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ABSTRACT

Li-ion battery failure and thermal runaway are serious safety concerns for electric

vehicles and energy storage devices. For electric vehicle accidents in recent years,

battery thermal runaway events have occurred under unpredictable circumstances,

including when vehicles are at rest, not actively being charged or driven. The imme-

diate detection of battery failure within seconds is highly important since the hazard

conditions from a single cell thermal runaway can propagate to neighboring cells and

the whole system. From a regulation perspective, the proposed global technical regu-

lation No. 20 from the United Nations on Electric Vehicle Safety requires a five-minute

advanced warning prior to hazardous conditions caused by a thermal runaway event.

To achieve this detection goal for thermal runaway, a robust and sensitive detection

methodology is required. The existing methods for fault detection and diagnosis in

the battery pack utilize temperature, voltage, and current measurements. For an

automotive battery pack with cells connected in parallel, the current measurements

for individual cells are not available, so detection methods relying on individual cell

current will not work. Due to the parallel connection of cells, the methods using

voltage cannot effectively detect a single cell failure due to a low signal-to-noise ratio.

Temperature-based detection methods, due to the sparse temperature measurements

in a large pack, are slow in fault detection, with detection speeds usually on the scale

of minutes or hours depending on sensor and fault locations. Fast and high confidence

fault detection methods are needed to enable a more effective battery management

system that can quickly alert and guide emergency response.

Most thermal runaway events are associated with battery internal short circuit

(ISC), so ISC will be the focus of this dissertation’s study to better understand the

cause and the evolution of battery failure. A model of the battery ISC event that

predicts temperature, gas generation, and the resulting cell swelling in the early

stage of ISC evolution is developed. By monitoring the battery expansion force and

adopting an adaptive threshold, an ISC event can be identified before cell venting.

Furthermore, by reviewing literature about the composition of the gas expelled from

the battery during a venting event in different battery chemistries and states-of-

charge, we identify CO2 as the ideal target gas species for gas detection. Based

xii



on the cell swelling and gas release in battery failure, the dissertation presents fault

detection methods using expansion force measurements to capture the abnormal force

increase due to battery swelling and Non-Dispersive Infrared (NDIR) CO2 sensor to

detect venting events from battery failure.

By adopting the proposed fault detection method using expansion force and gas

sensing, fault detection for a parallel-connected battery module achieves a high signal-

to-noise ratio. At the same time, high confidence detection of ISC events can be

achieved in seconds, and the methodology can be extended to large battery packs in

electric vehicles and stationary energy storage systems.
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CHAPTER I

Introduction

1.1 Electric Vehicle Industry and Li-ion Batteries

The global electric vehicle (EV) industry continues to expand rapidly. EV sales

grew to more than two million units globally in 2018: an increase of 63 percent on a

year-on-year basis.

Figure 1.1: Prediction for EV production from 2016 to 2030 for hybrid and pure
electric vehicles. The figure shows the global light vehicle production in million per
year. Figure from [1].

Within the two million units EV globally, China leads in the market with 1.1

million units, or 51 percent of global EV sales in 2018 [8]. Norway leads electric-

vehicle adoption on the EV market side, with EV taking over 40% of the market

1



share [8]. The global market for electric vehicles has grown at about 60 percent per

year, and the EV penetration rate reached 2.2 percent in 2018. It is anticipated that

in 2030, hybrid and electric vehicles will account for 22% to 30% of the light vehicle

production [1].

Battery safety is one of the main concerns of the EV industry, when comparing

heat release during thermal failure, Li-ion batteries have twice as much energy com-

pared to internal combustion engines powered by gasoline fuels per mile range [9].

With the increasing number of EVs on the road, the number of battery safety inci-

dents surged in recent years. A summary of the EV accidents in recent years in the

United States is shown in Table. 1.1.

Table 1.1: EV accidents in the United States (until Feb 2020)

Number Date Location Vechile Model Condition and Cause
of Fires

1 Oct 2013 Kent, WA Tesla Model S Collision
2 Nov 2013 Murfreesboro,

TN
Tesla Model S Collision

3 Nov 2013 Irvine, CA Tesla Model S Charging
4 Oct 2013 Flower

Mound, TX
Nissan Leaf Unknown

5 Aug 2017 Lake Forest,
CA

Tesla Model X Collision

6 Mar 2018 Mountain
View, CA

Tesla Model X Collision

7 Mar 2018 Florida Tesla Model S Collision
8 Jun 2018 Los Angeles,

CA
Tesla Model S Spontaneous combus-

tion during operation
9 Feb 2019 Pittsburgh,

PA
Tesla Model S Parked

10 Feb 2019 Davie, FL Tesla Model S Collision
11 Feb 2019 Lake Cham-

plain
Tesla Model S Spontaneous combus-

tion during operation
12 May 2019 San Fran-

cisco, CA
Tesla Model S Parked

13 May 2019 Nevada Tesla Caught fire on truck
trailer

14 Jan 2020 Arlington
Heights, CA

Tesla Parked

15 Feb 2020 Florida Porsche Taycan Parked

Apart from the EV accidents in the United States summarized in the table, EV
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accidents happen all over the world. In 2020, after several accidents for Hyundai

Kona Electric, Hyundai issued a worldwide recall of 77,000 Kona EVs. In November

2020, General Motors also announced a recall of over 68,000 vehicles for Chevrolet

Bolt EVs.

As seen in the summary of EV accidents in the United States, 5 accidents hap-

pened while the vehicle was parked, which corresponds to 33% of the total accidents.

These accidents happened without explicit abuse conditions and battery internal short

circuit (ISC) is considered a major cause for these accidents.

1.2 Background of Battery Failure and Thermal Runaway

1.2.1 Battery Safety with Cell Chemistry

Battery cell safety also varies with different cell chemistry. Currently, there are

five Li-ion batteries for battery makers [1], each using a different cathode material.

The five Li-ion batteries are:

1. Lithium Cobalt Oxide (LCO). Used extensively in portable electronics.

This chemistry has good performance. However, due to the high Cobalt usage, it is

relatively expensive and not used in EV applications.

2. Lithium Nickle Manganese Cobalt (NMC). This chemistry takes several

forms, such as NMC 111 (the simplest, based on an equal amount of the three el-

ements’ atoms), NMC 532/622 (with a higher energy density and lower price than

NMC 111 due to a lower cobalt content), and the most recent NMC 811 (with the

highest theoretical performance). NMC chemistries were mainly developed for the

EV industry but with their high performance and relatively low cost, they may well

end up being used in other battery applications.

3. Lithium nickel cobalt aluminum (NCA). This chemistry was the first

commercial attempt to substitute some of the expensive cobalt in the LCO cathode

for increased nickel content. It has a good energy density and an affordable price,

making it ideal for EVs and portable electronics.

4. Lithium iron phosphate (LFP). Intrinsically safer than other cathode

chemistries, LFP is not protected by many intellectual property restrictions. Its

high power density makes it an ideal candidate for electric tools and e-buses and a

good option for EVs.

5. Lithium manganese oxide (LMO). Used in the first EVs, such as the Nissan

Leaf, because of its high reliability and relatively low cost. LMO’s downside is low
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Figure 1.2: Advantages and Disadvantages for Different Cell Chemistries. Figure is
remade from [1].

cell durability compared to other competing technologies.

As a result of the recent price spikes for lithium and cobalt, and to achieve a

higher range for electric vehicles, NMC chemistries have become automotive OEM’s

preferred technology in recent years. Tesla, which used the NCA technology for its

Model S, now deploys a higher-performing version for the Model 3 with NMC cells

[1].

Due to the high cost of the cobalt and the increasing concern regarding its raw

material availability, the industry now focuses on low cobalt batteries and, as a result,

the high-performing, low-cobalt, high-nickel NMC 811, and perhaps even the newly

proposed NMC 9.5.5 battery (with 9 parts of nickel, and 0.5 of cobalt and manganese)

[1]. Fig. 1.3 shows the prediction of battery capacity demand by chemistry. High-

nickel and low-cobalt NMC cells (NMC 622, NMC 811, NMC 9.5.5) will become the
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Figure 1.3: Prediction for battery capacity demand by chemistry to 2030. High-
nickle and low-cobalt NMC cell will become the most popular cell chemistry for EVs.
Figure from [1].

most popular cell chemistry for EVs in the near future.

Figure 1.4: Transition temperatures into thermal runaway and maximum tempera-
tures reached by the cell (◦C). Figure from [2].

The high-nickel and low cobalt NMC cell has advantages of higher energy density

and lower cost per kWh [1] and will be the popular choice of EV in the near future,

but at the same time, the cell has worse thermal stability and battery safety comes
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into question.

The high-nickel and low cobalt NMC cells (NMC 622, NMC 811) have lower

thermal runaway onset temperature, and can reach higher temperature in a battery

thermal runaway event, compared to LFP cells or NMC 111 cells, as shown in Fig. 1.4.

Specifically, the thermal runaway onset temperature for NMC 622 cells is 220 ◦C, and

180 ◦C for NMC 811 cells. The maximum temperature of thermal runaway is 844 ◦C

for NMC 622 cells, and 918 ◦C for NMC 811 cells.

1.2.2 Abuse Conditions Lead to Battery Failure

There are mainly four abuse conditions for Li-ion batteries that can lead to cell

failure and thermal runaway: electrical abuse, mechanical abuse, thermal abuse and

internal short circuit (ISC) [6].

1. Electrical Abuse: The electrical abuse conditions generally include external

short circuit, overcharge, and over-discharge conditions.

The external short circuit forms when the electrodes with voltage differences are

connected by conductors. The external short circuit is more like a fast discharging

process, with the highest current limited by the mass transfer speed of lithium-ion

[6]. Current batteries with positive thermal coefficient (PTC) devices or fuses can

reduce the hazards caused by an external short circuit.

Figure 1.5: Copper dissolution and deposition during overdischarge and the formation
of internal short circuit (ISC). Figure from [3].

With the normal operating voltage for Li-ion battery to be 3 to 4.2 V, overcharging
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to cell to over 5 V can lead to battery failure [10]. The overcharge can lead to battery

thermal runaway that is more energetic than other abuse conditions, because of the

additional electrical energy in the battery. Heat and gas generation are the two

common characteristics during overcharge. The heat generation comes from ohmic

heat and side reactions [6].

Over-discharge of a cell can also lead to cell failure. At a higher degree of over-

discharge, the copper collector will start to dissolve [3]. Then the inner migration

and deposition of the copper can cause severe ISC of the cell. Studies from Maleki

et al. [11] also indicated that if the cell is cycled after an over-discharge process, ISC

and thermal runaway can occur.

2. Mechanical Abuse: This includes collision and crush of the battery, as well

as penetration of the cells. The nail penetration test is the most common study

for battery mechanical abuse conditions, as fierce ISC can be instantaneously trig-

gered when the penetration starts. The nail penetration is also regulated in some

compulsory test standards of the lithium-ion battery, i.e., GB/T 31485-2015, SAE

J2464-2009 [6].

Figure 1.6: Mechanical abuse test for pouch cells. Figure from [4].

3. Thermal Abuse: The thermal abuse is the direct cause of the battery ther-

mal runaway. When the battery is overheated, a series of side reactions will occur,
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including solid electrolyte interface (SEI) decomposition, anode decomposition, and

cathode decomposition. The reaction heat from the side reactions can elevate the cell

temperature, and in turn accelerate these side reactions and activate other exothermic

reactions. This chain reaction process finally leads to thermal runaway. More details

of the side reactions during thermal runaway will be discussed in later chapters.

Most of the prior studies focused on battery thermal abuse tests (or called oven

heating tests), because the thermal abuse tests generally deliver repeatable results

and can be used to assess the thermal runaway onset temperature. Overheating for

battery individual component, i.e., cathode and anode were performed to model and

evaluate the side reactions of each battery component [12].

4. Internal Short Circuit (ISC): The ISC occurs when the cathode and anode

contact with each other due to the failure of the battery separator [6]. Once the ISC is

triggered, the electrochemical energy stored in the materials will release spontaneously

and can lead to cell failure and thermal runaway events.

The ISC can be a result of explicit abuse conditions such as electrical, mechanical,

and thermal abuse. Additionally, there is self-induced ISC triggered without these

explicit abuse conditions. The self-induced ISC is believed to originate from con-

tamination or defects during manufacturing [6]. Additionally, at low temperatures

charging or during fast charging, lithium plating can happen, which may lead to an

ISC resulting in fire or even an explosion [13]. Many EV accidents listed in Table. 1.1

happened while the vehicles were parked. The ISC might play an important role in

these accidents which happened without explicit abuse conditions.

Figure 1.7: Illustration of an ISC event during a nail penetration test. Figure from
[5].

Battery ISC events can be categorized into two types: slow self-discharge faults

8



(battery soft internal short), and fast and severe faults (battery hard internal short).

These two types of battery faults can happen due to different abuse conditions. For

example, in nail penetration tests, a cell being fully penetrated usually will have a

hard internal short and will evolve to thermal runaway quickly [5]. On the other hand,

soft internal short circuits are usually associated with dendrite formation caused by

lithium plating [13] and can develop over time and use. Due to the high electrical

resistance of the soft internal shorts and the resulting slow self-discharge process,

battery soft internal short circuits take hours or even days to completely drain the

battery charge [14], and usually will not lead to severe hazards including cell venting

or thermal runaway. This dissertation focuses on the fast and severe battery faults,

which usually feature hard ISC processes and end with thermal runaway events.

The ISC event, as well as other mentioned abuse conditions, can easily lead to

thermal runaway. These faults should be identified immediately to take emergency

responses. Since the ISC can occur without explicit abuse conditions, while other

abuse conditions are all associated with explicit abuse conditions, the ISC event is

more difficult to detect. Because of the difficulty and importance in detecting an ISC

event, battery ISC will be the focus of this dissertation’s study, which will primarily

discuss the evolution of battery failure caused by ISC, and the detection methods for

ISC, battery failure and thermal runaway.

1.2.3 Evolution of Battery Failure

For fast and severe battery faults, after the start of battery abuse, the battery

self-heating process will initiate with a fast temperature increase [6]. Then battery

exothermic reactions will be active at high temperatures. Next, cell swelling and gas

venting will occur due to the large amounts of gas generated by battery side reactions.

At even higher temperatures, these side reactions quickly produce additional heat

and can lead to battery thermal runaway, where battery fires and explosions can be

observed.

The battery exothermic side reactions at high temperatures mainly include SEI de-

composition, anode decomposition, and cathode decomposition. Side reaction models

are well established for major exothermic reactions during a thermal runaway event.

Previous studies already provide robust reaction kinetic parameters measured from

Accelerated Rate Calorimetry (ARC) experiments during thermal runaway [12, 15].

Hatchard [12] developed these side reaction models for major exothermic side reac-

tions including SEI decomposition, anode decomposition, and cathode decomposition.

Kim [16] extended the model to include electrolyte decomposition, and these mod-
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Figure 1.8: Evolution of battery failure from abuse condition to thermal runaway.
Figure is remade from [6].

els have been used by many researchers over the years. Ren [17] developed a set of

thermal runaway side reaction chemical kinetics based on DSC testing that includes

six exothermic reactions in the model, SEI decomposition, anode-binder reaction,

anode-electrolyte reaction, cathode-electrolyte reaction, cathode-binder reaction, and

cathode decomposition.

Looking at the early stage of battery failure, SEI decomposition is the main active

reaction and can directly produce gas [6], leading to cell swelling and expansion force

increase. After the cell rupture, the produced gas will be released to the outside. The

SEI decomposition plays an important role in the cell expansion force increase and

gas release, and its reaction mechanism is as following:

(CH2OCO2Li)2 → Li2CO3 + C2H4 + CO2 + 0.5O2

The modeling work in this dissertation will place emphasis on correlating the gas

evolution from SEI decomposition with cell expansion force increase and gas release

after cell rupture.
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1.3 Challenges of Battery Safety in Electric Vehicle Industry

The EV industry has a wide set of battery safety testing standards to improve

battery safety. However, battery failure still occurs in real life even though these cells

have passed the safety testing standards. In this section, we first review the testing

standards and their limitations, and then discuss the challenges of battery safety in

electric vehicles.

1.3.1 Limitations of Battery Failure Testing Standards

The testing standards for battery safety in EV industry are mostly pass/fail bat-

tery abuse testing. Examples include SAE International (SAE) Standard J2929 “Elec-

tric and Hybrid Vehicle Propulsion Battery System Safety Standard - Lithium-based

Rechargeable Cells”, and UL 2580 “Batteries for Use in Electric Vehicles”.

The SAE J2929 and UL 2580 standards involve battery testing of thermal shock,

vibration, mechanical shock, external short circuit, overcharge, over-discharge, crush,

open flame test, high rate discharge without cooling, drop test, immersion, and fault

analysis of the system design [18]. The testing standards are to ensure passive battery

safety of fresh cells. On the other hand, due to the complexity of real-world conditions

and battery conditions change from cell aging, EV accidents caused by battery failure

still happen in real life and these accidents can even happen without explicit abuse

conditions.

To this end, active safety measures are needed in EVs to leverage the hazards

of battery safety events. The active battery safety measures include early warning

and detection of battery failure, deactivate or de-energize the battery pack, and fire

suppression if a battery fire exists. Immediate detection of battery failure is the key

to active safety measures and will be the focus of this dissertation.

1.3.2 Challenges of Fault Detection in Battery Packs

Fault detection is the key to achieve functional safety in battery packs. The

detection should be made within seconds or minutes after the battery failure occurs.

From the regulation perspective, the proposed global technical regulation No. 20

by the United Nations on Electric Vehicle Safety (EVS) requires that in the event

of thermal runaway, the vehicle should provide a warning indication to allow egress

five minutes prior to the development of hazardous conditions inside the passenger

compartment [19].
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Existing methods of detecting battery faults are usually based on voltage, current,

or surface temperature measurements, but these methods are intended for identifying

soft internal short circuit events. These methods use current, voltage, and temper-

ature signals to compare with other cells [20] or battery models [21]. Detection can

be made once the faulty cell deviates from other cells or the battery models and can

take up to hours to identify the soft short circuit [20, 22]. However, for the detection

of fast and severe battery faults, including battery hard internal short and thermal

runaway in battery packs, these methods will have different drawbacks.

Looking at the voltage signal, a significant voltage drop can be detected when the

ISC occurs before thermal runaway [23] or when the current interrupt device (CID)

opens at cell venting [24]. Voltage-based methods work well for a single cell and also

have a fast detection speed, as the voltage drop is sharp and instantaneous after an

ISC event [25] or in a thermal runaway event [26]. In electric vehicle battery packs,

the cells are often also connected in parallel and series. For a pack with p cells in

parallel and s cells in series, the voltage measurement from the battery management

system will deliver s number of voltage signals for each parallel cell group. As an

example, the Tesla Model S battery packs have modules in series that contain strings

of 74 cells in parallel. For large-format cells, similarly, they have multiple parallel

stacked layers [27]. Because of the parallel connection, the voltage is rather stable

when an individual cell voltage evolves under an internal fault [7], making the fault

detection with voltage difficult.

Detecting cell internal resistance change can also be a good indication of battery

faults, especially for diagnosing soft ISC that can potentially lead to thermal runaway

[14, 22]. After the occurrence of an ISC, the cell polarization resistance (R2) can

increase by 355% [22], and the standard deviation of cell internal resistance during

cycling will also increase significantly [20]. However, for parallel circuits, the measured

internal resistance is the average of the internal resistance of all cells in parallel [28].

Ultimately, because the fault detection methods using cell internal resistance rely on

the voltage response for the given current, a large number of parallel cells can lead

to a poor signal-to-noise ratio for internal resistance measurement.

Other fault detection methods use surface temperature and current measurements.

Surface temperature-based methods detect sharp increases in temperature but require

significantly more temperature sensors in a pack to increase the observability [29].

Monitoring abnormal single cell current based on multiple current measurements [30]

is also effective for detecting a short circuit in individual cells; however, the method

requires additional current sensors to monitor the current of individual cells. Both
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surface temperature and current-based methods are cost-prohibitive for a large-scale

battery pack.

Detection of cell venting based on pressure is usually in seconds, but pressure

detection only works for well-sealed packs. The pressure signal generally has a poor

signal-to-noise ratio and the short duration of the increased pressure can be easily

missed by the sensor [27]. During a nail penetration test, the pressure sensor showed

a short spike only a few seconds long with around a 20% increase in pressure [27].

Table 1.2: Summary of battery fault detection methods

Measurement Principle Signal-to-Noise
Ratio

Detection Speed Practicality

Voltage Monitor cell voltages for
sudden voltage drops or es-
timate cell internal resis-
tance

< 3 for parallel
circuits

Instantaneous Good, no additional
cost

Temperature Monitor the temperature
at various locations within
the pack

> 100 Minutes or hours,
depending on sen-
sor location

Good, no additional
cost

Current Monitor individual cell cur-
rents in parallel circuits

> 1000 Instantaneous High cost for large
packs

Pressure Monitor pressure in mod-
ules for sudden pressure in-
crease

< 15 Seconds Only works for well-
sealed packs

Force Monitor the expansion of
cell stacks in battery packs

> 80 Seconds Might suffers irre-
versible drift of force
over time

Gas Monitor certain gas compo-
sition within the pack

> 100 Seconds Might suffers gas sen-
sor drift and failure
over time

As mentioned early, in a battery ISC event, the expansion force will increase due

to cell swelling, and the generated gas will be released after cell rupture. This leads to

the potential of using expansion force and gas to detect battery faults in large packs.

Due to the drawbacks of the existing methods in battery pack fault detection,

this dissertation mainly focuses on developing fault detection methods using expan-

sion force and gas measurements. The commonly used approaches for battery fault

detection are summarized in Table 1.2.

1.4 Dissertation Organization

This dissertation will primarily address the modeling and detecting battery inter-

nal short circuit (ISC) and thermal runaway events. While most of the previous work

on battery fault detection focused on the single-cell case, detection of battery failure

in a large battery pack, especially for parallel-connected cells, is more challenging but
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few works have explored it. In this dissertation, we developed the fault detection

methodology for a parallel-connected battery module that can be extended to a bat-

tery pack. The specific contribution from this dissertation and relevant publications

are:

1. Modeling battery internal short circuit (ISC)

In Chapter II, to help understand battery failure and evolution during thermal

runaway, the battery ISC is carefully studied and modeled. The battery ISC model

involves a three-section temperature model, that discretizes the battery into three

temperature regions to better address the large temperature gradients that occur at

the localized area around the fault region. This model requires proper tuning to match

the ISC experiment data, but it shows great potential to explain the complicated

behavior of the ISC evolution. Specifically, the three-section model explains why the

expansion force rises in the early stage of battery ISC events, and demonstrates the

potential of using expansion force and gas evolution process for early indication of

battery faults. Related publications:

• Cai, Ting, Anna G. Stefanopoulou, and Jason B. Siegel. “Modeling Li-ion bat-

tery thermal runaway using a three section thermal model.” Dynamic Systems

and Control Conference. Vol. 51906. American Society of Mechanical Engi-

neers, 2018.

• Cai, Ting, Anna G. Stefanopoulou, and Jason B. Siegel. “Modeling Li-Ion

Battery Temperature and Expansion Force during the Early Stages of Thermal

Runaway Triggered by Internal Shorts.” Journal of The Electrochemical Society

166.12 (2019): A2431.

2. Internal short circuit detection using force measurement

In Chapter III, internal short circuit detection using force measurement is dis-

cussed. High confidence level fault detection for battery internal short circuits is

needed. However, existing methods using temperature measurements suffer poor ob-

servability. To address this issue, based on the large expansion force rise in the inter-

nal short circuit events, a fault detection scheme is proposed to capture the abnormal

force increase by using expansion force measurements. To achieve high confidence

level detection, voltage measurements are used to detect abnormal voltage behaviors.

Related publication:
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• Cai, Ting, Sravan Pannala, Anna G. Stefanopoulou, and Jason B. Siegel. “Bat-

tery Internal Short Detection Methodology Using Cell Swelling Measurements.”

2020 American Control Conference (ACC). IEEE, 2020.

3. Gas detection for early warning of battery failure

In Chapter IV, the gas detection method is explored due to its fast response and

easy implementation in a pack. By summarizing the past literature on the vent-gas

compositions under different testing conditions, we propose CO2 as the target gas

species due to the high concentrations in all vent-gas, presence in first venting event,

ability to detect cell leakage, and good sensor feasibility for Non-Dispersive Infrared

(NDIR) CO2 sensor. The CO2 sensing will work for different battery chemistries

and different States of Charge. The gas detection response in a battery pack is then

analyzed and the volume-averaged CO2 concentration is estimated to help determine

the gas detection threshold. Related publication:

• Cai, Ting, Puneet Valecha, Vivian Tran, Anna G. Stefanopoulou, and Jason B.

Siegel. “Detection of Li-ion Battery Failure and Venting with Carbon Dioxide

Sensors.” eTransportation 7 (2021): 100100.

4. Simulating Cell venting and gas detection

In Chapter V, a cell venting model and a CO2 gas generation model will be

introduced that enables the estimation of CO2 released in a battery failure event.

Based on the models, a simulation for battery failure in a battery storage drum

is shown to demonstrate the fast response of gas detection over the temperature

monitoring method. Related publication:

• Cai, Ting, Vivian Tran, Anna G. Stefanopoulou, and Jason B. Siegel. “Modeling

Li-ion Battery First Venting Events Before Thermal Runaway.” (submitted for

2021 Modeling, Estimation and Control Conference)

• Cai, Ting, Anna G. Stefanopoulou, and Jason B. Siegel. “Early Detection for

Li-Ion Batteries Thermal Runaway Based on Gas Sensing.” ECS Transactions

89.1 (2019): 85.

