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3.4 The Segway robot, as in Example 4, tracking trajectories planned in the xy-subspace
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The desired trajectory, with time horizon T = 0.8 s, is shown in dashed blue, with
the robot’s footprint plotted at the end. The high-fidelity model trajectory, and corre-
sponding footprint at time T is shown in solid blue. . . . . . . . . . . . . . . . . . . 27

3.5 Sample of lane change trajectories generated by (3.30) with the control law in (3.31).
The rectangle containing a triangle “pointer” represents the Rover and its initial head-
ing. Initial headings of 0.0 and 0.25 are shown in subfigures (a) and (b), respectively.
In subfigure (a), the Rover is driving straight in its lane and the sample trajectories
consists of lane keeping and lane change maneuvers. In subfigure (b), the Rover has
begun a lane change, and the sample trajectories consist of lane return maneuvers,
and trajectories that complete a lane change. The parameters used are Th = 2 s and
k1 = 2 m/s, with k3 = 0.0 in subfigure (a) and k3 = −0.25 in (b). The light trajecto-
ries are generated with a sample of values of k2 and plotted over a time horizon of 2
s. The dark trajectory is the optimal trajectory to reach a desired waypoint, shown as
an asterisk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Example of the system decomposition and reconstruction for the FRS of the Rover’s
trajectory-producing system (3.30). The robot is the rectangle with a triangle indicat-
ing its heading. The FRS and robot at 0.0, 0.75, and 1.5 s following a trajectory with
parameters k = (1.1 m/s, 0.5 rad/s, 0.0 rad) are depicted from left to right. The verti-
cal and horizontal bars show back-projections of the 0 sub-level sets of v4

i from (D
(i)
T )

for i = 1, 2. The dashed rectangle indicates the intersection of the back projections.
The far right figure shows the intersections at each time, along with the 1-level set of
w5
r as a solid line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Comparison of reach sets computed for lane change trajectories produced by (3.30).
The dark, dashed contours represent the 1-level set of w3 computed for the full sys-
tem. The light contours represent the 1-level set of w5

r , computed using the system
decomposition and reconstruction methods. The reach sets are computed with a time
horizon of 1.5 s. Notice that the FRS computed with system decomposition is almost
entirely contained within the FRS that does not use system decomposition; so, system
decomposition reduces conservatism by enabling the computation of a higher-degree
FRS. Example trajectories are generated by simulating the high-fidelity model for the
rover. Subfigure (a) shows the trajectory parameter k = (2.0 m/s 0.5 rad/s, 0.0 rad).
Subfigure (b) shows the trajectory parameter k = (1.6 m/s 0.0 rad/s, 0.0 rad). . . . . 35
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4.1 An example of set intersection, with P chosen as three points in X . On the right is
the (x, y) subspace of X with each point obstacle shown, and the vehicle plotted in
blue. On the left is the trajectory parameter space K, with three dashed-line contours
containing an outer approximation of the trajectory parameters that would cause a
collision with each point shown on the right (the colors match between the points and
contours). The 0 level set of Φ returned from the set intersection program (4.11) is
shown by the green contour (with the sub-level set to the left), which outer approx-
imates all trajectory parameters that could result in collisions with any of the three
points in P . Therefore, Ksafe is inner-approximated. . . . . . . . . . . . . . . . . . . 45

4.2 The top plot in subplot (a) shows an example result where vehicle begins on the left
and reaches a randomly-generated goal, plotted as a blue circle. Every τplan = 0.5 s,
the vehicle replans its trajectory, shown by an asterisk plotted on the global trajectory
in blue. In the bottom-left subplot, an obstacle was constructed to force an emergency
braking maneuver. In the bottom-right subplot, an obstacle was constructed with a
hole, but the FRS is overly conservative, resulting in a braking maneuver. Subplot (b)
shows the mean set intersection time (4.11, top) and trajectory optimization time (4.4,
bottom) versus the number of obstacles. Set intersection takes up to 3 s, and scales
linearly with the number of obstacles. Trajectory optimization takes around 80 ms
and has low correlation with number of obstacles. . . . . . . . . . . . . . . . . . . . 46

4.3 Motivation and method for buffering and discretizing predictions. The robot has foot-
printX0 in the xy-subspaceX on the right, and the trajectory parameter spaceK is on
the left. In Figure 4.3a, the P consists of two points, to illustrate the map πK , which
maps each point to a subset of K containing all trajectory parameters that could cause
the robot to reach either point; since q ∈ πK(P )C , by Lemma 44, the robot cannot
collide with either obstacle point. Figure 4.3b shows an arbitrary polygonal predic-
tion (as in Assumption 43) with a set of discrete points {p1, . . . , pn} sampled from its
boundary. These points are mapped to the subset of the parameter space K labeled
πK (

⋃n
i=1 pi). A parameter q is chosen outside of the parameters corresponding to

these points, but still lies within the projection of the actual obstacle πK(Xobs), and
therefore may cause a collision as illustrated by the set πX(q). Figure 4.3c shows the
same obstacle, but buffered. The boundary of the buffered obstacle is sampled to pro-
duce the discrete, finite set Xp. The trajectory parameters corresponding to Xp are a
superset of the unsafe parameters πK(Xobs), so the robot cannot collide with the ob-
stacle despite the FRS spatial projection πX(q) penetrating between two of the points
of Xp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Maximum penetration distance b̄, as defined in Lemma 46. X0 is the robot’s footprint,
translated and rotated by RT , and Ir̄ ⊂ (X \X0) is a line segment of length r̄. . . . 50

4.5 An illustration of the numbers r̄, b, r, and a for rectangular and circular robot foot-
prints (see Examples 50 and 51). The left subfigure shows a rectangular footprint,
with length L and width W . The right subfigure shows a circular robot footprint with
diameter 2R. The maximum penetration distance b̄ is omitted for clarity. . . . . . . . 52
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4.6 The right plot shows the 1 superlevel set of w, πX(k∗), in green, and the obstacle
discretization, Xp, for two polygon obstacles as red points. The left plot shows the
projection of Xp into the parameter space πK(Xp) in red and the parameter k∗ as a
green point. The reachable set computation is described in §5.2.2. The buffer dis-
tances are b = 0.05 m, r = 0.1 m, and a = 0.07, computed with Example 50. . . . . 54

4.7 Discretization of a prediction Pb+bdisc as in Theorem 54. The robot plans a not-at-fault
trajectory for any t ∈ T given the prediction (right to left). The FRS is shown left to
right by the 1 superlevel set of w from (DT ). Temporal discretization is shown at two
times, t1 and t2; at each time, the prediction is spatially discretized with points along
the boundary space r apart and points in the interior space W/2 apart, as in Algorithm
3, where W is the ego robot’s width. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Subfigure (a) shows trajectories of an obstacle (red rectangles) and the ego vehicle
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ABSTRACT

Autonomous mobile robots (AMRs) can transform a wide variety of industries including trans-
portation, shipping and goods delivery, and defense. AMRs must match or exceed human perfor-
mance in metrics for task completion and safety. Motion plans for AMRs are generated by solving
an optimization program where collision avoidance and the trajectory obeying a dynamic model of
the robot are enforced as constraints.

This dissertation focuses on three main challenges associated with trajectory planning. First,
collision checks are typically performed at discrete time steps. Second, there can be a nontrivial
gap between the planning model used and the actual system. Finally, there is inherent uncertainty
in the motion of other agents or robots.

This dissertation first proposes a receding-horizon planning methodology called Reachability-
based Trajectory Design (RTD) to address the first and second challenges, where uncertainty is
dealt with robustly. Sums-of-Squares (SOS) programming is used to represent the forward reach-
able set for a dynamic system plus uncertainty, over an interval of time, as a polynomial level
set. The trajectory optimization is a polynomial optimization program over a space of trajectory
parameters. Hardware demonstrations are implemented on a Segway, rover, and electric vehicle.

In a simulation of 1,000 trials with static obstacles, RTD is compared to Rapidly-exploring
Random Tree (RRT) and Nonlinear Model Predictive Control (NMPC) planners. RTD has success
rates of 95.4 % and 96.3 % for the Segway and rover respectively, compared to 97.6 % and 78.2 %
for RRT and 0 % for NMPC planners. RTD is the only successful planner with no collisions. In
10 simulations with a CarSim model, RTD navigates a test track on all trials. In 1,000 simulations
with random dynamic obstacles RTD has success rates of 96.8 % and 100 % respectively for the
electric vehicle and Segway, compared to 77.3 % and 92.4 % for a State Lattice planner. In 100
simulations performing left turns, RTD has a success rate of 99 % compared to 80 % for an MPC
controller tracking the lane centerline.

The latter half of the dissertation treats uncertainty with the second and/or third challenges
probabilistically. The Chance-constrained Parallel Bernstein Algorithm (CCPBA) allows one to
solve the trajectory optimization program from RTD when obstacle states are given as probability
functions. A comparison for an autonomous vehicle planning a lane change with one obstacle
shows an MPC algorithm using Cantelli’s inequality is unable to find a solution when the obsta-
cle’s predictions are generated with process noise three orders of magnitude less than CCPBA. In

xix



environments with 1-6 obstacles, CCPBA finds solutions in 1e-3 to 1.2 s compared to 1 to 16 s for
an NMPC algorithm using the Chernoff bound. A hardware demonstration is implemented on the
Segway.

The final portion of the dissertation presents a chance-constrained NMPC method where uncer-
tain components of the robot model are estimated online. The application is an autonomous vehicle
with varying road surfaces. In the first study, the controller uses a linear tire force model. Over
200 trials of lane changes at 17 m/s, the chance-constrained controller has a cost 86 % less than
a controller using fixed coefficients for snow, and only 29 % more than an oracle controller using
the simulation model. The chance-constrained controller also has 0 lateral position constraint vi-
olations, while an adaptive-only controller has minor violations. The second study uses nonlinear
tire models on a more aggressive maneuver and provides similar results.

xx



CHAPTER 1

Introduction

Research in autonomous mobile robots (AMRs) is of great interest to a variety of industries. In
transportation, autonomous passenger vehicles have promised to reduce collisions and increase
access to mobility for those who cannot drive personal vehicles. New task specific robots, such as
those designed for food delivery, have been developed and may create new ways for goods to be
distributed. In defense applications, similar types of delivery robots or autonomous vehicles may
be used to eliminate the risk of human casualties from transportation missions.

In all of these applications, AMRs are expected to match or best human performance in both
task completion and safety metrics. Human safety metrics are challenging to meet; consider the
autonomous driving application for example. The NTSB stated in 2016 that for passenger vehi-
cle occupants there were respectively 0.94, 121, and 500 fatalities, injuries, and crashes per 100
million vehicle-miles [SNR+18, Table 2-21]. For context, in the US, the average driver drives
approximately 13,500 miles per year, meaning we may only expect to get into 2-4 accidents with-
out injury, and 1 with injury in our entire lifetime. Furthermore, the accident statistics are further
reduced for more structured or professional applications with trained users such as trucking–large
truck occupants have fatality, injury, and crash rates of only 0.3, 13.2, and 174 per 100 million
vehicle-miles [SNR+18, Table 2-23]. Meeting such stringent safety criteria is difficult for AMRs
as they have to deal with large amounts of uncertainty in their own and others’ motion. This seems
trivial for expert human operators, but developing motion planning algorithms that can operate
without mistake at the frequencies mentioned above is an active area of research.

This dissertation will focus on developing tools for provably and probabilistically safe motion
planning. The application of focus is autonomous mobile robots, particularly ground vehicles.
§1.1 gives a quick overview of motion planning and the associated challenges the dissertation will
focus on. §1.2 describes the organization of the dissertation, giving a summary of the technical
contributions. Lastly the notation used throughout the dissertation is presented in §1.3.
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1.1 Overview

This section gives an overview of motion planning and challenges facing the state-of-the art that
this dissertation addresses. §1.1.1 describes where the motion planner fits into the planning hierar-
chy that mobile robots use. §1.1.2 gives an overview of receding horizon motion planning and the
challenges.

1.1.1 The Planning Hierarchy

Motion planning algorithms for AMRs typically employ a hierarchical strategy [KQCD15]. At the
highest level, waypoints or route guidance goals are generated, usually with graph-based search
algorithms [DSSW09]. The high-level planner does not use a dynamic model of the robot, so it
is unable to ensure safety; however it drives performance and task accomplishment by providing
a goal for the next level in the hierarchy. The middle level is referred to as the motion planner

and is the focus of this dissertation. The motion planner produces a collision free trajectory that
best achieves the goal given by the high level, and considers some dynamic model of the robot.
This step is formulated as an optimization program; hence, in this dissertation, the terms motion
planning and trajectory optimization are used interchangeably. The lowest level of the hierarchy
consists of control systems that deliver commands (for example steering and power-train for an
autonomous vehicle) to execute the trajectory produced by the middle level.

To adapt to changing environments, motion planning is typically done in a receding horizon
framework, where trajectories of a finite time horizon, are planned and collision checked, while
the robot executes the early portion of the previously planned trajectory [HGK10]. The receding
horizon structure allows the motion planner to respond to new sensory information, however in
order to ensure the robot can operate safely, strict requirements on the trajectory length, sensing
horizon, and motion planner time limit must be met.

1.1.2 Challenges

The motion planner has to ensure that the vehicle is always able to find a safe plan. For mobile
robots, safety is usually specified as collision avoidance. In the receding horizon framework,
each plan typically ends in, or contains a fail-safe maneuver, that can be executed if a collision-
free plan cannot be found at the next iteration. In the context of ground robots this is usually
an explicit braking maneuver, or a terminal constraint ensuring that the ego vehicle will have
sufficient distance from other vehicles to come to a stop [KTF+09, SSSS17, PA18, VLK+19]. In
this framework, at a minimum, static obstacles must be sensed at a distance equal to the stopping
distance, plus the distance traveled during one planning iteration. Since replanning at a faster rate
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Figure 1.1: Illustration of two challenges facing motion planners for an autonomous vehicle. The
ego vehicle (blue) is planning a lane change maneuver around a static obstacle (red). The predicted
trajectory is shown in grey, the realized trajectory is shown in black. Positions for each are shown at
2 timesteps in the future. Performing a collision check that the gray time steps can result in a false
negative due to: (1) motion of the vehicle between timesteps and (2) the gap between predicted
and realized trajectory.

reduces the latter, one can see that keeping planning times low is critical to ensuring vehicles with
finite sensor horizons can operate safely.

Motion planners must manage two tradeoffs between runtime and safety. First, the collision
checker must certify that the trajectory is collision free over the planning time horizon; collision
checking at discrete timesteps can miss collisions that occur in between them. Increasing the time
discretization fineness increases the accuracy of the collision check, but also increases runtime.
Second, predicting the ego robot’s trajectory requires integration of a dynamic model; and using
complex (more accurate) models increase runtime. To decrease runtime, simplified vehicle models
can be used, however there will be a larger gap between the planned and realized trajectory; which
can lead to collisions if unaccounted for. To avoid integrating a complex dynamic model online,
some motion planners use precomputed libraries; however one must then balance richness of the li-
brary with runtime. Figure 1.1 provides an illustration of these two challenges with an autonomous
passenger vehicle as an example. An additional challenge motion planners face is obstacles’ po-
sitions and future behavior are uncertain. While this may be remedied in some applications with
robot-to-robot connectivity, most widespread applications for autonomous robots cannot rely on
communication with other obstacles or agents. For example, consider an autonomous vehicle lane
keeping on a road, as as illustrated in Figure 1.2. The ego robot may be unsure if the adjacent,
human-controlled vehicle will accelerate, decelerate or change lanes; although it is unlikely that
the human will take actions that could cause a collision.

To summarize, this dissertation will contribute to three challenges in motion planning.

1. Time discretization: Performing collision checks at discrete timesteps introduces a tradeoff
between runtime and safety. Collision checks should hold for all times in the planning time
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Figure 1.2: A third challenge is obstacle’s (red) future motion may be uncertain. The ego vehicle
(blue) is planning a lane keeping maneuver. The predicted trajectory is shown in grey, the realized
trajectory is shown in black. Positions for the ego vehicle and obstacle are shown at 2 timesteps in
the future. The transparent obstacles at future timesteps indicate a less likely outcome. A collision
check must account for this uncertainty either robustly or probabilistically.

horizon.

2. Integrating robot dynamic models: Precomputing trajectories introduces a tradeoff be-
tween library richness and runtime. Simple dynamic models can be used for fast online
planning, but they are inaccurate. Differences between the trajectory planning model and
the actual robot motion must be accounted for.

3. Uncertainty of obstacles’ motion: It is impossible to have perfect predictions of other
actors’ future motion. This uncertainty must be accounted for in the motion planner.

Uncertainty in challenges 2 and 3 can be dealt with robustly where all possible outcomes are ac-
counted for, or probabilistically where the probability of a collision or unsafe event is bounded.
Robust planners have stronger safety guarantees, but as shown in Figure 1.2 and discussed in
[SSSS17], robust planning may be infeasible in some applications. Note that with respect to chal-
lenge 3, the focus of this dissertation is not on how to generate robust or probabilistic predictions
of obstacles, but on developing trajectory optimization algorithms that can safely plan when given
such predictions.

1.2 Organization and Contributions

This dissertation is organized as follows. Chapter 2 describes related work in the literature focused
on motion planning and trajectory optimization with a focus on algorithms that view the world
deterministically or treat uncertainty with the ego robot robustly. Chapters 3, 4, and 5 describe
contributions from [KVJRV17, VSK+19, VKL+19, VLK+19, KVB+20] that address Challenges
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1 and 2 robustly. Chapter 3 presents a Sums-of-Squares based method for reachable set compu-
tation of dynamic systems with affine disturbances. Chapter 4 describes the algorithm for online
trajectory optimization, known as Reachability-based Trajectory Design (RTD), using the reach-
able set from Chapter 3. Chapter 5 presents demonstrations of RTD and comparisons of RTD
against the state-of-the-art for both static and dynamic obstacles. Chapter 6 presents the Chance-
constrained Parallel Bernstein Algorithm (CCPBA), a branch-and-bound algorithm developed to
solve polynomial chance-constrained optimization programs. CCPBA is used addresses challenge
3 probabilistically, by solving the optimization program from RTD when the obstacles are rep-
resented as probability functions. Chapter 7 presents research on adaptive, chance-constrained,
Nonlinear Model Predictive Control [VQB21]. This chapter contributes to challenge 2, however
unlike the RTD framework, where the reachable set is computed offline; inaccuracies with the
ego robot model are estimated online and incorporated into a chance-constrained NMPC program.
Chapter 8 concludes the dissertation and provides general thoughts on future research directions.

1.3 Notation

This section gives an overview of notation used throughout the paper. §1.3.1 describes general
mathematical notation. §1.3.2 describes notation relevant to trajectory optimization programs,
primarily used in Chapters 4-7. §1.3.3 describes notation used in the dynamic models for the
mobile robots in the dissertation.

1.3.1 Mathematical

Table 1.1 refers to mathematical notation used throughout the paper. Further details are provided
below.

1.3.1.1 Points, Vectors, and Sets

Let x := (x1, x2, . . . , xn) ∈ X ⊆ Rn be a real variable of dimension n. A box x is an n-
dimensional hypercube defined by {x ∈ Rn | xi ≤ xi ≤ xi, i ∈ {1, . . . , n}}. A box is written as
x := [x1, x1]× · · · × [xn, xn] ⊂ Rn. The term subbox is used to signify that a box is a subset of a
larger box. Boldface is used to distinguish subboxes from points or vectors. The width of a box in
the ith dimension is xi − xi. The maximum width of a box is given by |x| = {max(xi − xi) | i ∈
{1, . . . , n}}. Numerical subscripts will usually refer to the index in a vector or list, or sometimes
the timestep (in the case of a state space models). Numerical superscripts generally refer to the
degree of a function or power of a variable. In certain instances subscripts and superscripts may
be used to identify a particular item in a collection, as oppose to the dimension or degree. In cases
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Category Symbol Description
Spaces N natural numbers

Rn n-dimensional real vector space
SE(n) special-euclidean group
R>0 real numbers greater than 0
AC absolutely continuous functions
C(1) continuous functions (once differentiable)
Ld absolutely integrable functions
R[x] ring of polynomials in x

Sets P(X) power set of X
∂X boundary of X
x box in X
XC compliment of X

Functions and δ0 dirac delta
operators ‖x‖2

Q quadratic norm x>Qx
1 indicator function on R≥0

dim(X) dimension of X
proj projection operator
◦ Hadamard (element-wise) product

Logic ∨ or
∧ and

Probability Pr probability function
F event space
Ξ sample space
ξ outcome
N normal distribution
GP Gaussian process
p probability density function
F cumulative distribution function
E expectation

Var variance

Table 1.1: Mathematical notation
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where the context may be unclear parenthesis are used to indicate the former. For example x(j)

would refer to the j th item in a group.

1.3.1.2 Polynomials

A multi-index, J , is defined as J := (j1, j2, . . . , jn) ∈ Nn and the corresponding multi-power
is defined as xJ := (xj11 , x

j2
2 , . . . , x

jn
n ). An inequality J ≤ D between 2 multi-indices, J and

D, should be understood component wise. An n-variate polynomial in its monomial form can be
written as

h(x) =
∑
J≤D

aJx
J , x ∈ Rn (1.1)

with coefficients aJ and some multi-index J ∈ Nn. The space of polynomials of degree d ∈ N,
with variable x ∈ Rn, is Rd[x].

Definition 1. J ∈ Nn is called the multi-degree of a polynomial h when each element of J is the

maximum degree of the variable xi out of all of the monomials of h. d ∈ N is called the degree of

h when d is the maximum sum, over all monomials of h, of the powers of the variable x. That is,

d = ||J ||1, where || · ||1 is the sum of the elements of a multi-index.

1.3.1.3 Probability

A probability space is denoted by a triple, (Ξ,F ,Pr). The sample space, Ξ, is the set of all
possible outcomes. The collection of all events, F , is a σ-algebra and is a set of subsets of Ξ.
Finally, Pr : F → [0, 1] is a probability measure. Let 1 : R → R denote the function that
is equal to 1 whenever its argument is non-negative. The function F denotes the joint cumulative
distribution function. For notational convenience if a box is the argument, F returns the cumulative
distribution over the box, i.e. F (ξ) = Pr(ξ ∈ ξ). When referring to quantities that may arise from
and estimator or probabilistic algorithm, the accent x̂ signifies that x is the related to average or
mean of a point, vector or function, depending on context.

1.3.2 Trajectory Optimization

Table 1.2 notation pertains to the spaces, models, and functions relevant for reachable set com-
putation and trajectory optimization. Examples of the notation used for RTD in Chapters 3-6 are
given. Chapter 7, uses similar notation, although the spaces/domains of some of the functions are
slightly different.
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Category Symbol Description
Spaces t ∈ R≥0 time

T time horizon
zhi ∈ Zhi state of high-fidelity (or simulation) model
z ∈ Z state of planning model
x ∈ X position states
k ∈ K trajectory parameter
U control input space
u control input or signal u : T → U
uk feedback controller for parameter k

Dynamics fhi high-fidelity (simulation) model fhi : [0, T ]× Zhi × U → Rnhi

zhi(t; zhi,0, k) trajectory of fhi with initial condition zhi,0 and controller uk
f planning model f : [0, T ]× Z ×K → RnZ

g affinely-appearing disturbance g : [0, T ]× Z ×K → RnZ

Reachable XFRS Forward reachable set of positions over time horizon
Sets ZTFRS Time-varying forward reachable set of states

Trajectory Oi
t ⊂ X obstacle i at time t

Optimization P prediction map P : R≥0 → P(X)
πK parameter projection map πK : P(K)→ P(X)
J cost function J : K → R
τplan planning time

Table 1.2: Trajectory optimization notation
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Symbol Units Description
(x, y) m position of center of mass
θ rad yaw
v m/s velocity

(vx, vy) m/s longitudinal and lateral (body-fixed) velocity
(ax, ay) m/s longitudinal and lateral (body-fixed) acceleration

δ rad wheel angle
(ωf , ωr) rad/s front and rear wheel speeds

(Fx,f , Fx,r) N front and rear longitudinal tire force (wheel frame)
(Fy,f , Fy,r) N front and rear lateral tire force (wheel frame)

(αf , αr) rad front and rear slip angles
(σf , σr) rad front and rear slip ratios
m kg mass
I kg· m2 yaw moment of inertia
l m wheelbase

(lf , lr) m distance from front and rear axle to center of mass
(Cy,f , Cy,r) N/rad front and rear cornering stiffness

g m/ s2 gravitational acceleration
µ 1 friction coefficient

Table 1.3: Notation for ground robot models

1.3.3 Dynamic Models

The notation in Table 1.3 is commonly used for dynamic models of the robots in this dissertation.
With the exception of the velocity v =

√
v2
x + v2

y and wheelbase l = lf + lr, dropping a subscript
indicates a vector of the quantities; for example the vector of front and rear slip angles is written
as α = [αf αr]

>. Note that some of the notation overlaps with that in Table 1.2. There are four
instances the reader should be mindful of. First, x is used for 2D position states, but the traditional
notation (x, y) is often used when plotting results or describing dynamic models. Second, the func-
tion g refers to an affinely appearing disturbance in Table 1.2, however when referring to normal
forces in a vehicle model (primarily in §7.2) it is the gravitational constant. Third, F denotes the
joint cumulative density function for a probability space in Table 1.1 and a function describing the
tire force in Table 1.3. In Chapter 6, F always refers to the joint cumulative distribution function.
In Chapter 7, F always refers to the tire force function. Fourth, a function v is defined in the
reachability computations in Chapter 3 and as a constraint in the trajectory optimization in Chapter
6. “vel” is used to refer to the velocity in instances where this might be confusing.
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CHAPTER 2

State-of-the-art

2.1 Motion Planning

Motion planning (also referred to as trajectory optimization) algorithms set up optimization pro-
grams to search for trajectories; where the cost function quantifies the trajectory’s ability to accom-
plish the goal specified by high-level planner. Constraints in the program include checking that a
planned trajectory is collision free, the trajectory obeys a vehicle dynamic model, and actuator
limitations are satisfied. The trajectory optimization program is typically solved with one of three
approaches: library-based, Rapidly-exploring Random Tree, or Model Predictive Control (MPC).
This section focuses on deterministic planners, where the vehicle model is fixed. Tools for robust
planning will be described in §2.2. Probabilistic and adaptive planners are discussed in §6.1 and
§7.1.

2.1.1 Library-based

Library-based planners [MUDL11, GGL+12, CPG17] precompute and store a library of trajecto-
ries, sometimes referred to as motion primitives. These planners are referred to as discrete plan-
ners, since they optimize over a countable set of trajectories. Online, sequences of primitives are
collision checked against obstacles and evaluated for cost. An advantage to this approach is that
the trajectories are computed offline, so they can be generated with a complex dynamic model, or
be made to be smooth, resulting in little gap between the predicted and realized trajectory; however
higher dimensions of initial conditions for the trajectories increases the size of the library, and the
solve time of the planner. To control the size of the library, robots typically store and execute full
maneuvers, i.e. they have limited ability to replan intermittently and they require the lower-level
controller to accurately track the planned trajectories using PID, LQR, Linear Model Predictive
Control or another control architecture. In some architectures the planning of a smooth path is
conducted via graph search (blended with the high-level planner), then a speed profile is assigned
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at the mid-level [KQCD15]. These limit the planning space of the robot greatly, as it cannot simul-
taneously optimize over directional and speed changes. Additionally, collision checks are typically
performed at discrete time points along each trajectory [MUDL11]. Increasing the frequency of
the collision check, or the amount of trajectories in the library also increases the runtime of the
motion planner.

2.1.2 Rapidly-exploring Random Trees

Rapidly-exploring Random Trees (RRTs) randomly sample sequences of parameterized trajecto-
ries or control inputs to generate a tree that attempts to reach a goal. These are also stored in
graph-like structure, however unlike the library-based approaches, the trajectories are not fixed
apriori. The robot’s trajectory is predicted using a dynamic or kinematic model, and the cost and
obstacle avoidance constraints of the trajectory for each sample are evaluated [LKJ01, KTF+09].
The convergence guarantees of these algorithms are asymptotic, meaning the optimal solution is
found as the number of samples tends to infinity. They suffer from a similar trade-off with respect
to the collision checker and time discretization that the discrete planners face. Furthermore, in-
creasing the complexity of the prediction model increases the runtime of the algorithm. As a result
RRTs typically plan with simplified models, and require the lower-level controller to accurately
track the planned trajectories similar to the library-based approaches. An advantage of the random
planners is that they can easily run as anytime algorithms [Zil96]; once a feasible solution is found
it can be returned as a suboptimal solution if a time limit is reached. However to this end, RRTs
have been criticized for producing jagged solutions [KQCD15].

2.1.3 Model Predictive Control

Model Predictive Control algorithms for trajectory optimization [HGK10, PR14, BZAF19] use
nonlinear, pseudo-spectral, or sequential quadratic programming to solve the trajectory optimiza-
tion problem. In this formulation, the robot’s dynamic model, input limits, and obstacle avoidance
appear as constraints. Different from the discrete and random algorithms, derivatives of the cost
and constraints are computed; which requires that the collision avoidance constraints are smooth.
In single-level MPC architectures [FLJ+17], the motion planner uses a high dimensional robot
model, so there is little onus placed on the lower-level controllers. For example in an autonomous
vehicle, a single-level MPC architecture could optimize directly over inputs of acceleration and
wheel angle; resulting in smoother trajectories than one would find with an RRT and reducing
the complexity needed for the low-level controller. However similar to the discrete and random
algorithms, the constraints are typically enforced at a set of discrete time points (referred to as
collocation points). Additionally in standard implementations, model uncertainty is not taken into
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account, and methods for robust model predictive control typically rely on linearizing the dynamics
around a prespecified trajectory [GGC+14].

Compared to traditional linear MPC programs used in lower-level control, the nonlinear MPC
(NMPC) programs for trajectory optimization take a nontrivial amount of time to solve. Several
developments in the last few years have increased the tractability of NMPC for real-time applica-
tions. Real-time implementations using sequential quadratic programming [GZQ+20a], iteratively
linearize the nonlinear program and solve a sequence of quadratic programs; however, they typi-
cally limit the number of iterations for real-time applications, which can introduce inaccuracies in
terms of constraint satisfaction. Customizing nonlinear MPC implementations for tailored applica-
tions can also provide rapid solve times, for example [WSE20] uses a GPU-based implementation
for a collision imminent steering problem with runtimes of less than 0.1 s. Recently developed,
general NMPC solvers [FJSE20], have also produced solve times below 0.5 s for ground robot
models, making their use in real-time applications tractable.

2.2 Safety Guarantees

The planning methods described in § 2.1 are unable to guarantee safety due to the challenges
mentioned with time discretization and model inaccuracy. This section describes state-of-the-
art methods for guaranteeing safety in motion planning and control. Safety guarantees can be
incorporated at either the motion planner or low-level controller in the planning hierarchy; the
advantages and disadvantages of each will be discussed.

2.2.1 Reachable Sets for Library-based Planners

To guarantee safety in the motion planner, a dynamic model with uncertainty is used to capture the
difference between the planning model and actual robot. One must ensure the set of all possible
future states of the robot are collision free; this set is referred to as the forward reachable set

(FRS). The reachable set can be represented as a Zonotope, which can be propagated exactly
through linear dynamic systems. For nonlinear systems, error incurred by the nonlinearities can
be conservatively bounded. This approach has been applied as a way to verify planned trajectories
of an autonomous vehicle [AD14]. An advantage of this approach is the zonotopes contain the
reachable set over time intervals, allowing one to certify a trajectory is collision free over the
entire time horizon. A disadvantage is that they can be conservative for nonlinear systems. In the
context of trajectory planning this means that holding onto inputs or parameters in a way that is
amenable to online optimization is difficult. Zonotopes have typically been limited to verification
applications or discrete planners; although recent work [KHV19] has shown promise for online
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optimization of spline trajectories.
Another approach called Funnel Libraries [MT17] uses a Sums-of-Squares (SOS) program to

compute the reachable set of a vehicle dynamic model with uncertainty tracking a fixed reference
trajectory. An advantage of this method over zonotopes, is that the SOS program is able to optimize
both the reachable set and a polynomial feedback controller. Two limitations of this approach are
that it has only been shown to work in static environments with a discrete motion planner, and the
reachable sets are computed at discrete timesteps and passed to an off-the-shelf collision checker
that does not provide safety guarantees.

The funnel library approach and zonotope approaches address challenge 2 in §1.1.2 robustly.
The zonotope approach also addressed challenge 1 by constructing zonotopes containing the FRS
for time intervals. Separate from the planning aspect, zontopes can be used to generate conservative
predictions of obstacles [KA17], hence they can provide any of the motion planners in §2.1 with a
way to address challenge 3 robustly.

2.2.2 Low-level Controller Design

To avoid using a discrete trajectory planner, one may chose to enforce safety at the low-level
controller. Approaches involving the Hamilton Jacobi Bellman (HJB) equation [HCH+17] have
been developed to compute the worst case tracking error for a vehicle model with uncertainty
tracking a low dimensional planning model. The advantage of this approaches are that any of
the motion planners in § 2.1 can plan quickly with the low dimensional planning model; however
in the HJB equation, the planning model is treated as a disturbance, so the tracking bounds are
worst-case and conservative. A similar approach [FMM20] that uses control Lyapunov functions
instead of the HJB equation has been developed; however, in this work, the Lyapunov functions are
specifically designed for simplified robot models. The approaches address challenge 2 in §1.1.2
robustly, but they tend to be conservative or limited to low speed robots.

2.2.3 Barrier Functions

Control barrier functions (CBFs) [AXGT16] have been proposed for control affine systems to
maintain safety over an infinite time horizon. They have been particularly popular in Adaptive
Cruise Control and lane keeping for autonomous vehicles . They have also been applied to rein-
forcement learning (RL) tasks [COMB19] to maintain safety during learning, when the RL algo-
rithm has limited understanding of the system. The CBF method uses a Lyapunov-style argument
to render a desired constraint set control invariant; meaning an input can always be applied to keep
the system within the safe set for all time. In [AXGT16], when the robot is running, a quadratic
program uses the barrier function to modify the reference control input to keep the system in this
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safe set. Barrier functions can be constructed analytically or with SOS [BMT12]. They can be
developed to account for model or input uncertainty [Jan18, ATH+21]. Similar to the HJB ap-
proach, CBFs are flexible in a sense that the reference input can be given by any motion planner;
and they additionally come with the benefit that the constraints are forward invariant for all time,
so challenges 1 and 2 in §1.1.2 are both addressed. However, constructing the CBFs themselves
often rely on apriori knowledge of the scenario and can be difficult to generalize to arbitrary and
dynamic obstacles.

2.2.4 Contributions to Research Gap

Chapters 3-5 will present a planning and control framework based on reachability analysis. This
subsection describes how the challenges in §1.1.2 are adressed and what my contributions in con-
text of the state-of-the-art are. These chapters will focus on deterministic/robust planners. Proba-
bilistic and adaptive planners are covered in Chapters 6 and 7.

In Chapter 3, I address challenge 2 by using Sums-of-Squares (SOS) programming to compute
reachable sets, but will do so for parameterized trajectories. Holding onto the trajectory parameters
means the planner will not be limited to a finite library like the approaches in §2.2.1. Performing
the reachability computation with the trajectory parameters in mind, also renders the planner to
be less conservative than those in §2.2.2. I address challenge 1 by computing FRSs over time
intervals, and providing a provably safe method for representing static and dynamic obstacles in
Chapter 4; which has yet to be done for the state-of-the-art motion planning application with
SOS programming [MT17]. Finally the obstacle representation method will allow the planner
to deal with arbitrary polygon obstacles online, overcoming the scenario specific limitations of
the approaches in §2.2.3. Although I will not focus on how to specifically generate conservative
predictions, the proposed planner can address challenge 3 by using conservative predictions from
reachability-based perception modules such as [KA17].
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CHAPTER 3

Parameterized Reachable Set Computation for
Mobile Robots

3.1 Overview

This Chapter will describe how to compute reachable sets for mobile robots executing parameter-
ized trajectories. For context, Figure 3.1 provides a simple illustration of what the reachable set
contains and how it is useful for trajectory planning. The goal is to compute (offline) a reach-
able set that characterizes the reachable positions of the robot given a trajectory parameter. Then,
when presented with obstacles online, an optimization program is set up where the constraints will
eliminate unsafe parameters. This chapter covers the reachable set computation. The trajectory
optimization portion is covered in Chapter 4. Examples of 2 hardware platforms in these sections,
a Segway and Rover, are shown in Figure 3.2

This chapter is organized as follows. §3.2 describes dynamic models for the robot and reach-
able set computation. §3.3 defines the Forward Reachable Set (FRS) and optimization programs
to compute it. §3.3.2 explains an Sums-of-Squares implementation to solve the aforementioned
programs [KVJRV17, KVB+20]. §3.4 explains a system decomposition technique to simplify the
reachable set computation programs [KVB+20]. §3.5 outlines programs to compute the FRS for
time switching dynamics [VKL+19, VLK+19].

3.2 Preliminaries and Dynamic Models

In this chapter the reachable set for a mobile robot over a finite time horizon T ∈ R>0 will be
computed. Let fhi : [0, T ]×Zhi×U → Rnhi refer to the high-fidelity dynamic model that describes
the robot

żhi(t) = fhi(t, zhi(t), u(·)), (3.1)
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FRS of FRS of

Figure 3.1: An illustration of the general approach to trajectory planning with reachable sets. The
autonomous robot’s trajectory parameter space K is on the left, and 2D position space, X , is
on the right. The bell-shaped contour in X shows the total extent of the forward reachable set
(XFRS), corresponding to the entirety of K. In X , areas are labeled as unsafe, corresponding to the
labeled sets of trajectory parameters on the left. A safe parameter kopt is selected in K, and the
corresponding trajectory (the arrow) and corresponding subset of the FRS (the contour around the
arrow) in X are shown on the right.

(a) (b)

Figure 3.2: Examples of two hardware platforms: the differential-drive Segway in Figure 3.2a and
the car-like Rover in Figure 3.2b. Both robots safely traverse their respective scenarios despite
error in each robot’s ability to track planned trajectories. Videos of the robots are available at
https://youtu.be/FJns7YpdMXQ for the Segway and https://youtu.be/bgDEAi_
Ewfw for the Rover.
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where u represents the input signal and zhi ∈ Zhi is the vehicle state. The approach relies on
planning over a space of parameterized trajectories using a second, lower dimensional, model that
shares a common set of states Z ⊂ Zhi. This model is called the trajectory-producing model and is
described as [

ż(t)

k̇(t)

]
=

[
f(t, z(t), k(t))

0

]
. (3.2)

For mobile robotic applications, the trajectory-producing model must at least contain the states that
obstacles will appear in. For a trajectory parameterized by k, generated by (3.2), the robot selects
inputs with a lower-level controller

uk : [0, T ]× Zhi → U, (3.3)

which yields the closed loop dynamics

żhi(t) = fhi(t, zhi(t), uk(t, zhi(t))). (3.4)

The following assumptions will be used to ensure the computation of the reachable sets is tractable:

Assumption 2. The dynamics fhi from (3.1) are Lipschitz continuous in t, zhi, and u. The dynamics

f from (3.2) are Lipschitz continuous in t, z, and k.

Assumption 3. The sets U , Zhi, Z, and K are compact. The robot’s set of initial conditions are

represented as a compact set Zhi,0 ⊂ Zhi for the high-fidelity model, and Z0 = projZ(Zhi,0) in the

shared states of the trajectory-producing model.

Examples of the high-fidelity model (3.1) and trajectory-producing model (3.2) are presented be-
low.

Example 4. Consider the Segway robot in Figure 3.2a, that can be described by a unicycle model

as follows. Let zhi = [x, y, θ, v, θ̇]> be the states, where x and y describe the robot’s center of mass

in 2D. Heading is θ, yaw rate is θ̇, and speed is v. The dynamics fhi are

d

dt


x(t)

y(t)

θ(t)

v(t)

θ̇(t)

 =



v(t) cos θ(t)

v(t) sin θ(t)

θ̇(t)

satα
(
βα ·

(
u1(t)− v(t)

))
satγ
(
βγ ·

(
u2(t)− θ̇(t)

))


, (3.5)
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where the control input is u = [u1, u2]> ∈ U ⊂ R2, satα (resp satγ) saturates the acceleration

(resp. yaw rate change) input to keep it in an interval [α, α] (resp. [γ, γ]), and βα, βγ > 0 are

constants found from system identification. The state space of the trajectory producing model is

z = [x, y, θ]>. The desired trajectories, f , are Dubin’s paths

d

dt

x(t)

y(t)

θ(t)

 =

k1 cos θ(t)

k1 sin θ(t)

k2

 , (3.6)

where the parameters k = [k1, k2]> ∈ K ⊂ R2 correspond to the desired speed and and yaw rate.

The feedback controller used by the Segway is

uk(t, zhi(t)) =

[
k1

k2

]
(3.7)

[KVB+20] presents a trajectory producing model with further reduced dimensions:

Example 5. Consider the Segway robot with high-fidelity model (3.5) and controller (3.7). Assume

the initial heading is θ(0) = 0. The trajectory producing model (3.2) can be rewritten in 2 states

given by

d

dt

[
x(t)

y(t)

]
=

[
k1 − k2(y(t)− yc,0)

k2(x(t)− xc,0)

]
(3.8)

where (xc,0, yc,0) are the initial position of the center of mass.

3.2.1 Projection Operators

To better understand the relationship between various subspaces, projection operators, adapted
from [CHT16, §III A, (15,16,18)] are defined. I will use the spaces Z and Zhi as an example here,
although the projections operators will also be used to relate subspaces within Z in § 3.4.

Definition 6. The projection operator projZ : P(Zhi)→ P(Z) maps sets from a high dimensional

space Zhi to a lower dimensional subspace Z ⊆ Zhi. For a set containing a single point, zhi ∈ Zhi,

projZ is defined as:

projZ(zhi) = z, (3.9)

where z contains the components of zhi that lie in subspace Zhi. For a set, Shi ⊆ Zhi, projZ is
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defined as:

projZ(Shi) =
{
z ∈ Z : ∃ zhi ∈ Shi s.t. projZ(zhi) = z

}
. (3.10)

proj−1 : P(Z) → P(Zhi) is defined as the back-projection operator from a subset, S ⊆ Z, to the

full space, Zhi is defined as:

proj−1(S) =
{
zhi ∈ Zhi : ∃ z ∈ S s.t. projZ(zhi) = z

}
. (3.11)

System dynamics can be passed to the projection operators to select the dynamics in a subspace.
For example, one may write projZ(fhi(·)) to mean the high-fidelity model’s dynamics in the shared
states Z, even though the range of fhi does not return elements of P(Zhi); this is a minor abuse of
notation because dim(Zhi) = dim(fhi(·)). x = projX(Z) recovers the states in z that correspond
to 2D position.

3.2.2 Tracking Error

This section constructs bounds on the difference between the closed loop high-fidelity model (3.4)
and the trajectory producing model (3.2). This is done because computing reachable sets with
the high-fidelity model is typically intractable, but it is possible to compute a reachable set in the
lower-dimensional state space of the trajectory producing model.

Assumption 7. For each i ∈ {1, . . . , nZ}, there exists a bounded function gi : [0, T ]×Z×K → R
such that:

max
zhi∈Az

|fhi,i(t, zhi, k)− fi(t, z, k)| ≤ gi(t, z, k), (3.12)

for all z ∈ Z, t ∈ [0, T ], and k ∈ K where Az := {zhi ∈ Zhi | projZ(zhi) = z} is the set

in which the high-fidelity model matches the trajectory-producing model in all the shared states.

g = [g1, . . . , gnZ ]> is the tracking error function. As with f and fhi in Assumption 2, g is assumed

to be Lipschitz continuous in t, z, and k.

