

shown in Fig. 3.4a. The layers colored in grey in Fig. 3.4a have feedforward shortcut connections 

that are unique to ResNets.  

The overall accelerator architecture is shown in Fig. 3.4b. The input image of 

32×32×3(RGB) pixels is loaded to image buffers implemented with 6912 bytes of compiled 

SRAM. The input image buffers hold two images for ping-pong buffering. An input image is 

divided into 64 sub-images of 3× 18 × 3 pixels, and each of them is fetched into the input pulse 

generator in each 48-ns operation cycle. From the input pulse generator to the last FC layer, the 

entire ResNet datapath of 19 layers is fully pipelined to generate classification output at a very 

high throughput of one image per 64 cycles (64×48 ns) or 325,520 images/s, which is 830× faster 
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than reported in [55]-[56]. The final output pulses from ten channels of the FC layer are monitored 

by the TDC-based pulse monitor block to find the channel number with the longest pulse width. 

The channel index of the longest pulse width is the inferred image class number processed by the 

AA-ResNet. Trained weights and parameters are loaded to the accelerator via a scan-chain block 

(registers) before inference starts. The 48-ns operation cycle is composed of 24 clock cycles 

generated by an interal 500-MHz on-chip ring oscillator (included in the power estimation). 
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Figure 3.4 (a) A diagram of modified ResNet and (b) overall hardware architecture. 
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3.3  AA-ResNet Circuit Implementation 

This section presents the implementation details of various components, including the in-

memory convolution SRAM array cells, integrators, S/H buffers, and NL function blocks. 

 

3.3.1  In-memory Convolution SRAM Array Cells 

Fig. 3.5 shows in-memory convolution SRAM array cells with 3T-readout buffers that 

generate current proportional to the magnitude of the weight. Stacked NMOS transistors offer 

tolerance to VDS variation, generating linear currents. The MSB of the weight (sign) selects one of 

the current-conducting paths. 

The average pooling and FC layers are also implemented with in-memory SRAM array 

cells and integrators. In the average pooling layer, constant weights are stored in arrays. 

The convolution layers with residual learning (i.e., L2,3 and L4,5 in Fig. 3.4) require an 

addition block, as shown at the bottom of Fig. 3.5. In the addition block, instead of weight, a 

scaling factor, 𝑠[2: 0], is stored in the SRAM cells. This is for aligning the fixed point of the 

convolution results and the input of the previous layer. Although activations are in the analog 

domain, we must consider their effective fixed-point representation (Fig. 3.5). The scaling factors 

vary over different training datasets and layers.  

  



 

26 

 

 

 

1

0

Wi,j,d[2] Wi,j,d[1] Wi,j,d[0]

x4

x4

x2

x2

x1

x1

0

1

Wi,j,d[3] (sign)

1

0

Wi,j,d[2] Wi,j,d[1] Wi,j,d[0]

x4

x4

x2

x2

x1

x1

1

0

Wi,j,d[3] (sign)

1

0

Wi,j,d[2] Wi,j,d[1] Wi,j,d[0]

x4

x4

x2

x2

x1

x1

1

0

1

0

Wi,j,d[2] Wi,j,d[1] Wi,j,d[0]

x4

x4

x2

x2

x1

x1

1

0

1

0

0

1

1

0

(PWM)

(PWM)

Bias

Gen.
(input of integrator)

3x3xdepth

      

      

    

    

×  

×  

× 2

× 2

× 1

× 1

×    

×    

×    

×    

×    

×    

𝑠𝑖𝑔𝑛 𝑥  𝑙  

𝑥  𝑙 

𝑥 𝑙−1 

𝐼𝑅𝐵𝐿
− 𝑙 

𝐼𝑅𝐵𝐿
  𝑙 

𝑉𝑅𝐵𝐿
− 𝑙 

𝑉𝑅𝐵𝐿
  𝑙 

𝑊𝑖,𝑗,𝑑,𝑘
𝑙

3

𝑊𝑖,𝑗,𝑑,𝑘
𝑙 2 𝑊𝑖,𝑗,𝑑,𝑘

𝑙
1 𝑊𝑖,𝑗,𝑑,𝑘

𝑙 0

𝑠[2] 𝑠[1] 𝑠[0]

 
(a) 

 

conv

addition

<Building block> <Fixed point alignment in 
analog domain>

Q or V

2
4

2
2

2
0

2
-2

2
-4

+

𝑥 𝑙−1 𝑥  𝑙 

𝑤 𝑙  𝑥 𝑙 +𝑥 𝑙−1 

𝑤 𝑙  𝑥 𝑙 +𝑥 𝑙−1 

𝑠[2: 0]   

𝑤 𝑙  𝑥 𝑙 +𝑥 𝑙−1 

𝑤 𝑙  𝑥 𝑙 +𝑥 𝑙−1 

 
(b) 

 

Figure 3.5 (a) Circuit structure of in-memory convolution SRAM array cells and (b) diagram of 

the shortcut connection. 
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3.3.2  Analog Integrators 

The analog integrators are composed of a complementary folded cascode amplifier [62] 

with an auto-zeroing scheme [63] to cancel offset (Fig. 3.6). The amplifier holds the RBL voltage 

constant at 0.5 V = VDD/2, and this further improves the linearity of the 3T-readout buffer (Figs. 

3.2 & 3.5) by holding VDS of the NMOS devices constant. Linearity does degrade as the output 

voltage approaches the upper headroom of the amplifier, which is ~0.8 V. Therefore, in the 

proposed design, we only use an integrator output range of 0.5–0.75 V. 

