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ABSTRACT

With the Society of Automotive Engineers Level 3 automation, drivers are no longer

required to actively monitor driving environments, and can potentially engage in

non-driving related tasks. Nevertheless, when the automation reaches its operational

limits, drivers will have to take over control of vehicles at a moment’s notice. Drivers

have difficulty with takeover transitions, as they become increasingly decoupled from

the operational level of driving. In response to the takeover difficulty, existing liter-

ature has investigated various factors affecting takeover performance. However, not

all the factors were studied comprehensively, and the results of some factors were

mixed. Meanwhile, there is a lack of research on the development of computational

models that predict drivers’ takeover performance using their physiological and driv-

ing environment data. Furthermore, current research on the design of in-vehicle alert

systems suffers from methodological shortcomings and presents identical takeover

warnings regardless of event criticality.

To address these shortcomings, the goals of this dissertation were to (1) exam-

ine the effects of drivers’ cognitive load, emotions, traffic density, and takeover re-

quest lead time on their driving behavioral (takeover timeliness and quality) and

psychophysiological responses (eye movements, galvanic skin responses, and heart

rate activities) to takeover requests; (2) develop computational models to predict

drivers’ takeover performance using their physiological and driving environment data

via machine learning algorithms; and (3) design in-vehicle alert systems with different

xiii



display modalities and information types and evaluate the displays in different event

criticality conditions via human-subject experiments.

The results of three human-subject experiments showed that positive emotional

valence led to smoother takeover behaviors. Only when drivers had low cognitive load,

they had shorter takeover reaction time in high oncoming traffic conditions. High

oncoming traffic led to higher collision risk. High speed led to higher collision risk and

harsher takeover behaviors in lane changing scenarios, but engendered longer takeover

reaction time and smoother takeover behaviors in lane keeping scenarios. Meanwhile,

we developed a random forest model to predict drivers’ takeover performance with an

accuracy of 84.3% and an F1-score of 64.0%. Our model had finer granularity than

and outperformed other machine learning models used in prior studies. The findings

of alert system design studies showed that drivers had more anxiety with the why

only information compared to the why + what will information when information

was presented in the speech modality. They felt more prepared to take over control

of the vehicle and had more preference for the combination of augmented reality and

speech conditions than others when drivers were in high event criticality situations.

This dissertation can add to the knowledge base about takeover response inves-

tigation, takeover performance prediction, and in-vehicle alert system design. The

results will enhance the understanding of how drivers’ emotions, cognitive load, traf-

fic density, and scenario type influence their takeover responses. The computational

models for takeover performance prediction are underlying algorithms of in-vehicle

monitoring systems in real-world applications. The findings will provide design rec-

ommendations to automated vehicle manufacturers on in-vehicle alert systems. This

will ultimately enhance the interaction between drivers and automated vehicles and

improve driving safety in intelligent transportation systems.
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CHAPTER 1

Introduction

1.1 SAE Level 3 automated vehicles

Automated vehicles (AVs) have the potential to provide our society with more

fuel-efficient driving, reduce driving-related injuries and deaths, and reshape trans-

portation and logistics (Robert , 2019; Du et al., 2019b). AVs are becoming a major

focus for automotive manufacturers, such as General Motors, Tesla, and Honda. The

Society of Automotive Engineers (SAE) defines driving automation from Level 0 to

Level 5 (Society of Automotive Engineers , 2018). While people are still speculating if

and when Level 5 full automation will be ready (Sparrow and Howard , 2017), Level 2

partial automation is already on the road (Bishop, 2019). Honda Sensing Elite, which

is the first commercially available Level 3 system, was released in its domestic-market

Legend sedan in March 2021 (Gilboy , 2021).

As shown in Table 1.1, in partially automated driving (Level 2), drivers complete

the object and event detection and response task. They are asked to intervene with

the automation when necessary. In conditionally automated driving (Level 3), object

and event detection and response task is handled by the AV, and drivers resume re-

sponsibility when receiving a takeover request (TOR). In automated driving mode,

drivers are allowed to potentially engage in other tasks, and therefore become in-

creasingly out of the control loop. This transition of control represents the transfer
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Table 1.1: Society of Automotive Engineers Levels of Automation (Adapted from
SAE (2018))

Level Description
0 No automation involved. The human driver controls all elements of the driving

task and monitors the driving environment.
1 Automation controls either the steering or acceleration/braking of the vehicle,

while the human controls all other elements of the driving task and monitors
the driving environment.

2 Automation controls both the steering and acceleration/braking of the vehicle,
while the human monitors the driving task and serves as an immediate fallback
for the automation with little notice.

3 Automation controls both the steering and acceleration/braking of the vehicle
and monitors the driving task, while the driver serves as a fallback for the
automation. Transitions of control are guided by takeover requests, except
during automation failures.

4 Automation executes all control and monitoring aspects within a specified
operational design domain (ODD), and does not require the driver to serve
as a fallback for the automation. Human drivers (if any) may assume control
after exiting the ODD, but the system does not rely on drivers to do so.

5 Automation controls all aspects of the driving task under all roadway and
environmental conditions. Input is never expected from a human driver.

of the longitudinal and lateral control responsibilities from the automated vehicle to

the human driver, and usually involves the driver terminating NDRTs, moving their

eyes/hands/feet back to the road/steering wheel/pedals, and resuming control of the

vehicle. Research indicates that drivers have difficulty in takeover transitions as they

become increasingly decoupled from the operational level of driving (Gold et al., 2016;

Eriksson and Stanton, 2017; Petersen et al., 2019).

1.2 Factors influencing takeover responses

In response to the takeover difficulty, research has been conducted to investi-

gate factors affecting takeover performance, including drivers’ states (e.g., workload,

emotions, characteristics), driving environments (e.g., traffic situations, weather con-

ditions, takeover scenarios), and vehicle capability (e.g., TOR lead time, automation

level) (Eriksson and Stanton, 2017; Gold et al., 2016; Wan and Wu, 2018; Körber
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et al., 2016; Helldin et al., 2013; Gold et al., 2018a; Radlmayr et al., 2014; Eriksson

et al., 2018).

1.2.1 Drivers’ states

Drivers’ states can be influenced by their non-driving-related tasks (NDRTs) in

automated driving or depend on their characteristics. As reported in the literature,

a wide range of NDRTs have been utilized in experimental studies, including both

naturalistic tasks (e.g., text messaging) and artificial tasks (e.g., N-back memory task)

(Baek et al., 2019; Wandtner et al., 2018; Wan and Wu, 2018; Radlmayr et al., 2014).

Drivers’ characteristics include their age, AV training, and experience, among others.

Literature has shown that drivers’ workload and emotions induced by NDRTs, as well

as their characteristics, influenced their takeover responses.

1.2.1.1 Workload

Prior research compared drivers’ takeover performance when performing versus

not performing an NDRT, and revealed that NDRTs decreased takeover quality, re-

sulting in more crashes in high-traffic situations (Radlmayr et al., 2014), shorter min-

imum TTC (Gold et al., 2016; Körber et al., 2016), larger lateral acceleration (Louw

et al., 2015), and larger standard deviation of lane position (Zeeb et al., 2016). In

addition, several studies examined the effects of performing different types of NDRTs.

For example, Wandtner et al. (2018) compared NDRTs in visual (i.e., Surrogate Ref-

erence Task) and auditory modalities (i.e., N-back task). They found that operation

of the visual task with handheld devices degraded takeover performance and led to

a higher collision rate, while the auditory task led to comparable performance to a

baseline without any task. Moreover, Zeeb et al. (2016) and Wan and Wu (2018)

examined drivers’ takeover performance while they were typing, reading, watching a

video clip, playing a game, or taking a nap. Results showed that different NDRTs led
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to few differences in takeover reaction time, but that watching a video and taking a

nap resulted in a worse takeover quality, as they occupied more sensory modalities or

induced a very low arousal level.

The above-mentioned studies shed some light on the influence of performing

NDRTs on takeover performance. However, most of the studies did not directly

manipulate the workload of NDRTs. One exception is the study of Zeeb et al. (2017),

wherein the drivers’ cognitive task load was manipulated via the difficulty of NDRTs

(i.e., reading vs. proofreading a text) and manual task load via the tablet location

(i.e., handheld vs. mounted). Results revealed that high manual task load increased

reaction times and deteriorated takeover quality, while the effect of cognitive task

load on takeover ability was dependent on the type of driver intervention. High cog-

nitive load lengthened the reaction times and deteriorated takeover quality in steering

maneuvers but not braking maneuvers. In contrast, Bueno et al. (2016) manipulated

workload by asking drivers to identify and type out the association between three

pictures, and found a non-significant effect of workload on takeover time and quality.

Further research is needed to elucidate these mixed results and to examine the impact

of cognitive load.

1.2.1.2 Emotions

According to Russell (1980), emotion has at least two dimensions. The first

dimension is valence, or how negative or positive a stimulus is. For example, watching

a baby smiling is more positive than seeing a patient dying. The second dimension

is arousal, or how sleepy-inducing or exciting a stimulus is. For example, listening to

rock bands is associated with higher arousal than listening to meditation music. The

two dimensions can be mapped in a two-dimensional space, and the combinations of

different values of valence and arousal are associated with different discrete emotions

(See Figure 1.1). For example, the upper left corner of the two-dimensional space
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Figure 1.1: The circumplex model of emotion (Russell , 1980)

represents emotions of negative valence and high arousal, such as anger; the lower

right corner of the space represents emotions of positive valence and low arousal,

such as calmness. While it may be more straightforward for individuals to report

discrete emotions they are experiencing, the dimensional view of emotion provides a

more fundamental explanation of the relationships between emotions and behaviors

(Barrett , 1998). The dimensional view is also supported by studies in neuroscience.

With evidence of neural activities in the brain, valence and arousal appear to influence

cognitive processes and human behaviors via distinct mechanisms (Dolcos et al., 2004;

Kensinger , 2004).

Manual driving is a complex task involving attention, information processing, and

action-based judgment. Drivers can become emotional on the road when they inter-

act with external environments and other road users, which may lead to enormous

consequences (Jeon, 2017). Some studies placed emphasis on the effects of specific

emotions on manual driving, in particular, the effects of anger. Anger, as one of

the most commonly experienced emotions during driving, has received a substantial

amount of research attention. A recent survey study by the AAA Foundation for
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Traffic Safety found that nearly 80 percent of drivers had expressed anger, aggres-

sion, or road rage, which are significant contributors to fatal crashes, at least once in

the previous year (AAA Foundation for Traffic Safety , 2016). An analysis of natural-

istic driving data showed that drivers in elevated emotional states, including anger,

sadness, crying, and/or emotional agitation, have an increased risk of a crash by 9.8

times (Dingus et al., 2016). Moreover, experimental studies indicate that anger leads

to risky and aggressive behaviors, such as speeding and traffic rule violation (Abdu

et al., 2012; Jeon et al., 2014; Underwood et al., 1999; Deffenbacher et al., 2003; Hu

et al., 2018). For example, Abdu et al. (2012) conducted a driving simulator study

with 15 licensed drivers, and found that angry drivers crossed more yellow traffic

lights and tended to drive faster. Similarly, Jeon et al. (2014) found that anger led to

a significantly lower perceived safety and degraded driving performance (i.e., larger

deviations from the center line and more violations of traffic rules).

Moreover, researchers went beyond specific emotions and systematically explored

the effects of positive/negative valence and high/low arousal on manual driving per-

formance (Hancock et al., 2012; Trick et al., 2012; Chan and Singhal , 2013; Ünal

et al., 2013; Pêcher et al., 2009). Chan and Singhal (2013) investigated the effects of

emotional valence on driving. In their study, participants were responsible for longi-

tudinal and lateral control of the vehicle. At the same time, they were asked to view

words of positive, negative, and neutral valence on roadside billboards, and later to

recall as many words as possible. Results revealed that drivers recalled more nega-

tive words than positive words, suggesting that negative stimuli distracted drivers’

attention more severely. In another study, participants drove and viewed emotional

images concurrently. Viewing positive images led to better lateral control but also

slower speeds when compared to negative images (Hancock et al., 2012). The positive

association between better vehicle control and positive valence was also reported in

the studies by Trick et al. (2012) and Groeger (2013). Interestingly, using another
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emotion induction method, Pêcher et al. (2009) asked drivers to listen to music, and

found that happy music (positive valence) resulted in an unexpected large decrement

of speed and a deteriorated lateral control in comparison with sad music (negative

valence). The reason for the inconsistent findings could be due to the differences in

participants’ emotion induction methods (Steinhauser et al., 2018) and participants’

base emotions and personal experience.

In addition, Trick et al. (2012) manipulated both emotional valence and arousal in

an experiment where participants were exposed to a variety of images that were either

positive or negative in valence and either high or low in arousal. After viewing the

images, participants needed to brake in reaction to the sudden deceleration of a lead

vehicle. Results showed that higher arousal led to faster hazard response if the hazard

was presented shortly after viewing an image. Similarly, Navarro et al. (2018) and

Ünal et al. (2013) conducted experiments to manipulate drivers’ emotional arousal

using musical tempo. Results showed that in a car-following task, an arousing musical

background improved drivers’ responsiveness to the speed changes of the followed

vehicle compared to relaxing music.

Despite the large amount of research on manual driving (Abdu et al., 2012; Jeon,

2017; Chan and Singhal , 2013; Pêcher et al., 2009; Trick et al., 2012), few studies

have examined how emotions influence driving performance in conditionally auto-

mated driving. In addition, those few studies have primarily been focused on al-

gorithm development to automatically detect drivers’ emotional states by analyzing

their physiological data. For example, Izquierdo-Reyes et al. (2018) developed an

algorithm using drivers’ faces and electroencephalogram (EEG) data as features for

classifier training. The results showed that a k-Nearest Neighbors algorithm was able

to recognize nine different emotions (neutral, anger, disgust, fear, joy, sadness, sur-

prise, amusement, and anxiety) with an accuracy of approximately 97%. Thus, it is

necessary to study how emotions influence drivers’ takeover responses in conditionally
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automated driving.

1.2.1.3 Drivers’ characteristics

Drivers’ individual characteristics play an important role in determining takeover

performance. Previous studies have focused on factors such as takeover training,

cultural background, and age (Hergeth et al., 2017; Clark and Feng , 2017; Gold et al.,

2018a). For example, Clark and Feng (2017) studied younger (ages 18–35) and older

drivers (ages 62–81) in the takeover of vehicle control, and found that older drivers

deviated less from the road centerline and drove at a lower speed, but applied more

pressure on the brake pedal compared with young drivers. Li et al. (2018) found that

older adults had larger takeover time compared to younger adults. With regard to AV

experience, Zeeb et al. (2015) found that repetitive exposure to takeover transitions

reduced drivers’ hands-on-wheel and eyes-on-road reaction time.

1.2.2 Driving environments

Researchers have investigated the impacts of driving environments, including traf-

fic density (Gold et al., 2016; Körber et al., 2016), takeover scenarios (Eriksson et al.,

2018; Naujoks et al., 2017), and weather (Li et al., 2018; Louw et al., 2015), on drivers’

takeover performance.

1.2.2.1 Traffic density

Traffic density indicates the average number of vehicles (in the same or opposite

direction as the ego vehicle) within a certain distance (e.g., per kilometer). Research

showed that heavy traffic density in the same direction of the AV led to longer takeover

time (Gold et al., 2016; Körber et al., 2016), more braking rather than steering (Eriks-

son and Stanton, 2017), lower minimum time to collision (Gold et al., 2016; Körber

et al., 2016), more collisions (Gold et al., 2016; Körber et al., 2016), and larger max-
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imum accelerations (Gold et al., 2016; Li et al., 2018; Körber et al., 2016). In these

studies, high traffic density was coupled with fewer escape paths. With a high traffic

density, there were more vehicles in the same or neighboring lanes of the automated

ego vehicle, restricting the drivers’ action opportunities. There is a need to decouple

traffic density and the availability of escape paths.

1.2.2.2 Takeover scenarios

A variety of takeover scenarios have been designed in previous studies in order to

examine their effects on takeover performance. For example, Naujoks et al. (2014)

examined the effects of TOR modalities (i.e., visual vs. visual plus auditory) under

three takeover scenarios: missing lane markings, temporary lines because of a work

zone, and high road curvature. The results of their study showed that drivers’ lateral

control was better with visual-auditory TORs, and such advantages were especially

pronounced in the high road curvature scenario. Later, Naujoks et al. (2017) used the

same three takeover scenarios and manipulated automation level (hands-on vs. hands-

off vs. manual) and NDRT (with vs. without NDRT) in another experiment. They

found that only in the temporary lines because of a work zone condition, engaging

NDRT increased the self-reported situation criticality. Only in the high curvature

scenario, high automation level increased variability of the lateral vehicle position

and the self-reported situation criticality.

More recently, Dogan et al. (2019) investigated the effects of NDRTs on takeover

performance in two takeover scenarios (i.e., missing lane markings and obstacle ahead).

Results showed that regardless of NDRT type, drivers had shorter TOR reaction time

and lower mental workload in the obstacle avoidance scenario than the missing lane

scenario. Similarly, Wu et al. (2019) analyzed drivers’ takeover performance under

different scenarios and NDRTs. Scenarios included obstacle on the left, obstacle

ahead, and obstacle ahead with lead vehicle. NDRTs included a 1-back memory task
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and a letter-game task. They found that drivers had the shortest steering reaction

time in the obstacle ahead scenario, and longer minimum TTC in the obstacle ahead

scenario than the obstacle ahead with lead vehicle scenario. Yet, drivers’ workload,

braking reaction time, and maximum deceleration were similar among all scenarios.

One possible reason for the mixed results across different scenarios is that these

scenarios were not categorized based on their underlying dimensions. To our knowl-

edge, only two studies mentioned below tried to extract underlying influential dimen-

sions of takeover scenarios and study their effects systematically.

Eriksson et al. (2018) is one exception that attempted to categorize scenarios into

lane changing and braking scenarios, corresponding to different augmented visual

interfaces to support drivers in making a correct lane changing or braking reaction

in takeover transitions. Although the study did not compare the two scenario types

directly, it did emphasize the fundamental differences between the two types and

used different augmented feedback to provide recommendations. Zeeb et al. (2017)

designed two scenarios based on the types of takeover reactions in a simulated driving

study. In the longitudinal scenario, drivers were required to intervene with a cutting-

in and hard-braking vehicle. In the lateral scenario, drivers were required to intervene

with the drifting vehicle on the curve induced by a wind gust from the left side. They

found that increasing manual task load had detrimental effects on reaction time and

takeover quality in both scenarios, but the effects were more pronounced in the lateral

scenario. High cognitive load decreased reaction time and takeover quality in the

lateral maneuver, but not in the longitudinal maneuver. Notably, researchers excluded

ten drivers who reacted with a lane change in the longitudinal scenario from analysis

because their behavior was not comparable to the other drivers’ reactions. However, it

is common for drivers to brake and change lanes simultaneously in critical situations.

This suggests that another criterion is needed to categorize takeover scenarios.
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1.2.2.3 Weather

With regard to weather, Louw et al. (2017) found that less available visual in-

formation (i.e., fog) was linked to shorter minimum distance headway and minimum

TTC. Similarly, Li et al. (2018) showed that drivers in adverse weather conditions

(i.e., snow, rain, and fog) had longer TOR reaction time, shorter minimum TTC,

larger resulting acceleration, and steering wheel angles.

1.2.3 Vehicle capability

Vehicle capability indicates its configuration, such as automation level, TOR lead

time, and human-machine interfaces. Literature has shown that vehicle automation

level and TOR lead time influence drivers’ takeover responses (Mok et al., 2015;

van den Beukel and van der Voort , 2013; Wan and Wu, 2018; Walch et al., 2015;

Gold et al., 2013; Madigan et al., 2018). The literature on the effects of human-

machine interfaces is reviewed in Section 1.5.

1.2.3.1 Automation level

As shown in Table 1.1, AVs’ automation levels range from Level 0 to Level 5. Com-

pared to continuous manual driving, driving emergencies that requested takeovers

from automated driving led to longer reaction time and worse driving quality (Gold

et al., 2013; Radlmayr et al., 2014). Furthermore, some researchers compared drivers’

takeover responses at different automation levels of AVs (Madigan et al., 2018; Shen

and Neyens , 2014). For example, Madigan et al. (2018) compared takeover responses

in Level 2 and Level 3 AVs, and found that drivers had later overtaking manoeuvres

in Level 2 than Level 3 AVs. This dissertation only focuses on Level 3 AVs.
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1.2.3.2 TOR lead time

One of the most important factors that influences takeover performance is the

TOR lead time. Lead time refers to the time to collision at the time of the TOR

(McDonald et al., 2019b). According to previous meta-analyses (Gold et al., 2018b),

an increase of 1 s in TOR lead time generally led to a 0.2 to 0.3 s increase in takeover

time. Yet, such effects may disappear when the lead time is short. It may be because

the short lead time triggers reflexive and quick responses. Research demonstrated

that shorter TOR lead time degraded takeover quality in the form of shorter mini-

mum TTC, higher crash rates, greater maximum accelerations, and greater standard

deviation of steering wheel angle (Mok et al., 2015; van den Beukel and van der Voort ,

2013; Wan and Wu, 2018; Walch et al., 2015). It would be interesting to investigate

whether there are any interaction effects between TOR lead time and other factors.

1.3 Drivers’ responses in driving

1.3.1 Driving behavioral responses

To quantify how different factors influence takeover transitions, existing studies

have mainly focused on driving behaviors after TORs. In takeover performance mea-

surements, driving behaviors are categorized into two aspects, namely, takeover time-

liness and takeover quality. Takeover timeliness means how quickly drivers respond

to TORs, and is measured as the time between the TOR and the first indicator of a

takeover maneuver. Takeover quality consists of a wide range of metrics, including

speed, acceleration and jerk statistics, time/distance to collision statistics, steering

angle and pedal statistics, lane deviation statistics, and crash rate. For example, Gold

et al. (2016) measured drivers’ minimum TTC and crash numbers, and illustrated that

heavy traffic density led to worse takeover quality demonstrated by shorter minimum

TTC and more crashes. More recently, Du et al. (2020d) used smaller maximum re-
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sulting acceleration and maximum resulting jerk as indicators of good takeover quality

to show the advantages of positive emotional valence for takeovers during automated

driving.

While these driving metrics quantify drivers’ vehicle control after TORs and pro-

vide insight into the prominent effects of factors on takeover performance, they have

the following limitations. First, driving metrics capture drivers’ behaviors at a specific

moment (e.g., minimum TTC) or overall level (e.g., standard deviation of lane posi-

tions), but cannot account for the entire takeover process in a consecutive time-series

way. Second, although drivers sometimes do not show observable varieties at the per-

formance level, their cognitive and emotional states might be significantly influenced,

and should be used to measure their overall takeover experience. Self-reported sub-

jective measures can also assess drivers’ internal states. Yet, self-reporting internal

states significantly interferes with the real-time task at hand, and could be difficult

for drivers during the takeover transitions (Schmidt et al., 2009). Therefore, it is

necessary to collect drivers’ psychophysiological signals to examine their workload,

emotions, attention, and situation awareness, promptly and continuously.

1.3.2 Psychophysiological responses

With the development of low-cost and non-invasive wearable sensors, it is achiev-

able to collect drivers’ psychophysiological signals to reflect their cognitive and emo-

tional states as affected by NDRTs, vehicle configurations, and driving environments.

