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ABSTRACT 
 

The oceans have changed since the appearance of animals in the fossil record about 600 

million years ago: mass extinctions and subsequent recoveries have repeatedly altered the 

composition of the marine biota, tectonic and glacio-eustatic shifts have limited the possible 

locations and richnesses of marine ecosystems, and organisms have become bigger, more 

metabolically intensive, and more predatory. Crinoids – suspension feeding echinoderms 

attached to the substrate by a stalk at some point in their development – were among the 

principal players in this marine evolutionary drama, and though they were prominent and 

widespread in shallow waters for much of the Phanerozoic, most lineages have subsequently 

been restricted to the deep sea by the intensification of shell-crushing predation that began in the 

Jurassic. The only crinoids remaining in shallow water today are the mostly stalkless comatulids, 

whose evolutionary success has been attributed to high motility, toxicity, and other anti-

predatory features. They are the focus of this dissertation. 

I first consider respiratory physiology in comatulids and other crinoids. I show that a 

system of fluid-circulating body cavities in these organisms performs a role in respiration, that 

this role explains previously enigmatic features of skeletal anatomy in living and fossil 

comatulids, and that the respiratory demands of stalkless comatulids are probably greater than 

those of the less mobile, exclusively deep-sea stalked crinoids. Next, I analyze the modern 

geographic distributions of some anti-predatory features, recovering a curious and statistically 

robust increase in maximum arm number from the poles to the equator. Abiotic correlates of 

latitude such as temperature and productivity are poor explanations for this pattern; instead, 



 xiii 

ecological evidence points toward intense tropical predation as the cause. Finally, I show that 

neontological and paleontological data independently support an origin of comatulids near what 

is now the Mediterranean and subsequently elevated dispersal to their modern diversity ‘hotspot’ 

in the Indo-West Pacific, tracking the destruction and creation of shallow shelf area by tectonic 

activity. This dissertation suggests novel features of the history of marine life, including a causal 

link between predation and latitudinal gradients in functional richness and a movement of the 

marine richness hotspot by dispersal rather than by changing diversification rates. It also 

corroborates more general hypotheses on the changing marine fauna: the anti-predatory 

adaptations associated with persistence in shallow water despite intense predation, the 

importance of predator-prey interactions in the tropics, and the geographic shifts in the center of 

marine richness over the Cenozoic. 
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CHAPTER 1 
 

Introduction 

In the five decades since the start of the ‘paleobiological revolution’ (Sepkoski and Ruse 

2009), paleontologists have plumbed the marine fossil record for evidence of trends in the 

history of life. Many of their findings have amounted to some kind of scaling up: the oceans of 

the past 540 million years saw changes amounting to more bioturbation (Tarhan et al. 2015), 

more predators (Madin et al. 2006), more direct transfer of gametes (Bush et al. 2016), more 

diversity (Alroy et al. 2008), and more ecological complexity (Wagner et al. 2006; Holland and 

Sclafani 2015). During this interval the earth was continually reshaped by tectonic and climatic 

shifts, limiting where organisms could live, how many kinds of them could coexist, and how they 

made a living. 

What did these changes mean for the evolutionary fate of a particular marine clade? 

Many marine groups are sufficiently well-represented in the fossil record to yield coherent 

answers. Among the most iconic and fossiliferous of these are the crinoids (Fig. 2.1A-B), 

suspension-feeding marine echinoderms affixed to the substrate at some point in their lives by a 

stalk. Phanerozoic increases in the number and importance of predators overshadow their history 

(Meyer 1985; Gorzelak et al. 2012): crinoids reached luxuriant diversity and ecological 

importance in the Carboniferous (Kammer and Ausich 2006) and again in the Mesozoic, but by 

the present day most lineages have been restricted to the deep sea. Modern crinoid diversity is 

dominated by a single clade, the comatulids, which evolutionarily lost their stalk and gained the 

ability to swim or crawl away from danger (Meyer and Macurda 1977). But rather than 
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representing the last gasp of a moribund clade of “living fossils,” comatulids today are 

widespread on reefs and in deep waters, exhibit a wealth of apparent anti-predatory adaptations 

in their skeletal morphology and internal anatomy, and act as habitats for diverse symbiont 

communities (Summers and Rouse 2014; Virgili et al. 2020). In this dissertation, I consider the 

continuing evolutionary story of comatulid crinoids: where they were, how they got there, and 

what they were doing during their 200-million-year history. In the process, I explore the 

ecological and evolutionary forces that have shaped the modern marine biota. 

 

1.1 Changing oceans 

When crinoids first entered the fossil record at the start of the Ordovician, marine 

ecosystems were strikingly different from modern ones: they were inhabited by a different 

ensemble of major taxa, operated on arguably a smaller ecological scale, and differed in their 

geographic configuration and extent. Whereas modern benthic marine communities are 

dominated by a familiar complement of stony corals, ray-finned fishes, gastropods, bivalves, and 

decapod crustaceans, the Paleozoic fauna was characterized by brachiopods, stenolaemate 

bryozoans, trilobites, planktonic graptolites, and crinoids (Muscente et al. 2018). Turnover of the 

‘evolutionary faunas’ that characterize broad intervals of the Phanerozoic is one of the basic 

patterns of the marine fossil record (Sepkoski 1981, 1984). These compositional shifts appear to 

hinge on the mass extinctions and subsequent recovery events that punctuate the marine record 

(Muscente et al. 2018), which apparently changed the biota not through their selectivity but their 

intensity (Bush et al. 2020). The most intense of these events was the Permo-Triassic mass 

extinction roughly 252 million years ago, in which an estimated 90% of marine species went 

extinct as a possible result of intense Siberian volcanism and ensuing ocean acidification (Erwin 
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1994; Clarkson et al. 2015). As was the case for many groups, this extinction event was perilous 

for crinoids, with only one or a handful of closely-related lineages making it through (Simms and 

Sevastopulo 1993). It seems this pattern of just a few lineages making it through the event was 

repeated in many clades (Thuy et al. 2017). There could be an ecological explanation for this 

apparent pattern: mass extinctions removed taxic diversity without removing a commensurate 

amount of ecological diversity in some groups (Edie et al. 2018), so we might predict the 

persistence of just a few ecologically unique lineages across mass extinctions. In any case, 

marine ecosystems looked very different on either side of each of these episodes of major 

turnover.  

Phanerozoic changes in the marine biota constituted more than just a change of cast: the 

fossil record reveals several well-supported changes in the basic functioning of marine 

ecosystems, many of which constitute some kind of ‘scaling-up.’ The last 500 million years saw 

a deepening of the maximum depth attained by burrowing organisms (Ausich and Bottjer 1982) 

and an intensification of sediment mixing by the same (Tarhan et al. 2015), apparently causing 

immobile soft-bottom epibenthic suspension feeders like brachiopods and some bivalves to 

become less viable (Thayer 1979). Marine genera whose living relatives exchange gametes 

directly, rather than by broadcast spawning, have proliferated since the mid-Mesozoic, while the 

diversity of broadcast spawners has changed little during the same interval (Bush et al. 2016). 

Alongside this ‘Mesozoic sexual revolution’ the interval saw the origins and radiations of all 

three major modern groups of eukaryotic phytoplankton – dinoflagellates, coccolithophores, and 

diatoms – possibly concomitant with an increase in terrigenous nutrient input to the oceans 

(Knoll and Follows 2016). This has been suggested to have “enhanced the flow of resources to 

larger size classes and higher trophic levels” (Knoll and Follows 2016, p. 5). Perhaps it is not 
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surprising, then, that fossils show marine animals becoming larger and fleshier and probably 

came to have higher average basal metabolic rates during this interval (Bambach 1993; Finnegan 

et al. 2011; Heim et al. 2015).  

Most importantly for crinoids and other sessile or slow-moving epibenthic organisms, 

durophagous (shell-crushing) predators became more prevalent in marine ecosystems beginning 

in the Jurassic (Vermeij 1977; Madin et al. 2006). Drill holes, repair scars, and other traces of 

predation become more common on marine invertebrate fossils between the Jurassic and the 

Cenozoic (Kowalewski et al. 1998; Oji et al. 2003; Huntley and Kowalewski 2007; Petsios et al. 

2021), reflecting mainly the activity of predatory gastropods, decapods, bony fish, and echinoids 

(Baumiller et al. 2010; Klompmaker et al. 2019). This brief sketch of the changes in Phanerozoic 

ecosystems is not meant to untangle the web of causality underlying these changes, or even to 

identify any of them as driven rather than passive trends (Wang 2001), but merely to highlight 

the profound differences in the world encountered by an organism at the start of the Phanerozoic 

versus today. These trends were not monotonic: for example, marine faunas in the wake of the 

Permo-Triassic extinction event were depauperate and their constituents were small (Twitchett 

2007), and predatory traces shows a rise and fall in the Paleozoic before their mid-Mesozoic 

increase (Huntley and Kowalewski 2007). The overall pattern therefore has a faltering, start-and-

stop quality. 

This biotic drama played out on and in some ways reflected a sequence of geologic 

changes. As tectonic forces pushed together and pulled apart the continents, habitable shallow 

shelf area was created or destroyed at the margins of those continents. The coalescence of 

Pangaea in the Permian apparently diminished marine biodiversity by destroying shallow shelf 

area, and a gradual increase in biodiversity accompanied Pangaea’s subsequent fragmentation 



 5 

into Laurasia, Gondwana, and eventually the modern continents (Zaffos et al. 2017). For much of 

earth history continental seas were more widespread than they are today, and broad swaths of 

shallow sea like those that once covered Europe and central North America might have had a 

similar accommodating effect on biodiversity, but this is difficult to disentangle from the over-

representation of such continental seas in the fossil record (Peters and Foote 2001).  

One of the most salient imprints of tectonic activity on the modern marine biota is the 

biodiversity “hotspot” in the tropical Indo-West Pacific, a region of broad shallow seas and 

island systems between Southeast Asia and Australia in which fishes, corals, echinoderms, 

molluscs, foraminifera, marine angiosperms, and other groups have their greatest species 

richness today (Worm and Tittensor 2018). This hotspot has existed since about the Miocene, 

and its history appears to track tectonic activity: it originated as India and Australia began 

colliding with Asia, generating widespread shallow shelf area (Renema et al. 2008). For much of 

the Mesozoic and Paleogene, marine diversity was apparently greatest in the broad shallow seas 

covering what is now Europe. This West Tethyan hotspot seems to have diminished and finally 

winked out of existence as Africa collided with Europe, shutting the ancient Tethys seaway and 

eventually turning the Mediterranean into a hypersaline lagoon in the latest Miocene (Harzhauser 

et al. 2007; Renema et al. 2008). While the basic pattern of a shifting diversity hotspot seems to 

be well-established for several major groups, the processes by which this shift occurred remain 

enigmatic, being just as well explained by elevated diversification in the modern hotspot as by 

elevated dispersal into it. Curiously, this problem has received only limited study from 

paleontologists (Mihaljević et al. 2017), possibly because of the daunting biases involved: 

paleontological sampling effort has historically been relatively low outside of Europe and North 
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America, and geographic biases in preservation potential may be severe as well (Vilhena and 

Smith 2013). 

Other biases pervade the sketch of marine earth-life history just given and complicate any 

quantitative analysis of paleobiological phenomena. The marine fossil record almost exclusively 

preserves relatively shallow-water (<200 m) sediments, so our glimpses of ancient deep-sea 

ecosystems are rare (Valentine et al. 2006). Almost all fossils are of well-skeletonized 

organisms, and among these, long-term changes in ocean chemistry influence when certain types 

of skeletonized organisms are likely to fossilize (Cherns et al. 2011). Fossil diversity is impacted 

by the availability and kind of fossiliferous sediments (Raup 1972; Peters 2005). More generally, 

disentangling biological from geological signal in interpreting the fossil record is a formidable 

analytical challenge. That paleontologists have built up a robust body of theory and evidence 

despite these biases is a lasting achievement of the paleobiological revolution.  

 

1.2 Crinoids 

Among the paleontologist’s witnesses to the changing ocean, only a handful are as 

fossiliferous or as iconic as the crinoids. Though extant crinoids are for the most part familiar 

only to the specialist, fossil crinoids were thoroughly dominant members of the marine benthos 

for much of the Paleozoic and Mesozoic, perhaps best attested to by the ‘encrinites’ or crinoidal 

limestones that in some Mississippian formations can spread across tens of thousands of square 

kilometers of outcrop (Kammer and Ausich 2006). Like all echinoderms (the group whose extant 

members also include sea stars, brittle stars, echinoids, and sea cucumbers), crinoids have 

pentaradial symmetry, a distinctive “water vascular system” of tube feet and an underlying 

network of hydraulic vessels, calcium carbonate skeletons, and low tolerance for especially high 
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or low salinities (Brusca et al. 2016). They are unique among the living echinoderm classes 

(including also urchins, sea stars, brittle stars, and sea cucumbers) in exclusively being passive 

suspension-feeders – that is, feeding on particles of food suspended in already-existing currents 

rather than creating their own feeding currents – and in being affixed to the substrate by a stalk 

for at least part of their ontogeny. Although the sister-group relationship of crinoids to all other 

living echinoderms is well established, their ancestry among the many extinct echinoderm 

groups is hotly debated, with an origin among the blastozoans or a group closer to other extant 

echinoderms, hinging on, among other things, the interpretation of homologies in feeding 

appendages and oral surfaces (Clausen et al. 2009; Guensburg et al. 2010, 2016, 2021; O’Malley 

et al. 2016). 

Despite sometimes being described as ancient or as reflecting the ancestral echinoderm 

condition (Feng et al. 2017), crinoids neither resemble the ancestor of crown- or stem-group 

echinoderms (Smith 2008) nor has their evolutionary history been static. Like many marine 

invertebrate groups (Thuy et al. 2017; Taylor 2020), their evolutionary history has two distinct 

phases on either side of the Permo-Triassic extinction event. They achieved their greatest 

diversity and disparity in the Paleozoic (Foote 1999), exploring a variety of body plans and 

ecologies (Kammer and Ausich 2006) and evolving several apparent anti-predatory adaptations 

(Syverson and Baumiller 2014; Syverson et al. 2018). All post-Paleozoic crinoids, referred to as 

the Articulata for the distinctive and complex articular facets in their arms (though some 

Paleozoic crinoids have these as well), share a last common ancestor among the poteriocrinines 

probably no earlier than the Permian (Simms and Sevastopulo 1993). Crown-group Crinoidea is 

inferred to have a similar age (Rouse et al. 2013), and several extant crinoid clades have their 

first appearances in the Triassic. Though never surpassing the morphological or taxonomic 
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diversity of Paleozoic forms (Foote 1999), Mesozoic crinoids evolved a number of distinctive 

morphologies and ecologies. During this time there appeared the cirriferous, free-living stalked 

isocrinids, the cirri-less hyocrinids, the squat, robust, and often bilaterally symmetrical 

cyrtocrinids, and the comatulids, all of which are represented among extant crinoids. This 

radiation also included stranger forms without obvious modern ecological analogues, like 

Seirocrinus and Traumatocrinus that lived suspended from floating driftwood, the tiny and 

putatively planktonic roveacrinids (Seilacher and Hauff 2004), the enormous, stalkless, probably 

free-lying uintacrinids (Gorzelak et al. 2017), and cold seep-associated crinoids with stalks 

pierced by long tubuli (Hunter et al. 2016). 

While articulate crinoids were undergoing this ecological and morphological 

proliferation, marine ecosystems were being restructured in a way that would eventually exclude 

stalked crinoids from shallow waters. The Mesozoic saw a proliferation of the groups that are 

today the most well-studied and probably the most important predators of crinoids: cidaroid, 

diadematoid, and camarodont urchins (Baumiller et al. 2010) and bony fish (Meyer 1985; 

Slattery 2010). Long-term changes in the global diversity of these echinoid clades are associated 

with incidences of probable echinoid predation on crinoids (Gorzelak et al. 2012). Apparently as 

a result of the spread of these groups of predators, stalked crinoids gradually disappeared from 

shallow-water sediments over the Cretaceous and Paleogene (Bottjer and Jablonski 1988; 

Whittle et al. 2018; Zamora et al. 2018a). Interestingly, stalked crinoids persisted in shallow 

water in the high-latitude Southern Ocean until the earliest Neogene, so it is possible that 

shallow-water durophagy became too intense for crinoids first in the tropics and only later at 

higher latitudes. Stalked crinoids today are restricted to the deep sea, where predation is less 

intense (Oji 1996; Veitch and Baumiller 2021), and their low diversity today relative to their past 
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diversity and to that of extant stalkless comatulids has been linked to this ecological restriction 

(Meyer and Macurda 1977). Only the comatulids remain in shallow water. 

 

1.3 Comatulids 

Comatulids today comprise most of crinoid diversity (612/672 species) and are a familiar 

sight to divers on coral reefs around the world (Messing 1997). Although their fossil record is 

relatively sparse and depauperate (Purens 2016), it is possible to reconstruct some important 

events in their fossil history. They first appear in the Hettangian (Early Jurassic) of Europe 

(Kristan-Tollmann 1988) and probably have their ancestry among the paracomatulids (Fig. 5.4, 

Paracomatula helvetica), which originated around the Triassic from isocrinid-like ancestors 

(Hagdorn and Campbell 1993). Like isocrinids (Fig. 2.1B), paracomatulids were free-living, 

bearing stalks composed of multiple cirrus-bearing columnals that during ontogeny were severed 

from the distal stalk cemented to the substrate. Unlike isocrinids, the paracomatulids had very 

short stalks made of just a few columnals fitted tightly together (Hess 2014). The major 

innovation of their comatulid descendants was the centrodorsal (Fig. 3.1), which evolved from a 

coalesced series of several cirriferous columnals (Hess 2014) but which arises during ontogeny 

from a single columnal (Kohtsuka and Nakano 2005). In a strictly anatomical sense, none of the 

comatulids are truly stalkless (Heinzeller 1998), so the term “stalkless crinoid” is only a term of 

convenience interchangeable with “feather star.” Notably, not all comatulids shed the stalk: 

several lineages of living and fossil stalked ‘bourgueticrinids’ are nested deep in comatulid 

phylogeny and do not appear in the fossil record until the Late Cretaceous, and probably 

represent paedomorphic reversions to a sessile, stalked lifestyle (Hess and Messing 2011). The 

Middle Jurassic – Early Cretaceous Thiolliericrinidae bear a cirriferous centrodorsal articulated 
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to a cemented stalk and represent another such reversion (Klikushin 1987). Comatulids are not 

the only crinoids to lose the stalk: the Carboniferous cladids Agassizocrinus and 

Paragassizocrinus (Ettensohn 1975, 1980), the Middle Triassic – Cretaceous roveacrinids (Hess 

et al. 2016), the Middle Jurassic millericrinid Ailsacrinus (Taylor 1983), and the Late Cretaceous 

uintacrinids (Gorzelak et al. 2017) all accomplished the same feat, and were probably capable of 

varying degrees of motility.  

The last five decades of research has supported the interpretation of many features of 

comatulid physiology, morphology, and behavior as anti-predatory adaptations, as well as the 

hypothesis that these features have permitted their persistence in shallow water. Most 

conspicuous and longest known is their relatively high motility: they crawl rapidly, many of 

them move in and out of hiding places diurnally (Meyer et al. 1984), and they can swim when 

stimulated by a potential predator (Janevski and Baumiller 2010). The loss of the stalk helped 

make comatulids light enough to swim, but isocrinids with fully autotomized stalks cannot swim 

(Nakano et al. 2002), so the especially light skeletons of comatulids (Baumiller and Labarbera 

1989) or some feature of muscular anatomy (Janevski and Baumiller 2010) may have also helped 

facilitate this behavioral innovation. Toxic metabolites distasteful to fish predators are 

widespread in shallow-water comatulids (Slattery 2010; Tinkova et al. 2014); these are absent in 

deep-water stalked crinoids (McClintock et al. 1999). Stalkless crinoids regenerate their arms 

faster than stalked crinoids (Amemiya and Oji 1992; Stevenson et al. 2017), and the 

configuration of arm branching and the spacing of articulations specialized for autotomy in the 

arms of stalkless crinoids match theoretical predictions for a predator-resistant feeding apparatus 

(Oji and Okamoto 1994). Despite this fearsome armament, arm loss to predators is widespread in 

comatulids, occurring on virtually every individual in some populations (Baumiller and 
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Stevenson 2018). The restriction of stalked but not stalkless crinoids was replicated across many 

lineages existing before the mid-Mesozoic ascendancy of marine durophages, so crinoids make 

one of the best case studies of a group whose evolutionary and ecological trajectory was 

demonstrably shaped by predators. 

Comatulids also show an interesting correspondence with geographic changes in diversity 

through time in other groups of marine organisms. Their modern diversity is greatest in the Indo-

West Pacific, with some islands on the Great Barrier Reef harboring dozens of species, but no 

Asian or Oceanian fossils are known from the Mesozoic. This pattern matches Renema’s (2008) 

model of a shifting diversity hotspot but has not been noted or investigated before. 

 Despite the interesting biological processes for which comatulids make a compelling case 

study, the clade has received limited study over the last 200 years. The paleontological literature 

comprises almost exclusively taxonomic works (but see, ex., Brom et al. 2015); neontological 

research includes taxonomy and natural history (e.g., Clark 1967; Messing and Dearborn 1990), 

studies on predation since the paleobiological revolution of the 70s (see above), molecular 

phylogenetics (Hemery et al. 2013; Rouse et al. 2013; Summers et al. 2014; Cohen and Pisera 

2017), and pharmacological research on the metabolites implicated in their toxicity to predators 

(Feng et al. 2017). The clade has received little comparative evolutionary biological study, their 

internal anatomy has been studied in only a handful of species (Hyman 1955; Balser and Ruppert 

1993; Heinzeller and Welsch 1994), their biogeographic history has never received any detailed 

treatment, no previous attempts have been made to infer the phylogenetic affinities of fossil 

comatulids, and their fossil record has rarely been put to analytical use. 

 

1.4 Overview 
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This dissertation is a consideration of comatulid evolutionary history with respect to 

several hypotheses on evolutionary responses to biotic interactions and abiotic changes. First, I 

present new findings on the diversity of respiratory anatomy in crinoids, and test the prediction 

that the highly mobile lifestyle that apparently enabled stalkless comatulids to remain in shallow 

water entailed a more sophisticated respiratory system. Next, I consider the geographic 

distribution of some anti-predatory features, recovering a curious latitudinal gradient in arm 

number for which abiotic correlates of latitude are poor explanations. Finally, I consider the 

historical biogeography of comatulids as an approach to the processes by which the global center 

of marine richness shifted through the Cenozoic. 

In chapter 2, I consider the different ecological strategies employed by stalked and 

stalkless crinoids in response to the mid-Mesozoic ascendancy of durophagous predators, and the 

consequences for the evolution of respiratory anatomy in this clade. I first use physiological 

modeling and new anatomical findings to demonstrate that an organ system in crinoids whose 

function was previously unknown must play some role in respiration, and that this role furnishes 

adaptive explanations for previously enigmatic morphological features in living and fossil 

crinoids. I show that the surface area of this system scales allometrically with body size to keep 

up with metabolic rate as would be expected for a respiratory system, and furthermore that the 

stalkless crinoids have more complex respiratory anatomy than stalked crinoids. This makes 

sense in light of anti-predatory adaptations in stalkless crinoids: many of them move in and out 

of cover diurnally and swim when stimulated by a predator, and we might expect their metabolic 

rates and respiratory demands to be greater in proportion to their greater motility.  

Chapter 3 is a companion paper to chapter 2: I describe the internal nervous and 

circulatory anatomy of the Cretaceous Decameros ricordeanus as it relates to the respiratory 
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principles discussed in the previous chapter. This species was larger than any extant comatulid, 

and its respiratory system was proportionally more complex. A survey of discrete and 

quantitative characters from external and internal anatomy in living crinoids aids in the 

phylogenetic placement of several fossils in the first phylogeny of fossil comatulids. 

Chapter 4 considers a curious phenomenon not previously reported. Stalkless crinoids 

near the equator have between 5 and 200 arms, whereas toward the poles they almost universally 

have 10 arms. This wedge-shaped relationship between arm number and latitude is symmetric 

about the equator, occurs in shallow and deep water, and is independent of the latitudinal 

gradient in species richness. A new non-parametric phylogenetic comparative approach shows 

that this phenomenon cannot be explained by the independent evolution of arm number and 

range on the comatulid phylogeny. Important environmental correlates of latitude such as 

temperature, productivity, and substrate are rejected as causes of this pattern on both mechanistic 

and statistical grounds. Instead, a latitudinal gradient in the intensity of predation provides a 

compelling explanation: feather stars with more arms can suffer more predator encounters while 

maintaining the ability to feed. Evidence that feather stars on tropical reefs experience especially 

intense predation supports this contention. Because different crinoid feeding ecologies are 

associated with different arm numbers, this study provides evidence for a latitudinal gradient in 

functional diversity apparently originating from a corresponding gradient in the intensity of 

predator-prey interactions. 

In chapter 5, I show that, even though comatulid crinoids are today most diverse in the 

Indo-West Pacific (IWP), neontological and fossil evidence independently indicate that they 

originated near what is now the Mediterranean. Ancestral range reconstruction on a phylogeny of 

extant comatulids supports an origin outside the IWP and elevated dispersal into it. Likewise, 
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novel taphonomic analyses indicate that the absence of comatulid fossils from their modern 

hotspot until the Oligocene is probably genuine, and new phylogenetic analyses indicate that 

much of the modern diversity of comatulids had originated before this group became established 

in the IWP. Thus, the shift in this group’s center of diversity occurred not by elevated origination 

in their modern hotspot but by intense Cenozoic dispersal into the region.  

