
Metric and Representation Learning

by

Rishi Sonthalia

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2021

Doctoral Committee:

Visiting Professor Anna Gilbert, Co-Chair
Associate Professor Raj Rao Nadakuditi, Co-Chair
Professor Sergey Fomin
Professor Seth Pettie

Rishi Saurabh Sonthalia

rsonthal@umich.edu

ORCID iD: 0000-0002-0928-392X

c© Rishi Saurabh Sonthalia 2021

All Rights Reserved

ACKNOWLEDGEMENTS

Thank you to my amazing advisors Anna Gilbert and Raj Rao Nadakuditi. Without

their support, and help this thesis would not be possible at all. Thank you to my

parents, my sisters, and my friends for their support as well. Finally, thank you to

the people who put together a nice LATEX template for me to use.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF ALGORITHMS . x

LIST OF FIGURES . xi

LIST OF TABLES . xv

LIST OF APPENDICES . xvii

ABSTRACT . xviii

CHAPTER

I. Introduction . 1

1.1 Data Geometry . 1
1.1.1 Dimensionality Reduction 2
1.1.2 Denoising Data . 5
1.1.3 Learning Embeddings 7
1.1.4 Learning Combinatorial Structure 8

1.2 Parameter Geometry . 9
1.3 Connection between Data and Parameter Geometry 10
1.4 In this thesis . 10

1.4.1 Learning Good Metrics 11
1.4.2 Chapter II - Sparse Metric Repair. 11
1.4.3 Chapter III - Geometric Manifold Repair in the Pres-

ence of Missing Data. 11
1.4.4 Chapter IV - Project and Forget: Solving Highly

Constrained Convex Optimization Problems. 12
1.4.5 Chapter V - Learning Good Quality Hyperbolic Rep-

resentations Quickly. 12
1.4.6 Analyzing Representation Learning Methods 13
1.4.7 Chapter VI - Dual Regularized Optimal Transport. 13

iii

1.4.8 Chapter VII - Robustness of cMDS via Spectral Anal-
ysis. 13

1.4.9 Chapter VIII - Probabilistic Analysis of Denoising
Autoencoders. 14

1.4.10 Chapter IX - Reconstructing Ancient Greek Text. . 15

II. Generalized Metric Repair on Graphs 16

2.1 Introduction-GMR . 16
2.2 Preliminaries . 20

2.2.1 Notation and problem definition 20
2.2.2 Previous results . 22

2.3 Transitioning to Graph Metric Repair 23
2.3.1 Structural results 23
2.3.2 Reducing MR(G,R≥0) to MR(G,R) 26

2.4 Hardness . 28
2.5 Fixed Parameter Analysis for ς-Chordal Graphs 31
2.6 Approximation Algorithms 36

2.6.1 L-approximation . 38
2.6.2 O(κ log n)-approximation 39

III. Manifold Repair In Presence of Missing Data 45

3.1 Introduction . 45
3.1.1 Problem Set Up . 47
3.1.2 Previous work . 48
3.1.3 Our approach and contributions 51

3.2 Background . 52
3.2.1 Manifolds and Geodesic distances 52
3.2.2 Multidimensional Scaling 53
3.2.3 Metric Repair . 54

3.3 Metric repair on manifolds 55
3.3.1 Theory Result . 57

3.4 Experiments . 61
3.4.1 Unlabeled Data . 61
3.4.2 Labeled Data . 67

3.5 Conclusion and Future Work 68

IV. Project and Forget: Solving Large Scale Metric Constrained
Problem . 70

4.1 Introduction . 70
4.2 Preliminaries . 74

4.2.1 Convex Programming 74
4.2.2 Metric Constrained Problems 78

iv

4.2.3 Projections . 80
4.3 Project and Forget: Linear Inequalities 80

4.3.1 Finding Violated (Metric) Constraints 81
4.3.2 Project and Forget Steps 84
4.3.3 Truly Stochastic Variant 85
4.3.4 Convergence Analysis: Linear Inequality Constraints 86

4.4 Project and Forget: General Convex Constraints 88
4.4.1 Algorithm . 89
4.4.2 Convergence Analysis 90

4.5 Applications: Metric Constrained Problems 90
4.5.1 Metric Nearness . 90
4.5.2 Weighted Correlation Clustering on General Graphs. 97

4.6 Applications: General algorithm 105
4.6.1 Sparse Optimal Transport 105
4.6.2 Information Theoretic Metric Learning 108
4.6.3 Support Vector Machines 112

4.7 Conclusion and Future work 114
4.8 Proofs . 115

4.8.1 Proof of part 1 of Theorem 4.16 for oracles that satisfy
property 4.1 . 115

4.8.2 Proof of part 1 of Theorem 4.16 for oracles that satisfy
property 4.2 . 123

4.8.3 Proof of part 2 of Theorem 4.16 124
4.8.4 Proof of Theorem 4.20 131
4.8.5 General Convex Proof 133
4.8.6 Convergence Rate for Quadratic Objective Function 140

V. Tree! I am no Tree! I am a Low Dimensional Hyperbolic
Embedding . 143

5.1 Introduction . 143
5.2 Preliminaries . 146

5.2.1 δ-Hyperbolic Metrics. 146
5.2.2 Trees as Hyperbolic Representation. 148

5.3 Tree Representation . 148
5.3.1 TreeRep for General δ-Hyperbolic Metrics. 152
5.3.2 Steiner nodes. 153

5.4 Experiments . 154
5.4.1 Tree Reconstruction Experiments. 156
5.4.2 Random points on Hyperbolic Manifold. 157
5.4.3 Biological Data: scRNA seq and phylogenetic data. 159
5.4.4 Unweighted Graphs. 161

5.5 Broader Impact . 162

VI. Dual Regularized Optimal Transport 164

v

6.1 Introduction . 164
6.1.1 Background . 164

6.2 Preliminaries . 166
6.2.1 Background Problem Formulations 167
6.2.2 Dual regularized optimal transport (DROT) 169
6.2.3 Extension to Multi-marginal Transport. 170

6.3 Theoretical analysis . 171
6.3.1 Solution properties 171
6.3.2 Example regularizers 175
6.3.3 Efficient algorithm: Project and Forget 176

6.4 Experiments . 178
6.4.1 Verifying theoretical properties 179
6.4.2 Domain Transfer . 180

VII. How can Classical Multidimensional Scaling go Wrong? . . . 186

7.1 Introduction . 186
7.1.1 Problem statements and contributions 188

7.2 Preliminaries and Background 189
7.2.1 cMDS algorithm . 189
7.2.2 EDM Matrices . 190
7.2.3 Conjugation matrices: Q and V 191

7.3 Theoretical Results . 192
7.3.1 Lower bound for ‖Dt −D‖2

F 193
7.3.2 Expression for ‖Dcmds −D‖2

F 196
7.3.3 Error Analysis for cMDS 200

7.4 Experiments . 201
7.4.1 Results . 204

VIII. How to Optimally Train Stacked Linear Denoising Autoen-
coders? . 206

8.1 Introduction . 206
8.2 Set-Up . 209

8.2.1 Learning Good Representations 209
8.2.2 Assumptions about the noise 211
8.2.3 Data Generation Assumptions 211
8.2.4 Problem Set Up . 212

8.3 Theoretical Results . 212
8.3.1 Step 1: Formula for W 215
8.3.2 Step 2: Decompose the formula for EMSE. 215
8.3.3 Step 3: Estimate using random matrix theory. . . . 217
8.3.4 Training with Batches 222
8.3.5 Training with no noise 222

vi

8.3.6 c close to 1 . 223
8.4 Experiments . 224

8.4.1 Verifying Theoretical Predictions 224
8.4.2 Beyond Linear Data and Linear Autoencoders . . . 225

8.5 Future Work . 226

IX. Deep Greek: A Framework for Reconstructing Greek Text . 227

9.1 Introduction . 227
9.2 Related Work . 230
9.3 Reconstructing Text . 230

9.3.1 Scope of DeepGreek 231
9.3.2 Data Source . 231
9.3.3 Data Workflow . 232

9.4 Method . 233
9.4.1 Neural Network Architecture 234
9.4.2 Embedding Layer 235
9.4.3 Encoder and Decoder 236

9.5 Creating Training Data . 236
9.5.1 Filling in Letters . 237
9.5.2 Filling in Diacritics 238
9.5.3 Filling in Spaces . 239

9.6 Experimental Results . 239
9.6.1 Human Evaluation 240
9.6.2 Filling in the Missing Letters: Learn2Fill 240
9.6.3 Filling in Diacritics: Learn2Diacritic 241
9.6.4 Filling in Spaces: Learn2Space 243
9.6.5 Learn2Fill and Learn2Diacritic 244
9.6.6 Other Types of Texts 245

9.7 Future Work . 245

APPENDICES . 247
A.1 Transitioning to Graph Metric Repair 248

A.1.1 The decrease only case 248
A.1.2 Structural results 249

A.2 Approximation Algorithms 251
A.3 Improved Analysis for Complete Graphs 252

A.3.1 5 Cycle Cover . 253
A.3.2 IOMR-fixed . 254

B.1 Metric First Discussion and Justification 257
B.2 Proofs . 259

B.2.1 Tree Representation Proofs 259
B.2.2 Tree Approximation Proofs 269

B.3 Geometry: Asymptotic Cones 270
B.4 Geometry: Geodetic Tree . 273

vii

B.5 TreeRep Best . 274
B.6 Improving Distortion . 275
B.7 Experiment and Practical Details 276

B.7.1 MAP and Average Distortion 276
B.7.2 TreeRep . 276
B.7.3 Bartal . 277
B.7.4 Neighbor Join . 277
B.7.5 MST . 278
B.7.6 LS . 278
B.7.7 LevelTree and ConstructTree 278
B.7.8 PM and LM . 278
B.7.9 PT . 279
B.7.10 Hardware . 279
B.7.11 Synthetic 0-hyperbolic metrics 280
B.7.12 Synthetic Data Sets 280
B.7.13 Phylogenetic and Single Cell Data 281
B.7.14 Unweighted Graphs 282
B.7.15 Calculating α . 282

B.8 Tree Representation Pseudo-code 283
C.1 Proofs . 285
C.2 Algorithmic Details . 295

C.2.1 Calculating θ . 295
C.3 Experiment Details . 296

C.3.1 Solver choice . 296
C.3.2 Verifying theoretical properties 297
C.3.3 Color Transfer . 297
C.3.4 MNIST-USPS . 298

D.1 Proofs . 299
D.1.1 Step 1: Formula for Wopt 299
D.1.2 Step 2: Formula for the Expected MSE 302
D.1.3 Step 3: Estimate using random matrix theory. . . . 306
D.1.4 Proof of Theorem 320
D.1.5 Formula for θ̂opt−trn 320

D.2 Experiments . 321
D.2.1 Flag Experiment . 321
D.2.2 Linear Autoencoder 321
D.2.3 Rank 2 Data . 322
D.2.4 MNIST Data . 323

D.3 Pre-training SDAEs . 325
E.1 Proofs . 327
E.2 Extra Datasets . 329
E.3 Computing True MDS solution 330
F.1 Appendix . 332

F.1.1 Four Texts . 332
F.1.2 Neural Network implementation details 332

viii

F.1.3 Phrase Appended for Filling in Diacritics 339

BIBLIOGRAPHY . 340

ix

LIST OF ALGORITHMS

Algorithm

1 Verifier . 25
2 FPT . 33
3 Short Path Cover (SPC) for MR(G,R) 38
4 Finds a valid solution for MR(G,R). 42
5 IOMR Fixed . 54
6 MR-missing . 56
7 General Algorithm. 81
8 Finding Metric Violations. 82
9 Project and Forget algorithms. 85
10 Project and Forget algorithms . 89
11 Pseudo-code for the implementation for Metric Nearness. 93
12 Pseudo-code for the implementation for CC for the dense case. . . . 101
13 Pseudo-code for the implementation for CC for the sparse case. . . . 101
14 Pseudo-code for the Project and Forget algorithm for ITML. 111
15 Pseudo-code for the implementation training an SVM. 113
16 Metric to tree structure algorithm. 153
17 Recursive parts of TreeRep. 153
18 Classical Multidimensional Scaling. 189
19 Lower Bound Algorithm. 193
20 Decrease Metric Repair (Dmr) . 248
21 5-Cycle Cover . 254
22 IOMR Fixed . 255
23 Recursive parts of TreeRep. 283
24 Metric to tree structure algorithm. 284

x

LIST OF FIGURES

Figure

1.1 Plot showing results from the analysis of the formula 14
2.1 (a) 2000 data points in the Swissroll. For (b) and (c) we took the

pairwise distance matrix and added 2N (0, 1) noise to 5% of the
distances. We then constructed the 30-nearest-neighbor graph G from
these distances, where roughly 8.5% of the edge weights of G were
perturbed. For (b) we used the true distances on G as the input to
Isomap. For (c) we used the perturbed distances. 17

2.2 Original graph is the four solid green edges of weight 1, and two
dashed red edges of weight 4. Added blue dotted edges all have weight
2. The original graph is repaired by increasing the lower left green
edge, but the optimal solution in the complete graph decreases the
two red edges. 18

3.1 General Manifold learning procedure 46
3.2 (a) The original swissroll data set (2000 points) and the results from

Isomap for: (b) the original distance matrix, (c) the corrupted
distance matrix, and (d) the repaired distance matrix. 47

3.3 The two-dimensional embeddings produced by Isomap with complete
data (left) versus the two-dimensional embedding produced by Isomap
where 40% of the data is missing and we use MR-Missing to correct
the distance matrix for the manifolds M1,M2,M3 (right). 63

3.4 The two-dimensional embeddings produced by Isomap with complete
data (left) versus the two-dimensional embedding produced by Isomap
where 40% of the data is missing and we use MR-Missing to correct
the distance matrix for the manifolds M4,M5,M6 (right). 64

3.5 Two-dimensional projections of the first 1000 images of the digits
0,1,2,3,4 from MNIST using Isomap with true distance and Isomap
with distance obtained from MR-Missing when 70% of the data is
missing. 67

4.1 The red line is the mean running time for the algorithm from Brickell
et al. (2008c). The blue line is the running mean time for our algorithm.
All computations were done on a machine with 4 physical cores, each
with 13 GB of RAM. 96

xi

4.2 Plots showing the number of constraints returned by the oracle, the
number of constraints after the forget step, and the maximum violation
of a metric constraint when solving correlation clustering on the Ca-
HepTh graph . 103

5.1 Figures showing the tree T̂ from Lemma 5.13 for Zone2(z) (a),
Zone1(z) (b), Zone1(r) (c), and the Universal tree (d). 149

5.2 Figures showing the example that demonstrates the need fr Steiner
nodes. 154

5.3 Average distortion of the metric learned for 100 randomly sampled
points from Hk for k = 2i and from H10 for scale s = 2i for i =
1, 2, . . . , 10. 157

5.4 Tree structure and embeddings for the Immunological distances from
Sarich (1969). 158

6.1 (i) Sparsity of the solutions for the different regularizers versus the
regularization parameter; (ii–iv) Error |〈C,P ∗ − P ∗φ,ϕ〉| (blue line)
and OT (a, b)−DROT (a, b) (red line) versus γ for the three different
regularizers. 179

6.2 Graphs showing the mass creation and destruction for the different
regularizers. The yellow bars represent the true marginal distribution. 179

6.3 Images produced by doing color transfer using different regularizers
(Exponential, Quadratic, Entropy) for DROT and images produced
by doing color transfer using other formulations of optimal transport. 181

6.4 Images produced by doing color transfer for different values of γ. The
top row is for the quadratic regularizer, and the bottom row is for the
entropic regularizer. 184

6.5 Graphs showing that the entropic regularizer maintains the distribu-
tion shape and the quadratic regularizer creates and destroys mass.
We used the squared Euclidean distance as the cost function and
performed transport from the red distribution to the blue distribution.184

6.6 Images of the first four digits in the USPS dataset, when transported
using to the MNIST domain using various optimal transport problems.
DE/DQ refers to entropic/quadratic regularized version of DROT. . 185

7.1 Plot showing the relative squared error with respect to original EDM
matrix and the perturbed EDM for the cMDS algorithm. 201

7.2 Plots showing the cMDS error as well as the three terms that we
decompose the error into. For the perturbed EDM input, this is error
with respect to the perturbed EDM. 202

7.3 Plots showing the relative squared error of the solutions with respect
to the input matrix. For the perturbed EDM input, we show the
relative squared error with respect to the original EDM (figure (d))
and the perturbed EDM (figure (c)). For the Portugal data set, we
couldn’t compute the true solution due to computational restraints. 202

7.4 Plots showing the relative squared error of the various solutions with
respect to the true solution. 203

xii

7.5 Plot showing the distortion with respect to the input metric. In the
case when the input is a perturbed EDM this is the distortion with
respect to the original EDM. For the Celegans data set the cMDS
solution and the Lower + cMDS solution have infinite distortion and
the curves are not plotted. 203

8.1 Figure showing the noisy versions as well as the denoised version of
the German Flag. Figure (a) shows the test image. Figure (b) shows
the noisy image that we should be training on. Figure (c) shows the
denoised version when trained with θ̂trn = θ̂tst = 168. As example of
such an image is Figure (a). Figure (d) shows the denoised version
when trained with θ̂trn = 30. An example of such an image is in
Figure (b). The experiment was run 5 times, and image with the
lowest MSE for each denoiser was chosen. Note the way the data
matrix was constructed, the data has rank 7. 207

8.2 Plot showing the equations in Equation 8.2. Here M = 1000 and
θ̂tst = 0.1. 214

8.3 Figures (a) - (b) show the accuracy of the formula for the expected
mean squared error for c = 0.5, 2 for fixed value of θ̂tst = 0.1. Figure
(c) empirically verifies the existence of a regime where training on
pure noise is optimal. Here the red and green lines represent E[θ̂2

tst]
and E[θ̂2

trn] respectively. Each empirical data point is averaged over
at least 50 trials. 221

8.4 Plots showing the optimal generalization error versus c. Figure (a)
is the theoretical plot for θ̂tst = 0.1 and M = 1000. Figure (b) is
empirically computed on MNIST for θ̂tst = 0.1. 223

8.5 Graphs showing the “V” shape for the θ̂opt−trn vs c curve. The theo-
retical curve is based on Equation 8.2 with θ̂tst = 0.1 and M = 1000.
Figures (b)- (d) are with the MNIST dataset with Gaussian noise so
that ˆthetatrn = 0.1 and the optimal θ̂trn is computed empirically. . . 224

8.6 Figure showing the accuracy of the formula when Dtst and Dtrn are
distributions. Here c = 0.1, and θ̂tst = 0.1 225

9.1 The leftmost circle shows the kind of input that we expect, and the
rightmost circle shows the reconstructed version of the text that we
want. The other circles are intermediate stages of our reconstruction
process. 232

9.2 Neural Network Architecture for Learn2Fill, Learn2Diacritic,
Learn2Space. 235

9.3 Learn2Diacritic testing accuracy for different probability of cor-
rupting letters in P,Q,C. 242

9.4 Accuracy for Learn2Diacritic for a text T of length ∼40,000
characters for varying block sizes and percentages of corrupted letters
in T . 243

xiii

A.1 Left: Embedding from Fan et al. (2018d). Right: Our modified
embedding for a smaller cycle. Here the black edge is the heavy edge.
The blue edges are the light edges and the red edges are the embedded
4 cycle. The curved blue edge indicates that there are more vertices
along that path . 253

B.1 Figure for Sarich data produced by PT code 281
B.2 Immunological distances from Sarich (1969) 282
B.3 Figure showing the placement of the Steiner node R′ for the Zone 1

and Zone 2 recursion. The nodes in orange are Steiner nodes and the
nodes in green come from the data set V 283

D.1 Figures (a) - (e) showing the accuracy of the formula for the expected
mean squared error for c = 0.1, 0.5, 0.9, 2, 10 for fixed value of θ̂tst.
Figure (f) empirically verifies the existence of a regime where training
on pure noise is optimal. Figures (g) and (h) show the accuracy of the
formula when Dtst (exponential in (g) and Gaussian in (h)) and Dtrn

(uniform in (g) and exponential in (h)) are non constant distributions.
Here the red and green lines represent E[θ̂2

tst] and E[θ̂2
trn] respectively.

Each empirical data point is averaged over at least 50 trials. 322
D.2 Rank 2 . 323
D.3 MNIST . 324
D.4 MNIST - LSLS model . 324
D.5 MNIST - LRL model . 325
D.6 Plots comparing the classification accuracy for SDAEs pre-trained

with linear versus non-linear autoencoders. The results are averaged
over 5 trials Figures (a) - (b) are with Gaussian noise, where as Figures
(c) - (d) are with salt and pepper noise. 326

E.1 Distance to Input Matrix. 330
E.2 Distance to true solution . 330
E.3 Multiplicative Distortion . 330
E.4 Average Additive Distortion . 331
F.1 Text 1 mentioned in Section 9.6.5 333
F.2 Text 2 mentioned in Section 9.6.5 333
F.3 Text 3 mentioned in Section 9.6.5 334
F.4 Text 4 mentioned in Section 9.6.5 335

xiv

LIST OF TABLES

Table

3.1 Table comparing the relative error of the projection of MNIST data
obtained via NLPCA vs mDRUR vs MR-missing for various different
dimensions and percentage of data missing 66

3.2 Table showing the accuracy of an SVM trained on the low dimensional
projections produced by MR . 68

4.1 Table comparing Project and Forget against a variety of different
solvers to solve the Metric Nearness problem for Type 1 graphs in
terms of time taken in seconds. All experiments were run on a
Computer with 52 GB of memory. All times reported are averaged
over 5 instances. 95

4.2 Convergence statistics for the metric nearness problem for the different
solvers. Each value is the average over 10 trials. 96

4.3 Table comparing Project and Forget against Ruggles et al. (2019)
in terms of time taken, quality of solution, and average memory usage
when solving the weighted correlation clustering problem on dense
graphs. 102

4.4 Time taken and quality of solution returned by Project and For-
get when solving the weighted correlation clustering problem for
sparse graphs. The table also displays the number of constraints the
traditional LP formulation would have. 104

4.5 Time taken in seconds to solve the quadratic regularized optimal
transport problem. All experiments were run on a machine with 52
GB of RAM. 109

4.6 Table showing the convergence details for the various solvers. . . . 110
4.7 Table comparing the testing accuracy of Project and Forget and

ITML. Numbers are averaged over 5 trials. 112
4.8 Table comparing the testing accuracy and running times for the

truly stochastic variant of or algorithm against LibLinear for binary
classification using an L2 SVM. 114

5.1 Time taken by Nj and TreeRep to reconstruct the tree structure. . . 156

xv

5.2 Time taken by PT, LM, hMDS, to learn a 10 dimensional embedding
for the synthetic data sets and average time taken by TreeRep (TR),
MST, and CT. 157

5.3 Time taken in seconds and the average distortion of the tree metric
learned by TreeRep, NJ, MST, and CT and of the 2-dimensional
hyperbolic representation learned by PM and PT on the Zeisel and
CBMC data set. The numbers for TreeRep (TR) are the average
numbers over 20 trials. 159

5.4 Table with the time taken in seconds, MAP, and average distortion for
all of the algorithms when given metrics that come from unweighted
graph. Darker cell colors indicates better numbers for MAP and
average distortion. The number next to PT, PM, LM is the dimension
of the space used to learn the embedding. The numbers for TreeRep
(TR) are the average numbers over 20 trials. 160

5.5 Graph Statistics . 161
6.1 Time taken in seconds to solve the quadratic regularized problem

when the two distributions are Gaussian distributions. Here we set
γ = 1000 and all experiments were run on a machine with 54 GB of
RAM. 176

6.2 Accuracy using a 1 nearest neighbor classifier after transporting the
USPS dataset to the MNIST domain. 185

9.1 Accuracy of missing letter prediction when using beam search to fill
in a ∼40,000 character text T for different percentages and block sizes
of missing characters in T for different network architectures. 240

9.2 Percentage of characters correct before (orig) and after having filled
in the base letters and the diacritics for our test text for varying
percentage of missing text and varying block sizes. Here Split refers to
the accuracy of using Learn2Fill followed by Learn2Diacritic,
whereas Comb. refers to Learn2FillAndDiacritic. 243

9.3 Table showing the percentage of characters correct before (O.) and
after (R.) having filled in the base letters and the diacritics for the
4 out of sample texts with varying percentage of missing text. The
improve (I.) column is the increase in accuracy between original and
the reconstructed text. 244

B.1 TreeRep Best Numbers . 274
B.2 MAP and average distortion for the TreeRep and MST after doing

the heuristic optimization. The time taken for both optimizations is
the same. 275

C.1 Table showing the convergence details for the various solvers. . . . 297

xvi

LIST OF APPENDICES

Appendix

A. Generalized Metric Repair on Graphs 248

B. Tree! I am not a Tree! I am a Low Dimensional Hyperbolic Embedding 257

C. Dual Regularized Optimal Transport 285

D. How to Optimally Train a Stacked Linear Denoisng Autoencoder? . . 299

E. How Can Classical Multidimensional Scaling go Wrong? 327

F. Deep Greek: Reconstructing Greek Test 332

xvii

ABSTRACT

All data has some inherent mathematical structure. I am interested in under-

standing the intrinsic geometric and probabilistic structure of data to design effective

algorithms and tools that can be applied to machine learning and across all branches

of science.

The focus of this thesis is to increase the effectiveness of machine learning techniques

by developing a mathematical and algorithmic framework using which, given any

type of data, we can learn an optimal representation. Representation learning is

done for many reasons. It could be done to fix the corruption given corrupted data

(noisy or missing values) or to learn a low dimensional or simpler representation, given

high dimensional data or a very complex representation of the data. It could also be

that the current representation of the data does not capture the important geometric

features of the data.

One of the many challenges in representation learning is determining ways to

judge the quality of the representation learned. In many cases, the consensus is that

if d is the natural metric on the representation (such as L2 distance for Euclidean

embeddings), then this metric should provide meaningful information about the data.

Many examples of this can be seen in areas such as metric learning, manifold learning,

and graph embedding. However, most algorithms that solve these problems learn a

representation in a metric space first and then extract a metric.

A large part of my research is exploring what happens if the order is switched,

that is, learn the appropriate metric first and the embedding later. The philosophy

behind this approach is that understanding the inherent geometry of the data is

xviii

the most crucial part of representation learning. Often, studying the properties

of the appropriate metric on the input data sets indicates the type of space, we

should be seeking for the representation. Hence giving us more robust representations.

Optimizing for the appropriate metric can also help overcome issues such as missing

and noisy data. My projects fall into three different areas of representation learning.

• Geometric and probabilistic analysis of representation learning methods.

• Developing methods to learn optimal metrics on large datasets.

• Applications.

For the category of geometric and probabilistic analysis of representation learning

methods, we have three projects. First, designing optimal training data for denoising

autoencoders. Second, formulating a new optimal transport problem and understand-

ing the geometric structure. Third, analyzing the robustness to perturbations of the

solutions obtained from the classical multidimensional scaling algorithm versus that

of the true solutions to the multidimensional scaling problem.

For learning optimal metric, we are given a dissimilarity matrix D̂, some function

f and some a subset S of the space of all metrics and we want to find DinS that

minimizes f(D, D̂). In this thesis, we consider the version of the problem when S is

the space of metrics defined on a fixed graph. That is, given a graph G, we let S, be

the space of all metrics defined via G. For this S, we consider the sparse objective

function as well as convex objective functions. We also looked at the problem where

we want to learn a tree. We also show how the ideas behind learning the optimal

metric can be applied to dimensionality reduction in the presence of missing data.

Finally, we look at an application to real world data. Specifically trying to

reconstruct ancient Greek text.

xix

CHAPTER I

Introduction

Representation learning is a fundamental technique in science. The goal of represen-

tation learning is to learn a good representation of the object of interest. Specifically,

for a lot of different machine learning and data science problems, we are given some

data Z, and we would like to learn a representation X of the data Z and some function

f(x;θ) : X → Y . To do this, we have to learn the representation for two different

objects X and f , which is parameterized by θ.

First, we want to learn a representation X of the data Z. That is, given some

representation of the data, we want to learn a new representation of the X such that it

is easier to work with X instead of Z. Second, we want to learn a good representation

of the function f , which is usually parameterized via latent variables θ. For both

objects, we will want to learn a representation in some metric space. Hence there are

two different geometries at play. The geometry of the data and the geometry of the

parameter space. Understanding both is crucial to designing good machine learning

algorithms.

1.1 Data Geometry

Data encompasses many different forms of information such as images, text,

coordinates in a vector space, graphs, and many more different structures. Learning a

1

good representation of the data is a crucial pre-processing step. This allows us to do

two things.

1. Understanding the geometry of the data helps us gain new insights into the

data. This lets us answer many questions about the data generation process and

uncover fundamental structures in the data.

2. Learning a good representation helps us improve computational efficiency. This

representation may be efficient in terms of query time, in terms of memory, in

terms of time taken to learn the function f , in terms of the robustness of the

function f , and many other such statistics.

Currently, most methods for learning representation first choose the type of metric

space that they want to learn a representation in and then learn a representation. The

kind of metric space chosen usually depends on a researcher’s prior knowledge of the

data. However, being able to infer the type of geometry from the data is a promising

area of active research.

Despite the limitations of having to arbitrarily pick the geometry beforehand,

current methods have proved to be extremely successful. Hence, we go over the major

categories of such methods.

1.1.1 Dimensionality Reduction

The first reason to learn a new representation of the data is to reduce the dimension

of the data. Reducing the dimension helps us improve the efficiency of any algorithm

that we run on the data, as well as reduces the amount of space used to store the data.

The first major dimensionality reduction technique is Principal Component Analysis

or PCA. For PCA, we assume that we are given data matrix Z that is m by n. That

is, we have n data points, and each data point has m coordinates. We assume that

the data lies on a low dimensional linear space of dimension r, and we want to learn

2

a representation X such that this best approximates Z. To do this, PCA solves the

problem by finding X such that

X = arg min
Ẑ,rank(Ẑ)≤r

‖Ẑ − Z‖2
F .

This problem is solved by computing the singular value decomposition (SVD) of X

and keeping the first r singular values and components.

A related dimensionality reduction technique is known as Multidimensional Scaling

or MDS Torgerson (1952). Here our input is no longer a data matrix but instead

is a metric or a dissimilarity matrix Z. The goal is then to learn a low dimensional

Euclidean embedding X such that if D is the Euclidean distance matrix for X, then

‖D−Z‖2
F is small. This is done by first centering the dissimilarity matrix so that the

rows and columns have mean zero and then computing the eigenvalue decomposition

and keeping the first r eigenvectors, scaled by the square root of the first r eigenvalues.

These scaled eigenvectors then form our low dimensional embedding.

In many cases, the data doesn’t lie on some low dimensional linear structure but

instead lies on some low dimensional non-linear structure. Here we assume that the

data lies on some low dimensional manifold that is embedded in high dimensional

Euclidean space. Even though we assume that the data lies on a non-linear structure,

we are still trying to learn a linear representation of the data. In this case, we

employ different techniques such as Isomap Tenenbaum et al. (2000b), Local Linear

Embeddings (LLE) Roweis and Saul (2000), diffusion maps Belkin and Niyogi (2003);

Coifman and Lafon (2006), and Stochastic Neighborhood Embedding (SNE) Hinton

and Roweis (2002); Maaten and Hinton (2008).

For Isomap, we start by creating a k nearest neighbor weighted graph based on

the metric on the given data. The idea is that the points that are embedded close

together are close together on the manifold as well. We then use this weighted graph

3

to compute the all pair shortest path metric. That is, the distance between any two

nodes is the weight of the shortest path connecting them. The hope is that these

paths approximate geodesics on the manifold. We then use MDS to embed this metric

into Euclidean space.

In Isomap, we tried to capture the local and global structure of the data, with

LLE, as the name suggests, we only try to capture the local structure. The main

idea behind the algorithm is that since the data lies on a manifold, it is locally linear.

Hence the problem postulates findings weights Wij such that any data point Zi can be

well approximated by
∑

jWijZj , where Wij = 0 for data points j that are not near Zi

(either some epsilon neighborhood or within the k nearest points). We then learn new

coordinates Xi such that Xi −
∑

jWijXj is small for all i. We do this by computing

the spectral decomposition of (I −W)T (I −W) and keeping the first r appropriately

scaled eigenvectors.

For diffusion maps, imagine placing a Gaussian distribution at each point. That is,

given a data point Zi, imagine there is an isotropic Gaussian distribution with density

fi centered at Zi. Then for all of the other points, we let Pij = fi(d(Zi, zj))/Ci where

d is the given metric on the data set and Ci is an appropriate normalizing constant.

Thus, we can think of the matrix P with entries Pij as the transition matrix for a

Markov chain defined on the data. We then run a diffusion process on this Markov

chain for t and calculate the t step transition probability matrix. The idea here is

that small t this transition matrix represents local structure, and as t increases, we

get a more global structure. We then embed this by again computing the spectral

decomposition.

Finally, with SNE, we note that the above-defined Pij for a fixed i defines a

probability distribution. We then imagine there exists a random low dimensional

representation X, and we have similar probability distributions Qij defined. We then

optimize, via gradient descent type algorithms, to minimize some divergence between

4

these distributions, usually the Kullback-Liebler divergence. One can also change the

distribution place on each point from Gaussian to other distributions. One common

variant called T-SNE places a heavy-tailed t-distribution on the low dimensional

points.

Another common technique is to use an autoencoder. Here the idea is to learn two

maps F,G such that G ◦F is the identity map on our data. Here F maps from a high

dimensional space to a low dimensional space. Most commonly, F,G are parameterized

as neural networks. Then we have that X = F (Z). Thus, again, we have learnt a

linear representation of our non-linear data.

One final technique that should be mentioned is via the Johnson Lindenstrauss

lemma Joachims et al. (2009). In the paper, it was shown given Euclidean data with

N points, we can find a low dimensional embedding in O(log(N)ε−2) dimensions,

such that the multiplicative distortion is at most (1 + ε)/(1− ε). Further, this can

be easily achieved by random linear maps, such as, as a matrix G whose entries are

appropriately scaled i.i.d mean 0 Gaussian.

So far, we have been learning low-dimensional linear structures. What about

learning low-dimensional non-linear structures? This is less commonly done. However,

there are some exceptions. In recent years, people have been very interested in learning

embeddings into low dimensional hyperbolic manifolds and has lead to the development

of many different techniques for learning such representations Nickel and Kiela (2017,

2018b); Sala et al. (2018); Sonthalia and Gilbert (2020c).

1.1.2 Denoising Data

Another reason to learn a new representation X of the data Z is to denoise the

data. That is, we are assuming that we are given some data Z that is noisy, say has

Gaussian noise added to it or has missing entries, then, in that case, we would like to

learn the denoised version.

5

One common technique to do this is via projections or constrained optimization

problems. The idea here is that we assume that our data likes in some subspace S.

The goal is then to find X ∈ S such that X is close to Z via some loss function. That

is

X arg min
Ẑ

F (Ẑ, Z).

For example suppose F = ‖ · ‖2
F is the Frobenius norm and S is the space of rank r

matrices. Then this solution X is again given by computing the SVD of Z and taking

the first r components.

One issue with such techniques is that if Z̃ is the original denoised data matrix,

then this set up minimizes, F (X,Z) not F (X, Z̃), which could still be large. In the

above example, it has been shown that we can solve for F (X, Z̃), even without known

Z̃ by shrinking the singular values Nadakuditi (2014).

Another type of noisy data is given the mixture of many different data sources.

That is, if the rows of Z̃ are the original data points, then we have that Z = AZ̃ for

some matrix A (here, we have a linear mixture). In this case, we solve the problem

using independent component analysis or ICA Comon (1994); Jutten and Hérault

(1991). For PCA, we computed the SVD, where each singular vector is found such

that it maximizes the variance while being orthogonal to the previously found singular

vectors. In ICA, we instead find the components that maximize the absolute value of

the fourth cumulant.

One can also adapt the idea behind autoencoders to denoise data. Here instead of

training the network to learn the identity map, we train it to learn the map from the

noisy to denoised data. While autoencoder type structures have been proved to be

useful for such tasks, in principle, any network architecture can be used. However, in

general, they are all regularized so that the learned map has high regularity.

Another common type of noisy data is missing entries or masked noise models.

Here, we do not have the complete data Z, but some version of it with missing

6

data. One common example of such a setup is matrix completion. Here we are

given a low-rank matrix Z with many missing entries, and the goal is to fill in the

missing entries. One common strategy for doing this is via singular value thresholding

Candès and Tao (2010). That is, we fill in zeros, compute the SVD and the nearest

rank r approximation. We then fix the known entries, compute the nearest rank r

approximation and repeat until the matrix does not change.

This idea of filling in missing entries plays a big role in natural language processing.

Here, a network is trained to fill in the missing words in a text. Once the large

network is trained for this task, the network minus the last layer is assumed to have

learned a good representation of the language. This network is then extended and

then fine-tuned on various other tasks. This method forms the basis for model large

language models in use today Vaswani et al. (2017); Devlin et al. (2019).

1.1.3 Learning Embeddings

A lot of data is presented as structured data such as text and is not given as

coordinates. Most data science and machine learning techniques assume that data

lives in Euclidean space (or something similar). Hence another common representation

learning idea is to learn an embedding into Euclidean space.

We have already seen one technique for learning embeddings. That is, MDS,

or in general, given some distance or dissimilarity matrix, computing the spectral

decomposition and using the scaled eigenvectors as coordinates.