The existence of the tracking error function means that the error in the shared states subspace
Z is bounded while the robot is tracking any desired trajectory given by (3.2). The tracking error
function can be determined empirically by simulating the high-fidelity model or by applying Sums-
Of-Squares (SOS) optimization techniques [Las09]. Figure 3.3 shows an example of g functions
for the x and y states of the Segway described in Example 4.
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Figure 3.3: Error in ẋ (left) and ẏ (right) of the Segway’s high-fidelity model (3.5) when tracking
Dubins paths generated as in Example 4. The robot has a maximum yaw rate of 1 rad/s and a max-
imum speed of 1.25 m/s. Error is the expression |fhi,i(t, zhi, uk(t, zhi))− fi(t, z, k)| in Assumption
7, where i selects the x and y components of zhi and z. The dashed lines are example error trajec-
tories created by sampling possible initial conditions. The solid lines represent the time-varying
functions gx : [0, T ]→ R and gy : [0, T ]→ R, which bound all of the error trajectories.

Remark 8. Since the dynamics of the trajectory producing model and high-fidelity model are

Lipschitz continuous by Assumption 2, and the time, state and parameter spaces are compact by

Assumption 3, it is reasonable to assume that the tracking error can be bounded. In particular, if

one is not confident that their robot can track trajectories closely, one can augment the tracking

error function g with a large positive function. If computing a reachset for a hardware platform, or

a system with uncertainty, where fhi may not exactly describe the robot, a g function that satisfies

Assumption 7 can still be found. This can be done by including uncertain parameters or distur-

bances in fhi, checking to see if g satisfying (3.12) is conservative via sampling, and/or augmenting

g with a large positive function. See §5.2.2 for an example of the second approach.

Now I will describe how the error function is used to create a low-dimensional dynamic model
that captures the behavior of the high-dimensional model. Let Ld := L1([0, T ], [−1, 1]nZ ) denote
the space of absolutely integrable functions from [0, T ] to [−1, 1]nZ . g is included in the trajectory-
producing dynamics to create the trajectory-tracking model with dynamics:

ż(t, z(t), k, d) = f(t, z(t), k) + g(t, z(t), k) ◦ d(t) (3.13)

where d ∈ Ld, ◦ denotes the Hadamard product, and the state z of the trajectory-producing model
is reused to emphasize that the trajectory-tracking model trajectories evolve in the state space Z.
Note, d can be chosen to describe worst-case error behavior. Similarly, d can be used to make the
trajectory-producing model “match” the high-fidelity model in the shared states:

Lemma 9. Suppose zhi,0 ∈ Zhi,0, k ∈ K, and z0 = projZ(zhi,0). Then there exists d ∈ Ld such that
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the high-fidelity model and the trajectory-tracking model agree on the shared state space Z, i.e.,

projZ (fhi(t, zhi(t), uk(t, zhi(t))) = ż(t, z(t), k, d(t)) (3.14)

for all t ∈ [0, T ], where zhi (resp. z) is a trajectory produced by (3.4) (resp. (3.13)) with initial

condition zhi,0 (resp. z0).

Proof. From Assumption 7 and (3.12), recall that g bounds the maximum possible absolute error
in each shared state for all t ∈ [0, T ]. Therefore, almost everywhere t ∈ [0, T ], d(t) ∈ [−1, 1]nZ

can be picked such that

projZ (fhi(t, zhi(t), uk(t, zhi(t)))− f(t, z(t), k) = g(t, z(t), k) ◦ d(t). (3.15)

Rearrange (3.15) to fulfill (3.14).

Lemma 9 will come of use in § 3.3 as it enables one to perform reachability calculations with the
low-dimensional model (3.13), that will certify the safety of the high-fidelity model (3.4).

In [VLK+19, KVB+20] I presented a less conservative version of the tracking error function
where the error in the states as oppose to the dynamics is bounded.

Remark 10. Consider a trajectory-producing model described by open-loop dynamics, for exam-

ple as in Examples 4 and 5. Assume bounding functions G : [0, T ]×K → R satisfying

max
zhi∈Zhi,0

|zhi,i(t; zhi,0, k)− z(t; z, k)| ≤ Gi(τ, k), (3.16)

where zhi(t; zhi,0, k) indicates solutions of (3.4) at time t with initial condition zhi,0 and parameter

k, exist. Such a tracking error bound is less conservative, as it takes into account the integrated

tracking error. For example, second order controllers may produce oscillations around a setpoint,

the error bounds produced by (3.12) will lead to a more conservative FRSs as the dynamic error

accumulates. To incorporate such a bound into the reachable set computations in §3.3, one can

simply set g(·) = d
dt
G(t, k), or alternatively see Appendix A.2.

3.2.3 State Estimation Error

In a receding-horizon implementation, the robot plans a future trajectory while executing a previ-
ously planned trajectory. This requires bounding error associated with the initial condition set Zhi,0,
which in the receding horizon implementation will be a predicted future state of the high-fidelity
model. Error in this prediction is bounded with the following Assumption.
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Assumption 11. Let k ∈ K be arbitrary and uk the corresponding feedback controller as in (3.3).
Suppose the robot is at time t, with estimated state zhi,0 ∈ Zhi,0, and note that τplan is the planning

time. The robot’s future state prediction zpred at any t′ ∈ [t, t+τplan] is given by forward-integrating

the high-fidelity model to get the trajectory zhi,0 : [0, τplan]→ Zhi:

zpred(t
′; zhi,0, k) = zhi,0 +

+

∫ t′−t

0

fhi(τ, zpred(τ + t), uk(τ, zpred(τ + t)))dτ.
(3.17)

Assume the error between zpred(t
′; zhi,0, k) and the actual state of the robot can be bounded by a

constant εi for each i ∈ {1, . . . , nhi}. In other words, at the start of every planning iteration, there

exist ε ≥ 0 such that the state of the actual robot is within ε of its estimated state.

Note that Assumption 11 trivially satisfied by picking large ε. This error should be included in the
initial condition of the FRS computation for hardware platforms. Additionally for states that do
not appear in shared state space Z, the effects of the initial condition error should be included in
the tracking error function defined in Assumption 7.

3.3 Forward Reachable Set Computation

This section defines the Forward Reachable Set (FRS) and discusses how we can use Sums-of-
Squares programming to obtain a polynomial whose level set characterizes it. §3.3.1 introduces
the concept of the forward reachable set at points in time, and defines an optimization program
to find a function that characterizes the FRS. Then we define a reachable set that captures states
across the continuous time horizon. §3.3.2 discusses a Sums-of-Squares (SOS) implementation of
the optimization program developed in the prior sections. §3.3.3 discusses memory useage of the
SOS implementation.

3.3.1 The Forward Reachable Set

The Forward Reachable Set (FRS) contains positions (in X) of the trajectory producing model that
are reachable by a robot described by the high-fidelity model (3.4), over a time horizon T . This
work focuses on ground applications where the robot’s pose and environment can be represented
in 2-D, i.e. the space R2 with coordinates denoted x and y.

Definition 12. Let X denote the xy-subspace of Z with dim(X) = 2. X refers to the spatial
coordinates of the robot’s body.

In this and the next Chapter assume
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Assumption 13. The initial condition set projX(Z0) contains the footprint of the robot, and the g

function, defined in Assumption 7 captures any error associated with rigid-body rotation.

Remark 14. Assumption 13 is the approach to incorporate the footprint that is applied in Chapters

3 and 4. Unfortunately this approach can be conservative for noncircular robots, especially when

there is large uncertainty in the dynamics, or the time horizon T is long. A modified approach that

decouples the footprint from the reachability computation is detailed in Appendix A.1.

The reachable set will ultimately be used in collision checking (see Figure 3.1) which is a
constraint that has to be enforced over continuous time intervals; meaning one wants to ensure the
robot is collision free at any time t ∈ [0, T ]. For collision checking against static obstacles it will
prove useful to define an FRS for the entire time horizon as

XFRS =
{

(x, k) ∈ X ×K | ∃ z0 ∈ Z0, t ∈ [0, T ], and d ∈ Ld

s.t. z = z̃(t), x = projX(z),

where ˙̃z(τ) = f(τ, z̃(τ), k) + g(τ, z̃(τ), k) ◦ d(τ)

a.e. τ ∈ [0, T ] and z̃(0) = z0

}
.

(3.18)

The computation will rely upon a pair of linear operators, Lf ,Lg : AC
(
[0, T ] × Z × K

)
→

C
(
[0, T ]× Z ×K

)
which act on a test function v as follows:

Lfv(t, z, k) =
∂v

∂t
(t, z, k) +

n∑
i=1

∂v

∂zi
(t, z, k)fi(t, z, k) (3.19)

Lgv(t, z, k) =
n∑
i=1

∂v

∂zi
(t, z, k)gi(t, z). (3.20)

With these operators, the FRS is computed by solving the following linear program, adapted
from [MVTT14, Section 3.3, Program (D)]. The program has been altered for forward reacha-
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bility and for uncertainty propagation in place of control synthesis.

inf
v,w,q

∫
X×K

w(x, k) dλX×K (D)

s.t. Lf ṽ(t, z, k) + q(t, z, k) ≤ 0, (D1)

Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (D2)

− Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (D3)

q(t, z, k) ≥ 0, (D4)

− ṽ(0, z, k) ≥ 0, (D5)

w(x, k) ≥ 0, (D6)

w(x, k)− v(t, z, k)− 1 ≥ 0, (D7)

where, x = projX(z) and X = projX(Z). Constraints (D1), (D2), (D3), (D4), and (D7) apply
for all (t, z, k) ∈ [0, T ]×Z×K. Constraint (D5) applies for all (z, k) ∈ Z0×K. Constraint (D6)

is enforced on X ×K. The infimum is taken over (v, w, q) ∈ C1([0, T ]×Z ×K)×C(X ×K)×
C([0, T ] × Z ×K). Theorem 3 of [MVTT14] show that feasible solutions to (D) conservatively
approximate XFRS. This result is adapted in the following lemmas.

Lemma 15. If (v, w, q) satisfies the constraints in (D), then v is non-positive and decreasing along

trajectories of the trajectory-tracking system (3.13).

Proof. Notice that v(0, z0, k) ≤ 0 for all z0 ∈ Z0 and k ∈ K by (D5). So, for any t ∈ [0, T ],
k ∈ K, and d ∈ Ld:

v(t, z(t), k) = v(0, z(0), k) +
t

∫
0

(Lfv(τ, z(t), k)) dτ +
t

∫
0

(Lgv(t, z(τ), k) ◦ d(τ)) dτ (3.21)

≤ v(0, z(0), k) +
t

∫
0

(Lfv(τ, z(τ), k)) dτ +
t

∫
0
q(τ, z(τ), k)dτ (3.22)

≤ v(0, z(0), k), (3.23)

where (3.21) follows from the Fundamental Theorem of Calculus; (3.22) follows from (D2) and
(D3); and (3.23) follows from (D1).

Lemma 16. [MVTT14, Theorem 4] Let (v, w, q) be a feasible solution to (D). The 1-superlevel

set of w contains XFRS. Furthermore, there is a sequence of feasible solutions to (D) whose second

component w converges from above to an indicator function on XFRS in the L1-norm and almost

uniformly.

Proof. The first statement is given from constraint (D7); which provides that the 1-superlevel set
of any feasible w contains XFRS. See [MVTT14] for a proof of the second.
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3.3.2 Sums-of-Squares Implementation

The program (D) can be implemented using Sums-of-Squares programming (SOS). To do so, the
following assumptions are required:

Assumption 17. The functions f and g are polynomials of finite degree in R[t, z, k].

Note that, to fulfill Assumption 7, if f is Taylor-expanded to be a polynomial, then g must bound
the error introduced by the Taylor-expansion.

Assumption 18. The sets K, Z, and Z0 have semi-algebraic representations:

K = {k ∈ RnK | hKi(k) ≥ 0, ∀ i = 1, ..., nK} (3.24)

Z = {z ∈ RnZ | hZi(z) ≥ 0, ∀ i = 1, ..., nZ} (3.25)

Z0 = {z ∈ Z | h0i(z) ≥ 0, ∀ i = 1, ..., n0} (3.26)

where hKi ∈ R[k] and h0i , hZi ∈ R[z]. Since X and X0 are projected (as in Definition 6) from

semi-algebraic sets, they can also be represented semi-algebraically:

X = {p ∈ R2 | hx(p) ≥ 0, hy(p) ≥ 0} (3.27)

X0 = {p ∈ X | hx0(p) ≥ 0, hy0(p) ≥ 0}. (3.28)

Assumption 18 is not prohibitive since common boxes and ellipses, and even non-convex sets,
have semi-algebraic representations (see, e.g., [MVTT14]). Typically, Z, and Z0 are box- or
ellipse-shaped. The parameter space K can be represented by a box or ellipse; more complex
restrictions of the parameters can be enforced in the online optimization program described in
Chapter 4. Also note that, for the SOS program posed next, there must exist N ∈ N such that, for
any q = (t, z, z0, k) ∈ [0, T ] × Z × Z0 ×K, the value of N − ‖q‖2

2 ≥ 0 [Las09, Theorem 2.15].
This is trivially satisfied since [0, T ], Z, Z0, and K are compact by Assumption 3.

(D) can be solved with a sequence of convex SOS programs indexed by l ∈ N by relaxing the
continuous function in (D) to polynomial functions with degree truncated to 2l. The inequality
constraints in (D) then transform into SOS constraints, so (D) becomes a Semi-Definite Program
(SDP) [Par00]. To formulate this problem, let hT = t(T − t), and HT = {hT}. Recalling the
definitions in Assumption 18, for Z, Z0, and K, collect the polynomials that represent them in
the sets HZ =

{
hZ1 , . . . , hZnZ

}
, HZ0 =

{
h01 , . . . , h0n0

}
, HK =

{
hK1 , . . . , hKnK

}
, and HX =

{hx, hy}.
Let Q2l(HT , HZ , HK) ⊂ R2l[t, z, k] be the set of polynomials p ∈ R2l[t, z, k] (i.e., of total
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degree less than or equal to 2l) expressible as:

p = s0 + s1hT +

nZ∑
i=1

si+2hZi +

nK∑
i=1

si+nZ+2hKi , (3.29)

for some polynomials {si}nZ+nK+1
i=0 ⊂ R2l[t, z, k] that are SOS of other polynomials. Note that

every such polynomial is non-negative on [0, T ]×Z×K [Las09, Theorem 2.14]. Similarly, define
Q2l(HZ0 , HK) ⊂ R2l[z, k], and Q2l(HX , HK) ⊂ R2l[x, k], where x = projX(z).

Employing this notation, the lth-order relaxed SOS programming representation of (D), de-
noted (Dl), is defined as follows:

inf
vl,wl,ql

yTX×Kvec(wl) (Dl)

s.t. − Lfvl − ql ∈ Q2df (HT , HZ , HK) (Dl1)

Lgvl + ql ∈ Q2dg(HT , HZ , HK) (Dl2)

− Lgvl + ql ∈ Q2dg(HT , HZ , HK) (Dl3)

ql ∈ Q2l(HT , HZ , HK) (Dl4)

− vl(0, · ) ∈ Q2l(HZ0 , HK) (Dl5)

wl ∈ Q2l(HX , HK) (Dl6)

wl + vl − 1 ∈ Q2l(HT , HZ , HK), (Dl7)

where the infimum is taken over the vector of polynomials (vl, wl, ql) ∈ R2l[t, z, k] × R2l[x, k] ×
R2l[t, z, k], with x = projX(z). The vector yX×K contains moments associated with the Lebesgue
measure λX×K , so

∫
X×K w(x, k)dλX×K = yTX×Kvec(w) forw ∈ R2l[x,k] [MVTT14]. The numbers

df and dg are the smallest integers such that 2df and 2dg are respectively greater than the total
degree of Lfvl and Lgvl. To implement (Dl), consider the dual program, which is an SDP [Las09].

Remark 19. It can be shown that Lemma 15 holds for functions that satisfy the constraints of

(Dl) [MVTT14, Theorem 6]. Additionally, one can apply the last constraint in (Dl) to prove that

the 1-superlevel set of any feasible wl is an outer approximation to XFRS [MVTT14, Theorem 7].

Furthermore, one can prove that wl converges from above to an indicator function on XFRS in the

L1-norm [MVTT14, Theorem 6].

An example of the 1 superlevel set of w5 for the Segway dynamics from Example 5 is shown
in Figure 3.4
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Figure 3.4: The Segway robot, as in Example 4, tracking trajectories planned in the xy-subspace
X using the trajectory-producing model Example 5. The robot begins with [x(0), y(0)]> =
[0, 0]> and the initial heading θ(0) = 0 rad pointing to the “right.” The robot has a cir-
cular footprint with radius 0.38 m, and the initial state is [x(0), y(0), θ(0), v(0), θ̇(0)]> =
[0 m, 0 m, 0 rad, 1.5 m/s, 0.0 rad/s]>, plotted in X as the solid circle on the left. The desired
speed (k1) is vdes = 1.5 m/s; the desired yaw rate (k2) is θ̇des = 1.0 rad/s. The desired trajectory,
with time horizon T = 0.8 s, is shown in dashed blue, with the robot’s footprint plotted at the end.
The high-fidelity model trajectory, and corresponding footprint at time T is shown in solid blue.

3.3.3 Memory Useage

The section describes the memory required to implement (D). For higher-dimensional systems, the
large memory requirement motivates the system decomposition approach in Section 3.4. In this
paper, the FRS is computed with Spotless [TPM13], a MATLAB-based SOS toolbox. Spotless
transforms the SOS optimization program into an Semidefinite Program (SDP), which is solved
with MOSEK [Mos10]. As the degree l increases, the approximation of the FRS becomes a prov-
ably less conservative outer approximation of XFRS [MVTT14, Theorem 7].

However, solving (Dl) is memory intensive, as the monomials of each polynomial are free
variables; and a polynomial of degree 2l and dimension n has

(
2l+n
n

)
monomials. The memory

required by (Dl) grows asO((n+ 1)l) for fixed l andO(ln+1) for fixed n [MVTT14, Section 4.2].
Furthermore each free variable is stored as a 64-bit double, and MOSEK computes the Hessian of
each SOS constraint [Mos10, Section 11.4], which is proportional to the number of free variables
squared (see, e.g., [NW06, Chapter 14]. To estimate the amount of free variables generated for
Program (Dl), one can sum up the monomials in each decision variable polynomial. These consist
of the polynomials vl, wl, ql which are degree 2l, and the s polynomials for each semialgebraic set,
defined in (3.29), whose degree are specified in (Dl).

The Segway model in Example 5 has dimension 5. Solving (D5) for this system requires
approximately 1.4× 105 free variables. The highest dimension system for which I have computed
reachable sets for is the car-like rover, shown in Figure 3.2b, which is described in the following
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section. It has a 7-dimensional state space model. The program (D3) for this system requires
approximately 1.1 × 105 free variables, and MOSEK used 504 GB of RAM (i.e., memory). A
computer with 3.5 TB of RAM was unable to solve (D4), which has approximately 3.8× 105 free
variables. This drastic increase in memory required as dimension increases motivates the system
decomposition approach in Section 3.4, where separate, lower dimension FRS’s are computed for
subsystems, then combined into the full dimension system with another SOS program.

3.4 System Decomposition

Motivated by the memory issues presented in Section 3.3.3, this section presents a method to apply
the FRS computation to higher-dimensional systems. This section is broken into four parts. First,
the Rover robot is presented as an example system for which the method presented in Section
3.3.2 is intractable (§3.4.1). Second, I describe a system decomposition that makes computing an
FRS tractable for each subsystem of the decomposed system (Section 3.4.2). Third, I show how
to reconstruct an FRS of the full system from FRS’s computed for the subsystems (Section 3.4.3).
Lastly, the SOS implementation and memory useage are discussed in 3.4.4. The casual reader
can examine Example 20, Definition 22, Example 23, and Theorem 24 to understand the primary
results from this section.

As a further motivation, consider Example 4, where the trajectory-producing model creates
arcs with constant speed and yaw rate. In some applications, it is beneficial to plan with more
complicated trajectories. For example a passenger vehicle on a road would plan lane change,
lane keeping, and lane return maneuvers, requiring a higher-dimensional model than the one that
produces arcs. As noted in Section 3.3.3, for fixed relaxation degree l, increasing the dimension
n of the trajectory-producing model increases memory usage of (Dl) as O((n + 1)l) [MVTT14,
Section 4.2].

This section adapts a general method from [CHT16] and [CHV+17] for computing backwards
reachable sets by system decomposition. I adapt the method to forward reachability, illustrate how
to apply SOS programming, and analyze the memory savings that result from using system de-
composition. This type of decomposition applies when the robot’s dynamic model can be split into
subsystems of lower dimension. For example, the Segway and Rover model presented in this work,
or the quadrotor models presented in [CHT16, KHV19]. Note that the recovery of the exact for-
ward reachable set is not always possible with this approach. However, the resulting reachable set
is guaranteed to be an overapproximation; hence is useful for the presented application of collision
checking. This section focuses on the case with two subsystems, though the approach generalizes
to any finite number. As per [CHT16] and [CHV+17], after separating the system, a reachable
set is computed for each subsystem, then the reachable set for the full system is constructed by
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intersecting the subsystem reachable sets.

3.4.1 An Example System

This section describes a practical example of trajectory-producing dynamics with a system dimen-
sion that makes computing the FRS intractable.

Example 20. Recall the Rover from Figure 3.2b. This robot uses the following bicycle model as

the trajectory-producing model (3.2), with states z = [x, y, θ]> ∈ Z ⊂ R3 where x and y track the

center of mass.

d

dt

x(t)

y(t)

θ(t)

 =

k1 cos(θ(t))− lrθ̇(t, k) sin(θ(t))

k1 sin(θ(t)) + lrθ̇(t, k) cos(θ(t))

θ̇(t, k)

 (3.30)

θ̇(t, k) = −2
Thk2 − k3

T 2
h

t+ k2 (3.31)

where θ̇ is yaw rate, k1 is longitudinal speed, and lr is the distance from the robot’s rear-wheel to

center of mass. The trajectory parameters, k ∈ K ⊂ R3, produce lane change, lane keeping, and

lane return maneuvers for an autonomous car driving on a straight road. Th is the time required

to complete a lane change; k2 determines the initial yaw rate of the trajectory; and k3 is the final

heading of the trajectory.

To understand this parameterization, integrate (3.31) over time with initial condition θ(0) = 0

to get the robot’s heading:

θ(t) = −Th k2 − k3

T 2
h

t2 + k2t (3.32)

Notice that k2 determines the final lateral displacement of the robot, and setting k3 to the differ-

ence between the road and robot heading will create trajectories that align the robot with the road.

Sample maneuvers generated by (3.30) and (3.31) are depicted in Figure 3.5. This parameter-

ization captures lane change, lane keeping, and lane return maneuvers. The total dimension of

(3.30), including time, is n = nZ + nK + 1 = 7, which is intractable for the FRS computation as

in Section 3.3. However, the full system (3.30) is separable into “self-contained subsystems.”

3.4.2 Self-contained Subsystems

This section describes how to decompose the trajectory-producing model (3.2) into two subsys-
tems. I follow the methodology introduced by [CHV+17, Section III A], adapting the notation and
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Figure 3.5: Sample of lane change trajectories generated by (3.30) with the control law in (3.31).
The rectangle containing a triangle “pointer” represents the Rover and its initial heading. Initial
headings of 0.0 and 0.25 are shown in subfigures (a) and (b), respectively. In subfigure (a), the
Rover is driving straight in its lane and the sample trajectories consists of lane keeping and lane
change maneuvers. In subfigure (b), the Rover has begun a lane change, and the sample trajectories
consist of lane return maneuvers, and trajectories that complete a lane change. The parameters used
are Th = 2 s and k1 = 2 m/s, with k3 = 0.0 in subfigure (a) and k3 = −0.25 in (b). The light
trajectories are generated with a sample of values of k2 and plotted over a time horizon of 2 s. The
dark trajectory is the optimal trajectory to reach a desired waypoint, shown as an asterisk.

dynamics to system (3.2), which is refered to as the full system. Let the state, z ∈ Z, be partitioned
as z = (z1, z2, zs) with z1 ∈ Rn1 , z2 ∈ Rn2 , zs ∈ Rns , n1, n2 > 0, ns ≥ 0, and n1 + n2 + ns = nZ .
Note, the notation (z1, z2, zs) (as opposed to [z>1 , z

>
2 , z

>
s ]>) is used in this section for readability.

The states z1 and z2 belong to subsystems 1 and 2, respectively, and the states in zs belong to both
subsystems. Therefore, the dynamics can be written:

ż1(t) = f1(t, z1(t), z2(t), zs(t), k)

ż2(t) = f2(t, z1(t), z2(t), zs(t), k)

żs(t) = fs(t, z1(t), z2(t), zs(t), k)

k̇(t) = 0.

(3.33)

Next define the subsystem states and spaces z1 = (z1, zs) ∈ Z1 ⊂ Rn1+ns and z2 = (z2, zs) ∈
Z2 ⊂ Rn2+ns . The subspaces Z1 and Z2 are compact and have semi-algebraic representations. Just
as in Assumption 18, the initial conditions and state space of subsystem i are defined as:

Z0,i =
{
zi ∈ Rni+ns : h0j(proj−1(zi)) ≥ 0 ∀ j = 1, .., n0

}
(3.34)

Zi =
{
zi ∈ Rni+ns : hZj(proj−1(zi)) ≥ 0 ∀ j = 1, ..., nZ

}
(3.35)

for i = 1, 2. Recall that proj−1 is the back-projection operator from any subspace Zi into Z as
in (3.11). These definitions lead to the following lemma, which confirms that the projection and
back-projection operators work “as expected” in mapping between Z and Zi:

30



Lemma 21. [CHT16, Section IV, Lemma 1] Let z ∈ Z, zi = projZi(z), and Si ⊆ Zi for some

subsystem, i. Then zi ∈ Si ⇐⇒ z ∈ proj−1(Si).

Next, the definition of a self-contained subsystem is restated:

Definition 22. [CHV+17, Definition 5] Consider the following special case of (3.33):

ż1(t) = f1(t, z1(t), zs(t), k)

ż2(t) = f2(t, z2(t), zs(t), k)

żs(t) = fs(t, zs(t), k)

k̇(t) = 0.

(3.36)

Each of the subsystems with states defined as zi = (zi, zs), for i = 1, 2, is called a self-contained
subsystem (SCS). (3.36) is called the full system.

The SCS’s in (3.36) show that the evolution of each subsystem depends only on the subsystem
states: żi depends only on zi = (zi, zs, k). Notice that the trajectory parameters k can appear in
both SCS’s. Given some initial condition z0 ∈ Z0, let, z : [0, T ] → Z be a trajectory of the full
system (3.36). Similarly, if zi : [0, T ] → Zi is the trajectory of subsystem i, then zi satisfies the
following subsystem dynamics for all t ∈ [0, T ]:

żi(t) =

[
fi(t, zi(t), zs(t), k)

fs(t, zs(t), k)

]
k̇(t) = 0.

(3.37)

Trajectories of the full system are related to the trajectories of the subsystem via the projection
operator, projZi(z(t)) = zi(t), from (3.9) [CHV+17, Equation (12)].

To account for tracking error, each error function (gi from Assumption 7) must be defined
independently for each subsystem, so that subsystems 1 and 2 are still SCS. The error function is
added to (3.36) as defined below:

ż1(t) = f1(t, z1(t), zs(t), k) + g1(t, z1(t), zs(t), k) ◦ d(t)

ż2(t) = f2(t, z2(t), zs(t), k) + g2(t, z2(t), zs(t), k) ◦ d(t)

żs(t) = fs(t, zs(t), k) + gs(t, zs(t), k) ◦ d(t)

(3.38)

The remainder of this section assumes subsystems 1 and 2, with states z1 = (z1, zs) and z2 =

(z2, zs), have dynamics defined in (3.38). Subsystems 1 and 2 are SCS’s, and Lemma 21 and (3.9)
hold.
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Example 23. Recall the Rover’s trajectory-producing model in (3.30). Solving (Dl) for this model

is memory intensive since the total dimension is n = 7, as discussed at the end of Section 3.3.

However, this system can be decomposed into two separate SCS’s:

ż1(t) =

[
k1 cos(θ(t))− lrθ̇(t, k) sin(θ(t))

θ̇(t, k)

]
(3.39)

ż2(t) =

[
k1 sin(θ(t)) + lrθ̇(t, k) cos(θ(t))

θ̇(t, k)

]
(3.40)

where z1 = [x, θ]> ∈ Z1 and z2 = [y, θ]> ∈ Z2. The trajectory-tracking model (3.13) is produced

for each SCS, by including error functions g1 and g2 as in Assumption 7.

3.4.3 FRS Reconstruction

This section describes how to compute a time-varying FRS for each sub-system, then develop a
reconstruction program to compute an overapproximation of XFRS for the full system. Formally,
the time-varying FRS is defined as:

ZTFRS =
{

(t, z, k) ∈ [0, T ]× Z ×K | ∃ z0 ∈ Z0, and d ∈ Ld

s.t. z = z̃(t)

where ˙̃z(τ) = f(τ, z̃(τ), k) + g(τ, z̃(τ), k) ◦ d(τ)

a.e. τ ∈ [0, T ] and z̃(0) = z0

}
.

(3.41)

An overapproximation of XTFRS can be computed with a similar program and implementation to
(D) in §3.3.2.

inf
v,w,q

∫
[0,T ]×Z×K

w(t, z, k) dλ[0,T ]×Z×K (DT )

s.t. Lfv(t, z, k) + q(t, z, k) ≤ 0, (DT1)

Lgv(t, z, k) + q(t, z, k) ≥ 0, (DT2)

− Lgv(t, z, k) + q(t, z, k) ≥ 0, (DT3)

q(t, z, k) ≥ 0, (DT4)

− v(0, z, k) ≥ 0, (DT5)

w(t, z, k) ≥ 0, (DT6)

w(t, z, k) + v(t, z, k)− 1 ≥ 0. (DT7)
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Constraints (DT1), (DT2), (DT3), (DT4), and (DT7) apply for all (t, z, k) ∈ [0, T ] × Z × K.
Constraint (DT5) applies for all (z, k) ∈ Z0 × K. Constraint (DT6) applies for all (t, z, k) ∈
[0, T ]× Z ×K. The given data in the problem are f, g, Z, Z0, K, and T . The infimum is taken
over (v, w, q) ∈ C1([0, T ] × Z × K) × C([0, T ] × Z × K) × C([0, T ] × Z × K). λ[0,T ]×Z×K

denotes the Lebesgue measure on [0, T ]× Z ×K.
Since subsystems 1 and 2 are SCS’s, a time-varying FRS can be found for each separately

using (DT ). Denote the two applications of (DT ) as (D
(1)
T ) and (D

(2)
T ), respectively. This section

formulates an optimization program that overapproximates the intersection of the back-projections
of the subsystems, thus overapproximating the FRS. This program is refered to as reconstruction.
First define the intersection of the back-projections of v as:

V = {(z, k) ∈ Z ×K | ∃ t ∈ [0, T ] s.t. v1(t, z1, k) ≤ 0, v2(t, z2, k) ≤ 0}, (3.42)

which is the set where both v1 and v2 are negative at any point in time. Next, let (v1, w1, q1) (resp.
(v2, w2, q2)) be a feasible solution to (D

(1)
T ) (resp. (D

(2)
T )). An outer approximation of XFRS can be

reconstructed with the following optimization program:

inf
wr

∫
X×K

wr(x, k) dλX×K (R)

wr(x, k) ≥ 1, ∀(x, k) ∈ V (R1)

wr(x, k) ≥ 0, ∀(x, k) ∈ X ×K (R2),

where x = projX(z) and the infimum is taken over wr ∈ C(X × K). Figure 3.6 shows the
intersection of back-projections of the subsystem FRS’s for the Rover. Now, I prove that the
solution to (R) contains the FRS.

Theorem 24. Let wr be a feasible solution to (R). Then XFRS is a subset of the 1-superlevel set of

wr.

Proof. Let z0 ∈ Z0, k ∈ K, and d ∈ Ld be arbitrary such that z : [0, T ] → Z is a trajectory of
the full system (3.36). Let x = projX(z) and X = projX(Z). Let z1(t) = projZ1

(z(t)) give the
corresponding trajectory of subsystem 1, and similarly let z2 give the trajectory of subsystem 2.
By Lemma 21, since the full system (3.36) is decomposable, z(t) ∈ proj−1(z1(t)) ∩ proj−1(z2(t)).
Recall that (v1, w1, q1) is a feasible solution to (D

(1)
T ), which denotes (DT ) solved with the dy-

namics of subsystem 1. By Lemma 15, v1(t, z1(t), k) is non-positive and decreasing along the
trajectory z1(t) for every t ∈ [0, T ], and similarly v2(t, z2(t), k) ≤ 0 for z2(t). The set V (3.42)
contains (x, k) in X × K, such that v1(t, z1, k) ≤ 0, v2(t, z2, k) ≤ 0 and t ∈ [0, T ]. Constraint
(R1) requires that wr(x, k) ≥ 1 if (x, k) ∈ V . Since z0, k, and d were arbitrary, the proof is
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complete.

3.4.4 Reconstruction Implementation

In this section, a relaxation of (R) is implemented with SOS polynomials and I show that the
system decomposition method reduces the upper bounds on memory usage. Suppose l ∈ N, and
suppose (vl1, w

l
1, q

l
1) and (vl2, w

l
2, q

l
2) are feasible solutions to (Dl

T1) and (Dl
T2), which are (Dl

T )

applied to Subsystems 1 and 2 respectively. Recall the sets HT , HZ , HK , and HX from Section
3.3.2, which contain the polynomials defining the sets [0, T ], Z, K, andX respectively. Let α ∈ N
and α ≥ l. I pose the following SDP to reconstruct the FRS:

inf
wαr

y>X×Kvec(wαr ) (Rα)

wαr − 1 ∈ Q2α(−v1,−v2, HT , HZ , HK) (R1α)

wαr ∈ Q2α(HX , HK) (R2α)

where x = projX(z) and wαr ∈ R2α[x, k]. As in (Dl), the vector yX×K contains moments
associated with the Lebesgue measure λX×K , so

∫
X×K w

α
r (x, k)dλX×K = yTX×Kvec(wαr ) for

w ∈ R2α[x,k] [MVTT14].
The proposed system decomposition approach reduces memory usage since solving (Dl

T ) for
each subsystem reduces the problem dimension. In particular, the reconstruction program (Rα),
only has two SOS constraints of degree 2α; hence, it has a less stringent memory requirement
than (Dl). For the rover example, solving (D4

T ) for subsystems (3.39) and (3.40) each requires
approximately 1.5 × 105 free variables and used 473 GB of RAM. The reconstruction program
(R5) requires approximately 5.5× 104 free variables and used 227 GB of RAM. In contrast, recall
from Section 3.3.3 that the RAM required for the full system with l = 3 was 504 GB. Figure
3.7 compares the FRS computed with the decomposed and reconstruction programs to an FRS
computed for the full system (3.30) by solving (D3).

With this section complete, one can compute a conservative approximation of the FRS for a
wide class of mobile ground robots. Note, by Theorem 24, the 1-super level sets of wr (and wαr )
contain XFRS; therefore, subsequent theorems and lemmas in Chapter 4 pertaining to w (and wl)
also hold for wr (and wαr ).
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Figure 3.6: Example of the system decomposition and reconstruction for the FRS of the Rover’s
trajectory-producing system (3.30). The robot is the rectangle with a triangle indicating its
heading. The FRS and robot at 0.0, 0.75, and 1.5 s following a trajectory with parameters
k = (1.1 m/s, 0.5 rad/s, 0.0 rad) are depicted from left to right. The vertical and horizontal
bars show back-projections of the 0 sub-level sets of v4

i from (D
(i)
T ) for i = 1, 2. The dashed rect-

angle indicates the intersection of the back projections. The far right figure shows the intersections
at each time, along with the 1-level set of w5

r as a solid line.
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Figure 3.7: Comparison of reach sets computed for lane change trajectories produced by (3.30).
The dark, dashed contours represent the 1-level set of w3 computed for the full system. The light
contours represent the 1-level set of w5

r , computed using the system decomposition and recon-
struction methods. The reach sets are computed with a time horizon of 1.5 s. Notice that the FRS
computed with system decomposition is almost entirely contained within the FRS that does not
use system decomposition; so, system decomposition reduces conservatism by enabling the com-
putation of a higher-degree FRS. Example trajectories are generated by simulating the high-fidelity
model for the rover. Subfigure (a) shows the trajectory parameter k = (2.0 m/s 0.5 rad/s, 0.0 rad).
Subfigure (b) shows the trajectory parameter k = (1.6 m/s 0.0 rad/s, 0.0 rad).
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3.5 Systems with Time-switching Dynamics

In receding-horizon motion planning, guaranteeing that a collision-free trajectory can be found at
the next planning iteration is challenging, if not impossible, in arbitrary, dynamic environments.
One school of thought is to plan a fail safe maneuver, that can be executed at the next planning
iteration in the event a feasible solution to the trajectory optimization program cannot be found.
For the ground robot case, braking to a stop is usually an appropriate fail-safe maneuver [SSSS17].
This motivates the computation of reachable sets for systems with time-switching dynamics that
consist of a moving, braking, and stopped phase.

Example 25. Consider the Segway in Example 4. Let τplan be the planning time and T be the time

horizon for a planned trajectory. The following parameterization for the velocity, vel : T×K → R
and yaw rate, θ̇ : T × K → R, produces a trajectory where the Segway moves for 1 planning

iteration, then brakes to a stop.

[
vel(t, k)

θ̇(t, k)

]
=



k1

k2

 , t ∈ [0, τplan],

(
1− t−τplan

τbrake

)k1

k2

 , t ∈ [τplan, τplan + τbrake]0

0

 , t ∈ [τplan + τbrake, T ].

(3.43)

To compute a FRS for the system in Example 25, one can treat the system as a hybrid system
[SVBT14] where the modes correspond to moving, braking, and stopping, and the guards are the
times at which the dynamics switch. Unfortunately solving a SOS program for such a system For
this example, the hybrid reachability analysis would increase the size of the FRS program roughly
by a factor of 3. Recall that §3.3.3 discussed how memory intensive SOS programming is. To avoid
the size increase, I developed a way to compute the FRSs separately for time-switching systems.
First define the reachable set for the time switching system during phase i ∈ {1, . . . , nphases}:

ZTFRS,i =
{

(t, z, k) ∈ [ti−1, ti]× Z ×K | ∃ z0 ∈ Z0, and d ∈ Ld

s.t. z = z̃(t), and for j ∈ {1, . . . , i}
˙̃z(τ) = fj(τ, z̃(τ), k) + gj(τ, z̃(τ), k) ◦ d(τ), for τ ∈ [tj−1, tj]

a.e. τ ∈ [tj−1, tj] and z̃(0) = z0},

(3.44)

where in this application t0 = 0 and tnphases = T . Minor modifications are made to (DT ) to compute

36



an FRS for the ith phase as follows

inf
vi,wi,qi

∫
[ti−1,ti]×Z×K

wi(t, z, k) dλ[ti−1,ti]×Z×K (DT i)

s.t. Lfivi(t, z, k) + qi(t, z, k) ≤ 0, (DT i1)

Lgivi(t, z, k) + qi(t, z, k) ≥ 0, (DT i2)

− Lgivi(t, z, k) + qi(t, z, k) ≥ 0, (DT i3)

qi(t, z, k) ≥ 0, (DT i4)

− vi(ti−1, z, k) ≥ 0, (DT i5)

wi(t, z, k) ≥ 0, (DT i6)

wi(t, z, k) + vi(t, z, k)− 1 ≥ 0. (DT i7)

Constraints (DT i1), (DT i2), (DT i3), (DT i4), (DT i6), and (DT i7) apply for all (t, z, k) ∈ [ti−1, ti]×
Z ×K. Constraint (DT i5) applies for all

(z, k) ∈

Z0 ×K, i = 1

{(z, k) ∈ Z ×K | vi−1(ti−1, z, k) ≤ 0}, otherwise
(3.45)

The given data in the problem are fi, gi, Z, Z0, K, and [ti−1, ti] for i ∈ {1, . . . , nphases}. The
infimum is taken over (v, w, q) ∈ C1([ti−1, ti]× Z ×K)× C([ti−1, ti]× Z ×K)× C([ti−1, ti]×
Z × K). Note that this formulation requires solving (DT i) in increasing order of i, as the initial
condition for each phase depends on the final reachable set for the prior phase. [SVBT14, Theorem
4] provides the following lemma:

Lemma 26. [SVBT14, Theorem 4] Let (vi, wi, qi) be a feasible solution to (DT i) for each phase

i ∈ {1, . . . , nphases}. Let ZTFRS,i define the FRS at a point in time during phase i as in (3.44) For

any (t, z, k) ∈ ZTFRS,i, vi(t, z, k) ≤ 0.

A sequence of SOS programs to solve each (DT i) can be implemented as described in §3.3.2,
and the relevant theorems related to feasibility and convergence in Remark 19 apply to the time-
switched system as well. An example of how the time-switching notation in (3.44) and (DT i)

applies to the running example is given below.

Example 27. Consider the Segway in Example 4 and the braking maneuver in Example 25. The

dynamics have 3 phases with i = {1, 2, 3} corresponding to {moving, braking, stopped}. The

dynamics for each phase, fi, are given by a Dubin’s car model with velocity and yaw rates defined

in order in (3.43). Tracking error functions gi are fit by applying Assumption 7 to each phase

separately. The switching times are given by t0 = 0, t1 = τplan, t2 = τbrake + τplan, and t3 = T .
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For collision checking, one may wish to compute an FRS for nI time intervals, possibly at a
finer division than each phase. First, specify a collection of closed time intervals t1, . . . , tnI , nI ∈
N, that cover T , meaning ∪nIj=1tj = T . Then each time interval can be written as tj = t ∈ [tj, tj+1];
note that t1 = [0, t1] and tnI = [tnI−1, T ]. Then the FRS for each interval is written as

XFRS,j =
{

(x, k) ∈ X ×K | ∃ t ∈ tj, z ∈ Z, i ∈ {1, . . . , N}

s.t. x = projX(z), (t, z, k) ∈ ZFRS,i}.
(3.46)

Given a solutions for (DT i), one can solve the following program to compute XFRS,j

inf
w

∫
X×K

w(x, k) dλX×K (DI)

s.t. w(x, k) ≥ 0, on (x, k) ∈ X ×K (DI1)

w(x, k)− 1 ≥ 0, on {(t, x, k) ∈ tj × Z ×K | vi(t, z, k) ≤ 0} (DI2)

Constraint (DI2) holds for each i ∈ {1, . . . , nphases}. The infimum is taken over w ∈ C(X ×K).

Theorem 28. Let (vi, w̃i, qi) be feasible solutions to (DT i) for i ∈ {1, . . . , nphases} and w be a

feasible solution to (DI). Then (x, k) ∈ XFRS,j implies w(x, k) ≥ 1.

Proof. Lemma 26 gives that vi is negative along trajectories produced by the trajectory tracking
model for i ∈ {1, . . . , nphases}. Constraint (DI1) provides that w is greater than 1 when v is
negative at any point in time t ∈ tj .

Program (DI) is implemented using the SOS polynomial procedure outlined in §3.3.2. Note that
in practice one only needs to consider phases with switching times ti ∈ tj when formulating
constraint (DI2), since points with ti 6∈ tj are not contained in ZFRS,i.
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CHAPTER 4

Reachability-based Trajectory Design: Theory

This chapter gives an overview of Reachability-based Trajectory Design (RTD). RTD is an al-
gorithm for provably safe, online trajectory optimization, using the reachable sets described in
Chapter 3, §4.1 introduces Algorithm 1; the general Algorithm used for online planning. §4.2
describes two methods for representing static obstacles are represented as constraints in the trajec-
tory optimization [KVJRV17, KVB+20]. §4.3 described two methods for representing dynamic
obstacles as constraints in the trajectory optimization [VKL+19, VLK+19].

4.1 Online Planning

This section describes the receding-horizon algorithm (Algorithm 1) used for online planning. In
§4.1.1 the algorithm is summarized and a general form of the optimization problem over the space
of trajectory parameters is given (see §3.2 for an explanation of trajectory parameters). In §4.1.2
sensing, and consequentially run time, limits to ensure the robot never has an at-fault collision are
defined.