Commonly used measurements in vehicle-related research include eye movements,

heart rate (HR) activities, galvanic skin responses (GSRs), facial expressions, and

brain signals.
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1.3.2.1 Gaze behaviors

Gaze behaviors, such as gaze dispersion and blink number, have been widely used

in driving studies to reflect drivers’ cognitive load, attention, and situational aware-

ness (Wang et al., 2014; Luo et al., 2019; Young et al., 2013; Lemercier et al., 2014).

Researchers have shown that increases in drivers’ cognitive load induced by NDRTs

and environments are linked to increases in pupil diameter and decreases in horizontal

gaze dispersion and blink number (Wang et al., 2014; Gold et al., 2016; Merat et al.,

2012; Luo et al., 2019). For example, Merat et al. (2012) compared drivers’ states

when they were in different scenarios (with vs. without critical incident), NDRTs

(with vs. without Twenty Questions Task), and drive (manual vs. automated). They

found that blink frequency was generally suppressed during high workload condi-

tions, where drivers experienced critical incidents and Twenty Questions Task. Gold

et al. (2016) found that horizontal gaze dispersion was the most sensitive measure of

drivers’ cognitive demand in NDRTs during conditionally automated driving. From

the attention perspective, Louw et al. (2015) investigated driver attention in auto-

mated driving and measured drivers’ gaze dispersion with four manipulations: (1) no

manipulation, (2) light fog, (3) heavy fog, and (4) heavy fog with a visual NDRT.

They found that drivers had wider gaze dispersion when the driving scene was com-

pletely in the heavy fog conditions, but became more concentrated if a visual NDRT

existed. Although gaze dispersion and eyes-on-road time percentage are traditionally

treated as distraction indicators in manual driving, wider gaze dispersion and larger

eyes-on-road time percentage imply high situation awareness in automated driving

(Young et al., 2013; Molnar , 2017).

1.3.2.2 Heart rate activities

Heart rate and heart rate variability (HRV) have the sensitivity to assess drivers’

workload and detect workload changes before the presence of observable effects in
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driving performance (Mehler et al., 2012, 2009; Bashiri and D Mann, 2014; Lohani

et al., 2019; Hidalgo-Muñoz et al., 2019). For instance, Hidalgo-Muñoz et al. (2019)

conducted a driving simulator study with 18 subjects, and found that decreases in

HRV were associated with increases in cognitive load during manual driving. More

importantly, HRV reflected such variations in attention and cognitive load levels be-

fore differences in driving performance were evident. Although some researchers have

argued that cardiac responses remain open for attention interpretation, it is widely

established that heart rate acceleration and deceleration are associated with defense

and orienting responses, respectively. Specifically, Lacey and Sokolov proposed that

heart rate acceleration occurred in situations involving stimulus ignorance and envi-

ronmental rejection, while heart rate deceleration indexed the intake and enhance-

ment of environmental stimuli (Libby Jr et al., 1973; Lacey , 1970; Sokolov , 1963;

Sokolov and Paramonova, 1961). Take the driving context as an example, Reimer

et al. (2011) found that younger drivers had heart rate acceleration in response to the

phone conversation task in simulated manual driving. This pattern indicated that

drivers selectively ignored or rejected disruptive input, which was the phone task in

this setting. However, late middle-aged drivers did not demonstrate such a pattern,

possibly due to individual differences in attentional focuses.

1.3.2.3 Galvanic skin responses

Galvanic skin responses measure skin conductance controlled by changes in the

sympathetic nervous system. Raw GSR signals comprise two components, phasic ac-

tivation (rapid changes to a specific stimulus) and tonic activation (slower responses

at a background level of the activity) (Boucsein, 2012). GSRs have been found to be

associated with drivers’ cognitive load, stress, and emotional arousal (Collet et al.,

2009; Mehler et al., 2012; Wintersberger et al., 2018). For example, Mehler et al.

(2012) conducted an on-road study where 108 drivers across three age groups per-
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formed an auditory working memory task with three difficulty levels during manual

driving. Results showed that drivers had increased heart rate and skin conductance

with a high level of cognitive demand. In the context of automated driving, Winters-

berger et al. (2018) measured drivers’ GSRs after TORs in a simulated driving study.

They found that GSR phasic activation, as an indicator of drivers’ arousal and stress,

became higher when TORs were presented during an NDRT than between NDRTs.

1.3.2.4 Facial expressions

Facial expressions have been used to recognize drivers’ and passengers’ emotional

states in driving (Wintersberger et al., 2016; Gao et al., 2014; Izquierdo-Reyes et al.,

2018). For example, Wintersberger et al. (2016) made use of passengers’ facial expres-

sions to estimate their emotional responses (in pleasure and arousal dimensions) when

they were in a vehicle driven by an automated driving system, a male, or a female

driver. Furthermore, Izquierdo-Reyes et al. (2018) developed a k-Nearest Neighbors

algorithm to classify drivers’ emotions (e.g., anger, sadness, joy, anxiety) in automated

driving using facial expressions and reached an accuracy level of approximately 97%.

Such models can potentially be used to understand drivers’ emotional states, and the

vehicle might respond in real time to improve drivers’ user experience and reduce

possible aggressive behaviors (e.g., when in anger).

1.3.2.5 Brain signals

Brain signals, such as electroencephalogram (EEG) and functional near-infrared

spectroscopy (fNIRS) signals, have been used to develop computational models to

detect drivers’ workload and emotions in real time (Izquierdo-Reyes et al., 2018;

Thirunavukkarasu et al., 2016; Sibi et al., 2016). For example, Thirunavukkarasu

et al. (2016) utilized drivers’ EEG signals and basic vehicle information to develop an

emotion detection system. The system categorized drivers’ emotions into happy, sad,
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relaxed, and angry using a support vector machine algorithm, and helped improve

driver performance and safety. Similarly, Sibi et al. (2016) collected drivers’ fNIRS

signals in a simulated partially automated vehicle and found that compared to the

automated driving mode, fNIRS signals from the prefrontal cortex implied drivers’

additional cognitive load in manual driving. However, the ways to collect these brain

metrics tend to be intrusive compared to previously mentioned psychophysiological

metrics.

1.4 Existing models for takeover performance prediction

Most of the existing literature has focused on the effects of certain variables on

takeover performance, providing valuable yet largely relational insights. However,

knowing the relationships between certain factors and takeover performance is not

enough to accurately predict a driver’s takeover performance in the real world, because

many influential factors could interact with one another. Computational models

capable of predicting drivers’ takeover performance under various takeover conditions

in real time are needed. Although a substantial amount of research has identified

factors that influence drivers’ takeover performance, there is a lack of research on the

development of computational models for predicting drivers’ takeover performance,

with few exceptions (Gold et al., 2018b; Braunagel et al., 2017).

To predict takeover performance, Gold et al. (2018b) analyzed 753 takeover events

using data from six driving simulator experiments, and developed regression models.

Their study modeled takeover performance measures (e.g., takeover time, minimum

TTC, brake application, and crash probability) as a function of the time-budget,

traffic density, non-driving-related task, repetition, the current lane, and driver’s age.

The models were validated using 729 takeover events from five additional experi-

ments. The validation results showed that the regression models accurately predicted

takeover time, time-to-collision, and crash probability, and moderately predicted the
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brake application.

Braunagel et al. (2017) used machine learning algorithms to predict drivers’ takeover

quality (named as “takeover readiness” in the article). The study categorized takeover

quality into low and high levels by analyzing driving parameters such as lane devia-

tions. Data were collected from a driving simulator study with 81 participants. The

first feature input was situation complexity, with three levels decided by raters; the

second set of features was the type of NDRTs performed by drivers; and the third

set of features was drivers’ gazes at the road. Using machine learning algorithms in-

cluding k-nearest neighbors (kNN), support vector machine (SVM) with radial basis

function (RBF) and linear kernel, Naive Bayes, and linear discriminant, they pre-

dicted takeover quality with an accuracy of 79% and F1-score of 77%.

However, the above-mentioned models were developed and tested when drivers

were engaged in different types of NDRTs (e.g., monitoring vs. reading), where

apparent contextual cues existed to discriminate drivers’ states. In daily life, even

with a specific type of NDRTs such as writing an email, drivers’ states can be rather

different depending on the importance of the email. Also, some factors deliberately

manipulated in the experiment settings, such as emotions, are not easily accessible

in the real world. Although advanced wearable technology has made it convenient

to collect drivers’ physiological signals to reflect their cognitive and emotional states,

only gaze behaviors were used in previous studies.

Physiological data can be used to understand drivers’ cognitive and emotional

states by applying machine learning models to continuously monitored physiologi-

cal data. The data captured via non-intrusive sensors can be used to build models

that estimate drivers’ states and their interactions with the driving environments.

Drivers’ physiological signals combined with environmental factors are promising in-

dicators to predict takeover performance in conditionally automated driving in real

time (Braunagel et al., 2017).
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1.5 In-vehicle alert systems in automated driving

Human-machine interfaces (HMIs) have been designed and implemented widely in

automated vehicles to facilitate the interactions between drivers and vehicles. When

the vehicle is driving itself, the in-vehicle HMIs provide drivers with information to

conduct non-driving-related tasks (NDRTs) and feedback on the vehicle status and

driving environments to develop mental representations of the vehicle. For example,

Schartmüller et al. (2019) demonstrated that using head-up displays (HUDs) as the

NDRT user interface improved productivity and reduced workload and attractiveness

in comparison to auditory displays. Wintersberger et al. (2019) augmented the traffic

objects and upcoming vehicle maneuver via color-coded triangles and arrows, respec-

tively in the automated driving mode. They found that the application of augmented

reality could increase automation transparency, foster user acceptance, and improve

user trust in fully automated vehicles.

1.5.1 Takeover requests

In Level 3 automated vehicles, drivers are required to take over control of the

vehicle when the automation fails. Within a limited period of time, drivers are likely

not to be well prepared in critical situations because of their decreased situational

awareness in the automation mode. To help drivers take over control of the vehicles,

existing literature has extensively studied the design of takeover requests. The most

frequent takeover request is the combination of auditory and visual alerts (McDonald

et al., 2019a). The visual alert can be a symbol of the wheel or the pedal on the

dashboard or the HUD (Bueno et al., 2016; Du et al., 2020d). It indicates that

drivers need to take over control of the vehicle by pressing the pedals or rotating the

wheel. Text such as “take over” was shown as part of the visual interface in some

studies (Walch et al., 2015; Forster et al., 2017). The auditory alert can be speech

such as “take over” (Du et al., 2020d; Ma et al., 2020) or a generic tone such as a beep
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(Bazilinskyy et al., 2018; Naujoks et al., 2014). Some studies also used vibrotactile

alerts as takeover requests (Eriksson et al., 2018; Petermeijer et al., 2017).

In addition to the takeover requests, some in-vehicle interfaces provide event-

related takeover information to support drivers in taking over control of the vehicle

(Damböck et al., 2012; Forster et al., 2017; Richardson et al., 2018). For exam-

ple, Forster et al. (2017) added semantic speech output alongside a generic warning

tone for an upcoming takeover request, and found that the speech output explain-

ing the takeover scenarios shortened the reaction time and was rated as superior for

its trust, anthropomorphism, and usability. Similarly, Damböck et al. (2012) imple-

mented contact-analogue HUDs in highly automated driving. Road signs recognized

by the automation were marked by the frame, and the vehicle ahead and its trajectory

were highlighted. The results showed that such displays increased drivers’ compre-

hension of the automation actions and improved driver-automation-cooperation by

significantly decreasing reaction times in takeovers.

While these studies showed the promise of providing extra event-related informa-

tion, other literature went one step further and proposed different types of event-

related information and modalities to see how they influenced drivers’ takeovers.

1.5.2 Display modality

Like takeover requests, event-related information can be presented in visual, au-

ditory, and vibrotactile modalities. Auditory displays can use abstract sounds (e.g.,

tones) or voice messages (e.g., speech) to convey event-related information. Nees

et al. (2016) examined the effects of different types of auditory displays during a

video-simulated self-driving car ride with a visual secondary task. Speech alerts, au-

ditory icons, and a visual control condition were employed to give information about

the vehicle’s operating status and the driving scenarios (i.e., Level 1 situational aware-

ness). The findings showed that speech alerts led to better memory for alerted events
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and were promising to increase Level 1 situational awareness of routine scenarios.

Although both auditory display types resulted in less perceived effort, they did lead

to greater perceived annoyance.

HUD has been widely used in automated vehicle environments. Augmented re-

ality (AR) HUD allows direct superimposition of the information onto the real spa-

tiotemporal scene, whereas traditional HUD presents warning icons on the windshield

(Langlois et al., 2016; Langlois and Soualmi , 2016). Langlois and Soualmi (2016)

compared classical HUD with AR HUD when taking over from automated driving.

The vehicle in front was highlighted via a rectangle in the AR HUD. Drivers were

expected to change the lane in the slow traffic scenarios. The findings showed that

AR HUD helped drivers better anticipate the lane change maneuver (i.e., increased

the distance to the maneuver limit point) and improve driving comfort (i.e., reduced

drivers’ resulting acceleration and maximum speed).

The vibrotactile modality was studied in the prior literature, but researchers found

that it was not effective in conveying complex information (Meng and Spence, 2015).

For example, Petermeijer et al. (2017) compared the effects of takeover modality

and directionality on drivers’ takeover responses. Participants needed to avoid the

stationary vehicle ahead by changing to the left or right lane. The results showed that

directional vibrotactile stimuli did not evoke a directional response in uninstructed

drivers.

Therefore, the AR HUD and speech are appropriate approaches to provide event-

related information in takeover transitions.

1.5.3 Display information

Existing literature has proposed different types of event-related information to

potentially support takeovers. For example, Koo et al. (2015) categorized speech

information about AV action into three types: how the car is acting, why the car is

21



acting, and why + how the car is acting. They found that both the why only and

why + how information increased AV acceptance compared to how only information.

Furthermore, the why only information led to the highest positive emotional valence

while why + how led to the least positive emotional valence.

Wright et al. (2018, 2017) separated information into environment cues (e.g., cross-

walk ahead), threat cues (e.g., scan for pedestrians), and combination cues (e.g.,

crosswalk ahead, scan for pedestrians). All the cues were in the auditory modality.

The results showed that, compared with threat cues, environment cues not only in-

creased the detection of latent hazards, but also prepared drivers to safely mitigate

these hazards during takeover transitions. The combination cues showed a similar

pattern to the environment cues but were not the most beneficial.

Eriksson et al. (2018) used augmented reality displays to show information and de-

cision suggestions for takeover actions. The objects in the scenarios were highlighted

using spheres (information acquisition), lane availabilities were indicated using car-

pets with different colors (information analysis), and action recommendations were

symbolized by arrows with different colors (decision selection). Results showed that

the carpet and arrow conditions supported drivers in making a correct lane changing

or braking reaction in takeover transitions. Solely highlighting an obstacle using a

sphere did not improve decision making, but rather increased unnecessary braking.

Although existing studies employed different criteria to categorize the event-

related information, they inherently followed the common rules, such as the infor-

mation processing theory. Given that the results regarding the effects of different

types of display information were mixed, it is necessary to determine the most appro-

priate display information in different conditions.
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1.5.4 Alert system subjective evaluation

Drivers’ acceptance of the display technology is one of the deterministic factors in

whether the technology will be implemented and used in the vehicle. Researchers have

developed models to predict user acceptance. One of the most frequently used models

is the Technology Acceptance Model (TAM). TAM posits that Perceived Usefulness

(PU) and Perceived Ease of Use (PEOU) are significant predictors of Behavioral In-

tention (Davis , 1989). PU measures the degree to which the technology is perceived

as helpful and enhances job performance. PEOU measures the degree to which using

a system reduces effort. The TAM has been widely used to evaluate drivers’ accep-

tance of in-vehicle technology, such as navigation systems (Bolon-Canedo et al., 2011;

Chen and Chen, 2011), on-board monitoring systems (Ghazizadeh et al., 2012), and

assistance systems (Larue et al., 2015; Rahman et al., 2017).

Similarly, the Unified Theory of Acceptance and Use of Technology (UTAUT) pro-

poses four components of Behavioral Intention and Actual Behavior: Performance Ex-

pectancy, Effort Expectancy, Social Influence, and Facilitating Conditions (Venkatesh

et al., 2003). Performance Expectancy is defined as the degree to which an individual

believes that using the system will help him or her to attain gains in job performance.

Effort Expectancy is the degree of ease associated with the use of the system. Social

Influence is defined as the degree to which an individual perceives that important

others believe he or she should use the new system. Facilitating Conditions is the

degree to which an individual believes that an organizational and technical infras-

tructure exists to support the use of the system. UTAUT asserts that Performance

Expectancy, Effort Expectancy, and Social Influence positively influence Behavioral

Intention, and Behavioral Intention and Facilitating Conditions positively influence

Actual Behavior. Literature has used UTAUT to model drivers’ acceptance towards

the advanced driver assistance systems, such as the automated road transport systems

(Madigan et al., 2016, 2017).
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Many of the studies that have focused on drivers’ acceptance of AVs also examined

their preference for AV and anxiety (Koo et al., 2015, 2016b; Nass et al., 2005; Molnar

et al., 2018; Shabanpour et al., 2018; Abraham et al., 2017). Anxiety is often defined as

a feeling of fear, worry, apprehension, or concern. The more effective AV explanations

are, the less anxiety someone should have about using the AV (Koo et al., 2015,

2016b). Thus, anxiety should be an outcome used to assess the effectiveness of in-

vehicle technology. Preference is defined as the degree to which someone likes or has

a fondness for a particular AV technology. Preference is important because all things

being equal, individuals may prefer one AV technology over others for reasons that

are not always understood (Abraham et al., 2017). If this were true, it would be

important to capture preference along with other measures. In all, these outcomes

represent either barriers to adoption or positive attitudes associated with a successful

adoption.

1.6 Research aim

In response to takeover difficulty in conditionally automated driving, a substantial

amount of research has been conducted to investigate drivers’ responses to takeover

requests and to develop in-vehicle alert systems to facilitate takeover performance.

According to the literature review above, there are some research gaps.

First, not all the factors that influence takeover responses were studied compre-

hensively, and the results of some factors were mixed. Meanwhile, existing studies

on drivers’ responses to TORs mainly focused on their takeover performance. Little

is known about drivers’ cognitive load, attention styles, and emotional states amid

takeover transitions, which can be reflected through psychophysiological measure-

ments.

Second, it is difficult to estimate drivers’ takeover performance in real time only

with the identified quantitative relationships. Computational models that are capable
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of predicting drivers’ takeover performance in real time are needed.

Third, without considering drivers’ dynamic states and the complexity of driving

environments, the existing in-vehicle alert systems issue identical takeover warnings

with certain formats all the time. Such design may induce heavy information load or

otherwise fail to trigger enough alertness in the face of emergencies.

To fill these research gaps, the following three specific aims are addressed in this

dissertation:

(1) We will examine the effects of drivers’ cognitive load, emotions, traffic density,

and TOR lead time on their driving behavioral (takeover timeliness and quality) and

psychophysiological (eye movements, galvanic skin responses, and heart rate activi-

ties) responses to takeover requests.

(2) We will develop computational models to predict drivers’ takeover performance

using drivers’ physiological data and driving environment data via machine learning

algorithms.

(3) We will design in-vehicle alert systems with different display modalities and

information types. To evaluate the displays, we will use human-subject experiments

to measure drivers’ acceptance of and preference for displays, as well as their anxiety

and preparedness in different takeover scenarios.

1.7 Dissertation structure

This dissertation is presented in five chapters. Chapter one provides an intro-

duction to the problem, related work, and aims for this work. Chapter two details

three experiments that investigated drivers’ driving behavioral and psychophysiolog-

ical responses to takeover requests in different conditions. Chapter three presents the

computational modeling of takeover performance using drivers’ physiological data

and environment data via machine learning algorithms. Chapter four illustrates the

design and evaluation of in-vehicle alert systems for takeovers. Chapter five is an
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integration of the findings from the previous chapters, and presents the broad impact

and intellectual merit of the work, as well as the direction of future work.
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CHAPTER 2

Examining Drivers’ Behavioral and Physiological

Responses to Takeover Requests

2.1 Introduction

To address takeover difficulty, researchers have investigated different factors that

influence drivers’ takeover responses, including their states, individual characteris-

tics, driving environment, and vehicle capacity (Eriksson and Stanton, 2017; Gold

et al., 2016; Wan and Wu, 2018; Clark and Feng , 2017). However, not all the factors

were studied comprehensively, and the results of some factors were mixed because

of the lack of strict experimental control. Meanwhile, existing studies on drivers’

responses to TORs mainly focused on their takeover performance. Little is known

about drivers’ cognitive load, attention styles, and emotional states during takeover

transitions, which can be reflected through psychophysiological measurements. There-

fore, we conducted three experiments to examine the effects of different factors on

drivers’ driving behavioral and physiological responses to takeover requests. These

will provide a comprehensive understanding of factors that influence driver takeover

in conditional automated driving.

Despite the important role emotions play in human-machine interaction and in

manual driving, little is known about how emotions influence drivers’ takeover per-
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formance. Experiment 1 aimed to complement the existing literature by examining

the effects of drivers’ emotional valence and arousal on their takeover performance.

Existing studies on the effects of cognitive load on drivers’ takeover performance

show mixed findings, as few studies strictly manipulated driver’s cognitive load, re-

gardless of whether they explored its interaction effects with other road situation and

vehicle status variables. Meanwhile, high traffic density was coupled with fewer es-

cape paths in current literature. With a high traffic density, there were more vehicles

in the same or neighboring lanes of the automated ego vehicle, hence restricting the

drivers’ action opportunities. There is a need to decouple traffic density and the

availability of escape paths. Thus, Experiment 2 aimed to study the influence of

drivers’ cognitive load, oncoming traffic, and TOR lead time on their behavioral and

psychophysiological responses to takeover requests.

Despite existing investigations, the impact of takeover scenarios has not been

thoroughly examined. The few studies investigating the effects of takeover scenarios

were based on only a few scenarios (Naujoks et al., 2017; Dogan et al., 2019), which

were not representative of real-world situations. Furthermore, the existing scenario

categorizations that separate braking and steering scenarios may not be ideal, because

braking and steering could happen at the same time (Eriksson et al., 2018). To

fill the research gap, Experiment 3 aimed to systematically examine the effect of

takeover scenarios and vehicle speed on drivers’ behavioral and physiological responses

to takeovers.

In the experiments, participants drove a simulated vehicle with Level 3 automa-

tion. Each of them experienced takeover events in different conditions, and their

takeover performance and psychophysiological responses were recorded and analyzed.

The methods and results of each experiment are discussed and summarized in detail

below.
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2.2 Experiment 1

Experiment 1 aimed to complement the existing literature by examining the effects

of drivers’ emotional valence and arousal on their takeover performance.

2.2.1 Method

This research complied with the American Psychological Association code of ethics

and was approved by the Institutional Review Board of the University of Michigan.

2.2.1.1 Participants

A total of 32 university students (average age = 21.4 years, SD = 2.9; 17 females

and 15 males) with normal or corrected-to-normal vision participated in the experi-

ment. Participants were screened for valid US driver license status and susceptibility

to simulator sickness. The study lasted 60 to 75 minutes, and each participant was

compensated with $30 upon completion of the experiment.

2.2.1.2 Apparatus and stimuli

The study was conducted using a fixed-based desktop driving simulator. The

simulator ran the SimCreator driving simulation engine from Realtime Technologies

Inc. (RTI, Michigan, USA) (Figure 2.1). To present the driving environment to

participants, forward road scenes were displayed on a 32-inch computer monitor about

2.5 feet in front of the driver. A rear-view image was also displayed in a separate

window on the forward screen. The simulated vehicle was controlled by a Logitech

steering wheel and pedal system connected via a USB interface to the SimCreator

components.