The ideas behind autoencoders and missing data have also been used to learn

embeddings of structured objects. Here the goal is again to learn two functions

F,G such that F takes some of the structured object (words in a text, nodes in

graphs, group elements in groups) and then outputs an embedding. G then takes

the embedding and predicts a related object. For example, the word2vec Mikolov

et al. (2010) has two models. First is continuous bag of words (CBOW), where we

7

take the words in a window around a target word in a text and then try and predict

the targeted word. Second is the skip-gram model, where we take the targeted word

and attempt to predict the window around the word. A similar idea can be used for

graphs Narayanan et al. (2017) and groups Cerliani (2020).

Another area where we learn embedding in an area called metric learning. In

metric learning, we are given a dataset and want to learn an approximate metric on

the data set. The way we learn this metric is to learn a Euclidean embedding and then

learn a Mahalanobis metric on the data set. One common technique is to optimize

for the matrix M in the Mahalanobis metric. Another technique is to use a neural

network that is applied on two inputs, and then the loss function is based on how

close the distance between the output vectors is to some target distance.

1.1.4 Learning Combinatorial Structure

Another form of representation learning is to learn a simple combinatorial structure.

One common simple combinatorial structure that is learned is a sparse graph and, in

many cases, a tree. There are many methods that learn subgraphs. First are methods

that, given a graph, extract a sparse subgraph such as minimum spanning tree Prim

(1957). Or, in general, methods that low learn low stretch trees Alon et al. (1995);

Elkin et al. (2005). The other paradigm is where we are given a metric on the data,

and then we learn a tree that represents this data. Examples of such methods include

Neighbor Join Saitou and Nei (1987); Abraham et al. (2007); Bartal (1998).

Another type of discrete object that we learn is compressed sensing Donoho (2006);

Tropp and Gilbert (2007) . Here we are given an overcomplete dictionary or basis

and data Z such that Z can be well represented by a sparse combination X of our

dictionary atoms.

8

1.2 Parameter Geometry

Now that we the representation for the input, X, how do we represent the function

f? Here we assume that f is parameterized by parameters θ. This is either coordinates

in some function space or neural networks.

Historically, this was done via linear regression. That is, we assume that f is a

linear function on the data. To learn non - linear functions, we would use the kernel

trick, which is just learning a different X and then doing linear regression.

Another example of learning function parameterization was to learn an overcomplete

set of functions such that the functions we care about can be represented as sparse

linear combinations of such basis functions. This is known as dictionary learning. One

example of a basis commonly used for discrete functions is the discrete Fourier basis

along with bump functions. Another common example is the radial basis functions,

which place a Gaussian function at each point.

If the functions that are trying to learn are density functions, then another common

method is to learn the moments of distributions. Here we have techniques such as

Latent Dirichlet Allocation (LDA) and Gaussian Mixture models GMM. Another

similar idea is Gaussian Processes, where for each input, we again learn a Gaussian

distribution, but now we can incorporate prior information.

More recently, with the advent of deep neural networks, we parameterize functions

as an iterated sequence of linear and non - linear functions, with the coefficients of

the linear function forming θ.

With information geometry, we want to understand the manifold of various kinds

of probability distributions. Here we are no longer interested in just parameterizing

the space of function but also imposing a metric on the space of functions as well. In

many cases, we can think of the manifold of probability distributions. Imposing a

metric on this space lets us use ideas such as natural gradient descent or manifold

gradient descent to learn optimal parameters for our function f .

9

1.3 Connection between Data and Parameter Geometry

Finally, how do these two concepts relate? The major connection is provided via

optimal transport. Let X be a ground space and d be a metric on X, let µ,u be

two distributions or functions on X. Let Π(µ,3) be the space of all measures on the

product space X ×X such that the marginals are µ and ν. Then, this metric d on

the data space X corresponds to a metric Wk (for integers k ≥ 1 on the function as

follows

Wk(µ, ν)k = inf
π∈Π(µ,ν)

∫
d(x, y)kµ(x)ν(y).

Better understanding this connection will help us better leverage the various data

representation learning and function representation learning methods.

1.4 In this thesis

Now that we have an idea of the types of problems that exist in representation

learning, we shall briefly discuss the material covered in this thesis. The types of

problems looked at in this thesis fall under 3 categories.

• Geometric and probabilistic analysis of representation learning methods.

• Developing methods to learn optimal metrics on large datasets.

• Learning representations from real data that capture the inherent geometry of

the data for applications.

That being said, multiple projects that we are working on span multiple categories.

As mentioned, I am also interested in the interplay between theory and applications.

Hence my projects will span both theoretical and application work with large interplays

between the theoretical and application work.

10

1.4.1 Learning Good Metrics

Given a dissimilarity matrix D̂, we want to find the closest metric D. Specifically,

we want to solve the following problem.

minimize ‖D̂ −D‖p

subject to Dij +Djk ≥ Dik ∀i, j, k
(1.1)

This problem is the archetypal example of a general class of problems that we call

metric constrained problems. More generally, we are given some function f and some

a subset S of the space of all metrics, and we want to optimize f over S. Solving this

problem for different families of functions f and different sets S has resulted in the

following sequence of papers by me Sonthalia and C. Gilbert (2018); Fan et al. (2020);

Sonthalia and Gilbert (2020a,c).

1.4.2 Chapter II - Sparse Metric Repair.

In this chapter, we look at the sparse version of the problem in Equation 1.1. Here

we generalize the problem so that not only is the output expected to be sparse, but

the input is expected to be sparse as well. We prove a variety of hardness results in

terms of lower bounds and upper bounds. We combinatorially characterize all of the

solutions and provide a fixed-parameter tractable algorithm for the problem. This

chapter is based on the paper Fan et al. (2020).

1.4.3 Chapter III - Geometric Manifold Repair in the Presence of Missing

Data.

In this chapter, we show that the ideas from metric repair can be used to do manifold

learning in the presence of missing data. We provide an alternate to imputing the

high-dimensional data. Our method approximates the metric using the data with

missing values, and then repairs this metric. We also show that if we use the repaired

11

metric to do dimensionality reduction, then this results in favorable performance

compared to methods that impute the data such as Á. Carreira-Perpiñán and Lu

(2011); Scholz et al. (2005). This is based on the chapter Sonthalia and C. Gilbert

(2018).

1.4.4 Chapter IV - Project and Forget: Solving Highly Constrained Con-

vex Optimization Problems.

Solving the problem in Equation 1.1 is hard due to the number of constraints.

In this chapter, we show that standard solvers cannot solve the problem for more

than 200 data points. In this chapter, we developed a general-purpose optimization

technique called Project and Forget that can be used to solve problems with a

large number of constraints. In the paper, we show that using our solver, we can solve

larger instances of metric nearness, correlation clustering, quadratically regularized

optimal transport, and information-theoretic metric learning than what previous

solvers could solve. As a highlight, we solve a problem with 1015 constraints. This

chapter is based on the paper Sonthalia and Gilbert (2020a).

1.4.5 Chapter V - Learning Good Quality Hyperbolic Representations

Quickly.

In this chapter, we present a new algorithm TreeRep which, when given a metric,

learns a tree structure and a tree metric on that data. In the paper, we show that on

the task of learning low dimensional hyperbolic embeddings, we outperform many

hyperbolic embedding techniques as Nickel and Kiela (2017, 2018a) and Sala et al.

(2018), while also being multiple orders of magnitude faster. This chapter is

based on the paper Sonthalia and Gilbert (2020c)

12

1.4.6 Analyzing Representation Learning Methods

In this category, we have three projects. First, designing optimal training data

for denoising autoencoders. Second, formulating a new optimal transport problem

and understanding the geometric structure. Third, analyzing the robustness to

perturbations of the solutions obtained from the classical multidimensional scaling

algorithm versus that of the true solutions to the multidimensional scaling problem.

1.4.7 Chapter VI - Dual Regularized Optimal Transport.

In the paper Sonthalia and Gilbert (2020b), we present a new formulation of

unbalanced optimal transport called Dual Regularized Optimal Transport (DROT).

We argue that regularizing the dual formulation of optimal transport results in a

version of unbalanced optimal transport that gives us control over mass creation and

destruction. We also show that solutions to DROT are sparse. Additionally, using

Project and Forget (see Chapter IV), we can solve the problem for large datasets.

This chapter is based on the paper Sonthalia and Gilbert (2020b).

1.4.8 Chapter VII - Robustness of cMDS via Spectral Analysis.

Classical MDS algorithm is only an approximation of the true multidimensional

scaling problem as it does not find the embedding whose metric is closest to the original

metric (See Qi and Yuan (2014a) for details). We are interested in understanding

the robustness of the solution obtained from cMDS versus the true solutions. In this

chapter, we derive a formula for the error of the cMDS analysis, that is based on

the spectral decomposition on a matrix obtained from the input matrix. From the

formula, we notice that if the original input to the cMDS is non-Euclidean or is even

a perturbed Euclidean distance matrix, then we have this non-desirable behavior,

whereas the embedding dimension increases the error eventually increase. In the

chapter, we also design a new approximation algorithm that fixes this issue. This

13

(i) Plot showing Empirical
Mean Squared Error averaged
over 40 trials and the theoret-
ical predicted MSE.

(ii) Traditional set
up: train and test
data have the same
SNR.

(iii) My set up:
train SNR modi-
fied.

Figure 1.1: Plot showing results from the analysis of the formula

chapter is based on the paper Sonthalia et al. (2021)

1.4.9 Chapter VIII - Probabilistic Analysis of Denoising Autoencoders.

For this project, under some assumptions, I have derived a theoretical formula for

the generalization error. (one case can be seen in Equation 1.2).

MSE =
θ2
test

(1 + θ2
trainM)2

+
θ2
trainc+ θ4

trainM

(1 + θ2
trainM)2(1− c)

(1.2)

This formula then gives us the following counterintuitive insight! The SNR for the

training data and test data should not be the same unless we have an infinite

amount of training data. The formula also provides the optimal SNR for the training

data. We can experimentally verify this as seen in Figure 1.1. In Figure 1.1i, we see

that the theoretical predicted MSE and experimental MSE match. In Figures 1.1ii

and 1.1iii, we show the result of trying to denoise a noisy image of the French flag.

For Figure 1.1ii, the SNR of the training data was equal to the test data SNR, as is

traditionally advised. On the other hand, for Figure 1.1iii, the SNR of the training

data was modified based on insights from my analysis. As we can see, the theoretically

suggested modification results in a much better image. This chapter is based on the

paper Sonthalia and Nadakuditi (2021).

14

1.4.10 Chapter IX - Reconstructing Ancient Greek Text.

The problem is to reconstruct the original text, given ancient Greek text that

is old, in fragments, and has a lot of missing letters. The problem is compounded

because Ancient Greek is written without spaces and without diacritics. For this

problem, I developed a modular framework that can be used to solve the problem. It

was successful in reconstructing large parts of the missing information. For example,

when 30% of the characters are missing, the input text is about 54% correct (due

to missing diacritics, this is lower than 70%). After reconstructing the text using

our framework, the text is 87% correct. More detail can be found in Sonthalia et al.

(2020). This chapter is based on the paper Sonthalia et al. (2020).

15

CHAPTER II

Generalized Metric Repair on Graphs

2.1 Introduction-GMR

Given a set of distances determined by a collection of data points, one of the

most basic questions we can ask is whether the distances satisfy a metric. This basic

property is fundamental to a large number of computational geometry and machine

learning tasks such as metric learning, dimensionality reduction, and clustering (see

for example Wang and Sun (2015); Baraty et al. (2011)). It is fortuitous when the

underlying distances arise from a metric space or are at least well modeled by one, as

certain tasks become provably easier over metric data (e.g., approximating the optimal

TSP tour), and moreover it allows us to use a number of computational tools such as

metric embeddings. However, due to noise, missing data, and other corruptions, in

practice these distances often do not adhere to a metric.

As a motivating example, consider the following standard manifold learning task

(Belkin and Niyogi (2003); Roweis and Saul (2000); Tenenbaum et al. (2000b)). Given

a high dimensional data set, we wish to uncover its intrinsic lower dimensional

structure, allowing us to visualize and to understand the geometry of the data. Isomap

Tenenbaum et al. (2000b) is one of the standard embedding tools used to find this

lower dimensional structure, and Figure 2.1 shows how Isomap nicely recovers the 2d

spiral when embedding a 3d Swiss roll data set. However, as shown on the right in

16

Figure 2.1, if we perturb even a small fraction of the distances this structure is lost in

the embedding produced by Isomap.

(i) Original Swissroll
data.

(ii) Embedded true distance. (iii) Embedded corrupted dis-
tances.

Figure 2.1: (a) 2000 data points in the Swissroll. For (b) and (c) we took the pairwise
distance matrix and added 2N (0, 1) noise to 5% of the distances. We then constructed
the 30-nearest-neighbor graph G from these distances, where roughly 8.5% of the edge
weights of G were perturbed. For (b) we used the true distances on G as the input to
Isomap. For (c) we used the perturbed distances.

Motivated by the above applications, the problem of minimally fixing the distances

to uncover the data metric was previously considered. Specifically, Fan et al. Fan

et al. (2018d) and Gilbert and Jain Gilbert and Jain (2017) respectively formulated

the Metric Violation Distance (MVD) and the Sparse Metric Repair (SMR) problems,

where in both cases one is given a full distance matrix, and the goal is to modify as

few entries as possible so that the repaired distances satisfy a metric.

More generally, however, the underlying distance graph will be incomplete as

data may be missing or the constructed distance graph is inherently sparse, as the

above manifold example demonstrates. Working directly with this incomplete graph

is not only computationally more desirable when the graph is sparse, but also may

be necessary to uncover the ground truth. For example, observe that for any graph

we can attempt to fill in its missing edges by assigning them weights according to

their shortest path distance. Thus naively one could attempt to fix the input graph,

by solving MVD/SMR on this complete graph, and afterwards dropping any selected

edges that were not in the original graph. Figure 2.2 shows that doing so, however,

17

can produce radically different and sub-optimal solutions.

Figure 2.2: Original graph is the four solid green edges of weight 1, and two dashed
red edges of weight 4. Added blue dotted edges all have weight 2. The original graph
is repaired by increasing the lower left green edge, but the optimal solution in the
complete graph decreases the two red edges.

Thus to appropriately capture this more general problem, we define the Graph

Metric Repair problem as the natural graph theoretic generalization of the MVD and

SMR problems:

Given a positively weighted undirected graph G = (V,E,w) and a set

Ω ⊆ R, find the smallest set of edges S ⊆ E such that by modifying the

weight of each edge in S, by adding a value from Ω, the new distances

satisfy a metric.

The additional graph structure introduced in the generalized problem lets us incorpo-

rate different types of relationships amongst data points and gives us more flexibility

in its structure, and hence avails itself to be applicable to a richer class of problems.

This general graph structure also elucidates the deep connections to cutting problems,

which underlie several results in this paper, and which were not previously observed

in Fan et al. (2018d); Gilbert and Jain (2017). In particular, as discussed below,

our problem is closely related to MULTICUT (Problem 2.8.1), a generalization of the

standard s-t cut problem to multiple s-t pairs, as well as LB-CUT (Problem 2.9.1),

where only s-t paths with lengths up to a given threshold L must be cut.

It should also be noted that Graph Metric Repair, as well as MVD and SMR, are

related to a large number of other previously studied problems. A short list includes:

18

metric nearness, seeking the metric minimizing the sum of distance value changes

Brickell et al. (2008a); metric embedding with outliers, seeking the fewest points

whose removal creates a metric Sidiropoulos et al. (2017); matrix completion, seeking

to fill missing matrix entries to produce a low rank Candès and Recht (2012); and

many more. See Fan et al. (2018d) for a more detailed discussion of these and other

problems.

Contributions and Results: The main contributions of this paper are as follows:

• We transition all previously known structural results about SMR and MVD to

the new graph theoretic version. In particular, we provide a characterization for

the support of solutions to the increase (Ω = R≥0) and general (Ω = R) versions

of the problem. Furthermore, we provide a new structural result showing that

the increase only problem reduces to the general one, where it is unknown if

such a result holds for SMR and MVD.

• For any fixed constant ς, by parameterizing on the size of the optimal solution,

we present a fixed parameter tractable algorithm for the case when G is ς-

chordal. This not only answers an open question posed by Fan et al. (2018d)

for complete graphs, but significantly extends it to the larger ς-chordal case

(see Chandran et al. (2005) for characterizations of such graphs, many of which

are the complements of a variety of families of graphs). Moreover, we get an

upper bound on the number of optimal supports, as each one is seen by some

branch of the algorithm.

• We give polynomial-time approx-preserving reductions from MULTICUT and

LB-CUT to graph metric repair. This connection to the well studied MULTICUT

problem is interesting in its own right, but by Chawla et al. (2006) it also implies

graph metric repair is NP-hard, and cannot be approximated within any constant

factor assuming the Unique Games Conjecture (UGC).

19

• We give approximation algorithms, parameterized by different measures of how

far the input is from a metric. Significantly, our approximations mirror our

hardness results. Call a cycle broken if it contains an edge whose weight is

larger than the sum of all its other edges, and call the amount of this difference

its deficit. We give an L-approximation, where L is the maximum number

of edges in a broken cycle, while LB-CUT gives Ω(
√
L)-hardness. We give an

O(κ log n)-approximation, where κ is the number of distinct cycle deficit values,

while in general the best known approximation for MULTICUT is O(log n).

• Finally, we give improved analysis of previous algorithms for the complete graph

case. To keep the focus on our main results, this entire section has been moved

to Appendix A.3.

2.2 Preliminaries

2.2.1 Notation and problem definition

Let us start by defining some terminology. Throughout the paper, the input is an

undirected and weighted graph G = (V,E,w). A subgraph C = (V ′, E ′) is called a

k-cycle if |V ′| = |E ′| = k, and the subgraph is connected with every vertex having

degree exactly 2. We often overload this notation and use C to denote either the

cyclically ordered list of vertices or edges from this subgraph. Let C \ e denote the

set of edges of C after removing the edge e, and π(C \ e) denote the corresponding

induced path between the endpoints of e.

A cycle C is broken if there exists an edge h ∈ C such that w(h) >
∑

e∈C\hw(e).

In this case, we call the edge h the heavy edge of C, and all other edges of C are

called light edges. We call a set of edges a light cover if it contains at least one light

edge from each broken cycle. Similarly, we call it a regular cover if it contains at

least one edge from each broken cycle. We say that a weighted graph G = (V,E,w)

20

satisfies a metric if there are no broken cycles. Finally, let Symn(Ω) be the set of

n × n symmetric matrices with entries drawn from Ω ⊆ R. Note that the weight

function w can be viewed as an n × n symmetric matrix (missing edges get weight

∞), and thus for any W ∈ Symn(Ω), the matrix sum w + W defines a new weight

function. Now we can define the generalized graph metric repair problem as follows.

In the following, ‖W‖0 is the number of non-zero entries in the matrix W , i.e., the `0

pseudonorm when viewing the matrix W as a vector.

Problem 2.0.1. Given Ω ⊆ R and a positively weighted graph G = (V,E,w) we

want to find

arg min
W∈Sym(Ω)

‖W‖0 such that G = (V,E,w +W) satisfies a metric, or return NONE,

if no such W exists. Denote this problem as graph metric repair or MR(G,Ω).

A matrix W is an optimal solution if it realizes the arg min in the above, and

is a solution (without the optimal prefix) if G = (V,E,w + W) satisfies a metric,

but ‖W‖0 is not required to be minimum. The support of a matrix W ∈ Sym(Ω),

denoted SW , is the set of edges corresponding to non-zero entries in W . As we will

see in Proposition 2.7, given a support for a solution W , we can easily find satisfying

entries. Thus, the main difficulty lies in finding the support. Throughout we use OPT

to denote the size of the support of an optimal solution.

We also need the following basic graph theory definitions: Kn is the complete graph

on n vertices. Cn is the cycle n vertices. A chord of a cycle is an edge connecting

two non-adjacent vertices. For a given value ς, a graph G is called a ς-chordal if the

size of the largest chordless cycle in G is ≤ ς.

Let the deficit of a broken cycle C, denoted δ(C), be the weight of its heavy edge

minus the sum of the weights of all other edges in C. Similarly, δ(G) denotes the

maximum of δ(C) over all broken cycles. Finally, let L+ 1 be the maximum number

21

of edges in a broken cycle (i.e., L counts the light edges). Note δ and L are both

parameters measuring the extent to which cycles are broken, δ with respect to weights

and L with respect to the number of edges.

In several places we compute all pairs shortest paths (APSP). Let TAPSP denote

the time to do so, where TAPSP = O(mn + n2 log n) using Dijkstra’s algorithm and

Fibonacci heaps.

2.2.2 Previous results

Fan et al. Fan et al. (2018d) and Gilbert and Jain Gilbert and Jain (2017) studied

the special case of MR(G,Ω) where G = Kn. Three sub-cases based on Ω were

considered, namely Ω = R≤0 (decrease only), R≥0 (increase only), and R (general).

Various structural, hardness, and algorithmic results were presented for these cases.

In particular, the major results from these previous works are as follows. (Note the

notation and terminology here differs slightly from Fan et al. (2018d); Gilbert and

Jain (2017).)

Theorem 2.1. Fan et al. (2018d); Gilbert and Jain (2017) The problem MR(Kn,R≤0)

can be solved in O(TAPSP) time.

Theorem 2.2. Fan et al. (2018d) For a complete positively weighted graph Kn =

(V,E,w) and S ⊆ E:

1. S is a regular cover if and only if S is the support to a solution to MR(Kn,R).

2. S is a light cover if and only if S is the support to a solution to MR(Kn,R≥0).

Theorem 2.3. Fan et al. (2018d); Gilbert and Jain (2017) Given the support S of

a solution to MR(Kn,R≥0) or MR(Kn,R), in polynomial time one can find a weight

assignment to the edges in S which is a solution.

22

Gilbert and Jain (2017) Moreover, for MR(Kn,R≥0), if Kn−S is connected, then

for any edge uv ∈ S, setting the weight of uv to be the shortest distance between u

and v in Kn−S is a solution.

Theorem 2.4. Fan et al. (2018d) The problems MR(Kn,R≥0) and MR(Kn,R) are

APX-Complete, and moreover permit O(OPT 1/3) approximation algorithms.

2.3 Transitioning to Graph Metric Repair

In this section we generalize Theorems 2.1, 2.2, and 2.3 to the case when G is

any graph, and additionally show that for general graphs MR(G,R≥0) reduces to

MR(G,R). Subsequently, in the later sections of paper, we provide a number of

new stronger hardness and approximation results for MR(G,R≥0) and MR(G,R) for

general graphs, as well as an FPT algorithm for ς-chordal graphs, in effect generalizing

and strengthening Theorem 2.4, and answering previously unresolved questions.

For MR(G,R≤0) we have the following generalization of Theorem 2.1. Moreover,

we observe the hardness proof of Fan et al. (2018d) implies if weights are allowed

to increase even by a single value, the problem is APX-Complete. The proof of the

theorem below follows fairly directly from previous work, and so has been moved to

Appendix A.1.1, which contains additional corollaries.

Theorem 2.5. The problem MR(G,R≤0) can be solved in O(TAPSP) time.

Moreover, the problem becomes hard if even a single positive value is allowed.

That is, if 0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

2.3.1 Structural results

Theorem 2.2 suggests that the problem is mostly combinatorial in nature. We

shall see that, in general, the difficult part of the problem is finding the support of an

optimal solution. Next, we present a characterization of the support of all solutions to

23

the graph metric repair problem, generalizing Theorems 2.2, 2.3. It should be noted

that the proof of the following is significantly simpler than the proof of Theorem 2.2

in Fan et al. (2018d). The key insight is:

(i) If the shortest path between two adjacent vertices is not the edge connecting

them, then this edge is the heavy edge of a broken cycle.

Theorem 2.6. For any positively weighted graph G = (V,E,w) and S ⊆ E:

1. S is a regular cover if and only if S is the support to a solution to MR(G,R).

2. S is a light cover if and only if S is the support to a solution to MR(G,R≥0).

Proof. First, assume that S is the support of a solution to MR(G,R) (MR(G,R≥0)).

Suppose C is a broken cycle in G. If S does not contain any (light) edges from C,

then changing (increasing) the weights on S could not have fixed C. Hence, S must

be a regular (light) cover thus proving the “if” direction of both parts of the theorem.

For the “only if” direction, we are given a regular (light) cover S ⊆ E which we

use to define a graph Ĝ = (V,E \ S,w). Note that since S is either a regular or light

cover, S contains at least one edge from all broken cycles of G. Thus, since Ĝ is G

with the edges of S removed, Ĝ has no broken cycles. Therefore, the shortest path

between all adjacent vertices in Ĝ is the edge connecting them.

Now we define another graph G′ = (V,E,w′) where w′(e) = w(e) for all e ∈ E \ S

and for all e ∈ S, w′(e) is the length of the shortest path between its end points in Ĝ

or ‖w‖∞ (the maximum edge weight in Ĝ) if no path exists.

To prove 1., it suffices to show G′ satisfies a metric, since G′ is G with only weights

from edges in S modified. For any edge e ∈ E, if w′(e) is the shortest path between

its nodes in G′ then e is not a heavy edge in G′. Therefore, edges that are in both

G′ and Ĝ and edges that are in G′ whose weight was set to length of the shortest

path between its end points in Ĝ are not heavy edges. Thus, we only need to look at

edges in G′ whose weight is ‖w‖∞. These are edges that connect two disconnected

24

components in Ĝ. Thus, any cycle in G′ with such an edge must involve another edge

between components which also has weight ‖w‖∞. However, a cycle with two edges

of maximum weight cannot be broken, and thus such edges cannot be heavy in G′.

Therefore, there are no heavy edges in G′, and so G′ satisfies a metric.

To prove 2., it now suffices to show that for all e ∈ E, we have that w′(e) ≥ w(e).

For all e ∈ E \ S, we know that w′(e) = w(e). Now, suppose for contradiction that

for some e ∈ S, we have w′(e) < w(e). Note if we set w′(e) = ‖w‖∞, then we cannot

have w′(e) < w(e). Thus, w′(e) must be the weight of the shortest path between the

end points of e in Ĝ. Let P be this shortest path in Ĝ. This implies G has a broken

cycle C = P ∪{e} for which e is the heavy edge. Since S is a light cover, it has a light

edge from each broken cycle. So, S must have a light edge from C, but then P could

not have existed in Ĝ, a contradiction. Hence, w′(e) ≥ w(e) and we have an increase

only solution with such a set S.

Furthermore, given a weighted graph G and a potential support SW for a solution

W , in O(TAPSP) time we can determine if there exists a valid (increase only or general)

solution on that support, and if so, find one. This is a generalization of Theorem 2.3,

interestingly improving upon the linear programming approach of Fan et al. (2018d).

Its proof is related to the above theorem, and again uses insight (i), though due to

space has been moved to Appendix A.1.2.

Algorithm 1 Verifier
1: function Verifier(G = (V,E,w), S)
2: M = ‖w‖∞, Ĝ = (V,E, ŵ)
3: For each e ∈ S set ŵ(e) = M and for each e ∈ E \ S, set ŵ(e) = w(e)
4: For each (u, v) ∈ E, update w(u, v) to be length of the shortest path from u

to v in Ĝ
5: if Only edges in S had weights changed (or increased for increase only case)

then
6: return w
7: else
8: return NULL

25

Proposition 2.7. The Verifier algorithm, given a weighted graph G and a potential

support for a solution S, determines in O(TAPSP) time whether there exists a valid

(increase only or general) solution on that support and if so finds one.

2.3.2 Reducing MR(G,R≥0) to MR(G,R)

We now show that MR(G,R≥0) reduces to MR(G,R). In later sections, this lets

us focus on MR(G,R) for our algorithms and MR(G,R≥0) for our hardness results.

Note that whether an analogous statement holds for the previously studied G = Kn

case, is not known, and the following does not immediately imply this as it does not

construct a complete graph.

Theorem 2.8. There is an approximation-preserving, polynomial-time reduction from

MR(G,R≥0) to MR(G,R).

Proof. LetG = (V,E,w) be an instance of MR(G,R≥0). Find the setH = {(s1, t1), . . . ,

(s|H|, t|H|)} of heavy edges of all broken cycles by comparing the weight of each edge

to the shortest path distance between its endpoints. We now construct an instance,

G′ = (V ′, E ′, w), of MR(G,R). For all 1 ≤ i ≤ |H| and 1 ≤ j ≤ |E| + 1, let

Q = {vij}i,j be a vertex set, and let Fl = {(si, vij)}i,j and Fr = {(ti, vij)}i,j be edge

sets. Let V ′ = V ∪Q and E ′ = E ∪ Fl ∪ Fr, where all (si, vij) edges in Fl have weight

Z = 1 + maxe∈E w(e), and for any i all (ti, vij) edges in Fr have weight Z −w((si, ti)).

Let C be any broken cycle in G with heavy edge (si, ti) for some i. First, observe

that C ′ = (C \ (si, ti)) ∪ {(si, vij), (ti, vij)} is a broken cycle with heavy edge (si, vij),

for any j. To see this, note that w((si, vij)) = Z = w((ti, vij)) +w((si, ti)). Thus since

C is broken,

w((si, vij)) = w((ti, vij)) + w((si, ti)) > w((ti, vij)) + w(C \ (si, ti)),

and thus by definition C ′ is broken with heavy edge (si, vij). Hence each broken cycle

26

C in G, with heavy edge (si, ti), corresponds to |E|+ 2 broken cycles in G′, namely,

C itself and the cycles obtained by replacing (si, ti) with a pair (si, vij), (ti, vij), for

any j.

We now show the converse, that any broken cycle C ′ in G′ is either also a broken

cycle C in G, or obtained from a broken cycle C in G by replacing (si, ti) with

(si, vij), (ti, vij) for some j. First, observe that for any i, any cycle containing the edge

(si, vij) must also contain the edge (ti, vij), and moreover, if a cycle containing such a

pair is broken, then its heavy edge must be (si, vij) as w((si, vij)) = Z. Similarly, any

cycle containing more than one of these pairs of edges (over all i and j) is not broken,

since such cycles then would contain at least two edges with the maximum edge weight

Z. So let C ′ be any broken cycle containing exactly one such (si, vij), (ti, vij) pair. Note

that C ′ cannot be the cycle ((si, vij), (ti, vij), (si, ti)), as this cycle is not broken because

w((si, vij)) = w((ti, vij)) + w((si, ti)). Thus, C = C ′ \ {(si, vij), (ti, vij)} ∪ {(si, ti)} is

a cycle, and C ′ being broken implies C is broken with heavy edge (si, ti), implying

the claim. This holds since

w(si, ti) = w((si, vij))− w((ti, vij)) > w(C ′ \ (si, vij))− w((ti, vij)) = w(C \ (si, ti)).

Now consider any optimal solution M to the MR(G,R≥0) instance G, which by

Theorem 2.6 we know is a minimum cardinality light cover of G. By the above, we

know that M is also a light cover of G′, and hence is also a regular cover of G′. Thus

by Theorem 2.6, M is a valid solution to the MR(G,R) instance. Conversely, consider

any optimal solution M ′ to the MR(G,R) instance G′, which by Theorem 2.6 is a

minimum cardinality regular cover of G′. The claim is that M ′ is also a light cover

of G, and hence is a valid solution to the MR(G,R≥0) instance. To see this, observe

that since all broken cycles in G are broken cycles in G′, M ′ must be a regular cover

of all broken cycles in G, and we now argue that it is in fact a light cover. Specifically,

27

consider all the broken cycles in G which have a common heavy edge (si, ti). Suppose

there is some cycle in this set, call it C, which is not light covered by M ′. As M ′ is

a regular cover for G′, this implies that for any j, the broken cycle described above

determined by removing the edge (si, ti) from C and adding edges (si, vij) and (ti, vij),

must be covered either with (si, vij) or (ti, vij). However, as j ranges over |E| + 1

values, and these edge pairs have distinct edges for different values of j, M ′ has at

least |E|+ 1 edges. This is a clear contradiction with M ′ being a minimum sized cover,

as any light cover of G is a regular cover of G′, and G only has |E| edges in total.

2.4 Hardness

Previously, Fan et al. (2018d) gave an approximation-preserving reduction from

Vertex Cover to both MR(Kn,R) and MR(Kn,R≥0). Thus, both are APX-complete,

and in particular are hard to approximate within a factor of 2−ε for any ε > 0, assuming

UGC Khot (2002). Since these hardness results were proven for complete graphs,

they also immediately apply to the general problems MR(G,R) and MR(G,R≥0).

Here we give stronger hardness results for MR(G,R≥0) and MR(G,R) by giving

approximation-preserving reductions from MULTICUT and LB-CUT.

Problem 2.8.1 (MULTICUT). Given an undirected unweighted graph G = (V,E) on

n = |V | vertices together with k pairs of vertices {si, ti}ki=1, compute a minimum size

subset of edges M ⊆ E whose removal disconnects all the demand pairs, i.e., in the

subgraph (V,E \M) every si is disconnected from its corresponding vertex ti.

Chawla et al. Chawla et al. (2006) proved that if UGC is true, then it is NP-hard

to approximate MULTICUT within any constant factor L > 0, and assuming a stronger

version of UGC, within Ω(
√

log log n). (The MULTICUT version in Chawla et al. (2006)

allowed weights, but they remark their hardness proofs extend to the unweighted

case.)

28

Theorem 2.9. There is an approximation-preserving, polynomial-time reduction from

MULTICUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of MULTICUT with k pairs of vertices {si, ti}ki=1.

First, if (si, ti) ∈ E for any i, then that edge must be included in the solution M .

Thus, we can assume no such edges exists in the MULTICUT instance, as assuming

this can only make it harder to approximate the optimum value of the MULTICUT

instance. We now construct an instance of MR(G,R≥0), G′ = (V ′, E ′, w). Let V ′ = V

and E ′ = E ∪ {si, ti}ki=1 where the edges in E have weight one and the edges (si, ti),

for all i ∈ [k], have weight n = |V |.

If a cycle in G′ has exactly one edge of weight n, then it must be broken since

there can be at most n− 1 other edges in the cycle. Conversely, if a cycle C has no

edge or more than one edge with weight n, then C does not have a heavy edge, and

so is not broken.

Note that the edges from G are exactly the weight one edges in G′, and thus, the

paths in G are in one-to-one correspondence with the paths in G′ which consist of only

weight one edges. Moreover, the weight n edges in G′ are in one-to-correspondence

with the (si, ti) pairs from G. Thus, the cycles in G′ with exactly one weight n edge

followed by paths of all weight one edges connecting their endpoints, which by the

above are exactly the set of broken cycles, are in one-to-one correspondence with paths

between (si, ti) pairs from G. Therefore, a minimum cardinality subset of edges which

light cover all broken cycles, i.e., an optimal MR(G,R≥0) support, corresponds to a

minimum cardinality subset of edges from E which cover all paths from si to ti for all

i, i.e., an optimal solution to MULTICUT.

Problem 2.9.1 (LB-CUT). Given a value L and an undirected unweighted graph

G = (V,E) with source s and sink t, find a minimum size subset of edges M ⊆ E such

that no s-t-path of length less than or equal to L remains in the graph after removing

the edges in M .

29

An instance of LB-CUT with length L, is referred to as an instance of L-LB-CUT.

For any fixed L, Lee Lee (2017b) showed that it is hard to approximate L-LB-CUT

within a factor of Ω(
√
L). Using a similar reduction as above, we argue the following.

Theorem 2.10. For any fixed value L, there is an approximation-preserving, polynomial-

time reduction from L-LB-CUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of L-LB-CUT with source s and sink t. First, if

(s, t) ∈ E, then that edge must be included in the solution M . Thus we can assume

that edge is not in the LB-CUT instance, as assuming this can only make it harder

to approximate the optimum value of the LB-CUT instance. We now construct an

instance of MR(G,R≥0), G′ = (V ′, E ′, w). Let V ′ = V and E ′ = E ∪ {(s, t)} where

the edges in E have weight 1 and the edge (s, t) has weight L+ 1.

First, observe that any cycle containing the edge (s, t) followed by ≤ L unit weight

edges is broken, as the sum of the unit weight edges will be < L + 1 = w((s, t)).

Conversely, any broken cycle must contain the edge (s, t) followed by ≤ L unit weight

edges. Specifically, if a cycle does not contain (s, t) then it is unbroken since all edges

would then have weight 1. Moreover, if a cycle contains (s, t) and > L other edges,

then the total sum of those unit edges will be ≥ L+ 1 = w((s, t)).

Note that the edges from G are exactly the weight one edges in G′, and thus the

paths in G are in one-to-one correspondence with the paths in G′ which consist of only

weight one edges. Moreover, the edge (s, t) in G′ corresponds with the source and sink

from G. Thus by the above, the broken cycles in G′ are in one-to-one correspondence

with s-t-paths with length ≤ L in G. Therefore, a minimum cardinality subset of

edges which light cover all broken cycles, i.e., an optimal support to MR(G,R≥0),

corresponds to a minimum cardinality subset of edges from E which cover all paths

from s to t of length ≤ L, i.e., an optimal solution to LB-CUT.

In the L-LB-CUT to MR(G,R≥0) reduction of Theorem 2.10, one edge (the s, t

30

pair) has weight L+1 and all other edges have unit weight. Moreover, in the reduction

from MR(G,R≥0) to MR(G,R) of Theorem 2.8, the max edge weight increases by

1. Thus, by these reductions, and previous hardness results, we have the following

summarizing theorem.

Theorem 2.11. MR(G,R≥0) and MR(G,R) are APX-complete, and moreover as-

suming UGC neither can be approximated within any constant factor.

