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ABSTRACT

Intense ultrashort laser sources in the Long-Wave Infrared (LWIR) spectral range are

needed to gain a deeper understanding of many laser-matter interaction processes in

laser pulse filamentation, strong-field physics, and laser-driven particle acceleration.

Ultrashort LWIR pulses are also valuable in supporting applications in molecular

spectroscopy, such as the investigations of molecular dynamics. However, the lack of

suitable broadband laser gain media prevents the generation of the intense ultrashort

LWIR pulses directly from laser oscillators and amplifiers, with the gaseous CO2 laser

being the only exception. The high cost and footprint of the advanced terawatt power

level CO2 systems with relatively long picosecond pulse duration hinders their wide

application.

Optical Parametric Chirped-Pulse Amplification (OPCPA) is the most promising

method for intense few-cycle pulse generation in the LWIR range. OPCPA uses

an instantaneous nonlinear optical process–Optical Parametric Amplification (OPA)

in a Chirped-Pulse Amplification (CPA) system to boost the energy of broadband

ultrashort pulses. Mid-Infrared (MIR) OPCPA has reached peak powers on the order

of several gigawatts, but when extended to the LWIR regime using near-infrared

pumping, less than gigawatt powers have been produced. Generating radiation in

the LWIR range reduces the conversion efficiency due to unfavorably higher quantum

defect and thus requires higher-energy, nanosecond MIR pump lasers. To address the

needs of intense ultrashort LWIR pulses, it is proposed to develop a LWIR OPCPA
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source driven by MIR Er:ZBLAN fiber lasers.

This dissertation presents a numerical evaluation of GaSe and orientation-patterned

GaAs performances in a nanosecond OPCPA, following a theoretical description of

three-wave parametric interactions. The construction and performance of a nanosecond

surrogate pump, based on optical parametric oscillation and amplification in KTiOAsO4

crystals, is then reported. It operates at a central wavelength of 2.73 µm and produces

>10 mJ pulses of ∼1 ns pulse duration at a repetition rate of 10 Hz. The surrogate

pump source not only enables the experimental evaluation of the OPCPA architecture

but also supports the initial assessment of large-core Er:ZBLAN fiber amplifiers.

The LWIR seed pulses generated via direct difference-frequency generation in an

AgGaS2 crystal are centered at 10.3 µm with 1.1-µm bandwidth. The nanosecond

GaSe OPCPA is further analyzed numerically in a noncollinear geometry, followed

by the design and construction of a small-scale noncollinear GaSe OPCPA using the

custom-built surrogate pump and seed sources for proof-of-concept studies. A design

of nanosecond-long stretcher and compressor is also included, and the construction of

a prototype that accommodates the current LWIR seed source with limited bandwidth

is discussed. Although the broadband gain is still under testing, a preliminary study

of small-signal gain in GaSe has been completed by using a narrow-band CO2 laser as

the seed. Single-shot spectrometers and an autocorrelator have also been developed

for characterization in the LWIR range. The development of the prototype paves the

way to the first demonstration of a MIR pumped LWIR OPCPA. The prototype is

aimed to reach the peak power comparable to what has been demonstrated in the

MIR range to date and could be scaled to a high peak and average power in the future

by pump technologies such as high-energy, coherently-combined MIR fiber laser.
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CHAPTER 1

Introduction

Following the development of Q-switching and mode-locking, the invention of CPA

technique in 1985 by Strickland and Mourou [1] has enabled a several orders of

magnitude jump in laser pulse peak power. Introduction of titanium-doped sapphire

(Ti:Al2O3) as gain medium in 1986 [2] enabled large gain bandwidth, which circumvents

the need to use self-phase modulation to broaden the laser pulse spectrally. As a result,

ultrashort optical pulses can be produced at high peak powers in such Ti:sapphire

CPA systems. Nowadays, the optics community has developed up to 10-PW laser

facilities that employ hybrid CPA and OPCPA techniques. Exawatt-class facilities are

under development via either incoherent or coherent beam combination of multiple

beams at a 10-PW scale. The focused intensity achieved is on the order of 1022 W/cm2

and is predicted to reach up to 1023 W/cm2 before encountering potential material

challenges. Currently, the highest average power of 300 W can be delivered by a PW

class laser system operating at 10 Hz [3]. Kilowatt to megawatt average power laser

systems are envisioned in the future. The development of high-peak and high-average

power laser systems is of significant importance for exploration of many real-world

applications in medical, materials, and environmental science [3].

Most of the intense ultrashort lasers today operate at a wavelength of ∼1 µm, albeit

many laser-matter interaction processes, such as laser pulse filamentation, strong-field

physics and attoscience, and laser-driven particle acceleration, greatly benefit from
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ultraintense laser pulses with a wavelength longer than 1 µm because of the well-known

wavelength scaling rule of the ponderomotive energy. Due to the lack of available

broadband laser gain media in the MIR spectral range from 3 µm to 30 µm, no direct

femtosecond laser source exists above 3 µm. The TW-peak-power CO2 gas laser

deserves special mention, but it operates at a relatively long pulse duration of several

ps and a maximum repetition rate of several Hz [4, 5]. To extend the high-peak and

high-average power sources to the MIR range, parametric downconversion devices

employing suitable non-oxide nonlinear crystals provide promising alternatives [6–8]. In

this chapter, a wide variety of approaches for coherent MIR light generation are briefly

introduced, and the current status of the intense CO2 lasers and LWIR parametric

devices are subsequently reviewed. The motivation and objectives of this dissertation

are also presented.

1.1 Background

In 1964, L.V. Keldysh described atomic ionization as a process that depends on the laser

intensity (I) and wavelength (λ). The ponderomotive energy (Up) of a free electron’s

cycle-averaged quiver motion in an electromagnetic field is proportional to Iλ2. With

the surge in development of the now-ubiquitous ultraintense (up to 10 PW) Ti:sapphire

lasers operating at ∼1 µm, the intensity-dependent laser-matter interaction processes

have undergone substantial experimental examination and validation. However, the

wavelength-scaling laws still remain under systematic experimental investigation due

to the technological limitations in the development of longer-λ high-power sources.

Since Up ∝ Iλ2, λ is a more effective control parameter than I to maintain high Up

without reaching the ionization saturation with the increase of I. This makes even

moderate-high-intensity long-λ light sources highly valuable for strong-field physics,

attoscience [9], and laser-particle acceleration [10]. Similarly, the nonlinear filamentary
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propagation of intense ultrashort laser pulses in air also favors longer λ for increasing

the guided power in a single filament without the loss of beam continuity and spatial

coherence. The critical power for Kerr self-focusing scales with λ2, and both the

filament waist and self-channeling range are proportional to λ [11]. Therefore, the

development of the intense ultrafast long-λ sources is of significant interest. From the

spectroscopic viewpoint, ultrafast sources are also highly valuable since the absorption

fingerprints of many molecules lie in the long-λ MIR range, and field-resolved MIR

spectroscopy could be pursued to obtained another dimension of information of the

molecular structures and dynamics [12]. High spectral brightness and average power

are also essential to the improvement of the signal-to-noise ratio in spectroscopy [13].

A wide array of approaches has been explored to generate coherent light in the

MIR range [8]. MIR sources based on semiconductor technology, such as lead-salt

diode lasers and quantum cascade lasers, are efficient direct optical energy generators

that rely on inner-band/inner-sub-band transitions operating beyond 3 µm up to THz

regime with broad tunability. Novel architectures of semiconductor MIR laser today

could support multi-ps pulse generation, but they have low peak power on the order

of W. Their intrinsic beam divergence and astigmatism are also concerns for a number

of applications, which require compensation [14,15].

MIR sources based on rare-earth ion doped/transition metal doped materials

provide another efficient approach and rely on electronic/vibronic transitions operating

at the shorter wavelength side of MIR regime, from 2–5 µm. Exciting developments

have been reported in lasers employing Tm3+-, Ho3+-, and Er3+-doped oxide/fluoride

crystals and glass fibers since 1990s. Up to multi-tens of GW peak power has been

achieved in Ho:YAG/Ho:YLF CPA systems generating 3 mJ of pulses at 5 kHz with a

pulse duration of 530 fs [16], and 220 mJ of pulses at 100 Hz with a pulse duration of

16 ps [17]. High-power Ho:YLF lasers operating in the ps regime provide ideal pump

sources for >4 µm OPCPA based on non-oxide crystals due to the reduced linear and
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two-photon absorption and reduced photon ratio mismatch when pumping at ∼2 µm

in comparison to ∼1-µm pumping [18,19]. Er:ZBLAN fiber lasers operating around

3 µm have also been attracting considerable attention recently. Multi-kW 497-fs

mode-locked pulses has been demonstrated [20], and ns operation up to 58 kW in

Er:ZBLAN fiber amplifier has been explored [21]. In the past two decades, significant

progress has been made in the development of Cr2+- and Fe2+-doped chalcogenide

lasers. The construction of the 1-GW, 1-kHz, 2.5-µm Cr:ZnSe-based ultrafast CPA

system provides an excellent example [22], whereas 4-µm Fe:ZnSe laser has achieved

tens of MW power in the ns regime [23,24] and 20 GW in fs regime [25].

The CO2 laser is one of the earliest gas lasers invented in 1960s. It has vibrational-

rotational transitions in the range of 9–11 µm, particularly at 10.6 µm. Pulse operation

of CO2 laser in the ps regime can be achieved by semiconductor switching [26],

optical Kerr switching [27], direct mode-locking [28], or optical-free-induction-decay

technique [29]. Combined with high-pressure CO2 amplifiers, multi-TW peak power

has been obtained in today’s advanced CO2 lasers [4, 5]. However, the repetition rate

of such CO2 lasers is limited by the electrical discharge pumping mechanism based on

transversely excited atmospheric or radio frequency discharges to a few Hz. Recent

progress on optical pumping technique provides a promising route to alleviate this

limitation [30,31].

Parametric downconversion devices based on nonlinear three-wave mixing have

been spectacularly successful when attempting to access the MIR regime. New oxide

and non-oxide materials have been synthesized and investigated over the past few

decades. Generally, compared to the oxide crystals, the non-oxide crystals have

a much higher nonlinear coefficient and larger transparency range in the longer

wavelength side (>5 µm) of the MIR range, but suffer from more growth defects and

corresponding residual losses due to the limited growth technology. For optically

isotropic media with large nonlinear coefficients, the Quasi-Phase-Matching (QPM)
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technique allows their application in downconversion devices. Few-hundreds of GW

peak power and few-tens of W average power have been achieved in 3–4 µm few-cycle

OPCPA using MgO:LiNbO3, KTiOAsO4 (KTA), and LiNbO3 crystals [11,32,33]. Few-

cycle OPA/OPCPAs with wavelength that extends beyond 5 µm are still limited in their

peak power to ∼10 GW and in their average power to several W when using ZnGeP2

(ZGP) and AgGaS2 (AGS) crystals [34–36]. OPCPA based on the QPM technique

can be operated around 3 µm with Periodically Poled Lithium Niobate (PPLN), but

the peak power has been limited to below GW level [32,37,38].

The design and deployment of MIR sources also require detailed knowledge of

molecular vibration absorption in atmosphere since the presence of water vapor, carbon

dioxide, and the ozone layer strongly affect the transmittance [39, 40]. Figure 1.1

shows the spectral structure of the transmittance in the MIR range under different

conditions. Curve (a) gives a 4.7-m transmittance experimentally measured in a typical

laboratory environment (25° room temperature, 62% humidity) [39]. In comparison,

the Earth’s atmospheric transmittance at high altitude simulated with data from the

ATRAN database [41] is shown in curve (b). ATRAN models the transmission by

using the predicted water vapor overburden at the zenith. As can be seen, the Mid-

Wave Infrared (MWIR) window from 3–5 µm and the LWIR window from 8–14 µm

are separated by the 5–8 µm H2O continuum, and the 2.5–3 µm H2O band defines

the short-wavelength boundary of the MWIR window. The boundary at the long-

wavelength end of LWIR window is set by CO2 absorption, and its strong absorption

at ∼4.3 µm CO2 divide the MWIR window into two narrower ones. A strong O3 line

around 9.6 µm in ATRAN simulation originates from absorption in the ozone layer at

an altitude of ∼22 km, which is obviously not revealed in the laboratory data.

As has been discussed, impressive progress has been made in developing intense

few-cycle sources in the MWIR range, while the LWIR regime is still a hic sunt

dracones land for solid-state sources. Strong interest has been expressed in the
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Figure 1.1: (a) Transmittance of Earth’s atmosphere [41], and (b) transmission of air
under laboratory conditions (25°, 62% humidity, 4.7 m) [39] in the spectral range of
2.5-16 µm.

scientific community to address the challenges of LWIR production, which motivates

the focus of this dissertation.

1.2 State-of-the-art carbon dioxide laser

Conventional CO2 lasers operating at atmospheric pressure are limited by the gain

spectral profiles that are strongly modulated by vibrational-rotational transitions. To

circumvent this limitation, gas pressures in the range of several times the atmospheric

pressure have to be used in the CO2 laser media, which provides the broadening of

the rotational lines via particle collisions. A complete smoothing of the gain spectrum

occurs at ∼25 atm, which is not applicable in a system with electrical discharge

pumping. At a more realistic pressure of ∼10 atm, multi-ps pulse amplification can

still be supported, but pulse splitting can occur due to the residual spectral modulation.

The top and center plots in Figure 1.2 show the gain spectra of CO2 at 1 bar and

10 bar, respectively [42]. As the pulses are amplified, such splitting can be mitigated at

high laser intensities since the rotational lines can be broadened in the electric field of

the laser pulse due to the ac Stark effect. Under such conditions, the extracted energy

is distributed over decreasing number of pulses. The direct amplification developed
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in the Neptune laboratory at the University of California, Los Angeles, presents an

example of CO2 amplifiers assisted by pressure broadening in the initial stage of

amplification and field broadening in the final amplifier stage. The 10P vibrational

branch was used. A 3-ps pulse train containing only 2–3 pulses has been obtained from

its final large-aperture 3-pass amplifier operated at 2.5 atm. ∼45% of the energy was

concentrated into the strongest pulse under a conservative estimate, which corresponds

to a peak power of 15 TW [4].

10 P 10 R 9 P 9 R

Figure 1.2: Gain spectra of CO2 laser media at 1 bar and 10 bar compared with
isotopically-enriched CO2 at 10 bar [42].

The CPA approach has been adopted in the state-of-the-art CO2 laser at the

Brookhaven National Laboratory. This reduces the laser intensity of the pulses on

the amplifier optics and allows the adoption of high-pressure CO2 amplifiers with

smaller apertures for the final stage. Additionally, the high-pressure amplifiers are

filled with isotopically-enriched CO2, such that a more homogeneous gain spectrum

can be obtained as shown in the bottom plot in Figure 1.2. In such a high-pressure

mixed-isotope amplifier, the smoothed spectrum of 10P vibrational branch is suitable

for amplification of 3-ps pulses without pulse splitting, whereas the 9R branch has a

wider bandwidth which could support amplification of 1.7 ps pulses at 9.2 µm in a
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single pulse format. This configuration has delivered single 2-ps pulses with a peak

power of 5 TW [5].

Implementation of the CPA technique eliminates the fundamental bottleneck to

further increase the peak power of CO2-amplifier-based LWIR lasers [5]. Scaling to

larger active volumes for 100-J level output is readily achievable [4]. However, it is

difficult to obtain a broader gain bandwidth for shorter pulse amplification since a

stable electric discharge is hard to be maintained at pressures >10 atm. Additionally,

the average power of the current CO2 lasers is also limited by the electrical discharge

pumping mechanism. Optical excitation is known as an alternative route, which could

eliminate the limitations of the operating pressure and the achievable repetition rate.

Historically, this concept was inhibited by the lack of a suitable pump laser in this

spectral region. Recent progress in the development of J-class, ∼100-ns Fe:ZnSe lasers

tunable around 4.3 µm significantly increases the feasibility of optically-pumped CO2

laser [24]. Numerical simulations have shown that optically-pumped CO2 amplifiers at

20 atm should be capable of amplifying ps pulses to GW peak power [30]. Experimental

demonstration of this scheme is still in progress, but a very high gain coefficient of

30%/cm has already been observed in a 50-torr CO2 medium optically pumped by a

4.3-µm Fe:ZnSe laser producing 40-ns pulses with ∼2 mJ of energy at a repetition rate

of 10 Hz. A prediction has been made that 610%/cm can still be obtained in 20-atm

optically pumped CO2 by increasing the pump energy, which is several times higher

than that pumped by electric discharge [43]. Such high gain per unit length reduces

the required length of the active media and thus minimizes the gain-narrowing effect,

which is important for the amplification of single ps pulses.

The development of state-of-the-art CO2 lasers contributes substantially to the

delivery of LWIR capabilities for high-impact scientific research. It is presently the

only kind of source that has reached terawatt-class peak power in the LWIR spectral

regime. However, due to the inherent limitations of the CO2 lasers, such as their
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limited pulse duration to &ps, the current limitation in repetition rate due to the

discharge pumping mechanism, the large footprint and high cost of the advanced

schemes, etc., there is a growing interest in parametric processes as an alternative for

high-power few-cycle LWIR pulse generation.

1.3 Current status of long-wave infrared (LWIR)

solid-state sources

At present, the primary approach to extend the operation to LWIR regime with

all-solid-state technology is frequency downconversion employing non-oxide nonlinear

crystals with extended transparency beyond 4 µm [6]. Such non-oxide crystals generally

have smaller bandgap energies Eg when compared to the oxide crystals. Empirically,

since the index of refraction depends on the material bandgap as ∼Eg
−1/4, non-

oxide crystals have larger indices of refraction and correspondingly higher nonlinear

coefficients based on Miller’s rule. However, the small bandgap limits the pump photon

energy to ∼Eg/2, such that the detrimental Two-Photon Absorption (TPA) can be

avoided. As a result, it is difficult to pump most of the non-oxide crystals with 0.8-µm

Ti:sapphire lasers or even the 1-µm Nd3+/Yb3+-doped lasers for direct conversion.

Longer-wavelength pump sources, such as Tm3+/Ho3+/Er3+-doped lasers or cascaded

parametric conversion have to be used in these situations. Although it does not strictly

lie in the LWIR regime, two Ho:YLF laser pumped OPCPA based on ZGP crystals

has extended the operating wavelength to 5 µm [18,34] and 7 µm [35,44]. The 5-µm

OPCPA has reached 12.5 GW, whereas the 7-µm OPCPA has enabled 4.0 GW peak

power [17, 34]. The only GW-level LWIR parametric source has been developed to

operate at a central wavelength of 8.9 µm with an average power of ∼83 mW. The

source is based on Difference-Frequency Generation (DFG) of two near-infrared fields

generated in the primary Ti:sapphire laser-driven OPA stage based on β-BaB2O4
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(BBO) crystals, which is tunable in the range of 5.3–8.9 µm [36]. The DFG is performed

in a 10×10×1 mm3 AGS crystal. Such an approach is simple to implement but at

the expense of Carrier-Envelope Phase (CEP) stability of the generated LWIR pulses.

Additionally, further energy scaling of such DFG/OPA is constrained because of the

finite available crystal aperture and the limited interaction length due to temporal

walk-off. Recent progress in the development of ternary chalcogenides such as LiGaS2

(LGS), LiInS2 (LIS), LiGaSe2 (LGSe), and LiInSe2 (LISe), etc. allows the 0.8/1-

µm pumping without TPA, but at the expense of two orders of magnitude lower

nonlinear coefficients. A 9-µm LGS-based OPCPA pumped by 1-µm Yb:YAG CPA

system (10 kHz, 1 ps, 14 mJ) has been demonstrated. Due to the lack of thick

crystals, two LGS crystals are cascaded in both the preamplification and the main

amplification stages. This OPCPA has enabled generation and amplification of 142-fs

pulses with ∼0.1 GW peak power and 140 mW average power [12]. This scheme is

readily scalable to ∼0.7 GW with thicker Antireflection (AR)-coated LGS crystals,

such that the amplification saturation could be reached and the Fresnel reflections

from multiple uncoated crystal surfaces could be reduced [12]. Further scaling requires

the deployment of higher energy pump pulses with longer pulse duration, such as

the one demonstrated in a cryogenic Yb:YAG CPA (2 kHz, 15 ps, 32 mJ) [45]. The

LGS-based OPCPA exhibits passive CEP stability as it is seeded by near-infrared

supercontinuum generated with the same pump source.

Figure 1.3 summarizes the characteristics of current ultrashort LWIR parametric

sources with peak power from 0.01 GW to 1 TW. For comparison, parametric sources

operating at central wavelengths in the range of 3–8 µm covering the MWIR window are

also included. The diameter of the circles is logarithmically proportional to the average

power of the sources. As can be seen in the figure, most of the sources are in the MWIR

window, and their peak and average power vary significantly. The maximum peak and

average power have reached 284 GW [46] and 11.5 W [38], respectively, both operating
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at ∼3 µm. In general, generating radiation at an increasingly longer wavelength suffers

from unfavorably higher quantum defects, which limits the conversion efficiency. The

two emerging LWIR sources [12, 36] discussed earlier operate at a shorter-wavelength

region of the LWIR window and have not achieved peak powers beyond 1 GW. Due

to the high repetition rate, the average power of the two sources is on the order of

∼100 mW. Currently, only the LGS-based OPCPA provides CEP stability, whereas

the AGS-based DFG source is CEP-unstable, which is indicated in Figure 1.3 as a

pattern-filled circle.
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Figure 1.3: Performance of current ultrashort solid-state parametric MWIR-LWIR
sources [11, 12,17,32–34,36–38,46–50]. The diameter of each circle is logarithmically
proportional to average power. The pattern-filled circles represent sources that are
CEP-unstable.

The previous discussion summarizes a handful of ultrashort LWIR parametric

sources that are able to support relatively high peak power (>0.1 GW) for applications

in strong-field physics and laser-pulse filamentation. There are numerous low-energy

sources in the LWIR region designed for spectroscopy applications, which are capable

of operating at a very high repetition rate (>10 MHz) based on mode-locked thin-disk

pump lasers. Multi-octave spectra have been generated with a Fourier limit equivalent

to few-cycle LWIR pulses. The pulse energies are typically on the order of nJ [13,51,52].
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Examples include a 24-mW, 9.5-µm intrapulse DFG in GaSe driven by a 77 MHz, 2-µm

Kerr-lens mode-locked Ho:YAG thin-disk oscillator [51], a 100-MHz, 100-mW, 11.5-µm

intrapulse DFG [13], and a 37.5-MHz, 1.3-W, 8.5-µm OPA [52], both in LGS crystals

pumped by 1-µm Kerr-lens mode-locked Yb:YAG thin-disk oscillator. A source based

on DFG in GaSe by mixing the fundamental and Raman shifted pulses from the

1.55-µm mode-locked Er:fiber oscillator presents another approach to the production

of broadband LWIR pulses at a high repetition rate of 250 MHz. Wide tunability

in the range of 8–14 µwas achieved with an average power of ∼1 mW at 10 µm [53].

The DFG driven by synchronously-pumped Optical Parametric Oscillation (OPO)

in AgGaSe2 (AGSe) [54]/HgGa2S4 (HGS) [55] crystals has been demonstrated at a

repetition rate of 53 MHz/80MHz with fs pulse durations. The source is tunable in

the range of 5–17 µm/4–12 µm with average power of ∼10 mW at 10 µm [54, 55].

Pumped by a 2.5-µm mode-locked Cr2+:ZnS laser, the intrapulse DFG has reached

150 mW in ZGP in the spectral range of 5.8–12.5 µm [56]. Implementations using

Tm:fiber CPA operating ∼2 µm for pumping intrapulse DFG in GaSe have been

demonstrated [57, 58]. Generated pulses span the wavelength range of 6–18 µm

up to 0.5 W average power at a repetition rate of 50 MHz [57]. Operation at a

moderate-high repetition rate of 1.25 MHz has also been reported to enable average

power of 450 mW with a spectrum covering 3.7–18 µm [58]. There are also many

low-repetition-rate (<10 kHz), low-energy demonstrations mainly via DFG/intrapulse

DFG. Cascaded conversion [59–62] that adopts intermediate Optical Parametric

Generation (OPG)/OPA/OPCPA stages pumped by a Ti:sapphire laser is the main

approach, and direct conversion [63–65] driven by dual-wavelength Ti:sapphire systems

has also been explored. Nonlinear media include AGS [60–63], GaSe [65], LGS [59],

and HGS [61] crystals. It should be noted that these low-energy ultrashort LWIR

sources are highly valuable as potential front-ends for high-energy OPA/OPCPA. In

addition to frequency downconversion, supercontinuum generation in chalcogenide
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fibers [66–68] and bulk materials [69–72] provides another useful tool for spectroscopy.

It is also frequently adopted for seeding the OPA/OPCPA. However, the strongly

nonlinear nature of supercontinuum generation complicates the pulse compression.