4.1.1 Trajectory Optimization

This section presents assumptions about environment, the general trajectory optimization problem,
and the methodology used for online planning, Algorithm 1. Before discussing the environment,
note that Algorithm 1 is a receding-horizon planner, meaning it plans and begins executing a tra-
jectory of length T , every τplan s, where T > τplan.

The robot’s environment and assumptions about the information that it receives are now de-
scribed. Obstacles, the primary constraints in the trajectory optimization problem, are defined as
follows:

Definition 29. At any time t ≥ 0, an obstacle is a subset of X that the robot cannot intersect

without being in collision (e.g., physical objects or other actors). Denote the ith obstacle at t by

39



Oi
t ⊂ X for each i ∈ {1, . . . , nobs}.

The ability to sense and predict obstacles and their motion is required.

Assumption 30. The robot senses all obstacles within a distanceDsense > 0 of the robot’s footprint,

and predicts their behavior at least τplan + T seconds into the future.

Dsense is called the sensor horizon. Predictions are discussed next.

Definition 31. A conservative prediction is a map P : R≥0 → P(X) that contains all obstacles

within Dsense (Assumption 30) at each time t ≥ 0; i.e., P (t) ⊇
⋃
iO

i
t.

By 31, each obstacle is contained within its prediction, meaning a negative collision checking
against the prediction, results in a negative collision check against the obstacle. Creating predic-
tions that satisfy Assumption 30 and Definition 31 is the topic of open research, but is not the
focus of this Chapter. The focus of this chapter is provide tools for motion planners to incorporate
such predictions in a provably safe manner, for example the developed approach will be amenable
to using zonotope-based predictions from [KA17]. To set a lower bound on the sensor horizon,
assume the following:

Assumption 32. There are up to nobs,max obstacles sensed at any time; i.e., nobs ≤ nobs,max. The

speed of all obstacles is bounded by vobs,max ≥ 0.

Occluded regions can be treated as dynamic obstacles [YVJR19] that can be conservatively pre-
dicted as moving at vobs,max in any direction, or can be subject to specific rules.

The trajectory optimization problem to find optimal the trajectory parameters k ∈ K for the
robot to execute is now described. See §3.2 for a description and examples of the trajectory pa-
rameters. One wishes to optimize over the safe set of trajectory parameters, defined as

Definition 33. The safe set of trajectory parameters Ksafe is the set of parameters such that the

robot, executing trajectory k, will not intersect a prediction of an obstacle at any point in the time

horizon, i.e.

Ksafe = {k ∈ K | ego robot at zhi(t; zhi,0, k) ∩ P (t) = ∅, ∀ t ∈ [0, T ]}, (4.1)

where zhi(t; zhi,0, k) is the solution of (3.4) at time twith initial condition zhi,0 ∈ Zhi,0 and controller

uk.

Given a cost function J : K → R, that attempts to accomplish a goal specified by the high
level planner, the general trajectory optimization program is

min
k
J(k)

s.t. k ∈ Ksafe

(4.2)
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The major contribution in this chapter is to use the reachable sets from Chapter 3 to write down
the constraint in (4.2) as a set of inequality functions Φ : K → Rncons , i.e.

Φ(k) ≤ 0 =⇒ k ∈ Ksafe, (4.3)

where ncons is finite. §4.2 and §4.3 explain how to construct Φ, given predictions for static and dy-
namic obstacles, for now assume this is handled by a function called generateConstraints.
The trajectory optimization can then be written in standard form as a nonlinear program:

min
k∈K

J(k)

s.t. Φ(k) ≤ 0.
(4.4)

Remark 34. In the subsequent sections, strict inequalities, Φ(k) < 0, will be enforced. Strict

inequalities can be transformed into non-strict inequalities, as in (4.3), by adding a small positive

value, ε > 0, to the left side, i.e. Φ(k) + ε ≤ 0.

Trajectory optimization is solved in a receding-horizon fashion using Algorithm 1. Algorithm

Algorithm 1 RTD Online Planning
1: Require: k0 ∈ K, zhi,0, and cost function J : K → R.
2: Initialize: j = 0, tj = 0, k∗ = k0, zhi,j = zhi,0.
3: Loop: // Line 4 executes at the same time as Lines 5–9
4: Execute k∗ for [tj , tj + τplan)
5: P ← senseAndPredictObstacles().
6: Φ← generateConstraints(P ).
7: Try k∗ ← argmink{J(k) | Φ(k) ≤ 0, k ∈ K} for duration τplan
8: Catch continue // k∗ is unchanged
9: zhi,j+1 ← estimateFutureState(tj + τplan, zhi,j+1, k

∗)
10: tj+1 ← tj + τplan and j ← j + 1
11: End

1 takes in an initial trajectory parameter k0, initial state of the robot zhi,0, and a user-specified cost
function J : K → R that attempts to accomplish a goal given by the high level planner. The
algorithm begins by executing the initial trajectory parameter for τplan s in Line 4. Lines 5 and
6 sense obstacles, generate predictions, then generate constraints as in (4.3). Line 7 attempts to
solve (4.4) in τplan s. If successful Line 7 returns a new trajectory parameter k∗ to execute at the
next planning iteration; however there is no guarantee that (4.4) has a feasible solution or can
be solved within τplan s. If unsuccessful, the robot continues to execute the current plan (section
§4.1.2 discusses how to design k to ensure this is safe). Line 9 predicts the state of the robot for
the next planning iteration using the high-fidelity model 3.4. On hardware implementations, error
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in the state prediction in Line 9 must be accounted for in the FRS computation, as discussed in
Assumption 11. Line 10 updates the time and counters to prepare for the next iteration.

4.1.2 Fault and Sensing Limits

This section discusses the notion of fault and sensing limits required to ensure that a robot execut-
ing Algorithm 1 is always safe. In environments with dynamic obstacles it may be impossible to
guarantee collision avoidance; but one can at least guarantee that will not be at-fault for a collision
as defined below:

Definition 35. Let t ≥ 0 be the current time. If robot is moving at time t, it is not-at-fault if not

intersecting any obstacle Oi
t. If the robot is stationary at time t, it is always not-at-fault.

A more complicated definition of fault could also be considered, such as one that requires giving
surrounding actors enough space to brake to a stop or safely swerve away from the ego robot.
This would require placing assumptions on how surrounding vehicles or agents respond to the ego
robot’s motion (e.g. reaction time or rationality) [SSSS17].

Definition 35, coupled with 31, and Algorithm 1 Line 8 motivates the idea of planning fail-safe

maneuvers. The idea of fail-safe maneuvers is to plan trajectories that end in a not-at-fault state,
so that, if the robot cannot find a feasible trajectory in the next planning iteration, it can always
execute the fail safe computed at the previous one. Similar strategies have been adopted in the
literature [KTF+09, PA18]. I make the following remark about fail-safe maneuvers for this work.

Remark 36. In this work, in accordance with Definition 35, the fail-safe maneuver is braking to a

stop; then the robot stays stopped until a new input is found. In practice, this means to guarantee

not-at-fault planning the trajectory-producing model (3.2) used in the reachable set computation,

will end with a braking maneuver (see Example 25).

Recall that the robot has to plan using the predictions available at the beginning of each plan-
ning iteration. So, it must be able to sense obstacles that could cause a collision while it tracks
a desired trajectory that begins at the end of each planning iteration. This means there must be a
lower bound on the robot’s sensor horizon (i.e., the robot must detect obstacles from sufficiently
far away). First assume the existence of a bounding function for ego robot’s motion:

Assumption 37. There is a function Dmax : [0, T ] → R≥0 that bounds the maximum distance the

robot can travel over the planning horizon

max
k∈K
‖projX(zhi(t; zhi,0, k)− zhi,0)‖2 ≤ Dmax(t) (4.5)
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where zhi(t; zhi,0, k) indicates trajectories of (3.4) at time t, starting from zhi,0 ∈ Zhi,0 with con-

troller uk. This assumption is valid because of Assumptions 2 and 3 and that T is finite.

Recall that obstacles have a maximum speed vobs,max by Definition 29. The minimum sensor hori-
zon required to guarantee not-at-fault planning with Algorithm 1 is specified in the following
theorem.

Theorem 38. Let the current time be 0 WLOG, Dmax be given as in Assumption 37, and suppose

the robot is currently executing a trajectory that is not-at-fault for t ∈ [0, T ] (Algorithm 1 Line 4)

while planning with Algorithm 1, with fail-safe maneuvers as in Remark 36. If the robot’s sensor

horizon is

Dsense ≥ Dmax(T ) +Dmax(τplan) + (T + τplan)vobs,max, (4.6)

Then, no obstacle whose points all lie farther than Dsense from the robot at the current time can

cause an at-fault collision with the robot at any t′ ∈ [0, τplan + T ].

Proof. The proof focuses on the interval [0, τplan +T ], because as the robot is planning a trajectory
to begin executing at τplan; while the ego robot executes the current desired trajectory, only obstacles
within a distance d1 = Dmax(τplan) + τplanvobs,max could cause a collision. There are 2 possible
scenarios. First the robot finds a new feasible trajectory (Algorithm 1 Line 7 is successful). Then,
only obstacles within at least d2 = Dmax(T ) + Tvobs,max of the robot at time t = τplan could cause
a collision when the robot begins tracking the new desired trajectory. In this case Dsense must be
greater than d1 + d2, which it is by (4.6). In the second scenario, the robot continues executing the
previous plan, which ends in a braking maneuver as per Remark 36. Then, obstacles within at least
d2 of the robot at time t = 0 could cause a collision. Since Dsense > d2, the proof is complete.

Note that the minimum sensor horizon (4.6) is a function of the length of the planned trajectory T ,
replanning rate τplan, and speed of the robot and obstacles. Since Dsense is also limited by hardware
capabilities, it is important that τplan+T is low, especially when the speed of the robot and obstacles
is high. An example of an autonomous vehicle operating on a highway illustrates this relationship

Example 39. Suppose an autonomous vehicle driving in a straight line has a trajectory parame-

terization where it moves at a commanded speed v for t ∈ [0, τplan] then decelerates to a stop at

8 m/s2. Suppose the perception module is able to sense obstacles within Dsense = 100 m. Assume

the ego vehicle has a maximum speed of 25 m/s, so Dmax(t) = 25t. Assume obstacles are static,
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vobs,max = 0. The planning time τplan must be

100 ≥ 25(T ) + 25(τplan) (4.7)

100 ≥ 25

(
25

8
+ 2τplan

)
(4.8)

0.4375 ≥ τplan (4.9)

The bound in Theorem 38 assumes the worst-case motion for the obstacle. In environments with
dynamic obstacle, it may be useful to consider cases that consider a bound on the relative velocity
between the ego robot and other obstacles. For driving tasks such as in Example 39, the static
obstacle case is equivalent to an assumption that other vehicles will not drive towards the ego
vehicle and cause a head-on collision.

4.2 Static Obstacles

This section discusses how to formulate constraints for the trajectory optimization program for
static obstacles. Two types of obstacle representations are covered. Semi-algebraic sets in S4.2.1
from [KVJRV17], and Discrete points in S4.2.2 from [KVB+20]. In this section assume (D) has
been solved with Sums-of-Squares programming as in §3.3.2, so a polynomial w : X ×K → R
whose 1 superlevel set contains the forward reachable set of the ego robot at all timepoints t ∈
[0, T ] (see XFRS (3.18)) exists. Also assume that obstacles are static so P (t1) ≡ P (t2) for any
t1, t2 ∈ [0, T ]; in this section P is written without time as an argument.

4.2.1 Semi-algebraic Sets

In this section assume predictions are represented as semi-algebraic sets

Assumption 40. The prediction, P , of static obstacles is represented by a collection of semi-

algebraic sets, defined in the space of position X .

P = {x ∈ X | hPi(x) ≥ 0, for any i ∈ {1, . . . , nobs}} (4.10)

where hP are polynomial functions.

The outerapproximation of the XFRS, given by the 1 superlevel set of w from the SOS imple-
mentation of (D), is intersected with the obstacles to generate an innerapproximation of the set of
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Figure 4.1: An example of set intersection, with P chosen as three points in X . On the right
is the (x, y) subspace of X with each point obstacle shown, and the vehicle plotted in blue. On
the left is the trajectory parameter space K, with three dashed-line contours containing an outer
approximation of the trajectory parameters that would cause a collision with each point shown on
the right (the colors match between the points and contours). The 0 level set of Φ returned from the
set intersection program (4.11) is shown by the green contour (with the sub-level set to the left),
which outer approximates all trajectory parameters that could result in collisions with any of the
three points in P . Therefore, Ksafe is inner-approximated.

safe trajectory parameters with the following set intersection program

inf
Φ

∫
K

Φ(k) dλK (4.11)

s.t. Φ(k) ≥ 0, on {(x, k) ∈ P ×K | w(x, k) ≥ 1},

Φ(k) + 1 ≥ 0, on K,

where w is the given data and the infimum is taken over Φ ∈ C(K). Since, by Assumption 40 all
of the functions in (4.11) are polynomial and it can implemented with SOS programming.

Theorem 41. Let w be a feasible function to (D), and Φ : K → R be a feasible function to (4.11).
Then {k ∈ K | Φ(k) < 0} ⊂ Ksafe.

Proof. I will give a proof by contradiction. Let zhi(t; zhi,0, k) be a trajectory of the robot (3.4) at
time t, with initial condition zhi,0, controller uk that intersects P , and Φ(k) < 0. By Lemmas 9
and 16, w(projX(zhi(t; zhi,0, k)), k) ≥ 1 at any t ∈ [0, T ]. The first constraint in (4.11) gives that
Φ(k) ≥ 0 for any (x, k) ∈ P ×K where w(x, k) ≥ 1, a contradiction.

As a result of Theorem 41, one can use Φ(k) < 0, as an inequality constraint in (4.4) to guarantee
collision avoidance. Figure 4.1 shows an example of Φ returned from the set intersection program
(4.11) for 3 point obstacles. The vehicle dynamic model is the Segway from Example 4. Figure 4.2
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Figure 4.2: The top plot in subplot (a) shows an example result where vehicle begins on the left and
reaches a randomly-generated goal, plotted as a blue circle. Every τplan = 0.5 s, the vehicle replans
its trajectory, shown by an asterisk plotted on the global trajectory in blue. In the bottom-left
subplot, an obstacle was constructed to force an emergency braking maneuver. In the bottom-right
subplot, an obstacle was constructed with a hole, but the FRS is overly conservative, resulting in
a braking maneuver. Subplot (b) shows the mean set intersection time (4.11, top) and trajectory
optimization time (4.4, bottom) versus the number of obstacles. Set intersection takes up to 3 s,
and scales linearly with the number of obstacles. Trajectory optimization takes around 80 ms and
has low correlation with number of obstacles.

(a) shows the Segway model navigating fields of line obstacles by solving the trajectory optimiza-
tion program (4.4) with Φ from (4.11). 1000 trials with randomly placed obstacles were conducted
and no crashes were observed. There are some gaps the Segway is not able to pass through due to
conservatism of the FRS. Figure 4.2 (b) shows timing results of (4.11) and (4.4) for 1000 random
trials with varying numbers of obstacles. (4.4) is able to solve within 0.1 s with a low correlation
on the number of obstacles; however (4.4) takes up to 3 s to solve, and increases linearly with the
number of obstacles.

4.2.2 Discrete Points

This section presents a method of representing the robot’s environment as a finite number of dis-
crete points. Representing the obstacles as discrete points means the inequality constraints Φ, end
up being a list of polynomial constraints, where w, from (D), is evaluated at each obstacle point,
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i.e. This leads to a finite number of inequality constraints for (4.4):

Φ(k) =


w(p1, k)− 1 ≤ 0

w(p2, k)− 1 ≤ 0
...

w(pn, k)− 1 ≤ 0

 =⇒ k ∈ Ksafe (4.12)

where Xp =
⋃n
i=1 pi is a set of discrete points in X . This method eliminates the set intersection

intersection program from the prior section, (4.11), and replaces it with computations to generate
Xp. The results Chapter 5 show this enables real time operation of Algorithm 1.

This section starts with preliminary assumptions in §4.2.2.1. §4.2.2.2 defines and motivates
important quantities for buffering obstacles. §4.2.2.3 gives examples of the quantities for buffering
rectangular and circular robots. §4.2.2.4 summaries Algorithm 2, which constructs Xp. A more
thorough treatment for arbitrary convex shapes can be found in Appendix B.

4.2.2.1 Preliminary Assumptions

This section makes necessary assumptions about the robot footprint and obstacles.

Assumption 42. The robot’s footprint X0 ⊂ X is compact and convex with nonzero volume.

Footprints fulfilling this assumption, such as circles and rectangles, are common for ground robots
(consider the Segway and Rover in Figure 3.2).

The following general representation is used for predictions:

Assumption 43. Each prediction Pi ∈ P is a closed polygon with a finite number of vertices and

edges.

Note that these polygons are not necessarily convex. This assumption holds for common obstacle
representations such as occupancy grids or line segments fit to planar point clouds. If an obstacle is
not a closed polygon within the sensor horizon (such as a long wall), it can be closed by intersection
with the sensor horizonDsense (as in Assumption 30), which can be over-approximated by a regular
polygon (the intersection is a closed set [Mun00, Theorem 17.1]). Note that P may contain one
or more obstacles; the definitions and proofs in this section still hold if P is a union of polygons,
which is itself a (potentially disjoint) polygon [FHW12]. Therefore, P is referred to as a singular
obstacle for ease of exposition.

A projection mapping is now defined to to help navigate between state space and the space of
parameters. Suppose that the tuple (v, w, q) is an optimal solution to Program (D) from Section
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3.3.1. Then by Lemma 16, w : X × K → R over approximates an indicator function on XFRS.
Define the set-valued maps πK : P(X)→ P(K) and πX : P(K)→ P(X) as

πK(X ′) = {k ∈ K | ∃ x ∈ X ′ s.t. w(x, k) ≥ 1}, (4.13)

πX(K ′) = {x ∈ X | ∃ k ∈ K ′ s.t. w(x, k) ≥ 1}. (4.14)

πK is called the FRS parameter projection map. If X ′ ⊂ X , πK(X ′) are the parameters that could
cause a collision with X ′. The word “projection” is used for these operators to relate them to the
projection operators projZi in Definition 6. Similarly, πX and πK return points in a subspace of the
reachable set XFRS that are identified by the function w. The utility of this map as it relates to point
obstacles is demonstrated with the following lemma.

Lemma 44. Suppose that the tuple (v, w, q) is an optimal solution to Program (D), and πK is

defined as in (4.13). Consider an arbitrary point p ∈ X \ X0. Let k ∈ πK(p)C . At t = 0, let the

robot, described by the high-fidelity model (3.4), be at the state zhi,0 ∈ Zhi. Suppose the robot tracks

the trajectory parameterized by k, producing the high-fidelity model trajectory zhi : [0, T ] → Zhi.

Then, no point on the robot’s body ever reaches p. More precisely, there does not exist any pair

(t, zhi,0) ∈ [0, T ]× Zhi,0 such that p = projX(zhi(t)).

Proof. Suppose for the sake of contradiction that there exists some t ∈ [0, T ] and zhi,0 ∈ Zhi,0 for
which p = projX(zhi(t)). By Lemma 9, there exists d ∈ Ld such that the trajectory-tracking model
(3.13) has a trajectory z : [0, T ] → Z for which projZ(zhi(t)) = z(t) at t. Then, w(p, k) ≥ 1 by
Lemma 16. But, by (4.13), k ∈ πK(p)C implies that w(p, k) < 1, which is a contradiction.

4.2.2.2 Buffer and Point Spacing Motivation

The goal of this section is to construct the discretized obstacle, Xp ⊂ X , such that if the robot
cannot collide with the discretized points, it cannot collide with the obstacle. To that end, con-
sider constructing Xp from points on the boundary of P , as illustrated in Figure 4.3b. Since the
high-fidelity model of the robot (3.1) produces continuous trajectories in the subspace X (see
Assumption 2), the robot cannot collide with an obstacle without passing through the obstacle’s
boundary.

However, constructing Xp with a finite number of points on ∂P may be insufficient to prevent
collisions. To see why, consider a candidate discretized obstacle Xp = {p1, p2, . . . , pn} ⊂ ∂P ,
with n ∈ N. Then any k ∈ πK(Xp) may cause the robot to reach one or more pi ∈ Xp. Suppose
q ∈ πK(Xp)

C . There is no guarantee that πX(q) ∩ P = ∅, i.e. that q would not cause a collision
with the obstacle, because the robot may be able to travel between adjacent points in Xp as shown
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Figure 4.3: Motivation and method for buffering and discretizing predictions. The robot has foot-
print X0 in the xy-subspace X on the right, and the trajectory parameter space K is on the left.
In Figure 4.3a, the P consists of two points, to illustrate the map πK , which maps each point to a
subset of K containing all trajectory parameters that could cause the robot to reach either point;
since q ∈ πK(P )C , by Lemma 44, the robot cannot collide with either obstacle point. Figure
4.3b shows an arbitrary polygonal prediction (as in Assumption 43) with a set of discrete points
{p1, . . . , pn} sampled from its boundary. These points are mapped to the subset of the parameter
space K labeled πK (

⋃n
i=1 pi). A parameter q is chosen outside of the parameters corresponding

to these points, but still lies within the projection of the actual obstacle πK(Xobs), and therefore
may cause a collision as illustrated by the set πX(q). Figure 4.3c shows the same obstacle, but
buffered. The boundary of the buffered obstacle is sampled to produce the discrete, finite set Xp.
The trajectory parameters corresponding to Xp are a superset of the unsafe parameters πK(Xobs),
so the robot cannot collide with the obstacle despite the FRS spatial projection πX(q) penetrating
between two of the points of Xp.
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Figure 4.4: Maximum penetration distance b̄, as defined in Lemma 46. X0 is the robot’s footprint,
translated and rotated by RT , and Ir̄ ⊂ (X \X0) is a line segment of length r̄.

in Figure 4.3b. To address this issue, the obstacle is buffered, then points from its boundary are
selected with a maximum point spacing allowed between the points.

The purpose of this section, then, is to define the buffer and point spacing to enable constructing
Xp.

Definition 45. Let b > 0 be a distance, called a buffer. The buffered prediction, Pb ⊃ P , is a

compact subset of X such that the maximum Euclidean distance between P and Pb is b:

Pb = {p ∈ X | ∃ p′ ∈ P s.t. ‖p− p′‖2 ≤ b} . (4.15)

Buffering an obstacle by b reduces the amount of free space available for the robot to navigate
through. One can find an upper bound b̄ on b, that gives the maximum distance the robot’s footprint
can penetrate

Lemma 46. Let X0 be the robot’s footprint at time 0 (as in Definition 12), with width r̄ (as in

Definition 49). Let Ir̄ ⊂ (X \ X0) be a line segment of length r̄. Then there exists a maximum
penetration distance b̄ that can be achieved by passing X0 through Ir̄.

Figure 4.4 provides an example of the quantity b̄ as defined in Lemma 46.
Having established the buffer b and its upper bound b̄, the point spacing can be defined. First,

the following lemma describes the geometry of the buffered obstacle.

Lemma 47. The boundary of the buffered obstacle, consists of a finite set of line segments L and

a finite set of arcs A of radius b. More precisely, let nL ∈ N (resp. nA ∈ N) denote the number of

line segments (resp. arcs). Let Li ∈ L (resp. Ai ∈ A) denote the ith line segment (resp. arc). Note

that each Li and Ai is a subset of X . Then the boundary of the buffered obstacle can be written as
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the union of all of the lines and arcs:

∂Pb =

(
nL⋃
i=1

Li

)
∪

(
nA⋃
i=1

Ai

)
. (4.16)

Now, consider a discretized obstacle Xp that is generated by selecting a set of points from ∂Pb

such that the points are spaced by a distance r > 0 along the line segments and by a distance a > 0

along the arcs, as illustrated in Figure 4.3c.

Definition 48. r > 0 is called the point spacing and a > 0 the arc point spacing.

Section 4.2.2.3 shows that, by selecting r and a as function of the buffer b, the robot cannot pass
completely between any pair of points in Xp and collide with an obstacle. Similar to the upper
bound b̄ on the buffer, one can find an upper bound r̄ for r.

Definition 49. The quantity r̄ denotes the maximum point spacing, which is equal to the width of

the robot footprint X0.

Recall that b̄ limits the buffer b, to prevent obstacles from taking up too much free space. On
the other hand, r̄ makes sure that the point spacing is small enough that the discretized obstacle can
be used to ensure safety; that is, the points in the Xp must be close enough that the robot cannot
pass between them. r itself is used as an upper bound of a. Now the geometric quantities b, b̄, r, a,
and r̄ are motivated Examples for common robot footprints are given in the next section.

4.2.2.3 Examples for Common Footprints

This section provides examples of r̄, b̄, r, and a for rectangular and circular robot footprints. For
rigorous proofs of how to derive these quantities for arbitrary convex robot footprints, refer to
Appendix B.

Example 50. (Rectangular footprint). Suppose the robot footprint, X0, is a rectangle of length

L and width W , with L > W . Then r̄ = W and b̄ = W/2. Given b ∈ (0, b̄), r = 2b and

a = 2b sin(π/4). A visual proof is in Figure 4.5a.

Example 51. (Circular footprint). Suppose the robot footprintX0 is a circle of radiusR. Then r̄ =

2R and b̄ = R. Pick b ∈ (0, b̄). Define the positive angles θ1 = cos−1
(
R−b
R

)
and θ2 = cos−1

(
b

2R

)
.

Then set r = 2R sin θ1 and a = 2b sin θ2. A visual proof is in Figure 4.5b.

This completes finding the geometric quantities r̄, b̄, r, and a. The next section uses these quanti-
ties to construct the discretized prediction, and proves that this enables identifying the set of safe
trajectory parameters Ksafe.
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Figure 4.5: An illustration of the numbers r̄, b, r, and a for rectangular and circular robot footprints
(see Examples 50 and 51). The left subfigure shows a rectangular footprint, with length L and
width W . The right subfigure shows a circular robot footprint with diameter 2R. The maximum
penetration distance b̄ is omitted for clarity.

4.2.2.4 Constructing the discretized Prediction

Now I present an algorithm to take a buffered obstacle and discretize its boundary, producing the
discretized obstacle Xp. Theorem 52 proves that, if the robot cannot collide with any point in Xp,
then it also cannot collide with the obstacle. Finally, sources of conservatism in the discretization
approach are discussed.

To get the buffered obstacle, let Xobs consist of polygons (as in Assumption 43). Suppose X0

is the robot’s footprint at time 0 (as in Definition 12), which is compact and convex with nonzero
volume (as in Assumption 42). Suppose that r̄ as in Definition 49 and b̄ is given as discussed in
§4.2.2.2. Select b ∈ (0, b̄), then determine r and a. Buffer the obstacle to produce Pb as in (4.15).
Now, ∂Pb is discretized.

The first two functions extract the lines and arcs from the boundary of the buffered obstacle.
Then, by Lemma 47, ∂Pb = L ∪ A where L is a finite set of closed line segments and A is a
finite set of closed arcs. Let nL be the number of line segments and nA be the number of arcs.
For i = 1, . . . , nL, let Li ⊂ L denote the ith segment, and similarly Ai ⊂ A for the ith arc. Then
the function extractLines takes in the buffered obstacle Pb and returns the set L of all line
segments on ∂Pb. Similarly, the function extractArcs takes in Pb and returns the set A of all
circular arcs on ∂Pb.

A third function, sample: P(R2)×R→ P(R2), is defined to discretize the line segments and
arcs. Suppose S ⊂ R2 is a connected curve with exactly two endpoints and no self-intersections.
Let s > 0 be a distance. Then P = sample(S, s) is a set containing the endpoints of S. Fur-
thermore, if the total arclength along S is greater than s, then P also contains a finite number of
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points spaced along S such that, for any point in P , there exists at least one other point that is
no farther away than the arclength s along S. Note that the line segments in L and the arcs in
A can be parameterized; then the sample function can be implemented using interpolation of a
parameterized curve.

Algorithm 2 Construct Discretized Obstacle (discretizeObs)
1: Require: Pb ⊂ X , r ∈ R≥0, a ∈ R≥0

2: L← extractLines (Pb) , A← extractArcs (Pb)
3: Xp ← ∅
4: For each: i ∈ {1, . . . , nL}
5: Xp ← Xp ∪ sample(Li, r)
6: end
7: For each: j ∈ {1, . . . , nA}
8: Xp ← Xp ∪ sample(Aj , a)
9: end

10: Return Xp

Suppose that Xp is constructed from a buffered prediction Pb using Algorithm 2. Then Xp

contains the endpoints of each line segment or arc of ∂Pb, since it is constructed using sample.
In addition, for each line segment of ∂Pb, Xp contains additional points spaced along the line
segment such that each point is within the distance r (in the 2-norm) from at least one other point.
Similarly, for each arc of ∂Pb, Xp contains points spaced along the arc such that each point is
within the arclength a of at least one other point; this implies that distance between any pair of
adjacent points along each arc is no more than a. Finally, note that |Xp| is finite, because there are
a finite number of polygons in P (see Assumption 43), each polygon has a finite number of edges,
and r, a > 0.

4.2.2.5 Proving Safety

Now, the notion that Xp represents the obstacles P is formalized. Recall that the purpose of
constructing Xp is to write a finite list of ineqaulity constraints for the trajectory optimization
program. To ensure safety, the set πK(Xp) must contain all possible unsafe trajectory parameters
πK(P ), which is the complement of the set Ksafe, leading to the following theorem:

Theorem 52. Let X0 be the robot’s footprint at time 0 as in Definition 12, with width r̄ as in

Definition 49. Let P ⊂ (X \ X0) be a set of predictions as in Definition 31. Suppose that the

maximum penetration depth b̄ is found for X0 as in Lemma 46. Pick b ∈ (0, b̄), and find the

point spacing r and the arc point spacing a. Construct the discretized obstacle Xp in Algorithm 2.

Then, the set of all unsafe trajectory parameters corresponding to P is a subset of the trajectory

parameters corresponding to Xp, i.e. πK(Xp) ⊇ πK(P ).
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Figure 4.6: The right plot shows the 1 superlevel set of w, πX(k∗), in green, and the obstacle
discretization, Xp, for two polygon obstacles as red points. The left plot shows the projection of
Xp into the parameter space πK(Xp) in red and the parameter k∗ as a green point. The reachable
set computation is described in §5.2.2. The buffer distances are b = 0.05 m, r = 0.1 m, and
a = 0.07, computed with Example 50.

Proof. Provided in Appendix B

Theorem 52 provides the main result of this section: πK(Xp)
C ⊆ Ksafe. In other words, one can

use Xp to inner approximate Ksafe by evaluating the w polynomials as in (4.12). Figure 4.6 shows
the resulting discretization XP and sets of unsafe parameters πK(Xp) for the reachable set of the
autonomous vehicle model described in §5.2.

4.3 Dynamic Obstacles

This section focuses on extending the discrete obstacle representation presented in §4.2.2 to dy-
namic obstacles. Each of these methods will develop constraints at a set of discrete pointsXp ⊂ X

for their collision checks, i.e. Φ will resemble (4.12). Two methodologies are covered. §4.3.1
performs a collision check at discrete time points and guarantees collision avoidance between time
steps by formulating a buffer [VKL+19]. Unfortunately, the buffer must be applied uniformly;
which can greatly reduces the free space a robot can operate in. §4.3.2 performs a collision check
over time intervals, which eliminates the need to buffer for time discreteization [VKL+19]. The
time interval approach is preferable since conservatism is introduced along the trajectories of the
robot and prediction as oppose to being applied uniformly.

4.3.1 Collision Check at Discrete Time Points

This section covers a method to perform collision checks at discrete time points. Assume that
predictions are given as in Definition 31 and Assumption 43. A time discretization is selected to
perform a collision check at, meaning the trajectory optimization will ensure collision avoidance a
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finite set of timepoints

Tdisc = {jτdisc}
npred
j=0 , (4.17)

where jnpred is equal to the time horizon T . Enforcing the collision check at timepoints in Tdisc,
does not account for movement by the ego vehicle and robot between timesteps. A buffer bdisc must
be added to each prediction, where buffer is defined as in Definition 45, to account for all possible
actions that can happen between timesteps

Lemma 53. Pick b ∈ (0,W/2) and a time discretization τdisc. Select a temporal buffer, bdisc,

satisfying

bdisc ≥ τdisc(vmax + vobs,max)/2, (4.18)

where vmax and vobs,max are the maximum speed of robot and obstacle. Suppose Pbdisc is a prediction.

Suppose the current time is t1 ∈ [0, T − τdisc], let t2 ∈ t1 + (0, τdisc). If the robot does not intersect

the prediction Pbdisc(t1) at t1 or Pbdisc(t1 + τdisc) at t1 + τdisc. Then it does not intersect the prediction

Pbdisc(t2) at t2.

Proof. Note the existence of vmax follows from Assumptions 2 and vobs,max is given by 32. By
definition 45, and the fact that it does not intersect the prediction, the closest that the robot can be
to any obstacle at time t1 is greater than bdisc. Similarly, the closest it can be at time t1 + τdisc is
greater than bdisc. So, for the robot to collide with any obstacle over [t1, t1 + τdisc], the robot must
travel strictly more than 2bdisc relative to the obstacle. By construction of (4.18), this is not possible
unless the robot or the obstacle exceeds its maximum speed.

A similar discretization method from Algorithm 2 is applied to the prediction at each timestep and
collision check against a time varying forward-reachable set. However, unlike the static obstacle
case, the assumption that the robot enters predictions from the outside is no longer valid. To
construct a set of discrete points for the interior, notice that by Assumption 43, at time t, the set
Pb(t) ⊂ X is the union of a finite set of closed polygons. Define a function cover:P(X) ×
R≥0 → X as follows. Given Pb(t), a point spacing r, and the width of the robot footprint, W , let
cover(Pb(t),W ) return a (finite) set A ⊂ X , such that, points in A are contained within Pb, and
if BW/2(a) is a 2-norm ball of radius W/2 centered at a, then there exists a′ ∈ A \ {a} for which
a′ ∈ BW/2(a). Furthermore, the union of all such balls covers Pb(t) (i.e.,

⋃
a∈ABW/2(a) ⊇ Pb(t)).

In short, Algorithm 3 returns points with a maximum spacing r along the boundary of Pb(t),
and points in the interior with a maximum spacing of W/2, where W is the width of the robot.
Figure 4.7 shows a cartoon of the FRS being intersected with such predictions.
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Algorithm 3 Construct Discretized Obstacle with Interior Points (discretizeObsWithInterior)
1: Require: Pb ⊂ X , r ∈ R≥0, a ∈ R≥0, W ∈ R≥0

2: L← extractLines (Pb) , A← extractArcs (Pb)
3: Xp ← ∅
4: For each: i ∈ {1, . . . , nL}
5: Xp ← Xp ∪ sample(Li, r)
6: end
7: For each: j ∈ {1, . . . , nA}
8: Xp ← Xp ∪ sample(Aj , a)
9: end

10: Xp ← Xp ∪ cover(Pb,W )
11: Return Xp

discretized prediction

FRS at
FRS at

Figure 4.7: Discretization of a prediction Pb+bdisc as in Theorem 54. The robot plans a not-at-fault
trajectory for any t ∈ T given the prediction (right to left). The FRS is shown left to right by the
1 superlevel set of w from (DT ). Temporal discretization is shown at two times, t1 and t2; at each
time, the prediction is spatially discretized with points along the boundary space r apart and points
in the interior space W/2 apart, as in Algorithm 3, where W is the ego robot’s width.
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Theorem 54. Let (v, w, q) be a feasible solution to (DT ) from §3.3.1, τdisc be a time discretization

as specified in (4.17), bdisc be as in 4.18, and the quantities b, r, a slected as in §4.2.2.2. Let W be

the width of the vehicle. Then for k ∈ K :

w(jτdisc, pj, k)− 1 ≤ 0, ∀pj ∈ Xp(tj), j ∈ {0, . . . , npred} =⇒ k ∈ Ksafe (4.19)

where Xp(tj) is generated by applying Algorithm 3 to buffered predictions at the j th timestep. The

predictions, Pb+bdisc(tj), are constructed as in Definition 45.

Proof. First note that (4.19) guarantees that the robot will not be in collision with the predic-
tions at any t ∈ Tdisc. This follows directly from first applying Theorem 52, which indicates
that a robot lying outside of the obstacle cannot intersect both the prediction and obstacle. The
points in the interior ensure that it is not possible for the robot to lie within the prediction without
w(jτdisc, pj, k) ≥ 1 for at least one pj ∈ Xp(tj). I prove this by contradiction. Let k ∈ K. Suppose
for contradiction that no pj ∈ πX(k). Then there exists x ∈ πK(X) for which ‖x − pj‖2 > W/2,
since the 1 superlevel set ofw contains the vehicle footprint at tj; but then Pb+bdisc(tj) is not covered
by balls of radius W/2 as defined in cover. Lemma 53 provides that there will be no collision at
any t ∈ [0, T ] \ Tdisc.

4.3.2 Collision Check with Time Intervals

Although the discrete time collision check discussed in §4.3.1 is provably safe, it can be con-
servative since the buffer bdisc has to be applied uniformly around each prediction. Consider an
autonomous driving as an example, where the maximum speeds of the robot and obstacles, vmax

and vobs,max, are high. The high speeds increase the buffer bdisc as per (4.18); which is applied uni-
formly to each prediction, meaning it decreases free space in both the longitudinal (road aligned)
and lateral directions. With vehicles the longitudinal velocities are generally large compared to
the lateral velocities, so developing a collision check that takes this directionality into account is
motivated; since vehicles operate in laterally narrow lanes. In this section collision checks are
performed over time intervals instead of at discrete time points. In this case, conservatism is intro-
duced along the trajectories of the robot and obstacles, which §5.3 shows is favorable to applying
uniform buffers for driving applications.

For out collision check, first specify a collection of closed time intervals t1, . . . , tnI , nI ∈ N,
that cover T , meaning ∪nIj=1tj = T . Each FRS interval can be written as tj = t ∈ [tj, tj+1]; note
that t1 = [0, t1] and tnI = [tnI−1, T ]. Reachable points (x, k) ∈ X × K, independent of time,
are computed for each FRS interval, and predictions of obstacle motion during each interval are
treated as static. Since the FRS intervals cover T , there is no buffer to compensate for points that
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Figure 4.8: Subfigure (a) shows trajectories of an obstacle (red rectangles) and the ego vehicle
(blue rectangles) for a time horizon of T = 7.5 s. The ego vehicle’s trajectory is a solution to (3.2).
The 0-sublevel set of v (green dashed) and 1-superlevel set of wj (green solid) are shown for the
time interval tj = [2.5, 3.0] s. The obstacle prediction (light red) and discretization (dark red) are
shown for the same interval. The white area of Subfigure (b) is the projection of the discrete points
Xp(tj), into the (k1, k2) subspace. The trajectory parameter used by the ego vehicle is shown as a
dot.

are reachable between discrete times. The FRS in each FRS interval, XFRS,j (3.46), is described by
a polynomial wj : X ×K → R for each tj such that, if t ∈ tj and XFRS,j , then wj(x, k) ≥ 1. See
program (DI) in §3.5 and §3.3.2 for an explanation of how to compute such a polynomial.

Each FRS is collision checked against a prediction containing the obstacles’ motion over a
matching time interval. This requires a modified definition of predictions

Definition 55. A conservative prediction over a time interval is a map P : [t1, t2] → P(X), with

0 ≤ t1 ≤ t2 that contains all obstacles within Dsense (Assumption 30) at any time t ∈ [t1, t2]; i.e.,

P ([t1, t2]) ⊇
⋃
i∈{1,... nobs},t∈[t1,t2] O

i
t. For notational convenience, write P evaluated for an interval

tj as P (tj)

As in Assumption 43, assume that each prediction is a union of a finite number of closed polygons.
Then apply the same discretization as described in Algorithm 3 to each time interval tj to ensure
that the FRS of the robot does not intersect the prediction of the obstacle. The proof of collision
avoidance for each time interval is the same as Theorem 54, without the buffer for time discretiza-
tion. Enforcing this constraint on all tj , ensures the robot is collision free for all t ∈ [0, T ]. A
depiction of the collision check for one time interval tj , along with unsafe parameters given by
πK(Xp(tj)) is shown in Figure 4.8.
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CHAPTER 5

Reachability-based Trajectory Design:
Demonstrations and Comparisons

This chapter presents demonstrations of RTD and comparisons of RTD against state-of-the-art
motion planning algorithms. §5.1 compares RTD against rapidly exploring random tree (RRT)
and nonlinear model predictive control (NMPC) algorithms in simulations with static obstacles
using the Segway and Rover in Figure 3.2. Hardware demonstrations with each platform are
also provided. §5.2 provides an implementation of RTD on a Carsim model of a Ford Fusion,
navigating a test track with static obstacles. §5.3 compares RTD against state lattice and MPC
planners in simulations with dynamic obstacles. The Segway, and a small electric vehicle are used
as platforms for the simulation and hardware demonstrations.

5.1 Static Obstacles

This section details the application of RTD to two robots: the Segway (Figure 3.2a), and the Rover
(Figure 3.2b). Both robots use Algorithm 1 (§4.1) for online safe trajectory planning, demonstrated
in simulation (§5.1.4) and on hardware (§5.1.5).

5.1.1 Segway

This section describes the Segway platform and its environment used in the simulation and hard-
ware sections.

5.1.1.1 Platform

The Segway is a differential-drive robot. RTD is applied to the Segway to show that the proposed
method can provide collision-free trajectory planning in unstructured, random environments. The
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Segway has been used as a running example through this paper. Example 4 presents its high-fidelity
model (3.5).

Next, the Segway’s model parameters are described. The robot has a circular footprint with
a 0.38 m radius. It is limited to a maximum yaw rate |θ̇| ≤ 1 rad/s and a maximum speed of
v ≤ 1.5 m/s in simulation and v ≤ 1.25 m/s on the hardware. The acceleration bounds are
[γ, γ] = [−5.9,+5.9] rad/s2, and [α, α] = [−3.75, 3.75] m/s2. Given a current yaw rate, θ̇, the
commanded yaw rate, θ̇des, |θ̇− θ̇des| ≤ 1 rad/s is enforced in simulation, and |θ̇− θ̇des| ≤ 0.5 rad/s
on the hardware. Motion capture data is used to find the parameters βγ = 2.95, βα = 3.00. State
estimation error, as described in §3.2.3 has to be considered for the hardware platform.

5.1.1.2 FRS Computation

For the FRS computation, Example 5 presents the trajectory-producing model, Figure 3.3 shows
its tracking error function, and Example 51 presents the geometric quantities needed to represent
obstacles for the Segway.

The FRS is computed by solving (Dl) in §3.3.2, with l = 5. In practice, the tracking error is
proportional to the initial speed, so computing multiple FRS’s reduces conservatism. At runtime,
the appropriate FRS is chosen based on the Segway’s estimated initial speed at the beginning of
the current planning iteration. For the simulations, one FRS for each of the following initial speed
ranges: 0–0.5 m/s, 0.5–1.0 m/s, and 1.0–1.5 m/s is computed. For the hardware, FRS’s for initial
speed ranges of 0.0–0.5 m/s and 0.5–1.25 m/s are computed. In simulation, the FRS is computed
over a time horizon of T = 0.6 s for the 0.0–0.5 m/s FRS, and T = 0.8 s for the other two FRS’s.
For the hardware, the Segway’s FRS is computed over a time horizon T = 1 s. For all of the
Segway FRS’s, τplan = 0.5 is used.

The following geometric quantities (as introduced in Section 4.2.2.2) are used to represent
obstacles for the Segway. The width of the Segway is r̄ = 0.76 m (Definition 49) and the maximum
penetration distance is b̄ = 0.38 m (Lemma 46). In the simulations, a buffer size of b = 0.001 m
is empirically. This choice of b results in a point spacing r = 0.055 m and arc point spacing
a = 0.002 m as per Definition 48 and Example 51. On the hardware, a buffer size of b = 0.05 m
is used, so r = 0.37 m and a = 0.10 m. Recall from above that τplan = 0.5. The choice of buffer b
was the smallest buffer that allowed the runtime trajectory optimization to solve consistently within
τplan (recall that the number of constraints for trajectory optimization increases as b decreases).