For any positive integer L, consider the problem defined by the restriction of

MR(G,R) to integer weight instances with maximum edge weight L and minimum

edge weight 1, or the further restriction of MR(G,R≥0) to instances where all weights

are 1 except for a single weight L edge. Then assuming UGC these problems are hard

to approximate within Ω(
√
L).

2.5 Fixed Parameter Analysis for ς-Chordal Graphs

Let ς be a fixed constant, and let Fς be the family of all ς-chordal graphs. Here we

provide an FPT for MR(G,R) for any G ∈ Fς , parameterized on the optimal solution

size OPT .

By Theorem 2.6, we seek a minimum sized cover of all broken cycles. First, we

argue below that if G has a broken cycle, then it has a broken chordless cycle. This

seems to imply a natural FPT algorithm for constant ς. Namely, find an uncovered

broken chordless cycle and recursively try adding each one of its edges to our current

solution.∗ However, it is possible to cover all broken chordless cycles while not covering

the broken chorded cycles. These cycles are difficult to cover as they may be much

larger than ς, though again by Theorem 2.6 they must be covered.

Consider an optimal solution W , with support SW . Suppose that we have found
∗One might construe this as FPT kernelization. The edges of the broken chordless cycles do form

a kernel but its size is not bounded in our parameter. As an example, take G = Kn, set one edge
weight to n+ 1, and all other weights to 1. There are 2n− 3 edges in the kernel while the optimal
solution has size 1.

31

a subset S (SW , covering all broken chordless cycles in G. Intuitively, if we add to

each edge in S its weight from W , then any remaining broken chordless cycle must be

covered further, in effect revealing which edges to consider from the chorded cycles

from the original graph G. The challenge, however, is of course that we don’t know

W a priori. We argue that despite this one can still identify a bounded sized subset of

edges containing an edge from a cycle needing to be covered further.

Lemma 2.12. If G has a broken cycle, then G has a broken chordless cycle.

Proof. Let C = v1, . . . , vk be the broken cycle in G with the fewest edges, with v1vk

being the heavy edge. If C is chordless, then the claim holds. Otherwise, this cycle has

at least one chord vivj . Now there are two paths P1 and P2 from vi to vj on the cycle.

Let P1 be the path containing the heavy edge of C. If w(vi, vj) >
∑

e∈P2
w(e), then

P2 together with the edge vivj defines a broken cycle with fewer edges than C. On

the other hand, if w(vi, vj) ≤
∑

e∈P2
w(e) then P1 together with the edge vivj defines

a broken cycle with fewer edges than C. In either case we get a contradiction as C

was the broken cycle with the fewest edges.

Our FPT is shown in Algorithm 2, where we recursively build a potential support

S up to our current guess at the optimal size k. The following lemma is key to arguing

correctness.

Lemma 2.13. Consider any optimal solution W and its support SW to an instance

of metric repair for G = (V,E,w) ∈ Fς . If S (SW , then F (G,S,OPT) adds at least

one edge in SW \ S to P .

Proof. Consider the auxiliary graph GS = (V,E, w̃), which has the same vertex and

edge sets as G, but with the modified weight function:

w̃ =

w(e) e 6∈ S

W (e) + w(e) e ∈ S

32

Algorithm 2 FPT
1: function F(G,S, k)
2: if |S| = k then return verifier(G,S)
3: P = ∅
4: if there exists a broken chordless cycle C such that C ∩ S = ∅ then P = C
5: else
6: for s ⊆ S such that |s| ≤ ς − 1 do
7: Let C = {Chordless cycles C such that C ∩ S = s}
8: C1 ← arg minC∈C

∑
e∈C\sw(e)

9: C2 ← arg maxC∈C w(h) −
∑

e∈C\(s∪{h}) w(e), where h =

arg maxf∈C\sw(f)
10: Add (C1 ∪ C2) \ S to P
11: for e ∈ P do
12: X = F(G,S ∪ {e}, k)
13: if X 6= NULL then return X

14: return NULL

15: function FPTWrapper(G)
16: for k = 1, 2, . . . do
17: X = F(G, ∅, k)
18: if X 6= NULL then return X

Since S (SW , we have that GS has a broken cycle. Thus, by Lemma 2.12, GS has a

chordless broken cycle. Suppose there is a chordless broken cycle in GS that is edge

disjoint from S (which occurs if and only if it is also broken in G), in which case, line

4 finds such a cycle. As this is a broken cycle, it must be covered by some edge in

SW \ S, and thus, we have added some edge in SW \ S to P .

Let us assume otherwise, that any chordless broken cycle in GS has non-empty

intersection with S. Let C be any such chordless broken cycle with C∩S 6= ∅. Observe

that as C is broken in GS, it must be that |C ∩ S| < |C|, as otherwise it would imply

W was not a solution. Thus, as G ∈ Fς , we know that |C| ≤ ς, and so |C ∩ S| < ς.

This implies in some for loop iteration, C ∈ C on line 7.

Let h be the heavy edge, in GS, of the broken cycle C. We now have two cases:

33

Case 1: h ∈ S. In this case we have that

W (h) + w(h) >
∑
e∈C\S

w(e)︸ ︷︷ ︸
(1)

+
∑
e∈S

W (e) + w(e).

On line 8 we found a cycle C1 that minimized (1). Thus, since C is broken in GS,

C1 is also broken in GS, and so must be covered by some edge in SW \ S. Hence, we

added some edge in SW \ S to P .

Case 2 h 6∈ S. In this case h has the maximum weight of all edges in C \ s. We

have that

w(h)−
∑

e∈C\(S∪{h})

w(e)︸ ︷︷ ︸
(2)

>
∑
e∈S

W (e) + w(e).

On line 9 we found a cycle C2 maximizing (2). Thus, if C is broken in GS, then C2

is broken in GS, and so must be covered by some edge in SW \ S. Hence, we added

some edge in SW \ S to P .

Lemma 2.14. Any time we call F , we have that |P | ≤ 2ς|S|ς

Proof. Note |P | is upper bounded by ς multiplied by the number of chordless cycles

we add. If the conditional on line 4 is true then we add only a single chordless cycle

to P . Otherwise, for each s ⊆ S such that |s| ≤ ς − 1 we find two cycles. There are at

most
ς−1∑
i=1

(
|S|
i

)
≤

ς−1∑
i=1

|S|i ≤ |S|ς

many such subsets, and thus we add at most 2|S|ς many cycles, implying the claim.

Theorem 2.15. For any fixed constant ς, Algorithm 2 is an FPT algorithm for

MR(G,R) for any G ∈ Fς , when parameterized by OPT. The running time is

Θ((2ςOPT ς)OPT+1nς).

Proof. FPTWrapper iteratively calls F (G, ∅, k) for increasing values of k until it

34

returns a non-Null value. First, we argue that while k < OPT , F (G, ∅, k) will return

Null. In the initial call to F , we have S = ∅. F then adds exactly one edge in

each recursive call until |S| = k, at which point it returns Verifier(G,S). Thus, as

k < OPT , by proposition 2.7, NULL is returned.

Now we argue that when k = OPT an optimal solution is returned. Fix any

optimal solution W and its support SW to the given instance G. By Lemma 2.13, if

S (SW (which is true initially as S = ∅) then at least one edge in SW \ S is added to

P . Thus, as F makes a recursive call to F (G,S ∪ {e}, k) for every edge e ∈ P , in at

least one recursive call an edge of SW is added to S. Thus there is some path in the

tree of recursive calls to F in which all k = OPT edges from SW are added, at which

point F returns Verifier(G,S), which returns an optimal solution by proposition

2.7. (Note this recursive call may not be reached, if a different optimal solution is

found first.)

Now we consider bounding the running time. Observe that in each call to F , a set

P is constructed, and then recursive calls to F (G,S ∪ {e}, k) are made for each e ∈ P .

By Lemma 2.14, |P | ≤ 2ς|S|ς ≤ 2ςkς at all times. So in the tree of all recursive calls

made by any initial call to F (G, ∅, k), the branching factor is always bounded by 2ςkς ,

and the depth is k. Thus there are O((2ςkς)k) nodes in our recursion tree.

Now we bound the time needed for each node in the recursion tree. If Verifier is

called then it takes O(TAPSP) time by proposition 2.7. Otherwise, note that there are

O(nς) chordless cycles. Thus it takes O(ςnς) time to enumerate and check them on

line 4. Similarly |C| = O(nς) on line 7, and so the run time of each iteration of the for

loop is O(ςnς). There are O(|S|ς) = O(kς) iterations of the for loop, thus the total

time per node is O(ςkςnς).

Thus the total time for each call to F (G, ∅, k) is O((2ςkς)kςkςnς) = O((2ςkς)k+1nς).

35

Since FPTWrapper calls F (G, ∅, k) for k = 1, . . . , OPT , the overall running time is

O

((
OPT∑
k=1

(2ςkς)k+1

)
· nς
)

= O((2ςOPT ς)OPT+1nς).

As lemma 2.13 holds for any optimal solution, the bound on the recursion tree

size in the above proof actually bounds the number of optimal solutions.

Corollary 2.16. If G ∈ Fς then there are at most (2ςOPT ς)OPT subsets S ⊂ E such

that S is the support of an optimal solution to MR(G,R).

Remark 2.17. Using the approximation-preserving reduction from MR(G,R≥0) to

MR(G,R) in Theorem 2.8, the above also yields an FPT for MR(G,R≥0). This holds

since the reduction does not change the optimal solution size, nor ς as it only adds

triangles. Alternatively, the above algorithm can be carefully modified to consider

light covering broken cycles.

2.6 Approximation Algorithms

In this section we present approximation algorithms for MR(G,R≥0) and MR(G,R).

By Theorem 2.6, the support of an optimal solution to MR(G,R) is a minimum

cardinality regular cover of all broken cycles. This naturally defines a hitting set

instance (E, C), where the ground set E is the edges from G, and C is the collection of

the subsets of edges determined by broken cycles. Unfortunately, constructing (E, C)

explicitly is infeasible as there may be an exponential number of broken cycles. In

general just counting the number of paths in a graph is #P-Hard Valiant (1979),

though it is known how to count paths of length up to roughly O(log n) using color-

coding. (See Alon and Gutner (2010); Brand et al. (2018) and references therein.)

Moreover, observe our situation is more convoluted as we wish to count only paths

corresponding to broken cycles.

36

Despite these challenges, we argue there is sufficient structure to at least roughly

apply the standard greedy algorithms for hitting set. Our first key insight, related to

insight (i), is:

(ii) One can always find some broken cycle, if one exists, by finding any edge whose

weight is more than the shortest path length between its endpoints (using APSP).

Thus we have a polynomial time oracle, returning an arbitrary set in C. Recall the

greedy algorithm for hitting set, which repeatedly picks an arbitrary uncovered set,

and adds all its elements to the solution. If L = maxc∈C |c| is the largest set size, this

gives an L-approximation, as each time we take the elements of a set, we get at least

one element of the optimal solution. Below we apply this approach to approximate

MR(G,R) and MR(G,R≥0).

We would prefer, however, to have an oracle for the number of broken cycles

that an edge e ∈ E participates in as using such an oracle would yield an O(log n)-

approximation algorithm for MR(G,R) (regardless of the size of L) by running the

standard greedy algorithm for hitting set which repeatedly selects the element that

hits the largest number of uncovered sets. Towards this end, we have the following

key insight:

(iii) We can find the most broken cycle (i.e., with maximum deficit) and, more

importantly, count how many such maximum deficit cycles each edge is in.

To argue that insight (iii) is true, first we observe that the cycle with the largest deficit

value corresponds to a shortest path. This in turn, argued over several lemmas, allows

us to quickly get a count when restricting to such cycles. Thus, if κ denotes the number

of distinct cycle deficit values, the above insight implies an O(κ log n)-approximation,

by breaking the problem into κ hitting set instances, where for each instance we can

run the greedy algorithm.

37

Algorithm 3 Short Path Cover (SPC) for MR(G,R)

1: function SPC(G = (V,E,w))
2: H = (VH = V,EH = E,wH = w)
3: while True do
4: d, P = APSP(H)
5: if ∃ e = (u, v) ∈ EH such that w(e) > d(u, v) then EH = EH \

(P (u, v) ∪ {e})
6: else return Verifier(G,E \ EH)

2.6.1 L-approximation

In this section, we consider the problems defined by restricting MR(G,R) and

MR(G,R≥0) to the subset of instances where the largest number of light edges in

a broken cycle is L. We present an (L + 1)-approximation algorithm for MR(G,R)

which runs in O(TAPSP · OPT) time, which also will imply an L-approximation for

MR(G,R≥0) with the same running time.

As mentioned above, the main idea comes from insight (ii). In particular, the

following algorithm, Short Path Cover (SPC), can be easily understood by viewing

it as running the standard L-approximation for the corresponding instance (E, C) of

hitting set, where we have an oracle for finding a set c ∈ C. In the following, APSP

is a subroutine returning a shortest path distance function d(u, v), and a function

P (u, v) giving the set of edges along any shortest path from u to v.

Theorem 2.18. SPC gives an (L+1)-approximation for MR(G,R) in O(TAPSP ·OPT)

time.

Proof. First, note that if there is a broken cycle in H, then for some edge e = (u, v),

w(e) > d(u, v), and moreover, in this case P (u, v)∪ {e} is a broken cycle. Thus, when

the algorithm terminates there are no broken cycles in H. Also, for any broken cycle

in G, if all of its edges are still in H, then it will be a broken cycle in H. Thus, when

the algorithm terminates at least one edge from each broken cycle in G is in E \ EH ,

which by Theorem 2.6 implies E \ EH is a valid support.

38

Note that removing edges does not create any new broken cycles, thus, any broken

cycle in H is also a broken cycle in G. Thus, the support of any optimum solution

must contain at least one edge from each broken cycle in H (again by Theorem 2.6),

and so every time we remove the edges of a broken cycle P (u, v) ∪ {e}, we remove

at least one optimum edge. As the largest broken cycle length is L+ 1, this implies

overall we get an (L+ 1)-approximation. The same argument implies the while loop

can get executed at most OPT times, and as APSP takes O(TAPSP) time, and line 5

takes O(m) time, we obtain the running time in the theorem statement.

Remark 2.19. If we modify SPC so that in line 5 we only remove P (u, v) from EH

(rather than P (u, v)∪{e}), then by the second part of Theorem 2.6, the same argument

implies that SPC is an L-approximation for MR(G,R≥0) that runs in O(TAPSP ·OPT)

time.

Remark 2.20. Theorem 2.11 restricts MR(G,R≥0) and MR(G,R) to integer instances

with max weight L, implying any broken cycle has ≤ L edges. As this is a subset

of the instances here, SPC is an L or L + 1 approx for instances that are hard to

approximate within Ω(
√
L).

2.6.2 O(κ log n)-approximation

Using insight (iii), our approach is to iteratively cover cycles by decreasing deficit

value, ultimately breaking the problem into multiple hitting set instances. We present

the algorithm for MR(G,R) first and then remark on the minor change needed to

apply it to MR(G,R≥0).

For any pair of vertices s, t ∈ V , let d(s, t) denote their shortest path distance in

G, and #sp(s, t) denote the number of shortest paths from s to t. It is straightforward

to show that #sp(s, t) can be computed in O(m+n) time given all d(u, v) values have

been precomputed.

39

Lemma 2.21 (Proof in Appendix A.2). Let G be a positively weighted graph, where

for all pairs of vertices u, v one has constant time access to the value d(u, v). Then for

any pair of vertices s, t, the value #sp(s, t) can be computed in O(m+ n) time.

Recall that for a broken cycle C with heavy edge h, the deficit of C is δ(C) =

w(h)−
∑

e∈(C\h) w(e). Moreover, δ(G) denotes the maximum deficit over all cycles in

G. For any edge e, define Nh(e, α) to be the number of distinct broken cycles of deficit

α whose heavy edge is e. Similarly, let Nl(e, α) denote the number of distinct broken

cycles with deficit α which contain the edge e, but where e is not the heavy edge.

While for general α it is not clear how to even approximate Nl(e, α) and Nh(e, α), we

argue that when α = δ(G) these values can be computed exactly.

Lemma 2.22. For any edge e = (s, t), if w(e) = d(s, t) + δ(G) then Nh(e, δ(G)) =

#sp(s, t), and otherwise Nh(e, δ(G)) = 0.

Proof. If w(e) 6= d(s, t) + δ(G), then as δ(G) is the maximum deficit over all cycles, it

must be that w(e) < d(s, t) + δ(G), which in turn implies any broken cycle with heavy

edge e has deficit strictly less than δ(G). Now suppose w(e) = d(s, t) + δ(G), and

consider any path ps,t from s to t such that e together with ps,t creates a broken cycle

with heavy edge e. If ps,t is a shortest path then w(e)−w(ps,t) = w(e)−d(s, t) = δ(G),

and otherwise w(ps,t) > d(s, t) and so w(e)− w(ps,t) < w(e)− d(s, t) = δ(G). Thus

Nh(e, δ(G)) = #sp(s, t) as claimed.

As G is undirected, every edge e ∈ E correspond to some unordered pair {a, b}.

However, often we write e = (a, b) as an ordered pair, according to some fixed arbitrary

total ordering of all the vertices. We point this out to clarify the following statement.

Lemma 2.23. Fix any edge e = (s, t), and let X = {f = (a, b) | w(f) = d(a, s) +

w(e) + d(t, b) + δ(G)}, and Y = {f = (a, b) | w(f) = d(b, s) + w(e) + d(t, a) + δ(G)}.

40

Then

Nl(e, δ(G)) =

 ∑
(a,b)∈X

#sp(a, s) ·#sp(t, b)

+

 ∑
(a,b)∈Y

#sp(b, s) ·#sp(t, a)

 .

Proof. Consider any broken cycle C containing e = (s, t), with heavy edge f = (a, b)

and where δ(C) = δ(G). Such a cycle must contain a shortest path between a and b,

as otherwise it would imply δ(G) > δ(C). Now if we order the vertices cyclically, then

the subset of C’s vertices {a, b, s, t}, must appear either in the order a, s, t, b or b, s, t, a.

In the former case, as the cycle must use shortest paths, w(f) = d(a, s) + w(e) +

d(t, b) + δ(G), and the number of cycles satisfying this is #sp(a, s) ·#sp(t, b). In the

latter case, w(f) = d(b, s) +w(e) + d(t, a) + δ(G), and the number of cycles satisfying

this is #sp(b, s) ·#sp(t, a). Note also that the set X from the lemma statement is the

set of all f = (a, b) satisfying the equation in the former direction, and Y is the set of

all f = (a, b) satisfying the equation in the later direction. Thus summing over each

relevant heavy edge in X and Y , of the number of broken cycles of deficit δ(G) which

involve that heavy edge and e, yields the total number of broken cycles with deficit

δ(G) containing e as a light edge.

Corollary 2.24 (Appendix A.2). Given constant time access to d(u, v) and #sp(u, v)

for any vertices u and v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G))

in O(m) time.

Theorem 2.25. For any positive integer κ, consider the set of MR(G,R) instances

where the number of distict deficit values is at most κ, i.e., |{δ(C) | C is a cycle in G}| ≤

κ. Then Algorithm 4 gives an O((TAPSP + m2) · OPT · κ log n) time O(κ log n)-

approximation.

Proof. Observe that the algorithm terminates only when δ(G) = 0, i.e., only once

there are no broken cycles left. As no new edges are added, and weights are never

41

Algorithm 4 Finds a valid solution for MR(G,R).
1: function Approx(G = (V,E,w))
2: Let S = ∅
3: while True do
4: For every pair s, t ∈ V compute d(s, t)
5: Compute δ(G) = maxe=(s,t)∈E w(e)− d(s, t)
6: if δ(G) = 0 then return Verifier(G,S)
7: For every edge (s, t) ∈ E compute #sp(s, t)
8: For every e ∈ E compute count(e) = Nh(e, δ(G)) +Nl(e, δ(G))
9: Set f = arg maxe∈E count(e)
10: Update S = S ∪ {f} and G = G \ f

modified, this implies that when the algorithm terminates it outputs a valid regular

cover S. (The algorithm must terminate as every round removes an edge.) Therefore,

by Theorem 2.6, S is a valid MR(G,R) support, and so we only need to bound its

size.

Let the edges in S = {s1, . . . , sk} be indexed in increasing order of the loop

iteration in which they were selected. Let G1, . . . , Gk+1 be the corresponding sequence

of graphs produced by the algorithm, where Gi = G \ {s1, . . . , si−1}. Note that for

all i, Gi = (V,Ei) induces a corresponding instance of hitting set, (Ei, Ci), where the

ground set is the set of edges from the MR(G,R) instance Gi, and Ci = {Ei(C) |

C is a broken cycle in Gi} (where Ei(C) is the set of edges in C).

Let D = {δ(C) | C is a cycle in G}, where by assumption |D| ≤ κ. Note that any

cycle C in any graph Gi, is also a cycle in G. Thus as we never modify edge weights,

δ(G1), . . . , δ(Gk+1) is a non-increasing sequence. Moreover X = {δ(Gi)}i ⊆ D, and in

particular |X| ≤ κ. For a given value δ ∈ X, let Gα, Gα+1, . . . , Gβ be the subsequence

of graphs with deficit δ (which is consecutive as the deficit values are non-increasing).

Observe that for all α ≤ i ≤ β, the edge si is an edge from a cycle with deficit

δ = δ(Gi). So for each α ≤ i ≤ β, define a sub-instance of hitting set (E ′i, C ′i), where

E ′i is the set of edges in cycles of deficit δ from Gi, and C ′i is the family of sets of edges

from each cycle of deficit δ in Gi.

42

The claim is that for the hitting set instance (E ′α, C ′α), that {sα, . . . , sβ} is an

O(log n) approximation to the optimal solution. To see this, observe that for any

α ≤ i ≤ β in line 8, count(e) is the number of times e is contained in a broken

cycle with deficit δ = δ(Gi), as by definition Nh(e, δ(Gi)) and Nl(e, δ(Gi)) count the

occurrences of e in such cycles as a heavy edge or light edge, respectively. Thus si is

the edge in E ′i which hits the largest number of sets in C ′i, and moreover, (E ′i+1, C ′i+1)

is the corresponding hitting set instance induced by removing si and the sets it hit

from (E ′i, C ′i). Thus {sα, . . . , sβ} is the resulting output of running the standard greedy

hitting set algorithm on (E ′α, C ′α) (that repeatedly removes the element hitting the

largest number of sets), and it is well known this greedy algorithm produces an O(log n)

approximation.

The bound on the size of S now easily follows. Specifically, let I = {i1, i2, . . . , i|X|}

be the collection of indices, where ij was the first graph considered with deficit δ(Gij).

By the above, S is the union of the O(log n)-approximations to the sequence of hitting

set instance (E ′i1 , C
′
i1

), . . . , (E ′i|X| , C
′
i|X|

). In particular, note that for all ij, (E ′ij , C
′
ij

) is

a hitting set instance induced from the removal of a subset of edges from the initial

hitting set instance (E1, C1), and then further restricted to sets from cycles with a

given deficit value. Thus the size of the optimal solution on each of these instances

can only be smaller than on (E1, C1). This implies that the total size of the returned

set S is O(OPT · |X| log n) = O(OPT · κ log n).

As for the running time, first observe that by the above, there are O(OPT ·κ log n)

while loop iterations. Next, the single call to Verifier in line 6 takes O(TAPSP). For

a given loop iteration, computing all pairwise distances in line 4 also takes O(TAPSP)

time. Computing the graph deficit in line 5 can then be done in O(m) time. For any

given vertex pair s, t, computing #sp(s, t) takes O(m+ n) time by Lemma 2.21. Thus

computing the number of shortest paths over all edges in line 7 takes O(m2 + mn)

time. For each edge e, by Corollary 2.24, count(e) = Nh(e, δ(G)) +Nl(e, δ(G)) can be

43

computed in O(m) time, and thus computing all counts in line 8 takes O(m2) time.

As the remaining steps can be computed in linear time, each while loop iteration in

total takes O(TAPSP +mn+m2) = O(TAPSP +m2) time, thus implying the running

time bound over all iterations in the theorem statement.

Remark 2.26. If we modify line 8 to instead set count(e) = Nl(e, δ(G)), by Theorem 2.6,

we get the same result for MR(G,R≥0). If instead we used the reduction from

MR(G,R≥0) to MR(G,R) of Theorem 2.8, the graph size increases by a linear factor,

giving a slower run time.

44

CHAPTER III

Manifold Repair In Presence of Missing Data

3.1 Introduction

Many real world data sets can be reasonably modeled as low dimensional manifolds

embedded in much higher dimensional spaces, and for these models, a class of tech-

niques play a crucial role in revealing or learning these intrinsic manifolds. This class

includes Isomap Tenenbaum et al. (2000b), Local Linear Embedding (LLE) Roweis

and Saul (2000), Hessian-LLE Donoho and Grimes (2003), Maximum Variance

Unfolding Weinberger and Saul (2004), KNN-Diffusion Coifman and Lafon

(2006), and Laplacian Eigenmap Belkin and Niyogi (2003). All of these algorithms

have the basic structure shown in Figure 3.1. Given data, we compute a distance

matrix (alternatively, we are given a distance matrix), from which we determine

neighborhoods about each data point. Some of these algorithms find the K closest

points to each data point and others determine the data points in an ε neighborhood

about each data point. Each algorithm then uses this neighborhood information to

compute local Euclidean coordinates in some fashion (i.e., to learn the underlying

manifold) and, thus, to determine a low-dimensional representation for the data.

Each of these algorithms assumes that the given or computed distance matrix

adheres to a metric. To see the importance of using a distance matrix that satisfies a

metric with these algorithms, we show in Figure 3.2 the impact upon the manifold

45

Figure 3.1: General Manifold learning procedure

returned by Isomap when we corrupt or perturb the distance matrix so that it no

longer satisfies a metric. Note that these algorithms are robust to (small) perturbations

in the data but not in the distances among the data points. In the top left figure

3.2i, we have the original swissroll dataset with 2,000 points. It is a two dimensional

manifold embedded in three dimensions. When we run Isomap on the true distance

matrix, we see in the upper right figure 3.2ii, an “unrolled” version of the intrinsic

manifold. To corrupt the distance matrix, we add i.i.d. Gaussian noise ∼ N (0, 0.01)

to each non diagonal entry of the distance matrix. We then replace all negative entries

with zero and preserve symmetry by averaging the corrupted distance matrix with its

transpose. The perturbed distances may not satisfy the triangle inequality and, hence,

the corrupted distances may not adhere to a metric.

The lower left figure 3.2iii is the embedding from the corrupted distance matrix. It

is considerably different from the original embedding, points are missing, and there is

no apparent lower dimensional manifold structure at all. Because the distances do not

satisfy a metric, the points all collapse to one location and cannot be distinguished in

the figure. In the lower right figure 3.2iv, we first repair the corrupted distance matrix,

using a metric repair algorithm from Gilbert and Jain (2017), and then embed the

data using Isomap. The resulting embedding is much closer to the original embedding,

with some minor distortion. Thus, we can see that unless the distance matrix satisfies

46

a metric, dimension reduction or manifold embedding algorithms fail catastrophically.

(i) Original swissroll data set (ii) true distance matrix

(iii) corrupted distance matrix (iv) repaired distance matrix

Figure 3.2: (a) The original swissroll data set (2000 points) and the results from
Isomap for: (b) the original distance matrix, (c) the corrupted distance matrix, and
(d) the repaired distance matrix.

3.1.1 Problem Set Up

This example illustrates the main problem we address: if we have either missing

data or missing or corrupted entries in the distance matrix and we assume that the

data come from an intrinsic low dimensional manifold, compute a low dimensional

representation of the imputed or corrected data set. One such approach for missing

data is to complete the data matrix using a matrix completion algorithm. These

algorithms assume that the data matrix is approximately low rank and fills in the

missing entries accordingly. These algorithms fit the data to a linear subspace rather

than an intrinsically nonlinear embedding and may miss key features of the data.

Other methods that learn the intrinsic low dimensional structure in a data set impute

missing data values in the original space but one cannot use other, potentially better,

47

algorithms for the embeddings. Our method aims to repair the distance matrix of the

data, so as to extend existing embedding algorithms such as Isomap and Laplacian

Eigenmaps to handle missing data or corrupted distances.

To be precise, let X be the high-dimensional data set and D the distance or

dissimilarity matrix amongst the data points, and consider the following four problem

scenarios:

1. The data set X has corrupted entries,

2. The data set X has missing entries,

3. The dissimilarity matrix D has corrupted entries, or

4. The dissimilarity matrix D has missing entries.

In the first model X has added noise and many of the traditional algorithms are

robust and produce satisfactory results. Hence, we shall focus on the second scenario

where X has missing entries. The second scenario covers the last two (as missing data

corrupt the distances between points) and we sketch the applications of our methods

to these scenarios and leave a more in depth analysis of those models as future work.

3.1.2 Previous work

There are two main approaches to filling in missing manifold data that we summa-

rize below. Both methods strive to learn, in an unsupervised fashion, a representation

of the data and then to use that learned representation to fill in the missing values. The

first method employs a low-dimensional representation as an intermediary step in the

overall data representation while the second method directly learns a low-dimensional

representation. We will also discuss how matrix completion algorithms could be used

for model 4

48

Non-linear Principle Component Analysis (nlPCA) Scholz et al. (2005).

This method is a non-linear analog to principle component analysis. The idea is to

use a five-layer neural network with architectural dimensions n × m × d × m × n,

where n is the input dimension, m is usually bigger than n, and d is the desired

dimension of the embedding. We train the neural network to learn the identity map

so that the middle layer with d neurons is the low-dimensional representation of

the data. To extend to missing data, the network is also trained to reproduce the

input data but during the training procedure, any gradients that depend on miss-

ing values are disregarded. Then, to fill in the missing data, the data with missing

values is input to the network and the output values are used to fill in any missing data.

Missing Data Recovery through Unsupervised Regression (mDRUR) Á.

Carreira-Perpiñán and Lu (2011). The second major method is the missing data

recovery through unsupervised learning (mDRUR). Similarly to the nlPCA algorithm,

this algorithm is an extension of a dimensionality reduction algorithm known as

dimensionality reduction through unsupervised learning (DRUR). Using the notation

of Á. Carreira-Perpiñán and Lu (2011), let Y be the high dimensional representation

of the data and X the low dimensional representation. Then we have two maps f, F

such that Y = f(X) and X = F (Y). To learn the low-dimensional representation, we

minimize

arg min
X,f,F

‖Y − f(X)‖2
F + ‖X − F (Y)‖2

F + λfR(f) + λFR(F)

where R(f) and R(F) are regularization terms. To fill in missing data, we first use a

linear matrix completion method to fill in the missing values, then we use a spectral

method to compute X. Finally, we learn the low-dimensional representation as above

and optimize over the missing values of Y to fill in the missing data.

49

Both algorithms are primarily dimensionality reduction algorithms and, as such,

we must first fix the lower dimension and then solve an optimization problem. In most

real world applications we do not know the optimal low dimension and, hence, in order

to fill in the missing data, we must first find this dimension and then fill in the data,

rather than separating these two tasks. Furthermore, the imputed values depend on

the computed, specific reduced representation; we cannot avail ourselves of a variety

of dimension reduction algorithms and obtain what we hope to be a consistent or

robust approximation of the missing values.

Euclidean distance matrix and metric completion. One might be tempted to

restrict our distances to Euclidean distances as it is well known Gower (1985b) that

Euclidean distance matrices (with squared Euclidean distance entries) are low rank

matrices with rank at most r+ 2 if r is the dimension of the space in which the points

lie. Hence, the problem of Euclidean matrix completion can be solved using standard

low rank matrix completion algorithms. Additionally, this specific problem has been

further studied with many successful algorithms in Al-Homidan and Wolkowicz (2005);

Bakonyi and Johnson (1995); ren Fang and O’Leary (2012).

In some cases we want our original data to follow a non-Euclidean metric. For

example, it is has been shown that for the MNIST dataset if we use the tangent

distance metric instead of Euclidean, then k nearest neighbor classifiers have better

performance. In this case, if we have the local neighborhood information for the

data we can still run Isomap and other various algorithms to get lower dimensional

representations. Gower Gower (1985b) showed that these matrices are either low rank

(with the same low rank condition as before) or have full rank. In the case that they

have full rank, we can no longer use matrix completion algorithms.

Even when we have a low rank matrix, we only know we can complete these

matrices with high probability if the entries present are sampled according to a

50

certain distribution. Finally, even if we can successfully apply these matrix completion

algorithms, there are no guarantees that the resulting distance matrices satisfy a

metric.

3.1.3 Our approach and contributions

We focus on the second scenario. We separate the problem into three steps. First

we estimate distances between the data points, we then correct these distances so that

they adhere to a metric, finally we run a suitable dimension reduction algorithm. We

use the Increase Only Metric Repair (IOMR) algorithm in Gilbert and Jain Gilbert

and Jain (2017) to repair the inaccurate distance matrices. As we can see in Figure 3.1,

all of the dimension reduction algorithms depend on the local distances and not on

the actual data points themselves. Hence, filling in the missing data is both costly

and unnecessary. Instead, we first estimate the distance matrix from the incomplete

data, then we correct it. This approach has two advantages over the previous methods

• No parameters: Our algorithm has no parameters that need tuning. Hence mak-

ing it faster and easier to train compared to nlPCA and mDRUR. Additionally,

our algorithm is quadratic is the number of dimensions. Hence, its performance

scales well with number of dimensions.

• Accuracy: The manner in which we estimate the distances and then correct

them is geared to exactly preserve the local structure.

Remark 3.1. For the most general version of scenario three, fast approximation

algorithms for the general metric repair problem do not currently exists. A class of

approximation algorithms can be found in Gilbert and Sonthalia Gilbert and Sonthalia

(2018b).

The rest of the paper is organized as follows, Section 2 presents background

knowledge, Section 3 presents our algorithms for correcting a corrupted distance

51

matrix so as to produce an accurate low dimensional embedding of a data set. We

focus specifically on missing data. Section 4 provides our experimental results.

3.2 Background

3.2.1 Manifolds and Geodesic distances

Definition 3.2. M ⊂ Rn is called a d dimensional manifold is for all x ∈ M

there exists an ε > 0 such that there if a continuous bijective function f from

N = {y ∈M : ‖x− y‖ < ε} to Rd such that the inverse is continuous as well.

Intuitively the above definition says that if we look at a d-dimensional manifold

M and if we zoom in close enough to any point then it looks like we are in Rd. For

example the swiss roll (from the introduction) is a two-dimensional manifold because

near any point it looks like a plane. As we can see from the definition itself the local

structure of a manifold is important. Hence, all dimensionality reduction algorithms

start by computing the local neighborhood of each point. This is done in one of two

ways:

• determine the k nearest neighbors, or

• compute the neighbors within some distance ε

These local neighborhoods then overlap to describe the general manifold structure.

Hence, having this correct local structure is crucial for the success of any of the

dimensionality reduction algorithms.

In this paper we will we focus on using Isomap (though we could have picked

any of the other algorithms). For Isomap once we have the graph (i.e., two data

points are adjacent if one is in the local neighborhood of the other) we then compute

the shortest distance (along this graph) between all the points. This usually done

using the Floyd Warshall algorithm. We store these distances in a matrix D̃. These

52

distances are known as geodesic distances. They are the distances we want between

our data points in the low dimensional representation.

3.2.2 Multidimensional Scaling

The technique used to go from the inferred distance matrix D̃ to an actual

embedding is called multidimensional scaling (MDS) and we include this discussion to

complete Section 9.6. An important point to note is that the points we recover are

not unique, since rotating and translating the embedding will not change the pairwise

distances between the points.

Suppose we have n by n distance matrix D̃. We want to find points x1, . . . , xn in

some d dimensional Euclidean space such that dist(xi, xj) = D̃ij = D̃ji. Let us define

S = −1

2

(
I − 1n1Tn

n

)
D̃ ◦ D̃

(
I − 1n1Tn

n

)

where 1n is the n dimensional vector of all 1s and ◦ is the Hadamard product, which

we multiply the two matrices coordinate wise.. Then using the fact that the points

are translation invariant (we can assume the centroid of x1, . . . , xn is the origin) using

which it can be shown that Sij would then be xi · xj. This matrix is now positive

semi-definite, hence has an eigenvalue decomposition

S = UΛUT

Where Λ is a diagonal matrix of the eigenvalues. If we then define X = UΛ0.5. Then

this is our embedding. We get a d dimensional embedding by using only the biggest d

eigenvalues.

53

Algorithm 5 IOMR Fixed
Require: D ∈ Symn(R≥0)
1: function IOMR-Fixed(D)
2: D̂ = D
3: for k ← 1 to n do
4: for i← 1 to n do
5: D̂ik = max(D̂ik,maxj<i(D̂ij − D̂jk))

6: return D̂ −D

3.2.3 Metric Repair

Gilbert and Jain in Gilbert and Jain (2017) defined the sparse metric repair

problem. They define Symn(R≥0) to be the set of positive real symmetric matrices.

More generally, let us define Symn(S) to be the set of symmetric matrices with entries

drawn from S. Then, for any matrix D ∈ Symn(R≥0) we say it satisfies a metric if

the diagonal of D is all 0s and for all i, j, k we have that Dij ≤ Dik +Dkj.