To fully utilize the output voltage range of the integrator, 𝐼𝐿𝑆𝐵
 𝑙 

 in the in-memory 

convolution SRAM array block is determined based on the maximum value of the sum of the 

positive/negative parts of each convolution layer during off-line training. In addition, scaling of 

𝐼𝐿𝑆𝐵
 𝑙 

 includes compensation of the final pulse output ∆𝑡𝑖,𝑗,𝑘
 𝑙  scaling from the previous layer for 

subtraction of two pulse widths,  ∆𝑡𝑖,𝑗,𝑘
  𝑙−1 

 and ∆𝑡𝑖,𝑗,𝑘
− 𝑙−1 

 (Eq 6). Note that the reduced pulse width 

can be recovered in the pulse-to-charge domain by scaling 𝐼𝐿𝑆𝐵
 𝑙 

; however, the dynamic range issue 

still remains in this step. The impact of pulse-width reduction and limited dynamic range is 

discussed in section 3.4.3. 
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Figure 3.6 Circuit structure of analog integrator.  
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3.3.3  S/H buffers and Ramp Voltage Generators for BN and ReLU 

The S/H buffer samples the integrator output voltage on a capacitor after the integrated 

voltage is settled. (Fig. 3.7a) The sampled voltage is buffered by an analog buffer for several 

operation cycles since the voltage (convolution result) can be reused for multiple convolution 

operations. An FSM controls both the analog deMUX arrays between the integrator pairs and S/H 

buffers and the analog MUX arrays between the S/H buffers and comparator pairs (Fig. 3.2).  
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Figure 3.7 Circuit structure of (a) S/H buffer and (b) ramp voltage generator for BN and ReLU 

with tunable gain and offset. 
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The ramp voltage generator in Fig. 3.7b, used for non-linear voltage (BN+ReLU) 

generation, has a similar structure as the analog integrator except is employs a 2T-NMOS-based 

always-on current rather than a 3T-NMOS-based readout buffer. The slope of the ramp signal is 

determined by the DC current level, which corresponds to the gain of the BN function. In addition, 

the bias of BN can be tuned with VSTART, which is the starting voltage level of VRAMP. A pair of 

ramp voltage generators share the DC current level (BN gain) but have separate bias 

voltages, 𝑉𝑆𝑇𝐴𝑅𝑇
  and 𝑉𝑆𝑇𝐴𝑅𝑇

− = 1V − 𝑉𝑆𝑇𝐴𝑅𝑇
 , allowing for identical BN to be applied separately to 

positive and negative convolution results. 𝑉𝑆𝑇𝐴𝑅𝑇
  and 𝑉𝑆𝑇𝐴𝑅𝑇

−  are generated from a diode-stacked 

ladder. Continuous comparators evaluate 𝑉𝑅𝐴𝑀𝑃
  / 𝑉𝑅𝐴𝑀𝑃

−  against buffered voltage pairs, generating 

a rising edge when 𝑉𝑅𝐴𝑀𝑃
  and 𝑉𝑅𝐴𝑀𝑃

−  cross the buffered voltage pairs. Finally, ReLU is performed 

by passing these pulses through the logic shown in Fig. 3.8a. In the waveform in Fig. 3.8b, the 

final output pulse is generated when ∆𝑡𝑖,𝑗,𝑘
  𝑙 ≥ ∆𝑡𝑖,𝑗,𝑘

− 𝑙 
 with the pulse width of ∆𝑡𝑖,𝑗,𝑘

 𝑙 1 = ∆𝑡𝑖,𝑗,𝑘
  𝑙 −

∆𝑡𝑖,𝑗,𝑘
− 𝑙 

. If this inequality is not met, the output pulse width is zero (ReLU).   
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Figure 3.8 (a) Proposed ReLU structure and (b) output waveform.  
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3.4  Performance Evaluation 

3.4.1  Linearity of a Single Hidden Layer 

A single layer including in-memory convolution SRAM arrays, integrators, S/H buffers, 

ramp generators, and the BN+ReLU block is simulated in transistor-level SPICE simulation. 

Nonlinearity is measured by sweeping the input pulse width of the parallel channels of a single 

convolution kernel from 0 to 5.12 ns with a 160 ps time step (Figs 3.9 & 3.10).  
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Figure 3.9 Linearity simulation result of (a) input pulse to voltage and (b) input pulse to 

output pulse.  
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Thanks to the constant RBL voltage and stacked readout buffers, the nonlinearity incurred 

in the convolution SRAM arrays and analog integrators is limited to 4.5% in the worst case (Fig. 

3.9a). This percentage is calculated by normalizing the difference between the output value and its 

ideal value to the full output range (250 mV). The nonlinearity in the voltage-to-output pulse 

domain is negligible compared to the nonlinearity from integrators, and hence the total nonlinearity 

in a single layer (input pulse to output pulse) is < 4.8%. This nonlinearity characteristic can be 

monitored outside of the chip and modeled in the offline training to further improve accuracy.  

 

3.4.2  Multi-Layer Verification 

Multi-level operation is verified by co-simulation using transistor-level SPICE simulation 

of the analog layers and VCS for the synthesized logics simultaneously. A sample image is loaded 

to the input image buffer, and the output pulse width of each layer is compared with output features 

 

Figure 3.10 Transient simulation waveform with input pulse width sweep from 0 to 5.12 ns 

with 160 ps time step. 
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from Matlab to ensure correct functionality. In Fig. 3.11, the transistor-level SPICE simulation 

results of the average pooling and FC layer match well with the output feature obtained from 

Matlab. 

After validating the individual components in SPICE simulations, we employ Verilog-A 

models of analog components to reduce the simulation time and fully verify the wiring and timing 

of the full system with all of the layers.             

 

(a) 

 

(b) 

Figure 3.11 (a) A sample SVHN image and (b) Transistor-level SPICE simulation result of 

average pooling + FC layers and comparison with Matlab results. 