1.4 Motivation

Self-channeling of intense laser pulses in the atmosphere remains of significant interest

over the past 20 years with the surge in development of the now ubiquitous Ti:sapphire

lasers [73,74]. Laser-pulse filamentation is capable of transporting high-energy beams

over long distances with minimal diffraction losses due the dynamic equilibrium between

the Kerr self-focusing, the defocusing in the laser plasma, and the diffractive divergence.

Extensive theoretical and experimental studies of the filamentation involving complex

nonlinear wave dynamics have been performed, and a wide variety of applications such

as atmospheric remote sensing, free-space communication, supercontinuum generation,

etc. have been suggested [75]. To initiate filamentation, it is required to reach the

critical peak power (Pcr) for Kerr self-focusing. Intensity scaling to well beyond critical

power unavoidably breaks up the beam into multiple small-scale filaments, each

containing a power on the order of Pcr. In order to increase both the guided power and

transverse dimension of a filament without breaking its spatial coherence, wavelength

scaling can be used as the Pcr is proportional to the laser wavelength squared. Based

on the numerical simulations, MIR filaments are regulated by new collapse-arresting

mechanisms via carrier wave self-steepening and higher harmonic walk-off that are

different than plasma defocusing in the conventional visible-to-near-infrared filaments.

They feature a much longer and wider filamentary structure, significantly lower

ionization losses, and the ability to propagate over a long distance with multiple TW

of power contained in a single solitonic hotspot [76–78]. Between the two prominent

atmospheric transmission windows, the LWIR window has shown enhanced propagation
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of high-energy ultrashort pulses in fog and clouds along with reduced perturbation

from atmospheric turbulence [79]. Experimental demonstrations currently lag behind

the simulations due to the technological challenges in the development of intense

ultrashort long-wavelength sources. Until recently, most of the atmospheric laser-

induced filamentation experiments have been limited to the visible or near-infrared

range. Only a few implementations have been experimentally demonstrated in ambient

air [11, 80–82]. The first MIR filamentation study was enabled by a 3.9-µm KTA

OPCPA generating 200 GW, 100 fs pulses. The experiment has produced unique

results such as the generation of multiple odd-order harmonics and strong plasma

refraction [11,80]. Complex off-axial beam dynamics of the MIR filaments have also

been analyzed in the following angle-resolved spectral analysis [81]. Supported by the

state-of-the-art TW-class ps CO2 lasers, a self-guided single centimeter-scale-diameter

megafilament containing ∼1 TW over 20 Rayleigh lengths in air has been demonstrated

with similar harmonic generation properties [82].

Precise knowledge of nonlinear refractive index n2 of air provides a fundamental

basis for the understanding of high-intensity light-matter interactions such as filamen-

tation. Benefit from the recent progress in the development of high-power CO2 laser,

the measurement of n2 value of air has been performed at 10 µm using four-wave

mixing of two rotational lines from a 200 ps CO2 laser pulse [83,84]. The long pulse

width and the time-integrated measurement prevented the separation of the electronic

and rotational contributions. Based on an ultrafast fs DFG source, time-resolved

measurement of the nonlinear response of major air constituents is enabled at elevated

pressure in the LWIR range via supercontinuum spectral interferometry [85]. The elec-

tronic nonlinear indices are measured in this study, whereas the rotational responses

are shadowed due to the collisional dephasing at high pressure. Such problem may be

alleviated via the development of high-power ultrafast LWIR sources.

The direct impetus for this dissertation is the intent to support the new regimes
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of laser-pulse filamentation and to explore the air nonlinearities in the LWIR spectral

range via more compact high-power solid-state sources of ultrashort LWIR pulses.

As has been discussed in Section 1.3, much effort has been committed to source

development in the MWIR range, which has enabled peak powers of up to several

hundreds of GW. Because of the decreasing conversion efficiency when extending the

operation to the LWIR range due to the Manley–Rowe relations, higher-energy MIR

pump lasers are required. The central objective of this dissertation research is to

explore the potential for generating few-cycle TW pulses in the LWIR regime via

OPCPA pumped by high-energy, nanosecond 2.75-µm pulses that can be produced

by Er:ZBLAN fiber lasers employing the Coherent Pulse Stacking (CPS) technique.

A small-scale prototype will be developed using the custom-built surrogate pump

and seed sources for a proof-of-concept demonstration. The demonstration aims to

reach the peak power of several tens of GW at a central wavelength of 10 µm. The

developed scheme should be scalable to a high peak and average power when using a

high-energy, coherently combined Er:ZBLAN fiber pump laser.
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CHAPTER 2

Optical Parametric Interactions

Optical frequency downconversion is one of the second-order nonlinear optical wave

interaction processes (three-wave interactions) that occurs in noncentrosymmetric

crystals. These nonlinear processes were not revealed until the demonstration of the

first working laser in the early 1960s, such that sufficient intense optical field was avail-

able for the modification of the optical properties of a material system [86]. The first

experimentally observed nonlinear optical effect was the second-harmonic generation

in a quartz crystal driven by a ruby laser, which is often viewed as the beginning of

the new era of nonlinear optics [87]. Other second-order nonlinear processes such as

Sum-Frequency Generation (SFG), DFG, and Optical Rectification (OR) have also

been investigated and analyzed since, and their technological significance mainly lies

in the generation of coherent radiation at new frequencies from existing lasers [88].

Although the third-order nonlinear phenomena such as self-focusing and Self-Phase

Modulation (SFM) are also important processes in ultrafast optics, the second-order

nonlinear processes present the primary focus of this chapter.

The nonlinear response of a medium is described by the constitutive equations,

and the nonlinear modification of the optical fields within the medium is governed by

Maxwell’s equations [89]. While the full microscopic expression of nonlinear optical

susceptibilities via quantum mechanics is available, classical interpretation through

an anharmonic oscillator is often sufficient and more illustrative [86,88–90]. In this
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chapter, the classical treatment of parametric interactions is presented with the plane

wave assumption in an ideal medium. The phase-matching techniques that enable

efficient frequency conversion are described. Other relevant effects, including linear

absorption, crystal damage, birefringent walk-off, and group velocity mismatch, are

also introduced. The SI system of units is used in the following description.

2.1 Wave propagation in nonlinear media

Derived from Maxwell’s equations and constitutive relations assuming homogeneous

media with no free charge, no current density, and no macroscopic magnetization, the

general form of the wave equation that describes the propagation of the vector electric

field wave Ẽ in a medium can be written as

∇2Ẽ(r, t)− 1

c2

∂2Ẽ(r, t)

∂2t
= µ0

∂2P̃ (r, t)

∂2t
, (2.1)

where µ0 is the permeability of free space and c is the speed of light. The electric

polarization in dielectric media P̃ can be expressed as a power series in the electric

field:

P̃ (r, t) = P̃ L(r, t) + P̃NL(r, t)

= ε0

∫ ∞
−∞
χ(1)(r− r′, t− t′) · Ẽ(r′, t′)dr′dt′

+ ε0

∫ ∞
−∞

∫ ∞
−∞
χ(2)(r− r′, t− t′; r− r′′, t− t′′) : Ẽ(r′, t′)Ẽ(r′′, t′′)dr′dt′dr′′dt′′

+ ε0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
χ(3)(r− r′, t− t′; r− r′′, t− t′′; r− r′′′, t− t′′′) ... Ẽ(r′, t′)

× Ẽ(r′′, t′′)Ẽ(r′′′, t′′′)dr′dt′dr′′dt′′dr′′′dt′′′

+ · · · ,

(2.2)
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where ε0 is the permittivity of free space, χ(1) is the linear susceptibility tensor that

contributes to the linear polarization P̃ L, and χ(2) and χ(3) are the second and third

order susceptibility tensors, respectively, that contribute to major part of the nonlinear

polarization P̃NL. In nonresonant situations, |P (n+1)/P (n)| ∼ |E/Eat| generally, where

P (n) is the strength of nth order polarization and Eat is the characteristic atomic

electric field strength of ∼ 5.14 × 1011 V/cm. For nonlinear interactions in the

nanosecond regime, third and higher order effects can usually be neglected at typical

intensities below 1 GW/cm2 (E < 8.7× 107 V/cm). With further assumptions of local

and instantaneous response, Equation (2.2) can be simplified to

P̃ (r, t) = ε0χ
(1) · Ẽ(r, t) + ε0χ

(2) : Ẽ(r, t)Ẽ(r, t), (2.3)

where

χ(1)(r− r′, t− t′) = χ(1)δ(r− r′)δ(t− t′), (2.4a)

χ(2)(r− r′, t− t′; r− r′′, t− t′′) = χ(2)δ(r− r′)δ(t− t′)δ(r− r′′)δ(t− t′′). (2.4b)

Therefore, Equation (2.1) can be rewritten as

∇2Ẽ(r, t)− n2

c2

∂2Ẽ(r, t)

∂2t
= µ0

∂2P̃ (2)(r, t)

∂2t
, (2.5)

where refractive index n =
√

1 + χ(1) for isotropic media or n =

√
1 + χ

(1)
ii (i = x, y, z)

as eigen-refractive indices for anisotropic media. The equation is recognized as

inhomogeneous wave equation in which the time-varying nonlinear polarization acts

as a source term for driving the electromagnetic field.

The general form of the electric field of the optical wave and polarization field of

material can be written as

Ẽ(r, t) = E(r)e−iωt + c.c., (2.6a)
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P̃ (2)(r, t) = P (2)(r)e−iωt + c.c., (2.6b)

where ω is the circular frequency of the rapidly oscillating field. E and P (2) are

the slowly varying complex field amplitudes, which can be treated as quasi-cw since

the electronic and ionic response of the medium is much faster than the rise time of

pulses in the nanosecond regime. Inserting them into Equation (2.5) results in the

time-independent wave equation:

∇2E(r) +
ω2n2(ω)

c2
E(r) = −µ0ω

2P (2)(r). (2.7)

2.2 Coupled wave equations for difference-frequency

generation

The total field in dielectric medium can be considered to be a superposition of

monochromatic/quasi-monochromatic waves, which can be written as

Ẽ(r, t) =
∑
n

En(r)e−iωnt + c.c., (2.8a)

where En is the nth component of the wave with a carrier frequency ωn. The nonlinear

polarization can be decomposed in the same way when it presents only a small

perturbation to the total polarization. The nonlinear polarization can be written as

P̃ (2)(r, t) =
∑
n

P (2)
n (r)e−iωnt + c.c., (2.8b)

where P
(2)
n is the nth component of the nonlinear polarization oscillating at ωn.

Assuming infinite plane waves propagating collinearly along z-axis in the laboratory

coordinate system, Equation (2.7) can be simplified and decomposed into Fourier
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components:

d2En(z)

dz2
+
ω2
nn

2(ωn)

c2
En(z) = −µ0ω

2
nP

(2)
n (z). (2.9)

The electric field amplitude can be written as

En(z) = ênAn(z)eiknz + c.c., (2.10)

where ê is a unit vector of the wave polarization, A is the field amplitude, and k is

the wavenumber. Substituting into Equation (2.9) and applying the Slowly-Varying

Envelope Approximation (SVEA) (|d2A/dz2| << |k dA/dz|), the wave equations take

a form of

2ikn
dAn
dz

= −µ0ω
2
nP

(2)
n e−iknz. (2.11)

In the Fourier domain, the second-order polarization induced in the presence of

two interacting fields at ωl and ωm can be expressed as

P (2) = ε0χ
(2)
eff,SHGA

2
l e

2iklz + c.c.

+ ε0χ
(2)
eff,SHGA

2
me

2ikmz + c.c.

+ 2ε0χ
(2)
eff,SFGAlAme

i(kl+km)z + c.c.

+ 2ε0χ
(2)
eff,DFGAlA

∗
me

i(kl−km)z + c.c.

+ 2ε0χ
(2)
eff,OR(AlA

∗
l + AmA

∗
m),

(2.12)

where the first two terms represent the Second-Harmonic Generation (SHG), and the

subsequent terms represent SFG, DFG, and OR, respectively. The DFG component

at frequency ωn = ωl − ωm can then be obtained as

P (2)
n = 4ε0d

(2)
effAlA

∗
me

i(kl−km)z, (2.13)
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where the effective value of d-coefficient of DFG is

d
(2)
eff =

1

2
χ

(2)
eff,DFG =

1

2
ên · χ(2)(ωn;ωl,−ωm) : êlê

∗
m. (2.14)

Substituting Equation (2.13) and (2.14) into Equation (2.11), the wave equation can

be rewritten as

dAn
dz

= i
2ωnd

(2)
eff

nnc
AlA

∗
me

i∆kz, (2.15)

where ∆k = kl − km − kn is the wavevector mismatch. This equation is also known

as the coupled-amplitude wave equation. The change of the amplitude of ωn wave

depends on the coupling of the ωl and ωm waves through the nonlinear polarization

with a coupling coefficient of deff . Analogous coupled wave equations for ωl and ωm

waves can also be derived. Note that coupling coefficients remain the same as deff by

using full permutation symmetry, assuming the medium is lossless. Usually, the ωl,

ωm, and ωn waves in DFG processes are referred to as the pump (ωp), signal (ωs), and

idler (ωi) waves. The complete set of coupled wave equations for DFG process is then

dAs
dz

= i
2ωsdeff
nsc

ApA
∗
i e
i∆kz (2.16a)

dAi
dz

= i
2ωideff
nic

ApA
∗
se
i∆kz (2.16b)

dAp
dz

= i
2ωpdeff
npc

AiAse
−i∆kz, (2.16c)

where ∆k = kp − ks − ki. The Manley-Rowe relation can be readily derived from the

coupled wave equations as

d

dz

(
Is
ωs

)
=

d

dz

(
Ii
ωi

)
= − d

dz

(
Ip
ωp

)
, (2.17)

where I = 2nε0cAA
∗ is the wave intensity, and the quantity I/ω is proportional to

the photons per unit area per unit time. The relation indicates that the creation rate
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of the signal and idler photons is equal to the destruction rate of the pump photons.

Alternatively, a pump photon is annihilated and splits into a signal and an idler photon

in the DFG processes. This is consistent with quantum-mechanical interpretation.

Assuming negligible pump depletion (Ap = const), the analytical solution of

coupled wave equations has the form [86]

As(z) =

[
As(0)

(
cosh gz − i∆k

2g
sinh gz

)
+
κs
g
A∗i (0) sinh gz

]
ei∆kz/2, (2.18a)

Ai(z) =

[
Ai(0)

(
cosh gz − i∆k

2g
sinh gz

)
+
κi
g
A∗s(0) sinh gz

]
ei∆kz/2, (2.18b)

where

g = [κsκ
∗
i − (∆k/2)2]1/2, (2.19a)

κs,i = i
2ωs,ideff
ns,ic

Ap. (2.19b)

In the absence of idler wave (Ai(0) = 0), the solution reduces to

As(z) = As(0)

(
cosh gz − i∆k

2g
sinh gz

)
ei∆kz/2, (2.20a)

Ai(z) =
κi
g
A∗s(0) sinh gz ei∆kz/2. (2.20b)

The axial evolution of |As| and |Ai| is shown qualitatively in Figure 2.1 with different

degree of wavevector mismatch. In the case of ∆k = 0, both the signal and idler

fields experience monotonic increase, and their growth approaches egz asymptotically

for large z. The field growth decreases as ∆k increases, and oscillation occurs for

∆k > 2κsκ
∗
i . It is clear that phase matching is important for efficient DFG, which is

discussed in greater detail in Section 2.3. It is interesting to note that the solution of

As retains its initial phase in phase-matched interactions, and the signal field exhibits

high-fidelity amplification. However, the generated idler wave Ai acquires a phase

that depends both on the pump and the signal, such that the idler phase aberration
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is unavoidable.

|As|, Δk=0

|As|, Δk=2κsκi
*

|As|, Δk=5κsκi
*

|Ai|, Δk=0

|Ai|, Δk=2κsκi
*

|Ai|, Δk=5κsκi
*

z

|A
|

Figure 2.1: |As| and |Ai| as a function of position in a nonlinear medium for DFG
with different degrees of phase mismatch ∆k.

2.3 Phase matching

The phase mismatch factor sinc2(∆kz/2) governs the efficiency of the frequency

conversion process. As ∆kz increases, the efficiency decreases with a certain degree of

oscillation. The coherence length is defined as

Lcoh =
π

∆k
(2.21)

and represents the distance over which the output waves are in phase with the

polarization, such that the pump energy can be transferred to the signal and idler. As

the waves propagate, the phase relationship changes due to unequal phase velocities.

The energy transfer becomes less efficient or even reverses, such that the energy flows

back from the signal and idler waves to the pump wave as their relative phase changes.

In the absence of phase matching, the energy flows back and forth with a period

of 2Lcoh. An example of such a case can be seen qualitatively in Figure 2.1. For

efficient frequency conversion to occur, it is important that the perfect phase-matching
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condition (∆k = 0) is satisfied. The phase-matching condition can be written as

kp − ks = ki. (2.22)

Since the photon momentum p = ~k, Equation (2.22) indicates conservation of photon

momentum. By using k = nω/c, an equivalent form of the above equation can also be

expressed as

np − ns = (ni − ns)
ωi
ωp
. (2.23)

This condition cannot be satisfied in normally dispersive materials, since np > ns > ni

assuming ωp > ωs > ωi. To overcome this limitation, birefringence can be used to

compensate for chromatic dispersion. For crystals that do not display birefringence

(i.e. crystals belong to cubic crystal systems), phase matching cannot be achieved,

and the QPM technique can be used instead.

In anisotropic media, there exist two orthogonally, linearly polarized eigenwaves

that propagate with their polarization unchanged in a given direction. The two

eigenwaves are called ordinary and extraordinary waves and have well-defined eigen-

phase-velocities or, equivalently, eigenindices of refraction. In the case of uniaxial

crystals (e.g. GaSe), the ordinary wave sees a constant index of refraction no that is

independent of its propagation direction, whereas the normal index ne(θ) seen by the

extraordinary wave is angularly dependent and is in the range between no for θ = 0◦

and nE for θ = 90◦, with θ being the angle between the propagation direction and the

principal optical axis of the crystal. The principal optical axis is commonly designated

as the Z-axis in an orthogonal crystallo-physical frame, which is different than the

laboratory frame. The index of the extraordinary wave is

1

n2
e(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
E

. (2.24)
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For no < ne, the crystal is called positive uniaxial. The crystal is negative uniaxial

when ne < no. In order to achieve phase matching using birefringent crystals, the

polarizations of the three waves in DFG, and thus their refractive indices, must be

carefully controlled. The pump wave is usually polarized in the direction that gives

the smaller one between the two normal indices. The signal and idler waves can be

polarized in the same direction with the larger index (i.e. oo-e for positive uniaxial

or ee-o for negative uniaxial), or polarized orthogonally (i.e. eo-o/oe-o for positive

uniaxial, eo-e/oe-e for negative uniaxial). The formal case is referred to as type-I phase

matching, while the latter case is called type-II phase matching. The phase-matching

condition can be implemented by adjusting the orientation angle of the crystal in

the Critical Phase-Matching (CPM) method, so that the waves can propagate at a

phase-matching angle θpm in the crystal. Mathematically, θpm can be determined from

Equation (2.22). As an example, the explicit formula for type-II (oe-e) phase matching

is [88]

no,p√
1 + (

n2
o,p

n2
e,p
− 1) sin2 θpm

− (λp/λi)no,i√
1 +

(
n2
o,i

n2
e,i
− 1
)

sin2 θpm

= (λp/λs)no,s. (2.25)

Experimentally, θpm can be found by maximizing the output signal and idler wave

energy. However, in the CPM method, the Poynting walk-off effect is present for

extraordinary waves propagating at angle other than 0◦ and 90◦, which limits the

conversion efficiency. To circumvent this effect, it is sometimes possible to achieve

the phase-matching condition at θ = 90◦ by adjusting the temperature of the crystal,

in which the amount of birefringence is strongly temperature-dependent. This kind

of method is known as Noncritical Phase Matching (NCPM). Due to the narrow

temperature bandwidth, the application of NCPM at high average powers is limited.

In the case of biaxial crystals (e.g. KTA), the phase-matching direction depends on

both the polar angle θ with respect to Z-axis and the azimuthal angle φ with respect
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to X-axis in the crystallo-physical frame. The two eigen-indices are determined by

solving the Fresnel equation:

sin2 θ cos2 φ

n−2 − n−2
X

+
sin2 θ sin2 φ

n−2 − n−2
Y

+
cos2 θ

n−2 − n−2
Z

= 0. (2.26)

The phase-matching angle in a biaxial crystal can then be determined accordingly.

For example, the phase-matching angle for type-II (eo-o) interaction propagating in

the principal plane of XZ can be expressed as [88]

tan2 θpm =
1− T
T − Z

, (2.27)

where

T =
A2

(C −B)2
, Z =

A2

D2
, (2.28a)

A =
nX,i
λi

, B =
nY,s
λs

, C =
nY,p
λp

, F =
nZ,i
λi

. (2.28b)

For an isotropic medium, QPM permits net field growth in DFG by changing

the sign of nonlinear coefficient once every coherence length, such that the nonlinear

polarization wave is shifted by π each coherence length. QPM allows the use of

the larger diagonal terms of nonlinear susceptibility and thus presents higher deff

comparing to birefringent phase matching. In practice, QPM is realized by electric

field poling of ferroelectric materials (e.g. PPLN), whereas in non-ferroelectric materi-

als epitaxial growth of Orientation-Patterned (OP) structures with lithographically

controlled patterns can be used (e.g. OP-GaAs). The phase-matching condition and

the nonlinear coefficient for QPM through the first order grating is

ks + ki − kP = π/Lc, (2.29a)

dQ = (2/π)deff . (2.29b)
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2.4 Optical parametric amplification and oscilla-

tion

Since the signal wave is amplified in the DFG process, this type of nonlinear interaction

is also known as OPA. The signal gain can be derived from Equation (2.20) as

G = 1 + κsκ
∗
i

sinh2 gL

g2
, (2.30)

where L is the crystal length. In the limit of small gain (∆k/2�
√
κsκ∗i ), the equation

reduces to

G = 1 + κsκ
∗
iL

2sinc2(∆kL/2). (2.31)

For perfect phase matching, the small signal gain further simplified as

G ' κsκ
∗
iL

2. (2.32)

In the limit of high gain (∆k/2�
√
κsκ∗i ), Equation (2.30) reduces to

G ' 1

4
e2gL. (2.33)

The general solution with pump depletion also exists as a Jacobi elliptic sine func-

tion [91,92], and can be written as

G = 1 +
λp
λs

Ip
Is

[
1− sn2

(
N0gL−

K(N0)√
N0

, N0

)]
sinc2(∆kL/2), (2.34)

where K is the complete elliptic integral of the first kind, and N0 takes the form of

N0 =

(
1 +

λs
λp

Is
Ip

)−1

. (2.35)
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By providing positive feedback to the signal via a resonator, oscillation occurs when

the parametric gain exceeds its optical loss, which is known as the OPO. The OPO

produces coherent radiation similar to a laser. Unlike the laser, however, the signal

and idler waves are only amplified when traveling in the same direction as the pump

wave, while in the reverse direction, the interacting waves are not phase-matched.

The OPOs can be classified into two types. If the end mirrors of the OPO are highly

reflecting at both signal and idler waves, the OPO is a doubly resonant OPO. If only

one of the waves is circulating in the resonator, the device is a singly resonant OPO.

The threshold condition for OPO is

As,i(0) = As,i(L)(1− ls,i), (2.36)

where ls,i are the fractional amplitude loss per pass for signal and idler wave. The

fractional loss can be written as

ls,i = 1−Rs,ie
−αs,iL, (2.37)

where Rs,i and αs,i are the mirror reflectivities and the linear absorption coefficient of

the crystal at the signal and idler frequencies, respectively. The minimum oscillation

threshold (when ∆k = 0) of an OPO is

cosh gL = 1 +
lsli

2− ls − li
. (2.38)

Taking the low-loss limit for both signal and idler wave (ls,i � 1) for doubly resonant

OPO, the threshold condition can be reduced to

(gL)2
th = lsli. (2.39)
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In the case of singly resonant OPO, the condition becomes

(gL)2
th = 2ls, (2.40)

assuming no feedback for the idler (li = 1). The oscillation threshold for the doubly

resonant OPO is smaller than that of the singly resonant OPO by a factor of
√

2/li.

However, doubly resonant OPOs experience mode hops due to the small cavity length

change caused by temperature fluctuation or acoustic vibrations. Singly resonant OPO

is generally favored for pulse operation since it exhibits better stability in terms of

output power and operating frequency. The threshold pump power for singly resonant

OPO is [88]

Pth,p =
ε0n

2
snpcλ

2
pAbls

π2d2
effL

2(1− δ2)
, (2.41)

where 0 ≤ δ ≤ 1 is the degeneracy factor, with δ = 0 corresponding to the degenerate

point, and Ab is the beam area. The conversion efficiency η can be expressed as [88]

η = sin2 Γ ,
sin2 Γ

Γ 2
=

1

N
,N =

Pp

Pth,p

, (2.42)

where Pp is the input pump power.