5. Battery fault detection in parallel connected module

In Chapter VI, battery fault detection in parallel connected cells or battery mod-

ules is discussed. For fault detection in parallel-connected battery modules, the
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voltage-based method suffers a low signal-to-noise ratio. Temperature and current-

based detection methods are not feasible in battery modules. To address this issue,

we develop a fast and high confidence level detection method of hard internal short

circuit events for a battery module. In this chapter, we will combine the methodolo-

gies discussed in previous chapters, and measure cell expansion force, and monitoring

CO2 concentrations in a battery module. Related publication:

• Cai, Ting, Peyman Mohtat, Anna G. Stefanopoulou, and Jason B. Siegel. “Li-

ion Battery Fault Detection in Large Packs Using Force and Gas Sensors.” In

IFAC World Congress 2020. 2020.

Finally, in Chapter VII, overall conclusions and outlook are presented.

16



CHAPTER II

Modeling Battery Internal Short Circuit

2.1 Introduction

Most of the existing models focus on thermal runaways initiated by overheating.

Examples include the model by Feng [31], which described the battery thermal run-

away electrochemical-thermal behavior when overheating the cell. These models work

well for battery overheating tests, where the temperature gradient within the cell is

small. However, for battery failure triggered by an internal short circuit, where the

temperature gradient within the cell is large, few publications have addressed it. An

internal short circuit (ISC) model is needed with four sub-models: an electrical model

for the internal short circuit process, a side reaction model for exothermic reactions

of active materials, a thermal model for battery temperature, and a gas evolution

model to predict early gas generation.

For battery thermal models in a thermal runaway event, Hatchard [12] used a

spatially discretized thermal model, with N concentric rings, to account for the radial

temperature distribution of a battery during thermal runaway. Since the entire cell

is at an elevated temperature when the exothermic process begins, the reaction pro-

gresses more uniformly along the radius of the cell. Coman [32] used lumped thermal

models to describe battery temperature during thermal runaway. The lumped ther-

mal model assumes a uniform temperature distribution and one temperature state to

represent the whole cell. This assumption is valid for an 18650 cell, which has a small

Biot number (Bi = 0.051) [32]. In the case of a local internal short circuit, however,

the ohmic heat generation will be concentrated in a small localized area, causing a

large spatial temperature gradient in a focused space. To address this inhomogene-

ity, others have used a finite element approach, but with high computation cost and

difficulty in tuning [33, 34]. A reasonable trade-off is needed between computational

complexity and accuracy in the model. In this chapter, the proposed battery ISC
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model divides the battery into three sections: core, middle layer, and surface layer

[35], and identifies the heat released in each section.

In modeling the internal short, the resistance of the ISC is a critical parameter

for determining the severity and time to onset of the thermal runaway event [22].

However, few papers address calculation of the short resistance depends on the area

of the separator failure. Guo [3] explained the ISC caused by over-discharge, and

used experimental data to fit a curve of ISC resistance with over-discharge capacity.

Coman [32] developed a model for energy released due to the ISC with an efficiency

factor that was fitted to their experiment data. The fitting approach worked well

with the specific cells in the experiment, but is difficult to be applied to varying Li-

ion battery chemistries. This study presents an electrical model that describes ISC,

and proposes a finite element method for solving ISC resistance of the battery for

small geometric areas.

During the early stage of thermal runaway, a significant amount of gas and elec-

trolyte is vented to the outer regions of the battery. Coman [36] studied and modeled

the electrolyte and ejecta venting during thermal runaway. Previous experimental

studies for commercial 18650 Li-ion batteries from Lammer et al. [37] on the compo-

sition of vented gas showed that most of the gas is CO2 during the first gas venting

event. Based on these results, our study assumes that gas from SEI decomposition is

the most significant contributor to battery swelling and force signal rise during the

first few seconds following an ISC event. This study is the first attempt to make a

connection between side reactions and force of battery swelling for modeling purposes.

To tune and validate the model, two experiments were conducted with 4.5 Ah

pouch cells for which an ISC was triggered at 57 ◦C with different initial State of

Charge (SOC). Here we used a wax-based melt device in the separator to trigger the

internal short [38]. In our experiments, we demonstrated two modes for the ISC event.

The cell with 50% SOC didn’t trigger thermal runaway, while the cell with 100% SOC

went into a quick thermal runaway. With proper tuning using the measured surface

temperature, the model fits force signal on both experiments, by predicting the gas

volume change inside the cell compared with force measurement. Although this ISC

model requires proper tuning and cannot predict the two modes of ISC events, this

model shows great potential and can explain some complicated behavior of the ISC

events, including the early rise of force signal. The model and experiments with early

rise of force signal show the potential of using the mechanical behavior as an early

indicator for ISC induced thermal runaway.
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2.2 Thermal Runaway Model

The battery’s internal temperature states are divided according to three sections,

and the mass of each section is scaled proportionally to its volume fraction. This

uneven coarse discretization better captures the relatively small area adjacent to the

internal short circuit which heats more rapidly than the surrounding volume. The

remainder of the cell mass, which lags in heating, contains the bulk of the cell mate-

rial. As Fig. 2.1 illustrates, the overall thermal runaway model includes a three-state

thermal model, a side reaction model which tracks the consumption of active mate-

rials, and an electrical equivalent circuit model. The model has three temperature

states, four side reaction states in each section, and one state for cell state of charge

according to an electrical equivalent circuit model. In total, the three-section model

consists of 16 states.

Figure 2.1: Three section model with battery discretized into core, middle layer and
surface layer

2.2.1 Three-State Thermal Model

For thermal runaway triggered by ISC, the ISC area has a significant volumetric

heat rate and will have a relatively fast temperature rise compared to the surface

of the cell. To address this inhomogeneity of temperature within the battery, we

need to discretize the battery into several sections. We found that three sections for

temperature discretization achieved good accuracy while at the same time maintained

reasonable computational complexity.

A three-state thermal model describes battery core temperature (Tc), middle layer

temperature (Tm), and surface layer temperature (Ts). The battery core represents

the area in which the ISC first occurs. In Figure 2.1, this location is schematically
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shown at the center of the cell. However, it need not necessarily be located at the

geometric center. The proposed model also applies to cases where the ISC is located

near the surface, as shown later in the experimental results. It is the relative volumes

rather than the specific ISC location, that is critical for capturing the temperature rise

during thermal runaway. Specifically, the dynamic evolution of the core temperature

state is

Cpmcore
dTcore
dt

= (Q̇exo,core + Q̇ohmic,core) +
Tmid − Tcore

rc2m
(2.1)

where Tcore and Tmid represent the core and middle layer temperatures respectively

and rc2m is the thermal resistance between the core and middle layer. Similarly the

middle and surface layer temperatures are given by

Cpmmid
dTmid

dt
= (Q̇exo,mid + Q̇ohmic,mid)−

Tmid − Tcore
rc2m

+
Tsurf − Tmid

rm2s

(2.2)

Cpmsurf
dTsurf
dt

= (Q̇exo,surf + Q̇ohmic,surf ) +
Tamb − Tsurf

rs2a
− Tsurf − Tmid

rm2s

(2.3)

The rc2m, rm2s, rs2a terms are equivalent thermal conduction resistance.

The battery core section refers to the battery area affected by initial ISC, and

the mcore parameter can be derived if the ISC area is known. Theoretically, the mass

ratio of each layer equals to the volume ratio of the each layer when assuming uniform

density (mcore = mcell
Vcore

V cell
, mmid = mcell

Vmid

V cell
), where mcell is the battery cell mass,

and Vcore and Vmid are the volumes of core and middle layer). In this study, for a

cell with a wax-based separator, the core mass ideally can be calculated by the area

of wax part separator and the electrode sheet thickness. The volume of a cylindrical

ISC area can be expressed as

Vcore = πr2shortH (2.4)

where rshort is the radius of short circuit region, and H is the height of cylindrical

short area, which is the sum of two electrode sheets thickness and the separator

thickness. However, the initial ISC also heats up regions outside of ISC area during

the internal short circuit process, so the relative size of the volumes for three sections

are tuned in this study. The correlation between the three section sizes and the ISC

device volume will be explored in a subsequent work with more available data.
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The total heat generation by the side reactions is given by

Q̇exo,∗ = Q̇an,∗ + Q̇ca,∗ + Q̇SEI,∗ (2.5)

where ∗ corresponds to the core, middle and surface layers. The total heat rate

from all side reactions depends on the three exothermic decomposition reactions in

each layer. These reactions drive the temperature rise, and the temperature rise will

accelerate these reactions, leading to thermal runaway.

2.2.2 Electrical Model

During a thermal runaway event, besides exothermic side reactions that gener-

ate heat, the battery short circuit will also generate ohmic heat. The thermal and

decomposition evolution depends on the rate of this ohmic heat generation and its

dissipation rate to the surrounding material. This study focuses on the internal short

circuit that occurs in a small region of a battery and presents a model for its local

heating. The battery terminal voltage can be represented by an equivalent circuit

model

VT = U(SOC)− I ·Rcell (2.6)

where I is the discharge current, which is equal to the short current Ishort when there

is no load, as shown in Fig. 2.2a. The nominal cell internal resistance is Rcell and

U(SOC) is the battery open circuit voltage (OCV). The OCV is a function of SOC,

as shown in Fig. 2.2b.
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Figure 2.2: Electrical model (a) Equivalent circuit model for ISC. (b) Battery open
circuit voltage U(SOC).
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Rheinfeld [39] used the 1 kHz impedance as cell resistance to evaluate the theo-

retical maximum short circuit at the first few seconds of the internal short process.

Here, 1 kHz impedance of the cell from EIS testing (R1kHz = 4.76mΩ) will be used

to represent cell resistance for an modeling internal short circuit.

2.2.2.1 Equivalent Circuit Model for ISC

From the ISC resistance, an equivalent circuit model can be developed to describe

the internal short circuit process. Previous studies on ISC mechanisms have also used

an equivalent circuit model with area dependent resistance [3]. In this study for a self-

induced thermal runaway case, we assume no external wires connecting the positive

and negative electrodes of the cell. The corresponding equivalent circuit model is

shown in Fig. 2.2a. Therefore short circuit current can be found using Kirchoff’s laws

directly for the simple circuit.

Ishort =
U(SOC)

Rcell +Rshort

(2.7)

The total heat release due to self discharge is given by,

Q̇ohmic = I2short(Rcell +Rshort) (2.8)

To be noted, the ohmic heat I2Rshort is distributed only in the short circuit area,

and the overall heat rate I2Rcell is distributed among all cell. Specifically, when the

ISC starts in the battery core, the ohmic heat will be distributed as following:

Q̇ohmic,core = I2shortRshort +
mcore

mcell

I2shortRcell (2.9)

Q̇ohmic,mid =
mmid

mcell

I2shortRcell (2.10)

Q̇ohmic,surf =
msurf

mcell

I2shortRcell (2.11)

where the subscript core, mid, surf corresponds to the core, middle and surface layers

of the battery respectively. Adjusting the resistance values can increase the heat rate

in the short circuit area to be much higher than the rest of cell so that the short area

will experience significant temperature rise before the rest of the cell.
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2.2.2.2 ISC Resistance

Four major types of internal short circuits have been discussed in previous studies

[25], with Cathode to Anode ISC being the most common type of ISC. Typically the

ISC area is small in comparison with the total cell area. In cathode to anode ISC,

if the ISC area is caused by a penetrated separator and the cathode and anode is

connected through high conductivity materials, such as iron, then the resistivity of

the electrode’s active material dominates the resistance of the short. A zero-th order

approximation of true electric resistance can be derived using geometric resistance:

Rgeo = ρ
L

S
(2.12)

where ρ is electric resistivity, L is the length and S is the cross-sectional area for

uniform resistive property material.

For small areas, however, the distribution of the potential field near the edge

cannot be ignored. Thus, a Comsol simulation was developed for a unit current

flowing through the ISC area. The simulation solves Ohm’s law in 3D at a fixed

applied current to compute the electric field:

E = ρJ (2.13)

with J being the current density. Then R3D is calculated numerically by:

R3D =
−
∫

E · dx
I

(2.14)

where dx is the element of path along electric field, and I is the total applied

current, which equals to the integration of current density over the cross-sectional

area (I =
∫

Jdxdy).

Figure 2.3a shows a 2-D slice of the electrical potential distribution of ISC current

path at the short circuit area with a unit applied current. The ISC resistance is

obtained numerically from this simulation for a range of areas. The ISC resistance

is nearly inversely proportional to the ISC area, where a smaller ISC area will have

larger short resistance. As Fig 2.3b indicates, geometric resistance estimates the ISC

resistance well for large ISC areas. However, for small areas, the geometric resistance

overestimates the ISC resistance where the edge effects are significant. Detailed results

for the comparison of equivalent ISC resistance (R3D) and geometric resistance (Rgeo)

are shown in Fig. 2.3b. Based on this result, Rgeo is a good estimation of R3D when

the ISC resistance is lower than 5Ω. For ISC resistance greater than 5Ω the area
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Figure 2.3: ISC resistance computation. (a) Electric potential at short circuit Area.
(b) Comparison between R3D and Rgeo.

dependence is non-linear, and the full 3D potential field should be evaluated as shown

in Figure 2.3a, if the short area is known. In the following study, R3D will be adopted

for ISC resistance Rshort greater than 5Ω based on the error shown in Figure 2.3b.

2.2.2.3 Temperature Dependency for Cell Resistance

As the cell temperature increase significantly during the thermal runaway process,

the temperature dependency for electrical resistance needs to be taken into consider-

ation. The diffusivity of ion transport increase exponentially with temperature[40].

The cell resistance is then assumed to decrease exponentially with battery core tem-

perature rise, while the short circuit resistance is assumed constant with temperature

change. Under this assumption, an exponential temperature dependency relation is

selected from Lin[41] to represent the cell resistance:
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Rcell = Re,ref exp (Tref/T ) (2.15)

where Re,ref is the reference resistance value at a reference temperature Tref .

The exponential relationship is directly adopted from Lin[41], while the reference

resistance value is selected to reflect the measured 1 kHz impedance at 20 ◦C. In this

study, Re,ref is taken as 0.0246mΩ, and Tref is taken as 1543K[41].

However, since the cell temperature is discretized in this model, so the cell re-

sistance should be expressed as a function of three sections temperature. The cell

resistance can be represented by the three sections, where the temperature depen-

dency comes from the temperature of each section:

Rcell =
1

1/Rcell,core + 1/Rcell,mid + 1/Rcell,surf

(2.16)

where Rcell,core, Rcell,mid, Rcell,surf is the cell electrical resistance based on core,

middle layer and surface layer. The temperature dependency for each of the electrical

resistances can be expressed as:

Rcell,∗ = R∗,ref exp (Tref/T∗) (2.17)

where ∗ corresponds to core, middle layer and surface layer. R∗,ref is the reference

resistance value for layer ∗, and is a function of mass ratio of layer ∗.

R∗,ref =
Re,ref

m∗/mcell

(2.18)

where m∗ is the mass or layer ∗, and Re,ref is the reference resistance value for

the whole cell (0.0246mΩ).

2.2.2.4 Additional Assumptions for Short Circuit

We assume that the core part structure collapses at the melting temperature of the

current collector and will interrupt the short. We then assume that the internal short

circuit at that high-temperature area will stop. Further, due to heat propagation, the

neighboring area will trigger internal short circuit once the separator in neighboring

areas melt. For simplicity, we assume that the short circuit happens only at one place

at a time, and that the neighboring area starts its internal short after the previous

section collapses.
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2.2.3 Side Reaction Model

To simplify the study, the side reaction model includes only three major side

reactions, SEI decomposition, anode decomposition, and cathode decomposition [12].

The side reaction model used in this work will be based on the work of Coman

[32], where the Arrhenius equations for the temperature dependent reaction rates of

thermal runaway side reactions are included. To match the NMC cathode material

used in our experiment, all side reaction parameters are adopted from Dong[42]. Most

of the reaction parameters are the same as Coman[32], although some parameters are

different, including the heat release, activation energy, pre-exponential term of NMC

cathode decomposition, and the pre-exponential term of SEI. Detailed values and

sources for side reaction parameters are listed in Table 2.1.

2.2.3.1 Solid Electrolyte Interface (SEI) Decomposition

The SEI starts to decompose first at temperatures above 130 ◦C [43].

dxSEI,∗

dt
= −ASEI · xSEI,∗ · exp

(
−ESEI

kbT∗

)
(2.19)

where xSEI,∗ is the fraction of Li in the SEI in layer * (∗ = core,mid, surf), ASEI

is the frequency factor for SEI decomposition and ESEI is the activation energy for

SEI decomposition, kb is Boltzmann’s constant, and T∗ is the temperature in layer *.

The heat released by SEI decomposition in each layer * is given by:

Q̇SEI,∗ = −man,∗ · hSEI ·
dxSEI,∗

dt
(2.20)

where hSEI is the reaction enthalpy of SEI decomposition. The mass fraction of anode

material in each layer is given by the total anode mass multiplied by the mass fraction

of the layer to the cell total man,∗ = man ·m∗/mcell.

2.2.3.2 Anode Decomposition

Intercalated lithium in graphite starts to react with the electrolyte at high tem-

perature. This side reaction starts at around 180 ◦C [44].

dxan,∗
dt

= −Aan · xan,∗ · exp

(
− Ean

kbT∗

)
· exp

(
−z∗
z0

)
(2.21)
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where xan,∗ is the fraction of Li in the anode in layer *, Aan is the frequency factor

for anode decomposition and Ean is the activation energy for anode decomposition.

In addition, the relative SEI thickness (z) is also considered in anode decomposition

(tunneling effect [15]).

dz∗
dt

= Aan · xan,∗ · exp

(
− Ean

kbT∗

)
· exp

(
−z∗
z0

)
(2.22)

where z∗ is a dimensionless number representing relative SEI thickness in layer *. The

heat released by decomposition of the anode in each layer * is given by:

Q̇an,∗ = −man,∗ · han ·
dxan,∗
dt

(2.23)

where han is the reaction enthalpy of anode decomposition.

2.2.3.3 Cathode Decomposition

Finally at the highest temperature, the cathode material starts to decompose

releasing oxygen and heat. For the NMC battery chemistry, this side reaction usually

starts at 240 ◦C [26]. The rate of conversion, of the cathode active material is given

by:
dα∗

dt
= α∗(1− α∗) · Aca · exp

(
− Eca

kbT∗

)
(2.24)

where α∗ is the degree of conversion of cathode decomposition in layer *. The reaction

stops when α∗ = 1 and all of the cathode material in that layer has been consumed.

Aca is the frequency factor for cathode decomposition and Eca is the activation energy

for cathode decomposition. The heat generation in each layer is proportional to the

rate of conversion given by:

Q̇ca,∗ = mca,∗ · hca ·
dα∗

dt
. (2.25)

where hca is the reaction enthalpy of cathode decomposition. Similarly to the anode,

the mass fraction of cathode material in each layer is given by the total anode mass

multiplied by the mass fraction of the layer to the cell total mca,∗ = mca ·m∗/mcell.

Equations 2.19-2.25 describe the thermal runaway side reactions. The tempera-

ture in Eq. 2.19-2.25 should be the local temperature (core, middle, surface layer).

At different regions of the battery, we will see different reaction rates for the side

reactions.
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2.2.4 Charge Depletion with Internal Short Circuit (ISC) and Side Re-

actions

The anode decomposition and charge depletion due to ISC are coupled in this

work, as they both consume Li in the anode. As shown in Figure 2.4, both processes

cause SOC to decrease. The SOC is an important parameter in the side reaction

model and the electrical model which impacts the total heat release. Higher initial

SOC increases the chance of thermal runaway since the heat released during the ISC

is larger. After coupling, SOC can be expressed as the weighted average fraction of

Li of the anode in all layers (xan,∗).

Figure 2.4: Charge depletion through ISC and anode decomposition

SOC =
∑
∗

m∗

mcell

xan,∗
xan,0

(2.26)

where xan,0 is the initial Li fraction in an anode for fully charged cells. Then anode

decomposition and SOC change of a cell with capacity C can be re-written as:

dSOC

dt
= −Ishort

C
− 1

xan,0

∑
∗

m∗

mcell

Aan · xan,∗

· exp

(
− Ean

kbT∗

)
· exp

(
−z∗
z0

) (2.27)

where * here represents core, middle layer or surface layer, and xan,∗ represent

local xan in core, middle layer or surface layer. Assuming that Ishort depletes lithium
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in all sections proportionally, then the fraction of lithium in each section is computed

by:

dxan,∗
dt

= −Aan · xan,∗ · exp

(
− Ean

kbT∗

)
· exp

(
−z∗
z0

)
−xan,0

Ishort
C

(2.28)

instead of solving Eq. 2.21, where T∗ is the local temperature for core, middle and

surface layer.

2.2.5 Gas Evolution Model

Previous studies have assumed the main component of SEI is (CH2OCO2Li)2

[6]. They showed the SEI decomposition reaction mechanism, which will release CO2

[6, 45].

(CH2OCO2Li)2 → Li2CO3 + C2H4 + CO2 + 0.5O2

Experiments on commercial 18650 Li-ion batteries from Lammer et al. [37] showed

that during the first venting, most of the gas is CO2. Based on these results, we

assume that CO2 is the main component of vented gas and it causes the gas pressure

build-up process inside the cell before venting. Our study only models the initial

gas generation of CO2 coming from SEI decomposition which is important for early

indication of a potential thermal runaway. The quantity of SEI consumed in mol can

be expressed as:

n(CH2OCO2Li)2 =

∑
∗man,∗(xSEI,0 − xSEI,∗)

2MC6

(2.29)

where MC6 is the mass per mol (g/mol) for C6, the main component of anode

when completed delithiated, and n(CH2OCO2Li)2 is the quantity of lithium-containing

metastable species in SEI consumed in the reaction in mol. Since the SEI decom-

position reaction mechanism shows the proportional constant for generated CO2 and

the consumed SEI quantity is 1, then the quantity of gas generated in mol can be

expressed as:

nCO2 = n(CH2OCO2Li)2 =

∑
∗man,∗(xSEI,0 − xSEI,∗)

2MC6

(2.30)

Hence the thermal model can be used to predict the gas pressure using the ideal
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gas law. As nCO2 is a small number, for convenience, nCO2 will be shown in mmol

units in following discussions.

The gas evolution model can be used to predict battery force changes during

the early stage of a thermal runaway if volume is known. During the early stages of

thermal runaway, the cell’s mechanical behavior is mainly due to the increased internal

gas pressure within the cell. The force and gas pressure have different units, but the

gas pressure can be used to predict the overall trend of cell mechanical behavior.

2.3 Internal Short Circuit Experimental Setup

The batteries used in this experiment were manufactured at the University of

Michigan Battery Lab. The pouch cell size is 133 mm×89 mm×4 mm. As shown in

Figure 2.5a, a thermal runaway experiment using a 4.5 Ah Nickel Manganese Cobalt

Oxide (NMC) pouch cell was set up to validate the model. The pouch cell was

assembled with a hole in the separator covered by wax in one of the outer layers of

the cell, the hole size being around 10 mm radius. The 1 kHz impedance of cell, from

EIS testing, was 4.76 mΩ at 20◦C. The experiment was performed for two pouch cells,

one with 50% SOC and the other cell was fully charged (100% SOC). The battery

specifications are provided in Appendix in Table. A.1.

The instrumented cell fixture was slowly heated in an Accelerating Rate Calorime-

ter (ARC) until the wax melted at around 57 ◦C, and triggering an internal short

circuit. The ambient temperature was measured with a T-type thermocouple. The

thermocouple was placed between the current collecting tabs, and the reading was

63 ◦C before the thermal runaway event. The whole ARC chamber was continuously

heated at around 0.7 ◦C/min and reached 63 ◦C before the onset of the internal short

circuit event. When the core part in the pouch cell reached its melting point (around

57 ◦C) it triggered the ISC. A sketch of the sectional view of pouch cell tested is

shown in Fig. 2.5b, to better illustrate the location and size of initial ISC area.