In this study, the automation features of the driving simulator were programmed

to simulate an SAE Level 3 AV, wherein the AV performed the longitudinal and lateral

vehicle control, navigated, and responded to traffic control devices and other traffic
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Figure 2.1: Illustration of driving simulator in the experiment

elements, and the driver was not required to actively monitor the driving environment.

However, there were unexpected events that the AV could not handle, and it would

request the driver to take over control of the vehicle.

2.2.1.3 Experimental design

The experiment used a within-subjects design in order to minimize effects of ex-

traneous variables and to increase statistical power. We induced different values of

emotional valence and arousal within each participant, covering the four quadrants

of the valence-arousal space (Figure 1.1).

As shown in Table 2.1, eight 4-minute movie clips were selected for emotion induc-

tion based on prior literature (Lisetti and Nasoz , 2004; Gross and Levenson, 1997;

Uhrig et al., 2016; Ekman et al., 1980). To minimize the ordering effect, the sequence

of the emotion induction conditions was counterbalanced using a Latin square design.

Among all the participants, 10 participants had previously watched 1 out of the 8

movies, and 5 participants watched 2 out of the 8 movies before the study. Based on

participants’ comments in the post-experiment debriefing sessions, they were actively

engaged in watching the movie clips.

Drivers were assured that there was no need to monitor the driving environment
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Table 2.1: Descriptions of movie clips used for emotion induction

Emotion Movie Scene Citation

Sad
The Champ Death of the Champ Lisetti and Nasoz (2004)
Finding Neverland Death of the boy’s mother Uhrig et al. (2016)

Angry
Schindler’s list Woman engineer being shot Lisetti and Nasoz (2004)
Cry Freedom Innocent people being shot Gross and Levenson (1997)

Happy
Bruce Almighty Man getting power from God Uhrig et al. (2016)
Big Fish Boy expressing love to the girl Uhrig et al. (2016)

Calm
ScreenPeace screensaver with city scenes Gross and Levenson (1997)
Beautiful trees and flowers in the world Ekman et al. (1980)

Table 2.2: Descriptions of takeover events

Environment Event descriptions
Urban Construction zone ahead
Urban Bicyclist in the lane ahead
Rural Police vehicle on shoulder
Rural Swerving vehicle ahead

when the AV was in the automation mode, and they could focus on watching the

videos until a TOR was issued. The TOR was in both auditory and visual format:

an audible spoken phrase “takeover” and an icon representing a pair of red hands on

a red steering wheel (Kuehn et al., 2017) (Figure 2.1). The sound volume and visual

intensity were the same for all the participants throughout the experiment. Each

participant confirmed in the practice drives that the TOR could be heard clearly

while the participant was watching the movie clips. The speedometer, the AV mode

indicator, and the TOR symbol were displayed in real time at the lower center of the

screen.

Each participant went through four takeover events. The takeover events were

designed based on prior literature (Rezvani et al., 2016; Koo et al., 2016b; Miller

et al., 2016) (Table 2.2). In the AV mode, the vehicle always drove in the right lane.

The TOR was issued when the AV was around 4 seconds away from the construction

zone/bicyclist/police vehicle/swerving vehicle. Participants were expected to change

to the left lane during the takeover transitions.
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Figure 2.2: The Self-Assessment Manikin (SAM) (Bradley and Lang , 1994)

2.2.1.4 Measures

We measured participants’ subjective ratings of emotional valence and arousal, as

well as objective measures of their takeover performance.

The Self-Assessment Manikin (SAM) instrument (See Figure 2.2) was used to as-

sess participants’ emotional valence (1 = extremely negative, 9 = extremely positive)

and arousal (1 = lowest arousal, 9 = highest arousal) based on their emotions induced

by the movie clips (Bradley and Lang , 1994).

Takeover performance was assessed in the timing and quality aspects. Takeover

time was calculated as the time between the TOR and the start of the maneuver.

The start of the maneuver is defined as a 2-degree change in steering wheel angle or

a 10% depress of pedals, whichever is first (Gold et al., 2016). Takeover quality was

assessed by three representative driving measures in the obstacles ahead scenarios:

maximum resulting acceleration, maximum resulting jerk, and minimum TTC within

the time window between the TOR and the end of the lane changing behavior (i.e.,

the center of the vehicle reached the boundary of the other lane). Consistent with

prior research (Hergeth et al., 2017), maximum resulting acceleration was calculated

as max accelerationresulting = max
t

√
acceleration2

longitudinal + acceleration2
lateral . A

smaller acceleration represents a smoother and safer reaction to TORs. In addition,

we calculated the maximum resulting jerk as max jerkresulting =

max
t

√
jerk2longitudinal + jerk2lateral. Jerk is the derivative of acceleration and has been

utilized to evaluate shift quality, ride comfort (Huang and Wang , 2004) and driving
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aggressiveness (Bagdadi and Várhelyi , 2011; Feng et al., 2017; Bagdadi and Várhelyi ,

2013). Similarly, a smaller jerk represents higher takeover quality. TTC is a time-

based safety indicator for detecting rear-end collision risk, and is defined as the time

taken for two objects to collide if they maintain their present speeds and trajectories

(Hayward , 1972).

Five crashes occurred in the study. Under such situations, minimum TTC was

treated as “not applicable”, and other driving dynamic variables were calculated

using the time window between the TOR and the time when drivers re-engaged the

automation mode.

2.2.1.5 Experimental procedure

Once participants arrived at the lab, they signed an informed consent and filled

a demographic form. Next, participants received a 5-minute training, where they

practiced how to change lanes and engage/disengage the automated driving mode by

pressing a button on the steering wheel. They were asked to comply with all the

traffic laws when they drove manually, and the speed limit was 35 mph. Participants

also experienced an unexpected takeover event in the practice while watching a 1-

minute movie clip of Zen Garden. The movie clip was played on a tablet located on

the right side of the driver’s seat. The takeover event was the scenario where the

traffic lights at an intersection did not work, and required the driver to observe the

surroundings and drive manually. Participants were asked to re-engage the AV once

they had negotiated the drive.

After the training session, participants completed two drive courses, each contain-

ing two takeover events. As shown in Figure 2.3, each course began with the command

to activate the automated driving mode. Then there was an emotion induction phase

when participants were asked to watch two 4-minute movie clips aimed at inducing

the same emotion. Close to the end of the movie clips, a takeover request was issued,
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Figure 2.3: Sequence of takeover events in the experiment

and participants were required to take over control of the vehicle immediately. Once

participants negotiated the drive, they could hand over the control back to the AV.

After participant re-engaged the AV mode, they were asked to recall the scenes in

the movie clips and complete the SAM survey to indicate their emotional valence and

arousal when watching the movie clips.

2.2.1.6 Data analysis

Data from one participant was excluded from analysis as the participant did not

follow the instructions from the experimenter. The SAM Likert scales from 1 to 9

(low arousal: 1-4, high arousal: 6-9; negative valence: 1-4; positive valence: 6-9)

were normalized to a scale from -1 to 1 (Miranda Correa et al., 2018). Data points

with 0 valence or 0 arousal were deleted. Figure 2.4 shows the distribution of valence

and arousal values in the four quadrants: positive valence high arousal, negative

valence high arousal, negative valence low arousal, and positive valence low arousal,

respectively.

We used a mixed linear model to analyze the relationship between valence, arousal

and takeover performance (timeliness and quality). Results are reported as significant

for α less than .05.
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Figure 2.4: Raw data of subjective ratings in the valence-arousal plane

Table 2.3: Mean and standard error values of dependent measures

Negative Valence Positive Valance
Low arousal High arousal Low arousal High arousal

Takeover time (s) 1.88 ± .09 1.69 ± .07 1.79 ± .07 1.88 ± .16

Max resulting acceleration (m/s
2
) 6.56 ± .75 6.14 ± .81 5.85 ± .62 3.95 ± .79

Max resulting jerk (m/s
3
) 113 ± 18 115 ± 21 94 ± 17 42 ± 16

Min TTC (s) .98 ± .15 .77 ± .15 .72 ± .12 .67 ± .15

2.2.2 Results

Table 3 summarizes the mean and standard error (SE) values of the dependent

measures.

2.2.2.1 Takeover time

No significant effect was found for either valence (F (1, 57) = .04, p = .84) or

arousal (F (1, 76) = .32, p = .57), and the interaction effect was not significant

(F (1, 63) = .47, p = .50).
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Figure 2.5: Maximum resulting acceleration (m/s
2
)

2.2.2.2 Takeover quality

With regard to the maximum resulting acceleration, there was a significant effect

of valence (F (1, 56) = 4.26, p = .04). Positive valence led to a smaller maximum

resulting acceleration (Figure 2.5). In addition, there was a trend that high arousal

led to a smaller maximum resulting acceleration (F (1, 77) = 3.24, p = .08). The

interaction effect of valence and arousal on maximum resulting acceleration was not

significant (F (1, 64) = .79, p = .38).

There was a significant effect of valence on maximum resulting jerk (F (1, 55) =

6.47, p = .01), with positive valence leading to a smaller maximum resulting jerk

(Figure 2.6). The main effect of arousal (F (1, 73) = 1.84, p = .18) and the interaction

effect were non-significant (F (1, 61) = 1.71, p = .20).

There were no significant effects of valence (F (1, 57) = 1.19, p = .28) and arousal

(F (1, 75) = .67, p = .42) on TTCmin. The interaction effect was not significant

(F (1, 65) = .31, p = .58).
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Figure 2.6: Maximum resulting acceleration (m/s
3
)

2.2.3 Discussion

This study aimed to examine how emotions affected drivers’ takeover performance

in conditionally automated driving. Drivers’ tasks in manual driving and condition-

ally automated driving (Level 3 AV) are fundamentally different. In manual driving,

drivers continuously perform lateral and longitudinal control. Therefore, prior stud-

ies in manual driving mainly treated the NDRTs as distractions. With conditionally

automated driving, however, drivers largely perform a single task (i.e., either the driv-

ing task or the NDRT) at any one time. When the automation mode is on, drivers

can perform any NDRT at their own discretion. After receiving a TOR, drivers are

expected to relinquish the NDRT and resume the driving task immediately. The

distinction between manual driving and conditionally automated driving suggests

findings in manual driving cannot be directly applied to takeover transitions.
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2.2.3.1 Effects of valence

Our findings showed that positive valence led to better takeover performance,

reflected by a smaller maximum resulting acceleration and a smaller maximum re-

sulting jerk. Smaller maximum resulting acceleration and maximum resulting jerk are

associated with higher levels of safety (Hergeth et al., 2017), shift quality, and ride

comfort (Huang and Wang , 2004), and lower driving aggressiveness (Bagdadi and

Várhelyi , 2011; Feng et al., 2017; Bagdadi and Várhelyi , 2013). The findings can be

explained by the “broad-and-build“ theory (Fredrickson and Branigan, 2005; Rowe

et al., 2007), which states that positive emotions prompt individuals to broaden their

focus of attention and their thought-action repositories. The broader span of atten-

tion enables drivers to perceive and process different stimuli in the traffic situation

and avoid tunnel vision. Larger thought-action repositories allow drivers to identify

a more appropriate action given a specific traffic situation. In takeover transitions,

the broadened attention and thought-action repositories aided drivers in traffic situ-

ation comprehension and action selection, and hence enhanced the takeover quality.

The results are in line with some studies examining the effects of valence in manual

driving, where positive valence led to better vehicle control (Chan and Singhal , 2013;

Hancock et al., 2012; Trick et al., 2012; Groeger , 2013), suggesting that the benefits

of positive valence can be carried over from manual driving to automated driving.

However, we failed to find any difference in minimum TTC, and the reason could be

explained as follows. Time to collision represents the time taken for two objects to

collide with each other, and is an indicator of collision risk. With a negative emotion,

drivers’ attentional focus and thought-action repositories are narrowed. Therefore,

they might employ immediate survival-oriented behaviors and brake abruptly, leading

to a potentially larger minimum TTC.

In the present study, we adopted three metrics aimed at assessing driving smooth-

ness, ride comfort and collision risk. However, we notice the wide range of metrics
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used to measure takeover quality in prior literature, including crash rates, different

statistics of velocity, acceleration, jerk, and TTC (Please refer to McDonald et al.

(2019a) for the detailed list). This wide range of metrics makes it difficult to summa-

rize findings in prior literature. There is an urgent need to examine if it is possible to

propose a standard set of metrics for measuring takeover quality, and how to do so.

2.2.3.2 Effects of arousal

We found that there was no significant effect of arousal on takeover time. Prior

research in manual driving showed that high arousal led to faster response time in

hazard detection (Trick et al., 2012; Navarro et al., 2018; Ünal et al., 2013). In

takeover transitions, however, TORs serve as an attention management tool. Upon

receiving a TOR, drivers are required to attend to the driving task. Moreover, in

our study, drivers were engaged in a hands-free task (i.e., watching movies) before

the TOR was issued. Without the need to physically end the task and put down

the NDRT device, drivers could immediately switch their attention from the tablet

to the driving scene. Our results showed that this process took less than 2 seconds,

no matter in which emotional state drivers were. Recent studies comparing different

types of NDRTs on takeover quality and timeliness showed that the types of NDRTs

only influenced the takeover quality and not takeover time (Gold et al., 2016; Körber

et al., 2016; Zeeb et al., 2016; Bueno et al., 2016; Zeeb et al., 2017), providing further

support for our findings.

To our surprise, the results suggest a trend that high arousal led to a smaller max-

imum resulting acceleration and thus better takeover quality. This implies that the

benefits of high arousal in mobilizing attentional resources and effort for immediate

actions could be reflected in takeover quality. Further research is needed to elucidate

this effect.
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2.2.3.3 Implications

Our findings have implications on the design of in-vehicle emotion regulation sys-

tems. Advances in machine learning enable accurate detection of drivers’ emotional

states in real time (Izquierdo-Reyes et al., 2018; Picard , 2003). For example, if the

system detects that a driver is a negative emotional state, strategies such as reap-

praisal and distraction (Naragon-Gainey et al., 2017) can be used to help the driver

manage his or her negative emotion, resulting in better takeover performance. Also,

the AV could even delay or avoid handing over control.

2.2.3.4 Limitations and future studies

The present study has several limitations that should be taken into consideration.

First, we only examined one type of takeover event, wherein the drivers perceived cer-

tain hazards and were expected to change lanes. Further research could be extended

to other types of takeover events such as lane markings disappearing. Second, the

study was conducted in a fixed-based desktop driving simulator with limited fidelity.

Future studies can investigate the effects of emotional valence and arousal in a higher

fidelity laboratory environment or a naturalistic driving environment. Third, drivers’

emotional valence and arousal values were queried after a takeover event occurred.

Although we followed a standard practice and asked the drivers to recall the movie

clips, and based on which to indicate their emotional states prior to the takeover

event, experiencing the event per se might influence drivers’ perceptions of the movie

clips. Further research could employ physiological measures of emotion, which could

indicate drivers’ emotional states non-intrusively before a takeover event. Meanwhile,

eye-tracking metrics such as gaze behaviors could be recorded and analyzed in order

to better understand drivers’ attention allocation during conditionally automated

driving.
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2.2.4 Conclusion

Drivers have difficulty in takeover transitions, as they become increasingly decou-

pled from the operational level of driving. In response to this challenge, researchers

have started to look into factors that could influence drivers’ takeover performance.

Despite the important role emotion plays in human-machine interaction and in manual

driving, little is known about how emotion affects takeover performance in condition-

ally automated driving. By systematically manipulating drivers’ emotional states, the

current study extended earlier research by demonstrating how valence and arousal in-

fluence takeover time and quality. The benefits of positive emotions carry over from

manual driving to conditionally automated driving, while the benefits of arousal do

not. Moreover, our study provides empirical evidence that emotions we cannot simply

apply the findings about emotions in manual driving to automated driving.

2.3 Experiment 2

Experiment 2 aimed to study the influence of drivers’ cognitive load, oncoming

traffic, and TOR lead time on their behavioral and psychophysiological responses to

takeover requests.

2.3.1 Method

This research complied with the American Psychological Association code of ethics

and was approved by the Institutional Review Board of the University of Michigan.

2.3.1.1 Participants

A total of 102 university students participated in the study (mean age = 22.9,

standard deviation [SD] = 3.8; range = 18-38; 40 females and 62 males). All par-

ticipants had normal or corrected-to-normal vision and a valid driver’s license. On
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Table 2.4: Participants’ distribution of annual mileage and weekly mileage and aver-
age experience score with different driver assistance systems

Annual mileage N Weekly mileage N Driving assistance system Score
Less than 5,000 miles 34 Less than 50 miles 53 Cruise control 3.0
5,000 - 10,000 miles 33 50 - 100 miles 27 Adaptive cruise control 1.5
10,000 - 15,000 miles 25 100 - 150 miles 8 Lane-departure warning 1.8
15,000 - 20,000 miles 2 150 - 200 miles 6 lane-keeping assistance 1.5
20,000 - 25,000 miles 5 200 - 250 miles 8 Collision warning 1.9
More than 25,000 miles 3 More than 250 miles 2 Emergency braking 1.4

average, participants had held their driver’s licenses for 4.9 years (SD = 3.2 years).

Each participant received a compensation of $30 for about an hour of participation.

A 5-point Likert scale was used to measure participants’ experiences with various

driver assistance features (1 indicated “never” and 5 indicated “always”). Table 2.4

showed participants’ distribution of annual mileage and weekly mileage, as well as

their average experience scores with different driver assistance systems.

2.3.1.2 Apparatus and stimuli

The study was conducted in a fixed-base driving simulator from Realtime Tech-

nologies Inc. (RTI, Michigan). The virtual world was projected on three front screens

(16 feet away), one rear screen (12 feet away), and two side mirror displays (See Fig-

ure 2.7). There was a steering wheel and pedal system embedded in a Nisan Versa

car model. The vehicle was programmed to simulate an SAE Level 3 automation,

which handled the longitudinal and lateral control, navigation, and responded to traf-

fic events. Participants could press the button on the steering wheel to activate the

automated mode and engage in NDRTs. However, the automated mode would be

deactivated automatically for drivers to take over control once the automated system

failed to respond properly. At that moment, drivers would be alerted by an auditory

warning “Takeover”.

This simulator was equipped with a Smart Eye four-camera eye-tracking system

(Smart Eye, Sweden) that provided live head-pose, eye-blink, and gaze data (Figure
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(a) Driving simulator (b) In-vehicle setting

Figure 2.7: Driving simulator and Smarteye system

(a) (b)

Figure 2.8: (a) Smarteye. (b) Shimmer3 GSR+ unit and Logitech web camera.

2.8a). The sampling rate of the eye-tracking system was 120 Hz. The Shimmer3

GSR+ unit (Shimmer, MA, USA), including GSR electrodes and photoplethysmo-

graphic (PPG) probe, was used to collect GSR and HR data, with a sampling rate

of 128 Hz. A Logitech web camera with a sampling rate of 30Hz was used to collect

drivers’ facial expressions (Figure 2.8b). The iMotions software (iMotions, MA, USA)

was used for psychophysiological data synchronization and visualization in real time.

The NDRT utilized in the study was a visual N-back memory task (Jaeggi et al.,

2008). The stimulus consisted of nine (3×3) squares with two human figures randomly

appearing in two out of the nine squares. Each stimulus was presented for 500 ms in
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Figure 2.9: N-back memory task.

sequence with a 2500 ms interval (Figure 2.9). Participants were required to press the

“Hit” button when the current stimulus was the same as the one presented N steps

back in the sequence, and press the “Reject” button otherwise. With different N

values (i.e., 1 and 2), participants were exposed to conditions with different cognitive

load but the same manual and visual load. The task was running on an 11.6-inch

touch screen tablet mounted in the center console of the vehicle.

2.3.1.3 Experimental design

The study employed a within-subjects design, with the driver’s cognitive load,

TOR lead time, and traffic density as independent variables. The cognitive load was

manipulated via the difficulty of the NDRTs (low: 1-back memory task; high: 2-

back memory task). The heavy- and no- traffic conditions had 15 and 0 oncoming

vehicles per kilometer, respectively. The TOR lead time was around 4 or 7 seconds.

Based on prior literature (Rezvani et al., 2016; Koo et al., 2016b; Miller et al., 2016;

Molnar et al., 2018), eight takeover events were designed in urban and rural drives

with typical roadway features (Table 2.5). The difficulty of the scenarios was designed

to be approximately the same.

The order of cognitive load, traffic density, and TOR lead time was counterbal-

anced via an 8 × 8 balanced Latin Square across participants. Based on standard

programming practices for the simulator, the order of scenario presentations was

counterbalanced by having half of the participants drive from Event 1 to 8, and the
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Table 2.5: Descriptions of takeover events

Event World Scenario type Event descriptions
Event 1 Urban Lane changing Bicyclist in the lane ahead
Event 2 Urban Lane keeping Construction zone on the left
Event 3 Urban Lane changing Construction zone ahead
Event 4 Urban Lane keeping Sensor error on the curve
Event 5 Rural Lane changing Swerving vehicle ahead
Event 6 Rural Lane keeping No lane markings on the curve
Event 7 Rural Lane keeping Sensor error on the curve
Event 8 Rural Lane changing Police vehicle on shoulder

other half from Event 8 to 1. During the entire session, there were no other vehicles

moving in the drivers’ direction, and participants could avoid the objects in their lane

by changing to the adjacent lane.

2.3.1.4 Dependent variables

We collected drivers’ vehicle-related, NDRT-related, and psychophysiological mea-

sures (Table 2.6).

Takeover performance was measured in two aspects: timeliness and quality. With

regard to takeover timeliness, takeover reaction time and eyes-on-road reaction time

were measured. Takeover reaction time was defined as the time between the TOR and

the start of maneuver. According to (Gold et al., 2016), the threshold of maneuver

was set as a 2 degree change of the steering wheel angle or a 1% change of the pedals,

whichever was quicker. Eyes-on-road reaction time was the time between the TOR

and the driver’s first gaze vector on the road (Eriksson et al., 2018).

Takeover quality was assessed by three measures: maximum resulting acceleration,

maximum resulting jerk, and minimum TTC within the time window between the

TOR and the end of the takeover process. The end of the takeover process was defined

as either the endpoint of each takeover scenario or when participants re-engaged the

vehicle, whichever was earlier. Consistent with prior research (Gold et al., 2016), the

endpoint of Events 1, 3, 5, and 8 was when the vehicle’s center of gravity reached the

boundary of the neighboring lane; the endpoint of Events 4, 6, and 7 was when the
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Table 2.6: Dependent Variables

Dependent variables Unit Category Explanation
Takeover reaction
time

Seconds Takeover
timing

Time between TOR and start of
maneuver

Eyes-on-road reac-
tion time

Seconds Takeover
timing

Time between TOR and eyes on
road

Maximum resulting
acceleration/jerk

m/s2,
m/s3

Takeover
quality

Maximum resulting accelera-
tion/jerk during takeover situation

Minimum time to
collision

Seconds Takeover
quality

Minimum time to collision during
takeover situation

Road deviation
standard error (SE)

Centimeters Takeover
quality

Standard error of center road devi-
ation during takeover situation

Reaction time in N-
back task

Seconds NDRT The reaction time for the N-back
memory task

Accuracy in N-back
task

Percentage NDRT The accuracy for the N-back mem-
ory task

Heart rate variabil-
ity

millisecond Heart rate Standard deviation of inter-beat-
interval

Difference in aver-
age heart rate

beat per
minute

Heart rate Difference in average heart rate be-
tween NDRT and takeover stage

Mean phasic GSR micro
Siemens

GSR Average GSR phasic activation

Maximum phasic
GSR

micro
Siemens

GSR Maximum GSR phasic activation

Eyes-on-road time percentage Gaze
behaviors

The time percentage while eyes are
on the road

Blink number Gaze
behaviors

The number of blinks

Horizontal gaze dis-
persion

radian Gaze
behaviors

The standard deviation of gaze
heading

Emotional valence -100 to 100 Facial ex-
pressions

Signs indicate positive or negative
emotions

Emotional engage-
ment

0 to 100 Facial ex-
pressions

Increasing values signify increased
emotional engagement
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driver passed the exit point of the curve; and the endpoint of Event 2 was when the

vehicle passed the construction zone location. However, participants were instructed

to re-engage the vehicle as soon as they thought the vehicle was able to drive on

its own. We used the same equations to calculate maximum resulting acceleration,

maximum resulting jerk, and minimum time to collision as Experiment 1, which was

introduced in Section 2.2.1.4.