For a pulsed OPO, the finite rise time exists for amplifying the quantum noise (i.e.

spontaneous parametric fluorescence) to a steady-state signal power, since multiple

round-trips are required to reach the oscillation threshold. A simple expression of

such build-up time assuming step input pump is [88]

τb =
lc/c

ls(N − 1)
, (2.43)

where lc is the cavity length.
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2.5 Other design considerations

2.5.1 Absorption

Linear absorption is an important factor that limits the signal gain and the conversion

efficiency of parametric processes. This is especially true for parametric oscillation

since multiple passes are needed through the crystal. Additionally, TPA presents

another detrimental loss mechanism, especially in the MIR regime, since the added

energy of two pump photons (∼ 2.5 eV at 1 µm) can easily exceed the small bandgap

of semiconductors that are usually as nonlinear media. Due to the absorption, heating

might detune the parametric processes from perfect phase matching and thus limit

the operation in conditions of high average power. Absorption can be accounted for as

dI

dz
= −αI − βI2, (2.44)

where α and β are the linear and the TPA absorption coefficients, respectively. The

linear absorption effect may include scattering and Fresnel reflection losses. Scattering

depends on the crystal quality, while the reflection losses can be alleviated by the use

of AR coatings. To reduce the TPA, pump lasers with longer wavelengths are highly

valuable.

2.5.2 Laser-induced damage

Since high-intensity laser pulses are used in parametric interactions, laser-induced

damage is another limiting factor that constrains the maximum pump intensity applied

and thus the available parametric gain. For pulses longer than a few tens of picoseconds,

the damage is generally induced by heat deposition, resulting in the melting and

boiling of the dielectric material [93]. In this regime, the damage threshold fluence has

a τ 1/2 dependence on the pulse duration τ . For shorter pulses, the damage mechanism
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transitions to an ablative regime dominated by collisional and multiphoton ionization

and plasma formation [93, 94]. The damage threshold fluence in this regime continues

to decrease with decreasing τ , but departs from the τ 1/2 dependence at a slower rate.

Such pulse duration dependence of damage threshold can be theoretically modeled

in a good quantitative agreement with the experimental results obtained using large

bandgap materials with 0.5 and 1 µm lasers [93,94].

In the short-pulse regime, experimental and theoretical studies of the wavelength

dependence of the laser-induced damage threshold have also been performed in the

near-ultraviolet to near-infrared spectral range [95] and in the MIR range [96] using

materials with a wide range of bandgaps. In the near-ultraviolet to near-infrared

region, the damage threshold decreases generally as the laser wavelength/bandgap

decreases with no explicit expressions available for the wavelength and bandgap

scaling [95]. In the MIR region, the breakdown process is significantly different since

the multiphoton ionization is strongly suppressed, and tunnel ionization alone is

sufficient to induce breakdown. For wide-bandgap materials, the damage threshold

decreases with the increase of laser wavelength, whereas it is independent of wavelength

for narrow-bandgap materials [96]. In addition to such systematic parametric studies,

damage threshold values have been reported in many experiments under various laser

conditions and in various crystals, which are typically very different from each other.

Even with similar experimental conditions, the reported values vary significantly.

This is largely due to the differences in damage test procedures, damage criteria and

detection methods, laser stability, and crystal quality [95].
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2.5.3 Poynting walk-off

As discussed in Section 2.3, Poynting walk-off (spatial walk-off) is a limiting effect in

CPM. The Poynting vector is defined as

S = E ×H (2.45)

and represents the directional energy flux of an electromagnetic field. It will drift

away from the wave vector k of an extraordinary wave propagating at some angle θ

with respect to the optic axis in anisotropic media. The walk-off angle ρ between S

and k in a uniaxial crystal can be expressed as

tan ρ =
sin θ cos θ(n2

o − n2
E)

n2
E cos2 θ + n2

o sin2 θ
. (2.46)

For positive uniaxial crystals, S lies between k and the optical axis. For negative

uniaxial crystals, k lies between S and the optical axis. The Poynting walk-off effect

reduces spatial overlap of the interacting beams, limits the interaction length of

parametric processes, and thus poses constraints on the conversion efficiency. The

profile of the product beam may be broadened, and the beam quality may be reduced.

The walk-off in CPM becomes less important when using larger diameter beams. In

NCPM, where θ = 90◦, the walk-off angle vanishes. In QPM, walk-off is eliminated

since all interacting waves propagate with the same polarization.

2.5.4 Beam diffraction

Beam diffraction cannot be ignored when beam sizes get smaller. Within the paraxial

approximation, a diverging/converging beam can be thought of as a superposition

of plane waves traveling with slightly different spatial angular frequencies k. The

phase-matching condition down breaks when the beam divergence angle is comparable
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to or even larger than the angular bandwidth of the parametric processes, such that

the conversion efficiency drops as a result. The angular bandwidth can be given as

∆θ =
2∆k1/2

γ
, (2.47)

where γ is the coefficient of first order Taylor expansion of ∆k. As an example, γ for

type-II phase matching is [88]

γoe−o = π
n3
e,i

λi

n2
o,i − n2

e,i

n2
o,in

2
e,i

sin 2θpm, (2.48a)

γoe−e = π

(
n3
e,i

λi

n2
e,i − n2

o,i

n2
e,in

2
o,i

−
n3
e,p

λp

n2
e,p − n2

o,p

n2
e,pn

2
o,p

)
sin 2θpm. (2.48b)

2.5.5 Group velocity mismatch

Pulse propagation effects become important in parametric interactions involving

ultrashort pulses propagating at different group velocities. Time-dependent coupled

wave equations are needed to describe such non-stationary pulse propagation and

interactions, as the quasi-cw approximation is no longer appropriate. However, solving

such equations analytically is challenging and nontrivial, even with assumptions

such as the non-depleted pump. The pulse-splitting length and the phase-matching

bandwidth are introduced instead as two important concepts that help to understand

the broadband parametric processes [7, 97, 98]. The pulse-splitting length accounts for

the temporal walk-off of the signal/idler pulse from the pump pulse and is defined as

ljp =
τ

δjp
, j = s, i (2.49)

where δjp = 1/vg,j − 1/vg,p is the Group-Velocity Mismatch (GVM) between the

signal/idler and the pump and vg = c/(n − λdn/dλ) is the group velocity of the

interacting waves. In the case of δspδip > 0 when the signal/idler pulses walk away
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from the pump in the same direction, the pulse-splitting length represents the maximum

interaction length, and the conversion efficiency is severely constrained. In the opposite

case, when δspδip < 0, the interaction can well exceed the pulse-splitting length, and

the energy extraction from the pump becomes significantly more efficient.

In the large gain limit, the wave vector mismatch that results in a gain of half of

its maximum value (when ∆k = 0) is given by

∆k1/2 ' ±2(ln 2)1/2(
√
κsκ∗i /L)1/2. (2.50)

The phase-matching bandwidth can then be obtained using the first order expansion

of the time-dependent phase mismatch as

∆ν =
∆k1/2

π

1

|δsi|
, (2.51)

where δsi = 1/vg,s − 1/vg,i is the GVM between the signal and the idler. The gain

bandwidth is reduced significantly when large GVM exists. It is clear that the

broadest gain bandwidth is achieved when signal and idler propagate with matched

group velocity, or in a special case when parametric devices operate at degeneracy

in type-I phase matching. When vg,s = vg,i, Equation (2.51) loses validity and a

second-order expansion of ∆k involving Group-Velocity Dispersion (GVD) of the

signal and idler pulses must be used to determine the gain bandwidth.

It has been shown that GVM can be neglected if the pulse duration is approximately

three times the group time difference in the crystal [99]. Generally, GVM effects start

to play a role for pulse durations less than ∼1 ps in the MIR region. Higher-order

effects such as GVD are not revealed until the pulse duration is less than ∼100 fs [7].
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2.5.6 Back conversion

As discussed in Section 2.3, back conversion occurs at Lc when ∆k exceeds a certain

value. In the case of perfect phase matching, back conversion can also occur when

the pump wave is depleted during the parametric interactions. It has been found

theoretically that there is a nonlinear phase jump of π associated with the depletion

of one interacting wave, such that the energy flow reverses periodically [100]. Back

conversion sets an upper limit to the interaction length of the parametric process and

thus limits its conversion efficiency. Additionally, it can distort beam quality and

spectral gain profile, and ultimately limit the performance of parametric devices. To

suppress the backconversion and improve the conversion efficiency, it is helpful for

the idler wave to be consumed by absorber [101], coupled out between parametric

stages [102], or subjected to cascaded parametric processes [103,104]. In most situa-

tions, it is desirable to choose an optimum crystal length that is equal to the distance

in the crystal where the back conversion begins to occur. By careful design, a certain

degree of back conversion could be beneficial. It has been shown that a trade-off

between spectral bandwidth/beam quality and conversion efficiency can be made to

provide an extra control [105,106].
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CHAPTER 3

Modeling of LWIR Optical Parametric

Chirped-pulse Amplification

Modeling is the crucial first step in the development and optimization of OPCPA.

Generally, modeling involves numerically solving the standard differential coupled wave

equations for three-wave mixing via the split-step Fourier approach. To date, only a

few simulations have been devoted to answering the question of whether and how the

OPCPA technique could be applied to high-peak-power few-cycle pulse generation in

the LWIR spectral range [107,108]. Voronin et al. [107] analyzed broadband LWIR

OPCPA in ZGP/GaSe/AGSe crystals in various collinear phase-matching geometries.

These OPCPA schemes have been designed to be driven at ∼2 µm with energies of

up to ∼0.5 J in 100 ps pulse duration. Such high pulse energies are only attainable

from nanosecond Q-switched Ho:YLF/Ho:YAG lasers. Simulations show that OPCPA

could amplify 80-pJ seed to tens of mJ-level within three stages at relatively low pump

intensity of <240 MW/cm2. Specifically, the simulation shows that up to 113 GW of

peak power in 255 fs transform-limited pulse could be achieved at a central wavelength

of 10.3 µm from the GaSe (oo-e) OPCPA, whereas the AGSe (oo-e/eo-e) OPCPA could

produce a maximum of 77 GW/80 GW in 260 fs transform-limited pulses but at a

longer central wavelength of 14.3 µm/16.0 µm. Due to the limited transmission window

and narrow gain bandwidth in the LWIR range, ZGP OPCPA is only evaluated at a

central wavelength of .8 µm with up to 140 GW in 260 fs transform-limited pulse. Yin
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et al. [108] have shown that dual-chirped OPA (a variant of OPCPA pumped by chirped

pulses) in ZGP is also a promising approach for amplification in the 4.5–10.5 µm

range, supporting TW sub-cycle pulse generation. The proposed scheme is designed

to use a 10-ps negatively chirped pump pulse at a central wavelength of 2.4 µm from

a multi-pass Cr:ZnSe/ZnS CPA. Compared to OPCPA in ZGP pumped by 2-µm

10-ps Ho:YLF laser under the same conditions (a pump intensity of 20 GW/cm2, a

pump-to-signal ratio of 104, a crystal length of ∼0.7 mm, etc.), dual-chirped OPA

exhibits extended gain bandwidth at shorter wavelengths and, simultaneously, higher

conversion efficiency due to the favorable combination of pump and signal wavelengths

and tailored phase matching. Additionally, the gain bandwidth and the conversion

efficiency of dual-chirped OPA show weak dependence on the pump-to-signal energy

ratio and pump intensity, whereas higher seed energy and pump intensity are more

favored in OPCPA.

In this chapter, we systematically consider non-oxide crystals by analyzing different

phase-matching geometries, demonstrating the feasibility of the proposed 2.75-µm

driven LWIR OPCPA in individual nonlinear materials via numerical simulations

based on coupled wave equations.

3.1 Optical parametric chirped-pulse amplification

(OPCPA)

Direct amplification of ultrashort pulses is fundamentally limited by nonlinear effects

and even catastrophic optical damage governed by the nonlinear component of re-

fractive index n2 due to the optical Kerr effect. CPA in laser amplifiers has been

widely adopted in high-peak-power lasers to circumvent the detrimental effects in the

amplification of ultrashort pulses in solid-state media. In CPA, ultrashort seed pulses

are chirped and temporally stretched to much longer durations by introducing large,
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well-characterized dispersion via a stretcher before passing through amplifiers. The

amplified pulses are then compressed via a compressor by applying reverse dispersion

that matches the amount introduced by the stretcher and may also compensate for the

dispersion introduced by the amplifier. The conjugate pair of stretcher and compressor

is usually implemented using diffraction gratings for large (∼103-104), high-fidelity

stretching ratios in high-peak-power CPA systems. OPCPA applies the CPA scheme

to OPAs based on nonlinear parametric processes instead of laser amplifiers, with

an intent to effectively transfer the long-pulse pump energy to the stretched signal.

This is necessary since OPA is a nearly instantaneous process. Figure 3.1 illustrates

the principle of the OPCPA technique. In 1992, the first experimental demonstration

of OPCPA was accomplished by Dubietis et al. in a BBO crystal with ∼0.9 GW of

output power [109]. The first TW-level OPCPA was built by Ross et al. in 2000 using

KH2PO4 (KDP) as the output crystal [110]. With the discovery and application of

ultra-broadband KD2PO4 (DKDP) crystal, TW-level OPCPA was demonstrated in the

following decade [111,112]. Nowadays, PW-class hybrid/all-OPCPA platforms have

been constructed worldwide to support diverse applications in the near-infrared region.

EW-scale facilities have been proposed that employ coherent pulse combination [3].

Progress is also encouraging in the MIR region, but the LWIR OPCPA sources are

still well below the TW peak power level (see Section 1.3).

When compared to CPA based on laser amplifiers, advantages of OPCPA include

high single-pass parametric gain, ultrabroad gain bandwidth, reduced nonlinear phase

accumulation, weak thermal load, wide spectral tunability, and no amplified spon-

taneous emission except for much weaker parametric fluorescence. If large-aperture

nonlinear media are available, OPCPA allows scaling of ultrashort pulses to a high

peak and average power with high prepulse contrast. Due to the nature of the OPA

processes, a good spatial and temporal overlap between the pump and the signal

are needed for efficient amplification of the signal with high fidelity, in addition
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Figure 3.1: Principle of optical parametric chirped-pulse amplification (OPCPA).
Adapted from [113].

to the phase-matching requirement. Therefore, OPCPA demands careful analysis

of phase-matching conditions, high pump beam quality, and precise timing. The

phase-matching geometries will be analyzed in the following sections, while the other

considerations will be addressed in the next chapter.

3.2 Nonlinear non-oxide crystal

Nonlinear optical crystal is a key component of optical parametric devices. To meet

the desired performance of the LWIR OPCPA, transparency, nonlinearity, damage

threshold, phase-matching ability, and other crystal characteristics are important

engineering considerations. Traditional oxide crystals are not transparent beyond

4–5 µm due to the onset of multiphoton absorption; therefore, non-oxide materials

have to be used for frequency conversion to the LWIR spectral range [7]. As stated in

Section 1.3, because of the detrimental TPA, longer wavelength pumping is usually

required for non-oxide nonlinear crystals. Generally, since the non-oxide crystals have

a smaller bandgap than oxide crystals, most of the non-oxide crystals also have a

higher index of refraction and nonlinearity.
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For effective comparison of performance between different nonlinear crystals, nonlin-

ear Figure of Merit (FOM), defined as d2
eff/n

3, is commonly adopted instead of simply

using deff . This is because it better represents the parametric gain coefficient (
√
κsκ∗i )

that eventually determines the conversion efficiency of the parametric processes [7].

Figure 3.2 shows the FOM as a function of transparency range for various non-oxide

crystals with birefringent/quasi-phase-matching capability [7, 114]. It should be noted

that only ∼ 1/3 of the listed materials are commercially available.
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Figure 3.2: FOM of non-oxide nonlinear crystals. Adapted from [7,114].

Among the most widely used birefringent non-oxide crystals, ZGP has the highest

FOM, but also has the upper cutoff wavelength of ∼8.5 µm. GaSe has large FOM and

is not constrained by transparency, but it is soft and cleaving, and it cannot be polished

and coated at arbitrary angles – it is only available as the z-cut. Fortunately, due to

its large birefringence, most of the interactions can be realized by using z-cut since the

internal phase-matching angles in GaSe are small. AGSe and AGS have modest FOM

and are transparent beyond the LWIR window. However, they have notably poor
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thermal conductivity and anisotropic thermal expansion. HGS exhibits intermediate

FOM and a transparency window comparable to AGSe and AGS; however, it is difficult

to grow in large size for energy scaling. The LGS family is newly developed and

allows LWIR operation but has the lowest FOM among all of the aforementioned

crystals. LGS is valuable because of its compatibility with the 0.8/1-µm pumping.

Isotropic semiconductors with cubic structure, such as GaAs and GaP, have very

large nonlinear coefficients, wide transparency, good thermal conductivity, high purity,

and low loss. These materials cannot be birefringently phase-matched but can be

quasi-phase-matched using orientation-patterning techniques. Compared to OP-GaP,

OP-GaAs is superior in both FOM and transparency. OP-GaP is not considered

for the same reason as ZGP since they have a similar cutoff at longer wavelengths.

Therefore, GaSe, AGSe, and OP-GaAs are the three crystals preliminarily selected,

primarily based on their FOM>∼50 and extended transparency in the LWIR window.

Additionally, since the future high-energy Er:ZBLAN coherently pulse stacked fiber

laser operating ∼2.75 µm could provide promising MIR pumping for LWIR OPCPA

(see Chapter 4), capabilities that they can be phase-matched for converting the 2.75-µm

pump to the LWIR range, and they are free of TPA when the 2.75-µm pump is to be

used are also important considerations.

Figure 3.3a compares the absorption coefficient of the three selected crystals in

more detail [115]. Among the three, AGSe has the widest transparency from 0.8–18 µm.

OP-GaAs and GaSe show comparable transparency window from 2–12 µm; however,

higher residual loss of 0.1 cm-1 in GaSe exists at the pump wavelength of 2.75 µm.

Figure 3.3b summarizes the damage threshold intensity of the three crystals reported

in the literature [116–129]. Damage threshold limits the maximum pump intensity

that could be applied to the crystal and thus constraints the parametric gain. Since

the damage thresholds were measured in diverse experimental conditions (e.g., laser

wavelength, pulse duration, crystal quality, etc.) and with different test procedures,
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the reported values vary significantly. The damage threshold intensities are rescaled

based on the τ−1/2 dependence as has been discussed in Section 2.5.2, conservatively

assuming a negligible wavelength dependence when extended to the LWIR range. The

impacts of other experimental conditions are unclear, and thus they are not considered

in the rescaling summarized in Figure 3.3b.
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Figure 3.3: (a) Absorption coefficient [115] and (b) damage threshold [116–129] of
AGSe, GaSe and OP-GaAs crystals.

3.3 Phase-matching condition

Different phase-matching geometries for converting the 2.75-µm pump to the LWIR

signal at a central wavelength of 10 µm are shown in Figure 3.4 for AGSe, GaSe,

and OP-GaAs with crystal length of 5 mm. Two different type-II (eo-e and oo-e)

phase-matching geometries can be achieved in AGSe, as shown in Figure 3.4a–3.4b.

The oo-e process in AGSe gives broader bandwidth at a phase-matching angle of 41.0°.

For GaSe, two type-II (eo-e and oo-e) and a type-I (oe-e) phase-matching angles are

available as shown in Figure 3.4c–3.4e. The broadest bandwidth among the three

phase-matching conditions in GaSe exists in the eo-e case at a phase-matching angle

of 12.8°. Figure 3.4f shows the phase-matching efficiency in OP-GaAs via QPM with

the domain period Λ of 133.6 µm. It is clear that the broadest phase-matching among

the three selected crystals is available from OP-GaAs pumped at 2.75 µm.
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(a) AGSe (eo-e), θ=51.20°
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(b) AGSe (oo-e), θ=41.04°
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(c) GaSe (eo-e), θ=12.83°
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(d) GaSe (oo-e), θ=10.89°
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6 8 10 12 14 16
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

λs (µm)

λ
p
(µ
m
)

sinc2[ΔkL/2]

0.2

0.4

0.6

0.8

(f) OP-GaAs, Λ=133.56 µm

Figure 3.4: The phase-matching efficiency as a function of pump and signal wavelength
for the selected nonlinear crystals with different types of phase-matching configuration
at room temperature. The crystal lengths are set to 5 mm.
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To account for both the gain and the gain bandwidth of each crystal, a different

FOM, defined as (gL)2sinc2(∆kL/2), is introduced for comparison among the three

selected crystals pumped at their reported damage threshold, which is shown in

Figure 3.5a. To give the same gain of 1000 at 10 µm, the crystal length of AGSe,

GaSe, and OP-GaAs are set to 26.9 mm, 5 mm, and 6 mm, respectively. As shown in

Figure 3.5a, GaSe and OP-GaAs show much broader gain bandwidth, whereas AGSe

does not have a broad phase-matching ability at 10 µm. This is because AGSe has the

lowest nonlinearity and damage threshold, and thus requires a substantially longer

crystal for the same gain, which reduces the gain bandwidth accordingly. OP-GaAs

exhibits the broadest bandwidth among the three selected crystals and is most suitable

for the LWIR OPCPA development. However, OP-GaAs requires more advanced

crystal growth techniques, and bulk OP-GaAs is commercially available only from

BAE Systems. GaSe is available from multiple vendors such as Eksma Optics, MolTech

GmbH, etc., but cannot be easily customized in terms of crystal cut and AR coating.
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Figure 3.5: (a) FOM of AGS, GaSe and OP-GaAs crystals based on both the gain
and the gain bandwidth at room temperature, and (b) temperature dependence of
FOM of GaSe and OP-GaAs at a central wavelength of 10 µm. The applied pump
intensity is at the damage threshold of each crystal. The crystal length of each crystal
is chosen to give a gain of 103 at 10 µm.

In addition, temperature detuning ∆T of the FOM of GaSe and OP-GaAs at a

central wavelength of 10 µm is also analyzed, as shown in Figure 3.5b, which is due

44



to temperature-induced phase mismatch as a result of the thermo-optic dispersion of

the refractive index. The room temperature corresponds to ∆T = 0°. GaSe shows a

temperature bandwidth of 547.1°C, allowing for high-temperature gradient. While

the temperature bandwidth of OP-GaAs is much narrower than that of GaSe, it is

still considerable at 70.8°C.

3.4 Numerical Model

The model developed for the LWIR OPCPA analysis is based on the standard coupled

differential equations for three-wave mixing under the SVEA Equation (2.16). Split-

Step Fourier Method (SSFM) is adopted in the simulation. Figure 3.6 shows the

schematic of the simulation based on SSFM [130]. The crystal is divided into segments

with a length of dz, which possess alternatively only the nonlinear properties or

only the linear properties. The nonlinear mixing and dispersion can thus be treated

separately in the time and the spectral domains via Fourier/inverse Fourier transforms.

This one-dimensional model assumes collinear interactions with infinite plane waves in

lossless gain media. The spatial effects (birefringence walk-off and beam diffraction)

are not considered in the model, whereas the dispersion and group velocity effects

are accounted to all orders. The optical Kerr effect (self-focusing and self-phase

modulation) is also not included in the model.

X. Xiao1

Split-step Fourier method
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Figure 3.6: Schematic of modeling approach based on the split-step method. Adapted
from [130].
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Specifically, in the temporal domain where nonlinear mixing is treated, the complex

amplitude Ai,s,p(t) experiences a change of dAi,s,p(t) over dz, which can be written as

dAs(t) = i
2ωsdeff
nsc

Ap(t)A
∗
i (t)dz, (3.1a)

dAi(t) = i
2ωideff
nic

Ap(t)A
∗
s(t)dz, (3.1b)

dAp(t) = i
2ωpdeff
npc

Ai(t)As(t)dz. (3.1c)

After each step of numerical integration in the time domain, a spectral phase is

applied to the field Ai,s,p(ω) in the spectral domain, where dispersion is introduced.

The spectral phase of the fields at each step is

Ai,s,p(ω)→ Ai,s,p(ω)eiki,s,pdz, (3.2)

where

Ai,s,p(ω) = F [Ai,s,p(t)]. (3.3)

These steps are repeated segment by segment over the entire length of the nonlinear

media.

The OPCPA simulation uses broadband linearly chirped seed (signal) at a central

wavelength of 10 µm with Full Width at Half Maximum (FWHM) spectral bandwidth

of 4 µm. Figure 3.7a shows the input seed spectrum with a Gaussian profile, as well

as the quadratic spectral phase applied. The seed is stretched to 1 ns (FWHM) with

a chirp of 0.25 ps/nm. Figure 3.7b shows the temporal profile of the corresponding

stretched seed pulse. The input pump is defined as monochromatic at 2.75 µm with 10-

ns pulse duration. There is no incident idler, which should be centered at a wavelength

of 3.79 µm when generated in the mixing process. The applied pump intensity is

1 GW/cm2, and the pump-to-signal ratio is 105.
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Figure 3.7: (a) Input signal spectrum and applied quadratic spectrum phase to OPCPA
modeling, and (b) its corresponding stretched signal pulse profile.