I conclude the dissertation with a summary of the place of comatulids in the history of the 

oceans, a survey of outstanding questions touched on in the dissertation, and a reflection on the 

future of invertebrate paleontology. 
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CHAPTER 2 
 

Crinoid Respiration and the Distribution of Energetic Strategies Among Marine 

Invertebrates 

 

Preamble: The contents of this chapter have been published. The published version appears as: 

Saulsbury, J. 2020: Crinoid respiration and the distribution of energetic strategies among marine 

invertebrates. Biological Journal of the Linnean Society 129:244–258. Supplementary materials 

for this chapter are available at 

https://academic.oup.com/biolinnean/article/129/1/244/5613666?login=true#supplementary-data.  

 
2.1 Abstract 

During the Mesozoic, the radiation of durophagous marine predators caused the ecological and 

evolutionary diminution of once-successful groups, including stalked, suspension-feeding 

echinoderms known as crinoids. Feather stars, crinoids that shed the stalk during development 

and exhibit anti-predatory adaptations like high motility, defy this trend, as today they are 

widespread and diverse across ocean depths. As a ‘success story’ of the Mesozoic Marine 

Revolution, feather stars could reveal how some marine lineages succeeded in the face of 

increased predation over geologic time. However, current limited understanding of crinoid 

functional anatomy inhibits such study. Using microphotography, scanning electron microscopy, 

and computed tomography, I characterize the structure and variation of crinoid circulatory 

anatomy and explore differences between feather stars and stalked forms . Contrary to previous 

https://academic.oup.com/biolinnean/article/129/1/244/5613666?login=true#supplementary-data
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accounts, I find support for the role of coelomic circulation in crinoid respiration. This includes a 

previously undocumented case of positive allometry: larger crinoids have more complex 

circulatory anatomy. Moreover, quantitative analysis of coelomic anatomy shows that the 

circulatory system is generally more complex in feather stars than in stalked crinoids. The 

adaptations that allowed feather stars to persist in shallow water through geologic time 

apparently entailed an increase in the functional capacity of the circulatory system, possibly due 

to consistently greater metabolic rates.  

 

2.2 Introduction 

During the Jurassic and Cretaceous, the structure of marine ecosystems underwent a 

profound shift known as the Mesozoic Marine Revolution (MMR), chiefly represented by the 

rise of the major modern groups of eukaryotic phytoplankton and the concurrent radiations of 

multiple groups of marine grazers and durophagous predators (Vermeij 1977; Knoll and Follows 

2016). Evidence from the fossil record indicates that during this time marine animals became on 

average larger, fleshier, more well-defended against predators, and more motile, a transition 

which occurred not across the entire biota but by the success of some groups over others 

(Finnegan et al. 2011; Heim et al. 2015; Bush et al. 2016). Crinoids (Fig. 2.1) – passive 

suspension-feeding echinoderms that dominated benthic ecosystems during much of the 

Paleozoic and Mesozoic – have served as an important case study of a group in which success or 

failure across the MMR was apparently determined by aspects of life history. As durophagous 

predators like teleosts and echinoids radiated in the oceans, sessile or slow-moving stalked 

crinoids were restricted over the course of the Cretaceous and Paleogene to deep-water settings 

in which they encountered fewer predators (Meyer and Macurda 1977; Bottjer and Jablonski 
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1988; Oji 1996; Baumiller et al. 2010; Whittle et al. 2018). Feather stars (Fig. 2.1A), crinoids in 

the order Comatulida that shed their stalk during ontogeny, counterpose this trend: feather stars 

today are globally distributed in shallow- and deep-water settings, while also making up the 

majority of crinoid diversity (556/672 species; Appeltans et al., 2012). Their relative ecological 

and evolutionary success has long been attributed to the enhanced motility afforded by a stalkless 

lifestyle. Although some stalked crinoids crawl (Baumiller and Messing 2007), feather stars are 

also the only crinoids that change position diurnally, and many reef species only emerge at night 

when visual predators are relatively scarce (Meyer et al. 1984; Slattery 2010). Famously, 

members of many feather star subclades have been documented swimming, probably as a 

response to potential predators (Janevski and Baumiller 2010; Janevski 2011). Appropriate for a 

relatively motile existence, the feather star skeleton is lighter than that of stalked forms 

(Baumiller and Labarbera 1989). Feather stars may regenerate their arms as much as four times 

faster than stalked crinoids following autotomy (Amemiya and Oji 1992; Baumiller and 

Stevenson 2018), an ability which might be a result of a difference in metabolic rates. 

Importantly, feather stars are apparently paraphyletic: 2-4 lineages of comatulid crinoids are 

thought to have secondarily re-acquired sessility by retaining a cemented or rooted stalk into 

adulthood (Rouse et al. 2013). These stalked comatulids, referred to as bourgueticrinids and 

guillecrinids, are found exclusively in deep water despite occurring in shallow water in the deep 

past (Zamora et al. 2018b), substantiating the claim that feather stars can persist in shallow water 

as a result of their unique lifestyle.  

 As a group in which ecological and evolutionary success apparently hinged on a 

relatively energetic lifestyle, crinoids are an ideal group with which to test ideas about 

metabolism and the MMR. However, the current picture of crinoid physiology is rudimentary in 
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some important ways, precluding deep comparative study of energetic strategies. For example, 

the most common account of crinoid respiration holds that these animals absorb oxygen from 

their surroundings by way of the tube feet and water vascular system (Fig. 2.1C), and that this 

plus diffusion through the body wall suffices to meet respiratory demands (Farmanfarmaian 

1966; Schick 1983). This is the picture given in recent invertebrate zoology textbooks (Ruppert 

et al. 2004; Schmidt-Rhaesa 2007; Brusca et al. 2016) and appears to be widely accepted, but a 

simple theoretical approach suffices to show that it cannot be the only respiratory mechanism at 

work in crinoids. Harvey (1928) derived a model in which the maximum radius of a spherical 

body respiring via diffusion is given by the following equation: 

𝑟𝑟 = �6𝐶𝐶𝑜𝑜𝐷𝐷
𝐴𝐴

 (Eqn. 2.1) 

where Co is the ambient concentration of oxygen (atm), A is respiratory exchange rate (mL 

O2/g/min), and D (atm/cm/cm2) is a diffusion coefficient. Eqn. 2.1 can be used to estimate the 

maximum possible size of the crinoid calyx (Fig. 2.1C), one part of the crinoid central body that 

is large, subspherical, and full of respiring tissues (Heinzeller and Welsch 1994). This feature is 

isolated from the tube feet (Fig. 2.1C), so that even though the vast system of tube feet must be 

an effective absorber of oxygen, the calyx should nevertheless respire entirely by diffusion under 

the textbook model. Given a respiratory rate of 2.03E-4 mL O2/g/min (the lowest observed for a 

crinoid; the highest values are greater by a factor of 7; Baumiller & Labarbera, 1989), a typical 

marine oxygen concentration of 0.21 atm, and a diffusion coefficient of 1.1E-5 atm/cm/cm2 for 

connective tissue (Krogh 1941), I calculate a maximum radius of 2.61 mm for the crinoid calyx. 

This value is similar to Farmanfarmaian’s (1966) theoretical maximum for an echinoid, but many 

living crinoids exceed this liberally estimated maximum: calyces a centimeter or more in 

diameter are common among feather stars (Rasmussen 1961) and stalked crinoids (Roux and 
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Pawson 1999; Hess and Messing 2011) alike, to say nothing of giant extinct forms like 

Uintacrinus and Scyphocrinites that grew to exceed 6 cm in maximum diameter (Moore and 

Teichert 1978; Milsom et al. 1994). Either estimates of respiratory rate in crinoids are too high 

by one to several orders of magnitude, or crinoid respiration is more complex than is commonly 

assumed. Diffusion by itself is a viable mode of respiration for small animals, but many crinoids 

are not small. 

 The simple model of respiration stated above is not the only one that has been put 

forward. Holland & Grimmer (1979) demonstrated steady circulation of coelomic fluid at about 

1 mm/s in the arms of the feather star Florometra serratissima and suggested that it might play a 

role in respiration and several other key functions. The authors focused on the somatocoel, a 

system of mostly continuous coelomic cavities found throughout the arms and central body (Fig. 

2.1C). If their suggestion is correct, then coelomic circulation is not an alternative respiratory 

mechanism but a complementary one: the somatocoel is closely associated with the water 

vascular system, apparently separated by about 5 μm of tissue along the length of the arms 

(Grimmer and Holland 1979) – about the thickness of the blood-water barrier in fish gills 

(Hughes 1972). Thus, coelomic circulation could serve to transport the oxygen absorbed by the 

tube feet throughout the body. This possibility is worth exploring not just as an intrinsically 

interesting aspect of organismal biology, but also as a key to comparative work. The somatocoel 

is a large, morphologically complex, and physiologically important organ that is amenable to 

study across a variety of taxa. Any differences that may exist in the average metabolic rates of 

feather stars and stalked crinoids might be reflected in their circulatory anatomy. Moreover, a 

functional hypothesis for the somatocoel could be expected to furnish adaptive explanations for 

previously enigmatic aspects of morphology. 
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In this paper I demonstrate the probable role of coelomic circulation in key physiological 

processes in crinoids, including respiration and nutrient and hormone transport. I show that the 

coelomic circulatory system in feather stars has a greater surface area relative to body size than it 

does in stalked crinoids, and in larger taxa includes morphological features which are 

hypothesized to be respiratory adaptations. This work highlights the metabolic aspect of the 

evolutionary and ecological success of feather stars and underscores the importance of the 

Mesozoic Marine Revolution for understanding the distribution of energetic lifestyles among 

modern organisms. 

 
2.3 Methods 

2.3.1 Qualitative study 

I used microphotography, scanning electron microscopy (SEM), and X-ray micro-

computed tomography (μCT) to study the structure and variation of the crinoid somatocoel. This 

approach included multifaceted study of the somatocoel within the crinoid calyx, SEM 

characterization of skeletal structures associated with the coelom, complete three-dimensional 

reconstruction of the somatocoel across several distantly related taxa, and characterization of 

morphological variation in the context of crinoid phylogeny. In the multifaceted approach, μCT, 

microphotography, and SEM were used to reveal the structure of the coelom in the same 

specimen. SEM imagery of the skeleton focused on two aspects of skeletal morphology that are 

known to taxonomists but whose functional significance has not been previously remarked on: 

the “coelomic furrows” and “radial pits” (Rasmussen 1961; Hess and Messing 2011) that 

characterize the  inner surfaces of the calyx ossicles of some feather stars, and the rows of pits 

observed on the oral surfaces of some pinnule ossicles. Finally, I used μCT to reconstruct the 

entire coelomic circulatory pathway in several distantly related taxa. This can be facilitated by 
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iodine staining, but even in untreated specimens the course of coelomic cavities can be 

visualized with μCT if those cavities have not collapsed due to drying or been filled with clotted 

coelomic fluid (Boolootian and Giese 1959). The layout of soft tissues in the crinoid tegmen is 

exceptionally complex (Balser and Ruppert 1993), and I did not attempt to isolate the 

morphology or position of features such as the axial gland (Fig. 2.1C; sometimes referred to as 

the axial organ). Specimens were scanned at the University of Michigan CTEES facility with a 

Nikon 62 XT H 225ST industrial μCT system using a tungsten reflection target. Optimal scan 

settings were found to be 70-110 kV and 100-200 μA, with lower values for very small 

specimens. Some specimens were stained in 1% Lugol’s iodine stock solution for 24 hours 

before scanning to improve contrast in μCT, following Gignac et al. (Gignac et al. 2016). Three-

dimensional surfaces based on reconstructions of μCT scans were generated using the medical 

imaging software Materialise Mimics (Materialise NV, Leuven, Belgium). The use of computed 

tomography for studying echinoderm anatomy was reviewed by Ziegler (Ziegler 2012) and 

Aschauer et al. (Aschauer et al. 2010). SEM imaging was accomplished on the JEOL JSM-

7800FLV Scanning Electron Microscope at the University of Michigan EMAL facility. To 

visualize details of the crinoid skeleton, specimens were soaked in dilute bleach to dissolve soft 

tissues and to allow ossicles of the crinoid skeleton to be easily dissociated from one another. 

Microphotography was carried out with a Leica M165 C digital stereo microscope. Details of all 

specimens studied are given in the supplementary files.  

 

2.3.2 Morphometry of coelomic anatomy 

I used digital 3-D models of crinoid coelomic and skeletal anatomy to test for allometric 

scaling of the crinoid somatocoel, and to test for differences in the morphological complexity of 
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the coelom between feather stars and stalked crinoids. The premise of the first test is as follows: 

if coelomic anatomy is totally unimportant for respiration, then the coelom should scale 

isometrically – that is, with geometric similarity across sizes. Following LaBarbera (Labarbera 

1986), a reduced major axis (RMA) regression of coelomic surface area against the biovolume of 

a relevant anatomical region would have a slope of 2/3 in log-log space. However, if coelomic 

circulation does play an important role in crinoid physiology, then isometric scaling would result 

in deleterious effects like suffocation at larger sizes (Haldane 1926). In this scenario, the surface 

area of the coelomic lining should scale with positive allometry to “keep up” with metabolic 

demand, which scales with volume.  

An RMA linear regression of log metabolic rate against log wet mass, using the 15 

crinoid data points from Baumiller & LaBarbera (1989), returns a slope of 0.928 (95% 

confidence interval: 0.715-1.206); this is the slope expected in a regression of coelomic surface 

area against biovolume if coelomic circulation is important for respiration. I tested for allometry 

within feather stars, within stalked crinoids, and across the entire dataset by comparing the slopes 

of RMA regressions, implemented in R with the lmodel2 package (Legendre 2018). I also 

tentatively evaluated within-species scaling for the handful of species that spanned at least a two-

fold range of body size (calyx volume). 

I tested for a difference in the complexity of coelomic morphology between feather stars 

and stalked crinoids in a model selection framework. Ordinary least squares regression assumes 

that predictor variables are known without error and are controlled by the investigator, and tends 

to underestimate slopes relative to RMA regression, which makes it undesirable for allometry 

studies (Labarbera 1986). However, no readily accessible implementations of RMA or other 

model II regressions include calculations of likelihood. Thus, this approach cannot be used in 
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model selection with the Akaike information criterion (AIC), which discriminates among 

competing models based on likelihood and the number of estimated parameters. For this reason I 

used ordinary least squares (OLS) regression for model selection. AIC scores were used to 

compare linear regressions for two models: in one, estimated coelomic surface area was 

regressed against both calyx volume and a binary variable indicating the presence or absence of a 

stalk; in the other, only calyx volume was included as a predictor. Model selection was 

implemented in R. 

In generating 3-D models for morphometry, coelomic surface area is estimated as the 

surface of the interface between the skeleton and the coelomic cavities, with the model ending at 

the oralmost extent of the calyx. This definition underestimates true surface area of the coelom 

within the calyx because some coelomic tissue within the calyx is uncalcified. However, it 

allows for consistent measurement across specimens whose soft tissues may not appear clearly in 

μCT scans, and provides a reasonable estimate of the surface available for diffusion of oxygen, 

nutrients, etc., from the coelomic fluid into the surrounding tissue. This definition also assumes 

that the radial cavity is fully lined by coelomic lining, which Heinzeller & Welsch (1994) found 

to be true in the few crinoids examined histologically. I generated and measured the volume of 3-

D models of the calyx, including any cavities in the skeleton occupied by nervous tissue. 

Delimiting the calyx is straightforward in feather stars, in which it includes the centrodorsal, 

basal, and radial ossicles, but it is less straightforward in stalked crinoids, in which the calyx 

grades smoothly into the stalk in some taxa (e.g. in Democrinus). In cases in which such a distal 

cutoff was not straightforward to define, I chose the most conservative (smallest) estimate of 

calyx volume, as this would have the greatest tendency to refute the hypothesis that feather stars 

have more coelomic surface area for a given calyx volume. For isocrinids, this definition 
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encompassed the radials and basals only; for other stalked crinoids (Phrynocrinus and 

Democrinus) the position of the aboral nerve center along the crinoid axis served as the aboral 

cutoff. 

Following Mandelbrot (1967), the measured perimeter of a statistically self-similar shape 

increases non-asymptotically with increasing resolution of measurement. It is not clear whether 

crinoid coelomic anatomy is fractal-like in this way, but changing the resolution of 3-D models 

of complex objects clearly changes their measured surface area. Indeed, if 3-D models of larger 

specimens tended to have greater resolution, larger specimens might spuriously appear to have 

more complex internal anatomy. For this reason, I recorded the file size of 3-D models in 

kilobytes to test for the effect of model quality on scaling patterns. 

Finally, individuals (not species) in the scaling study were scored for the presence or 

absence or coelomic diverticula, extensions of the somatocoel from the axis (center) of the calyx 

outward. Diverticula were marked “present” if they extended laterally at least halfway between 

the axis and the outer margin of the radials. 

 

2.4 Results 

2.4.1 Qualitative study 

I integrated microphotography, SEM, and μCT data to establish a detailed picture of 

crinoid coelomic morphology and its variation across crinoid phylogeny, building on previous 

histological and physiological studies (Hyman 1955; Grimmer and Holland 1979; Balser and 

Ruppert 1993; Heinzeller and Welsch 1994; Mozzi et al. 2006; Engle 2012). μCT-based 

reconstructions of the course of the somatocoel through the arms, tegmen, and calyx of various 

crinoids (Fig. 2.2) support the picture of circulatory anatomy given for the feather star 
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Florometra serratissima by Grimmer & Holland (1979) and reveal new insights as well. Each 

crinoid arm bears two broad canals: an aboral canal in which fluid passes out into the arms, and 

an oral canal (subtentacular canal) in which fluid is returned to the axis. (Each arm also contains 

haemal cavities, a genital coelomic canal, and the canals of the water vascular system, but these 

are typically too small or too deformed to visualize with μCT, although Engle [2012] succeeded 

in reconstructing water vascular features in 3-D from histological slides.) The oral and aboral 

arm canals each send a single offshoot into each pinnule and communicate with each other, both 

in the distal parts of the arms and pinnules, and also intermittently along their entire lengths 

(Grimmer and Holland 1979; Engle 2012). The aboral canal in the pinnules bears a row of 

densely ciliated pits which apparently help drive the flow of coelomic fluid (Grimmer and 

Holland 1979). Fluid transport systems driven by ciliary beating are notably rare among animals 

compared to pump-driven systems, which may explain why the crinoid circulatory system does 

not obey Murray’s law of vessel branching (LaBarbera 1990). Although ciliated pits do not 

appear clearly in μCT scans, they correspond to distinctive skeletal signatures visible with SEM 

(see below).  

The bundle of coelomic canals in the calyx, typically referred to as the axial sinus, is 

linked to the aboral coelomic canal in the arms by an anastomosing network of canals. This 

network forms the base of the tegmen and constitutes the plane of separation when the tegmen is 

autotomized in a typical anti-predatory response (Mozzi et al. 2006; Bobrovskaya and Dolmatov 

2014; Kalacheva et al. 2017). Between the point at which the oral coelomic canals enter the 

tegmen and subsequently enter the calyx, offshoots of the somatocoel arise in some taxa, which 

interface with the digestive tract in an exceptionally complex way. At these interfaces the linings 

of the digestive tract and coelom interdigitate extensively, such that they share a relatively large 
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surface area (see below for the possible functional significance of this interface). Where the five 

oral coelomic canals enter the tegmen, they come together in the pattern of 2-1-2 symmetry that 

defines the body plans of crinoids and many extinct echinoderm lineages (Kammer et al. 2013). 

Importantly, both the oral and aboral canals enter the calyx, with the aboral canals forming a ring 

lateral to the oral ones. This indicates that coelomic fluid would flow through the calyx rather 

than past it, and legitimizes treating the axial sinus as part of the circulatory system. 

SEM and microphotography reveal several important new aspects of crinoid circulatory 

physiology and anatomy. SEM images of sectioned crinoid calyces show that the coelomic lining 

in the calyx generally conforms to the skeleton (Fig. 2.2C-E), but includes some ‘free-standing’ 

tissue as well (Fig. 2.2H), confirming the prediction made above that the surface area of the 

skeletal cavities underestimates true coelomic surface area. The internal surface of the coelom in 

the calyx is lined by long, whip-like features whose width (~0.3 μm) and length (~10 μm) 

identifies them as cilia. Thus, the axial sinus appears to bear the same general ciliation that 

Grimmer & Holland (1979) observed in other parts of the somatocoel credited with helping drive 

circulation. Curiously, the internal surface of the coelom in the calyx also features evenly-spaced 

globules ~2 μm in diameter (Fig. 2.2D-E). The nature of these structures is unclear but should be 

amenable to histological study. 

SEM reveals a single row of pits in the ambulacrum of pinnule ossicles in most species of 

crinoids studied (Fig. 2.2I). These pits are of similar diameter, spacing, and position as the 

ciliated pits that line the coelom in the pinnule, and they are suggested to be receptacles of those 

ciliated pits. Rows of pits in the pinnule ossicles of the feather stars Davidaster rubiginosus and 

Comactinia echinoptera have been observed previously but not remarked on (Macurda and 

Meyer 1975). Moreover, histological studies (Grimmer and Holland 1979; Heinzeller and 
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Welsch 1994) have described ciliated pits in the stalked isocrinid Neocrinus decorus and the 

feather star Florometra serratissima, and I have observed skeletal correlates of these pits in the 

pinnule ossicles of both species. The existence of skeletal features that correspond to ciliated pits 

is especially interesting, because it can be used to infer coelomic circulation in well-preserved 

fossil crinoids. Not all pinnule ossicles have receptacles for ciliated pits in those taxa that have 

them, but I detected no pattern in the distribution of ossicles with and without pits around the 

body. The only taxon in which these pits were not observed was a single specimen of Holopus 

rangii (Cyrtocrinida),  a highly derived form in which several major internal organs have 

apparently been lost (Grimmer and Holland 1990). 

 

2.4.2 Coelomic diverticula 

A coelomic diverticulum is an outward extension, either radial or interradial, of the axial 

sinus (part of the somatocoel) within the calyx. Radial diverticula may be oriented laterally or 

aborally (corresponding to the coelomic furrows and radial pits of the taxonomic literature, 

respectively), whereas interradial diverticula are apparently always lateral. The skeletal cavities 

that house coelomic diverticula are conspicuous and morphologically complex (Fig. 2.3), and 

many authors have used them for taxonomy (Clark 1915a; Rasmussen 1961; Hess and Messing 

2011; Taylor 2015). However, to date, the functional and anatomical significance of coelomic 

diverticula in crinoids has been only minimally remarked on (e.g., Clark, 1915b, p. 374-376). 

In this study, μCT scans revealed a spectacular diversity of coelomic diverticula in the 

calyces of some feather stars (Fig. 2.3), ranging from spacious conical pits (Notocrinus virilis) to 

fan-shaped complexes of anastomosing canals (Amphimetra ensifera) to simple nub-like 

projections (Analcidometra armata). In some taxa (e.g., Pterometra pulcherrima, Fig. 2.3), 
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aboral coelomic diverticula open onto the surface of the calyx, although the coelomic cavity 

probably does not communicate directly with the surrounding seawater. Openings like these 

probably constitute the dorsal star described in several extinct taxa (e.g. Semiometra 

[Rasmussen, 1961]). Almost all feather stars with prominent coelomic diverticula are restricted 

to a single sub-clade of feather stars: the smallest clade that includes Notocrinus, Aporometra, 

Himerometroidea, some Tropiometroidea, and Antedonidae (Hemery et al. 2013; Rouse et al. 

2013). The only exception was a very large specimen of Davidaster rubiginosus, which belongs 

to a separate subclade including Comatulidae and Thalassometridae (Fig. 2.3). The most 

morphologically complex circulatory apparatus is seen in the giant extinct feather star 

Decameros ricordeanus, which a recent phylogenetic analysis places close to the 

Tropiometroidea and Himerometroidea (Saulsbury and Zamora 2019a). The handful of fossil 

genera attributed to the family Notocrinidae uniformly bear radial pits, but their phylogenetic 

affinities have not been tested (Hess and Messing 2011).  

Coelomic diverticula must have either arisen several times, been lost several times, or 

both, as many extant families and some extant genera (e.g.,. Davidaster) include some 

representatives with this feature and some without it (Fig. 2.3). The pattern of gains and losses of 

coelomic diverticula may be clarified as several groups currently considered polyphyletic (e.g., 

Antedonidae, Tropiometroidea) undergo systematic revision. Importantly, nearly all feather stars 

that bear coelomic diverticula are large (typically with a calyx > 20 mm3 in volume; Fig. 2.4) 

(see below). Regardless of the presence or absence of diverticula, the somatocoel is aborally 

invaginated into the calyx to some degree in all feather stars, whereas this is not the case in the 

stalked bourgueticrinids studied here. 
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2.4.3 Scaling study 

Estimated coelomic surface area scales with positive allometry across the entire dataset  

(Table 1). Among feather stars (40 specimens in 29 species), the natural log of coelomic surface 

area regresses (RMA) against the natural log of calyx volume with a slope of 0.932 (Fig. 2.4). 

The 95% confidence interval on the slope of the regression (0.824 – 1.055) includes unity and 

the scaling exponent for mass metabolic rate (0.928) but not isometry (0.667). All feather stars 

with calyces larger than 6 mm3 (max observed: 416.12 m3) have coelomic diverticula. Small 

feather stars generally lack this feature, with Analcidometra armata the single exception. 

Specimens of this species nevertheless fall on the regression line and have markedly less 

complex coelomic features than other members of the same family (Colobometridae; Fig. 2.3). 

Coelomic surface area therefore scales with positive allometry, and in larger feather stars this 

manifests as coelomic diverticula.  

Positive allometry is observed in stalked crinoids (14 specimens in 7 species), although 

with less clarity than in feather stars and with an interesting caveat. An RMA regression 

including all stalked crinoids returned a slope of 0.916 (Table 1), and the confidence interval on 

the slope (0.665 – 1.262) barely includes isometry at its lower end. The genus Democrinus is a 

conspicuous exception, as it exhibits isometric scaling of coelomic morphology (RMA 

regression slope: 0.675; Table 1). As such, the 3-D surfaces isolated for analysis in this taxon 

might not have the same functional significance as those of the other taxa studied. However, 

because the calyx of Democrinus contains no other plausible respiratory surfaces, these data 

points probably overestimate respiratory surface area. 