The sparse metric repair problem seeks a solution to the following optimization

problem: Given D ∈ Symn(R≥0) and S ⊂ R

argmin‖P‖0 s.t. D + P is a metric and P ∈ Symn(S), (3.1)

where ‖ · ‖p is the vector `0 is the pseudonorm that counts the number of non-zero

entries. In Gilbert and Jain (2017), they define three variants of the corresponding

to three different: S = R≤0 decrease only metric repair (Domr), S = R≥0 increase

only metric repair (Iomr), and S = R, which is simply called metric repair or MR. In

general, for any given set S we shall refer to problem as MR(S)

For the rest of paper we will focus on the increase only case and use the following

algorithm from Gilbert and Jain (2017):

While Gilbert and Jain showed that IOMR-Fixed worked empirically, they could

not provide any guarantees on its performance nor did they demonstrate how it could

be used for actual applications. Gilbert and Sonthalia Gilbert and Sonthalia (2018b)

54

provides a more in-depth analysis of a generalized problem. One of their results is to

show that the problem of increase only metric repair is NP-Hard for even simple sets

S. They also provide several approximation algorithms for this problem and more

general variants.

As it was noted in the Gilbert and Jain (2017), one could relax Equation equation 3.1

to a convex optimization problem by minimizing ‖P‖1 instead of ‖P‖0. Gilbert and

Jain used various different convex optimization methods, and while these methods

produce satisfactory results, they were extremely slow. Hence, we stick with IOMR-

Fixed. The speed of the optimization algorithms will not scale well with the number of

data points as that the output solution D′ = D+P needs to be a metric. In particular,

for any i, j, k we need the entries for D′ to satisfy the triangle inequality. Thus, if we

have n data points, we have O(n3) constraints. Even for simple applications where we

have 1000 data points, the optimization problem has O(109) constraints.

3.3 Metric repair on manifolds

In our model scenario, we are given an incomplete data set X and a matrix Q that

specifies the support of the known entries. We present an algorithm to compute a

(potentially corrupted) distance matrix from the incomplete data and then use metric

repair to correct the perturbed distances. The idea is to ignore missing entries when

calculating the distances between two points as in Balzano and Bajwa (2010). Thus,

we have the following algorithm.

As we will see in Section 3.4, this algorithm works well in practice and, in this

section, we provide theoretical analysis of its performance in a model setting. Before

doing so, let us develop some intuition about the algorithm. To analyze how well the

algorithm performs, supposed we had a probabilistic model with the following two

assumptions:

55

Algorithm 6 MR-missing
Require: X Input data, Q support of the data (Qij = 1 if and only if Xij is present.

Qij = 0 otherwise)
1: function MR-Missing(X,Q)
2: D = zeros(n, n)
3: for i← 1 to n do
4: for j ← 1 to n do
5: Dij = (

∑n
k=1 Qik ·Qjk(Xik −Xjk)

2)
1/2

6: P = IOMR-Fixed(D)
7: Isomap(D + P)

1. if two data points are far apart, then our estimated distance is small with low

probability; and,

2. if two data points are far and our estimated distance is small, then, with high

probability, we increase this distance during metric repair.

Assuming the above two assumptions hold, we argue that MR-Missing maintains

the local structure of the data. When we compute the distance between two data

points so as to ignore missing entries, the estimated distance is smaller than the true

distance. Thus, if two points are initially close, then they remain close together. This

is beneficial since the crucial structure for all manifold learning algorithms is the local

distances. It could happen, that because data are missing, two points x, y that were

not close together initially have small inferred distance. Then, by assumption (1),

this would happen with small probability and, by assumption (2), we would fix this

distance with high probability. Finally, since the metric has been repaired and we have,

with high probability preserved the local structure of the data set, Isomap produces

an embedding consistent with that of the full data set. That is, with high probability,

the algorithm preserves the local structures and guarantees that all the distances

adhere to a metric, and we conclude the low dimensional embeddings calculated with

this repaired distance matrix to preserve most of the manifold structure of the data.

56

3.3.1 Theory Result

There are two steps to our algorithm. The first step is estimating distances between

points with missing coordinates. The second is increasing these distances so that

the distances adhere to a metric. In this subsection, we are going to analyze the

effectiveness of MR-Missing by showing that in the following model if two points are

well separated then the distance estimated by step 1 is large with high probability.

In this model our data consists of two Gaussians clusters in Rn with means

µ1, µ2 ∈ R (all coordinates for a data point from one cluster have the same mean) and

covariances Σ1 = Σ2 = 0.5In, where In is the n dimensional identity matrix.

We assume that, for any data point x, each of its n coordinates is present indepen-

dently with probability p. Under these conditions, we want to show that with high

probability our algorithm preserves local neighborhoods.

For notational connivence let us define dp(x, y) to be the distance between x, y

estimated by step 1 of MR-Missing when each coordinate is present independently

with probability p.

Before we can state and prove our result we need a few lemmas first

Lemma 3.3 (Birgé 2001, Lucien (2001)). For all D ≥ 1, if X = Z2
1 + . . .+Z2

D, where

Zi ∼ N (µi, 1), and λ =
D∑
i=1

µ2
i , then, all 0 < c < D + λ, we have that

Pr[X ≤ c] ≤ e−
(D+λ−c)2
4(D+2λ) .

Lemma 3.4 (Hoeffding’s Inequality). If we have n i.i.d. variables X1, . . . , Xn such

that Xi = 1 with probability p and Xi = 0 with probability 1− p, then, for all ε > 0,

we have that

Pr

[∣∣∣∣∣
n∑
i=1

Xi − pn

∣∣∣∣∣ ≤ γn

]
≥ 1− 2e−2γ2n.

57

Lemma 3.3 allows us to bound the tail of a non-central χ-squared distribution and

Lemma 3.4 allows us to bound the probability that we have too much data missing.

Combining these two Lemmas, we have the following theorem.

Theorem 3.5. Suppose X ∼ N (µ11, 0.5I) and Y ∼ N (µ21, 0.5I) are two points in

Rn such that each coordinate of X, Y is missing with probability p. If µ = µ1 − µ2

and q = p2, then, for all q(1 + µ2) > ε > 0 and q(1+µ2)−ε
(1+µ2

> γ > 0, we have that

Pr[dp(x, y) < εn] ≤ e−2γ2n +

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

Proof. Let Z = X − Y . Then Z1, . . . , Zn are i.i.d Gaussian random variables with

mean µ = µ1 − µ2 and variance 1. We know from MR-Missing that we use the entry

Zi to calculate the distance between X, Y if and only if both Xi and Yi are present.

This happens with probability p2, which we define as q = p2. Thus, we have the entry

Zi with probability q.

Let q(1 + µ2) > ε > 0. We want to show that the probability that the distance

calculated by step 1 of MR-Missing is greater than ε is small. To do this, we use

Hoeffding’s inequality to divide into two cases, one in which we observe a large number

of coordinates and one a few coordinates. We shall see that the case when we observe

a few coordinates occurs with low probability and we obtain a bound on the distance.

We will then see that for the case where we see a large number of coordinates, then

the distance is large with high probability.

Let 0 < γ <
q(1 + µ2)− ε

(1 + µ2)
. Then, by definition of ε, we see that q > γ > 0. Let K

be the number of entries we observe and, by Lemma 3.4, we have that

Pr[K ≤ (q − γ)n] ≤ e−2γ2n.

For notational convenience, let D = (q − γ)n and consider two cases.

Case 1: Suppose K ≤ D. That is, we observe fewer than D entries. Then, by

58

Hoeffding’s Inequality, we know that this happens with probability at most e−2γ2n.

Thus we have that

Pr[dp(x, y) < εn|K ≤ D] Pr[K ≤ D] ≤ e−2γ2n

Case 2: Suppose K ≥ D. That is, we observe a large number of entries. Let us

condition on the actual value of K. Suppose that K = k and we have observed entries

Zi1 , . . . , Zik . We know these entries are i.i.d. with mean µ and we want to bound

pk := Pr

[
k∑
j=1

Z2
ij
≤ εn

]
.

In this case we see that the overall probability that we have a small distance, given

that K ≥ D, is
n∑

k=D

Pr[K = k]pk.

The next thing to observe is that pk is monotone decreasing in k because each Zi is

non-negative with non-zero mean. Thus, we have the following upper bound

Pr[dp(x, y) < εn|K ≥ D] ≤
n∑

k=D

Pr[K = k]pk

≤
n∑

k=D

Pr[K = k]pD

≤ pD.

Now, we can use our tail bound for the χ-squared distribution with c = εn,

D = (q − γ)n, and λ = Dµ2. Thus, we have

pD ≤ e
− ((q−γ)n(1+µ2)−εn)2

4(q−γ)n(1+2µ2)

=

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

59

Combining both cases, we see that the probability that the distance calculated is

less than εn is at most

Pr[dp(x, y) < εn] ≤ e−2γ2n +

(
e
− ((q−γ)(1+µ2)−ε)2

4(q−γ)(1+2µ2)

)n
.

Let us take a closer look at the effect of the various parameters on the above

probability:

• The dimension n of the data: As n increases, we have an exponential decrease

in the probability that two points from the two Gaussian clouds have distance

smaller than εn. Thus, we expect our algorithm to work better for high dimen-

sional data.

• The mean squared distance between the clusters µ2n: As µ2 increases (i.e., as

the data are better separated), the probability that they have small distance in

the presence of missing data gets smaller. This also allows for a wider range of ε

and γ.

• The probability of a coordinate being present p: First, we note that as p increases,

q increases. Then, as q increases (i.e., we have more data present), the probability

that two points from the two Gaussian clouds have distance smaller than εn

decreases. Additionally, for all q > 0, we have a feasible range for ε. Thus,

for any percentage of missing data, if we have enough data points, we can use

MR-missing for dimensionality reduction.

The final parameter γ has a range of values it can take on and we could optimize

over it to get the smallest possible bound.

Finally, as noted before, our method of estimating distances only decreases distances.

Thus, points that were close together stay close together. Now by the above the

60

theorem we see that if points were initially far apart, then our method of estimating

distances keeps them far apart with high probability.

Then, since our method of repairing the metric only increases the distance, we see

that we maintain the local neighborhood structure with high probability, in this data

model.

3.4 Experiments

Let us now verify that our algorithm does will in practice through a variety of

experiments. Dimensionality reduction and clustering algorithms are normally used

when we have unlabeled date (i.e., in the regime of unsupervised learning). In this case

figuring out the ground truth can be difficult. Hence, there are no natural numerical

metrics on unlabeled data that we can readily use to evaluate our algorithm. Hence,

decided to test the effectiveness of our algorithm on both unlabeled and labeled data

in a variety of different experiments.

3.4.1 Unlabeled Data

For unlabeled data, we tested the performance of MR-Missing on synthetic

manifolds visually as well as compared our algorithms against nlPCA and mDRUR

numerically.

3.4.1.1 Synthetic Manifolds

Let us first define the six manifolds we tested our algorithm on. For notational

convenience, let U(n,m) be an n×m matrix with entries drawn uniformly at random

from [0, 1] and let N(n,m) be an n×m matrix with entries are drawn from a standard

Gaussian distribution. Finally, we shall write f.(X) to represent applying f coordinate

wise to all elements of X. We generated the six synthetic manifolds as follows:

61

1. M1 = cos .(U(2000, 2) ·N(2, 30))

2. M2 = cos .(sigmoid.(U(2000, 2) ·N(2, 30)) ·N(30, 300))

3. M3 is a three dimensional manifold where x, y are drawn from a standard normal

and z = e−
√
x2+y2

4. M4 is a three dimensional manifold where x, y are drawn from a uniform on

[−1, 1]2 and z = 20e(−(x2+y2))

5. M5 = S2 = {x ∈ R3 : ‖x‖ = 1}.

6. M6 is closed helical curve in three dimensions. Where u is uniformly drawn from

[0, 4π], and v = 0.5u. Then x = (3 + cos(u)) cos(v), y = (3 + cos(u)) sin(v), and

z = sin(u)

In each case we start with 2000 data points on the high dimensional representations

of the six manifolds M1, . . . ,M6. We then compute low dimensional representations

using the full data set and using data set with missing entries as follows. We ran

Isomap with the true distance matrices to get the low dimensional projections, as

depicted on the left hand side of Figures 3.3 and 3.4. We then picked 40% on the entries

uniformly at random, declared these entries to be missing, and used MR-Missing to

get the projections depicted on right of Figures 3.3 and 3.4. We used the same Isomap

parameters across both algorithms. We then compared how there projections looked

visually. In most cases our algorithm did well in preserving the general structure of

the low dimensional projection as can be seen in Figures 3.3 and 3.4.

In each case, we can see that MR-Missing does well at preserving not only the

general shape of the low dimensional, but also in maintaining the relative ordering of

the data points with some minor distortion. Therefore, it is also useful for applications

that use these projections for clustering and classification. We test this in the next.

62

(i) M1 with full data (ii) M1 with missing data

(iii) M2 with full data (iv) M2 with missing data

(v) M3 with full data (vi) M3 with missing data

Figure 3.3: The two-dimensional embeddings produced by Isomap with complete
data (left) versus the two-dimensional embedding produced by Isomap where 40% of
the data is missing and we use MR-Missing to correct the distance matrix for the
manifolds M1,M2,M3 (right).

3.4.1.2 MR-missing vs nlPCA vs mDRUR

We compare MR-Missing against Non Linear PCA (nlPCA) and Missing Data

Recovery Through Unsupervised Regression (mDRUR) on the MNIST data set. nlPCA

63

(i) M4 with full data (ii) M4 with missing data

(iii) M5 with full Data (iv) M5 with missing Data

(v) M6 with full data (vi) M6 with missing data

Figure 3.4: The two-dimensional embeddings produced by Isomap with complete
data (left) versus the two-dimensional embedding produced by Isomap where 40% of
the data is missing and we use MR-Missing to correct the distance matrix for the
manifolds M4,M5,M6 (right).

and mDRUR are both methods to complete missing data on a manifold, whereas

our algorithm is a method to estimate and correct distances so that we can use

dimensionality reduction algorithms on data sets with missing entries. So, we must

64

compare all of these algorithms on low dimensional representations. To that end,

for the nlPCA and mDRUR algorithm, we first filled in missing data in the MNIST

data set and then used Isomap to determine the low dimensional projection. To

quantify how well these representations do we compared these representations to the

low dimensional representation computed by using Isomap with the complete data

set. We kept the parameters for Isomap fixed across all four projections.

We compared these projections in the following manner. Let P be the ground

truth projection and P̂ the projection computed by any algorithm on the data set with

missing entries. We first aligned the two projections, using the Procrustes method

because the representation returned by Multidimensional Scaling is unique only up to

rotation and translation. Additionally, since we care only about the relative positions

of the points and not the magnitude of the distances between them, we also allowed

for scaling. That is, to ascertain the quality of the projection P̂ , we want to find

argminQ,α,µ‖X − αY Q− 1mµ
t‖F

where X is the data matrix that we are trying to align Y with. Here, each row is a

data point, α is the scaling constant, Q is our orthogonal rotation matrix and µ is our

translational vector and 1m is the vector of all ones in m dimensions.

This problem has a closed form solution in terms of the SVD decomposition of

X. Finally, if we let P̃ be our new scaled, rotated, and translated projection that

best aligns with the ground truth projection P , then we calculate the relative error

between the projections as
‖P − P̃‖F
‖P‖F

.

The data set we used is the first 1000 images of the digit 0,1,2,3,4 from MNIST.

For nlPCA we used a 784× 800× 12× 800× 784 structure. For mDRUR we initially

filled in the matrix using the singular value projection method. We then calculated

65

an initial 12 dimensional low representation using Laplacian Eigenmaps. We can

see the relative errors in Table 1.

Algorithm % Missing 2D 3D 4D 10D 12D 20D 50D 100D
nlPCA 40 0.363 0.350 0.385 0.404 0.451 0.514 0.623 0.686
mDRUR 40 0.369 0.363 0.359 0.420 0.427 0.505 0.630 0.717

MR-Missing 40 0.291 0.274 0.263 0.339 0.359 0.438 0.572 0.658
nlPCA 50 0.324 0.330 0.317 0.394 0.441 0.506 0.621 0.685
mDRUR 50 0.497 0.505 0.471 0.518 0.542 0.587 0.707 0.777

MR-Missing 50 0.323 0.317 0.328 0.393 0.417 0.482 0.615 0.707
nlPCA 60 0.366 0.365 0.399 0.405 0.441 0.520 0.635 0.696
mDRUR 60 0.595 0.595 0.573 0.654 0.667 0.712 0.802 0.849

MR-Missing 60 0.369 0.370 0.376 0.436 0.448 0.505 0.653 0.741
nlPCA 70 0.373 0.373 0.391 0.432 0.465 0.533 0.643 0.706
mDRUR 70 0.924 0.874 0.820 0.825 0.830 0.854 0.898 0.920

MR-Missing 70 0.484 0.491 0.595 0.498 0.510 0.573 0.697 0.784

Table 3.1: Table comparing the relative error of the projection of MNIST data obtained
via NLPCA vs mDRUR vs MR-missing for various different dimensions and percentage
of data missing

We can see that in all cases mDRUR does the worst so we will focus on comparing

MR-Missing versus nlPCA. When we have 40% missing data MR-Missing does

better than the nlPCA version in all cases. For 50% missing we see that nlPCA does

better or as well in some cases with MR-Missing still doing better in a majority

of the cases. For 60% missing the algorithms have similar results and nlPCA does

better in the case of 70% missing data. Thus, MR-Missing does better for smaller

percentage of missing data while for higher percentage of missing data nlPCA does

better. Additionally we can see that as the dimension increases both methods have

worse errors. We posit that this occurs because to compute a rank k projection

P (P̂ , P̃) we are using the first k singular values of the distance matrix computed by

Isomap. Hence our estimation the distance matrix does better at preserving the

larger singular values as compared to the smaller values.

Let us also take a closer look at what our algorithm does in the case of 70% missing

data. See the two dimensional representations shown in Figure 3.5.

66

(i) ISOMAP with actual distances (ii) ISOMAP with repaired distances

Figure 3.5: Two-dimensional projections of the first 1000 images of the digits 0,1,2,3,4
from MNIST using Isomap with true distance and Isomap with distance obtained
from MR-Missing when 70% of the data is missing.

We see that we have a different looking projection, but the projection still does well

in maintaining the clustering of the data, as we predicted theoretically in Section 3.3.1.

In the next subsection, we test the effectiveness of these computed low dimensional

representations for classification.

3.4.2 Labeled Data

One of the main reasons to find a lower dimensional data representation is to

efficiently carry out standard machine learning tasks, such as classification. In this

subsection, we test the usefulness of the low dimensional representations produced

by MR-Missing for classification. We calculate a 100-dimensional representation of

500 images of each digit from MNIST. This is our training set. We then used the

equation from Bengio et al. (2003) to calculate the projections for an additional 100

images of each digit. This is our test set. Then, for classification we trained an SVM

(Kernel: RBF, C = 200, γ = 0.0000002) for classification. We then obtained the

following classification accuracy for various amounts of missing data shown in Table

3.2. We also ran this classifier with no missing data as a benchmark. As we expect,

with missing data, we do not have as high accuracy as we do with complete data, but

67

from our experiments we see that even in the presence of missing data, Isomap with

MR-Missing produces embeddings on which we still have reasonably high accuracy.

Particularly in the cases of 40% and 50% missing data, we have accuracy of over 90%

and the accuracy does not drop off drastically until we get to 80% missing data.

% missing 0 40 50 60 70 80 90
Accuracy 0.94 0.91 0.90 0.86 0.77 0.20 0.10

Table 3.2: Table showing the accuracy of an SVM trained on the low dimensional
projections produced by MR

It is important to note that both the test and the training set had data points

missing. We see that MR-Missing does a good job of maintaining the original clusters

of the data.

3.5 Conclusion and Future Work

As we can see MR-Missing has excellent experimental results. That is, MR-

Missing is a method by which we can use traditional dimensionality reduction

algorithms in the presence of missing data. While we have some theoretical justification

for this observed performance, more work needs to be done in exploring the effectiveness

of our method of estimating distances in more general scenarios.

Additionally, we did not consider in a detailed fashion other corrupted data or

distance models. One approach to metric completion (model scenario 4) is to take the

given distances, treat these as edges on a graph, and run APSP on this graph to fill in

the missing distances. It is possible that APSP modifies some of the given distance

information while also filling in the missing values. Thus, a natural question is are

there conditions on the given data that guarantee that an APSP algorithm will not

change the given data while simultaneously repairing those that are missing? Gilbert

and Sonthalia Gilbert and Sonthalia (2018b) provide some analysis which suggests a

more general version of metric repair may be applied to the metric problem.

68

Theorem 3.6. (Gilbert and Sonthalia Gilbert and Sonthalia (2018b)) Suppose G is a

weighted chordal graph such that no three cycle is broken. Then if we run APSP on

this graph, the shortest path between any two adjacent vertices, is the edge connecting

them.

Corollary 3.7. (Gilbert and Sonthalia Gilbert and Sonthalia (2018b)) If the given

distances form a graph G, where G is a weighted chordal graph such that no 3 cycle

is broken, then this partial distance information can be completed into a metric.

The condition that the given data satisfy a chordal graph appears in Positive

Semi-Definite matrix completion and Euclidean distance matrix completion as well.

While the first theorem tells us when we can use APSP to complete a metric, it doesn’t

tell us what properties this new metric satisfies. Hence, the problem of completing a

distance matrix for a general metric warrants further investigation.

In the model scenario 3, when we have a corrupted distance matrix, we may

not always want to increase distances. In some cases we might want to decrease

distances. Hence, we would need a general metric repair algorithm. Fan, et al. Fan

et al. (2018c) present an algorithm that runs in θ(n6) and Gilbert and Sonthalia Gilbert

and Sonthalia (2018b) present an alternative algorithm that runs in O(n5). Both of

these algorithms are impractical and cannot be used on large data sets. Developing

faster algorithms for general metric repair and ascertaining the usefulness of such

methods for corrupted distance matrices are two avenues for future work.

69

CHAPTER IV

Project and Forget: Solving Large Scale Metric

Constrained Problem

4.1 Introduction

Given a set of dissimilarity measures amongst data points, many machine learning

problems are considerably “easier” if these dissimilarity measures adhere to a metric.

Furthermore, learning the metric that is most “consistent” with the input dissimilarities

or the metric that best captures the relevant geometric features of the data (e.g., the

correlation structure in the data) is a key step in efficient, approximation algorithms

for classification, clustering, regression, and feature selection. In practice, these metric

learning problems are formulated as convex optimization problems subject to metric

constraints, such as the triangle inequality, on all the output variables. Because of the

large number of constraints, researchers have been forced to restrict either the kinds of

metrics learned or the size of the problem that can be solved. In many cases, researchers

have restricted themselves to learning (weighted) Euclidean or Mahalanobis metrics.

This approach is, however, far from ideal as the inherent geometry of many data sets

necessitates different types of metrics. Therefore, we need to develop optimization

techniques that can optimize over the space of all metrics on a data set.

Many of the existing methods for metric constrained problems suffer from significant

70

drawbacks that hamper performance and restrict the instance size. Gradient based

algorithms such as projected gradient descent (e.g., Beck and Teboulle (2009); Nesterov

(1983)) or Riemannian gradient descent require a projection onto the space of all

metrics which, in general, is an intractable problem. One modification of this approach

is to sub-sample the constraints and then project onto the sampled set (see Nedić

(2011); Polyak (2001); Wang and Bertsekas (2013); Wang et al. (2015)). For metric

constrained problems, however, there are many more constraints than data points, so

the condition numbers of the problems are quite high and, as a result, these algorithms

tend to require a large number of iterations.

Another standard approach is based on the Lagrangian method. These algorithms

augment the objective (or introduce a barrier function) by adding a term for each

constraint. Examples of such methods include the interior point method, the barrier

method, and the Alternating Direction Method of Multipliers. These methods run into

two different kinds of problems. First, computing the gradient becomes an intractable

problem because of the large number of constraints. One fix could be to sub-sample

the constraints and compute only those gradients, but this approach runs into the

same drawbacks as we discussed before. The other option is to incrementally update

the Lagrangian, looking at one constraint at a time. Traditionally, these methods

require us to cycle through all the constraints. One such method is Bregman cyclic

method and we note that the requirement to examine cyclically the constraints is

an aspect that is highlighted in various previous works Censor and Reich (1998);

Bauschke and Lewis (2000b); Censor and Zenios (1997). This is simply not feasible

with metric constraints. Many applications that use this method sidestep the issue

either by restricting the number of constraints and solving a heuristic problem (Davis

et al., 2007), by solving smaller sized problems (Dhillon and Tropp, 2007), or by trying

to parallelize the projections (Ruggles et al., 2019).

A third approach is to use traditional active set methods such as Sequential

71

Linear/Quadratic Programming (Palacios-Gomez et al., 1982; Boggs and Tolle, 1995).

In general, these methods maintain a set of constraints C that is assumed to be

the true set of active constraints. During each iteration, they completely solve the

sub-problem defined by the constraints in C. They then check which of the constraints

in C are inactive and remove those constraints. They also search for and add new

violated constraints. These methods run into the problem that each iteration is

computationally expensive and, in some cases, may not be tractable because of the

large number violated constraints. If the size of C is reduced, then the number of

iterations becomes too large, again making the problem intractable.

One final approach is to use cutting planes. The performance of this method is

heavily dependent on the cut selection process (see Dey and Molinaro (2018); Poirrier

and Yu (2019) for deep discussions). The discovery of Gomory cuts (Gomory , 1960)

and other subsequent methods such as branch and bound, has led to the viability of

the cutting plane method for solving mixed integer linear programs. This success has,

however, not transferred to other problems. In general, if the cuts are not selected

appropriately, the algorithm could take an exponential number of iterations; i.e., it

might add an exponential number of constraints. To use this method, we must show

for each problem that the specific cutting plane selection method results in a feasible

algorithm (see Chandrasekaran et al. (2012) for an example).

In this paper, we provide an active set algorithm, Project and Forget, that

uses Bregman projections to solve convex optimization problems with a large

number of (possibly exponentially linear inequality) constraints. Since our

algorithm is based on the cyclic Bregman method, it has the rapid rate of convergence

of the Bregman method, along with all the benefits of being an active set method.

This method overcomes the weaknesses of both the traditional active set methods and

Bregman cyclic method. First, we overcome the drawbacks of the active set methods

by allowing the introduction of new and the removal of old constraints without having

72

to completely solve convex programs as intermediate steps. In particular, our algorithm

examines each constraint once, before it introduces new constraints and forgets old

constraints, thus allowing us to converge rapidly to the true active constraint set. We

overcome the drawback of the traditional Bregman method by cycling through the

current active set only. Thus, making each iteration much faster. Our new algorithm

Project and Forget, is the first iterative Bregman projection based algorithm for

convex programs that does not require us to cyclically examine all the constraints.

The major contributions of our paper are as follows:

1. For the case when we have linear inequality constraints, we provide a Bregman

projection based algorithm that does not need to look at the constraints cyclically.

We prove that our algorithm converges to the global optimal solution and that the

optimality error (L2 distance of the current iterate to the optimal) asymptotically

decays at an exponential rate. We also show that because of the Forget step,

when the algorithm terminates, the set of constraints remembered are exactly

the active constraints.

2. For the case when we have general convex constraints, we provide a Bregman

projection based algorithm that does not need to look at the constraints cyclically.

We prove that our algorithm converges to the global optimal solution and that

when we have quadratic objective function, the optimality error (L2 distance of

the current iterate to the optimal) asymptotically decays at an exponential rate.

We also show that because of the Forget step, when the algorithm terminates,

the set of constraints remembered are exactly the active constraints.

3. We solve the weighted correlation clustering problem Bansal et al. (2004) on a

graph with over 130, 000 nodes. To solve this problem with previous methods,

we would need to solve a linear program with over 1015 constraints. Furthermore,

we demonstrate our algorithms superiority by outperforming the current state

of the art in terms of CPU times.

73

4. We use our algorithm to develop a new algorithm that solves the metric nearness

problem Brickell et al. (2008c). We show that our algorithm outperforms the

current state of the art with respect to CPU time and can be used to solve the

problem for non-complete graphs.

5. We also show the generality of our algorithm, by using it to solve the quadratically

regularized optimal transport problem. We show, that using our algorithm, we

can solve this problem faster and using less memory than many standard solvers.

4.2 Preliminaries

We start by presenting the general version of the problem before focusing on metric

constrained problems in later sections.

4.2.1 Convex Programming

Given a strictly convex function f : Rd → R, and a finite family of convex sets

F = {Ci} we want to find the unique point x∗ ∈
⋂
iCi =: C that solves the following

problem.

minimize f(x)

subject to ∀i, x ∈ Ci.
(4.1)

We refer to each Ci as a constraint set and C :=
⋂
iCi as the feasible region. We

shall assume that C is not empty; i.e., there is at least one feasible point. Since we

have a large number of constraint sets, we access the constraint sets only through an

oracle that has one of the two following separation properties.

Property 4.1. Q is a deterministic separation oracle for a family of convex sets

F = {Ci}, if there exists a non-decreasing, continuous function φ, with φ(y) = 0 ⇐⇒

y = 0, such that on input x ∈ Rd, Q either certifies x ∈ C or returns a list L ⊂ F

74

such that

max
C̃∈L

dist(x, C̃) ≥ φ(dist(x,C)),

where for a point x and set B, dist(x,B) = infw∈B ‖w − x‖.

There a few things that we would like to highlight about this definition. First, the

list L need not contain all violated constraints. That is, given x, there can be some

Ci ∈ F such that x /∈ Ci and Ci 6∈ L. In fact, there could be many such Ci. However,

what we do require is that the maximum distance from x to the constraints in L is at

least some non-decreasing function φ of the distance from x to C.

Property 4.2. Q is a random separation oracle for a family of convex sets F , if there

exists a lower bound τ > 0, such that on input x ∈ Rd, Q returns a list L ⊂ F such

that

∀C̃ ∈ F , P r[C̃ ∈ L] ≥ τ.

Remark 4.3. The random separation oracle need not decide whether x ∈ C.

4.2.1.1 Linear Inequality Constraints

In practice, most problems do not have the most general of convex constraints.

Indeed, linear inequality constraints are common. In such a case, our constraints

sets Ci are half spaces. In particular, we denote each half space by Hi instead of Ci.

Additionally, for each Hi, we know that there exists ai ∈ Rd and bi ∈ R such that

Hi = {x ∈ Rd : 〈ai, x〉 ≤ bi}.

Thus, if A is the matrix whose rows are given by ai and b is the vector whose coordinates

are bi, then our feasible region C can be represented as follows:

C = {x ∈ Rd : Ax ≤ b}.

75

In this case, we can reformulate Problem 4.1 as follows.

minimize f(x)

subject to Ax ≤ b
(4.2)

Solving this problem for general convex functions f is too monumental a task. We

restrict ourselves to a rich class of functions known as Bregman functions. First, we

define the generalized Bregman distance.

Definition 4.4. Given a convex function f(x) : S → R whose gradient is defined

on S, we define its generalized Bregman distance Df : S × S → R as Df(x, y) =

f(x)− f(y)− 〈∇f(y), x− y〉.

Definition 4.5. A function f : Λ→ R is called a Bregman function if there exists a

non-empty convex set S such that S ⊂ Λ and the following hold:

(i) f(x) is continuous, strictly convex on S, and has continuous partial derivatives

in S.

(ii) For every α ∈ R, the partial level sets Lf1(y, α) := {x ∈ S : Df(x, y) ≤ α} and

Lf2(x, α) := {y ∈ S : Df (x, y) ≤ α} are bounded for all x ∈ S, y ∈ S.

(iii) If yn ∈ S and lim
n→∞

yn = y∗, then lim
n→∞

Df (y
∗, yn) = 0.

(iv) If yn ∈ S, xn ∈ S, lim
n→∞

Df(xn, yn) = 0, yn → y∗, and xn is bounded, then

xn → y∗.

We denote the family of Bregman functions by B(S). We refer to S as the zone of

the function and we take the closure of the S to be the domain of f .

This class of function includes many natural objective functions, including entropy

f(x) = −
∑n

i=1 xi log(xi) with zone S = Rn
+ (here f is defined on the boundary of S

by taking the limit) and f(x) = 1
p
‖x‖pp for p ∈ (1,∞). The `p norms for p = 1,∞ are

not Bregman functions but can be made Bregman functions by adding a quadratic

term. That is, f(x) = cTx is a not Bregman function, but cTx+xTQx for any positive

76

definite Q is a Bregman function.

Definition 4.6. We say that a hyper-plane Hi is strongly zone consistent with a

respect to a Bregman function f and its zone S, if for all y ∈ S and for all hyper-planes

H, parallel to Hi that lie in between y and Hi, the Bregman projection of y onto H

lies in S instead of in S.

In addition to the restrictions on the functions for which we can solve Problem 4.2,

we will need the assumption that all hyper-planes in H (our family of half spaces) are

strongly zone consistent with respect to f(x). This assumption is used to guarantee

that when we do a projection the point we project onto lies within our domain. This

is also not too restrictive. For example, all hyper-planes are strongly zone consistent

with respect to the objective functions f(x) = 0.5‖x‖2 and f(x) = −
∑

i xi log(xi).

The final assumption, that we mentioned earlier, is that C is non-empty. This is

needed to ensure the algorithm converges.

4.2.1.2 General Convex Constraints

While general convex constraints do not often appear in practical problems, such

a formulation is of theoretical interest. When our constraints are simply convex sets

rather than linear ones, we must adjust our algorithmic approach and, as a result, our

assumptions about the objective function f(x) and the constraints will be slightly

different as compared to the linear case. The problem that we are interested in is

minimize f(x)

subject to x ∈ Ci ∀Ci.
(4.3)

Before we state our assumptions, we need the following definitions.

Definition 4.7. A function f is Legendre, if f is a closed proper map, int(domf) 6= ∅,

and limt↓0〈∇f(x+t(y−x)), y−x〉 = −∞ for all x ∈ ∂(domf) and for all y ∈ int(domf).

77

Definition 4.8. A function f is very strictly convex, if f is twice differentiable

everywhere and its Hessian is positive definite everywhere.

Definition 4.9. A function f is co-finite is limr→∞ f(rx)/r =∞ for all x ∈ domf .

For this version of the problem we will assume that f is a very strictly convex,

co-finite, Legendre function. Note that these are strong conditions and rule out some

objective functions such as Burgs entropy f(x) =
∑

i log(xi). They do still, however,

allow a rich class of functions. Some examples can be seen below:

1. f(x) = 0.5‖x‖2 on Rn.

2. f(x) =
∑

i xi log(xi)− xi (Boltzman/Shannon entropy) on Rn
+.

3. f(x) = −
∑

i

√
1− x2

i (Hellinger distance) in [−1, 1]n.

4. f(x) =
∑

i xi log(xi) + (1− xi) log(1− xi) (Fermi/Dirac entropy) on [0, 1]n.

5. f(x) =

1
2
x2 + 2x+ 1

2
x ≤ −1

−1− log(−x) −1 ≤ x < 0

.

Note that the last example Legendre function is not a Bregman function. In addition

to the Legendre function assumptions, we also assume that int(domf) ∩ C 6= ∅. See

Bauschke and Lewis (2000b) for a discussion comparing the two different classes

functions presented.

4.2.2 Metric Constrained Problems

The primary motivation of this paper is to solve metric constrained problems and

we set up such problems in this section. To define general metric constrained problems,

we first define the metric polytope.

Definition 4.10. Let METn ⊂ R(n2) be the space of all metrics on n points. Given a

graph G the metric polytope METn(G) is the projection of METn onto the coordinates

78

given by the edges of G (i.e., we consider distances only between pairs of points that

are adjacent in G).

It can be easily seen that for any x ∈ R(n2), x ∈ METn(G) if and only if ∀ e ∈

G, x(e) ≥ 0 and for every cycle C in G and ∀ e ∈ C, we have that

x(e) ≤
∑

ẽ∈C,ẽ6=e

x(ẽ).

Therefore, METn(G) can be described as the intersection of exponentially many

half-spaces.

Remark 4.11. It is important to note that METn is the space of all metrics on n

points. Hence, when we optimize over METn (METn(G)) we are optimizing over a

much larger and more complex space than the space of Euclidean metrics or the space

of all Mahalanobis metrics.

Now that we have the set over which we want to optimize, we give a general

formulation for metric constrained optimization problems.

Definition 4.12. Given a strictly convex function f , a graph G, and a finite family

of half-spaces H = {Hi} such that Hi = {x : 〈ai, x〉 ≤ bi}, we seek the unique point

x∗ ∈
⋂
iHi ∩MET(G) =: C that minimizes f . That is, if we set A to be the matrix

whose rows are ai and b be the vector whose coordinates are bi we seek

minimize f(x)

subject to Ax ≤ b

x ∈MET (G).

(4.4)

The constraints encoded in the matrix A let us impose additional constraints,

beyond the metric constraints. For example, in correlation clustering, the matrix

A encodes xij ∈ [0, 1]. In general, we will assume that the number of additional

79

constraints encoded in A (beyond the metric constratins) is relatively small so that

the predominant difficulty in solving these optimization problems comes from the

metric constraints.

4.2.3 Projections

All of our algorithms will be based on iteratively computing Bregman projections.

Definition 4.13. Given a strictly convex function f , a closed convex set Y , and a

point y, the projection of y onto Y with respect to Df is a point x∗ ∈ dom(f) such

that

x∗ = arg min
x∈Y ∩dom(f)

Df (x, y).

In the case we have linear inequality constraints, we project onto the boundary of

the half space ∂H. In this case, the Bregman projection has some additional special

properties.

Lemma 4.14. Let x be the point that we project onto ∂Hi = {y ∈ Rd : 〈y, ai〉 = bi},

then there exists a unique x∗, θ such that ∇f(x∗) = ∇f(x) + θai and 〈x∗, ai〉 = bi.