3.5 Simulation results

The simulation results are presented in terms of spectral bandwidth, spectral phase,

transform-limited pulse duration, spectral gain at different seed levels, and crystal

temperature. Large spectral bandwidth is an intrinsic characteristic of femtosecond

pulse amplification. The spectral phase gained through OPA, although fairly small,

is also important since transform-limited pulse can only be obtained if the phase

is compensated. The calculation of gain spectra with different seed energies can

help determine the optimal crystal length, whereas gain spectra at different crystal

temperatures allow the evaluation of the OPCPA performance at high average power.

In the following sections, the OPCPA analysis is performed in GaSe and OP-GaAs

crystals using CPM and QPM, respectively.

3.5.1 OPCPA in GaSe

For collinear type-II (eo-e) phase-matching in GaSe, the wavenumbers of the signal

(e), idler (o), and pump (e) can be expressed as

ks =
2πnse(θ)

λs
, (3.4a)
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ki = 2πnio(
1

λp
− 1

λs
), (3.4b)

kp =
2πnpe(θ)

λp
. (3.4c)

The corresponding effective nonlinear coefficient is [131]

deff = d22 cos2(θ) cos(3φ), (3.5)

where d22 = dyyy = 56.9 pm/V. Figure 3.8a shows the index of refraction of GaSe

derived from Sellmeier equations at room temperature [132]. As can be seen in

Figure 3.8b, the phase-matching angle for converting the 2.75-µm pump to the LWIR

signal at a central wavelength of 10 µm is θ =12.8°. To maximize deff , the azimuthal

angle could be set to φ =0°, ±60°, and ±120°, such that | cos(3φ)| = 1. As a result,

deff of GaSe used in the simulation is 52.4 pm/V and the step dz is set to 1 µm.
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Figure 3.8: (a) Index of refraction of GaSe at room temperature [132], (b) type-II
(eo-e) room-temperature phase-matching curve of GaSe at a pump wavelength of
2.75 µm.

The gain spectra of GaSe OPCPA are simulated for various crystal lengths at a

1 GW/cm2 pump intensity and 105 pump-to-signal ratio. As shown in Figure 3.9a, the

spectrum exhibits increased distortion when the crystal length is longer than 6 mm,

which is due to the back conversion of the signal to the pump starting from the center

wavelength of 10 µm. At a length of 6 mm, a high gain of 3.5× 104 can be obtained.
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However, parametric fluorescence will be significant at such a high gain. Based on

empirical experimental results, the gain should be kept below several thousands per

amplification stage to avoid strong parametric fluorescence. A 5-mm long GaSe crystal

could be used to produce a moderately high gain.
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Figure 3.9: Gain spectra of GaSe OPCPA in collinear geometry with different crystal
lengths at room temperature. The pump-to-signal ratio used is (a) 105, and (b) 104.
The pump intensity is kept at 1 GW/cm2.

If higher seed energy is available, for example, the pump-to-signal ratio is set to

104, a length greater than 5 mm is unfavorable since the spectral distortion begins to

appear beyond that point, and the gain near the central wavelength starts to decrease

due to back conversion. Figure 3.9b shows the gain spectrum of GaSe OPCPA with

various crystal lengths at a pump intensity of 1 GW/cm2 and a pump-to-signal ratio

of 104. For pump energy on the order of 10 mJ, a pump-to-signal ratio of 104–5

corresponds to a seed energy level of 0.1–1 µJ, which is within the targeted range of

the LWIR seed source (see Section 5.5).

Figure 3.10a shows output amplified signal spectrum and its spectral phase of

the OPCPA in 5-mm GaSe at 1 GW/cm2 pump intensity and 105 pump-to-signal

ratio. For comparison, the input signal spectrum is also plotted. The amplified

signal spectrum, spanning from 8 µm to 14 µm, is narrowed, but can still support

2-cycle transform-limited pulses (66.7 fs), as can be seen in Figure 3.10b. A small

phase variation of π/2 across the gain spectrum is acquired due to the wave vector
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mismatch among different spectral components of the signal, idler, and pump waves.

The gain spectrum of 5-mm GaSe OPCPA is shown in linear scale in Figure 3.11a at a

1 GW/cm2 pump intensity and 105 pump-to-signal ratio. The gain profile is centered

at ∼11 µm with a FWHM gain bandwidth of 4.5 µm. The gain, in this case, is ∼8000.
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Figure 3.10: (a) and (c) Output signal spectrum and spectral phase of GaSe OPCPA
in collinear geometry, (b) and (d) Fourier transform of the spectrum assuming phase
has been compensated. The pump-to-signal ratio is set to 105 in (a) and (b), and 104

in (c) and (d). The crystal length is 5 mm, the pump intensity is 1 GW/cm2, and the
crystal is set to room temperature.

For 104 pump-to-signal ratio and 1 GW/cm2 pump intensity, the amplified signal

spectrum and the imparted phase is shown in Figure 3.10c. Compared to the previous

case, the output spectrum is broadened by operating in a strong pump depletion

region, giving a sub-2-cycle transform-limited pulse of 62.6 fs as shown in Figure 3.10d.

In the strong pump depletion region, the output stability of the signal can usually be

improved significantly. The corresponding gain spectrum is shown in linear scale in

50



6 8 10 12 14 16
0

2000

4000

6000

8000

Wavelength (µm)

G
ai
n

(a)

6 8 10 12 14 16
0

2000

4000

6000

8000

Wavelength (µm)

G
ai
n

(b)

Figure 3.11: Gain profile of the collinear GaSe OPCPA with pump-to-signal ratio of
(a) 105 and (b) 104. The crystal length is 5 mm, the pump intensity is 1 GW/cm2,
and the crystal temperature is set to room temperature.

Figure 3.11b. The gain profile is still centered at ∼11 µm with a slightly increased

FWHM width of 4.8 µm. The gain spectrum does not have a flat profile and has a

peak at 12.3 µm. At an order of magnitude higher seed level, the gain can still reach

∼4000.

Temperature detuning from the perfect phase-matching condition prevents the

operation of OPCPA at high average power. Figure 3.12 shows the dependence of the

index of refraction and phase-matching angle of GaSe (eo-e) on temperature detuning

∆T from room temperature, which is calculated from the temperature-dependent

Sellmeier equation [132].
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Figure 3.12: (a) Temperature detuning of index of refraction of GaSe [132], and
(b)Phase-matching angle of GaSe (eo-e) vs. temperature detuning.
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Figure 3.13 shows the distortion of gain spectra due to the temperature-induced

phase mismatch at two different pump-to-signal ratios of 104–5 and at a pump intensity

of 1 GW/cm2. As can be seen in Figure 3.13a, the gain is reduced from ∼8000 to

∼4000 with the increase of temperature detuning from the room temperature to 520°.

The gain bandwidth decreases from 4.5 µm to 3.8 µm, whereas the central wavelength

of the gain spectra moves to a longer wavelength from 11 µm to 12 µm. A similar trend

is observed in Figure 3.13b, which shows the spectra obtained at a higher input signal

with ∆T ranging from 0° to 500°. The gain and gain bandwidth are reduced from

∼4000 to ∼3000 and from 4.8 µm to 3.8 µm, respectively, as the ∆T increases from

0° to 500°. The central wavelength of gain moves from ∼11 µm to 12 µm. Generally,

at a higher input signal level, the temperature dependence is less pronounced.
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Figure 3.13: Gain spectra of GaSe OPCPA in collinear geometry with different
temperatures detuning from room temperature. The pump-to-signal ratio used is (a)
105, and (b) 104. The pump intensity is kept at 1 GW/cm2.

3.5.2 OPCPA in orientation-patterned GaAs

Derived from a Sellmeier equation at room temperature [133], the refractive index

of isotropic GaAs is shown in Figure 3.14a. For QPM in OP-GaAs, the length of
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optimum period can be calculated as

Λ =
2π

ks + ki − kp
, (3.6)

where

ks,i,p =
2πns,i,p
λs,i,p

. (3.7)

Figure 3.14b plots the QPM period as a function of signal wavelength. To obtain

QPM at a central wavelength of 10 µm, the optimum period is 133.6 µm. The step dz

in the simulation is set to Λ/132.
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Figure 3.14: (a) Index of refraction of OP-GaAs at room temperature [133], (b)
room-temperature quasi-phase-matching curve of OP-GaAs at a pump wavelength of
2.75 µm.

When the three waves propagate along 〈011〉 with three polarizations kept parallel

to 〈111〉 (the direction of the Ga–As bond) [134], the deff can be maximized:

deff =
2√
3
d14. (3.8)

The value of |deff | used in the simulation is 85.2 pm [115]. Figure 3.15a shows a periodic

alternation of the sign of deff in the first four periods of OP-GaAs. Figure 3.15b

shows the spatial variation of gain in the first four periods of OP-GaAs via QPM. The

analytical solutions for QPM and perfect phase matching in OP-GaAs are also shown
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in Figure 3.15b for comparison. The numerical modeling result follows the trend of

analytical solution for QPM. The increase for QPM is slower than in the hypothetical

case of perfect phase matching, which is impossible in isotropic GaAs.
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Figure 3.15: (a) Spatial dependence of deff , and (b) spatial variation of gain at 10 µm
in the first four periods of OP-GaAs at a pump wavelength of 2.75 µm.

Figure 3.16 shows the gain spectra of OPCPA in OP-GaAs with various number

of periods and two different pump-to-signal ratio of 105 and 104. Compared to the

GaSe OPCPA, OP-GaAs OPCPA presents a lower gain but wider gain bandwidth

at similar crystal lengths. The gain spectra show increasing modification when the

crystal length is greater than 61 periods (8.09 mm) and 53 periods (7.08 mm) with

a pump-to-signal ratio of 105 and 104, respectively. However, 45 periods (6.07 mm)

are sufficient in both cases to give a gain of a few thousand without unwanted gain

distortion. Figure 3.17–3.18 show more detailed information of the two cases with a

crystal length of 45 periods (6.07 mm).

The amplified signal spectra and the spectral phases obtained from the 45-period

OP-GaAs OPCPA are shown in Figure 3.17a and Figure 3.17c with pump-to-signal

ratio of 105 and 104, respectively. The pump intensity is kept at 1 GW/cm2. Due to

the broader gain bandwidth achieved in the OP-GaAs OPCPA, the amplified signal

spectra are less symmetric with longer red tails, and the acquired phase variation

of π/2 spans over a wider wavelength range compared to that obtained in the GaSe
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Figure 3.16: Gain spectra of OP-GaAs OPCPA in collinear geometry with different
crystal lengths at room temperature. The pump-to-signal ratio used is (a) 105, and
(b) 104. The pump intensity is kept at 1 GW/cm2.

OPCPA. No significant differences are observed in the two cases with different pump-

to-signal ratios, and accordingly the transform-limited signal pulses obtained in both

cases exhibit the same 58.7 fs FWHM width (sub-2-cycles). Figure 3.18 shows the

gain spectra in linear plots corresponding to the cases presented in Figure 3.17. The

gain spectra are centered at 11.6 µm with a FWHM bandwidth of 5.5 µm. The gain

reaches ∼4000 with a relatively flat profile at a pump-to-signal ratio of 105, while it is

still kept at ∼3000 at a ratio of 104, despite the slightly higher peak at ∼13.3 µm.

Calculated from the temperature-dependent Sellmeier equation [133], the depen-

dence of the index of refraction and quasi-phase-matching period of OP-GaAs on

temperature detuning from room temperature are shown in Figure 3.19. Based on

these curves, the gain spectra at a pump intensity of 1 GW/cm2 and a pump-to-signal

ratio of 104-5 are simulated with ∆T ranging from 0° to 100°, which are shown in

Figure 3.20. Despite the asymmetric shape of the gain profile at a higher seed level,

the trends of the two cases are similar. The gain decreases significantly (by a factor of

∼ 4) over a temperature change of 100°. The gain bandwidth is reduced to ∼2.3 µm,

whereas the central wavelength of the gain profile moves slightly from 11.6 µm to

11.8 µm.
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Figure 3.17: (a),(c) Output signal spectrum and spectral phase of OP-GaAs OPCPA
in collinear geometry, (b),(d) Fourier transform of the spectrum assuming phase has
been compensated. The pump-to-signal ratio is set to be 105 in (a),(b), and 104 in
(c),(d). The crystal length is 6.07 mm (45 domains), the pump intensity is 1 GW/cm2,
and the crystal temperature is set at room temperature.
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Figure 3.18: Gain profile of the collinear OP-GaAs OPCPA with pump-to-signal ratio
of (a) 105 and (b) 104. The crystal length is 6.07 mm (45 domains), the pump intensity
is 1 GW/cm2, the crystal temperature is set at room temperature.
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Figure 3.19: (a) Temperature detuning of the index of refraction of OP-GaAs [133]
and (b) quasi-phase-matching period of OP-GaAs vs. temperature detuning.
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Figure 3.20: Gain spectra of OP-GaAs OPCPA in collinear geometry with different
temperatures detuning from room temperature. The pump-to-signal ratio used is (a)
105, and (b) 104. The pump intensity is kept at 1 GW/cm2.
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3.6 Conclusion

GaSe and OP-GaAs have been selected for evaluation from various non-oxide nonlin-

ear crystals, and their broadband phase-matching conditions have been determined

correspondingly. For converting 2.75-µm pump to signal in the LWIR spectral range

with a central wavelength of 10 µm, GaSe uses type-II (eo-e) CPM at 12.8°, whereas

OP-GaAs is QPM using a domain period of 133.6-µm. The 2.75-µm driven OPCPA

performance in both crystals is analyzed subsequently via numerical simulation. The

one-dimensional model developed is based on solving the standard coupled differential

equations for three-wave mixing via the split-step Fourier method. As the model

assumes collinear interaction with infinite plane waves in lossless gain media, spatial

effects such as Poynting walk-off and beam diffraction are not considered in the

simulation, and neither is the linear absorption. The optical Kerr effect is also not

included in the model. The simulation results show that GaSe OPCPA presents a

higher gain but narrower gain/temperature bandwidth when compared to OP-GaAs

OPCPA by using the same crystal length. The central wavelength of the gain profile

is at 11 µm and 11.6 µm in GaSe and OP-GaAs, respectively. Despite the differences,

the OPCPA in both crystals at a pump intensity of 1 GW/cm2 and a pump-to-signal

ratio in the range of 104–5 supports 2-cycle pulse amplification at a central wavelength

of 10 µm within 5–6 mm long crystals, with a parametric gain of several thousand.

For a 10-mJ pump, the predicted output signal energy is on the order of a millijoule,

which corresponds to several tens of gigawatts peak power for a 2-cycle pulse duration.
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CHAPTER 4

High-energy Nanosecond 2.75-µm

Parametric Source

The development of high-energy pump sources in the picosecond to nanosecond regime

approaching MIR range benefits the ultrashort LWIR OPCPA implementations based

on non-oxide crystals. The past decade has seen steady progress in efficiency, power

scaling, and beam quality output from the most developed Er3+-doped fluoride fiber

lasers operating in the spectral region of ∼3 µm. A Q-switched diode-pumped

Er:ZBLAN fiber laser operating at 2.71 µm has been demonstrated with 0.2-mJ pulse

energy in 13.1 ns pulse duration at a 100 Hz repetition rate [135]. The energy scaling

potential of Er:ZBLAN fiber amplifiers has been experimentally explored, demon-

strating up to 0.67 mJ energy in ∼10 ns pulses from a single 0.8-m long Er:ZBLAN

double cladding fiber with 70 µm core diameter [21]. The recently implemented CPS

amplification technique using Yb-doped fiber amplifiers demonstrates a potential for

generating high-energy sub-nanosecond stacked pulses via cascaded resonant reflecting

cavities, alleviating the peak power limitations encountered in the fiber amplifiers [136].

Targeting 1.2–1.5 J pulse energy with 1-ns duration and kHz repetition rate, future

high-energy Er:ZBLAN fiber-based CPS systems are promising pump sources for

the LWIR OPCPA. In order to allow concurrent development of the LWIR OPCPA

and also to support the initial stage of Er:ZBLAN fiber amplifier development, a

surrogate parametric source has been developed via OPO/OPA techniques for efficient
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generation/amplification of coherent radiations in the vicinity of 2.75 µm. The source

is driven by a ubiquitous nanosecond high-energy laser operating at 1 µm. In this

chapter, the system design of the surrogate pump is presented. Its complete character-

ization in the spectral, spatial, and temporal domain are given, as well as the energy

output and stability. The majority of the materials contained in this chapter have

been published as a journal paper [137].

4.1 Nonlinear oxide crystal and phase-matching

condition

Oxide nonlinear crystals could be used to construct a nanosecond 2.75-µm parametric

pump source. Oxide crystals are mature in terms of growth technology, such that they

exhibit few defects, small residual losses, and high damage threshold [7]. Additionally,

it is highly beneficial that oxide crystals are widely available commercially. Figure 4.1

shows the FOM of various standard oxide nonlinear crystals versus transparency

range. Among the listed materials, KNbO3, LiNbO3, and KTiOPO4 (KTP) family has

extended transparency range and relatively high FOM. More importantly, KTA, as

the arsenate isomorph of KTP, shows significantly less pronounced absorption features

at ∼2.8 µm, as can be seen in Figure 4.2. This absorption line is caused by hydrogen

trapped in the crystal lattice and attached to an oxygen site, forming the OH- defects

that are common in the growth of oxide nonlinear crystals [138].

In addition, KTA has a high damage threshold of 1.2 GW/cm2 (8 ns) at 1064 nm [139],

low-temperature sensitivity, and is non-hygroscopic. It offers phase matching for con-

verting the 1 µm pump photons into ∼3 µm spectral region via birefringence and has

a high value of dλ/dθ, resulting in narrow free-running linewidth [140].

Specifically, for generating 2.75 µm radiation from the 1 µm pump in a positive

biaxial KTA crystal, type-II phase matching (eo-o) in the XZ principal plane has been
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Figure 4.1: Nonlinear FOM of oxide birefringent nonlinear crystal versus transparency
range. Adapted from [115].

Figure 4.2: Transmission of selected oxide nonlinear crystals [115].
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chosen to maximize both deff and the acceptance angle, and to minimize the walk-off

angle. These values are listed in Table 4.1 for different geometries of type-II phase

matching in both XZ and YZ planes, which can be obtained conveniently from the

SNLO software [115]. Type-I phase matching and phase matching in the XY plane

are not achievable. Figure 4.3 shows the index of refraction and the type-II phase

matching curve of KTA, calculated from infrared-corrected Sellmeier equations of

undoped KTA crystals [141].

Table 4.1: Specifications of type-II phase matching in KTA [115]

Prin.
plane

Geom.
deff
(pm/V)

Accp. ang.
(mrad · cm)

Walf-off
ang. (mrad)

XZ
eo-o 2.66 3.92 38.35
oe-o 2.09 2.16 44.90

YZ
eo-o 1.57 3.85 39.21
oe-o 1.16 2.39 40.68
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Figure 4.3: (a) Index of refraction of KTA and (b) type-II phase-matching curve of
KTA in XZ plane at a pump wavelength of 1.064 µm.

4.2 Pump laser

The pump laser is a critical component of parametric devices. Due to the instantaneous

nature of energy transfer in parametric processes as opposed to energy-storage devices,

it is desirable to have a pump with a flat spatiotemporal intensity profile and high
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stability, as well as pulse width that is well-matched with the signal. However,

it is difficult for a solid-state laser to have all of those favorable characteristics

simultaneously. This section presents two modifications made to a simple commercial

Nd:YAG laser to partially meet the desired pumping requirements of parametric

devices.

The commercial laser is a Spectra-Physics Quanta-Ray flashlamp-pumped Q-

switched Nd:YAG laser (PRO-250-10H). The laser operates at a fundamental wave-

length of 1.064 µm at 10 Hz and delivers ∼1.4 J per pulse with Root-Mean-Square

(RMS) energy stability of ±2.4%. The laser adopts a positive-branch confocal unstable

resonator with a Gaussian variable-reflectivity out-coupling mirror and operates with

multiple longitudinal modes, producing a highly modulated time profile with a Gaus-

sian envelope. A typical time-integrated near-field spatial beam profile of the laser is

shown in Figure 4.4, which is measured by a Charge-Coupled Device (CCD) camera

(Mightex SCE-BG04-U). The second-moment width is measured to be 2.11 mm in

the horizontal direction and 1.76 mm in the vertical direction. The beam displays

spatial modulations and asymmetric hot spots, presumably due to asymmetric side

pumping of the Nd:YAG rods. The beam quality parameter (M2 value) of this laser

model is reported to be 2.4 [142] and the beam pointing stability is <50 µrad. The

temporal characteristics of the laser are given in Section 4.2.1, and the spatiotemporal

dynamics of the laser are presented in Section 4.2.2.

4.2.1 Injection seeding

A smooth temporal profile of the 2.75-µm pump pulse is essential for obtaining a

smooth spectral gain profile in OPCPA. This requirement passes on to the pump laser

of the 2.75-µm parametric source. However, the Quanta-Ray Nd:YAG laser emits

multiple longitudinal modes, resulting in temporal modulation of the generated pulse

due to mode competition. Injection seeding technique has been used to produce a
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Figure 4.4: Time-integrated near-field spatial beam profile of the Quanta-Ray Nd:YAG
laser.

single longitudinal mode operation of a Q-switched Nd:YAG laser. It is accomplished

by injecting a cw single-frequency master laser into a Q-switched slave laser cavity

during the pulse buildup time [143]. The resonator mode of that frequency oscillates

with much higher power and dominates in the output pulse. As a result, the emission

bandwidth is drastically reduced, the pulse profile becomes much smoother, and

the buildup time is significantly reduced with reduced timing jitter. For reliable

single-frequency operation in a standing-wave resonator, the longitudinal spatial hole

burning effect, which leads to strong gain saturation for the lasing resonator mode

than for the other modes, should be avoided. The spatial hole burning is usually

eliminated by suppressing axial modulation of the optical intensity (standing-wave

interference pattern) in a laser cavity via the twisted mode technique [144].

Figure 4.5a shows the CAD design of a homemade injection seeder assembly of

the Quanta-Ray laser. The injection seeder (Lightware, 101-04) is based on a diode-

laser-pumped Nd:YAG laser with a Monolithic Isolated Single-mode End-pumped

Ring (MISER) design [145] and produces a cw single-frequency TEM00 mode output.

A separate Faraday isolator (Optics For Research, IO-5-YAG) with an isolation of

−44.8 dB replaces the one that was originally inside the injection seeder case. The

isolator can prevent damage to the master seeder laser and provides a feedback signal
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to the photodiode for monitoring the buildup time of the Q-switched pulses. A half-

wave plate after the periscope rotates the beam to vertical polarization for seeding via

an additional thin-film polarizer (not shown in Figure 4.5a) positioned at the entrance

of the oscillator section of the Quanta-Ray laser. The angle bracket integrates these

components for mounting inside the Quanta-Ray laser.
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Figure 4.5: (a) CAD design of the homemade injection seeder assembly for the Quanta-
Ray Nd:YAG laser; (b) pulse temporal profile of the Nd:YAG laser with and without
injection seeding.

Two quarter-wave plates are used at both ends of the Nd:YAG rod in the oscillator

section, such that the two counter-propagating waves in the rod are circularly polarized,

possessing a total electric field mode pattern in a shape of twisted ribbon. The end

cavity mirror is replaced by a piezoelectric mirror (Spectra-Physics, 0129-0882S) to

allow active control and stabilization of the slave cavity length via the feedback

loop circuit inside the injection seeder, such that the cavity stays in resonance with

the master seeding laser by achieving minimal buildup time. Figure 4.5b shows

the temporal pulse profiles of the Nd:YAG laser measured by a 12.5-GHz InGaAs

photodetector (EOT, ET-3500) and a 1-GHz oscilloscope (Agilent, Infiniium 54833D).

With injection seeding, the strong modulation due to the mode beating is removed,

and the pulse has a Gaussian shape with a FWHM width of 9.6 ns. The RMS energy

fluctuation of the laser pulse is reduced to ±1.9% after seeding.

65



Figure 4.6a–4.6b shows the temporal delay and timing jitter of pulses with and

without injection seeding, respectively. The temporal delay with respect to the Q-

switch trigger is reduced by 18 ns with seeding, and the timing RMS jitter is reduced

from 0.54 ns to 0.46 ns with seeding. Both the pulse-width and pulse-amplitude RMS

fluctuations, as shown in Figure 4.6c–4.6d, are reduced from ∼ ±7% to ∼ ±4% in

seeded operation.
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Figure 4.6: (a) Time delay of the generated pulse with respect to the Q-switch trigger,
(b) pulse-to-pulse timing jitter, (c) pulse-width fluctuation, and (d) pulse-amplitude
fluctuation of the Nd:YAG laser pulses with and without injection seeding.

4.2.2 Pulse slicing

As discussed in Section 2.5.2, the damage threshold fluence scales as τ 1/2 in the

nanosecond regime and thus, there is a τ−1/2 dependence of damage threshold intensity
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on the pulse duration τ . To increase the damage threshold intensity and the parametric

gain of the amplifier, the 10-ns pump pulse could be reduced to a shorter duration,

which would also match the stretched seed pulse for optimum conversion efficiency.