The experiment measures battery surface temperature using an array with six

thin film platinum RTD sensors [46], as shown in Fig. 2.5a and Fig. 2.5b. At the

same time, force is measured on the fixture using four load washers attached to the

four corners of the fixture. The force signal is used to measure the expansion of

the battery against the fixture. The peak force measured exceeds 1800 N and is the

result of gas pressure that built up inside the pouch during thermal runaway before

cell venting. The ISC location and sensor locations are shown in Figure 2.5a and

Figure 2.5b. Further details of the experiment are in Pannala’s work [47] and more
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(a)

(b)

(c)

Figure 2.5: Experiment setup (a) Cell before internal short test. (b) Sensor locations
from sectional view. (c) Cell after thermal runaway.

details of the pouchcell can be found in Appendix.
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2.4 Result and Analysis

Table 2.1: Model parameters

Parameter Value Unit Source Physical Meaning
Aan 2.5× 1013 s−1 [32, 42] Frequency factor for anode decomposition
Aca 2.55× 1014 s−1 [42] Frequency factor for cathode decomposition
ASEI 2.25× 1015 s−1 [42] Frequency factor for SEI decomposition
Ac2m 628 mm2 Approximated Contact area for core to middle layer
Am2s 1711 mm2 Approximated Contact area for middle layer to surface
C 4.5 Ah Measured Capacity of the Battery
Cp 1100 J kg−1 K−1 [22] Specific heat capacity of battery core
Cp,Al 897 J kg−1 K−1 Approximated Specific heat capacity of aluminum fixture

∆dc2m 1 mm Approximated Core to middle layer mass center vertical distance
∆dm2s 1.38 mm Approximated Middle layer to surface mass center vertical distance
Ean 2.24× 10−19 J [32, 42] Activation energy for anode decomposition
Eca 2.64× 10−19 J [42] Activation energy for cathode decomposition
ESEI 2.24× 10−19 J [32, 42] Activation energy for SEI decomposition
han 1714 J g−1 [32, 42] Enthalpy of anode decomposition
hca 790 J g−1 [42] Enthalpy of cathode decomposition
hSEI 257 J g−1 [32, 42] Enthalpy of SEI decomposition
man 19.107 g Measured Mass of anode
mca 36.56 g Measured Mass of cathode
mcell 103.75 g Measured Total mass of cell
mcore 1.038 g Fitted Mass of battery core
mfix 1100 g Measured Mass of Aluminum fixture
mmid 4.67 g Fitted Mass of battery middle layer
msurf 98.04 g Estimated∗ Mass of battery surface layer
rc2m 3.18 K ·W−1 Estimated∗ Thermal resistance between core and middle layer
rm2s 1.61 K ·W−1 Estimated∗ Thermal resistance between middle layer and surface
rs2a 1.00 K ·W−1 Estimated Thermal resistance between surface layer and fixture
rfix 1.73 K ·W−1 Estimated Thermal resistance between fixture and ambient air
R1kHz 4.76 mΩ Measured 1 kHz cell impedance at 20◦C
Re,ref 0.0246 mΩ Approximated Reference electrical resistance
Rshort 3.68 mΩ Estimated∗ Short circuit resistance
SOC0 1 - Approximated Initial State of Charge
Tamb 63 ◦C Measured Ambient temperature
Tref 1543 K [41] Reference temperature
xan,0 0.75 - [32, 42] Initial fraction of Li in anode for fully charged cells
xSEI,0 0.15 - [32, 42] Initial fraction of Li in SEI
z0 0.033 - [32, 42] Initial dimensionless SEI thickness
α0 0.04 - [32, 42] Initial degree of conversion of cathode decomposition

∗Thermal resistance rc2m, rm2s are estimated by Eq. 2.31.

∗Rshort is estimated by Eq. 2.12.

∗msurf is estimated by conservation of mass (mcore +mmid +msurf = mcell).

The model is compared with the two internal short circuit test results — Test

One for the 100% SOC cell, Test Two for the 50% SOC cell. The cell with 50% SOC

didn’t go to thermal runaway, and instead experienced a slow self-discharge. The

fully charged cell experienced a quick thermal runaway, as shown in Fig. 2.5c.

Before further discussing the experiment and comparing our model and the exper-

imental results, a few assumptions have been made for the model. First, the relative

volumes of the core and middle layer are tuned to match the experimental data. The
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core mass used for our simulation is chosen to be 1% of total mass to match the

duration of internal short circuit for 50% SOC cell. The middle layer is 4.5% of total

battery mass based on a minimum least square error of the model and experimental

surface temperature measured by sensor #5 in Fig. 2.5a .

The hole in the separator is around 10 mm in radius, and from previous discussion

of ISC resistance, Eq. 2.12 can be used to estimate the short circuit resistance. The

estimated Rshort for this pouch cell is 3.68mΩ.

The equivalent thermal resistance can be calculated using cell heat conductivity

(λx = 21 W/(m · K), λy = 21 W/(m · K), λz = 0.5 W/(m · K) [22]) and geometry

of the three regions. As the shape of the pouch cell is long and flat, we can roughly

approximate the thermal resistance by the following equation:

ri =
∆di
λzAi

(i = c2m,m2s) (2.31)

where ri is the thermal resistance for core to middle, or middle to surface, ∆di

is the vertical distance between the mass center of the core to middle layer, or the

middle layer to surface layer, and Ai is the contact area in the x and y plane for core

to middle, or middle to surface layer. In calculating thermal resistance, we assume the

core and middle layer to be cylinders. For the core, we roughly assume it as a cylinder

with 10 mm radius (the ISC radius) and 1.51 mm height, which will correspond to

1% core volume ratio. For the middle layer, which will correspond to 4.5% middle

layer volume ratio, we assume its radius and height is proportional to the core, so it

is a cylinder with 16.5 mm radius and 2.5 mm height. Based on these assumptions,

∆di and Ai will be calculated and provided in Table 2.1 that are used to calculate

rc2m and rm2s.

The melting point of Aluminum is 660 ◦C, and around 1000 ◦C for Copper, so the

current collector will melt and at that point the battery structure collapses. We can

then assume that the internal short circuit will stop at sections with temperatures

above 660 ◦C. As the heat propagates to neighboring areas, an internal short starts

in the neighbouring areas after that collapse.

In addition, the experiment setup contains a compliant rubber foam pad and an

aluminum fixture, which should be considered in the model to accurately represent

the heat transfer to the ambient environment. The equivalent thermal resistance rs2a

now represents the thermal resistance between the battery surface and the aluminum

fixture, so that the Tamb term in Eq. 2.3 will now be Tfix. The aluminum fixture is not

an ideal heat sink, in this case, the temperature rise of the fixture can be expressed
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as:

Cp,Al ·mfix
dTfix
dt

=
Tsurf − Tfix

rs2a
+
Tamb − Tfix

rfix
(2.32)

where thermal resistance terms rs2a and rfix are correlated with the rubber foam

properties and heat transfer process from air to fixture. For convenience, these two

thermal resistance terms will be given in Table 2.1 directly. Other model parameters

for the fully charged cell are also presented in Table 2.1. The parameters come from

existing literature, direct measurement, fitting, approximation, or estimation based

on the equations in this study. The comparison between experiment result and model

prediction for both tests will be shown in the following.

2.4.1 Test One: Fully Charged Cell

The first experiment was performed with a cell at 100% SOC, and it resulted

in a thermal runaway. The behavior of fast voltage drop without recovering is also

described in previous studies[48], except in this case a quick thermal runaway event

was triggered. As described by Feng [6], the shrinkage and collapse of the separator

following the shutdown caused a massive ISC, triggering a quick thermal runaway

in the tested battery cell. The model assumes that for the fully charged cell, the

propagation of ohmic heat leads to additional short-circuit regions after the initial

short circuit area burns out [48].

A function εISC t1 is implemented here to control the state of ISC of Test One.

εISC t1 = 0 represents no massive ISC, while εISC t1 = 1 represents an ongoing ISC

in the cell.εISC t1 is a function of maximum core temperature recorded in the model

before time t0, defined as Tmax = max{Tcore|t≤t0}, and can be expressed as:

εISC t1 =

1, if Tmax > 57 ◦C.

0, otherwise.
(2.33)

The Test One result is shown in Fig. 2.6. The solid line shows the experimental

result, and the dashed line is the model prediction. The side reaction parameters and

SOC predicted by the model are shown in Fig. 2.7.

2.4.1.1 Voltage Analysis

The voltage drop at t=2.1s in Fig. 2.6 represents the start of the internal short

circuit event. When voltage drops to zero, the ohmic heat generation stops. The
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Figure 2.6: Test one result (catastrophic thermal runaway). (a) The timings of the
voltage drop and temperature rise with battery internal pressure build-up are well
captured by the model.

oscillation in the measured voltage is the result of the intermittent connection of

the ISC due to structural changes at high temperature, and this voltage behavior is

not captured by the model. The model predicts a stepwise voltage drop because we

assume the ISC area will expand to the neighboring area, and as discussed above, the

larger ISC area will decrease the Rshort, and decrease the terminal voltage. The model

voltage increases at 3 to 5 seconds, and this is due to Rcell decrease with temperature

rise, while the Rshort stays constant with temperature change.

To be noticed, voltage is also a function of SOC. However, the SOC-voltage curve

is relatively flat, as seen in 2.2b. The influence of the SOC change in voltage is
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Figure 2.7: Test one result (catastrophic thermal runaway). (b) Side reaction param-
eters show the side reactions sequence during a thermal runaway

relatively small in this thermal runaway event. On the overall time scale, the model

fits with experiment data and predicts total battery failure at approximately the same

time as the experiment.

2.4.1.2 Temperature Analysis

The RTD sensors are located in different regions of the pouch cell, as seen in Fig-

ure 2.5a. The ISC trigger device is located near the surface, as described by Pannala

[47]. As seen from the sensor locations of Fig 2.5b, the RTD sensor #2 corresponds

to the surface layer in the model but is physically located directly above the ISC

area. RTD sensor #1, #3 and #4 measure the temperatures at the surface, each

36



RTD sensor is spaced 1.75 mm apart [46], RTD sensor #5 measures the temperature

of the bulk surface.

The second subplot in figure 2.6 shows the comparison of model and experimental

temperatures. The experimental data above 450 ◦C has been ignored, because the

melting point of Kapton used in RTD sensor is 400 ◦C. The readings from RTD sensor

#1 and #2 are very similar due to their close proximity, the same for RTD sensor #3

and #4. RTD sensor #6 was damaged prior to installation, and could not be used.

For readability, only data from sensor #2,#4 and #5 will be presented and analyzed.

The RTD sensor #2 is at the surface layer of the battery model, but it is located

above the middle layer and core part, so its response should be close to our modeled

middle layer temperatures. The experimental data from RTD sensor #2 (the purple

solid line in the plot) is in between the modeled middle layer temperature (dashed

red line) and the modeled surface temperature (dashed yellow line), and this is due

to the small middle layer chosen in this study, so the RTD sensor #2 response will

be slower than the modeled middle layer temperature. RTD sensor #4 (green solid

line) and #5 (blue solid line) measure the surface temperature and match well with

the modeled surface layer temperature.

With proper tuning on the mass of middle layer, the model can match with the

temperature measured experimentally, which indicates that this pouch cell ISC event

can be modeled using the proposed three section model. However, a highly discretized

distributed model or 3D finite element method is recommended if the temperature at

different points of the cell surface is the main focus.

At around 5.8 seconds, the model predicts a sudden surface temperature rise. This

sudden rise is due to cathode decomposition in the surface layer which released a vast

amount of energy in a short time around 5.8 seconds, as shown in Fig. 2.7. The sudden

rise of surface temperature also increased other exothermic reactions including anode

decomposition, which depleted SOC in the cell. At 5.8 seconds, the cell reached peak

surface temperature, and it completed the exothermic reactions and internal short

circuit process in this thermal runaway event.

2.4.1.3 Force and Gas Analysis

As there is no good way of measuring battery core temperature directly in the

experiment, the force measurement is the chosen alternative for early detection of

thermal runaway inside the battery.

From the experimental data we see a sharp rise and drop of force measurement.

Compared with the battery force signal at the start of experiment, the force increased
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11.1 N due to battery thermal expansion caused by a 30◦C temperature increase. After

the short circuit, before venting, the peak force rose over 1800 N. The sharp rise of

force is the result of pressure that is built up due to formed gas. Pannala[47] using

a thermocouple placed between the tabs, also detected vented hot gases following a

quick drop of force. So the quick drop of force is the result of venting of the pouch.

In the model, the primary source of CO2 during the early stage of thermal runaway

is assumed to come from SEI breakdown. The model predicted force comes from gas

pressure build-up due to SEI breakdown in the core section.

According to the observed decomposition reactions of each layer in the three-

section model, the predicted gas generation will include additive contributions from

each of three sections, core, middle layer, and surface layer. A significant amount of

gas is generated when the middle layer and surface layer reach the critical tempera-

ture. However, since the pouch breaks soon after the first stage gas pressure build-up,

only the CO2 generated in core section is presented in the third subplot of Fig. 2.6.

Also, since the force measurement and gas pressure have different scale units, so the

force data and gas pressure are both normalized to 1 using the maximum value over

the experiment duration.

From the third subplot of Fig. 2.6, the two peaks of force and predicted gas

pressure align well. The model successfully predicts the battery core temperature rise

prior to surface temperature rise, and the timing of core temperature rise matches

well with our experimental force measurement. The model is therefore able to predict

the feature of gas pressure build-up during a fast internal short circuit event.

2.4.2 Test Two: Half Charged Cell

For the half charged cell (50% SOC), which was also heated to 57 ◦C, an ISC was

triggered but didn’t evolve into a catastrophic thermal runaway. In Test Two, the

cell experienced a rapid decrease and subsequent recovery of voltage after the ISC

was triggered. It then progressed to a slow self-discharge process that completely

used up the available lithium ions after 8000 seconds. Fig. 2.8 shows this behavior in

our experiment over 10000 seconds. This behavior is similar to the result in previous

study on internal short-circuit [48] or described as fusing phenomenon [23]. In the

fusing phenomenon, the shutdown of the internal short circuit and the quick voltage

recovery happen because of the burnt-out of the area around the initial ISC. Then a

following small-scale ISC event occurs resulting in a slow self-discharge process [23].

Kim [48] used an infrared camera and showed the peak temperature for the nail

penetration region in a short circuit fusing phenomenon is around 200 ◦C to 210
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◦C. In the current model, 200 ◦C will be used as the critical temperature of fusing

phenomenon. The ISC stops after the core region reaches 200 ◦C. This temperature

range fits well with both experimental and model data in this study.

For Test Two, the internal short circuit was assumed to shut down when the core

temperature reached 200◦C. Similar to Test One, a function εISC t2 is implemented

here to control the state of ISC of Test Two. εISC t2 = 0 represents no massive ISC,

while εISC t2 = 1 represents an ongoing ISC in the cell. Defined same as test one,

Tmax = max{Tcore|t≤t0}. εISC t2 is a function of Tmax, and can be expressed as:

εISC t2 =

1, if Tmax > 57 ◦C & Tmax ≤ 200 ◦C.

0, otherwise.
(2.34)

Test Two result is shown in Fig. 2.9. The solid line represents the experiment

results, and the dashed line is the model prediction. The side reaction parameters

predicted by the model are given in Fig. 2.10.

2.4.2.1 Voltage Analysis

The first subplot of Fig. 2.9 is a comparison of voltage from the experiment and

model. The voltage drop at t=2.65 s represents the start of the internal short circuit

event. With the use of εISC t2 to control the ISC state, the model fits with experi-

mental data on the timescale and overall trend. It also shows the shutdown of ISC

and the voltage recovering.

2.4.2.2 Temperature Analysis

Temperature sensor locations for Test Two are the same for Test One. In this

test, the cell didn’t trigger a quick thermal runaway.

As the core temperature reached 200 ◦C, the ISC is assumed to stop due to burn-

out of the short circuit region, so the ISC process only lasted for a small period of

time and caused core layer temperature rise only. In this short circuit test without a

thermal runaway, RTD sensors located on the battery surface showed almost constant

temperature during the ISC process. Specifically, after 5 seconds of the ISC event, the

measured surface temperature increased only 1 ◦C. The model prediction matches well

with the measured temperature on the battery surface, and at the same time predicts

core temperature rise (blue dashed line), which cannot be measured by RTD sensors

in the experiment.
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Figure 2.8: Test two result (slow self-discharge). (a) The terminal voltage and tem-
perature profile of 50% SOC cell from experiment over 10000 seconds. No thermal
runaway was observed, but a slow self-discharge process after triggering ISC.

2.4.2.3 Force and Gas Analysis

Similar to Test One, the force measurement can be used to detect potential ISC

within the cell. From the third subplot of Fig. 2.9 for Test Two, the time for the

peak of measured expansion force and the predicted gas pressure rise time align well.

With the use of εISC t2 to control the ISC state, the model predicts the battery core

temperature rise, and while at the same time shows that the battery didn’t progress

into a quick thermal runaway.

2.4.3 Analysis for Different ISC Modes

Both Test One and Test Two were conducted under the same conditions, except

for cell SOC but each progressed to a different ISC event. The fully charged cell went

into thermal runaway while the 50% SOC cell experienced fusing phenomenon and

didn’t explode. However, SOC is not the only factor in determining the ISC mode.

40



0 1 2 3 4 5 6 7 8 9 10

Time /s

50

100

150

200

T
em

p
er

at
u

re
 /

°C

Temperature

Model Core Temperature

Model Middle Layer Temperature

Model Surface Temperature

Experiment Sensor No.2

Experiment Sensor No.4

Experiment Sensor No.5

0 1 2 3 4 5 6 7 8 9 10

Time /s

-1

0

1

2

3

4

5

V
o

lt
ag

e 
/V

Voltage and 
ISC_t1

Model Voltage

Experiment Voltage

ISC_t1

0 1 2 3 4 5 6 7 8 9 10

Time /s

0

0.2

0.4

0.6

0.8

1

Scaled Force & Gas Pressure

Model CO2 Pressure

Experiment Force

Figure 2.9: Test two result (slow self-discharge). (b) The model matches the measured
voltage, temperature, and build-up of internal pressure well

Previous nail penetration experiments and computational analysis pointed out that

SOC, separator material [48] and ISC radius [23] will all affect the types of ISC mode.

It is possible that the temperature increase speed for core and neighboring layers

is the dominant factor for ISC mode. Unlike the fully charged cell, the 50% SOC cell

had a slower temperature rise and a smaller spatial temperature gradient, which in the

end didn’t trigger a massive additional short circuit that can lead to a catastrophic

thermal runaway.

In this study, different model settings of ISC modes are given for Test one and Test

two to describe the results. At this stage, this model cannot predict the modes of an

ISC event. However, future work with more internal short circuit tests is required to
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Figure 2.10: Test two result (slow self-discharge). (c) Side reaction parameters show
the SEI decomposition is the only active side reaction

study the criteria to predict whether the cell triggers thermal runaway or not during

an ISC event.

2.5 Model Parametric Study

Most of the parameters in the proposed model come from the battery’s physical

properties. In this study, with the ISC area known, parameters like ISC resistance can

be estimated. However, when applying this model to a real case, the ISC resistance

and ratio of core mass to total cell mass are usually unknown and need to be tuned

to match the experimental data. A parametric study of the thermal runaway model

will help to explore the sensitivity of parameters on the model. In this parametric
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study, ISC resistance, core mass ratio and ISC radius will be studied.

For a parametric study of ISC radius, anode to cathode ISC will be the focus,

as anode to cathode ISC is the most common type of ISC [25]. In such a case,

changes made to the ISC radius will be applied to both ISC resistance and core

mass ratio. As discussed in previous sections, ISC resistance is a function of ISC

radius, and the increase of ISC radius will decrease ISC resistance as a result of the

larger ISC area. The core mass ratio is also a function of ISC radius. The core

section is the battery area affected by the initial ISC, and as expressed by Eq. 2.4:

Vcore = πr2shortH, where rshort is the radius of short, and H is the height of cylindrical

short area. The increase of ISC radius will increase the core mass. The parameters

used in experimental sessions will serve as a benchmark case for our model parametric

study, with ISC resistance 3.68 mΩ, core mass ratio 1%, and ISC radius of 10 mm.

2.5.1 ISC Resistance

In this section, ISC resistance will be changed to study the influence of model

parameters on the prediction of the electrical, thermal and mechanical behavior.

Feng [22] used Rshort = 20 Ω to study the online detection of ISC. For comparison,

ISC resistance will be chosen 5 Ω in this parametric study, while the benchmark ISC

resistance is 3.68 mΩ.

The second subplot for Fig. 2.11 and red dashed line in Fig. 2.12 shows the tem-

perature and voltage predicted by the model given different ISC resistances. From the

plot, we see the temperature rise of a cell with low ISC resistance is much quicker, and

depletes its active material in less than 10 seconds. The cell with high ISC resistance

releases the heat slowly, and won’t trigger a thermal runaway event. Increasing the

resistance will slow the ISC process and possibly prevent a potential thermal runaway

event.

Large ISC resistance will have a slow temperature rise, and usually represents

micro-shorts in the battery or separator penetrated by a low electric conductivity

material. The parametric study of this model can be used to predict the severity of

an ISC event, and based on its short circuit radius, it may predict whether the cell

will trigger thermal runaway or not.

Fig. 2.13 shows the amount of CO2 generated by core SEI decomposition. With

ISC resistance so large, the core area will not reach its SEI decomposition critical

temperature, even after a few minutes. In this case, the amount of gas generated is

limited and can hardly be detected by force or gas sensors.
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2.5.2 Core Mass Ratio

In this section, we demonstrate the effect of changing the core layer mass ratio.

The core layer mass ratio is chosen to be 20% of total cell mass, while the benchmark

core mass ratio is 1%.

The third subplot for Fig. 2.11 and yellow dashed line in Fig. 2.12 shows the

temperature and voltage predicted by the model given different core mass ratios.

From the plot, we see that with high core mass ratio, the time to reach thermal

runaway has been delayed. This is due to the increased effective thermal mass of the

core area which decreases the rate of temperature rise and delays the time at which

a critical temperature for exothermic reactions is achieved.

Figure 2.11: Model parametric study on ISC resistance, core mass ratio and ISC
radius. (a) Temperature
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Figure 2.13: Model parametric study on ISC resistance, core mass ratio and ISC
radius. (c) CO2 generation by SEI decomposition in core area

2.5.3 ISC Radius

Previous parametric studies have revealed the influence of critical ISC parameters

on model performance. For the most common Cathode to Anode ISC, with high

conductivity material crossing the separator, core mass ratio and ISC resistance are

both a function of ISC area, as indicated by Eq. 2.4 and Eq. 2.12. Changes in ISC

area will influence the ISC resistance and core mass ratio.

In this study, the ISC radius is chosen as 40 mm, while the benchmark is 10

mm. From the previous discussion of section 2, for ISC radius of 10mm and 40mm,

the geometric resistance (Rgeo) is sufficient for calculation. The resulting electric

resistances are 3.68 mΩ and 0.23 mΩ, respectively. The core mass ratio for our

benchmark is 1%, and with the ISC radius increase to 40 mm, the core mass ratio

will now increase from 1% to 16%. The increased mass ratio reflects the increased

ISC area. The thermal resistance term rc2m also changes accordingly with the change

of contact area for core to middle layer by Eq. 2.31. The simulation results with the

different ISC radius are presented in the fourth subplot of Fig. 2.11 and Fig. 2.12.
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From the plot, we see that for Cathode to Anode ISC, at large ISC radius, the

temperature distribution in the battery is more uniform. The difference between the

three temperature states is small throughout the whole process of thermal runaway. A

large ISC radius will make the ISC process seem to approach an external short circuit

process. In this specific condition, the three-state thermal model predicts similar

temperature dynamics as a lumped thermal model, and a lumped model would be

accurate enough.

2.6 Summary

A model for Li-ion battery thermal runaway has been formulated using a three

section discretization. The three sections correspond to three battery temperature

states: the core temperature, middle layer temperature, and surface layer temper-

ature. A side reaction model, an electrical model, a gas evolution model are also

developed. The predicted gas pressure from the gas evolution model can be used to

predict battery force during the early stage of thermal runaway. This force behavior

indicates a potential method for early detection of thermal runaway. In this study,

the prediction of gas pressure from the model is also compared with measured force

behavior from experiments.

In the experiment, an internal short circuit is triggered at the core part of two

pouch cells. Test One cell with 100% SOC triggered a quick thermal runaway, while

the other test cell, with 50% SOC, didn’t go to thermal runaway. With proper tuning,

the model can match the experimental voltage, temperature, and force for both cases

when given the type of ISC modes. Although proper tuning is required for this model

to match the data, we have shown the potential of the proposed three-section model

to describe the complicated behavior of both an ISC induced thermal runaway event

as well as an ISC fusing phenomenon without a thermal runaway.

The significant difference between our two tests is whether the ISC shuts down

or leads to additional ISC after the burn-out of the initial ISC. This difference leads

to two different results, a catastrophic thermal runaway or a safe, slow self-discharge

process. This model cannot predict the ISC modes and future work including more

internal short circuit experiments is needed to study the criteria that differentiate such

cases. With more experiments to validate this model, it will allow further prediction

of the ISC mode based on cell parameters and short circuit areas, to predict whether

the cell will go to thermal runaway or not.

The model bridges the connection between the expansion force increase with the
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gas evolution model at the early stage of an ISC event, and demonstrates the potential

of using expansion force measurement for identifying ISC events through modeling

work and experiments. With this measurement, higher confidence levels detection

can be achieved compared to voltage and temperature sensing alone.
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CHAPTER III

Internal Short Circuit Detection Using Force

Measurement

3.1 Introduction

Many of the Li-ion battery accidents started with an overcharge, overheat, me-

chanical abuse [6] or lithium plating that leads to battery internal short circuit (ISC).

Joule heating, caused by an ISC event, can elevate the battery temperature to ther-

mal runaway critical temperature [43]. Detection of an ISC event should be made

early to avoid further damages.

On the other hand, false positives for ISC detection are also undesirable as many

thermal runaway mitigation techniques, such as activating pyrotechnic safety switches,

would disable the vehicle. Therefore, high confidence level detection with fast response

to ISC events is required.

Previous methods of detecting ISC are usually based on voltage measurement.

Since battery abuse testing usually shows a significant battery voltage drop after the

cell failure [23, 26]. Xia [49] proposed a fault-tolerant method that can distinguish

between cell failure and voltage sensor failure. The fault detection can be model-free

with correlation coefficient calculated for neighboring cells in series [50]. The model

also features fast detection speed, as the voltage drop is almost instantaneous after

an ISC [25].