Class 
SPICE sim. 

waveform 

Pulse width 

[ps] 

(SPICE) 

Normalized 

pulse width 

(SPICE) 

Normalized 

output 

feature 

(Matlab) 

0 

 

302.81 0.5117 0.4943 

9 0.00 0.0000 0.0000 

8 591.83 1.0000 1.0000 

7 0.00 0.0000 0.0000 

6 0.00 0.0000 0.0000 

5 109.10 0.1843 0.1624 

4 373.00 0.6302 0.6347 

3 0.00 0.0000 0.0000 

2 0.00 0.0000 0.0000 

1 0.00 0.0000 0.0000 
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3.4.3  Analysis on Noise and Dynamic Range                                                                                                                                                                                                                                                                                                                                                                                              

The effective bit-precision of activations in the pulse-width domain can be calculated from 

the signal voltage range and noise level observed from the analog blocks (or from the pulse-width 

range and jitter). The noise statistics are estimated using transient noise simulations of a transistor-

level SPICE netlist (Table 3.1).  

From Table 3.1, an effective bit precision is calculated to be log2 (
250𝑚𝑉

1.6815𝑚𝑉
) ≈ 7.22b, 

which ignores the dynamic range reduction after summation (subtraction) of the positive and 

negative convolution values.  

In Fig. 3.12, an output pulse width of a layer ∆𝑡𝑖,𝑗,𝑘
 𝑙 1 

(= ∆𝑡𝑖,𝑗,𝑘
  𝑙 

 -∆𝑡𝑖,𝑗,𝑘
− 𝑙   is represented in 

binary format to visualize the effective bit precision of the analog values. For the case shown in 

Fig. 3.12a, there is no additional dynamic range loss except the loss from noise. On the other hand, 

the case shown in Fig. 3.12b incurs additional dynamic range loss after summation when ∆𝑡𝑖,𝑗,𝑘
  𝑙 −

∆𝑡𝑖,𝑗,𝑘
− 𝑙 

 is small. During training, the dynamic range reduction after summation of the positive and 

negative parts is modeled for each layer to minimize classification accuracy loss. Overall, the 

Table 3.1 RMS noise from transient noise simulation. 

 

Noise source 
RMS noise  [mV] 
(Voltage domain) 

RMS Jitter [ps] 
(Time domain) 

 SRAM array + Integrator 0.8838 18.1002 

S/H buffer 0.7976 16.3345 

Ramp generator 1.0787 22.0921 

Comparator 0.4966 10.1700 

Total 1.6815 34.4373 
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dynamic range reduction varies from 20 to 24 among different layers, which corresponds to an 

effective bit loss of 0-4 bits. Including noise level and value reduction together, the effective bit 

precisions of activations vary from 3 to 7 bits among different layers.      

1 0 1 1 1 0 1 x x x x x x x

0 0 1 0 0 0 0 x x x x x x x
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summation =27
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1 0 0 1 1 0 1 x x x x x x x
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(b) 

Figure 3.12 Diagram of effective bit precision activations (a) without dynamic shrinkage (b) 

with dynamic shrinkage = 23 after summation.  
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3.4.4  Accuracy Evaluation                                                                                                                                                                                                                                                                                                                                                                                              

To evaluate the classification accuracy of the proposed accelerator, a Matlab model is 

designed based on the circuit structure including separate accumulation of positive/negative 

convolution results. The fixed-point activations are truncated after convolution based on the 

dynamic range reduction of each layer. In addition, the Gaussian noise in Section IV.C is added in 

each layer during training and testing and compared with truncation-only cases. SVHN and 

CIFAR-10 data sets are used for training and inference.  

From Fig. 3.13, with an effective activation of 3–7 bits and a 4b-weight, the proposed 

accelerator achieves 94.0% and 80.9% accuracy with the SVHN and CIFAR-10 datasets, 

respectively. Accuracy degradation occurs due to both finite bit precision and circuit noise (Fig. 

3.13). Compared to results obtained with identical noise conditions but floating precision for both 

activations and weights, accuracy degradation is 1.6% and 3.9%, respectively. Compared to the 

case with identical bit precision without noise, the accuracy degradation is 3.2% and 5.0% for 

SVHN and CIFAR-10, respectively. Notice that using binary weights incurs severe accuracy loss 

for the evaluated ResNet. 
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Figure 3.13 Top-1 accuracy (a) over different bit precisions of activation with 4b-weight and 

(b) over different bit precisions of weight with 3~7b activation.  
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3.4.5  Energy BreakdownAccuracy Evaluation                                                                                                                                                                                                                                                                                                                                                                                              

AA-ResNet energy consumption is measured by SPICE simulation for analog cores and 

Prime Time PX with synthesized digital logics on actual image input vectors. The analog cores 

consume 94.8% of the total energy (Fig. 3.14a), mostly by amplifier DC bias currents, while the 

remaining energy is consumed by digital peripherals (input image buffers with compiled SRAM, 

FSM controller, scanchain) and analog peripherals (ring oscillator and bias current generator).  
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Figure 3.14 (a) Energy breakdown of AA-ResNet accelerator and (b) energy distribution 

over different layers.  
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The energy consumption distribution among the different layers mainly depends on the 

layer dimension (Fig. 3.14b). The 16th layer dominates (186nJ), mainly by ramp generators and 

BN+ReLU, due to many parallel output channels that are connected to the average pooling layer. 

Overall the energy consumption is 1.2 µJ per inference, which is 3× smaller compared to state-of-

the art [55]-[56], a reduction achieved by avoiding ADCs and DACs.  

Table 3.2 Comparison with state-of-the-art. 