Higher applied pump intensity could, in turn, reduce the length of the amplifier,

and thus reduce the spectral phase distortion and increase the gain bandwidth of

the OPCPA. Moreover, parametric fluorescence can also be suppressed outside the

temporal range in which the pump and the seed overlap, such that a high temporal

contrast can be obtained at a reduced pump pulse duration. Limited by the practical

grating size and the accuracy of compression, it is not desirable to stretch the seed

pulses to arbitrarily long duration for amplification. OPCPA devices usually operate

in the picosecond up to the nanosecond time scale. Since a higher stretcher-compressor

mismatch can be tolerated in the LWIR spectral range, nanosecond-OPCPA is favored

considering more pump energy could be available.

To slice the pulse to 1 ns, a high-speed Pockels cell (Leysop UPC068/2) and

thin-film polarizers were adopted for optical gating. The Pockels cell is equipped with

two KD2PO4 (KD*P) electro-optic crystals and is driven by an HV switch module

(BME PCD6i5). The Pockels cell receives two successive HV pulses from the switch

module via two cables of different lengths. The nominal rise time of the HV pulse is

∼250 ps with RMS timing jitter of ∼50 ps. The fall time of the HV pulses is 100 µs.

The voltage at the Pockels cell increases to the half-wave voltage when the first pulse

arrives, such that the linearly polarized input is rotated by 90° and is allowed to be

transmitted through the thin-film polarizer. The voltage is then increased to the

full-wave voltage as the second pulse arrives, such that another 90° is rotated, and

the polarizer rejects the beam transmission. The optical gate width is fixed by the

cable length difference to ∼1 ns. The optic axis of the crystals within Pockels cell is

aligned by using the Maltese cross after setting up the crossed polarizers. Some pulse

leakage is observed after inserting and aligning the Pockels cell, potentially due to the
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misalignment of the two KD*P crystals inside it. Figure 4.7a shows a typical sliced

pulse profile measured by the 12.5 GHz diode and the 1 GHz oscilloscope, from the

most intense part of the seeded Nd:YAG laser pulse. The sliced pulse has a FWHM

width of 1.2 ns with a clean rising edge and some residual tail. Figure 4.7b shows

the timing RMS jitter of the sliced pump pulses is further reduced to 69 ps. The

pulse-width and pulse-amplitude RMS fluctuations of the sliced pulses, as shown in

Figure 4.7c–4.7d, are ±1.1% and ±5.0%. The RMS energy stability of the sliced laser

pulse was measured to be ±5.2%. The increased pulse amplitude/energy fluctuations

are due to the timing jitter between the seeded pump and the gating window of the

Pockels cell.

It is known that spatiotemporal dynamics of pulses from a Q-switched Nd:YAG

laser with unstable resonator as well as its time-varying diffraction characteristics are

significantly different than those with stable resonator whose spatial profile is close

to Gaussian and M2 remains close to unity throughout the pulse duration [146,147].

With an unstable resonator, the laser starts oscillation on the resonator axis in a small

spot and grows rapidly as the pulse builds up. The initial Gaussian profile flattens

as the gain on the resonator axis saturates first and the peripheral part of the beam

builds up at a later time. At the end of the pulse, the beam profile has a ring shape.

The corresponding M2 value starts close to unity and increases rapidly approaching

the pulse tail. It is important that the sliced 1-ns pulse has a relatively uniform beam

profile for pumping the parametric devices, and thus the timing of the slicing needs to

be chosen carefully.

Such spatiotemporal dynamics have been experimentally analyzed by a combination

of pinhole and fast photodetector [146], and by a fast gated camera and Intensified

CCD (ICCD) [147]. As the fast Pockels cell has been integrated into the system for

pulse slicing, the spatiotemporal evolution of the Quanta-Ray Nd:YAG laser can be

conveniently revealed by using a standard CCD camera (Mightex CGE-B013-U) with
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Figure 4.7: (a) Typical temporal profile, (b) pulse to pulse timing jitter, (c) pulse-width
fluctuation, and (d) pulse-amplitude fluctuation of the seeded Nd:YAG laser sliced
with a fast Pockels cell.
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the 1-ns optical gating provided by the Pockels cell. Figure 4.8 shows the spatial

profiles of the sliced pump beam at various time delays across the entire temporal

pump profile over 30 ns. The measured spatiotemporal evolution of the pump pulse

does not follow the pattern described earlier. The center part of the beam builds

up from the beginning of the pulse and disappears at the pulse tail. However, the

peripheral part of the beam is present in each time slice in Figure 4.8. This is due to

the pump pulse leakage from the Pockels cell and polarizers, as the CCD integrates

the sliced pump and the pump leakage. Figure 4.9 shows the sliced pump pulse

corresponding to selected gate delays in Figure 4.8. Beyond a time delay of 0 ns, the

pump leakage forms a decreasing pulse tail attached to the 1-ns sliced pulse. When

sliced before the pulse peak, the pump pulse leakage becomes increasingly prominent

compared to the sliced pulse with the decrease of the gate delay. All sliced pulses

have clean rising edges. The full pump pulse profile is also shown in Figure 4.9 for

comparison. At a time delay of 0 ns, the amplitude of the sliced pulse is 85.5% of that

of the full profile, and the corresponding energy transmission of the sliced pulse is

30.0% of the full pulse energy. Among all temporal slices, the beam profile sliced at the

center of the full pump pulse, as shown in Figure 4.8d, exhibits the most homogeneous

spatial distribution for pumping the parametric amplifiers.

4.3 System design

OPOs are devices that are capable of generating widely tunable, coherent radiation.

A number of KTA-OPOs pumped by Q-switched 1-µm Nd-doped lasers have been

reported to operate at high average power [148–152] and at high pulse energy [153–156].

Singly resonant at either ∼1.5 µm eye-safe signal or ∼3.5 µm MIR idler, these OPOs

employ type-II NCPM scheme to take advantage of higher nonlinear coefficient, no

walk-off angle, and larger acceptance angle compared to the CPM. For the high-
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Figure 4.8: Spatio-temporal dynamics of the 1-µm pump pulse measured via pulse
slicing at various time delays: (a) −16 ns, (b) −6 ns, (c) −2 ns, (d) 0 ns, (e) 2 ns,
(f) 4 ns, (g) 7 ns, (h) 14 ns.

71



Full profile

(a) -16 ns

(b) -6 ns

(d) 0 ns

(g) 7 ns

(h) 14 ns

-20 -10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

Time (ns)

In
te
ns
ity

(a
rb
.
u
.)

Figure 4.9: Temporal slice of the 1-µm pump pulse at various gate delays.

pulse-energy implementations, the MIR pulse energy (peak power) has reached 10 mJ

(5 MW) from an extra-cavity KTA-OPO [154] and 31 mJ (5.3 MW) from an intra-

cavity KTA-OPO [155], both at 10 Hz. Intra-cavity pumped self-cascaded NCPM

KTA-OPO driven by a diode laser has also been developed to operate at 2.6 µm with

up to 445 mW at 60 kHz [104]. However, the tunability of such NCPM designs relies

on the tuning of the pump wavelength, which is realized by choosing between different

Nd-doped laser crystals. To provide more flexible and wider tunability, CPM has to be

adopted in KTA-OPO devices to reach the targeted operating wavelength of ∼2.75 µm.

A few high-pulse-energy CPM KTA-OPO implementations have been reported but are

not designed to fulfill our specific purpose of OPCPA development, where high-energy,

∼1-ns, ∼2.75 µm pulses are needed with good beam quality. Examples of these

schemes include those that operate in the eye-safe spectral region [157, 158], and

the one at 2.9 µm [140]. Although the CPM configurations suffer a relatively lower

nonlinear coefficient compared to NCPM configurations, the 2.9-µm KTA-OPO device

adopting double-pass pumping has achieved up to 17 mJ (>3.4 MW) with a photon

conversion efficiency of 32% [140].

It is known that scaling the nanosecond OPO to high energy is challenging if high

beam quality is needed along with high efficiency [102,159]. High-energy OPO generally

requires a larger beam diameter to avoid optical damage, and a smaller cavity length
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for shorter buildup time and thus higher efficiency. As a result, a resonator with a high

Fresnel-number (d2/λlc, where d is the beam diameter) is adopted, which unavoidably

leads to poor beam quality due to a large number of supported transverse modes.

To improve the output beam quality of high-Fresnel-number OPO, confocal unstable

resonators and image-rotating cavities have been proposed and implemented but

generally suffer an efficiency penalty and cannot prevent beam distortion induced by

severe back conversion [102, 160,161]. Alternatively, the parametric Master Oscillator

Power Amplifier (MOPA) provides a promising approach allowing efficient energy

scaling without sacrificing the beam quality [102,162]. Such MOPA architectures are

generally comprised of a low-energy master OPO driven by a small-diameter pump

for suppression of higher-order transverse modes, and a power OPA stage driven by a

large-diameter pump containing most of its energy and seeded by an expanded signal

from the OPO matching the pump beam diameter. The overall energy output and

efficiency are dominated by the power OPA stage, whereas higher-order modes tend not

to grow with the increase in seed energy when compared to the parametric fluorescence

noise. By splitting into multiple stages with idler coupled out instead of implementing

a single high-energy OPO, the back conversion can be suppressed/controlled more

easily, and high gain can be obtained simultaneously. Delayed pumping of the OPA

stages is adopted to account for the buildup time of the OPO stage for higher efficiency.

The experimental setup of the KTA-based MOPA system is schematically shown

in Figure 4.10a. As discussed in Section 4.2, the pump (not shown in Figure 4.10)

of the MOPA is the Spectra-Physics Q-switched Nd:YAG laser, which is seeded by

a Lightwave injection seeder (101-04) to provide single-longitudinal-mode operation.

The pump laser is capable of delivering 1.064-µm, 10-ns pulses with an energy of up

to 1.4 J at a repetition rate of 10 Hz. The RMS energy stability and pulse-to-pulse

timing jitter are 2.4% and 0.46 ns, respectively. The master oscillator (OPO) employs

a 5 mm×5 mm×20 mm KTA crystal (KTA1) from Castech Inc. with XZ cut at
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θ ≈ 59◦ for type-II (eo-o) phase matching. The crystal surfaces are AR coated for

the interaction waves with an estimated ∼500-MW/cm2 damage threshold of the AR

coatings provided by the vendor. A 2° wedge is used to prevent parasitic intra-crystal

oscillation. The OPO uses a simple parallel plane cavity with cavity mirrors (M1)

that are high-transmission coated at the fundamental wavelength of 1.064 µm and

idler wavelength of ∼1.74 µm, and high-reflection coated at a signal wavelength of

∼2.75 µm. The OPO thus singly resonates at the signal wavelength for a better spatial

and spectral performance of the signal beam, while also generating and amplifying

the idler in the parametric amplification process. The cavity length of the OPO is

approximately 24 mm. The pump beam is relay imaged from the laser to the OPO

crystal by using a vacuum telescope, which also collimates and demagnifies the beam

to minimize the angular dephasing and to comply with the limited crystal aperture.

Since the signal is mostly confined in the cavity without a customized output coupler,

the idler beam is extracted after the OPO stage and is combined with the imaged,

demagnified, and collimated pump collinearly in a 5 mm×5 mm×25 mm KTA crystal

(KTA2) with the same cut as KTA1 in the next OPA stage by using short-pass dichroic

mirrors (M2) with a 1.5 µm cutoff wavelength. The pulse that pumps this stage can

be sliced to ∼1 ns using the fast Pockels cell, such that the converted signal has a

similar pulse duration. The signal beam is then extracted by dichroic mirrors identical

to M1 used in the OPO cavity, and is expanded and collimated by a Galilean telescope

(L1, L2) by a factor of 3 for combination with the pump in the final power OPA stage.

This stage uses a KTA crystal (KTA3) with a dimension of 10 mm×10 mm×25 mm

using the same cut as KTA1. The pump beam to this final stage is also relay imaged

from the laser, but with a smaller magnification of 1.5 compared to that of 5 of the

other stages that has a pump beam size of ∼1.9 mm in the crystals. Evacuated tubes

are used inside the pump telescopes to prevent air breakdown at the focus. The

pump intensity applied to the OPA crystals is kept to .350 MW/cm2 (10 ns) to avoid
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potential damage to the AR coatings. The amplified signal beam is stripped from the

pump and the idler via several reflections from M1-type dichroic mirrors for further

characterization. The polarization of the signal is in the horizontal direction, whereas

the pump and the idler are polarized vertically. A photograph of the experimental

setup of the MOPA system is shown in Figure 4.10b.

A Czerny-Turner monochromator (Horiba iHR550) equipped with 300 mm−1 ruled

grating (Horriba 510-23), an InSb detector (Hamamatsu P4631-03) and a boxcar

averager (Stanford Research System SR250), an InSb camera (Xenics Onca-MWIR-

InSb-320), a HgCdTe (MCT) detector (VIGO AIP INTIR), energy sensors (Coherent J-

10MB-LE, J-25MB-LE), and a scanning knife-edge are used for diagnostics. The beam

quality measurement is performed in accordance with the ISO standard 11146 [163].

4.4 Experimental results

4.4.1 10-ns operation

The KTA-OPO stage was tuned to singly oscillate at a signal wavelength of 2726 nm,

which is around the peak wavelength of the amplified spontaneous emission bandwidth

of Er:ZBLAN. The idler beam is used to seed the next preamplification stage for

conversion and amplification of the signal beam, such that sufficient seed energy can

be provided to saturate the power OPA stage. The FWHM linewidth of the signal was

measured to be 2.8 nm using a scanning monochromator. The individual longitudinal

modes cannot be resolved by the monochromator with a resolution of 0.3 nm since the

spacing between adjacent longitudinal modes of the OPO is only 3.4 GHz. The idler

wavelength is centered at 1745 nm with a FWHM linewidth of 1.7 nm. Figure 4.11

shows the typical output spectra of the idler and the signal obtained from the OPO

stage and the first OPA stage, respectively.

Figure 4.12a shows the output idler energy from the OPO as a function of the
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Figure 4.10: (a) Schematic diagram of KTA MOPA system driven by a 1.064 µm
Nd:YAG laser; (b) photograph of the experimental setup of KTA MOPA system.
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Figure 4.11: Output spectra of (a) the idler from the OPO stage, and (b) the signal
from the first OPA stage.

pump energy. The OPO starts oscillation at threshold pump fluence of ∼1 J/cm2. The

maximum photon conversion efficiency of the idler is limited to 25.3% at 1.7 times the

pump energy at OPO threshold to comply with the limited damage threshold of the

dichroic mirrors used in the construction of the OPO. The corresponding maximum

idler pulse energy is 7.59 mJ with ±2.34% RMS fluctuation over 1800 pulses. The

OPO has not reached saturation at this pump level, and thus the back conversion

is expected to be insignificant. It has been shown that the absorption coefficient at

2726 nm is ∼0.00047 cm-1 in air with relatively high humidity of 60% [39]. The energy

loss due to air absorption in the OPO cavity is estimated to be no more than 0.23%

in our laboratory environment with typically much lower humidity levels. Numerical

model of unseeded OPO provided by SNLO [115] has been used to simulate the KTA

OPO assuming super-Gaussian spatial profile and Gaussian temporal profile. As

shown in Figure 4.12a, the model cannot fully reproduce the experiment since the

OPO develops from quantum noise and operates with multiple longitudinal modes,

which are not included in the model [164]. Since the idler propagates freely from the

OPO to the first OPA stage over ∼450 mm (∼0.75 Rayleigh range) in air, the idler

beam diameter evolves to be somewhat greater than that of the pump beam in this

stage. This expansion helps to provide a better beam overlap in the first OPA crystal,
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where the beam size is relatively small. The larger seed beam also acts as a spatial

filter since only the central part of the idler overlaps with the pump, such that the

converted signal beam has a better beam quality [102]. An estimation of ∼63% of

the signal energy is taken as the seed for the first OPA. This OPA stage amplifies the

idler to a maximum of 11.08 mJ with ±6.2% RMS stability and converts the signal

to a maximum of 3.8 mJ with ±6.8% RMS stability over 1800 shots. The maximum

gain of the idler achieved in this stage is only 1.7 due to the high input energy of the

idler pulse, which is used as the seed. The photon conversion efficiency of the signal is

9.7% in this OPA stage. Optimization of gain and conversion efficiency is performed

by adjusting the transverse displacement between the idler and the pump on the front

face of the crystal, which is also the case in the final power OPA stage. Figure 4.12b

compares the output signal energy from the first OPA stage as a function of the pump

energy with the SNLO simulation. The efficiency achieved in the experiment is ∼27%

of that predicted by simulation, which is attributed to the imperfect beam profiles and

incomplete pulse overlap due to the finite buildup time of the OPO. A simple estimate

of the buildup time assuming a rectangular pump pulse given in Equation 2.43 is

calculated to be ∼1 ns. Delay lines for the pump have not been used since the time

overlap is not a crucial factor for 1-ns operation, whereby the pump pulse for the

OPA preamplifier is sliced. The 3.8-mJ signal from the preamplifier is expanded and

collimated by the Galilean telescope and is used to seed the power OPA stage. The air

absorption of the signal between the two OPA stages is less than ∼2% over ∼430 mm.

As shown in Figure 4.12c, the power OPA stage produces a maximum experimental

gain of 5.4, which is ∼35% of the gain predicted by SNLO simulation. The consistent

large discrepancy between the experiment and the simulation observed in both OPAs

could also be due in part from the imperfect quality of the multidomain KTA crystals

used. The maximum signal energy output from the power OPA stage was measured to

be 25 mJ with ±7.2% RMS fluctuation over 1800 pulses as shown in Figure 4.12d. The
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signal beam pointing stability is within 0.2 mrad as shown in the inset of Figure 4.12d.
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Figure 4.12: Output energy vs. pump energy of (a) the OPO stage, (b) the first OPA
stage, and (c) the power OPA stage; (d) energy stability, beam pointing stability
(inset) of the power OPA stage.
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Figure 4.13: (a) Temporal profile of the signal pulse and (b) impulse response of the
MCT detector at 2.75 µm.
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Figure 4.13a shows the temporal profile of the signal pulse. The FWHM pulse

duration of the signal was measured to be 9.6 ns by using the fast MCT detector and

a 1-GHz oscilloscope. The nominal bandwidth of the MCT detector is >1 GHz at

10 µm. However, the MCT detector shows a much slower response at 2.75 µm as the

signal wavelength is on the edge of its spectral response. The impulse function of

the MCT detector at 2.75 µm is shown in Figure 4.13b, which was generated using

the mode-locked Er:ZBLAN fiber laser. At the signal wavelength, the MCT detector

has a 0.6-ns rise time and a long fall time of 12.4 ns. The measured 3-dB bandwidth

of the impulse response is 400 MHz at the signal wavelength. The prolonged pulse

tail may be induced by the diffusive current components due to the carries generated

outside of the intended absorption region when the detecting wavelength is far away

from the design wavelength. Nevertheless, 400-MHz bandwidth is sufficient for 10-ns

pulse measurement, while for 1-ns pulse characterization, the MCT detector is not

fast enough.

Figure 4.14a shows a typical near-field spatial beam profile of the idler beam from

the OPO stage measured by the InSb camera. The InSb camera has 320×256 pixels

with a pixel pitch of 30 µm. The spectral response of the InSb camera is 1.0–5.5 µm

and peaks at ∼3.8 µm. The idler beam has a flat-top spatial profile and shows slight

signs of back conversion in the center part of the beam. The beam quality analysis for

the OPO stage was performed using a CaF2 lens with a focal length of 100 mm. At

least five beam-width measurements were taken within one Rayleigh range on either

side of the beam waist, and at least five measurements were distributed beyond two

Rayleigh lengths from the beam waist [163]. The second-moment beam width is used

in the M-squared analysis [165]. The beam width in the x-direction (same for the

y-direction) is defined as

Wx = 2σx, (4.1a)

where the second moment of the beam intensity profile I(x, y) across the x-direction
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can be written as

σ2
x =

∫∞
∞ (x− x0)2I(x, y)dxdy∫∞

∞ I(x, y)dxdy
, (4.1b)

where x0 is the center of gravity of the beam. For arbitrary beam profile, the quadratic

free-space propagation of the beam width in the z-direction is in the form

W 2
x (z) = W 2

0x

[
1 +

(
M2

xλ

πW 2
0x

)2

(z − z0x)
2

]
, (4.2)

where M2
x is the beam propagation factor (usually referred to as “beam quality”), W0x

is the beam width at the waist, and z0x is the waist position. For a single-mode TEM00

Gaussian beam, the M-squared value is 1. For an arbitrary beam, the M-squared value

is usually greater than 1. As shown in Figure 4.14 (b), the beam quality factors of the

1.8 mm×1.9 mm idler beam from the OPO stage were measured to be M2
x = 2.6 for

the horizontal direction and M2
y = 2.7 for the vertical direction. This is consistent

with the general expectation that the beam quality is better in the critical plane than

in the noncritical plane in OPOs due to the smaller acceptance angle of the resonated

idler beam in the critical direction [102, 164]. For the first OPA stage, the spatial

profile of the signal beam is given in Figure 4.14c. The 2.1×1.8 mm signal shows

a larger ellipticity of 1.15 and exhibits a stronger intensity lobe on the left side of

the beam profile, which is in the walk-off direction. Measured by the same setup

as in the OPO stage, the quality of the signal beam obtained from this OPA stage

is improved to M2
x = 2.0 and M2

y = 1.9 as shown in Figure 4.14d, which could be

ascribed to limited spatial filtering in the signal beam expansion while free propagating

between the OPO and OPA [102]. Better quality in the noncritical plane than in the

critical direction of this OPA stage was observed, which is likely due to the walk-off

of the signal beam. The signal beam is expanded for seeding the power OPA stage.

Figure 4.14e shows the beam profile of the amplified signal beam from the power

OPA stage. The amplified signal beam is also elliptical with a FWHM beam width of
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6.4 mm in the horizontal direction and 5.8 mm in the vertical direction. The walk-off

effect in the power OPA stage is less significant due to larger beam sizes. The beam

profile of the amplified signal beam inherits clear features from the pump beam as

shown in Figure 4.4, except for much lower spatial resolution. The two relatively

intense parts at 4 and 10 o’clock and two relatively weaker parts at 1 and 7 o’clock

can be clearly seen on top of this flat-top distribution. The M2 values of this stage are

deteriorated somewhat to M2
x = 2.8 and M2

y = 2.7 as shown in Figure 4.14f, which

were measured using a CaF2 lens of f = 200 mm focal length. The measured beam

profile and the beam quality derived thereof were integrated over the entire temporal

profile of the signal pulse as shown in Figure 4.13.

4.4.2 1-ns operation

In order to adapt the MOPA system for 1-ns operation, the pump line to the first

OPA stage was modified to include the fast Pockels cell for pulse slicing. Due to the

instantaneous nature of the OPA process, the pulse duration of the converted signal

is reduced, correspondingly provided a sliced pump. The modification includes using

a Galilean resizing telescope to reduce the pump beam diameter by a factor of two to

fit the 8-mm aperture of the Pockels cell, and using a different vacuum relay telescope

to further reduce the pump beam size by a factor of 2.5 and image the laser to the

KTA crystal after the Pockels cell and the polarizer. As can be seen in Section 4.2.2,

the beam profile of the sliced pump shows the best uniformity when the 1-ns optical

gating is set near the pulse peak (gate delay of 0 ns). However, due to the finite

buildup time of the OPO, the optimum timing of the pump slicing is chosen such that

the OPA stage can generate high signal energy while also maintaining a good beam

profile/quality for pumping the OPCPA.

Figure 4.15a shows the output signal energy as a function of the sliced pump

energy of the first OPA stage with a gate delay of 0–2 ns. For comparison, the signal
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Figure 4.14: Typical time-integrated beam profile and time-integrated beam quality
measurement for (a), (b) the OPO stage; (c), (d) the first OPA stage; and (e), (f) the
power OPA stage.
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energy output with the Pockels cell off is also shown. The conversion efficiency of this

stage increases by a factor of 1.8 by using the sliced pump since only the high-intensity

part of the pump pulse is used. The maximum output energy of the sliced signal pulse

is 1.44 mJ with ±6.5% stability at a gate delay of 1 ns. When setting the gate delay

to 0 ns and 2 ns, the maximum output signal energy decreases by 14.9% and 8.6%,

respectively. The corresponding energy fluctuation shows an increase in both cases

to ±8.5% and ±8.8%. This is a clear indicator of temporal mismatch of the pump

and the idler pulses in the first OPA stage due to the OPO buildup time on the order

of 1 ns. Figure 4.15b shows the temporal profile of the sliced signal at a gate delay

of 0–2 ns. Note that the MCT detector is not fast enough at the signal wavelength

to fully resolve the sliced signal pulse: the FWHM widths of these pulses are greater

than 2 ns. The measured signal pulses show a decrease of pulse tail as the gate delay

increases, which is consistent with the measurements of sliced pump pulses.
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Figure 4.15: (a) Output signal energy vs. sliced pump energy and (b) temporal profile
of the sliced signal from the first OPA stage at different gate delays.