Other methods of ISC detection using surface temperature measurements can be

found in [21, 22, 51]. These fault detection methods work well with soft ISC, where

the temperature gradient inside the cell is not huge. For hard ISC, the battery’s

internal temperature can be elevated in a few seconds, causing a huge temperature

gradient inside the cell. Prior works divided the battery into three temperature

sections [35, 52], and showing that at the early stage of ISC, the battery ISC region
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has a higher temperature. Surface temperature rise for such event is slower than

voltage drop and expansion force rise.

In this chapter, we develop an ISC detection method based on expansion force

measurement. In a hard internal short event, high temperature and battery side

reactions in the ISC region will produce a large amount of gas. This leads to a quick

cell swelling and a sudden increase of expansion force [52]. In the proposed algorithm,

we build an observer for the cell expansion force in normal operating conditions. The

observer value is compared with online force measurement. An alarm will be triggered

when the deviation of the observer value and the measurement exceeds the adaptive

threshold. For higher confidence level detection, we also use voltage signals to detect

abnormal voltage behaviors. The simulation results for a single cell demonstrate the

effectiveness of the proposed algorithm in detecting a hard ISC event.

3.2 Limitation of Temperature Based Detection

During normal operating conditions, there exists temperature gradient in the bat-

tery core and surface [41]. In an ISC event, the temperature gradient will be larger

due to the higher local rate of heat release which results in a fast temperature in-

crease of cell core region [52]. The ISC happens at battery core regions first, and

it takes time for the battery surface to heat up. The following analysis for battery

surface temperature measurement shows that the temperature detection method has

its limitation in estimating ISC core temperature.

The battery cell can be divided into three regions, core, middle layer and surface

layer [52]. The thermal model can be written as

Cpmcore
dTcore
dt

= (Q̇exo,core + Q̇ohmic,core) +
Tmid − Tcore

rc2m
(3.1)

Cpmmid
dTmid

dt
= (Q̇exo,mid + Q̇ohmic,mid)−

Tmid − Tcore
rc2m

+
Tsurf − Tmid

rm2s

(3.2)

Cpmsurf
dTsurf
dt

= (Q̇exo,surf + Q̇ohmic,surf ) +
Tamb − Tsurf

rs2a
− Tsurf − Tmid

rm2s

(3.3)

where Tcore, Tmid, Tsurf represent core, middle layer and surface temperature. mcore,

mmid, msurf represent mass of core, middle layer and surface. rc2m, mm2s, ms2a

represent thermal resistance of core to middle layer (c2m), middle layer to surface

(m2s) and surface to ambient (s2a). Qexo is the exothermic side reactions heat, Qohmic

is the ohmic heat from ISC.
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At the first few seconds of ISC process, Tcore quickly rise to 120 ◦C (driven by the

ohmic heating in the short circuit), while Tmid and Tsurf remain at 57.5 ◦C [52]. The

system is linearized at this point to asses the surface temperature detection method.

At this working condition, exothermic reaction heat and ohmic heat in middle layer

and surface can be neglected.

For the exothermic reactions, Solid Electrolyte Interface (SEI) decomposition be-

comes active above 120 ◦C [6]. Comparing to ISC ohmic heat, exothermic reaction

heat can be neglected at this temperature, but must be included as the cell tem-

perate continues to rise because the reaction rate will increase exponentially with

temperature [32].

The thermal model can be represented in state space representation form

 ṪcoreṪmid

Ṫsurf

 = A

TcoreTmid

Tsurf

+

Q̇ohmic,core

0
Tamb

Cpmsurf rs2a

 (3.4)

y = C

TcoreTmid

Tsurf

 (3.5)

where C = [0, 0, 1] and the output here is the surface temperature.

In details, the A matrix is

A =

A11 A12 0

A21 A22 A23

0 A32 A33


where A11 = − 1

Cpmcorerc2m
, A12 = 1

Cpmcorerc2m

A21 = 1
Cpmmidrc2m

, A22 = − rc2m+rm2s

rc2mrm2sCpmmid
, A23 = 1

Cpmmidrm2s

A32 = 1
Cpmsurf rm2s

, A33 = − rm2s+rs2a
rm2srs2aCpmsurf

For system with surface temperature as the only output, the observability matrix

is

Q =

 C

CA

CA2

 (3.6)
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Take the numerical values from the modeling result [52]. We have the observability

matrix expressed as

Q =

 0 0 1

0 0.0058 −0.015

3.52× 10−4 −0.0011 9.22× 10−4

 (3.7)

The observability matrix is full rank, which means the system is observable with

the surface temperature output alone. However, if we do Singular Value Decomposi-

tion (SVD) for the observability matrix

Q = UΣV ∗ (3.8)

The singular values σi will be given by the diagonal entries of

Σ =

1.0001 0 0

0 0.0059 0

0 0 0.0003

 (3.9)

The observability matrix has a very high condition number

κ(Q) =
σ(max)

σ(min)
= 2892 (3.10)

This shows that the observability matrix is close being rank deficient. This anal-

ysis demonstrates the poor observability for the internal temperature state based on

surface temperature measurement alone. In real practice, with thermocouples located

only at a few spots in a battery pack, the temperature response will be even slower.

Better approaches are needed to identify the ISC event.

3.3 ISC Detection Based on Force

Previous studies [52] on single cell triggering hard internal short showed the rela-

tive slow response of surface temperature, and fast response of voltage and expansion

force. The expansion force comes from the cell swelling due to gas generation. The

SEI decomposition becomes active at around 120 ◦C [6], and follows the expression

below [6]

(CH2OCO2Li)2 → Li2CO3 + C2H4 + CO2 + 0.5O2
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The SEI decomposition directly generate gas that can contribute to severe cell

swelling. The cell swelling converts to expansion signal. The expansion force, due to

its fast response after a hard internal short, can be used for ISC detection.

As discussed previously, voltage and current signal are usually used for battery

fault detection. However, the voltage based detection will not work for all cases.

The cell casing may be compromised due to mechanical abuse, and for an intact

cell with an unsealed cell casing, the cell can still operate normally in voltage with

the applied current [53]. In this case, the expansion force sensor can help with the

fault detection by identifying the over-stress before the cell casing is compromised.

Additionally, introducing expansion force sensor for fault detection can help achieve

high confidence level detection.

3.3.1 Expansion Force Model

At normal operating conditions, the cell expansion force can be expressed as a

function of temperature and State of Charge (SOC). Previous studies showed the

change of cell expansion force from fully discharged to fully charged state is around

155 N or 30% of the base preload for NMC-Graphite cells [54]. Compared to the peak

force observed prior to venting during a thermal event, which was over 1800 N [52],

the expansion due to SOC is small. We assume the temperature dependency and

SOC dependency functions are separable [55]. We can then express the expansion

force as

F = f1(T ) + f2(SOC) (3.11)

For the SOC dependency, the experiment of expansion force measurement uses

the same setting as in [54]. The experiment settings for expansion force measurement

are shown in Fig 3.1a. The expansion force measurement comes from the four load

cells at four corners of the fixture. We use a eighth order of polynomial fit for the

experimental data. The resulted expansion force with SOC dependency is shown in

Fig 3.1b.

For the temperature dependency, here we use a linear thermal expansion model

for the expansion force. The temperature dependency can be expressed as

f1(T ) = α(T − T0) (3.12)

where T0 is the initial temperature, and α is the thermal expansion rate. For α,

different fixture and battery will have different thermal expansion coefficient. Here, we
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Voltage

(a)

(b)

Figure 3.1: (a) Expansion force measurement setup. (b) Expansion force as a function
of SOC.

calculate it based on the expansion force for the pouch cell at different temperature.

The α in this study is 2.06 N/◦C

During normal operating conditions, temperature distribution is rather uniform

within a cell. The measured surface temperature can be used in the thermal expansion
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model.

Other factors that impact expansion force include pre-load force. We assume local

linearization for the force model that allows the separation of temperature, SOC and

pre-load [55]. With pre-load force included in the model, the expansion force during

normal operating conditions can then be expressed as

F = f1(T ) + f2(SOC) + F0 (3.13)

where F0 is the pre-load force.

3.3.2 Fault Detection Algorithm

Based on the expansion force model at normal operating conditions, we can build

an observer for the expansion force

F̂ = f1(T ) + f2( ˆSOC) + F0 (3.14)

ΘF = F̄ − F̂ (3.15)

where F̄ is the measured force, and Θ is the estimated residual from force sig-

nal. The residual of force signal is calculated from force measurement and estimated

expansion force.

Here, we assume the ˆSOC can be estimated by current and voltage measurement.

Common methods for SOC estimation include Coulomb Counting method and Open

Circuit Voltage inversion method. Coulomb Counting method is more popular in

industry, as the battery terminal voltage changes in dynamic operations [54]. SOC

estimation error can come from sensor noise and drift, model mismatch due to cell

aging [13]. A 5% error in the estimated SOC would result in a prediction error of 8.9 N

for ΘF , based on the maximum slope in figure 3.1b. Closed-loop SOC estimation is

needed with Kalman Filter [56] to balance between process error and sensor noise and

achieve less SOC estimation error. To simplify the analysis here, we will use Coulomb

Counting method for SOC estimation in this study.

At normal operating conditions, by assuming perfect model, the force measure-

ment should be equal to the estimated expansion force, and ΘF should ideally be

zero. The Ffault term represents the force that comes from battery swelling due to

an internal short. To put the two cases in summary:

During Normal Conditions

F̄ = f1(T ) + f2(SOC) + F0
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F̂ = f1(T ) + f2( ˆSOC) + F0

ΘF → 0

At Fault Conditions

F̄ = f1(T ) + f2(SOC) + F0 + Ffault

F̂ = f1(T ) + f2( ˆSOC) + F0

ΘF → Ffault

The residual ΘF should be zero during normal operating conditions with a perfect

force model. At fault conditions, the residual ΘF represents the fault force signal.

Thus, the detection can be made using a threshold εF . When the estimated residual

is larger than the threshold, a fault is indicated.

3.3.3 Adaptive Threshold

The estimated residual ΘF and the fault detection depends heavily on the mod-

eling accuracy. However, the cell degradation and aging will bring model mismatch

over time. An adaptive threshold that considers the long term model drifts is required

to improve the fault detection accuracy [57].

Considering the variation of the estimated residual ΘF with input, the mean and

variance of the estimated residual at the kth sample point in a moving window can

be expressed as

Rk =
1

m

m∑
i=1

ΘF,k−i+1 (3.16)

σ2
F,k =

1

m− 1

m∑
i=1

(ΘF,k−i+1 −Rk)2 (3.17)

where m is the moving window size, which is set as 500 in this study [58], which

corresponds to 50 seconds time window for 10 Hz sampling rate. Rk is the average

value of the estimated residual ΘF in the moving window, and σ2
F,k is the variance

between ΘF and the moving window average value Rk.

By assuming Gaussian distribution of the estimated residual for the expansion

force [59], the confidence limits of estimated residual that represent a confidence of

(1− α) is

P{Rk − zσF,k < ΘF < Rk + zσF,k} = 1− α (3.18)
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where α is the confidence level, and z is the coefficient related to the confidence

level. z and α are correlated through the Gaussian distribution (eg. z = 3 corresponds

to 99.7% confidence level). In this study, since the expansion force will change drasti-

cally during a fault, we can set the threshold higher without hurting the detectability.

Upon detection of the ISC event, severe warning and emergency responses will fol-

low, therefore false positive is strong undesired within a battery pack’s lifetime. The

coefficient z is 8 to ensure false positive rate less than 1× 10−10.

The adaptive threshold is then Rk ± 8σF,k. The upper and lower bound of the

adaptive threshold are shown as below

εF+ = Rk + 8σF,k (3.19)

εF− = Rk − 8σF,k (3.20)

3.3.4 Adding Voltage Signal for High Confidence Level Detection

For high confidence level detection of battery faults, we can use multiple detection

algorithms from different input measurement. If both detection algorithms indicate

a fault, then an ISC alert will be confirmed and made.

We define the fault voltage as

Vfault = V̂ − V̄ (3.21)

where V̄ is the measured voltage, and V̂ is the estimated cell voltage at normal

operating conditions. The V̂ term can be calculated from OCV-R-RC equivalent

circuit model, as shown by Fig. 3.2. The detailed OCV-R-RC model parameter is

shown in Table 3.1, which is measured from the pouch cell manufactured by University

of Michigan Battery Lab.

Table 3.1: Cell equivalent circuit model parameters

Capacity Rs R1 C1

4.5Ah 5.3mΩ 10.4mΩ 4.81× 103F

For single cell, after an ISC event, the terminal voltage experiences a significant

drop. Since the large ISC current, the changes in State of Charge (SOC) has to be

taken into consideration. The battery open circuit voltage V (SOC) is a function of
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Figure 3.2: Equivalent circuit model representing the cell

SOC. The following equations describe the model for the estimated terminal voltage

(V̂ )

V̂ = V (SOC)− IRs − V1 (3.22)

dV1
dt

=
−V1
R1C1

+
I

C1

(3.23)

dSOC

dt
= − I

Ccell

(3.24)

where Ccell represents the cell capacity.

Similarly, the adaptive threshold is used for fault voltage Vfault, and the upper

and lower bound of the adaptive threshold can be set as

rk =
1

m

m∑
i=1

Vfault,k−i+1 (3.25)

σ2
V,k =

1

m− 1

m∑
i=1

(Vfault,k−i+1 − rk)2 (3.26)

εV+ = rk + 8σV,k (3.27)

εV− = rk − 8σV,k (3.28)

If the fault voltage value falls out of the adaptive threshold, then the voltage

detection system will trigger an alarm. After receiving alarms from both force and

voltage, an ISC event is believed to happen and confirmed by both detection systems.

In a summary:
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Table 3.2: Detection logic with expansion force and voltage

Voltage Force Decision
Vfault /∈ [εV−, εV+] ΘF /∈ [εF−, εF+] ISC Alert, Confirmed
Vfault /∈ [εV−, εV+] ΘF ∈ [εF−, εF+] ISC Warning, Electrical Fault
Vfault ∈ [εV−, εV+] ΘF /∈ [εF−, εF+] ISC Warning, Overstress
Vfault ∈ [εV−, εV+] ΘF ∈ [εF−, εF+] Normal

In this study, after the battery ISC fault, the expansion force and voltage change

drastically, and the model prediction will have large difference with the measurements.

This difference is not a reflection of the modeling error in the normal operating

conditions, therefore the σV and σF will stop updating after fault being detected.

3.4 Simulation Result

For this study, we consider a 4.5 Ah NMC pouch cell. The parameters of the cell

are adopted from [52]. To emulate real measurements, here, we add zero mean white

Gaussian noise (N(0, σ2)) to the measurement. In details, for voltage measurement,

the noise has covariance σV = 5 mV . For current measurement, σI = 5 mA. For

temperature measurement, σT = 0.5 ◦C. For force measurement, σF = 8.9 N .

The simulation can be divided into two conditions: normal operating conditions

and fault conditions. In the normal operating conditions, the Urban Dynamomenter

Driving Schedule (UDDS) is used for the current profile. In the fault condition, the

model from [52] is used to simulate a hard ISC case.

To analyze the algorithm’s robustness against modeling error, we add the model-

ing error to the simulation during normal operating conditions. While the cell true

capacity is 4.5 Ah, here we assume the cell capacity in the model is 5 Ah. For the

expansion force model, we assume the model has an incorrect f2(SOC), and under-

estimates the expansion due to SOC change by 15%.

The battery SOC is initialized at SOC = 100% in the simulation. For the normal

operating conditions, the UDDS current profile and the corresponding terminal volt-

age (VT ) and expansion force responses have been shown in Fig. 3.5. During normal

operating conditions, even though we added sensor noise and modeling error to the

simulation, both detection quantities stay far below the detection threshold, and no

false alarms is triggered during the simulation.

For fault condition, the battery SOC is still initialized at SOC = 100%, and the

58



Figure 3.3: Current, terminal voltage and expansion force profile under UDDS profile
at normal operating conditions

Figure 3.4: Both detection quantities, ΘF and Vfault fall within the adaptive threshold
during the normal operating conditions

UDDS current profile is applied in the first 10 seconds. At t = 10s, an ISC is triggered

in the simulation which finally leads to a thermal runaway event. After the ISC event,
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Figure 3.5: Current, terminal voltage and expansion force profile under a fault
condition, with a hard short circuit triggered at t = 10s

we assume there is no external current flowing through the cell. The model from [52]

is adopted to simulate a hard short which leads to a thermal runaway event. The

simulated hard ISC event is shown in Fig. 3.5 for the current, voltage and force profile.

The estimated voltage fault term Vfault, estimated force fault term ΘF after a

short circuit triggered are shown in Fig. 3.6a. At the time of 10 seconds, the voltage

fault term first detects an ISC event. At the time of 10.2 seconds, the force detection

algorithm identifies the fault, and confirms the ISC event. Even though the confirma-

tion of an ISC event requires threshold crossing from both voltage and force detection

signals, it still achieves fast detection for a hard internal short event.

To be noticed, in Fig. 3.6b, at the time of 11.4 seconds, the ΘF drops below the

lower bound of threshold. This is due to the rupture of the cell, which leads to sudden

drop of measured expansion force. The increase of surface temperature also follows

the rupture and thermal runaway, which leads to higher estimated expansion force.

These two factors cause the ΘF to drop below the lower bound of threshold. This

feature makes the force detection to continually identify this fault even after a long

time of triggering the fault.
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(a)

(b)

Figure 3.6: At fault conditions, voltage detection Vfault identifies a fault at t = 10s,
and force detection ΘF confirms the fault at t = 10.2s. (a) Zoom-in view (b) Overview
of the detection quantities.
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3.5 Summary

In this chapter, we propose a battery ISC detection method based on the mea-

surement of the expansion force and voltage. Combining voltage and force signals for

fault estimation can achieve a higher confidence level for detection of the fault and

avoid unnecessary false alarms. The simulation results demonstrate the fast response

of the detection algorithm after an ISC event. The simulation also verified that the

method is robust to sensor noise and modeling error. Future work is encouraged with

experimental validation for the detection method.
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CHAPTER IV

Gas Sensing for Detection of Battery Venting

4.1 Introduction

Due to the drawbacks of the existing fault detection methods in battery packs,

many studies have focused on gas detection for battery failure, primarily because of

the fast response of gas sensing for cell failure and the easy implementation of gas

sensors. The cell venting is usually categorized into first venting and thermal runaway

gas venting [37]. The first venting happens when the cell internal pressure exceeds

a critical value and the pressure burst disk opens [24]. The first venting happens

before cell thermal runaway and can be used as a precursor of thermal runaway. The

subsequent gas venting during thermal runaway is more aggressive and releases more

vent-gas [37]. Prior studies on detecting cell thermal runaway in battery storage

depots showed that a gas detection method targeting at CO2 concentration has a

much faster response than monitoring temperature at the storage drum surface [60].

Focusing on gas detection method for battery packs, the structure of this chapter is

as followed. In Section 4.2, a summary of single-cell abuse experiments is presented to

explore the compositions of vent-gas under different battery abuse conditions. Single-

cell nail penetration, overheating and overcharging tests showed high concentrations

of CO2 in most cases with different battery chemistries and SOC. Due to the early

presence in first venting, good consistency, and the ability to detect cell leakage, CO2

is considered a good target gas. In Section 4.3, from implementation aspect of gas

detection, low-cost volatile organic compounds (VOCs) sensors and CO2 sensors are

compared. In Section 4.4, a single cell abuse experiment is discussed where the Non-

Dispersive Infrared (NDIR) CO2 sensor is shown to support detection within seconds

after the gas-venting occurs. In Section 4.5, we show how the CO2 concentration

data collected from a single cell venting experiment can be used to bound the CO2
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detection threshold and help with the gas detection algorithm design in a battery

pack.

4.2 Review of Gas Compositions in Abuse Tests

To evaluate the gas evolution during all of the major battery failure modes, battery

abuse experiments from the literature were summarized. In most tests, CO2, CO,

H2 and volatile organic components (VOCs) were the main components, with other

minor components in the produced gas such as oxygen (O2) [61] and hydrogen fluoride

(HF ) [62]. Since many VOC sensors are sensitive to hydrocarbons (e.g. methane and

ethane), we included them as VOCs in our summary. After considering a variety of

abuse conditions, CO2 has high concentrations in all conditions and is easy to detect,

therefore CO2 is selected as the target gas species for detection.

4.2.1 Case of Overheating Tests

In a prior work from Golubkov [63], thermal ramp overheating tests were con-

ducted in inert gas atmosphere for Lithium Iron Phosphate (LFP) and Lithium Nickel

Cobalt Aluminum Oxide (NCA) 18650 cylindrical cells at different State of Charge

(SOC) ranging from 0% to 143%, and the vent-gas was analyzed using Gas Chro-

matography (GC). The results indicated that CO2 is the primary gas in most cases,

and in all tests CO2 was significant in total molar concentration, constituting at least

17.5% and as high as 96.6% of the vent-gas. For CO, the generated amounts were

relatively large compared to CO2 for NCA cells at high SOC. However, at low SOC

and LFP cells, CO concentrations were significantly lower than that of CO2, con-

stituting only about 1% of the total vent-gas. H2 was another main component of

vent-gas at high SOC, but similarly to CO, the percentage of H2 in the vent-gas was

around 1% at low SOC. The VOCs consisted of a relatively small percentage of the

total vent-gas across the range of SOC, and in most cases it was less than 10%.

Similar overheating tests in inert gas atmosphere for fully charged Lithium Cobalt

Oxide/Nickel Manganese Cobalt Oxide (LCO/NMC), Lithium Nickel Manganese

Cobalt Oxide (NMC) and LFP 18650 cylindrical cells revealed that the main com-

ponents of the produced gases were H2 and CO2 for each chemistry [64]. CO was

the main component in LCO/NMC and NMC cells, but constituted only 5% of the

vent-gas in moles for LFP cells. CO2 ranged from 25% to 53% of total gas for all

three types of cells, while the VOCs consisted of only around 15%.

Lammer [37] showed that in thermal ramp overheating tests for NCA cells in inert
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gas atmosphere, CO2 was again the dominant component for the first venting gas,

ranging from 82% to 100% in moles for three kinds of commercial 18650 NCA cells.

In the final deflagration stage, a large amount of gas was generated, where H2, CO2

and CO were the main components. The percentage of VOCs was found to be less

than 10% after combustion.

In an experiment of cascading failure for battery arrays of 18650 LCO cells trig-

gered by surface heating [65], a large spike of CO2 concentration of 2% in volumes

was observed after the first cell thermal runaway. After the rest of the cells went into

thermal runaway, the detected CO2 concentration increased to around 8% in volumes.

The cell heating tests in N2 atmosphere generated CO2, CO, H2 and hydrocarbons

(HC). For tests in an inert gas atmosphere, higher volume percentages of HCs and CO

were observed, which confirmed that the released HCs and CO will react with oxygen

in the air. Similar phenomenon can be found for other overheating tests conducted

in air. When the HCs and CO are ignited, their concentrations decrease significantly

[66, 67]. This indicates that there will be a lack of consistency for these gas species,

as they can react with outside oxygen, and could impair the detection of thermal

runaway.

The battery pack active and passive mitigation method for suppressing thermal

runaway can also impact the gas concentrations in a thermal runaway event [68, 69].

When employed with different mitigation methods, the CO2 were still found in high

concentrations in all cases, while HCs and CO were found in low concentrations in

water mist system [69].

To summarize the gas composition results for overheating tests, CO and H2 can

only be detected in high concentrations for high SOC cells and only for select cell

chemistries. On the other hand, VOCs can be detected in most cases, but gas de-

tection with VOC may pose additional reliability challenges due to the decline in

concentration after exposure to air [65, 70]. Lastly, CO2 can be detected in high

concentrations in all cases, regardless of cell SOC and cell chemistry.

4.2.2 Case of Nail Penetration Tests

During nail penetration tests, it was reported that gas was immediately emitted

from the hole around the nail as it penetrated the cell, and swelling of the pouch cell

exterior was observed due to the gas pressure [71]. However, gas component analysis

was not conducted for this experiment.

In nail penetration tests for large scale NMC pouch cells [27], a gas sensor made

with a tin dioxide (SnO2) semiconductor was used for gas detection, and is sensitive

65



to methane (CH4), propane (C3H8) and carbon monoxide (CO). The gas sensor had

a clear signal after nail penetration, and detected the event 2 seconds after the nail

penetrated the cell, while the cell voltage dropped 40 seconds later.

In another nail penetration study for NMC pouch cells conducted in air [72], the

gas emission was analyzed by Gas Chromatography-Mass Spectrometry (GCMS) and

Quadrupole Mass Spectrometry (QMS). Several kinds of VOCs (such as EMC, DEC,

EC and benzene) were detected with gas chromatography. H2, CO and CO2 were

detected in high concentrations from the QMS results. In one test, the concentrations

for CO and CO2 were both above 20,000 ppm, while another test using a neutraliza-

tion filter system for the gas emissions showed lower concentrations for both gases.

In a summary for nail penetration tests, all four major gas species (CO2, CO, H2

and VOCs) can be detected in high concentrations.

4.2.3 Case of Overcharging Tests

Overcharging experiments for 18650 LFP cells conducted in air from [73] showed

that the main components of the vent-gas at the end of the test were CO2, H2,

C2H4, and CO, with CO2 accounting for 47% of the sampled gas. The real-time

gas concentrations during the abuse tests was also measured and showed that the

concentrations of DMC in ppmv (parts per million volume) was much higher than

that of CO2 during the abuse tests. In the first venting event, which represents 0.7%

of the total gas release, DMC can also be detected.