RMA regression slopes exceed isometry in all four species whose sampling encompasses 

a broad range of body sizes (the stalked crinoids Endoxocrinus parrae and Neocrinus decorus 
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and the feather stars Analcidometra armata and Cenometra bella), but sample sizes are low and 

confidence intervals on all slopes are very broad (Table 1). Curiously, two species (Cenometra 

bella and Neocrinus decorus) exhibit very weak relationships between calyx volume and 

coelomic surface area, despite each encompassing a roughly 2.5-fold range of body size (Fig. 

2.4). In fact, the largest C. bella studied has the lowest coelomic surface area within the species. 

I recover a weak but positive correlation between body size and 3-D model quality in log-

log space (R2 = 0.122, p = 0.0096; Supplementary materials): the limits of the μCT scanner used 

in this study prevented the acquisition of very high-quality 3-D models of very small crinoids. 

However, excluding the smallest crinoids (calyx volume less than 20 mm3) causes this 

correlation to disappear, and positive allometry is still observed among feather stars (RMA 

regression slope = 0.877) and among stalked crinoids (slope = 0.927) when the smallest 

specimens are excluded in this way (Table 1). 

All 14 data points for stalked crinoids fall below the regression line for feather stars. The 

intercept of the RMA regression line for stalked crinoids is roughly one log unit below that for 

feather stars (Table 1). More compellingly, the OLS regression model for the entire dataset in 

which a binary variable specifying stalk presence/absence is included as a predictor along with 

calyx volume is overwhelmingly supported over the model including only calyx volume (Table 

2). Thus, by the metrics used in this study, coelomic anatomy is more complex in feather stars 

than in stalked crinoids of similar body size. Importantly, the stalked crinoids used in this 

analysis comprise several distantly related lineages, including two families of bourgueticrinids, 

which secondarily acquired a sessile habit.  

 

2.5 Discussion and conclusions 
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2.5.1 Function and evolution of coelomic circulation in crinoids 

Qualitative and quantitative investigations support a role for coelomic circulation in 

crucial physiological functions. Most notable among these is respiration, as the range of body 

sizes observed among crinoids is satisfactorily explained by the model proposed here but not by 

the explanation given in textbooks on invertebrate zoology. The tube feet and the rest of the 

water vascular system are no doubt effective oxygen absorbers, but because the water vascular 

system is restricted to the oral side of the body and has no ability to circulate fluid, it cannot 

deliver oxygen to the rest of the body. Following the theoretical approach developed above, a 

crinoid with a roughly spherical calyx much larger than 2 or 3 mm in diameter would suffocate if 

oxygen were supplied to it only by diffusion from the outside. Conversely, continual 

replenishment of the coelomic canals in the center of the calyx with oxygenated coelomic fluid, 

as argued for here, would permit a substantial increase in the maximum calyx diameter possible 

and, hence, the maximum possible body size. To follow this logic further, diffusion of oxygen 

from outside and from coelomic canals in the axis might not suffice for an even larger crinoid, or 

one with a higher metabolic rate. In this light, coelomic diverticula in feather stars can be 

interpreted as respiratory adaptations: a sufficiently large feather star would suffocate without 

them. Perhaps most importantly, the role of coelomic circulation in surface area-limited 

physiological functions like gas exchange explains the allometric scaling observed in this study, 

of which coelomic diverticula are an expression. This scaling pattern is not a spurious result of 

phylogenetic autocorrelation – for example, the concentration of all large feather stars in a single 

clade that happened to have a complex circulatory layout. Rather, positive allometry is observed 

within many clades, with large forms often bearing coelomic diverticula and small forms lacking 

them (Fig. 2.3). These diverticula take on disparate and clade-specific forms. In other words, 
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feather stars achieve positive allometry in many different ways. Positive allometry is also 

observed independently in stalked crinoids, although stalked forms have less complex coelomic 

morphology than feather stars of equal size (Fig. 2.4; see below). Notably, a respiratory role for 

coelomic circulation in crinoids brings the group in line with the four other living classes of 

echinoderms, all of which are thought to incorporate coelomic circulation into their respiration in 

some way (Hyman 1955; Farmanfarmaian 1966; Schick 1983; Brusca et al. 2016). Crinoids also 

share a propensity to record their circulatory anatomy in detail as skeletal impressions with 

inarticulate brachiopods, blastoids, rhombiferans, and stromatoporoids (Boardman et al. 1987; 

LaBarbera and Boyajian 1991). 

Some species exhibit quite weak relationships between calyx volume and coelomic 

surface area, in part because the range of body sizes within a species is much less than the 500-

fold range of body sizes in the whole dataset. Three non-mutually exclusive explanations could 

explain the poor fit within some species, and the somewhat wide spread around the regression 

line more generally. First, the morphological-functional system studied here may not exhibit a 

high degree of symmorphosis, the condition characterized by a close fit between structural 

design and functional demand (Weibel et al. 1991). In other words, the functional capacity of the 

crinoid circulatory system may greatly exceed the demands placed on it during the life of a 

typical individual. Alternatively, if the 3-D surfaces isolated for morphometry are noisy proxies 

for functional capacity, that noise could obscure a truly close relationship between metabolic 

demand and functional capacity. A third possibility is that metabolic demand might vary widely 

among individuals of the same species, such that an individual that was especially active, lived at 

relatively high temperatures, or that lived in stagnant or oxygen-poor water would need a more 
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extensive circulatory apparatus than conspecifics of the same body size. This final option is 

especially interesting as it relates to phenotypic plasticity, and should be amenable to testing. 

Two simple theoretical exercises can test and potentially refute a role for coelomic 

circulation in respiration. First, the total volume of oxygen delivered by internal circulation to the 

crinoid calyx (the body part isolated for much of this study’s analyses) can be compared to the 

calyx’s oxygen demands. If the respiring calyx requires much more oxygen than circulation 

delivers, internal circulation would have a negligible impact on respiratory biology. In fact, a 

generous estimate of oxygen consumption represents only 15% of the estimated total volume of 

oxygen delivered to the calyx (Supplementary Information). This is probably an overestimate 

because some of the calyx is made up of non-respiring stereom. As a second test, one can ask 

whether the cost of driving coelomic circulation is much less than the amount of oxygen 

consumed by the entire animal. If not, the utility of coelomic circulation would be questionable. 

The power required to drive coelomic circulation with perfect efficiency through the coelomic 

vasculature of a typical feather star (Tropiometra carinata) turns out to be about three orders of 

magnitude less than the lowest recorded metabolic rate of any feather star (Supplementary 

Information). Even if coelomic circulation is very inefficient, its cost probably represents a small 

fraction of total metabolic rate. 

A theoretical consideration of the diffusion of oxygen in the body indicates that the 

somatocoel is probably a respiratory organ, but coelomic circulation likely plays a role in 

nutrient transport, hormone transport, and regeneration of autotomized body parts as well, not 

least because metazoan circulatory systems are typically “for” more than one thing (Schmidt-

Rhaesa 2007). Circulation of coelomic fluid probably serves to transport nutrients throughout the 

body, especially in light of the discovery reported here that the digestive tract and axial sinus 
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interface via highly branched outpocketings in at least some taxa (Fig. 2.2B). The somatocoel 

might also play a role in hormone transport: the axial gland, a feature of probable endocrine 

function (Holland 1970), is situated axially within the somatocoel (Fig. 2.1C), and coelomic 

circulation would be an appropriate mechanism for distributing hormones throughout the body. 

Lastly, investigations into arm regeneration in crinoids reveal that growth of a developing arm 

bud recruits coelomocytes from the somatocoel in the arm (Candia Carnevali and Bonasoro 

2001; Kondo and Akasaka 2010). This process is probably facilitated at least in part by coelomic 

circulation. 

CT, microphotography, and SEM have considerable power to reveal the morphology and 

variation of anatomical features but are limited in their resolution. In particular, experimental 

physiology and the fine structure of soft tissues are outside the scope of this study. Histological 

work on echinoderms is challenging because of their dense and extensive skeletons, and is 

doubly so when studying features that are closely associated with the skeleton. Nevertheless, 

decalcification methods have been successfully used to prepare echinoderm tissues for 

transmission electron microscopy (Dietrich and Fontaine 1975). Likewise, the difficulties of 

crinoid husbandry are not insurmountable. Future histological and experimental physiological 

work on the crinoid circulatory system and its associated organs will facilitate important tests of 

the functional hypotheses explored in this paper.  

 

2.5.2 Feather stars, energetics, and the MMR 

Morphometry of crinoid internal anatomy reveals that a greater surface area of the coelom is 

exposed to the calyx in feather stars than in stalked crinoids of the same calyx size. The distance 

over which oxygen diffuses in the calyx is lower in feather stars, and larger feather stars have 
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morphological adaptations that keep this distance low. These findings imply that feather stars 

have generally higher metabolic rates than their stalked relatives. Such an insight is interesting in 

light of the considerable differences in the life history and evolutionary histories of the two 

groups, and is worth pursuing experimentally. In particular, estimating metabolic rates for co-

occurring assemblages of stalked crinoids and feather stars would circumvent issues that have 

dogged past attempts at interspecific comparison of metabolic rates (Baumiller and Labarbera 

1989), although considerable difficulties are associated with estimating standard metabolic rate 

among deep-sea crinoids. More germane to the present investigation, the use of coelomic surface 

area as a rough proxy for metabolic rate should be scrutinized in a laboratory setting. The extent 

of coelomic diverticula varies substantially within some feather star species, hinting that this 

feature may be subject to adaptive phenotypic plasticity. 

 Importantly, this study does not examine metabolic rate directly. Comparative study of 

metabolism across Crinoidea has been frustrated by the difficulties of maintaining crinoids in 

captivity and the challenges of taking standardized and reliable measurements from stalked 

crinoids, all of which inhabit deep waters (Baumiller and Labarbera 1989). Nevertheless, 

approaches to measuring metabolic rate in deep-sea organisms have become far more 

sophisticated in recent years (McClain et al. 2012). Seibel & Dranzen (2007) found that motility 

corresponds closely to metabolic rate among marine animals after taking body mass and 

temperature into account, suggesting that experimental physiological work on crinoids should 

support the metabolic hypothesis laid out here. An interesting corollary hypothesis is that 

variation in metabolic rates among different kinds of stalked crinoids should correspond to 

differences in life history as well. Specifically, isocrinids – motile stalked crinoids – can crawl 
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away from urchin predators (Baumiller et al. 2008) and might be expected to be energetically 

intermediate between feather stars and truly sessile crinoids. 

 Feather stars have long been considered emblematic of the Mesozoic Marine Revolution 

and the changes in the marine biota during this time. Like gastropods, bivalves, irregular 

echinoids (Vermeij 1977), and coralline algae (Steneck 1983), feather stars possess a suite of 

anti-predatory adaptations that are thought to have promoted their evolutionary and ecological 

success across the MMR. These include greater motility, toxic flesh, and rapid regeneration 

(Meyer and Macurda 1977; Slattery 2010; Baumiller and Stevenson 2018). Today feather stars 

are present throughout most of the world ocean and are some of the most conspicuous and 

abundant organisms on many coral reefs, while their stalked relatives are relatively species-poor 

and restricted to the deep sea. In addition to shedding light on circulatory physiology, the present 

work illuminates the energetic aspects of the persistence of feather stars in shallow water: their 

suite of anti-predatory adaptations appears to be facilitated in part by enhanced respiratory 

capabilities, and potentially by greater metabolic rates. 
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Fig. 2.1. Crinoid life habit and anatomy. (A) The feather star Tropiometra afra in life position. 

Shallow reef, Okinawa Island, Japan. Photo © Gustav Paulay. (B) The stalked crinoid 

Cenocrinus asterius in life position. Roatan, Honduras, depth: ~150 m. Photo © Charles G. 
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Messing. (C) Idealized crinoid internal anatomy, cross-section through the central body with the 

calyx at the bottom, an arm and cirrus on the right, and a pinnule at top. Black arrows depict the 

pattern of coelomic fluid flow as described by Grimmer & Holland (Grimmer and Holland 

1979). Note the lateral projection of the somatocoel in the calyx, referred to here as a coelomic 

diverticulum. The canals of the water vascular system are much smaller than the somatocoel, and 

are shown as a single line. The complex interface between the gut and somatocoel is represented 

by a simple interfingering at left of center. 
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Fig. 2.2. Qualitative characterization of crinoid coelomic anatomy. (A) Feather star Tropiometra 

carinata: 3-D model of the internal anatomy generated from μCT scan data, showing general 

configuration of somatocoel (red) and gut (orange) (skeleton translucent). The oral arm coelom 

(o) passes over the gut before descending into the axis, while the aboral arm coelom (ao) passes 

under (aboral to) the gut. (B) Feather star Heliometra glacialis: cross section of 3-D models of 

gut and somatocoel showing complex interface between somatocoel and gut, including branching 

processes of the somatocoel (bp) that conform to the gut, and thin outpocketings of the gut (op) 

in the vicinity of the somatocoel. Color code as in 2.2A. (C—D) Feather star Davidaster 

rubiginosus: SEM image of the inside of calyx interior, showing coelomic lining of a single 

diverticulum. Calyx has been sanded down from the side. (C) View of entire diverticulum. (D) 

Enlargement of region within white rectangle in 2C. Thin cilia (c) and evenly-spaced globular 

features of unknown affinity cover the coelomic lining. (E—F) Feather star Cenometra bella. (E) 

SEM image of the coelomic lining in the calyx axis showing the same cilia and globular features. 

(F) SEM image of the inner surface of the centrodorsal, bleached to remove soft tissues and 

reveal the cavity in the skeleton corresponding to a single coelomic diverticulum. Calyx axis at 

top. (G) Cretaceous feather star Decameros ricordeanus: photograph of inner surface of the 

centrodorsal revealing a complex system of canals corresponding to coelomic diverticula. (H) 

Feather star Tropiometra carinata: Photograph of inner surface of unbleached centrodorsal, 

showing configuration of coelomic lining within cavities in the skeleton. (I) Feather star 

Florometra serratissima: SEM image, oral view of single pinnule ossicle. The row of pits along 

the center of the pinnular correspond in size, shape, and spacing to densely ciliated pits in the 

somatocoel. Specimens listed in the online supplementary materials. ao, aboral arm coelom; bp, 

branching processes; c, cilia; cc, centrodorsal cavity; d, coelomic diverticulum; o, oral arm 
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coelom; op, outpocketings of the gut. Scale bars: (A, B, G), 4 mm; (C, F, I), 200 μm; (D), 1 μm; 

(E), 5 μm; (H), 1 mm. 

 

 

 

Fig. 2.3. Coelomic morphology in the crinoid calyx across body size and phylogeny. The 

relationships depicted in the phylogeny at center are based on those of Hemery et al. (2013) (Fig. 

1), Cohen & Pisera (2017), and Rouse et al. (Rouse et al. 2013) (Fig. 2). The position of the 

fossil feather star Decameros is based on Saulsbury & Zamora (2019). 3-D models shown are the 

same ones used to calculate calyx volume and coelomic surface area. Abbreviations: Aa, 

Analcidometra armata; Ae, Amphimetra ensifer; Cca, Calometra callista; Cb, Cenometra bella; 
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Ccr, Comatonia cristata; Cs, Comaster schlegelii; Dd, Davidaster discoideus; Dri, Decameros 

ricordeanus; Dru, Davidaster rubiginosus; Ei, Eudiocrinus indivisus; Ep, Endoxocrinus parrae; 

Hg, Heliometra glacialis; Ij, Iconometra japonica; Kp, Koehlermetra porrecta; Lp, 

Lamprometra palmata; Nd, Neocrinus decorus; Nv, Notocrinus virilis; Pm, Ptilometra 

macronema; Pp, Pterometra pulcherrima; Ss, Stylometra spinifera; Zc, Zygometra comata. 

 

 

Fig. 2.4. Coelomic scaling in feather stars and stalked crinoids. Regression lines are shown for 

feather stars and stalked crinoids, along with 95% confidence intervals on the slopes. Isometric 

scaling lines (2/3 slope) are shown for comparison. See the text for definitions of surfaces and 

volumes isolated for analysis. All shapefiles used in this analysis are available in the 

Supplementary Data. 
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Table 2.1. RMA regressions of coelomic surface area against calyx volume for different subsets 

of the dataset. N is sample size. 

 

 

Table 2.2. Model selection results for the test for a difference in coelomic surface area between 

stalked crinoids and feather stars, indicating overwhelming support for a linear model in which 

stalk presence is included as a predictor. Log likelihoods, ∆AIC scores, Akaike weights, and 

parameter estimates are given. The response variable y is the natural log of coelomic surface 

area, and the predictor variable is the natural log of calyx volume. S is a Boolean variable 

indicating presence (1) or absence (0) of a stalk.  
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CHAPTER 3 

The Nervous and Circulatory Systems of a Cretaceous Crinoid: Preservation, 

Palaeobiology, and Evolutionary Significance 

 

Preamble: The contents of this chapter have been published. The published version appears as: 

Saulsbury, J., and S. Zamora. 2020: The nervous and circulatory systems of a Cretaceous 

crinoid: preservation, paleobiology and evolutionary significance. Palaeontology 63:243–253. 

Supplementary materials for this chapter are available at 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.rf7c284.  

2.1 Abstract 

Feather stars, those comatulid crinoids that shed their stalk during their ontogeny, are the 

most species-rich group of modern crinoids and the only ones present in shallow water today. 

Although they are of considerable paleontological interest as a ‘success story’ of the Mesozoic 

Marine Revolution, their fossil record is relatively species-poor and fragmentary. New Spanish 

fossils of the Cretaceous feather star Decameros ricordeanus preserve the shape and 

configuration of nervous and circulatory anatomy in the form of infilled cavities, which we 

reconstruct from CT scans. The circulatory system of D. ricordeanus was relatively extensive 

and complex, implying a pattern of coelomic fluid flow that is unique among crinoids, and the 

peripheral parts of the nervous system include linkages both to the circulatory system and to the 

surface of the body. A phylogenetic analysis – the first to include both living and fossil feather 

stars and which includes characters from internal anatomy – recovers D. ricordeanus among the 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.rf7c284
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lineage of feather stars that includes Himerometroidea, Tropiometra, and “Antedonoidea,” 

among others. D ricordeanus is larger than almost any modern feather star, and its elaborate 

coelomic morphology appears to be a consequence of positive allometry. All feather stars with 

coelomic diverticula are shown to belong to a single comatulid subclade, and this feature may 

constitute a synapomorphy of that group. Some preservation of cavities corresponding to soft 

tissue is probably not exceptional in fossil crinoids, providing an opportunity to study the 

diversity and evolution of extinct anatomical systems typically only preserved in Lagerstätten.  

 

2.2 Introduction 

During the Mesozoic, the rise of the major modern groups of eukaryotic phytoplankton 

and the concurrent diversification of marine grazers and durophagous predators initiated (or 

constituted) a broad shift in the structure of marine ecosystems known as the Mesozoic Marine 

Revolution (MMR). Crinoids have provided an important case study as “victims” of the MMR: 

as durophagous predators like teleost fishes and echinoids became more prevalent in shallow 

marine ecosystems, these sessile or slow-moving, benthic passive suspension feeders are thought 

to have been restricted to deep-water settings in which they encountered fewer predators (Meyer 

and Macurda 1977; Bottjer and Jablonski 1988; Oji 1996; Gorzelak et al. 2012). Feather stars, 

those crinoids in the order Comatulida that shed their stalk during ontogeny and live as stalkless 

adults, constitute an important exception to this pattern: feather stars today are globally 

distributed in shallow- and deep-water settings, and represent the majority of crinoid diversity 

(556/672 spp. (Appeltans et al. 2012)). Their relative ecological and evolutionary success has 

long been attributed to the enhanced motility afforded by a stalkless lifestyle: many feather stars 

change position diurnally, and most groups are able to swim when stimulated by a potential 
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predator, remaining in the water column for as long as several minutes (Purens 2014). That 

feather stars can persist in shallow water as a result of their increased motility is corroborated by 

the fact that all living bourgueticrinids – the 2-4 comatulid lineages that probably re-acquired 

sessility secondarily (Rouse et al. 2013) – are found exclusively in deep water.  

Despite their centrality to the evolution of the modern crinoid fauna, the evolutionary 

history of feather stars is obscured by a poor fossil record. Their fossil diversity is under-

represented relative to that of stalked crinoids (Purens 2016), possibly because they are most 

diverse in areas of poor preservation potential, and most fossil species are known only from 

fragmentary material. Furthermore, the systematics of extant feather stars is based in large part 

on features that do not preserve in most fossil taxa – for example, the arms and pinnules (Clark 

1967; Hess and Messing 2011). Consequently, much remains unknown about the phylogeny and 

paleobiology of early feather stars (Hess 2014). Here we describe new, exquisitely preserved 

fossil feather stars from the Lower Cretaceous of Northeastern Spain and infer their phylogenetic 

affinities in the first explicit phylogenetic analysis of both living and fossil feather stars. 

Surprisingly, these fossils preserve intricate traces of nervous and circulatory anatomy, shedding 

light on anatomical innovations within this successful clade of marine invertebrates.  

 

3.3 Methods 

Specimens of the feather star Decameros ricordeanus (Decameridae, Comatulida, Crinoidea) 

were recovered from the Maestrazgo Basin (Teruel, NE Spain) in loosely-consolidated marls 

dated to the early Aptian based on ammonite biostratigraphy and inferred to have been deposited 

in a low-energy outer ramp setting (Bover-Arnal et al. 2016). Detailed paleoecological and 

stratigraphic information is given by Zamora et al. (2018). Importantly, no other crinoid species 
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were recovered from the same locality. Material studied here includes 6 complete and 2 

fragmentary calyces, 20 articulated arm fragments, 10 articulated cirrus fragments, 200 isolated 

cirrals, 400 isolated brachials, and 20 isolated radials (Fig. 3.1). Specimens are deposited in the 

Museo de Ciencias Naturales de la Universidad de Zaragoza under the acronym “MPZ.” 

Specimens were prepared using potassium hydroxide (KOH), and later neutralized with 

hydrochloric acid (10%). Crinoids disarticulate rapidly upon dying, and the many partially-

articulated specimens described here probably died shortly before or during burial. External 

features of specimens are preserved in high detail, and details of stereom on the outside of fossils 

can be visualized with microscopy for some specimens. 

Six fossil specimens were scanned using X-ray microcomputed tomography (µCT) with the 

University of Michigan CTEES facility with a Nikon 62 XT H 225ST industrial μCT system 

using a tungsten reflection target. Fossils were scanned at 95-105 kV and 96-155 µA, with 

resolution 8.0-11.8 µm. 3D images were reconstructed from 2D projections using CT Pro 3D 

(Nikon Metrology). Scans reveal complex internal morphology visible as relatively high-density 

infillings of cavities within the crinoid skeleton. These infillings are reddish-black to orange in 

color and are suggested to be iron-rich (Fig. 3.2A, B). In reconstructed CT datasets, they appear 

as clusters of small (~20 µm) grains that may be either restricted to cavities within the skeleton 

or distributed more uniformly throughout the stereom. Thus, the amount of anatomical 

information they preserve is variable. The outline of cavities corresponding to coelomic or 

nervous tissue is preserved in fine detail in two specimens, but in most cases these details are 

obscured or obliterated. One fossil specimen (MPZ-2019/366) with exceptionally preserved 

internal features, scanned at 105 kV and 155 µA with a resolution of 10.9 µm, was chosen for 
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further study. 3D surfaces based on reconstructed μCT scans were generated using the medical 

imaging software Materialise Mimics (Materialise NV, Leuven, Belgium). 

The results of a phylogenetically broad µCT-based survey of extant crinoids were used for 

comparison with D. ricordeanus (Saulsbury and Zamora 2019b). Many of these specimens were 

used in assembling a morphological character matrix for phylogenetic inference. We used 

molecular data and discrete and continuous morphological characters to infer the phylogenetic 

affinities of D. ricordeanus and several other fossil feather stars. Several studies have estimated 

the phylogeny of extant crinoids using molecular data (Hemery et al. 2013; Rouse et al. 2013; 

Cohen and Pisera 2017), but because previous attempts at inferring the phylogeny of living 

crinoids have disagreed substantially with one another and have not included many of the taxa 

for which morphological data have been gathered in this study, we estimated the molecular 

phylogeny of crinoids independently. We inferred the relationships among 158 species of living 

crinoid in a maximum likelihood framework using two nuclear (18S, 28S) and three 

mitochondrial genes (16S, cytb, and COI). Non-protein-coding sequences (16S, 18S, 28S) were 

aligned using PRANK ([wasabiapp.org], (Loytynoja and Goldman 2005)); the remaining 

sequences were aligned using MAFFT ([https://mafft.cbrc.jp/alignment/software/]). Aligned 

sequences were concatenated using SequenceMatrix (http://www.ggvaidya.com/taxondna/). We 

used RAxML (Stamatakis 2014) to infer phylogeny using separate partitions for each gene and 

using the GTR+Γ model of molecular evolution. When the resulting tree is pruned to include 

only those taxa with morphological data available, it is roughly concordant with the maximum 

likelihood crinoid phylogenies presented by Hemery et al. (2013) and Rouse et al. (2013), 

sharing most clades with the findings of both studies. This constraint tree is available in the 

supplementary information. 

http://www.ggvaidya.com/taxondna/
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We used TNT to infer the phylogeny of living and fossil feather stars with morphological 

data while using the molecular phylogeny as a topological constraint. A matrix of 37 discrete and 

24 continuous morphological characters was assembled and scored for 21 living and 5 extinct 

species of comatulid crinoids.  Specimens examined are listed in a supplementary table 

(Saulsbury and Zamora 2019b). All discrete morphological characters were treated as unordered. 