Figure 4.16a–4.16a shows the sliced signal beam profiles of the first OPA stage at

a gate delay of 0-2 ns. Since the pulse slicing eliminates the peripheral ring shape

of the pump beam at the end of the pulse, the sliced signal shows a slightly smaller

beam size with decreased ellipticity of 1.12 compared to the full signal beam. The

walk-off intensity lobe is less pronounced when compared to the other parts of the

84



beam profile in the sliced signal profile, especially in the cases with gate delays of 1

and 2 ns. Despite all the features discussed, the measured beam profiles at different

gate delays do not show prominent differences. Therefore, the gate delay of 1 ns is

chosen since the highest signal output energy and best energy stability can be achieved.

As shown in Figure 4.16d, the M2 value of the sliced signal of the first OPA stage was

measured to be M2
x = 1.9 and M2

y = 1.9 at the gate delay of 1 ns.
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Figure 4.16: Sliced signal beam profile of the first OPA stage at a gate delay of (a) 0 ns,
(b) 1 ns, (c) 2 ns, and (d) beam quality measurement of the sliced signal at a gate
delay of 1 ns.

For the power OPA stage, the maximum output energy of the amplified sliced

signal is 10.5 mJ, which is 41.8% of the maximum amplified signal pumped with the

full 10-ns pulse profile. Figure 4.17a shows the output signal energy as a function

of input pump energy of the power OPA stage with and without pulse slicing in the
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previous OPA stage. The sliced signal experiences a higher maximum gain of 6.7

since the low gain regions of the pump pulse wings do not contribute significantly

to the final energy. As the power OPA stage has not reached saturation, the RMS

stability of the 1-ns amplified signal increases to ±16.1% over 1800 pulses since the

sliced pump pulse has worse energy stability due to the finite timing jitter of the laser.

Figure 4.17b shows the energy stability of this stage for both 1-ns and 10-ns operation.
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Figure 4.17: (a) Output signal energy vs. pump energy and (b) energy stability of the
power OPA stage with and without pulse slicing in the previous OPA stage.

Figure 4.18 shows the beam profile and beam quality measurements of the amplified

1-ns signal from the power OPA stage. As the sliced seed only uses a small portion

of the pump beam near the pump pulse peak in the power OPA stage, the amplified

sliced signal shows a smaller dimension of 5.8 mm×4.9 mm with improved M2 values

of M2
x = 2.5 and M2

y = 2.3 when compared to the full amplified signal. The features

that present in the full amplified signal beam profile do not show in the sliced profile.

Instead, the amplified sliced signal beam exhibits a more uniform spatial distribution

that is highly suitable for OPCPA pumping.
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Figure 4.18: (a) Beam profile and (b) beam quality measurement of the sliced signal
from the power OPA stage at a gate delay of 1 ns.

4.5 Conclusion

In summary, a high-energy parametric MOPA system based on KTA crystals has

been developed, which is driven by an injection-seeded, Q-switched Nd:YAG laser.

This MOPA is designed as a surrogate pump source that will aid the development

of the LWIR OPCPA which is designed to be pumped by an Er:ZBLAN fiber-based

CPS system in the future. The KTA MOPA system delivers a signal beam up to

25 mJ at 10 Hz with a pulse duration of 9.6 ns and a beam width of 6.4 mm×5.8 mm.

The central wavelength of the signal is 2726 nm with a spectral linewidth of 2.8 nm.

The signal beam generated from the MOPA system preserves a good beam quality

with a time-integrated M2 value of 2.8. A maximum of 10.5 mJ of the signal could

be obtained with the pulse sliced to ∼1 ns. The beam width of the sliced signal

is reduced to 5.8 mm×2.9 mm, and the M2 value is improved to 2.4. The 2.7 µm

surrogate pump not only supports the initial assessment of large-core Er:ZBLAN

fiber amplifiers [21], but also enables the evaluation of OPCPA in GaSe or OP-GaAs

crystals in the LWIR spectral region. It has favorable characteristics for OPCPA

pumping, such as uniform beam profile, good beam quality, reduced pulse duration,
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and low timing jitter. However, the surrogate pump is limited to a relatively low

repetition rate, which precludes possible evaluation of the LWIR OPCPA at high

average powers.
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CHAPTER 5

Noncollinear LWIR OPCPA in GaSe

It is well known that noncollinear geometry of OPA offers an additional degree of

freedom to achieve broadband phase-matching compared to a collinear configuration.

As a common practice, noncollinear configurations have been adopted not only to

provide convenient separation of the amplified signal but also to enable a broader gain

bandwidth and correspondingly a shorter pulse. Extensive investigation of broadband

NOPA/NOPCPA with type-I phase-matching (oo-e) in negative uniaxial nonlinear

crystals has been performed in the visible and near-infrared spectral range [99,166–169].

Such wavelength-insensitive phase-matching (∂∆k/∂λ = 0) in NOPCPA has enabled

ultrashort pulse generation in the sub-5-fs regime [170, 171] and the production of

multi-petawatt pulses [172, 173]. It has been shown that by introducing Poynting

Vector Walk-off Compensation (PVWC) in wavelength-insensitive phase-matching,

better energy stability and improved beam profile symmetry can be achieved at the

expense of a slightly lower gain as compared to a Tangential Phase Matching (TPM)

configuration [174]. The higher parametric conversion efficiency in TPM results mostly

from the suppressed parasitic second-harmonic generation of the signal and the idler

wave [166]. Other noncollinear configurations, such as pump-idler or pump-signal

Poynting vector collinear geometries, show superior beam profile and wavefront but

sacrifice the available bandwidth and conversion efficiency [175]. Careful evaluation and

engineering of the noncollinear geometry are of vital importance to the development
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of OPA/OPCPA systems.

In this chapter, since GaSe is more convenient to obtain commercially than

OP-GaAs, the NOPCPA in GaSe is further studied. The noncollinear type-II phase-

matching geometry in GaSe is analyzed, followed by simulation of NOPCPA in GaSe.

The optimum noncollinear and phase-matching angles in GaSe NOPCPA are studied

parametrically via simulation. The potential parasitic nonlinear processes in the GaSe

NOPCPA are also simulated. Preliminary gain measurement in the GaSe NOPA at

a signal wavelength of 10.6 µm is presented, followed by a discussion of the ongoing

experiments including broadband gain measurement in the GaSe NOPCPA using

LWIR seed. LWIR stretcher and compressor designs are modeled by ray-tracing and

constructed for use in experiments.

5.1 Noncollinear OPA (NOPA)

Since the interacting waves propagate in different directions in NOPA, it is useful to

express the k-vector phase mismatch in vector form:

∆k = kp − ks − ki. (5.1)

For the case of perfect k-vector phase-matching, ∆k is set to zero, and the k-vector

triangle must be closed as shown in Figure 5.1. By using the cosine rule, the phase-

matching condition can be expressed as

k2
s + k2

p − k2
i − 2kskp cosα = 0, (5.2)

where α is the internal noncollinear angle between the pump and signal k-vectors,

which is also referred to as the pump-tilt angle. The variation of the phase-matching

angle θ between the pump and the optical axis with the noncollinear angle α can
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k̄p
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β

Figure 5.1: Schematic of k-vector triangle for perfect phase-matching in NOPA with
narrowband pump and broadband signal. The generated idler is angularly dispersed,
since its direction is automatically detuned to satisfy the phase-matching condition.

be determined accordingly, as the variation with θ impacts the extraordinary wave

vector. The internal noncollinear angle β between the pump and idler k-vectors can

be determined by the sine rule as

ki sin β = ks sinα. (5.3)

Due to the broad bandwidth of the signal wave, the generated idler is angularly

dispersed with β being wavelength-dependent.

The conventional broadband phase-matching can be obtained by requiring that

the variation of the phase mismatch with signal frequency vanishes to the first order.

Therefore, by differentiating Equation (5.2) and using the fact that dωi = dωs, the

broadband condition can be written as

kp cosα = ks + ki
ng,i
ng,s

, (5.4)

where ng,i and ng,s is the group index of the idler and signal, respectively. Further

mathematical manipulation combining Equation (5.2) and Equation (5.4) leads to the

requirement that

cos(α + β) =
ng,i
ng,s

, (5.5)
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which is equivalent to

vg,s = vg,i cos(α + β), (5.6)

where vg,i and vg,s is the group velocity of the idler and signal, respectively. In type-I

phase-matching, Equation (5.6) simply indicates that broadband amplification could

be obtained when group velocities of the idler and the signal waves can be matched

in the signal direction [99,167,169]. However, in type-II interaction, Equation (5.6)

is more difficult to be interpret, as one of the idler and signal waves walks off from

its k-vector direction. Note that Equation (5.6) can be satisfied only if vg,i > vg,s in

NOPA.

5.2 Type-II nondegenerate NOPA in GaSe

Type-II (eo-e) nondegenerate NOPA in a negative uniaxial crystal, particularly in

GaSe crystal, is discussed in this section. A schematic diagram of the perfect type-II

k-vector triangle for NOPA in a negative uniaxial crystal is shown in Figure 5.2. Note

that the k-vector of the signal is chosen to be at an angle of (θ − α) relative to the

optical axis. Since the Poynting vectors of the signal and the pump point at a larger

angle from the optical axis than their k-vectors in negative uniaxial crystals, the

directions of the Poynting vector of the waves, and thus the directions of their group

velocities, become closer to each other. This could lead to a better overlap of power

flow and improved group-velocity matching than the opposite orientation, where the

k-vector of the signal is chosen to be at an angle of (θ + α) relative to the optical

axis. The scheme shown in Figure 5.2 is referred to as the PVWC configuration in

the following analysis.

As shown in Figure 5.2, the walk-off angle of the signal (ρs) and the pump (ρp) in
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Figure 5.2: Perfect type-II (eo-e) phase-matching k-vector triangle for noncollinear
OPA in GaSe with a Poynting vector walk-off compensation (PVWC) design.

negative uniaxial crystals can be formulated as

tan ρs =
sin(θ − α) cos(θ − α)(nso

2 − nsE2)

nso
2 sin2(θ − α) + nsE

2 cos2(θ − α)
, (5.7a)

tan ρp =
sin θ cos θ(npo

2 − npE
2)

npo
2 sin2 θ + npE

2 cos2 θ
, (5.7b)

where nE is the refractive index of an extraordinary wave along the optical axis. The

angle between the group velocities of pump and signal (φs) and the angle between the

group velocities of pump and idler (φi) can be calculated as

φs = ρp − ρs + α, (5.8a)

φi = ρp − β. (5.8b)

The wavenumbers of the signal (e), idler (o), and pump (e) in the PVWC configuration
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can be expressed as

ks =
2πnse(θ − α)

λs
, (5.9a)

ki = 2πnio

(
1

λp
− 1

λs

)
, (5.9b)

kp =
2πnpe(θ)

λp
. (5.9c)

Together with the Equation 5.2 and 5.3, the internal and external noncollinear angles

as a function of phase-matching angle for the case of perfect type-II phase-matching

in GaSe at a pump wavelength of 2.71 µm and a signal wavelength of 10 µm can be

calculated as shown in Figure 5.3a. Figure 5.3b gives the variation of relative walk-off

angles with the phase-matching angle in such configuration.
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Figure 5.3: (a) noncollinear angles and (b) walk-off angles relative to pump as a
function of perfect type-II phase-matching angle for a signal wavelength of 10 µm in
GaSe. The pump wavelength is set to 2.71 µm.

Figure 5.4 shows the phase-matching angle versus the signal wavelength for the

perfect type-II interaction in GaSe pumped at 2.71 µm. Broadband amplification

can be achieved around the extrema of the phase-matching curve, where the spectral

variation of the phase-matching angle is minimum. Mathematically, this is equivalent

to Equation (5.4). The broadband phase-matching angle can be determined accordingly

at a certain pump-tilt angle. As the pump-tilt angle varies, the broadband phase-

matching angle changes, as well as the corresponding perfectly phase-matched signal
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Figure 5.4: Type-II phase-matching angle as a function of signal wavelength for
different pump-tilt angles in GaSe. The pump wavelength is set to 2.71 µm.

With a certain combination of pump-tilt angle and phase-matching angle, the

signal wavelength offset from the perfectly phase-matched wavelength could lead to a

phase mismatch that reduces the gain. Since the k-vector mismatch contributing to

the gain reduction is given by the component along the signal direction [99,167,169],

the k-number mismatch can be calculated as

∆k = kp cosα− ks − ki cos(α + β). (5.10)

The spectral dependence of k-number mismatch along the signal direction for the

type-II NOPA pumped at 2.71 µm in 5-mm GaSe with various pump-tilt angles,

and broadband phase-matching angles are shown in Figure 5.5a. Such quadratic

dependence of k-number mismatch on the wavelength detuning from its perfectly

phase-matched signal wavelength is a clear indication of broadband amplification. At

a pump-tilt angle of 1.7° and broadband phase-matching angle of 12.4°, the perfectly

phase-matched signal wavelength has a minimum of 10.3 µm. Alternatively, the

spectral dependence of k-number mismatch is analyzed with a fixed center signal

wavelength of 10 µm, as shown in Figure 5.5b. The corresponding phase-matching

angle is adjusted to be perfectly phase-matched at 10 µm, and thus differs from the

broadband phase-matching angle. As can be seen in Figure 5.5b, the slope of the
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k-number mismatch curve at 10 µm is reduced as the pump-tilt angle increases to

1.7° and steepens as the angle further increases, which implies a maximum available

bandwidth at 1.7°. Therefore, the above analysis indicates that a pump-tilt angle of

1.7° is the optimum for broadband phase-matching at a central wavelength of 10 µm.
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Figure 5.5: k-number mismatch as a function of signal wavelength in 5-mm long GaSe
(a) with broadband phase-matching angle and (b) with fixed central signal wavelength
at 10 µm, for different pump-tilt angles. The pump wavelength is set to 2.71 µm.

5.3 Modeling of NOPCPA in GaSe

Theoretical investigation of the NOPCPA performance in GaSe is of significant impor-

tance as discussed in Chapter 3. To accommodate the noncollinear configuration, a set

of coupled wave equations is derived for nonlinear parametric process in type-II (eo-e)

NOPA in negative uniaxial crystals. Linear processes, including the spatial walk-off

and crystal absorption, are included in the equations. The modified coupled wave

equations, describing the directional derivative of field along the k vector of signal

(z-axis), can be expressed as [91,176]

dAs(t)

dz
= − αs

2 cos(ρs)
As(t) + i

2ωsdeff
nsc

1

cos2(ρs)
Ap(t)Ai(t)

∗ei∆kz, (5.11a)

dAi(t)

dz
= − αi

2 cos(α + β)
Ai(t) + i

2ωideff
nic · cos2(α + β)

Ap(t)As(t)
∗ei∆kz, (5.11b)
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dAp(t)

dz
= − αp

2 cos(ρp + α)
Ap(t) + i

2ωpdeff
npc · cos(α)

1

cos(ρp) cos(ρp + α)
Ai(t)As(t)e

−i∆kz,

(5.11c)

where αs,i,p are the absorption coefficients for the signal, idler, and pump. By

numerically solving these differential equations via the SSFM in the space-time

domain and implementing the spectral effects in the frequency domain, the nonlinear

parametric processes in the GaSe NOPCPA can be modeled. As shown in Figure 3.7,

the initial signal wave is generated at a central wavelength of 10 µm with a spectral

bandwidth of 4 µm. A linear chirp is applied to stretch the signal pulse to 1 ns

for seeding the GaSe NOPCPA. A 10-ns, 2.75-µm narrowband pump pulse with an

intensity of 1 GW/cm2 is used to amplify to seeded signal in 5-mm GaSe crystal. The

input pump-to-signal ratio is kept at 105, and no input idler wave is applied.

Figure 5.6 shows the impact of pump-tilt angle on the gain spectrum in two

conditions shown in Figure 5.5. It should be noted that the mathematically determined

broadband phase-matching condition does not correspond to the optimal arrangement

of the NOPCPA in GaSe. Since a certain degree of k-number mismatch can be

tolerated, phase-matching at 10 µm exhibits a broader gain bandwidth as compared

to the cases where broadband phase-matching angles are used, as shown in Figure 5.6.

The broadening of the parametric gain is usually accompanied by a modulation of the

gain profile, which contributes to a modulation of the corresponding temporal profile.

As the k-number mismatch becomes increasingly large, the amplified signal energy

cannot be concentrated into a central main pulse. Instead, it is distributed over a

pulse train. Therefore, a trade-off is needed between a wider bandwidth and a less

modulated gain profile.

Since the FWHM duration measures only the central width of the pulse, the RMS

width is used to give an integral measure of temporal distribution of pulse energy, also

accounting for the energy contained in the pulse wings [177]. The RMS width can be
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Figure 5.6: Gain spectrum of the GaSe OPCPA with various pump-tilt angles (a) at
broadband phase-matching angles and (b) at a fixed perfectly phase-matched wave-
length of 10 µm. The crystal length is 5 mm. The pump intensity is 1 GW/cm2.

expressed as

τRMS =
√
〈t2〉 − 〈t〉2, (5.12a)

where

〈tn〉 =

∫∞
−∞ t

nI(t)dt∫∞
−∞ I(t)dt

. (5.12b)

The RMS width could serve as a good candidate to quantify the trade-off. Figure 5.7a

shows a two-dimensional analysis of the RMS width of the direct Fourier transform

of the gain spectrum as a function of pump-tilt angle and perfectly phase-matched

signal wavelength. An optimum pump-tilt angle of 1.7° can be observed, consistent

with the previous k-number mismatch analysis. A range of perfectly phase-matched

signal wavelength from 9.2 µm to 11.5 µm and pump-tilt angle of 1–2° can be chosen

to generate comparable RMS widths, indicating a good amount of tolerance in the

operating parameters.

Figure 5.7b analyzes the transform-limited output signal pulse. The broadband

phase-matching curve is also shown in the contour map. The analysis shows a minimum

RMS width at a pump-tilt angle of 1.7° and a perfectly phase-matched wavelength of

8.6 µm, which corresponds to a phase-matching angle of 12.53°. Due to the quadratic

feature of the phase-matching curve, there is a symmetric minimum at 12.3 µm
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Figure 5.7: (a) RMS pulse width of the direct Fourier transform of gain spectrum,
(b) RMS pulse width of the amplified signal, and (c) normalized FOM of GaSe OPCPA
as a function of pump-tilt angle (α) and perfectly phase-matched signal wavelength
(λs). The broadband phase-matching curve is shown as a solid white line in the contour
map. The crystal length is 5 mm, and the pump intensity is 1 GW/cm2.
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about the broadband phase-matching curve (solid white line), which gives the same

phase-matching angle of 12.53°.

Considering also the conversion efficiency and the transmission of air in addition

to the RMS width, a FOM could be defined as

FOM =
η × T
τRMS

, (5.13)

where η is the photon number conversion efficiency and T is the transmission of air in

typical laboratory conditions as shown in Figure 1.1. Figure 5.7c shows the normalized

FOM as a function of pump-tilt angle and perfectly phase-matched signal wavelength.

The hot spots in the FOM analysis move closer to the broadband phase-matching

curve as compared to the RMS width map. The optimal parameter configuration

appears at a pump-tilt angle of 1.7° and a signal wavelength of 9 µm (a phase-matching

angle of 12.48°). At a pump-tilt angle of 1.7°, an improvement of 8% can be achieved

when phase-matched at a blueshifted signal wavelength of 9 µm when compared to

10 µm. Further comparing the FOM given in the optimized configuration with that

obtained in collinear geometry (see Chapter 3), an improvement of 12% can be seen in

the optimization. Figure 5.8 shows a comparison of the optimized gain spectrum with

that of the collinear case. The optimized gain profile is centered at ∼10.5 µm with a

gain bandwidth of 5 µm. Although the gain profile features a small modulation, a

significant broadening of spectral gain can be seen towards the shorter wavelength.

The amplified signal spectrum and its spectral phase at the optimized combination

of parameters for NOPCPA in GaSe is shown in Figure 5.9a, which is overlaid with the

initial signal spectrum. The output spectrum is slightly narrowed after amplification.

The corresponding transform-limited output pulse profile is shown in Figure 5.9b. No

significant pulse wings can be observed. The FWHM width of the pulse is reduced by

14.6% to 56.9 fs as compared to the collinear case.
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geometry phase-matched at 9 µm at a pump-tilt angle of 1.7° with and that obtained
in collinear geometry phase-matched at 10 µm. The crystal length is 5 mm, and the
pump intensity is 1 GW/cm2.
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Figure 5.9: (a) Output signal spectrum and spectral phase of GaSe OPCPA in
noncollinear geometry with a noncollinear angle of 1.7° at a perfectly phase-matched
wavelength of 9 µm and (b) Fourier transform of the spectrum assuming phase has
been compensated. The crystal length is 5 mm, and the pump intensity is 1 GW/cm2.
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Further optimization of the NOPCPA performance is conducted by varying the

signal pulse duration (τs) while fixing the pump pulse duration (τp) to 1 ns. The

pump and signal are simultaneously incident on the crystal, and their peak amplitudes

occur at the same time. Figure 5.10a shows the normalized FOM as a function of the

pump-to-signal pulse duration ratio simulated at the optimized noncollinear geometry

with a pump intensity of 1 GW/cm2 and a pump-to-signal intensity ratio of 105. An

optimum ratio of the pump-to-signal pulse duration of 1.3 can be observed. The FOM

is 6.7% higher than that for the equal pump-to-signal pulse duration. Optimization

of the signal pulse delay (∆τ = τp − τs) with respect to the pump pulse is shown in

Figure 5.10b at a pump-to-signal pulse duration ratio of 1.3. By launching the signal

pulse 50 ps ahead of the pump pulse, the FOM slightly increases (by 2.6%) as compared

to the zero time difference. This is because the pump pulse has a slightly larger group

velocity than the signal pulse. Compared to the collinear geometry phase-matched at

10 µm with equal pulse duration and zero pulse delay, a total improvement of 34.5% is

obtained in these optimizations. The 1-ns pumped gain profile/output signal spectrum

obtained with optimized pulse ratio and delay are not shown since they do not show a

significant difference as compared to the case when 10-ns pump is used.
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Figure 5.10: Variation of the normalized FOM (a) with the pump-to-signal pulse
duration ratio and (b) with signal pulse delay in the optimized noncollinear geometry
with a pump tilt angle of 1.7° and a phase-matching angle of 12.48°. The pump
intensity is 1 GW/cm2, and pump-to-signal intensity ratio is 105.
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Parasitic nonlinear processes such as frequency doubling of the interacting waves

are important considerations in the design of OPCPA systems. The presence of

such parasitic processes might distort the output spectrum, reduce the efficiency,

and thus degrade the OPCPA performance [166]. In the type-II GaSe NOPA, the

signal SHG cannot be phase-matched, while the idler SHG (oo-e) is unavoidable. The

phase-matching curves for the type-II GaSe NOPA and the idler SHG are shown

in Figure 5.11 at a pump-tilt angle of 1.7°. In the optimized NOPA configuration

(α=1.7°, θ=12.48°) as shown in the previous section, the perfectly phase-matched idler

SHG is achieved at an idler wavelength of 3.54 µm.
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Figure 5.11: Type-II phase-matching angle in 2.71-µm pumped GaSe NOPA (α=1.7°)
as a function of idler wavelength. The phase-matching curve for idler SHG is also
shown.

To evaluate the effect of the idler SHG in the GaSe NOPCPA, an additional

coupled wave equation for generating the idler SHG (ωiSH = 2ωi) needs to be used in

the SSFM modeling in the time domain. The equation can be written as

dAiSH(t)

dz
= − αiSH

2 cos(α + β + ρiSH)
AiSH(t)− i 2ωiSHdeff,iSH

niSH · c · cos(α + β)

· 1

cos(ρiSH) cos(α + β + ρiSH)
Ai(t)

2,

(5.14)

where deff,iSH , niSH , αiSH are the effective nonlinear coefficient, index of refraction,

and absorption coefficient of the extraordinary idler SHG wave, respectively. The
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walk-off angle of the idler SHG wave can be calculated as

tan ρiSH =
sin(θ + β) cos(θ + β)(niSHo

2 − niSHE
2
)

niSHo
2 sin2(θ + β) + niSHE

2
cos2(θ + β)

. (5.15)

To account for the conversion of the idler to the idler SHG, a term −Ai(t)∗AiSH(t)

need to be added into Equation (5.11b). The idler SHG is investigated in the optimized

NOPA configuration with 5-mm GaSe crystal at a pump intensity of 1 GW/cm2.

Figure 5.12 shows the spectrum of the amplified signal, the generated idler, and the

parasitic idler SHG in the GaSe NOPCPA. According to the simulation, the intensity

of the parasitic idler SHG in the noncollinear configuration is considerably lower than

the signal and the idler, and is one half of that generated in the collinear geometry.

No spectrum distortion exists, and the conversion efficiency of the signal wave is not

affected by such a parasitic process.
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Figure 5.12: Spectrum of the signal, idler, and idler SHG in the 5-mm GaSe NOPCPA
pumped at an intensity of 1 GW/cm2. The pump-tilt angle and the phase-matching
angle are 1.7° and 12.48°, respectively.