In the present study, participants were informed that the NDRT would not stop

automatically when an TOR was issued, and were instructed to end the NDRT by

themselves. This setting was similar to the “no lockout” condition in the study by

Wandtner et al. (2018), where participants had to make a trade-off decision between

terminating the NDRT and taking over control of the vehicle immediately (Wandtner

et al., 2018). Drivers’ reaction time and accuracy in NDRT were used as checks for

cognitive load manipulation.

The psychophysiological measures included drivers’ gaze behaviors, HR activities,

GSRs, and facial expressions. PPG peaks were detected using an adaptive thresh-

old method for heart rate extraction (Shin et al., 2009). Heart rate variability was

calculated as the standard deviation of RR intervals (i.e., the time elapsed between

two successive R-waves on the electrocardiogram) (Castaldo et al., 2017). In addi-

tion to directly measuring drivers’ average heart rate in takeover stages relative to

the NDRT stage, we also categorized such heart rate differences into three patterns,

because they can reflect drivers’ attentional styles during transitions, as introduced

before. Heart rate acceleration/deceleration was defined as at least 2 heart beats

per minute (bpm) increase/decrease from the NDRT stage to the takeover stage.

No changes in heart rate indicated less than 2 bpm changes between the two stages

(Pohlmeyer and Coughlin, 2008; Reimer et al., 2011).

The raw GSR signals were decomposed into phasic and tonic components using

the continuous decomposition analysis (CDA) via Ledalab in Matlab (Benedek and
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Figure 2.10: Two time windows to calculate measures from psychophysiological sig-
nals.

Kaernbach, 2010). Then maximum and mean phasic components were calculated

for further analysis, as they were responsible for relatively rapid changes in response

to specific events in the takeover transitions (Wintersberger et al., 2018). For gaze

behaviors, we calculated drivers’ eyes-on-road time percentage, blink number, and

horizontal gaze dispersion. Horizontal gaze dispersion was defined as the standard

deviation of gaze heading. Drivers’ emotional valence and engagement were extracted

from their facial expressions using the iMotions Affectiva module to reflect how pos-

itive/negative and expressive their emotions were (Stöckli et al., 2018; Kulke et al.,

2020).

We calculated the above-mentioned statistical psychophysiological measures using

two time windows: the NDRT stage and the takeover stage (see Figure 2.10). The

NDRT stage was approximately 90 seconds long. It started when the drivers were

asked to initiate the NDRT and ended when the auditory “Takeover” alert was issued.

The takeover stage started with “Takeover” alerts and ended when drivers negotiated

takeover events and re-engaged the vehicle. In order to show the continuous takeover

transition process, we also depicted the psychophysiological measures after TORs

second by second when their main effects were significant.
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2.3.1.5 Experimental procedure

After participants signed an informed consent form and completed an online de-

mographics questionnaire, they were asked to track six targets on the front screen for

eye-tracking calibration. Next, two GSR electrodes were attached to their left feet

and the PPG probe to their left ear lobes. They were then introduced the N-back task

and automated driving features of the simulator. Participants were told that there

was no need to actively monitor the driving environments or take over control of the

vehicle when no TOR was issued, as the vehicle was able to handle the situations by

itself.

Participants had a 2-minute practice for the N-back memory task, followed by a

5-minute practice drive using the AV. Participants were informed that they would get

an additional 20 dollars if their NDRT performance in the real experiment was ranked

among the top 10. In the practice drive, they were asked to change lanes, engage the

AV, perform the N-back task, and take over control of the vehicle. The takeover event

was a scenario where traffic lights did not work and required drivers to observe the

surroundings and take over control of the vehicle. During driving, participants were

instructed to maintain the speed limit of 35 mph in urban and rural environments

and 65 mph in highway environments and obey all traffic rules.

Each participant drove two experimental drives (15-20 minutes each), each con-

taining four takeover events. At the beginning of the drives, participants were asked

to activate the AV mode and then start the N-back task when the audio command

“Please start the NDRT” was issued. After about a 90-second NDRT, a TOR was

issued unexpectedly, and participants were required to terminate the NDRT manually

and take over the control immediately. When participants thought they had negoti-

ated the takeover event, they were free to activate AV mode. The experimenter would

remind participants to re-engage the vehicle if they did not turn on the automation

after the takeover event. The operation of NDRT, takeover, AV mode activation
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Figure 2.11: Sequence of events in one drive

process were repeated for each takeover event (See Figure 2.11).

2.3.1.6 Data analysis

Each participant experienced 8 scenarios, so 102 participants yielded a total of

816 (8 × 102) scenarios. Due to some participants’ motion sickness and malfunc-

tions of driving simulator and psychophysiological sensors (e.g., calibration failure of

steering wheel and eye-tracking system, system freezing), 683 scenarios were available

for further psychophysiological analysis and 640 scenarios were available for driving

behavioral analysis.

Two types of linear mixed models were conducted using SPSS version 24 to ex-

amine effects on continuous dependent variables (Table 2.6). The first one used

cognitive load, TOR lead time, traffic density, and their interactions as fixed ef-

fects, and the second one used time window (NDRT stage vs. takeover stage) as

the fixed effect (only for psychophysiological measures, since driving behaviors only

happened in takeover stage). Subjects were treated as random effects to resolve

non-independence in all the models. Levene’s tests were conducted to examine the

assumption of homogeneity of variance. All the dependent variables showed equal

variance across the cognitive load, traffic density, and TOR lead time levels. Al-

though the Shapiro–Wilk tests showed that the assumption of normality was violated

for some dependent variables (e.g., horizontal gaze dispersion), we argued that linear
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Table 2.7: Mean and standard error of driving behaviors under ∼4s TOR lead time
(Mean± SE)

∼4s TOR lead time
No traffic Heavy oncoming traffic density

Low cognitive load High cognitive load Low cognitive load High cognitive load
Takeover RT (s) 2.32 ± 0.14 2.26 ± 0.14 2.2 ± 0.13 2.23 ± 0.11

Eyes-on-road RT (s) 1.05 ± 0.11 1.17 ± 0.09 0.84 ± 0.1 1.33 ± 0.09
Max resulting acceleration (m/s2) 3.29 ± 0.31 3.21 ± 0.26 3.22 ± 0.29 3.71 ± 0.3

Max resulting jerk (m/s3) 44.1 ± 10.1 36.2 ± 8.0 43.5 ± 8.6 45.2 ± 8.0
Minimum TTC (s) 1.39 ± 0.21 1.46 ± 0.16 1.3 ± 0.16 1.22 ± 0.18

Road deviation SE (cm) 1.00 ± 0.15 0.84 ± 0.07 0.81 ± 0.08 0.85 ± 0.07

mixed models can still be conducted because they are robust against violations of the

assumptions of normality (Gelman and Hill , 2006). Meanwhile, if the main effects

of independent variables on psychophysiological measures during the takeover stage

were significant, we used pairwise t-tests to compare psychophysiological measures

after TORs second by second to provide time-series insights. Since heart rate change

pattern was a categorical variable, we used the chi-squared test to examine its depen-

dence with independent variables, which could represent drivers’ attentional styles in

different conditions (Pohlmeyer and Coughlin, 2008; Reimer et al., 2011). To increase

the interpretation of psychophysiological results, Pearson correlation coefficients were

examined to explore the relationships between emotions and physiological data. The

significance level alpha was set at .05.

2.3.2 Results

2.3.2.1 Manipulation check

There were significant main effects of cognitive load on drivers’ reaction time and

accuracy in the NDRTs, F (1, 552) = 37.5, p < .001; F (1, 553) = 158, p < .001.

Drivers had longer reaction time and lower accuracy in the 2-back task than the

1-back task, which indicated the success of our manipulation.

2.3.2.2 Takeover timeliness

Table 2.7 and 2.8 show the mean and standard error of driving behaviors.
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Table 2.8: Mean and standard error of driving behaviors under ∼7s TOR lead time
(Mean± SE)

∼7s TOR lead time
No traffic Heavy oncoming traffic density

Low cognitive load High cognitive load Low cognitive load High cognitive load
Takeover RT (s) 2.33 ± 0.15 2.43 ± 0.14 2.11 ± 0.15 2.28 ± 0.14

Eyes-on-road RT (s) 1.16 ± 0.10 1.23 ± 0.10 1.00 ± 0.10 1.30 ± 0.09
Max resulting acceleration (m/s2) 2.44 ± 0.25 2.46 ± 0.25 2.76 ± 0.28 2.39 ± 0.24

Max resulting jerk (m/s3) 28.8 ± 7.1 28.0 ± 7.0 36.5 ± 7.7 26.4 ± 5.7
Minimum TTC (s) 3.34 ± 0.24 3.2 ± 0.25 2.68 ± 0.25 2.72 ± 0.23

Road deviation SE (cm) 0.78 ± 0.06 0.72 ± 0.06 0.83 ± 0.09 0.79 ± 0.05

Figure 2.12: Eyes-on-road reaction time (s). Error bar indicates one standard error

There were no significant effect of cognitive load, F (1, 554) = .44, p = .51; traffic

density, F (1, 554) = 2.28, p = .13; and TOR lead time, F (1, 555) = .30, p = .59, on

takeover time. None of their interaction effects were significant.

For eyes-on-road reaction time, there was a significant effect of cognitive load,

F (1, 534) = 21.00, p < .001. As shown in Figure 2.12, lower cognitive load led

to shorter eyes-on-road reaction time. Moreover, there was a significant interaction

effect between cognitive load and traffic density, F (1, 534) = 7.11, p = .01. Simple

effect analysis showed that lower cognitive load led to a shorter eyes-on-road time

in heavy oncoming traffic condition, p < .001, while cognitive load did not influence

eyes-on-road time when there was no oncoming traffic, p = .18.
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Figure 2.13: Maximum resulting acceleration (m/s2). Error bar indicates one stan-
dard error

2.3.2.3 Takeover quality

The ∼4s TOR lead time resulted in a larger maximum resulting acceleration,

F (1, 555) = 23.23, p < .001, and a larger maximum resulting jerk, F (1, 555) =

5.64, p = .02 (Figure 2.13). No other significant effects were found on maximum

resulting acceleration, maximum resulting jerk, or standard error of road deviation.

In the four takeover events that required drivers to change lanes, drivers had

shorter minimum TTC when oncoming traffic density was heavy, F (1, 305) = 5.77, p =

.02, and when the TOR was ∼4s, F (1, 305) = 115.32, p < .001 (Figure 2.14).

2.3.2.4 Psychophysiological responses during NDRTs

During NDRT, there was a significant main effect of cognitive load on heart rate

variability (F (1, 586) = 5.17, p = .023). Drivers had lower heart rate variability when

they were in the condition of high cognitive load (Figure 2.15). All other main effects

and interaction effects on heart rate variability were not significant, so they were not

included in Figure 2.15.

As shown in Figure 2.16, drivers had lower horizontal gaze dispersion (F (1, 586) =

108.75, p < .001) and shorter eyes-on-road time (F (1, 586) = 108.35, p < .001) when
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Figure 2.14: Minimum time to collision (s). Error bar indicates one standard error

Figure 2.15: Heart rate variability (ms) during NDRTs by cognitive load.
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(a) (b)

Figure 2.16: (a) Horizontal gaze dispersion (radian); (b) Eyes-on-road time percentage
(%) during NDRT stage by cognitive load. TORs were issued at Time 0.

they were in high cognitive load. However, their blink number did not differ signifi-

cantly between two cognitive load task conditions. The main effects of traffic density

and TOR lead time and their interaction effects were not significant, and were not

included in Figure 2.16.

2.3.2.5 Psychophysiological responses during takeover transitions

Only the main effect of TOR lead time on blink number was significant (F (1, 588) =

6.11, p = .014). We found that ∼4s TOR lead time led to fewer blink numbers than

∼7s TOR lead time in general during the takeover stage (Figure 2.17). If we ana-

lyzed the blink number second by second, as shown in Figure 2.18, we found that

∼4s TOR lead time significantly suppressed blinks at 2s, 3s, and 4s after TORs (2s:

t(90) = 2.96, p = .004; 3s: t(90) = 1.78, p = .05; 4s: t(90) = 4.51, p < .001). Yet, no

significant effects were found on the horizontal gaze dispersion.

Compared to the NDRT stage, drivers’ mean phasic GSR was significantly higher

in the takeover action stage (F (1, 1275) = 44.43, p < .001). As shown in Figure 2.19,

drivers’ GSR phasic activation increased after a TOR and reached a peak 5s after

the alert. The main effects of TOR lead time on maximum and mean GSR phasic
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Figure 2.17: Blink number after TORs by TOR lead time.

Figure 2.18: Blink number through the drives. TORs were issued at Time 0.
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Figure 2.19: Mean GSR phasic activation (µS) through the drives. TORs were issued
at Time 0.

activation were significant (F (1, 587) = 8.80, p = .003; F (1, 591) = 4.92, p = .027).

Generally, ∼4s TOR lead time induced larger maximum and mean GSR phasic ac-

tivation than ∼7s TOR led time during the whole takeover time window. Further-

more, we found that GSR phasic activation differences caused by TOR lead time

appeared 5s after the TOR, lasted for 5s and disappeared 10s after the TOR (5s:

t(90) = 2.33, p = .022, ; 6s: t(90) = 2.87, p = .005; 7s: t(90) = 3.20, p = .002; 8s:

t(90) = 3.14, p = .002; 9s: t(90) = 2.43, p = .017). No other significant effects were

found on the mean or maximum GSR phasic activation.

The main effects of cognitive load, traffic density, TOR lead time, and their inter-

action effects on exact values of heart rate changes (heart rate in the takeover stage

minus NDRT stage) were not significant. As noted in the introduction, heart rate

differences were then categorized into three patterns. Figure 2.20 shows the num-

bers of the three heart rate response patterns under different traffic density, TOR

lead time and cognitive load conditions. Primarily, heart rate acceleration happened

the most frequently when drivers switched from NDRTs to takeovers, followed by no

changes, and heart rate deceleration. There was a significant main effect of traffic
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Figure 2.20: The number of takeover scenarios by independent variables and HR
response pattern.

Table 2.9: Mean heart rate (and standard error) by traffic density group and HR
response pattern.

Stage
Light traffic density Heavy traffic density

HR decel-
eration (n
= 96)

No
changes
(n = 117)

HR accel-
eration (n
= 129)

HR decel-
eration (n
= 81)

No
changes
(n = 96)

HR accel-
eration (n
= 164)

NDRT 92.1 ± 3.1 80.3 ± 1.3 81.2 ± 1.8 90.0 ± 2.4 80.8±2.0 81.6 ± 1.6
Takeover 85.2 ± 2.6 80.5 ± 1.3 91.1 ± 2.4 83.0 ± 2.0 80.9 ± 1.9 88.6 ± 1.8

density on heart rate response patterns (χ2
2 = 7.54, p = .023). In comparisons to light

traffic density, significantly more heart rate acceleration patterns were found in the

heavy traffic density condition (Table 2.9). As shown in Figure 2.21, such differences

appeared at the 12th second after TORs and lasted until about the 27th second. Yet,

the main effects of TOR lead time and cognitive load on heart rate response patterns

were not significant.

2.3.2.6 Correlation matrix

The correlation matrix, shown in Table 2.10, indicates the relationships between

drivers’ physiological data and emotions in valence and engagement dimensions after

TORs. We found that maximum and mean GSR phasic activation were negatively

correlated with drivers’ emotional valence, while blink number was positively corre-

lated with drivers’ emotional valence. In other words, the more negative emotions

drivers had, the larger maximum and mean GSR phasic activation and lower blink
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Figure 2.21: The number of heart rate acceleration patterns after TORs. TORs were
issued at Time 0.

Table 2.10: Correlation matrix between drivers’ physiological data, emotions, and
subjective takeover performance.

Horizontal gaze
dispersion

Blink
num

HR differ-
ences

Max GSR
phasic

Mean GSR
phasic

Valence -.042 .123** -.002 -.158** -.107**
Engagement -.017 .051 .09* -.042 -.069

numbers they had after TORs. Meanwhile, drivers’ engagement was significantly

positively correlated with HR differences between takeover and NDRT stage.

2.3.3 Discussion

This experiment examined the effects of NDRTs, traffic density, and TOR lead

time on drivers’ driving behavioral and psychophysiological responses to TORs in sim-

ulated SAE Level 3 automated driving. We discuss how the three factors influenced

different aspects of takeover transitions.
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2.3.3.1 Driving behavioral responses

We manipulated drivers’ cognitive load using an N-back memory task, and found

that with a lower cognitive load, drivers had shorter eyes-on-road reaction time. We

speculate that cognitive load influenced takeover actions by changing the monitoring

behavior at the NDRT stage. When the cognitive load was low, drivers had the band-

width to monitor the driving environment, stay prepared, and therefore responded

quickly once the TOR was issued. More gaze behaviors could be analyzed in the

future to validate the explanations.

Prior research on traffic density indicated that heavy traffic reduced takeover

performance (Gold et al., 2016, 2018a; Radlmayr et al., 2014; Körber et al., 2016;

Eriksson et al., 2018). However, in these studies, traffic density was confounded with

the availability of escape paths. In the present study, all the other vehicles were

in the oncoming traffic. This design allowed us to decouple traffic density and the

availability of escape paths. We found that oncoming traffic density did not influence

either takeover reaction time or maximum resulting acceleration/jerk. This result

implies that heavy traffic density per se did not lead to increased use of braking or

steering, but the available escape paths did. Nevertheless, as represented by minimum

TTC, heavy oncoming traffic density did increase drivers’ risk of collision through

longer decision-making time.

Interestingly, we found an interaction effect between oncoming traffic density and

cognitive load. Lower cognitive load shortened eyes-on-road reaction time only during

heavy oncoming traffic. This suggests that participants adjusted their monitoring

behavior according to the complexity of driving environments. When oncoming traffic

density was heavy, low cognitive load allowed drivers to allocate their attention to the

road in order to increase situational awareness and be prepared for potential events.

There were no effects of TOR lead time on takeover reaction time or eyes-on-road

time. Generally, longer TOR lead time leads to longer takeover reaction times, but
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takeover reaction time is also influenced by other variables, such as scenario emergency

(McDonald et al., 2019b). A possible reason for the lack of significance here is that

all the scenarios looked urgent, so drivers reacted reflectively and equally quickly,

regardless of TOR lead time.

When TOR lead time was ∼7s, participants had smaller maximum resulting ac-

celeration and jerk, and larger minimum time to collision. Maximum resulting accel-

eration and jerk have been utilized to identify shift safety, ride comfort (Huang and

Wang , 2004) and driving aggressiveness (Bagdadi and Várhelyi , 2011; Feng et al.,

2017). The results indicate that ∼7s TOR lead time led to safer and and more com-

fortable takeover behavior and lower collision risk, which supports previous studies

(Gold et al., 2013; Wan and Wu, 2018; Gold et al., 2016; Körber et al., 2016).

2.3.3.2 Psychophysiological measures during NDRTs

During the NDRT stage with automated driving mode on, drivers were assigned

N-back tasks on the tablet. Our results showed that drivers had lower heart rate

variability when they were in the 2-back memory task than the 1-back memory task.

Heart rate variability is a sensitive indicator of cognitive load (Mehler et al., 2012;

Lei and Roetting , 2011). Our findings aligned with previous research (Bashiri and

D Mann, 2014; Mehler et al., 2011), and implied drivers’ high cognitive load in the

2-back memory task.

Meanwhile, we found that drivers had narrower horizontal gaze dispersion and

spent less time monitoring the road when they were in the 2-back memory task.

This can be explained from two aspects. First, the 2-back memory task required

drivers to memorize more chucks and required more cognitive resources. Consistent

with previous studies (Wang et al., 2014; Gold et al., 2016), narrower horizontal gaze

dispersion indicated drivers’ increased cognitive load in the 2-back memory task.

Second, while more attentional resources were occupied by the 2-back memory task,
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drivers had fewer opportunities to monitor the driving environment. Their narrower

horizontal gaze dispersion and less eyes-on-road time suggested reduced situational

awareness of the driving environment (Molnar , 2017).

2.3.3.3 Psychophysiological measures during takeover transitions

Upon the TOR, drivers were required to terminate NDRTs, check the driving

environment, and negotiate takeover scenarios appropriately. During this process,

we found that drivers had lower blink numbers when TOR lead time was ∼4s. The

number of blinks decreases when there is more information to be processed in a short

time (Veltman and Gaillard , 1996). Thus, blink inhibition in ∼4s TOR lead time

indicated that drivers paid greater attention to scenarios and utilized more efforts to

support decision making and respond to urgent events. Meanwhile, we found that

blink number was positively correlated with drivers’ emotional valence detected by

facial expressions. This suggested that the more blink suppression drivers had, the

more negative emotions (e.g., stress) they had in the face of TORs (Haak et al.,

2009). However, we did not find significant differences in blink number in two dif-

ferent cognitive load conditions. This was probably because blink number was more

sensitive to temporal demands (Veltman and Gaillard , 1996) than to cognitive de-

mands. Meanwhile, we found a significantly negative correlation between drivers’

subjective ratings of takeover performance and horizontal gaze dispersion. It is likely

that drivers required wider horizontal gaze dispersion to process the driving informa-

tion and negotiate takeover events in a worse takeover performance situation.

Regarding GSRs, drivers’ phasic components increased significantly in response

to TORs, which implies high emotional arousal in the face of unexpected events

(Boucsein, 2012). In general, compared to ∼7s TOR lead time, drivers had larger

maximum and mean GSR phasic activation in the ∼4s TOR lead time condition,

indicating higher arousal when situations were more critical. However, a high arousal
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level could be associated with both positive and negative emotions. Therefore, we

further investigated its correlation with drivers’ emotional valence. We found that

maximum and mean GSR phasic activation were negatively correlated with drivers’

emotional valence. In other words, the higher arousal the drivers had in response to

TORs, the more negative their emotions were. Following the previous studies (Wandt-

ner et al., 2018; Morris et al., 2017; Healey and Picard , 2005), we interpreted that

drivers experienced greater stress in the ∼4s TOR lead time condition, as indicated

by the GSR phasic component and emotional valence.