5.1.1.3 Environment

The simulated environment for the Segway is a 9× 5 m2 room, with the longer dimension oriented
east-west. The room is filled with 6 to 15 randomly-distributed box-shaped obstacles with a side
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length of 0.3 m. A random start location is chosen on the west side of the room and a random goal
is chosen on the east side. The simulated environment is similar to the hardware demo depicted in
Figure 3.2a. A trial is considered successful if the Segway reaches the goal without crashing (i.e.,
touching any obstacles). Since obstacles are distributed randomly, it may be impossible to reach
the goal in some trials; hence the number of crashes and number of goals reached are counted
separately.

For the Segway’s high-level planner, Dijkstra’s algorithm is used to find the shortest path on
a graph representing a grid in the robot’s xy-subspace X; this provides a coarse path and inter-
mediate waypoints between the Segway and the global goal. At each planning iteration, the cost
function given to Algorithm 1 Line 7 attempts to minimize the distance to the current waypoint.
Additionally, for all planners, if the Segway has braked to a stop without crashing, one planning
iteration is spent rotating in place towards the current waypoint before replanning.

5.1.2 Rover

This section describes the Rover platform in Figure 3.2b and its environment used in the simulation
and hardware sections.

5.1.2.1 Platform

The Rover is a front wheel steering, all-wheel drive platform, and demonstrates the utility of RTD
in passenger robot applications. The trajectory producing model is presented in Example 20. The
system decomposition technique discussed in Section 3.4 is used to compute the FRS’s.

The Rover has a rectangular footprint of length 0.5 m and width 0.29 m centered at the center
of mass. The distance from the rear axle to the center of mass, lr, is 0.0765 m. The Rover’s
high-fidelity model has a state vector zhi = [x, y, θ, vx, δ]

>, where vx is longitudinal speed and δ is
the angle of the front (steering) wheels relative to the Rover’s longitudinal direction of travel. The
dynamics fhi as in (3.1) are:

d

dt


x(t)

y(t)

θ(t)

vx(t)

δ(t)

 =


vx(t) cos(θ(t))− θ̇(t)(c1 + c2vx(t)

2) sin(θ(t))

vx(t) sin(θ(t)) + θ̇(t)(c1 + c2vx(t)
2) cos(θ(t))

vx(t)
c3+c4vx(t)2

tan(δ(t))

c5 + c6(vx(t)− u1(t)) + c7(vx(t)− u1(t))2

c9(u2(t)− δ(t))

 . (5.1)

This model utilizes steady-state assumptions for the lateral dynamics, but the constants c2 and c4

account for wheel slip [SHB14, §10.1.2]. Motion capture data was used to fit the constants, c. The
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steering wheel angle input, u1, is bounded by |δ| ≤ 0.5 rad, and the speed input, u2, is manually
limited to 0 to 2 m/s.

5.1.2.2 FRS Computation

For the rover, the tracking controller is a proportional controller; hence the dynamics (5.1) are
Lipschitz continuous in t, zhi, and u as required by Assumption 2. Example 20 presents the
Rover’s trajectory-producing model (3.30). Recall that the trajectory-tracking model (3.13), is the
trajectory-producing model plus the tracking error functions (as in Assumption 7). The trajectory-
tracking model dynamics żi : [0, T ]×K → R2 (as in (3.13)) for each SCS are given by:

ż1(t) =

[
k1(1− θ(t)2

2
)− lrθ̇(t, k) · (θ(t)− θ(t)3

6
)

θ̇(t, k)

]
+

[
g1(t, k)

0

]
d1(t) (5.2)

ż2(t) =

[
k1(θ(t)− θ(t)3

6
) + lrθ̇ · (1− θ(t)2

2
)

θ̇(t, k)

]
+

[
g2(t, k)

0

]
d2(t) (5.3)

where: gx, gy ∈ R3[t, k] are degree 3 polynomials that satisfy (3.16); the yaw rate θ̇(t, k) =
−k3

2
t + k2(1 − t) is given by (3.31) with Th = 2 s; and d1, d2 : [0, T ] → [−1, 1] are scalar-valued

functions. The tracking error functions in (5.2) and (5.3) are fit to trajectory data as with the
Segway.

For the Rover, (D
(i),4
T ) is solved for the subsystems 1 and 2 in (3.39) and (3.40). Then, (R5)

reconstructs the full system FRS. As with the Segway, the tracking error for the Rover is reduced
by computing multiple FRS’s, each corresponding to a different range of initial conditions. 42
FRS’s are computed for the Rover in total. Each FRS has one of three ranges of initial speeds:
0.0–0.75 m/s, 0.75–1.5 m/s, and 1.5–2.0 m/s; one of seven ranges of initial wheel angles evenly
spaced between -0.5 and 0.5 rad; and either positive or negative headings.

The Rover selects an FRS at runtime based on its initial velocity, wheel angle, and heading at
each planning iteration. The time horizons are T = 1.25 s for the slowest FRS’s and T = 1.5 s for
the faster FRS’s. All FRS’s use τplan = 0.5 s in simulation. On hardware, τplan = 0.375 s and one
FRS with velocities between 1 and 1.5 m/s is used due to the limited size of the physical testing
area available. The range of trajectory parameters for each FRS is determined as follows: The final
headings, k3, are between 0 and 0.5 (resp. -0.5) rad for FRS’s with negative (resp. positive) initial
headings. The initial yawrates, k2, are between max(−1,−1+2k3) and min(1, 1+2k3) rad/s. The
desired velocities, k1, are set so the change between initial and commanded velocity is less than 1
m/s, and a minimum of 0.5 m/s for the slowest FRS.

A buffer b = 0.01 m is used for the Rover, resulting in the point spacing r = 0.02 m and arc
point spacing a = 0.014 m as per Example 50.
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5.1.2.3 Environment

The simulated environment for the Rover is a larger version of the mock road depicted in Figure
3.2b, which mimics a highway environment. The simulated road lies along the x-direction (ori-
ented east-west) and is centered at y = 0. It is 2.0 m wide (including the shoulder), with two 0.6

m wide lanes centered at y = 0.3 m and y = −0.3 m. The Rover plans trajectories with speeds
up to 2 m/s. In each trial, three randomly sized box-shaped obstacles of lengths 0.4–0.6 m and
widths 0.2–0.3 m are placed in alternating lanes. This obstacle arrangement is used to force the
Rover to attempt two lane changes per trial; note that the RTD, RRT, and NMPC trajectory plan-
ners are all general implementations ( §5.1.3.1- 5.1.3.3), not specialized to this particular obstacle
arrangement. The obstacles have a random heading of ± 2 degrees relative to the road, and their
centers are allowed to vary by ± 0.1 m from lane center in the y-dimension. The spacing between
the obstacles in the x-direction is given by a normal distribution with a mean of 4 m and standard
deviation of 0.6 m. The Rover begins each trial centered in a random lane, with a velocity of 0 m/s.
A trial is considered successful if the Rover crosses a line positioned 30 m after the third obstacle
without intersecting any obstacle or road boundary (i.e. crashing).

For high-level path planning, a desired waypoint is placed a set distance ahead of the robot and
centered in the current lane. If the waypoint is inside or behind an obstacle relative to the Rover,
the waypoint is switched to the other lane. It was found empirically that placing the waypoint 4
m ahead of the Rover at each planning iteration causes it to switch lanes soon enough the Rover
is typically capable of performing a lane change; this 4 m “lookahead distance” was used for all
three planners.

5.1.3 Trajectory Planner Implementations

This section describes the implementations of RTD, a Rapidly-exploring Random Tree (RRT) plan-
ner based on [KTF+09, PKA16, PLM06], and a GPOPS-II Nonlinear Model-Predictive Control
(NMPC) planner [PR14]. This section is organized as follows. §5.1.3.1 describes the implementa-
tion of RTD. §5.1.3.2 describes the implementation of the RRT. §5.1.3.3 describes the implemen-
tation of GPOPS-II.

5.1.3.1 RTD Implementation Details

This section discusses particular implementation details used for RTD in the simulations. The
following cost functions are used in each planning iteration. For the Segway, the cost function
is the robot’s Euclidean distance at time T to the waypoint generated by the high-level planner.
For the Rover, the cost function is the Euclidean distance at time Th from the planned trajectory’s
endpoint to the waypoint, weighting error in x vs. error in y at a ratio of 1:2. The final heading
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parameter, k3 in (3.31), is set to be the negative of the Rover’s initial heading (saturated at ± 0.5
rad), so the Rover only optimizes over k1 and k2 in each iteration. In other words, the Rover only
optimizes over trajectories that will align the robot with the road.

Both the Segway and Rover use the static obstacle discretization method in §4.2.2 to generate
constraints for collision avoidance in Algorithm 1 Line 6 (the quantities of interest are described in
§5.1.1.2 and §5.1.2.2). Both the Segway and the Rover use MATLAB’s fmincon generic nonlin-
ear solver to implement the online trajectory optimization (Algorithm 1 Line 7). For both robots,
an optimality tolerance of 10−3 is used. Since fmincon is a generic gradient-based nonlinear
solver, it requires an initial guess each time it is called (i.e., in each planning iteration). For the
Segway, the initial guess of k ∈ K corresponds to zero yaw rate and maximum speed. For the
Rover, the initial guess is either the trajectory parameters from the previous planning iteration, or
parameters corresponding to driving straight if the previous iteration converged to an infeasible
result.

The following design choice to speeds up fmincon. Recall from Section 4.2.2 that obstacles
are represented as sets of discrete points. Each discrete obstacle point becomes a nonlinear con-
straint for fmincon. Since fmincon’s solve time increases with the number of constraints, the
number of constraints in each planning iteration can be reduced by discarding points in Xp that
lie outside of the FRS for any trajectory parameter k ∈ K. Note that, since no such points are
reachable (because they lie outside of the FRS), this does not impact RTD’s safety guarantees.

5.1.3.2 RRT Implementation Details

The Segway and Rover use similar RRT implementations, based on several papers [KTF+09,
PKA16, PLM06], which describe a variety of heuristics for growing a tree of a robot’s trajectories
with nodes in the high-fidelity state space. Both RRT implementations use the entire duration τplan

to plan a trajectory at each planning iteration.
To account for the robot’s footprint, obstacles are buffered by Minkowski sum with a polygonal

outer approximation of a closed disk, with radius given by the desired buffer distance (see Experi-
ment 1 in Section 5.1.4.1 for how to empirically select the buffer). This produces a representation
of each buffered obstacle as a collection of half-planes.

For the Segway, the RRT planner begins by checking if the previously-planned trajectory is
still feasible [KTF+09], meaning that none of its nodes lie inside any buffered obstacles. If the
past trajectory is feasible, the tree is initialized with the previous plan’s nodes; if the past trajectory
is infeasible, the tree is initialized from the robot’s initial state. For the Rover, which operates
in a simpler environment, a new tree was initialized for every planning iteration. New nodes
of the tree are created by first choosing a random existing node, with the choice biased towards
more recently-generated nodes. From the randomly-chosen node, the high-fidelity robot model is

64



forward-integrated under a random desired yaw rate (or wheel angle) and desired speed [KTF+09,
PLM06]. Forward-integration of the high-fidelity model dynamics returns points in the robot’s
xy-subspace X at a set of discrete time points. A new node is discarded if any of these points lie
inside any buffered obstacle, outside of the robot’s environment (the room for the Segway and the
road for the Rover), or outside the robot’s sensor horizon. In addition, for the Segway, recall (from
§5.1.1.3) that Dijkstra’s algorithm is used for generating a high-level plan; nodes farther than 1.5
m from the high-level plan are discarded [PKA16]. For both the Segway and the Rover, the RRT
attempts to plan a braking maneuver at each planning iteration.

Forward integration of the robot’s high-fidelity model is required for dynamic feasibility of the
RRT trajectory plans, given the complexity of the high-fidelity models of the Segway and Rover
[ES14]. The edge time, or total duration of each forward-integration, along with the time dis-
cretization, are heuristic choices that affect the computation time and complexity of paths that the
RRT can generate; these numbers were selected empirically for each system. This implementation
makes use of MATLAB’s symbolic and function generation toolboxes. For the Segway, an inte-
gration function is generated that takes in an initial condition and returns a trajectory of the robot’s
high-fidelity model, forward-integrated with an RK4 method, for a predetermined edge time and
step size. The timing of calls to this function was tested by forward integrating each robot’s high-
fidelity model from random initial conditions and compared to that using the ODEINT C++ li-
brary [AM11]. For the Rover, forward Euler integration is used, and it was able to plan safely (see
§5.1.4.1).

Recall that, for both the Segway and Rover, a high-level planner generates intermediate way-
points. When growing the RRT, samples are biased to turn towards waypoints as described by
[KTF+09]. For the Segway, the RRT attempts to find a plan that minimizes distance to the way-
point. For the Rover, minimizing distance to the waypoint resulted in the RRT generating long
paths with large changes in yaw rate because path smoothness was not included in the cost. To
combat this, the RRT’s cost at each node was set as the cumulative distance from the root node,
plus a penalty for lying close to obstacles [KTF+09], reduced the number of crashes. Once the RRT
has grown for the duration τplan, the node with the lowest cost is chosen to produce the trajectory
plan. The Rover’s RRT has an additional heuristic to encourage smoothness: when the waypoint
is in the same lane as the rover, the standard deviation of sampled wheel angles is reduced.

5.1.3.3 NMPC Implementation Details

The Segway and Rover both use GPOPS-II for the nonlinear model predictive control planner
[PR14]. GPOPS-II is an algorithm that approximates the trajectory planning problem as a poly-
nomial optimization program. This software uses internal heuristics to choose a finite number of
collocation points, then evaluates the polynomial approximation of the robot’s high-fidelity model
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and obstacle avoidance constraints at each of these points. The accuracy of the solution and the
run time of the algorithm is dependent on the tolerance of the polynomial approximation. The cost
function used at each planning iteration is to minimize distance between the last collocation point
and the waypoint generated by the high-level planner.

The following constraints are enforced each planning iteration. Obstacles are represented as
constraints on the x and y coordinates of the robot’s center of mass at each collocation point. Each
obstacle is buffered using a Minkowski sum with a polygonal outer-approximation of a closed
disk with radius given by a user-selected buffer distance (see Section 5.1.4.1). This representation
means that, to check for collision of a trajectory with an obstacle, a finite number of half-plane
checks are performed per obstacle per collocation point. The maximum speed and yaw rate of
each robot are also enforced constraints.

A fail-safe for NMPC is encoded in the following manner: if no feasible trajectory can be
found within τplan, the robot continues executing the last feasible trajectory that NMPC found. For
the Segway, an additional constraint requires the end of any planned trajectory must have zero
speed and yaw rate, to force NMPC to plan a braking maneuver. For the Rover, the minimum
time horizon is set to 1.5 s, (the braking time from 2 m/s); although potentially less robust than the
Segway’s constraint, it was sufficient for the environment the Rover is tested in.

The decision variables for NMPC are the robot’s state and control input at each collocation
point. For the Segway, the NMPC planner chooses a desired yaw rate and velocity as the control
input at each collocation point, and plans with the robot’s high-fidelity model (3.5) from Example
4. For the Rover, the NMPC planner chooses a desired wheel angle and velocity as the control
input at each collocation point, and plans with the robot’s high-fidelity model (5.1).

GPOPS-II is initialized at each planning iteration as follows. The planner is given a coarse
trajectory guess at the first planning iteration, and each subsequent iteration is seeded with last
feasible trajectory. The GPOPS-II parameters used are: 4–10 collocation points per phase and a
mesh tolerance of 10−6.

5.1.4 Simulation Results

This section compares RTD, against the RRT and NMPC planners described in §5.1.3. The con-
tribution of this section is the comparison of RTD to RRT and NMPC, and the demonstration
of safety of RTD over thousands of simulations. Code used in the simulations is available at
https://github.com/skvaskov/RTD.

The timing parameters, environments, and high-level planners used for the simulations are
now discussed. Recall the planning hierarchy introduced in §1.1.1. RTD is a trajectory planner,
in the middle level of the hierarchy; therefore, RTD’s role is to plan trajectories that attempt to
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achieve a coarse path plan generated by a high-level planner. In this work, the high-level planner
generates intermediate waypoints, or desired locations, between the robot and the global goal.
These waypoints define the cost function for trajectory optimization in each planning iteration.

As in Algorithm 1, the robot is limited by a physical sensor horizon, Dsense. The robot is given
a finite amount of time, τplan, within which it must find a plan, and it executes a duration τmove ≤ T

of a given plan. Note that in real-world applications and previous sections of this paper, τmove is
the same as τplan. τmove is defined separately in this section to simulate the RTD, RRT, and NMPC
planners with and without real-world timing limits to compare performance. For the Segway and
Rover, τmove = 0.5 s. Simulations are all implemented in MATLAB on a 2.10 GHz computer with
1.5 TB of RAM. Timeouts are enforced with MATLAB’s tic and toc functions. For all planners
and all simulations, since the robot is represented as the high-fidelity model (3.1), there is no state
estimation error, so ε = 0 from Assumption 11.

For each robot, 1,000 random trials that fit the environments described in §5.1.1.3 and §5.1.2.3
are generated. Since these are randomly generated, it is not guaranteed that feasible (i.e. collision-
free) paths exist from the start to the goal in every trial. This is useful, because it requires planners
to be safe even when the high-level planner can only find infeasible paths to the goal.

This section is organized as follows. §5.1.4.1 describes Experiment 1, which is used to the
set the buffer sizes for RRT and NMPC. §5.1.4.2 describes Experiment 2, which enforces real-
istic planning and sensing limits. §5.1.4.3 describes Experiment 3, which enforces the minimal
sensor horizon according to Theorem 38. §5.1.4.4 concludes by summarizing the results for all
experiments.

5.1.4.1 Experiment 1: Buffer Size for RRT and NMPC

The goal for Experiment 1 is to determine how to buffer obstacles for RRT and NMPC. To en-
sure that the buffer size is the only parameter that influences RRT and NMPC, this experiment
relaxes the real-time and limited sensor horizon requirements, giving the planners enough time
and information to find a plan in most planning iterations.

The parameters used for Experiment 1 are as follows. For the Segway, τmove = 0.5 s, τplan = 10

s, and Dsense = 100 m. For the Rover, τmove = 0.5 s, τplan = 10 s, and Dsense = 30 m. Since
τplan > τmove, the real-time requirement is relaxed. Since Dsense is large, the limited sensor horizon
requirement is relaxed. For both the Segway and the Rover, obstacles are buffered by Minkowski
sum with a polygonal outer approximation of a closed disk. For the Segway, since the robot’s radius
is 0.38 m, buffer sizes of 0.40, 0.45, and 0.50 m are tested. A buffer size of 0.65 m; is also tested
which accounts for the braking distance of the Segway. For the Rover, obstacles are buffered in the
(x, y) dimensions by a rectangle encompassing rotations of up to 0.6 rad (0.29, 0.26 m). Although
a more complicated collision check could be used for the footprint, this type of buffering reduces

67



Segway Exp. 1
RRT NMPC

Goals Crashes Goals Crashes

Buffer [m]

0.40 83.6 3.6 86.2 11.7
0.45 86.2 1.4 97.0 0.6
0.50 81.9 0.4 96.0 0.4
0.65 71.9 0.0 83.5 0.0

Table 5.1: Comparison of success and crash rates for varying buffer sizes for the Segway. A buffer
size of 0.45 m provides the best balance of performance and safety for both RRT and NMPC. The
Segway’s braking distance of 0.625 m from 1.25 m/s means that the 0.65 m buffer prevents RRT
and NMPC from crashing, but both methods become conservative with this buffer.

Rover Exp. 1
RRT NMPC

Goals Crashes Goals Crashes

Buffer
0.29, 0.26 99.8 0.0 99.6 0.0
0.34, 0.31 97.9 0.0 98.8 0.0

[m] 0.39, 0.36 95.8 0.0 97.8 0.01

Table 5.2: Comparison of success and crash rates for varying buffer sizes for the Rover. Buffers
are listed given in m in the (x, y) dimensions. A buffer size of (0.29, 0.26) maximizes performance
without crashing.

computational complexity and is commonly used in driving applications [MUDL11]. Additional
buffers of 0.0, 0.05, 0.10 are tested.

I expect the results of Experiment 1 to show that, as the buffer size is increased for both planners
and both robots, the number of crashes reduces (because any plan that avoids a buffered obstacle
places the robot farther away from the actual obstacle for a larger buffer size), and the number of
goals reached reduces (because a larger buffer reduces the amount of free space available to each
planner). I expect no crashes for either planner with a buffer size of 0.65 m for the Segway.

The results of Experiment 1 are summarized in Table 5.1 for the Segway and Table 5.2 for the
Rover. Recall that, since the trials are randomly generated, every trial my not have a collision-free
path from start to goal. On the Segway, RRT and NMPC fulfill the expectation that, as the buffer
size increases, the number of goals and crashes both reduce; a buffer size of 0.45 m provies the best
balance between goals and crashes. On the Rover, that the buffer size of the expanded footprint
plus 0.0 m has the best performance with no crashes. Surprisingly, NMPC had a crash with the
largest buffer size for the Rover. In this instance, the solver was unable to find a feasible solution
in one planning iteration because too much free space was removed due to the buffered obstacles.
This resulted in the robot colliding with the simulated environment boundary after while trying to
emergency brake.

Crashes occur for the RRT and NMPC planners because the smaller buffer sizes are potentially
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too small to compensate for both robots’ inability to perfectly track a planned trajectory (recall
that, in this implementation, RRT plans trajectories with an RK4 or forward Euler approximation
of the high-fidelity model, and NMPC uses a polynomial approximation). This is addressed in
subsequent experiments by choosing an RRT and NMPC buffer size of 0.45 m for the Segway and
(0.29, 0.26) m for the Rover. This choice is a balance between a high success rate and a low crash
rate.

RRT and NMPC are also tested on the Segway with buffer sizes of 0.65 m, to check that, if
no feasible solution is found in a planning iteration, both methods should always be able to brake
without crashing. The largest buffer size results in the most conservative performance, with 71.8%
of goals reached for RRT, and 83.5% for NMPC. As expected, both planners are always able to
come to a stop without crashing.

5.1.4.2 Experiment 2: Real-time Planning and Limited Sensor Horizon

The goal for Experiment 2 is to understand the performance of RTD, RRT, and NMPC when
subject to real-time and limited sensor horizon requirements. RTD is designed to satisfy these
requirements while provably ensuring safety. RRTs are typically capable of rapid planning, though
not necessarily with arbitrary dynamics [ES14, KTF+09]. For NMPC, these requirements can
cause wide variations in performance depending on how constraints are represented [FGZ+13,
GGC+14, PR14, HK07, UAB+08].

The parameters used for Experiment 2 are as follows. For the Segway, τmove = τplan = 0.5 s
and Dsense = 4.0 m. For the Rover, τmove = τplan = 0.5 s, and Dsense = 5 m. Since τmove = τplan, the
amount of time allowed for planning is the same as the amount of time that each robot executes
from the previously-planned trajectory, meaning the real-time requirement is enforced. SinceDsense

is smaller than the size of each robot’s environment (see §5.1.1.3 and §5.1.2.3), the limited sensor
horizon requirement is enforced. The RRT and NMPC buffer size is 0.45 m for the Segway, and
(0.29, 0.26) m for the Rover. The buffer sizes used for RTD are given in §5.1.1.2 and §5.1.2.2.

I expect the results of Experiment 2 to be as follows. For both robots, I expect RTD to have
a similar number of goals reached as RRT and NMPC, and I expect RRT and NMPC to reach
the goal less often than in Experiment 1. This is due to the limited sensor horizon, meaning the
high-level planner no longer has access to the entire environment at time 0, and therefore may
make poor routing decisions. As for crashes, RTD is designed with real-time performance as a
requirement, and prescribes a minimum sensor horizon in Theorem 38 that is less than Dsense for
both robots. Therefore, I expect RTD to have no crashes. I expect RRT and NMPC to have slightly
more crashes than in Experiment 1, because the sensor horizon is shorter, and because the real-time
requirement means that these two planners may be unable to find feasible plans as often, resulting
in both planners braking more frequently.
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The results of Experiment 2 are summarized in Tables 5.3 for the Segway and Table 5.4 for
the Rover. For the Segway, RTD reaches the goal more often than the other two planners do in
Experiment 1 or in Experiment 2 (96.3%); recall that the same environments are used in all three
experiments, making this comparison possible. RRT surprisingly reaches the goal less often in
Experiment 2 than in Experiment 1 (78.2% vs . 86.3%); and NMPC is incapable of reaching the
goal (0% vs. 83.7%). RTD has no crashes, as expected; RRT crashes less often (2.4% vs. 3.6%);
and NMPC does not crash because it struggles to move the robot at all. For the Rover, RTD reaches
the goal 95.4% of the time. RRT reaches the goal slightly less often than in Experiment 1 (97.6%
vs. 99.8%); and NMPC is incapable of reaching the goal (0% vs. 99.6%). RTD has no crashes;
RRT crashes once (0.01%); and NMPC does not crash because it struggles to move the robot.

For both the Segway and Rover, RTD’s performance is as expected based on the theory in Chap-
ter 4: it is able to reach the goal, can plan in real time, and has no crashes. The Segway’s RRT has
a reduction in crashes, which is surprising, but is likely because the real-time requirement means
that RRT is less likely to find a feasible plan at every iteration, and must brake more often. For the
Segway’s NMPC planner, GPOPS-II is able to find trajectories rapidly when the vehicle is not near
obstacles; but, since the obstacles are randomly-placed and produce non-convex constraints, the
solver struggles to solve quickly when near them, resulting in 0 goals and 0 crashes. For the Rover,
compared to Experiment 1, the RRT planner reaches the goal slightly less often, but still crashes,
as expected due to the reduced planning time limit; unlike the Segway, the Rover cannot spin in
place to potentially find a new plan after braking. The Rover’s NMPC planner suffers the same
issues near the obstacle constraints as the Segway’s NMPC planner. It is worth noting that, for the
Rover, I was able to generate heuristics for the RRT that exploited the structure of the environment,
which enables the RRT to more goals than RTD. However, in the random environments generated
for the Segway, RTD reaches more goals than RRT.

Figure 5.1 demonstrates Experiments 1 and 2 for the Segway; the RRT and NMPC plots are
from Experiment 1, and the RTD plots are from Experiment 2, since RTD is not run in Experiment
1. The figure shows one environment where RTD, RRT, and NMPC all reach the goal without
crashing; one environment where RTD reaches the goal, RRT crashes, and NMPC gets stuck; and
one environment where RTD brakes safely whereas RRT and NMPC reach the goal. In the second
environment, RRT crashes because, while trying to navigate a gap between two obstacles, it is
unable to find a feasible plan; it then attempts to brake along its previous trajectory, but touches an
obstacle while doing so. NMPC gets stuck trying to navigate this same gap where RRT crashes,
because the gap is a non-convex region with enough obstacle constraints that the NMPC planner
computes slowly. Unlike RRT, NMPC brakes much earlier, but then is unable to find a plan to
navigate the gap. In the third environment, RTD gets stuck because, early on, it finds a different
path from RRT and NMPC; this new path causes the high-level planner to reroute RTD towards a
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region where the high-level planner believes that the route is feasible, but RTD determines that it is
not, resulting in RTD braking safely. This demonstrates that, even if the high-level planner makes
infeasible decisions, RTD is safe.

Figure 5.2 demonstrates Experiment 2 for the Rover with one environment where RTD suc-
ceeds, RRT crashes, and NMPC gets stuck; and one environment where all planners brake safely.
RRT crashes when it travels too close to an obstacle to find a feasible plan at the next planning
iteration, causing it to try to brake, resulting in a crash. In some environments, NMPC is able to
find plans until the obstacles appear in its sensor horizon.

5.1.4.3 Experiment 3: Real Planning Time and Minimal Sensor Horizon

The goal for Experiment 3 is to confirm that RTD performs safe, real-time trajectory planning even
when the sensor horizon is the minimum possible as per Theorem 38. This is useful because, to be
practical, RTD must be able to tolerate environments where a robot’s sensors are only effective in
a small area.

The parameters used for Experiment 3 are as follows. For the Segway, τmove = τplan = 0.5 s
and Dsense = 1.9 m. For the Rover, τmove = τplan = 0.5 s and Dsense = 4 m. Since τmove = τplan, the
real-time planning requirement is enforced, as in Experiment 2. The sensor horizon Dsense is given
by Theorem 38, assuming the distance is bounded by the robot’s max speed. Buffer sizes for both
robots are the same as in Experiment 2.

I expect the results of Experiment 3 to show that RTD has zero crashes for either robot. I
expect the number of goals reached to be less than those in Experiment 2, because a smaller sensor
horizon means that the high-level planner for both robots has less information when making routing
decisions. So, there may be more environments where the high-level planners cause both robots to
brake safely without reaching the goal.

The results of Experiment 3 confirm the expectation. Both robots have 0 crashes. The Segway
reaches the goal 96.2% of the time, versus 96.3% in Experiment 2. The Rover reaches the goal
95.2% of the time, versus 95.4% in Experiment 2. Neither robot has any crashes with the minimal
sensor horizon. Furthermore RTD maintains performance in terms of goals reached; this is likely
because when the distance bound Dmax, presented in Theorem 38, conservatively assumes the
robot is traveling at its maximum speed. This means, intuitively, that a smaller sensor horizon is
sufficient at lower speeds.

5.1.4.4 Discussion

The experiments, summarized in Tables 5.3 and 5.4, show that RTD is successful in reaching the
desired goal comparably often to RRT and NMPC for both the Segway and Rover. Importantly,
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Figure 5.1: Sample environments from Experiment 2 for the Segway, which starts on the west
(left) side of the environment, with the goal plotted as a dotted circle on the east (right) side of
the environment. The Segway’s pose is plotted as a solid circle every 1.5 s, or less frequently
when the Segway is stopped or spinning in place. For RTD, contours of the FRS (i.e. the edge of
πX(k∗) (4.14)) are plotted. The obstacles for all three planners are plotted as solid boxes. For RTD,
the discretized obstacle is plotted as points around each box. For RRT and NMPC, the buffered
obstacles are plotted as light lines around each box. Row 1 (Subfigures (a), (b), and (c)) shows an
environment where all three planners are successful. Row 2 shows an environment where RTD is
successful, but RRT and NMPC are not. Subfigure (d) shows RTD reaching the goal. Subfigure
(e) shows RRT attempting to navigate a gap between several obstacles, where it is unable to find a
new plan; it crashes when it tries to brake. Subfigure (f) shows NMPC braking because it cannot
compute a safe plan to navigate the same gap; here, NMPC brakes safely and gets stuck. Row 3
shows an environment where RTD fails to reach the goal, but RRT and NMPC do. Subfigure (g)
shows that RTD initially turns north more sharply than RRT or NMPC, which forces it to brake
safely; but that causes the high-level planner to reroute it south, where there ends up being no
feasible solution. Subfigures (h) and (i) show RRT and NMPC reaching the goal because they do
not turn north as sharply initially, and the high-level planner routes them around the obstacles.
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Figure 5.2: Two sample environments from Experiment 2 for the Rover. The Rover’s trajectory,
starting from the far left, is a solid line, and its pose at several sample time instances is plotted with
solid rectangles. Obstacles are plotted as red boxes. Buffered obstacles for RRT and NMPC are
plotted with light solid lines. Subfigures (a) and (b) show RTD avoiding the obstacles. The subset
of the FRS associated with the optimal parameter every 1.5 s is plotted as a contour. Subfigures (c)
and (d) show the RRT method. In Subfigure (c), RRT is unable to safely track its planned trajectory
around the first obstacle. In Subfigure (d), RRT is able to come to a stop before the second obstacle.
Subfigures (e) and (f) show NMPC, which stops due to enforcement of real-time planning limits.
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Segway Simulation Results
Experiment τplan [s] Dsense [m] Planner Goals [%] Crashes [%]

1 10.0 100
RRT 86.2 3.6
NMPC 97.0 0.6

2 0.5 4.0
RTD 96.3 0.0
RRT 78.2 2.4
NMPC 0.0 0.0

3 0.5 1.5 RTD 96.2 0.0

Table 5.3: Simulation results of Experiments 1–3 for the Segway. RTD is the only method that
never experiences crashes, as expected; it also reaches the goal more frequently than RRT or
NMPC. NMPC reaches the goal more often than RTD and RRT, with fewer crashes than RRT, but
is unable to plan in real time (Experiment 2). In Experiment 3, RTD is capable of planning safely
when given the smallest possible sensor horizon allowed for by Theorem 38.

Rover Simulation Results
Experiment τplan [s] Dsense [m] Planner Goals [%] Crashes [%]

1 10.0 30
RRT 99.8 0.0
NMPC 99.6 0.0

2 0.5 5.0
RTD 95.4 0.0
RRT 97.6 0.1
NMPC 0.0 0.0

3 0.5 4.0 RTD 95.2 0.0

Table 5.4: Simulation results of Experiments 1–3 for the Rover. RTD is the only method that can
both reach the goal and never crash when real time planning is enforced. In the Rover’s road-like
environment, RRT has excellent performance, but crashed in 1 out of 1000 trials when the real-
time planning limit was enforced. In Experiment 3, RTD is capable of planning safely when given
the smallest possible sensor horizon allowed for by Theorem 38.

RTD has 0 crashes in all of the simulations. RRT crashes because its paths may take it near
obstacles, where it is difficult to build a dense tree since most nodes are infeasible. When this
happens, RRT attempts to brake, but there is no guarantee that this can be done safely. Interestingly,
for the Segway, reducing the allowed planning time τplan reduces the crash rate. This is because
RRT cannot find a feasible plan as frequently with the lower planning time, so it brakes more often,
and begins braking when further away from obstacles. NMPC crashes because, when the robot is
near an obstacle, there are a large number of non-convex constraints in the resulting optimization
program, so finding a feasible solution within the planning time τplan is difficult. If no plan is found,
the robot attempts to continue executing its last feasible plan (which includes a braking maneuver),
but the algorithm has no guarantee that doing so is safe. Increasing the buffer size (Experiment 1)
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reduces the number of crashes for both RRT and NMPC for the Segway, as expected. The tradeoff
for buffer size is that a larger buffer reduces the free space available for the robot to move through,
reducing how often each robot reaches the goal. Importantly, crashes occur for both planners even
when they are not required to plan in real-time or with a limited sensor horizon.

RTD is sometimes unable to reach the goal, but still always brakes safely. Note that RRT and
NMPC on both the Segway and Rover platforms are sometimes also unable to reach the goal. For
the Segway, stopping safely before reaching the goal occurs when RTD plans a path too close to
an obstacle, in which case the online optimization struggles to find a non-stopped solution even
after spinning the Segway in place. This may be remedied by changing the high-level planner to
penalize obstacles more, or by changing the cost function in the online optimization. The Rover
stops without reaching the goal when the reachable set is too large to make a lane change through
a tight gap between two obstacles. This may be due to the fact that the decomposition technique
used to compute the FRS’s is conservative when the footprint rotates. This could be remedied by
using a simpler trajectory parameterization, like the Segway’s, in low-speed, tight scenarios.

For the Rover’s environments RRT and NMPC have excellent performance in Experiment 1.
The sparse (compared to the Segway), structured, and static environment, eases the development
of heuristics for both the waypoint and trajectory planners. The benefits of RTD are greater in the
random environments generated for the Segway. See Figures 5.1 and 5.2 for examples of RTD
performing trajectory planning for the Segway and Rover platforms.

5.1.5 Hardware Demonstration

This section details the application of RTD to the Segway (Figure 3.2a) and Rover (Figure 3.2b)
hardware platforms. The hardware demonstrations affirm this point. Videos of the robots are
available at https://youtu.be/FJns7YpdMXQ for the Segway and https://youtu.

be/bgDEAi_Ewfw for the Rover.

5.1.5.1 Segway

The first hardware demo uses the Segway Robotics Mobility Platform shown in Figure 3.2a. Sens-
ing is performed with a Hokuyo UTM-30LX planar lidar; in practice, this sensor is accurate up to
Dsense = 4.0 m away (recall that the Segway runs indoors, so the effective sensor horizon is small).
The robot is controlled by a 4.0 GHz laptop with 64 GB of memory, running MATLAB and Robot
Operating System (ROS). Google Cartographer is used for localization and mapping [HKRA16].
All computation is run onboard. Since SLAM and state estimation requires 0.2 s per iteration, τplan

is set to 0.3 s when calling fmincon for trajectory optimization in Algorithm 1 Line 7. In practice
that the state estimation error is never more than 0.1 m in the global xy-coordinate frame while the
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Segway predicts its future state (Algorithm 1 Line 9), so for Assumption 11, εx = εy = 0.1 m.
The FRS is computed for the Segway as described in §5.1.1.2.

The Segway is run on a 4 × 8 m2 tile floor with 30 cm cubical obstacles randomly distributed
just before run time. The Segway has no prior knowledge of the obstacles. Two points are picked
on opposite ends of the room and used as the start and goal points in an alternating fashion.

A supplementary video illustrates the performance of RTD. Despite the randomly-placed ob-
stacles, the Segway RMP platform is able to operate safely while consistently reaching its goal.
As in the simulation, the Segway uses a low speed and a high speed FRS. In the handful of in-
stances where the Segway brakes, the high-level planner generates waypoints that require passing
through a gap that is too small for the high speed FRS; the Segway swaps to the low speed FRS
after stopping, and is then able to navigate the gap.

5.1.5.2 Rover

The second hardware demo uses a Rover car-like robot based on a Traxxas RC platform. The
Rover is tested on a 7 m long mock road, which is a tiled surface, as shown in Figure 3.2b. This
setup resembles the simulation environment, but with a shorter road and smaller obstacles. The
Rover is equipped with a front-mounted Hokuyo UST-10LX planar lidar for sensing and localiza-
tion; as the Rover runs indoors, this sensor is accurate up to at least Dsense = 3.5 m away given
occlusions and obstacle density. An NVIDIA TX-1 computer on-board is used to run the sensor
drivers, state estimator, feedback controller, and low-level motor controller. The Rover uses ROS
to communicate with an Intel Core i7 7820HK (2.90 GHz) CPU/64 GB RAM laptop over wifi.
The laptop is used for localization and mapping, to capture experiment data, and to run fmincon
for trajectory optimization in Algorithm 1 Line 7. The state estimation error in Assumption 11 is
bounded by εx = εy = 0.1 m. The FRS is computed for the Rover as described in Section 5.1.2.2.

For each trial, the Rover is placed at one end of the mock road and instructed to drive to a
goal at the other end at speeds of 1–1.5 m/s. One to three obstacles are placed between the Rover
and the goal. The obstacles are 0.3 × 0.3 × 0.3 m3 cardboard cubes. The Rover is not given
prior knowledge of the obstacles for each trial, and uses its planar lidar to detect them in real-time.
The Rover has an enforced planning time limit of τplan = 0.375 s. Contrary to the Segway, the
mapping did not take a significant amount of the planning time. This is because localization and
map updates were provided smoothly at 20 Hz, so the algorithm did not need to pause and wait for
an update as often as the Segway did. Eight trials were run back-to-back and filmed in one take,
as presented in the supplementary video. Several types of scenarios are constructed to encourage
the Rover to change lanes or force it to brake to a stop. Eighteen trials were run in addition to
the filmed trials, and resulted in zero crashes. The Rover uses one FRS to plan at speeds between
1.0–1.5 m/s. Due to the minimum speed, the Rover is occasionally unable to navigate tight gaps;
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this could be remedied by using a low speed FRS with a different trajectory parameterization.

5.2 CarSim Implementation

This section describes the application of RTD to a CarSim model of a Ford Fusion [VSK+19].
The dynamic models used for prediction and for planning are discussed in §5.2.1. The FRS com-
putation and online planning implementation are presented in §5.2.2. A simulation comparison
on a test track against RRT and NMPC planners with static obstacles is presented in §5.2.5.
A video of RTD navigating a sample track and performing emergency braking can be found at
https://youtu.be/lmtki6elFlw.

5.2.1 Platform

This paper implements RTD on a passenger car model of a Ford Fusion in CarSim. The inputs are
throttle, steering wheel angle, and brake master cylinder pressure. vehicle to refers to the Carsim
model in this section.

A bicycle model similar to [LDM15, (1)] is used as the high-fidelity model (3.1):

d

dt



x(t)

y(t)

θ(t)

vx(t)

vy(t)

θ̇(t)


=



vx(t) cos θ(t)− vy(t) sin θ(t)

vx(t) sin θ(t) + vy(t) cos θ(t)

θ̇(t)
1
m
Fx(zhi(t))− 1

m
Fy,f (αf (zhi(t))) sin(δ(t)) + vy(t)θ̇(t)

1
m
Fy,f (αf (zhi(t))) cos(δ(t)) + 1

m
Fy,r(αr(zhi(t)))− vx(t)θ̇(t)

lf
I
Fy,f (αf (zhi(t))) cos(δ(t))− lr

I
Fy,r(αr(zhi(t)))


, (5.4)

where x and y are position; θ is the vehicle’s heading in the global coordinate frame; vx, vy are
longitudinal and lateral speed of the center of mass; and θ̇ is yaw rate. The constants m, I , lf ,
and lr are the vehicle’s mass, yaw moment of inertia, distance from the front wheel to center of
mass, and distance of the rear wheel to center of mass. I fit polynomials relating the inputs to the
driving force, Fx, and find a linear relationship between wheel angle, δ, and steering wheel angle.
I fit a simplified Pajecka tire model [LDM15, (2a, 2b)] to the lateral tire forces, Fy as functions of
the slip angles, α. Since Fx, Fy,f , and Fy,r are continuous, the dynamics (5.4) are continuous and
Assumption 2 is satisfied.
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5.2.2 Forward Reachable Set Computation

Recall that (5.4) cannot perfectly capture the motion of the vehicle, however Algorithm 1 must
be able to predict the vehicle’s future position 1 planning iteration in the future. The high-fidelity
model is simulated and compared to Carsim data to empirically find the error bounds for Assump-
tion 11: |ε| ≤ [0.1, 0.1, 0.12, 0.15, 0.02, 0.4, 0.08, 0.05]> where | · | is taken element-wise.

The trajectory-producing model (3.2) has dynamics:

f(t, z(t), k) =

[
ẋ(t)

ẏ(t)

]
=

[
k1 − k2y(t)

vy + k2x(t)

]
(5.5)

vy = k2

(
lr −

mlf
Cy,r (lr + lf )

k2
1

)
, (5.6)

where z = [x, y]>; k1 (resp. k2) specifies a constant desired speed (resp. yaw rate) and Cy,r is the
rear cornering stiffness from the tire force model in (5.4). The lateral speed, vy, is derived from
steady-state, linear tire force assumptions [SHB14, Section 10.1.2]. Notice that similar to Example
5, (3.2) only has the two states x and y, i.e. heading dynamics are omitted. Consequently, (5.5)
produces trajectories of the vehicle’s entire footprint in X . For any k ∈ K, the high-fidelity model
generates a feedback controller uk : [0, T ] × Zhi → U to track the trajectory parameterized by k.
For this platform, uk is implemented with linear MPC in MATLAB.

now discuss tacking error and the FRS computation. In this work, gx and gy are polynomials
of degree 2 that overapproximate tracking error data as in Assumption 7. Importantly, state esti-
mation error in zhi,0 is added to the initial conditions, so g conservatively approximates dynamics
associated the prediction errors described in Assumption 11. The FRSs are computed using the
SOS implementation of (D) from §3.3.2 with l = 5. The change in velocity and yaw rate is lim-
ited to 1 m/s and 0.25 rad/s between planning iterations. Figure 5.3 shows tracking error data and
g. I fit the g function using (5.4), but verify that it is conservative with respect to data from the real
vehicle, the CarSim model, as described in Remark 8.