This unique x∗ is also the Bregman projection of x on ∂Hi. Furthermore,

1. θ > 0 if and only if 〈x, ai〉 > bi;

2. θ < 0 if and only if 〈x, ai〉 < bi;

3. θ = 0 if and only if 〈x, ai〉 = bi.

4.3 Project and Forget: Linear Inequalities

To set the stage for subsequent discussions, we present the general structure of

our algorithm first and then detail adjustments we make for the different kinds of

constraints (linear inequalities versus the more general convex constraints). It is

80

iterative and, in general, will be run until some convergence criterion has been met.

The convergence criterion depends largely on the specific application for which the

algorithm is tailored. For this reason, we postpone the discussion of the convergence

criterion until the applications section.

The Project and Forget algorithm keeps track of three quantities; x(ν), the

vector of variables over which we optimize, L(ν) a list of the constraints that the

algorithm deems active, and z(ν) a vector of dual variables. Each iteration of the

Project and Forget algorithm consists of three phases. In the first phase, we

query our oracle Q to obtain a list of constraints L. In the second phase, we merge

L(ν) with L to form L̃(ν+1) and project onto each of the constraints in L̃(ν+1) one at a

time. When we do these projections, we update x(ν) and z(ν). Finally, in the third

phase, we forget some constraints from L̃(ν+1) to yield L(ν+1).

Algorithm 7 General Algorithm.
1: function Project and Forget(f convex function)
2: L(0) = ∅, z(0) = 0. Initialize x(0) so that ∇f(x(0)) = 0.
3: while Not Converged do
4: L = Q(xν)
5: L̃(ν+1) = L(ν) ∪ L
6: x(ν+1), z(n+1) = Project(x(ν), z(ν), L̃(ν+1))
7: L(ν+1) = Forget(z(ν+1), L̃(ν+1))

return x

4.3.1 Finding Violated (Metric) Constraints

The first step of the method is to find violated constraints and in this subsection

we detail how to find violated metric constraints in particular (which are a special case

of linear inequality constraints). In many applications, we could do this by searching

through the list of constraints until we found a violated constraint. However, in our

case, since METn(G) has exponentially many faces, we cannot list all of them, so we

seek an efficient separation oracle Q. That is, given a point x, the oracle efficiently

return a list L of violated constraints, such that the constraints in L satisfy some

81

properties. We will assume that Q satisfies either the Property 4.1 or Property 4.2.

Algorithm 8 Finding Metric Violations.
1: function Metric Violations(d)
2: L = ∅
3: Let d(i, j) be the weight of shortest path between nodes i and j or ∞ if none

exists.
4: for Edge e = (i, j) ∈ E do
5: if w(i, j) > d(i, j) then
6: Let P be the shortest path between i and j
7: Add C = P ∪ {(i, j)} to L

return L

For metric constrained problems, Algorithm 8 finds violated constraints. If the

metric constrained problem has additional constraints (i.e Ax ≤ b), then we augment

our oracle accordingly.

Proposition 4.15. Metric Violation runs Θ(n2 log(n) + n|E|) time and satisfies

Property 4.1 with φ(y) = y
n1.5 .

Proof. The first step in Metric Violation is to calculate the shortest distance

between all pairs of nodes. This can be done using Dijkstra’s algorithm in Θ(n2 log(n)+

n|E|) time. Then, if the shortest path between any adjacent pair of vertices is not

the edge connecting them, then the algorithm has found a violated cycle inequality.

Note that if no such path exists, then all cycle inequalities have been satisfied and the

input point x (representing distances) is within the metric polytope. Thus, we have

an oracle that separates the polytope.

However, we want an oracle that also satisfies property 4.1. To that end, let us

define the deficit of a constraint. Given a point x and a hyper-plane HC,e, defined by

some cycle C and an edge e, the deficit of this constraint is given by

d(C, e) = x(e)−
∑

ẽ∈C,ẽ 6=e

x(ẽ).

If this quantity is positive, then x violates this constraint. In this case, the squared

82

distance from x to this constraint is d(C,e)2
|C| (i.e., we add/subtract d(C,e)

|C| to each edge

weight of C).

Now let xapsp be the all pair shortest path metric obtained from x and L be the

list returned by the oracle. Then

‖x− xapsp‖2
2 =

∑
C,e∈L

d(C, e)2.

Thus, if HC̃,ẽ is the constraint that maximizes d(C̃, ẽ), then we have that

dist(x, C̃C̃,ẽ)
2 =

d(C̃, ẽ)2

|C̃|
≥ ‖x− xapsp‖2

2

|C̃||L|
.

Since our oracle returns at most 1 constraint per edge, we have that |L| ≤ |E| ≤ n2.

This along with the fact that |C̃| ≤ n, gives us that

dist(x,HC̃,ẽ)
2 ≥ ‖x− xapsp‖2

2

n3
.

Finally, we know that xapsp ∈ MET(G). Thus, we see that

‖xapsp − x‖2
2 ≥ dist(x,MET(G))2 = dist(x,C)2.

Putting it all together, we have that

max
Ĉ∈L

dist(x, Ĉ)2 ≥ dist(x,HC̃,ẽ)
2

≥ ‖x− xapsp‖2
2

n3

≥ dist(x,C)2

n3
.

Taking the square root of both sides gives the needed result.

83

4.3.2 Project and Forget Steps

The Project and Forget steps for the algorithm are presented in Algorithm 9. Let

us step through the code to obtain an intuitive understanding of its behavior. Let

Hi = {x : 〈ai, x〉 ≤ bi} be a constraint and x the current iterate. The first step is to

calculate x∗ and θ. Here x∗ is the projection of x onto the boundary of Hi and θ is a

“measure” of how far x is from x∗. In general, θ can be any real number and so we

examine two cases: θ positive or negative.

It can be easily seen from Lemma 4.14 that θ is negative if and only if the constraint

is violated. In this case, we have c = θ because (as we will see in proof) the algorithm

always maintains zi ≥ 0. Then on line 5, we compute the projection of x onto Hi.

Finally, since we corrected x for this constraint, we add |θ| to zi. Since each time

we correct for Hi, we add to zi, we see that zi stores the total corrections made for

Hi. On the other hand, if θ is positive, this constraint is satisfied. In this case, if we

also have that zi is positive; i.e., we have corrected for Hi before and we have over

compensated for this constraint. Thus, we must undo some of the corrections. If

c = zi, then we undo all of the corrections and zi is set to 0. Otherwise, if c = θ we

only undo part of the correction.

For the Forget step, given a constraint Hi ∈ L̃(ν+1), we check if z(ν+1)
i = 0. If so,

then we have not done any net corrections for this constraint and we can forget it;

i.e., delete it from L̃(ν+1).

If we think of L(ν) as matrix, with each constraint being a row, we see that at

each iteration L(ν) is a sketch of the matrix of active constraints. Hence, during each

iteration we update this sketch by adding new constraints (rows). During the Forget

step, we determine which parts of our sketch are superfluous and we erase (forget)

these parts (rows) of the sketch.

In general, calculating the Bregman projection (line 3) cannot be done exactly.

See Dhillon and Tropp (2007) for a general method to perform the calculation on line

84

Algorithm 9 Project and Forget algorithms.
1: function Project(x, z, L)
2: for Hi = {y : 〈ai, y〉 = bi} ∈ L do
3: Find x∗, θ by solving ∇f(x∗)−∇f(x) = θai and x∗ ∈ Hi

4: ci = min (zi, θ)
5: x← xnew, xnew ← such that ∇f(xnew −∇f(x) = ciai
6: zi ← zi − ci

return x, z
7: function Forget(z, L)
8: for Hi = {x : 〈ai, x〉 = bi} ∈ L do
9: if zi == 0 then Forget Hi

return L

3. For example, if f(x) = xTQx+ rTx+ s where Q positive definite, then for a given

hyper-plane 〈a, x〉 = b and a point x we have that

θ =
〈a, x〉 − b
aTQ−1a

. (4.5)

4.3.3 Truly Stochastic Variant

In some problems, we have constraints defined using only subsets of the data

points and we may not have an oracle that satisfies Property 4.1. For such cases, we

present a stochastic version of our algorithm. Instead of calling Metric Violation

or an oracle with Property 4.1, we want an oracle with Property 4.2. This version

of our algorithm is very similar to the algorithms presented in Nedić (2011); Wang

et al. (2015). The major difference being that we do not need to perform a gradient

descent step. Instead, we maintain the KKT conditions by keeping track of the dual

variables and doing dual corrections. In practice, using Project and Forget with

the random oracle tends to produce better results than Nedić (2011); Wang et al.

(2015) because we remember the active constraints that we have seen, instead of

hoping that we sample them.

In some cases, we may want a more stochastic variant. With the algorithm as

specified, we have to keep track of the constraints that we have seen and carefully

85

pick which constraints to forget. We can, nevertheless, modify the Forget step to

forget all constraints and obtain a truly stochastic version of the algorithm. In this

version, at each iteration, we choose a random set of constraints and project onto these

constraints only, independently of what constraints were used in previous iterations.

We cannot, however, forget the values of the dual variables. This version is similar

to that in Bauschke and Borwein (1997). However, Bauschke and Borwein (1997)

only looks at the problem when we have linear equality constraints. To employ such

an approach, we could modify our problem to add slack variables and change all of

constraints into equality constraints, however these modifications will not yield an

equivalent problem. One of the major assumptions of Bauschke and Borwein (1997) is

that the objective function is strictly convex. Thus, we if add slack variables, then we

would need to modify our objective function to be strictly convex on these variables

as well. This changes the problem.

4.3.4 Convergence Analysis: Linear Inequality Constraints

Before we can use Project and Forget, it is crucial to establish a few theoretical

properties. Previous work on the convergence of the Bregman method relies on the

fact that the algorithm cyclically visits all of the constraints. For our method, however,

this is not the case and so it is not clear that the convergence results for the traditional

Bregman method still apply. In particular, it may be the case, that given a sequence of

hyper-planes returned by the oracle, the algorithm may not even converge. Fortunately,

the proofs for the traditional Bregman method can be adapted in subtle ways, so

that we can establish crucial theoretical properties of the Project and Forget

algorithm.

Theorem 4.16. If f ∈ B(S), Hi are strongly zone consistent with respect to f , and

∃x0 ∈ S such that ∇f(x0) = 0, then

1. If the oracle Q satisfies property 4.1 (property 4.2), then any sequence xn

86

produced by the above algorithm converges (with probability 1) to the optimal

solution of problem 4.2.

2. If x∗ is the optimal solution, f is twice differentiable at x∗, and the Hessian

H := Hf(x∗) is positive definite, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (4.6)

where ‖y‖2
H = yTHy. In the case when we have an oracle that satisfies property

4.2, the limit in 4.6 holds with probability 1.

The proof of Theorem 4.16 also establishes another important theoretical property.

Proposition 4.17. If ai is an inactive constraint, then there exists an N , such that

for all n ≥ N , we have that zni = 0. That is, after some finite time, we never project

onto inactive constraints ever again.

Corollary 4.18. Under the assumptions for part 2 of Theorem 4.16, the sequence

zn → z∗ also converges.

These properties are important as they permit the following interpretation of

our algorithm. The algorithm spends the initial few iterations identifying the active

constraints from amongst a large number of constraints. This is the active set part

of the algorithm. The algorithm then spends the remainder of the iterations finding

the optimal solution with respect to these constraints. Empirically, we notice this

phenomenon as well. At first, the error metrics decreases very slowly, while the number

of constraints that are being considered grows rapidly. Eventually, we reach a point

when the number of constraints that we are currently considering stabilizes, at this

point the error metrics start decreasing very rapidly. An example of this phenomenon

can be seen in Figure 4.2ii. This behavior is one of the major advantages of our

87

method. Additionally, the ability to find the set of active constraints without having

to solve the problem is another advantage of our algorithm.

Remark 4.19. We note that while these results show that the algorithm converges

linearly, ρ is close one. Indeed, the proof bounds ρ ≤ F
F+1

, where F is the number

of hyperplanes that the optimal solution lies on. From a heuristic perspective, it

is beneficial to use only those hyperplanes that define the facets of the constraint

polytope.

For the truly stochastic case, we have the following theorem instead.

Theorem 4.20. If f ∈ B(S), Hi are strongly zone consistent with respect to f , and

∃x0 ∈ S such that ∇f(x0) = 0, then with probability 1 any sequence xn produced

by the above truly stochastic algorithm converges to the optimal solution of problem

4.2. Furthermore, if x∗ is the optimal solution, f is twice differentiable at x∗, and the

Hessian H := Hf(x∗) is positive semi-definite, then there exists ρ ∈ (0, 1) such that

with probability 1,

lim inf
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ. (4.7)

Because the proofs of Theorem 4.16 and 4.20 are quite technical and involve two

different types of separation oracles, we split them into several parts. In Subsec-

tions 4.8.1 and 4.8.2, we prove the first part of Theorem 4.16 for separation oracles

with property 4.1 and 4.2, respectively. In Subsection 4.8.3, we prove the second part

of Theorem 4.16 (also subdividing this proof into several cases). Finally, in Subsection

4.8.4 we prove Theorem 4.20.

4.4 Project and Forget: General Convex Constraints

In the previous section, we detailed the Project and Forget algorithm for

half-space (or linear inequality) constraints. In this section, we use similar idea to

88

develop the appropriate variations for general convex constraints. We draw inspiration

from Dijkstra’s method and use a slightly different set of assumptions on our objective

functions and constraints. These assumptions are detailed in Section 4.2.1.2.

4.4.1 Algorithm

Let xn be the primal sequence of iterates and qn an auxiliary sequence. Let

Pk denote the Bregman projection operator onto the kth constraint set. Let f ∗ be

the convex conjugate of f . Let i(k) denote the control sequence, and let p(c, k) =

arg maxk′<k i(k
′) = c. We will abbreviate p(i(k), k) as p(k). With this notation

established, the Project and Forget algorithm for the case of general convex

constraints is shown in Algorithm 10.

Algorithm 10 Project and Forget algorithms
1: Initialize q0 = 0, L = ∅
2: function Project(x0 = x, q, L)
3: for Ci ∈ L do
4: xn := (Pi ◦ ∇f ∗)(∇f(xn−1) + qp(n))
5: qn = ∇f(xn−1) + qp(n) −∇f(xn)

return x|L|

6: function Forget(x, q, L)
7: for Ci ∈ L do
8: if qp(i,n) == 0 then Forget Ci

return L

Lines 4 and 5 of the above algorithm come from Dijkstra’s method. To understand

their role, note that since f is Legendre, we have that ∇f ∗ = (∇f)−1. Thus, on line 4,

we are perturbing xn−1 by modifying its gradient with the auxiliary variable qp(n). For

example, if f(x) = xTQx for some positive definite matrix Q, then line 4 would be

xn = Pi(Q
−1(Qxn−1 + qp(n))) = Pi(x

n−1 +Q−1qp(n)).

89

4.4.2 Convergence Analysis

Now that we have defined the above algorithm, the second major theoretical result

of this paper is the following.

Theorem 4.21. If f is a closed very strictly convex, co-finite, Legendre function and

we are given a point x0 ∈ domf , then

1. if the oracle Q satisfies either property 4.1 or 4.2, then any sequence xn produced

by the above algorithm converges to Bregman projection of x0 on C with respect

to f ; and,

2. if f is also a quadratic function, then for large enough ν there exists a ρ ∈ (0, 1)

such that

‖x∗ − xν+1‖ ≤ ρ‖x∗ − xν‖.

4.5 Applications: Metric Constrained Problems

To demonstrate the effectiveness of our method in solving metric constrained

problems, we solve large instances of two different types of such problems: metric

nearness and correlation clustering. We focus on these types of problems first as they

were the original motivation behind our work. ∗

4.5.1 Metric Nearness

The first and simplest form of a metric constrained problem is the metric nearness

problem. Following Brickell et al. (2008c), the metric nearness problem is:

given a point x ∈ R(n2), find the closest (in some `p norm) point x∗ ∈

METn to x.
∗All implementations and experiments can be found at https://github.com/rsonthal/

ProjectAndForget.

90

https://github.com/rsonthal/ProjectAndForget
https://github.com/rsonthal/ProjectAndForget

This problem is a form of metric learning; see Brickell et al. (2008c) for an application

to clustering and see Gilbert and Sonthalia (2018a) for an application to unsupervised

metric learning. Additionally, if we further restrict to finding the closest Euclidean

metric, then this problem is a well studied one. See Qi and Yuan (2014b); Cayton and

Dasgupta (2006b), and Glunt et al. (1990c) for examples of this problem. Recently

this problem has also been looked at from a discrete setting. Gilbert and Jain (2017)

and Fan et al. (2018b) looked to solve the problem with the fewest possible changes.

Following this, Fan et al. (2018a) generalized the problem to finding the closest point

in MET(G) instead of METn.

We use this problem to demonstrate that standard solvers have significant draw-

backs on large scale metric constrained problems while Project and Forget

handles these problems easily. In particular, in addition to comparing against the

cyclic Bregman used in Brickell et al. (2008c), we compare against commercial solvers

CPLEX (IBM) and Mosek (MOSEK ApS), ADMM based solvers OSQP (Stellato

et al., 2017), SCS (O’Donoghue et al., 2019) and COSMO (Garstka et al., 2019),

operator splitting and interior point solvers Ipopt (Nocedal et al., 2009), ProxSDP

(Souto et al., 2018) and ECOS (Domahidi et al., 2013), and active set solver SLSQP

(Kraft , 1988). We also use Mosek as an active set solver (MASS) as follows. We go

through all n3 constraints and find the subset S of the violated constraints. We then

use Mosek to solve the problem on S. We then remove the inactive constraints and

add in the new violated constraints and use Mosek to solve the problem again and

iterate.

4.5.1.1 Experimental Set Up:

Before we see the experimental results, let us look at the experimental set up more

closely.

Data. For this experiment, we will generate three different types of synthetic data.

91

We will refer to these as Type I, Type II, and Type III data.

For Type I data, we generate random weighted complete graphs with Gaussian

weights. For type II data, for each edge e we set w(e) = 1 with probability 0.8 and

and w(e) = 0 with probability 0.2. For type III data, we let uij be sampled from the

uniform distribution on [0, 1] and vij from a standard normal, then the weight for an

edge e = ij is given by

wij =
⌈
1000 · uij · v2

ij

⌉
.

Implementation Details. We implemented the algorithm from Brickell et al.

(2008c). We made a small modification that improves the running time. In Brickell

et al. (2008c), it is recommended that we store the dual variable z as a sparse vector.

However, as we do not want the overhead of handling sparse vectors, we store z as a

dense vector.

Project and Forget, as presented Algorithm 11, was implemented with two

modifications. As we can see from algorithm 8, when the oracle finds violated

constraints, it looks at each edge in G and then decides whether there is a violated

inequality with that edge. It is cleaner, in theory, to find all such violated constraints

at once and then do the project and forget steps. It is, however, much more efficient

in practice to do the project and forget steps for a single constraint as we find it.

This approach also helps cut down on memory usage. Once our oracle returns a

list of constraints (note we have already projected onto these once), we project onto

our whole list of constraints again. Thus, for the constraints returned by the oracle,

we project onto these constraints twice per iteration. Note this does not affect the

convergence results for the algorithm.

The solvers CPLEX, Mosek, OSQP, SCS, COSMO, Ipopt, ProxSDP, ECOS, and

MASS all were accessed via Julia’s JuMP library. SLSQP was inferfaced with using

Scipy.

Convergence criterion. When we presented the algorithm in Section 4.3, we did

92

Algorithm 11 Pseudo-code for the implementation for Metric Nearness.
1: L0 = ∅, z0 = 0. Initialize x0 so that ∇f(x0) = 0.
2: while Not Converged do
3: Let d(i, j) be the weight of shortest path between nodes i and j or ∞ if none

exists.
4: L = ∅
5: for Edge e = i(, j) ∈ E do
6: if w(i, j) > d(i, j) then
7: Let P be the shortest path between i and j.
8: Let C = P ∪ {(i, j)}.
9: Project onto C and update x, z.
10: if zC ! = 0 then
11: Add C to L.
12: L̃ν+1 = Lν ∪ L
13: xν+1, zν+1 = Project(xν , zν , L̃ν+1)
14: Lν+1 = Forget(L̃ν+1)

return x

not specify a convergence criterion because we wanted the criterion to be application

dependent. The convergence criterion for Project and Forget and Brickell et al.

(2008c) is as follows. One variant of the metric nearness problem is the decrease only

variant, in which we are not allowed to increase the distances and must only decrease

them. This problem can solved in O(n3) time by calculating the all pairs shortest path

metric (Gilbert and Jain, 2017). Given xn as input, let x̂n be the optimal decrease

only metric. For Project and Forget, and Brickell et al. (2008c), we ran these

experiments until ‖x̂n−xn‖2 ≤ 10−10. For convenience, given x let D(x) = ‖x̂n−xn‖2.

For CPLEX. Mosek, OSQP, SCS, COSMO, Ipopt, ProxSDP, ECOS, SLSQP, we

let the convergence criterion be the default criterion. For MASS, we ran it until the

constraint set converged.

Comparison StatsiticsWe compare the solvers on two different kinds of measures.

The first is the convergence details of each solver. To determine convergence, we look

two statistics. First, we look at the relative objective difference (ROD), which is given

by

ROD =
OtherSolverObjective - ProjectForgetObjective

ProjectForgetObjective
.

93

Second, if x is the solution returned by Project and Forget and x̃ is the solution

returned by one of the other solvers, then the feasibility difference (FD) is given by

FD = D(x̃)−D(x).

For both metrics, if the quantities are positive, then Project and Forget does

better.

The second measure we compare is the time taken to solve the optimization

problem. Here we use the solve time reported by the solvers. Note that this does not

include the interface time and in many cases the interface time could be significant.

4.5.1.2 Results

As we can see from Table 4.1, standard solvers run out memory or start taking too

long extremely rapidly as a function of instance size. In fact, all times reported for

the standard solvers is the solve time returned by the optimizer and does not include

the interface time. In many cases, such as ProxSDP, the interface time could be

multiple hours. On the other hand, while initially Brickell et al. (2008c) is faster than

Project and Forget as n gets larger, Project and Forget starts to dominate.

Thus, showing that Project and Forget is the only viable algorithm to solve large

metric constrained problems.

To make sure that we are running all of the algorithms to the same level of

convergence, we take the five best solvers and check their convergence statistics. That

is, we check the convergence statistics for commercial solver Mosek, for ADMM based

solvers OSQP and SCS, and for operator splitting solver ProxSDP.

Each data point in Table 4.2 is average over 10 trials. When comparing against

Brickell et al. (2008c), we let n range from a 100 to 1000, i.e., the same values as in

Table 4.1. Table 4.2 then shows that both method have similar levels of convergence.

94

Algorithm Number of Nodes
100 200 300 400 500 600 700 800 900 1000

Ours 13.5 32.7 85.1 170 271 458 720 983 1356 1649
Cyclic Bregman 1.77 10.5 47.1 141 322 558 910 1472 2251 3167

Mosek 11.7 542 Out of Memory
SCS 1632 19466 Timed Out
OSQP 64.5 3383 Timed Out

ProxSDP 353 684 Timed Out
Ipopt 2792 Timed Out
ECOS 597 Timed Out
CPLEX Out of Memory
SLSQP Timed Out
COSMO Timed Out

Table 4.1: Table comparing Project and Forget against a variety of different
solvers to solve the Metric Nearness problem for Type 1 graphs in terms of time taken
in seconds. All experiments were run on a Computer with 52 GB of memory. All
times reported are averaged over 5 instances.

Thus, since Project and forget is faster; it is the superior algorithm.

To compare against the rest of the solvers, as they simply cannot solve the problem

for larger values of n, we let n range from 10 to 100. Here, we see that Project

and Forget has much smaller feasibility error than the other solvers. Solvers such

as SCS and QSQP have a feasibility error of about 10−3 to 10−5, however, we run

Project and Forget until the feasibilty error is smaller than 10−10, which is many

orders of magnitude smaller. For ProxSDP, ROD was consistently around 1 and FD

was consistently greater than 2. We conclude that these solvers have not converged.

The only solver, other than Project and Forget, that consistently converges

is Mosek, which has higher objective values than Project and Forget in all but

one case. The active set method MASS was run until the the feasibility error was at

most 1e-10 or the constraint set was stable, in practice we found that the constraint

set stabilized first and hence the solver has similar convergence statistics to Mosek.

We further tested our method against the cyclic Bregman method on Type II and

Type III data. In this case, we got the running times shown in Figure 4.1. For this we

95

n
Solver 100 200 300 400 500 600 700 800 900 1000

Cyclic BregmanROD -3e-13 -4e-14 4e-15 -2e-14 6e-15 -8e-16 1e-15 -4e-15 5e-15 2e-17
FD -6e-12 5e-13 4e-13 -3e-12 1e-12 3e-12 5e-12 3e-12 -2e-12 7e-12

n
10 20 30 40 50 60 70 80 90 100

Mosek ROD -4e-4 2e-9 1e-9 6e-9 7e-9 1e-8 2e-8 2e-8 2e-8 2e-8
FD 2e-11 2e-11 1e-9 7e-10 3e-10 9e-10 1e-9 9e-10 8e-10 7e-10

OSQP ROD -4e-4 5e-7 -9e-7 -2e-7 -7e-8 1e-7 -1e-8 7e-8 4e-8 5e-8
FD 1e-3 2e-3 1e-3 9e-4 8e-4 5e-4 9e-4 1e-3 8e-4 1e-3

SCS ROD -4e-4 -3e-8 8e-7 -8e-6 -5e-7 -1e-8 -2e-8 3e-9 -7e-6 1e-9
FD 7e-5 1e-4 5e-3 6e-3 5e-4 9e-5 4e-5 4e-5 0.09 4e-5

Table 4.2: Convergence statistics for the metric nearness problem for the different
solvers. Each value is the average over 10 trials.

relaxed the convergence criteria to being within 1 of the closest decrease only metric

solution.

One thing we learn from relaxing the convergence criteria is that cyclic Bregman

method outperforms Project and Forget for larger values of n. This is because,

that Project and Forget only focuses on the set of the active constraints. Thus,

the more stringent the convergence criterion, the better our method does compared to

the standard cyclic Bregman method used in Brickell et al. (2008c).

(i) Type one graphs (ii) Type two graphs (iii) Type three graphs

Figure 4.1: The red line is the mean running time for the algorithm from Brickell et al.
(2008c). The blue line is the running mean time for our algorithm. All computations
were done on a machine with 4 physical cores, each with 13 GB of RAM.

Finally, we must note that when we use the cycle constraints to represent MET(Kn),

96

there is significant dependency amongst the constraints. That is, many constraints

are not independent from other constraints. We suspect that our oracle finds a lot

of active constraints that have linear dependencies and so L(ν) becomes saturated

with dependent constraints. It is suprising, however, that after we solve the problem,

L(ν), more often than not, only contains 3-cycle constraints and does not have a lot of

dependency. We also see that the size of L(ν) is about O(n2).

4.5.2 Weighted Correlation Clustering on General Graphs.

For the correlation clustering problem, we are given a graph G = (V,E) (not

necessarily complete) and two non-negative numbers w+(e) and w−(e) for each edge

e. These numbers indicate the level of similarity and dissimilarity between the

end points of e. The goal of correlation clustering is to partition the nodes into

clusters so as to minimize some objective function. The most common objective is∑
e∈E w

+(e)xe +w−(e)(1− xe), where xe ∈ {0, 1} indicates whether the end points of

the edge e belong to different clusters. This variant of the problem is NP-hard and

many different approximation algorithms and heuristics have been developed to solve

it. The best approximation results (Charikar et al., 2005; Emanuel and Fiat , 2003),

however, are obtained by rounding the solution to the following relaxed linear problem

minimize
∑

e∈E w
+(e)xe + w−(e)(1− xe)

subject to xij ≤ xik + xkj i, j, k = 1, ..., n

xij ∈ [0, 1] i, j = 1, ..., n.

(4.8)

Special cases, such as when the weights are ±1 and G = Kn, have faster algorithms

for the same approximation ratio (Ailon et al., 2005).

The LP formulation for correlation clustering in Equation 4.8 has Θ(n3) constraints.

Hence, solving the LP for large n becomes infeasible quickly in terms of both memory

and time. Veldt et al. (2019) showed that for instances with n ≈ 4000, standard

97

solvers such as Gurobi ran out of memory on a 100 GB machine. On the other hand,

Veldt et al. (2019) developed a method using which they can feasibly solve the problem

for n ≈ 11000. To do so, they transform Problem 4.8 into Problem 4.9. To do this

transformation, for e ∈ E, we define w̃(e) = |w+(e) − w−(e)|. For e 6∈ E, we let

w̃(e) = 0 Then W is a diagonal matrix whose entries are given by w̃. Then, we define

d as follows

de =

1 w−1(e) > w+(e)

0 otherwise
.

And the transformed problem is as follows.

minimize w̃T |x− d|+ 1
γ
|x− d|TW |x− d|.

subject to x ∈ MET(Kn).
(4.9)

For general γ, the solution to Problem 4.9 approximates the optimal solution to 4.8.

However, for large enough γ it has been shown that the two problems are equivalent. As

we will see for our instances, Problem 4.9 is at most a 2 approximation to problem 4.8,

which is an O(log(n)) approximation of the NP-hard correlation clustering problem.

Finally, we also relax the condition that x ∈ METn to x ∈ MET(G). The

formulation of the LP that we solve is as follows:

minimize w̃Tf + 1
γ
fT ·W · f

subject to x ∈ MET(G)

fij = |xij − dij|, (i, j) ∈ E.

(4.10)

While it seems like we have relaxed the problem, however, since our objective function

does not depend on the value of x for the edges not in G we see that the two problems

are equivalent.

Remark 4.22. When Veldt et al. (2019) tested their solver against Gurobi, they did

so in an active set manner. That is, they found a set of violated constraints, fed this

98

set into Gurobi, and solved the problem with this subset of the constraints. They

then took the solution from Gurobi and found constraints that the current solution

violated and added these constraints and repeated. They did this until Gurobi solved

the problem. We view this convoluted process as yet more evidence for standard active

set methods not being feasible at large scales.

Proposition 4.23. Let f(x) be a function whose values only depends on the values

xij for e = (i, j) ∈ G and consider the following constrained optimization problem.

minimize f(x)

subject to x ∈ MET(Kn).
(4.11)

Let π be the projection from MET(Kn) to MET(G) and let f̃(π(x)) = f(x). Then for

any optimal solution x∗ to the following problem

minimize f̃(x)

subject to x ∈ MET(G).
(4.12)

we have that for all x̂ ∈ π−1(x∗), x̂ is an optimal solution to 4.11.

Proof. Here, we see that if x̃ be a minimizer of Problem 4.11 and x∗ is the minimizer

of Problem 4.12 then

f(x̃) = f̃(π(x̃)) ≥ f̃(x∗) = f(π−1(x∗)),

where the middle inequality is true, since π(x̃) need not be an optimal solution

to Problem 4.12. Thus, any element in π−1(x∗) is an optimal solution to Problem

4.11.

4.5.2.1 Experimental Set up

Before looking at the results, let us see the experimental set up.

99

Data. We solve the problem for two different types of graphs; dense and sparse.

For dense graphs, we use first take four graphs from the Stanford sparse network

repository. Then, following Veldt et al. (2019), we use the method from Wang et al.

(2013) to convert these graphs into instances of weighted correlation clustering on the

complete graph. We compare our method against Ruggles et al. (2019), a parallel

version of Veldt et al. (2019), in terms of running time, quality of the solutions, and

memory usage.

For much real-world data, the graph G is larger than our previous experiments but

is also sparse. Since the weighting of the edges does not affect the size of the linear

program that needs to be solved, we tested our algorithm on sparse signed graphs to

get an estimate of the running time for the algorithm. The two graphs used for this

experiment are much bigger instances than our previous experiments and have 82140

nodes and 131,828 nodes, respectively.

Implementation Details. For the case when G = Kn, in addition to the

modifications that were done for metric nearness experiment, we made two more

modifications to Project and Forget. First, we did the project step and the forget

step one additional time per iteration. Second, we parallelized the oracle by running

Dijkstra’s algorithm in parallel. The pseudo-code for this version of Algorithm 7 can

be seen in Algorithm 12. For the sparse version, we also used the parallel version of

the oracle and during each iteration, but we did the project and the forget step 75

times per iteration.

Note that for both experiments, the additional constraints that were introduced

due to the transformation were all projected onto once per iteration and never

forgotten. The pseudo-code for this version can be seen in Algorithm 13. We used the

implementation provided by the authors of Veldt et al. (2019) to run the experiments

for their algorithm.

Calculating the approximation ratio. Let x̂ be the optimal solution to 4.9,

100

Algorithm 12 Pseudo-code for the implementation for CC for the dense case.
1: L0 = ∅, z0 = 0. Initialize x0 so that ∇f(x0) = 0.
2: La is the list of additional constraints. z0

a = 0 (dual for additional constraints)
3: while Not Converged do
4: Let d(i, j) be the weight of shortest path between nodes i and j or ∞ if none

exists. This is found using a parallel algorithm.
5: L = ∅
6: for Edge e = i(, j) ∈ E do
7: if w(i, j) > d(i, j) then
8: Let C = P ∪ {(i, j)}. Where P be the shortest path between i and j.
9: Project onto C and update x, z.
10: if zC ! = 0 then
11: C to L.
12: Lν ← Lν ∪ L
13: for i = 1, 2 do
14: xν , zν ← Project(xν , zν , Lν)
15: Lν ← Forget(Lν)
16: xν , zνa ← Project(xν , zνa , La)
17: xν+1 = xν , Lν+1 = Lν , zν+1 = zν , zν+1

a = zνa ,
return x

Algorithm 13 Pseudo-code for the implementation for CC for the sparse case.
1: L0 = ∅, z0 = 0. Initialize x0 so that ∇f(x0) = 0.
2: La is the list of additional constraints. z0

a = 0 (dual for additional constraints)
3: while Not Converged do
4: Let d(i, j) be the weight of shortest path between nodes i and j or ∞ if none

exists. This is found using a parallel algorithm.
5: L = ∅
6: for Edge e = i(, j) ∈ E do
7: if w(i, j) > d(i, j) then
8: Let C = P ∪ {(i, j)}. Where P be the shortest path between i and j.
9: Add C to L.
10: Lν ← Lν ∪ L
11: for i = 1, . . . , 75 do
12: xν , zν ← Project(xν , zν , Lν)
13: Lν ← Forget(Lν)
14: xν , zνa ← Project(xν , zνa , La)
15: xν+1 = xν , Lν+1 = Lν , zν+1 = zν , zν+1

a = zνa ,
return x

101

then if we let R =
x̂TWx̂

2γw̃T x̂
, by Veldt et al. (2019), we have that x̂ is an

1 + γ

1 +R

approximation to the optimal solution of 4.8. This is the formula we used to calculate

the approximation ratios reported in Tables 4.3 and 4.4. For our experiments we used

γ = 1. Note that since the entries of x̂ are non negative, and the entries of W and w̃

are non-negative, we have that R > 0. Thus, our approximation ratio is at most 2.

Convergence criterion. We ran the experiment until the maximum violation

of a metric inequality was at most 0.01. However, the two algorithms, Ruggles et al.

(2019) and ours, have different metric constraints. Specifically Ruggles et al. (2019)

only uses all constraints that come from 3 cycles, whereas we use all cycle constraints.

Theoretically both sets of constraints define the same polytope, but practically there

is a difference. Thus, in practice our algorithm was run to a slightly greater level

of convergence than the one from Ruggles et al. (2019). Additionally, Ruggles et al.

(2019) also check a second criteria for convergence, however, in all cases, that criterion

was satisfied much before the maximum violation of a metric inequality was at most

0.01.

4.5.2.2 Results

Graph Time (s) Opt Ratio Avg. mem. / iter. (GiB)

n Ours Ruggles et al. Ours Ruggles et al. Ours Ruggles et al.
CAGrQc 4158 2098 5577 1.33 1.38 4.4 1.3
Power 4941 1393 6082 1.33 1.37 5.9 2

CAHepTh 8638 9660 35021 1.33 1.36 24 8
CAHepPh 11204 71071 135568 1.33 1.46 27.5 15

Table 4.3: Table comparing Project and Forget against Ruggles et al. (2019) in
terms of time taken, quality of solution, and average memory usage when solving the
weighted correlation clustering problem on dense graphs.

For the case of dense graphs, we see from Table 4.3 that our algorithm takes less

time to obtain a better approximation ratio, but requires more memory per iteration.

Thus, demonstrating the superiority of our method in terms of CPU time. Our

102

algorithm requires more memory because the initial few iterations find a large number

of constraints. Later, the algorithm forgets these constraints until the number of

constraints stabilizes at a reasonable level. Hence, our initial memory usage is much

larger than our later memory usage. To see how the number of constraints found by

the oracle evolves, we plot the number of constraints found by the oracle and the

number of constraints after the forget step in Figure 4.2i. As we can see, after the

initial few iterations, the number constraints found sharply reduces and has found

the true set of active constraints by the 15th iteration. Figure 4.2ii also shows us, as

expected, the exponential decay of the maximum violation of a metric constraint.

Figure 4.2ii, also highlights another aspect our algorithm. That is, for the initial

few iterations the error statistics do not decrease. In fact, we have experimentally seen

that the error statistics may actually increase for the first few iterations. Proposition

4.17, which tells us that our algorithm spends the initial few iterations finding the

active constraint set, explains this phenomenon. During this time, the algorithm makes

minimal progress towards reducing the error statistics. However, once we have found

the active constraints, Theorem 4.28 is now applicable and we have an exponential

decay of the error statistics. Though in contrast to the theory result, the base of the

exponent, is smaller than theoretically predicted.