  

 

 This worka [55] [56] [44] [45] 

Technology 28nm 28nm 65nm 65nm 55nm 

Area 11.9b 5.95 17.6 1.44 3.4 

Supply 
[V] 

1 0.8 / 0.6 
0.68 / 0.94 / 

1.2 
0.675 ~ 
0.925 

0.4 ~ 1 

Power 
[mW] 

389 
0.899 / 
0.094 

14.34c 1.36c Max 0.69 

Core Circuit  
Type 

Analog 
Mixed-
signal 

Mixed-
signal 

Mixed-
signal 

Mixed-
signal 

Algorithm ResNet 
Binary 
CNN 

Binary 
CNN 

SVM 
Stochastic 

RL 

Dataset 
CIFAR-10 

/ SVHN 
CIFAR-10 

CIFAR-10  
/SVHN  
/MNIST 

MIT-CBCL 
face 

detection 
data 

Online 
learning 

from 
ultrasonic 
sensors 

On-chip  
Memory [kB] 

Image: 6.75 
Weight :32.2 

328 295 16 N/A 

Accuracy [%] 80.9 / 94.0 86 84/ 94/ 98.6 96 N/A 

MAC 
precision 

Weight 4b 1b 1b 8b 6b 

Input 
Pulse width 
(eff.3~7b) 

1b 1b 8b 6b 

1b-scaledd MAC 
performance 

[TOPS] 
33.1~77.2 

0.478 / 
0.072 

9.438 0.272c 0.078c 

1b-scaledd MAC 
Efficiency 
[TOPS/W] 

85.1~198.5 532 / 772 658 200c 112.32c 

# of 1b-scaledd 
MAC Ops per 

CIFAR-10 image 
237.47M 818.52Mc 1441.47Mc N/A N/A 

CIFAR-10 image 
throughput rate 

[image/sec] 
325,520 237 / 36 N/A N/A N/A 

Energy per 
CIFAR-10 image 

[µJ/image] 
1.2 3.79 / 2.61 N/A N/A N/A 

a. Simulation based results      b. Layout based 
c. Calculated based on other reported values   
d. 1b-scaled: (weight precision) × (input precision) × original value 
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3.5  Conclusion  

In this chapter, we proposed a multi-bit precision AA-ResNet accelerator design for 

performing all operations, including convolution, NL transform, BN, and multi-cycle value 

retention, in the analog domain to overcome DAC/ADC overhead present in conventional 

approaches. The proposed design achieved 1.2 µJ energy consumption and an inference rate of 

325,520 images/s for the SVHN/CIFAR-10 data sets. We further analyzed the nonlinearity in 

convolution, effective bit precision of activations from noise and dynamic range shrinkage, and 

accuracy including the effects of noise and bit precision.  

 

 

 
 

 

Figure 3.15 (a) Layout view of the proposed AA-ResNet accelerator, (b) layout view of the 1st 

layer, and (c) area distribution over different layers. 
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CHAPTER 4   

A Miniaturized Wireless Neural Recording IC for 

Motor Prediction with Near-Infrared-Based Power 

and Data Telemetry 

 

4.1  Introduction 

 

Brain machine interfaces using neural recording systems [64]-[67] can enable motor 

prediction [68]-[69] for accurate arm and hand control in paralyzed or severely injured individuals. 

However, implantable systems have historically used wires for data communication and power, 

increasing risks of tissue damage, infection, and cerebrospinal fluid leakage, rendering these 

devices unsuitable for long-term implantation (Fig. 4.1). Recently, several wireless and 

miniaturized neural recording implants with various power and data transmission methods were 

proposed. References [22]-[23] propose an electrocorticography (ECoG) recording system with 

near-field RF power transfer and bilateral communication, but the 0.5W Tx exceeds maximum 

exposure limits by 10× [23]. Ultrasonic telemetry can safely send more power than RF; however, 

it requires mm-scale dimensions (0.8mm3 in [24]) due to bulky ultrasound transducers. On the 

other hand, near infrared (NIR) light can provide power transfer and data downlink via a 
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photovoltaic cell (PV), and a data uplink via a light-emitting diode (LED). Dimensions can be 

scaled to 100s of microns [70], with [26] demonstrating a 0.0297mm2 neural recording system 

using a 50mW/mm2 light source (<1/6th of safety limit for the brain). However, this system is 

limited to a single channel, and since it only has a surface electrode, it can record only surface 

potentials (facedown, potentially blocking the light channel) or must itself be injected into brain 

tissue, creating significant tissue damage and danger of bleeding. In this chapter, we propose a 

0.74μW, 0.19×0.17mm2 IC designed for a wireless neural recording probe. It computes so-called 

spiking band power (SBP) [68], [71] on-chip to save 920× power while maintaining accurate finger 

position and velocity decoding.  

 

4.2  System Overview and Top Circuit  

A neural probe IC is designed for a larger neural recording system concept (Fig. 4.2) in 

which numerous micro-probes would be placed on the brain in the sub-dural space to record neural 

spikes using a carbon fiber electrode that penetrates several mm into brain tissue and has been 

 

 
 

Figure 4.1 Conventional and proposed neural recording system. 
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shown to incur minimal chronic scar formation [72]. The probes will be powered and globally 

programmed by 850nm NIR light emitted by a repeater placed in the epidural space. The LED in 

the probe will act as the data uplink; its light received by the repeater using a single-photon 

avalanche diode (SPAD). The repeater would service 100s of probes, which are distinguished by 

their on-chip ID and location. Given its larger size, the repeater can use an inductive link for 

wireless power and data communication with an external receiver.  

The CMOS IC consists of an optical receiver followed by clock and data recovery, a 

random-number-generated-based chip ID [73], neural recording amplifier, SBP extractor, and LED 

driver (Fig. 4.3).  