5.2.3 Environment

The vehicle runs on a 1036 m, counter-clockwise, closed loop test track with 7 turns (with approx-
imate curvatures of 0.005–0.04 m−1) and two 4 m wide lanes. Twenty stationary obstacles (with
random length of 3.3–5.1 m length and width of 1.7–2.5 m) are distributed around the track in
random lanes and randomly spaced 40–55 m apart. Ten random tracks were generated; though the
mean obstacle spacing is the same, the tracks vary in difficulty. For example, some tracks require
performing overtaking maneuvers in a corner. The vehicle begins each simulation at the northwest
corner of the track in the left lane, with first obstacle at least 50 m away. A high-level planner
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Figure 5.3: Example of tracking error in x and y plotted for a reference trajectory of k1 = 12 m/s,
k2 = 0 rad/s, and T = 2.1 s. Data (blue) is from CarSim and captures initial velocities and yaw
rates between 10.78 to 13.26 ms and -0.25 to 0.25 rad/s. The green lines is the error functions gx
and gy as in (3.12).

places waypoints ahead of the vehicle at a lookahead distance proportional to the vehicle’s current
speed. If the lane centerline from the vehicle’s current position and lane to the waypoint intersects
an obstacle, the waypoint is switched to the other lane to encourage a lane change. Lane keeping
is not explicitly enforced but is encouraged via the cost function. A trial is successful if the vehicle
completes one lap of the track.

5.2.4 Trajectory Planner Implementations

This section describes implementation aspects of the RTD, Rapidly-Exploring Random Tree (RRT)
and Nonlinear Model-Predictive Control (NMPC) trajectory planners. A planning time limit of
τplan = 0.5 is enforced for all planners, RRT and NMPC planners are also tested with limits of 10
s.

5.2.4.1 RTD

For RTD, the discrete obstacle representation in §4.2.2 is used with quantities b = 0.05 m, so
r = 0.1 m and a = 0.07 m To satisfy Theorem 38, the vehicle has a minimum sensor horizon
of Dsense = 42.4 m as in Assumption 30; which is well within the range specified by commercial
LIDAR units [Aco07]. The trajectory optimization program in Algorithm 1 Line 7 is solved with
fmincon. If there is no feasible solution, the vehicle brakes along the previously planned path. I
empirically verified that braking in this manner stays within the FRS; however, the more appropri-
ate approach is to compute an FRS with time-varying dynamics as described in §3.5. To keep the
vehicle on the road, RTD buffers the road boundaries by 2.5 m outside the road and incorporates
these buffers as obstacles. Since the FRS includes the full vehicle body, this ensures the vehicle’s
center of mass stays on the road when tracking any trajectory planned by RTD. Figure 5.4 shows
an timelapse of RTD navigating a section of the track.
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Figure 5.4: The vehicle (solid blue) autonomously performs lane change maneuvers at 8–15 m/s
around obstacles (orange) on a 90 m section of road, beginning from the right side of the figure.
The presented RTD method drives the vehicle safely in real time. The left plot shows the vehicle
in Carsim, with the vehicle transparent at intermediate times to show motion. The right plot shows
the RTD planner in MATLAB, with the green contours in showing the forward reachable set at
each planning iteration. A video is available at https://youtu.be/lmtki6elFlw.

5.2.4.2 RRT

The RRT planner is implemented based on [KTF+09] and similar to §5.1.3.2. To compensate for
the vehicle’s footprint, obstacles are buffered by 4 m in length and 1.5 m in width. Nodes are
created by forward-integrating (3.1) from a randomly-selected node with randomly-chosen control
inputs held for 0.5 s to create 50 points spaced 0.01 s apart; the last such point is the new node,
which is discarded if any of the points leave the track or enter a buffered obstacle. Two trees are
built in parallel: one with throttle inputs, and one with braking inputs. The cost at each node is
distance to the current waypoint, plus penalties for being near obstacles or road boundaries, and
for commanding large control inputs.

5.2.4.3 NMPC

The NMPC planner uses GPOPS-II, a commercially available pseudo-spectral nonlinear MPC
solver [PR14], with a kinematic bicycle model, similar to §5.1.3.3. The inputs are acceleration
and steering wheel angle rate; this model was used to reduce solve time, and has been shown
to effective for trajectory planning in mild to moderate conditions [PAdNdLF17]. Obstacles are
buffered by 4 m in length and 1.25 m in width. The track is represented as a set of adjacent
rectangles. Constraints are created as half-planes to ensure that the planned trajectory (of the
center of mass) does not enter buffered obstacles or exit the track.

5.2.5 Simulation Results

The simulations are run on a 2.6 GHz computer with 128 GB RAM. Planning times are reported
using Matlab’s tic and toc functions. All planners use a receding horizon strategy with τplan =

0.5 s. In the first experiment, all three planners are run with a real-time planning limit enforced. In
the second experiment, RRT and NMPC are given extra time. Results are shown in Table 5.5.
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Planner
Planning Time (s) % of Track Complete

Crashes
Safe
StopsAvg Max Avg Max

RTD 0.09 0.50 100 100 0 0

RRT
5.00 5.00 31 86 0 10
0.50 0.50 13 38 1 9

GPOPS
3.71 72.58 100 100 0 0
0.50 0.50 0 0 0 10

Table 5.5: Simulation results comparing RTD, RRT [KTF+09], and GPOPS-II [PR14] on 10 sim-
ulated tracks. The experiment with the real-time planning limit is shown in gray; the one without
is shown in white. The fourth and fifth columns show the average and max percent of each track
completed. The six and seventh columns count the number of crashes or safe stops if the vehicle
did not complete the track.

RTD successfully navigates the track in all 10 trials, with an average planning time of 0.086 s.
In the first experiment (enforcing real-time planning) RRT navigates 13% of the track on average.
When the vehicle approaches obstacles, the planner struggles to generate feasible nodes that avoid
the obstacle while staying on the track. Since the algorithm attempts to plan a braking trajectory
at each iteration, it is able to stop safely (without colliding with an obstacle) in 9 trials; it has
1 crash because it cannot always plan a feasible braking trajectory. Increasing the buffer size of
the obstacles could reduce collisions, but would impact performance. GPOPS-II is unable to plan
trajectories in less than 0.5 seconds due to the number of track constraints; hence, it records 10
safe stops. In the second experiment, the extended planning time allows RRT to complete more
of the track. Although unable to always reach the goal, RRT uses the extended planning time to
find feasible braking plans. GPOPS-II successfully reaches the goal in all 10 trials, but with an
average planning time of 3.71 s. The planning times for GPOPS-II have a standard deviation of
4.20 s; the large standard deviation is expected because the number of constraints vary based on
the track curvature. Heuristics may reduce the amount of constraints, but would be obstacle- or
track-specific. In contrast, the average planning time and standard deviation of RTD is 0.09 s and
0.06 s, so I do not expect its performance to vary if the track changes.

5.3 Dynamic Obstacles

This section describes the application of RTD to to environments with dynamic obstacles. Two
platforms, the Segway from Figure 3.2a and a small electric vehicle pictured in Figure 5.5 are
used. The discrete time collision check §4.3.1 [VKL+19] and the interval time collision check
§4.3.2 [VLK+19] are both implemented and compared to the state-of-the-art. §5.3.1 describes
the Segway and EV platforms. §5.3.2 describes the FRS computation for the Segway and EV
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Figure 5.5: Depiction of RTD planning a trajectory for the EV robot (moving from left to right)
around a dynamic obstacle (in red, moving from right to left) in the plane X . Opacity increases
with time. At the last depicted time instance, the obstacle’s predicted motion fades from white to
red, and the forward reachable set of the EV fades from white to green. In the trajectory parameter
space K, the planned trajectory is a green point lying outside the parameters for which the robot
could be at-fault in a collision.

platforms. §5.3.3 describes the simulation environments they operate in. §5.3.5 describes the
simulation results. §5.3.6 describes the hardware demonstrations.

5.3.1 Platforms

This section describes the platforms and dynamic models used. The first robot is the differential-
drive Segway RMP with a high-fidelity model from Example 4 and §5.1.5.1. The second robot is
the small Electric Vehicle (EV) in Figure 5.5 with the following high-fidelity model:

d

dt


x(t)

y(t)

θ(t)

v(t)

δ(t)

 =


v(t) cos(θ(t))− θ̇(t)(c1 + c2v(t)2) sin(θ(t))

v(t) sin(θ(t)) + θ̇(t)(c1 + c2v(t)2) cos(θ(t))

tan(δ(t))v(t)(c3 + c4v(t)2)−1

c6 + c7(v(t)− u2(t)) + c8(v(t)− u2(t))2

c5(δ(t)− u1(t))

 , (5.7)

where θ is heading, δ is steering angle, and v is speed. Saturation limits are |δ(t)| ≤ 0.50 rad,
|δ̇(t)| ≤ 0.50 rad/s, and |v̇(t)| ∈ [−6.86, 3.50] m/s2. For Assumption 11 εx = 0.1 m and the coef-
ficients c1, . . . , c8 were fit using localization data; the EV performs localization with a Robosense
RS-Lidar-32 and saved maps [BWWN18]. The EV has a rectangular 2.4× 1.3 m2 footprint. ROS
runs on-board on a 2.6 GHz computer. RTD is run in MATLAB on a 3.1 GHz laptop.
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5.3.2 Forward Reachable Set Computation

For RTD, both robots create desired trajectories with the time-switching model:

f(t, z(t), k) =



k1 − θ̇des(k)y(t)

θ̇des(k)x(t)

 , t ∈ [0, τplan]

s(t, k)

k1 − θ̇des(k)y(t)

θ̇des(k)x(t)

 , t ∈ [τplan, τplan + τbrake(k)]0

0

 , t ∈ [τplan + τbrake(k), T ]

(5.8)

This model produces circular arcs that brake to a stop over [τplan, T ]. The trajectory parameters are
k = (k1, k2). The desired yaw rate is θ̇des : K → R, given by θ̇des(k) = k2 for the Segway and
θ̇des(k) = k1k2/l for the EV, where l is the EV’s wheelbase in meters. For both robots, k1 is desired
speed. The braking time is τbrake(k) = 1.0 s for the Segway and τbrake(k) = k1/3 for the EV. T is
picked by sampling braking time for the high-fidelity models. The function s : [0, T ]×K → R is
given by

s(t, k) = 1−
t− τplan

τbrake(k)
. (5.9)

For the Segway, k1 ∈ [0, 2] m/s and |k2| ≤ 1.5 rad/s ; between planning iterations, commanded
changes in k1 (resp. k2) are limited to 0.5 m/s (resp. 0.5 rad/s). For the EV, k1 ∈ [0, 5] m/s and
|k2| ≤ 0.5 rad; commanded changes in k1 (resp. k2) are limited to 0.5 m/s (resp. 0.1 rad).

In the simulation demonstrations uk is a proportional controller for the Segway and a linear
MPC controller for the EV. For the hardware demonstrations of both robots, uk generates control
inputs uk(t, k) = k ∀ t ∈ [0, τplan]; uk(t, k) = s(t, k)k ∀ t ∈ [τplan, τplan + τbrake(k)]; and uk(t, k) =

0 ∀ t ∈ [τplan + τbrake(k), T ]. To find tracking error functions, I simulated (3.1) under uk for each
robot over a variety of initial conditions and desired trajectories and fit g as polynomials satisfying
(3.16). For each robot (DT i) is solved as described in Section 3.5, with (vi, wi, qi) as degree 10
polynomials.

The EV also has a trajectory parameterization for left turns it is allowed to use in the intersec-
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tion environment described in §5.3.3.2. The left turn model is:

fi(t, z(t), k) = s(t, k)

[
1− k2

l
y(t)

k2
l
x(t)

]
, (5.10)

s(t, k) =



v0 + at, t ∈ t1(k)

k1, t ∈ t2(k)

k1 − abrake(t− τ1(k)− τ2(k)), t ∈ t3(k)

0, t ∈ t4(k).

(5.11)

Then, the time intervals t1, . . . , t4 : K → P(T ) are

t1(k) = [0, τ1(k)] (5.12)

t2(k) = [τ1(k), τ1(k) + τ2(k)], (5.13)

t3(k) = [τ1(k) + τ2(k), τ1(k) + τ2(k) + τ3(k)] (5.14)

t4(k) = [τ1(k) + τ2(k) + τ3(k), τ4(k)]. (5.15)

The times τ1, . . . , τ4 : K → R≥0 are:

τ1(k) = k1+v0
a
, τ2(k) = k3, τ3(k) = k1

abrake
, τ4(k) = T, (5.16)

so that [0, T ] =
⋃4
i=1 ti by construction. In this implementation v0 = 0 m/s, a = abrake2.0 m/s2,

and T = 7.5 s. Trajectories of (5.10) are arcs of constant curvature, with a speed profile consisting
of 4 phases: acceleration, constant speed, braking, and stopped. The parameters k1, k2, k3 are
speed, approximate front wheel angle, and duration of the constant speed phase. The parameter
ranges are k1 ∈ [4, 5] m/s, k2 ∈ [0.15, 0.30] rad, and k3 ∈ [1.0, 1.5] s. The initial condition range
for the FRS is velocities and wheel angles of 0-2 m/s and -0.1 to 0.1 rad. For this (DTs) is solved
with SOS using degree 8 polynomials.

In the planning implementation will implement both the discrete time collision check §4.3.1,
referred to as RTD-D, and the interval time collision check §4.3.2, referred to as RTD-I. For RTD-I
(DI) is solved for time intervals of length 0.5 s.

5.3.3 Environments

This section describes the environments used in the Simulation comparisons.
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5.3.3.1 Random

For the Segway, simulations in the random environment are in a 20 × 10 m2 world with 1–10
0.3 × 0.3 m2 box-shaped obstacles. 100 trials were run for each number of obstacles (1000 trials
total). In each trial, a random start and goal are chosen approximately 18 m apart. Each obstacle
moves at a random constant speed, up to 1 m/s, along a random piecewise-linear path. Simulations
are identical for the EV, but the world is 60× 10 m2, and the obstacles are 1× 1 m2 and can travel
up to 2 m/s. Conservative predictions are given all planners as defined in Definition 31, and are
represented as polygons as in Assumption 43.

5.3.3.2 Intersection

The second scenario requires an unprotected left turn at a 4-way intersection, followed by driving
straight for 30 m (see Figure 5.6). 100 random scenarios were generated with lane widths and
corner radii of 3.5–4.0 m. At any time, up to 4 obstacle cars (length 2.5–4.0 m and width 1.25–2
m) travel along randomly chosen lanes, and randomly choose to turn, at constant speeds of up to 7
m/s. Up to 2 pedestrians randomly cross one of the four cross walks up to 2 m/s. The ego vehicle
starts in the right lane either at the intersection or 30 m away, with initial speed and wheel angle of
0. The cost function for all planners is to minimize the distance to a waypoint placed along the lane
centerline. A constraint is added to ensure that the end of any planned trajectory is in a lane (i.e.,
not in the intersection), so that the vehicle only begins turning if the entire maneuver is validated.
Conservative predictions are given all planners as defined in Definition 31, and are represented as
polygons as in Assumption 43. For RTD-I predictions satisfying Definition 55 are generated as
polygons that bound the obstacles’ future motion.

5.3.4 Trajectory Planner Implementations

This section describes implementations of RTD, State lattice [McN11], and linear MPC planning
algorithms. RTD will be compared to state-lattice in the random environment and linear MPC in
the intersection environment.

5.3.4.1 RTD

For both robots the discrete obstacle representation discussed in §4.3.1 with b = 0.1 is used and
the quantities r and a derived from Examples 51 and 50. For RTD-D τdisc = 0.1 s. In the random
environment these correspond to buffers of bdisc = 0.15 m for the Segway and bdisc = 0.35 m for
the EV as per Lemma 53. As noted in §5.3.2, RTD-I collison checks over time intervals of 0.5 s.
For online planning Algorithm 1 Line 7 is implemented with MATLAB’s fmincon.
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Environment Platform Planner AFC (%) Goals (%) Avg Speed (m/s)
RTD-D 0.0 100.0 1.18

Segway
State Lattice 7.6 92.4 1.37

RTD-I 0.0 96.8 3.06
RTD-D 0.0 90.7 1.99

Random
EV

State Lattice 17.2 77.3 2.88
RTD-I 0.0 99.0 2.71
RTD-D 0.0 91.0 1.50Intersection EV

Linear MPC 19.0 80.0 3.35

Table 5.6: Simulation results for RTD in dynamic environments. 1,000 trials are run in the random
environment, 100 for the intersection environment. The metrics compared from left to right are
At-fault Collisions (AFC), Goals, and Average Speed.

5.3.4.2 State Lattice

A state lattice mid-level planner is implemented as in [McN11] in MATLAB with braking as
a fail-safe in each plan and LazySP for searching the lattice graph online [DS16]. Similar to the
approach in §5.1.4.1, SL was tested with obstacles buffered by increasing amounts until the planner
had collisions in less than 10% (resp. 20%) of trials for the Segway (resp. EV); the final values
were 0.43 m (resp. 2.77 m) for the Segway (resp. EV). Since SL planners require feedback about
the pose of the generated trajectories, a linear MPC controller is used for both robots.

5.3.4.3 Linear MPC

For the intersection environment I tested a planner where the linear MPC controller tracks lane
centerlines joined by a circular arc through the intersection. At each planning iteration, a reference
trajectory is generated from the centerlines and arc that is kinematically feasible as in [McN11,
Section 3.8], and does not intersect any obstacles. A collision check is performed every 50 ms. I
validated that this method can always traverse the intersection when no obstacles are present.

5.3.5 Simulation Results

RTD-I, RTD-D and State Lattice [McN11] planners are compared in the random environment.
RTD-I, RTD-D and Linear MPC planners are compared in the intersection environment. In all
simulations tplan = 0.5 s; simulations are stopped if the ego vehicle has an at-fault collision or
exceeds 300 planning iterations. Results are summarized in Table 5.6.

RTD-D and RTD-I have no at-fault collisions for either robot in either environment. The results
of the random environment are discussed first. Collisions occur with state lattice because the robot
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cannot perfectly track its reference trajectory, and it is unclear how to buffer obstacles to provably
compensate for tracking error and the robot’s footprint (a variety of heuristics are presented in
[McN11]). Compared to the Segway simulations, the EV simulations are more difficult because
the velocity of the robot and obstacles is higher, leading to more collisions for state lattice. Both
planners stop more often than in the Segway simulations. Note that the EV is not allowed to reverse
and cannot turn in place, so it sometimes gets trapped by obstacles. In the EV simulation RTD-I
has more goals reached, and higher average speed than both State Lattice and RTD-D. Importantly
RTD-D has the lowest average speed for both platforms. This confirms that RTD-I is able to plan
fast but safe trajectories, and highlights the benefits of eliminating the temporal buffer and collision
checking over time intervals.

The intersection environment is discussed next. A trial of RTD-I is shown in Figure 5.6. RTD-I
completes 99% of the left turns with an average speed of 2.71 m/s; in the one incomplete turn,
it was stuck waiting to turn due to aggressive obstacles. RTD-D is able to complete 91% of the
scenarios, but with an average speed of 1.5 s, indicating it stays stopped for longer at the inter-
section. Linear MPC only completes 80% of the left turns, and has at-fault collisions 19% of the
time, confirming that the trajectory tracking controller is insufficient on its own. When MPC is
successful, it has a higher speed than RTD-I or RTD-D, indicating that, in some scenarios, RTD in-
creases conservatism to prevent collisions. Altogether, these results confirm that RTD-I is capable
of validating and executing long maneuvers without causing at-fault collisions.

5.3.6 Hardware Demonstration

To illustrate the capability of RTD-D, was also tested on the Segway (https://youtu.be/
9mMZyyLUiPg) and EV (https://youtu.be/PGBxoPMRvg8) as described above. The
Segway runs indoors at up to 1.5 m/s in similar scenarios as in simulation. Virtual dynamic ob-
stacles (vobs,max = 1 m/s) are created in MATLAB. The testing area is smaller than the simulation
world, so tests contained up to 3 obstacles. The room boundaries are treated as static obstacles as
in §4.2.2. The EV runs outdoors in a large open area at up to 3 m/s, with a safety driver. For the
EV, more structured, car-like scenarios were tested by showing a variety of overtake maneuvers.
Virtual obstacles (vobs,max = 1.5 m/s) resembling people or cyclists are created in MATLAB. The
area is large enough that static obstacles did not need to be considered.
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Figure 5.6: Timelapse of EV (blue) completing a left turn. Figures show time at 0.0, 2.0, 3.0, and
5.0 s from top to bottom. Obstacles and their prediction are plotted in red. The vehicle obstacles
are traveling at 5 m/s. The pedestrian is traveling at 2 m/s. The ego vehicle begins the scenario
stopped at the intersection. The FRS intervals are shown in green. Obstacle predictions and the
FRS intervals fade from dark to light with increasing time. The left turn maneuver is longer in
duration, and therefore requires longer predictions, than the driving-straight maneuvers (which
begin after the ego vehicle completes the turn at t = 3.0 s).
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CHAPTER 6

Chance-constrained Optimization

This chapter will focus on developing a chance-constrained optimization algorithm, that can let
motion planners deal with uncertainty in other obstacles’ motion probabilistically. Approaches
that make guarantees about safety [VLK+19, PA18] require predictions of obstacles at current and
future timesteps that are conservative, meaning that they must contain all possible actions for the
obstacles, regardless of how likely they are to occur. In dynamic environments, using obstacle
predictions that contain all feasible actions for the obstacle can make finding a feasible solution
to trajectory optimizations problems difficult, if not impossible [SSSS17]. Even in the static case,
states of obstacles are uncertain due to sensory limitations [Thr02], and one must devote more
resources to sensing to increase accuracy and precision.

To limit the probability of an unsafe event, one can use chance-constrained programming where
the probability of constraint violation is enforced [Pré13, WHJW20, CLLSA+20]. Tangential ap-
proaches that limit the severity of constraint violations using risk measures have also been de-
veloped and applied to planning and control problems [DAB20, HY20]. This chapter adopts the
chance-constrained approach and proposes the Chance-constrained Parallel Bernstein Algorithm
(CCPBA). §6.1 describes the related work. §6.2 proposes the algorithm. §6.3 explains how to
apply CCPBA to trajectory optimization problems. §6.4.1 gives simulation comparison to the
state-of-the-art. §6.4.2 describes a hardware demonstration of CCPBA working the Segway plat-
form from Figure 3.2a. §6.4.3 concludes with a brief discussion of the pros and cons of CCPBA
and possible research directions.

6.1 State-of-the-art

Chance-constrained programming was first introduced by [CCS58] and has been extensively stud-
ied ever since [Pré13]. It has been used in applications such as portfolio optimization [KPU02] and
for optimal control of chemical processes [HLM+01]. Its application to trajectory optimization
has been a more recent development. This section describes state-of-the-art methods for chance-
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constrained optimization, with a focus on trajectory optimization. Compared to its early applica-
tions, trajectory optimization applications are especially challenging because time limits of 0.5 s or
less are often imposed [DWE20] Additionally, their constraints are often nonconvex and can be dif-
ficult to evaluate analytically in the chance-constrained sense. Algorithms for chance-constrained
programming can be classified into two classes of approaches based upon how they bound con-
straint violation. The first class of approaches conservatively bounds the probability of constraint
violation. The second class of approaches numerically approximate the probability of constraint
violation.

6.1.1 Moment-based Bounds

Most methods in the first class of approaches use moment-based inequalities from probability the-
ory which are able to bound the tail of a probability distribution. Cantelli’s inequality [Can29],
for instance, uses the mean and variance to upper bound the probability of constraint violation.
Others have even used the first four central moment to generate an upper bound [Bha87]. Sums-
of-squares (SOS) programs can also be solved to compute the upper bound with higher order
moments [WHJW20]. In the case where the constraint functions are polynomial, one only needs
to compute the moments for the uncertain variables, which can be done efficiently for certain dis-
tributions, such as the exponential family. After the moments are computed, the final constraint is
a polynomial in the decision variables. In the context of motion planning, this constraint can eas-
ily be incorporated in a nonlinear Model Predictive Control programs [WJW20]. Unfortunately,
the upper bound of constraint violation that is generated from moment-based approaches can be
overly conservative because the bound must hold for any distribution that has the specified mo-
ments. Such inequalities can be problematic for use in applications such as autonomous driving
where robots operate in narrow corridors.

6.1.2 Numerical Methods

The second class of methods applies numerical integration techniques to bound the probability of
constraint violation. A chance-constraint can be equivalently represented as an the expectation of
an indicator function on the set of variables that violate the constraint. Monte Carlo approaches,
for instance, draw random samples from the uncertainty vector and approximate the integral as a
weighted sum [AG07]. Monte Carlo methods are simple to implement; however, their convergence
rates can be slow and large numbers samples can lead to long computation times. Additionally the
integrand, an indicator function, is not smooth, so Monte Carlo is difficult to use in gradient-based
optimization solvers; hence, in the motion planning context they are used in a guess-and-check
framework where a planned trajectory is generated, then the probability of constraint violation is
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calculated [JSP18].
One can smoothly over-approximate the integrand to apply such Monte-Carlo methods in com-

bination with a gradient-based method to solve such optimization programs [NS07, ZK14]. Such
an approach has been utilized in Model Predictive Control (MPC) programs [ZK17, KMKR20].
These methods provide tighter bounds on the probability of constraint violation than the moment-
based inequalities; however, they still require numerical evaluation of integrals. For motion plan-
ning, one must balance the tightness of the over approximation (looser overapproximations gen-
erally result in smoother integrands and faster evaluation) with the desired accuracy and run time
constraints.

6.1.3 Special Cases

In cases where the constraints are defined by linear inequalities and the uncertain components are
normally distributed, [BOW11] formulates the motion planning problem as a disjunctive convex
program. This method relies on using the cumulative distribution function for the normal distribu-
tion, which can be evaluated analytically. It is exact in the case of convex constraints. However,
for non-convex constraints, such as obstacle avoidance, Boole’s inequality is used to upper bound
the probability of constraint violation. Drawbacks of this approach are that solving the disjunctive
convex program can be slow for motion planning applications and Boole’s inequality introduces
conservatism around the vertices of non-convex constraint sets.

6.2 Chance-constrained Parallel Bernstein Algorithm

This section presents a novel algorithm for chance-constrained polynomial optimization, called
the Chance-constrained Parallel Bernstein Algorithm (CCPBA), which can be applied to a motion
planning problems. The algorithm is similar in nature to deterministic optimization programs using
Bernstein polynomials [NA11, KZZV20]; however, to the best of my knowledge, this is the first
use of Bernstein polynomials for chance-constrained optimization. These algorithms fall under the
class of branch-and-bound algorithms, and work by computing lower and upper bounds on the cost
and constraint functions for subsets of the decision variables as they search for optimal solutions.

For chance-constraints, the algorithm projects each constraint function onto the Bernstein poly-
nomial basis, which is used to compute upper and lower bounds on the probability of constraint
violation by conservatively evaluating the expectation of an indicator function on the constraint
set. The advantage of my approach is that it provides certified bounds that are tightened with in-
creased computations. Existing approaches either give a conservative upper bound, that can never
converge to the true value; or numerically integrate to approximate the true value, which always
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requires large amounts of computations for accuracy. The algorithm can also return suboptimal,
feasible solutions during its search process; which is useful for motion planning as it can be im-
plemented as an anytime algorithm [Zil96].

Figure 6.1 shows CCBPA planning a lane change maneuver for an autonomous vehicle whose
probability of collision with an adjacent vehicle is guaranteed to be below a user specified thresh-
old. In this example that the probability of collision is small (< 1%), but non-zero. If one were to
consider a conservative prediction, that accounted for the minimum and maximum accelerations
the other vehicle would apply, such a trajectory would not be feasible.

The rest of the section is organized as follows. §6.2.1 formulates the chance-constrained opti-
mization program. §6.2.2 introduces notation and operations associated with Bernstein polynomi-
als. §6.2.3 describes how Bernstein polynomials are useful for chance-constrained programming.
§6.2.4 details the proposed algorithm.

6.2.1 Problem Formulation

This work focuses on solving chance constrained programs of the following form:

min
k∈K

J(k) (6.1)

s.t. Pr

ξ ∈ Ξ

∣∣∣∣ ∨
i∈{1,...,ncons}

(vi(k, ξ) ≥ 0)


 ≤ ∆

where k ∈ K ⊂ RnK is a decision variable, J : RnK → R is the cost function, (Ξ,F ,Pr) is a
probability space, ξ ∈ Ξ is a possible outcome, vi : K × Ξ → R are measurable functions. ∨ is
the logical or, meaning the probability that any constraint is violated is limited.

To deal with the joint nature of the chance constraints I used Boole’s inequality [NS07, BLW06,
OW08], which states that for any finite or countable set of events, {Ai}mi=1, with Ai ∈ F , the
probability that at least one event happens is not greater than the sum of the probabilities of the
individual events (i.e., Pr(

⋃m
i=1Ai) ≤

∑m
i=1 Pr(Ai)). Boole’s inequality yields a conservative

version of (6.1):

min
k∈K

J(k) (6.2)

s.t.
ncons∑
i=1

Pr
(
{ξ ∈ Ξ | vi(k, ξ) ≥ 0}

)
≤ ∆.

Note that (6.2) is easier to solve than (6.1) since the probability of violation for each constraint is
computed separately. The algorithm will also exploit the fact that for each k ∈ K, the probability of
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Figure 6.1: Chance-constraint Parallel Bernstein Algorithm (CCPBA) solving a motion planning
problem for an autonomous vehicle with a probability limit of 1%. A GPU implementation of
CCPBA solves this problem in 0.22 s. The top plot shows the obstacle (red) and probability
densities of its center of mass at timesteps of 1,2,3, and 4 s. The confidence ellipsoid containing 5
standard deviations of the densities are colored with red being more likely, and cyan less likely. The
ego vehicle (blue) and reachable sets representing collision states (green) for the solution trajectory
(black) and endpoint (blue circle) are plotted. The white star is the optimal endpoint. The bottom
plot shows the decision variable (longitudinal velocity and desired lateral position) space. Light
blue patches represent active patches that could contain a cheaper solution. Red patches have been
discarded due to infeasibility. Gray patches have been discarded due to high cost. The blue circle
and white star are the current solution and desired parameters.

93



the ith constraint being violated is equivalent to the expectation of the random variable 1
(
vi(k, ξ)

)
because this expectation can be written as the following integral:

Pr
(
{ξ ∈ Ξ | vi(k, ξ) ≥ 0}

)
=

∫
Ξ

1
(
vi(k, ξ)

)
dPr . (6.3)

6.2.2 Preliminaries

This section presents general notation and operations associated with Bernstein polynomials. x is
used as a generic variable in this section. A polynomial, h : Rn → R can be represented in the
Bernstein basis over an arbitrary box x as

h(x) =
∑
I≤D

BD
I (x)bDI (x, x), (6.4)

where bDI (x, ·) is the I th multivariate Bernstein polynomial of multi-degree D over x, given by
[Ham18, (3.15)]

bDI (x, x) :=
n∏
r=1

(
dr

ir

)
(xr − xr)ir(xr − xr)dr−ir(xr − xr)−dr (6.5)

and BD
I (x) are the corresponding Bernstein coefficients of h over x determined by [Ham18,

(3.16,3.17)].
All Bernstein coefficients are collected in a multi-dimensional array B(x) := (BD

I (x))I≤D.
Let minB(x) (resp. maxB(x)) denote the minimum (resp. maximum) element in the patch
B(x). Importantly, the range of h over x is contained within the interval spanned by the extrema
of B(x):

Lemma 56. [NA11, Lemma 2.2] Let h be a polynomial as defined in (1.1) andB(x) be its bernstein

patch over a box x. Then, the following property holds:

minB(x) ≤ h(x) ≤ maxB(x), ∀x ∈ x. (6.6)

The range enclosure can be improved by subdividing x into smaller subboxes and computing
the Bernstein patches over these subboxes. A subdivision in the rth direction (1 ≤ r ≤ n) is a
bisection of x perpendicular to this direction. That is, let

x := [x1, x1]× · · · × [xr, xr]× · · · × [xn, xn] (6.7)

be an arbitrary box over which the Bernstein patch B(x) is already computed. Subdividing x in
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the rth direction creates two subboxes xL and xR, defined as

xL = [x1, x1]× · · · × [xr, (xr + xr)/2]× · · · × [xn, xn],

xR = [x1, x1]× · · · × [(xr + xr)/2, xr]× · · · × [xn, xn].
(6.8)

Note that I have subdivided x by halving its width in the rth direction; I choose 1/2 as the subdivi-
sion parameter in this work, but one can choose a different value in (0, 1) (see [NA11, (10)]). The
Bernstein patches for the new subboxes B(xL) and B(xR), can be computed with linear transfor-
mations [NA11, §2.2]

B(xL) = Mr,LB(x), (6.9)

B(xR) = Mr,RB(x), (6.10)

where Mr,L and Mr,R are constant matrices that can be precomputed offline. By repeatedly apply-
ing the subdivision procedure and Lemma 56, the bounds on the range of a polynomial in a subbox
are improved, and can be shown to be exact in the limiting case:

Theorem 57. [KZZV20, Theorem 4, Corollary 5] Let x be a box of maximum width |x| = 2−l (l ∈
N) and let B(x) be the corresponding Bernstein patch of a given polynomial h, then

minB(x) ≤ min
x∈x

h(x) ≤ minB(x) + γ2−2l (6.11)

maxB(x)− γ2−2l ≤ max
x∈x

h(x) ≤ maxB(x) (6.12)

where γ is a non-negative constant that is independent of l.

In the rest of the paper, multiple functions will be projected onto the Bernstein basis. In subse-
quent sections the notation Bh(x) can be meant to indicate the Bernstein coefficients from polyno-
mial h on subbox x. There will also be functions of variables from different spaces, for example,
decision variables and outcomes from a probability space. In this case if for a polynomial v that is
a function of variables k and ξ, its Bernstein coefficients over subboxes k and ξ will be written as
Bv(k, ξ).

6.2.3 Bernstein Polynomials for Chance-constrained Programming

This section describes how Bernstein polynomials are useful for solving (6.2). §6.2.3.1 focuses on
chance constraint evaluation, and §6.2.3.2 focuses on evaluation of the objective function.
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6.2.3.1 Bernstein Representation of Chance Constraints

This subsection explains how Bernstein Polynomials can be used to compute lower and upper
bounds on the probability of constraint violation (6.3). The following assumption about the con-
straint functions is required:

Assumption 58. Each vi : K × Ξ→ R for i ∈ {1, . . . , ncons} are polynomial functions,

in addition to the following assumption about the sample space:

Assumption 59. The sample space Ξ ⊂ Rm is a m-dimensional box.

These pair of assumptions allows for the constraint functions in (6.2) to be represented in the
Bernstein basis set. I next make an assumption about the probability measure:

Assumption 60. The joint cumulative distribution function for the probability measure Pr exists;

hence if ξ is a subbox of Ξ there is a function, F , that returns the probability mass in ξ:

F (ξ) = Pr(ξ ∈ ξ). (6.13)

The algorithm will project vi on the Bernstein basis and F will be used to compute the proba-
bility mass in subboxes of Ξ as (6.3) is evaluated. The bounding property presented in Lemma 56
ensures that lower and upper bounds on (6.3) are obtained. Let k refer to any box in RnK , Ξ be
divided into n m-dimensional, non-overlapping subboxes such that Ξ =

⋃n
j=1 ξ

(j) and Bvi(k, ξ
(j))

refer to the Bernstein patch for the ith constraint and jth subbox of Ξ. The algorithm checks the
extrema of each Bernstein patch to determine whether or not they can contribute to the evaluation
of (6.3). Define the set of indices corresponding to decided patches as

D(k) =
{

(i, j) ∈ {1, . . . , ncons} × {1, . . . , n} | minBvi(k, ξ
(j)) ≥ 0

}
, (6.14)

and undecided patches as

U(k) =
{

(i, j) ∈ {1, . . . , ncons} × {1, . . . , n} | maxBvi(k, ξ
(j)) ≥ 0,minBvi(k, ξ

(j)) < 0
}
.

(6.15)

These sets construct upper and lower bounds on (6.3) as follows:

Theorem 61. Let (Ξ,F ,Pr) be a probability space. Let Ξ be divided into n m-dimensional, non-

overlapping subboxes such that Ξ =
⋃n
j=1 ξ

(j). Let v : K × Ξ → R be a measurable polynomial

function. Let k be any box in K. Let D and U be defined as in (6.14) and (6.15). Then for any
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k ∈ k the following two inequalities hold:

∑
(i,j)∈D(k)

F (ξ(j)) ≤
ncons∑
i=1

Pr
(
{ξ ∈ Ξ | vi(k, ξ) ≥ 0}

)
≤

∑
(i,j)∈D(k)∪U(k)

F (ξ(j)). (6.16)

Proof. First note that if Ξ is partitioned into n subboxes, the integral of any function can be com-
puted by summing the integral over each subbox

ncons∑
i=1

∫
Ξ

1
(
vi(k, ξ)

)
dPr =

ncons∑
i=1

n∑
j=1

∫
ξ(j)

1
(
vi(k, ξ)

)
dPr . (6.17)

To prove the upper bound observe that for any (i, j) ∈ {1, ..., ncons} × {1, ..., n}

∫
ξ(j)

1
(
vi(k, ξ)

)
dPr ≤ 1

(
max

(k,ξ)∈k×ξ(j)
vi(k, ξ)

)
F (ξ(j)), (6.18)

and then

1

(
max

(k,ξ)∈k×ξ(j)
vi(k, ξ)

)
F (ξ(j)) ≤ 1(maxBvi(k, ξ

(j)))F (ξ(j)) (6.19)

The last inequality follows from Lemma 56 which shows that {max vi(k, ξ) : (k, ξ) ∈ k× ξ(j)} ≤
maxBvi(k, ξ

(j)).
I have proven the upper bound is true for the ith constraint and j th subbox, and it is known by

(6.14,6.15) that D(k) ∪ U(k) consists of patches where 1
(

maxBvi(k, ξ
(j))
)
> 0. Therefore one

can deduce that the upper bound holds as the sum over all constraints and subboxes is taken. The
lower bound can be found by replacing the max with min, switching the order of the inequalities,
and only considering decided patches in D.

The algorithm will iteratively subdivide Ξ, and rely on the fact that the lower and upper bounds
on (6.3) become tighter as the Bernstein approximation of the constraint functions become more
accurate via Theorem 57. This section concludes with a remark about the sample space.

Remark 62. Assumption 59 means that Ξ has finite width, which may not hold for some types

of probability distributions, such as those from the exponential family. The algorithm can still be

applied; however one must truncate the sample space to a box of finite width, then reduce the

threshold ∆ by ncons(1− F (Ξ)), to account for probability mass that lies outside of the truncated

domain.
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6.2.3.2 Bernstein Representation of the Objective Function

Bernstein polynomials will also prove useful to represent the objective function and solve (6.2) to
global optimality. The following assumptions are required:

Assumption 63. Each J : K → R is a polynomial function;

Assumption 64. The decision variable space K ⊂ RnK is a nK-dimensional box.

By projecting J onto the Bernstein basis, the maximum and minimum Bernstein coefficients
are used to find upper and lower bounds of the objective function in a subbox; subdivision can be
performed to get tighter bounds; allowing one to asses the optimality of a subbox. For a thorough
analysis of how Bernstein polynomials are useful for solving deterministic polynomial optimiza-
tion programs to global minima and their convergence properties I refer the reader to [KZZV20].

6.2.4 Algorithm

This section proposes the Chance-Constrained Parallel Bernstein Algorithm (CCPBA, Algorithm
4) to solve (6.2). I extend the approach in [KZZV20] to solve chance-constrained programs. The
approach utilizes the Bernstein representation to obtain upper and lower bounds of both objective
polynomials (Lemma 56) and chance constraints (Theorem 61), iteratively improves such bounds
using subdivision (Theorem 57), and removes patches that cannot contain a solution (Theorem 72).
The algorithm, the list used to store patches, tolerances and stopping criteria, subdivision, a cut-off
test for eliminating patches, and the advantages and disadvantages of CCPBA are discussed.

6.2.4.1 Items and Lists

The algorithm maintains two lists. The first is for the objective function, which is only a function
of the decision variables. Items in this list are tuples (k, BJ(k),∆lo) where BJ(k) is a Bernstein
patch associated with the cost function for subbox k ⊆ K and ∆lo ∈ R≥0 is a lower bound on the
probability of constraint violation for any k ∈ k. This list K = {κ(j) : j = 1, . . . , nK}, nK ∈ N,
is indexed by j ∈ N. Note that elements in items in a list will be referred to, for example, k ∈ K
would mean all of the subboxes in items in K. The other list will pertain to the chance constraints,
L, where an item is a tuple (k, ξ, Bvi(k, ξ)) and Bvi(k, ξ) are Bernstein patches associated with
constraint functions subbboxes k × ξ ⊆ K × Ξ. An item in this list L = {`(j) : j = 1, . . . , nL},
nL ∈ N, is indexed by j ∈ N. To initialize the lists first make the following assumption:

Assumption 65. Without loss of generality, the domain of the decision variable and sample space

are unit boxes (i.e., K = [0, 1]nK and Ξ = [0, 1]m); since any nonempty box in Rn can be mapped

affinely onto [0, 1]n [TG17], and K and Ξ are boxes by Assumptions 59 and 64.
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6.2.4.2 Algorithm Summary

Algorithm 4 begins by projecting the cost function and each constraint function onto the Bernstein
basis in K × Ξ and initializing the lists, and counters (Lines 1-3). An iteration begins when
available memory is checked (Line 4). Items in L and K (if applicable) are subdivided along the
rth dimension using (Line 5 and Algorithms 5 and 6). Then bounds on the objective function for
the items in K (Line 6 are found with Algorithm 7). Line 6 (Algorithm 8) is used to find lower and
upper and bounds on the constraint functions and compute the probability mass in each subbox
ξ, using the joint cumulative distribution function in Assumption 60. Then lower (resp. upper)
bounds on the chance constraint for each item in K are found by summing up the probability mass
for decided (6.14) (resp. decided and undecided (6.15)) patches (see Line 7, Algorithm 9, and
Theorem 61).

In Line 8, Algorithm 10 determines a best estimate of the objective function, and generates lists
of items in K that are, infeasible (Definition 68), suboptimal (Definition 71), or unknown. If every
patch is infeasible (Line 9), CCPBA returns that the problem is infeasible (Line 15); otherwise,
CCPBA checks if the current solution estimate meets user-specified tolerances (Line 10). If the
tolerances are met, CCPBA returns the solution estimate (Line 14). Otherwise, CCPBA determines
in L that can be eliminated (Line 11 and Algorithm 11). CCPBA then eliminates all infeasible and
suboptimal items in K and L (Line 12 and Algorithm 12), then moves to the next iteration (Line
13). Note, algorithms 5, 6, 7, 8, and 12 can be parallelized. CCPBA is implemented on a GPU in
§6.4.

6.2.4.3 Tolerances and Stopping Criteria

Recall that, by Lemma 56, Bernstein patches provide upper and lower bounds for polynomials
over a box. From Theorem 57, as [0, 1]nK and [0, 1]m are subdivided into smaller subboxes, the
bounds of the Bernstein patches on each subbox more closely approximate the actual bounds of
each polynomial. However, to ensure the algorithm terminates, tolerances on optimality must be
set. During optimization one also typically wants to find the optimal up to some resolution. This
resolution corresponds to the maximum allowable subbox width which is referred to as the step

tolerance.