As described in the results section, there were different patterns of drivers’ av-

erage heart rate differences from NDRTs to the takeover stage. In general, heart

rate acceleration happened the most frequently, which was associated with stimulus

ignorance and environmental rejection (Sokolov , 1963; Lacey , 1967, 1970). Such an

attentional pattern matched the takeover mechanism, as drivers were required to ter-

minate or ignore their NDRTs for takeover actions at the moment of TOR. More

interestingly, drivers showed more heart rate acceleration patterns in heavy traffic

density. This meant that drivers selectively rejected and blocked out the overwhelm-

ing traffic information in attention-demanding situations. Even though we did not

find any performance-level differences induced by traffic density (Du et al., 2020c),

heart rate measures explained drivers’ attentional styles and revealed potential safety

concerns with heavy traffic density during takeover transitions. Also, there was a sig-

nificant positive correlation between drivers’ engagement and heart rate changes from

NDRT to takeover stages. The more heart rate acceleration drivers had, the more

engaged they were in the takeover transitions, indicating that drivers were engaged in

takeover actions while ignoring unnecessary traffic information in complex situations.
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2.3.3.4 Time-series psychophysiological measures

The second-by-second analysis of psychophysiological measures allow us to under-

stand drivers’ responses to TORs in a continuous way. Using time-series data, we

found that drivers’ blink suppression happened 2s after TORs and lasted for 3 sec-

onds. The onset of the significant differences at the 2nd second tended to be consistent

with drivers’ reaction time (average reaction time = 2.3 s in this study) (Eriksson and

Stanton, 2017; McDonald et al., 2019b). Once drivers started to take over control of

the vehicle, their blinks were suppressed to extract the most important visual infor-

mation and remove distracting information in the driving environment (Bidder II and

Tomlinson, 1997). Yet, compatible with the characteristics of gaze behaviors in pre-

vious studies (Alrefaie et al., 2019; Kramer et al., 2013), such gaze reactions to TORs

were rapid and could recover immediately when the complex driving information was

processed.

With regard to GSR phasic activation, we found that drivers’ phasic differences

triggered by different lead times became significant 5s after the TOR, but only lasted

for another 5 seconds and then became monotonous. This was likely because drivers

perceived the event urgency differently at the time of TOR, but got used to it after

they gradually negotiated takeover scenarios. This phenomenon was also consistent

with the latency of GSRs responding to unexpected events, the rise time to the peak

from the baseline, and the fall time returned to the baseline from the peak after

unexpected events were resolved (Boucsein, 2012).

However, compared to other metrics, heart rate seemed to have a long latency

before changes induced by TORs and such changes lasted for a long time, as shown

in Figure 2.21. This is consistent with previous studies, as heart rate activities change

gradually and required a longer time window to be stable (Solovey et al., 2014; Alrefaie

et al., 2019).

In summary, drivers’ psychophysiological response patterns in the time domain
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were rather different to the same TORs. Some responded immediately and recovered

soon while others had long latency periods for responses and lasted for a long time.

When we used the whole takeover transition period as the time window to calculate

various measures for statistical analysis, it gave us an overview of drivers’ states during

takeover transitions. In contrast, analyzing the second-by-second time-series data

gave us insights into their temporal changes and the optimal time window selection

to improve the sensitivity and specificity of different psychophysiological measures.

2.3.3.5 Implications

Our findings have implications for the design of in-vehicle alert systems. While

different levels of cognitive load, traffic density, and TOR lead time influence drivers’

takeover performance differently, in-vehicle alert systems can be designed adaptively

to match drivers’ takeover readiness. For example, when oncoming traffic density

is heavy, a gaze guidance system can be designed to highlight the most important

features and support drivers in noticing potential hazards. When TOR lead time

is short, a multimodal display combining auditory, visual, and tactile alerts can be

issued to alarm drivers intensively and increase their alertness (Politis et al., 2013).

If driver monitoring systems detect that drivers are in high cognitive load induced by

NDRTs, a regulatory warning can be issued to remind drivers to stop current NDRTs,

keep relaxed, and prepare for potential takeover requests.

Psychophysiological measures indicated proactive responses induced by different

NDRTs, traffic density and TOR lead time before performance behavior was ob-

served. In summary, the inclusion of psychophysiological measures helped provide

insights into the often unconscious mechanisms underlying the takeover performance

behaviors. Therefore, such measures can help researchers understand the mechanisms

of takeover transitions by complementing other vehicle-related measures and improve

predictions of takeover performance proactively.
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The reliable and valid assessment of drivers’ internal states using psychophysio-

logical measures can be the ground work to develop state detection and monitoring

systems. Studies have shown that there are medium to strong associations between

psychophysiological measures and drivers’ states (Du et al., 2020b; Zhou et al., 2020a).

Data from wearable devices can be used to train advanced machine learning models to

indicate drivers’ states in a continuous, non-obtrusive, proactive, and real-time way.

Furthermore, according to monitoring results, an adaptive in-vehicle alert system can

be designed to trigger warnings or intervene drivers when sub-optimal internal states

are associated with potential hazards during the takeover transition period.

2.3.3.6 Limitations and future work

First, we used a high-fidelity fixed-base driving simulator to imitate takeover

situations in a controlled laboratory and recruited younger adults as participants.

Considering the experiment goals and time limitation, eight takeover scenarios were

designed within about a 40-minute drive course. This is especially important when

the psychophysiological measures collected are sensitive to various factors. However,

the obtained results might be less ecologically valid than those obtained from on-

road scenarios and across age groups. Future studies can replicate the experimental

settings with naturalistic driving and recruit diverse drivers to see the robustness of

psychophysiological measures. For example, drivers’ individual demographic infor-

mation and personalities may affect takeover performance and psychophysiological

responses. Future research can also extend experiment duration to see the potential

findings caused by drivers’ drowsiness or boredom in automated driving mode.

Second, to interpret the psychophysiological data, we compared our results with

well-established literature and provided insights on drivers’ cognitive load, attention,

and emotion states, as reflected by psychophysiological data throughout the takeover

transitions. Correlation analysis between drivers’ dimensional emotions and physio-
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logical data was also conducted to increase the validity and interpretability of results.

Future study can collect more self-reported measures on internal states (e.g., situa-

tional awareness) to help interpret the results. It would also be valuable to examine

the relationship between psychophysiological data and driving behaviors (e.g., mini-

mum time to collision) to see whether psychophysiological data can be used to predict

objective takeover performance.

Third, given the fact that drivers’ internal states are associated with multiple

psychophysiological measures, we used several of them to reliably measure subtle

changes in drivers’ cognitive load, attention, emotional states, and situational aware-

ness. However, a variety of psychophysiological measures can be derived from the

raw physiological signals. For example, in addition to emotional valence and engage-

ment, emotional arousal can also be predicted from facial expressions using machine

learning algorithms (Zhou et al., 2020b). In future studies, more metrics, such as

emotional arousal, frequency-domain HRV, and fixations can be potentially included.

2.3.4 Conclusion

This study systematically investigated the effects of drivers’ cognitive load, TOR

lead time, and traffic density on their driving behavioral and psychophysiological

responses to takeover requests. The results have important implications for the design

of in-vehicle alert systems to monitor driver behaviors, improve takeover readiness and

optimize takeover performance. The findings will enhance the interaction between

drivers and conditionally automated vehicles.

Generally, the results showed that drivers had worse takeover performance when

they had a high cognitive load, short TOR lead time, and heavy oncoming traffic

density. Interestingly, if drivers had low cognitive load, they paid more attention

to driving environments and responded more quickly to takeover requests in high

oncoming traffic density conditions. During the automated driving stage, we found
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that drivers had lower heart rate variability, narrower horizontal gaze dispersion, and

shorter eyes-on-road time when they were in high cognitive load triggered by the

2-back memory task. Upon the TOR, ∼4s lead time led to inhibited blink numbers

and larger maximum and mean GSR phasic activation, indicating higher emotional

arousal and stress than ∼7s lead time. Meanwhile, heavy traffic density resulted in

significantly frequent HR acceleration patterns than light traffic density, suggesting

ignorance of overwhelming traffic information.

While driving behaviors alone give us insights into drivers’ takeover performance,

psychophysiological signals collected by non-invasive sensors allow us to estimate

drivers’ workload, emotions, attention, and situational awareness in a continuous

and real-time manner. The findings can provide us a broad picture of driver states

throughout the whole takeover stage, and inform the development of driver monitoring

systems and the design of in-vehicle alert systems in SAE Level 3 automated driving.

2.4 Experiment 3

Experiment 3 aimed to systematically examine the effect of takeover scenarios and

vehicle speed on drivers’ behavioral and physiological responses to takeovers.

2.4.1 Method

This research complied with the American Psychological Association code of ethics

and was approved by the Institutional Review Board of the University of Michigan.

2.4.1.1 Participants

A total of 40 university students (average age = 22.8 years, SD = 3.9; 20 females

and 20 males) with normal or corrected-to-normal vision participated in the experi-

ment. Participants were screened for valid US driver’s license status and susceptibility
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to simulator sickness. The study lasted about 60 minutes, and each participant was

compensated with $30 upon completion of the experiment.

2.4.1.2 Apparatus and stimuli

The study was conducted in the same fixed-base driving simulator as Experiment

2. The settings of vehicle, sensors, and NDRT were the same as in Experiment 2, as

introduced in Section 2.3.1.2. Participants only conducted a visual 2-back memory

task as the NDRT.

2.4.1.3 Experimental design

The experiment used a mixed design, with scenario type as the between-subjects

variable and vehicle speed as the within-subjects variable. Two types of scenarios were

designed on the basis of realistic situations and previous literature (Lisetti and Nasoz ,

2004; Uhrig et al., 2016; Miller and Ju, 2014; Koo et al., 2016b; Rezvani et al., 2016;

Zeeb et al., 2016), that is, lane keeping and lane changing scenarios (See Table 2.11).

Participants were randomly assigned to one of the scenario types. Within the same

scenario type, each participant went through two drives (two events in each drive),

with one in the low vehicle speed (i.e., 35 mph) condition and the other in the high

vehicle speed (i.e., 60 mph) condition. The order of the drives was counterbalanced

among participants. Within the same scenario type, the order was counterbalanced

by having half of the participants drive from Events 1 to 4, and the other half from

Events 4 to 1.

The AV was always in the right lane prior to the TOR. According to the range of

velodyne lidar (Velodyne Lidar, California), we set the distance between the AV and

obstacle/entrance of the curve as 100 meters when the TOR was issued. Generally,

there were 15 oncoming vehicles per kilometer as traffic (Gold et al., 2016).
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Table 2.11: Descriptions of takeover events

Event Scenario type Scenario descriptions
Event 1

Lane keeping

Sensor error on the left curve
Event 2 Right curve with construction zone on the left
Event 3 No lane markings on the left curve
Event 4 Sensor error on the right curve
Event 1

Lane changing

Stranded vehicle ahead
Event 2 Construction zone ahead
Event 3 Construction barrier ahead
Event 4 Police vehicle on shoulder

2.4.1.4 Dependent measures

We measured participants’ objective takeover performance and physiological re-

sponses after TORs. We followed the same methods to calculate dependent variables

as in Experiment 2. Table 2.6 lists the dependent variables. The definitions and equa-

tions to calculate these dependent variables were detailed in Section 2.3.1.4. Takeover

performance consists of takeover timeliness (TOR reaction time) and takeover qual-

ity (maximum resulting acceleration and jerk, minimum time to collision, standard

error of steering angle and road offset) (Du et al., 2020d; Feng et al., 2017; Engström,

2010). Consistent with prior research (Gold et al., 2016), for the lane changing sce-

narios, the takeover actions ended when the vehicle’s center of gravity reached the

boundary of the neighboring lane; for the lane keeping scenarios, the takeover action

ended when the driver passed the exit point of the curve. However, participants were

instructed to re-engage the vehicle as long as they thought it was able to drive on its

own. Hence, the takeover action ended earlier if participants re-engaged the vehicle

before they reached the end point. Five crashes happened in lane changing scenarios,

four in the high vehicle speed condition and one in the low vehicle speed condition.

Participants either hit the objects or changed lanes on the shoulder during the col-

lision. Under such situations, minimum TTC was treated as “not applicable”, and

other driving dynamic variables were calculated within the time window between the

TOR and the end of takeover action. Physiological measures included drivers’ gaze
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behaviors, galvanic skin responses, and heart rate (Merat et al., 2012; Gold et al.,

2016; Wintersberger et al., 2018; Reimer et al., 2011). We calculated physiological

measurements in the takeover stage (See Figure 2.10).

2.4.1.5 Experimental procedure

Upon arrival, participants signed an informed consent and filled out a demographic

form. Experimenters attached two GSR electrodes to participants’ left feet and the

PPG probe to their left ear lobes. After sensor location adjustment and eye-tracking

calibration, participants received a 5-minute training session, where they practiced

how to keep lanes, change lanes and engage the automated driving mode by pressing

a button on the steering wheel. They were asked to comply with all the traffic laws

when they drove manually. They were informed that the speed limit was 35 mph in

the urban and rural areas and 60 mph on the highway. Next, they started the NDRT

and encountered an unexpected takeover event. The takeover event was the scenario

where the traffic lights at the intersection did not work and required them to observe

the surroundings and drive manually. Participants were told to re-engage the AV

once they thought they had negotiated the situation.

After the training session, participants completed two experimental drives. As

shown in Figure 2.22, each drive began with the command to activate the automated

driving mode. Then there was an NDRT phase where participants were asked to

do a visual 2-back memory task. The participants were informed that there was no

need to monitor the environment when the AV was in the automated driving mode.

Once a TOR was issued, participants were required to take over control of the vehicle

immediately. They could hand back control to the AV after they negotiated the

driving situation.
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Figure 2.22: Sequence of takeover events in the experiment

2.4.1.6 Data analysis

Each participant experienced 4 events, resulting in 160 takeover events. Due to

simulator and sensor malfunction, we excluded 9 events from driving behavior analysis

and 15 events from physiological data analysis. We used the linear mixed model to

analyze the relationship between the vehicle speed, scenario type, and the dependent

variables. The scenario type, vehicle speed, and their two-way interactions were set as

fixed effects. We used random intercept (participants had their own intercepts) but

not random slope (participants had their own slopes) in the model development. A

chi-square test was utilized to see the dependence between independent variables and

heart rate change patterns. α was set at .05 for results to be reported as significant.

2.4.2 Results

Table 2.12 summarizes the mean and standard error of objective takeover perfor-

mance and physiological measurements.

2.4.2.1 Takeover timeliness

As shown in Figure 2.23, drivers reacted to takeover events sooner in lane changing

scenarios (F (1, 38) = 14.79, p < .001). The interaction effect between scenario type

and speed (F (1, 111) = 5.08, p = .026) was significant. A simple effect analysis

showed that, in lane keeping scenarios, drivers had shorter TOR reaction time in low
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Table 2.12: Mean and standard error values of dependent measures

Lane keeping scenarios Lane changing scenarios
Low speed High speed Low speed High speed

TOR reaction time (s) 2.87 ± 0.21 3.24 ± 0.28 2.05 ± 0.09 1.78 ± 0.08

Max resulting acc (m/s
2

) 3.79 ± 0.27 2.70 ± 0.18 3.44 ± 0.53 6.56 ± 0.53

Max resulting jerk (m/s
3

) 13.3 ± 3.9 10.2 ± 2.3 76.2 ± 17.4 97.3 ± 17.3
SE of steering angle (degree) 0.56 ± 0.05 0.11 ± 0.01 0.33 ± 0.04 1.03 ± 0.13
SE of road offset (centimeter) 0.89 ± 0.08 1.10 ± 0.16 2.41 ± 0.09 2.63 ± 0.12
Minimum time to collision (s) NA NA 1.63 ± 0.15 0.41 ± 0.10
Blink number 4.00 ± 0.60 5.26 ± 0.86 4.47 ± 0.78 2.82 ± 0.46
Horizontal gaze dispersion (radian) 0.19 ± 0.01 0.15 ± 0.01 0.22 ± 0.01 0.21 ± 0.01
Mean phasic GSR (µS) 0.31 ± 0.06 0.21 ± 0.03 0.29 ± 0.05 0.43 ± 0.07
Max phasic GSR (µS) 0.80 ± 0.15 0.77 ± 0.13 0.75 ± 0.13 0.89 ± 0.15

Figure 2.23: TOR reaction time (s)

speed conditions than high speed conditions (p = .046). No other significant effects

were found.

2.4.2.2 Takeover quality

There were significant main effects of scenario type (F (1, 38) = 8.58, p = .006)

and speed (F (1, 110) = 15.49, p < .001) on maximum resulting acceleration. Fig-

ure 2.24a shows that lane keeping scenarios and low speed both led to a smaller

maximum resulting acceleration. In addition, the interaction effect between sce-

nario type and speed (F(1, 110)=61.6, p < .001) was significant. Drivers had larger
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(a) (b)

Figure 2.24: Maximum resulting acceleration (m/s
2
) and maximum resulting jerk

(m/s
3
)

maximum resulting acceleration in low speed conditions when scenarios were lane

keeping (p = .006) but smaller maximum resulting acceleration in low speed condi-

tions when scenarios were lane changing (p < .001). Regarding maximum resulting

jerk, as shown in Figure 2.24b, only the main effect of scenario type was signifi-

cant (F (1, 38) = 16.14, p < .001). Lane changing scenarios led to larger maximum

resulting jerk compared to lane keeping scenarios.

As shown in Figure 2.25a, the SE of the steering angle in lane changing scenarios

was larger than in lane keeping scenarios (F (1, 32) = 22.49, p < .001). The main

effect of speed was not significant. Meanwhile, there was a significant interaction

effect between scenario type and speed (F (1, 108) = 65.37, p < .001). Drivers had

a larger SE of the steering angle in low speed conditions when scenarios were lane

keeping (p < .001), but a smaller SE of the steering angle in low speed conditions

when scenarios were lane changing (p < .001).

The main effects of scenario type (F (1, 37) = 78.67, p < .001) and vehicle speed

(F (1, 110) = 4.98, p = .028) on the SE of road offset were significant. As indicated

in Figure 2.25b, drivers had a smaller SE of road offset in low speed conditions and
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(a) (b)

Figure 2.25: Standard error of steering wheel angle (degree) and road offset (centime-
ter)

Figure 2.26: Minimum TTC (s) in different vehicle speed conditions

lane keeping scenarios. However, their interaction effect was not significant.

When the TOR was issued, the TTC was 3.73s in high speed conditions and 6.39s

in low speed conditions. As shown in Figure 2.26, there was a significant main effect

of speed (F (1, 54) = 62.27, p < .001) on minimum TTC in lane changing scenarios.

The minimum time to collision was shorter in high speed conditions than low speed

conditions.
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(a) (b)

Figure 2.27: (a) Horizontal gaze dispersion (radian); (b) Blink number

2.4.2.3 Physiological responses

The main effects of scenario type (F (1, 37) = 12.09, p = .001) and vehicle speed

(F (1, 108) = 6.11, p = .015) on horizontal gaze dispersion were significant. In general,

drivers had wider horizontal gaze dispersion in low speed conditions than high speed

conditions. Lane keeping scenarios led to narrower horizontal gaze dispersion than

lane changing scenarios (Figure 2.27a). The interaction effect between scenario type

and speed on horizontal gaze dispersion was also significant (F (1, 108) = 4.88, p =

.029). Horizontal gaze dispersion was wider in low speed conditions in lane keeping

scenarios (p = .001), but similar regardless of vehicle speed in lane changing scenarios

(Figure 2.27a). Only the interaction effect between scenario type and speed on blink

number was significant (F (1, 107) = 9.37, p = .003). High speed led to suppressed

blinks compared to low speed in lane changing scenarios (p = .014), while speed did

not influence blink number in lane keeping scenarios (Figure 2.27b).

As shown in Figure 2.28a, there was a significant interaction effect between sce-

nario type and vehicle speed on drivers’ mean GSR phasic activation (F (1, 107) =

9.37, p = .003). Compared to low speed conditions, drivers’ mean GSR phasic ac-

tivation in high speed conditions was significantly higher in lane changing scenarios
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(a) (b)

Figure 2.28: (a) Mean GSR phasic activation (µS); (b) Max GSR phasic activation
(µS)

(p < .001), but significantly lower in lane keeping scenarios (p = .001). The main

effects of scenario type and vehicle speed on drivers’ mean GSR phasic activation

were both not significant. Regarding drivers’ maximum GSR phasic activation, the

interaction effect between scenario type and vehicle speed was marginally significant

(F (1, 105) = 3.65, p = .059). Drivers had larger maximum GSR phasic activation in

high speed conditions in lane changing scenarios (p = .044), but had similar maximum

GSR phasic activation regardless of vehicle speed in lane keeping scenarios (Figure

2.28b).

Figure 2.29 shows the number of three heart rate change patterns before and

after TORs under different scenario type and vehicle speed conditions. Heart rate

response patterns were highly dependent on scenario types (χ2
2 = 42.31, p < .001).

We found much more heart rate acceleration patterns in lane changing scenarios than

lane keeping scenarios (Figure 2.29). Yet, there was no dependence between heart

rate response patterns and vehicle speed.
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Figure 2.29: The number of data points by independent variables and HR response
pattern

2.4.3 Discussion

This study investigated the effects of scenario type and vehicle speed on drivers’

takeover performance and physiological responses.

2.4.3.1 TOR reaction time

In conditionally automated driving, once the driver hears the TOR request, s/he

is expected to terminate the NDRT and use perceptual-motor calibration to take

over control of the vehicle (Mole et al., 2019). Two types of scenarios have different

perceived situational criticality. In lane changing scenarios, the perception of the

objects ahead triggers quick and reflexive motor behaviors, such as hands/feet back

on the wheel/pedals at a moment’s notice. In lane keeping scenarios, however, curves

are not as visible as the objects ahead, and there are no other obvious contextual

cues that request immediate motor control. Therefore, drivers’ TOR reaction time

was generally longer in lane keeping scenarios than lane changing scenarios. This

is in accordance with the findings from Dogan et al. (2019), Wu et al. (2019) and

Radlmayr et al. (2018).

Furthermore, we found that drivers’ TOR reaction time was shorter in low speed
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than high speed condition for lane keeping scenarios, but similar in both speed con-

ditions for lane changing scenarios. This can possibly be explained by the geometric

design of roads in the study. When the vehicle was at a high speed (i.e., on the high-

way) in lane keeping scenarios, the road curves ahead were less sharp, which seemed

to slow down drivers’ vehicle control reactions. Yet, in lane changing scenarios, no

matter which speed the AV had, the objects appeared 100 meters away when the

TOR was issued, which activated a reflexive takeover reaction immediately. This

aligns with a meta-analysis result that a higher urgency of situations is linked to

shorter TOR reaction time (Zhang et al., 2019).

2.4.3.2 Takeover quality

Drivers’ specific takeover actions differed depending on the scenario types. For

the lane changing scenarios, drivers were supposed to check the neighboring lanes

and then rotate the steering wheel to change lanes for object avoidance. Braking was

necessary to reduce the distance from objects ahead to ensure safety distance and

gain more time for decision making, while acceleration was necessary to facilitate the

lane changing process. Yet, in the lane keeping scenarios, drivers just needed to focus

on the current lane and adjust the steering wheel to maintain lanes on the curvy road,

although braking and acceleration could be applied for better adjustment and vehicle

dynamics. Such strategic differences explain why the lane changing scenarios led to

larger maximum resulting acceleration, maximum resulting jerk, SE of the steering

angle and road offset compared with lane keeping scenarios.

With regard to vehicle speed, in general, drivers had larger maximum resulting

acceleration, larger standard error of the steering wheel, and shorter minimum TTC

in high speed conditions compared to low speed conditions. As the distance between

the AV and ahead objects/curve entrance was fixed, high speed indicated short TOR

lead time. Hence, our results were consistent with findings of previous studies that
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short TOR lead time was associated with shorter minimum TTC, greater maximum

lateral and longitudinal acceleration (Wan and Wu, 2018; Du et al., 2020c), and

greater standard deviation of the steering wheel (Mok et al., 2015).