 

 

 

 

 

 

 
 

Figure 4.2 Concept diagram of proposed neural probe and two-step approach for recording 

and transmitting neural signals. 
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4.3  Optical Receiver and Clock and Data Recovery  

Fig. 4.4, 4.5 shows the schematic and measured signal diagram of the optical receiver 

(ORx). VDD is AC-coupled to a comparator input to convert modulated light from the repeater to 

a digital signal. The comparator has 80mV hysteresis to remove glitches due to unwanted VDD 

fluctuations. In the power-on reset phase, the clock recovery circuit locks the onchip recovery 

clock to the precise 8kHz modulated light from the repeater. This is critical since the clock is used 

to set the reference current, which must be precisely controlled for reliable amplification and signal 

filtering. The clock recovery circuit searches the digitally-controlled oscillator (DCO) 

thermometer-coded configurations to match the received modulation period with the DCO period. 

It then switches the system clock from the default to recovery clock using glitchfree multiplexers. 
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Figure 4.3 Top-level circuit diagram of the neural recorder. 
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After clock locking, the repeater programs the system using pulse width modulated (PWM) light 

(downlink). An 8b hardwired passcode is implemented to prevent unwanted programming. The 

signal diagrams in Fig. 4.5 are measured from the proposed chip, wire-bonded with a custom 

dualjunction GaAs PV cell that generates 893nA ISC and 1.67V VOC under 120.5μW/mm2 850nm 

light (Fig. 4.6). 
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Figure 4.4 (a) Optical receiver, (b) clock recovery circuit, and (c) data recovery structure. 
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Figure 4.5 Measured signal diagram during clock and data recovery.  
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Figure 4.6 Measured performance of the PV.  
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4.4  Amplifier and Rectifier based Analog Integrator  

The AFE is specifically designed to support SBP [68] based finger position / velocity 

decoding. SBP is the absolute average of signal amplitude in the 300-to-1000Hz band. When used 

as input to a trained linear decoding filter, SBP maintains finger position / velocity decoding 

accuracy relative to a standard 7.5kHz bandwidth neural recording while reducing the required 

communication bandwidth from probe to repeater to only 100s of Hz, thereby reducing uplink 

power. The AFE is composed of a three-stage bandpass differential amplifier chain with 

subsequent source follower and rectifier-based integrator to quantize the SBP (Fig. 4.7, 4.8). The 

LNA, with 60MΩ input impedance at 1kHz, is fully differential and achieves 30dB gain without 

bulky capacitors by implementing its gain using gm ratio. VGA1 and VGA2 set the high-cut-off 

(fH, 950Hz) and low-cut-off frequencies (fL, 180Hz), respectively, and define the spiking band. fH 

is set by VGA2 bias current, which is generated by a current reference implemented using a voltage 

reference and switched capacitor operating at fCLK. fL is defined by the VGA2 DC servo loop, 

whose feedback impedance is defined by 1/CSWfCLK. Accuracy of fH and fL is ensured by locking 

fCLK during clock recovery to the repeater. Peak gain is measured at 69dB while amplifying action 

potential (AP) spikes in 180−950Hz bandwidth for SBP-based motor prediction. (Fig. 4.9) 

Measured input-referred noise (IRN) is 4.8μVrms while consuming 510nW at 38°C. 
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Figure 4.7 Amplifier structure.  
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The 3-stage amplifier drives a rectifier (Fig. 4.8) whose output is initially precharged to 

VREFH. The rectifier output decays at a rate proportional to its input amplitude. When it drops 

below VREFL, a pulse is generated on LED_EN. This triggers the LED driver to transmit a 

Manchester encoded (unique) chipID (Fig. 4.10) consuming 6.7pJ/bit (post layout simulation). 

Therefore, the LED firing rate or frequency is proportional to the SBP.  
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Figure 4.9 Measured AC gain and input referred noise of amplifier. 
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Figure 4.8 Rectifier based analog integrator structure. 
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4.5  Measurement Results  

AFE functionality was also verified in vivo using a carbon fiber driven ~1.3mm into the 

motor cortex of an anesthetized Long Evans rat. A commercial recording system (24.414kSps, 

[2.2Hz, 7.5kHz] BW) is connected to the carbon fiber electrode in parallel to the IC for accuracy 

comparison (Fig. 4.11). All procedures complied with the Institutional Animal Care and Use 

Committee. VIN is the input of the proposed amplifier, measured by the high-power commercial 

recording system. VOUT(VOUTP-VOUTN) is the amplifier measured output. Results show that 

the rectifier output (INTOUT) steps down at each motor cortex neuron spike and is restored to 

VREFH when it reaches VREFL (Fig. 4.12). 
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Figure 4.10 Measured Manchester encoded chipID.  
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Figure 4.11 Photo of in vivo testing setup (top left). Carbon fiber mounted to PCB is inserted 

(top right) and a bone screw was placed at the most posterior portion of the skull. Recordings 

were taken with the IC in parallel with RA16AC headstage, RA16PA pre-amplifier, and RX7 

Pentusa base station (Tucker-Davis Technologies, Alachua, FL, 2.2-7500Hz bandpass filtered) 

(bottom). 
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LED firing rate linearity across SBP is tested using synthesized AP spikes (240μVpk-to-

pk, 1ms width) with varying rates from 0 to 100Hz (Fig. 4.13.). The measured LED firing rate is 

proportional to SBP with nonlinearity <2.9% and its sensitivity is programmable from 0.4 to 5.0 

firings per μV. Overall functionality is verified using three different types of input signals; 

synthesized neural simulator, in vivo rat motor cortex, and pre-recorded monkey motor cortex (Fig. 

 

-0.2

0

0.2

0.4
V

IN
 [

m
V

]

Time[s]

0 0.05 0.1 0.15

Time[s]

0.6

0.8

1

1.2

IN
T

O
U

T
 [

V
] VREFH

VREFL

-0.1

0

0.1

0.2

0.3

0.4

~380μVV
IN

 [
m

V
]

Time[s]

0.08 0.085 0.09 0.095

Time[s]

-0.4

-0.2

0

0.2

0.4

~640mVV
O

U
T

 [
V

]

Time[s]

-0.4

-0.2

0

0.2

V
O

U
T

 [
V

]

0.4

 
 

Figure 4.12 In vivo transient measurement results with rat motor cortex neural signal.  