Several discrete characters used in the morphological matrix were not parsimony-informative, 

(i.e. they are not scored for at least two states for each of at least two characters), but are 

included in this study as a framework for future phylogenetic studies. Continuous characters 

included linear measurements (e.g. centrodorsal radius), ratios of linear measurements (e.g. 

height of radial muscle fossa / height of interarticular fossa), and one angle measurement (angle 

between radial interarticular ligament fossa and fulcral ridge). Multiple measurements were 

averaged where possible, first across repeated elements within specimens and then across 

multiple specimens within species. Character definitions are provided in Supplementary data 2. 

Measurements were taken from imagery, from 3D models generated from CT scans, or directly 

from specimens using calipers. We used TNT to infer the phylogeny of feather stars by 

maximum parsimony with implied weighting. Support was assessed with symmetric resampling 

(Goloboff et al. 2003), implemented in TNTR (Matzke 2015). We used the paracomatulids – 

specifically, Paracomatula helvetica – as the outgroup to Comatulida, following Hess (2014). A 

thorough summary of TNT’s treatment of continuous characters is given by Jones and Butler 

(2018). The analysis presented here represents the first effort to explicitly infer the phylogenetic 

affinities of fossil and living feather stars. The molecular sequence alignment, maximum 

likelihood molecular phylogeny, morphological character matrix, TNT input file, and tree file are 

available as supplementary data files. 
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3.4 Results 

3.4.1 Skeletal morphology 

The material described here is referred to the species Decameros ricordeanus (Orbigny, 

1850), as redescribed by Rasmussen (1961, 1978), based on the following characteristics: arms 

5, with no syzygies or synarthries; first pinnule on the first brachial; unbranched ventral side of 

centrodorsal with radiating coelomic furrows; large, low, discoidal centrodorsal; large, stout, 

rhombic basals; wide, shallow radial cavity; and radials with low free surface (Fig. 3.1). We note 

that the proximal dozen or so brachials typically bear a single aboral spine (except the first 

brachial, which never bears a spine); some brachials have two spines. Decameros ricordeanus is 

an exceptionally large feather star, and the material described here includes calyces above 1.5 cm 

in diameter. Complete calyces vary in diameter by more than a factor of two, and the ontogenetic 

changes in shape recorded in these fossils are similar to those observed in its congener 

Decameros wertheimi (Peck & Watkins, 1972): larger forms have wider centrodorsals.  

 

3.4.2 Coelomic and nervous anatomy 

Background on the structure and variation of anatomical systems in crinoids is given in the 

supplementary information (Saulsbury and Zamora 2019b). Importantly, all discussion of 

coelomic anatomy here refers to the somatocoel, the system of spacious, fluid-filled secondary 

body cavities common to Echinodermata. We do not refer to the haemal or water vascular 

systems; the former is a relatively inconspicuous primary body cavity (i.e. not a coelom), and 

neither of the two are associated with the skeleton in any modern crinoid studied (Heinzeller and 

Welsch 1994). Like other crinoids, Decameros possesses an extension of the somatocoel in the 
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radial cavity termed the “axial sinus” (Heinzeller and Welsch 1994), separated from the aboral 

nerve center (Fig. 3.2C, “anc”) by the basal circlet. In Decameros this coelomic feature is 

uniquely elaborate and extensive. Skeletal canals corresponding to extensions of the somatocoel 

occur along all sutures between plates of the calyx (Fig. 3.1C, D; 3.2C, D). Canals are circular to 

elliptical in cross section and are between 0.05mm and 0.35 mm in diameter, usually between 

0.15 and 0.3 mm. A single bundle of coelomic canals occurs in the axis of the crinoid, in the 

center of the basal ring (Fig. 3.2C, “cb”). In each radius, some of these canals connect with a fan-

shaped complex of coelomic canals between the radial and centrodorsal plates (Fig. 3.2I). The 

canals that make up these fans are radially-oriented and reticulate extensively toward the edges, 

where they form a perforate sheet (Fig. 3.2E). Each fan is aborally embayed in the radius, 

conforming to the suture between the radial circlet and the centrodorsal. Fans do not reach the 

edge of the calyx, terminating 0.5 – 1mm from the lateral margin. Each fan is connected to a 

planar network of canals between the radials and basals, and to two such networks between 

adjacent radials (Fig. 3.2I). Networks between adjacent radials have a characteristic geometry, 

their most conspicuous feature being a broad, straight canal connecting the radial fans with the 

canals between radials and basals. This canal is visible on the surface of disarticulated radials as 

a diagonal groove (Fig. 3.2B). The entire network of coelomic canals in the calyx has 11 outlets 

in the radial cavity. One large outlet occurs in the axis, corresponding to the large axial bundle of 

canals mentioned earlier, and 10 outlets (5 radial: Fig. 3.2C, “ro”; 5 interradial: Fig. 3.2C, “iro”) 

occur at the junctions between the radial and basal circlets. 

Although the calyx coelom in D. ricordeanus is more elaborate than that of any living form, 

Decameros is not the only crinoid whose coelom bears extensions in the calyx, referred to here 

and elsewhere (Hess and Messing 2011) as coelomic diverticula. Diverticula can be oriented 
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laterally or aborally, corresponding respectively to the “coelomic furrows” and “radial pits” 

mentioned frequently in the taxonomic literature (Rasmussen 1961; Hess and Messing 2011). 

Skeletal features corresponding to coelomic diverticula are reported in some or all members of 

12 out of 29 comatulid families (Antedonidae, Aporometridae, Asterometridae, Colobometridae, 

Decameridae, Himerometridae, Mariametridae, Notocrinidae, Ptilometridae, Solanocrinitidae, 

Tropiometridae, and Zygometridae) (Hess and Messing 2011). Moreover, unique configurations 

of coelomic morphology appear to characterize major clades. We highlight the following axes of 

morphological variation, which are incorporated into our phylogenetic analysis:  

1. In all himerometroids surveyed here, the coelom in the calyx axis is divided into a central 

bundle of canals and 5 radiolateral canals. In all other taxa, the coelom in the axis is 

present as a single bundle of canals. 

2. Notocrinidae and Asterometridae share deep aboral diverticula, but in notocrinids each 

diverticulum is single. In asterometrids they are divided into a tight bundle of narrow 

canals. 

3. All members of Ptilometridae and Asterometridae, which have been recovered together 

as a monophyletic clade in previous phylogenetic analyses, share both radial and 

interradial sets of coelomic diverticula, instead of just the radial ones present in other 

taxa. 

4. In two antedonids surveyed, Heliometra glacialis and Florometra serratissima (the latter 

not included in phylogenetic analysis), radial coelomic diverticula are present and are 

oriented into the radial plate, rather than between the radial circlet and centrodorsal. In 

our molecular phylogeny and that of Hemery et al. (2013), H. glacialis and F. 
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serratissima are closely related to one another and are nested within a clade of antedonids 

generally lacking radial coelomic diverticula. 

Diverticula have not been reported in stalked crinoids, nor do we observe them in any stalked 

crinoids surveyed here. 

 The layout of the feather star central ANS – here used to refer to the relatively thick 

brachial nerves, pinnule nerves, cirral nerves, pentagonal nerve ring, aboral nerve center, and the 

nerves connecting the previous two elements – has previously been reconstructed from CT scans 

and histology of living species (Aschauer et al. 2010; Engle 2012) and appears to be conserved 

across feather stars. The layout of the central ANS in Decameros ricordeanus matches previous 

descriptions given for a generalized feather star (Moore and Teichert 1978; Heinzeller 1998), 

differing only in the relative lengths and diameters of its constituent nerves. Here we reconstruct 

details of the peripheral ANS, which has received far less study across Crinoidea, in D. 

ricordeanus. Hamman (1889) has demonstrated that four pairs of nerves issue from the brachial 

nerve cord in each arm plate of a living crinoid. Only some or occasionally none of these 

peripheral nerves are visible in CT scans; it is not clear whether this apparent absence reflects an 

actual lack of these nerves in some lineages or in some parts of the arm, or whether instead these 

nerves are present but do not appear because they are finer than the resolution of the CT scans or 

of the meshwork of the skeleton. In the arm plates (brachials) of several extant feather stars, we 

observe aborally-directed passages that match the two pairs of putatively sensory nerves 

indicated by Hamann (1889). We identify this same set of peripheral nerves in Decameros 

ricordeanus. More strikingly, CT scans reveal peripheral nerves in the radial plates of extant and 

fossil crinoids, which previously have not been demonstrated. In several extant crinoids 

surveyed, one to two pairs of peripheral nerves issue from the brachial nerve in the radial 
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(Saulsbury and Zamora 2019; Supplementary materials). In some cases these peripheral nerves 

terminate on the free surface of the radial (i.e. on the outside of the animal) and in other cases 

they are directed orally, possibly connecting with one of the other major nervous systems. In 

Decameros, we identify two pairs of peripheral nerves that originate at the junction of the 

pentagonal nerve ring with the brachial nerve and another that originates partway along the 

brachial nerve (Fig. 3.2F, J). One of the former pair connects aborally with a coelomic fan; the 

other two pairs extend to the free surface of the radial and terminate there. These three pairs of 

peripheral nerves are extensively linked with each other, such that the peripheral ANS within 

each radial forms a well-connected network (Fig. 3.2G, J). The nerves constituting this network 

are relatively fine: in the most well-preserved specimen the brachial nerves in the radials are 

between 0.35 and 0.4 mm in diameter and the peripheral nerves are between 0.05 and 0.15 mm 

in diameter. We observe a similar, though less well-preserved, network of canals in the 

centrodorsal plate. We do not observe any peripheral nerves extending between the ANS and the 

coelom in CT scans of living taxa, but because the stereom between the ANS and the coelom is 

very coarse in places, the existence of such nerves cannot be ruled out. 

 

3.4.3 Phylogenetic affinities 

The results of our phylogenetic analysis are shown in Fig. 3.3. All 4 fossil species analyzed 

fall within crown-group Comatulida. Decameros ricordeanus and both species of Solanocrinites 

analyzed were recovered as a monophyletic clade. This tree topology accords with Rasmussen’s 

(1961) classification of Decameros as a subgenus of Solanocrinites and goes against more recent 

definitions of the Decameridae and Solanocrinitidae. Decameros ricordeanus and Solanocrinites 

are recovered as part of a clade comprising Himerometroidea, Tropiometra, and Asterometridae 
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+ Ptilometridae. Thus, Decameros is part of a clade whose members generally bear coelomic 

diverticula. Palaeocomaster and Archaeometra fall outside this clade, despite being previously 

classified together with Solanocrinites and Decameros in the Solanocrinitoidea (Hess and 

Messing 2011). Support values are generally low throughout the tree, but the placement of 

Decameros ricordeanus is relatively stable even when all morphological characters relating to 

coelomic diverticula are excluded, when the morphological matrix includes only discrete or only 

continuous characters, and when all other extinct taxa are removed from the analysis (Saulsbury 

and Zamora 2019b). 

 

3.5 Discussion 

3.5.1 Preservation 

The fine detail of the anatomical features preserved in Decameros ricordeanus is 

unprecedented for fossilized post-Paleozoic crinoids, but the preservation of internal anatomy in 

fossil crinoids is probably not exceptional. The fossils described here, for example, do not come 

from a Lagerstätte and are partly disarticulated. Small cavities in echinoderm fossils tend to be 

obliterated by the growth of calcite during diagenesis, but the infillings documented here appear 

to prevent obliteration of internal features. Features preserved in this way should be more 

amenable to study with µCT if they are infilled with material of a sufficiently different density 

from the surrounding calcite, as in the fossils presented here. Although D. ricordeanus represents 

only the third fossil crinoid species studied with µCT to date (Zamora et al. 2015; Baumiller and 

Fordyce 2018), reports of internal anatomy in fossil crinoids are fairly common (Jaekel 1891; 

Rasmussen 1961; Haugh 1975a, b; Hunter et al. 2016), and thus computed tomography has the 

potential to play an important role in understanding the evolution of organ systems in this taxon. 
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Moreover, a deeper understanding of crinoid internal anatomy and its diversity could help to 

resolve the uncertain state of post-Paleozoic crinoid systematics. Efforts to infer the phylogeny 

of extant crinoids within the last decade have disagreed on the relationships between the four 

living orders, and the phylogenetic affinities of most of the extinct post-Paleozoic groups – 

including roveacrinids, uintacrinids, the enormous driftwood crinoids Traumatocrinus and 

Seirocrinus, and millericrinids – remain unresolved. The internal anatomy of fossil crinoids 

represents a largely untapped source of morphological data, which might prove useful in 

resolving these uncertainties. At least six unique configurations of the aboral nervous system 

have been demonstrated in extant crinoids (Heinzeller 1998; Bohn and Heinzeller 1999), and the 

results of the present study demonstrate remarkable morphological disparity in the crinoid body 

cavity, at least among feather stars. Thus, future efforts at understanding the evolutionary history 

and systematics of fossil Articulata can benefit from a consideration of both external and internal 

morphology. 

 

3.5.2 Circulation of coelomic fluid in Decameros and other crinoids 

Although the hydrodynamics of circulation in the crinoid calyx have not been studied in 

detail, it is possible to reconstruct possible circulatory patterns in the coelom of extinct crinoids 

based on comparison with modern forms. Based on the coelomic layout of the extant feather star 

Tropiometra carinata (Saulsbury and Zamora 2019; Supplementary materials), the coelomic 

canals form an axial bundle in the calyx, with incurrent canals fully encircled by excurrent ones. 

In T. carinata, which bears diverticula, coelomic fluid probably travels down the axis through a 

central bundle of canals, flushes into the diverticula, and then travels orally through five lateral 

canals and into the arms. Based on this general pattern we reconstruct one possible circulatory 
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configuration for D. ricordeanus in which coelomic fluid entered the calyx through the central 

bundle of coelomic canals and flowed out through the ten outlets at the junction between the 

basal and radial circlets (Fig. 3.2C, “ro,” “iro”). Other configurations are plausible; we 

reconstruct a possible flow patten here only to show that, despite its complex shape, fluid 

probably circulated through the entire calyx coelom in life. 

Coelomic circulation in crinoids probably serves multiple important roles, including nutrient 

and hormone transport and respiration (Grimmer and Holland 1979). Moreover, the crinoid 

coelom within the calyx scales with positive allometry, such that all feather stars above a certain 

size bear coelomic diverticula. Under isometric scaling, the surface area exposed to circulatory 

fluid and hence the maximum functional capability of the circulatory system would decrease 

with increased size, so if a larger crinoid does not have a circulatory system of correspondingly 

greater surface area, it risks suffocation. Thus, Decameros ricordeanus bears exceptionally 

complex coelomic diverticula because it is exceptionally large, and having an elaborate 

circulatory system is necessary at that size.  

 

3.5.3 Neurobiology of Decameros and other crinoids 

The function of the crinoid aboral nervous system (ANS) has been investigated by Hamann 

(1889) and Nakano (2004). The peripheral parts of the ANS have not yet been investigated in 

any detail, but some functions can be suggested based on morphology. In each arm plate of 

living crinoids, two pairs of peripheral nerves are oriented from the brachial nerve toward the 

aboral surface of the arm, where they terminate. Along the way they do not contact or pass near 

any effectors like muscles, and Hamann (1889) suggests that these nerves are probably sensory 

based on their arrangement. Although the peripheral nerves originating in the radial plates have 
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not been documented previously, their similarity (in terms of symmetry, size relative to the 

central ANS, and branching geometry) to the peripheral nerves in the arm plates suggests they 

might play a similar role. Some of the peripheral nerves in the radial circlet terminate on the free 

surface of the radial in both living crinoids and in Decameros ricordeanus. These peripheral 

nerves are well-situated to sense environmental conditions. For example, crinoids are sensitive to 

flow conditions, and will change their position and deploy or enroll their filtration fans in 

response to changes in current (Meyer 1997). Nerve endings on the aboral surface of the arms 

and radials are therefore ideally placed to detect such changes, although such a function is 

speculative. In Decameros, we also observe peripheral nerves that terminate on coelomic 

diverticula; we have not identified these in any extant crinoids but cannot rule out their existence. 

We suggest that, like some other peripheral nerves, these might serve a sensory function, for 

example by detecting changes in the composition of coelomic fluid. However, we cannot rule out 

the possibility that these peripheral nerves innervate some previously-undetected effector – for 

example, a feature of endocrine anatomy adjacent to the coelomic canals. No distinct anatomical 

features have been observed in the dense stereom between the radial plates and the centrodorsal, 

but little histological work has been done on the crinoid calyx, perhaps due to the difficulties of 

applying traditional histological techniques to the echinoderm skeleton (Dietrich and Fontaine 

1975). Modern immunostaining approaches have recently been used to reconstruct nervous 

anatomy of non-crinoid echinoderms in stunning detail (Schmidt-Rhaesa et al. 2015; Vázquez-

Figueroa et al. 2016; Zueva et al. 2018), facilitating robust tests of functional hypotheses. Until 

modern methods like these are applied to the crinoid nervous system, the functions of the 

peripheral ANS will remain enigmatic. Nevertheless, it is clear at least that peripheral nerves 

associated with the circulatory system either originated or became more intricate in the lineage 
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leading to Decameros ricordeanus. Whether and how this is associated with the increase in body 

size and the associated increase in the complexity of the circulatory system will require 

comparative analyses and a more complete knowledge of the diversity of the crinoid nervous 

system. 

 

3.5.4 Decameros in crinoid phylogeny 

The phylogenetic affinities of fossil comatulids inferred in this study are concordant with 

historical taxonomic work in some but not all respects. Solanocrinites and Decameros are 

recovered as sister taxa in our analysis; likewise, Rasmussen (Rasmussen 1961) considered 

Decameros to be a subgenus of Solanocrinites, although he later separated them into different 

families (Rasmussen 1978). However, all fossil feather stars included in our phylogenetic 

analysis have been assigned to the superfamily Solanocrinitoidea, which our study indicates is 

polyphyletic. We suggest that the traits that have been used to define this superfamily – including 

stout basal plates and a narrow centrodorsal cavity – are plesiomorphic or homoplasious. The 

clade uniting Decameros ricordeanus and Solanocrinites depressus is recovered with strong 

support as sister to Tropiometra, a nearly pantropical genus in the monotypic family 

Tropiometridae. Monophyly of this clade is indicated primarily by continuous characters, 

including a relatively low centrodorsal, low radials, and a broad radial cavity. 

The soft tissue features preserved in D. ricordeanus provide some useful characters for 

phylogenetic analysis. We recover D. ricordeanus deeply nested within an as-yet unnamed clade 

that has nevertheless been recovered in all recent molecular phylogenetic studies: namely, the 

clade that unites Zenometridae, “Antedonidae”, Himerometroidea, most of “Tropiometroidea,” 

and Notocrinus to the exclusion of Comatulidae, Thalassometridae, Charitometridae, 
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Pentametrocrinidae, and most stalked comatulids. Coelomic diverticula are present in most 

members of this clade that are included in our analysis and are rare or totally absent outside of 

this clade. Other traits relating to coelomic anatomy help refine the placement of D. ricordeanus. 

A distinct separation of the axial and lateral coelomic canals in the radial circlet unites 

Himerometroidea to the exclusion of all other taxa considered, and Decameros is distinguished 

from members of the Asterometridae by the presence of both radial and interradial coelomic 

diverticula in the latter taxon. The central ANS exhibits considerable variability among major 

crinoid taxa, encompassing at least 6 unique configurations (Heinzeller 1998; Bohn and 

Heinzeller 1999). However, feather stars share an apparently uniform central ANS, so no 

phylogenetically useful characters were sourced from this part of the body. We observe hints of 

phylogenetically informative morphological variability in the peripheral ANS: for example, CT 

scans of some extant members of the Comatulidae reveal pairs of thin nerves that extend orally 

from the brachial nerve in the radial, and we do not observe these in any other taxon. However, it 

is impossible to conclusively demonstrate the absence of peripheral nerves from CT scans alone, 

as these nerves may be smaller than the “resolution” of stereom. A thorough study of the 

evolution of the peripheral ANS in crinoids will rely on histological research outside the scope of 

the present study. However, if the success of “neurophylogeny” for making sense of deep 

relationships among living and fossil arthropods is any indication (Harzsch 2006; Tanaka et al. 

2013; Cong et al. 2014), an understanding of neurobiology may be a useful tool in confronting 

long-standing problems in crinoid systematics – for example, the relationships among the four 

extant orders (Hemery et al. 2013; Rouse et al. 2013). 

 

3.6 Conclusions 
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The potential for crinoids to preserve phylogenetically useful and biologically interesting 

features of soft tissue in non-Lagerstätte settings is arguably underappreciated. In many crinoid 

taxa, including all members of the crown-group, the skeleton conforms closely to soft-tissue 

internal anatomy, so the contours of features such as the aboral nervous system and the coelomic 

circulatory system can be visualized in fossils in which postmortem cementation or infilling of 

stereom has not been so extensive as to obscure internal features. Notably, infilling with 

sediment of a density that contrasts with that of stereom may preserve internal features in great 

detail, as it does here. The openings of nerve canals are present on most fossil crinoid ossicles 

(Hess and Messing 2011), suggesting that some preserve nervous anatomy internally. Findings 

from sectioned or corroded specimens bear this out (Paul 1970; Žítt 1973). For example, Jaekel 

(1891) described a silicified and partially corroded Jurassic cyrtocrinid whose aboral nervous 

system differs strikingly from the highly derived layouts of its extant relatives Cyathidium and 

Holopus (Grimmer and Holland 1990; Heinzeller 1998).  Beyond encasing their anatomy in 

dense skeleton, crinoids exhibit a general tendency to calcify their soft tissues to varying degrees 

(Hyman 1955; Breimer 1978). In extreme cases this can lead to the preservation of entire suites 

of internal organs, as in the silicified camerate crinoids of the Burlington Limestone (Haugh 

1975b). Both these avenues of preservation are especially amenable to study by computed 

tomography. Further study will likely resolve important open questions in crinoid phylogeny and 

facilitate comparative work on the evolution of organ systems. 

 In this study we reconstruct aspects of the internal anatomy and physiology of the extinct 

feather star Decameros ricordeanus. We find several features that are novel among crinoids, 

including a complex circulatory system linked extensively with the aboral nervous system. 

Feather star internal anatomy as reconstructed by CT scans provides systematically useful 
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information for a group that has to date eluded morphological phylogenetics. Furthermore, our 

research highlights unexplored and potentially fruitful avenues for histological and functional 

morphological research on living crinoids. 
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Figure 3.1. Skeletal morphology of Decameros ricordeanus. (A) Calyces, lateral view. Left, 

MPZ-2019/367. Middle, MPZ-2019/366. Right, MPZ-2018/483. Note the allometric changes in 

calyx shape, which mirror those of Decameros wertheimi. (B) MPZ-2019/368, centrodorsal, 

aboral view showing texturing on surface. (C) MPZ-2019/369, centrodorsal, oral view showing 

coelomic impressions. (D) MPZ-2019/370, fragment of centrodorsal and basal plates. Note the 
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impressions of coelomic canals on the basals and centrodorsal. (E) MPZ-2019/366, calyx, oral 

view. (F) Arm plates. Left, MPZ-2019/371, 5 proximal brachials with proximal pinnulars in 

place. Middle, MPZ-2019/372, 10 distal brachials. Right, MPZ-2019/373, a single proximal 

brachial in aboral view showing rugose texture. Scale bar represents 1 cm. 
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Fig. 3.2. Skeletal, coelomic, and nervous anatomy of Decameros ricordeanus. (A) 

Microphotograph of MPZ-2019/374, basal ring, aboral view. Note radially-oriented impressions 

of coelomic canals. (B) Microphotograph of MPZ-2019/375, radial plate, interior view. Internal 

anatomy preserved as reddish, granular infillings. (C) MPZ-2019/366 (along with all subsequent 

subfigures), 2D slice through calyx parallel to oral-aboral axis, radius at left and interradius at 

right. Generated from μCT scan. Lighter grey values correspond to higher density. (D) 2D slice 

perpendicular to oral-aboral axis showing lateral coelomic diverticula. (E) 3D model of coelomic 

anatomy, oral view. (F) 2D slice perpendicular to oral-aboral axis showing pentagonal nerve 

ring, which gives rise to branches of the peripheral nervous system. (G) 3D model of central 

(dark blue) and peripheral (light blue) nervous anatomy. (H) oblique view of coelomic and 

nervous anatomy. Skeleton transparent, other color codings as in E and G. (I) calyx with one 

radial plate removed, showing nervous anatomy present in a single radial plate. Basal plates light 

grey, radial plates grey, centrodorsal plate dark grey. (J) the same view as I, showing coelomic 

anatomy. anc, aboral nerve center. cc, coelomic canals; cb, central bundle; nc, nerve canal; nr, 

nerve ring; pn, peripheral nerve; ro/iro, radial/interradial openings into coelomic vasculature in 

the calyx. Scale bar represents 6 mm for A and B, 5 mm for C and H – J, and 9 mm for D – G. 
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Fig. 3.3. Phylogeny of living and fossil feather stars. Percentage of replicates in which each 

clade occurs and group present-contradicted percent differences under symmetric resampling 

(Goloboff et al. 2003) are plotted above and below each branch, respectively, except for clades 

recovered in all replicates. Decameros and Solanocrinites are members of an as-yet unnamed 

clade that includes Notocrinus, Antedonidae, most Tropiometroidea, and Himerometroidea, and 

which is recovered in all recent molecular phylogenic analyses. 3D models of calyces (left) and 

coelomic cavities (right) shown for taxa with names in bold font. Extinct taxa are indicated with 

dagger symbols. Scale differs between taxa.  
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CHAPTER 4 

Predation as an Explanation for a Latitudinal Gradient in Arm Number Among Feather 

Stars 

 

Preamble: The contents of this chapter have been published. The published version appears as: 

Saulsbury, J. G., and T. K. Baumiller. 2020: Predation as an explanation for a latitudinal gradient 

in arm number among feather stars. Journal of Biogeography 47:2657–2670. Supplementary 

materials for this chapter are available at 

https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.13965.  