Interestingly, there were significant interaction effects between vehicle speed and

scenario type on maximum resulting acceleration and SE of the steering angle. Specif-

ically, low speed led to larger maximum resulting acceleration and SE of the steering

angle in lane keeping scenarios, but smaller maximum resulting acceleration and SE

of the steering angle in lane changing scenarios. Notably, in lane keeping scenarios,

low speed indicated urban and rural environments where curves had larger curvature

than highway environments (Aashto, 2001). Thus, drivers needed to adjust the ped-

als and steering wheel more frequently, and used more effort to maintain lanes in low

speed conditions.

2.4.3.3 Physiological responses

In lane changing scenarios, drivers not only needed to look at the forward road-

way as in lane keeping scenarios, but also look around to see lane change possibilities.

Such differences in scanning patterns explained why drivers had wider horizontal gaze

dispersion in lane changing scenarios. High speed was associated with narrow hori-

zontal gaze dispersion, suggesting high cognitive load for information processing and

decision making and limited monitoring span in rapidly dynamic environment (En-

gström et al., 2005; Lemercier et al., 2014). This also explained why horizontal gaze

dispersion was narrower in high speed conditions in lane keeping scenarios. Drivers

had significant blink inhibition with high speed in lane changing scenarios, but similar

blink numbers regardless of vehicle speed in lane keeping scenarios. This suggested

an increased cognitive load with high speed in lane changing scenarios as criticality

increased (Merat et al., 2012).

Drivers’ maximum and mean GSR phasic activation indicate drivers’ arousal and
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stress in response to TORs (Wintersberger et al., 2018). Consistent with a previous

study (Du et al., 2020a), drivers had larger mean and max GSR phasic activation

with high speed (i.e., short TOR lead time) in lane changing scenarios, indicating

high arousal and stress in such urgent situations. In contrast, high speed in lane

keeping scenarios means a low curvature in highway. Thus, high speed in lane keeping

scenarios led to lower mean GSR phasic activation, suggesting low arousal and stress

as situations looked less critical.

Drivers’ HR change patterns were significantly different between lane keeping

scenarios and lane changing scenarios. Heart rate acceleration, suggesting defense

responses that ignore environmental stimuli (Lacey , 1970; Sokolov , 1963), was ob-

served more frequently in lane changing scenarios than lane keeping scenarios. As

described before, lane changing scenarios required additional attention resources to

identify traffic elements in the neighboring lanes while dealing with objects ahead

in the same lane to keep safe distance. In such attention-demanding environments,

defense responses suggested that drivers had to reject overwhelming traffic informa-

tion to allow deeper cognitive processing, which may induce safety concerns during

takeover transitions.

2.4.3.4 Implications

Given the fact that drivers’ physiological data can indicate their cognitive load,

emotional states, and attention allocation, physiological data during automated driv-

ing can be utilized in the future to develop driver monitoring systems and in-vehicle

alert systems. For example, if the driver monitoring system indicates that drivers are

in high cognitive load, the alert system can provide alerts for drivers to self-regulate

their NDRTs. Specially, when the driving environment is complex (e.g., lane changing

scenarios with high vehicle speed), the alert system can provide recommendations to

help drivers maintain situational awareness of the driving environment and negotiate
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takeovers appropriately. While lane keeping scenarios lack visible contextual cues

before an unforeseeable circumstance occurs, future studies can provide explanations

for lane keeping scenarios at the time of TOR to enrich drivers’ mental models.

2.4.3.5 Limitations and future work

There are several limitations that should be taken into consideration in the future

as research opportunities. First, in order to ensure that objects were always right in

front of the vehicle in lane changing scenarios, the objects were always on the right

lane and available paths were always on the left. Future studies can increase lane

changing directions to generalize results. Second, as a simulated driving study, this

research involved no real threat to driver safety. On-road testing with fake objects

in the test facility can be conducted in the future to increase the ecological validity

of results. Third, only the aggregated results of physiological data were reported in

this study. Future studies can look into the time-series data analysis of physiological

data to gain more insights into drivers’ states during dynamic takeover transitions.

2.4.4 Conclusion

Our study is critical to understanding how scenario type and vehicle speed in-

fluence takeover performance and physiological responses in conditionally automated

driving. Results showed that lane changing scenarios, in general, led to shorter TOR

reaction time, wider horizontal gaze dispersion, and many more HR acceleration pat-

terns than lane keeping scenarios. The shorter TOR reaction time indicated higher

criticality of scenarios, while takeover performance and physiological metrics matched

corresponding takeover reactions in lane changing scenarios. With fixed distance be-

tween the AV and ahead objects/curvature entrance, high speed (i.e., short TOR lead

time) generally led to worse takeover quality in the form of shorter minimum TTC,

maximum resulting acceleration, and larger standard error of the steering wheel.
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More interestingly, compared to low speed, high speed decreased drivers’ takeover

performance, and induced suppressed blinks and larger GSR phasic activation in

lane changing scenarios, suggesting high cognitive load and stress in such attention-

demanding and urgent situations. However, such effects were not significant or even

reversed in lane keeping scenarios.

To sum up, our study systematically categorized takeover scenarios and examined

the effects of scenario type and vehicle speed on drivers’ takeover performance, as

well as physiological responses to takeover requests. The findings of this study will

add to the knowledge base on the role of different takeover scenarios in conditionally

automated driving. It will help address safety concerns during takeover transitions

and facilitate the adoption of automated vehicles.
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CHAPTER 3

Predicting Drivers’ Takeover Performance

3.1 Introduction

In response to takeover difficulty, previous studies mainly shed light on the re-

lationships between certain factors and takeover performance (Eriksson and Stan-

ton, 2017; Gold et al., 2016; Wan and Wu, 2018; Körber et al., 2016; Helldin et al.,

2013; Gold et al., 2018a; Radlmayr et al., 2014). Little effort has been made to inte-

grate these findings into computational models that are capable of predicting drivers’

takeover performance in real time. Those few exceptions (Gold et al., 2018b; Brau-

nagel et al., 2017) that could predict drivers’ takeover performance were developed

and tested when drivers were engaged in different types of NDRTs (e.g., monitoring

vs. reading), where apparent contextual cues existed to discriminate drivers’ states.

In daily life, even with a specific type of NDRTs such as writing an email, drivers’

states can be rather different depending on the importance of the email. Also, some

factors deliberately manipulated in the experiment settings, such as emotions, are

not easily accessible in the real world. Although advanced wearable technology has

made it convenient to collect drivers’ physiological signals to reflect their cognitive

and emotional states, only gaze behaviors were used in previous studies.

In the present study, therefore, we aimed to fill the research gap and to predict

drivers’ takeover performance. Our study contributes to the literature in three re-
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spects. First, our study aimed to predict drivers’ takeover performance when they

were engaged in a specific type of NDRTs with different levels of cognitive load. Sec-

ond, in addition to gaze behaviors, we used drivers’ heart rate indices and galvanic

skin response indices to indicate their interaction with environments, which might

improve prediction results. Third, our study employed a random forest model in ad-

dition to the machine learning models used in previous studies to predict takeover

performance. Random forests have been proved to have great prediction performance

for classification problems (Zhou et al., 2020a; McDonald et al., 2014). We introduce

the model development procedure in detail below.

3.2 Takeover performance model performance development

3.2.1 Dataset

The data used in the development of algorithms were collected in Experiments

2 and 3, described in Chapter 2. Participants in both experiments wore the same

set of physiological sensors. The similar experimental settings in both studies make

it possible to combine the two datasets. At the same time, the varieties of takeover

conditions in the two studies increased model generalizability. We collected drivers’

physiological data, driving behaviors, and environment-related data. The physio-

logical measures included heart rate indices, galvanic skin response indices and eye-

tracking metrics. Because of malfunctions of the driving simulator and physiological

sensors, data from 13 participants were excluded, and those of the other 129 partici-

pants (i.e., 828 takeover scenarios) were available for further analysis.

To develop the prediction model, we first pre-processed the raw data and then

extracted 37 features and set the ground truth. Next, we used a 10-fold nested

cross-validation method to tune hyper-parameters, train models, and predict test

instances for model comparisons. Specifically, we resampled the training dataset and
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Figure 3.1: Modeling process (RF = random forest; SVM = support vector machine;
NB = Naive Bayes; kNN = k-nearest neighbors; DA = discriminant analysis; LR =
logistic regression).

normalized the entire dataset before performing the classification. Figure 3.1 shows

the modeling process.

3.2.2 Data pre-processing

For GSR signals, we used continuous decomposition analysis (CDA) to decompose

the GSR signal into phasic and tonic components, respectively, via Ledalab in Matlab

(Benedek and Kaernbach, 2010). Then we used the phasic component for further

feature extraction, because it is responsible for relatively rapid changes in response

to specific events in the GSR signal (order of seconds). Heart rate measures were

extracted from the raw RR interval using iMotions software. For eye-tracking data,

only data points with high gaze quality value (threshold recommended by Smart Eye:

.5) were recorded and used for analysis.

3.2.3 Feature generation and ground truth

To fit time series data into the supervised learning framework, we aggregated the

values of physiological data within a sliding “time window” and calculated various

statistics (Anderson, 2011). The end of the time window was the time of a TOR, and
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the start of the time window was X seconds before the TOR, ranging from 1 to 30

s. Model inputs included data on gaze behaviors, galvanic skin response indices, and

heart rate indices, as well as environment factors. The generated features are listed

in Table 3.1. A fixation is defined as “a relatively stable eye-in-head position within

some threshold of dispersion (typically ∼2°) over some minimum duration (typically

100-200 ms), and with a velocity below some threshold (typically 15-100° per second)”

(Jacob and Karn, 2003). In the Smart Eye eye-tracking system, all frames with a

gaze velocity below the fixation threshold (100° per second) were treated as a fixation.

All frames with the gaze velocity above the saccade threshold (100° per second) were

treated as a saccade. We categorized areas of interest (AOIs) into driving scenes,

the NDRT tablet, and other areas. The number and average duration of fixations

and saccades were accumulated within particular AOIs. The scan pattern was the

probability of eyes switching from one AOI to another. Traffic density, TOR lead

time, and scenario type were used to describe the driving environments because they

indicated the predictability, criticality, and urgency of the takeover scenarios (Gold

et al., 2017). To reduce the potential impact of individual differences, we normalized

the feature values across participants using the min-max normalization approach.

We used driving behaviors during takeover transitions to assess drivers’ takeover

performance. As shown in Table 3.2, for different takeover scenarios, we selected

different metrics in the assessment. Minimum TTC was calculated only for the lane-

changing scenarios, and standard deviation of road offset was calculated only for

the lane-keeping scenarios. All the driving variables were calculated following prior

studies (Du et al., 2020d; Clark and Feng , 2017). If any of the calculated TOR reaction

time, maximum resulting acceleration, or standard deviation of road offset values

were larger than µ + 2σ, we categorized a takeover transition as a bad performance.

For minimum TTC, because the value of µ − 2σ was negative, we performed a log

transformation first and categorized a takeover transition as bad if log (minimum
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Table 3.1: Descriptions of generated features (HR = heart rate; min = minimum; max
= maximum; GSR = galvanic skin responses; NDRT = non-driving-related task; TOR
= takeover request).

Feature Explanations

HR indices Mean, min, max, and standard deviation of heart rate, inter-beat
interval

GSR indices Mean, max, and standard deviation of GSR in phasic component
GSR peak The number of GSR peaks, and peak rise time
Fixation Fixation number and duration in different areas of interests (AOIs)

(i.e., driving scenes and NDRT tablet)
Saccade Saccade number in different AOIs (i.e., driving scenes and NDRT

tablet)
Pupil The mean and standard deviation of pupil diameter in different AOIs

(i.e., driving scenes and NDRT tablet)
Blink The number of blinks
Gaze dispersion Standard deviation of the values for gaze angle from right front (ra-

dians)
Eyes-on-the-road The proportion of time that participants’ gazes were on the road
Scan pattern The probability of eyes switching from one AOI to another (i.e., the

probability that drivers transited eyes from driving scenes to NDRT
tablet, from NDRT tablet to driving scenes, or from other areas to
driving scenes)

Traffic density No or heavy oncoming traffic
Scenario type Lane-keeping or lane-changing scenarios
TOR lead time Short (3-4s) or long (6-7s) TOR lead time
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Table 3.2: Takeover situations and corresponding driving behavior variables to de-
termine takeover performance (TOR = takeover request; min = minimum; max =
maximum; TTC = time to collision).

Reactions Driving behavior variables (range for bad performance group)
Lane changing TOR reaction time

(> µ+ 2σ)
Max resulting accel-
eration (> µ+ 2σ)

log(Min TTC) (< µ−
2σ)

Lane keeping TOR reaction time
(> µ+ 2σ)

Max resulting accel-
eration (> µ+ 2σ)

Standard deviation of
road offset (> µ+2σ)

TTC) was lower than µ− 2σ (Braunagel et al., 2017). As long as one of the driving

variables in a certain takeover scenario was categorized as a bad performance, we

labeled the scenario as a bad takeover performance. Scenarios that led to collisions

were also categorized as bad performances. Eventually, we got an imbalanced dataset

with 109 “bad performance” labels and 719 “good performance” labels. The reasons

that we used categorical takeover performance rather than individual driving variables

as model output were that (1) it combined multiple aspects of driving behaviors and

(2) it was easy to explain to drivers and more practical in guiding driver behaviors.

3.2.4 Model development

The takeover performance prediction model was trained with a random forest

model considering the following justifications. First, as an ensemble method, random

forests are robust for new data generalization and against training data overfitting

(Quinlan et al., 1996). Second, random forests can give us feature importance and

makes models interpretable. Five other machine learning approaches mentioned in

prior literature were applied for comparisons: k-nearest neighbors (kNN), support

vector machine (SVM), Naive Bayes (NB), discriminant analysis (DA), and logistic

regression (LR).

Considering the challenge of human behavior data collection, we used a 10-fold

nested cross-validation method to train models and compare test results (Lee et al.,

2013; Varma and Simon, 2006). As shown in Figure 3.1, the 9-fold training and vali-
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dation set (N = 116 subjects) was used to tune the hyper-parameters with the inner

loop and then create classifiers. To handle the imbalanced dataset during the train-

ing, we employed a hybrid method of undersampling and oversampling (Choirunnisa

and Lianto, 2018). The elimination process was done by deleting 300 good takeover

performance scenarios randomly (Prusa et al., 2015). Then we used the Synthetic

Minority Over-sampling Technique (SMOTE) to create a balanced training and val-

idation dataset with 678 data points (Chawla et al., 2002). Table 3.3 demonstrates

the training procedures of six machine learning approaches. The model assessment

was based on the remaining 1-fold testing set (N = 13 subjects) with the outer loop.

Notably, the subject data used for testing were not seen in the model training and

validation stage. The random selection of 1-fold test dataset assumed that its dis-

tribution of good and bad takeover performance scenarios was similar to that of the

whole dataset. With a 10-fold cross-validation, we could make sure all the data points

in the dataset would appear once in the test dataset. The training and evaluation of

the algorithm were implemented in Matlab 2018b (MathWorks, MA, USA).

3.2.5 Model evaluation

In a binary classification problem, there are four possible outcomes: true positive

(TP), false positive (FP), true negative (TN ), and false negative (FN ). TP is the

number of positive samples predicted as a positive class, FP is the number of negative

samples predicted as a positive class, FN is the number of positive class samples

predicted as a negative class, and TN is the number of negative samples predicted as

negative class. In this study, we used four classification evaluation indicators, namely

precision, recall, accuracy, and F1-score, to carry out the evaluation of the model

performance, which were defined as:

Precision =
TP

TP + FP
(3.1)
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Table 3.3: Machine learning techniques and training process

Machine learn-
ing approach

Techniques Hyper-
parameters

Support vector
machine (SVM)

Embed the data in another dimensional
space and find a soft margin that separates
the classes with minimum classification error
(Chen et al., 2004)

Kernel, Regular-
ization parame-
ter

Naive Bayesian
(NB)

Use maximum likelihood estimation to esti-
mate parameters (i.e., prior probability and
likelihood) (Rish et al., 2001)

None

Random forest
(RF)

Fit an algorithm on a set of bootstrapping
samples (bagging) and predictors, i.e., ran-
domly select training samples with replace-
ment and take a random set of predictors
at each node without replacement. Repeat
many times to form an ensemble of trees
(Breiman, 1996, 2001)

Tree number,
Predictor num-
ber per split,
Leaf size

k-nearest neigh-
bor (kNN)

Calculate Euclidean distance between la-
beled and unlabeled points to find the k-
nearest neighbors. Use the majority vote cri-
teria to decide unlabeled points (Keller et al.,
1985)

k

Discriminant
analysis (DA)

Find separating hyperplane using parameter
estimation (Friedman, 1989)

Discriminant
type, Reg-
ularization
parameter

Logistic regres-
sion (LR)

Estimate the parameters of a logistic model
(Lee et al., 2006)

Regularization
parameter
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Recall =
TP

TP + FN
(3.2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3.3)

F1 − score =
2 × Precision ×Recall

Precision + Recall
(3.4)

Precision manifests how well the model predicts (i.e., a measure of exactness)

and recall manifests how well the model does not miss the target (i.e., a measure

of completeness). The F1 measure is the weighted harmonic mean of the two, and

represents a realistic measure of model performance.

The receiver operating characteristic (ROC) curve plots the true positive rate

(TPR) against the false positive rate (FPR) at different thresholds (i.e., classifier

boundary). The area under the curve (AUC) ranges from 0 to 1, and represents

the degree of separability. A higher AUC value indicates better model performance.

When AUC is 0.5, it means the model does not have any class separation capability.

3.3 Results

To improve the robustness of machine learning results, we ran the 10-fold cross-

validation 30 times (i.e., 30 different random seeds) for every machine learning method

at each time window. We first ran an omnibus analysis of variance (ANOVA) to com-

pare the performance of the six machine learning methods. After that, we compared

the random forest model with the other five methods using the pairwise t-test to see

whether the random forest model had the best performance. Similarly, we compared

the prediction results of the random forest model with different feature subsets against

the full feature model using pairwise t-test. We examined the effects of time window

and individual feature on random forest prediction performance using ANOVA. All

post hoc comparisons used a Bonferroni α correction.
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Figure 3.2: Prediction accuracy of six machine learning approaches under different
time windows (SVM = support vector machine; NB = Naive Bayes; DA = discrim-
inant analysis; kNN = k-nearest neighbors; LR = logistic regression; RF = random
forest).

3.3.1 Model performance comparisons

Figures 3.2 and 3.3 show the average model accuracy and F1-score at different time

windows. There was a main effect of machine learning approaches on the prediction

accuracy (F (5, 5399) = 13550, p < .001) and F1-score (F (5, 5399) = 4705, p < .001).

Table 3.4 shows the pairwise t-tests comparing the predictive performance of the

random forest model with the other five models across different time windows. The

results indicate that our proposed random forest model outperformed the other five

models across time windows.

Figure 3.4 shows the ROC curves of the random forest and the other five machine

learning approaches with the optimal hyper-parameters. The curve of the random

forest is above and to the left of the other five curves at the majority of thresholds.

Consistent with accuracy and F1-score results, the ROC curve comparisons demon-

strated that the random forest model outperformed the other five models.
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Figure 3.3: F1 scores of six machine learning approaches under different time windows
(SVM = support vector machine; NB = Naive Bayes; DA = discriminant analysis;
kNN = k-nearest neighbors; LR = logistic regression; RF = random forest).

Table 3.4: The mean prediction accuracy and F1-score of machine learning approaches
across time windows and their comparisons to the random forest model.

Algorithm Accuracy F1-score
mean SD t-test

statistic
p-value mean SD t-test

statistic
p-
value

Random forest .828 .012 - - .630 .015 - -
Support vector ma-
chine

.796 .013 60.5 p<.001 .580 .019 72.4 p<.001

Naive Bayes .760 .033 49.0 p<.001 .523 .022 107 p<.001
Discriminant analysis .722 .021 134 p<.001 .537 .017 131 p<.001
k-nearest neighbor .692 .020 209 p<.001 .550 .020 111 p<.001
Logistic regression .609 .016 342 p<.001 .588 .009 74.5 p<.001
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Figure 3.4: Receiver operating characteristic comparison plots for the random forest
(RF) model and the five other models (SVM = support vector machine; LR = lo-
gistic regression; NB = Naive Bayes; DA = discriminant analysis; kNN = k-nearest
neighbors). The bootstrapped (#1,000) confidence intervals are indicated within the
parentheses.
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Figure 3.5: Confusion matrix when time window was 3s

3.3.2 Effects of window size on random forest prediction results

There was a main effect of time window on the random forest model accuracy

(F (29, 899) = 16, p < .001) and F1-score (F (29, 899) = 9, p < .001). When applying

an algorithm in real-world driving, a time window with shorter size and better pre-

diction performance is preferred. According to Figures 6 and 7, we recommend 3 s as

the optimal time window to predict takeover performance, with an average F1-score

of 64.0% and accuracy of 84.3% (tuned hyper-parameters: the number of trees = 300;

minimum leaf size = 2; the number of predictors per decision split = 6). Post hoc

analysis showed that F1-score at the 3 s time window significantly outperformed the

rest of the time windows except 5-8 s, 11-20 s, and 28-30 s (see Figure 3.3). Accuracy

at the 3 s time window significantly outperformed the rest of the time windows except

4 s, 6 s, 11 s, and 13-16 s (see Figure 3.2).

3.3.3 The confusion matrix and feature importance

Figure 3.5 shows the confusion matrix when the time window was 3 s. The preci-

sion was 64.5% and the recall was 63.9%, accounting for balanced completeness and

exactness of prediction.

Furthermore, by permuting the out-of-bag data (i.e., 36.8% of the total data

that were not in the bootstrap samples) randomly across one predictor at a time

and by measuring how much this permutation reduced the accuracy of the model,
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Figure 3.6: Feature importance when time window was 3s

we estimated the feature importance. The values indicate each feature’s relative

importance in predicting the takeover performance (the larger values are, the more

important features are). Figure 3.6 illustrates the out-of-bag estimates of feature

importance of the 37 predictor variables when the time window was 3 s. Table 3.5

lists the top 16 important predictor variables. As shown in the table, we found that

some heart rate indices and GSR indices (e.g., maximum and mean phasic GSRs,

mean of heart rate) were important in predicting takeover performance, but were not

included in prior takeover performance algorithm development (Gold et al., 2018b;

Braunagel et al., 2017).

3.3.4 Effects of features on random forest prediction results

The main effect of feature set on the model accuracy (F (3, 119) = 304, p < .001)

and the F1-score (F (3, 119) = 146, p < .001) were significant at the 3 s time window.

We found that the accuracy and F1-score of the random forest model using the full

feature set were significantly higher than the accuracy and F1-score using other com-

binations of feature subsets at the 3 s time window (Figure 3.7 and Table 3.6). To be

specific, if only environment factors were used as the features, the average prediction
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Table 3.5: The top 16 important features when time window was 3s (GSR = galvanic
skin response; NDRT = non-driving-related task).

Feature descriptions Importance

Maximum of GSR in phasic component .492
Mean of GSR in phasic component .491
Standard deviation of GSR in phasic component .441
Vertical gaze dispersion .406
Scenario type .404
Fixation duration .371
Fixation duration on the driving scene .352
Fixation duration on the NDRT .341
Takeover request lead time .338
Mean of inter-beat interval .333
Mean of heart rate .330
Eyes-on-the-road percentage .323
Saccade number on the driving scenes .314
Maximum heart rate .295
Fixation number on the driving scenes .282
Standard deviation of inter-beat interval .268

Table 3.6: Random forest prediction accuracy and F1-score with different feature
subsets at the 3 s time window and their comparisons to the full feature model.