 

53 

 

4.14). Measured probe SBP is decoded from the measured time interval of LED_EN signal and 

compared with the result generated by a conventional high-power analog front-end and DSP SBP 

calculation [68]. The measured probe SBP accurately matches the conventional system results.  
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Figure 4.13 Measured linearity of LED firing rate.  
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Figure 4.14 Measured transient waveform from three types of input neural signals.  
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Fig. 4.16 shows finger position / velocity decoding results using Kalman-Filter (KF) [69]  

with conventional and probe SBP from pre-recorded 20-channel neural signals of a male monkey. 

All procedures complied with the Institutional Animal Care and Use Committee. The system 

accurately predicts finger position / velocity with state-of-the-art correlation coefficient of 0.8587 

/ 0.5919 while a conventional high-power and wired system demonstrates 0.8886 / 0.6155 

correlation coefficient.  
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Figure 4.15 Flow chart of finger position and velocity decoding.  
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Figure 4.16 Finger position / velocity decoding result using KF with the probe and conventional 

SBP with pre-recorded 20-channel neural signals of a monkey.  
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4.6  Conclusion 

The IC is fabricated in 180nm CMOS (Fig. 4.17). Table 4.1 compares to previously 

published wireless neural probe chip designs. It consumes 0.74μW with 3.76 amplifier NEF at 

1.5V supply and 38°C, achieving best noise performance among comparable designs [22], [24], 

[26]. 
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Figure 4.17 Die photo of the IC in 180nm CMOS.  
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Table 4.1 Comparison table. 

 

 

850nm 
LED

850nm 
LED 

driver

PV and CMOS 
assembled on 
a single PGA

Logic analyzer

Logic 
analyzer

PC

850nm 
LED

PCB AWG

~1cm

Optical fiber

LED
driver

PV+CMOS

P
ro

b
e
  
 

 
 

Figure 4.18 Optical setup with the IC wire-bonded with a custom dual-junction GaAs PV.  
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Figure 4.21 Structure of chipID Manchester encoder, LED driver and hysteresis comparator 

in optical receiver.  

Z

Zb

A

Ab

RST

T[0]T[1]T[2]

8x

T[3]

4x 2x 1x

VDD

RSTn RST

RSTn RST

A Ab

Z Zb

HVT

SVT

LVT

HVT

1x

 

Figure 4.20 Structure of digitally controlled delay cell in clock recovery circuit.  
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Figure 4.19 Structure of switched capacitor based current reference.  
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CHAPTER 5   

A Light Tolerant Neural Recording IC for Near-

Infrared-Powered Free Floating Motes 

 

5.1  Introduction 

Power transmission and communication are the key challenge for ultra-small (< 0.5mm) 

wireless neural recording motes and, among several approaches (RF, ultra-sound [22], [25]), NIR 

using an integrated PV and LED is unique in its ability to scale linearly to very small sizes (< 

100µm) [27], [29]. Minimum size is critical to achieving dense recording arrays and minimum 

scarring and requires that radiated light power is maximized while chip power and currents are 

minimized. This leaves the circuits particularly susceptible to light-induced parasitic currents (Fig. 

5.2). In conventional chips, light is blocked with an encapsulant. However, a partly transparent 

encapsulation that exposes the PV and LED while blocking light for sensitive circuits is infeasible 

at sub-mm scales leaving the solution to light tolerant circuit design. To our knowledge, this work 

is the first attempt to address this challenge.  

The proposed IC achieves robust operation past the tissue limit NIR (150 µW/mm2) while 

a baseline implementation fails at 8µW/mm2. The chip maintains sub-µW power while 

incorporating advanced functionality, including on chip feature extraction and gain control. The 
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proposed work was tested with neural signals from a Long Evans rat and demonstrated high fidelity 

monkey finger motion decoding.  

5.2  System Overview and Top Circuit 

 The envisioned system architecture is described in [29] and consists of a large number of 

free-floating motes on top of the brain that use NIR for power delivery, uplink and downlink to a 

repeater unit outside the dura (Fig. 5.1).  Each mote consists of a custom GaAs chip with dual 

junction PV (ISC > 1.1µA, VOC = 1.6V at 150µW/mm2 850nm light, measured) and LED 
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Figure 5.2 Cross section of the CMOS layer with parasitic diode short circuit currents.  
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Figure 5.1 Conceptual illustration of NIR based wireless neural recording motes.  
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sandwiched on top of the CMOS chip with an attached carbon fiber penetrating the brain to obtain 

neural signals. 

The IC consists of a three-stage-amplifier for neural signal acquisition, signal processing 

that extracts a neural feature called spiking band power (SBP) [74], a pulse gap modulator (PGM) 

and LED driver for data uplink, and an optical receiver (ORx) for data downlink followed by clock 

and data recovery (Fig. 5.3). 
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Figure 5.3 Top circuit diagram of the CMOS layer.  
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5.3  Light Tolerant Amplifier 

 A pseudo resistor (RPSD) is frequently use for DC-feedback since its high, T resistance  

[27], [29] can achieve the demandingly low high-pass corner and reduces resistor noise. However, 

its extremely low conductance, GFB, also makes it susceptible to junction to substrate and deep n-

well to p-well photo generated current (ISC_P) (Fig. 5.4, left). This low conductance vs. ISC_P results 

in a poor light robustness ratio (RLR = GFB / ISC_P) and the DC-bias level will drift at < 1µW/mm2 

(simulation). A series-to-parallel switched capacitor-based resistor [75] was proposed to address 

the process sensitivity of RPSD. However, while it has higher conduction, its high number of 

switches results in a large total junction area and high ISC_P and RLR remains poor (Fig. 5.4, mid). 
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Figure 5.4 Simulated light robustness of three different feedback resistors (top) and proposed 

light tolerant amplifier (bottom).  
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Instead, this work adopts a hybrid approach combining a simple switched capacitor resistor with a 

3× attenuator. It maintains a much larger GFB while having a lower ISC_P resulting a 5·104× 

improvement in RLR and achieves light tolerance till 350µW/mm2 in simulation (Fig. 5.4, right).  