5.4 Seeding NOPA at 10.6 µm

By using the surrogate pump source operating at a wavelength of 2.75 µm and a pulse

duration of 10 ns, an initial NOPA experiment in GaSe has been performed adopting

a conventional 10.6-µm CO2 laser (SYBRAS, 48-1) as the seed [178]. The CO2 laser
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generates seed pulses with a duration of 1.06 µs and timing jitter of 2.55 µs at a duty

cycle of 2.5% and a repetition rate of 5 kHz, which is then synchronized with the

Nd:YAG laser. The beam diameter of the CO2 laser is 3.5 mm and has an M2 value

that is better than 1.2. The output polarization of the CO2 laser is vertical. A cleaved,

Z-cut GaSe crystal (Eksma Optics) of 5×5×5 mm3 was used in the experiment with

type-II (eo-e) phase matching at a θ of 12.4° in a noncollinear geometry. The crystal

is uncoated, such that the 2.75-µm pump suffers a 16.6% Fresnel loss.

The schematic of the experimental setup is shown in Figure 5.13. A 15× telescope

with two CaF2 lenses (L1, L2) has been used to resize the 2.75-µm pump beam to

provide the intensity needed for gain measurement in GaSe. The pump beam on the

crystal is ∼0.9 mm in diameter, which is determined by inspecting the damage spot

that was later created in the experiment. A periscope is used to rotate the polarization

of the CO2 laser, such that both the pump and the seed are horizontally polarized.

The seed is then directed at a noncollinear angle of 128 mrad with respect to the pump

to the GaSe, corresponding to the 2.2° internal noncollinear angle in the crystal. An

iris is inserted right before the GaSe crystal to reduce the seed beam size to roughly

match the pump beam, such that a higher ratio between the amplified signal and the

seed can be obtained. The MCT detector is used to measure the amplified 10.6-µm

signal. A Ge filter with a cutoff frequency of 7.3 µm (Andover Corp.) prevents the

residual pump pulse from entering the detector.

Due to the significant timing jitter of the CO2 laser, only the seed pulses that

exhibit a good timing overlap with the pump are selected for analysis. A typical

temporal pulse profile of such seed is shown in Figure 5.14a, where the ∼10-ns amplified

signal can be seen superimposed on the peak of the seed pulse. The trace is magnified

in the inset of Figure 5.14a to give a more clear view of the amplified signal pulse. A

hyperbolic sine squared model, consistent with small-signal parametric gain, is used to

fit the measured dependence of parametric gain on the pump intensity. Figure 5.14b
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Figure 5.13: Schematic diagram of 2.75-µm driven GaSe NOPA seeded by a CO2 laser.

shows the experimental data and the model fit for the dependence of single-pass power

gain at 10.6 µm for the type-II, 5-mm GaSe crystal on the 2.75-µm pump intensity.

A simulation of this process is also shown in Figure 5.14b, which is based on the

use of the nondepleted-pump solution of standard coupled differential equations for

three-wave mixing. The crystal surface was damaged at an intensity of ∼0.25 GW/cm2

in the experiment, which is attributed to the relatively long pump pulse duration of

10 ns, along with the pump beam profile that has not been optimized at that time. By

slicing the pump pulse to a duration of ∼1 ns, the damage threshold intensity could

be increased by a factor of ∼3. A further increase is anticipated by optimizing the

pump beam profile, such that a higher intensity that is close to ∼1 GW/cm2 can be

directed to the crystal surface with a more uniform intensity distribution. Based on

the fit to the experimentally measured gain scaling, a single-pass parametric gain of

∼5.5×103 can be obtained at a pump intensity of 1 GW/cm2.
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Figure 5.14: (a) Temporal pulse profile of the CO2 seed and the amplified signal (also
shown in the inset) and (b) single-pass power gain at 10.6 µm as a function of 2.75-µm
pump intensity in type-II NOPA using 5-mm long GaSe.

5.5 Broadband LWIR parametric seed source

In order to perform NOPCPA in GaSe, a broadband LWIR seed is an indispensable

part of the entire system. Additionally, characterization of such an ultrashort seed

source in the LWIR range of high importance. The experimental setup and the

current performance of the LWIR seed source are briefly discussed in this section

(see more details in Ref. [179]). The single-shot LWIR spectrometers used in the

experiments are introduced in the Appendix A, and the LWIR autocorrelator/Cross-

Correlation Frequency-Resolved Optical Gating (XFROG) developed/to be developed

are described in Appendix B.

Intrapulse DFG of two intense laser pulses with different colors from a common

Ti:sapphire laser system in GaSe/AGS crystal has been proven to be a simple approach

that can generate broadband, CEP stable LWIR signal tunable near 10 µm [63,65,180].

To avoid strong TPA in crystals by using transform-limited femtosecond pumping,

DFG based on chirped phase-matching between the two-color outputs of a Ti:sapphire

amplifier has been proposed to provide higher conversion efficiency while maintaining

broad phase-matching bandwidth [64].

The broadband LWIR seed source is based on intrapulse DFG of two-color chirped
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Ti:sapphire laser output in an AGS crystal using type-II (eo-e) phase-matching

geometry. The Ti:sapphire laser is a custom-built CPA system which is capable of

delivering >22 mJ, ∼40 fs pulses at 480 Hz. The two-color chirped output is generated

by using a 2-µm thickness nitrocellulose pellicle placed in the regenerative amplifier and

an acousto-optic programmable dispersive filter (Fastlite, Dazzler HR 800) introduced

after the oscillator. The two-color output beam is resized to 5 mm diameter via a 5×

Galilean reflective telescope.

Figure 5.15 shows the experimental setup of the LWIR seed source. This seed

design can be accommodated within a 1×1 ft2 footprint. In the setup, the two-color

output from the Ti:sapphire laser is split into two paths by using a half-wave plate

and a thin-film polarizer combination. The vertically polarized seed path beam carries

∼10% of the energy of the pump path beam that has horizontal polarization. The

pump path is delayed and is combined with the seed path through another thin-film

polarizer, such that the 770-nm pulse in the pump path beam and the 830-nm pulse in

the seed path beam can be overlapped in a 5×5×0.4 mm3 AGS crystal (Eksma Optics,

cut at θ=45.4°, φ=0°) both temporally and spatially. The crystal is broadband AR

coated in the range of 700–900 nm on the front surface and in the range of 8–12 µm

on the back surface.

λ/2

AGS

θ

φ

TFPTFP

LWIR seed

Ti:sapphire 
laser

τ

Figure 5.15: Schematic diagram of the experimental setup of the LWIR seed generation
via chirped-pulse DFG in AGS crystal.
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The generated LWIR signal is centered at 10.3 µm with a FWHM of 1.1 µm,

supporting sub-five-cycle (∼140 fs) transform-limited pulses [181]. Figure 5.16 shows

the spectra of the two-color Ti:sapphire input and the generated LWIR pulse from

the AGS DFG, which were measured by a compact CCD spectrometer (Ocean Optics,

USB4000) and the single-shot home-made prism-based spectrometer, respectively.

The central wavelength of the generated LWIR pulse can be conveniently adjusted

by changing the wavelength separation of the two-color output. The LWIR spectral

bandwidth can be further broadened by precise tailoring of the chirp of the seed and

the pump in the two-color input. A genetic algorithm has been applied in the numerical

simulation of the intrapulse DFG process in AGS to explore the parameter space,

which includes spectral phase, intensity, temporal offset of the pump and the seed,

the crystal length, and the phase-matching angle. A three-fold increase in bandwidth

has been demonstrated in the simulation, supporting sub-two-cycle (∼60 fs) LWIR

pulse generation [181]. Experiments are underway to validate those simulations.

(a) (b)

Figure 5.16: (a) Spectrum of the two-color Ti:sapphire laser input and (b) the generated
LWIR pulses via DFG in the AGS crystal [181].
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5.6 Pulse stretcher and compressor

Pulse stretcher and compressor are key components of a CPA/OPCPA system. Treacy-

Martinez [182–184] configurations based on diffraction gratings are the commonly

used designs, which could provide stretching/compression ratios typically on the

order of 103–4. The Treacy compressor is comprised of a parallel pair of identical

diffraction gratings with ruled surfaces facing each other and lines parallel to each

other, providing negative GVD that is tunable by adjusting the grating separation.

The Martinez stretcher can provide tunable positive GVD by using two identical

antiparallel diffraction gratings with equal and opposite inclination and parallel lines,

and a unity magnification refracting/reflecting telescope. Double-pass arrangements

are usually adopted in Treacy-Martinez configurations by using roof mirrors to retrore-

flect the beam, such that spatial chirp can be eliminated and the temporal dispersion

can be doubled. The dispersion provided by the Martinez stretcher can be exactly

matched over all orders to that of the Treacy compressor with opposite signs. A

deviation from perfect match may be caused by the finite beam and grating size, mis-

alignment/mismatch of the stretcher and compressor components, and the aberration

introduced by the lenses/mirrors used in the stretcher telescope.

To analyze the dispersion introduced by the stretcher and compressor design

(Treacy-Martinez configuration) and to gain some insight into the space-time coupling

phenomena such as spatial and angular chirp, a ray-tracing model based on a nonlinear

extension of the ABCD matrix model is used [185]. The model is presented with

more details in Appendix C. In the model, the grating groove density is chosen to be

100 lines/mm to provide an optimum degree of dispersion, such that the gratings can

be oriented closer to the Littrow angle to maximize the grating efficiency while also

providing enough stretching/compression ratio with reasonable grating separation.

The angle of incidence to the grating is set at 45°. The stretcher uses spherical

mirrors with a focal length of 609 mm and a distance between the gratings and the
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spherical mirrors of 430 mm. The slant distance between gratings in the compressor

is 358 mm. Figure 5.17a–5.17f shows the spectral phase up to the third-order in

the wavelength range of 8–12 µm from the model provided by the stretcher alone

and the stretcher/compressor combination. The stretcher design provides a chirp

that can stretch the 4-µm bandwidth transform-limited pulses to ∼1 ns. The size

of gratings in the stretcher and compressor for 4-µm bandwidth is >160 mm and

>180 mm, respectively. Richardson Gratings, Newport could provide gratings with

similar parameters. The 6-inch spherical concave mirror needed in the stretcher is

available from Edmund Optics. Since the spherical mirror has a large focal length, the

stretcher could be implemented in a folded configuration [5,186]. In contrast to the

results obtained from the analytical formula [187], modeling shows residual dispersion

at the edges of the spectrum after the compressor due to the spatial aberrations

introduced in the stretcher. The angular and spatial chirp after the compressor

are shown in Figure 5.17g–5.17h. To avoid the angular and spatial chirp over such

broad bandwidth and to eliminate residual dispersion, aberration-free Offner-type

stretcher [188] could be adopted for a future broader bandwidth seed source.

For the current 1-µm bandwidth seed, 50×25 mm2 plane-ruled diffraction gratings

with 100 lines/mm blazed at 10.6 µm (Thorlabs, GR2550-10106) are used. According to

the manufacturer (Thorlabs), the diffraction efficiency of the gratings at perpendicular

polarization remains >80% in the wavelength range of ∼7–19 µm at Littrow angle.

The measured efficiency at 10.6 µm is ∼80% at perpendicular polarization and shows

a small variation of 3.3% with incident angles ranging from 35° to 60°. Spherical

mirrors used in the stretcher have a focal length of 203.2 mm. The distance between

gratings and spherical mirrors is 38.2 mm. The slant distance between gratings in

the compressor is 329.8 mm. Figure 5.18 shows the spectral phase and the angular

and spatial chirp as a function of wavelength in the range of 9–11 µm in the 1-µm

bandwidth design. Based on the model, 2-inch gratings in the stretcher can support

111



○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○

○

○

○

○

○

○

○

○

Analytic

○ Model

8 9 10 11 12

-6.0×105

-4.0×105

-2.0×105

0

2.0×105

4.0×105

Wavelength (µm)

Δ
ϕ
1
(f
s)

(a)

○

○

○

○

○
○

○
○

○
○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

○

○

○

○

○

○

○

○

○

○ Model

Analytic

8 9 10 11 12

-1.0×104

-5.0×103

0

5.0×103

Wavelength (µm)

Δ
ϕ
1
(f
s)

(b)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○
○

○

○

○

○

○

○

○

○

Analytic

○ Model

8 9 10 11 12
0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

3.5×107

Wavelength (µm)

Δ
ϕ
2
(f
s2
)

(c)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

Analytic

○ Model

8 9 10 11 12

0

5.0×105

1.0×106

1.5×106

Wavelength (µm)

Δ
ϕ
2
(f
s2
)

(d)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

○
○

○
○

○
○

○
○

○

○

○

○

○

○

○

○

○

○

○

Analytic

○ Model

8 9 10 11 12

-1.2×109

-1.0×109

-8.0×108

-6.0×108

-4.0×108

-2.0×108

0

Wavelength (µm)

Δ
ϕ
3
(f
s3
)

(e)

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
○

○
○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

○ Model

Analytic

8 9 10 11 12
-2.0×108

-1.5×108

-1.0×108

-5.0×107

0

Wavelength (µm)

Δ
ϕ
3
(f
s3
)

(f)

○

○

○

○

○

○

○

○
○

○
○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○

○
○

○

○

○

○

○

○

○

8 9 10 11 12
-3

-2

-1

0

1

2

3

Wavelength (µm)

Δ
θ
(m
ra
d
)

(g)

○

○

○

○

○

○

○

○
○

○
○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○
○

○
○

○

○

○

○

○

○

○

○

8 9 10 11 12
-4

-2

0

2

4

Wavelength (µm)

Δ
x
(m
m
)

(h)

Figure 5.17: (a)–(b) First-order, (c)–(d) second-order, (e)–(f) third-order spectral
phase, (g) angular, and (h) spatial chirp as a function of wavelength introduced by
the stretcher alone ((a), (c), (e)), and the stretcher and compressor combination ((b),
(d), (f), (g), (h)) in the 4-µm bandwidth design.
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∼1.4 µm bandwidth and stretch the pulses to a duration of ∼340 ps. The residual

dispersion and chirp after compression is significantly reduced, providing a satisfactory

performance over 1-µm bandwidth.

5.7 NOPCPA in GaSe

Figure 5.19a shows the schematic of the experimental setup for the NOPCPA ex-

periment. A 6.25× relay telescope with two CaF2 lenses (L1, L2) has been used to

resize the 1-ns, 2.73-µm beam to increase the pump intensity. The 2.73-µm pump

and the LWIR seed are synchronized. The LWIR seed source is located next to the

output compressor of the Ti:sapphire laser system. As a result, the seed beam has to

propagate ∼8 m in air before entering the NOPCPA setup. The beam divergence of

LWIR seed is measured to be 8.4 mrad in the horizontal direction and 1.1 mrad in

the vertical direction. The large horizontal divergence might originate from a small

undesired noncollinear angle between the two-color Ti:sapphire inputs in the DFG

stage, such that the generated LWIR seed is angularly dispersed. The horizontally

polarized LWIR seed is then directed to the stretcher that can accommodate 1.4-µm

bandwidth seed (see Section 5.6). Based on the parameter scan as shown in Section 5.3,

an external noncollinear angle of 102 mrad is used in the NOPA after the stretcher,

corresponding to an internal angle of 1.7° in GaSe. The GaSe crystal used in the

NOPA is the same as introduced in Section 5.4. The amplified seed after the NOPA

is compressed in the conjugate compressor (see Section 5.6). A photograph of the

experimental setup of the GaSe NOPCPA is shown in Figure 5.19b. Experiments are

still underway to demonstrate the broadband gain in GaSe and the pulse compression

performance of the NOPCPA.

Since the Rayleigh range of the LWIR seed is considerably smaller than that of the

near-infrared beam, in the future, the two-color Ti:sapphire input from the regenerative
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Figure 5.18: (a)–(b) First-order, (c)–(d) second-order, (e)–(f) third-order spectral
phase, (g) angular, and (h) spatial chirp as a function of wavelength introduced by
the stretcher alone ((a), (c), (e)), and the stretcher and compressor combination ((b),
(d), (f), (g), (h)) in the 1-µm bandwidth design.
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Figure 5.19: (a) Schematic diagram of 2.75-µm driven GaSe NOPCPA seeded by the
LWIR seed source; (b) photograph of the experimental setup of GaSe NOPCPA.
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amplifier will be sent to the NOPCPA side and then compressed in another compressor.

As a result, the propagation distance of the LWIR seed will be significantly reduced,

which should help improve the operation and performance of the NOPCPA.

5.8 Conclusion

In conclusion, 2.7-µm driven type-II (eo-e) phase-matched NOPCPA in GaSe has been

analyzed using a one-dimensional model based on standard coupled wave equations

for three-wave mixing, which are modified to accommodate the noncollinear configu-

ration and to include linear processes (i.e., spatial walk-off and crystal absorption).

Parametric studies have been performed to determine optimum noncollinear and

phase-matching angles in GaSe NOPCPA, such that broad gain bandwidth and high

conversion efficiency can be obtained simultaneously. Additionally, optimization of

the timing overlap and the pump-to-signal pulse duration ratio is also performed,

resulting in a considerable improvement compared to the collinear case studied in

Chapter 3. Parasitic nonlinear processes (i.e. SHG of the signal/idler) are shown to be

negligible based on the simulation. The initial NOPA experiment has been conducted

using a 10.6-µm CO2 laser as the seed. Although the crystal damage occurs at a lower

intensity than expected when using 10-ns, 2.7-µm pump, a single-pass parametric gain

over 5000 is predicted based on the fit to the experimentally measured gain scaling if a

pump intensity of 1 GW/cm2 can be imposed on GaSe, which can be achieved by using

the sliced 2.7-µm pump with improved beam profile. A broadband LWIR seed source

has been developed concurrently based on the intrapulse DFG of a two-color chirped

Ti:sapphire laser in an AGS crystal using type-II (eo-e) phase-matching geometry.

The seed source generates CEP stable, 1.1-µm bandwidth LWIR signal centered at

10.3 µm to support the NOPCPA experiment. Analyzed using a ray-tracing model,

a nanosecond pulse stretcher and compressor in Treacy-Martinez configuration has
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been designed for 4-µm bandwidth LWIR seed. A prototype GaSe NOPCPA has

been developed using a pulse stretcher and compressor modified to accommodate the

current 1.1-µm bandwidth LWIR seed. Experiments are still underway to validate the

performance of the GaSe NOPCPA.
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CHAPTER 6

Other Applications for LWIR OPCPA

Although this dissertation work is directly motivated by laser-pulse filamentation

studies and n2 measurements in ambient air, the development of few-cycle LWIR

OPCPA with high peak power is also of interest for a range of applications that

benefit from a high Up at long driving wavelength, as discussed in Chapter 1. These

applications include strong-field physics, attosecond science, and laser-particle acceler-

ation. Additionally, the LWIR spectral range is the “fingerprints” region for many

molecules. The ultrafast LWIR OPCPA source could be used as a unique tool for

molecular spectroscopy. Since filamentation studies and n2 measurements have been

introduced in Section 1.4, other important applications are briefly presented in the

following sections.

6.1 Strong-field physics and attosecond science

The field of strong-field physics studies the interaction of intense electric fields with

matter and has developed the capability of tracking electronic and structural dynamics

on the attosecond time scale. A classic recollision model has been introduced to

qualitatively interpret strong-field interactions. In the model, the electron is emitted

close to the peak of the oscillating laser electric field, and then it accelerates in

the field before recolliding with its parent ion roughly three-quarters of an optical

cycle later. The returning electron could either recombine with the ion and emit a
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high-energy photon via a coherent frequency upconversion process (high-harmonic

generation) or scatter off the parent ion inelastically, causing nonsequential double

(or multiple) ionization or just scatter elastically. This classic model usually asks

for tunneling conditions as a prerequisite, which can be satisfied by requiring the

Keldysh parameter γ =
√

Ip
2Up
� 1, where Ip is the ionization potential of the target

atoms [189]. By adopting MIR sources, low peak intensity can be used to maintain a

high Up while avoiding ground-state depletion/ionization saturation, which is conducive

for classical interpretation of experimental results in the tunneling limit. Additionally,

since the time that the electron accelerates in the field is proportional to the optical

period, high-energy recollision electrons can be created with a longer wavelength

driver, which are beneficial for imaging applications. Finally, by tuning to a longer

driving wavelength, high-quality attosecond bursts can be generated via high-harmonic

generation with a denser frequency comb, higher cutoff energy (Ip + 3.17Up), and a

reduced attochirp [189–191].

Experimental validation of the wavelength scaling of the Keldysh picture has

been performed by concurrently analyzing the production of energetic electrons and

photons emitted by argon atoms interacting with ultrashort pulses at fixed intensity

but with different laser wavelengths at 0.8 µm, 1.2 µm, 2 µm, 3.6 µm. As the ionization

increasingly approaches the tunneling regime by increasing the wavelength, the electron

behavior evolves closer to the classical limit, and the harmonic generated can reach

the extreme-ultraviolet region (50–200 eV), which supports the implicit predictions in

Keldysh’s theory [190]. Ultrahigh harmonics have later been demonstrated by guiding a

330 TW/cm2, 3.9 µm, 80-fs pulse in high-pressure helium gas, producing a bright high-

harmonic x-ray supercontinuum that spans from ultraviolet to more than 1.6 KeV in

the soft x-ray region, corresponding to a 2.5 attoseconds (single x-ray cycle) transform-

limited pulse [191]. The unprecedented time resolution offered by such coherent

attosecond soft x-ray pulses enables time-resolved probing of ultrafast electronic
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dynamics in atom, molecules, and solids [192]. MIR high-harmonic generation has

also been explored in narrow-bandgap solid-state materials, giving promise to future

compact ultrafast and coherent x-ray sources, although the microscopic processes

involved differ from the classical recollision model that is valid in the gas-phase

experiments [193]. Time-resolved imaging of electron recollision with Xe atoms in

the tunneling regime has been demonstrated by using a 100 TW/cm2, 3.1 µm, 30-

fs, CEP-stable pulse in combination with a reaction microscopy detection system

that is capable of providing a 3D view of the momentum distribution of strong-field

interactions in full particle coincidence. Recollisions with Xe atoms at both low (meV)

and high (hundreds of eV) electron energies have been studied, giving insights into

low-energy structures (as well as very-low-energy and zero-energy structures) that are

not predicted by the classical model, and atomic structures that permit extraction

of the doubly differential elastic electron scattering cross-section via laser-induced

electron diffraction, respectively [189]. This MIR source and reaction microscope

system has also been applied in dynamic visualization of larger and heteronuclear

molecular structures via laser-induced electron diffraction, allowing the retrieval of

multiple bond lengths from aligned acetylene molecules [194]. Moreover, nonsequential

double ionization has been investigated, revealing complex and unexpected interplay

between the returning electron and its parent ion core [189,195].

6.2 Laser-driven particle acceleration

Accelerating fields that could be achieved in conventional radio-frequency accelerators

are typically limited to the order of 10 MV/m owing to the electrical breakdown of

metal structures. Advanced laser-based acceleration concepts, such as dielectric laser

acceleration in a vacuum and laser wakefield acceleration in plasma, have spawned

significant interests as they circumvent the limit of conventional accelerators and
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are able to produce accelerating fields on the order of 1–10 GV/m. As a result,

such advanced schemes are highly promising to create compact tabletop accelerators

instead of conventional large-scale accelerator facilities for producing relativistic

particle beams. Laser-accelerators feature reduced energy spread since they produce

low-charge bunches at a high repetition rate, and thus bremsstrahlung energy losses

become less significant. Additionally, the electron bunch lengths obtained from laser-

accelerators can be as short as sub-femtoseconds to attoseconds, which is attractive to

many applications [196,197].

Dielectric laser acceleration is realized by confining tailored longitudinal modes of

the electric field in near-field structures with phase velocity synchronized to the particle

beam [196,198]. The first reported dielectric laser acceleration was demonstrated in

fused silica dual-grating structures (i.e., two opposing binary gratings of period of

0.8 µm, separated by a vacuum gap of 400 nm) fabricated via lithographic techniques

and was driven by 1 ps long Ti:sapphire laser pulses. This laser-accelerator prototype

achieved high-gradient (>250 MeV/m) acceleration of relativistic (60 MeV) electrons

over 550 µm [198]. By using a femtosecond Ti:sapphire laser, sub-relativistic (sub-

100 keV) electrons have been accelerated in silicon dual-grating structures over 5.6 µm

with a high accelerating gradient of 370 MeV/m [199]. Relativistic electron acceleration

with a record high gradient of ∼690 MeV/m has also been demonstrated recently

in fused silica dual-grating structures driven by a Ti:sapphire laser with a pulse

duration of 90 fs [200]. Although the majority of the work has been performed by

using ubiquitous Ti:sapphire lasers, it is desirable to use MIR sources to drive the

dielectric laser-accelerators since multiphoton ionization leading to dielectric structure

breakdown can be greatly mitigated, and higher laser intensity could be applied to

dielectric structures resulting to higher accelerating gradients. Additionally, since the

dimension of grating structures is on the order of laser wavelength, using MIR sources

alleviates the difficulties for manufacturing processes. Furthermore, electron bunches
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with higher charge can be transmitted through the larger apertures if MIR source

could be used.