In another overcharging test for NMC prismatic cells conducted in air [74], CO2

and CO were the main components of out-gas with CO2 composing 32%-58% and

CO composing 32%-45% of the total vent-gas.

4.2.4 Case of External Short Circuit Tests

External short circuit experiments for a pouch cell from [77] showed cell venting

and peak cell temperature occurring at around 100 ◦C. In another study, external

short circuit tests for single 18650 NMC cells showed the peak temperature reaching

96 ◦C, and cell leakage was observed [78]. These tests showed cell venting occurring

30 seconds after the short circuit.

Studies for external short circuit in battery packs pointed out that battery packs

connected in series have higher short circuit current than that for a single cell [79],

which can cause higher rates of temperature increase. Additionally, the short circuit

behavior might be different in high-voltage systems, as the current interrupt device

66



Table 4.1: Summary of vent-gas composition under different battery abuse conditions
(in volume %). CO2 is the most consistent gas composition.

Conditions CO2 CO H2 V OCs ∗

Overheating NCA cylindrical (I),
SOC=0%-25% [63]

62.7 - 96.6% 1 - 5.5% 0.8 - 15.5% 1.3 - 16.2%

NCA cylindrical (I),
SOC=50%-143% [63]

16.2 - 33.8% 39.9 - 49.2% 17.5 - 28.8% 6.1 - 12.5%

NCA cylindrical (I),
SOC=100% [37]

9.8 - 20.4% 37.2 - 58.4% 15.9 - 43.2% 5.3 - 9.9%

→ First-venting 82.2 - 100% 0% 0 - 2.4% 0 - 15.4%

LFP cylindrical (I) ,
SOC=0%-130% [63]

48.3 - 93.5% 1.8 - 9.1% 2.7 - 34% 2.1 - 13.1%

LFP cylindrical (I),
SOC=100% [64]

53% 4.8% 30.9% 11.2%

LFP cylindrical (I),
SOC=100% [66]

11.1% 4.7% 80.1% 4.1%

LCO/NMC cylindrical
(I), SOC=100% [64]

24.9% 27.6% 30% 17.5%

NMC cylindrical (I),
SOC=100% [64]

41.2% 13% 30.8% 15%

NMC prismatic (I),
SOC=100% [75]

25.2% 29.7% 10.4% 34.6%

NMC pouch & hard
case (A), SOC=100%
[76]

36.6% 28.4% 22.3% 12.4%

LCO cylindrical (I),
SOC=100% [65]

12.7 - 13.9% 25.8 - 27% 18.2 - 18.5% 40.5 - 42.7%

LCO cylindrical (A),
SOC=100% [65]

8% (peak) 10% (peak) – 2.5% (peak)

→ First-venting 2% <1% – 0%
Nail Penetra-
tion

NMC pouch (A),
charged to 4.3V [72]

>2% >2% Detected High intensity

Overcharging LFP cylindrical (A), at
the end of test [73]

47% 4.9% 23% 24%

LFP cylindrical (A), to-
tal gas [73]

18% 1.9% 9% 68.5%

→ First-venting DMC> CO2 > CO

NMC prismatic (A) [74] 32.2 - 58.4% 31.7 - 45.1% – 4.7 - 9.1%
Cell Leakage LCO cylindrical, vac-

uum [53]
1.7% – – 44.6%

∗ Since VOC sensors are sensitive to hydrocarbons (e.g. methane and ethane), we count them into VOCs

(I) Experiments conducted in inert gas; (A) Experiments conducted in air

– Not reported

(CID) and positive temperature coefficient (PTC) have relatively low voltage toler-

ances, meaning that the devices can be ineffective under high voltage [77]. Sea water

immersion tests conducted at 300V resulted in an electric arc under water and large

amounts of gas were produced [80]. A fire was also observed while the cell was still
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submerged in the water, which was due to the leakage of electrolyte.

The gas components in these experiments were not revealed. However, if the ex-

ternal short circuit in the battery pack leads to overheating of the cells and causes

thermal runaway, then the thermal runaway characteristics will be similar to the

overheating tests. Therefore, it is likely that VOCs, H2, CO, CO2 can be detected.

Future experiments associated with battery external short circuit out-gassing com-

ponents are required for verification.

4.2.5 Case of Cell Leakage

Cell leakage here represents an intact cell with an unsealed cell casing, which

leads to a slow process of electrolyte evaporation to the outside of the cell. The cell

casing can be compromised due to manufacturing defects or mechanical abuse. Ex-

periments for 18650 LCO cells operated under normal conditions in vacuum condition

showed that the leaked gas components include HCs and CO2 [53]. It is likely that

CO2 comes from the reaction of VOCs with ambient oxygen [72]. If the leaking cell

was overcharged or over-discharged, due to the accelerated electrolyte decomposition,

the volume of generated gas and the percentage of CO2 in the generated gas would

increase significantly [53].

4.2.6 Target Gas Identification

The above discussions for battery abuse testing showed that different abuse con-

ditions, cell SOC, cell chemistry, and atmosphere (in air or inert gas) can all influence

the composition of out-gassing components. From this, the following criteria should

be used to select the target gas:

(1) Consistency: The gas is consistently found with relatively high concentrations

for all cell chemistries and abuse conditions.

(2) Early presence: Ideally, the gas can be found in the first vent-gas and be

detected within seconds of being emitted.

(3) Leakage detection: the gas is a main component of cell leakage, so that the

gas sensor can also be used to detect cell leakage.

Table. 4.2 shows the summary of different target gas species for detection. The

explanations for the grades are given below.

Carbon Dioxide (CO2): CO2 was found in large concentrations for all test

conditions reviewed in the literature, as shown in Table 4.1. The major component

of first venting gas was CO2, which was verified in experiments from literature [37,
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Table 4.2: Summary of different target gases for detecting thermal runaway. Grading
ranges from good (+), neutral (N) and bad (–).

Gas Species Consistency a Early Presence b Leakage Detection
CO2 + + +
CO – N –
H2 – N –
V OC N + +

a Consistency: The gas is found with high concentrations consistently in all thermal
runaway tests.
b Early Presence: The gas is found with high concentrations in first venting before
thermal runaway.

65, 73]. Overheating experiments for over 50 cells also indicated CO2 as having the

highest volume percentage in the vent-gas [76]. Prior work [24] also assumes the

primary component for first venting gas is CO2, so CO2 is considered to have early

presence during a cell venting. Finally, CO2 is found in the cell leakage gas, so the

sensor can be used during slow leakage with CO2 detection.

Carbon Monoxide (CO): CO was found in large amounts in the vent-gas of

battery abuse tests. However, the concentration of CO decreased for cells with lower

SOC [81] and in the LFP cell thermal runaway case [63], so CO is considered incon-

sistent regarding detection. For first venting events, some experiments reported the

presence of CO [65, 73], while others did not [37]. Due to this inconsistency, a neutral

score is given for early presence of CO. Finally, CO is not found in the cell leakage

gas.

Hydrogen (H2): H2 was found in large amounts in some battery abuse tests,

but not for cells with lower SOC, so the consistency is considered low for H2. Similar

to CO, H2 was not detected consistently in first venting events, so the early presence

is considered neutral for H2. Finally, H2 is not detected in the cell leakage gas.

Volatile Organic Components (VOC): VOCs were found in large amounts in

most cases. However, the concentrations of VOCs are significantly lower in experi-

ments conducted in air and gases after combustion [37, 65]. VOCs can also gradually

react with oxygen from the environment to form CO2 and H2O [72], which can reduce

the detection consistency in large packs. Based on the inconsistency of VOC concen-

trations in different conditions, a neutral grade is given for consistency of VOCs.

For early presence, the first venting events are usually accompanied by a leakage of

solvent, which can provide large amounts of VOCs upon first venting. Additionally,

VOCs are the main components of cell leakage, so VOC sensors also enable the cell
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leakage detection.

In a summary, CO2 and VOC are found in high concentrations in vent-gas from all

thermal runaway experiments. Both gas species exist in the first vent-gas, and enable

cell leakage detection, so these two gas species are considered good for detection

purposes.

4.3 Gas Sensor Types

To apply the gas detection methods to battery packs, the ideal sensor should sat-

isfy the feasibility requirement: small in size, low-cost, low-power consumption, small

sensor drift over the lifetime and low potential for sensor poisoning. VOC sensors in-

clude photo-ionization detectors, electrochemical gas sensors, semiconductor sensors

(resistive sensors), spectroscopic sensors, micro gas chromatographs, and electronic

noses and sensor arrays [82]. CO2 sensors include chemical sensors and NDIR sensors.

Since CO2 and VOCs are major components of released gas, high accuracy sensors

are not needed for detection. Therefore, lower-cost sensors can be used. Here, we only

analyzed the sensor feasibility of some common and low-cost gas sensors for VOCs

and CO2. The summary of different sensors is listed in Table 4.3, and is described in

detail below:

Table 4.3: Summary of common low-cost gas sensors for VOCs and CO2

Gas Sensor
Type

Principle Cross Sen-
sitivity

Drift (%
per year)

Lifetime
(years)

Unit
Price ($)

Electrochemical
VOC

Measure potential or
current for reaction
at the electrodes

Yes 2 - 15% 7 - 10 20 - 30

Semiconductor
VOC

Measure electrical re-
sistance of metal ox-
ide

Yes 5% 5 5 - 10

Chemical CO2 Sensitive layers for
detection

Yes 3 - 5% 2 - 5 15 - 35

NDIR CO2 Optically measure
specific wavelengths
of light

No 0.15% 15 8 - 20

Electrochemical VOC sensor: Electrochemical VOC sensors (amperometric

sensors) are made of a measuring electrode, a counter electrode, and a reference

electrode [82]. These sensors are low cost, low power, and compact, but they also are

cross-sensitive to other gases, suffer long-term drift (up to 15% drift per year), and
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can be damaged in low-humidity environments [82]. The price of an electrochemical

VOC sensor is generally about $ 20 to $ 30 [83].

Semiconductor VOC sensor: By monitoring the electrical resistance of metal

oxide, detection can be made for VOCs. Tin dioxide (SnO2) is the most used sensor

of this type due to its broad reactivity to VOCs and large changes in resistance [82].

The broad reactivity means that SnO2 semiconductor sensors are sensitive to not

only various VOCs, but also NO, NO2 and CO [82]. However, this sensor suffers from

sensor contamination [84] and signal drift [85] and has a large power consumption

[27]. The unit price of a semiconductor VOC sensor generally ranges from $ 5 to $ 10

[86, 87].

Chemical CO2 sensor: Chemical gas sensors with sensitive layers targeted at

CO2 have a low energy consumption. The sensor price is generally from $ 15 to $ 35

[88]. However, the sensor drifts over time and degrades quickly [89]. Due to the drift

and degradation, this sensor needs frequent replacement and hence increases the total

cost of using the battery pack.

NDIR CO2 sensor: The sensor is based on optical principles. Since many

gases absorb specific wavelengths of infrared light, it is possible to calculate the gas

concentration by passing light of a defined wavelength and measuring how much light

is absorbed [90]. For CO2, the commonly used wavelength is 4.26 µm, which is not

absorbed by other commonly found gases or water vapor [90]. The NDIR CO2 sensor

is the most commonly used CO2 sensor type in HVAC applications [91]. The sensor

is highly selective for CO2, and due to the absorption exclusivity of the selected

wavelength, any sensor cross-sensitivity can be largely avoided [90]. The atmospheric

CO2 concentration can also be used to calibrate sensors on a daily basis, which

prevents sensor drift over time and ensures long-term use without maintenance. The

NDIR CO2 sensor has a unit price ranging from $ 8 to $ 20 [92], and has a lifetime

up to 15 years.

→Due to the good selectivity, reasonable cost, small sensor drift and good lifetime,

the NDIR CO2 sensor feasibility is considered good and is selected as the gas sensor

for detection.

4.4 NDIR Detection Response Experiment

Most of the previously published works used gas chromatography for component

analysis, which provides accurate and detailed results but the measurements are only

at selected time points (usually at the end of the test). Gas sensors for specific
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gases can enable real-time gas measurement [93], which is needed by the Battery

Management System (BMS) to detect cell failure if specific gas concentrations exceed

certain thresholds. To this end, an overcharging abuse experiment was conducted to

show the effectiveness of NDIR gas sensor targeting CO2 by causing venting for a

commercial prismatic cell inside a small enclosure.

Figure 4.1: The overcharging experimental setup. The fixture was placed in an
unsealed enclosure with a prototype gas sensor suite by Amphenol Advanced Sensors,
which measures the CO2 concentration, humidity and gas temperature.

Figure 4.2: Schematics of the fixture with battery cell (a) and the plastic spacer (b).
The battery and two aluminum dummy cells were placed in the fixture, with a force
sensor measuring the expansion force. The plastic spacers separated the cell and the
aluminum dummy cells. The K-type thermocouples were inserted to measure cell
temperature.
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4.4.1 Experimental Method

A commercial Lithium Nickel Manganese Cobalt Oxide (NMC) prismatic cell man-

ufactured by Sanyo with an electrical capacity of 4.9 Ah and a voltage range of 3.0 V

to 4.2 V was used in an overcharging abuse test. The size of the prismatic cell is

120× 85× 14 mm.

The cell was charged with a constant current of 15A (3C rate) until a SOC of 213%

was reached, and then the current was increased to 20A (4C rate) until gas venting

occurred. The overcharging experiment is illustrated in Fig. 4.1. The prismatic cell

is located between two aluminum blocks in a fixture similar to the one used in [94].

The schematics of the fixture is shown in Fig. 4.2, where the plates “P1”, “P2” and

“P3” correspond to the same plates in Fig. 4.1. The expansion force was recorded by

the force sensor located at the side of the fixture. The gas sensor was located next

to the fixture. The whole device was placed inside an acrylic box that had a small

opening at the backside due to the wiring at the bottom. The unsealed design of the

acrylic box was to avoid pressure build-up.

The voltage, current, cell surface temperature, expansion force, gas temperature,

CO2 concentration, humidity and pressure were recorded using a LabVIEW PXI-

based data acquisition system. The CO2 sensor is a Telaire T6703 NDIR CO2 sensor

from Amphenol Advanced Sensors [92], with an accuracy of ±10%. The gas temper-

ature sensor measures the temperature of the detected gas on the gas sensor. The

pressure sensor, gas temperature sensor, humidity sensor and NDIR CO2 sensor are

all integrated into the prototype gas sensor suite provided by Amphenol Advanced

Sensors. The force sensor is an Omegadyne LC305-500 load cell.

4.4.2 Results and Discussion

Due to the six-volt voltage protection limit of the power supply, the charging

current decreased after the gas venting event, and no thermal runaway was triggered.

The cell was later discharged to safely handle the device. Fig. 4.3 shows the battery

fixture inside the acrylic box before and after the gas venting event. The enclosure

was filled up by vent-gas and white fumes. The produced white fume was mainly due

to the released electrolyte vapors [95]. The cell voltage, charging current, expansion

force and temperature are shown in Fig. 4.4.
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Figure 4.3: The battery fixture before and after the gas venting event. After the gas
venting, the enclosure was filled up by vent-gas and white fumes of electrolyte vapors.

4.4.2.1 Voltage, force and temperature response

During the overcharging test, the voltage increased gradually but later showed

a drop at t=300 s. This voltage overshoot behavior during overcharging was also

observed in [96], and can be attributed to the sudden increase of transport resistance

in the electrolyte associated with lithium plating [96]. Shortly before the cell failure,

the voltage increased rapidly and peaked at 4.79 V when the gas venting occurred.

After the gas venting, the cell voltage quickly reached 5.23 V, which was the saturation

limit of the voltage measurement system.

As the cell started to overcharge, the measured cell expansion force increased and

peaked at 2,900 lbf (12,900 N), which reached the force sensor saturation limit. After

the gas venting occurred at t=1,181 s, the expansion force quickly dropped to 140 lbf

(622 N). This drop of expansion force is also used to characterise the timing of the

gas venting event.

Since the battery and the fixture had a rigid connection, the increased expansion

force represented the battery internal pressure. The battery internal pressure can

be estimated using the measured expansion force and the contact area of the cell.

Accounting for the maximum expansion force (12,900 N), the contact area of the cell

(120×85 mm) and the atmospheric pressure, the equivalent internal gas pressure was

about 1,360 kpa. This estimated pressure is comparable to the critical vent pressure

of 1,224 kpa reported in [24].

The cell internal resistance can be approximated using the voltage drop by in-

terrupting the charging current.The cell resistance increased significantly from 5 mΩ

before the experiment to 165 mΩ after the gas venting. This was likely due to the loss
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(a)

(b)

(c)

Figure 4.4: Voltage, current, force, temperature, gas and humidity measurement dur-
ing an overcharging experiment are shown. (a) The gas venting occurred at t=1,181 s
based on the sudden drop of battery expansion force observed. (b) The peak surface
temperature at the center of the cell was 138 ◦C, however no thermal runaway was
triggered. (c) After gas venting, the CO2 concentrations quickly reached over 30,000
ppm.

of electrolyte from venting. Due to the increased internal resistance and the power

supply voltage protection, the charging current decreased after the venting.

The cell surface temperature at the center of the face reached a peak of 138 ◦C.

Because this was a thick prismatic cell (14 mm thickness) with a heavy aluminum

casing, the cell core temperature may be higher. The difference between the cell

center temperature and edge temperature also reveals the temperature gradient of
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Figure 4.5: After the gas venting, the CO2 concentration started to increase within
5 seconds, and eventually dropped since the enclosure was not sealed. At the same
time, humidity was shown to drop from the vent gases.

the cell. Before the venting, the temperature difference for the cell center and cell

edge was 25 ◦C. During the venting, this temperature difference reached 70 ◦C. With

a core temperature above 130 ◦C, the SEI and electrolyte will start to decompose

[6], and CO2 will be generated. Notably, the gas temperature readings from the gas

sensor were almost constant, which might be due to the Joule-Thomson effect that

caused the cooling of the vent-gas [36] and the relatively large volume of the box.

4.4.2.2 Gas sensor response

The pressure sensor readings, however, showed little change during the gas venting

event and is not included in the plot. This is mainly due to the small openings at

the backside of the acrylic box. Koch et al. [27] also indicated that the pressure

sensor will only work for a well-sealed battery pack. We used these openings to avoid

pressure build-up in the box and avoid a possible explosion.

The CO2 concentration increased quickly after the gas venting, reaching 10,000

ppm in 11 seconds and 30,000 ppm in 26 seconds after gas-venting occurred. As a

reference, the atmospheric CO2 concentration is only around 400 ppm, which is the

sensor reading before the gas venting event. The acrylic box has a volume of 21.5 L.
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The fixture, battery, and sensor have a total volume of around 3.1 L, so this will leave

18.4 L of ambient air volume inside the acrylic box. By using the maximum CO2

concentration and the ambient air volume, and neglecting the gas that escaped the

box, we can roughly estimate the amount of CO2 to be 0.55 L. At room temperature

and atmospheric pressure, this volume corresponds to 22.7 mmol of CO2 released in

the gas venting.

As shown in Fig. 4.5, the measured humidity decreased after the gas venting event.

Since there was no water in the vent-gas or inside the cell, the vent-gas occupied the

volume of air, leading to a decrease in humidity. Additionally, LiPF6 in the electrolyte

can react with water or moist air and can also decrease the humidity [62]. After the

experiment, we observed some transparent liquid in the acrylic box, which came from

the condensation of electrolyte and solvent vapor.

In conclusion, the NDIR CO2 sensor showed a fast response, reaching 10,000 ppm

in 11 seconds after the overcharging-induced gas-venting event, and therefore can be

used for detecting gas-venting events.

4.5 Gas Detection Case Study in an EV Battery Pack

The single-cell gas release experiment verified the responsiveness of the sensor.

Battery pack level analysis is then required to apply the gas detection method to

packs. A survey for the battery pack gas venting system is the first step to investigate

the applicability of the gas detection method. The effectiveness of the gas sensor for

detection depends on the threshold setting. Based on a single cell venting test and

the volumes of the battery pack vent-channel, one can set the detection threshold

boundary. Here as an example, we studied the Ford Fusion hybrid electric 1.4 kWh

battery pack, and suggested an upper bound of detection threshold for this specific

pack.

4.5.1 Survey of Battery Pack Venting Systems

From surveying existing pack venting system designs, the most popular design uses

a network of vent-channels to route the gas directly from the modules to a common

gas outlet at the bottom of the pack casing. The 2013-2016 Ford Fusion Hybrid [97]

and 2017 Toyota Prius Prime [98] battery packs are key examples of this, where the

gas exhaust vents lie on top of the cell stacks and direct the gas to a single outlet.

Other packs have slight modifications but follow the same general design. In Nissan’s

battery pack design patent, the ducts are located on both the upper and lower sides
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of the modules and converge to a single outlet [99]. In a Fiat 500e battery pack,

the venting system has multiple gas egress points due to the modules being grouped.

Each group has a gas outlet [100, 101]. In all designs, the vent-gas will be released to

the vehicle exterior through the gas outlet. By placing the gas sensor at the vent-gas

outlet, the sensor can monitor the conditions of the entire pack.

During normal vehicle operation, the membrane at the outlet is designed to protect

the pack from contaminants, equalize pressure inside the pack, and provide ventilation

to expel damp air [102]. In the case of gas venting events, the membrane is designed

to open due to the pressure build-up to allow large amounts of vent gas to be released

[102].

To help illustrate the gas detection for thermal runaway events in a pack with

vent-channels, a specific battery pack and its vent channel configuration are shown in

Fig. 4.6a. The pack is based on the 2013 Ford Fusion hybrid electric 1.4 kWh pack

[94]. Each module has a vent channel on the top of the cells that could receive, trap

and evacuate the gas of any vented cells. The CO2 sensor is located at the outlet of

the gas venting channel, as depicted in the schematic.

To apply the gas detection methods in battery packs, two issues must be consid-

ered: (1) the delay of gas detection in packs due to the time needed for gas propaga-

tion, and (2) the threshold for gas detection.

4.5.2 Gas Detection Response Time

According to the overcharging experiment, the NDIR CO2 sensor has a fast re-

sponse time when placed next to the vented cell. After 11 seconds of cell venting, the

recorded CO2 concentration from the sensor exceeded 10,000 ppm. Considering the

fast sensor response time, the main factor for the delay of gas detection method is

the gas flow time.

In a battery pack, the damaged cell may not be located near the gas sensor

and might delay the response due to the time needed for gas propagation. The gas

propagation process is mainly driven by diffusion and convective mass transfer. While

the diffusion process might have a time constant of over hundreds of seconds [103],

the convective mass transfer will be much faster considering the fast speed of gas

venting.

Most commercial cells have a critical gas venting pressure of 1224 kpa [24], and

the outlet of the vent channel is atmospheric pressure (100 kpa). The large pressure

difference can lead to a very fast venting flow speed, and by assuming isentropic nozzle

flow, simulations have shown that the gas or ejecta venting speed can be supersonic
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(a)

(b)

Figure 4.6: Schematic of a battery pack module and vent channel. (a) The vent-gas
can easily enter the vent channel located above the cells, which will be detected by
the gas sensor. (b) Cross-sectional view of the vent channel, where the vent-gas enters
from the left side, and the gas sensor and membrane are located on the right.

[104]. In reality, due to the resistance, drag, and the pressure decrease after the initial

venting, the vent gas speed will not reach that ideal velocity.

By using a high speed camera, prior studies showed that the flames of the first

venting gas traveled 0.3 m in less than 300 ms [104], which corresponds to a gas

flow velocity of over 1 m/s. Considering that the high speed camera only captured

the flame speed, the velocity of the vent-gas and ejecta can be even higher. With a

vent-channel length of 0.6 m, the vent-gas can easily reach the gas sensor location in

a few seconds.

Since the travel time for the gas in the vent channel is considered fast, the major

focus of gas detection methods is the gas detection threshold.
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Table 4.4: Upper bound of detection threshold for CO2 concentrations

Detection Event Abuse Condi-
tion

Cell Type CO2 Release /mmol Upper Bound of Detec-
tion Threshold∗ /ppm

First Venting Overcharging NMC prismatic,
from this study

22.7 238,000

First Venting Overheating NCA 18650 [37] 1.6 - 6.2 22,000 - 79,000
Thermal Run-
away

Overheating NCA 18650 [37] 22.6 - 38.8 237,000 - 348,000

Thermal Run-
away

Overheating LCO 18650 [65] 28.9 - 34.3 285,000 - 321,000

* The upper bound of detection threshold is the volume-averaged CO2 concentration.

Setting the threshold above this value can lead to failure to detect venting.

4.5.3 Gas Detection Threshold

The detection threshold selection is a trade-off between detectability and false-

positive rates. A smaller threshold may lead to improved detectability of the fault but

will bring higher false alarm rates. A large threshold can have a smaller false positive

rate but will suffer from lower detectability. The volume-averaged CO2 concentration

and the single cell experiment can help to set the detection threshold boundary.

Due to the difference in pack volumes, the gas concentrations will vary in different

cases. Here, we study the gas detection threshold that can be applied to the 2013

Ford Fusion hybrid electric battery pack. For the size of the vent channel, we assume

it has a length of 0.6 m, width of 0.05 m, and height of 0.06 m. As seen in Fig. 4.6a,

there are two stacks of cells in the battery pack, and correspond to two vent channels

on top of cells.

A cross-sectional view of the vent channel is shown in Fig. 4.6b, where a membrane

is located at the outlet of the vent channel. The membrane usually opens at a pressure

between 20 and 100 millibars [105]. During gas release events, due to the membrane

design, the gas in the channel takes time to vent to the outside of the pack. We

assume the vent-gas mixes well with the vent channel air and the loss of vent-gas

through the membrane will not change the relative percentage of CO2 upstream.