 
4.1 Abstract 

The role of biotic interactions in generating broad patterns in organismal phenotypes is a 

central question in macroecology. We investigate global patterns in feeding morphology among 

feather stars, a globally widespread group of suspension-feeding echinoderms whose 

evolutionary history has been demonstrably shaped by predators. We tested for global patterns in 

the feather star suspension feeding apparatus, a filter made up of five to 200 arms which is the 

main interface with predators. We investigate a geospatial dataset of 23,950 occurrences in 442 

species using statistical analyses including quantile regression and a new permutation-based 

phylogenetic comparative approach appropriate for testing for a broad range of patterns in non-

normal data. We find that feather stars exhibit a latitudinal gradient in arm number: arm number 

is both greater on average and more variable between species at lower latitudes. This pattern 

https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.13965
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holds across depths and hemispheres and is not a spurious result of either the latitudinal diversity 

gradient or phylogenetic autocorrelation. Tropical feather stars that conceal themselves have 

fewer arms, and also appear to experience less intense predation. Temperature, primary 

productivity, and substrate type do not adequately explain the latitudinal gradient in arm number. 

We attribute it instead to a corresponding gradient in predation intensity: many-armed feather 

stars can withstand more intense arm loss to predators. Concealment and other alternate solutions 

to the problem of predation, along with reproductive costs associated with having many arms, 

explain why the trend is wedge-shaped rather than linear. Our findings constitute a latitudinal 

gradient in functional diversity, paralleling recent findings in other taxa. The gradient may be a 

consequence of shallow tropical reefs; inasmuch as reefs as centers of biotic interactions promote 

functional richness, changes in the distribution of reefs through deep time probably entailed 

shifts in the global deployment of ecological diversity. 

 

4.2 Introduction 

The role of biotic interactions in structuring macroecological patterns is of central interest 

to biologists. Despite the obvious importance of organism-organism interactions at the ecosystem 

scale, the broadest spatial and temporal phenomena in biology are typically attributed to abiotic 

causes like climate or continental configuration (Antell et al. 2020; Barnosky 2001; Benton 

2009). Nevertheless, biotic interactions demonstrably leave some signals in global phenotypic 

patterns. For example, increased intensity of predation and biological disturbance of the shallow 

seafloor throughout the Phanerozoic appears to have nonrandomly restricted some kinds of 

organisms to the deep sea (Bottjer & Jablonski 1988), and driven others into the infauna (Thayer 

1983). There is also direct evidence for a latitudinal gradient in the intensity of predation in some 
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systems (Klompmaker et al. 2019; Schemske et al. 2009; Vermeij 1978), and anti-predatory 

adaptations are more common among tropical representatives of many groups: tropical molluscs 

are apparently more resistant to shell-crushing predators (Palmer 1979; Vermeij 1978), and 

toxicity/unpalatability is more common closer to the equator in marine worms, caterpillars, and 

various plant groups (Levin 1976; Schemske et al. 2009). Beyond constituting good explanations 

for natural phenomena like these, predation and other biotic interactions form the core of a 

general evolutionary principle, albeit a contentious one (Dietl and Vermeij 2006; Madin et al. 

2006): escalation, the hypothesis that some of the most conspicuous evolutionary trends are the 

result of natural selection on organisms by their ecological ‘enemies’ (Vermeij 1993, 2008). It is 

worthwhile to tease apart the degree to which evolution is driven by biotic interactions as 

opposed to abiotic factors, as these correspond to quite different histories of life on Earth. 

 Crinoids are a useful study system with which to consider the evolutionary role of biotic 

interactions because some of the major features of crinoid evolution appear to correlate with 

changes in the role of predators in marine ecosystems through time (Meyer & Macurda 1977). 

Despite being some of the most diverse and conspicuous members of shallow marine ecosystems 

during much of the Paleozoic and Mesozoic (Kammer and Ausich 2006), these suspension-

feeding echinoderms are today restricted to deep waters (Bottjer and Jablonski 1988) – with one 

conspicuous exception. Feather stars, those crinoids in the order Comatulida that shed their entire 

stalk during development, make up most of modern crinoid diversity and are common in shallow 

and deep water (Messing 1997). These stalkless forms have a number of features that have been 

interpreted as anti-predatory adaptations: they are more mobile than stalked crinoids (Meyer and 

Macurda 1977), most can swim (Janevski and Baumiller 2010), they regenerate arms rapidly 

(Baumiller and Stevenson 2018), and many have toxic flesh (Meyer 1985; Slattery 2010). The 
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restriction to deep water of stalked but not stalkless crinoids occurred synchronously with the 

radiation of crinoid predators in shallow water during the so-called Mesozoic Marine Revolution 

(Vermeij 1977), and is thought to reflect the respective success and failure of stalkless and 

stalked crinoids to persist in spite of increased intensity of predation (Meyer and Macurda 1977). 

Even before the Mesozoic, morphological features that enhanced resistance to predation and 

parasitism were common in crinoids (Syverson and Baumiller 2014; Syverson et al. 2018). 

Regenerating arms, thought to result in most cases from predation (Meyer 1985), are prevalent 

among extant feather stars and in some populations can be found on virtually every individual 

(Baumiller and Stevenson 2018). They have even been identified in one fossil feather star 

(Baumiller and Fordyce 2018).  Predation is therefore a plausible and compelling agent in 

crinoid evolution. 

 We explored and attempted to explain global patterns in arm number among living 

feather stars. The feeding apparatus of extant crinoids consists of a system of particle-

intercepting tube feet lining one side of a set of five (rarely ten) sets of arms that bifurcate to 

varying degrees and that bear unbranched “pinnules” at regular intervals (Hess and Messing 

2011). Like other passive suspension-feeders, crinoids do not create their own feeding currents, 

and the rate at which they encounter food-laden water is a function of local flow conditions and 

feeding morphology (Baumiller 1997). In particular, crinoids with dense filtration fans can only 

feed effectively in fast-flowing water (Baumiller 1993), and the most dense fans are found 

among the crinoids with the most arms (Kitazawa et al. 2007). However, beyond simply 

reflecting fluid dynamic constraints, the crinoid feeding apparatus is also the animals’ main 

interface with predators: the arms make up much of a typical crinoid’s biovolume [most of it in 

feather stars (Janevski & Baumiller 2010)] and recorded predation events typically involve the 
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arms (Baumiller and Gahn 2013; Meyer 1985). This study treats variation in arm number 

between feather star species (Fig. 4.1). Because the feather star feeding apparatus is relatively 

stereotyped – all branching occurs near the base of the arms, and all species bear pinnules (Oji 

and Okamoto 1994) – arm number captures the better part of its morphological variation, 

whereas across the crinoid tree of life the feeding apparatus varies considerably in terms of the 

distribution of branching points along the arms, the thickness of the arms, the length and spacing 

of pinnules and tube feet, and the presence or absence of pinnules (Baumiller 1993; Cole 2019; 

Kammer and Ausich 1987). Variation in arm number within feather star species is not 

sufficiently documented across taxa to be treated here but exceeds a factor of three in some 

species and seems to vary more in many-armed taxa (Clark 1967). This within-species variability 

is worth investigating further, not least because it may correspond to differences in microhabitat: 

Messing (1994) reported that feather stars living in shallower water and exposed to more 

energetic flow regimes had more and shorter arms than their deeper-water conspecifics, 

suggesting that crinoid feeding morphology exhibits phenotypic plasticity. Here we investigate 

an apparent relationship between absolute latitude and arm number among feather stars, and 

explore predation and abiotic factors as possible causes. 

 

4.3 Methods 

4.3.1 Occurrence data 

We downloaded all available species-level occurrences of feather stars (order Comatulida 

minus the ‘bourgueticrinid’ families Bathycrinidae, Bourgueticrinidae, Guillecrinidae, 

Phrynocrinidae, Porphyrocrinidae, and Septocrinidae) available from the Ocean Biogeographic 

Information System (OBIS) in August 2019.  Although the stalkless feather stars have 



 95 

historically been identified with the order Comatulida, recent phylogenetic analyses have 

recovered several lineages of the stalked ‘bourgueticrinids’ within the Comatulida (Hemery et al. 

2013; Rouse et al. 2013). Importantly, our study relies on feather stars sharing some basic 

ecological similarities, but not on their monophyly. Forty-five ‘rogue’ terrestrial data points were 

removed from the dataset, resulting in 23,853 total occurrences. Depth data were available for 

14,844 (62%) of these. Depth ranges for each species were supplemented with ranges recorded in 

the World Register of Marine Species (WoRMS). Our dataset includes 442 species of feather 

star, encompassing 79% of the 556 species of feather star recorded in the WoRMS. Many 

‘nodes’ around the world contribute to OBIS and the geographic and bathymetric data vary in 

precision and accuracy. We recorded the latitudinal midpoint of each species, and tested for two 

potential features of the dataset that would make the use of midpoints problematic: geographic 

biases in sampling intensity, and a relationship between latitudinal range size and arm number 

(see Results). 

 

4.3.2 Arm number and habit 

We gathered arm number data from the literature for 435 species of feather star 

(Supplementary Information). For species with variable arm number – the case for most many-

armed species – we recorded arm number as the midpoint between the maximum and minimum 

number reported. Arm number varies by a factor of over 30 and is strongly right-skewed, with a 

clear mode at 10 (Fig. 4.1). All Jurassic and Cretaceous feather stars that preserve the crown 

have5 or 10 arms (Hess and Messing 2011), so the few-armed state is probably primitive in this 

group. Arm number varies substantially between species in many feather star clades, and the 

many-armed condition appears to have been derived many times (Fig. 4.1). 
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 As an attempt to understand arm number in the context of other putative anti-predatory 

adaptations, we combined our dataset with habit data from Schneider (1988), who scored 30 

tropical feather star species as feeding either diurnally or nocturnally and as feeding while fully 

exposed or while fully or partly cryptic. These modes of concealment are thought to be 

adaptations for avoiding predators (Meyer 1985; Slattery 2010). Schneider (1988) also pulled 

together data on the frequency of arm regeneration among 406 feather star populations in the 

same 30 species, which we coded into four variables: (1) the mean number of regenerating arms 

per individual, (2) the mean proportion of regenerating arms per individual (the number of 

regenerating arms divided by the number of arms checked by the investigator for each 

individual, averaged across the population), (3) the proportion of individuals in a population with 

at least one regenerating arm, and (4) number of individuals examined.  

The proportion of regenerating arms in a population does contain information on the rate 

of arm-loss events, but this information is indirect. A fully regenerated arm is typically 

indistinguishable from one that was never lost in the first place; individuals that fully regenerate 

lost arms more rapidly will therefore exhibit fewer apparent injuries, and an investigator might 

spuriously infer that those individuals encountered fewer predators (Baumiller 2013). To our 

knowledge only a few studies have attempted to use information on both regeneration rate and 

the proportion of regenerating arms to estimate predator encounter rate; we combined their 

findings (“Predator encounter rates.xlsx,” Supplementary files) with our dataset. 

Lastly, colorful toxic secondary metabolites make some crinoids less palatable to potential 

predators (Slattery 2010), and have made them the target of intense pharmacological research 

(Feng et al. 2017). We combined our dataset with two recent experimental studies of the 

palatability of 16 feather star species to their fish predators. 
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4.3.3 Analysis 1 

Arm number is visibly right-skewed (nonparametric skew = 0.46; Fig. 4.2), so we 

investigated its relationship with absolute latitude using rank correlation with Spearman’s ρ. A 

biplot of arm number against absolute latitude is noticeably wedge-shaped (Fig. 4.2); we used 

quantile regression to investigate this feature. Unlike least-squares linear regression, which 

estimates the mean of a response variable conditional on one or more predictors, quantile 

regression estimates conditional quantiles of a response variable – for example, the median – by 

minimizing the sum of absolute distances between observations and the regression line, weighted 

to estimate the appropriate quantile (Koenker and Hallock 2001). Quantile regression was 

implemented with the R package ‘quantreg’ v. 5.36 (Koenker et al. 2018). We also tested the 

latitude – arm number relationship for subsets of the dataset based on depth (species with or 

without occurrences above 200 m) and hemisphere (northern or southern). Quantile regression 

fits were assessed in an Akaike Information Criterion (AIC) framework: the likelihood of 

quantile regression conditional on absolute latitude was compared to that of unconditional 

quantile regression (i.e., a regression model without latitude as a variable), and the former was 

considered well-supported if it had a lower AIC score. In other words, this test asks whether 

adding information on latitude improves estimates of upper or lower quantiles of arm number 

enough to justify the extra parameter. 

An apparent latitudinal gradient in maximum arm number might appear spuriously as a 

result of the increase in species richness toward the equator, even if the underlying arm number 

distribution was uniform across latitude. To screen for this kind of bias, we re-evaluated the 
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dataset after subsampling such that each 10° bin of absolute latitude had as many species as the 

least-sampled bin (50° - 60°, N = 13). 

We tested whether temperature, a close correlate of latitude, could explain geographic 

patterns in arm number better than latitude itself. Temperature and absolute latitude can be 

analytically pulled apart because they do not correspond perfectly: ocean gyres cause sea surface 

temperature (SST) at the same latitude to differ on the east and west sides of oceans, and mean 

annual SST changes non-linearly with latitude, decreasing gradually from the equator to the 

tropics and then declining steeply in the higher latitudes. To generate comparable metrics of 

temperature and latitude, we randomly drew one occurrence above 100 m depth for each species 

with shallow-water occurrences, and matched these occurrences with SST using the lookup_xy 

function in the R package ‘obistools’ v.0.0.9 (Bosch et al. 2018). We assessed correlations 

between arm number and both absolute latitude and SST for these randomly drawn occurrences 

and repeated the procedure many times. 

 

4.3.4 Analysis 2: Phylogenetic permutation 

The previous section comprises “equilibrium analyses” (Lauder 1982): they assume there 

is no historical phylogenetic component to the variation in trait values, effectively treating each 

data point as independent and at equilibrium with its environment. We devised a new 

permutation-based approach to investigate the properties of a comparative dataset with respect to 

the phylogenetic history on which it evolved. We generated a timetree with penalized likelihood 

(Sanderson, 2002) – implemented with the program treePL (Smith and O’Meara 2012) – using 

the molecular phylogeny inferred by Saulsbury & Zamora (2019). Two fossil calibrations were 

used to scale the tree to units of time (Supplementary materials). Both absolute latitudinal 
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midpoint (Blomberg’s K = 0.6355, p < 0.001) and arm number (K = 0.4673, p = 0.004) exhibit 

moderate, statistically significant phylogenetic signal with respect to the resulting timetree. The 

phylogeny and trait values were visualized simultaneously with the phylomorphospace function 

in the R package ‘phytools’ v. 0.6.99 (Revell, 2012).  

The problem with interpreting comparative data at face value is that species share 

phylogenetic history, and the resulting phylogenetic autocorrelation among trait values may 

violate the assumptions of most standard tests. Phylogenetic comparative methods like 

independent contrasts (Felsenstein 1985) and its generalization, phylogenetic generalized least 

squares (PGLS; Grafen 1989), get around the problem of non-independence of species by 

considering trait differences at phylogenetic splits as independent observations. These 

approaches have proven to be quite powerful, but are inappropriate for our data for two reasons:  

1. The “shape” of our data thoroughly violates the assumptions of least-squares 

regression. Arm number is strongly right-skewed, left-bounded, and characterized by 

some features peculiar to crinoid biology – for example, about half of the species in the 

dataset have exactly 10 arms, and there are no species with 0 to 4 or 6 to 9 arms (Fig. 

4.2). The residuals in a linear regression of arm number on absolute latitude are right-

skewed and gappy even when arm number is singly or doubly log-transformed (Fig. A9), 

violating the assumption of normally-distributed residuals. No less problematic is the 

obvious heteroskedasticity in our dataset (Fig. 4.2): variance of arm number in the lowest 

bin of absolute latitude (0-10°, var = 479.1, N = 155) is roughly sixty times that in the 

highest bin (60-70°, var = 8.2, N=16). The consequences of heteroskedasticity for the 

validity of PGLS are poorly understood but potentially severe (Mundry 2014). 
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2. PGLS, and least-squared regression more generally, are made to detect a narrow 

subset of biologically interesting patterns – namely, relationships between one or more 

predictors and the mean value of a response variable. They therefore lack the flexibility 

to explore other features of datasets, including trends in variance, trends in quantiles of a 

response variable, or other patterns in trait space occupation.  

Here we introduce a new non-parametric phylogenetic comparative approach to evaluate the 

possibility that the statistics associated with our dataset could have been generated if the traits 

under consideration were independent, given the phylogenetic structure underlying the dataset. 

This method generates a set of nulls that can be used to understand how the phylogenetic signal 

in the data affects the range of patterns the data can potentially generate given no relationship, 

and how those patterns compare with the empirical signal. 

 An investigator could generate a set of phylogenetically informed nulls using either 

simulations or permutations. A simulation approach would be straightforward to implement for 

normally distributed data, as Mahler et al. (2013) did in their study of convergence in Anolis, but 

the features of our data already described would make simulating comparable data difficult. 

Instead, we generate a set of nulls using a phylogenetically informed permutation approach: 

empirical patterns are compared to the subset of permuted datasets in which the phylogenetic 

signal of the permuted data on the empirical tree matches the phylogenetic signal in the empirical 

data. In practice, one phylogenetic permutation of a single trait is generated by shuffling the 

species labels on the data and then iteratively swapping pairs of observations via a simple hill-

climbing algorithm until a specified metric of phylogenetic signal (in our case, Blomberg’s K or 

Pagel’s λ) is within a specified tolerance (in our case, 0.01) of the empirical signal (Fig. 4.3A-B; 

Supplementary materials). Note that this hill-climbing approach was taken for the sake of 
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expediency only; phylogenetic permutations could also be obtained by permuting many times 

and only considering those permutations whose phylogenetic signal was within the specified 

tolerance, though this could be far more computationally intensive. Statistics associated with the 

set of phylogenetic permutations are then compared with empirical statistics, and can yield a p-

value in the same way as a normal permutation test. The distribution of phylogenetic 

permutations can also be compared to that of ordinary permutations to understand the effect of 

the phylogeny on the range of possible patterns. This simple frequentist test has two chief 

virtues. First, like all permutation tests it is nonparametric and therefore appropriate for highly 

non-normal datasets like ours. Second, it can be used to explore the phylogenetic component of 

any statistics applied to a comparative dataset as such, rather than using transformations that may 

remove information and limit the range of patterns that can be explored. Phylogenetic 

permutation successfully rejects apparent trait associations induced solely by shared 

phylogenetic history: it yields a nonsignificant result for Felsenstein’s (1985) “worst case” 

scenario in which a spurious correlation appears between two traits that evolved independently 

on a tree of two polytomous clades separated by a long span of evolutionary time 

(Supplementary materials). Importantly, the phylogenetic permutation approach is similar to the 

restricted permutation test (Anderson 2001), in which shuffling only occurs within sets of 

exchangeable data points. In fact, in the case of Felsenstein’s worst case, phylogenetic 

permutation is equivalent to a restricted permutation test in which exchanges only occur within 

the two polytomous clades. 

We analyzed our dataset using phylogenetic permutation, considering Spearman’s ρ and 

the slopes of the 90th and 95th conditional percentiles. We generate phylogenetic permutations 

with Blomberg’s K, but our results are statistically indistinguishable from those obtained with 
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Pagel’s λ (Supplementary materials). The distribution of statistics for phylogenetic permutations 

differs slightly depending on whether the predictor, response variable, or both are permuted. We 

present results in which both variables are permuted, but results are qualitatively identical for all 

three methods (Supplementary materials). 

 

4.4 Results 

We detect a pervasive latitudinal gradient in the mean and spread of arm number (Fig. 

4.2). Arm number among feather stars decreases from the equator to the poles (ρ = -0.276), even 

when analyzing northern (ρ = -0.183) and southern (ρ = -0.349) hemispheres or deep (ρ = -0.275) 

and shallow-water (ρ = -0.266) species separately. All correlations are statistically significant [or 

statistically clear, after Dushoff et al. (2019)] at the p < 0.01 level. The relationship between 

absolute latitude and arm number is visibly wedge-shaped, and this is borne out by quantile 

regression: the 5th and 10th conditional percentiles had slopes near zero (-0.08 and -7.9E-18, 

respectively), and neither had a better (lower) AIC score than the corresponding unconditional 

quantile. Conversely, the 90th and 95th conditional percentiles had quite negative slopes (-0.49 

and -0.74, respectively) and received overwhelming AIC support, with ΔAIC values in excess of 

70 in both cases. In other words, information about latitude improves estimates of upper but not 

lower quantiles of arm number. The latitudinal gradient in arm number therefore reflects an 

increased maximum arm number toward the equator without corresponding changes in the 

minimum. Arm number also declines steeply with depth (ρ = -0.360; Figs. 4.2, A3), and the 

variance among species with shallow-water occurrences (< 200 m) is 15 times greater than for 

deep-water species. 
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The negative relationship between absolute latitude and arm number is apparent even 

when the dataset is randomly subset such that each 10° bin has the same number of species. Arm 

number was significantly negatively correlated with absolute latitude in all 10,000 subsets 

(median p = 4.8E-8), with a median effect size of ρ = -0.358. Likewise, regression fits of the 95th 

quantile had comparable slopes (median slope = -0.579) to quantile regression fits for the raw 

dataset, and AIC tests favored them in all but 3 of 10,000 replicates (median ΔAIC = 42.6). 

Thus, the latitudinal gradient in arm number is not a spurious result of the greater diversity of 

feather stars in the tropics.  

Midpoints are a convenient summary statistic for latitudinal ranges, but there are 

important caveats to interpreting them at face value (Colwell and Hurtt 1994), two of which we 

deal with here. First, geographically biased sampling could systematically shift midpoints. For 

example, if marine biological research were more intense in the northern hemisphere, it could 

“pull” latitudinal midpoints north. However, we recover no such northern-hemisphere bias in our 

occurrence dataset [N, northern hemisphere = 10803 (45%); N, southern hemisphere = 13050 

(55%)]. A plot of per-species sampling intensity across latitude (Fig. A7) exhibits no clear 

latitudinal trends, and the number of samples per species in each 5° latitudinal bin is not 

correlated with either latitude (Pearson’s r = 0.0853, p = 0.637) or absolute latitude (r = 0.276, p 

= 0.12) As such, geographic bias in sampling intensity probably does not pose a serious problem 

for the use of latitudinal midpoints. Second, if many-armed feather stars had greater latitudinal 

ranges, it would tend to pull their latitudinal midpoints toward the equator, potentially 

engendering a spurious relationship between latitudinal midpoint and arm number. We do detect 

a weak but statistically perceptible relationship of this kind (Spearman’s ρ = 0.168, p = 4.326E-

4), so it is necessary to demonstrate that this alone does not cause the latitudinal gradient in arm 
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number that we observe. For each species, we drew one latitude from a uniform distribution 

bounded by the observed latitudinal range limits of that species. We then calculated the 

correlation between arm number and those randomly drawn latitudes, and repeated this 

procedure many times. Absolute latitude was significantly correlated with arm number in all 

1000 replicates (median ρ = -0.220, median p = 3.40E-6), indicating that the use of latitudinal 

midpoints does not induce a gradient in arm number where none truly exists. This finding is 

corroborated by a plot of arm number against the observed latitudinal range of each species 

(Supplementary files) and a boxplot of arm number for all species in each 10° bin of absolute 

latitude (Supplementary files). 

Temperature and latitude at one randomly selected occurrence per species were compared 

as predictors of arm number (see Methods). Arm number exhibited a stronger relationship with 

latitude (median ρ = 0.152) than with temperature (median ρ = 0.110) in 494/500 replicates, with 

a median difference in rhos of 0.0411 (Fig. A8). 

With the phylogenetic comparative approach adopted here, we show that Spearman’s ρ (p 

< 0.001) and the slope of the 90th (p = 0.017) and 95th (p = 0.009) conditional percentiles are 

more negative for the empirical dataset than in nearly all phylogenetic permutations (Fig. 4.3). 

The distributions of statistics for phylogenetically permuted datasets are visually similar to those 

associated with ordinary permutations, but have greater variance in all three cases (ex., the ratio 

of variances for ρ is 1.46; Supplementary materials). Thus, phylogenetic gives the dataset a 

tendency to produce stronger correlations, but not enough to explain the strongly negative 

relationships we observe.  

Arm number is greater on average among diurnal vs. nocturnal feather stars (difference in means 

= 24.01; Welch’s t-test, p < 0.005; Fig. 4.4) and among exposed vs. cryptic and semicryptic 
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forms (difference = 9.9; p = 0.315), although only the former is statistically significant. No 

nocturnal species has over 37 arms, whereas 10 of 19 of diurnal species have between 38 and 90 

arms.  

All three measures of the prevalence of regenerating arms were lower on average for cryptic and 

semi-cryptic or nocturnal species (Fig. 4.4). Individuals of exposed species were found 

regenerating significantly more arms on average (difference in means = 2.06) than cryptic and 

semi-cryptic forms [controlling for a false discovery rate of 0.05 following Benjamini and 

Yekutieli (2001)]. Exposed forms were also regenerating a significantly greater proportion of 

their arms (difference = 0.0619), and a significantly greater proportion of individuals were 

regenerating at least one arm (difference = 0.358). Diurnal species also had higher values of all 

three metrics than nocturnal species, but no differences were statistically significant. 

The rate at which feather stars lose arms to predators decreases toward the poles among 5 

shallow-water populations spanning 40° of latitude in the northern hemisphere (Supplementary 

files). All individuals in a population of Cenometra bella in the Philippines were found 

regenerating at least one arm and were estimated to suffer an attack from a predator every 9 days, 

whereas individuals in two mid- to high-latitude populations of Florometra serratissima 

encounter predators at about one-sixth that rate. No statistical significance is associated with this 

finding. 