(i) Number of constraints. (ii) Max Violation.

Figure 4.2: Plots showing the number of constraints returned by the oracle, the number
of constraints after the forget step, and the maximum violation of a metric constraint
when solving correlation clustering on the Ca-HepTh graph

103

Remark 4.24. Figure 4.2i highlights the crucial difference between our method and

standard active set methods. Standard active set methods would have to initially

solve the convex optimization problem with 108 constraints. This is not feasible!

However, using Project and Forget, we only need to compute projections onto

each constraint once before we can forget constraints. Thus, we forget constraints

more frequently and much earlier.

Graph n # Constraints Time Opt Ratio # Active Constraints Iters.

Slashdot 82140 5.54× 1014 46.7 hours 1.78 384227 145
Epinions 131,828 2.29× 1015 121.2 hours 1.77 579926 193

Table 4.4: Time taken and quality of solution returned by Project and Forget
when solving the weighted correlation clustering problem for sparse graphs. The table
also displays the number of constraints the traditional LP formulation would have.

For sparse graphs, even if we use Ruggles et al. (2019), based on the average time it

took for a single iteration for the CA-HepPh graph, it would take Ruggles et al. (2019)

an estimated two days to complete a single iteration, for a graph with n ≈ 80, 000.

This is because each of their iterations takes Θ(n3) time. Since most graphs require at

least 100 iterations, Veldt et al. (2019); Ruggles et al. (2019) cannot be used to solve

problems of this magnitude. Other methods of solving the LP are also not feasible as

they run out of memory on much smaller instances.

We can see the performance of our method Project and Forget in Table 4.4.

Here, we see that our method has solved these problems in a reasonable amount of

time. As we can see from Table 4.4, these instances have over 500 trillion constraints,

but the number of active constraints is only a tiny fraction of the total number of

constraints. Thus, using our approach, we can solve the weighted correlation clustering

problem on much larger graphs than ever before.

There are two reasons as to why Project and forget can be used to solve

these problems at these scales. First, while these instances have over 500 trillion

104

constraints, the number of active constraints is only a tiny fraction of the total number

of constraints. Second, due to the sparsity of the graph, our oracle finds violated cycle

inequalities relatively quickly (sub-cubic time) and, since we forget inactive constraints,

we project onto this relatively small number of constraints in each iteration. Thus,

using our approach, we can solve the weighted correlation clustering problem on much

larger (10 times bigger) graphs than ever before.

4.6 Applications: General algorithm

We shall now also provide experimental evidence that supports the generality of

the algorithm. To do so we will solve three different problems, each with general linear

constraints (not simply metric constraints) and a variety of objective functions.

First, we solve the dual of the quadratically regularized optimal transport problem

from Blondel et al. (2018a). Solving this problem helps highlight various different

aspects of our algorithm that are not highlighted by the metric constrained problem.

Second, we solve the information theoretic metric learning from Davis et al. (2007).

Solving this problem highlights the wide variety of objective functions that our method

can handle. Finally, we use our algorithm to train L2 SVMs to highlight cases when

the truly stochastic variant of our algorithm would be useful.

4.6.1 Sparse Optimal Transport

Optimal transport is a ubiquitous problem that appears many different areas of

machine learning, data science, statistics, mathematics, physics, and finance.

Problem 4.24.1. Given two measure spaces (X ,ΣX , µ) and (Y ,ΣY , ν), and a cost

function c : X × Y → R+ , the Monge-Kanterovich Optimal Transport seeks joint

105

probability π on X × Y that minimizes

∫
X×Y

c(x, y)dπ(x, y),

subject to constraint that the marginals of π are equal to µ and ν.

In the discrete setting this problem can be formulated as follows:

OT (a, b) = min〈C,P 〉

Subject to: a = P1m, b = P T1n

(4.13)

It has been shown that optimal solutions to the discrete Monge-Kanterovich problem

are sparse (Brualdi , 2006). Specifically, at most n+m−1 entries of P can be non-zero.

While Problem 4.24.1 can be formulated as a linear program, solving it is fairly

challenging as it has a quadratic number of variables and so many alternative formula-

tions have been proposed. One such alternative, called ROT, is presented in Blondel

et al. (2018b); it uses a different regularizer, most importantly an L2 regularizer. In

this case, they show experimentally that the solutions are still sparse. We show that

Project and Forget can also be used to solve ROT.

Minimize: 〈C,P 〉+ γ‖a− P1m‖2 + γ‖b− P T1n‖2

Subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0
(4.14)

4.6.1.1 Dual Problem

In particular, we will not solve ROT directly; instead, we will solve the dual

formulation of ROT.

Min: 1
γ
‖f‖2 + 1

γ
‖g‖2 − 〈f ,a〉 − 〈g, b〉

Subject to: fi + gj ≤ Cij

(4.15)

Generally, solving the dual problem, while it gives us the optimal value of the

106

primal objective function, does not give you the optimal value of the primal variables

directly. Thus, going from the solution to Problem 4.15 to that of Problem 4.14 is non

trivial. This brings us to one aspect of Project and Forget that is not highlighted

by the metric constrained problems. That is,

if we use Project and Forget to solve either the primal problem or

the dual problem, then it finds the optimal solution to both problems.

This result holds as a result of Proposition 4.17. This proposition states that the

variables z converge. Since we maintain the KKT conditions throughout the algorithm,

the value that z converges to is the optimal solution of the dual problem and, thus,

we solve the dual problem.

4.6.1.2 Sparsity

The reason we want to solve the dual problem instead of the primal is that sparsity

impacts Project and Forget advantageously. Switching to the dual gives three

forms of beneficial sparsity.

First, we have that the primal problem has O(n2) variables while the dual problem

has O(n) variables. In general, having fewer variables is beneficial and while this

typically comes at the expense of extra constraints, our method is built for a large

number of constraints. Second, we know that the solutions to optimal transport

have at most O(n) non-zero entries. Hence, in this case, this means that the dual

problem has O(n) active constraints. Since our method is an active set method, having

fewer active constraints is a great benefit. Third, the dual constraints are extremely

sparse. Each dual constraint involves two variables. This allows the extremely rapid

computation of the projection.

4.6.1.3 Experimental Results

In this subsection, we detail the experimental set up and present the results.

107

Data. The experimental set up is as follows. We take two shifted Gaussian

distributions with means ±15 and variance 10. Then, we split the interval [−20, 20]

into n points and create two discrete distributions by sampling the Gaussians on

those n points. We use the squared Euclidean distances between the points as the

cost function. We set the regularization parameter 1/γ = 10−3. This set up is a very

basic example of the optimal transport problem and is an important test example for

algorithmic comparisons.

Convergence Details. The feasibility error for Mosek and CPLEX are those

reported by the solvers. For Project and Forget, we calculate the feasibility error

by

max
i,j
fi + gj −Cij.

Solvers. For the oracle for the Project and Forget, we simply look through

all the constraints and the return all of the violated constraints. This oracle clearly

satisfies Property 4.1. We solve the dual version of the problem using Project and

Forget (PF), Mosek, and CPLEX and the primal version of the problem using

Mosek, CPLEX, LBFGSB, and projected gradient descent (PGD).

Results. Table 4.5 shows that Project and Forget can be used to solve the

problem for much larger values of n. Additionally, for the smaller values of n, we

see that Project and Forget is competitive in terms of solve time. One thing to

note from Table 4.6 is that the difference between the Primal objective and the Dual

objective for Project and Forget is smaller than 1e− 7; however, for Mosek, and

CPLEX this is not the case. Thus, while both have similar levels of feasibility error,

we see that our solver is still more “converged” since the primal dual gap is smaller.

4.6.2 Information Theoretic Metric Learning

The next problem we consider is metric learning. There are many different versions

of this problem (see Bellet et al. (2013b); Suárez Díaz et al. (2018) for surveys on

108

Algorithm 501 1001 5001 10001 20001

PF 12 151 1972 5909 21665
LBFGSB 24 162 4080 Out of memory.
Mosek dual 56 328 1927 Out of memory.
Mosek primal 5 Out of memory.
CPLEX primal 105 Out of memory.
CPLEX dual Out of memory.

PGD Did not converge.

Table 4.5: Time taken in seconds to solve the quadratic regularized optimal transport
problem. All experiments were run on a machine with 52 GB of RAM.

the topic). We focus on a specific instantiation, information theoretic metric learning

(ITML) from Davis et al. (2007). This formulation allows us to demonstrate the wide

range of objective functions that our method can handle.

Given two sets S,D that represent the sets of similar and dissimilar points, we

learn the co-variance matrixM of a Gaussian distribution p(x;M). The metric learned

is then the Mahalanobis metric associated with M . Concretely, the problem is as

follows:
minimize KL

(
p(x;M)‖p(x; I)

)
subject to dA(xi, xj) ≤ u (i, j) ∈ S

dA(xi, xj) ≥ l. (i, j) ∈ D.

(4.16)

Davis et al. (2007) suggest solving this problem by sampling a small subset of the

constraints and then using Bregman’s cyclic method. However, since our method is

solves the problem with the large number of constraints, when we compare against the

method from Davis et al. (2007), we can no longer compare in terms of convergence

statistics or time taken to solve the problem. Hence, as the method from Davis et al.

(2007) is also based on Bregman projections, we limit both algorithms to the same

number of projections. Then, we compare the algorithms on the quality of the solution;

that is, the testing accuracy based on the metrics learned.

For each data set, we uniformly at random choose 80% of the data points to be

109

Objective Feasibility Error

Solver Dual Primal Dual Primal

n = 501

Project and Forget 3.8416077 3.8416077 1.7e-09 0
Mosek Dual 3.8414023 3.8414023 3.8e-08 2.8e-10
LBFGSB n/a 3.8416114 n/a 0

Mosek Primal 3.8303160 3.8303203 3.5e-8 2.2e-11
CPLEX Primal 3.8416376 3.8416076 8.44e-07 1.13e-04
CPLEX Dual Ran out of memory

n = 1001

Project and Forget 1.947532046 1.947532046 2.0e-8 0
Mosek Dual 1.947091229 1.947091203 2.7e-08 8.4e-11
LBFGSB n/a 1.947548404 n/a 0

Mosek Primal Ran out of memory
CPLEX Primal Ran out of memory
CPLEX Dual Ran out of memory

n = 5001

Project and Forget 3.946556152e-01 3.946556154e-01 2e-08 0
Mosek Dual 3.880175376e-01 3.880175255e-01 1.2e-08 7.4e-11
LBFGSB n/a 3.947709104e-01 n/a 0

Mosek Primal Ran out of memory
CPLEX Primal Ran out of memory
CPLEX Dual Ran out of memory

n = 10001

Project and Forget 0.197687348 0.197687348 2.0e-8 0
Mosek Dual Ran out of memory
LBFGSB Ran out of memory

Mosek Primal Ran out of memory
CPLEX Primal Ran out of memory
CPLEX Dual Ran out of memory

n = 20001

Project and Forget 0.0989355070 0.0989355070 2.0e-8 0
Mosek Dual Ran out of memory
LBFGSB Ran out of memory

Mosek Primal Ran out of memory
CPLEX Primal Ran out of memory
CPLEX Dual Ran out of memory

Table 4.6: Table showing the convergence details for the various solvers.

110

the training set and the remaining to be the test set. We then let the similar pairs

S be those pairs that have the same label and the dissimilar pairs D be all of the

other pairs. For the algorithm from Davis et al. (2007), as suggested in the paper, we

randomly sampled 20c2 constraints, where c is the number of different classes and run

the algorithm so that it performes approximately 106 projections. We implement the

algorithm in Julia. Project and Forget returns 50c2 uniformly sampled similarity

constraints and 50c2 uniformly random dissimilarity constraints and runs until we

perform approximately 106 projections.

The hyper-parameters were set as follows: γ = 1, u = 1, l = 10. The pseudo-code

for our algorithm can be seen in Algorithm 14. The classification is done using the k

nearest neighbor classifier, with k = 5.

Algorithm 14 Pseudo-code for the Project and Forget algorithm for ITML.
1: function PFITML(X,C, γ, u, l, S,D)
2: λ0 = 0, Ξij = u for (i, j) ∈ S and Ξij = l for (i, j) ∈ D. Initialize C = I.
3: while Not done 1e7 projections do
4: Randomly sample 50c2 (i, j) from S and 50c2 from D
5: Do projection for these constraints.
6: Project onto all remembered constraints.

return C
7: function Projection(X, i, j, S,D, u, l,Ξ, λ, C)
8: p = distC(Xi, Xj)
9: δ = 1 if (i, j) ∈ S and δ = −1 if (i, j) ∈ D
10: α = min

(
λij,

δ
2

(
1
p
− γ

Ξij

))
11: β = δα

1−δαp
12: Ξij = γ Ξij

γ+δαΞij

13: λij = λij − α
14: C = C + βC(xi − xj)(xi − xjj)TCT

As shown in Table 4.7, our algorithm results in, for the most part, better test

accuracy. The test accuracy is significantly better for the Ionosphere data set. This is

the smallest of the data sets, from which we conclude that if Project and Forget

can solve the entire problem, instead of the approximation from Davis et al. (2007),

we get a performance boost. As the size of the problem gets larger, since we have

111

Dataset |S| |D| Project and Forget ITML
Test Accuracy #Projections Test Accuracy #Projections

Banana 4.5e6 4.5e6 89.6% 1.003e6 89.8% 1e6
Ionsphere 2.1e4 1.8e4 88.3% 1.007e6 83.7% 1e6
Coil2000 2.7e7 3.5e6 93.3% 1.02e6 93.2% 1e6
Letter 4.9e6 1.2e8 90.0% 1.08e6 92.6% 1.0004e6

Penbased 3.9e6 3.5e7 98.5% 1.08e6 98.2% 1e6
Spambase 3.5e6 3.2e6 92.5% 1.01e6 90.7% 1e6
Texture 8.8e5 8.8e6 99.8% 1e6 98.7% 1.002e6

Table 4.7: Table comparing the testing accuracy of Project and Forget and
ITML. Numbers are averaged over 5 trials.

limited the number of projections, our algorithm has not converged as much. On the

other hand, since the size of the problem for Davis et al. (2007) does not depend on

the size of S and D, its convergence does not change.

4.6.3 Support Vector Machines

Finally, to show the usefulness of the truly stochastic variant, we use our algorithm

to train L2 SVMs. Given training data x1, . . . , xn, a feature map φ, and labels

y1, . . . , yn ∈ {−1, 1}, we want to learn a vector w and slack variables ξi such that

minimize 1
2
w̃Tw + C

2

∑
i ξ

2
i

subject to yi(w
Tφ(xi)) ≥ 1− ξi ∀ i = 1, . . . n

ξi ≥ 0, i = 1, ..., n.

Here we use an L2 penalty for the slack variables instead of the usual L1 penalty.

Tang (2013) provides insights into when using an L2 penalty would provide better

results.

Joachims et al. (2009) is an cutting plane based method to train L2 SVMs. However,

in contrast with Joachims et al. (2009), we do not need to use an oracle that finds the

maximum violated constraint. Instead, we used the truly stochastic variant of our

112

algorithm. Hence, instead of searching through our data points to find large violations,

we pick a subset of data points uniformly at random and project onto the constraints

defined by these data points.

implementation Details. We used the LIBLINEAR implementation that is

available online. We interfaced with LIBLINEAR using an interface written in Julia.

The implementation for our algorithm follows the pseudo-code presented in algorithm

15.

Algorithm 15 Pseudo-code for the implementation training an SVM.
1: z0, w0 = 0. n is the number of training samples
2: for iter = 1, . . . ,MaxIters do
3: for i = 1, . . . , n do
4: xj = random data point
5: Project w onto the constraint defined by xj.

return w

Data. We generated the data matrix X as follows. Each entry Xij was sampled

from N (0, K2). We then sampled the coordinates of H from N (0, 1) and used H to

label all the points in X. We then added noise so that H did not correctly separate

the data. This noise was also sampled from N (0, 1). We generate data in this manner

because a standard pre-processing step is to normalize features (i.e., transform the

data so that each feature has mean zero and variance one).

We used K = 1, 2 and 5 to generate our data set. The different values for K gave

us the different values of s that we report in table 4.8.

Convergence criterion. We considered a few different convergence criteria, but

settled upon running the algorithm for 100 projections since whenever we train an

SVM, we have a validation set. This number of projections becomes a hyperparamter

in the model and, we found experimentally that increasing the number of projections

(unless increasing it by several orders of magnitude) beyond 100 did not increase the

validation accuracy.

113

4.6.3.1 Results

Table 4.8 gives us the results for the experiment. In this experiment, we are not

checking for convergence, but demonstrating a possible use case of the truly stochastic

variant of our algorithm. Because of the way in which we have generated data, it is

easy to see that we have good test accuracy only if the current separating hyper-plane

is roughly similar to the optimal one. We also see that this method has roughly

similar performance to the LibLinear dual solver. However, the primal solver from

Liblinear has the best testing accuracy. Thus, we see that the truly stochastic

version of the algorithm can potentially be used to get reasonable results quickly.

Parameters Time Test Acc.

n d s C Ours Liblinear Ours Liblinear
Dual Primal Dual Primal

1,000,000 100 6.3% 103 1.33 s 547 s 9.87 s 94.7% 94.7% 96.8%
1,000,000 100 12.6% 103 1.38 s 1032 s 10.1 s 91.4% 90.2% 93.6%
1,000,000 100 29.5% 103 1.58 s 1532 s 8.32 s 78.4% 77.1% 85.2%

Table 4.8: Table comparing the testing accuracy and running times for the truly
stochastic variant of or algorithm against LibLinear for binary classification using
an L2 SVM.

4.7 Conclusion and Future work

In conclusion, in this paper, we present a new algorithm Project and Forget

that can be used to solve highly constrained convex optimization problems. We show

that under some general assumptions, our method has a linear rate of convergence.

Additionally, we demonstrate that our method returns both the dual and primal

solutions.

The main type of problems we are interested in solving are metric constrained

problems. We show that standard solvers cannot solve metric constrained problems

at even moderate scales. We then demonstrate that Project and Forget can

114

solve the problem at large scales. We do this by solving larger instances of the metric

nearness and correlation clustering problems.

We also demonstrate the generality of the method. First, we show that a variety of

objective functions can be used with our methods, as demonstrated by the information

theoretic metric learning experiment. We also demonstrate the role of sparsity and

how it helps our method using the optimal transport experiment.

For future work, we hope that our method inspires a new way of learning metrics

on data sets. Earlier researchers were either restricted to learning embeddings and

then extracting a metric from those embeddings. However, using our method, we

can now learn a much wider variety of metrics. We also hope that once we can learn

optimal metrics on data, these optimal metrics then suggest the types of spaces the

data should be embedded into, rather than users picking the space in which to embed

in an ad hoc fasion. We also hope to adapt the general convex constraint version to

solve highly constrained semi-definite programs.

4.8 Proofs

4.8.1 Proof of part 1 of Theorem 4.16 for oracles that satisfy property

4.1

We remind the reader of the notation established in Section 4.2. The vector of

variables over which we optimize is x, f is the objective function, Hi = {y : 〈y, ai〉 = bi}

are the hyper-planes that lie on the boundaries of the half-space constraints, L(x, z)

is the Lagrangian, z is the dual variable, A is the matrix with rows given by ai, and b

is the vector with rows bi.

Next, we clarify the indexing of the variables. Algorithm 7 has three steps per

iteration and during the Project step there are multiple projections. When we want

to refer to a variable after the νth iteration, it will have a superscript with a ν. When

115

we refer to a variable after the nth, ith, kth projection, we use the superscript n,i,k.

Finally, before the nth projection, i(n) will represent the index of the hyper-plane

onto which we project.

Finally, let R be the maximum number of constraints that our oracle Q returns.

This is clearly upper bounded by the total number of constraints, which we have

assumed is finite. We are now ready to prove the first part of Theorem 4.16.

Theorem 4.16. (Part 1) If f ∈ B(S), Hi are strongly zone consistent with respect to

f , ∃x0 ∈ S, such that ∇f(x0) = 0, and the oracle Q satisfies property 4.1, then any

sequence xn produced by Algorithm 7 converges to optimal solution of problem 4.2.

Proof. The proof of this theorem is an adaptation of the proof of convergence for the

traditional Bregman method that is presented in Censor and Zenios (1997) whose

proof entails the following four steps. The main difference between Censor and Zenios’

proof and ours is that of the last two steps. We present the entire proof, however, for

completeness. To that end, we show the following.

• Step 1. The KKT condition, ∇f(x) = ∇f(x0)− AT z, is always maintained.

• Step 2. The sequence xn is bounded and it has at least one accumulation point.

• Step 3. Any accumulation point of xn is feasible (i.e., is in C).

• Step 4. Any accumulation point is the optimal solution.

Step 1. The KKT condition, ∇f(x) = ∇f(x0)− AT z, is always maintained.

We show by induction that for all n, ∇f(xn) = −AT zn. In the base case, z = 0,

thus, ∇f(x0) = 0 = −AT z0. Assume the result holds for iteration n, then

116

∇f(xn+1) = ∇f(xn) + cnai(n)

= −AT zn + AT cnei(n)

= −AT (zn − cnei(n))

= −AT zn+1.

We know that cn ≤ zni(n); therefore, we maintain zn+1 ≥ 0 as well.

Step 2. The sequence xn is bounded and has an accumulation point.

To show that xn is a bounded, we first show that
(
L(xn, zn)

)
n
is a monotonically

increasing sequence bounded from above. This observation results from the following

string of equalities.

L(xn+1, zn+1)− L(xn, zn) = f(xn+1)− f(xn) + 〈zn+1, Axn+1 − b〉 − 〈zn, Axn − b〉

= f(xn+1)− f(xn) + 〈AT zn+1, xn+1〉 − 〈AT zn, xn〉 − 〈zn+1 − zn, b〉

= f(xn+1)− f(xn)− 〈∇f(xn+1), xn+1〉〈∇f(xn), xn〉+ 〈cnei(n), b〉

= f(xn+1)− f(xn)− 〈∇f(xn) + cnai(n), x
n+1〉+ 〈∇f(xn), xn〉+ cnbi(n)

= f(xn+1)− f(xn)− 〈∇f(xn), xn+1 − xn〉 − 〈cnai(n), xn+1〉+ cnbi(n)

= Df (x
n+1, xn)︸ ︷︷ ︸
(1)

+ cn(bi(n) − 〈ai(n), xn+1〉)︸ ︷︷ ︸
(2)

.

Next, we show that both terms (1) and (2) are non-negative. We know that Df

is always non-negative so we only need to consider term (2). There are two cases:

(i) if cn = θn, then xn+1 ∈ Hi(n) and bi(n) − 〈ai(n), x
n+1〉 = 0. On the other hand,

(ii) if cn = zni(n), then bi(n) − 〈ai(n), x
n+1〉 ≥ 0 and cn ≥ 0. We can conclude that the

difference between successive terms of L(xn, zn) is always non-negative and, hence, it

is an increasing sequence.

117

To bound the sequence, let y be a feasible point (i.e., Ay ≤ b). (Note that this is

the only place we use the assumption that the feasible set is not empty.) Then

Df (y, x
n) = f(y)− f(xn)− 〈∇f(xn), y − xn〉

= f(y)− f(xn) + 〈zn, Ay − Axn〉

≤ f(y)− f(xn) + 〈zn, b− Axn〉.

Rearranging terms in the inequality, we obtain a bound on the sequence L(xnzn) from

above:

L(xn, zn) = f(xn) + 〈zn, Axn − b〉

≤ f(y)−Df (y, x
n)

≤ f(y).

Since the sequence (L(xn, zn))n∈N is increasing and bounded, it is a convergent

sequence and the difference between successive terms of the sequence goes to 0.

Therefore,

lim
n→∞

Df (x
n+1, xn) = 0.

From the previous inequality we also have that

Df (y, x
n) ≤ f(y)− L(xn, zn) ≤ f(y)− L(x0, z0) =: α.

Using part (ii) of the definition of a Bregman function, we see that Lf2(y, α) is bounded

and since (xn)n∈N ∈ Lf2(y, α), xn is an infinite bounded sequence. Thus, has an

accumulation point.

Step 3. Any accumulation point x∗ of xn is feasible (i.e., is in C).

This is the only step in which we use the fact that our oracle satisfies property 4.1.

118

Let x∗ be some accumulation point for xn and assume for the sake of contradiction

that Ax∗ 6≤ b. Let Ã, b̃ be the maximal set of constraints that x∗ does satisfy; i.e.,

Ãx∗ ≤ b̃.

Let (xnk) be a sub-sequence such that xnk → x∗ and H be a constraint that x∗ violates.

Define ε as

ε := φ(d(x∗, H)) > 0. (4.17)

Because xn is bounded, xnk is a convergent sub-sequence xnk → x∗, andDf (xn+1, xn)→

0, by Equation 6.48 from Censor and Zenios (1997) we see that for any t,

xnk+t → x∗.

In particular, the proposition holds for all t ≤ 2|Ã|+ 2 =: T .

Let us consider an augmented sub-sequence xnk , xnk+1, . . . , xnk+T , i.e., add in extra

terms. Note that if nk+1 − nk →∞, then this augmented sequence is not the entire

sequence. We want to show that infinitely many of the terms in our augmented

sequence satisfy a constraint not in Ã. Should this hold, then because we have only

finitely many constraints, there exists at least one single constraint ã that is not in

Ã, such that infinitely many terms of the augmented sequence all satisfy the single

constraint ã. Finally, because our augmented sequence converges to x∗ and we are

only looking at closed constraints, we must have that x∗ also satisfies the constraint ã.

Thus, we would arrive at a contradiction of the maximality of Ã and x∗ would have

to be in the feasible region.

To see that infinitely many of the terms in our augmented sequence satisfy a

constraint not in Ã, let νk be the iteration in which the nkth projection takes place.

Note that we can assume without loss of generality that in any iteration, we project

119

onto any constraint at most once. If this were not the case and we projected onto

constraints more often, we would simply change the value of T to reflect this larger

number of projections. Therefore, we have two possibilities for which iteration the

nk + |Ã|+ 1st projection takes place and we consider each case below.

Case 1: The nk+|Ã|+1st projection, infinitely often, takes places in νkth iteration.

Since we project onto each constraint at most once, one of the projections between the

nk and nk + |Ã|+ 1st projection must be onto a hyper-plane defined by a constraint

not represented in Ã and amongst the terms xnk , xnk+1, . . . , xnk+|Ã|+1, we must have a

term that satisfies a constraint not in Ã infinitely often.

Case 2: The nk + |Ã| + 1st projection, infinitely often, takes place in νk + 1st

iteration or later.

If this projection happens in νk + 1st iteration, consider the iteration in which we

do the nk + T th projection. If this projection also takes place in the νk + 1st iteration,

then we have done at least |Ã|+1 projections in the νk+1st iteration. Hence, amongst

xnk+|Ã|+1, . . . , xnk+T , we must have a term that satisfies a constraint not in Ã.

If the nk + |Ã|+ 1st or the nk + T th projection happens in the νk + 2nd iteration

or later, then between the nkth and the nk + T th projection, we must have projected

onto all constraints returned by oracle in the νk + 1st iteration. Therefore, we must

have projected onto some hyper-plane defined by ânk (for some constraint Ĉnk) such

that

d̂nk := d(xνk+1, Ĉnk) ≥ φ(d(xνk+1, C)).

Then there exists a sufficiently small δ > 0, depending on Ã, b̃, x∗, such that if

‖y − x∗‖ ≤ δ, then

Ãy ≤ b̃+
ε

2
1,

where 1 is vector of all ones.

Since our augmented sequence converges to x∗, we know that there exists a K,

120

such that for all k ≥ K and t ≤ T , ‖xnk+t − x∗‖ < δ. That is, for all k ≥ K and

t ≤ T ,

Ãxnk+t ≤ b̃+
ε

2
1. (4.18)

Note xνk+1 is within our augmented sequence so if â is infinitely often in Ã, by

equation 4.18, we have that infinitely often

ε

2
≥ d̂nk .

Finally, because the augmented sequence converges to x∗,

ε = φ(d(x∗, H))

≤ φ(d(x∗, C))

= lim
k→∞

φ(d(xνk+1, C))

≤ lim
k→∞

d̂nk

≤ ε

2
.

The first inequality follows from the fact that φ is non-decreasing. Thus , we have a con-

tradiction. Therefore, ânk is not in Ã infinitely often and amongst xnk , xnk+1, . . . , xnk+T ,

we must have a term that satisfies a constraint not in Ã infinitely often. Thus, there is

a constraint ã not in Ã that is satisfied by infinitely terms of our augmented sequence

and we have a contradiction.

Step 4. Optimality of accumulation point.

Because we have established the feasibility of all accumulation points, we show

next that any accumulation point xnk → x∗ is optimal.

First, we show that there exists an N , such that for any k ≥ N , and for any ai

such that

〈ai, x∗〉 < bi,

121

we have znki = 0. To do so, we assume for the sake of contradiction that for some

ai, our sequence znki is infinitely often not 0. The algorithm then projects onto this

constraint infinitely often. Therefore, the point xnk lies on the hyper-plane defined by

ai, bi infinitely often. Thus, the limit point x∗ must lie on this hyper-plane as well and

we have a contradiction.

Now we know that for any constraint ai, we either have that 〈ai, x∗〉 = bi or we

have that znki = 0 for the tail of the sequence. Thus, for sufficiently large k,

〈znk , Axnk − b〉 = 〈AT znk , xnk − x∗〉

= 〈−∇f(xnk), xnk − x∗〉

= Df (x
∗, xnk)− f(x∗) + f(xnk).

Next, by part (iii) of the definition of a Bregman function,

lim
k→∞

Df (x
∗, xnk) = 0.

Finally,

lim
k→∞

L(xk, zk) = lim
k→∞

f(xnk) + 〈znk , Axnk − b〉 = f(x∗).

We also know that L(xk, zk) ≤ f(y) for any feasible y. Thus, f(x∗) ≤ f(y). Hence x∗

is an optimal solution. Now since f is strictly convex, this optimal point is unique.

Therefore, we have that (xn)n∈N has only one accumulation point and xn → x∗.

An important fact consequence of this proof is the following proposition:

Proposition 4.17. If ai is an inactive constraint, then there exists a N , such that

for all n ≥ N , we have that zni = 0. That is, after some finite time, we never project

onto inactive constraints ever again.

122

4.8.2 Proof of part 1 of Theorem 4.16 for oracles that satisfy property

4.2

In this subsection, we prove part 1 of Theorem 4.16 for oracles that satisfy property

4.2. We make note of the key ideas in this proof as they are useful in the proof of the

truly stochastic variant. To be precise, we prove:

Theorem 4.16. (Part 1) If f ∈ B(S), Hi are strongly zone consistent with respect to

f , ∃x0 ∈ S, such that ∇f(x0) = 0, and the oracle Q satisfies property 4.2, then with

probability 1, any sequence xn produced by Algorithm 7 converges to optimal solution

of problem 4.2.

Proof. Assume that we have an oracle that satisfies property 4.2. A careful reading

of the previous proof shows that if we switch out an oracle with property 4.1 for an

oracle with property 4.2, then we only need to adjust step 3 of our proof. The crucial

part of that step was showing that for our augmented sequence, we had infinitely

many terms that satisfied a constraint not in Ã. We make the following adjustments

to our analysis.

Let νk be the iteration in which the nkth projection takes place. In the previous

proof, we used the property of the oracle only when the nk +T th projection took place

in the νk + 2nd iteration or a later iteration. In this case, the augmented sequence

encompasses all of the νk + 1st iteration infinitely often.

Let us choose a constraint â that is not satisfied by x∗. Because the oracle satisfies

property 4.2, for each iteration νk + 1, our oracle returns â with probability at least

τ > 0. By the Borel Cantelli Lemma, we know that during the selected iterations, the

constraint â is, with probability one, is returned infinitely often by our oracle. Thus,

our augmented sequence satisfies this constraint with probability 1 and x∗ lies in the

feasible region with probability 1.

A direct consequence of this proof is the proof of the probabilistic version of

123

Proposition 4.17.

Proposition 4.17. With probability 1, we project onto inactive constraints a finite

number of times.

4.8.3 Proof of part 2 of Theorem 4.16

The discussions in Iusem and De Pierro (1990); Iusem (1991) almost directly apply

to that for our algorithm. For completeness, we present it along with the necessary

modifications. As with the traditional Bregman algorithm, we first present the case

when f(x) is quadratic. That is,

f(x) = r + sT · x+
1

2
xTHx,

where H is a positive definite matrix. In this case, it is easy to see that

Df (x, y) = ‖x− y‖2
H := (x− y)TH(x− y).

4.8.3.1 Proof of part 2 of Theorem 4.16—Quadratic Case

In this section, we will prove the following variation of Theorem 4.16.

Theorem 4.16. If f is a strictly convex quadratic function, Hi are strongly zone

consistent with respect to f , x0 = H−1s ∈ S, and the oracle Q satisfies either property

4.1 or 4.2, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ, (4.6)

where ‖y‖2
H = yTHy. In the case when we have an oracle that satisfies property 4.2,

the limit in 4.6 holds with probability 1.

We establish some notation ahead of our lemmas. Let I be the set of all active

124

constraints. That is, if x∗ is the optimal solution then

I = {i : 〈ai, x∗〉 = bi}.

Let S be the set of all x that satisfy these constraints (namely S = {x : ∀i ∈

I, 〈ai, x〉 = bi}). Let Hx be the hyper-plane, such that Hx represents the constraint

in I that is furthest from x. Define

µ = inf
x 6∈S

d(x,Hx)

d(x, S)
.

By Iusem and De Pierro (1990), we know that µ > 0. Let U be the set of all optimal

dual variables z; i.e., U = {z : ∇f(x∗) = −AT z} and let Iν = {i : zν+1
i 6= 0}.

Next, we present a few preliminary lemmas. These lemmas exist in some form or

another in Iusem (1991); Iusem and De Pierro (1990) and we present them suitably

modified for our purpose. These lemmas require the following set of assumptions

about an iteration ν:

1. ∀i 6∈ I, zνi = 0;

2. for all i 6∈ I, we do not project onto this constraint in the νth iteration; and,

3. there exists z ∈ U , such that for all i 6∈ Iν , zi = 0.

Lemma 4.25. Let x∗ be the optimal solution for an instance of problem 4.2. For any

sequence xn → x∗ such that xn, zn maintain the KKT conditions, there exists an M ,

such that for all ν ≥ M , there exists a z ∈ U , such that for all i 6∈ Iν , we have that

zi = 0.

Proof. Let Vν = {z : ∀i 6∈ Iν , zi = 0}. Then assume, for the sake of contradiction, that

the result is false. That is, there is a sequence νk such that Vνk ∩ U = ∅. Then since

there finitely many different Iν (hence finitely many Vν), we have that one of these

125

must occur infinitely often. Thus, by taking an appropriate sub-sequence, we assume,

without loss of generality, that Iνk are all equal. Let V = Vνk and obtain V ∩ U = ∅.

Since V is a closed subspace, U is a closed set, and V ∩ U = ∅, we must have that

d(V, U) > 0. But zνk+1 ∈ V and so

d(zνk+C , U) ≥ d(V, U) > 0.

Since xν → x∗ and we maintain the KKT conditions, we have that for any z ∈ U ,

AT zν = −∇f(xν)→ −∇f(x∗) = AT z.

Thus d(zν , U)→ 0 which is a contradiction.

Lemma 4.26. For any sequence xn → x∗, if for a given ν, we have that the sequence

satisfies assumptions (1) and (2), then

‖xν+1 − x∗‖2
Q ≤ ‖xν − x∗‖2

Q −
K∑
n=k

‖xn+1 − xn‖2
Q

where k and K are the indices of the first and last projection that take place in the

νth iteration.

Proof. This Lemma is simply a statement about Bregman projections and so its proof

requires no modification.

Before we proceed, we introduce additional notation. Let AIν , biν be the sub-matrix

of A, b with rows from Iν and

Sν = {x : AIνkx = bIνk}.

Lemma 4.27. For any sequence such that xn → x∗, if for a given ν, we have that it

satisfies assumptions (1), (2), and (3), then we have that ‖xν+1 − x∗‖Q = d(xν+1, Sν).

126

Proof. Consider the constrained problem

min
x∈Sν
‖xν+1 − x‖2

Q. (4.19)

Then sufficient conditions for a pair (x, zIν) to be optimal for this problem are

AIνx = bIν and x = xν+1 −Q−1ATIνzIν .

By Proposition 4.17, we see that since x∗ is solution to problem 4.2, we have that

AIνx
∗ = bIν . Then by assumptions and the manner in which we do projections, we

have that there exists z ∈ U , such that for all i 6∈ Iν , zi = 0 and

x∗ = xν+1 −Q−1AT (zν+1 − z).

Then since zν+1
i = 0 for all i 6∈ Iν , we have that

x∗ = xν+1 −Q−1ATIν (z
ν+1
Iν
− zIν).

Thus, x∗ is the optimal solution to 4.19.

Next for x 6∈ Sν , let Hν
x be the hyper-plane of that is furthest from x and define

µν = inf
x 6∈Sν

d(x,Hν
x)

d(x, Sν)
.

Now we are ready to prove the following theorem.

Theorem 4.28. Let x∗ is the optimal solution to problem 4.2. Then given ν that

satisfies assumptions (1), (2), and (3), we have that

‖xν+1 − x∗‖2
Q ≤

L

L+ µ2
‖xν − x∗‖2

Q

127

where L is the number of projections that happened in νth iteration.