The volume-averaged CO2 concentration in ppm (parts per million in volume) can

be estimated by

c(CO2)avg [ppm] =
106 [ppm] · n(CO2) [mol]

n(CO2) [mol] + n(air) [mol]
(4.1)

where c(CO2)avg is the volume-averaged CO2 concentration in the vent channel in

ppm, n(CO2) is the amount of CO2 in moles, and n(air) is the amount of air in the
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vent channel in moles. The n(air) can be estimated through the volume of a single

vent-channel (Vchannel) using the ideal gas law

n(air) [mol] =
Patm [Pa] · Vchannel [m3]

R [m3 · Pa ·K−1 ·mol−1] · T [K]
(4.2)

where R is gas constant, 8.314 [m3 · Pa · K−1 · mol−1]. T is the average vent-

channel temperature before venting, which is assumed to be 20 ◦C (293 K). Patm is

the atmospheric pressure, 105 Pa. In the assumed pack, n(air) = 72.6 mmol.

The c(CO2)avg does not represent the actual CO2 sensor readings, but due to the

fast gas propagation, equilibrium can quickly be reached. Therefore, the c(CO2)avg

term is considered representative of the sensor readings upon a gas venting event.

When the amount of CO2 generated is much smaller than the amount of air in

the pack volume (n(CO2) � n(air)), the volume-averaged concentration c(CO2)avg

in ppm can be approximated as a function of n(CO2) and Vchannel:

c(CO2)avg [ppm] ≈ K [ppm ·m3 ·mol−1]

·n(CO2) [mol]

Vchannel [m3]
+ c(CO2)atm [ppm]

(4.3)

where K = 106 · RT/Patm. When the average temperate is 20 ◦C, the constant K

is 2.4 × 104 [ppm · m3 · mol−1]. When the amount of CO2 generated is small, the

atmospheric CO2 needs to be considered. c(CO2)atm is the CO2 concentration in the

atmosphere, which is set as 400 ppm.

In section 4, upon the first venting event from overcharging for the prismatic cell,

approximately 22.7 mmol of CO2 was released (n(CO2) = 22.7 mmol). Based on

this, the volume-averaged CO2 concentration can be calculated using Eq. 4.1. If the

detection threshold is set higher than the volume-averaged CO2 concentration, it can

cause false negatives or failure to detect cell venting events. Therefore, the volume-

averaged CO2 concentration is the upper bound (ub) of the detection threshold (dthr)

for the prismatic cell upon overcharging.

c(CO2)
ub
dthr = 238, 000 ppm (4.4)

For comparison, the CO2 release and the upper bound of the detection threshold for

different cells upon different abuse conditions are listed in Table. 4.4.

Since CO2 can be generated from other sources in daily life, such as human respi-
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ration and car exhaust, setting the detection threshold too low can trigger unwanted

false alarms. As an example, for electric vehicle applications, in most cases the pack

vent gas channel is directed to the vehicle exterior [106], so the car exhaust from

outside can potentially lead to a false alarm. A study on CO2 concentration on Min-

nesota highways reported a mean CO2 concentration of 762 ppm with a standard

deviation 75 ppm [107]. Assuming Gaussian distribution of the CO2 concentration in

highways under this condition, setting a detection threshold over 10,000 ppm can en-

sure the probability of having a false positive to be negligible (< 0.001%). The lower

bound for the detection threshold should be determined based on the specific usage

of the pack and measurements of CO2 concentrations in all operating conditions.

In summary, for the given battery pack and prismatic cell, the upper bound for

CO2 concentration detection threshold is 238,000 ppm for an overcharge-induced cell

out-gassing event. For different cells or different abuse conditions including battery

leakage, the upper bound for the detection threshold can also be informed by cell

level experiments as in Section 5 and the volume-averaged CO2 concentration based

on the pack vent channel design details.

4.6 Summary

This study proposed a gas detection method for battery cell venting in battery

packs. The summary of prior battery abuse experiments with overheating, overcharg-

ing and nail penetration all indicated the presence of CO2 in the vent-gas. At the

same time, CO, H2, and VOCs were found in many battery abuse experiments, but

lacked consistency across testing conditions. Considering the early presence in first

venting, good consistency, ability to detect cell leakage, and sensor feasibility, CO2

was selected as the indicator for gas venting events. The NDIR CO2 sensor was se-

lected for cell-level validation. The overcharging experiment demonstrated the fast

and clear signal from the gas sensors after cell venting occurred.

A battery pack with a vent-gas channel located above the cells was investigated

to evaluate the performance of gas detection. To help design the detection threshold,

the idea of volume-averaged CO2 concentration in the vent-channel was proposed to

represent the gas sensor readings and was used as the upper bound for the detection

threshold. Setting the detection threshold above this value can fail to detect venting

events. In this study, based on the first venting event of the prismatic cell triggered

by overcharging, the upper bound for the CO2 concentration detection threshold is

238,000 ppm. The detection threshold boundaries for cell leakage and other abuse
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conditions can be identified with additional cell-level experiments.

The overcharging experiments demonstrated the effectiveness of CO2 detection

upon gas venting in a single cell case, and the analysis for the pack showed the fast

response and effectiveness of a gas detection system in a large battery pack. The

proposed gas detection system requires only one gas sensor at the outlet of the vent

gas channel. Additionally, the gas detection system has the unique advantage of being

insensitive to the location of the vented cells.

The proposed gas detection system, however, is only sensitive to battery faults

that involve gas venting. It requires other sensors and algorithms to detect different

types of battery faults that do not have a gas venting phenomenon, including micro-

internal shorts. Combined with multiple types of sensors, the system can be used for

higher confidence level detection of battery thermal runaway events and diagnosis of

battery internal short circuit events.
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CHAPTER V

Cell Venting and Gas Flow Simulation

5.1 Introduction

In chapter 4, it is revealed that CO2 is the major gas species released during the

cell’s first venting and a thermal runaway event. This chapter will follow the analysis

of simulating the onset of cell first venting and gas release. The first venting model

enables the estimation of CO2 gas released for setting the gas detection threshold

without the need for expensive testing. We then proceed with the analysis of gas flow

in a battery storage drum after a cell failure to investigate the gas detection speed

and sensor placement in the drum..

In battery packs, a single cell thermal runaway can lead to thermal runaway

propagation of neighboring cells. Kim [108] simulated thermal runaway propagation

in a large battery module, and showed that a single cell thermal runaway could lead

other cells in the module to thermal runaway. The new thermal runaway cells could

heat and damage more cells, causing a chain reaction. It is important that early

detection should be made early enough before the second cell triggering thermal

runaway so that mitigation strategies can be deployed. This time is referred to as

propagation critical time (tcrit). In this chapter, the detection time is evaluated based

on the comparison with thermal runaway propagation critical time.

In large battery storage containers, voltage, current and temperature measure-

ment for every single cell is not available. Therefore, a method for monitoring the

whole container’s state is important. As indicated later in this study, traditional tem-

perature sensing can be very late for the thermal runaway detection of large storage

containers. Instead, using gas sensing will enable early detection in this system and

be able to start emergency procedures before the thermal runaway propagates.

In this study, we focus on the scenario with a single 18650 cell thermal runaway in a

55 gallon (0.208 m3) battery storage drum. The single-cell triggering thermal runaway
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will vent gas and propagate the heat to neighboring cells. To show the effectiveness

of the gas detection method, in this case, the gas flow in the battery storage drum is

simulated in this work. The result shows that drum surface temperature monitoring

is too slow to make the detection, while the proposed gas sensing method is much

faster, and its detection time is before propagation critical time.

5.2 Modeling Onset of Cell Venting

Figure 5.1: Overview of the first venting model. The model takes cell temperature as
input, and outputs the generated CO2 amount n(CO2) and the cell internal pressure
Ptotal.

The overview of the model is shown in Fig. 5.1. The battery first venting model

takes the measured cell surface temperature T as an input. If it is coupled with a

battery thermal model, then it can be the average cell temperature from the model.

The output of the model includes the the predicted amount of CO2 released in the first

venting event, n(CO2), and the cell internal pressure, Ptotal, which can be compared

with the critical pressure to determine when the cell vents.

5.2.1 Modeling Gas Evolution

Gas evolution is one of the most important feature in battery safety events. Under

battery abuse condition when the cell is at high temperature, the generated gas from

side reactions can directly increase the cell internal pressure and leads to cell rupture

[52]. One of the early exothermic reactions, the SEI decomposition, directly generates

gas that can cause venting [52]. The SEI decomposition reaction follows the expression

below [6]
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(CH2OCO2Li)2 → Li2CO3 + C2H4 + CO2 + 0.5O2

The primary gas species detected in the first venting is CO2 [37], and the CO2

gas generation process is assumed to be associated with SEI decomposition in Ref

[24]. In this model, we only consider the CO2 generated by SEI decomposition to

characterize n(CO2). The SEI decomposition reaction rate will increase exponentially

with temperature [12, 32], and can be expressed as below

dxSEI

dt
= −ASEI · xSEI · exp

(
−ESEI

kbT

)
(5.1)

where xSEI is the fraction of Li in the SEI, representing the progress of SEI de-

composition, ASEI is the frequency factor for SEI decomposition and ESEI is the

activation energy for SEI decomposition, kb is Boltzmann’s constant, and T is the

cell temperature.

The amount of CO2 produced from SEI decomposition can be expressed as a

function of SEI decomposition progress xSEI [52]

n(CO2) =
man(xSEI,0 − xSEI)

2MC6

(5.2)

where n(CO2) is the amount of CO2 in mole, man is the anode mass, xSEI,0 is the

initial xSEI before side reactions become active, and MC6 is the molar mass (g/mol)

for C6.

5.2.2 Modeling Cell Internal Pressure

Before the cell evolves into a full thermal runaway, gas venting will be triggered

when the cell internal pressure reaches a critical value. The exact pressure at which

the battery vents depends on the form-factor and design. As an example, for the

18650 cylindrical cell studied by [24], the first venting would occur when the cell

internal pressure reached 1224 kPa. The pouch cell in this study has a critical vent

pressure of 158 kPa, which was determined experimental and estimated based on

the measurement from a load cell as described below. Immediately after venting,

the pressure drops significantly and the generated gas is released. During the first

venting event, the gas and some electrolyte will be ejected to the outside. The loss of

electrolyte in the cell will lead to changes of the cell properties. This can be observed

as an increase in resistance and loss of active materials [31]. This study only focuses

on the cell behavior before first venting.

The total internal pressure of the cell includes two components: first, pressure
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from the evaporation of electrolyte, which is equal to the vapor saturation pressure;

second, pressure from the generated gas. The cell internal pressure Ptotal can be

expressed as

Ptotal = Psat + PCO2 (5.3)

where Psat is the saturation pressure of the electrolyte vapor, and PCO2 is the pressure

from the CO2 generated during SEI decomposition. The saturation pressure of the

electrolyte vapor can be expressed by using the Antoine equation [109]

log(Psat/kPa) = A− B

T/K + C
(5.4)

where T represents temperature in K, and the Antoine coefficients for dimethyl

carbonate (DMC) and ethylene carbonate (EC) are shown in Table. 5.1

Table 5.1: Antoine coefficients of the pure electrolyte

Component A B C
DMC [109] 6.4338 1413.0 -44.25
EC [109] 6.4897 1836.57 -102.23

For systems with mixed electrolyte components of EC and DMC, the saturation

pressure can be expressed by adding the partial pressure of each component

Psat = yEC · Psat,EC + yDMC · Psat,DMC (5.5)

where the yEC and yDMC refer to the molar fraction of EC and DMC in the

electrolyte, and in this cell yEC = 30%, yDMC = 70%. Psat,EC and Psat,DMC represent

the saturation pressure for pure component calculated in Eq. 5.4. The assumption

that the system is in equilibrium at the saturation pressure is valid only when the

system is closed. After the venting, the pressure drops and the equation does not

hold true. To this end, we will only consider the gas pressure before the gas venting.

The PCO2 is the gas pressure from the generated CO2. The partial pressure PCO2

can be calculated using the ideal gas law

PCO2 =
n(CO2)RT

Vh
(5.6)

where n(CO2) is the generated amount of CO2 in moles, R is the ideal gas constant,

and Vh is the volume of headspace of the cell, corresponding to the volume of gas in

the cell. The volume of headspace varies for each cell. As an example, for a 18650
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cylindrical cell in [24], Vh is 7% of the total cell volume. For this study, we consider

a vacuum-sealed pouch cell, which has room to expand before the internal pressure

begins to build. Once the free volume Vh,0 is filled, the increase in internal pressure

deforms the surface of the pouch primarily in the direction perpendicular to the plane

of the separator due to the aspect ratio and cell construction. The total volume for

gas Vh can be estimated by

Vh = Vh,0 + Asurf × (∆d− αcell ·∆T ) (5.7)

where Vh,0 is the volume of headspace before the cell surface area deforms, and

is estimated using direct measurements of the pouch cell. The pouch cell initial

headspace volume can be estimated by measuring the dimensions of the electrode

and the cell sealing edges, as shown in Fig. 5.2.

Figure 5.2: Headspace measurement for the pouch cell. The red lines indicate the
widths of headspace areas. Vh,0 can be estimated using the measured headspace area
and the cell thickness. This pouch cell’s headspace volume is estimated to be 13.5%
of total cell volume.

The second term in Eq. 5.7 represents the increased volume due to gas generation

minus the thermal swelling of the active material, where Asurf is the cell surface area,

∆d is the change in cell thickness, and ∆T is the change of cell temperature from

the initial (∆T = T − T0). The internal cell pressure is balanced by the pressure on

surface of the pouch. The change in cell thickness ∆d can be expressed as

∆d = L
∆σ

E
(5.8)
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where E and L are the Young’s modulus and nominal thickness of poron sheets,

respectively. ∆σ is the increased compression stress in the fixture due to gas pressure

and thermal expansion of the battery, and can be expressed as

∆σ = max

(
Ptotal − σ0 − Patm,

E · αcell ·∆T
L

)
(5.9)

where αcell represents the cell thermal expansion coefficient, σ0 represents the

initial compression stress in the fixture, and Patm represents the atmospheric pressure.

At the early stage, the cell is under-inflated, and Ptotal is smaller than the initial

compression stress and atmospheric pressure, so a max operator is used to ensure ∆σ

equals the thermal expansion term before the gas pressure builds and breaks contact.

When the cell internal pressure exceeds the critical pressure Pcrit, cell rupture or

gas venting will occur. The critical vent pressure of the pouch cell can be measured

using the maximum measured expansion force Fmax, the contact area between cell

and fixture Asurf and the atmospheric pressure Patm.

Pcrit =
Fmax

Asurf

+ Patm (5.10)

The critical vent pressure for the pouch cell will be based on experimental measure-

ments discussed in the next section.

A summary of the model parameters used is listed below, and the detailed spec-

ifications for the pouch cell including anode and cathode mass can be found in the

Appendix.

Table 5.2: Summary of first venting model parameters

Parameter Value Unit Physical Meaning Source
ASEI 2.25× 1015 s−1 Frequency factor for SEI decomposition [32]
ESEI 2.24× 10−19 J Activation energy for SEI decomposition [32]
xSEI,0 0.15 - Initial fraction of Li in SEI [32]
MC6 72 g/mol Molar mass for C6 -
man 19.1 g Anode mass From Manufacturer
Vh,0 6.65× 10−6 m3 Initial volume of headspace Measured
Asurf 0.009 m2 Contact area between cell surface and fixture Measured
L 2.4 mm Thickness of two Poron sheets Measured
E 0.19 MPa Young’s modulus for Poron sheets Measured
αcell 1.1 µm/K Cell thermal expansion coefficient [110]
Patm 101 kPa Atmospheric pressure -
Pcrit 158 kPa Critical vent pressure Measured
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5.3 Experimental Validation for First Venting Model

Most of the previous published works used gas chromatography for gas component

analysis [75, 76], which provides detailed compositions of the vent-gas but the mea-

surements are usually taken at the end of the test. Since the organic solvent in the

leaked electrolyte can also react with oxygen from the environment to form CO2 and

H2O [72], this will lead to increased CO2 amount over time, and using this measured

value for detection can artificially increase the detection threshold, leading to false

negative of gas detection.

For gas detection of cell venting events, the initial amount of CO2 released at the

first venting event is the key parameter. To this end, real-time gas sensor measure-

ments are needed, and an ESC experiment using a 4.6 Ah NMC pouch cell was set up

to validate the first venting model from the timing of venting to CO2 release amount.

5.3.1 External Short Circuit Experiment

The battery used in this experiment was manufactured at the University of Michi-

gan Battery Lab. The pouch cell size is 130 mm × 89 mm × 5.5 mm. The 1 kHz

impedance of cell, from EIS testing, was 5.7 mΩ at 20 ◦C. The experiment was per-

formed for a fully charged cell (100% SOC).

The short circuit was initiated using a Gigavac GV141BAB DC contactor. When

no voltage is applied to the contactor coil, the circuit was open (insulation resistance

over 100 MΩ). When a 12 V voltage was applied to the contactor coil, the contactor

closed the circuit (electrical resistance only 0.3 mΩ). The short circuit current was

measured using a current shunt with 250 A rated maximum current.

The pouch cell was stacked between a garolite plate and an acrylic plate in the

fixture with a layer of poron on both sides of the cell, and the schematic for the fixture

is shown in Fig. 5.3a. The bolts hold the two end-plates at a fixed distance. An

Omegadyne LC305-500 load cell was placed between the plates and used to measure

the cell expansion force during ESC experiments.

There were two K-type thermocouples placed on the surface of the cell to measure

the surface temperature at the center of the cell and near the cell tabs, as shown

in Fig. 5.3b. Similar to the experiment setup in [111], the whole fixture was placed

inside an acrylic box, which had a small opening at the back due to the wiring at the

bottom.

The voltage, current, cell surface temperature, expansion force, and CO2 concen-

tration were recorded using a LabVIEW PXI-based data acquisition system. CO2
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(a)

(b)

Figure 5.3: ESC experiment setup (a) Pouch cell was stacked in the fixture, and the
cell expansion force was measured (b) K-type thermocouples were used to measure
the cell center temperature and cell tab temperature.

concentration was measured using a Telaire T6703 NDIR CO2 sensor from Amphenol

Advanced Sensors with an accuracy of ±10% and updated signal every 5 seconds.

The gas sensor was placed adjacent to the fixture.

5.3.2 Experiment Results

During the ESC experiment, gas venting was observed without thermal runaway.

After the gas venting event, the release of vent-gas during venting was visible due to

the electrolyte vapor, creating a white fume ([95]). The cell voltage, charging current,

expansion force, and temperature are shown in Fig. 5.4.
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Figure 5.4: Voltage, current, force, temperature, gas and measurements during an
ESC experiment are shown. No thermal runaway was triggered in this ESC experi-
ment.

5.3.2.1 Voltage, current and temperature response

The external short started at t=128 s, and the cell terminal voltage dropped to

1.5 V immediately, and slowly decreased to 0.2 V before the venting occurred. The

ESC current peaked at the start of the short circuit event, reaching 233 A.

After the initial peak, the current then decreased with time, and the short circuit

current was 31 A before the gas venting. After the gas venting event, due to the

shortage of electrolyte in the cell, cell internal resistance would increase significantly

[31]. According to the EIS testing result after the ESC experiment, the leaked cell’s

1 kHz impedance was 163 mΩ, comparing to 5.7 mΩ before the ESC experiment.

Because of the large increase of cell resistance, the short circuit current decreased

even further.

The cell temperature started to increase after the initiation of the ESC experiment.

The cell surface temperature at the center reached 114 ◦C before the gas venting event,
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and the cell tab temperature was at 108 ◦C. After the gas venting, the cell center

reached a maximum of 120 ◦C before the cell cooled down.

5.3.2.2 Expansion force and gas response

After the ESC started, the expansion force increased rapidly and reached a peak

of 517 N before the gas venting. When the cell ruptured, the expansion force quickly

dropped to 50 N at t = 208 s, indicating gas venting.

After the gas venting, the built-up gas was released and the measured CO2 con-

centration quickly increased, reaching a peak of 1550 ppm at t = 230 s. Due to the

small opening at the back of acrylic box, the vent-gas gradually diffused out of the

acrylic box, causing a decline in the CO2 concentration.

5.3.2.3 Critical vent pressure and gas release

The critical vent pressure and CO2 gas release amount can be estimated by using

the available force and gas sensor measurements.

For determining the critical vent pressure, the maximum expansion force was

517 N, and the contact area between cell and fixture Asurf was 0.009 m3. Therefore

the critical vent pressure for the pouch cell from Eq. 5.10 is estimated to be 158 kPa.

The amount of CO2 gas released can be estimated using the maximum measured

CO2 concentration in the acrylic box (1550 ppm). Since the atmospheric CO2 con-

centration is 400 ppm, then the increased CO2 concentration (∆c(CO2)max) is 1150

ppm. The acrylic box has a volume of 21.5 L. The fixture, battery, and sensor have

a total volume of 3.1 L, leaving 18.4 L of ambient air volume inside the acrylic box

(Vair = 18.4 L). By using the increased CO2 concentration and the ambient air

volume, neglecting the gas that escaped the box, and assuming the CO2 reached

equilibrium, we can roughly estimate the volume of CO2 (V (CO2)exp) to be 20 mL.

V (CO2)exp =
∆c(CO2)max [ppm]

106 [ppm]
× Vair [L] = 20 mL (5.11)

At room temperature and atmospheric pressure, from ideal gas law, the amount

of CO2 released from experiment n(CO2)exp can be derived. For the equation below,

Patm is the atmospheric pressure (Patm = 105 Pa), R is the ideal gas constant (R =

8.314 m3 · Pa · K−1 · mol−1), and T is the room temperature (T = 298 K). The

amount of CO2 released from the experiment was approximated to be 0.8 mmol.

n(CO2)exp =
V (CO2)exp · Patm

RT
= 0.8 mmol (5.12)
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This value here is an approximation because of the following assumptions: 1. We

neglect the vent-gas that escaped from the box in the first 20 seconds. 2. We assume

the vent-gas mixes well in the box and CO2 concentration has reached an equilibrium

in the box.

5.3.3 Comparing Model with Experiment

(a) (b)

(c) (d)

Figure 5.5: Model prediction for the ESC experiment, the shaded region corresponds
to model outputs after considering temperature measurement errors. (a) Cell internal
pressure, which is composed of saturation pressure and gas pressure. The gas venting
occurs when the pressure exceeds the critical vent pressure. (b) CO2 gas genera-
tion before the cell venting occurs. (c) Battery expansion force before cell venting,
compared with experiment measured expansion force. (d) Temperature input to the
model with ±2.2 degrees from the measured value.

The measured temperature from the experiment will be used as model input, and

the first venting time and amount of gas generation are the model outputs. These
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outputs in addition to the predicted battery expansion force, will be compared with

the experiment measurements.

The measured cell tab temperature is used as the temperature input, because the

gas venting happened near the cell tab area. Since the K-type thermocouples have

an accuracy of ±2.2 ◦C, and the model outputs of gas generation and pressure are

highly sensitive to temperature inputs, therefore the model predictions of the ESC

experiment include confidence bounds based on the temperature intervals.

The first venting model predicts that venting will occur between t = 187 s and

t = 199 s. The experiment shows that the venting occurred at t = 208 s. This

discrepancy might come from the error in the modeled temperature. The genera-

tion rate of gas is strongly temperature dependent, and small errors in the modeled

temperature can result in large difference in predicted venting times. Further more,

the frequency factor and activation energy were taken from [32], and correspond to

a slightly different anode formulation. These parameters could be tuned to better

match the timing of cell venting in the experiment.

The cell expansion measurement can be used to infer the gas generation during

the initial phases of cell failure before the venting. The model predicts the two

slopes in measured load prior to the first venting event, as shown in Fig. 5.5c, the

short circuit process can be separated into four regions: 1, before short circuit. 2,

thermal expansion. 3, cell swelling from gas. 4, after venting. For the second stage,

the thermal expansion stage, the initial relatively slow increase in force is due to

the thermal expansion of the active material. Then at the third stage, once the

generated gas has filled the headspace and overcomes the combined pre-load and

thermal expansion force within the fixture, the swelling due to the generated gas

causes a faster increase in force. At the fourth stage, after the cell venting, the

expansion force drops suddenly.

Table 5.3: CO2 Gas Generation from Model Prediction and Experiments (mmol)

Model Experiment
CO2 before venting CO2 after venting Total CO2 Total CO2

0.25 - 0.42 0.35 - 0.55 0.6 - 0.97 0.8

After venting, the CO2 gas concentration is used for quantifying the progression

of the reaction. The experiment measured CO2 concentration reflects the total gas

release, which includes the gas generated before cell venting and after venting. The

model predicts the amount of CO2 before venting, and the total amount of CO2 can be

predicted by continuing the SEI decomposition reaction in the model beyond venting
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for comparison with experimental data. The results are summarized in Table. 5.3,

and the model generally matches with the experimental release results.

5.4 Simulating Single Cell Thermal Runaway

After modeling the cell venting events and the CO2 gas release in the first venting,

we can now simulate a single cell thermal runaway and estimate the amount of CO2

gas release in a thermal runaway event. The thermal runaway model for a 18650 cell

will be based on [35], and includes a lumped thermal model, an electrical model for

short circuit ohmic heat, and a side reaction model for exothermic reaction heat.