Feature subsets Accuracy F1-score
mean SD t-test

statistic
p-value mean SD t-test

statistic
p-value

All .843 .010 - - .640 .015 - -
Eye-tracking and
environment

.818 .010 11.2 p<.001 .615 .013 10.9 p<.001

Physiological .770 .020 17.2 p<.001 .563 .019 19.7 p<.001
Environment .758 .005 42.7 p<.001 .611 .008 8.82 p<.001

accuracy and F1-score were only .758 and .611, respectively. If only physiological

data were used as features, the average prediction accuracy was .770 and F1 score

was 0.563. This suggests that a combination of environment features and features

indicating drivers’ states are necessary to build a model with high performance. The

model using environment factors and eye-tracking metrics as features had an average

accuracy of 0.818 and F1-score of 0.615 at the 3 s time window. After heart rate and

galvanic skin response indices were added as features, the average model accuracy

increased to 0.843, and the F1-score increased to 0.640.
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Figure 3.7: Prediction accuracy and F1-score of random forests with different feature
subsets at the 3 s time window. Error bar indicates 1 standard deviation.

In addition, we ordered features according to the average feature importance val-

ues. Next, we built a random forest model with the most important feature, and

then added features with lower importance one by one to build another 36 models. As

shown in Figure 3.8, the model accuracy and F1-score generally increased at the begin-

ning when more features were added, but reached a plateau when 16 or more features

were included in the model. There was a main effect of feature numbers on the model

accuracy (F (36, 1109) = 3718, p < .001) and F1-score (F (36, 1109) = 293, p < .001).

Post hoc analysis showed that the F1-score of the full feature model was significantly

higher than that for models with fewer than the top 9 important features, and accu-

racy of the full feature model was significantly higher than that of the models with

fewer than the top 16 important features.
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Figure 3.8: Model accuracy and F1-score with different numbers of top important
features. Error bar indicates 1 standard deviation.

3.4 Discussion

3.4.1 Model performance comparisons

Our study compared the random forest model with the other five machine learning

approaches used in prior literature for takeover performance prediction. As indicated

by the results of model accuracy, F1-score, and ROC curve comparisons, the random

forest approach outperformed the other classification approaches. Consistent with

previous studies on drivers’ fatigue and drowsiness detection (McDonald et al., 2014;

Zhou et al., 2020a), the random forest approach also showed its supremacy for takeover

performance prediction. It might be because random forests aggregate the results

of many bootstrap aggregated (bagged) decision trees, which reduces the effects of

overfitting and improves generalization.

3.4.2 Effects of window size on random forest prediction results

As the random forest outperformed other machine learning approaches, we ex-

amined the prediction performance of random forests under different time window
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sizes. The results showed that the window size significantly influenced random forest

prediction performance. However, such a relationship was not linear. One of the ex-

planations could be that we used a mixture of physiological signals as model inputs.

Some physiological signals (e.g., pupil diameter) perform better with a shorter window

size because they change rapidly according to the changes in the driver’s cognitive

workload (Kramer et al., 2013). Some physiological signals (e.g., heart rate) perform

better with a longer window size because they can provide an overall understanding

of the driver’s mental state (Solovey et al., 2014). Future research is needed to explore

model performance with customized time windows for different physiological signals.

It was important to find an optimal window size to calculate physiological features

for model development in this study. Considering the implementation in real-world

driving, a time window with shorter size and better prediction performance is pre-

ferred. Thus, we recommend 3 s as the optimal time window to predict takeover

performance, with an accuracy of 84.3% and an F1-score of 64.0%. The post hoc

analysis showed that the selection of time window for such performance is not unique.

Time windows with a size of 6 s, 11 s, and 13-16 s led to similar prediction perfor-

mance. Although the exact time window might be slightly different in the real world

given the differences of situational and behavioral parameters, our study provides im-

portant insights on window size recommendation for the development of driver state

detection systems.

Unlike previous studies, our model has a finer granularity and can predict drivers’

takeover performance when they are engaged in a specific type of NDRTs with differ-

ent levels of cognitive load. Such application differences make it infeasible to compare

the exact accuracy and F1-score values with those in previous models. Because the

test cases in our model prediction are from different participants and are not seen

in the training set, our model can be used to predict takeover performance of a new

driver who does not have historical data.
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3.4.3 Effects of features on random forest prediction results

Drivers’ galvanic skin responses, heart rate activities, and eye movements with

a combination of environment factors were used to predict drivers’ takeover perfor-

mance. Building on Braunagel et al. (2017), we added GSR indices and HR indices for

model development. Our results showed an improvement of model performance with

a full set of features compared to other feature subsets (i.e., physiological data only,

environment data only, eye-tracking and environment data). This aligns with the

previous studies, because all these physiological signals reflected drivers’ states and

interactions with driving environments (Mehler et al., 2012; Radlmayr et al., 2014;

Wang et al., 2014; Ratwani et al., 2010; Young et al., 2013; Bertola and Balk , 2011).

Furthermore, we identified the most important features (e.g., maximum phasic

GSR, gaze dispersion, scenario type, and mean of inter-beat interval) for model de-

velopment. Although the model performance increased at the beginning as more

features were added, it reached a plateau when 16 or more features were included.

With the top 16 important features, we were able to develop a random forest model

with comparable performance to the full feature model. Notably, the top 16 impor-

tant features were extracted from galvanic skin responses, heart rate activities, eye

movements, and environment factors, demonstrating the importance of all these data

sources. Utilizing the advances of wearable technology and vehicle sensors, these fea-

tures can be collected in a minimally invasive manner to predict drivers’ takeover

performance in real time.

3.4.4 Implications

Our study is a preliminary effort to predict drivers’ takeover performance in de-

signing advanced driver monitoring systems. With the advances of technologies in

connected automated vehicle systems, real-time road environments such as traffic

situations can be accessed easily in the future. Predictive model performance can
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be improved when data from various drivers engaging in different NDRTs in diverse

environments are available for model training. The model outputs can contribute to

the design of adaptive in-vehicle alert systems in conditionally automated driving.

Specifically, if the system predicted that a driver would not be able to take over con-

trol successfully, a multi-modal display could be designed to help the driver realize the

urgency of the event, increase situational awareness, and allocate attention properly.

Eventually, it could improve drivers’ takeover performance and enhance the safety

and adoption of automated vehicles.

3.4.5 Limitations and future work

Several limitations should be taken into consideration in the future. First, this

study used a snapshot of the time-series data as model inputs, without consider-

ing the complexity of sequence dependence among the data. Future studies could

try a convolutional neural network (CNN) combined with long-short-term memory

(LSTM) to predict drivers’ takeover performance using a larger dataset. Second, the

ground truth was determined by drivers’ driving behaviors. It is necessary to propose

a standard set of metrics for measuring takeover performance. An ensemble method

combining subjective ratings, driving behaviors, and video coding can be explored to

provide a more robust ground truth label of takeover performance. Third, instead of

using dichotomous classification of takeover performance, we could increase the num-

ber of classes (e.g., bad, neutral, good; or very bad, bad, neutral, good, very good) or

use regression to see model prediction power. Fourth, this study only recruited young

adult participants with few AV experiences, and each participant only experienced

four or eight takeover scenarios in the whole experiment. Future studies could recruit

participants from different ages, AV experience levels, and training groups. Then the

individual characteristics and power law of learning could be taken into account as

model inputs to increase the generalization of models (Forster et al., 2019).

103



3.5 Conclusion

This study developed a random forest model to predict drivers’ takeover perfor-

mance in conditionally automated driving. In contrast to previous models capable

of predicting drivers’ takeover performance when they performed different types of

NDRTs, our model has a finer granularity and is able to predict takeover performance

when drivers are engaged in a specific type of NDRTs. The results showed that the

random forest classifier had an accuracy of 84.3% and an F1-score of 64.0% using a 3s

time window, which outperformed other machine learning models used in prior stud-

ies. In addition, we identified the most important physiological measures for takeover

performance prediction, and they can be used for developing in-vehicle monitoring

systems. Such models can be used to guide the design of adaptive in-vehicle alert

systems to improve takeover performance in conditionally automated driving in the

future.
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CHAPTER 4

Designing In-vehicle Alert Systems

4.1 Introduction

To help drivers take over control of the vehicle, this chapter presents two human-

subject experiments on the design and evaluation of in-vehicle alert systems dur-

ing takeover transitions. Experiment 1 aimed to investigate drivers’ acceptance

(perceived usefulness, ease of use, attitude, and behavioral intention to use) of in-

vehicle displays. We designed displays with different types of information and different

modalities and evaluated them under different event criticality situations. Exper-

iment 2 aimed to examine the effects of display information, modality, and event

criticality on drivers’ performance expectancy, preference for displays, as well as their

anxiety and preparedness during takeover transitions.

As the two experiments were conducted during the COVID-19 shelter-in-place

season, only drivers’ subjective ratings were collected via online studies. In the ex-

periments, participants imagined themselves driving a Level 3 AV. The methods and

results of each experiment are discussed and summarized in detail below.
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4.2 Experiment 1

4.2.1 Method

This study complied with the American Psychological Association Code of Ethics

and was approved by the institutional review board at the University of Michigan.

4.2.1.1 Participants

We conducted a power analysis using G*Power software. With a power value of

0.95, an effect size of 0.40, and α error probability of 0.05, we found that a sample

size of 60 was needed for a mixed design.

Therefore, we recruited a total of 60 university students in the study (mean age

= 24.03; SD = 5.34; range = 18-45; 25 females; 35 males). All the participants had

the normal or corrected-to-normal vision, auditory acuity, and a valid driver’s license.

Participants were paid $10 for their 50-min online participation.

4.2.1.2 Apparatus and stimulus

The study made use of online videos and surveys. The videos simulated SAE

Level 3 driving scenarios developed using an RTI fixed-base desktop driver simulator

(RTI, MI, USA). In the automated driving mode, the AV handled longitudinal and

lateral control, navigated directions, and followed traffic rules. The driver was not

required to actively monitor the environment in this mode. However, when the AV

met an unexpected scenario and was not able to negotiate the scenario, it would

deactivate the automated driving mode and ask the driver to take control of the

vehicle. The takeover request was issued in the form of a beep. As shown in Figure

4.1a, the speedometer and automated driving mode indicator were displayed on the

dashboard and the view of the rear-view mirror was displayed on the top. The survey

was developed using Qualtrics (Provo, UT, www.qualtrics.com).
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(a) Simulated SAE Level 3 automated driving (b) Experimental set up

Figure 4.1: Experimental settings

The NDRT was to type and chat with the experimenter using the Google Chat

application on the phone. The chat topics were daily conversations related to weather,

hobbies, movies, music, food, and so forth. As shown in Figure 4.1b, participants were

asked to place their computers right in front of them, and their phones 45 degrees to

the right, to simulate in-vehicle environments in the real world (i.e., their view of the

phone did not overlap with their view of the driving scenes).

4.2.1.3 Experimental design

The study used a 3 (information type) × 3 (display modality) × 2 (event critical-

ity) mixed design. The information type and event criticality were the within-subjects

variables, and display modality was the between-subjects variable. Event criticality

was manipulated by TOR lead time of scenarios, which was defined as the critical

event onset for failures at the time of request (Du et al., 2020d; Eriksson and Stanton,

2017). We set scenarios with 4s lead time as high criticality scenarios and 7s lead

time as low criticality scenarios. There were three types of information: why, what

will, and why + what will ; and three levels of display modality: augmented reality,

speech, and the combination of augmented reality and speech. The why information

was the perception and comprehension of the elements in the environments, which
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Table 4.1: Descriptions of lane changing takeover events and corresponding display
information

Scenarios Why in Speech What will in
Speech

Why in AR HUD What will in AR
HUD

Swerving vehicle
ahead

“Swerving vehi-
cle ahead”

“Change to right
lane”

Highlight swerving
vehicle

Right lane
change sign

Construction
zone ahead

“Construction
zone ahead”

“Change to right
lane”

Highlight con-
struction zone

Right lane
change sign

Police vehicle on
the shoulder

“Police vehicle
on shoulder”

“Change to left
lane”

Highlight police
vehicle

Left lane change
sign

Exit highway “Highway exit
ahead”

“Change to exit
lane”

Highlight exit sign Right lane
change sign

Road closure
ahead

“Road closure
ahead”

“Change to left
lane”

Highlight road clo-
sure sign

Left lane change
sign

Bicyclist ahead “Bicyclist
ahead”

“Change to left
lane”

Highlight bicyclist Left lane change
sign

explained why there was a takeover request. The what will information consisted

of the decision-making result, which recommended future actions to negotiate the

takeover scenarios.

Based on prior literature (Koo et al., 2016b; Miller et al., 2016; Rezvani et al.,

2016; Du et al., 2019a,b, 2020c), 12 takeover scenarios were designed in urban and

rural areas with typical roadway features. Experimental conditions were randomly

paired up with one lane keeping scenario and one lane changing scenario. The order

of different conditions was random for each participant. The display information in

both speech and augmented reality formats are presented in Tables 4.1 and 4.2. Two

examples of AR HUDs in the experiment are shown in Figure 4.2.

The dependent variables were based on the Technology Acceptance Model (Davis ,

1989). We used 7-point Likert scales (strongly disagree to strongly agree) to measure

participants’ perceived ease of use, perceived usefulness, behavioral intention to use,

and attitude toward using the display (Venkatesh and Davis , 2000, 1996). We also

asked participants to rank the usefulness of three types of information and answer an

open-ended question about whether the displays helped them to take over and why.
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Table 4.2: Descriptions of lane keeping takeover events and corresponding display
information

Scenarios Why in Speech What will in
Speech

Why in AR HUD What will in AR
HUD

Yellow lights
flashing

“Yellow light
flashing ahead”

“Proceed with
caution

Highlight traffic
light

Yield sign

Construction
zone on the left

“Construction
zone on the left”

“Stay in the
lane”

Highlight con-
struction zone

Arrows showing
road direction

Speed limit fail-
ure

“Speeding on the
curve”

“Slow down to 25
mph”

Highlight the
speed limit sign

Slow down and
speed limit sign

Red lights flash-
ing

“Red light flash-
ing ahead”

“Stop before pro-
ceeding”

Highlight traffic
light

Stop sign

Pedestrian cut in “Pedestrian in
the road”

“Stop before pro-
ceeding”

Highlight Pedes-
trian

Stop sign

Sensor error “Sensor error” “Stay in your
lane”

Sensor error sym-
bol

Arrows showing
road direction

(a) Police vehicle on shoulder (b) Red light flashing ahead

Figure 4.2: Two examples of AR HUDs in the experiment

109



Figure 4.3: Experimental procedure

4.2.1.4 Experimental procedure

The study was conducted in the form of a Zoom video meeting. After participants

clicked the “Agree” button on the consent form, the experimenter provided informa-

tion on the experiment environment and stimuli, as well as instructions on tasks. In

the real experiment, each participant experienced 6 blocks (2 event criticality levels ×

3 information types). In each block, once the video started playing, participants were

asked to imagine themselves as the driver of an SAE Level 3 AV (Figure 4.3). Then

they needed to chat with the experimenter using the Google Chat application on their

phone. Approximately 90 seconds later, an unexpected takeover request was issued,

followed by displays in one of the conditions. This procedure was repeated again to

cover both lane keeping and lane changing scenarios. At the end of the block, partici-

pants filled out the survey to indicate their subjective ratings of the alert systems and

answer an open-ended question. We also captured their demographic information at

the end.

4.2.1.5 Data analysis

We constructed linear mixed models using SPSS version 24 to examine effects

on dependent variables. The display modality, information type, event criticality,

and their interactions were treated as fixed effects. Subjects were treated as random

effects to resolve non-independence in all the linear mixed models. Considering that
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the usefulness ranking was an ordinal variable, we used the Friedman test to examine

the differences of usefulness ranking among conditions. For participants’ answers

to the open-ended question about whether the displays helped them to take over

and why, we categorized the valence of the answers into three groups (i.e., positive,

negative, and mixed), and then used a generalized estimating equation model to

examine the effects of independent variables. Five answers were recorded as “N/A”

to the open-ended question. Results are reported as significant for α less than .05 and

as marginally significant for α less than 0.1 (Gelman, 2013). All post-hoc comparisons

utilized a Bonferroni alpha correction.

4.2.2 Results

4.2.2.1 Measurement reliability and validity

The reliability (i.e. Cronbach’s α values) of perceived usefulness (α = .898), ease

of use (α = .953), behavioral intention to use (α = .868), and attitude (α = .912)

exceeded the recommendation value (α = .7) (Carmines and Zeller , 1979).

To assess the convergent validity of a construct, the AVE should be higher than

0.50 (Fornell and Larcker , 1981). When the AVE value is above 0.50, the variance

explained by the construct is greater than the variance explained by measurement

error, which indicates evidence of convergent validity of the construct. The AVEs of

perceived usefulness, perceived ease of use, behavioral intention to use, and attitude

were 0.55, 0.66, 0.55, and 0.46, respectively. Except attitude, all of the other variables

were above the threshold of 0.50, as recommended by Fornell and Larcker (1981). To

assess discriminant validity, we compared the correlations of all constructs with the

square root of the AVE values of perceived usefulness, perceived ease of use, behavioral

intention to use, and attitude. The correlation matrix, shown in Table 4.3, indicates

that except for behavioral intention to use and attitude, correlations among constructs

were well below the square root of AVEs, which is further evidence of discriminant
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Table 4.3: Correlation matrix (Values on the diagonals within the parentheses repre-
sent the square root of the AVE for each factor)

Perceived
usefulness

Perceived
ease of use

Behavioral
intention to use

Attitude

Perceived usefulness (0.741) .726** .757** .841**
Perceived ease of use (0.815) .526** .715**
Behavioral intention to use (0.739) .794**
Attitude (0.678)

validity among dependent measures. Given that the items of behavioral intention to

use and attitude did not meet the validity requirement, we only analyzed the results

of perceived usefulness and ease of use below.

4.2.2.2 Effects on perceived usefulness

As shown in Figure 4.4a, the main effect of information type on perceived useful-

ness was marginally significant (F (2, 289) = 2.548, p = .08). The post-hoc analysis

indicated that why only information led to marginally lower perceived usefulness com-

pared to why + what will information (p = .081). The main effect of event criticality

was also significant (F (1, 289) = 4.564, p = .033). High event criticality led to low

perceived usefulness. All the other main effects and their interaction effects were not

significant.

With regard to the usefulness ranking, the Friedman test showed that participants

ranked three conditions of information types significantly differently (χ2
2 = 23.03, p <

.001). Post-hoc comparisons indicated that participants gave the highest usefulness

ranking when they were presented with why + what will information (why + what will

vs. why : Z = −4.045, p < .001; why + what will vs. what will : Z = −3.717, p < .001;

See Figure 4.4b). Nonetheless, there was no significant difference in usefulness ranking

between why only information and what will only information (Z = −.836, p = .403).
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(a) (b)

Figure 4.4: Drivers’ perceived usefulness (1 is the lowest usefulness) and usefulness
ranking (1 is the highest ranking).

Figure 4.5: Drivers’ perceived ease of use

4.2.2.3 Effects on ease of use

There was a significant main effect of information type on ease of use (F (2, 289) =

4.977, p = .007). To be specific, why only information led to the lowest ease of use

(why vs. what will : p = .077; why vs. why + what will : p = .008; See Figure

4.5). The main effect of display modality was significant (F (2, 57) = 3.409, p = .04).

The post-hoc analysis showed that the combination of AR HUD and speech led to

marginally higher ease of use compared to speech (p = .053, See Figure 4.5). No

other significance was found.
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Figure 4.6: The valence distribution of drivers’ answers to the open-ended question.

4.2.2.4 Interview results

There was a significant main effect of event criticality (χ2
1 = 10.479, p = .001) on

the valence of participants’ answers to the open-ended question (i.e., whether the dis-

plays helped them to take over and why). As shown in Figure 4.6, low event criticality

led to more positive opinions of the displays than high event criticality. Participants’

remarks are summarized below (“n” below indicates the number of responses; P in-

dicates index of the participant).

Modality. Participants pointed out the pros and cons of different display modal-

ities. For AR HUD, participants reported that it was “clear” (P7), “simple” (P33),

and “easy to visualize actions” (P45). For speech, participants noted that it was

“clear” (P57) and “to the point” (P9). Yet, the AR HUD showed potential issues

such as “low contrast to the background” (n = 6) and “small” (n = 7). The problems

of speech information included “fast” (n = 5), “difficulty to understand” (n = 13),

and “muffled” (n = 7). When the information was presented in the combination of

AR HUD and speech, the two modalities compensated for each other, providing more

comprehensive descriptions and increasing the communication effectiveness. For ex-

ample, P45 said: “It helped identify where the obstacle is at on the road and tell me

in the speech what the obstacle is for me to be prepared.”
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Information type. Participants who had positive opinions of display information

stated that why information helped them “focus on what’s wrong” (P22), “direct

attention to the right areas” (P19), and “identify what to look out for” (P58). They

described that what will information “showed appropriate takeover actions” (P34),

“gave instructions on adjustments to make” (P19), and “alerted what should be done”

(P14).

However, some participants expressed negative opinions of display information.

With the what will only information, participants mentioned that the why information

could also be helpful (n = 10). Similarly, with the why only information, participants

reported that they also wanted the what will information (n = 9). Yet, we found 5

responses stating that the what + why information was too much. For example, P60

said: “time to react was wasted by announcing the danger ahead without an immediate

command.”

Meanwhile, participants proposed other reasons why the display information was

not helpful enough. First, participants may already have recognized the situation

when the information was delivered (n = 10). Second, participants would have liked

more information such as vehicles in the neighboring lanes to be highlighted (n = 4).

Third, participants expressed concerns about the appropriateness of the recommended

actions and reliability of the information in the long run (n = 13).

Event criticality. In high event criticality conditions, there were 44 responses

reporting that participants did not have enough time to handle the takeover requests.

For example, P32 said: “I would have liked it to be a little earlier” and P25 said: “This

display timing felt rushed.” There were only 11 responses reporting that participants

had “sufficient” time to respond (P25) when event criticality was high.

In low event criticality conditions, the pattern was opposite. We found 36 re-

sponses noting that the display “was in time” (P1) and “gave enough time to re-

spond” (P16). There were only four responses stating that the display was “at the
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last moment” (P24) and “too late” (P23).

4.2.3 Discussion

This study investigated the impacts of different display information, modalities,

and event criticality on the acceptance of an in-vehicle alert system designed to sup-

port takeover requests in simulated Level 3 automated driving.

4.2.3.1 Effects of display modality

Compared to the combination of AR HUD and speech, the speech only modality

led to lower ease of use. Different from visual information, it takes several seconds

to deliver speech messages. In our experiment, some participants mentioned that the

speech was fast and difficult to understand. This may be because we set a relatively

high speech speed to finish speech information delivery in a timely fashion during the

takeover transitions. Such information-speed trade-off is inevitable when presenting

information in speech modality. Some participants reported that the speech was

muffled by the engine noise in the background. This may have resulted from the

driving simulator settings in the experiment. Also, as mentioned by the existing

literature, speech messages were somewhat annoying (Nees et al., 2016). We speculate

that the disadvantages of speech may be amplified in the long run.