Proof. By Lemma 4.27, for any such ν we have that xν+1 6∈ Sν (or we have converged

already). Suppose constraint j ∈ Iν defines the hyper-plane Hν
xν+1 . Then by Lemma

4.27 and definitions of µν , µ we have the following inequality.

‖xν+1 − x∗‖ = d(xν+1, Sν)

≤ 1

µν
d(xν+1, Hν

xν+1)

≤ 1

µ
d(xν+1, Hν

xν+1).

Now since Iν = {i : zν+1
i 6= 0}, we know that during the νth iteration we must have

projected onto Hν
xν+1 . Note that this is the only place in the proof where we need the

fact that we remember old constraints. Let us say that this happens during the rth

projection of the νth iteration.

Note by assumption, we satisfy the assumptions of Lemma 4.26. Let yr, yν+1 be

the projections of xr, xν+1 onto Hν
xν+1 . Then we see that

128

d(xν+1, Hν
xν+1)2 = ‖yν+1 − xν+1‖2

Q

≤ ‖yr − xν+1‖2
Q

≤

(
‖yr − xr+1‖Q +

L∑
i=r+1

‖xi − xi+1‖Q

)2

=

(
L∑

i=r+1

‖xi − xi+1‖Q

)2

≤

(
L∑
i=0

‖xi − xi+1‖Q

)2

≤ L
L∑
i=0

‖xi − xi+1‖2
Q

≤ L
(
‖xν − x∗‖2

Q − ‖xν+1 − x∗‖2
Q

)
.

Thus, we get that

µ2‖xν+1x∗‖2 ≤ d(xν+1, Hν
xν+1)2

≤ L
(
‖xν − x∗‖2 − ‖xν+1 − x∗‖2

Q

)
.

Rearranging, we get that

‖xν+1 − x∗‖2
Q ≤

L

L+ µ2
‖xν − x∗‖2

Q.

As a corollary to the above theorem, we have that algorithm 1 converges linearly.

Theorem 4.16. 2) If f is a strictly convex quadratic function, Hi are strongly zone

consistent with respect to f , x0 = H−1s ∈ S, and the oracle Q satisfies either property

129

4.1 or 4.2, then there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ (4.6)

where ‖y‖2
H = yTHy. In the case when we have an oracle that satisfies property 4.2,

the limit in 4.6 holds with probability 1.

Proof. Using Proposition 4.17, Lemma 4.25, and that we have finitely many constraints,

we see that if ν is large enough, the assumptions for Theorem 4.28 are satisfied. Taking

the limit gives us the needed result.

In the case when we have an oracle that satisfies property 4.2, consider the product

space of all possible sequences of hyper-planes returned by our oracle. In this product

space, we see that with probability 1, we generate a sequence of hyper-planes, such that

algorithm 7 converges. For any such sequence of hyper-planes, we have that 4.6 holds.

Thus, the limit in 4.6 holds with probability 1 for random separation oracles.

4.8.3.2 Proof of part 2 of Theorem 4.16—General

The rate of convergence for the general Bregman method was established in Iusem

(1991). To show this, let f̃ be the 2nd degree Taylor polynomial of f centered at the

optimal solution x∗.

f̃(x) = f(x∗) +∇f(x∗)T · x+
1

2
xT · ∇2f(x∗) · x.

For notational convenience, let H be the Hessian of f at x∗. Then we can see that if

replace f with f̃ in 4.2 then the optimal solution does not change. Thus, if had access

to f̃ and could use this function to do our projections, then from the quadratic case

we have our result.

Thus, to get the general result, if xν is our standard iterate and x̃ν is the iterate

produced by using f̃ instead of f , then Iusem (1991) shows that ‖xν − x̃ν‖ is o(‖xν −

130

x∗‖H). Specifically, we can extract the following theorem from Iusem (1991).

Theorem 4.29. Iusem (1991) Let x∗ is the optimal solution for problem 4.2 and x̃n is

the sequence produced by using the same sequence of hyper-planes but with f̃ instead

of f . Given a sequence xn produced by Bregman projections, such that xn → x∗,

and for large enough ν we satisfy assumptions (1), (2), and (3), then ‖xν − x̃ν‖ is

o(‖xν − x∗‖H)

Using this we can get the general result as follows

‖xν+1 − x∗‖H ≤ ‖xν+1 − x̃ν+1‖H + ‖x̃ν+1 − x∗‖H

≤ ‖xν+1 − x̃ν+1‖H + ρ‖x̃ν − x∗‖H

≤ ‖xν+1 − x̃ν+1‖H + ρ‖x̃ν − xν‖H

+ ρ‖xν − x∗‖H .

Then diving by ‖xν+1 − x∗‖H , and using Theorem 4.29 to take the limit, we get

that there exists ρ ∈ (0, 1) such that

lim
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ. (4.6)

As with the quadratic case, we see that is an oracle satisfies property 4.2, then 4.6 holds

with probability 1. Thus, we have proved Theorem 4.16 in its complete generality.

4.8.4 Proof of Theorem 4.20

In this section we prove Theorem 4.20 in essentially the same manner as we did

for Theorem 4.16 and so we outline only what changes are necessary.

Theorem 4.20. If f ∈ B(S), the hyper-planes Hi are strongly zone consistent

with respect to f , and ∃x0 ∈ S such that ∇f(x0) = 0, then with probability 1 any

131

sequence xn produced by the algorithm converges to the optimal solution of problem

4.2. Furthermore, if x∗ is the optimal solution, f is twice differentiable at x∗, and the

Hessian H := Hf(x∗) is positive semi-definite, then there exists ρ ∈ (0, 1) such that

with probability 1,

lim inf
ν→∞

‖x∗ − xν+1‖H
‖x∗ − xν‖H

≤ ρ. (4.7)

To prove Theorem 4.20, we need to analyze only what goes wrong if the algorithm

“forgets” all of the old constraints. First, consider the proof in the case that we converge

to the optimal solution. Then, steps 1,2, and 3 are completely unaffected by forgetting

old constraints. The only step that is affected is step 4. In a previous proof, we argued

that if for some inactive constraint ai, zi is non-zero infinitely often, then we projected

onto this constraint infinitely often. In our present setting, we cannot conclude this

directly as zνi > 0 does not imply that we remember ai on the νth iteration. However,

due to property 4.2, we know that Q returns ai with probability at least τ . Thus,

again using the Borel Cantelli Lemmas, we see that we have ai infinitely often and

this iteration converges to the optimal.

To prove the second part of the theorem, we recall from Theorem 4.29 that we only

need to analyze the case when f is a quadratic function. Indeed, the only place where

we used the fact that we remembered old constraints was in the proof of Theorem

4.28 in which we needed to remember old constraints to guarantee that during the

νth iteration we project onto the constraint ai that is furthest from xν among those

constraints for which zν+1
i > 0. We cannot guarantee that this happens always but we

can guarantee that it happens infinitely often.

Therefore, the conclusion of Theorem 4.28 holds infinitely often instead of for the

tail of the sequence and we replace the limit with a limit infimum to obtain the desired

result.

132

4.8.5 General Convex Proof

We will need the following facts from Bauschke and Lewis (2000b).

1. A convex function if Legendre if and only if its convex conjugate is Legendre. In

this case the gradient mapping

∇f : int(dom(f))→ int(domf ∗) : x 7→ ∇f(x)

is a topological isomorphism with inverse mapping (∇f)−1 = ∇f ∗.

2. Suppose f is Legendre on E and a S is a closed convex set in E with S ∩

int(dom(f)) 6= ∅. Suppose further y ∈ int(dom(f)). Then the Bregman

projection P f
S y of y onto S with respect to f is characterized by

P f
S y ∈ S ∩ int(dom(f)) and 〈∇f(y)−∇f(P f

S y), S − P f
S y〉 ≤ 0.

In addition, Df(P
f
S y, y) ≤ Df(s, y)−Df(s, P

f
S y) for all s ∈ S ∩ dom(f). Here

when we write 〈∇f(y) − ∇f(P f
S y), S − P f

S y〉 ≤ 0, we mean that 〈∇f(y) −

∇f(P f
S y), s− P f

S y〉 ≤ 0, is true for all s ∈ S.

3. Three point identity: Suppose f is Legendre on E. If x, y ∈ int(domf) and

b ∈ domf , then

Df (b, x) +Df (x, y)−Df (b, y) = 〈∇f(x)−∇f(y, x− b)〉.

4. Suppose f is a very strictly convex function on E. Then for every compact

convex subset K of int(domf), there exists reals 0 < θ and Θ < +∞ such that

for every x, y ∈ K we have that

Df (x, y) ≥ θ‖x− y‖2 and ‖∇f(x)−∇f(y)‖ ≤ Θ‖x− y‖.

133

On the nth iteration we projection onto the constraint given by i(n). Thus, we

have that

xn ∈ Ci(n) ∩ dom(f). (4.20)

Then since f is Legendre, using Facts 1 and 2 with y = ∇f ∗(∇f(xn−1) + qp(n)),

S = Ci(n) and P f
S y = xn, we have that

〈∇f(xn−1) + qp(n) −∇f(xn), Ci(n) − xn〉 ≤ 0.

Then by definition of qn we have that

〈qn, xn − Ci(n)〉 ≥ 0. (4.21)

Then we can also see that

∇f(xn−1)−∇f(xn) = qn − qp(n). (4.22)

Then summing over this telescoping sum and the fact that the q are initialized to be 0

we get that

∇f(x0)−∇f(xn) =
∑
k∈C

qp(k,n). (4.23)

Here C stores the indices of all the constraints. To see why this is true, consider what

happens if we sum the terms for just one constraint set. If we see the right hand side

of Equation 4.22, then we see that only the q from the last time we projected onto

that set remains.

134

Let c ∈ int(domf). Then we need to prove the following crucial equality.

Df (c, x
n) = Df (c, x

n+1) +Df (x
n+1, xn)− 〈∇f(xn+1)−∇f(xn), xn+1 − c〉 [Fact 3]

= Df (c, x
n+1) +Df (x

n+1, xn) + 〈q(n+1) − qp(n+1), xn+1 − c〉 [Eq 4.22]

= Df (c, x
n+1) +Df (x

n+1, xn) + 〈qn+1, xn+1 − c〉 − 〈qp(n+1), xn+1 − c〉

= Df (c, x
n+1) +Df (x

n+1, xn) + 〈qn+1, xn+1 − c〉

− 〈qp(n+1), xn+1 + xp(n+1) − xp(n+1) − c〉

= Df (c, x
n+1) +Df (x

n+1, xn) + 〈qn+1, xn+1 − c〉

− 〈qp(n+1), xn+1 − xp(n+1)〉+ 〈qp(n+1), xp(n+1) − c〉.

Using induction we can now prove that for c ∈ int(domf) and for every n ≥ 0 we

have that

Df (c, x
0) = Df (c, x

n)+
n∑
k=1

(
Df (x

k, xk−1) + 〈qp(k), xp(k) − xk〉
)
+
∑
k∈C

〈xp(k,n)−c, qp(k,n)〉.

Using Equation 4.21, we have that all the inner products on the right hand of the

above equation are non-negative. Since the Bregman distances are always non-negative,

every term on the right hand side in non-negative. Thus, if we take the limit as

n → ∞ of the equation we get that Df(c, x
n) is a convergence sequence. Thus, is

bounded. We also get that Sn =
∑n

k=1Df (xk, xk−1) is also a convergent sequence and

hence is bounded. Thus, we get that

lim
n→∞

Df (x
n, xn+1) = 0.

Then using the previous reasoning we see that xn is a bounded sequence and has

accumulation points. Furthermore by Bauschke and Lewis (2000b) we have that all

the accumulation points lie inside domf and we have that xk − xk−1 → 0.

135

Now using Equation 4.23 and adding and subtracting xp(k,n) from c− xn, we get

that

〈c−xn,∇f(x0)−∇f(xn)〉 =
∑
k∈C

〈c− xp(k,n), qp(k,n)〉︸ ︷︷ ︸
S1(n)

+
∑
k∈C

〈xp(k,n) − xn, qp(k,n)〉︸ ︷︷ ︸
S2(n)

. (4.24)

Using Equation 4.21, we see that S1(n) is non positive. Now we want to prove that

lim
n

∑
k∈C

|〈xp(k,n) − xn, qp(k,n)〉| ?
= 0. (4.25)

Let K := cl(conv({xn})). That is, K is the smallest closed convex set containing

the sequence {xn}. Then we have that

K = conv(cl(xn)) = conv({xn}∪{ cluster points of xn}) ⊆ conv(int(domf)) = int(domf).

The first equality comes from the fact that the cluster points of xn are exactly the

points needed to make the set {xn} closed. The second comes from the fact that the

clusters points xn are in the interior of the domain of f . As we previously showed.

Finally, since we assumed that the domain of f is convex, we get the last equality.

Then, since f is very strictly convex and K is compact (we showed that the

sequence {xn} is bounded), we can use Fact 4 to see that there exists 0 < θ and

Θ < +∞, such that

Df (x
k, xk−1) ≥ θ‖xk − xk−1‖2 and ‖∇f(xk)−∇f(xk−1)‖ ≤ Θ‖xk − xk−1‖.

Then using the fact that
∑∞

k=1Df (x
k, xk−1) <∞ we have that

∞∑
k=1

‖xk − xk−1‖2 ≤ 1

θ

∞∑
k=1

Df (x
k, xk−1) <∞.

136

Now consider the following telescoping identity

qn = (qn − qp(n))− (qp(n) − qp(p(n)))− . . .− (qp
k(n) − qpk+1(n))− . . . 0.

Then, we get that

∑
k∈C

‖qp(k,n+1)‖ ≤
n∑
k=1

‖qk − qp(k)‖ =
n∑
k=1

‖∇f(xk)−∇f(xk−1)‖ ≤ Θ
n∑
k=1

‖xk − xk−1‖.

Now note that we only forget a constraint if qk = 0 and that in each iteration we

look at most 2M constraints (where M is number of constraints). Thus, if qp(k,n) 6= 0

then, we must have that p(k, n) ≥ n− 4M . That is, we either have projected onto

that constraint in the current iteration or if we haven’t projected onto that constraint

yet in the current iteration, we must have projected onto it in the previous iteration.

Thus, using the above we get that

∑
k∈C

|〈xp(k,n) − xn, qp(k,n)〉 ≤
∑
k∈C

‖xp(k,n) − xn‖‖qp(k,n)‖ (4.26)

≤
∑
k∈C

‖qp(k,n+1)‖
n∑

k=n−8M

‖xk − xk−1‖ (4.27)

≤ Θ
n∑
k=1

‖xk − xk−1‖
n∑

k=n−4M

‖xk − xk−1‖. (4.28)

Then using proposition 3.1 from Bauschke and Lewis (2000b) with the fact that∑∞
k=1 ‖xk − xk−1‖2 < ∞ we get that the limit of the right hand side is 0. Thus,

Equation 4.25 is true. Now looking at Equation 4.25 again we see that there exists a

subsequence kn such that

∑
k∈C

|〈xp(k,kn) − xkn , qp(k,kn)〉| → 0 and 0 ≥ lim sup
n
〈c− xkn ,∇f(x0)−∇f(xkn)〉.

137

Let x∗ be the accumulation point for this convergent subsequence (we may need to

pass to another subsequence). Now we want to show that x∗ is feasible.

Assume for the sake of contradiction that x∗ is not feasible. Let C̃ be the set of

constraint sets that x∗ belongs to, i.e., the set of constraints x∗ satisfies. Recall that

C is the set of all constraints, and let

ε = φ

(
inf

Ĉ∈C∩C̃c
dist(x∗, Ĉ)

)
.

Let N be such that for all k ≥ N we have that ‖xnk−x∗‖ < ε/2. Then by Equation 6.48

from Censor and Zenios (1997), since xn is bounded, xnk → x∗, and D(xn+1, xn)→ 0

we have that for any t,

xnk+t → x∗.

Thus, in particular, we see that for all t ≤ 2|C̃|+ 2M + 1 =: T this is true.

Consider our augmented subsequence xnk , xnk+1, . . . , xnk+T (note if nk+1−nk →∞

then this is not all points in the sequence). We want to show that infinitely often

one of these values satisfies a constraint not in C̃. Then since we have finitely many

constraints, at least one constraint c̃ not in C̃ must be satisfied infinitely often by our

augmented sequence. Then since our augmented sequence converges to x∗ and we are

only looking at closed constraints, we must have x∗ satisfies this constraint. Which is

a contradiction. Thus, x∗ must be feasible.

Let k > N . Then we know that xnk is the variable that we get after the nkth

projection. Let’s assume that this happens in iteration νk. Note that in any iteration

we project onto any constraint at most twice, once if its in our list Cνk and once if its

in the list L returned by the oracle. Thus we have two possibilities for which iteration

the nk + 2|C̃|+ 1 projection takes place. Let us case on when that happens.

Case 1: If nk + 2|C̃|+ 1 takes places in νkth iteration infinitely often, then in case

since we project onto each constraint at most twice, by pigeonhole principle one of the

138

projections between nk and nk + 2|C̃|+ 1 must be onto a constraint not represented in

C̃. Thus, if we look amongst xnk , xnk+1, . . . , xnk+2|C̃|+1, we must have projected onto

a constraint not in C̃ infinitely often.

Case 2: If nk + 2|C̃| + 1 takes places in νk + 1th iteration infinitely often.

Then since our oracle returns at most M constraints, we must have that amongst

xnk , xnk+1, . . . , xnk+T we must have projected onto all of the constraints returned by

the oracle during step 1 of the νk + 1th iteration. Thus, we must have projected onto

some constraint ĉνk+1 such that distance of xν+1 to ĉνk+1 is at least φ(dνk+1) where

dνk+1 is the distance from xνk+1 to our feasible region C. Then, we have that

dist(xνk+1, ĉνk+1) ≥ φ(dνk+1) ≥ φ

(
inf

Ĉ∈C∩C̃c
dist(xνk+1, Ĉ)

)
.

Noting that xν+1 is within our augmented sequence and taking the limit, we get that

lim
k→∞

dist(xνk+1, ĉνk+1) ≥ ε.

Since, we have finitely many constraints, we may assume (by passing to a subsequence)

that all ĉνk+1 are equal to some constraint ĉ. Then, we have that

dist(x∗, ĉ) ≥ ε.

Thus, ĉ 6∈ C̃. However, we now project onto ĉ infinitely often. Hence x∗ must satisfy

the constraint ĉ. Hence we have a contradiction. Thus, x∗ is feasible.

Finally, we have that sinceDf (·, ·) is separately continuous, we have thatDf (c, xkn)→

Df (c, x∗) and Df (xkn , x0)→ Df (x∗, x0). Thus for an arbitrary feasible c we have that

139

〈c− x∗,∇f(x0)−∇f(x∗)〉 = Df (c, x
∗) +Df (x

∗, x0)−Df (c, x
0)

= lim
n
Df (c, x

kn) +Df (x
kn , x0)−Df (c, x

0)

= lim
n
〈c− xkn ,∇f(x0)−∇f(xkn)〉

≤ 0.

Then by Fact 3, we have that x∗ = P f
C(x0). Thus, all accumulation points are

optimal points. Thus, by strict convexity of f , we see that this is the unique solution.

Now to get the unique solution to constrained minimization problem we need to

initialize x0 such that ∇f(x0) = 0. This is because x∗ is the point that minimized

Df (x, x
0) = f(x)− f(x0)− 〈∇f(x0), x− x0〉.

Thus, if the last term is 0, then second term is a constant and we minimize the first

term which is what we want.

4.8.6 Convergence Rate for Quadratic Objective Function

Lemma 4.30. For any Ci such that x∗ ∈ int(Ci) we have that we only look at this

constraint finitely often.

Proof. Every time we look at a constraint we project onto its boundary. Thus, if we

project onto Ci infinitely often x∗ cannot be in the interior of Ci.

Let I be the set of all active constraints. That is if x∗ is the optimal solution then

I = {i : x∗ ∈ ∂Ci}

Let S be the set of all x that satisfy these constraints (namely S = {x : ∀i ∈ I, x ∈

140

Ci}). Let Bx be the boundary for a constraint in I furthest from x and define

µ = inf
x 6∈S

d(x,Bx)

d(x, S)
> 0

Let U be the set of all optimal duals q′s that is U = {(q1, . . . , qN) : ∇f(x0) −

∇f(x∗) =
∑

i qi} and let Iν = {i : qp(i,ν+1) 6= 0}.

Lemma 4.31. For any sequence xn → x∗ where x∗ is the optimal for an instance of

problem 4.3, and xn, qn maintain the KKT conditions then there exists an M ′ such

that for all ν ≥M” there exists a z ∈ U such that for all i 6∈ Iν we have that qi = 0

Proof. Let Vν = {(q1, . . . , q − N) : ∀i 6∈ Iν , qi = 0}. Then assume for the sake of

contradiction that the result is false. Thus, there is a sequence νk such that Vνk∩U = ∅.

Then since there finitely many different Iν (hence finitely many Vν) we have that one

of these must occur infinitely often. Thus, by taking an appropriate subsequence we

assume that without loss of generality that all Iνk are all equal. Thus, let V = Vνk .

Thus, we have that V ∩ U = ∅.

Then since V is a subspace (hence closed), U is a closed set, and they are disjoint,

we must have that d(V, U) > 0. But now (qp(1,νk+1), . . . , qp(N,νk+1)) ∈ V . Thus,

d((qp(1,νk+1), . . . , qp(N,νk+1)), U) ≥ d(V, U) > 0

By Theorem 4.21 we have that xν → x∗. Thus, for any (q1, . . . , qN) ∈ U ,

∑
i

qp(i,νk+1) = ∇f(x0)−∇f(xν)→ ∇f(x0)−∇f(x∗) =
∑
i

qi

Thus d((qp(1,νk+1), . . . , qp(N,νk+1)), U)→ 0 which is a contradiction

The rest of the proof is same as for Theorem 4.16. As before we get the following

corollaries.

141

Corollary 4.32. If we further have that there exists an x0 ∈ domf such that∇f(x0) =

0. Then we have that the Bregman projection of x0 onto C is the solution to Problem

4.3.

Remark 4.33. Similar to before while this gives linear convergence but ρ is very

close to one. As we will see later ρ ≤ F
F+1

where F is number of convex sets whose

boundary the optimal solution lies on that are seen by the algorithm.

Remark 4.34. Unlike in the linear case, our proof does not guarantee that a truly

stochastic version will converge to the optimal solution. Equation 4.27 does not hold

in this case.

142

CHAPTER V

Tree! I am no Tree! I am a Low Dimensional

Hyperbolic Embedding

5.1 Introduction

Extracting hierarchical information from data is a key step in understanding and

analyzing the structure of the data in a wide range of areas from the analysis of

single cell genomic data Klimovskaia et al. (2019), to linguistics Dhingra et al. (2018),

computer vision Khrulkov et al. (2019) and social network analysis Verbeek and Suri

(2016). In single cell genomics, for example, researchers want to understand the

developmental trajectory of cellular differentiation. To do so, they seek techniques to

visualize, to cluster, and to infer temporal properties of the developmental trajectory

of individual cells.

One way to capture the hierarchical structure is to represent the data as a tree.

Even simple trees, however, cannot be faithfully represented in low dimensional

Euclidean space Linial et al. (1995a). As a result, a variety of remarkably effective

hyperbolic representation learning methods, including Nickel and Kiela (2017, 2018b);

Sala et al. (2018), have been developed. These methods learn an embedding of the

data points in hyperbolic space by first solving a non-convex optimization problem and

then extracting the hyperbolic metric that corresponds to the distances between the

143

embedded points. These methods are successful because of the inherent connections

between hyperbolic spaces and trees. They do not, however, come with rigorous

geometric guarantees about the quality of the solution. Also, they are slow.

In this paper, we present a metric first approach to extracting hierarchical infor-

mation and learning hyperbolic representations. The important connection between

hyperbolic spaces and trees suggests that the correct approach to learning hyperbolic

representations is the metric first approach. That is, first, learn a tree that essentially

preserves the distances amongst the data points and then embed this tree into hy-

perbolic space.∗ More generally, the metric first approach to metric representation

learning is to build or to learn an appropriate metric first by constructing a discrete,

combinatorial object that corresponds to the distances and then extracting its low

dimensional representation rather than the other way around.

The quality of a hyperbolic representation is judged by the quality of the metric

obtained. That is, we say that we have a good quality representation if the hyperbolic

metric extracted from the hyperbolic representation is, in some way, faithful to

the original metric on the data points. We note that finding a tree metric that

approximates a metric is an important problem in its own right. Frequently, we

would like to solve metric problems such as transportation, communication, and

clustering on data sets. However, solving these problems with general metrics can

be computationally challenging and we would like to approximate these metrics by

simpler, tree metrics. This approach of approximating metrics via simpler metrics has

been extensively studied before. Examples include dimensionality reduction Johnson

and Lindenstrauss (1984) and approximating metrics by simple graph metrics Bartal

(1998); Peleg and Ullman (1989).

To this end, in this paper, we demonstrate that methods that learn a tree structure

first outperform methods that learn hyperbolic embeddings directly. Additionally, we
∗A similar idea is mentioned in Sala et al. (2018) for graph inputs rather than general metrics.

They do not, however undertake a detailed exploration of the idea.

144

have developed a novel, extremely fast algorithm TreeRep that takes as input a

δ-hyperbolic metric and learns a tree structure that approximates the original metric.

TreeRep is a new method that makes use of geometric insights obtained from the

input metric to infer the structure of the tree. To demonstrate the effectiveness of

our method, we compare TreeRep against previous methods such as Abraham et al.

(2007) and Saitou and Nei (1987) that also recover tree structures given a metric.

There is also significant literature on approximating graphs via (spanning) trees with

low stretch or distortion, where the algorithms take as input graphs, not metrics,

and output trees that are subgraphs of the original. We also compare against such

algorithms Alon et al. (1995); Chepoi et al. (2008); Elkin et al. (2005); Prim (1957).

We show that when we are given only a metric and not a graph, then even if we use

a nearest neighbor graph or treat the metric as a complete graph TreeRep is not

only faster, but produces better results than Abraham et al. (2007); Alon et al. (1995);

Bartal (1998); Chepoi et al. (2008); Prim (1957) and comparable results to Saitou

and Nei (1987).

For learning hyperbolic representations, we demonstrate that TreeRep is over

10,000 times faster than the optimization methods from Nickel and Kiela (2017,

2018b), and Sala et al. (2018) while producing better quality results in most cases.

This extreme decrease in time, with no loss in quality, is exciting as it allows us to

extract hierarchical information from much larger data sets in single-cell sequencing,

linguistics, and social network analysis - data sets for which such analysis was previously

unfeasible.

The rest of the paper is organized as follows. Section 5.2 contains the relevant

background information. Section 5.3 presents the geometric insights and the TreeRep

algorithm. In Section 5.4, we compare TreeRep against the methods from Abraham

et al. (2007); Alon et al. (1995); Chepoi et al. (2008); Prim (1957) and Saitou and Nei

(1987) in approximating metrics via tree metrics and against methods from Nickel and

145

Kiela (2017, 2018b) and Sala et al. (2018) for learning low dimensional hyperbolic

embedding. We show that the methods that learn a good tree to approximate the

metric, in general, find better hyperbolic representations than those that embed into

the hyperbolic manifold directly.

5.2 Preliminaries

The formal problem that our algorithm will solve is as follows†.

Problem 5.0.1. Given a metric d find a tree structure T such that the shortest path

metric on T approximates d.

Definition 5.1. Given a weighted graph G = (V,E,W) the shortest path metric dG

on V is defined as follows: ∀u, v ∈ V , dG(u, v) is the length of the shortest path from

u to v.

5.2.1 δ-Hyperbolic Metrics.

Gromov introduced the notion of δ-hyperbolic metrics as a generalization of the

type of metric obtained from negatively curved manifolds Gromov (1987).

Definition 5.2. Given a space (X, d), the Gromov product of x, y ∈ X with respect

to a base point w ∈ X is

(x, y)w :=
1

2
(d(w, x) + d(w, y)− d(x, y)) .

The Gromov product is a measure of how close w is to the geodesic g(x, y) connecting

x and y.
†Note that the input to our problem are metrics and not graphs. Thus, we handle more general

inputs as compared to Alon et al. (1995); Elkin et al. (2005); Chepoi et al. (2008), and Prim (1957).

146

Definition 5.3. A metric d on a space X is a δ-hyperbolic metric on X (for δ ≥ 0),

if for every w, x, y, z ∈ X we have that

(x, y)w ≥ min
(
(x, z)w, (y, z)w

)
− δ. (5.1)

In most cases we care about the smallest δ for which d is δ-hyperbolic.

An example of a δ-hyperbolic space is the hyperbolic manifold Hk with δ =

tanh−1
(

1/
√

2
)
Carnahan (2010).

Definition 5.4. The hyperboloid model Hk of the hyperbolic manifold is Hk = {x ∈

Rk+1 : x0 > 0, x2
0 −

k∑
i=1

x2
i = 1}.

An important case of hyperbolic metrics is when δ = 0. One important property

of such metrics is that they come tree spaces.

Definition 5.5. A metric d is a tree metric if there exists a weighted tree T such that

the shortest path metric dT on T is equal to d.‡

Definition 5.6. Given a discrete graph G = (V,E,W) the metric graph (X, d) is the

space obtained by letting X = E × [0, 1] such that for any (e, t1), (e, t2) ∈ X we have

that d((e, t1), (e, t2)) = W (e) · |t1 − t2|. This space is called a tree space if G is a tree.

Here E × {0, 1} are the nodes of G.

Definition 5.7. Given a metric space, (X, d), two points x, y ∈ X, and a continuous

function f : [0, 1] → X, such that f(0) = x, f(1) = y, and there is a λ such that

d(f(t1), f(t2)) = λ|t1 − t2|, the geodesic g(x, y) connecting x and y is the set f([0, 1]).

Definition 5.8. A metric space T is a tree space (or a R-tree) if any pair of its points

can be connected with a unique geodesic segment, and if the union of any two geodesic

segments g(x, y), g(y, z) ⊂ T having the only endpoint y in common, is the geodesic

segment g(x, z) ⊂ T .
‡Note, such metrics may have representations as graphs that are not trees, Section 5.3 has a

simple example.

147

There are multiple definitions of a tree space. However, they are all connected via

their metrics. Bermudo et al. (2013) tells us that a metric space is 0-hyperbolic if and

only if it is an R-tree or a tree space. This result lets us immediately conclude that

Definitions 5.6 and 5.8 are equivalent. Similarly, Definition 5.1 implies that Definition

5.5 and 5.6 are equivalent. Hence all three definitions of tree spaces are equivalent.

We note that trees are 0-hyperbolic, and that δ = ∞ corresponds to an arbitrary

metric. Thus, δ is a heuristic measure for how close a metric is to a tree metric.

5.2.2 Trees as Hyperbolic Representation.

The problem that is looked at by Sala et al. (2018); Nickel and Kiela (2017, 2018b)

is the problem of learning hyperbolic embeddings. That is, given a metric d, learn an

embedding X in some hyperbolic space Hk. We, however, are proposing that if we

want to learn a hyperbolic embedding, then we should instead learn a tree. In many

cases, we can think of this tree as the hyperbolic representation. However, if we do

want coordinates, this can be done as well.

Sala et al. (2018) give an algorithm that is a modification of the algorithm in Sarkar

(2012) that can, in linear time, embed any weighted tree into Hk with arbitrarily low

distortion (if scaling of the input metric is allowed). The analysis in Sala et al. (2018)

quantifies the trade-offs amongst the dimension k, the desired distortion, the scaling

factor and the number of bits required to represent the distances in Hk. We use these

results to consider trees as hyperbolic representations. One possible drawback of

this approach is that we may need a large number of bits of precision. Recent work,

however, such as Yu and De Sa (2019) provides a solution to this issue.

5.3 Tree Representation

To solve Problem 5.0.1 we present an algorithm TreeRep such that Theorem 5.9

holds.

148

(i) T̂ when πx =
z and (z, x)w =
(z, y)w < d(w, z).

(ii) T̂ when πx =
z and (z, x)w =
(z, y)w = d(w, z).

(iii) T̂ when (y, x)w =
(y, z)w = (x, z)w 6= 0

(iv) Universal Tree on
x, y, z.

Figure 5.1: Figures showing the tree T̂ from Lemma 5.13 for Zone2(z) (a), Zone1(z)
(b), Zone1(r) (c), and the Universal tree (d).

Theorem 5.9. Given (X, d), a δ-hyperbolic metric space, and n points x1, . . . , xn ∈ X,

TreeRep returns a tree (T, dT). In the case that δ = 0, dT = d, and T has the

fewest possible nodes. TreeRep has a worst case run time O(n2). Furthermore the

algorithm is embarrassingly parallelizable.

Remark 5.10. In practice, we see that the run time for TreeRep is much faster

than O(n2).

To better understand the geometric insights used to develop TreeRep, we first

focus on the problem of reconstructing the tree structure from a tree metric. Algorithm

16 and 17 present a high level version of the pseudo-code. The complete pseudo-code

for TreeRep is presented in Appendix B.8.

TreeRep is a recursive, divide and conquer algorithm. The first main idea

(Lemma 5.11) is that for any metric d on three points, we can construct a tree T

with four nodes such that dT = d. We will call such trees universal trees. The second

main idea (Lemma 5.13) is that adding a fourth point to a universal tree can be

done consistently and, more importantly, the additional point falls into one of seven

different zones. Thus, TreeRep will first create a universal tree T and then will sort

the remaining data points into the seven different zones. We will then do recursion

with each of the zones. Finally, we show in Lemma 5.15 that for each node we add in a

149

zone, the distances to all the other (non-universal) nodes in other zones are consistent,

so we simply have to maintain consistency amongst the points within each zone. That

is, it’s sufficient to maintain local distance consistency.

Lemma 5.11. Given a metric d on three points x, y, z, there exists a (weighted) tree

(T, dT) on four nodes x, y, z, r, such that r is adjacent to x, y, z, the edge weights are

given by dT (x, r) = (y, z)x, dT (y, r) = (x, z)y and dT (z, r) = (x, y)z, and the metric

dT on the tree agrees with d.

Definition 5.12. The tree constructed in Lemma 5.11 is the universal tree on the

three points x, y, z. The additional node r is known as a Steiner node.

An example of the universal tree can be seen in Figure 5.1iv. To understand the

distinction between the seven different zones, we need to reinterpret Equation 5.1. We

know that for any tree metric, and any four points w, x, y, z, we have that

(x, y)w ≥ min
(
(x, z)w, (y, z)w

)
.

This inequality implies that the smaller two of the three numbers (x, y)w, (x, z)w,

and (y, z)w are equal. In this case, knowing which of the quantities are equal tells

us the structure of the tree. Specifically, here x, y, z will be the three points in our

universal tree T and w will be the point that we want to sort. Then initially, we

have four possibilities. The first possibility is that all three Gromov products are

equal. This case will define its own zone. If this is not the case, then we have three

possibilities depending on which two out of the three Gromov products are equal.

Suppose we have that (x, y)w = (x, z)w, then due to the triangle inequality, we have

that d(w, x) ≥ (x, y)w. Thus, we will further subdivide this case into two more cases,

depending on whether d(w, x) = (x, y)w or d(w, x) > (x, y)w. Each of these cases will

define their own zone. Examples of the different cases can be seen in Figure 5.1. We

can also see that there are two different types of zones. The first type is when we

150

connect the new node directly to an existing node as seen in Figures 5.1ii and 5.1iii.

The second type is when we connect w to an edge as seen in Figure 5.1i. The formal

definitions for the zones can be seen in Definition 5.14.

Lemma 5.13. Let (X, d) be a tree space. Let w, x, y, z be four points in X and let

(T, dT) be the universal tree on x, y, z with node r as the Steiner node. Then we can

extend (T, dT) to (T̂ , dT̂) to include w such that dT̂ = d.

Definition 5.14. Given a data set V (consisting of data points, along with the

distances amongst the points), a universal tree T on x, y, z ∈ V (with r as the Steiner

node), let us define the following two zone types.

1. The definition for zones of type one is split into the following two cases.

(a) Zone1(r) = {w ∈ V : (x, y)w = (y, z)w = (z, x)w}

(b) For a given permutation π on {x, y, z}, Zone1(πx) = {w ∈ V : (πx, πy)w =

(πx, πz)w = d(w, πx)}

2. For a given permutation π on {x, y, z}, Zone2(πx) = {w ∈ V : (πx, πy)w =

(πx, πz)w < d(w, πx)}

Using this terminology and our structural lemmas, we can describe a recursive

algorithm that reconstructs the tree structure from a 0-hyperbolic metric. Given a

data set V we pick three random points x, y, z and construct the universal tree T .

Then for all other w ∈ V , sort the w’s into their respective zones. Then for each

of the seven zones we can recursively build new universal trees. For zones of type

1, pick any two points, wi1 , wi2 and form the universal tree for πx (or r),wi1 , wi2 . If

there is only one node in this zone, connect it to πx (or r). For zones of type 2, pick

any one point, wi1 and form the universal tree for πx,wi1 , r. Note that during the

recursive step for zones of type 2, we create universal trees with Steiner nodes r as

one of the nodes. Hence we need to compute the distance from r to all other nodes

sent to that zone. We can calculate this when we first place r. Concretely, if r is

151

the Steiner node for the universal tree T on x, y, z, then for any w, we will have that

d(w, r) = max((x, y)z, (y, z)x, (z, x)y). The proof for the consistency of this formula is

in the proof of Lemma 5.13.

Finally, to complete the analysis, the following lemma proves that we only need to

check consistency of the metric within each zone to ensure global consistency.