Among five feather stars from the Great Barrier Reef that feed in exposed positions, 

species with more arms are apparently less palatable to the reef fish Chaetodon and Canthigaster 

(Fig. A4; Slattery 2010). However, another experimental study of 8 shallow-water tropical 

feather stars from Southern Vietnam recovered the greatest palatability to the sergeant-fish 

Abudefduf among the two species with at least 95 arms (Tinkova et al. 2014). Importantly, 
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palatability within species appears to be quite variable, either between fish or between localities: 

palatability as measured by Slattery (2010) is inversely related to palatability as measured by 

Tinkova et al. (2014) among the three species considered in both studies. 

 

4.5 Discussion 

4.5.1 Predation 

We demonstrate a latitudinal gradient in the mean and spread of arm number that appears 

in shallow and deep water and on either side of the equator, and that cannot be plausibly 

attributed to the effects of phylogenetic autocorrelation (for example, the coincidental 

diversification of one or a few clades of many-armed feather stars at low latitudes). We take the 

increase in maximum arm number toward the equator as the most biologically interesting feature 

of our dataset. As such, we attempt to explain why many-armed feather stars are restricted to the 

tropics, but few-armed feather stars are everywhere. 

We argue that predation is the most plausible explanation for the latitudinal and 

bathymetric trends in arm number described here. All else being equal, a crinoid with more arms 

will be able to encounter more predators without losing too many arms to feed effectively. 

Predation would therefore constitute a selective agent with a consistent latitudinal signal if 

tropical feather stars encounter predators more frequently. Predators are not universally more 

ecologically important or prevalent toward the equator (Klompmaker et al. 2019; Schemske et al. 

2009), but this does seem to be the case for marine durophages (Vermeij 1978). Moreover, the 

teleost fish and echinoid predators that matter most to crinoids (Baumiller et al. 2010; Meyer 

1985) have their greatest region-scale diversity and (at least for fishes) abundance in the tropics 

(Edgar et al. 2017; Stuart-Smith et al. 2013). The estimated waiting times between predator 
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encounters decreases monotonically toward the equator among 5 feather star populations 

(Supplementary files), corroborating the existence of a latitudinal gradient in predation intensity. 

More ecological studies are needed to definitively establish this pattern. Importantly, the 

predation hypothesis predicts both “first-order” spatial patterns in feeding morphology: the 

decrease in maximum arm number toward the poles and with depth. There is good evidence for a 

decrease in the intensity of predation on crinoids with depth (Baumiller 2013; Oji 1996); the 

relationship between latitude and predation intensity should be investigated further.  

If arm number has evolved as a result of predation, it is not the only aspect of crinoid 

morphology to do so. Both the configuration of arm branching and the spacing of articulations 

specialized for autotomy in the arms of feather stars match theoretical predictions for a predator-

resistant feeding apparatus (Oji and Okamoto 1994). Feather star arms branch close to the base, 

minimizing arm loss in the event of an attack but covering the filtration area less efficiently. 

Conversely, branching points are distributed more evenly along the arms of isocrinids – 

exclusively deep-sea stalked crinoids that encounter fewer predators than shallow-water stalkless 

forms (Meyer and Macurda 1977; Oji 1996). The spacing of autotomy articulations along the 

arms in both stalked crinoids and feather stars very closely approximates an anti-predatory 

theoretical optimum, but the arms of feather stars have more autotomy articulations (Oji 1996). 

The placement of crinoid gametes on arms and pinnules close to the center of the body, or on 

arms concealed in the substrate, has also been cited as an anti-predatory adaptation (Vail 1987). 

It therefore does not stretch the imagination to suggest that spatial patterns in arm number are the 

result of corresponding patterns in predation intensity.  

If the latitudinal arm number gradient is caused by a corresponding gradient in the 

intensity of predation, then the few-armed feather stars at low latitudes should have other ways 
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of coping with predators. Two such strategies have been documented extensively among feather 

stars: concealment (defined broadly here to include species nocturnal feeding and cryptic or 

semi-cryptic feeding positions) and toxicity. Our findings are consistent with concealment as an 

alternative to high arm number as an anti-predatory adaptation: feather stars that emerge to feed 

at night, when their predators are probably less active (Meyer & Macurda 1977; Vail 1987), have 

significantly fewer arms (Fig. 4.4). Moreover, all metrics of the prevalence of regenerating arms 

are lower for both forms of concealment (though only with statistical significance for crypsis), 

corroborating their effectiveness as anti-predatory strategies. Results for palatability are less 

clear: Slattery (2010) found exposed species to be uniformly less palatable (more toxic) than 

cryptic ones, but the three most palatable species studied by Tinkova et al.  (2014) were exposed. 

Combining the data from Slattery (2010) with our own, many-armed feather stars appear to be 

the least palatable, but the experimental results of Tinkova et al. (2014) support the opposite 

conclusion. Palatability of a single species can clearly be variable, but whether this is due to 

genuine within-species variability or to differences in taste among predators is not yet clear.  

High arm number is probably just one among many solutions to the problem of intense 

predation at low latitudes. We are not aware of any tropical reef species without any of the 

solutions discussed in this paper – arm number, toxicity, or concealment – and we suggest more 

intense predation may favor a combination of these strategies, and perhaps others not mentioned 

here. Some strategies may not be available to members of some groups: for example, arm 

number appears exceptionally conserved within the Antedonidae (Fig. A3). A survey of ecology 

across latitude among ten-armed feather stars would allow an investigator to isolate and study 

apparent anti-predatory adaptations besides arm number like concealment or toxicity, and would 

be a productive complement to this study. 
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If many-armed feather stars are better able to cope with intense predation, then why do 

few-armed feather stars occur at all latitudes and constitute most of the extant species diversity 

(Fig. 4.2)? The predominance of few-armed feather stars would make sense if many-armed 

forms were at a relative disadvantage in terms of their ability to feed or reproduce, all else being 

equal. Feather stars typically increase arm number above 10 by autotomizing free arms close to 

the base and regenerating two in their place in a process known as augmentative regeneration, so 

growing more arms temporarily reduces food intake and sets an individual back the resources 

required to grow and maintain two new arms (Moore and Teichert 1978; Shibata and Oji 2003). 

However, feather stars with more arms can potentially harvest more food, so it is not clear how 

arm number ultimately affects feeding efficiency. Instead, growing many arms could push back 

the onset of sexual maturity. The 40-armed feather star Anneissia japonica does not begin to 

augmentatively regenerate arms until roughly 8 months of age (Shibata et al. 2008), and at a year 

old is still far from reaching its terminal arm number (Shibata and Oji 2003)Although 

developmental data are excruciatingly scarce, the many-armed feather stars Lamprometra 

klunzingeri and Anneissia japonica reach sexual maturity later (1.5 years and 2 years old, 

respectively) than the few-armed feather stars Antedon bifida and Florometra serratissima (both 

one year) (Holland 1991; Shibata et al. 2008). Moreover, those many-armed feather stars appear 

to attain sexual maturity before reaching their adult arm number (Shibata et al. 2008), so further 

growth must involve wasting reproductive tissues. The cost of reproduction could therefore 

explain why many-armed phenotypes are rare in general, and are only present in the shallow and 

tropical waters where intense predation makes them necessary. The issue cannot be settled 

without more data on reproduction and development and should be treated as an open question. 
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If predation intensity on crinoids increases toward the equator, an interesting possibility 

is that phenotypic plasticity can account for some part of the latitudinal arm number gradient. 

Phenotypically plastic responses to predation (inducible defenses) have not been documented in 

crinoids but are widespread in marine invertebrates, with six cases of inducible defenses 

identified among non-crinoid echinoderms (Padilla and Savedo 2013). Feather stars that 

repeatedly autotomize arms in response to predators might be induced to augmentatively 

regenerate more frequently. If hypothetically the ocean were suddenly made free of predators, a 

new generation of feather stars might exhibit a weaker latitudinal arm number gradient, even 

without any evolutionary change. The degree to which arm number exhibits a reaction norm 

controlled by predation intensity is not known, but could be tested with aquarium experiments in 

which the frequency of autotomy is manipulated by an investigator. 

Although not considered in this study, stalked crinoids are thought to have been gradually 

excluded from shallow water by the ecological expansion of durophagous predators in the 

Mesozoic (Bottjer and Jablonski 1988). We predict that predation on shallow-water stalked 

crinoids should exhibit predictable trends with both time and latitude, and that it became 

prohibitively intense in the tropics first and only later in higher latitudes. Such a prediction is 

consistent with recently described shallow-water stalked crinoids from Paleogene and earliest 

Neogene localities across high southern latitudes (Whittle et al. 2018), but could be more readily 

addressed by an attempt to comprehensively survey fossil occurrences across depth and latitude. 

 

4.5.2 Temperature, productivity, and substrate 

A latitudinal gradient in the intensity of predation on feather stars is a plausible 

explanation for the global phenotypic patterns documented here, and we have suggested several 
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tests of this explanation in the preceding section, but the evidence is not conclusive. Here we 

discuss three essentially abiotic correlates of latitude that could conceivably underlie the patterns 

in arm number: water temperature, food supply, and coral reefs.  

Like mean and maximum arm number among feather stars, temperature increases toward 

the equator in shallow water and declines with depth. However, the mechanistic link between 

temperature and arm number is unclear. There is a well-documented relationship between sea-

surface temperature and the frequency of cyclones (Knutson et al. 2010), and the possibility that 

periodic intense tropical storms could select for more arms among exposed feather stars is worth 

exploring. Nevertheless, arm loss due to intense storms is apparently easy to distinguish 

anatomically from predator-induced arm loss: instead of being shed at articulations specially 

adapted for autotomy, arms are broken off randomly by storms (Mizui and Kikuchi 2013). Thus, 

studies of predation are unlikely to have been misled by damage from storms. Moreover, arm 

number is more weakly correlated with temperature than with latitude (Fig. A8). We studied 

temperature as a predictor of arm number among shallow-water species, but the relationship is 

likely even weaker in deep water, where arm number increases toward the equator but 

temperature is nearly constant (Webb 2019).  The latitudinal temperature gradient may be 

causally ‘upstream’ of many hypothesized latitudinal patterns in biology, including the 

latitudinal diversity gradient (Willig et al. 2003) and the importance of predators at low latitudes 

(Schemske et al. 2009). Nevertheless, if global differences in temperature have left an imprint in 

the distribution of arm numbers across the globe, they have probably done so indirectly. 

Primary productivity also exhibits latitudinal trends, with peaks in high latitudes (Yoder 

et al. 2001), and could be implicated in latitudinal patterns of feeding morphology. Suspended 

phytoplankton makes up much of the crinoid diet, and the amount and kind of phytoplankton is 
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surely important for crinoid feeding ecology (Kitazawa et al. 2007). However, the amount of 

particulate organic carbon that reaches the seafloor decreases toward the equator and with depth 

(Lampitt and Antia 1997), whereas arm number increases toward the equator and decreases with 

depth (Figs. 4.2, A4). Moreover, phytoplankton abundance, and the availability of suspended 

particulate food more generally, is extremely heterogeneous geographically, and varies more 

across time and with terrestrial nutrient input than it does across latitude (Yoder et al. 2001). The 

correspondence between food supply and arm number is probably not analytically tractable with 

our dataset: the most consistent spatial correlate of particulate organic carbon supply is depth 

[e.g. the amount of particulate organic carbon reaching 2000 m depth represents less than 1% of 

surface production (Lampitt and Antia 1997)], but we only have ready access to estimates of 

surface productivity. Most of the occurrences in our dataset are from deep water (e.g. 66% from 

below 100 m), where ocean color estimates of surface productivity correspond only weakly with 

the amount of particulate organic carbon encountered by the benthos. Finally, neither a positive 

nor a negative relationship between arm number and food supply is predicted by crinoid biology: 

increased arm number and denser filtration fans are relatively well-suited to fast-flowing water 

(Baumiller 1993), but have no obvious implications for fitness in productive or unproductive 

waters. Increasing arm number should increase maximum food intake, but also increases energy 

requirements (see previous paragraph). Global patterns in productivity can be safely rejected as 

causes of patterns in arm number on both pattern-based and mechanistic grounds.  

 The unique physical environment created by tropical coral reefs may facilitate the 

evolution of feeding morphologies not possible further toward the poles. High-flow 

microhabitats that can support feather stars with dense, many-armed filtration fans might be 

especially common on coral reefs. Local flow regime has clear consequences for the 
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effectiveness of different crinoid feeding morphologies (Baumiller 1993; Kitazawa et al. 2007; 

Leonard et al. 1988). A number of distinct microhabitats can be found across a coral reef (e.g. 

Zmarzly 1984), and both crinoid feeding postures (e.g. arcuate vs. parabolic vs. radial fan 

postures; Meyer and Macurda 1980) and aspects of morphology (Meyer 1973) seem to 

correspond to particular microhabitats.  In theory, the role of coral reefs in facilitating the 

latitudinal gradient in arm number could be tested by comparing arm number among feather stars 

along the East Pacific and East Atlantic, where tropical reefs are rare to absent, with species 

along the reef-rich West Atlantic and Indo-West Pacific. However, while reef-poor continental 

margins do not exhibit latitudinal gradients in arm number (Fig. A6), they are also extremely 

species-poor: the Tropical East Pacific marine province [(following Spalding et al. (2007)] and 

the tropical east Atlantic (the Western African Transition and Gulf of Guinea marine provinces) 

have occurrences from 2 and 4 feather star species, respectively. The question is therefore not 

amenable to a simple macroecological approach. Nevertheless, the physical properties of coral 

reef microhabitats are unlikely to directly account for the latitudinal arm number gradient alone. 

Arm number increases toward the tropics among shallow- and deep-water species alike (Fig. 

4.2), but zooxanthellate scleractinian reefs are exclusively found in shallow water. Moreover, 

although coral reefs present a unique physical environment, the high-energy flow regimes that 

favor many-armed filtration fans are not unique to the tropics: there are probably many habitats 

in temperate and polar regions in which many-armed feather stars could feed effectively. Lastly, 

some of the feather stars in our dataset with the greatest number of arms have been recorded 

living on soft bottoms (e.g. Phanogenia multibrachiata – 150 arms, Mekhova and Britayev 2012; 

Zygometra microdiscus – 83 arms, Messing et al. 2006), indicating that coral reef substrates are 

not a prerequisite for the many-armed condition.  
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Physical factors and biotic interactions do not constitute mutually exclusive (or 

collectively exhaustive) explanations for the broad spatial patterns in functional morphology 

outlined here. A more holistic conception of the evolution of arm number is that intense 

predation in the shallow tropics promotes the relative success of many-armed feather stars, and 

the reefs that are there help facilitate their ecological disparification by creating unique 

microhabitats and flow regimes. Reefs also provide the deep infrastructure in which cryptic 

forms hide from predators (Meyer 1985), and they recruit fish and echinoid predators (Baumiller 

and Stevenson 2018). Thus, the greatest diversity of feather star ecologies seems to be made 

possible by corals. Throughout the Phanerozoic, widespread reefs have not always been strictly 

tropical, made of photosymbiont-bearing coral, or even present (Kiessling et al. 1999). Inasmuch 

as reefs facilitate ecological disparification, changes in the global assembly of reefs probably 

correspond with changes in the deployment of ecological diversity around the globe. 

 

4.6 Conclusions 

We demonstrate a latitudinal gradient in mean and maximum arm number among feather 

stars that is symmetrical on either side of the equator, present in shallow and deep water, and 

distinct from the latitudinal diversity gradient. Concurrently, we introduce a new non-parametric 

phylogenetic comparative approach appropriate for non-linear trends in non-normal datasets and 

use it to reject the possibility that the patterns we observe result solely from phylogenetic 

autocorrelation of arm number and latitude. We also present evidence against several plausible 

abiotic agents as causes of this gradient. Instead, consilient evidence from crinoid ecology and 

functional morphology, indicates that a latitudinal gradient in the intensity of predation is a 

plausible and readily testable cause of the wedge-shaped relationship between arm number and 
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absolute latitude. Many-armed feather stars are not only more predator-resistant, but are also 

characterized by several unique ecologies, especially on tropical coral reefs. Crypsis and toxicity 

are additional ecologies that characterize the tropical reefs where predators make them 

necessary. Inasmuch as these ecomorphological roles are only or most viable in the face of 

intense predation, predators act as an “enabling factor” sensu Vermeij (2020), expanding the 

range of viable ecologies. Conceptually, ecological diversity is typically linked with opportunity 

(e.g., unfilled niches), but we suggest that predation, typically thought of as a “constraint,” may 

just as readily promote functional innovation.   

To the degree that arm number corresponds to feeding ecology, the wedge-shaped 

relationship between arm number and latitude implies a latitudinal gradient in functional richness 

(the number of unique ecologies) that is independent from the latitudinal diversity gradient. 

Similar patterns in functional richness have been reported in bats, birds, bivalves, and shallow-

water fish (Schumm et al. 2019; Stevens et al. 2003; Stuart-Smith et al. 2013). Notably, the 

proposed mechanisms for such a pattern in these taxa involve abiotic factors – for example, 

latitudinal gradients in temperature, with downstream effects on resource abundance/stability – 

whereas our explanation emphasizes predation as a causal/selective agent. Biotic interactions like 

competition have been incorporated by other authors into explanations for latitudinal gradients in 

species richness and evolutionary innovation (Schemske et al. 2009). Pianka (1966) implicated 

predation in the latitudinal diversity gradient, but to our knowledge a model in which predation 

facilitates functional diversification is novel. The generality of latitudinal gradients in ecological 

diversity remains to be explored, but when they exist they need not be linked with ecological 

opportunity or resource availability.   
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122. 

 

Fig. 4.1. Arm number among feather stars. (A) An unidentified 10-armed feather star perched on 

an octocoral. Photo © Paul Humann. (B) The large, many-armed (average: 55 arms) feather star 

Comaster schlegelii (Comatulidae). Photo © James A. Maragos. (C) Phylogeny of feather stars 

and the distribution of arm number within major clades. Phylogeny shown is a summary of the 

relationships recovered by Hemery et al. (2013), with nodes without support values collapsed 
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into polytomies. There are no feather stars with between 0 and 4 arms, or between 6 and 9 arms. 

There are 109 10-armed antedonid feather stars in the dataset [although “Antedonidae” is non-

monophyletic (Hemery et al., 2013)].  

 

 

Fig. 4.2. Arm numbers among extant feather stars show a wedge-shaped relationship with 

latitude. Absolute value of latitude against arm number, with Spearman rank correlations shown 

for the entire dataset and subsets including deep-water (no occurrences above 200 m) and shelf 

taxa. All correlations shown are significant at the p < 0.0005 level. 5th and 95th conditional 

percentiles shown for the entire dataset. Marginal histograms for latitude (bin width = 10°) and 

arm number (bin width = 10) plotted at top and right, respectively. 

 



 127 

 

Fig. 4.3. Comparing empirical relationships with a set of 1000 “phylogenetic permutations” in 

which both the predictor and response variable have been randomly rearranged such that their 

phylogenetic signal (here, Blomberg’s K) on the phylogeny is approximately equal to that of the 

observed data. (A) Arm number against absolute latitude for the 122 species represented in the 

phylogeny, with the phylogeny connecting tip values with ancestral state estimations for internal 

nodes. (B) Three sets of phylogenetic permutations. (C—E) Histograms of summary statistics of 

phylogenetic permutations, with empirical statistics plotted as an orange bar. One-sided p-value 

shown. (C) Spearman’s ρ. (D) Slope of the conditional 90th percentile estimated with quantile 

regression. (E) Slope of the conditional 95th percentile. 
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Fig. 4.4. Arm loss and arm number in populations of tropical shallow-water feather star species 

with differing habits. Differences in means are shown, along with p-values for Welch’s unequal 

variances t-tests. Jittered points are species; larger points represent greater sample sizes. 

Statistically significant differences [controlling for a false discovery rate of 0.05 following 

Benjamini and Yekutieli (2001)] shown in bold. See text for habit details. 19 species are diurnal 

and 11 are nocturnal; 15 species are scored as concealed and 15 exposed. 
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CHAPTER 5 

Dispersal From the Ancient West Tethys as a Source of the Modern Indo-West Pacific 

Marine Biodiversity Hotspot in Comatulid Crinoids 

 

Preamble: The contents of this chapter are in review. Supplementary materials are provided here 

in Appendix A. 

5.1 Abstract 

Earth’s most conspicuous centers of biodiversity have commonly been ascribed to local 

conditions that promote lineage divergence or extinction resistance, but recent diversification 

studies have rendered this traditional mode of explanation increasingly tenuous, suggesting a re-

evaluation of the historically neglected role of dispersal in concentrating biodiversity. Here we 

consider the processes underlying the modern marine diversity hotspot in the Indo-West Pacific, 

using ancestral range estimation, a new occurrence database, novel taphonomic analyses, and 

phylogenetic analysis of fossils on a group of suspension-feeding echinoderms conspicuous on 

tropical reefs today: comatulid crinoids. Ancestral range reconstruction on a phylogeny of extant 

comatulids recovers an origin for the group in the Atlantic-Mediterranean and an elevated 

dispersal rate into the Indo-Pacific. Comatulid fossils spread out gradually from an origin in the 

Early Jurassic West Tethys and do not appear in their modern hotspot until the Oligocene, and 

novel taphonomic analyses demonstrate that these results are not well-explained by 

preservational or sampling bias. Finally, phylogenetic analyses place Mesozoic West Tethyan 

fossils deep in the crown group, indicating that comatulids had diversified substantially before 
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dispersing to their modern hotspot. Combined with findings from other groups, these consilient 

results yield a surprisingly coherent picture of a biodiversity hotspot that owes its existence not 

to in situ divergences but to dispersals out of the ancient West Tethys. 

 

5.2 Introduction 

A basic problem in ecology and evolution is explaining the uneven distribution of 

biodiversity around the earth. What requires explanation is not necessarily that diversity is not 

uniform, as heterogeneity is expected in any such system; instead what is surprising are the 

coincident diversity patterns seen across clades, such as the latitudinal diversity gradient 

(Mittelbach et al. 2007) and the monotonic depth-diversity relationships frequently seen in the 

ocean (Rex and Etter 2010). Most explanations for such gradients have historically been in terms 

of differences in the local production (e.g., speciation) or depletion (e.g., extinction) of diversity, 

and relatively little attention has been given to the accumulation of species through dispersal 

(Roy and Goldberg 2007). However, this familiar mode of explanation, particularly in terms of 

gradients of speciation, has become increasingly tenuous: modern phylogenetic comparative 

biology finds increasing evidence that spatial gradients in the production of biodiversity often are 

uncorrelated with or even run opposite to diversity gradients (Rabosky et al. 2018; Hara et al. 

2019; Harvey et al. 2020; Igea and Tanentzap 2020), suggesting that the role of dispersal in 

generating earth’s most conspicuous diversity gradients is worth revisiting.  

In the ocean, the most conspicuous of these patterns is the “hotspot” of diversity in the 

tropical Indo-West Pacific (IWP), seen in groups as ecologically distinct as fishes, corals, 

molluscs, large benthic foraminifera, mangroves, and seagrasses (Renema et al. 2008a; Bellwood 

et al. 2012; Rabosky et al. 2018; Worm and Tittensor 2018). The hotspot is geologically young: 
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local species richness counts of benthic foraminifera and paleontological first occurrences from 

diverse groups indicate that the center of shallow marine richness shifted eastward from the West 

Tethys (where the Mediterranean is today) to the IWP in the later Cenozoic (Renema et al. 

2008a). Less well-established than this pattern of eastward movement are the processes 

underlying it. Explanations have contrasted the west-to-east movement of a single fauna with the 

flare-ups and die-downs of successive hotspots (Renema et al. 2008a), or alternatively, scenarios 

of elevated dispersal into the hotspot, elevated extinction outside, and elevated origination within 

(Huang et al. 2018). These possibilities and combinations thereof remain plausible today and 

cannot be addressed solely by counts of raw richness through time; instead, a synthetic use of 

neontological and paleontological data is necessary to discriminate among competing 

explanations for the hotspot. 

We bring phylogenetic, taphonomic, and biogeographic evidence to bear on the processes 

underlying the center of modern marine richness in a group whose historical biogeography has 

received little study: comatulid crinoids. These suspension-feeding echinoderms make up most 

crinoid diversity today (612/672 species; Appeltans et al. 2012) and are conspicuous on reefs 

across the tropics. Like many marine groups, their species richness is today highest in the IWP 

(Fig. 5.1A). We use ancestral range reconstruction on a phylogeny of extant comatulids, compile 

a comprehensive fossil occurrence database and interrogate it with new taphonomic analyses, 

and estimate the phylogenetic affinities of fossil comatulids to interpret this record in terms of 

biogeographic processes. Our results yield consilient insights into the origins of the modern 

center of marine richness. 

 

5.3 Methods 
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5.3.1 Extant comatulids 

We calculated species richness in each 10° square grid cell using a database of 25,679 

species-level occurrences downloaded from the Ocean Biogeographic Information System 

(Appendix A; OBIS 2021). To calculate phylogenetic diversity, facilitate ancestral range 

reconstruction, and constrain morphological phylogenetic analyses, we inferred the relationships 

among 160 extant comatulids and 9 outgroup taxa using an alignment of four genes (5823 BP) 

with maximum likelihood in RAxML (Appendix A; Stamatakis 2014). We time-scaled this 

phylogeny with three fossil constraints using penalized likelihood with treePL (Appendix A; 

Smith and O’Meara 2012). Phylogenetic diversity was calculated as the sum of branch lengths 

for the tree connecting all the species in each 10° cell. Only 139 of 612 described comatulid 

species were represented in the final trimmed phylogeny, but representation in the phylogeny 

does not appear to be biased geographically (Appendix), so we have no reason to expect the 

phylogenetic diversity metric to be biased. For ancestral range reconstruction, we scored each 

species as being Atlantic-Mediterranean (AM), Indo-Pacific (IP), or widespread. Unlike the West 

Tethys (WT) – East Tethys (ET) scheme used in the fossil analyses, the AM–IP scheme 

encompasses the whole world ocean: the AM includes the WT and the IP includes the ET. We 

estimated biogeographic history using the dispersal-extinction-cladogenesis model as 

implemented in lagrange (Ree and Smith 2008). We fit separate rates for dispersal to and from 

the IP and used AIC to compare models with and without asymmetrical dispersal rates (Fig. 5.2). 