In laser wakefield acceleration, relativistic self-focusing of the pulse can be initiated

above the critical power threshold and is arrested by electron blow-out forming a

bubble (ion channel) behind the laser pulse. This bubble exerts an attractive Coulomb

force on the blown-out electrons, causing them to stream around the bubble and self-

inject in the blow-out region, exciting a wakefield with ideal focusing and accelerating

properties. The electrons carried by the bubble constantly gain momentum as they

propagate through the background ion plasma and reach relativistic energies, producing

a monoenergetic electron bunch. It has been shown that a stable wake for acceleration

can be excited when the laser spot size can be matched to the blow-out radius, such

that the transverse ponderomotive force can be roughly balanced by the force of

the ion channel [201]. Laser plasma acceleration experiments relying on relativistic

self-focusing have usually required large, terawatt, ultrafast lasers and scale favorably

to the MIR spectral regime as the critical power for relativistic self-focusing decreases

with the increase of laser wavelength squared. The ponderomotive force that pushes

the electrons outwards and drives the wakefield also scales as laser wavelength squared.

The first demonstration of MIR laser wakefield acceleration has accelerated relativistic

electrons up to ∼12 MeV in a hydrogen gas jet with moderate density and width that

exceeds self-focusing scale length [202]. The driving source is a ∼100-fs, 0.25 TW,

3.9-µm OPCPA, which enables studies of near- and above-critical density interactions.

The results show that the charge obtained in 3.9-µm laser-driven electron beams

significantly exceeds the charge in beams driven at 0.8 µm [202]. Coherent control of

the relativistic electron beam from wakefield acceleration with 3.9-µm laser pulses in

near-critical density plasma has been performed, demonstrating improved electron

total charge, energy spectrum, beam pointing, and fluctuation [203]. The application

of TW CO2 laser in wakefield acceleration can be achieved with an even lower plasma
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density giving higher electric charge per bunch, further validating the wavelength

scaling trend [204].

6.3 Molecular spectroscopy

The MIR spectral range is the well-known molecular fingerprint region, within which

many rotational and vibrational resonances of molecules and molecular functional

groups can be used as their unique identifiers. In particular, the two atmospheric

transmission window regions can be exploited for sensitive detection of small traces of

environmental and toxic vapors in a variety of atmospheric, security, and industrial

applications [205]. Introduced in the early 2000s, optical frequency comb spectroscopy

in the MIR spectral range revolutionized precise measurements of molecular structure

and dynamics. Parametric downconversion devices driven by mode-locked lasers

are one of the approaches that could generate MIR frequency combs. Compared to

the conventional Fourier transform infrared spectroscopy, which employs incoherent,

thermal light, frequency comb spectroscopy uses coherent combs and simultaneously

provides large spectral bandwidth, high-frequency precision, and high brightness. High

sensitivity and accuracy over a broad spectral bandwidth can thus be achieved along

with reduced data acquisition time in frequency comb spectroscopy for remote sensing

and diffraction-limited microscopic probing applications [205,206].

In frequency comb spectroscopy, the spectra of the combs are attenuated and

phase-shifted selectively by molecular resonances and are analyzed preferably by

Fourier transform spectroscopy, which uses only a single photodetector instead of a

dispersive spectrometer. Frequency comb Fourier transform spectroscopy is essentially

a time-domain technique in which the pulse train of a comb is interferometrically

sampled by a second pulse train of a different repetition rate. The two interfering combs

interrogate the absorbing sample and generate a lower-frequency comb composed of
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heterodyne beats for further manipulation through digital signal processing. Depending

on how the second pulse train is generated, frequency comb spectroscopy has two

implementations – Michelson-based Fourier transform spectroscopy and dual-comb

spectroscopy. The former approach introduces the second pulse train by varying the

optical delay of a Michelson interferometer, whereas the latter newly emerged approach

incorporates a second frequency comb source. Although more technical challenges are

encountered, dual-comb spectroscopy overcomes the speed and resolution limitations

in the Michelson-based approach by eliminating the moving parts [205]. Mutually

coherent combs with absolute external frequency reference are essential to achieve

very high resolution and accuracy in dual-comb spectroscopy and are easier to be

obtained from parametric devices via DFG processes, where their carrier-envelope

offset frequency is zero due to passive CEP stability [207].

Dual-comb spectroscopy is currently the most widely pursued form of frequency

comb spectroscopy, but mostly in the near-infrared range. Due to the lack of efficient

MIR frequency combs and the difficulty of synchronization, dual-comb spectroscopy

is still limited to proof-of-concept demonstrations with a few exceptions in the MIR

regime [207]. Specifically in the LWIR window, the first dual-comb spectroscopy

demonstration is based on intrapulse DFG of a Ti:sapphire comb in GaSe [208].

This ∼10-µW system can give a 2 cm-1 resolution over 70 µs from 9–12 µm and

has been used to perform rapid, time-resolved spectroscopy of fluctuating ammonia

vapor over 44 m [209]. By using 1-µm pumped, mW-level OP-GaP OPO, dual-comb

spectroscopy of methane and ambient water vapor has been demonstrated in 6–8 µm

with a resolution of ∼0.3 cm-1 over 40 µs [210]. Recently, a 0.25 mW, 4–12 µm source

based on intrapulse DFG of a near-infrared comb from a Er:fiber platform in OP-GaP

has been developed for dual-comb spectroscopy of vapor phase methanol and ethanol,

providing a spectral resolution of 0.003 cm-1 over 20 ms in static measurements and

0.23 cm-1 over 285 µs in dynamic measurements [206].
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CHAPTER 7

Conclusion and Perspective

Optical parametric chirped-pulse amplification is the most promising solid-state

technology for intense few-cycle LWIR pulse generation. It also provides a viable

alternative to the CO2 lasers, which are bandwidth-limited to the production of ∼ps

pulses. Intense LWIR pulses are highly valuable for a range of applications such as

laser pulse filamentation, strong-field physics, laser-driven particle acceleration, and

molecular spectroscopy. While the current MIR parametric sources have reached peak

power on the order of several gigawatts, the near-infrared pumped OPCPA operating

in the LWIR range is well below gigawatt level. Major limitations encountered in

the LWIR OPCPA development at present are the availability of high-energy MIR

pump lasers, suitable nonlinear materials, and appropriate ultrafast diagnostics in the

challenging LWIR range. The high-energy MIR pump pulses may be provided in the

future by several technologies. One of them is the Er:ZBLAN coherently pulse stacked

fiber laser operating at ∼2.7 µm, which is under development in the community. This

dissertation describes concurrent efforts in developing a surrogate, nanosecond, 2.7-µm

parametric pump source and presents the simulation and experimental work on the

development of a 2.7-µm driven nanosecond LWIR OPCPA based on GaSe crystal

as a gain medium. The development of an LWIR parametric seed source and its

diagnostics in the spectral and temporal domains is also presented. Although the

experimental work is still ongoing, important milestones have already been achieved
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towards demonstrating LWIR OPCPA for the first time. The key accomplishments

over the course of this work are reiterated in the following text, along with proposals

for future improvements.

To validate the feasibility of the proposed 2.7-µm driven LWIR OPCPA, simulations

were first performed using a numerical model developed based on standard coupled

differential equations for three-wave mixing. Based on the simulation results, GaSe

and OP-GaAs are predicted to be suitable nonlinear materials for the production

of broad-bandwidth pulses in the LWIR region via type-II (eo-e) CPM and QPM,

respectively. At a pump intensity of 1 GW/cm2 and a pump-to-signal ratio of 104–

105, OPCPA in both crystals can support 2-cycle LWIR pulse amplification with a

parametric gain of several thousand within 5–6 mm long crystals. If a pump energy of

10 mJ is available, the output LWIR seed could be amplified to the millijoule level,

corresponding to several tens of gigawatts of peak power for a 2-cycle pulse duration.

To support the initial assessment of large-core Er:ZBLAN fiber amplifiers and also

to enable the concurrent evaluation of LWIR OPCPA in GaSe/OP-GaAs crystals, a

surrogate 2.7-µm parametric pump source has been developed based on KTA crystals,

which is driven by an injection-seeded, Q-switched Nd:YAG laser. The surrogate

pump adopts a parametric MOPA architecture in order to allow efficient energy

scaling while maintaining good beam quality. Up to 10.5 mJ of output energy in

1.2-ns pulse duration has been achieved from the KTA MOPA system, generating

a 5.8 mm×4.9 mm, 2.7-µm beam with a M2 value of 2.4. Although the surrogate

pump is limited to a relatively low repetition rate of 10 Hz which precludes possible

evaluation of LWIR OPCPA at high average powers, characteristics such as uniform

beam profile, good beam quality, reduced pulse duration, and low timing jitter are

favorable for pumping LWIR OPCPA for energy scaling demonstration.

Further simulations have been conducted on the GaSe OPCPA in noncollinear

geometry, which can offer an additional degree of freedom to achieve broader gain
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bandwidth and can also provide convenient separation of the amplified signal. A non-

collinear angle of 1.7° and a phase-matching angle of 12.48° show optimal performance

in simulation studies, such that broad gain bandwidth and high conversion efficiency

can be achieved simultaneously in GaSe NOPCPA. To experimentally evaluate the

gain in GaSe crystal, initial NOPA experiment has been conducted using the surrogate

pump and a 10.6-µm CO2 laser as the seed, demonstrating an expected single-pass

parametric gain over 5000 at a pump intensity of 1 GW/cm2. For broadband seeding

of the NOPCPA, a surrogate seed source based on intrapulse DFG in AGS crystal

has been developed, which generates CEP-stabilized, 1.1-µm bandwidth LWIR signal

centered at 10.3 µm. A three-fold increase in bandwidth has been predicted after

optimization of the input phases based on the simulation employing a genetic algo-

rithm. By adopting the optimized noncollinear/phase-matching angles, a prototype

GaSe NOPCPA has been developed using a pulse stretcher and compressor designed

to accommodate the current LWIR seed with limited bandwidth. A nanosecond pulse

stretcher and compressor design has also been evaluated for the future LWIR seed

source with optimized bandwidth. To provide a more intuitive view on the state

of LWIR OPCPA development, a diagram of the prototype is shown in Figure 7.1.

The surrogate pump has been completed, while the surrogate seed is deployable but

needs further bandwidth optimization. The developed prototype has been aligned

using the surrogate seed, and broadband gain in GaSe NOPCPA is currently under

experimental evaluation. In addition, pulse recompression will be demonstrated in

the near future, and pulse characterization will be performed using the home-built

LWIR diagnostics, including the single-shot prism/grating spectrometer and the InSb

autocorrelator. Although the bandwidth and the repetition rate are currently lim-

ited due to the constraints posed by the surrogate sources, the development of the

prototype is significant for initial proof-of-concept studies of the MIR pumped LWIR

OPCPA. Validation of the full-bandwidth performance of the GaSe NOPCPA will be
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performed in the future after optimization of the bandwidth of the surrogate seed

and implementation of the nanosecond pulse stretcher and compressor in the OPCPA

architecture.
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Figure 7.1: Diagram of the current OPCPA testbed using the surrogate pump and seed
sources, and a concept for future integration with the MIR fiber-based sources [211,212].

Figure 7.1 also shows the roadmap to the future integration with the MIR

Er:ZBLAN fiber laser-based pump and seed sources for scaling of the OPCPA archi-

tecture to high peak and average power. An Er:ZBLAN fiber mode-locked oscillator

and a nonlinear amplifier/compressor have been developed. This source has enabled a

generation of an ultrashort pulse train with 95 fs pulse duration, 37.4 nJ pulse energy,

and 48 MHz repetition rate [211]. On the one side, the pulse train can be stacked coher-

ently in a series of Gires-Tournois interferometers via the CPS amplification [136,212],

generating MIR pulses targeting 1.2–1.5 J pulse energy in 1-ns pulse duration at a

kHz repetition rate. The coherently combined MIR fiber laser can be used to replace

the surrogate parametric pump, which would allow development of the LWIR OPCPA

at high average powers. While this dissertation has numerically analyzed important
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characteristics, such as gain and bandwidth, of the nonlinear materials in OPCPA for

few-cycle LWIR pulse generation, simulation of the high-average-power performance

of such OPCPA needs to be performed to better guide the future experimental demon-

stration by using the kHz-level MIR fiber pump laser. On the other side, the ∼2.8-µm

pulses from the Er:ZBLAN fiber oscillator and amplifier can be sent through a ZBLAN

fiber Raman-soliton wavelength shifter to generate the ∼3.5-µm signal for DFG in

GaSe with the fundamental pulses. The fiber-based LWIR DFG source could replace

the surrogate seed in the future. In addition to the currently pursued spectral and

autocorrelation measurements, a complete characterization of the generated few-cycle

LWIR pulses should be performed via techniques such as XFROG [213].
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APPENDIX A

Single-shot MIR Spectrometers

Unlike monochromators such as the one described in Chapter 4, single-shot instruments

can significantly reduce the measurement time and better resolve the potential spectral

structures of the broadband signal that could be erased by the shot-to-shot instability

of the laser. A pyroelectric linear array sensor (Pyroes, PY0723) integrated with

a data acquisition board (Pyroes, PY0429) has been used for the development of

single-shot spectrometers. The sensor has 128 pixels with a pitch width of 100 µm.

Its spectral response is relatively uniform across the wavelength of interest, and the

linearity is relatively good with an incident energy of ∼0.1–30 µJ. In Section A.1, the

prism-based single-shot MIR spectrometer is discussed based on design in Ref. [214].

The grating-based single-shot spectrometer, which is discussed in Section A.2, is

developed with the intent to obtain higher spectral resolution in the LWIR range than

the prism-based one.

A.1 MIR prism-based spectrometer

Figure A.1a shows the experimental setup of the prism-based spectrometer. An f/3,

75-mm focal length ZnSe lens (Thorlabs, LA7660-E3) is used to collimate the focused

MIR radiation from the slit. A dispersive ZnSe prism is then used to split the light

into constituent wavelengths. The ZnSe prism used is a 20×15×10 mm3 Brewster

prism. The incident beam needs to have horizontal polarization so that the Fresnel
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losses from the prism surfaces can be minimized. The refracted beam is collected

and focused by another f/3, 75-mm ZnSe lens onto the array sensor. To minimize

chromatic dispersion, the sensor is tilted at an angle of ∼15°. The prism spectrometer

is aligned using a CO2 laser.
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Figure A.1: (a) Schematic diagram of the experimental setup of the LWIR prism spec-
trometer and (b) calculated wavelength-to-pixel mapping of the prism spectrometer.

The wavelength-to-pixel mapping of the prism spectrometer is calculated by using

Snell’s law and the Sellmeier equation [215], and is shown in Figure A.1b. Based on

the calculation, wavelengths shorter than ∼750 nm experience total internal reflection

inside the prism, and thus the pump and the seed can still possibly hit the sensor.

To avoid exposing the sensor to the pump and the seed and also to fully cover the

LWIR range of interest, the array is centered at ∼12 µm, giving a spectral coverage

in the range of ∼1.4–20 µm as shown in Figure A.1b. The dependence of wavelength

on pixel number is nonlinear, especially at the shorter wavelength side. However, a

relatively more linear dependence can be obtained in the LWIR region. The spectral

resolution of the prism spectrometer is estimated to be ∼189 nm at 10 µm.
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A.2 LWIR Littrow grating spectrometer

As shown in Figure A.2a, the LWIR grating-based spectrometer uses a Littrow

configuration, in which the first-order diffracted light propagates back along the

incident beam direction. In the setup, the light that is focused on the slit is collected

by an f/6, 149-mm ZnSe lens (Thorlabs, LA7028-E3). A 75 lines/mm, 25.0×12.5 mm2

ruled grating (Thorlabs, GR1325-07106) blazed at 10.6 µm is positioned after the lens

and is tilted to refract the light back above the center of the lens axis for ∼3 mm. A

D-shaped pickoff mirror is used to direct the spectrum 90° onto the Pyroelectric linear

array.
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Figure A.2: (a) Schematic diagram of the experimental setup of the LWIR grating
spectrometer and (b) calculated wavelength-to-pixel mapping of the grating spectrom-
eter.

Figure A.2b shows the calculated wavelength-to-pixel mapping of the grating

spectrometer based on the general grating equation and Snell’s law. Unlike the prism-

based spectrometer, a linear dependence of the wavelength to the pixel number can

be seen. The spectrometer has a 1 µm spectral coverage that is centered at 10.5 µm.

Calibration of the spectrometer was performed using the two ammonia absorption

lines at 10.35 µm and 10.72 µm [216]. As shown in Figure A.2b, the calibration

matches well with the model. The total FWHM width of the instrumental line profile
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is estimated to be ∼15 nm, considering the effects introduced by the grating, the

spatial resolution of the detector, the entrance slit width, and the focal spot size.

Specifically, the spectrometer has a resolving power of 1875, corresponding to a grating

resolution of 5.3 nm at the central wavelength of 10 µm. The pixel pitch of 100 µm of

the array sensor and the slit width of ∼100 µm contribute another ∼12.4 nm. The

focal spot size of ∼73 µm corresponds to a contribution of 6.5 nm.
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APPENDIX B

Ultrashort LWIR Pulse Characterization

Despite the fact that modern photodetectors have much improved performance in

terms of their response time, their speed is at best several orders of magnitude slower

than ultrashort pulses. Our MCT photodetector is only sufficient to measure LWIR

pulses in the nanosecond temporal range. For picosecond pulse characterization

in the LWIR regime, streak camera can be used accompanying with a CS2 Kerr

switch, such that the intense LWIR pulses are used as the pump for gating a red

diode laser which lies in the sensitive spectral region of the streak camera [4]. For

femtosecond LWIR pulse characterization, there are no commercial solutions available.

Intensity autocorrelation [5,72,217] and XFROG [36,213] are the approaches that have

successfully been transferred to LWIR region. In Section B.1, autocorrelation based on

SHG and TPA in the LWIR region is introduced, and the InSb-based autocorrelator

that has been developed is shown [179]. In Section B.2, the phase-sensitive XFROG

measurement in the LWIR region is discussed, which will be implemented in the near

feature [179].

B.1 Autocorrelation

The classical background-free intensity autocorrelation is the simplest technique to

measure the pulse duration of an ultrashort pulse. In conventional autocorrelation,

the ultrashort pulse is split into two replicas with a relative delay τ . The two replicas

134



are then focused and mixed in a fast-responding nonlinear crystal. The induced

autocorrelation signal can then be conveniently singled out by an aperture. Different

nonlinear effects, such as SHG and TPA, can be used in autocorrelation measurements.

For the SHG case, the MIR cross-term signal (E2(t, τ) ∝ E(t)E(t− τ)) on the axis is

selected via an aperture and is sent to a square-law photodetector, giving access to

the autocorrelation function of the intensity envelope of the test pulse, which can be

written as [218],

S(τ) ∝
∫
|E2(t, τ)|2dt ∝

∫
I(t)I(t− τ)dt. (B.1)

Crystals such as AGSe [5] and GaSe [72] are good candidates for phase-matched SHG

of the LWIR pulses. An alternative nonlinear process for autocorrelation measurement

in the LWIR region is based on TPA in a bulk material. In such TPA case, the

ultrashort pulse is split into a strong pump and a weak probe, which are then spatially

overlapped in the medium. When temporally overlapped, the contribution of TPA

with one photon from each beam creates the autocorrelation signal. The induced signal

on the probe beam is selected and measured by a photodetector [219]. In the LWIR

window, thin InSb crystals with a bandgap of 0.18 eV (λ=6.9 µm) and a dispersion

length of ∼0.6–1 mm for 100-fs pulses could provide satisfactory performance for the

autocorrelation measurement [217].

An InSb autocorrelator has been developed to provide simple pulse duration

measurement of the generated LWIR pulses. A wedge ZnSe window (Thorlabs,

WW70530-E3) is used to split a small part of the LWIR energy as the seed. A delay

stage is built in the seed arm to ensure temporal overlapping of the seed with the

pump in a 0.5-mm thick undoped InSb (110) crystal (MTI Corp.). The seed and the

pump are spatially overlapped in the crystal at a small angle of ∼5°. The TPA of the

seed is measured by the 400-MHz MCT detector. Figure B.1 shows the schematic

diagram of the home-built InSb autocorrelator.

The autocorrelation function is symmetric in time and washes out structure in the
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Figure B.1: Schematic diagram of the home-built InSb autocorrelator.

intensity profile. Intensity autocorrelation does not provide any phase information,

but it provides a simple estimate of the pulse duration.

B.2 Cross-correlation frequency resolved optical gat-

ing

The intensity cross-correlation technique provides an alternative solution for pulse

characterization by adopting an ancillary short gate pulse that is fully characterized

instead of using the pulse itself, as in an autocorrelator. Cross-correlation measure-

ments using 800-nm beam as the reference have been explored in the LWIR range

using AGS crystal [63,217]. The generated SFG signal thus lies conveniently in the

visible to near-infrared spectral range. To provide additional phase sensitivity in the

LWIR spectral range, XFROG arrangement is adopted by replacing the photodetector

in the cross-correlation setup with a visible-to-near-infrared spectrometer, such that a

spectrogram can be taken by recording spectrum versus delay. The 2D spectrogram
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signal can be described as

S(τ, ω) ∝ |
∫
E(t)Eg(t− τ)eiωtdt|2, (B.2)

where Eg is the electric field of the reference gate pulse. A fast iterative algorithm is

usually used to retrieve the spectral phase and amplitude of the test pulse [218]. A

XFROG device in 0.4-mm AGS has been recently developed and has demonstrated

measurements of ∼85 fs pulses at a central wavelength of 8.9 µm [36]. However,

GVM of short pulses in AGS is large, limiting the available bandwidth in the SFG

process [217].

XFROG based on Four-Wave mixing (FWM) in air can enable intrinsically broad-

band characterization of few-cycle pulses in the LWIR range due to the weak dispersion

of the rare gas medium [213]. The FWM process can convert 3–15 µm to a compact

wavelength region of a few tens of nanometers in the visible spectral range (356–

416 nm for sum-frequency FWM and 394–468 nm for difference-frequency FWM),

where conventional spectrometers are available. The difference-frequency branch of

FWM is used for better phase-matching and higher efficiency than its sum-frequency

counterparts. Such FWM XFROG alleviates requirements on the nonlinear crystal

in the standard XFROG and presents a promising solution for future few-cycle pulse

characterization in the LWIR window that is away from the atmospheric molecular

absorption bands.
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APPENDIX C

Ray-tracing Model

A ray-tracing model used to analyze the stretcher and compressor is based on an

extension of the ABCD matrix model and only considers a single transverse dimension.

The model describes each optical element in the system using an operator. The

deviation from a reference ray in terms of transverse position, angle, and phase as a

function of wavelength is propagated through the system [185], which is represented

by a vector:

~V (λ) =


δθ(λ)

δx(λ)

δφ(λ)

 . (C.1)

The operator for free space propagation through a medium with refractive index n(λ)

over a distance L is

~F (L) =


δθin(λ)

δxin(λ) + L tan δθin(λ)

δφin(λ) + 2π
λ
L cos δθin(λ)

 . (C.2)
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The operator used to describe the grating with groove spacing of d is

~G(θ0,in) =


f(θ0,in + δθin(λ))− f(θ0,in)

δxin

1
cos θ0,in

+
tan θ0,in sin δθin(λ)

cos(θ0,in+δθin(λ))

1
cos(f(θ0,in))

+
tan(f(θ0,in)) sin(f(θ0,in+δθin(λ))−f(θ0,in))

cos(f(θ0,in+δθin(λ)))

δφin(λ)

 , (C.3)

where θ0,in is the input angle of the reference ray, and the angle transformation of the

grating is

f(θ) = arcsin

(
λ

d
− sin θin

)
. (C.4)

For a spherical mirror with reference ray on the optical axis and a radius of curvature

of R, the operator is given by

~Sonaxis(R) =


δθin(λ) + 2 arctan(δxin(λ)/R)

δxin(λ)

δφin(λ) + 2π
λ

2R

√
1− sin2

(
arctan δxin(λ)

R

)
 . (C.5)
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M. V. Rozhko, A. Pugžlys, A. B. Fedotov, V. Ya. Panchenko, A. Baltuška, and
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wakefield acceleration with mid-ir laser pulses. Optics letters, 43(5):1131–1134,
2018.

[203] J. Lin, Y. Ma, R. Schwartz, D. Woodbury, J. A. Nees, M. Mathis, A. G. R.
Thomas, K. Krushelnick, and H. Milchberg. Adaptive control of laser-wakefield
accelerators driven by mid-IR laser pulses. Optics Express, 27(8):10912, 2019.

157



[204] I. V. Pogorelsky, M. N. Polyanskiy, and W. D. Kimura. Mid-infrared lasers for
energy frontier plasma accelerators. Physical Review Accelerators and Beams,
19(9):091001, sep 2016.
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