5.4.1 Lumped Thermal Model

For the thermal model, earlier studies [12, 32] have used lumped thermal models

to describe battery temperature during thermal runaway. The lumped thermal model

assumes a uniform temperature distribution and one temperature state to represent

the whole cell. Cai et al. [35] addressed the importance of having multiple temper-

ature states in the thermal model in cases of a local internal short circuit. In this

chapter, we focus on a massive internal short circuit event, where we assume the

short circuit ohmic heat distributes evenly across the cell. To simplify the analy-

sis of single-cell thermal runaway, a lumped thermal model will be used for the cell

triggering thermal runaway.

Cp,cellmcell
dTcell
dt

= (Q̇exo + Q̇ohmic) +
Tamb − Tcell

rc2a
(5.13)

where Tcell and Tamb represent the cell temperature and atmospheric temperature

respectively and rc2a is the thermal resistance between the cell and atmosphere.

The heat source term Q̇exo is the side reaction heat from SEI decomposition, anode

decomposition and cathode decomposition [32, 35]. The other heat source term Q̇ohmic

represents the short circuit ohmic heat.

5.4.2 Short Circuit Model

During a thermal runaway event, the battery short circuit will produce a signif-

icant amount of heat. This study focuses on the massive internal short circuit that

occurs in a fully charged battery and finally leads to thermal runaway. The bat-

tery short circuit process can be represented by an equivalent circuit model, and the
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terminal voltage can be represented as

VT = U(SOC)− I ·Rcell (5.14)

where I is the short circuit self-discharge current. Rcell is the cell internal resistance

and U(SOC) is the battery open-circuit voltage (OCV). Similar to Chapter 2, the

OCV is a function of SOC.

An equivalent circuit model can be developed to describe the internal short circuit

process. In this simulation for a massive internal short circuit case, for convenience,

we assume the short circuit resistance is zero (Rshort = 0). The short circuit current

can be found using Kirchoff’s laws directly for the simple circuit.

Ishort =
U(SOC)

Rcell

(5.15)

The heat release due to self discharge is given by,

Q̇ohmic = I2shortRcell (5.16)

Following the assumption of the lumped thermal model, the ohmic heat Q̇ohmic

distributes evenly in the whole battery, so the whole cell temperature is elevated due

to the short circuit process.

5.4.3 Exothermic Reactions and Gas Evolution Model

The major exothermic reactions during a thermal runaway include SEI decom-

position, anode decomposition, and cathode decomposition [12]. The side reaction

model is the same as described in Chapter 2.

In the previous discussions of this chapter, the gas evolution process is modeled

and the first venting happens when the cell internal pressure exceeds the critical vent

pressure. For commercial 18650 cells, it usually features a higher critical vent pressure

(around 1224 kPa [24]). In a thermal runaway event triggered by a massive internal

short circuit, the temperature rise is very fast and the SEI decomposition can finish

within few seconds.

Based on this, we assume the released CO2 in the first venting event all come

from SEI decomposition. The estimated gas release will be used for simulating gas

detection of a thermal runaway event.
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Table 5.4: Thermal runaway model parameters for 18650 cell

Parameter Value Unit Physical Meaning
Aan 2.5× 1013 [32, 42] s−1 Frequency factor for anode decomposition
Aca 2.55× 1014 [42] s−1 Frequency factor for cathode decomposition
ASEI 2.25× 1015 [42] s−1 Frequency factor for SEI decomposition
C 2.4 Ah Capacity of the 18650 cell

Cp,cell 830 [22] J kg−1 K−1 Specific heat capacity of cell
Ean 2.24× 10−19 [32, 42] J Activation energy for anode decomposition
Eca 2.64× 10−19 [42] J Activation energy for cathode decomposition
ESEI 2.24× 10−19 [32, 42] J Activation energy for SEI decomposition
han 1714 [32, 42] J g−1 Enthalpy of anode decomposition
hca 790 [42] J g−1 Enthalpy of cathode decomposition
hSEI 257 [32, 42] J g−1 Enthalpy of SEI decomposition
kcell 3.4, 3.4, 28 [32] W m−1 K−1 Thermal conductivity of cell
man 8.1 g Mass of anode
mca 18.3 g Mass of cathode
mcell 42.9 g Total mass of cell
rc2a 23.9 K W−1 Thermal resistance between cell and atmosphere
Rcell 15 mΩ Cell internal resistance
SOC0 1 - Initial State of Charge
Tamb 20 ◦C Ambient temperature
xan,0 0.75 [32, 42] - Initial fraction of Li in anode for fully charged cell
xSEI,0 0.15 [32, 42] - Initial fraction of Li in SEI
z0 0.033 [32, 42] - Initial dimensionless SEI thickness
α0 0.04 [32, 42] - Initial degree of cathode decomposition conversion

5.4.4 Results of Thermal Runaway Simulation

Given the major components of a single cell thermal runaway model, a simulation

will be presented here for an internal short circuit of a 18650 NMC Li-ion cell. In

this simulation, short circuit resistance will be neglected for simplicity. The model

parameters for single-cell thermal runaway are shown in Table 5.4.

The evolution of battery temperature is shown in Fig 5.6a. It is clear that the

battery experienced a thermal runaway event and the maximum temperature reached

over 800 ◦C.

The amount of initial gas generation by SEI decomposition is shown in Fig 5.6b.

According to the simulation result, there will be 7.5 mmol CO2 as the first venting gas.

This result generally agrees with the previous experimental results, which indicated

CO2 release ranges from 1.6 to 6.2 mmol in first venting events for 18650 cell [37].
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(a) (b)

Figure 5.6: (a) Single cell thermal runaway temperature; (b) First venting gas from
SEI decomposition

5.5 Critical Timeline of Detection Before Thermal Runaway

Propagation

After the first cell triggering a thermal runaway, the neighboring cells and the

drum will be heated. The challenge arises when the neighboring cells reach critical

temperatures, these cells will also trigger thermal runaway [108].

In this study, the thermal runaway propagation follows the single-cell thermal

runaway event described in the previous section. The critical time of thermal runaway

propagation is the time when the second cell triggers thermal runaway. To prevent

thermal runaway propagation, it is important to detect a thermal runaway event

before the critical time.

In this thermal runaway propagation simulation, a set of cells are placed in parallel

and series to represent a typical laptop battery, as shown in Fig. 5.7a. The thermal

runaway propagation is simulated with cells not in direct contact, and the heat is

propagated through the air in this simulation.

The cell in the center (cell #5) triggers thermal runaway, leading neighboring cells

to thermal runaway. The governing equation for this heat propagation process is

ρCp
∂T

∂t
+ ρCpu · ∇T −K∇2T = Q (5.17)

where ρ is the density, Cp is the heat capacity, T is the temperature, u is the

convective flow velocity, K is the thermal diffusivity and Q is the heat generation.

We can separate the simulation into two domains, battery and air. In the battery
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(a) (b)

Figure 5.7: (a) Cell placement during thermal runaway propagation; (b) Drum with
thermal runaway cell in center

domain, the ρcellCp,cell
∂Tcell

∂t
term represents the internal energy temporal evolution of

battery, Qcell represents the battery heat generation. We assume u = 0 inside the

battery, and the heat can propagate due to the thermal diffusion term Kcell∇2Tcell. In

air domain, the ρairCp,air
∂Tair

∂t
term represents the air temperature change, ρairCp,airu ·

∇Tair represents convection term in air domain, Kair∇2Tair represents diffusion term

in air, and there is no heat generation term Q in air domain.

This process is simulated in the COMSOL heat transfer module. The heat source is

the battery thermal runaway heat from the single-cell model. Fig 5.8a-5.8d shows the

process of cell surface temperature change before and after the second cell triggering

thermal runaway.

Fig. 5.9 shows the temperature for each cell from the first cell thermal runaway to

the end of propagation. To be noticed, the difference of peak temperatures in Fig. 5.9

and the previous single-cell result is due to different boundary conditions of heat

transfer. The critical time for the second cell to trigger a thermal runaway is around

710 seconds. Thermal runaway propagation critical time (tcrit) for this case is then

710 seconds. Detection for a thermal runaway event is needed before propagation

critical time, so the hazard of a chain reaction can be avoided.
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(a) Time= 6s (b) Time= 450s

(c) Time= 690s (d) Time= 710s

Figure 5.8: Cell surface temperature distribution (◦C)

5.6 Thermal Runaway Detection in Battery Storage Drums

In this part, two detection methods using surface temperature monitoring and

gas sensing will be analyzed, focusing on a thermal runaway event inside a cylindrical

drum. The cylindrical drum has a radius of 0.292 m and height of 0.85 m, as shown

in Fig 5.7b. The drum center coordinate is (0, 0, 0.425 m).

The small cylinder in the center of the drum represents the initial thermal runaway

cell and is located at the center of the drum. The cell center coordinate is (0, 0,

0.425 m). In this study, the drum is a mix of batteries and air, and its lumped

thermal parameters are measured by the drum heating test. The thermal parameters

of the drum are included in Table. 5.5.

5.6.1 Detection Based on Drum Surface Temperature

First, a drum surface temperature sensor is used to monitor potential thermal

runaway events inside the drum. The temperature sensor coordinate is (0.292 m,

0, 0.425 m). The detection time will then be compared with the thermal runaway

critical time tcrit.

Fig. 5.10a shows the drum temperature distribution of cross-sectional plane at

z = 0.425 m when t = 710 s. It is clear that with the large thermal mass of the
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Figure 5.9: Cell Temperature During Thermal Runaway Propagation

Table 5.5: Storage drum parameters

Parameter Value Unit Physical Meaning
ρ 2580 kg m−3 Density of drum mix
ε 0.25 - Porosity of drum mix

Cp,drum 650 J kg−1 K−1 Heat capacity of drum mix
Hdrum 0.85 m Height of drum
λdrum 1.2 W m−1 K−1 Thermal conductivity of drum mix
Rdrum 0.292 m Radius of drum

drum, the surface temperature change on the drum is subtle. In this simulation, at

t = 710 s, the surface temperature change is less than 0.001 ◦C and this small change

can hardly be detected with a temperature sensor. After t = 710s, with neighboring

cells triggering thermal runaway, any detection after that is considered too late.

In conclusion, the surface temperature sensor cannot detect such subtle changes

during a thermal runaway event before propagation critical time. When the surface

temperature measurement detects the thermal runaway, the thermal runaway has

already propagated to neighboring cells, causing even more damage. Therefore, a

fast and robust thermal runaway detection method is needed for large-scale battery

storage applications.
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(a) (b)

Figure 5.10: (a) Temperature distribution at 710s; (b)Cross-sectional view of vented
gas velocity

5.6.2 Detection Based on Gas

Monitor the air inside the drum allows faster detection because the airflow is

faster than the heat propagation speed of solid materials. To monitor the air, one

can measure the air temperature or detect vented gas concentrations. However, for

the first approach, measuring air temperature, the hot vented gas can only elevate

the average air temperature with less than 1◦C after sufficient mixing of air in the

drum. Detection based on CO2 concentrations will be more robust, because there

is a significant change of average CO2 concentrations after the thermal runaway. To

demonstrate the effectiveness of gas detection, a CO2 gas sensor will be placed at the

center of the drum top, with coordinate (0, 0, 0.85 m).

Following the result from previous sections, during the first cell thermal runaway,

7.5 mmol CO2 will be released. This study will focus on the gas flow for this 7.5

mmol CO2, which is used for thermal runaway detection. The gas flow of CO2 will

be simulated in a 55 gallon (0.208 m3) cylindrical drum. Initial gas venting speed

can be approximated by the amount of gas vented and the duration of venting from

the single-cell modeling result, and the estimated average venting speed is 1.5 m/s.

The estimated venting speed generally agrees with the experimental measurements

in [104] and the analysis in Chapter 4.5. Fig. 5.10b shows the initial speed of vented

gas in the simulation.

This gas flow process is simulated in COMSOL, using the module Transport of

Diluted Species in Porous Media. The simulation settings for transport mechanisms
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(a) Time= 1s (b) Time= 5s (c) Time= 20s (d) Time= 50s (e) Time= 100s

(f) Time= 1s (g) Time= 5s (h) Time= 20s (i) Time= 50s (j) Time= 100s

Figure 5.11: CO2 concentrations in ppm. (a-e) Cross-sectional view at x=0; (f-j)
Surface concentrations

include convection and mass transfer in porous media. The laminar flow module is

used to simulate the initial gas venting speed.

The gas sensor readings for CO2 concentrations determine the presence of a ther-

mal runaway event. Considering the atmospheric CO2 concentration is 400 ppm, a

reasonable CO2 concentration threshold of 2000 ppm is set. If the CO2 gas detector

reading exceeds 2000 ppm for more than 10 seconds, then a thermal runaway event

is believed to happen.

Fig. 5.11 shows the simulation result of drum gas flow after the gas venting. The

distribution of CO2 concentrations in ppm is shown in both cross-sectional view and

drum surface view. The red region corresponds to areas with CO2 concentrations

larger than 2000 ppm and will be able to trigger the alarm. It is clear that after 100

seconds of the first cell thermal runaway, the vented gas will propagate to most areas

in the upper part of the drum.

By using gas sensing for thermal runaway detection in this simulation, as shown

in Fig. 5.12, the thermal runaway can be detected at 85 seconds, which is ahead of

the thermal runaway critical time (tcrit = 710s).
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Figure 5.12: CO2 Gas sensor reading in simulation

5.7 Summary

This chapter addresses the modeling of cell venting and gas detection in a battery

storage drum. The cell venting process is modeled through CO2 gas generation and

cell internal pressure. The CO2 gas evolution model is then used in the simulation of

single-cell thermal runaway.

In the scenario of thermal runaway in a battery storage drum, due to close cell

placement, a single cell thermal runaway will heat neighboring cells, leading to ther-

mal runaway propagation. The simulation shows that neighboring cells will initiate

thermal runaway after 710 seconds of the first thermal runaway event, and this time

is defined as the critical time for thermal runaway propagation. Detection before

propagation critical time is needed to take immediate emergency responses.

The main focus of this study is on the timing of thermal runaway detection. Two

methods for thermal runaway detection have been simulated through COMSOL. By

using drum surface temperature measurement, detection of thermal runaway can-

not be made before 710 seconds. By switching to gas sensing, detection of thermal

runaway can be made at 85 seconds, due to the fast gas flow. While the temperature-

based method is too slow for detection, the gas sensing method will enable early

detection for thermal runaway.
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CHAPTER VI

Fault Detection for Batteries Connected in Parallel

6.1 Introduction

For batteries connected in parallel, voltage-based detection methods will suffer

poor signal-to-noise ratio, therefore novel methods are required to achieve immediate

and high confidence detection.

For internal short circuit events that evolve without going into thermal runaway, as

described in Chapter 2, cell surface temperature increase is limited [52] and the fault is

even more difficult to detect by conventional methods using voltage and temperature

measurements. If left undetected, the cell might develop into a thermal runaway after

continuous use [23]. This type of event features a fast drop and quick recovery of the

voltage and is named the “Fusing Phenomenon” in [23]. In this internal short, the

high temperature in the ISC region will trigger battery side reactions, which produce

a large amount of gas [52]. The generated gas leads to the swelling of the pouch cell

that can be measured as a sudden increase in expansion force at the module level.

The generated gas will be released in the event of a rupture that elevates the CO2

concentration level inside the battery module. The CO2 level can be measured using

a gas sensor inside the battery module.

The goal of this chapter’s study is to develop a high confidence short circuit de-

tection method based on the measurement of cell expansion force and CO2 level in

a parallel-connected module. To this end, we have developed an observer for the cell

expansion in normal operating conditions to detect battery faults from force measure-

ment. Furthermore, a CO2 gas sensor is used to detect abnormal gas concentration

spikes. The results indicate that in the absence of voltage measurements, the proposed

algorithm can detect a hard short circuit quickly in a battery module by monitoring

force and gas levels.
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6.2 Modeling Battery Internal Short in Parallel Circuits with-

out Thermal Runaway

The internal short circuit model follows Chapter 2. Since this chapter focuses

on internal short circuit without thermal runaway (as described Test two case in

Chapter 2), a simplified model based on Chapter 2 will be presented for a battery

module connected in parallel.

6.2.1 Overview of the Parallel-connected Module

For electric vehicle packs, cells are connected with up to 74 cells in parallel, like

in the Tesla Model S. Here, we consider a battery module with 50 cells connected in

parallel electrically. Each cell in this battery module is a NMC prismatic pouch 4.5

Ah cell. A schematic of the parallel-connected battery module is shown in Fig. 6.1.

Figure 6.1: The schematic of the battery module with 50 pouch cells connected in parallel.
The force sensor is placed at the module end plate and the gas sensor is located in the vent-
gas channel.

For automotive battery packs, the cells are typically constrained to a fixed volume

as shown in the inset of Fig. 6.1. Therefore swelling of the cell would result in an

increase in the cell volume, which would tend to exert a force that is balanced by the

107



module end plates. This change in force can be measured for multiple cells, which

are mechanically connected in series.

A vent-gas channel is located above all cells in the battery module, and vent-gas

from any cell will enter the vent-gas channel and leave through the channel outlet. A

gas sensor is placed at the vent-gas channel outlet, and can detect possible vent-gas

from battery failure.

6.2.2 Terminal Voltage and Thermal Model

For a short circuit in a battery module with n cells in parallel, the equivalent

circuit can be represented by Fig. 6.2. Here we assume the capacity for each cell is

4.5 Ah.

−+V (SOC)

Rcell

−+−+ −+
Rshort

Ishort

Figure 6.2: Equivalent circuit model representing a battery module with n parallel con-
nected cells and one cell with an internal short circuit.

After triggering an internal short circuit, the major heat source is the ohmic heat

from the internal short circuit current. The internal short current for the shorted cell

and the terminal voltage can be written as

Ishort =
n · V (SOC)

Rcell + n ·Rshort

(6.1)

VT = V (SOC)− Ishort/n ·Rcell (6.2)

where V (SOC) is the open circuit voltage, which is a function of State of Charge

(SOC), VT is the terminal voltage, Ishort is the short circuit current, Rshort is the

short circuit resistance, Rcell is the cell impedance at 1 kHz, and n is the number of

parallel connected cells (n = 50 in this case). By substituting Eq. (6.1) into Eq. (6.2),

it is clear that for large n, the change in VT caused by an internal short is reduced.

The localized heating Qohmic due to the ISC, causes a rapid local temperature

increase, while temperature for the rest of the cell remains relatively constant. Above

120 ◦C the Solid Electrolyte Interface (SEI) decomposition becomes active and starts

to generate significant heat [6]. Here, we focus on modeling only the temperature of
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the ISC region TISC , and assume a constant Tcell for the rest of the cell. The thermal

model from Chapter 2 can be simplified as

Cp
dTISC
dt

= (QSEI,ISC +Qohmic,ISC) +
Tcell − TISC

Rc

(6.3)

Qohmic,ISC = I2shortRshort (6.4)

QSEI,ISC = −man,ISC · hSEI ·
dxSEI,ISC

dt
(6.5)

where TISC and Tcell represent the ISC region temperature and the cell temperature

respectively. Rc is the thermal resistance between the ISC region and the rest of the

cell. Cp is the thermal capacity of the ISC region. QSEI,ISC is the reaction heat from

SEI decomposition. Qohmic,ISC is the ohmic heat in ISC region, hSEI is the reaction

enthalpy of SEI decomposition, and man,ISC is the mass of anode in the ISC region.

The SEI decomposition reaction rate will increase exponentially with temperature

[12], and can be expressed as

dxSEI,ISC

dt
= −ASEI · xSEI,ISC · exp

(
− ESEI

kbTISC

)
(6.6)

where xSEI,ISC is the fraction of Li in the SEI in the ISC region, representing the

progress of SEI decomposition. ASEI is the frequency factor for SEI decomposition.

ESEI is the activation energy for SEI decomposition, and kb is Boltzmann’s constant.

6.2.3 Expansion Force Model

At normal operating conditions, the cell expansion force can be expressed as a

function of temperature and State of Charge (SOC). For a single cell, the change of

expansion force is around 156 N or 30% of the total force from a fully discharged

to a fully charged state. The peak force due to an internal short circuit event can

exceed the sensor capacity (1780 N) and hit the sensor saturation limit of 3560 N

[52], which is greater than 10x of the normal expansion force change. Here, we model

the expansion force as a separable function of temperature and SOC [55]. Similar to

Chapter 3, the expansion force can then be expressed as

F = f1(T ) + f2(SOC) + F0 + Fgas (6.7)

where the Fgas term is the fault expansion force due to gas generation and F0 is

the preload force. For the SOC dependency of the expansion force, the measurement
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experiment uses the same setting as [54]. The cell chemistry is nickel manganese

cobalt oxide (NMC), with prismatic structure. Here, an eighth order polynomial fit

for the expansion force as a function of SOC is used, similar to Chapter 3.

For the temperature dependence, we assume the expansion force grows linearly

with the temperature as

f1(T ) = α(T − T0) (6.8)

where T0 is the initial temperature, and α is the thermal expansion rate. The thermal

expansion coefficient α varies with different fixtures and batteries. Here, we calculate

it based on the experimental data for the cell during the heating phase. The α in this

study is 2.06 N/◦C.

As a result of gas generation, the cell swells and increases the measured expansion

force once the gas pressure inside the cell overcomes the preload force. The increased

force due to generated gas is modeled using the ideal gas law to convert the number

of moles of gas to pressure. We can express the pressure as

P =
nCO2RTcell

∆V
=
Fgas

Acell

(6.9)

where ∆V is the change of cell volume occupied by the gas. We assume ∆V =

Acell∆x, and the deflection of the cell casing is balanced by the increased force from

the fixture and compression of adjacent cells Fgas = Keq∆x. An equivalent spring

constant of the battery module Keq is used which captures the effects of all other cells

in the module. We plug these relationships into Eq. (6.9) to solve for the change in

cell thickness ∆x in the direction of the applied force.

Hence the fault expansion force Fgas can be expressed as

Fgas =
√
Keq · nCO2 ·RTcell (6.10)

Since Keq is the result of a series connection of mechanical springs, it is expected

that the value of Keq would decrease as the number of cells in the module increases.

Keq ∝
1

n

Fgas ∝
√

1

n

The expansion grows rapidly following the gas buildup process. Hard cased cylindrical

and prismatic battery cells are designed with a venting structure that will reliably
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fail open once the cell exceeds a certain internal pressure to prevent explosive forces

due to gas buildup [36]. After the cell ruptures, the fault force drops to zero as a

consequence of the release of gas.

6.2.4 Gas Concentration in the Module

As discussed in Chapter 5, during a battery failure event, the SEI decomposition

reaction generates gas that can lead to severe cell swelling and venting of gas. The

total amount of CO2 generated can be estimated through SEI decomposition.

After the fault event, the vented gas transport process is fast, and [65] indicated a

transport time of 3 seconds for CO2 sensors. To model the gas sensor response which

is located at the vent-gas duct outlet, a 1D mass transport equation is incorporated.

The model assumes diffusion and convection processes. Here, we assume the vent-

gas velocity prescribes the airflow velocity. The length of the total battery module

is assumed 0.5 m. The CO2 is assumed to be generated at the boundary location

(x = 0) for the duration of the gas venting event. The mass transport equation is as

the following
dc

dt
= − ∂

∂x

(
−D∂c

∂x
+ cv

)
+ r (6.11)

where c is the concentration of CO2. D = 14.2 mm2/s is the diffusion coefficient of

CO2 in the air. v(x, t) is the vent-gas velocity distribution as a function of location

(x) and time (t), and follows the equation below

v(x, t) =

v0, if x > v0(t− t0) & x < v0t

0, otherwise.
(6.12)

where v0 is the initial vent velocity, and can be derived using the amount of gas and

the duration of the gas venting

v0 =
nCO2RTgas
PARupturet0

= 0.12 m/s (6.13)

where ARupture is assumed to be the area of the rupture, P the atmospheric pressure,

R the gas constant, Tgas the average gas temperature, and t0 the duration of the gas

venting (t0 = 1.5 s from simulation using model of [52]). The source term r for the

CO2 generation follows the equation below

r =
nCO2

ARupturehcht0
(6.14)
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where hch is the vent-gas channel height. The initial concentration is set to 400 ppm.

Furthermore there is a Dirichlet boundary condition at outlet, which corresponds to

the atmosphere CO2 concentration, c(xoutlet, t) = 400 ppm.

6.3 Limitation of Voltage Based Detection in Parallel Cir-

cuits

Voltage-based fault detection works well for a single cell and is one of the focus

areas in Chapter 3. However, in parallel circuits, voltage-based detection suffers

from signal suppression issues. Based on Eq. 6.2, for parallel-connected batteries, the

change of terminal voltage after an ISC event can be written as

∆VT = − Rcell · V (SOC)

Rcell + n ·Rshort

(6.15)

And it can be easily identified that, with the increase of parallel connected cells

number n, ∆VT will decrease.

n ↑→ ∆VT ↓

For the single-cell case, the voltage drop is significant after an internal short, and this

voltage drop can be easily detected. For the battery module with 50 cells in parallel,

after the ISC, the measured terminal voltage drop will be much smaller.

For internal short resistance of 30mΩ and cell resistance of 5mΩ, the instantaneous

voltage drop for a single cell is around 0.6 V , while the voltage drop for parallel-

connected battery module is around 14 mV . With voltage noise standard deviation

being set as σV = 5 mV [51], the voltage drop for the battery module is at a similar

magnitude with voltage sensor noise. This voltage drop can easily be neglected in the

voltage detection system.