We also calculated likelihood and root reconstructions for dispersal rate ratios between 10-5 and 

105. 

 

5.3.2 Fossil occurrences 
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We assembled a new, nearly comprehensive database of 610 fossil comatulid occurrences 

comprising 67 genera in 302 localities (Appendix A). We used two novel analyses to evaluate 

the degree to which the absence of comatulids from the Mesozoic East Tethys could be taken 

literally, both of which used the echinoderm fossil record (downloaded from the Paleobiology 

Database February 2021; Appendix A) as a taphonomic control. In both tests, we assumed that 

every echinoderm locality had some probability of yielding fossil comatulids. The first analysis 

used AIC to compare two models for the observed numbers of West Tethyan (WT) and East 

Tethyan (ET) comatulid localities in each of 10 intervals (Fig. 5.1C): one in which every locality 

had the same chance of yielding comatulids, and one in which WT and ET localities had 

different probabilities (Fig. 5.3; Appendix A). The second analysis compared the geographic 

extent (convex hull area) of comatulid-bearing localities in each interval with that of 

echinoderm-bearing localities randomly subsampled to the same sample size. 

 

5.3.3 Phylogenetic placement of fossils 

The phylogeny of fossil comatulids has previously been investigated by (Saulsbury and 

Zamora 2020). We built on their analysis here with added fossil and living taxa and an expanded 

set of characters. We coded a morphological database of 30 discrete and 24 continuous 

characters for 24 extant and 7 Jurassic and Cretaceous fossil species. Relationships were inferred 

with TNT without implied weights (Goloboff et al. 2003). All discrete characters were treated as 

unordered, and all continuous characters were scaled to vary between 0 and 1, so that the 

maximum possible distance between two continuous character states was equal to a single 

transition in a discrete character. Supports were calculated with bootstrapping. Relationships 

among all living taxa were fixed to those in the molecular phylogeny, so this analysis sought the 
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most parsimonious positions of just the six non-outgroup fossil taxa (Appendix A). We also 

inferred the positions of fossils with continuous and discrete subsets of the data, and of each 

fossil individually. 

 

5.4 Results 

5.4.1 Ancestral range reconstruction 

Regional-scale species richness, which peaks at 94 species in northwestern Australia, 

shows basically identical patterns to phylogenetic diversity (Fig. 5.1A—B), indicating that the 

taxic diversity hotspot is also the greatest concentration of evolutionary history. Ancestral range 

estimation with the dispersal-extinction-cladogenesis model (DEC; Ree and Smith 2008) on a 

phylogeny of 139 species infers a dynamic history for this hotspot: the scenario that maximizes 

likelihood has the comatulid clade and most major subclades originating in the Atlantic-

Mediterranean (AM), with the rate of dispersal into the Indo-Pacific (IP) 23 times that of the rate 

of dispersal out of it (Fig. 5.2). The likelihood of the reconstruction decreases smoothly as this 

dispersal rate ratio is changed in either direction (Fig. 5.2B), with a ratio of 1 (symmetrical rates) 

yielding a log-likelihood 4.782 units lower. Fitting asymmetrical rates imposes the explanatory 

burden of an extra parameter on the biogeographic model, but this addition is more than 

compensated for by the increase in likelihood (ΔAIC = 7.564). The relative likelihood of an IP 

origin for the root increases as the modeled dispersal rate into the IP decreases; with symmetrical 

rates, an IP origin is favored. 

 

5.4.2 Fossil occurrences and taphonomic controls 
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A new, nearly comprehensive occurrence database shows comatulids appearing in the 

early Jurassic of western Europe and spreading out gradually from there, appearing in North 

America in the Early Cretaceous and only reaching as far east as the Caspian Sea by the end of 

the Cretaceous (Fig. 5.1C). From the Oligocene, their fossils appear in the IWP: the Oligocene of 

New Zealand, the Miocene of Australia and Japan, and the Pliocene of the Coral Triangle.  

A literal reading of this record is probably unwarranted as, for example, comatulids occur 

today in many places not represented in their Plio-Pleistocene fossil record. We used taphonomic 

analyses to test the more limited inference that comatulids originated in the West Tethys and did 

not become established in their modern hotspot until much later. We used echinoderms as 

taphonomic controls because they are globally distributed, share ecological restrictions like 

stenohaly, and have similar multi-element skeletons with roughly equivalent preservation 

potential. Results are qualitatively unchanged for subsets of this control group (Appendix A). 

Taphonomic controls are under-represented in the East Tethys until the Oligocene, but are 

present there in every time interval, with 62% as many East Tethyan as West Tethyan localities 

on average (Fig. 5.1C; Fig. 5.3A). A model in which every taphonomic control locality has an 

equal chance of yielding comatulids predicts finding between 3 and 13 comatulid localities in the 

East Tethys in every interval – except the Early Jurassic, when comatulids first appear in just a 

few localities. Yet no East Tethyan comatulids are observed until the latest Cretaceous, and there 

are fewer occurrences there than expected in every interval before the Oligocene. In all these 

time intervals, AIC favors a model in which East Tethyan localities have lower chances of 

yielding comatulids. Conversely, we observe exactly as many East Tethyan comatulid localities 

as expected under equal-chances in the Oligocene and the Plio-Pleistocene. 
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The geographic extent of comatulid fossil localities increases monotonically across all 

five Mesozoic intervals, and from the Eocene is greater than in any previous interval (Fig. 5.3B). 

Until the Eocene, the geographic extent of comatulid fossil localities is smaller by 0.5 – 2 orders 

of magnitude than would be expected from subsampling the same number of taphonomic 

controls. From the Eocene onward, comatulids can be said to have achieved a global distribution, 

inasmuch as they span an area as great as would be expected by randomly sampling echinoderm 

localities. Different taphonomic controls yield qualitatively identical results (Appendix). 

 

5.4.3 Fossil placements 

A cladistic analysis with 30 discrete and 24 continuous characters of 24 extant and 7 

Mesozoic West Tethyan fossil species, in which relationships among extant species were 

constrained to match the molecular phylogeny, recovered all fossil comatulids in the crown 

group (Fig. 5.4). Fossil placements were roughly similar when using only continuous or discrete 

characters, and when the position of each fossil was inferred individually (Appendix). 

Decameros ricordeanus and D. wertheimi (both Early Cretaceous) and Solanocrinites depressus 

(Late Jurassic) formed a relatively well-supported clade near Tropiometra, consistent with 

previous studies (Saulsbury and Zamora 2020). Precise placements for the other three fossils 

were less certain but are all well-supported as being in the crown, generally outside of the clade 

containing Heliometra and Cenometra but closer to that clade than to Crinometra. In no 

variation of the phylogenetic analysis did any comatulid fossils come out in the stem group 

(Appendix). Notably, all placements are consistent with ancestral range estimation (Fig. 5.2): all 

fossils attach to branches inferred to be either Atlantic-Mediterranean or widespread. 
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5.5 Discussion 

5.5.1 Comatulid origins: neontological evidence 

Ancestral range estimation points toward an unexpected result. Not only is the 

preponderance of extant comatulid diversity in the Indo-Pacific (IP), but these comatulids come 

from across the phylogenetic tree; nevertheless, ancestral range reconstruction decisively favors 

an origin in the Atlantic-Mediterranean (AM) and elevated dispersal into the IP (Fig. 5.2). This 

may be because the relatively species-poor clades of AM or widespread comatulids are 

frequently sister to species-rich IP clades, and the overall pattern is one of nestedness of IP 

within AM. Notably, with dispersal rates between regions constrained to be equal, an IP origin 

for most basal nodes in the tree is inferred. It is noteworthy that allowing asymmetry yields 

qualitatively different results because asymmetry in dispersal rates is apparently only rarely 

investigated in DEC analyses. This limitation might affect many studies, especially considering 

how biologically plausible asymmetrical dispersal rates are – demonstrated not least by the 

modern record of invasive species (Fridley and Sax 2014). However, because considering 

asymmetry doubles the number of dispersal rate parameters that need to be fit to the data, it may 

not be advisable for inference schemes with many regions or few tips. 

Unlike many recent studies that estimate biogeographic history on a combined phylogeny 

of living and fossil species (Dornburg et al. 2015), we took a consilience approach to our 

neontological dataset, treating it independently of the fossil data. This avoids two potential 

problems: first, because all Mesozoic fossil comatulids are from what is now the AM region, we 

suspected that they would swamp out any biogeographic signal from the data at the tips by virtue 

of being much closer to the root. Adding a single AM fossil near the root of the comatulid tree 

changes the estimated ancestral range, even when all the tips are set to the IP, confirming this 
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suspicion (Appendix). If it is known at the outset that data from extant organisms do not affect 

the results of an analysis, the analysis may not be worth doing. Second, a combined analysis does 

not account for the potentially severe effects of geographic bias in preservation potential and 

paleontological effort, which should cause AM comatulids to be over-represented in the fossil 

record (Fig. 5.3). By adding more and more AM Mesozoic fossils to a combined phylogeny, we 

could make the inference of an AM origin as confident as we wished, but we would be ignoring 

the chief source of uncertainty regarding the paleontological evidence for the origins of the 

clade. 

 

5.5.2 Comatulid origins: paleontological evidence 

The comatulid fossil record offers consilient evidence on both the pattern of shifting 

diversity and the processes by which this shift occurred. The occurrence record (Fig. 5.1C) 

speaks clearly on pattern: not only do fossil occurrences show a coherent gradual expansion from 

a West Tethyan origin to an eventual worldwide distribution, but taphonomic control analyses 

indicate that their early absence from the East Tethys is not well-explained by random sampling 

alone, and may even indicate genuine absence (Fig. 5.3). First, a model in which any 

echinoderm-bearing locality has an equal chance of yielding comatulids does a poor job of 

explaining the distribution of comatulid occurrences, and from the Middle Jurassic to the Eocene 

this model is outperformed by one in which Western Tethyan localities are more likely to yield 

comatulids (Fig. 5.3A). Equal-chances cannot be rejected in the Early Jurassic, probably because 

there are only a few comatulid-bearing localities in this interval. This matches the general 

finding that fossil taxa have relatively few occurrences in the time intervals immediately 

following their first appearance (Foote 2007). Second, the geographic extent of comatulid 
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localities increases monotonically throughout the Mesozoic and from the Eocene onward is 

greater than in any previous interval despite lower sampling (Fig. 5.3B). Moreover, their 

geographic extent is well below that of subsampled taphonomic controls from the Early Jurassic 

to the Paleocene, but not after that (Fig. 5.3B). Thus, the geographic expansion of comatulid 

fossils probably reflects the real biogeographic phenomenon of a West Tethyan origin and 

subsequent expansion, rather than just changes in paleontological effort or preservation potential.  

Though often treated as a logical fallacy, the claim that absence of evidence constitutes 

evidence of absence can be analytically tractable and philosophically grounded (Sober 2009). In 

this study, it rests on the probability that, if there were IP comatulids in the Mesozoic, we would 

have found them by now. The fossil record outside of Europe and North America is regarded as 

being too imperfectly known for many applications (Vilhena and Smith 2013); if this were true 

in our case, the lack of IP Mesozoic comatulids would not necessarily mean anything, being just 

as well explained by true absence as by our not having found them yet. Instead we find that, 

while the East Tethys is under-represented (Fig. 5.3A), it is sufficiently known to reject the 

conclusion that comatulids were widespread in the Mesozoic. This kind of “evidence of absence” 

logic has been a mainstay of paleontology since Cuvier (Simpson 1985), and underlies any 

inference of extinction, origination, or geographic range. 

While the fossil occurrences are consistent with a shifting diversity hotspot (Renema et 

al. 2008b), without phylogenetic information, they are silent on the processes underlying this 

shift: the record is just as consistent with an origin and diversification of crown comatulids in the 

West Tethys and their subsequent dispersal to the Indo-West Pacific as it is with a scenario in 

which Mesozoic comatulids were all in the stem group and the crown only originated and 

diversified much later in their current hotspot. The morphological phylogenetic results 
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discriminate ably among these possibilities, as they indicate that the Mesozoic West Tethyan 

comatulids included quite nested crown members, apparently before comatulids ever reached the 

Indo-West Pacific (Fig. 5.4). For example, the placement of the Late Jurassic Solanocrinites 

depressus alone implies that 8 basal divergences in the phylogeny had occurred before the 

Cretaceous. Likewise, all other fossil comatulids yield more parsimonious placements within the 

crown than outside it, and all placements are consistent with ancestral range reconstruction (Fig. 

5.2). While the precise placements are in some cases considerably uncertain, they combine with 

the taphonomic control analyses to distinguish conclusively between alternative process-based 

explanations for the hotspot, pointing toward the dispersal of many comatulid lineages to the 

Indo-West Pacific in the Cenozoic. Thus, although the neontological and paleontological data 

and inferences have different forms, they indicate the same thing: the formation of the modern 

hotspot by the dispersal of many comatulid lineages out of their West Tethyan place of origin. 

 

5.5.3 Process 

Paleontological and neontological data indicate an origin of the modern hotspot by 

dispersal in comatulids, but they do not rule out other mechanisms. In particular, intense 

extinction outside of the IWP has been invoked to explain the diversity hotspot in other taxa 

(Martino et al. 2018) and seems plausible for comatulids too. Their West Tethyan diversity was 

high as late as the Miocene (Vadász 1915; Eléaume et al. 2020), but the Messinian salinity crisis 

that devastated other Mediterranean groups (Harzhauser et al. 2007) probably wreaked 

comparable havoc on the comatulid fauna, leaving the modern Mediterranean fauna with just six 

species with occurrences or congeners in the Atlantic (OBIS 2021). Whether speciation might 

have been elevated in the IP is unclear; given the low sampling in the molecular phylogeny and 
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the rampant polyphyly in comatulid taxonomy (Rouse et al. 2013), a robust diversification 

analysis is probably not feasible. But the available molecular phylogeny suggests no striking 

imbalances or recent bursts of divergences (Fig. 5.2A), and origination has not been found to be 

elevated in the IP in other groups (see below), leaving this explanation for the hotspot without 

much support. Though IWP richness hotspots are found in most major groups of shallow marine 

benthic organisms (Worm and Tittensor 2018), investigations of process have mostly been 

confined to a few major clades (teleosts, corals, gastropods, and foraminifera), and this study 

represents one of only a few attempts to address the origin of the hotspot for a group outside this 

canon. Comatulids are not remarkable in their sampling for molecular phylogenetics, the quality 

of their fossil record (Purens 2016), or their tractability for morphological phylogenetics, so a 

much-needed boost in generality could be gained by considering other groups such as decapods, 

echinoids, and bivalves in the analytical framework used here. 

 

5.6 Conclusions 

Ancestral range estimation on a phylogeny of extant comatulids supports an origin in the 

Atlantic-Mediterranean and an elevated dispersal rate into the Indo-Pacific. Likewise, fossil 

occurrence data supports the contention that comatulids did not arrive in the East Tethys before 

the end of the Cretaceous, and phylogenetic inference indicates that most of the major comatulid 

lineages had originated by that point. Thus, neontological and paleontological evidence 

independently point toward an origin for comatulid crinoids in the ancient West Tethyan center 

of global marine richness and the parallel dispersal of many lineages to their modern Indo-West 

Pacific hotspot in the Cenozoic. 
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A surprisingly consistent picture of the formation of the modern marine richness hotspot 

has emerged over the past several decades, establishing two good explanations for the hotspot’s 

movement. First, lineages outside the modern hotspot and especially in the West Tethys appear 

to have dispersed en masse into the IWP during the Cenozoic, as evinced for corals (Pandolfi 

1992; Huang et al. 2018), some gastropods (Harzhauser et al. 2007), large benthic foraminifera 

(Renema 2007), and comatulid crinoids here. Movement of the hotspot by dispersal also 

accounts for the long-standing paleontological observation of the faunal similarity between West 

Tethyan fossil assemblages and those in the modern IWP (Eléaume et al. 2020; Hall 1998; Baluk 

and Radwanski 1977; but see Friedman and Carnevale 2018). Increased larval import promoted 

by changes in ocean circulation has been invoked to explain elevated dispersal into the hotspot 

(Huang et al. 2018), but we see no problem with the arguably more parsimonious idea that the 

expanding shallow habitat created by Cenozoic tectonic activity (Hall 1998) would have made 

founder populations more likely to persist and become established in the new hotspot. Second, 

the IWP seems to have been a haven from extinction: paleontological evidence indicates lower 

extinction rates there than in the Caribbean (O’Dea et al. 2007; Martino et al. 2018), we know of 

no regional extinctions in the IWP comparable to the salinity crisis that spelled the end of the 

West Tethyan hotspot (Harzhauser et al. 2007), and populations in the center of the IWP appear 

to have been more likely to survive Plio-Pleistocene environmental disturbances than those in 

adjacent regions (Evans et al. 2016). Some have suggested that the hotspot could be a center of 

origination – for example, via a glacioeustatic “engine of speciation” driven by repeated 

submergence and exposure of land currently below sea level (Benzie 1999), or through the 

promotion of population fragmentation by the separation of islands by stretches of deep sea 

(Bellwood et al. 2012). But the generally broad species ranges and lack of endemism in the 
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hotspot argue against population fragmentation and allopatry as the source of the high species 

richness here (Bellwood et al. 2012; Bowen et al. 2013), and phylogenetic (Bellwood et al. 2012; 

Hodge et al. 2014; Huang et al. 2018) and paleontological (Martino et al. 2018) evidence shows 

no support for any recent bursts of speciation in the region. Thus, the modern marine biodiversity 

hotspot probably arose not because it was an environmentally propitious place for lineage 

divergence (Keith et al. 2013), but because it was well-situated to inherit the biological riches of 

a “donor hotspot”: the ancient West Tethys. 
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Fig. 5.1. Biogeography of extant and fossil comatulids. (A) The number of species recorded in 

the Ocean Biogeographic Information System for each 10° cell on earth. (B) Phylogenetic 

diversity in each 10° cell, quantified as the total length of the tree of all species in a given cell. 

(C) Fossil comatulid occurrences in each of 10 time intervals from the Early Jurassic to the Plio-

Pleistocene, with echinoderm-bearing localities shown for comparison. 
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Fig. 5.2. Ancestral range reconstruction with extant comatulids. (A) Molecular phylogeny of 139 

species. Colors at tips show observed ranges, pie charts at internal nodes show relative 

likelihoods of alternate states. (B) Model log-likelihood and inferred ancestral ranges at the root 
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for different ratios of the rate of dispersal out of vs. into the Indo-Pacific. Orange line indicates 

the ratio that maximizes likelihood. 

 

 

Fig. 5.3. Taphonomic control analyses. (A) Numbers of occurrences of echinoderms (including 

comatulids; used as a taphonomic control) and comatulids in each of 10 intervals, analyzed with 

respect to two models. Equal-chances treats each echinoderm locality as having an equal chance 

of yielding comatulid fossils; unequal-chances gives West Tethyan and East Tethyan localities 

separate chances of yielding comatulids. Plots below show the probability of observing N East 

Tethyan comatulid localities under both models, with observed N shown as an orange arrow. 

Akaike weights for the unequal-chances model are shown below those. (B) Convex hull range 

size of comatulid localities (black) and taphonomic controls randomly subsampled to the same 

sample size (grey). 
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Fig. 5.4: Single most parsimonious phylogeny of 24 extant and 7 Mesozoic fossil comatulid 

crinoids, inferred with 30 discrete and 24 continuous characters. Bootstrap supports shown. 

Frequently only the calyx of fossil comatulids is preserved; photographs of fossil calyces and 

renders based on CT scans of living ones are shown for select species. 
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CHAPTER 6 

Conclusion 

6.1 Summary 

The preceding chapters establish and support three propositions about the evolution of the 

comatulid crinoids. First, I showed that the crinoid somatocoel performs a role in respiration, that 

this role explains previously enigmatic features of internal anatomy in living and fossil 

comatulids, and that the respiratory demands of stalkless comatulids are probably greater than 

those of the less mobile, exclusively deep-sea stalked crinoids. Second, I demonstrated a 

statistically robust negative relationship between absolute latitude and maximum arm number in 

stalkless crinoids and presented evidence for intense tropical predation as the cause. Finally, I 

showed that neontological and paleontological data independently support an origin of 

comatulids in the West Tethys and subsequent mass dispersal to their modern center of diversity 

in the Indo-West Pacific. These phenomena are probably not peculiar features of comatulid 

biology, but instead corroborate more general findings from other groups regarding the anti-

predatory adaptations associated with persistence in shallow water after the Mesozoic 

intensification of marine predation (Vermeij 1977), the intensity of predator-prey interactions in 

the tropics (Schemske et al. 2009), and the geographic shifts in the center of marine richness over 

the Cenozoic (Renema et al. 2008). This dissertation also suggests new features of those same 

phenomena: for example, a causal link between predation and latitudinal gradients in functional 

richness, and a movement of the hotspot by dispersal. 
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6.2 Future directions 

This dissertation touched on but did not directly address several promising open research 

questions ranging from the very specialized to the more general. Most basically, the comatulid 

fossil record needs descriptive work: undescribed forms abound in drawers across the globe, and 

only a handful of living paleontologists have ever described fossil comatulids. Descriptive work 

would help fill in gaps in our knowledge of comatulid evolution – like their Cenozoic record 

(Purens 2016; Baumiller and Fordyce 2018) – and help link up the systematics of living and 

fossil forms. DNA sequence data are available for only a fraction of living comatulid species, so 

more complete molecular sampling will continue to shake up comatulid systematics, clarify 

patterns of trait evolution within the group (Summers et al. 2014), and perhaps help to resolve 

the relationships of comatulid clades above the family level and between comatulids and other 

crinoids (Rouse et al. 2013).  

Beyond these ‘housekeeping’ issues, tantalizing questions remain in the study of crinoid 

evolution. The functional significance of feeding morphology was touched on in a simplified 

way in chapter 4 but is still poorly understood. Crinoids with more arms and denser filtration 

fans require more powerful currents to feed (Baumiller 1993), but crinoids with more arms can 

also encounter predators more frequently without losing too many arms to feed. Do these 

constraints have predictable consequences for fitness or evolutionary trends, and how much 

phenotypic plasticity is there in arm number? The generality of the increase in the intensity of 

predation from the poles to the equator should also be pursued further, both in comatulids and in 

marine invertebrates generally. Why such a gradient should have come into being in the first 

place remains an open question as well (Schemske et al. 2009). 
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The wealth of fossil comatulid diversity from the Miocene of Europe was hinted at in 

chapter 5, but most of that diversity was described only sketchily by a single author over a 

century ago (Vadász 1915). A revision of this fauna, a paleoenvironmental study of the semi-

isolated Paratethyan basins from which it is recorded, and a biogeographic and phylogenetic 

comparison with both the modern Mediterranean and Indo-West Pacific comatulid faunas would 

be tremendously interesting. Possibly this final chapter of the Tethys and its biota was 

comparable in richness and disparity with the modern Coral Triangle, or with the Mesozoic 

Tethyan biota, and no doubt its study would clarify comatulid biogeographic history. 

Two promising areas for future study in echinoderm evolution were uncovered during 

this dissertation but not remarked on in the preceding chapters. First, because crinoid fossils can 

record fine details of nervous anatomy, they would make a productive system for studying the 

evolution of the nervous system. Post-Paleozoic crinoids have transitioned between motility and 

sessility several times, and some sessile crinoids today have relatively simplified nervous 

anatomy (Grimmer and Holland 1990), paralleling changes seen in the nervous systems of sessile 

tunicates and barnacles (Cornwall 1953; Mackie and Burighel 2005). A comparative study of the 

consequences of life history for the organization of the nervous system in crinoids could be 

uniquely edifying. Second, echinoderms have probably undergone more evolutionary changes in 

mode of symmetry than any other major animal clade, which, combined with their excellent 

fossil record, makes them an especially good system for studying the evolution of symmetry. The 

earliest echinoderms were bilaterally symmetrical, but subsequent evolutionary changes 

involving a rotation of the antero-posterior axis early in development caused their descendants to 

take on radial symmetry, perhaps passing through triradial symmetry before attaining their 

canonical pentaradial form (Smith 2008). Each of the five “rays” of this body plan is apparently 
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homologous with the antero-posterior axis of other bilaterians (Schmidt-Rhaesa et al. 2015). 

Numerous changes in this basic pentaradial pattern are seen across living and fossil 

Echinodermata: forms with 4 or fewer or 6 or more rays are common (e.g., Hotchkiss 2000), and 

ray count is often variable within populations. Some echinoderm lineages, like the burrowing 

irregular echinoids or the squat, robust cyrtocrinid crinoids, secondarily impose bilateral 

symmetry on the pentaradial body plan (Paul 2020), which itself is imposed during development 

on the bilateral symmetry of echinoderm larvae. Because symmetry is such a basic fact of the 

biology and development of most animals and plants, studying the evolution of symmetry in 

echinoderms in a comparative framework could be extremely rewarding. Outstanding questions 

include the ecological or selective consequences of different kinds of symmetry, whether some 

changes in symmetry are more probable than others, and why five-fold symmetry is the rule in a 

group in which other kinds of radial symmetry (e.g., four-fold, six-fold…) are so common and 

seemingly viable.  