Definition 66. Denote the optimality tolerance as ε > 0 and the step tolerance as δ > 0. Algorithm

4 is terminated either when K is empty (the problem is infeasible) or when there exists an item

(k, BJ(k),∆lo) ∈ K that satisfies all of the following conditions:

(a) |k| ≤ δ,

(b) maxBJ(k)−minBJ(y) ≤ ε, ∀ y ∈ K,
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Algorithm 4 Chance-constrained Parallel Bernstein Algorithm
Inputs: Cost function J ; {vi}ncons

i=1 ; F cumulative density function for ξ, chance constraint limit ∆;
optimality tolerance ε > 0; step tolerance δ > 0, maximum number of patches nmax ∈ N and of
iterations niter ∈ N.
Outputs: Estimate cost J∗ of optimal solution and subbox k∗

Algorithm:
1: Initialize patches of J and v over nK and m dimensional unit boxes as in [TG17, (14)]

[BJ([0, 1]nK ), Bvi([0, 1]nK , [0, 1]m)]← InitPatches(J, vi)
2: Initialize lists of undecided patches and patch extrema on the GPU

K ← ([0, 1]nK , BJ([0, 1]nK ), 0), Kbounds ← {},
L ← ([0, 1]nK , [0, 1]m, Bvi([0, 1]nK , [0, 1]m)), Lbounds ← {}

3: Initialize iteration count and subdivision direction
r ← 1, iter← 1

4: Test for sufficient memory (iteration begins here)
if 2length(L) > nmax then go to 14 end if

5: (Parallel) Subdivide each patch in K and L along rth dimension using Algorithms 5 and 6
if r ≤ n then K ← SubdivideK(K, r) endif
L ← SubdivideL(L, r)

6: (Parallel) Find bounds for J , vi and density weight in each subbox in L using Algorithms 7
and 8

if r ≤ n then Kbounds ← FindBoundsK(K, r) endif
Lbound ← FindBoundsL(L,F )

7: Find chance constraint bounds, and store lower bound in K, using Algorithm 9
[K,∆bounds]←ChanceConsBounds(K,Lbounds)

8: Estimate upper bound J∗up of the global optimum as the least upper bound of all feasible sub-
boxes and determine which patches of K to eliminate using Algorithm 10

[J∗lo, J
∗
up,Ksave,Kelim]← CutOff(Kbounds,∆bounds)

9: Test is problem is feasible
if length(Ksave) = 0 then go to 15

10: Test stopping criteria for all (k, BJ(k),∆lo) ∈ K
if J∗up − J∗lo ≤ ε and |k| ≤ δ then go to 14 end if

11: Determine which patches of L to eliminate using Algorithm 11
[Lsave,Lelim]← CleanL(Lbounds,K,Kelim)

12: (Parallel) Eliminate infeasible, suboptimal patches using Algorithm 12
K ← Eliminate(K,Ksave,Kelim), L ← Eliminate(L,Lsave,Lelim)

13: Prepare for next iteration
r ← (mod(r + 1, n+m)) + 1
if r = 1 then iter← iter + 1 end if
if iter = niter then go to Step 14 else go to Step 4 end if

14: Return current best approximate solution
J∗ ← J∗up, k∗ ← k for which maxBJ(k) = J∗up
return J∗, k∗

15: No solution found (problem infeasible)
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(c) ∆lo +
∑

ξ∈LUk
F (ξ) ≤ ∆, where

LUk = {` ∈ L | `1 = k, max(Bvi(k, ξ)) ≥ 0,min(Bvi(k, ξ)) < 0} (6.20)

Feasibility is discussed in more detail in §6.2.4.5. Note that, the step tolerance δ can be imple-
mented by counting the number of iterations, since subdivision halves the width of each subbox.

6.2.4.4 Subdivision

Subdivision for the K and L lists is implemented with Algorithms 5 and 6. These algorithms are
based off of [KZZV20, Algorithm 2] Since the subdivision of one Bernstein patch is computation-
ally independent of another, in the GPU implementation, each subdivision task is assigned to an
individual thread, making Algorithms 5 and 6 parallel.

The subdivision of Bernstein patches can be done in any direction, leading to the question of
how to select the direction in practice. For the decision variable space example rules are available in
the literature, such as maximum width [RC95, §3], derivative-based [ZG98, §3], or a combination
of the two [RC95, §3]. In the context of constrained optimization, the maximum width rule is
usually favored [KZZV20].

For the sample space, Ξ, rules for subdivision directions are less clear. In this work, subdivision
occurs in the order 1, 2, . . . , nK+m and the width of each subbox is halved, leading to the following
remark.

Remark 67. In the ith iteration, the maximum width of any subbox in K and L is 2−i.

Exploring rules to help determine subdivision direction and width could be a focus of future work.

Algorithm 5 K = SubdivideK(K, r) (Parallel)
1: n← length(K)
2: parfor i ∈ {1, . . . , n} do
3: (k, BJ(k),∆lo)← K[i]
4: Subdivide k along the rth direction into kL and kR
5: Compute patches BJ(kL) and BJ(kR)
6: K[i]← (kL, BJ(kL),∆lo)
7: K[i+ n]← (kR, BJ(kR),∆lo)
8: end parfor
9: return K
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Algorithm 6 L = SubdivideL(L, r) (Parallel)
1: n← length(L)
2: parfor j ∈ {1, . . . , n} do
3: (k, ξ, Bvi(k, ξ))← L[j];
4: Subdivide k along the rth direction into kL and kR
5: Subdivide ξ along the rth direction into ξL and ξR
6: Compute patches Bvi(kL, ξL) and Bvi(kR, ξR)
7: L[j]← (kL, ξL, Bvi(kL, ξL))
8: L[j + n]← (kR, ξR, Bvi(kR, ξR))
9: end parfor

10: return L

6.2.4.5 Cut-Off Test

Subdivision leads to an exponential increase in memory useage, however a cut-off test can elimi-
nate items in K that cannot contain the global minimizer. The potential of items in K to contain a
global minimizer of (6.2) can be determined using the following definitions:

Definition 68. An item (k, BJ(k), ∆lo) ∈ K is feasible if

∆lo +
∑
ξ∈LUk

F (ξ) ≤ ∆ (6.21)

where LUk is defined as in (6.20). An item is infeasible if

∆lo > ∆. (6.22)

An item is unknown if it is neither feasible nor infeasible.

The criteria for feasibility (6.21) and (6.22) is related to the chance constrained program as
follows.

Theorem 69. Let (k, BJ(k),∆lo) ∈ K be an item, and L be a list of patches in K × Ξ. If the item

is feasible according to Definition 68, then the chance constraint in (6.2) is satisfied. If the item is

infeasible according to Definition 68, then the chance constraint is not satisfied.

Proof. In Algorithm 9 Line 13, patches belonging to the decided set (6.14) are added to ∆lo at
each iteration, hence ∆lo is equivalent to the lower bound in (6.16) by construction. In Algorithm
9, Lines 14 and 16, patches belonging to the undecided set (6.15) are added to ∆lo at each itera-
tion, hence (6.21) is equivalent to the upper bound in (6.16) by construction. One can then apply
Theorem 61 to obtain the desired result.
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The optimality of an item is now discussed.

Definition 70. The solution estimate J∗up is the smallest upper bound of the cost over all feasible

items in K:

J∗up = min
{

max{κ2 | κ ∈ K, κ feasible}
}
, (6.23)

where κ2 = BJ(k) if κ = (k, BJ(k), ∆lo) and feasible is defined as in Definition 68.

Definition 71. An item (k, BJ(k),∆lo) ∈ K is suboptimal if

minBJ(k) > J∗up (6.24)

Any item that is infeasible or suboptimal can be eliminated from K, because the correspond-
ing subboxes cannot contain the solution to the chance constrained program (formalized in the
following Theorem). Checking for infeasible and suboptimal items is called cut-off test.

Theorem 72. [KZZV20, Theorem 12] Let (k, BJ(k),∆lo) ∈ K be an item. If the item is infeasible

(as in Definition 68) or suboptimal (as in Definition 71), then k does not contain a global minimizer

of (6.2). Such item can be removed from the list K.

The cut-off tests is implemented as follows. Algorithms 7 and 8 (FindBounds) computes the
maximum and minimum element of each Bernstein patch for the objective function, constraint
functions, and the probability mass in each subbox ξ. Algorithm 9 determines upper and lower
bounds on the chance constraint, which define feasibility via Definition 68 and Theorem 69. Algo-
rithm 10 (CutOffTest) implements the cut-off tests and marks all subboxes to be eliminated with a
list Kelim.

In addition to the items inK, itemsL that are no longer useful can be eliminated. The following
corollary that extends Theorem 72 to items in L:

Corollary 73. Let ` ∈ L and κ ∈ K be items with matching k components. If if κ can be removed

from K following Theorem 72, then ` can be removed from L.

Proof. Theorem 72 provides that k does not contain the global minimizer.

To further save memory, items in L that will not further contribute to evaluation of the chance
constraints can be removed.

Theorem 74. Let (k, ξ, Bvi(k, ξ)) ∈ L be an item. The item will not affect the evaluation of the

chance constraints in (6.2) and can be eliminated if it meets any of the following criteria:

(a) F (ξ) = 0
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(b) maxBvi(k, ξ) < 0;

(c) minBvi(k, ξ) ≥ 0, and Algorithm 4 Line 7 has been executed.

Proof. Items satisfying criteria (a) can be eliminated because their contribution to the evaluation
of the chance constraints in (6.16) and (6.16) is 0, meaning they will have no impact on evaluating
the feasibility criteria in Definition 68 (6.21,6.22).

Items satisfying criteria (b) can be eliminated because their constraint functions are definitely
negative by Lemma 56; hence they will not correspond to indices in the decided (6.14) nor (6.15)
sets; meaning they will not be used to determine feasibility in Definition 68 (6.21,6.22).

Items satisfying criteria (c) have patches that correspond to indices in the (6.14) set. However,
in Algorithm 4 Line 7, their contribution to the feasibility criteria (6.21) and (6.22) are stored as
∆lo in items in K (see Algorithm 9 Line 18), hence they can be removed. For mathematical intu-
ition, recall that the integrand in the evaluation of the chance constraint (6.3) contains an indicator
function, so once a patch is identified as non-negative, further subdivision is not necessary.

Algorithm 11 identifies items inL that meet these criteria and builds a listLelim of those that can
be eliminated. Finally Algorithm 12 (Eliminate [KZZV20, Algorithm 5]) eliminates the marked
subboxes from the lists K and L. Algorithms 7, 8 and 12 are parallelizable, whereas Algorithm 10
must be computed serially. Algorithm 11 is done in serial in the presented implementation.

Algorithm 7 Kbounds = FindBoundsK(K) (Parallel)
1: n← length(K)
2: parfor i ∈ {1, . . . , n} do
3: (k, BJ(k),∆lo)← K[i]
4: Find minBJ(k) and maxBJ(k) by parallel reduction
5: Kbounds[i]← (k,minBJ(k), maxBJ(k))
6: end parfor
7: return Kbounds

Algorithm 8 Lbounds = FindBoundsL(L,F ) (Parallel)

1: n← length(L)
2: parfor j ∈ {1, . . . , n} do
3: (k, ξ, Bvi(k, ξ))← L[j]
4: Find minBvi(k, ξ) and maxBvi(k, ξ)
5: Lbounds[j]← (k,minBvi(k, ξ),maxBvi(k, ξ), F (ξ))
6: end parfor
7: return Lbounds

This section concludes with following corollary about CCPBA and its ability to find the global
minimizer.
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Algorithm 9 [K,∆bounds] = ChanceConsBounds(K,Lbounds)

1: n← length(K)
2: for i ∈ {1, . . . , n} do
3: (k, BJ(k),∆lo)← K[i]
4: ∆bounds[i]← (∆lo,∆lo)
5: end for
6: n← length(Lbounds)
7: for j ∈ {1, . . . , n} do
8: (k,minBvi(k, ξ),maxBvi(k, ξ), F (ξ))← Lbounds[j]
9: l← index of K with matching k

10: (∆lo,∆up)← ∆bounds[l]
11: (k, BJ(k),∆lo)← K[l]
12: if minBvi(k, ξ) ≥ 0 then
13: ∆lo+ = F (ξ)
14: ∆up+ = F (ξ)
15: else if maxBvi(k,k) ≥ 0 then
16: ∆up+ = F (ξ)
17: end if
18: K[l]← (k, BJ(k),∆lo)
19: ∆bounds[l]← (∆lo,∆up)
20: end for
21: return K,∆bounds

Algorithm 10 [J∗lo, J
∗
up,Ksave,Kelim] =CutOff(Kbounds,∆bounds)

1: J∗lo ←∞, J∗up ←∞
2: n← length(Kbounds)
3: for i ∈ {1, . . . , n} do
4: (∆lo,∆up)← ∆bounds[i]
5: (k,minBJ(k),maxBJ(k))← Kbounds[i]
6: if ∆up ≤ ∆ then J∗up ← min(J∗up,maxBJ(k)) endif
7: if ∆lo ≤ ∆ then J∗lo ← min(J∗lo,minBJ(k)) endif
8: end for
9: Ksave ← {}, Keliminate ← {}

10: for i ∈ {1, . . . , n} do
11: (∆lo,∆up)← ∆bounds[i]
12: (k,minBJ(k),maxBJ(k))← Kbounds[i]
13: if (∆lo ≤ ∆) ∧ (minBJ(k) < J∗up) then
14: Append i to Ksave

15: else
16: Append i to Kelim

17: end if
18: end for
19: return J∗lo, J∗up,Ksave,Kelim
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Algorithm 11 [Lsave,Lelim] =CleanL(Lbounds,K,Kelim)
1: Initialize lists for indices of patches to save or eliminate

Lsave ← {}, Lelim ← {}
2: n← length(Lbounds)
3: for j ∈ {1, . . . , n} do
4: (k,minBvi(k, ξ),maxBvi(k, ξ), F (ξ))← Lbounds[j]
5: if (∃ κ ∈ K(Kelim) with κ1 = k) ∨ (F (ξ) = 0) then
6: Append k to Lelim

7: else
8: if (maxBvi(k, ξ) < 0) ∨ (minBvi(k, ξ) ≥ 0) then
9: Append j to Lelim

10: else
11: Append j to Lsave

12: end if
13: end if
14: end for
15: return Lsave,Lelim

Algorithm 12 [KZZV20, Algorithm 5] L = Eliminate(L,Lsave,Lelim) (Parallel)
1: nsave ← length(Lsave)
2: nelim ← length(Lelim)
3: nreplace ← nelim − 1
4: if nelim = 0 or Lelim[1] > nelim then
5: return L
6: end if
7: for i ∈ {1, . . . , nelim} do
8: if Lelim[i] ≥ nsave then
9: nreplace ← i− 1

10: break
11: end if
12: end for
13: parfor i ∈ {1, . . . , nreplace} do
14: L[Lelim[i]]← L[Lsave[nsave + 1− i]]
15: end parfor
16: return L

106



Corollary 75. [KZZV20, Corollarly 13] Suppose there exists a (feasible) global minimizer k∗ of

the chance-constrained program (6.2). Then, while executing Algorithm 4, there always exists an

item (k, BJ(k),∆lo) ∈ K such that k∗ ∈ k.

6.3 Application to Motion Planning

This section presents the application of CCPBA to trajectory optimization for mobile robots. I
will use the reachable set computation methods described in Chapter 3, and the online planning
methodology in Algrothim 1; however the obstacle representations will be probabalistic and Line 7
will be solved with CCPBA. Two key properties of RTD will be leveraged that make this approach
attractive compared to the state-of-the-art. First, RTD represents reachable states of a robot exe-
cuting parameterized trajectories as polynomial level sets. In traditional Model Predictive Control
(MPC) methods, integration of the vehicle dynamic model is embedded in the trajectory optimiza-
tion program by including the vehicle states as decision variables and representing the integration
steps as equality constraints [GGL+12, PR14]. It can be computationally expensive to evaluate
and solve such programs (see §5.1 and §5.2) . With RTD the decision variable space only con-
sists of the trajectory parameters, and the constraints only consist of polynomial inequalities for
collision avoidance; which improves computation time and allows the use of Algorithm 4. Sec-
ond, the computation of the reachable states for RTD enables uncertainty in the robot model to be
treated robustly. I will not analyse this aspect in the comparison in §6.4, but note that combining
RTD with CCPBA allows one to treat uncertainty with the ego robot robustly, but other obstacle’s
probabilistically, a similar line of thinking to the approach in [FKBF+20].

The rest of the section is organized as follows. §6.3.1 provides examples of dynamics mod-
els associated with the robot and planned trajectories that are used in the results section. §6.3.2
explains how obstacles are represented and how the constraints for collision avoidance are con-
structed. §6.3.3 sets up the trajectory optimization program and solves an example motion plan-
ning problem for an autonomous vehicle performing lane changes with obstacle predictions that
are normally distributed. §6.3.4 discusses how to use CCPBA with other probability distributions
that are common in motion planning and robotics.

6.3.1 Dynamic Models

An autonomous vehicle will be the running example in this section; the same vehicle model will
be used in the experiments in §6.4.

Example 76. The inputs, u ∈ U , to the autonomous vehicle are an acceleration and wheel angle

command. The dynamic model, fhi : R≥0 × Zhi × U → R7 is a single-track bicycle model with
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linear tire forces and small-angle assumptions for the slip angles.

d

dt



x(t)

y(t)

θ(t)

vx(t)

vy(t)

θ̇(t)

δ(t)


=



vx(t) cos θ(t)− vy(t) sin θ(t)

vy(t) sin θ(t) + vy(t) cos θ(t)

θ̇(t)

u1(t)
1
m

(Cy,fαf (zhi(t)) cos δ(t) + Cy,rαr(zhi(t)))− vx(t)θ̇(t)
1
I
(lfCy,fαf (zhi(t)) cos δ(t)− lrCy,rαr(zhi(t)))

−1
τc

(δ(t)− u2(t))


(6.25)

αf (zhi(t)) = δ(t)− vy(t) + lf θ̇(t)

vx(t)
, αr(zhi(t)) =

−vy(t) + lrθ̇(t)

vx(t)
, (6.26)

where m is the mass, I is the yaw moment of inertia, lf and lr are the distances from the front and

rear axel to center of mass and Cy are the lateral cornerning stiffnesses. The vehicle parameters

in the model are for a Chevrolet Equinox and can be found in [RKCL16, Table II].

The trajectory planning model is given below.

Example 77. The autonomous vehicle from Example 76 tracks a trajectory parameterized by a

quintic G2 spline in lateral position [PB00] and constant longitudinal velocity. The parameters

k1 and k2 refer to the longitudinal velocity and final lateral position, and will ultimately be the

decision variables in (6.2). xdes(t, k)

ydes(t, k)

θdes(t, k)

 =

 k1t
10t3k2
T 3 − 15t4k2

T 4 + 6t5k2
T 5

30t2k2
k1T 3 − 60t3k2

k1T 4 + 30t4k2
k1T 5

 . (6.27)

The initial and final yaw and curvature of the splines are 0, making this parameterization useful

for planning lane change or lane-keeping maneuvers.

To execute a trajectory, the robot uses a proportional-derivative controller so the dynamic model
can be written in closed-loop form (3.4).

6.3.2 Collision Function Computation

The this section summarizes the computation of a polynomial function whose 0 superlevel set
identifies obstacles that could be in collision with the mobile robot. This function will be the
constraint in (6.2), and the obstacle state will be the uncertain variable. The collision check will
be enforced in 2D space as in Definition 12 and that there are finite number of obstacles as in
Assumption 32. I next make assumptions about the space obstacles and the ego vehicle occupy.
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Assumption 78. Collision between the ego robot and obstacle is given by a function

Acol = {(z, ζ) ∈ Z × Zobs | hcol(z, ζ) ≥ 0}, (6.28)

where ζ ∈ Zobs denotes the state of an obstacle. Such a function can be computed with Sums-of-

Squares Polynomials for common robot and obstacle footprints. See Appendix A.3.

The collision set for the ith obstacle at time t for the ego robot, with dynamics described by
(3.4), executing a trajectory parameterized by k is then given by

Xcol,i = {(t, k, ζ) ∈ [0, T ]×K × Zobs |

∃ z ∈ Z s.t. (z, ζ) ∈ Acol,i, (t, z, k) ∈ ZTFRS}. (6.29)

where ZTFRS is defined as in (3.41) for the interval [0, T ]. Using a modified version of (DT ) (see
Appendix A) a polynomial function, vi : [0, T ] × Zobs × K → R, can be computed; whose 0
superlevel set overapproximates the collision set:

(t, k, ζ) ∈ Xcol,i =⇒ vi(t, k, ζ) ≥ 0. (6.30)

The computation of v with Sums-of-Squares Programming is done offline; this means the set Acol

must be defined offline. To deal with uncertain obstacle sizes, one could keep additional parameters
(such as length and width) as part of the obstacle state; or store a library of polynomials for size
ranges/shapes of obstacles. In §6.4.1.5 the later is used distinguish between car (rectangle) and
pedestrian (circular) obstacles.

6.3.3 Online Optimization

The computation of v is performed offline. Online, assume:

Assumption 79. A prediction module provides the trajectory planner with joint cumulative distri-

bution functions, that satisfy Assumption 60, for realizations of the state of nobs obstacles at a set

of npred discrete timesteps.

The online optimization program solved with Algorithm 4 is

min
k∈K

J(k) (6.31)

s.t.
nobs∑
i=1

npred∑
j=1

Pr({ξi,j ∈ Ξ | vi(tj, k, ξi,j) ≥ 0}) ≤ ∆,
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where ξi,j indicates the realization of the states of the ith obstacle at time tj .
Consider the autonomous vehicle from Examples 76 and 77 with a time horizon of T = 4

s and an initial condition ranges for position of ± 0.05 m, heading ± 0.005 rad, velocity 12-13
m/s and wheel angle ± 0.005 rad. The parameter ranges, K, are k1 ∈ [10, 16] ms for velocity
and k2 ∈ [−1, 5] m for final lateral position. The collision set is represented with a degree 8
polynomial as in (6.30). The vehicle is driving on a straight two-lane road and wants to either plan
a lane change or lane keeping maneuver; which can be accomplished by the following the cost
function:

J(k) = k2
1 − 26k1 + 0.30k4

2 − 2.09k3
2 + 3.43k2

2 + 3 (6.32)

This cost function has a global minimum at k = (13, 3.7) and a local minimum at k = (13, 0). The
obstacle state is given by the 2D position center of mass, i.e. ζ ∈ R2, and its footprint is assumed
to be a rectangle of width 2.5 m and length 5 m. The obstacle predictions are given as normal
distributions

ξi,j ∼ N (ξ̂i,j,Σi,j). (6.33)

and generated by linearizing a kinematic bicycle model and propagating the covariances forward
similar to an Extended Kalman Filter [Thr02, (3.52)]. The normal distribution has an computa-
tional advantage in that the coordinate transform

ξi,j ← ξ̂i,j + chol(Σi,j)ξi,j, (6.34)

can be applied to the ξ component of each constraint, then the joint cumulative distribution function
can be written analytically as

F (ξ) =
2∏
r=1

1

2

(
erf
(
ξr√

2

)
− erf

(
ξ
r√
2

))
. (6.35)

The threshold for chance constraint violation is set to ∆ = 0.01 − npred(1 − F ([−5, 5]2)), which
corresponds to integrating over 5 standard deviations, as in Remark 62.

Figure 6.2 shows the performance of CCPBA as it solves the trajectory optimization problem
depicted in Figure 6.1. CCPBA progresses through iterations until an optimality tolerance of ε =

1.5 is met. Since Algorithm 4 returns a subbox k∗, a solution, k∗, is found by taking the midpoint
in each dimension. CCPBA finds a feasible, suboptimal solution at iteration 11, corresponding to
driving straight; it then improves the cost as patches in K × Ξ are refined. For this example, the
run time of Algorithm 1 on a computer with a 48 GB Nvidia Quadro RTX 8000 GPU, 3.60 GHz
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Figure 6.2: Subfigure (a) shows contours of the cost function (6.32) in the decision variable space
K with blue indicated lower cost regions, and yellow higher. The white star indicates the global
minimum. CCPBA solves the chance-constrained program (6.31) with the obstacle depicted in
Figure 6.1. The black line shows the cost of the solution J(k∗) as CCPBA progresses from iteration
11 (first feasible) to 23, when an optimality tolerance of ε = 1.5 was reached. The red patches
indicate infeasible regions of the decision variable space identified by iteration 23. Subfigure (b)
shows the cost in black and lower and upper bounds from CCPBA, J∗lo and J∗up, at each iteration
(blue). The bottom plot shows the probability of constraint violation using 1e6 Monte Carlo points
per timestep (black) and its lower and upper bounds ∆lo and ∆up (blue). The algorithm finds a
feasible, suboptimal solution at iteration 11, and improves the cost as patches in K×Ξ are refined.
The run time for this example was 0.22 s.

Intel i9 CPU, and 128 GB of RAM was 0.22 s.

6.3.4 Non-Gaussian Predictions

In the example in §6.3.3, uncertainty in the chance constraints was normally distributed. This
meant F in Assumption 60 could be defined by using a coordinate transform (6.34) and the erf
function (6.35). For CCPBA it is preferable to have a joint cumulative distribution function, F ,
that can be expressed analytically for a subbox, to improve computation time and avoid errors
associated with numerical integration.

However, one may wish to use a prediction algorithm where the obstacle distributions are not
Gaussian. In this section I discuss two types of representations that are common in motion planning
literature and how one could construct F analytically for each of them.
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6.3.4.1 Particle-based

Particle-based approaches, are a common method to represent probability densities of uncertain
variables in robotic applications. For example [AVJR21] uses a particle-based approach to repre-
sent the future position and velocities of vehicles on a highway. In these approaches the probability
density p : Ξ→ R≥0 of the uncertain parameter is represented by a collection of n particles

p(ξ) =
n∑
i=1

qiδ0(ξ − ξ̂(i)) (6.36)

where qi are positive weights that sum to 1, δ0 is the dirac delta, and ξ̂(i) centers the dirac delta
for the ith particle. A joint cumulative distribution function, F , can be found for the particle
representation (6.36) in two steps. First, a Kernel Density Estimator (KDE) can be applied to give
a smoothed estimate of the probability density

p̂(ξ) =
n∑
i=1

qipH(ξ − ξ̂(i)), (6.37)

where pH is a kernel with bandwidthH . The choice of kernel is heuristic, but to satisfy Assumption
60 and enable fast execution of CCPBA, one should pick one that can be integrated analytically;
for example, a Gaussian kernel

pH(ξ − ξ̂(i)) = (2π−
m
2 )det(H)−

1
2 e−

1
2

(ξ−ξ̂(i))>H−1(ξ−ξ̂(i)), (6.38)

where the bandwidth H is a diagonal matrix. See [KLS11] for an algorithm to compute H . Then
the joint cumulative distribution function can be determined with the erf function as follows

F (ξ) =
n∑
i=1

qi

m∏
r=1

1

2

(
erf

(
ξr − ξ̂

(i)
r√

2Hr,r

)
− erf

(
ξ
r
− ξ̂(i)

r√
2Hr,r

))
. (6.39)

6.3.4.2 Occupancy grids

Occupancy grids arise from prediction algorithms that that rely on discretizing the space Ξ, such as
the Markov chain model in [TFS19] or the confidence-aware approach in [BHFK+19, FKBF+20].
In these approaches the cumulative distribution can be thought of as a collection of weighted
uniform distributions. Let Ξ be the unit box [0, 1]m as in Assumption 65. Given a multi-index
L, for the number of cells in each dimension, the joint cumulative distribution in a subbox ξ can
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be given by

F (ξ) =
∑
I≤L

qI

m∏
r=1

max(b(ξ, ir, lr)− a(ξ, ir, lr), 0)

21−lr
(6.40)

a(ξ, ir, lr) = max(ξ
r
, 21−lrir − 2−lr) (6.41)

b(ξ, ir, lr) = min(ξr, 2
1−lrir + 2−lr), (6.42)

where I is a multi-index (with ir ranging from 1 to lr) identifying the cell.

6.4 Results

This section provides a simulation comparison of CCPBA against two chance-constrained Model
Predictive Control (MPC) algorithms in §6.4.1. §6.4.2 describes a hardware demonstration where
the Segway from Figure 3.2b avoids a moving obstacle.

6.4.1 Lane Change Comparison

This section provides results for a comparison of CCPBA against two chane-constrained MPC
algorithms, for a lane-changing problem with the autonomous vehicle in Example 76. §6.4.1.1
describes details of the problem formulation that apply to all planners. §6.4.1.2 describes details
of the CCPBA implementation. §6.4.1.3 describes the implementation of the MPC algorithms.

In the first experiment, §6.4.1.4, has one car obstacle in the oncoming lane, and vary the noise
in its prediction. The algorithms’ performance is compared in terms of cost and run time. In
the second experiment, §6.4.1.5, multiple obstacles are introduced, increasing the number of con-
straints, and the algorithms’ time to find a feasible solution is compared. All experiments in this
section are run on a desktop computer with a 48 GB Nvidia Quadro RTX 8000 GPU, 3.60 GHz
Intel i9 CPU, and 128 GB of RAM.

6.4.1.1 Problem setup

The simulations use the Equinox model described in Example 76. The initial condition ranges for
are a position of ± 0.05 m, heading ± 0.005 rad, velocity 12-13 m/s and wheel angle ± 0.005 rad.
For the cost in Experiment 1, a desired trajectory using the reference model (6.27) in Example 77
with the desired parameters k1,des = 13 m/s and k2,des = 3.7 m is used.

For the obstacles, the state of an obstacle, ζ ∈ R2, is defined by Cartesian coordinates of its
center of mass. The footprint of a car obstacle is a rectangle of width 2.5 m and length 5 m, with
0 rad heading (in line with the road). The footprint of a pedestrian obstacle is a circle of radius
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0.5 m. The probability of the state of the surrounding obstacles is given as normal distributions
(6.33), as described in §6.3.3. The predictions are given at a time discretization of 4 hz and all of
the planners perform a collision check of a 4 s time horizon.

6.4.1.2 CCPBA implementation

The trajectory parameterization is the same as in Example 77. The parameter ranges, K, are
k1 ∈ [10, 16] ms for velocity and k2 ∈ [−1, 5] m for final lateral position. The collision sets are
represented with a degree 8 polynomials, as in (6.30). Since the obstacles are normally distributed
the coordinate transform (6.34) and (6.35) is used to evaluate the probability mass in each subbox.
The cost function used in the online optimization is a quadratic cost function that minimizes the
distance of k to desired parameters kdes.

J(k) = q1(k1 − k1,des)
2 + q2(k2 − k2,des)

2 (6.43)

where q ≥ 0 are positive weights. This choice of cost function is motivated by the comparison
to MPC algorithms, as it is common for real-time MPC implementations to minimize a similar
squared distance to a reference trajectory [GZQ+20a]. In §6.4.1.3 formulates such a cost function
for the reference trajectory parameterized by k1,des and k2,des. CCPBA is also able to leverage
efficiencies related to cost functions of this form.

Remark 80. The minimum value of, and the minimizer of the cost function (6.43) over a given

subbox k can be determined analytically. This offers two major computational benefits. First, the

cost function does not need to be projected onto the Bernstein basis, saving memory and compu-

tations associated with subdivision of Bernstein patches. Second, convergence of Algorithm 4 is

improved, since once an item is identified as feasible by Definition 68, the best cost and minimizer

for the subbox can be determined immediately. This means the best solution can be stored and

the item can be added to the elimination list in Algorithm 10. For the experiments in this section

and the hardware demonstration in §6.4.2 a modified version of Algorithm 4 is used, where these

efficiencies are leveraged.

To compare the cost for CCPBA to the MPC algorithms, I took the returned parameters k∗ and
forward integrate the Equinox tracking the trajectory using ode45. Then the state of the trajectory
is evaluated on the cost function used by the MPC algorithms. This method for comparing cost is
favorable to the MPC algorithms, since they plan with the full vehicle model.
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6.4.1.3 MPC implementations

CCPBA is compared to Model Predictive Control algorithms using Cantelli’s inequality [WJW20]
and the Chernoff bound [ZK14]. The MPC algorithms use the bicycle model of the Equinox, inte-
grated with rk4 integration, at 4 hz. Constraints enforce input limits acceleration in [−8, 3] ms−2

and wheel angle in [−0.5, 0.5] rad. Additionally a friction ellipse constraint limits the combined
lateral and longitudinal acceleration to 9.81 ms−2.

Obstacles are represented as point obstacles their 2-D center of mass coordinates and collision
checked using an ellipse. The ellipse is given by the 0 superlevel set of the quadratic equation:

hcol(z, ζ) = 1−

(
ζ −

[
x

y

])>
R(θ)

[
1
a2

0

0 1
b2

]
R(θ)>

(
ζ −

[
x

y

])
, (6.44)

where R : R → R2×2 is the 2D rotation matrix. The major and minor axis lengths are a = 6.9

m and b = 2.95 m for the car obstacle and a = 3.7 m and b = 1.7 m for the pedestrian obstacle.
Chance-constraints are represented with Cantelli’s inequality (6.45), as in [WJW20],

Pr({ξ ∈ Ξ | hcol(z, ξ) ≥ 0}) ≤ Var[hcol(z, ξ)]

Var[hcol(z, ξ)] + E[hcol(z, ξ)]2
, (6.45)

or the Chernoff bound, as in [ZK14]:

a ln(E[exp(a−1hcol(z, ξ))]) ≤ a ln ∆, a > 0 =⇒ Pr({ξ ∈ Ξ | hcol(z, ξ) ≥ 0}) ≤ ∆. (6.46)

Boole’s inequality is applied as follows

Pr({ξi,j ∈ Ξ | hcol(z, ξi,j) ≥ 0}) ≤ ∆i,j,

nobs∑
i=1

npred∑
j=1

∆i,j ≤ ∆,
(6.47)

where ξi,j indicates the realization of ξ for the ith obstacle at the j th timestep, and ∆i,j are added
to the MPC progrma as decision variables. The Chernoff approach requries numerical integration,
and uses 1e4 monte carlo points, which should yield error of approximately 1% [AG07]. However
the exponential over approximates the indicator function, so the risk bounds are typically conser-
vative. Unfortunately, proving a lower bound on how conservative they are is difficult [NS07]. The
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cost function for the MPC planners is

J(z, u) =

npred∑
j=0

q1(z4,j − k1,des)
2 + q2(z2,j − ydes(tj, kdes))

2 (6.48)

where z2,j and z4,jare the lateral position and longitudinal velocity at timestep j. The parameters
k are the desired velocity and final lateral position, and ydes is from Example 77 (6.27). The
compared cost for the MPC algorithms is simply that of the solution returned by IPOPT. This is
again favorable to the MPC algorithms, since I do not check how accurately the dynamics of the
vehicle are captured in the solution.

To solve the MPC programs, I used Casadi [AGH+18b] with its default settings for IPOPT.
Note that this implementation is different from the solvers used in [WJW20, ZK14] so run times
may differ; however the main focus of this comparison is to see how their methods for evaluating
chance constraints compare to CCPBA in terms of feasibility and cost.

6.4.1.4 Experiment 1: Varying Process Noise

The first experiment considers left lane change scenario with a single oncoming obstacle in Figure
6.1. The range of initial conditions for the ego vehicle, decision variable space, and cost function
for CCPBA is the same as the example in §6.3.3. The obstacle’s predictions are generated using
a Dubin’s car model with a proportional controller tracking a desired lateral position, and 0 accel-
eration. Predictions are generated for a time horizon of T = 4 s and 4 hz, using the same method
one finds in an Extended Kalman Filter [Thr02, (3.52)]. At each timestep introduce process noise
with the covariance

Σ = Mdiag([0, 0.25, 0, 0.75]), (6.49)

where M > 0 is a multiplier that is adjusted to increase uncertainty in the prediction. The prob-
ability threshold ∆ is set to 0.01 for all planners. For CCPBA the optimality tolerance is set to
ε = 1.

The parameters of the simulation are varied over 1,000 trials. The ego vehicle starts at a random
initial condition selected from the range used to compute the reachable set. The initial mean condi-
tion for the obstacle is [−20; 3.7; 0; 14.5] plus a uniformly distributed offset of±[1;0.25;0.005;0.5].
The desired lateral position of the obstacle is 3.7 ± a uniformly distributed offset of 0.25 m. The
initial covariance for each the obstacle states is 1e-6. The process noise, M , takes one of 50 values
logarithmically spaced between 1e-4 and 1. In terms of position uncertainty T = 4s, M = 1e− 4

roughly corresponds to standard deviations of approximately 0.075 and 0.05 m at in the x and y
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Figure 6.3: Planned trajectories from each planner in Experiment 1. The probability threshold for
the chance-constraint is 1%. Trajectories planned by CCPBA, Cantelli MPC, and Chernoff MPC
are plotted in blue, orange, and gold. The colormap shows the probability density for the obstacle
at each timestep, plotted at 2 hz for clarity, with red being more likely outcomes. The blue edge
corresponds to confidence ellipsoids containing 5 standard deviations. Subfigure (a) shows the
scenario with the largest uncertainty, M in (6.49), where Cantelli MPC found a feasible solution.
Subfigure (b) shows the scenario with the largest uncertainty where CCPBA was able to complete
the lane change; defined as having a final lateral position within 0.7 m of lane center.

coordinates M = 1 corresponds to standard deviations of approximately 7.5 and 0.5 m.
The final cost and solve time of the Cantelli, Chernoff, and CCPBA algorithms are compared

in Figure 6.4. The cost for MPC with Cantelli’s inequality increases rapidly at relatively low
uncertainty. It is unable to find feasible solutions at M = 0.03, which roughly corresponds to a
standard deviation of 0.1 m at T = 4 s. On the other hand Chernoff MPC and CCPBA are able
to find feasible solutions for all values of M , but the cost of CCPBA compared to Chernoff MPC
is on average 88% higher. However when looking at lane changes completed, defined as the final
lateral position of the trajectory being between within 0.7 m of target lane center; CCPBA is able
to complete 932 lane changes, compared to 899 for Chernoff MPC, and 433 for Cantelli MPC.
The fact that CCPBA is able to complete 4% more lane changes than Chernoff MPC suggests that,
despite having a higher cost on average, it is able to better or comparably accomplish its objective.
Additionally the run time of CCPBA is on average 3% of that of Chernoff MPC. As the uncertainty
increases, the solve times for both algorithms increase with CCPBA platueing at 1.2 s; when the
GPU runs out of memory. In these instances CCPBA is still able to return a feasible solution,
although it has not met the optimality tolerance. CCPBA is able to make the lane change until
M ≈ 0.5, which corresponds to a standard deviation of roughly 0.35 m at T = 4 s. Figure 6.3
shows the trajectories planned when Cantelli’s inequality is unable to find a feasible solution, and
at the largest M value where CCPBA is able make the lane change (|ydes − 3.7| ≤ 0.7 m).

6.4.1.5 Experiment 2: Feasibility Multiple Obstacles

This section comapres how the CCPBA compares to the Chernoff MPC algorithm in terms of the
time it takes to find feasible solutions as the number of constraints increases. The ego vehicle uses
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Figure 6.4: Cost and solve time for 1,000 simulations with varying process noise and initial condi-
tions, for the lane change scenario in Figure 6.1. Lines show the mean, and the faded regions cover
the max/min values. CCPBA is plotted in blue. MPC algorithms using Cantelli’s inequality and
the Chernoff bound are plotted in orange and gold. Cantelli’s inequality is not able to find feasible
solutions for high uncertainty scenarios.

the same trajectory model, initial condition, and cost function as the first experiment; however
there are two vehicles in each lane and two pedestrians, one of which is jaywalking in the street.
The vehicle obstacles are generated with similar dynamics and process noise as the one in §6.4.1.4,
with M = 0.1. The pedestrian obstacles have constant heading dynamics, a average speed of 1
ms−1. For this comparison I only compared CCPBA to the Chernoff MPC, since from §6.4.1.4,
Cantelli’s inequality struggles to find reasonable solutions even in the one obstacle case. The cost
of both algorithms is set to J(·) = 0.

Figure 6.5 shows the experimental setup, and solution trajectories found with all 6 obstacles
considered. To see how the performance is affected as the number of constraints is increased,
obstacles are introduced one at a time, in the order indicated in Figure 6.5. Similar to Experiment
1, the initial conditions of each obstacle are varied for 1,000 trials. The results are shown in Figure
6.6. There were 125 trials with 6 obstacles where CCPBA was not able to find a feasible solution;
however this is expected as CCPBA is planning over a lower-dimension trajectory space. As the
number of obstacles increases, the median time the Chernoff MPC takes to find a feasible solution
increases; from 1 s with 1 obstacle to 16 s with 6 obstacles. The time for CCPBA increases as
well, but the values are much lower overall– 2 ms with 1 obstacle to 0.25 s with 6 obstacles. This
shows promise for the implementation of CCPBA in a receding horizon motion planner, since it is
able to quickly return suboptimal, but feasible solutions.
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Figure 6.5: Scenario for Experiment 2. The ego vehicle is plotted in blue. The probability thresh-
old is 1%. The solution trajectories for CCPBA (blue) and the Chernoff (gold) method for a trial
with all obstacles is plotted. Car obstacles are plotted in red, pedestrians in gray. Their probability
densities, plotted at 2 hz for clarity, are colored cyan to red, with red indicating more likely out-
comes. The confidence ellipsoids containing 5 standard deviations for each density is plotted. The
obstacle numbering indicates the order in which they are cumulatively introduced.
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Figure 6.6: Box-and-whisker plots for CCPBA (blue) and Chernoff MPC (gold) time to return
a feasible solution for 875 simulations, with obstacles cumulatively introduced as indicated in
Figure 6.5. The solve times for CCPBA are roughly 2 orders of magnitude less than the Chernoff
MPC. There were 125 simulations (not plotted) where Chernoff MPC found a feasible solution
and CCPBA did not.
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6.4.2 Hardware Demonstration

This section summarizes the hardware demonstration of CCPBA, where the Segway from Figure
3.2a avoids a manually controlled RC car. A constant velocity, k1, and yaw rate, k2, trajectory
parameterization is used as in Example 4; with ranges of [0,1] m/s and [-1,1] rad/s, and the com-
manded change in yawrate is limited to 1 rad/s per planning iteration. The time horizon of the
planned trajectory is T = 1 s, and the collision checking is performed at 4 hz.

The Segway plans in a receding-horizon loop operating at a frequency of 2 hz as in Algorithm 1.
The cost function at each planning iteration is the quadratic cost (6.43). The desired longitudinal
velocity and yawrate are generated by a pure pursuit controller [Cou92], tracking a coarse path
generated by a higher-level planner using Dijkstra’s algorithm to find the shortest obstacle free
path to the specified goal. An optimality tolerance of ε = 0.001 is used. If Algorithm 4 is unable to
find a feasible solution, the Segway executes a braking maneuver by commanding 0 velocity and
yaw rate.

For sensing the Segway uses a planar Hokuyo UTM-30LX LIDAR and Vectornav VN-100
IMU for mapping with Google Cartographer [HKRA16]. The Segway runs ROS (Robot Operating
System) for communication between the mapping, obstacle detection, and trajectory optimization
modules. All computations are run onboard, on a computer with a 4 core 2.90 GHz Intel i7 pro-
cessor, 64 GB RAM, and an 8GB Nvidia Geoforce GTX 1080 GPU. A publicly available obstacle
detection package that specializes in the detection of rectangular shaped objects1 is used. The
package estimates the obstacle’s state as 2D position (x, y) ∈ R2 and linear velocity (ẋ, ẏ). The
predictions of the obstacles are generated with the constant velocity model

x

y

ẋ

ẏ


j+1

=


1 0 τs 0

0 1 0 τs

0 0 1 0

0 0 0 1



x

y

ẋ

ẏ


j

, (6.50)

and propagate a normal distribution forward with a sample time τs = 0.25 s and process noise of
diag([1e-6 1e-6 1e-6 1e-6]). Uncertainty is introduced, by varying the initial covariance of the
velocity. Since there is not an accurate estimate of the obstacle’s orientation, it is conservatively
treated as an ellipse; hence the sample space in the evaluation of the chance constraints, (6.3),
is simply the 2D position of its center. The domain of integration, Ξ ⊂ R2, is considered to
be to be 5 standard deviations from the mean of each normal distribution, using the coordinate
transform (6.34), and address the probability mass outside of this domain as in Remark 62. The
implementation of CCPBA is performed on the GPU using MATLAB’s CUDA toolbox to generate

1https://github.com/kostaskonkk/datmo
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Figure 6.7: Snapshot of a trial from the hardware demonstration where the Segway robot (planning
with CCPBA) attempts to lane keep while avoiding a manually controlled RC car with a probability
thresholds ∆ =0.01, 0.1, and 0.5 for subfigures a, b, and c. A snapshot of the planner view for each
is shown at the bottom. The blue circle and arrow shows the current state and orientation of the
Segway. The reachable sets (0 level sets of v(tj, k

∗, ·)) for the next planning iteration are shown in
green. The light red rectangle shows the current position of the RC car. The probability density of
the obstacle, generated with (6.50), is plotted from cyan (less likely) to red (more likely).

the required functions. The initial setup and projection onto the Bernstein basis (Algorithm 4 Line
1) is performed in MATLAB.