The amplifier achieves 68 dB peak gain, [380, 1060] Hz bandwidth, > 67dB of CMRR and 

PSRR and, IRN of 6.2µVRMS with 150µW/mm2 of incident 850nm LED light at 38°C in 
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Figure 5.5 Measured amplifier performance with 850nm light (IRS4, CMVision).  
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measurement which is nearly unchanged from that measured without light (Fig. 5.5, table). The 

graph in Fig. 5 plots measured gain across light level for a baseline RPSD and proposed structure 

showing that while the baseline structure fails at 8µW/mm2, the proposed structure stays stable till 

300µW/mm2.  

 

5.4  Flash ADC and Pulse-Counter-based SBP Computing Unit 

Spiking band power (SBP) is a neural feature used for motor prediction and is defined as 

average of absolute signal amplitude in 300-1000Hz [74]. The analog SBP extraction in [29] is 

compact, but relies on tens of pA of on-current to charge an integration capacitor, which is 

susceptible to ISC_P. We instead propose an area-efficient and light tolerant digital SBP extraction 
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Figure 5.6 Flash ADC and pulse-counter-based SBP computing unit.  
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unit using a flash ADC. It consists of a diode-stack-based VREF generator (12nA, simulation), 

dynamic comparators with staggered clocks, followed by pulse generators. An asynchronous 

counter accumulates the total number of fired pulses which integrates the absolute amplitude over 

the pulse width (Fig. 5.6, 5.7). By comparing the counter to a threshold, SBP is symbol-interval-

encoded (LED_EN, Fig. 5.6). LED_EN then fires the LED with a pulse-gap-modulated (PGM) 

encoding of the mote ID (Fig. 5.3). Each LED packet consists of a total 17 pulses where the pulse 

gap (2*TCLK/3*TCLK for data 0/1) encodes the 10b unique chip ID (from PUF [73]) and 6b gain 

configuration (Fig. 5.10). The LED driver consumes 76nW (simulation) at 50Hz LED firing rate.  

  

½VDD

½VDD+ V

½VDD+2 V

½VDD+3 V

½VDD- V

½VDD-2 V

½VDD-3 V

Voltage

Time

TCLK

AMPOUT

Total area  
= Proposed Quantized 
Absolute Integration 

result

 

Figure 5.7 Quantization of absolute amplitude and width from the SBP computing unit.  
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5.5  Optical Receiver and Remote Gain Control 

The ORx allows for data downlink and remote gain control (RGC) (Fig. 5.8). Two matched 

2T-VRs [36] provide DC-bias to the inputs of a hysteretic comparator, AC coupled to VDD and 

GND. Light modulation toggles the comparator which drives clock and data recovery. The 2T-

VRs are size for 1.4nA (simulation) to ensure light robustness, eliminating the light sensitive RPSD 

bias in [29]. 
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Figure 5.8 ORx structure and operation (top), and measured selective programming waveforms 

from wireless optical setup (bottom).  
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5.6  Measurement Results 

The proposed IC was fabricated in 180nm CMOS (Fig. 5.11). In a fully wireless optical 

setup with an NIR laser for power transfer and downlink and SPAD detector for uplink reception 

(Fig. 5.10) the IC with custom PV/LED GaAs chip wirebonded side-by-side was fully functional. 

The LED_EN signal was successfully decoded from the measured SPAD output using the 16b 

match filter, shown in Fig. 5.10. 

In vivo measurement using a carbon fiber inserted into the brain of an anesthetized Long 

Evans rat and wired to the CMOS chip verified the proposed SBP extraction. Compared to SBP 

measurement with a high-power commercial recording/signal-processing system, the proposed 

chip shows good accuracy for motor function decoding (Fig. 5.9). All procedures complied with 

the University of Michigan’s Institutional Animal Care and Use Committee. 
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Figure 5.9 In vivo measurement setup with RA16PA pre-amp and RX7 Pentusa base station from 

TDT Inc. (left) and measured waveforms (right).  
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 Finger movement of a monkey was predicted using a 20-channel-prerecorded motor cortex 

signal and the resulting SBP from the IC with both fixed gain and off-chip RGC (based on average 

LED firing rate, Fig. 5.12a). A Kalman filter was used for training with the first 100s and predicting 

the next 24s of the movement. The proposed SBP successfully predicted the movement (Fig. 5.12b) 

with only slight accuracy degradation. With RGC, accuracy improves by several percent and LED 

firing rate remains below 50Hz across all the channels, allowing for increased channel utilization. 
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Figure 5.11 Die photo.  
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Figure 5.10 Measured matched filter decoding result (top), and wireless optical setup with NIR 

laser (QFLD850200S, Qphotonics) and SPAD (SPDOEMNIR, Aurea) (bottom, left).  
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Figure 5.12 Finger movement decoding result (a) average LED firing rate histogram (b) 

predicted movement (c) correlation. 
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5.7  Conclusion 

Table 5.1 compares the IC to state-of-the-art standalone wireless recorders. Only optical 

units scale below 0.5 mm and only the proposed optical mote can fully function under 300µW/mm2 

of light exposure. It also achieves the lowest power consumption of 0.57µW at 38°C with 4.1 NEF, 

pseudo-resistor-less amplifier, on-chip SBP extraction in digital domain, and individual mote 

downlink for RGC. 