Participants had similar perceived ease of use with AR HUD compared to the

combination of AR HUD and speech. This means that without further speech expla-

nations, the information from AR HUD was easy to understand and use. One possible

reason may be that we primarily used official traffic signs and provided training on

new ones at the beginning of the experiment. According to participants’ answers to

the open-ended question, we gathered some suggestions to improve the design of AR

HUD in the future. For example, we can present information using symbols with a

high contrast from the background.
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4.2.3.2 Effects of information type

The why only information led to the lowest perceived usefulness and ease of use,

consistent with existing studies (Eriksson et al., 2018). The why information helps

drivers to perceive the traffic elements and road situations. Yet, drivers need time

and effort to process the information, assess the environment, and make decisions.

The what will information indicates a higher level of information processing. Given

that the information provided in the display was 100% accurate, it was beneficial to

directly utilize the what will information in the display. This may be the reason why

drivers found the what will information had comparable perceived usefulness and ease

of use to the why + what will information. However, if participants were forced to

rank the usefulness of the three information types, the why + what will information

was ranked at the top of the list. This aligns with participants’ responses to the open-

ended questions, as they preferred more information when the why only information

or the what will only information was presented. Although the interaction effects

between event criticality and display information were not significant, there was a

trend that rating differences of different information types were inflated in high event

criticality conditions compared to the low event criticality conditions.

4.2.3.3 Effects of event criticality

In general, the usefulness of the displays depended on the event criticality. The

displays had lower perceived usefulness when event criticality was high. This may be

because drivers did not have enough time to process and utilize the display informa-

tion in urgent scenarios. However, we failed to find any interaction effects between

event criticality and display information/modalities. This could be explained by the

fact that the dependent variables measured in this study were not sensitive to the

effects of display modality/information in different event criticality conditions. Fu-

ture studies can investigate the effects of display information and modality on other
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dependent variables of interest in different event criticality conditions.

4.2.3.4 Limitations and future work

The study has some limitations that can be addressed in future studies. First,

due to COVID-19, we only collected subjective measurements using an online study.

Future researchers can conduct lab studies or on-road studies to measure drivers’

driving behaviors. The objective measurements can reflect the effects of informa-

tion type and modality in a more comprehensive way. The on-road testings will

inform us of the effectiveness of these systems in real-world conditions. Second, the

event-related information provided in this study was 100% accurate. Information in

real-world scenarios may involve some errors due to sensor limitations and complex

driving environments. Future studies can consider the information reliability factor

and measure drivers’ trust in displays to see how results change. Third, this exper-

iment studied the effects of display information and modality. Future studies can

examine the effects of different display parameters (e.g., speech tone and speed) for

a given display, and find the best ones to present the information.

4.2.4 Conclusion

This study compared different types of display information and modality to con-

vey event-related information during takeover transitions. The results showed that

presenting why only information was not sufficient considering drivers’ perceived ease

of use and perceived usefulness. The combination of speech and augmented reality

modality was superior to the speech only modality from the perspective of ease of

use. Also, displays showed higher perceived usefulness in low criticality scenarios. The

results have implications for the design of in-vehicle displays during takeover transi-

tions. The recommendations on the display information and modality can potentially

speed up takeover reactions and improve takeover quality.
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However, we failed to find any significant interaction effects between event crit-

icality and display information/modalities. The possible reason may be that the

dependent variables measured in this study were not sensitive to the effects of display

modality/information in different event criticality conditions. Thus, we conducted

Experiment 2 to investigate the effects of display information, modality, and event

criticality on other dependent variables of interest.

4.3 Experiment 2

4.3.1 Method

This study complied with the American Psychological Association Code of Ethics

and was approved by the institutional review board at the University of Michigan.

4.3.1.1 Participants

The survey was developed using Qualtrics (Provo, UT, www.qualtrics.com) and

administered online in the U.S. population through Amazon Mechanical Turk (MTurk)

(https://www.mturk.com). Amazon Mechanical Turk provides access to a virtual

community of workers who are willing to complete human intelligence tasks (HITs)

at their convenience. The qualification requirements to conduct the task include: (1)

HIT Approval Rate (%) for all Requesters’ HITs greater than 98; (2) Number of HITs

Approved greater than 500; and (3) having a valid driver’s license.

We conducted a power analysis using G*Power software. With a power value of

0.95, the small effect size of 0.25, and α error probability of 0.05, we found that a

sample size of 303 was needed for a between-subjects design. A total of 515 subjects

participated in the study (mean age = 41.6; SD = 12.7; range = 19-77; 267 males; 239

females). Participants were paid $1 for their online participation. After the attention

check questions were analyzed, only 479 participants were available for further data
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analysis. Hence, 479 participants collected in the study were enough to gain power.

4.3.1.2 Apparatus and stimulus

The study used online videos and surveys. The video stimuli were the same as

in Experiment 1, which was detailed in Section 4.2.1.2. Participants were asked to

perform an NDRT while the vehicle was in automated mode. The NDRT was to

engage in any task on the phone (e.g., play games, read the news, type). Similar to

Experiment 1, participants were required to place their computers right in front of

them and their phones 45 degrees to the right to simulate in-vehicle environments in

the real world.

4.3.1.3 Experimental design

The study used a 3 (information type) × 3 (display modality) × 2 (event critical-

ity) between-subjects design. Event criticality was manipulated by TOR lead time

of scenarios, which was defined as the critical event onset for failures at the time of

request (Du et al., 2020d; Eriksson and Stanton, 2017). We set scenarios with 4s lead

time as high criticality scenarios and 7s lead time as low criticality scenarios. There

were three types of information: why, what will, and why + what will ; and three levels

of display modality: AR HUD, speech, and the combination of AR HUD and speech.

The scenarios and corresponding display information in different modalities were the

same as in Experiment 1, which was detailed in Section 4.2.1.3. Each participant was

randomly assigned to one out of eighteen conditions. The number of participants in

each condition is shown in Table 4.4, Table 4.5, and Table 4.6.

Table 4.4: Distributions of participants in augmented reality conditions

Modality Augmented reality
Information What will What will + Why Why
Event criticality High Low High Low High Low
Count 27 23 24 24 32 27
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Table 4.5: Distributions of participants in speech conditions

Modality Speech
Information What will What will + Why Why
Event criticality High Low High Low High Low
Count 31 24 29 25 26 28

Table 4.6: Distributions of participants in the combination of speech and augmented
reality conditions

Modality Speech and augmented reality
Information What will What will + Why Why
Event criticality High Low High Low High Low
Count 26 27 24 28 27 27

The dependent variables were based on the Unified Theory of Acceptance and Use

of Technology, as introduced in Chapter 1. Given the fact that it was the first time

that participants experienced the display and the product did not exist in the real

world, Social Influence and Facilitating Conditions were not applicable to be measured

in this experiment. In addition, we measured participants’ anxiety and preference.

The preference and anxiety questionnaire was adapted from a published model from

the CHIMe Lab at Stanford University that is used to measure driver attitude (Koo

et al., 2016a; Nass et al., 2005; Takayama and Nass , 2008). Anxiety comprised the

averaged responses to four adjective items that described the AV experience: fearful,

afraid, anxious, and uneasy. Preference for AV comprised the averaged responses to

eight items: intelligent, effective, reliable, helpful, smart, dependable, high quality,

and efficient. All the items were rated on seven-point rating scales (1: describes very

poorly; 7: describes very well). We adapted the scale to reflect the in-vehicle human-

machine interface context. We also asked participants how prepared they felt if they

had to take control of the vehicle at the moment of notice, and used this to measure

the degree of takeover preparedness.
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Figure 4.7: Experimental procedure

4.3.1.4 Experimental procedure

After participants clicked the “Agree” button on the consent form, they needed

to read instructions on the experiment environment setup and the introduction of

stimuli. When they passed the instruction screening questions, they were allowed

to participate in the real experiment. In the real experiment, each participant was

randomly assigned to one out of eighteen conditions. In each condition, once the video

started playing, participants were asked to imagine themselves as the driver of an SAE

Level 3 AV (Figure 4.7). Then they needed to play on their phone by reading the

news or playing games, etc. Approximately 30 seconds later, an unexpected takeover

request was issued, followed by displays in one of the conditions. This procedure was

repeated again to cover both lane keeping and lane changing scenarios. At the end of

the block, participants needed to fill in the survey to indicate their subjective ratings

of the displays. Participants’ demographic information was recorded in the end.

4.3.1.5 Data analysis

We constructed linear mixed models using SPSS version 24 to examine effects on

dependent variables. The display modality, information type, event criticality, and

their interactions were treated as fixed effects. Subjects were treated as random effects

to resolve non-independence in all the models. Results are reported as significant for

α less than .05. All post-hoc comparisons utilized a Bonferroni alpha correction.
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Table 4.7: Correlation matrix (Values on the diagonals within the parentheses repre-
sent the square root of the AVE for each factor)

Performance
Expectancy

Effort Ex-
pectancy

Preference Anxiety

Performance Expectancy (0.774) .739** .724** -.446**
Effort Expectancy .739** (0.679) .692** -.528**
Preference .724** .692** (0.72) -.459**
Anxiety -.446** -.528** -.459** (0.895)

4.3.2 Results

4.3.2.1 Measurement reliability and validity

The reliability of performance expectancy (α = .943), effort expectancy (α =

.898), preference (α = .957), and anxiety (α = .962) exceeded the recommendation

value (α = .7) (Carmines and Zeller , 1979).

To assess the convergent validity of a construct, the AVE should be higher than

0.50 (Fornell and Larcker , 1981). When the AVE value is above 0.50, the variance

explained by the construct is greater than the variance explained by measurement

error, which indicates evidence of convergent validity of the construct. The AVEs

of performance expectancy, effort expectancy, preference, and anxiety were 0.598,

0.461, 0.519, and 0.801, respectively. Except for effort expectancy, all of the other

variables were above the threshold of 0.50, as recommended by Fornell and Larcker

(1981). To assess discriminant validity, we compared the correlations of all constructs

with the square root of the AVE values of performance expectancy, effort expectancy,

preference, and anxiety. The correlation matrix, shown in Table 4.7, indicates that

except effort expectancy, correlations among constructs were below the square root of

AVEs, which is further evidence of discriminant validity among dependent measures.

Given that the effort expectancy items did not meet the validity requirement, we did

not analyze their results below.
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Figure 4.8: Drivers’ performance expectancy in displays

4.3.2.2 Effects on performance expectancy

As shown in Figure 4.8, the main effect of modality on performance expectancy was

significant (F (2, 465) = 3.239, p = .04). The post-hoc analysis indicated that drivers

had lower performance expectancy towards AR HUD compared to the combination of

AR HUD and speech conditions (p = .043). None of the other effects were significant.

4.3.2.3 Effects on preference

The interaction effect between display modality and event criticality was signifi-

cant (F (2, 465) = 3.969, p = .02). The simple analysis result showed that drivers had

the highest preference in the combination of AR HUD and speech conditions when

event criticality was high (AR HUD + speech vs. AR HUD: p = .005; AR HUD +

speech vs. speech: p = .022; See Figure 4.9). Yet, there was no significant prefer-

ence difference between different display modality conditions in low event criticality

conditions. No other significant effects were found.
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Figure 4.9: Drivers’ preference for displays

Figure 4.10: Drivers’ takeover preparedness in different conditions

4.3.2.4 Effects on preparedness

There was a significant main effect of event criticality on drivers’ takeover pre-

paredness (F (1, 465) = 10.881, p = .001). Drivers felt more prepared in low event

criticality conditions. As shown in Figure 4.10, the interaction effect between display

modality and event criticality was significant (F (2, 465) = 3.983, p = .019). In high

event criticality conditions, drivers felt less prepared in speech conditions than in

the combination of AR HUD and speech conditions (p = .038). But such difference

disappeared in low event criticality conditions.
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4.3.2.5 Effects on anxiety

In general, drivers were more anxious in high event criticality conditions than

low event criticality conditions (F (1, 465) = 7.035, p = .008, See Figure 4.11a). As

shown in Figure 4.11b, the interaction effect between modality and information was

significant (F (4, 465) = 3.223, p = .013). Only when information was presented in

the speech modality, why only information led to higher anxiety compared to why +

what will information (p = .02). The effects of information on drivers’ anxiety were

not significant in other modality conditions.

4.3.3 Discussion

This experiment investigated how different display information, modality, and

event criticality influenced drivers’ performance expectancy, preference, anxiety, and

preparedness towards in-vehicle alert systems after takeover requests in simulated

SAE Level 3 automated driving.

4.3.3.1 Effects on preference and preparedness

When event criticality was high, in the combination of AR HUD and speech

conditions, drivers felt more prepared to takeover control of the vehicle and had

more preference compared to the AR HUD only or speech only conditions. Such

a phenomenon disappeared when event criticality was low, which meant different

display modalities did not influence drivers’ preference and takeover preparedness

in low event criticality conditions. This may be because drivers preferred a more

direct and comprehensive display in an urgent situation. Yet, when the event was not

that critical, drivers had more time and effort to perceive the driving environments,

process the information, and make decisions on their own. They could also convert

the information from one modality to another by themselves. Therefore, the display

modality did not influence their preference and takeover preparedness in low event
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(a)

(b)

Figure 4.11: Drivers’ anxiety in different conditions
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criticality conditions. Generally speaking, high event criticality led to lower takeover

preparedness and higher anxiety. This is consistent with existing literature (Du et al.,

2020c).

4.3.3.2 Effects on anxiety

When different types of information were presented in the AR HUD or the the

combination of AR HUD and speech conditions, drivers had similar anxiety during

the takeover transitions. However, drivers’ anxiety differed significantly when differ-

ent types of information were presented in the speech modality. To be specific, when

information was presented in the speech modality, drivers had more anxiety about

the why only information compared to the why + what will information. This could

potentially result from the reasons described below. Compared to other modalities,

it took several seconds for speech information to be delivered. Although why only

information helped drivers to perceive the traffic elements and road situations, they

still needed to assess the environments and make decisions after environment percep-

tion. Thus, drivers might have been more anxious about the why only information

when it was delivered in the speech modality.

4.3.3.3 Effects on performance expectancy

The results showed that drivers had higher performance expectancy with the the

combination of AR HUD and speech conditions compared to AR HUD conditions.

One potential reason could be as follows. Although the augmented reality displays

overlapped with the driving environments and did not require much extra effort to

access, sometimes drivers may not have understood the information directly. More

intensive training on using augmented reality displays is needed before they are widely

implemented on the market.
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4.3.3.4 Limitations and future work

The findings of the present study should be interpreted in light of the follow-

ing limitations. First, although we added attention check questions to exclude the

participants who did not pay attention to the instructions and questions during the

experiment, we were not able to ensure that participants fully followed our instruc-

tions such as playing on their phones in the automated driving mode. Second, we

only collected subjective measurements using an online study. Future studies can

conduct lab studies or on-road studies to provide more strict experimental control

and measure drivers’ driving behaviors. The objective measurements can reflect the

effects of information type and modality in a more comprehensive way. Third, this

study was a one-time online study. Future researchers can use a longitudinal study

method to see how drivers’ acceptance of technology changes over a given time period.

4.3.4 Conclusion

This study investigated how display information, modality, and event critical-

ity influenced drivers’ performance expectancy, preference, anxiety, and preparedness

during takeover transitions. The results showed that when information was presented

in the speech modality, drivers had more anxiety about why only information com-

pared to why + what will information; when drivers were in high event criticality

situations, they felt more prepared to take over control of the vehicle and had more

preference for the combination of AR HUD and speech conditions than others.

The results have implications for the design of in-vehicle displays during takeover

transitions. The recommendations on the display information and modality in differ-

ent scenarios can enhance the interactions between AVs and drivers and can finally

improve the takeover performance.
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CHAPTER 5

Conclusion

5.1 Summary

To address takeover difficulty in conditionally automated driving and fill in the

current research gaps, the aims of this dissertation research were to:

(1) Examine the effects of drivers’ cognitive load, emotions, traffic density, TOR

lead time on their driving behavioral (takeover timeliness and quality) and psy-

chophysiological (eye movements, galvanic skin responses, and heart rate activities)

responses to takeover requests.

(2) Develop computational models to predict drivers’ takeover performance us-

ing drivers’ physiological data and driving environment data via machine learning

algorithms.

(3) Design in-vehicle alert systems with different display modalities and informa-

tion types, and evaluate them in different takeover situations using human-subject

experiments.

To meet Aim 1, we conducted three human-subject experiments. In Experiment

1, by systematically manipulating drivers’ emotional states, we found that positive

emotional valence led to smoother takeover behaviors, while emotional arousal did

not influence takeover behaviors. In Experiment 2, we found that drivers had worse

takeover performance when they had a high cognitive load, short takeover request
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lead time, and heavy oncoming traffic density in general. Interestingly, if drivers had

low cognitive load, they paid more attention to driving environments and responded

more quickly to takeover requests in high oncoming traffic density conditions. With

regard to psychophysiological responses, we found that drivers had lower heart rate

variability, narrower horizontal gaze dispersion, and shorter eyes-on-road time when

they were in high cognitive load during the automated driving stage. Upon the TOR,

∼4s lead time led to inhibited blink numbers and larger maximum and mean GSR

phasic activation, indicating higher emotional arousal and stress than ∼7s lead time.

Meanwhile, heavy traffic density resulted in significantly frequent HR acceleration

patterns than light traffic density, suggesting ignorance of overwhelming traffic in-

formation. In Experiment 3, we found that lane changing scenarios, in general, led

to shorter TOR reaction time, wider horizontal gaze dispersion, and many more HR

acceleration patterns than lane keeping scenarios. With a fixed distance between the

AV and ahead objects/curvature entrance, high speed (i.e., short TOR lead time)

generally led to worse takeover quality in the form of shorter minimum TTC, max-

imum resulting acceleration, and larger standard error of the steering wheel. More

interestingly, compared to low speed, high speed decreased drivers’ takeover perfor-

mance and led to suppressed blinks and larger GSR phasic activation in lane changing

scenarios, suggesting high cognitive load and stress in such attention-demanding and

urgent situations. However, such effects were not significant or even reversed in lane

keeping scenarios.

To meet Aim 2, we developed a random forest model to predict drivers’ takeover

performance in conditionally automated driving. In contrast to previous models ca-

pable of predicting drivers’ takeover performance when they performed different types

of NDRTs, our model has a finer granularity and is able to predict takeover perfor-

mance when drivers are engaged in a specific type of NDRTs. The results showed

that the random forest classifier has an accuracy of 84.3% and an F1-score of 64.0%
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using a 3s time window, which outperformed other machine learning models used in

prior studies. In addition, we identified the most important physiological measures

and environment features for takeover performance prediction, and they can be used

for developing in-vehicle monitoring systems.

To meet Aim 3, we compared different types of display information and modality

to convey event-related information during takeover transitions. In Experiment 1, the

results showed that presenting why only information was not sufficient considering

drivers’ perceived ease of use and perceived usefulness. The combination of speech

and augmented reality modalities was superior to the speech only modality from

the perspective of ease of use. In Experiment 2, the results showed that only when

information was presented in the speech modality, drivers had more anxiety about

the why only information compared to the why + what will information; only when

drivers were in high event criticality situations, they felt more prepared to take over

control of the vehicle and had more preference for the combination of augmented

reality and speech conditions than others.

5.2 Intellectual merit and broad impact

The proposed work can add to the knowledge base in takeover response investi-

gation, takeover performance prediction, and in-vehicle alert system design.

First, the findings of this dissertation will enhance the understanding of how

drivers’ emotions, cognitive load, traffic density, and scenario type influence their

takeover responses during conditionally automated driving. While driving behaviors

alone give us insights into drivers’ takeover performance, psychophysiological signals

collected by non-invasive sensors allow us to estimate drivers’ workload, emotions,

attention, and situational awareness in a continuous and real-time manner. The

findings provide us a broad picture of driver states throughout the whole takeover

process.
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Second, by leveraging models and methods from both human factors and machine

learning, computational models that are capable of predicting drivers’ takeover per-

formance in real time were developed. Being able to predict drivers’ takeover perfor-

mance will facilitate the development of in-vehicle monitoring systems and adaptive

alert systems in conditionally automated driving.

Finally, findings from this research can be used to provide design recommendations

to automated vehicle manufacturers on adaptive in-vehicle alert systems. This will

improve drivers’ takeover performance, enhance the interaction between drivers and

vehicles, and eventually increase driving safety and adoption of AVs.

Our society will benefit through human behavior investigation, computational

model development, and alert system design that will enable the avoidance of unex-

pected performance breakdown and increase safety and performance in particularly

demanding environments and workplaces.

5.3 Future work

Through a series of empirical studies, this dissertation can enhance our under-

standing of takeover responses and address challenges during takeover transitions.

However, as with all research, there are several limitations that should be taken into

consideration in the future as research opportunities.

First, we used a high-fidelity fixed-base driving simulator to imitate takeover sit-

uations in a controlled laboratory and recruited younger adults as participants. This

is especially important when the psychophysiological measures collected are sensitive

to various factors. However, the obtained results might be less ecologically valid than

those obtained from on-road scenarios and across age and driving experience groups.

Future studies can replicate the experimental settings with naturalistic driving and

recruit diverse drivers to see the robustness of results. For example, drivers’ individual

demographic information (e.g., driving experience), vehicle dynamics, and brands may
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affect takeover performance and psychophysiological responses. Meanwhile, given the

fact that drivers’ internal states are associated with multiple psychophysiological mea-

sures, we used several of them to reliably measure subtle changes in drivers’ cognitive

load, attention, emotional states, and situational awareness. However, a variety of

psychophysiological measures can be derived from the raw physiological signals. In fu-

ture studies, more metrics, such as EEG, emotional arousal, frequency-domain HRV,

and fixations, can be potentially included.

Second, this dissertation used a snapshot of the time-series data as model inputs,

without considering the complexity of sequence dependence among the data. Future

studies could try a convolutional neural network combined with long-short-term mem-

ory to predict drivers’ takeover performance using a larger dataset. Meanwhile, the

ground truth was determined by drivers’ driving behaviors. It is necessary to propose

a standard set of metrics for measuring takeover performance. An ensemble method

combining subjective ratings, driving behaviors, and video coding can be explored to

provide a more robust ground truth label of takeover performance. Instead of using

a dichotomous classification of takeover performance, we could increase the number

of classes (e.g., bad, neutral, good; or very bad, bad, neutral, good, very good) or

use regression to see model prediction power. With more participants recruited from

different ages, AV experience levels, and training groups in the future, the individual

characteristics and power law of learning could be taken into account as model inputs

to increase the generalization of models.

Third, our display design and evaluation studies are a preliminary effort to develop

adaptive in-vehicle alert systems. With the advances of technologies in connected

automated vehicle systems, real-time road environments such as traffic situations can

be accessed easily in the future. Predictive model performance can be improved when

data from various drivers engaging in different NDRTs in diverse environments are

available for model training. The model outputs can contribute to the design of
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adaptive in-vehicle alert systems in conditionally automated driving. Specifically, if

the system predicts that a driver would not be able to take over control successfully, a

multi-modal display with the most effective information could be designed to help the

driver realize the urgency of the event, augment situational awareness, and allocate

attention properly. This paves the way for future work in which these alert systems

can be implemented and tested on a real autonomous driving system outside the

driving simulator.

135



APPENDICES

136



APPENDIX A

Questionnaires for Experiment 1 in Chapter 4

A.1 Perceived usefulness survey

A.2 Perceived ease of use survey
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A.3 Behavioral intention to use survey

A.4 Attitude towards using a technology survey

A.5 Usefulness ranking
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APPENDIX B

Questionnaires for Experiment 2 in Chapter 4

B.1 Anxiety survey

B.2 Performance expectancy survey
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B.3 Effort expectancy survey

B.4 Preference survey

B.5 Takeover preparedness survey
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