In the demonstration the Segway is first tasked with performing a lane keeping task where is
changes lanes and drives adjacently behind the RC car. The risk thresholds, ∆, are varied from
0.5, 0.1, and 0.01. The initial covariance used in these trials is diag([1e-6 1e-6 0.01 0.0025]). A
snapshot from one run is for each risk threshold shown in Figure 6.7. Unsurprisingly the Segway
keeps further distance from the RC car as the risk threshold is decreased. Then a series of trials
where the RC car starts at the other side of the course and veers into the Segway’s lane is performed.
The initial covariance used in these trials is diag([1e-6 1e-6 0.005 0.0025]). The distance between
the Segway and the obstacle increases as the risk threshold decreases. Figure 6.8 shows a box and
whisker plot of the run time of Algorithm 4 plotted as a function of the threshold for collision
probability, ∆. The variance of the run time decreases as the risk threshold increases, since it is
easier for Algorithm 9 to find feasible solutions; however the expected run time is similar for all
thresholds. The probability threshold is then set to ∆ = 0.1 and the Segway completes several
trials driving back and forth between 2 goal points with a randomly moving obstacle. The initial
covariance used in these trials is diag([1e-6 1e-6 0.01 0.01]). The demonstration shows that
CCPBA can be implemented for real-time receding horizon motion planning.
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Figure 6.8: Run time of Algorithm 4 plotted for each risk threshold ∆ in the hardware demon-
stration. The stopping criteria was an optimality tolerance of ε = 0.001 or a time limit of 0.5 s.
Only times where an obstacle was detected and CCPBA found a feasible solution are shown. The
variance of the run time decreases as the risk threshold increases, since it is easier for Algorithm 9
to find feasible solutions; however the expected run time is similar for all thresholds.

6.4.3 Discussion

CCPBA has several advantages. First it will find a global minimum if a feasible one exists. It
does not require an initial guess and does not converge to local minima. Additionally the only
restriction on the chance constraints are that they are polynomial, and the probability mass in a
box can be evaluated. There are no required assumptions about convexity or the uncertainty vector
appearing affinely that are common in chance-constrained literature. Additionally,the subdivision
parameters and direction choice, are the only hyper parameters that need to be tuned. Furthermore,
CCPBA, can be modified to run as an anytime algorithm, where the current best solution is returned
when a time limit is reached. This makes it especially useful for motion planning applications, as
it typically finds feasible solutions quickly. For example in the lane change problem in §6.3.3,
CCPBA quickly returns a feasible solution of driving straight, then it determines a lane change is
feasible after further refinement.

The disadvantage of CCPBA is that the decision variable space and uncertainty vector space
are limited, and the number of patches and associated computations increases exponentially with
dimension. In the presented example, there is a total dimension (decision variables plus uncertain
variables) of 4. The computations may be improved over the results in this paper, by exploiting the
structure of the projection and subdivision matrices; however the major bottleneck is the number
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of patches. To this end, future research on efficient splitting strategies to evaluate the chance
constraints, possibly drawing on theory from adaptive, numerical integration [DR07] should be
conducted.
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CHAPTER 7

Adaptive Planning and Control

This chapter presents an adaptive, stochastic approach to dealing with uncertainties in a mobile
robot’s dynamics. Although the reachable set computation in Chapter 3, provides robust guarantees
with respect to the ego vehicle’s dynamics; the computation of the reachable set has to take place
offline. This chapter proposes adaptive, chance-constrained methods for planning and control that
take into account an online estimate of the tire force and uncertainty. This section focuses on the
example of an autonomous vehicle driving on varying road surfaces, however I stress that the same
techniques can be applied to a wide variety of robot models.

§7.1 describes related work focusing on estimation and control of vehicles driving on varying
road surfaces. §7.2 explains the vehicle models that will be used throughout this section. §7.3
details two state-of-the art algorithms for estimating vehicle tire forces in linear and nonlinear
regions. §7.4 details a method for real-time chance-constrained Model Predictive Control (MPC)
problems and proposes the main contribution of this chapter: an algorithm to utilize the tire force
estimates online in an adaptive framework [VQB21]. §7.5 compares the proposed algorithm to
adaptive and deterministic approaches. The work in this chapter was completed in collaboration
with Karl Berntorp and Rien Quirynen at Mitsubishi Electric Research Labs.

7.1 State-of-the-art

Control systems for autonomous vehicles actuate the vehicle through tire–road contact; there-
fore knowledge of the tire–road relation is of high importance. The interaction between tire and
road is highly nonlinear, and the parameters describing the nonlinear relation vary heavily based
on the road surface and other tire properties [Sve07, Gus97]. In normal to moderate driving
conditions, vehicle tire forces are often modeled as a linear function of the slip angles (lateral)
and slip ratios (longitudinal) produced at each wheel [Raj11]. The coefficient for the slope of
such curves is referred to as the stiffness, specifically the cornering stiffness in the case of lateral
forces. Knowledge of the tire stiffness can be used directly in Advanced-driver Assistance Sys-
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tems (ADAS) [DCTBB12], and can be of particular importance in events where the vehicle needs
to plan aggressive or safety-critical maneuvers [WSE18]. Additionally partial knowledge of the
tire stiffness can be used to classify surface types for road-condition monitoring [APT12, Gus97].

Model Predictive Control (MPC) has been effectively applied to several automotive control
applications [FBA+07, DCKB16, QBDC18]. MPC solves an optimization problem, where a dy-
namic model of the vehicle is integrated over a fixed time horizon to minimize a user-specified
cost subject to constraints on the inputs and states. In many ADAS applications, the MPC program
is nonlinear (NMPC) due to the vehicle model and constraints. NMPC is often solved with se-
quential quadratic programming (SQP), where a tailored convex solver is used to solve a sequence
of structured quadratic programs (QPs) [GZQ+20b]. In recent years, many such algorithms have
been developed to exploit particular sparsity structures that arise in SQP based NMPC, such as the
recently proposed QP solver in [QDC20] and references therein. In [FDCQ20], an optimization
algorithm is proposed for stochastic NMPC (SNMPC), which uses a tailored Jacobian approxi-
mation along with an adjoint-based SQP method. This SNMPC formulation considers individual
chance constraints that are approximated using online linearization-based covariance propagation
equations [TVC+15a].

Since the performance of MPC depends heavily estimating the tire parameters correctly, recent
studies have focused on adaptive controllers, where uncertain parameters are estimated and the
model is updated online. In [BZTB18], a robust MPC formulation is proposed, where a parameter
associated with the steering offset is estimated. In [LCZW19, CLL14], least-squares algorithms
are used to estimate the cornering stiffness and road friction, which are utilized in the MPC model
and constraints. However, these two works do not consider uncertainty of the estimated stiffness,
and all use linearized vehicle models.

In addition, even in the linear tire region, a difficulty when learning the tire-friction function
using automotive-grade sensors is that the amount of sensors is limited, and they are relatively
low grade [Gus09]. Moreover, not only do the sensors only provide indirect measurements of
the friction, they do not even measure some vehicle states, such as the lateral velocity; which is
important for learning the tire friction. In [BDC18], a particle-filter based algorithm is proposed,
which estimates the mean and covariance of the tire stiffness using data from commonly available
inertial sensors. [BQUDC19] utilized this cornering-stiffness estimator in NMPC by selecting
from a library of predefined Pacejka tire models. Unfortunately performance and safety may be
compromised with this approach, since there will be mismatch between the tire model and reality.

Obtaining data for the nonlinear regions of the tire curve is challenging as it requires to drive
the vehicle to the limits of its performance envelope. Furthermore, driving in the nonlinear re-
gion of the tire force function before a reliable model of the same is obtained is challenging and
possibly dangerous. For collision-imminent steering [WDSE20] proposes an adaptive approach
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where an Unscented Kalman Filter estimates the coefficient of friction in a Pacejka model. They
show that this greatly improves robustness over fixed nonlinear models; however they do not con-
sider uncertainty with the friction coefficient estimate, or other parameters in the Pacejka curve.
For estimation of the full tire force curve, recent algorithms have modeled it as a Gaussian pro-
cess (GP) with unknown and time-varying mean and covariance function [RW06], leading to a
GP state-space model (GP-SSM). Due to the nonparametric nature of the GP, this method is not
subject to specific modeling constraints that various tire models impose. Importantly the method is
insensitive to overfitting to the data, and provides an estimate of uncertainty in explored and unex-
plored state space regions. [HKZ19] proposes using an MPC controller that uses such a Gaussian
process to model the unknown parts of a vehicle dynamic model as an additive component. To
more explicitly model tire forces, a recently proposed approach for real-time joint state estimation
and learning of the tire force function [Ber21], combines a particle filter [DJ09] with a compu-
tationally efficient formulation of GP-SSMs for jointly estimating online the state and associated
state-transition function, although this approach has yet to be integrated into a controller or motion
planner.

7.2 Dynamic Models

This section describes the dynamic models used in this chapter. §7.2.1 described the high-fidelity
model used for simulation. §7.2.2 describes assumptions about measurements. §7.2.3 gives the
general form of the planning model.

7.2.1 High-fidelity Model

Consider the single-track vehicle model, where the left and right track of the car are lumped into
a single centered track, as Fig. 7.1 (a) shows. Hence, only a single front and a single rear tire
are considered, and roll and pitch dynamics are ignored, resulting in two translational and one
rotational degrees of freedom.

The state vector is zhi = [x, y, θ, vx, vy, θ̇, δ] where vx is the longitudinal velocity, vy is the
lateral velocity, θ̇ is the yaw rate, and δ is the front wheel angle. The inputs to the vehicle model
are u = [ωf , ωr, δ̇], where (ωf , ωr) the front and rear wheel speeds and δ̇ is the tire-wheel angle
rate of change. The single-track model lumps together the left and right wheel on each axle, and
roll and pitch dynamics are neglected. As shown in [BOLN14], a single-track model is sufficiently
accurate where the tire forces reach the nonlinear region but the maneuvers are not aggressive
enough to result in large roll angles. Thus, the model has two translational and one rotational
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Figure 7.1: Subfigure (a) shows the single track bicycle model (7.1) used as the high-fidelity model
in Chapter 7. (x, y, θ) are the global position and yaw. (vx, vy) are the velocities in the body-fixed
frame. lf and lr are the distances to the front and rear axels. δ is the steering wheel angle. αf and
αr are the front and rear slip angles. F indicates the tire forces at each wheel. Subfigure (b) shows
a plot of normalized lateral tire force given by a Pacejka model (7.4) for snow, wet asphalt, and dry
asphalt. The dashed lines indicate linear approximations which are valid at low slip angles.

degrees of freedom. The model dynamics are

m(v̇x(t)− vy(t)θ̇(t)) = Fx,f (·) cos(δ(t)) + Fx,r(·)− Fx,f (·) sin(δ(t)), (7.1a)

m(v̇y(t) + vx(t)θ̇(t)) = Fy,f (·) cos(δ(t)) + Fy,r(·) + Fx,f (·) sin(δ(t)), (7.1b)

Iθ̈(t) = lfFy,f (·) cos(δ(t))− lrFy,r(·) + lfFx,f (·) sin(δ(t)), (7.1c)

where Fx : R→ R, Fy : R2 → R give the longitudinal/lateral tire forces, the subscripts f, r stand
for front and rear, respectively, m is the vehicle mass, I is the vehicle inertia about the vertical
axis, δ is the front-wheel steering angle, and lf and lr are the distance from the front and rear axles
to the center of mass. The normal force Fn,i resting on each front/rear wheel are approximated as

Fn,f = mg(lr/l), Fn,r = mg(lf/l), (7.2)

where the wheel base is l = lf + lr. The slip angles αi and slip ratios σi are defined as in [PH06,
Raj11],

αi = − arctan

(
vy,i
vx,i

)
, σi =

rwωi − vx,i
max(rwωi, vx,i)

, (7.3)

where i ∈ {f, r} and rw is the wheel radius, and vx,i and vy,i are the longitudinal and lateral wheel
velocities for wheel i with respect to an inertial system, expressed in the coordinate system of the
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wheel. The tire forces are computed with the Magic Formula model [PH06], and combined loading
is based on the friction ellipse as follows:

Fx,i = µx,iFn,i sin(Dx,i arctan(Bx,i(1− Ex,i)σi + Ex,i arctan(Bx,iσi))), (7.4)

Fy,i = ηiµy,iFn,i sin(Dy,i arctan(By,i(1− Ey,i)αi + Ey,i arctan(By,iαi))), (7.5)

ηi =

√
1−

(
Fx,i

µx,iFn,i

)2

, (7.6)

where µj,i, Bj,i, Dj,i and Ej,i, for i ∈ {f, r}, j ∈ {x, y}, are the friction coefficients and stiff-
ness, shape, and curvature factors. Note that in (7.4), the longitudinal force does not explicitly
depend on the lateral slip, and it is possible to use more accurate models to represent the combined
slip [BOLN14, PH06].

7.2.2 Measurements

This chapter focuses on executing maneuvers with large changes in the lateral direction, hence
the implementation is primarily concerned with estimating the lateral tire forces. In this imple-
mentation, the vehicle receives measurements of its pose (x̂, ŷ, θ̂) from a localization algorithm.
The vehicle has an inertial measurement unit, providing a measurement of the longitudinal and
lateral accelerations (âx, ây) and yaw rate ˆ̇θ. Note that in (7.1) ay(t) = v̇y(t) + vx(t)θ̇(t) and
ax(t) = v̇x(t)− vy(t)θ̇(t). The inputs ωf , ωr and state δ are also measured with negligible uncer-
tainty. In practice encoders can provide accurate measurements of these quantities. Two important
assumptions are made for the implementation:

Assumption 81. Noise of the vehicle measurements error, e, is normally distributed with zero

mean with known co-variance, e ∼ N (0,Σmeas). This is reasonable since the measurement noise

can oftentimes be determined from prior experiments and data sheets, and offset to the mean can

represented as a bias term that can also be estimated [Gus10].

and

Assumption 82. The vehicle’s longitudinal velocity, vx, is estimated from a combination of the

wheel speed sensors and longitudinal acceleration. For examples of such estimators see [TSC06,

GFX13].

The estimation algorithms presented could estimate both the lateral and longitudinal forces and
velocities as described in [BDC18].
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7.2.3 Planning Model

The planning model that used for trajectory optimization in this chapter will take the form of the
single track bicycle model (7.1), however the controller does not have access to (or use) the true tire
force functions (7.4-7.6). Instead these functions are estimated given vehicle data. The planning
model takes a form similar to (3.13)

ż(t) = f(t, z, u) + g(t, z, u)d(·), (7.7)

with a few differences. First the notation u is used instead of k, since the input form (wheel angle
command and acceleration) are the same as the high-fidelity model. Second instead of allowing d
to vary between [−1, 1], as in Chapter 3, the probability of its value is estimated online. In §7.3.1,
d is time-varying parameter vector that is estimated. In §7.3.2, d will consist of state-dependent
basis functions, whose coefficients are estimated.

7.3 Tire Force Estimation

This section describes to models used in the trajectory optimization (MPC) in §7.4 and the algo-
rithms used for estimating uncertainty in the tire forces. §7.3.1 describes a linear tire model and
estimation technique [BDC18]. §7.3.2 describes a nonlinear tire model and estimation technique
[BQV21].

7.3.1 Stiffness Estimator

The tire-stiffness estimator for a linear tire model is a recently developed adaptive particle-filter
approach. The contribution in this dissertation is not the development of the algorithm, but the
integration of it into the MPC formulation as described in §7.4.2. An extension of the algorithm to
estimate the vehicle’s mass and moment of inertia has also been developed and integrated into the
MPC framework [BQV21]. A brief summary of the algorithm and details of the implementation
are provided here, for a more extensive description of the algorithm see [BDC18]. This section
focuses on lateral dynamics, so the lateral velocity and yaw rate ze = [vy, θ̇] are estimated, with
inputs ue = [vx, δ], and measurement vector ye = [ây,

ˆ̇θ]>. An important feature of the estimator
is that it only relies on sensors commonly available in production vehicles.

The method employs the single-track vehicle model (7.1) but uses and a linear approximation
of the front and rear tire forces,

Fx,i ≈ Cx,iσi, Fy,i ≈ Cy,iαi, (7.8)
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whereCx,i andCy,i are the longitudinal and lateral stiffness, respectively. As seen in Figure 7.1 (b),
the linear approximation is valid at low slip values. Because of this, in the implementation, the es-
timator is activated only when the wheel angle and slip ratios are within a predefined threshold.
Additionally, the estimator is deactivated when the wheel angle is near zero since the system be-
comes unobservable [BDC18]. Since the estimator is focused on estimating the lateral cornering
stiffness and I assumed Cx,i ≈ 2Cy,i. This approximation provides a coarse update of the longi-
tudinal stiffness. The linear relationship was chosen based on the models used in simulation and
could alternatively be fit with experimental data. Since the maneuvers in this work will not require
large longitudinal accelerations, accurately modelling the longitudinal stiffness is not critical to the
controller performance.

The stiffness values in (7.8) are decomposed into a nominal and unknown part,[
Cy,f

Cy,r

]
=

[
Cnom
y,f

Cnom
y,r

]
+ ξ, (7.9)

where Cnom
y,i is the nominal value of the cornering stiffness, for example, a priori determined on

a nominal surface, and ξ ∈ Ξ ⊂ R2 is a time-varying, unknown part. The unknown stiffness
components are modeled as random process noise acting on the otherwise deterministic system.

Assumption 83. The realization of ξj at time t = tj is normally distributed according to ξj ∼
N (Ĉj,Σj), where Ĉj and Σj are the unknown, time-varying, mean and covariance.

Inserting (7.8)–(7.9) into (7.1) and discretizing using forward-Euler with a sampling period τs
gives the discrete-time dynamics

zej+1 = zej + τsf
e(zj, u

e
j) + τsg

e(zj, u
e
j)ξj, (7.10)

f(ze, ue) =

[
1
m

(
Cnom
y,f (2σf sin δ + αf cos δ) + Cnom

y,r αr
)
− vxθ̇

1
I

(
Cnom
y,f lf (2σf sin δ + αf cos δ)− Cnom

y,r lrαr
) ] , (7.11)

g(ze, ue) =

[
1
m

(2σf sin δ + αf cos δ) 1
m
αr

lf
I

(2σf sin δ + αf cos δ) −lr
I
αr

]
, (7.12)

where the subscript j refers to the current timestep. The estimator uses the lateral acceleration and
yaw-rate measurements and models the bias bj of the inertial measurements as a random walk;
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which, again by inserting (7.8)–(7.9) into (7.1), can be writen in the form

ye = h(zej , u
e
j) + bj + d(zej , u

e
j)ξj + ej, (7.13)

h(ze, ue) =

[
1
m

(
Cnom
y,f (2σf sin δ + αf cos δ) + Cnom

y,r αr
)

θ̇

]
, (7.14)

d(ze, ue) =

[
1
m

(2σf sin δ + αf cos δ) 1
m
αr

0 0

]
, (7.15)

were e is the zero-mean Guassian measurement noise as in Assumption 81. The particle filter
from [BDC18] jointly estimates the state vector and process noise. It has n particles represents the
probability densities of the state as in [BDC18, (42)]

p(zej | ye0:j) ≈
n∑
i=1

q
(i)
j δ0(zej − z

e,(i)
j ) (7.16)

where δ0 is the dirac delta and ze,(i)j is the state estimate for the ith particle at timestep j. Each
particle of the estimator contains, an estimated of the noise, ξj , which is modeled as a Normal-
inverse-Wishart distribution defined by statistics γ, Ĉ,Λ, ν as in [BDC18, (25)]:

p(ξj | ze0:j, y
e
0:j) = NiW(γj|j, Ĉj|j,Λj|j, νj|j). (7.17)

To extract values for the mean and co-variance a weighted average over the particles is used, as in
[BDC18, (27)]:

Ĉj ≈
n∑
i=1

q
(i)
j Ĉ

(i)
j|j (7.18)

Σj ≈
n∑
i=1

q
(i)
j

(
1

νj|j − 4
Λ

(i)
j|j + (Ĉ

(i)
j|j − Ĉj)(Ĉ

(i)
j|j − Ĉj)

>
)

(7.19)

Figure 7.2 shows the output from the stiffness estimator for the vehicle described by (7.1) on
a surface switching from dry asphalt to snow and back. The estimator uses a sampling period
of τs = 0.01 s. The “true stiffness” is defined as the slope of the tire-force curve at α = 0.
In Figure 7.2, the true stiffness is underestimated at times on both surfaces, as a result of tire
saturation. Figure 7.3 provides a simple illustration of why this occurs for an asphalt tire model.
When the vehicle is operating at nonzero slip angles, the estimated tire-force model can be thought
of as a line between the origin and the true tire force. The slope of this line (the estimated stiffness)
decreases as the slip angle increases and the tire-force curve flattens. In §7.4.2 this is leveraged to
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Figure 7.2: Stiffness estimates for a surface switching from dry asphalt to snow and back. The
black line is the true stiffness, the slope of the nonlinear tire-force curve at α = 0. The blue solid
and shaded regions are the mean and 95% confidence interval from the stiffness estimator. The
true stiffness is underestimated when the tires saturate.

develop constraints that maintain stability even when the vehicle is near the nonlinear regions of
the tire curve.

7.3.2 Nonlinear Estimator

This section briefly describes the Bayesian tire-friction estimator that approximates the friction
function F entering the vehicle dynamics model (7.1) as a Gaussian process (GP) with unknown
mean and covariance function. The estimator is targeted for embedded automotive-grade hardware
and sensors. I used a recently developed method for jointly estimating the tire-force function and
the vehicle state only using sensors available in production cars, namely wheel-speed sensors and
inexpensive accelerometers and gyroscopes. This section focuses on estimating the lateral tire
forces, so F = [Fy,f Fy,r]

>, but the algorithm can be extended to estimate longitudinal forces as
well. I briefly outline the formulation of the method here and refer the reader to [Ber20, Ber21] for
a more complete description.

7.3.2.1 Estimation Model

In this method the state and input vector for the estimator are defined as ze = [vy, θ̇]
>, ue =

[δ, vx]
>. For brevity, define the vector α = [αf , αr]

> and model the lateral tire force function
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Figure 7.3: Linear approximation of the tire forces at slip angles of 0, 4, 8 deg for an asphalt tire
model. The solid line is the true tire-force curve, while dashed lines are the linear approximations.
The stiffness (slope of the line) decreases as the slip angle increases.

F = [Fy,f Fy,r]
> as a realization from a GP with mean function F̂ and covariance function Σ,

F (α(ze, ue)) ∼ GP(F̂ (α(ze, ue)),Σ(α(ze, ue))). (7.20)

The resulting vehicle SSM is a GP-SSM where the tire friction is a GP. A bottleneck in some of
the proposed GP-SSM methods is the computational load. In this section, I use a computationally
efficient reduced-rank GP-SSM framework, where the GP is approximated as a basis function
expansion using the Laplace operator eigenvalues and eigenfunctions

φk(α) =
1√
L

sin

(
πk(α + L)

2L

)
, λk =

(
πk

2L

)2

, (7.21)

defined on the interval [−L,L], such that

Fi ≈
m∑
k=1

ξi,k φk(αi), (7.22)

where i ∈ {f, r} and the weights ξi,k are Gaussian random variables with unknown mean and
covariance, whose prior depends on the spectral density that is a function of the eigenvalues in
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(7.21). The basis-function expansion can be written in matrix form as

F =

[
ξf,1 · · · ξf,m 0 · · · 0

0 · · · 0 ξr,1 · · · ξr,m

]
︸ ︷︷ ︸

Γ=

Γf 0

0 Γr





φ1(αf )
...

φm(αf )

φ1(αr)
...

φm(αr)


︸ ︷︷ ︸
ϕ(α(ze,ue))

, (7.23)

where ξi,k are the weights to be learned and m is the total number of basis functions. For con-
venience, the prior on the coefficients at time step j = 0 is a zero-mean matrix-normal (MN )
distribution. This requires writing out tire force estimate as a deviation from a nominal model,
similar to (7.9). With the matrix form (7.23), the vehicle dynamics model used in the estimator can
be written as

zej+1 = f e(zej , u
e
j) + ge(zej , u

e
j)Γϕ(α(zej , u

e
j)), (7.24)

where j indicates the current timestep. Hence, the original problem of learning the infinite-
dimensional friction function F has been transformed to learning the matrix Γ in (7.24), which
is substantially easier to do in an online setting. The lateral velocity and yaw rate are estimated as
part of the state according to (7.1). The measurement model can also be written as

yej = h(zej , u
e
j) + d(zej , u

e
j)Γϕ(αj(z

e
j , u

e
j)) + ej, (7.25)

where the measurement noise e is as in Assumption 81.

Remark 84. According to well-established tire models (e.g., [PH06], see Fig. 7.1 (b)), it is known

that the tire-friction function is antisymmetric. At the same time, the basis-function expansion

(7.22) is a weighted sum of sinusoids for each dimension. Hence, antisymmetry can be enforced by

restricting the sum in (7.22) to even values for k (i.e., k = 2, 4, . . . ,m). This substantially reduces

the number of parameters to estimate and at the same time ensures that the estimated tire force

function. F , passes through the origin.

7.3.2.2 Joint State and Friction-Function Learning

The vehicle state needs to be estimated concurrently with the friction function, which will be
easier to estimate reliably for moderate slip angles corresponding to normal driving, and the mea-
surements are automotive grade and therefore have significant noise. Hence, to properly account
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for the inherent uncertainty the estimation problem is approached in a Bayesian framework. Due
to the nonlinearities of the tire-friction function and the vehicle model, the estimation problem is
highly non-Gaussian. I therefore use a particle-filter based estimator that estimates the vehicle
state ze and basis-function weights Γ [Ber20]. The particle filter approximates the joint posterior
density

p(Γj, z
e
0:j|ye0:j) (7.26)

at each time step t = tj , that is, the posterior density function of the matrix Γj of basis-function
weights and state trajectory ze0:j = {ze0, . . . , zej} from time step 0 to j, given the measurement
history ye0:j = {ye0, . . . , yej}. I use the standard decomposition of (7.26) into

p(Γj, z
e
0:j|ye0:j) = p(Γj|ze0:j, y

e
0:j) p(z

e
0:j|ye0:j). (7.27)

The two densities on the right-hand side of (7.27) can be estimated recursively. The state trajectory
density p(ze0:j|ye0:j) is estimated by a set of n weighted state trajectories as

p(ze0:j|ye0:j) ≈
n∑
i=1

q
(i)
j δ0(ze0:j − z

e,(i)
0:j ), (7.28)

where q(i)
j is the weight of the ith state trajectory ze,(i)0:j and δ0(·) is the Dirac delta. Given the state

trajectory, the sufficient statistics necessary to approximate p(Γj|ze,(i)0:j , y
e
0:j) can be computed for

each particle. Because the state trajectory is determined from the particle filter, the computations
leading up to the estimation of p(Γj|ze,(i)0:j , y

e
0:j) are analytic.

To determine the covariance and mean function, the state trajectory can be marginalized from
p(Γj|ze,(i)0:j , y

e
0:j) according to

p(Γj|ye0:j) =

∫
p(Γj|ze,(i)0:j , y

e
0:j)p(z

e,(i)
0:j |ye0:j) dz

e
0:j ≈

n∑
i=1

q
(i)
j p(Γ

(i)
j |z

e,(i)
0:j , y

e
0:j), (7.29)

and each particle retains its own estimate of Γj together with the weight q(i)
j . Then, the mean and

covariance can be estimated by choosing the ith particle that fulfills i∗ = arg maxi∈{1,...,n} q
(i)
j . This

results in the following expressions for the friction estimate and associated covariance function at
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timestep j:

F̂j(α(ze, ue))=

[
Γ̂

(i∗)
f,j ϕ(αf (z

e, ue))

Γ̂
(i∗)
r,j ϕ(αr(z

e, ue))

]
, (7.30a)

Σj(α(ze, ue))=

[
ϕ(αf (z

e, ue))>V
(i∗)
f,j ϕ(αf (z

e, ue))Qf 0

0 ϕ(αr(z
e, ue))>V

(i∗)
r,j ϕ(αr(z

e, ue))Qr

]
,

(7.30b)

where the matrix Γ̂
(i)
k,j is the particle’s mean estimate and V (i)

k,j andQk, for k ∈ {f, r}, are parts of the
sufficient statistics when determining (7.29)—more details can be found in [Ber20]. Empirically I
found that there is little difference between using the maximum likelihood particle and averaging
over all particles, hence I chose to use the most likely particle for computational efficiency in the
MPC integration §7.4.3.

7.3.2.3 Implementation Results

Fig. 7.4 shows the front tire-force estimates in closed loop for a sequence of lane change manuevers
with a surface change from asphalt to snow to asphalt. 500 particles and 10 basis functions were
used. The estimates are initialized for the parameters on snow. At 9.0 s the vehicle transitions to
snow, and the learned model has fully learned about the surface change by 11.0 s. The snow transi-
tion takes place during a portion of the trajectory where the observability of the lateral dynamics is
poor. The vehicle transitions back to asphalt at 16.25 s and the learned model (at 18.5 s) is slower
to converge to the asphalt model compared to the snow transition. This is because it has not fully
explored the tire force curve on asphalt yet. For the region of the slip angle corresponding to where
data has been acquired, the estimates follow closely to the true friction model, and it is clear that
where small amounts of data have been gathered, for example, for slip angles close to or beyond
the peak, the uncertainty increases accordingly.

7.4 Adaptive, Chance-constrained Nonlinear Model Predictive
Control

This section describes the chance-constrained Nonlinear Model Predictive Control (NMPC) Algo-
rithm that, given the current tire force estimate, is solved to generate a safe trajectory and control
inputs for the vehicle. The algorithm is executed in a receding-horizon framework, similar to Algo-
rithm 1. §7.4.1 summarizes the problem formulation and solver used. The following two sections
§7.3.1 and §7.4.3 explain the implementations with the linear and nonlinear estimators from §7.3.
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Figure 7.4: The top plot shows the closed-loop trajectory (blue) of a (7.1) tracking lane change
maneuvers (green) on asphalt, snow then asphalt. The bottom plots show the front tire force at t =
5,9,11,and 18.5 s. The black circles correspond to the vehicle state at each timestep. The black line
is the simulation model. The blue line is the mean function F̂y,f (7.30a). The blue shaded region
is the 95% confidence interval from (7.30b). The gray dashed line is the nominal tire force model
(snow). At 9.0 s the vehicle transitions to snow, and the learned model has fully learned about the
surface change by 11.0 s. The vehicle transitions back to asphalt at 16.25 s and the learned model
is slower to converge to the asphalt model.

137



7.4.1 Problem Formulation and Solver

This section summarizes the chance-constrained trajectory optimization program. The program is

min
z(·),u(·)

E
[∫ T

0

J(z(t), u(t))dt

]
(7.31)

s.t. ż(t) = f(z(t), u(t), ξ),

Pr

 ∨
t∈[0,T ],i∈{1,...,ncons}

hi(z(t), u(t)) ≥ 0

 ≤ ∆

where z : [0, T ] → Z and u : [0, T ] → U are functions describing the state trajectory and inputs,
f : Z×U×Ξ→ RnZ is a dynamic model of the system. Note that in this application, the planning
models are of the form (7.7); however here and in §7.4.1.1, f is written as a general function. Each
hi : Z × U → R is a constraint, whose probability of violation is limited, and J : Z × U → R is
the cost function, whose expectation is minimized. In this work the cost function considered is

J(z, u) =
1

2
‖z − zref‖2

Q +
1

2
‖u− uref‖2

R. (7.32)

where zref : [0, T ] → Z and uref : [0, T ] → U specify a desired reference trajectory and Q ∈
RnZ×nZ andR ∈ RnZ×nZ are positive semidefinite and definite matrices. In this context, the system
dynamics, f , are given by (7.1), where the functions defining the tire forces are approximated by
the tire force estimators in §7.3.

7.4.1.1 Discrete time NMPC Formulation

The formulation in [FDCQ20], solves a discrete time approximation of (7.31). The time horizon
is partitioned into a set of npred discrete time steps tj ∈ [0, T ], such that tj = j

npred
T . The inputs

are parameterized in the form of a feedback controller with an offset changing at each discrete
timestep

ũj = uref,j + B(zj − zref,j) + uj, (7.33)

where B ∈ RnZ×nU is a matrix of feedback gains. The formulation considers a discrete-time
system of the dynamics

zj+1 = f1(zj, ũj, ξj), (7.34)

where the subscript j indicates the state, input, and uncertainty vector estimate at time tj and f1

numerically approximates the integration of the system dynamics forward by 1 timestep. In this

138



work rk4 integration is used [PWT+07, §17.1]. In this work B is computed by solving the Ricatti
equation for a linearized version of the discrete time system [SP08]. At the kth planning iteration,
based on the expected state estimate ẑk and covariance Sk, the Chance-constrained NMPC solves

min
z,u,S

npred∑
j=0

J(zj, ũj) (7.35)

s.t.



∀j ∈ {0, . . . , npred − 1}, i ∈ {1, . . . , ncons}

0 = zj+1 − f1(zj, ũj, ξ̂k), z0 = ẑk,

Sj+1 = AjSjA
>
j +BjΣkB

>
j , S0 = Sk,

Pr (hi(zj, ũj) ≥ 0) ≤ ∆,

where the Jacobian matrices read as Aj = ∂f
∂z

(zj, ũj, ξ̂k) and Bj = ∂f
∂ξ

(zj, ũj, ξ̂k), and ξ̂k and
Σk signify the mean and covariance of the uncertainty. The state covariance propagation equations
correspond to the extended Kalman filtering (EKF) approach, similar to [TVC+15b]. In addition to
the dynamics and covariance propagation, there are a few other approximations with respect to how
the uncertainty vector ξ is treated in (7.35) compared to (7.31). First the cost function is evaluated
with respect to the expected (mean) values of the initial condition and uncertainty vector. Second,
the marginal probability of each chance constraint is enforced, meaning conditional probability on
constraint violations is not accounted for. One could account for this by reducing the probability of
constraint violation to satisfy Boole’s inequality as in (6.47), [BLW06], or considering an iterative
risk allocation strategy as proposed in [OW08]; although the later comes at increase computational
cost since an additional risk allocation problem must be solved at every planning iteration.

7.4.1.2 Chance Constraint Approximation

The probabilistic chance constraints in (7.35) are approximated with deterministic constraints as
in [TVC+15b], where the ith constraint is written as

hi(zj, ũj) + η

√
∂hi
∂zj

Sj
∂hi
∂zj

T

≤ 0, (7.36)

where η is referred to as the back-off coefficient and depends on the desired probability threshold
∆ and assumptions about the resulting state distribution. The backoff coefficient for Cantelli’s
inequality, η =

√
1−∆

∆
, holds regardless of the underlying distribution but is conservative. In this

work, I assumed normally-distributed state trajectories and set

η =
√

2erf−1(1− 2∆), (7.37)

139



where erf−1(·) is the inverse error function.

7.4.1.3 Implementation

The MPC program is implemented on the vehicle, described in §7.2 in simulation as in Algorithm
13

Algorithm 13 Adaptive Chance-constrained MPC Simulation
1: Require: zhi,0, Σ0, ẑ0, S0, zref , uref , cost matrices Q, R, MPC planning time τplan > 0

2: Initialize: k = 0, ξ̂0 = 0
3: Loop: //Lines 6 - 8 run concurrently
4: (z∗, u∗, S∗)← solveChanceConstrainedMPC(ẑk, Sk, ξ̂k,Σk, zref , uref , Q,R)
5: Compute input ũk from (7.33) with (z∗0 , u

∗
0)

6: zhi,k+1 ← simulateModel((k + 1)τplan, zhi,k, ũk)
7: {ye} ← getMeasurements({zhi(t)|t ∈ [kτplan, (k + 1)τplan]})
8: (ẑk+1, Pk+1, ξ̂k+1,Σk+1)← updateStateEstimate({ye})
9: End

Algorithm 13 begins with initial estimates of mean and covariance for the vehicle state an
uncertainty vector. It first solves (7.35) and takes the first input (j = 0) from the solution, and
applies it to the simulation model (7.1) which uses the nonlinear Pacejka model (7.4). In this
step, one can introduce random perturbations into the Pacejka parameters during the simulation.
The measurements as described in §7.2 are given to the estimator, which updates the mean and
covariance of the state and uncertainty vector. In implementations, the estimators are usually run
at a higher frequency than the MPC program, so I specify that this occurs while the simulation
model is integrated.

To solve (7.35), I used the SNMPC implementation in [FDCQ20], based on an SQP opti-
mization algorithm in which a series of QP approximations are solved using the PRESAS QP
solver [QDC20]. The nonlinear function and derivative evaluations, for the preparation of each
SQP subproblem, are performed using algorithmic differentiation (AD) and C code generation in
CasADi [AGH+18a]. The algorithm uses a tailored Jacobian approximation along with an adjoint-
based SQP method that allows for the numerical elimination of the covariance matrices from the
SQP subproblem, which reduces the computation time when compared to standard SQP formu-
lations for SNMPC [FDCQ20]. Note that one SQP iteration per control time step is typically
performed for real-time implementations of NMPC, as discussed in [GZQ+20b]. Slack variables
in the program formulation ensure that a feasible solution is always found in Algorithm 13 Line 4
(see Appendix C).
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7.4.2 Formulation with Stiffness Estimator

To integrate the stiffness estimator in §7.3.1 with the NMPC program in §7.4.1.1, I used the single
track model (7.1) with linear tire force functions (7.8) as the dynamics, f . The mean and covariance
of the cornering stiffnesses are updated with the current estimate, i.e. in Algorithm 13 Line 8 ξ̂k
and Σk are updated with (7.18) ad (7.19). Note that by (7.10), the planning dynamics can take the
form of (7.7).

7.4.2.1 Constraints

The following inequality constraints are enforced in the optimal-control problem of (7.35):

ymin ≤ y ≤ ymax, (7.38a)

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (7.38b)

|σi| ≤ σmax, i ∈ {f, r}, (7.38c)

|θ̇vx| ≤ 0.85µ̂g,

∣∣∣∣vyvx
∣∣∣∣ ≤ tan−1(0.02µ̂g). (7.38d)

Eq. (7.38a) bounds the lateral position, and is used to ensure that the vehicle stays on the road.
Obstacle avoidance constraints could be considered in future work. Eqs. (7.38b)-(7.38c) bound the
wheel angle, wheel angle rate, and slip ratios. The constraints in (7.38d) prevent the vehicle from
entering regions of high lateral acceleration and side slip, and can be found in [Raj11, Chapter 8].
These equations in (7.38d) are refered to as stability constraints.

The stability constraints depend on the road friction µ, a parameter whose estimation is widely
studied [KET17]. In this work, I estimated the friction based on the cornering stiffness. Exper-
imental studies suggest that using a monotonic relationship is sufficient to differentiate between
asphalt and snow [Gus97, APT12]. I used a linear relationship to approximate the road friction as
a function of the cornering stiffness estimate,

µ̂ ≈ min
(

(a/2)(Cnom
y,f + Ĉy,f + Cnom

y,r + Ĉy,r), 1
)
, (7.39)

where a is a constant that was fit from the Pacejka models for asphalt and snow. This relationship
proved to be effective in the simulations; finding an optimal relationship to use could be the subject
of future work. The central idea of (7.39) is that the bounds on the acceleration and sideslip
should tighten as the road friction, and consequently the cornering stiffness, decreases. For surfaces
such as wet asphalt, which may have a high cornering stiffness but lower road friction, (7.39) is
conservative in practice because the stiffness estimator underestimates the true stiffness as the tires
saturate (as in Figure 7.3). Note that in the implementations slack variables to ensure feasibility
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Figure 7.5: Illustration of a chance constraint enforced on the lateral position. In the top plot,
the green dashed line is the reference trajectory. The red dashed line is the lateral constraint, and
the red solid line is the tightened, chance constraint. The blue line is the mean trajectory from
solving (7.35). The light blue shaded region indicates the upper and lower bounds for 1e5 random
disturbance realizations. The lower plot shows the probability of constraint satisfaction of the
1e5 simulations (black) and the desired threshold (red). The chance constraint for ∆ = 0.05 is
approximated to within 1%

(see Appendix C).

7.4.2.2 Illustrative Example for SNMPC Formulation

A control reference zref is set up that intentionally violates the lower constraint on the lateral posi-
tion, to illustrate how the chance constraint is respected when (7.35) is solved. The solver is run
for 30 SQP iterations. The mean cornering stiffness values, Ĉ, correspond to a snow surface. The
standard deviation is roughly 10% of the mean values. The least-squares cost (7.32) prioritizes the
lateral position and wheel speed inputs. A timestep of τplan = 0.05 s with a prediction horizon
of T = 2 s is used. The solution trajectory is shown in Figure 7.5. The dynamic model is inte-
grated forward for 1e5 disturbance realizations, and see that the chance constraint for ∆ = 0.05 is
approximated to within 1%.

142



7.4.3 Formulation with Nonlinear Estimator

Using the single-track model (7.1) and the basis-function expansion of the lateral tire forced, Fy ≈
Γϕ(α(z)), the vehicle model (7.34) used in the NMPC program at timestep j can be written in the
same format as (7.24)

zj+1 = f(zj, ũj) + g(zj, ũj)Γϕ(α(z)). (7.40)

The notation in this section differs from that in §7.3.2, where the slip angle is written as a function
of the estimator states and inputs, since the wheel angle and longitudinal velocity are states in the
MPC model.

7.4.3.1 Uncertainty Propagation

In the NMPC formulation [FDCQ20], the parametric uncertainty is modeled as a state-independent
Gaussian random variable, ξ ∼ N (ξ̂,Σ). This leads to Jacobian matrices Aj = ∂f

∂z
(zj, ũj, ξ̂k) and

Bj = ∂f
∂ξ

(zj, ũj, ξ̂k) as in (7.35). However, in this case, the friction uncertainty is a function that

is modeled according to a GP at each time step k, Fk(α(z)) ∼ GP
(
F̂k(α(z)),Σ(α(z))

)
. Hence,

determining an equivalent formulation for the state-dependent uncertainty, by finding expressions
for the involved Jacobians Aj , Bj is necessary. Starting from (7.40), by using the chain rule and
Fk ≈ Γkϕ(α(z)),

Aj =
∂f

∂z
(zj, ũj) +

∂g

∂z
(zj, ũj)F̂k(α(zj)) + g(zj, ũj)

∂F̂k(α(zj))

∂z

=
∂f

∂z
(zj, ũj) +

∂g

∂z
(zj, ũj)Γ̂kϕ(α(zj)) + g(zj, ũj)Γ̂k

∂ϕ

∂α
(α(zj))

∂α

∂z
(zj), (7.41)

where Γ̂k is the mean uncertainty estimate as in (7.30a). Here for ease of notation write gj =

g(zj, ũj) and ϕj = ϕ(α(zj)). The covariance propagation can be approximated as

E[zj+1z
>
j+1] ≈ E[(Ajzj + gjΓ̂kϕj)(Ajzj + gjΓ̂lϕj)

>]

= AjSjA
>
j + E[gjΓ̂kϕjϕ

>
j Γ̂>k g(zj, ũj)

>]

= AjSjA
>
j + gj︸︷︷︸

Bj

cov(Γ̂kϕj)︸ ︷︷ ︸
Σk

g>j , (7.42)

where cov(·) corresponds to the covariance estimate in (7.30b). Eq. (7.42) allows one to use the
NMPC formulation (7.35).
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7.4.3.2 Constraints

The constraints in (7.35) are as follows

ymin ≤ y ≤ ymax, (7.43a)

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (7.43b)

ωi,min ≤ ωi ≤ ωi,max, i ∈ {f, r}, (7.43c)

αi,min ≤ αi ≤ αi,max, i ∈ {f, r}. (7.43d)

These are similar to the constraints in §7.4.2.1, however instead of constraining the slip ratio and
adding the stability constraints, wheel speeds (7.43c) and slip angles (7.43d) are limited I found that
this was sufficient, as this approach uses a nonlinear tire model, hence behaves more appropriately
as the tires saturate. Note that in the presented implementation slack variables are incorporated to
ensure feasibility (see Appendix C).