  

Table 5.1 Comparison table. 
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CHAPTER 6   

Conclusion 

6.1  Key Contributions 

This dissertation proposes circuit designs for two different fields that highly demands 

energy-efficient systems: IoT and BMI. First, miniaturized and intelligent IoT these days need to 

operate for long lifetime to continuously sense, monitor, collect data, edge-compute, and 

communicate with other devices within their limited battery capacity. Therefore, energy efficiency 

of circuits and systems is key to addressing this challenge. Second, previous wired-base neural 

recorders have been inevitable from potential risks of tissue damage making these wire-based 

neural recorders unsuitable for long-term implantation. Therefore, sub-mm-scale and energy 

efficient wireless implants for a single neuron level activity recording has been a long-standing 

goal in BMI. The dissertation proposes different energy efficient circuit designs for IoT application 

in chapter 2 and 3, and two generations of sub-µW and sub-mm wireless neural recording IC in 

chapter 4 and 5. 

In chapter 2, a gate-leakage-based frequency locked wake-up timer with first- and second-

order temperature dependency cancellation is introduced.  Wake-up timers are a critical component 

of WSNs for the IoT, and two key requirements are low power consumption and high timing 

accuracy. The proposed timer achieves a TC of 260ppm/°C across −5 to 95°C while burning only 

224pW of power. In addition, the reported LS is 0.93%/V across 1.1−3.3 V of supply voltage, 
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achieving 150× improvement compared to previous gate-leakage-based wake-up timers. Overall, 

the proposed timer is Pareto optimal in terms of TC and LS vs. power among other resistor-less 

timers. 

Chapter 3 proposes an energy-efficient AA-ResNet accelerator for edge-computing 

application. The proposed multi-bit precision accelerator performs all operations, including 

convolution, NL transform, BN, and multi-cycle value retention, in the analog domain to overcome 

DAC/ADC overhead present in conventional approaches. The proposed design achieves inference 

rate of 325,520 images/s for the SVHN/CIFAR-10 data sets in simulation while it consumes only 

1.2 µJ energy per image. At the end of chapter, analysis on the nonlinearity in convolution, 

effective bit precision of activations from noise and dynamic range shrinkage, and accuracy 

including the effects of noise and bit precision is presented.  

In chapter 4, a 0.19×0.17mm2 IC designed for a wireless neural recording probe with NIR 

power and bidirectional data telemetry is proposed. It only consumes a 0.74μW of power with 3.76 

amplifier NEF at 1.5V supply and 38°C, achieving best noise performance among other published 

standalone neural recorders. The proposed neural recording IC computes SBP on-chip in analog 

domain for accurate finger position and velocity decoding. Using the pre-recorded neural signal of 

a monkey, the IC predicts finger position / velocity with high correlation coefficient of 0.8587 / 

0.5919. 

Finally, chapter 5 introduces the second generation of the wireless neural recording IC with 

much enhanced light tolerance compared to the first generation in chapter 4. Since it is difficult to 

encapsulate the PV and LED partly transparent while blocking light for sensitive circuits at sub-

mm scales, it is critical to design the system insensitive to the light exposure. By replacing all sub-

blocks sensitive to photo generated current by novel light-tolerant structures, the proposed IC 
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maintains robust operation at 300µW/mm2 of NIR light exposure on the bare die, while the first 

generation fails at 8µW/mm2. The proposed IC includes individual mote downlink for mote-level 

gain control and consumes 0.57µW at 38°C, which is the lowest power consumption among state-

of-the-arts standalone neural recorders.  

 

6.2  Future Directions 

There are various opportunities to further improve the works introduced in this dissertation. 

Although the wake-up timer proposed in chapter 2 is Pareto optimal in terms of TC and LS vs. 

power compared to other resistor-less timers, it still has higher TC relative to the nW-level resistor-

based timers. This is because the gate leakage is intrinsically nonlinear across temperature 

compared to the resistance of poly resistors of the resistor-based timers, enabling much complex 

temperature dependency cancellation scheme. However, if WSNs, where the proposed gate-

leakage based timer is implemented in, include temperature sensor, then an additional temperature 

compensation can be applied to further reduce TC below 100ppm/°C similar to the approach of 

[35]. Simplifying the current three-point calibration or implementation of auto-calibration would 

be another future opportunity for lowering the testing and production cost.  

AA-ResNet accelerator in chapter 3 has a potential of improving energy efficiency of deep 

learning hardware. At the same time, there are various future directions to successfully develop 

the concept into the practical application. One is further research on improving flexibility and 

configurability of the analog accelerator similar to the conventional digital accelerator. Another 

direction could be a study on efficient simulation and layout methodology for such complex and 

heavy analog accelerator design. In addition, research on new in-situ methods or training methods 
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with the actual fabricated prototype of such analog based deep learning hardware would be helpful 

to minimize the accuracy degradation due to nonlinearity and PVT variations of the analog cores. 

Lastly, NIR based wireless neural recording ICs in chapter 4 and 5 achieve overall great 

performance with a custom PV/LED GaAs chip wirebonded. In addition, the functionality of the 

ICs is verified with in vivo measurement at motor cortex of alive rats with a carbon fiber inserted. 

The next main step would be the full integration and verification of the actual floating neural probe 

composed of the proposed IC, a custom PV/LED GaAs chip, a carbon fiber electrode, and a 

hermetic biocompatible packaging described in Fig.4.2 and Fig 5.1. Along with the verification of 

a fully assembled mote, a design of the repeater unit that wireless powers and exchanges data with 

the floating probes implanted in brain and that communicates with the external device would be 

another important step toward the full wireless recording system described in section 4.2 and 5.2. 

Furthermore, theoretical and empirical study on decoding algorithms and channel utilization of the 

optical data up-link would potentially optimize the proposed wireless recording system with 

minimum accuracy degradation.   
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