With the number of cells increasing in the battery module, the changes of ex-

pansion force Fgas in an ISC event will also decrease. Similarly, a larger vent-gas

channel will lead to a smaller gas concentration change measured by the gas sensor.

Nevertheless, the decrease of signal-to-noise ratio for detection using expansion force

and gas signals is less significant. Expansion force signal and gas signals still have

high signal-to-noise ratios for the battery module with 50 cells connected in parallel,

and these two detection methods can be extended to battery packs while maintaining

a high signal-to-noise ratio.
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Figure 6.3: Terminal voltage drop after an ISC event for a single cell and batteries
in parallel (50 cells in parallel), simulated with OCV-R-RC model [7].

6.4 Fault Detection Methodology

Considering the fast response of the expansion force signal and the gas concen-

trations signal, we propose an ISC detection methodology for the parallel-connected

battery module based on expansion force measurements and gas sensing.

6.4.1 Fault Detection Algorithm Using Expansion Force

From the above discussions, an expansion force model is built during normal

operating conditions. Similar to Chapter 3, based on the model, we build an observer

for the expansion force

F̂ = f1(T ) + f2( ˆSOC) + F0 + ΘF (6.16)

ΘF = F̄ − F̂ (6.17)

where F̄ is the measured force, and ΘF is the estimated residual from force signal.

ΘF can be derived from force measurement and the estimated expansion force.

At normal operating conditions, the measurement for expansion force should

match the model, and ideally ΘF should be zero. However, ΘF will not necessar-
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ily be zero due to modeling error and sensor noise. In a short circuit case, after the

expansion force surges in a few seconds, ΘF will increase rapidly and can indicate a

fault.

The adaptive threshold is used for fault detection, similar to Chapter 3.

Rk =
1

m

m∑
i=1

ΘF,k−i+1 (6.18)

σ2
F,k =

1

m− 1

m∑
i=1

(ΘF,k−i+1 −Rk)2 (6.19)

εF+ = Rk + 8σF,k (6.20)

εF− = Rk − 8σF,k (6.21)

where m is the moving window size, which is set as 500 in this study. Rk is the

average value of the estimated residual ΘF in the moving window, and σ2
F,k is the

variance between ΘF and the moving window average value Rk. εF+ and εF− are the

upper and lower bound of the adaptive threshold.

6.4.2 Higher Confidence Level Detection with Gas Sensor

Here, for higher confidence level, we use expansion force measurement and gas

concentration measurement for ISC detection. If only gas signal indicates a fault,

then this might be a cell leakage event. If only force signal indicates a fault, then this

leads to a overstress warning. If both signals indicate a fault then the cause is most

likely an ISC event.

For the CO2 gas concentration, we define the fault gas concentration value as

Gfault = Ḡ−Gnormal (6.22)

where Ḡ is the measured CO2 concentrations in ppm, and Gnormal is the normal CO2

gas concentrations in atmosphere, which is set as 400 ppm in this study.

If the fault gas concentration value Gfault exceeds the pre-defined value, εG, then

the gas detection system will trigger an alarm. In the system with both force and

gas sensors, only after receiving alarms from both detection systems in a short time

frame, an ISC event is believed to have occurred.
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Table 6.1: Detection logic with expansion force and gas

CO2 Concentrations Force Decision
Gfault > εG ΘF /∈ [εF−, εF+] ISC Alert
Gfault > εG ΘF ∈ [εF−, εF+] Cell Leakage Warning
Gfault < εG ΘF /∈ [εF−, εF+] Overstress Warning
Gfault < εG ΘF ∈ [εF−, εF+] Normal

6.5 Simulation Result

For this study, we consider a battery module with 50 parallel connected 4.5 Ah

NMC pouch cells. The model parameters are adopted from [52].

6.5.1 Simulation Settings

Zero mean white Gaussian noise (N(0, σ2)) is added to the measurement to em-

ulate a real system. The covariance of the noise for the voltage measurement is

σV = 5 mV . For the current measurement, σI = 5 mA [51]. For the temperature

measurement, σT = 0.5 ◦C (Omega K-type thermal couple). For the force measure-

ment, σF = 8.9 N (Omega). For the gas measurement, σG = 30 ppm (Amphenol).

The Urban Dynamometer Driving Schedule (UDDS) is used for the current pro-

file. Before triggering the fault, the battery module operates under the UDDS cycle

without a fault. Then, an internal short circuit is triggered at t = 10 s, which shuts

down the cell and disconnects the ISC current path 0.4 seconds later. The battery

module continues to operate under the UDDS cycle after the fault.

In the following simulation, we will use the Coulomb Counting method to esti-

mate SOC, which is purely based on the current measurement. For the detection

threshold, considering the sensor measurement error, the gas detection threshold is

set to εG = 2000 ppm. For the force detection adaptive threshold, for the first 50

seconds initialization period, Rk = 0, εF,0 = 72 N , and the threshold will be updated

with the moving window.

6.5.2 Simulation at Fault Conditions

In this simulation for the parallel-connected battery module, a hard internal short

circuit is triggered in a cell. The cell triggers ISC at t = 10 s with a short circuit

resistance Rshort = 25 mΩ. The fast short circuit process is stopped after the ISC

current path is burnt down [23]. The voltage quickly returns to normal and there
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is no significant surface temperature increase for such an event. The cell swells and

ruptures after 1.5 seconds of the ISC initialization. Although this fault will not

directly lead to thermal runaway at this time, a second-time ISC might occur soon,

so the event needs to be identified early to safely handle the battery module with the

faulty cell.

The simulated hard short circuit event is shown in Fig. 6.4 for the current and

voltage, and Fig. 6.5 for the force and gas concentrations profile. The first 10 seconds

simulation is free of fault, and the short circuit fault triggers at t = 10 s. Note that

from Fig. 6.4, it is difficult to identify any abnormal voltage behavior for a battery

module with cells connected in parallel.

Figure 6.4: Total module current, short circuit cell current, and voltage profile under a
fault condition, with a hard short circuit triggered at t = 10s. Note that no significant
change for total module current and voltage is observed.

6.5.3 Fault Detection Using Existing Methods

Existing fault detection methods using temperature, current, voltage will be ap-

plied in the simulation, but they will face different issues for batteries connected in

parallel.

(1) Detection based on current: For battery packs or parallel-connected bat-

tery modules, only the total pack or module current is measured and the individual
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Figure 6.5: Expansion force and gas concentration at the module outlet after a short and
cell rupture, with an internal short circuit triggered at t = 10s.

cell current is unknown. Although the ISC current is over 100 A for the faulty cell, this

individual cell current information is not available. From the total module current in

Fig. 6.4, detection cannot be made.

(2) Detection based on temperature: Only limited numbers of temperature

sensors are instrumented in battery packs or modules. Therefore, the detection time

can vary from minutes to hours based on the locations of the faulty cell and the tem-

perature sensors. For ISC events that shut down a few seconds after the short circuit,

the faulty cell surface temperature rise is also limited. In a prior ISC experiment,

after 5 seconds of the ISC event, the measured surface temperature increased only

1 ◦C [52]. If temperature sensors are not close to the faulty cell, then detection cannot

be made within seconds.

(3) Detection based on voltage: Voltage-based detection will suffer a low

signal-to-noise ratio for batteries connected in parallel. As a comparison, the bat-

tery module’s voltage profiles with ISC events and model estimated normal voltage

(without ISC) are shown in Fig. 6.6. During the internal short event time, the voltage

difference between the normal battery module and the battery module with ISC event

is only 14 mV.
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Figure 6.6: The terminal voltage of parallel-connected battery module with ISC event
and normal voltage without ISC event, with only 14 mV difference during the ISC event.
Voltage based method fails to detect an ISC event due to the low signal-to-noise ratio in
parallel circuits.

Here, we apply the voltage detection method with adaptive thresholds in Chapter

3. We define the fault voltage as

Vfault = V̂ − V̄ (6.23)

where V̄ is the measured voltage, and V̂ is the estimated battery module voltage at

normal operating conditions.

Similar to Chapter 3, the adaptive threshold is used for fault voltage Vfault, and

the upper and lower bound of the adaptive threshold can be set as

rk =
1

m

m∑
i=1

Vfault,k−i+1 (6.24)

σ2
V,k =

1

m− 1

m∑
i=1

(Vfault,k−i+1 − rk)2 (6.25)
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εV+ = rk + 8σV,k (6.26)

εV− = rk − 8σV,k (6.27)

As seen in Fig. 6.6, after considering sensor measurement noise, the increased

Vfault during the internal short cannot be identified with the measurement noise.

Vfault does not cross the detection threshold and the voltage-based detection method

fails to identify the ISC event in parallel circuits. Similarly, other detection methods

by checking the voltage similarity between neighboring cells in series [50] or estimating

battery internal resistance [14] cannot detect ISC for this parallel-connected battery

module, simply because of the low signal-to-noise ratio of the voltage signal shown in

Fig. 6.6.

6.5.4 Fault Detection Using Force and Gas

The main advantages of fault detection using expansion force and gas measure-

ments are the high signal-to-noise ratio and fast response. While the existing detection

methods using voltage, current, temperature measurements cannot identify the fault

for the parallel-connected module, the proposed fault detection using force and gas

measurements works well.

The estimated gas fault term Gfault and the estimated force fault term ΘF after

a short circuit triggered is shown in Fig. 6.7. At t = 10.4 s, the force detection

algorithm identifies the fault, and the gas sensor confirms the event at t = 15.9 s.

Even though the confirmation of an ISC event requires threshold crossing from both

force and gas signals, it still achieves fast detection for a hard internal short event.

6.6 Summary

In this study, we propose a battery internal short circuit detection method based

on battery expansion force measurement and gas sensing. The study primarily focuses

on a specific type of ISC event that features a fast voltage drop and recovery, and no

significant change in surface temperature.

For a parallel-connected module, this ISC event cannot be identified with the

current-based method because of the lack of individual cell current information.

Temperature-based methods suffer sparse information of the limited temperature sen-

sors, and cannot make immediate detection. For the voltage-based detection method,

due to the low signal-to-noise ratio in parallel circuits, voltage detection fails to iden-

tify the fault in the simulation.
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Figure 6.7: At fault conditions, force detection ΘF identifies a fault at t = 10.4s, and gas
detection Gfault confirms the fault at t = 15.9s.

For the proposed detection method using expansion force and gas measurements,

a fast and high signal-to-noise ratio response can be achieved in a parallel-connected

battery module. This methodology can also be extended to large battery packs used in

electric vehicles. Further study is encouraged to validate the fault detection method

for parallel circuits experimentally. After the fault being detected, how to safely

handle the faulty battery module or battery pack and deactivate or de-energize the

battery system will be the focus of future research on battery safety.
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CHAPTER VII

Conclusions and Outlook

7.1 Conclusions

Reliable and immediate detection of battery failures and thermal runaway events is

critical to electric vehicle safety, so that vehicle occupants can evacuate immediately,

and first responders can take appropriate action to safely approach the battery and

mitigate the damage. The existing methods of battery fault detection which rely on

voltage, current, and temperature measurements either cannot detect faults or are

too slow to detect faults in large-scale battery packs. This calls for a need to study

battery failure and develop reliable and immediate detection methods.

The battery internal short circuit (ISC) can occur without explicit abuse condi-

tions even when the electric vehicle is parked. ISC events are associated with a large

heat release that can trigger thermal runway, which is considered the most dangerous

type of battery safety event. In this dissertation, we presented a model which predicts

the time to thermal runaway as a function of the ISC resistance. The model uses a

spatial discretization with three regions to better model the large temperature differ-

ence between the shorted area and the bulk battery layers during an ISC event. The

model explains the cell swelling caused by gas evolution in the early stage of ISC and

predicts the outward force generated by the swelling when the cells are constrained.

The experiments with instrumented cells showed that battery expansion occurs be-

fore the surface temperature rise and can serve as an early indication for ISC-induced

thermal runaway events.

Next, an ISC detection method was developed and the methodology for setting the

fault detection threshold was presented which achieves fast detection while minimizing

the risk of false positives. ISC failures are dangerous and immediate detection is

critical for the safety of electric vehicle battery packs. Additionally, for battery ISC

detection, false positives are undesired, as many battery failure mitigation techniques
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such as pyrotechnic fuses will disable the electric vehicle. Existing fault detection

methods based on surface temperature measurement suffer poor observability due to

the limited number of sensors placed in the pack [29]. To address these challenges, we

developed a fault detection method that uses battery expansion force measurements

to detect abnormal increases in force from ISC events. For a single cell case, a

fault detection scheme was developed by using both expansion force and voltage

measurements with adaptive thresholds to achieve high confidence fault detection.

Furthermore, the gas detection method was explored due to its fast response and

easy implementation in a pack. From summarizing the past literature on vent-gas

compositions under different testing conditions, CO2 was proposed as the target gas

species due to the high concentrations in all vent-gas, presence in first venting event,

detectability for cell leakage, and good sensor feasibility with Non-Dispersive Infrared

(NDIR) CO2 sensors. The gas detection response in a battery pack was analyzed and

the volume-averaged CO2 concentration was estimated to help determine the gas

detection threshold.

To better understand the battery out-gassing behavior and estimate the gas release

amount, the CO2 generation process, the cell venting process, and the gas flow upon a

cell venting event were studied. A cell first venting model was introduced that enables

the estimation of CO2 released in a battery failure or thermal runaway event. The

model was then used to analyze sensor placement and feasibility for managing cell

thermal events in a battery storage depot. We simulated thermal runway and venting

in a storage drum to compare the detection speed using gas sensors and temperature

sensors. The results showed that in a storage drum, the gas-based detection method

has a much faster response to battery thermal events compared to the temperature-

based detection method.

Finally, we combined the methods of expansion force and gas sensing to detect

hard ISC events in parallel-connected modules. For battery modules with cells con-

nected in parallel, existing ISC detection methods using voltage, temperature, and

current signals cannot achieve fast and high-confidence detection. For example, de-

tecting a battery internal short based on voltage measurements will suffer from a low

signal-to-noise ratio. Temperature and current-based methods are not feasible for

battery modules as well due to poor observability with a sparse number of sensors

or the high cost associated with providing each cell with a temperature and current

sensor. In the simulation study, for a battery module with 50 cells connected in

parallel, an ISC event was modeled with initial conditions and resistance that did

not trigger thermal runaway. By measuring cell expansion force and monitoring CO2
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concentrations in the vent channel, fast and high confidence level fault detection was

shown to be achievable for this parallel-connected battery module.

7.2 Practical Considerations and Outlook

The proposed fault detection method requires the use of expansion force sensors

and gas sensors in battery packs. The cost and lifetime of force and gas sensors are

important factors in the uptake of new technology. The automotive OEMs are sensi-

tive to the cost of any added components, since the automotive industry features high

volume and low-profit margin, with average net profit margins of around 7.5 % for

major car companies [112]. To apply the proposed battery failure detection method

in a real application, the expansion force sensor and gas sensor will be placed inside

battery packs. The cost for replacing a failed sensor within a battery pack will be

extremely expensive, mainly because of the labor cost to tear down the pack. There-

fore, the force and gas sensors must be low in cost and have a long lifetime. For force

sensors, the most common types of force sensors include strain gauges, piezoelectric

sensors, and force-sensing resistors. Piezoelectric sensors and force-sensing resistors

have disadvantages in precision and repeatability over time. For force measurement

in EV battery pack, long-term reliable and steady measurement is needed. Therefore

the compression load cells using strain gauges are preferred. The price of common

strain gauge load cells ranges from $ 10 to $ 25, and strain gauge load cells usually

have a cycle life over 106 [113], which is sufficient considering the batteries usually

last around 3,000 cycles. For the gas sensor cost and lifetime, as discussed in Chapter

4, an NDIR CO2 sensor’s price ranges from $ 8 to $ 20 and can have a lifetime over 15

years. The price range and lifetime of force and gas sensors are considered applicable

for use in EV battery packs.

There are also some engineering challenges for the expansion force sensors and CO2

sensors. The NDIR CO2 sensor is primarily used in HVAC applications, and to be

used in an automotive battery pack, the sensor needs to pass automotive qualification

testing, including vibration test, temperature endurance test, etc. For the expansion

force signals, we used an adaptive threshold to account for the long-term sensor drift

and cell degradation. However, calibration of expansion force sensor over time is still

needed to ensure the accuracy of expansion force measurements, and to avoid sensor

saturation issues due to irreversible expansion of the cell from cell aging [13].

The proposed battery failure detection method also has its weakness for certain

battery failure events. The detection method mainly identifies cell swelling and release
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of gas from battery failure. The method will have difficulty identifying the soft ISC

event, which can occur without battery swelling and gas release. To identify the soft

internal short process, methods using current and voltage measurement are preferred,

which usually compare signals from cell to cell or from cell to model. The existing

literature on battery short circuit detection using voltage, current, and temperature

signals are discussed in the introduction Chapter 1.3 and in Chapter 3.1. Additionally,

for battery external short circuit or overcharging, the proposed method can only

detect the event after cell swelling and gas venting, while using voltage signals can

identify the faults as soon as the voltage drops, which can be minutes earlier than

the occurrence of cell swelling and gas venting.

One limitation of the proposed expansion force fault detection methodology is

that it only applies to prismatic and pouch cells. This is due to the difficulty of mea-

suring expansion force signals for other cell form factors, like cylindrical cells. For

expansion force measurement, past studies have used strain gauges to measure the

diameter changes of a cylindrical cell [114]. However, the measurement of expansion

force in a battery pack composed of cylindrical cells is very difficult and would re-

quire instrumenting each individual cell. Therefore, at this stage, the fault detection

method using expansion force only applies to packs with prismatic or pouch cells,

where the cells can be stacked together and the expansion force can be measured in

the pack. For the gas detection method, most commercial cells, including cylindrical

cells, prismatic cells, and pouch cells, are equipped with a venting mechanism, where

the pressure burst disk opens or the pouch ruptures when the cell internal pressure

is high. In a cell failure event, the vent-gas will be ejected to the outside. The gas

sensor can then detect the vent-gas regardless of the cell form factor.

The gas detection methodology can also be extended to stationary Li-ion bat-

tery energy storage facilities. Many battery energy storage systems are based on the

second use of discarded EV battery packs, mainly due to cost-effectiveness and sus-

tainability [115]. These second-use battery packs in energy storage systems are the

same as EV battery packs. The fault detection method developed for EV battery

packs then can be directly used in energy storage applications, especially if these

packs are already equipped with gas sensors. In other cases, where larger battery

packs are built specifically for energy storage applications, the efficacy of CO2 gas

detection system needs to be further evaluated. Due to more air space within these

large energy storage battery packs, the vent-gas from a cell failure will be diluted and

therefore it is more difficult to detect a cell failure event in large packs. Also, a larger

air space in the pack can cause a potential delay in fault detection. The gas detection
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time ties closely with the vent-gas flow, which depends on the gas diffusion process

and convection process. If the gas sensor is not placed in proper locations, then the

gas detection process might take minutes or hours. The vent-channel design and the

location of gas sensors in battery packs will be interesting topics for future studies.

This dissertation addresses battery failure detection in different scenarios and the

methodology can be used for large-scale EV battery packs. Further work to address

the challenges in practical application of the fault detection method is highly encour-

aged. As for the future work direction, after the potential battery fault being detected,

emergency responses are required to slow or prevent the thermal runaway propagation

process and mitigate the hazards. Future work should consider the battery deacti-

vation process and other active measures to prevent thermal runaway propagation in

battery packs.
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APPENDIX A

University of Michigan Pouch Cell Specification

Table A.1: Pouch cell specification (manufactured at the University of Michigan
Battery Lab)

Cell Specification Value
Anode Thickness (Double Sided with Current Collector) 125µm
Cathode Thickness (Double Sided with Current Collector) 135µm
Current Collector Thickness Anode 13µm
Current Collector Thickness Cathode 13µm
Separator Material PE
Separator Porosity 40%
Separator Thickness 12µm
Anode Active Material Mass Fraction (Graphite:PVDF) 95:5
Cathode Active Material Mass Fraction (NMC111:CB:PVDF) 94:3:3
Number of Double Sided Electrode Sheets Anode 15
Number of Double Sided Electrode Sheets Cathode 14
Electrolyte 1M LiPF6

Organic Solvent in Electrolyte 2% EC:EMC (3:7)

Electrode mass loading (mg/cm2) for total and active materials

Anode: 8.55 single / 17.1 double

Cathode: 16.5 single / 33 double

Number of double sided electrode sheets of each electrode in a pouch cell

Anode: 15

Cathode: 14

Electrode sheet size (cm)
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Anode and cathode: 10.9 × 7.3

Mass of Anode (man)

1. Electrode mass loading (mg/cm2) for total and active materials: anode, 8.55

mg/cm2 for single layer

2. Anode sheet size: 10.9 × 7.3 cm

3. Number of double sided electrode sheets of each electrode: anode 15, cathode

14 → 28 single layers of anode that contain active materials

man= 28 single layers × 8.55 mg/cm2 anode mass per layer × (10.9 × 7.3) cm2

anode sheet area = 19.1 g

Mass of Cathode (mca)

1. Electrode mass loading (mg/cm2) for total and active materials: cathode, 16.5

mg/cm2 for single layer

2. Cathode sheet size: 10.9 × 7.3 cm

3. Number of double sided electrode sheets of each electrode: anode 15, cathode

14 → 28 single layers of cathode that contain active materials

mca= 28 single layers × 16.5 mg/cm2 anode mass per layer × (10.9 × 7.3) cm2

anode sheet area = 36.8 g
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[72] A. Nedjalkov, J. Meyer, M. Köhring, A. Doering, M. Angelmahr, S. Dahle,
A. Sander, A. Fischer, and W. Schade, “Toxic gas emissions from damaged
lithium ion batteries—analysis and safety enhancement solution,” Batteries,
vol. 2, no. 1, p. 5, 2016.

[73] Y. Fernandes, A. Bry, and S. de Persis, “Identification and quantification of
gases emitted during abuse tests by overcharge of a commercial li-ion battery,”
Journal of Power Sources, vol. 389, pp. 106–119, 2018.

[74] Q. Yuan, F. Zhao, W. Wang, Y. Zhao, Z. Liang, and D. Yan, “Overcharge
failure investigation of lithium-ion batteries,” Electrochimica Acta, vol. 178, pp.
682–688, 2015.

[75] Y. Zhang, H. Wang, W. Li, and C. Li, “Quantitative identification of emissions
from abused prismatic ni-rich lithium-ion batteries,” eTransportation, vol. 2, p.
100031, 2019.

[76] S. Koch, A. Fill, and K. P. Birke, “Comprehensive gas analysis on large scale
automotive lithium-ion cells in thermal runaway,” Journal of Power Sources,
vol. 398, pp. 106–112, 2018.

[77] F. Larsson and B.-E. Mellander, “Abuse by external heating, overcharge and
short circuiting of commercial lithium-ion battery cells,” Journal of The Elec-
trochemical Society, vol. 161, no. 10, p. A1611, 2014.

[78] Z. Chen, R. Xiong, J. Lu, and X. Li, “Temperature rise prediction of lithium-ion
battery suffering external short circuit for all-climate electric vehicles applica-
tion,” Applied energy, vol. 213, pp. 375–383, 2018.

136



[79] R. Xiong, R. Yang, Z. Chen, W. Shen, and F. Sun, “Online fault diagnosis
of external short circuit for lithium-ion battery pack,” IEEE Transactions on
Industrial Electronics, vol. 67, no. 2, pp. 1081–1091, 2019.

[80] C. Xu, M. Ouyang, L. Lu, X. Liu, S. Wang, and X. Feng, “Preliminary study
on the mechanism of lithium ion battery pack under water immersion,” ECS
Transactions, vol. 77, no. 11, p. 209, 2017.

[81] V. Somandepalli, K. Marr, and Q. Horn, “Quantification of combustion hazards
of thermal runaway failures in lithium-ion batteries,” SAE International Journal
of Alternative Powertrains, vol. 3, no. 1, pp. 98–104, 2014.

[82] L. Spinelle, M. Gerboles, G. Kok, S. Persijn, and T. Sauerwald, “Review of
portable and low-cost sensors for the ambient air monitoring of benzene and
other volatile organic compounds,” Sensors, vol. 17, no. 7, p. 1520, 2017.

[83] SGXsensortech, “Design of electronics for electrochemical gas sen-
sors,” https://www.sgxsensortech.com/content/uploads/2014/08/
A1A-EC SENSORS AN2-Design-of-Electronics-for-EC-Sensors-V4.pdf.

[84] Z. Liao, S. Zhang, K. Li, G. Zhang, and T. G. Habetler, “A survey of methods
for monitoring and detecting thermal runaway of lithium-ion batteries,” Journal
of Power Sources, vol. 436, p. 226879, 2019.

[85] J. Watson, K. Ihokura, and G. S. Coles, “The tin dioxide gas sensor,” Measure-
ment Science and Technology, vol. 4, no. 7, p. 711, 1993.

[86] DigiKey, “Sensirion ag sgp40-d-r4 sensor,” https://www.digikey.com/en/
products/detail/sensirion-ag/SGP40-D-R4/12820418.

[87] ——, “Amphenol sgx sensortech mics-vz-89te,” https://www.digikey.com/en/
products/detail/amphenol-sgx-sensortech/MICS-VZ-89TE/7102285.

[88] R. Hasanaj and A. Abuhemidan, “Air-quality sensor with 10-years lifespan,”
2019.

[89] R. Zhou, S. Vaihinger, K. Geckeler, and W. Göpel, “Reliable co2 sensors with
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