7.5 Results

This section offers a comparison of the proposed adaptive, chance-constrained Model Predictive
Control (MPC) algorithms with determinsitic and non-adaptive MPC algorithms. §7.5.1 gives
results for the implementation with the stiffness estimator described in §7.4.2. §7.5.2 gives results
for the implementation with the stiffness estimator described in §7.4.3. The scenario tested in each
comparison is a vehicle tracking lane change maneuvers on surfaces varying from asphalt to snow.
As stated in §7.4.2 and §7.4.3 the primary constraints of concern are that the vehicle stays on the
road; however future work could incorporate more complicated obstacle avoidance constraints.
The metrics used to evaluate the controllers are cost and score, and are computed as follows:

Cost =
∑
k

J(zk, ũk), (7.44)

Score =
∑
k

(max(yk − ymax, 0) + max(ymin − yk, 0))τplan. (7.45)

7.5.1 Stiffness Estimator

This section evaluates the MPC formulation §7.4.2 with the stiffness estimator §7.3.1. The ma-
neuver is a sequence of nine single lane-change maneuvers similar to the standardized IS0 3888-
1 [ISO02] lane-change maneuver, with the middle three on snow and the rest on dry asphalt. To
investigate the learning behavior of the controller, the surface change occurs during a straight por-
tion, where the stiffness is unobservable. The reference velocity is fixed to 17 m/s. The reference
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is generated with Bezier polynomials and the position, heading, longitudinal velocity, and yaw rate
are given to the controllers to track. The lateral constraints enforced are that the vehicle is not
allowed to leave the road boundaries. The simulation model uses the Pacejka tire model described
in §7.2. The Pacejka parameters for each road surface are randomly perturbed at each controller
timestep, with samples drawn from a uniform distribution up to ± 5% for asphalt and 10% for
snow. The following 5 NMPC controllers are compared:

1. STOCHASTIC: proposed Chance-constrained NMPC with online adaptation to stiffness-
estimation results.

2. ADAPTIVE: nominal NMPC with online adaptation to the mean cornering stiffness.

3. SNOW: nominal NMPC with cornering stiffness fixed to snow parameter values.

4. ASPHALT: nominal NMPC with cornering stiffness fixed to dry asphalt parameter values.

5. ORACLE: NMPC with true mean, nonlinear tire-force model.

The ORACLE controller is included to provide a lower bound on cost and constraint violations
for the simulations. Its performance cannot be achieved in practice because it is given the exact
tire force curve used by the simulation model; in reality there will be model mismatch due to
inaccuracies in both the tire force and single-track vehicle models.

All controllers perform 1 SQP iteration per time step [GZQ+20b] and the nominal NMPC
controllers 2-5 do not have stochastic constraints. For the stability constraints in (7.38d), the
ASPHALT and SNOW controllers assume road friction values of µ = 1.0 and 0.35, respectively.
Since the ORACLE utilizes a nonlinear tire model, the stability constraints (7.38d) are not enforced.
The least-squares cost (7.32) prioritizes the lateral position and wheel speed inputs. A timestep of
τplan = 0.05 with a prediction horizon of 2 s is used. The stiffness estimator is run at 100 Hz. The
constraint satisfaction probability for the STOCHASTIC controller is set to 95%, i.e., ∆ = 0.05.
The results of 200 trials are shown in Table 7.1. In most trials, the ASPHALT controller destabilizes
the vehicle and the trials were terminated early; the reported cost and score is summed up to the
point of termination.

Figure 7.6 (a) shows the trajectories, and Figure 7.7 shows the stability constraints in (7.38d)
for an example trial. The ASPHALT controller is unable to safely navigate the maneuvers on snow;
whereas the SNOW controller behaves conservatively on asphalt. The STOCHASTIC and ADAPTIVE

controllers overshoot the first maneuver on snow, but are able to match the performance of the
SNOW and ORACLE controllers once they have learned about the surface change. The average
cost for the STOCHASTIC controller is 1% less than the ADAPTIVE controller, 86% less than the
SNOW controller, and only 29% more than the ORACLE. The STOCHASTIC controller does not
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Table 7.1: Metrics of 200 random trials of single lane change maneuvers on Dry Asphalt/Snow at
17 m/s with linear tire force controllers

Cost (7.44) Score (7.45)
NMPC Controller

mean max mean max
STOCHASTIC 0.339 0.448 0 0

ADAPTIVE 0.342 0.480 1.4e-4 0.013
SNOW 2.463 2.500 0 0

ASPHALT 136.0 562.8 3.254 20.70
ORACLE 0.263 0.268 0 0

Table 7.2: Metrics of 200 random trials of single lane change maneuvers on Dry Asphalt/Snow at
19 m/s with linear tire force controllers

Cost (7.44) Score (7.45)
NMPC Controller

mean max mean max
STOCHASTIC 1.193 1.733 1.2e-3 0.037

ADAPTIVE 1.814 3.881 0.021 0.086
SNOW 3.329 3.442 0.034 0.102

ASPHALT 219.7 834.8 5.92 16.15
ORACLE 0.710 0.725 0 0

violate the lateral constraints in this example, and performs better on the score metric than the
ADAPTIVE controller. The average cost for the STOCHASTIC controller is within 30% of the cost
for the ORACLE.

The second case study uses the same setup, except the speed is increased to 19 m/s. The results
of 100 trials are shown in Table 7.2. Compared to the previous case study, all of the controllers have
an increased cost and, aside from the ORACLE, some constraint violations. The SNOW controller
frequently violates the lateral constraints due to the fact that it is using a linear tire model with fixed
stiffness parameters and the tires saturate at the faster velocity. The ADAPTIVE controller violates
the lateral constraints frequently during the first snow maneuver, since it does not take uncertainty
in the stiffness estimate into account while it is learning the surface change. The average score
for the STOCHASTIC controller is 94% less than the ADAPTIVE controller and 96% less than the
SNOW controller. The average cost for the STOCHASTIC controller is 34% less than the ADAPTIVE

controller, 64% less than the SNOW controller, but now 68% more than the ORACLE. The maximum
cost for the ADAPTIVE controller also increases significantly, relative to the STOCHASTIC. The
average cost for the STOCHASTIC controller is now within 67% from the cost for the ORACLE.

Overall, the results show that the STOCHASTIC controller is able to closely match the perfor-
mance of the ORACLE controller once it has learned about the road surface. Incorporating stochas-
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Figure 7.6: Position trajectories for a sample trial at 17 m/s (subfigure (a)) and 19 m/s (subfigure
(b)) where the middle 3 maneuvers are on snow and the others on dry asphalt. Red and green
dashed lines are the constraints and reference. The gray dashed lines indicate the surface changes.
The STOCHASTIC controller is able to satisfy the lateral constraints and closely match the per-
formance of the ORACLE controller after it learns about the surface change. The snow controller
violates the constraints at 19 m/s due to tire saturation, but the adaptive controllers are able to
compensate.
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Figure 7.7: Stability constraints for the sample trial in Figure 7.6 (a), where the middle portion
is on snow. Red dashed lines are the constraint boundaries, where the road friction is calculated
with (7.39) using the estimator output from the STOCHASTIC controller. The constraints tighten
during the snow portion. Coloring for the controllers is the same as in Figure 7.6. The ASPHALT

controller destabilizes the vehicle and is omitted for clarity.
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tic constraints improves safety and robustness during the learning portion and when tire saturation
occurs. The constraint violations and cost for the STOCHASTIC controller are incurred mainly
during the first snow maneuver, as the surface change occurs during a straight portion where the
cornering stiffness is not observable.

7.5.2 Nonlinear

This section evaluates the MPC formulation §7.4.3 with the estimator from §7.3.2. This section
considers a sequence of nine double lane-change maneuvers similar to the standardized IS0 3888-
2 [ISO02] double lane-change maneuver, with the middle three on snow and the rest on dry asphalt.
The maneuver is significantly more aggressive than the maneuver in §7.5.1, since the longitudinal
length is similar, but the lateral distance for each lane change is a double lane change as oppose
to a single one. To investigate the learning behavior of the controller, the surface change occurs
during a straight portion, where the friction curve is unobservable. The reference is generated
with Bezier polynomials and the position, heading, longitudinal velocity, and yaw rate are given
to the controllers to track. For simplicity, the longitudinal velocity reference is constant, vx,ref =

16 m/s. The tire-friction estimator uses n = 200 particles and m = 10 basis functions, exploiting
antisymmetry. The initial estimates and the different tuning parameters in the estimator are fairly
generic, and the same as in [Ber20].

The following controllers are evaluated:

1. STOCHASTIC: proposed Chance-constrained NMPC method with online adaptation to the
tire force estimator

2. ADAPTIVE: nominal NMPC with online adaptation to the mean function from thetire force
estimator

3. SNOW: nominal NMPC that uses fixed snow Pacejka constants

4. ASPHALT: nominal NMPC that uses fixed asphalt Pacejka constants

5. ORACLE: nominal NMPC with the true, mean Pacejka constants

As in §7.5.1, the ORACLE controller is included to provide a lower bound on cost and constraint
violations for the simulations. Its performance cannot be achieved in practice because it is given
the exact tire force curve used by the simulation model; in reality, there will be model mismatch
due to inaccuracies in both the tire force and single-track vehicle models. All of the controllers
perform 1 SQP iteration per planning instance. The estimators are executed at 100 Hz and the
different MPCs at 20 Hz, with a prediction horizon of 2 s. The constraint satisfaction probability
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Figure 7.8: Resulting path for the various approaches during the lane-change maneuvers. Red
and green dashed lines are the constraints and reference, respectively. The solid lines indicate the
trajectory for each controller. The snow controller is unable to satisfy the lateral constraints due to
mismatch between the MPC and simulation models.

for STOCHASTIC is set to 95 %, i.e., ∆ = 0.05. The least-squares cost (7.32) prioritizes the lateral
position. In all of the simulations for the considered vehicle control maneuver, ASPHALT diverged
after the transition to snow; hence, it is omitted from the results section.

Fig. 7.8 shows a comparison of the lateral tracking performance between different controllers.
The results demonstrate that the reference trajectory is tracked well by the STOCHASTIC, ADAP-
TIVE and ORACLE controllers, and that there are some transients from the adaptive ones initially
due to the convergence time of the tire-friction estimator. The SNOW controller performs conser-
vatively in the asphalt sections, and also has difficulty tracking the reference in the snow portion;
due to the aggressive nature of the maneuver and inaccuracies between the MPC and simulation
model. By investigating the path in Figure 7.8 alone (top plot), there does not seem to be a clear
benefit of adding uncertainty prediction to the MPC formulation. However, when also investigating
the front-wheel slip angle for the same comparison (bottom plot), the constraint violations for the
ADAPTIVE MPC are clearly visible during the initial transition to snow. In the plots one can also
see that on the transition to asphalt from snow, the adaptive controllers are initially conservative,
but match the performance of the oracle once they learn about the surface change. The tracking
performance, while interesting, is only one component of the cost function, and a more objective
measure is to analyze how the cost (7.44) and score (7.45) compare for different noise realizations.
To this end, Table 7.3 shows the results for 200 Monte-Carlo runs. The mean cost over the runs is

149



Table 7.3: Metrics of 200 random trials of double lane change maneuvers on Dry Asphalt/Snow
at 16 m/s with nonlinear tire force controllers

Cost (7.44) Score (7.45)
NMPC Controller

mean max mean max
STOCHASTIC 1.727 1.876 5.0e-3 0.022

ADAPTIVE 1.693 10.589 0.028 5.389
SNOW 14.906 17.475 0.838 2.357

ORACLE 1.091 1.115 0 0

similar between STOCHASTIC and ADAPTIVE, but the worst-case cost and both score metrics are
larger when not accounting for the uncertainty.

7.5.3 Discussion

The results in §7.3.1 and §7.3.2 show the benefits of incorporating adaptivity and the uncertainty
associated with the vehicle model in the trajectory optimization formulation. From these results it
appears that using the nonlinear estimator and tire model will allow the vehicle to perform more
aggressive maneuvers, however I have shown that the linear estimator and tire model is able to
compensate for tire saturation in moderately aggressive maneuvers. But it is important to note that,
when operating at low slip angles, the linear tire force controller will be overly optimistic about the
available tire force at higher slip angles, which can lead to the vehicle planning aggressive actions
at future timesteps in the planning horizon. Even if the vehicle is able to stabilize itself after making
such errors, this can be problematic if constraint violations occur. A benefit of the linear estimator
compared to the GP-based nonlinear estimator, is that the linear estimator is learning a parameter
that parameterizes the entire tire force curve; which can improve convergence rates. Although the
nonlinear estimator leverages the anti-symmetric nature of tire models, when transitioning from
lower friction surfaces to higher friction surfaces, the controller behaves conservatively as there is
large uncertainty in what the tire forces at higher slip angles are.

For both estimators and controllers, improving the design of the reference trajectory to encour-
age persistent excitation, or modulating the forgetting factor in the estimator after a surface change
is detected, could greatly improve their performance. Additionally, if extrinsic sensors are avail-
able, incorporating an algorithm that forecasts changes in road surface and incorporates them into
the MPC program could improve performance. Such a forecast could also be used to modulate
the forgetting factor in each estimator to speed up convergence during surface changes; however
the tradeoff between this and increasing the noise of the estimates must be managed. In the case
of the adaptive constraints for the linear controller, the approximation of the road friction in the
stability constraints can also be improved by using a more sophisticated estimation algorithm in
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combination with extrinsic sensing. Finally, developing a planning framework that is able to lever-
age information from the tire force estimators to adjust the reference trajectory would offer great
benefits in an autonomous application.

151



CHAPTER 8

Conclusion

This dissertation has made contributions to enable safe receding-horizon trajectory planning for
mobile robots. Recall that there were three major challenges this dissertation aimed to address.
First collision checks are typically performed at discrete time steps, which introduces an unideal
tradeoff between runtime and safety; since a more accurate (frequent) collision check takes longer
to execute. Second, using simplified dynamic models of the robot allow for faster optimization,
however there can be a nontrivial gap between the model used and the actual system. Finally,
there is unavoidable uncertainty in the motion of other agents or robots. This chapter provides a
summary of the contributions then discusses future research directions.

8.1 Summary of Contributions

This section reviews the contributions of this dissertation. In Chapter 3, I developed a method
using Sums-of-Squares (SOS) programming for representing the forward reachable set of a dy-
namic model tracking parameterized trajectories as a polynomial level set. Importantly the SOS
program allows one to capture the reachable set over time intervals, addressing the first challenge.
The program also allows for the model to contain an affinely-appearing disturbance term; which
addresses the second challenge robustly. Chapter 4 describes Reachability-based Trajectory De-
sign (RTD) the method for using the reachable sets for online trajectory optimization. I presented
an obstacle discretization method that represents static and dynamic obstacles as sets of discrete
points in a provably safe manner; hence the online trajectory planner is a polynomial optimiza-
tion program. The discretization method can be applied to arbitrary polygon predictions, so any
method of generating conservative predictions of this form can be incorporated to address the third
challenge robustly. Chapter 5 provides demonstrations and comparison results for RTD against the
state-of-the-art trajectory planners.

Chapters 4 and 5 operate under the assumption that the third challenge is addressed robustly
by providing the planner with conservative predictions of obstacles’ and their motion. In many
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applications it is useful to consider obstacle predictions that are represented by probability func-
tions. To address this, Chapter 6 presents the Chance-constrained Parallel Bernstein Algorithm
(CCPBA), a branch-and-bound algorithm for solving chance-constrained polynomial optimization
programs. CCPBA allows one to address the second challenge robustly and the third challenge
probabilistically by solving a chance-constrained version of the RTD trajectory optimization pro-
gram where the probability of collision is limited. Chapter 7 provides contributions to address
the second challenge probabilistically. Again, the ego robot plans with a dynamic model with an
affinely-appearing disturbance term; however instead of robustly accounting for all possible distur-
bances, the value of the disturbance is estimated online as a probability function, and incorporated
into a chance-constrained Model Predictive Control program. I presented an application of an au-
tonomous vehicle driving on varying road surfaces, where the tire force is estimated using both
linear and nonlinear representations.

8.2 Future Work

There are several possible areas for future work to build on and improve the contributions in this
dissertations. I now discuss these gaps and potential ways forward.

Sums-of-Squares Programming The Sums-of-Squares program presented for reachable set com-
putation in Chapter 3 is memory intensive, hence the dimension of the dynamic model and trajec-
tory parameter space has been limited to less than 6 in the presented applications, and the polyno-
mials have been limited to a degree of 10 or less. The limited dimension for the dynamic model
introduces conservatism since higher-dimensional affects are treated as uncertainty. The limited
dimension for the planning space reduces the richness of possible actions for the robot. Addition-
ally, in the receding horizon implementation, the ability to add parameters for the currently applied
trajectory parameters would eliminate the need for bounding error associated with predicting the
future robot state in Assumption 11. I presented a system decomposition method to alleviate this
somewhat in § 3.4, however this seemingly allows us to add only one or two more dimensions. To
increase the size of the SOS programs I suggest investigating the use of conic solvers to solve the
reachability programs [PY19], that offer memory savings compared the to the semidefinite pro-
gramming implementation used in this dissertation.

Tracking Error Computation The functions used to bound the gap between the planning model
and robot are currently computed offline via sampling. Methods using reachability analysis and
SOS programming should also be developed to compute these functions. Tangentially one may
consider optimizing the design of the lower level controller in conjunction with the reachable set,
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using methods similar to [MVTT14, MT17].

Dimension of CCPBA One disadvantage of CCPBA is that the decision variable space and uncer-
tainty vector space are limited, and the number of patches and associated computations increases
exponentially with dimension. To this end, future research on efficient splitting strategies to eval-
uate the chance constraints, possibly drawing on theory from algorithms for adaptive, numerical
integration [DR07] should be conducted.

Time Discretization in CCPBA The presented implementation of CCPBA performs a collision
check at discrete timepoints and uses Boole’s inequality to account for interdependence between
timepoints. This is unfortunate since there is no formal guarantee of collision avoidance between
timesteps, but it is known that the action of Boole’s inequality is overly conservative and becomes
more conservative as one increases the discretization fineness. Determining a method to account
for collision checking over continuous time intervals for chance-constrained programming should
be studied. One could adapt an approach similar to [JHW21], but use the Bernstein method for
chance constraint evaluation as oppose to Cantelli’s inequality.

Bernstein Polynomials for other Risk Measures Bernstein polynomials may also prove useful in
the evaluation of different types of risk metrics. Recent methods in risk bounded planning have ex-
plored the conditional value-at-risk (CVaR) metric [HY20, CBS+21], other have proposed similar
metrics for constraint violation [NPDC+21]. These differ from the chance-constrained program in
that they seek to limit the severity of constraint violation or a high-cost, but rare event occurring.
Direct evaluation of these constraints usually involves the expectation of the maximum of a random
variable and 0. Bernstein polynomials proved useful for bounding the expectation of an indicator
function (6.3); so extending them to evaluate the expectations with these types of maximums is a
possibility.

Forecasting of Uncertainty for Adaptive NMPC The adaptive, chance-constrained approach in
Chapter 7 is reactive in a sense that it assumes the current estimate of uncertainty is true for the time
horizon. Estimating a property like the road friction can be done with extrinsic sensors [KET17],
and a forecast of the uncertainty could be incorporated into an NMPC program. [CWHL21] in-
corporates a given friction estimate into a deterministic NMPC program. However research can
be done on how to generate such an estimate in a way that can be incorporated into a chance-
constrained program.
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APPENDIX A

Reachable Set Computation

A.1 Alternative Method for Incorporating the Footprint

Program (DT ) as written in §3.3 incorporates the footprint of the robot into the reachability com-
putation by augmenting the size position states in the initial condition set Z0. This is problematic
since in (DT ) and (D) the dynamics (3.13) get applied to every point in Z0; hence they neglect the
fact that the robot is a rigid body.

This section presents an alternate formulations and programs to compute XTFRS and XFRS that
preserve the rigidity of the robot’s body. First assume that the footprint is given by the collection
of circles, and perform a collision check against a point obstacle, whose state is x ∈ X ⊂ R2 as in
Assumption 78.

Example 85. The footprint of a sedan can be approximated as 3 circles spaced across the longi-

tudinal axis as shown in Figure A.1. The functions defining Acol are then

Acol =

(z, x) ∈ Z ×X
∣∣∣∣ ∨
i∈{1,2,3}

h
(i)
col(z, x) ≥ 0

 , (A.1)

h
(i)
col(x, z) = r2 − (x1 − z1 − li cos z3)2 + (x2 − z2 − li sin z3)2 (A.2)

where li gives the center of each circle along the longitudinal axis of the vehicle and r is the radius

of each circle and [z1, z2, z3]> is xy position and heading of the ego robot.

Next define the FRS at a point in time, considering the robot footprint.

XTFRS =
{

(t, x, k) ∈ [0, T ]×X ×K | ∃ z0 ∈ Z0, and d ∈ Ld

s.t. z = z̃(t), (z, x) ∈ Acol,

where ˙̃z(τ) = f(τ, z̃(τ), k) + g(τ, z̃(τ), k) ◦ d(τ)

a.e. τ ∈ [0, T ] and z̃(0) = z0

}
.

(A.3)
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Figure A.1: Footprint of a passenger sedan modeled by 3 circles spaced along the longitudinal
axis.

Then a function v : [0, T ] × X × K → R, whose 0 super-level set contains the footprint can be
found by solving the following program

inf
v,ṽ,w,q

∫
[0,T ]×X×K

w(t, x, k) dλ[0,T ]×X×K (DFT )

s.t. Lf ṽ(t, z, k) + q(t, z, k) ≤ 0, (DFT1)

Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (DFT2)

− Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (DFT3)

q(t, z, k) ≥ 0, (DFT4)

− ṽ(0, z, k) ≥ 0, (DFT5)

v(t, x, k) + ṽ(t, z, k) ≥ 0, (DFT6)

on {(t, z, x, k) ∈ [0, T ]× Z ×X ×K | h(i)
col(z, x) ≥ 0},

w(t, x, k) ≥ 0, (DFT7)

w(t, x, k)− v(t, x, k)− 1 ≥ 0, (DFT8)

where (DFT6) consists of nhcol constraints each enforced on the 0 superlevel sets of h(i)
col. Con-

straints (DFT1), (DFT2), (DFT3), (DFT4) apply for all (t, z, k) ∈ [0, T ] × Z × K. Constraint
(DFT5) applies for all (z, k) ∈ Z0 × K. Constraints (DFT7) and (DFT8) are enforced on
[0, T ]×X×K. The infimum is taken over (v, w, q) ∈ C([0, T ]×X×K)×C1([0, T ]×Z×K)×
C([0, T ×X ×K)×C([0, T ]×Z ×K). The following lemma relates the solutions of (DFT ) and
the “footprint” FRS at a point in time.
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Lemma 86. Let (v, ṽ, w, q) be a feasible solution to (DFT ) then

(t, x, k) ∈ XTFRS =⇒ v(t, x, k) ≥ 0 (A.4)

Proof. Lemma 15 ensures that ṽ is negative along trajectories produced by the trajectory tracking
model. Constraint (DFT6) provides that v is positive when ṽ is negative and (z, x) ∈ Acol.

A similar Lemma as 16 can also be proven to provide convergence of w to an indicator function
on XTFRS. I also provide an alternate definition and program to compute the FRS over the time
horizon

XFRS =
{

(x, k) ∈ X ×K | ∃ z0 ∈ Z0, t ∈ [0, T ] and d ∈ Ld

s.t. z = z̃(t), (z, x) ∈ Acol,

where ˙̃z(τ) = f(τ, z̃(τ), k) + g(τ, z̃(τ), k) ◦ d(τ)

a.e. τ ∈ [0, T ] and z̃(0) = z0

}
,

(A.5)

and a program to compute a function w : X ×K → R, whose 1 super-level set contains XFRS:

inf
v,ṽ,w,q

∫
X×K

w(x, k) dλX×K (DF )

s.t. Lf ṽ(t, z, k) + q(t, z, k) ≤ 0, (DF1)

Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (DF2)

− Lgṽ(t, z, k) + q(t, z, k) ≥ 0, (DF3)

q(t, z, k) ≥ 0, (DF4)

− ṽ(0, z, k) ≥ 0, (DF5)

v(t, x, k) + ṽ(t, z, k) ≥ 0, (DF6)

on {(t, x, z, k) ∈ [0, T ]×X × Z ×K | h(i)
col(x, z) ≥ 0},

w(x, k) ≥ 0, (DF7)

w(x, k)− v(t, x, k)− 1 ≥ 0, (DF8)

where (DF6) consists of nhcol constraints each enforced on the 0 superlevel set of h(i)
col. Constraints

(DF1), (DF2), (DF3), (DF4) apply for all (t, z, k) ∈ [0, T ] × Z × K. Constraint (DF5) applies
for all (z, k) ∈ Z0 × K. Constraint (DF7) is enforced on X × K. The infimum is taken over
(v, w, q) ∈ C([0, T ]×X ×K)× C1([0, T ]× Z ×K)× C(X ×K)× C([0, T ]× Z ×K).

Lemma 87. Let (v, ṽ, w, q) be a feasible solution to (DF ) then (x, k) ∈ XFRS =⇒ w(x, k) ≥ 1.
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Proof. Lemma 15 ensures that ṽ is negative along trajectories produced by the trajectory tracking
model. Constraint (DF6) provides that v is positive when ṽ is negative and (z, z) ∈ Acol. Con-
straint (DF8) provides thatw is greater than 1 when v is positive at any point in time t ∈ [0, T ].

A similar Lemma as 16 can also be proven to provide convergence of w to an indicator function on
XFRS. Similar to how I treated the time intervals in §3.5 one may also solve 2 separate programs
by solving (DFT ) first to obtain ṽ, then formulating a smaller program with constraints (DFT6)−
(DFT8). All of the programs presented in this section can also be implemented via Sums-of-
Squares (SOS) programming as in §3.3.2 provided the Assumption 78 is satisfied.

A.2 FRS Program for Bounded State Tracking Error

If instead of searching for a tracking error bound on the dynamics, one is constructed for the states,
as in Remark 10, an alternate version of (D) can be solved to compute the FRS. First restate the
remark, then give the FRS program.

Remark 10. Consider a trajectory-producing model described by open-loop dynamics, for exam-

ple as in Examples 4 and 5. One can modify (3.12) Assumption 7 to be

max
zhi∈Zhi,0

|zhi,i(t; zhi,0, k)− z(t; z, k)| ≤ Gi(τ, k)

Such a tracking error bound is less conservative, as it takes into account the integrated tracking

error. For example, second order controllers may produce oscillations around a setpoint, the error

bounds produced by (3.12) will lead to conservative FRSs in this case. To incorporate such a

bound into the reachable set computation, one can simply set g(·) = d
dt
G(t, k) or solve (A.6).

The FRS program can be given by

inf
v,w

∫
X×K

w(x, k) dλX×K (A.6)

s.t. Lfv(t, z, k) ≤ 0, (A.6.1)

− v(0, z, k) ≥ 0, (A.6.2)

w(x, k) + v(t, z, k)− 1 ≥ 0, (A.6.3)

on {(t, x, z, k) ∈ [0, T ]×X × Z ×K | hG(t, x, z, k) ≥ 0},

w(x, k) ≥ 0, (A.6.4)
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where

hG(t, x, z, k) = (x− z +G(t, k))(x+G(t, k)− z). (A.7)

Constraint (A.6.1) applies for all (t, z, k) ∈ [0, T ] × Z × K. Constraint (A.6.2) applies for all
(z, k) ∈ Z0 × K. Constraint (A.6.4) applies for all (x, k) ∈ X × K. The infimum is taken over
(v, w) ∈ C1([0, T ]× Z ×K)× C(X ×K).

Lemma 88. Let (v, w) be a feasible solution to (A.6). Let zhi(t; zhi,0, k) denote the solution to the

high-fidelity (3.4) at time t beginning from zhi,0 ∈ {zhi ∈ Zhi | projX(zhi) ∈ X0} under control input

uk. For every t ∈ [0, T ], k ∈ K, and zhi,0 ∈ {zhi ∈ Zhi | projX(zhi) ∈ X0}, w(projX(zhi), k) ≥ 1.

Proof. v(t, z, k) ≤ 0 for any z produced by the trajectory producing model (3.2) via Lemma 15.
Constraint (A.6.3) and (A.7) provide that if v(t, z, k) is negative and zhi and z satisfy (3.16) then
w(projX(zhi), k) ≥ 1.

A.3 Program for Collision Functions

This section outlines a program to compute hcol in Assumption 78. Note that it can also be ap-
pended to the reachability program in §A.1. Let z ∈ Z described the state of the ego robot and
ζ ∈ Zobs describe the state of the obstacle. Let x ∈ X described 2D position coordinates. Let the
ego vehicle be described by semialgebraic sets

Aego = {(x, z) ∈ X × Z | h(i)
ego ≥ 0, for any i ∈ {1, . . . , nego}}, (A.8)

where it is understood that if a particular h(j)
ego is a vector of polynomials, then all h(j)

ego(x, z) ≥ 0 for
the index j to count as non-negative. Let the obstacle be described by semialgebraic sets

Aobs = {(x, ζ) ∈ X × Zobs | h(i)
obs ≥ 0, for any i ∈ {1, . . . , nobs}}. (A.9)

For example consider the intersection of the ego vehicle described in Example 85 and a rectangular
obstacle aligned with the road frame as in §6.3.3. hego will be defined as in (A.2), hobs can be
defined as

Example 89. A rectangle of width W and length L can be defined with

hobs(x, ζ)(1) =

[
(x1 − ζ1 + L/2)(ζ1 + L/2− x1)

(x2 − ζ2 +W/2)(ζ2 +W/2− x2)

]
(A.10)
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Then a function hcol : Z × Zobs → R with the property

{∃x ∈ X | (x, z) ∈ Aego, (x, ζ) ∈ Aobs} =⇒ hcol(z, ζ) ≥ 0 (A.11)

can be found by the following program

inf
vego,vobs,hcol,w

∫
Z×Zobs

w(z, ζ) dλZ×Zobs (A.12)

s.t. vego(x, z) ≥ 0, on Aego (A.12.1)

vobs(x, ζ) ≥ 0, on Aobs (A.12.2)

hcol(z, ζ)− vego(x, z)− vobs(x, ζ) ≥ 0, (A.12.3)

w(z, kζ)− hcol(z, ζ)− 1 ≥ 0, (A.12.4)

w(z, ζ) ≥ 0, (A.12.5)

where constraint (A.12.3) applies for all (x, z, ζ) ∈ X ×Z ×Zobs and constraints (A.12.4, A.12.5)
apply for all (z, ζ) ∈ Z × Zobs. The infimum is taken over C(X × Z) × C(X × Zobs) × C(Z ×
Zobs)×C(Z ×Zobs). This program can be implemented with Sums-of-Squares polynomials if the
sets defining the footprints are semilagebriac. Note that in cases such as Example 89, where the set
is analytically defined you could forgo the inclusion of vobs and constraint (A.12.2), and enforce
(A.12.3) on {(x, ζ) | h(1)

obs(x, ζ) ≥ 0} additionally. However in cases with more than 1 set defining
the footprint, it is advantages to include separate functions and constraints, since the constraint in
(A.12.3) involve the introduction of s-functions from C(X × Z × Zobs).
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APPENDIX B

Discrete Obstacle Representation

This section provides a proof of Theorem 52, and begins by first introducing necessary definitions
and Lemmas.

Definition 90. Define a transformation Rt ∈ SE(2). Each Rt is given by a rotation angle θt ∈
[0, 2π) and a translation vector st ∈ R2, so Rt transforms a point p ∈ R2 as

Rtp =

[
cos θt − sin θt

sin θt cos θt

]
(p− c) + st + c, (B.1)

where c ∈ R2 is the center of rotation (which is typically considered as the geometric center of X0

when applying Rt to the robot). The subscript indicates that the transformation is indexed by time

t ∈ [0, T ]. Define a transformation family {Rt | t ∈ [0, T ]} of planar translations and rotations

that is continuous with respect to t.

Next, define useful geometric objects.

Definition 91. Let I ⊂ R2 be a line segment, also called an interval when it lies on either the

x- or y-axis. Let EI = {e1, e2} ⊂ I denote the endpoints of I , such that I can be written as

I = {e1 + s · (e2− e1) | s ∈ [0, 1]}. The length of I is ‖e1− e2‖2. Suppose I has a pair of distinct

endpoints {e1, e2}, and create the set `I = {e1 + s · (e2 − e1) | s ∈ R} ⊂ R2, i.e. a line that

passes through e1 and e2. `I is called the line defined by I .

Definition 92. Let A ⊂ R2 be a set with a boundary and a1, a2 ∈ ∂A. The line segment κ =

{a1 + s · (a2 − a1) | s ∈ [0, 1]} is a chord of A.

Definition 93. A circle C ⊂ R2 of radius R ≥ 0 with center p ∈ R2 is given by the set

{p′ ∈ R2 | ‖p′ − p‖2 = R}. An arc A ⊂ R2 is any connected, closed, strict subset of a circle;

this means that any arc has two endpoints a, b ∈ R2.
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Definition 94. Let c ∈ X0 denote the center of mass of the robot’s footprint at time 0. Let I be a

line segment as in Definition 91 with two distinct endpoints EI = {e1, e2}. Then HI ⊂ R2 denotes

the closed half-plane defined by I; this half-plane is determined by the line defined by I and by c

as:

HI = {p ∈ X | sign(δ±(e1, e2, p)) = sign(δ±(e1, e2, c))} , (B.2)

where sign(a) = 1 for a ≥ 0 and −1 otherwise. Now suppose that I is a line segment of length 0,

i.e. e1 = e2, so one cannot directly define HI as in (B.2). Suppose that e1 6= c. So, one can pick a

point e′ for which (e′− e1) · (c− e1) = 0 where · denotes the standard inner product on R2, so the

line segment from e1 to c is perpendicular to the line segment from e1 to e′. Then, HI is given by

(B.2), but using e′ in place of e2.

Next, define what it means for the robot’s footprint to pass through and penetrate line segment,
and provide Figure B.1 as an illustration.

Definition 95. Let I ⊂ X \X0 be a line segment with endpoints EI as in Definition 91, and HI be

the half-plane defined by I as in Definition 94. Suppose that the robot lies fully within HI at time

0, i.e. X0 ⊂ int(HI). Let {Rt} be a transformation family as in Definition 90. Let t0, t1 be indices

in (0, T ] such that RtX0 intersects the “middle” of I , i.e. RtX0 ∩ (I \ EI) 6= ∅, for all t ∈ [t0, t1].

Furthermore, suppose that RtX0 ⊂ HI for all t ∈ [0, t0), and that no RtX0 can intersect the

endpoints EI (i.e. RtX0 ∩EI = ∅) except at t = T . Such a transformation family attempts to pass
X0 through I . If X0 is able to leave HI while passing through I , i.e. RTX0 ⊂ HC

I , then X0 is said

to pass fully through I .

Definition 96. Let I ⊂ (X \X0) be a line segment as in Definition 91. Let HI be the half-plane

defined by I as in Definition 94, and suppose X0 ⊂ HI strict. Let {Rt} be a transformation family

that attempts to pass X0 through I by Definition 95. Suppose X0 cannot pass fully through I , and

that RTX0 ∩HC
I is nonempty, so there is some portion of X0 that does pass through I . Consider

all line segments perpendicular to I with one endpoint on I and the other at a point in RTX0 in

HC
I . The maximum length of any of these line segments is called the penetration distance of X0

through I . The set RTX0 penetrates I by this distance, as in Figure B.1b. If I is of length 0, then

the penetration distance of X0 through I is always 0, as in Figure B.1c.

Definition 97. Let C ⊂ R2 be a circle of radius R with center p as in Definition 93. Let X0 be

the robot’s footprint at time 0 as in Definition 12. Let κ be a chord of C as in Definition 92. Then

passing X0 into C through κ is defined as passing X0 through the chord κ as in Definition 95.

If the length of κ is less than the width of X0, then, by [Str82, Theorem 1], X0 cannot pass fully

through κ, but does penetrate the chord up to some distance as in Definition 96. Let Hκ be the
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Figure B.1: Passing through (as in Definition 95), penetrating (as in Definition 96), and penetrating
into a circle (as in Definition 97). In each subfigure, a family {Rt}t∈[0,T ] of continuous rotations
and translations attempts to pass the convex, compact set X0 through the line segment I with
endpoints EI . At t = 0, X0 lies in the half-plane HI , defined by I as in Definition 94. Each figure
contains X0 at its initial position R0X0 and final position RTX0 indicated by a dark outline. The
lighter outlines between these positions show examples of X0 being translated and rotated as {Rt}
is applied. In Figure B.1a, X0 is able to pass fully through I; the index t0 ∈ [0, T ] where X0 first
touches I is also shown with a dark outline. In Figure B.1b, X0 is unable to pass fully through I ,
but penetrates through I by some distance into HC

I . In Figure B.1c, the line segment I has length
0, soX0 cannot pass through it, but instead stops as soon as it touches I , and achieves 0 penetration
distance through I . Note that, in this case, HI is defined by a line perpendicular to the line segment
from I to the center of mass of X0, as per Definition 94. In Figure B.1d, the circle C has a chord
κ, and X0 penetrates into C through κ by the penetration distance shown. The half-plane defined
by κ is denoted Hκ.

closed half-plane defined by κ as in Definition 94. The penetration of X0 into C through κ is the

maximum Euclidean distance from any point in X0 ∩ C to a point in X0 ∩HC
κ .

I next discuss how to find the point spacing, r, and arc point spacing, a.

Lemma 98. Let X0 ⊂ R2 be the robot’s footprint at time 0, with width r̄ (as in Definition 49).

Let b̄ be the maximum penetration depth corresponding to X0 (as in Lemma 46). Pick b ∈ (0, b̄).

Then there exists r ∈ (0, r̄] such that, if Ir is a line segment of length r (as in Definition 91), and if

{Rt} is any transformation family that attempts to pass X0 through Ir (as in Definition 95), then

the penetration distance of X0 through Ir (as in Definition 96) is less than or equal to b.

Lemma 99. Let X0 be the robot’s footprint at time 0 (as in Definition 12), with width r̄ (as in

Definition 49). Let b̄ be the maximum penetration distance corresponding to X0 (as in Lemma 46).

Pick b ∈ (0, b̄), and let C ⊂ (X \ X0) be a circle of radius b centered at a point p ∈ X (as in

Definition 93). Then there exists a number a ∈ (0, r̄) such that, if κa is any chord of C of length a

(as in Definition 92), then the penetration of X0 into C through κ (as in Definition 97) is no larger

than b.

Theorem 52 is now proven.

Theorem 52. Let X0 be the robot’s footprint at time 0 as in Definition 12, with width r̄ as in

Definition 49. Let P ⊂ (X \ X0) be a set of predictions as in Definition 31. Suppose that the
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maximum penetration depth b̄ is found for X0 as in Lemma 46. Pick b ∈ (0, b̄), and find the

point spacing r and the arc point spacing a. Construct the discretized obstacle Xp in Algorithm 2.

Then, the set of all unsafe trajectory parameters corresponding to P is a subset of the trajectory

parameters corresponding to Xp, i.e. πK(Xp) ⊇ πK(P ).

Proof. First show that any trajectory parameter outside of those corresponding to Xp cannot cause
any point on the robot to enter the set P at any time t ∈ [0, T ]. If no q ∈ πK(Xp)

C can cause
a collision, then πK(Xp)

C ⊆ Ksafe, which implies that πK(Xp) ⊇ πK(P ). First, recall that the
robot’s high-fidelity model in (3.4) produces continuous trajectories (by Assumption 2) of the
robot’s footprint in R2, so the motion of the robot over the time horizon [0, T ] can be represented
using a transformation family {Rt} as in Definition 90.

Suppose k ∈ πK(Xp)
C is arbitrary, and the robot begins at an arbitrary zhi,0 ∈ Zhi,0. Let

{Rt} be the transformation family that describes the robot’s motion when tracking the trajectory
parameterized by k. Consider a pair (p1, p2) of adjacent points of Xp. Recall that the function
sample returns the endpoints of any line segment (as in Definition 91) or arc (as in Definition 93),
in addition to points spaced along the line segment or arc if necessary. Therefore, by Algorithm
2, (p1, p2) is either from a line segment or from an arc of ∂Pb. Recall that, by Lemma 47, ∂Pb
consists exclusively of line segments and arcs. By construction, if p1 is on a line segment (resp.
arc), then p2 is within the distance r (resp. a) along the line segment; this also holds if either point
is an endpoint of a line segment or arc.

Consider the case when (p1, p2) is from an arbitrary line segment Li of ∂Pb. By (4.15), the
distance from P to any point on Li is b. By Lemma 44, when tracking the trajectory parameterized
by k, the robot can approach infinitesimally close to p1 and/or p2, but cannot contain them, for any
t ∈ [0, T ]. So, by Lemma 98 and continuity of the robot’s trajectory, no point in the robot can
penetrate farther than b through Li.

Now consider when (p1, p2) is from an arbitrary arcAi of ∂Pb. By Equation (4.15), the distance
from Xobs to any point on Ai is b. Each such arc is a section of a circle of radius b. By Lemma 44,
the robot cannot contain p1 or p2 for any t ∈ [0, T ]. So, by Lemma 99 and continuity of the robot’s
trajectory, the robot cannot pass farther than the distance b into Ai through the chord of Ai with
endpoints p1 and p2.

Since Li and Ai were arbitrary, there does not exist any t ∈ [0, T ] for which RtX0 ∩ Xobs is
nonempty. In other words, the robot does not collide with P by passing through any line segment
or arc of ∂Pb. Since k was arbitrary, one can conclude that there does not exist any k ∈ πK(Xp)

C

for which the robot collides with any obstacle. Therefore, πK(Xp)
C ⊆ Ksafe.
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APPENDIX C

Nonlinear Model Predictive Control

This section provides an example of how slack variables are incorporated into the NMPC program
(7.35) to ensure that a feasible solution always exists. Positive slack variables sj are introduced for
j ∈ {0, . . . , npred} The cost function (7.32) is modified as

J(z, ũ, s) =
1

2
‖z − zref‖2

Q +
1

2
‖ũ− ũref‖2

R + rss (C.1)

where rs ∈ R>0 penalizes the slack variables in the L1 sense. Take the constraints (7.43) as an
example. These are reformulated as

ymin − sj ≤ yj ≤ ymax + sj, (C.2a)

− δmax − sj ≤ δj ≤ δmax + sj, (C.2b)

− δ̇max − sj ≤ δ̇j ≤ δ̇max + sj, (C.2c)

ωi,min − sj ≤ ωj,i ≤ ωi,max + sj, i ∈ {f, r}, (C.2d)

αi,min − sj ≤ αj,i ≤ αi,max + sj, i ∈ {f, r}, (C.2e)

sj ≥ 0 (C.2f)

for j ∈ {0, . . . , npred}.

165



BIBLIOGRAPHY

[Aco07] Velodyne Acoustics. Velodyne’s hdl-64e: A high definition lidar sensor for 3-d
applications. White Paper, 2007.

[AD14] Matthias Althoff and John M Dolan. Online verification of automated road vehicles
using reachability analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

[AG07] Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and anal-
ysis, volume 57. Springer Science & Business Media, 2007.

[AGH+18a] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz
Diehl. Casadi–a software framework for nonlinear optimization and optimal con-
trol. Mathematical Programming Computation, 2018.

[AGH+18b] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, In Press, 2018.

[AM11] Karsten Ahnert and Mario Mulansky. Odeint - Solving ordinary differential equa-
tions in C++. CoRR, abs/1110.3397, 2011.

[APT12] Changsun Ahn, Huei Peng, and H Eric Tseng. Robust estimation of road fric-
tion coefficient using lateral and longitudinal vehicle dynamics. Vehicle System
Dynamics, 50(6):961–985, 2012.

[ATH+21] Anil Alan, Andrew J Taylor, Chaozhe R He, Gábor Orosz, and Aaron D Ames.
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