 

6.3 Reflection 

I conclude with a brief reflection on the future of invertebrate paleontology. The fossil 

record of marine invertebrates reveals a thousand peculiar and biologically interesting eco-

evolutionary stories to the dedicated natural historian. But the same is true of other groups of 

organisms, and many of them have greater practical or commercial importance to humans, have 

living relatives that are easier to study in the wild or raise in the lab, or relate more directly to the 

story of our own origins. When the invertebrate fossil record enters the awareness of non-

specialists, it is typically not for any of these desiderata, but because the numerical density and 

morphological completeness of the record permits uniquely synoptic, general, and statistically 



 158 

rigorous analyses of the history of life. It is probably because of these virtues that invertebrates 

made up most of the data underlying the paleobiological revolution (Sepkoski and Ruse 2009). 

During this interval, Raup, Gould, Sepkoski, and others made major discoveries: the history of 

multicellular life was punctuated by at least five mass extinction events (Raup and Sepkoski 

1982), global marine diversity has apparently been limited by a dynamic upper bound (Sepkoski 

1984), marine ecosystems have ‘scaled up’ over time (chapter 1), and the history of animal life 

seems not to be an ever-expanding ‘cone of complexity’ but instead the product of radical early 

experimentation followed by historically contingent success or failure (Gould 1989). This flurry 

of research activity established an enormously successful analytical paradigm that still dominates 

invertebrate paleontology in which the data are the characteristics and geological durations of 

fossil morphotaxa (families, species, and especially genera). 

Yet, as paleobiologists mine (Muscente et al. 2018) and re-mine (Rojas et al. 2021) the 

record, standardized in the Paleobiology Database, the basic facts of this record have largely 

stabilized, and major new findings seem to increasingly require ingenious treatments of the data 

(e.g., Close et al. 2020; Knope et al. 2020). One might be forgiven for concluding that the 

paradigm established by Sepkoski and others is yielding diminishing returns. If scientific 

paradigms succeed by taking on an especially productive set of abstractions (Kuhn 1962; Healy 

2017), we might look for the future of invertebrate paleontology among those features of biology 

that are ‘screened off’ by the abstractions of what might be called the Sepkoski paradigm. First, 

invertebrate paleontology is still largely non-phylogenetic. Much has already been written about 

the need for ‘tree thinking’ in paleobiology already (Smith and O’Meara 2009; Hunt and Slater 

2016; Lamsdell et al. 2017), and the welter of emerging perspectives on and approaches to 

phylogenetic paleobiology (Parins-Fukuchi 2019) will likely yield some major insights when 
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applied to the rich invertebrate record. Second, invertebrate paleontology (including this 

dissertation) generally treats Linnean families, genera, and species as being biologically 

meaningful and real, or at least as being proxies for something real (Jackson and Cheetham 1990; 

Jablonski and Finarelli 2009). The reality of morphotaxa was justified by ‘punctuated 

equilibrium’ (Eldredge and Gould 1972), and while this controversial theory has never received 

unambiguous support (Voje et al. 2020), it nevertheless influences much of paleontological 

thinking. Whether species are real is a philosophically thorny issue even for neontologists (Baum 

1998; Mishler 2010), so the morphotaxa and chronotaxa of paleontologists may not be proxies of 

real biological entities, regardless of whether they are good proxies for those entities. Moving 

toward a taxon- or species-free paleobiology would be a fascinating challenge, although it is not 

clear what such a discipline would look like. Finally, and with exciting exceptions (e.g., 

Gingerich 1993; Hunt 2007; Love et al. 2021), much of paleontology is effectively typological: 

the features of interest are the central tendencies of fossil taxa and not the variation around those 

tendencies. If the rejection of typology in favor of population thinking was the key to Darwin’s 

theory of natural selection (Sober 1980), it is surprising that variation within populations is still 

rarely treated by paleontologists. Obviously, invertebrate paleontologists are aware of 

phylogenies, the problems with the Linnean system, and the importance of variation within 

populations for evolution, but these features typically do not enter into the normal practice of 

analytical paleobiology. 

The cautious suggestion above that the Sepkoski paradigm is yielding diminishing returns 

is not meant to imply that modern paleontology is simply tying up loose ends. This dissertation 

has tackled a few small parts of the question “how has the marine biota changed through time,” 

on which much progress has been made in the last 50 years. But other fundamental and 
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answerable questions remain basically open in paleontology. How were Phanerozoic ecological 

and evolutionary changes related, and did they have to happen the way they did (Vermeij 2019)? 

What predictions does population genetics make for the fossil record? Are there any truly 

macroevolutionary processes, or just patterns? Is the fossil record merely consistent with 

evolutionary principles learned from the modern biota, or can it genuinely surprise us? 

Invertebrate paleontology has cause for optimism: clever, integrative, statistically rigorous, 

phylogenetically informed approaches to these and other questions lie ahead. 

 

6.4 References 

Baum, D. A. 1998: Individuality and the existence of species through time. Systematic Biology 

47:641–653. 

Baumiller, T. K. 1993: Survivorship Analysis of Paleozoic Crinoidea: Effect of Filter 

Morphology on Evolutionary Rates. Paleobiology 19:304–321. 

Baumiller, T. K., and R. E. Fordyce. 2018: Rautangaroa, a new genus of feather star 

(Echinodermata, Crinoidea) from the Oligocene of New Zealand. Journal of 

Paleontology:1–11. 

Close, R. A., R. B. J. Benson, E. E. Saupe, M. E. Clapham, and R. J. Butler. 2020: The spatial 

structure of Phanerozoic marine animal diversity. Science 368:420–424. 

Cornwall, I. E. 1953: The Central Nervous System of Barnacles (Cirripedia). Journal of the 

Fisheries Research Board of Canada 10:76–85. 

Eldredge, N., and S. J. Gould. 1972: Punctuated equilibria: an alternative to phyletic gradualism. 

Pp.82–115 in T. J. M. Schopf, ed. Models in Paleobiology. Freeman, Cooper, San 

Francisco. 



 161 

Gingerich, P. D. 1993: Quantification and comparison of evolutionary rates. American Journal of 

Science 293 A:453–478. 

Gould, S. J. 1989: Wonderful Life. W.W. Norton & Company, Inc., New York, p. 

Grimmer, J. C., and N. D. Holland. 1990: The Structure of a Sessile, Stalkless Crinoid (Holopus 

rangii). Acta Zoologica 71:61–67. 

Healy, K. 2017: Fuck Nuance. Sociological Theory 35:118–127. 

Hotchkiss, F. H. C. 2000: On the number of rays in starfish. American Zoologist 40:340–354. 

Hunt, G. 2007: Evolutionary divergence in directions of high phenotypic variance in the 

ostracode genus Poseidonamicus. Evolution 61:1560–1576. 

Hunt, G., and G. Slater. 2016: Integrating Paleontological and Phylogenetic Approaches to 

Macroevolution. Annual Review of Ecology, Evolution, and Systematics 47:annurev-

ecolsys-112414-054207. 

Jablonski, D., and J. Finarelli. 2009: Congruence of morphologically-defined genera with 

molecular phylogenies. Proceedings of the National Academy of Sciences of the United 

States of America 106:8262–8266. 

Jackson, J. B. C., and A. H. Cheetham. 1990: Evolutionary Significance of Morphospecies: A 

Test with Cheilostome Bryozoa. Science 248:579–583. 

Knope, M. L., A. M. Bush, L. O. Frishkoff, N. A. Heim, and J. L. Payne. 2020: Ecologically 

diverse clades dominate the oceans via extinction resistance. Science 367:1035–1038. 

Kuhn, T. S. 1962: The Structure of Scientific Revolutions. University of Chicago Press, Chicago, 

p. 



 162 

Lamsdell, J. C., C. R. Congreve, M. J. Hopkins, A. Z. Krug, and M. E. Patzkowsky. 2017: 

Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time. Trends in 

Ecology & Evolution 32:452–463. 

Love, A. C., M. Grabowski, D. Houle, L. H. Liow, A. Porto, M. Tsuboi, K. L. Voje, and G. 

Hunt. 2021: Evolvability in the Fossil Record. EcoEvoRxiv. DOI: 10.32942/osf.io/s9hmt 

Mackie, G. O., and P. Burighel. 2005: The nervous system in adult tunicates: current research 

directions. Canadian Journal of Zoology 83:151–183. 

Mishler, B. D. 2010: Species Are Not Uniquely Real Biological Entities. Contemporary Debates 

in Philosophy of Biology:110–122. 

Muscente, A. D., A. Prabhu, H. Zhong, A. Eleish, M. B. Meyer, P. Fox, R. M. Hazen, and A. 

Knoll. 2018: Quantifying ecological impacts of mass extinctions with network analysis of 

fossil communities. Proceedings of the National Academy of Sciences. 

Parins-Fukuchi, C. 2019: Developments for the Next Generation of Evolutionary Paleobiology. 

University of Michigan, Ann Arbor, 179pp. 

Paul, C. R. C., and F. H. C. Hotchkiss. 2020: Origin and significance of Lovén’s Law in 

echinoderms. Journal of Paleontology 94:1–14. 

Purens, K. J. S. 2016: Detecting comatulid crinoid cryptic species in the fossil record. 

Palaeogeography, Palaeoclimatology, Palaeoecology 446:195–204. 

Raup, D. M., and J. J. Sepkoski. 1982: Mass extinctions in the marine fossil record. Science 

215:1501–1503. 

Renema, W., D. R. Bellwood, J. C. Braga, K. Bromfield, R. Hall, K. G. Johnson, P. Lunt, C. P. 

Meyer, L. B. Mcmonagle, R. J. Morley, A. O. Dea, J. A. Todd, F. P. Wesselingh, M. E. J. 



 163 

Wilson, and J. M. Pandolfi. 2008: Hopping Hotspots : Global Shifts in Marine 

Biodiversity. Science 321:654–657. 

Rojas, A., J. Calatayud, M. Kowalewski, M. Neuman, and M. Rosvall. 2021: A multiscale view 

of the Phanerozoic fossil record reveals the three major biotic transitions. 

Communications biology 4:309. 

Rouse, G. W., L. S. Jermiin, N. G. Wilson, I. Eeckhaut, D. Lanterbecq, T. Oji, C. M. Young, T. 

Browning, P. Cisternas, L. E. Helgen, M. Stuckey, and C. G. Messing. 2013: Fixed, free, 

and fixed: The fickle phylogeny of extant Crinoidea (Echinodermata) and their Permian-

Triassic origin. Molecular Phylogenetics and Evolution 66:161–181. 

Schemske, D. W., G. G. Mittelbach, H. V Cornell, J. M. Sobel, and K. Roy. 2009: Is There a 

Latitudinal Gradient in the Importance of Biotic Interactions? Annual Review of Ecology 

Evolution and Systematics 40:245–269. 

Schmidt-Rhaesa, A., S. Harzsch, and G. Purschke. 2015: Structure and Evolution of Invertebrate 

Nervous Systems. Oxford University Press, p. 

Sepkoski, J. J. 1978: A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine 

orders. Paleobiology 4:223–251. 

———. 1984: A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families 

and mass extinctions. Paleobiology 10:246–267. 

Smith, A. B. 2008: Deuterostomes in a twist: The origins of a radical new body plan. Evolution 

and Development 10:493–503. 

Smith, M. P., and D. A. T. Harper. 2013: Causes of the Cambrian explosion. Science 341:1355–

1356. 



 164 

Smith, S. A., and B. C. O’Meara. 2009: Morphogenera, monophyly, and macroevolution. 

Proceedings of the National Academy of Sciences of the United States of America 

106:97–98. 

Sober, E. 1980: Evolution, population thinking, and essentialism. Philosophy of Science 47:350–

383. 

Summers, M. M., C. G. Messing, and G. W. Rouse. 2014: Phylogeny of Comatulidae 

(Echinodermata: Crinoidea: Comatulida): A new classification and an assessment of 

morphological characters for crinoid taxonomy. Molecular Phylogenetics and Evolution. 

Vadász, M. E. 1915: Die mediterranen Echinodermen Ungarns. Geologica Hungarica 1. 

Vermeij, G. J. 1977: The Mesozoic marine revolution: evidence from snails, predators and 

grazers. Paleobiology 3:245–258. 

Vermeij, G. J. 2019: Power, competition, and the nature of history. Paleobiology. 

Voje, K. L., E. Di Martino, and A. Porto. 2020: Revisiting a landmark study system: No 

evidence for a punctuated mode of evolution in Metrarabdotos. American Naturalist 

195:899–917. 

Wei, G. Y., N. J. Planavsky, L. G. Tarhan, X. Chen, W. Wei, D. Li, and H. F. Ling. 2018: 

Marine redox fluctuation as a potential trigger for the Cambrian explosion. Geology 

46:735. 

2009: The Paleobiological Revolution: Essays on the Growth of Modern Paleontology. in D. 

Sepkoski and M. Ruse, eds. University of Chicago Press, London, p. 

 

  



 165 

 

 

 

APPENDIX A 

Supplementary materials to chapter 5 

Occurrence database 

All occurrences of the clade Comatulida were downloaded from the Ocean Biodiversity 

Information Database (OBIS 2021) in February 2021 with the R package robis (2; v. 2.3.9), and 

any occurrences more than a kilometer inland were cleaned with the R package obistools (3; v. 

0.0.9). 

 

Molecular phylogeny 

We used MAFFT (Katoh and Standley 2013) to align each of four genes (16S, 18S, 28S, 

COI) accessed from GenBank for 160 extant comatulids and 9 outgroup taxa. The resulting 

alignments were concatenated for a total alignment length of 5823 BP and each gene was treated 

as its own partition in a maximum-likelihood phylogenetic analysis, implemented in RAxML 

(Stamatakis 2014) with the GTR+Γ model. The resulting topology largely agrees with previous 

investigations of comatulid phylogeny (Hemery et al. 2013; Rouse et al. 2013). 

Outgroups were trimmed and the resulting timetree was scaled to units of time with 

penalized likelihood as implemented in TreePL (Smith and O’Meara 2012). Crown 

Himerometroidea (the smallest clade containing Oligometra serripinna, Basilometra boschmai, 

and Zygometra microdiscus) was constrained to diverge before the end of the Eocene (33.9 Ma) 

based on Eocene Himerometra (Strimple and Mapes 2008). The clade containing 
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Thalassometridae and Comatulidae (the smallest clade containing Clarkcomanthus littoralis and 

Koehlermetra porrecta) was constrained to diverge before the end of the Aquitanian (20.44) 

based on Comaster formae (Rouse et al. 2013). Rouse et al. 2013 considered this same fossil, but 

incorrectly use it to constrain crown Comatulidae; there is no obvious reason this fossil should be 

a member of crown Comatulidae instead of the stem. Finally, crown Comatulida was set to 

diverge, somewhat arbitrarily, at the start of the Jurassic (201.3 Ma). Fortunately, all analyses in 

this paper that use the time tree phylogeny (phylogenetic diversity, ancestral range 

reconstruction, constraining the morphological phylogeny) depend at most on the relative 

divergence times, and not on these divergence times being absolutely correct. All dates follow 

ICS 2019/05. 

19 tips – either too incompletely identified or sharing conspecifics already in the tree – 

were trimmed from the timetree prior to DEC analysis, leaving 141 tips. The resulting phylogeny 

does not appear to over- or underrepresent any particular region (Fig. A1). 

 

Biogeographic inference 

For ancestral range reconstruction, every species was assigned to the Atlantic-

Mediterranean, the Indo-Pacific, or both. We defined these two regions with the following 

borders: a line stretching from Somerset Island through Ellesmere Island to the north pole, a line 

directly south from the southernmost tip of Tierra del Fuego, a line directly north from Cape 

Chelyuskin, and a line directly south from the southernmost tip of South Africa. Each species 

was scored using the World Register of Marine Species (Horton, T.; Kroh, A.; Bailly, N.; Boury-

Esnault, N.; Brandão, S.N.; Costello, M.J.; Gofas, S.; Hernandez, F.; Mees, J.; Paulay, G.; Poore, 

G.; Rosenberg, G.; Stöhr, S.; Decock, W.; Dekeyzer, S.; Vandepitte, L.; Vanhoorne, B.; 
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Vranken, S.; Adams, M.J.; Adl 2016) and OBIS (OBIS 2021). Six tips in the phylogeny were 

identified only to genus level (e.g. Euantedon sp.) and were the only representative of their genus 

in the phylogeny. For these, the most inclusive scoring of all species within each genus was used. 

DEC models were fit to the biogeographic data using the C++ implementation of lagrange 

(https://github.com/rhr/lagrange-cpp). 

Given that all comatulid fossils from the Early Jurassic to the Campanian are from the 

West Tethys, it seems likely that including fossils in a combined analysis would tend to support 

an Atlantic-Mediterranean origin, regardless of the information at the tips. As an exercise in 

understanding the impact of including fossils on ancestral range reconstruction, DEC analyses 

were repeated with a single Atlantic-Mediterranean fossil placed near the root of the tree. The 

goal was to test whether including fossils in such an analysis would drown out any 

biogeographic information from the tips. This is a conservative version of the procedure of 

Dornburg et al. (2015), who added five fossil tips close to the root in their ancestral range 

analysis of squirrelfishes. Dispersal rates were constrained to be equal, so that an analysis 

without a fossil inferred an Indo-Pacific origin (main text, Fig. 2B). The age of the fossil was 

conservatively set to be 20% of the distance from the root to the extant tips, and it was attached 

to the tree halfway along either the left or the right branch descending from the root. With both 

these placements, DEC infers an origin that was not Indo-Pacific but widespread (placement on 

left branch, 79%; placement on right branch, 73%). A widespread origin of the clade is also 

inferred when every extant tip is set to be only in the Indo-Pacific (placement on left branch, 

99%; placement on right branch, 99%). This supports the notion that fossils would tend to 

dominate the results of ancestral range analysis in a combined phylogeny of living and fossil 

species. Since there appears to be some preservational and/or collector bias toward the West 
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Tethys (main text, Fig. 3A), such a combined analysis would therefore not address the chief 

source of uncertainty in the paleontological evidence for comatulid origins. 

 

Taphonomic control analyses 

We compiled a new database of fossil comatulid occurrences, including the stalked 

comatulid groups Bourgueticrinidae and Thiolliericrinidae. In some cases it is not clear whether 

fossils collected from sites very close together come from the same or different localities, and in 

many cases the region of origin is only coarsely reported (e.g., the town of origin). For this 

reason, localities within several kilometers of each other were lumped together. This database 

records family, genus, species, oldest and youngest ages, latitudes, longitudes, references, and 

locality information for every occurrence (= one taxon in one location). 

To consider this record with respect to the spatiotemporal distribution of taphonomically 

appropriate rocks and paleontological effort, we downloaded all fossil echinoderm occurrences 

from the Paleobiology Database (PBDB) from the Jurassic to the Pleistocene on February 1, 

2021 using the pbdb_occurrences command in the paleobioDB R package (v. 0.7.0). To avoid 

duplicate occurrences between the PBDB dataset and the new dataset we removed all comatulid 

occurrences from the former. The resulting dataset was used for two tests of the hypothesis that 

comatulids originated in the West Tethys and only became established in the East Tethys much 

later. The PBDB is not comprehensive; for example, it contains 110 comatulid-bearing localities 

compared with our 330. However, this is not a problem for our analyses: they do not assume that 

the focal group and the taphonomic controls are sampled to the same intensity. 

Every fossil comatulid and taphonomic control was assigned to the West Tethys, East 

Tethys, or neither. The West Tethys was defined as Europe plus Russia west of the Urals (59° 



 169 

East), the Eastern Mediterranean (Syria, Lebanon, Israel, Jordan, Palestine, Turkey, Georgia, 

Armenia, Azerbaijan) and North Africa (Morocco, Algeria, Tunisia, Libya, Egypt). The East 

Tethys was defined as Oceania, East Africa (Sudan, South Sudan, Eritrea, Djibouti, Ethiopia, 

Somalia, Kenya, Uganda, Burundi, Rwanda, United Republic of Tanzania, Malawi, 

Mozambique, Réunion, Zimbabwe, Zambia, Madagascar, Swaziland, South Africa, Lesotho, 

Mauritius, Botswana, Comoros, Seychelles) and all Asia not included in the West Tethys. 

Both taphonomic control approaches consider the data with respect to a model in which any 

locality yielding the taphonomic control group has some probability of also yielding fossils of 

the focal group (comatulids). The first approach compares the likelihood of a model in which 

West and East Tethyan localities have the same probability of yielding the focal group (“equal-

chances”), with one in which they have separate probabilities (“unequal-chances”). Under equal-

chances, the problem can be thought of like reaching into an urn containing TW balls labeled 

“West Tethys” and TE balls labeled “East Tethys.” In this case the probability of drawing some 

combination of balls NW and NE for NW+NE draws is equal to (TW choose NW) * (TE choose NE) 

/ (TW + TE choose NW + NE). This probability is also the likelihood of the equal-chances model.  

Calculating the probability of a given draw under unequal-chances is more complicated, 

analogous to drawing different kinds of balls with different probabilities or weights. The problem 

of computing probabilities of draws under weighted random sampling seems to have received 

very limited treatment in the statistical literature (Efraimidis and Spirakis 2006), and our 

implementation is apparently novel. Given  NW+NE draws from a population of TW + TE 

weighted items labeled “W” and “E” with weights WW and WE, the probability of drawing NW 

items labeled “W” and NE items labeled “E” can be calculated in five steps. First, the sum of the 

weights of all items is calculated as W∑ = WW * TW + WE * TE. Second, every unique ordering of 
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NW “W” items and NE “E” items is enumerated. Each one of these orderings can be realized in 

multiple ways, so the third step is to calculate the number of ways in which any unique ordering 

can be realized as R = (TW! * TE!) / [(TW - NW) * (TE - NE)]. This number is the same for every 

ordering. The fourth step is to calculate the probability of any individual realization of a given 

ordering for each ordering (a calculation involving W∑). Finally (fifth), the overall probability of 

drawing NW “W” and NE “E” items can be calculated by summing over these individual 

probabilities for each unique ordering multiplying this sum by R. The relative weighting of “W” 

items that lends the greatest probability to the observed NW and NE – the maximum likelihood 

estimate – can be approximated as (NW/TW) / (NE/TE). A closer approximation of the maximum-

likelihood weighting could be obtained for a deeper application of this method. The equal-

chances and unequal-chances models were compared for each of 10 intervals with AIC, since 

unequal-chances has one extra parameter and therefore must have a likelihood at least as great as 

that of equal-chances. Code for calculating probabilities in this way is available as 

supplementary material. The second analysis is explained in the main text. 

The two alternate taphonomic controls (echinoderms minus irregular echinoids and 

crinoids only) yield basically identical results to the analysis presented in the main text (Fig. A2). 

For all three treatments, unequal-chances is supported from the Middle Jurassic to the Eocene, 

but not in the Oligocene and Plio-Pleistocene. Unequal-chances is also rejected in the Miocene in 

the crinoids-only analysis. The PBDB records no non-comatulid crinoids from the Plio-

Pleistocene of the West or East Tethys, so no meaningful results are available for that interval 

from the crinoids-only analysis. For all three analyses, the geographical extent of comatulid 

localities is lower than the average extent of subsampled echinoderm localities is from the Early 

Jurassic to the Paleocene, but is about equal to it from the Eocene onwards. 
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Phylogenetic placement of fossils 

In the phylogenetic placement of fossils, the molecular phylogeny was used to constrain 

relationships among living taxa. Morphological data were available for some extant species not 

present in the molecular phylogeny, and we constrained their phylogenetic position to match that 

of close relatives in the molecular phylogeny. Zenometra columnaris was fixed to the position of 

Sarametra triserialis given the reasonably well-supported monophyly of Zenometridae, 

Stylometra spinifera was set as sister to Cosmiometra aster assuming monophyly of 

Thalassometridae, Ptilometra australis was set as sister to Ptilometra macronema, Pterometra 

pulcherrima was set as sister to Pterometra trichopoda, Calometra callista was substituted for 

Calometra discoidea, Eudiocrinus indivisus was substituted for Eudiocrinus serripinna, and 

Pentametrocrinus diomedae was substituted for Pentametrocrinus cf. semperi. The Early to 

Middle Jurassic Paracomatulidae have features unambiguously intermediate between stalkless 

comatulids and their stalked ancestors (Hess 2014), so we used Paracomatula helvetica as the 

outgroup. A guide to the morphological traits used in this study is provided in the supplementary 

information of a previous study (Saulsbury and Zamora 2020). 

In addition to the phylogenetic analysis shown in the main text (Fig. 4), we analyzed 

continuous and discrete subsets of the data separately and inferred the position of each fossil taxa 

individually (Fig. A3). Placements are largely similar to each other and to the results of the main 

analysis. 

 

Figures 
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Fig. A1. Species represented in the phylogeny as a percentage of total species in each 10° cell. 

No conspicuous global trends are apparent (e.g., latitudinal, east-west…) and no regions appear 

to be substantially underrepresented. 
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Fig. A2. Taphonomic control analyses with alternate taphonomic controls: echinoderms minus 

irregular echinoids (A—B) and crinoids (C—D). Results are qualitatively identical to the 

analysis presented in the main text. (A, C) First taphonomic analysis: number of localities 

bearing taphonomic control group and comatulids in the West and East Tethys in each of ten 

intervals, analyzed with respect to two models. (B, D) Second taphonomic analysis: the areal 

extent of comatulid localities in each interval and that of taphonomic controls subsampled to the 

same sample size. 
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Fig. A3. Most parsimonious phylogenies of 24 extant and 7 Mesozoic fossil comatulids, inferred 

with subsets of the morphological data (A—B) or with each fossil taxon placed individually 

(C—H). In all cases, placements are generally similar to the main phylogenetic analysis. 

Bootstrap support values shown. (A) Phylogeny inferred with just the 24 continuous characters. 

(B) Phylogeny inferred with just the 30 discrete characters; the positions of three fossil taxa are 

unresolved, but outside the clade containing the other three fossil taxa.  
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