Lemma 5.15. Given (X, d) a metric tree, and a universal tree T on x, y, z, we have

the following

1. If w ∈ Zone1(x), then for all ŵ 6∈ Zone1(x), we have that x ∈ g(w, ŵ).

2. If w ∈ Zone2(x), then for all ŵ 6∈ Zonei(x) for i = 1, 2, we have that r ∈ g(w, ŵ).

5.3.1 TreeRep for General δ-Hyperbolic Metrics.

Having seen the main geometric ideas behind TreeRep, we want to extend the

algorithm to return an approximating tree for any given metric. For an arbitrary

δ-hyperbolic metric, Lemma 5.13 does not hold. We can, however, modify it and

leverage the intuition behind the original proof. Given four points w, x, y, z, we

do not satisfy one of the conditions of Lemma 5.13, if all three Gromov products

(x, y)w, (x, z)w, (y, z)w have distinct values. Nevertheless, we can still compute the

maximum of these three quantities. Furthermore, since we have a δ-hyperbolic metric,

the smaller two products will be within δ of each other. Let us suppose that (x, y)w

is the biggest. Then we place w in Zone1(x) if and only if d(z, w) = (y, z)w or

d(z, w) = (x, z)w. Otherwise we place w ∈ Zone2(x). Note that when we have tree

metric, we have that d(z, w) = (y, z)w if and only if d(z, w) = (x, z)w.

As shown by Proposition 5.16, when we do this, we are introducing a distortion

of at most δ between w and y, z. This suggests that when we do zone 2 recursive

steps, we should pick the node that closest to r as the third node for the universal

tree. We see experimentally that this significantly improves the quality of the tree

returned. Note, we do not have a global distortion bound for when the input is

152

a general δ-hyperbolic metric. However, as we will see experimentally, we tend to

produce trees with low distortion.

Proposition 5.16. Given a δ-hyperbolic metric d, the universal tree T on x, y, z and

a fourth point w, when sorting w into its zone (zonei(πx)), TreeRep introduces an

additive distortion of at most δ between w and πy, πz.

Algorithm 16 Metric to tree structure algorithm.
1: function Tree structure(X, d)
2: T = (V,E, d′) = ∅
3: Pick any three data points uniformly at random x, y, z ∈ X.
4: T = recursive_step(T,X, x, y, z, d, dT ,)
5: return T
6: function recursive_step(T,X, x, y, z, d, dT ,)
7: Construct universal tree for x, y, z and sort the other nodes into the seven

zones.
8: Recurse for each of the seven zones by calling Zone1_Recursion and

Zone2_recursion. return T

Algorithm 17 Recursive parts of TreeRep.
1: function zone1_recursion(T , dT , d, L, v)
2: if Length(L) == 0 then return T

3: if Length(L) == 1 then
4: Let u be the one element in L and add edge (u, v) to E with weight
dT (u, v) = d(u, v)

5: return T
6: Pick any two u, z from L and remove them from L
7: return recursive_step(T, L, v, u, z, d, dT)
8: function zone2_recursion(T , dT , d, L, u, v)
9: if Length(L) == 0 then return T

10: Set z to be the closest node to v and delete edge (u, v)
11: return: recursive_step(T, L, v, u, z, d, dT)

5.3.2 Steiner nodes.

A Steiner node is any node that did not exist in the original graph that one adds

to it. We give a simple example to illustrate that Steiner nodes are necessary for

153

reconstructing the correct tree. Additionally, we demonstrate that forming a graph

and then computing any spanning tree (as done in Alon et al. (1995); Elkin et al.

(2005); Prim (1957)) will not recover the tree structure. Consider 3 points x, y, z such

that all pairwise distances are equal to 2. Then, the associated graph is a triangle

and any spanning tree is a path. Then, the distance between the endpoints of the

spanning tree is not correct; it has been distorted or stretched. The “correct” tree

is obtained by adding a new node r and connecting x, y, z to r, and making all the

edge weights equal to 1. Thus, we need Steiner nodes when reconstructing the tree

structure. Methods such as MST and LS Alon et al. (1995) that do not add Steiner

nodes will not produce the correct tree, when given a 0-hyperbolic metric, even though

such algorithms do come with upper bounds on the distortion of the distances. In this

setting, we want to obtain a tree that as accurately as possible represents the metric

even at the cost of additional nodes; we do not simply want a tree that is a subgraph

of a given graph.

(i) Weighted graph
from metric.

(ii) MST (iii) Solve for clos-
est weights with L2

penalty.

(iv) Correct tree on
x, y, z.

Figure 5.2: Figures showing the example that demonstrates the need fr Steiner nodes.

5.4 Experiments

In this section, we demonstrate the effectiveness of TreeRep. Additional details

about the experiments and algorithms can be found in Appendix B.7.§

§All code can be found at the following link https://github.com/rsonthal/TreeRep

154

https://github.com/rsonthal/TreeRep

For the first task of approximating metrics with tree metrics, we compare TreeRep

against algorithms that find approximating trees; Minimum Spanning Trees (MST)

Prim (1957), LevelTrees (LT) Chepoi et al. (2008), Neighbor Join (NJ) Saitou

and Nei (1987), Low Stretch Trees (LS) Alon et al. (1995); Elkin et al. (2005),

ConstructTree (CT) Abraham et al. (2007), and ProbTree (BT) Bartal (1998).

When comparing against such methods, we show that not only is TreeRep much

faster than all of the above algorithms (except MST, and LS), but that TreeRep

produces better quality metrics than MST, LS, LT, BT, and CT and metrics that are

competitive with NJ. In addition to these methods, other methods such as UPGMA

Sokal et al. (1958) also learn tree structures. However, these algorithms have other

assumptions on the data. In particular, for UPGMA, the additional assumption is

that the metric is an ultrametric. Hence we do not compare against such methods.

One important distinction between methods such as LS, MST, and LT and the

rest, is that LS, MST, and LT require a graph as the input. This graph is crucial

for these methods and hence sets these methods apart from the rest, as the rest only

require a metric.

For the second task of learning hyperbolic embeddings, we compare TreeRep

against Poincare Maps (PM) Nickel and Kiela (2017), Lorentz Maps (LM) Nickel

and Kiela (2018b), PT Sala et al. (2018), and hMDS Sala et al. (2018). Since we can

embed trees into Hk with arbitrarily low distortion, we think of trees as hyperbolic

representations. When comparing against such methods, we show that TreeRep is

not only four to five orders of magnitude faster, but for low dimensions, and in many

high dimensional cases, produces better quality embeddings.

We first perform a benchmark test for tree reconstruction from tree metrics. Then,

for both tasks, we test the algorithms on three different types of data sets. First, we

create synthetic data sets by sampling random points from Hk. Second, we will take

real world biological data sets that are believed to have hierarchical structure. Third,

155

we consider metrics that come from real world unweighted graphs. In each case, we

will show that TreeRep is an extremely fast algorithm that produces as good or

better quality metrics. We will evaluate the methods on the basis of computational

time, and the average distortion, as well as mean average precision (MAP) of the

learned metrics.¶

Remark 5.17. TreeRep is a randomized algorithm, so all numbers reported are

averaged over 20 runs. The best number produced by TreeRep can be found in the

Appendix.

5.4.1 Tree Reconstruction Experiments.

Before experimenting with general δ-hyperbolic metrics, we benchmark our method

on 0-hyperbolic metrics. To do this, we generate random synthetic 0-hyperbolic

metrics. More details can be found in Appendix B.7. Since TreeRep and NJ are the

only algorithms that are theoretically guaranteed to return a tree that is consistent

with the original metric, we will run this experiment with these two algorithms only.

We compare the two algorithms based on their running times and the number of nodes

in the trees. As we can see from Table 5.1, TreeRep is a much more viable algorithm

at large scales. Additionally, the trees returned by NJ have double the number of

nodes as the original trees. Contrarily, the trees returned by TreeRep have exactly

the same number of nodes as the original trees.

Table 5.1: Time taken by Nj and TreeRep to reconstruct the tree structure.

n 11 40 89 191 362 817 1611

TR 0.053 0.23 0.0017 0.0039 0.02 0.08 0.12
NJ 0.084 0.0016 0.0067 0.036 0.18 1.7 15

¶MAP is used in Nickel and Kiela (2017, 2018b); Sala et al. (2018), while average distortion is
used in Sala et al. (2018). The definitions are in the appendix.

156

(i) Varied Dimension. (ii) Varied Scale.

Figure 5.3: Average distortion of the metric learned for 100 randomly sampled points
from Hk for k = 2i and from H10 for scale s = 2i for i = 1, 2, . . . , 10.

Table 5.2: Time taken by PT, LM, hMDS, to learn a 10 dimensional embedding for
the synthetic data sets and average time taken by TreeRep (TR), MST, and CT.

TR NJ MST LS CT PT LM hMDS hMDS-2

Time 0.002 0.06 0.0001 0.002 0.076 312 971 11.7 0.008

5.4.2 Random points on Hyperbolic Manifold.

We generate two different types of data sets. First, we hold the dimension k

constant and scale the coordinates. Second, we hold the magnitude of the coordinates

constant and increase the dimension k. Note these metrics do not come with an

underlying graph! Hence to even apply methods such as MST, or LS we need to do

some work. Hence, we create two different weighted graphs; a complete graph and a

nearest neighbor graph.

For both types of data, Figures 5.3i and 5.3ii show that as the scale and the

dimension increase, the quality of the trees produced by TreeRep and NJ get better.

Contrastingly, the quality of the trees produced by MST, ConstructTree, and

LS do not improve. Hence we see that when we do not have an underlying sparse

graph that was used to generate the metric, methods such as MST and LS do not

perform well. In fact, they have the worst performance. This greater generality of

possible inputs is one of the major advantages of our method. Thus, demonstrating

157

that TreeRep is an extremely fast algorithm that produces good quality trees that

approximate hyperbolic metrics. Furthermore, Table 5.2 shows that TreeRep is a

much faster algorithm than NJ.

For the second task of finding hyperbolic embeddings, we compare against LM, PT

and hMDS. For both LM, PT, and hMDS, we compute an embedding into Hk, where k

is dimension of the manifold the data was sampled from. We also use hMDS to embed

into H2, we call this hMDS-2. We can see from Figures 5.3i and 5.3ii that TreeRep

produces much better embeddings than LM, PT, and hMDS-2. Furthermore, LM

and PT are extremely slow, with PT and LM taking 312 and 917 seconds on average,

respectively. Thus, showing that TreeRep is 5 orders of magnitude faster than LM

and PT, and produces better quality representations. On the other hand, since our

points come from Hk if we try embedding into Hk with hMDS we should theoretically

have zero error. However, these are high dimensional representations. We want low

dimensional hyperbolic representations. Thus, we compared against hMDS-2 which

did not perform well.

(i) TreeRep and NJ Tree (ii) LS Tree (iii) CT Tree

(iv) MST Tree (v) PM Embedding (vi) PT Embedding

Figure 5.4: Tree structure and embeddings for the Immunological distances from
Sarich (1969).

158

Table 5.3: Time taken in seconds and the average distortion of the tree metric learned
by TreeRep, NJ, MST, and CT and of the 2-dimensional hyperbolic representation
learned by PM and PT on the Zeisel and CBMC data set. The numbers for TreeRep
(TR) are the average numbers over 20 trials.

Zeisel CBMC
TR NJ MST LS CT PT PM TR NJ MST LS

Time 0.36 122.2 0.11 7.2 >14400 8507 12342 2.8 >14400 0.55 30
Distortion 0.117 0.144 0.365 0.250 n/a 0.531 0.294 0.260 n/a 1.09 1.45

5.4.3 Biological Data: scRNA seq and phylogenetic data.

We also test on three real world biological data sets. The first data set consists

of immunological distances from Sarich (1969). Given these distances, the goal is

to recover the hierarchical phylogenetic structure. As seen in Figure 5.4, the trees

returned by TreeRep and NJ recover this structure well, with sea lion and seal close

to each other, and monkey and cat far away from everything else. Divergently, the

trees and embeddings produced by MST, LS, ConstructTree, PM, and PT make

less sense as phylogenetic trees.

The second type of data sets are the Zeisel and CBMC sc RNA-seq data set Zeisel

et al. (2015); Stoeckius et al. (2017). These data sets are expected to be a tree as

demonstrated in Dumitrascu et al. (2019). Here we used the various algorithms to learn

a tree structure on the data or to learn an embedding into H2. The time taken and

the average distortion are reported in Table 5.3. In this case, we see that TreeRep

has the lowest distortion. Additionally, TreeRep is 20 times faster than NJ and is

20,000 to 40,000 times faster than PT and PM. Furthermore, NJ, CT, PT, and PM

timed out (took greater than 4 hours) on the CBMC data set. For the CBMC data

set, we see that TreeRep is only algorithm that produces good quality embeddings

in a reasonable time frame. Again we see that if the input is a metric instead of a

graph, algorithms such as MST and LS do not do well. We also tried to use hMDS

for this experiment, but it either didn’t output a metric or it outputted the all zero

159

metric.

Table 5.4: Table with the time taken in seconds, MAP, and average distortion for all
of the algorithms when given metrics that come from unweighted graph. Darker cell
colors indicates better numbers for MAP and average distortion. The number next to
PT, PM, LM is the dimension of the space used to learn the embedding. The numbers
for TreeRep (TR) are the average numbers over 20 trials.

Graph TR NJ MST LT CT LS PT PT PM LM LM PM
2 200 2 2 200 200

MAP

Celegan 0.473 0.713 0.337 0.272 0.447 0.313 0.098 0.857 0.479 0.466 0.646 0.662
Diseasome 0.895 0.962 0.789 0.725 0.815 0.785 0.392 0.868 0.799 0.781 0.874 0.886
CS Phd 0.979 0.993 0.991 0.964 0.807 0.991 0.190 0.556 0.537 0.537 0.593 0.593
Yeast 0.815 0.892 0.871 0.742 0.859 0.873 0.235 0.658 0.522 0.513 0.641 0.643
Grid-worm 0.707 0.800 0.768 0.657 - 0.766 - - 0.334 0.306 0.558 0.553
GRQC 0.685 0.862 0.686 0.480 - 0.684 - - 0.589 0.603 0.783 0.784
Enron 0.570 - 0.524 - - 0.523 - - - - - -
Wordnet 0.984 - 0.989 - - 0.989 - - - - - -

Average Distortion

Celegan 0.197 0.124 0.255 0.166 0.325 0.353 0.236 0.096 0.236 0.249 0.224 0.211
Diseasome 0.188 0.161 0.161 0.157 0.315 0.228 0.227 0.05 0.323 0.328 0.335 0.332
CS Phd 0.204 0.134 0.298 0.161 0.282 0.291 0.295 0.105 0.374 0.378 0.378 0.380
Yeast 0.205 0.149 0.243 0.243 0.282 0.243 0.230 0.089 0.246 0.248 0.234 0.234
Grid-worm 0.188 0.135 0.171 0.202 - 0.234 - - 0.196 0.203 0.192 0.193
GRQC 0.192 0.200 0.275 0.267 - 0.206 - - 0.212 0.198 0.193 0.193
Enron 0.453 - 0.607 - - 0.562 - - - - - -
Wordnet 0.131 - 0.336 - - 0.071 - - - - - -

Time in seconds

Celegan 0.014 0.28 0.0002 0.086 0.9 0.001 573 1156 712 523 1578 1927
Diseasome 0.017 0.41 0.0003 0.39 15.76 0.001 678 1479 414 365 978 1112
CS Phd 0.037 2.94 0.0007 1.97 226 0.006 1607 4145 467 324 768 1149
Yeast 0.057 8.04 0.0008 8.21 957 0.001 9526 17876 972 619 1334 2269
Grid-worm 0.731 163 0.001 191 - 0.007 - - 2645 1973 4674 5593
GRQC 0.42 311 0.0014 70.9 - 0.006 - - 7524 7217 9767 1187
Enron 27 - 0.013 - - 0.13 - - - - - -
Wordnet 74 - 0.18 - - 0.08 - - - - - -

160

Table 5.5: Graph Statistics

Graph n m δ

Celegan 452 2024 021
Diseasome 516 1188 0.17
CS PhD 1035 1043 0.23
Yeast 1458 1948 ≤ 0.32

Grid-worm 3337 6421 ≤ 0.38
GRQC 4158 13422 ≤ 0.36
Enron 33695 180810 -

Wordnet 74374 75384 -

5.4.4 Unweighted Graphs.

Finally, we consider metrics that come from unweighted graphs. We use eight

well known graph data sets from Rossi and Ahmed (2015). Table 5.4 records the

performance of all the algorithms for each of these data sets. For learning tree metrics

to approximate general metrics, we see that NJ has the best MAP, with TreeRep,

MST, and LS tied for second place. In terms of distortion, NJ is the best, TreeRep is

second, while MST is third and LS is sixth. However, NJ is extremely slow and is not

viable at scale. Hence, in this case, we have three algorithms with good performance

at large scale; TreeRep, MST, and LS. However, MST and LS did not perform well

in the previous experiments.

For the task of learning hyperbolic representations, we see that PM, LM, and PT

are much slower than the methods that learn a tree first. In fact, these algorithms were

too slow to compute the hyperbolic embeddings for the larger data sets. Additionally,

this extra computational effort does not always result in improved quality. In all cases,

except for the Celegan data set, the MAP returned by TreeRep is superior to the

MAP of the 2-dimensional embeddings produced by PM, LM, and PT. In fact, in

most cases, these 2-dimensional embeddings, have worse MAP than all of the tree first

methods. Even when they learn 200-dimensional embeddings, PM, LM and PT have

worse MAP than TreeRep on most of the data sets. Furthermore, except for PT200,

161

the average distortion of the metric returned by TreeRep is superior to PT2, PM,

an LM. Thus, showing the effectiveness of TreeRep at learning good Hyperbolic

representations quickly.

5.5 Broader Impact

There are multiple aspects to the broader impacts of our work, from the impact

upon computational biology, specifically, to the impact upon data sciences more

generally. The potential impacts on society, both positive and negative, are large.

Computational biology is undergoing a revolution due to simultaneous advances in

the creation of novel technologies for the collection of multiple and novel sources of

data, and in the progress of the development of machine learning algorithms for the

analysis of such data. Social science has a similar revolution in its use of computational

techniques for the analysis and gathering of data.

Cellular differentiation is the process by which cells transition from one cell type

(typically an immature cell) into more specialized types. Understanding how cells

differentiate is a critical problem in modern developmental and cancer biology. Single-

cell measurement technologies, such as single-cell RNA-sequencing (scRNA-seq) and

mass cytometry, have enabled the study of these processes. To visualize, cluster,

and infer temporal properties of the developmental trajectory, many researchers have

developed algorithms that leverage hierarchical representations of single cell data. To

discover these geometric relationships, many state-of-the-art methods rely on distances

in low-dimensional Euclidean embeddings of cell measurements. This approach is

limited, however, because these types of embeddings lead to substantial distortions in

the visualization, clustering, and the identification of cell type lineages. Our work is

specifically focused on extracting and representing hierarchical information.

On the more negative side, these algorithms might also be used to analyze social

hierarchies and to divine social structure from data about peoples’ interactions. Such

162

tools might encourage, even justify, the intrusive and pervasive collection of data

about how people interact and with whom.

Work partially supported by funds from the Michigan Institute for Data Science.

163

CHAPTER VI

Dual Regularized Optimal Transport

6.1 Introduction

Optimal transport is a ubiquitous problem in areas ranging from economics and the

allocation of resources to Riemannian geometry and measure theory. The motivation

for and description of the basic problem arises from transporting objects from one set

of locations to the another set of locations using a minimal cost transportation plan.

Over the past century, but especially the last three decades, considerable work has

been done to understand the geometry of the problem and its various formulations.

Many different variants of the problem have been posed and algorithmic approaches

have been developed to solve these variants. Most importantly for our work, there

has also been great interest and activity in applying optimal transport to machine

learning, computer vision, and domain transfer tasks. Optimal transport in the setting

of machine learning tasks is the starting point of this paper.

6.1.1 Background

There are several versions of the optimal transport problem that we use to motivate

our formulation. The original version is that of Monge. The Monge problem, however,

has some drawbacks (namely, the transport map must be a function) and, for this

reason, we begin with its natural generalization, the Monge-Kantorovich problem.

164

Problem 6.0.1. Given two probability spaces (X , µ) and (Y , ν), and a cost function

c : X ×Y → R+ , the Monge-Kantorovich Optimal Transport seeks a joint probability

π on X × Y that minimizes
∫
X×Y c(x, y)dπ(x, y), subject to the constraints that the

pushforward of the marginals are consistent with the inputs, PX#π = µ and PY#π = ν.

In a finite discrete setting this problem can be formulated as a linear program

(see Problem 6.0.2) which, unfortunately, is challenging to solve algorithmically but

which does guarantee sparse solutions. Two predominant methods are combinatorial

Bertsekas and Castanon (1989); Gabow (1985); Duff and Koster (2001) and PDE

based solvers Benamou and Brenier (2000). None of these methods, however, scales

well. As a result, there are many alternative formulations of the OT problem that

are easier to solve, including those formulation types that include regularizing the

primal objective function (see, for example, Cuturi (2013); Essid and Solomon (2017);

Blondel et al. (2018b); Lorenz et al. (2019)) with or without relaxed constraints.

These variants are referred to as regularized optimal transport. There is a second

class of formulations called unbalanced optimal transport (see for example Liero et al.

(2017); Chizat et al. (2016b); Blondel et al. (2018b)). There are a number of proposed

efficient algorithms to solve these various formulations, including Seguy et al. (2018);

Schmitzer (2019); Solomon et al. (2015); Frogner et al. (2015); Benamou et al. (2015);

Genevay et al. (2016); Alaya et al. (2019). Despite such algorithmic advances, the

regularized optimal transport problems either do not produce sparse transport plans

which hampers interpretability for machine learning tasks or they do not perform

well in practice. The main drawback with unbalanced optimal transport is that it

is unclear how the solution methods balance creation, destruction, and transport of

mass, all of which can generate unexpected artifacts.

Besides the two above categories there are a few other general optimal transport

formulations. Alvarez-Melis et al. (2018) generalizes the formulation of optimal

transport to include side information. Xie et al. (2019) uses generative neural networks

165

to solve the problem when there is a map from a latent space to Z to the spaces X ,Y .

Besides general solvers, there are also many more restricted solutions for application

specific problems, for examples see Backurs et al. (2019); Petric Maretic et al. (2019).

6.1.1.1 Our Contribution.

In this paper, we present a new formulation of optimal transport that regularizes

the dual problem without relaxing the dual constraints. We refer to this formulation

as Dual Regularized Optimal Transport or DROT. We show that this problem has a

number of both theoretical and algorithmic properties that the other formulations of

the problem do not have. Specifically,

1. the dual of DROT is a form of unbalanced optimal transport whose solution

leads to sparse solutions to the optimal transport problem;

2. DROT can be solved efficiently at large scales via Project and Forget Gilbert

and Sonthalia (2020a);

3. with the appropriate choice of the dual regularizer, unlike other optimal transport

formulations, we can easily control the level of mass creation versus destruction;

We also provide extensive experimental evidence for our analysis and the performance

of Project and Forget in a number of settings.

6.2 Preliminaries

For all of our algorithmic discussions, we work in a finite, discrete setting. Let ∆n

denote the n− 1 dimensional probability simplex. Then, (∆m,a) and (∆n, b) denote

two finite probability spaces and we denote by P the joint distribution on ∆m ×∆n.

Note that P can be represented by anm×n matrix. The cost function we denote by an

m×n matrix C. The vector of all ones of length m is denoted 1m. The Frobenius dot

product of two matrices A,B we denote by 〈A,B〉. For some problem formulations

and in an abuse of notation, the distributions a and b on their respective spaces need

166

not have the same total mass (i.e., they are not strictly probability measures). Finally,

given a convex function φ, we denote its convex conjugate by φ∗.

6.2.1 Background Problem Formulations

In a finite discrete setting the Monge-Kantorovich OT problem can be formulated

as the following linear problem.

Problem 6.0.2. Given two probability spaces (∆m,a) and (∆n, b) and a cost function

C, we seek the mass transportation map of minimal cost that is consistent with the

input distributions:

OT(a, b) = min〈C,P 〉

subject to: a = P1m, b = P T1n, P ≥ 0.

(6.1)

One important feature of the solution to Problem 6.0.2 is that it is sparse. Specifi-

cally, at most n+m− 1 entries of P are non-zero Brualdi (2006) which means that for

applications in machine learning and image processing, the solutions are “interpretable”

and they have efficient implementations.

We sketch those problem formulation types that include regularizing the primal

objective function with or without relaxed constraints.

6.2.1.1 Regularized and Unbalanced Optimal Transport.

In the first formulation variant (Regularized Optimal Transport or ROT), we use

an entropic regularizer without relaxing the constraints. Cuturi Cuturi (2013) shows

that by adding an entropic regularizer, the ROT problem can be solved quickly with

167

the Sinkhorn matrix scaling algorithm.

ROT(a, b) = min〈C,P 〉+ γ
∑
i,j

Pij log(Pij)

subject to: a = P1m, b = P T1n.

(6.2)

This formulation has proven to be extremely useful in practice despite the loss in

sparsity of the solution which smooths the transportation plan.

A second natural regularizer is the quadratic function. Essid and Solomon (2017);

Blondel et al. (2018b); Lorenz et al. (2019) study this variant and show experimentally

that the solutions are sparse. Generalizing further, Dessein et al. (2018b) use Bregman

functions, a natural extension of Benamou et al. (2015).

A second main formulation variant (Unbalanced Optimal Transport or UOT)

maintains the regularized primal objective function but relaxes the constraints on the

marginal distributions. In a variety of applications, the input distributions do not

adhere to being probability measures and they have different total mass. As a result,

Liero et al. (2017) formulate transport between densities with different masses, or

unbalanced optimal transport. In this variant, we relax the constraint that marginals

of the transport must match the given marginals and instead penalize the deviation

from the marginals. Similar to Cuturi (2013), Liero et al. (2017) use entropy based

divergences, such as the KL divergence, as the penalty function. Chizat et al. (2016b)

present matrix scaling algorithms for UOT.

UOT(a, b) = min〈C,P 〉+ γ1

∑
i,j

Pij log(Pij)

+ γ2KL(P1m,a) + γ3KL(P T1n, b).

(6.3)

Blondel et al. (2018b) consider UOT with quadratic penalty terms and also considers

an asymmetric version of the problem in which only one marginal constraint has been

relaxed. The Monge version of the problem also has a relaxation that is similar to the

168

unbalanced version of the Monge-Kantorovich problem Yang and Uhler (2019).

The main drawback with the current formulations of unbalanced optimal trans-

port, is that it is unclear how the solution methods balance creation, destruction,

and transport of mass. These formulations give us control over mass creation and

destruction versus transport, by increasing or decreasing the penalty, but we do not

have control over the degree of creation versus that of destruction.

6.2.2 Dual regularized optimal transport (DROT)

To build on the various previous OT problem formulations, we devise a new

formulation via dual regularization. We add a regularizer term to the dual objective

function so that it is strictly concave but we do not relax the dual constraints. This

may be interpreted as adding a strictly convex regularizer to the primal problem and

relaxing the primal constraints, leading to an unbalanced optimal transport problem.

We state the discrete version of the problem and note there is a natural continuous

version which we do not state.

Problem 6.0.3. Given a and b two vectors of length m and n respectively (repre-

senting two distributions on m and n points), an m× n cost matrix C, two strictly

convex function ϕ and φ, and a regularization parameter γ, find vectors f and g that

maximize
DROT(a, b) = max〈f ,a〉+ 〈g, b〉 − 1

γ
(φ(f) + ϕ(g))

subject to: fi + gj ≤ Ci,j.

(6.4)

Let us consider the interpretation of this formulation. We begin with that of

Peyré and Cuturi (2018). Suppose we have n warehouses and m stores. Let a be the

vector whose ith component is the number of items in warehouse i and b be the m

dimensional vector for the demand of each store. Let C be the cost to transport items

from warehouses to stores. Next, suppose we are an external shipper; we charge fi to

pick up good from warehouse i regardless of where it is delivered and gj to deliver

169

goods to store j regardless of the originating warehouse. We want to maximize our

income which is given by 〈f ,a〉+〈g, b〉 but our prices must satisfy fi+gj ≤ Cij , some

cost constraint. The addition of the regularizer in the objective function, therefore,

regularizes the prices we can charge. This is in contrast with the formulation developed

in Liero et al. (2017) which penalizes the divergence from the input distribution. In

many applications, such as domain transfer, color transfer, and economics, regularizing

prices (i.e., how profitable is it to transfer both to and from a certain data point) is

more natural. For example, we may want to regularize prices and see how this affect

this the distributions a, b, representing demand and supply.

6.2.3 Extension to Multi-marginal Transport.

We can extend the DROT formulation to multi-marginal optimal transport, in

which, instead of transporting mass between two distributions, we learn a joint

distribution π over k probability spaces (X1, µ1), . . . (Xk, µk) such that the marginals

of π are the µi. The (continuous) DROT formulation of the multi-marginal problem

is as follows:
minimize

∑k
i=1 γφi(fi)−

∫
Xi fidµi

subject to: (x1, . . . , xk) ∈ X1 × . . .×Xk,∑k
i=1 fi(xi) ≤ c(x1, . . . , xk)

(6.5)

An interpretation of the multi-marginal optimal transport problem is that we pick

different combinations of variables from the k spaces such that a given combination

x1, . . . , xk costs c(x1, . . . , xk). We seek a price list fi for each of the elements in

Xi such that if demand for each variable is distributed according to µi, then we

maximize our expected profits. This interpretation of the dual problem is much more

amenable to applications and also aligns with a common choice of cost function,

c(x1, . . . , xk) =
∑

j 6=k ‖xi − xj‖2
2. Gangbo and Swiech (1998) guarantee the uniqueness

of such transport plans for precisely such costs.

170

6.3 Theoretical analysis

In this section, we detail the theoretical analysis of the DROT problem formulation.

We begin with an analysis of the features of the solutions. We then discuss the

choice of regularizer. We end with a discussion of an algorithmic method for solving

Problem 6.4, Project and Forget, a general method developed in Gilbert and

Sonthalia (2020a).

6.3.1 Solution properties

In this section, we analyze the properties of the solutions to the DROT problem.

This analysis includes the relation between the solution to the DROT Problem 6.4 and

that of other OT formulations (i.e., the approximation quality of the solution), how

the solutions depend on the regularization parameter, and finally, what the trade-offs

are in the creation and destruction of mass. All formal proofs can be found in the

Appendix.

Definition 6.1. Let f : Rn → R be a function. We say a function is positive co-finite

if for all x ≥ 0, f(rx)/r →∞ as r →∞. Similarly, a function is negative co-finite if

for all x ≤ 0, f(rx)/r → ∞ as r → ∞. A function is co-finite if it is both positive

and negative co-finite.

Theorem 6.2. If we add the assumption that φ, ϕ are co-finite Bregman functions to

our hypotheses for Problem 6.4, then the following problem is the dual problem to

DROT(a, b). Furthermore, strong duality holds.

min〈C,P 〉+
φ∗ (γ(a− P1m)

γ
+
ϕ∗
(
γ(b− P T1n)

)
γ

subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0.

(6.6)

If we only have the assumption that φ (and similarly for ϕ) is positively (negatively)

co-finite, then we must add the constraint a− P1 > 0 (a− P1 < 0).

171

Theorem 6.2 shows us the dual formulation of DROT resembles unbalanced optimal

transport problems from Liero et al. (2017), but with different types of penalty

functions on the transport map. Indeed, if we set φ and ϕ to be quadratic regularizers,

then Theorem 6.2 shows that the dual DROT formulation and a formulation in Blondel

et al. (2018b) are equivalent.

Furthermore, note that if φ, ϕ are positive co-finite functions, then DROT neces-

sarily destroys mass. On the other hand, if φ, ϕ are negative co-finite function, then

DROT necessarily creates mass. This matches our intuition exactly. In the objective

function for DROT, the regularizer term is φ(f) + ϕ(g) which we seek to minimize.

For positive co-finite functions, we do so when both f and g are highly negative.

Using the shipping interpretation of the dual problem, f and g represent the prices

we charge to ship and a negative price means that we, as shippers, pay to do the

shipping! Such incentives result in not shipping goods or, more abstractly, destroying

mass. On the other hand, for negatively co-finite functions, we minimize the objective

function when f , g are both highly positive; that is, we are incentivized to ship more

goods, or to create mass.

We note that for the dual DROT formulation, it is not necessary that φ∗, ϕ∗ attain

their minima at 0 (the minimum is attained at 0 if and only if φ, ϕ attain their minima

at 0) and, under such conditions, the regularizers actually encourage some deviation

from the marginals a, b; thus, encouraging the creation or destruction of mass. Note

we could also introduce similar incentives in other variants, but such incentives have

not been studied before.

The next proposition quantifies how far the solution to DROT is from that of the

Monge-Kantorovich formulation.

Proposition 6.3. Let P ∗,f ∗, g∗ be the optimal solutions, primal and dual, to the

Monge-Kantorovich formulation (Problem 6.0.2) and let P ∗φ,ϕ,f ∗φ,ϕ, g∗φ,ϕ be the optimal

solutions to DROT, Problem 6.4. Then we have that the following are true.

172

1. The difference between the value of the DROT objective and that of the Monge-

Kantorovich formulation is upper and lower bounded by

φ
(
f ∗φ,ϕ

)
+ ϕ(g∗φ,ϕ) ≤ γ(OT(a, b)−DROT(a, b))

≤ φ(f ∗) + ϕ(g∗).

2. We can estimate the quality of the approximation (as a function of the regularizers

φ and ϕ) as

γ〈C,P ∗ − P ∗φ,ϕ〉 ≤φ(f ∗) + ϕ(g∗) + φ∗(γ(a− P ∗φ,ϕ1m)) + ϕ∗(γ(b− (P ∗φ,ϕ)T1n))

3. and

φ∗(γ(a− P ∗φ,ϕ1m)) + ϕ∗(γ(b− (P ∗φ,ϕ)T1n)) ≤ γ〈C,P ∗ − P ∗φ,ϕ〉 − φ(f ∗φ,ϕ)− ϕ(g∗φ,ϕ).

These bounds reveal how the various parameters control the problem. Specifically,

we can see that error OT(a, b)−DROT(a, b) is O(γ−1). More interestingly, we see

how φ, ϕ affect the quality of the approximation. Parts 2, 3 of Proposition 6.3 also

give us an interplay between the penalty incurred for not satisfying the marginal

constraints and the cost of the transport.

Corollary 6.4. If P ∗γ is the solution to DROT (a, b) for a given γ, and P ∗ is the

solution to OT(a, b) then, ‖a−P ∗γ 1m‖ and ‖b− (P ∗γ)T1n‖, OT (a, b)−DROT (a, b),

and |〈C,P ∗ − P ∗γ 〉| are all O(γ−1).

Because the sparsity of solutions to OT problems is critical for some applications,

the next series of analysis is the study of the support of solutions to DROT.

Definition 6.5. Given F : Rd ×Θ→ R and G such that for each θ ∈ Θ, G(θ) ⊂ Rd,

we define a parameterized family of optimization problems parameterized by θ ∈ Θ

173

where the function V , V (θ) = maxx∈G(θ) F (x, θ) is the value function and x∗, x∗(θ) =

{x ∈ G(θ) : F (x, θ) = V (θ)} is the optimal policy correspondence.

Definition 6.6. Let G : Θ→ P(Rd) be a function from the parameter space Θ to the

power set of Rd. We say that G is upper hemicontinuous at θ ∈ Θ if G(θ) is nonempty

and if, for every open set U ⊂ Rd with G(θ) ⊂ U , there exists a δ > 0 such that for

every θ′ ∈ Nδ(θ) (every θ′ in some δ-neighborhood of θ), G(θ′) ⊂ U .

Proposition 6.7. Given two discrete measures µ, ν, a cost function c, Bregman

regularizers φ, ϕ and γ−1 ∈ [0,∞), the value function V is well defined and continuous

on [0,∞) and the optimal policy correspondence x∗ is well defined and continuous on

(0,∞). Furthermore, if φ, ϕ are both positive co-finite or negative co-finite, then the

optimal policy correspondence is upper hemicontinuous on [0,∞).

The implication of the upper-hemicontinuity of the optimal policy correspondence

is that any sequence of solutions (f ∗φ,ϕ)n, (g
∗
φ,ϕ)n to the DROT Problem 6.4 for a

sequence of (γ)n, has a convergent sub-sequence. Lower-hemicontinuity implies that

all solutions to the OT Problem 6.0.2 can be expressed as limits of sequences of

solutions to DROT.

Finally, we show that the transport map P that results from solving DROT is

at least as sparse as that from the OT solution. Therefore, except for the Monge-

Kantorovich formulation, DROT is the only formulation of optimal transport that has

a theoretical result guarantee of solution sparsity. While this is result is for the case

when γ is large, as we will see experimentally, we produce sparse solutions for all γ.

Corollary 6.8. Suppose that we have an instance of Problem 6.0.2 such that for

any two optimal dual solutions (f ∗1 , g
∗
1), (f ∗2 , g

∗
2), we have that f ∗1 − f ∗2 = c1, and

g∗1 − g∗2 = −c1. Then there exists Γ such that for all γ ≥ Γ, if P ∗γ is the solution to

DROT Problem 6.4 for γ and P ∗ is any optimal solution to Problem 6.0.2, then we

have that supp(P ∗γ) ⊂ supp(P ∗).

174

6.3.2 Example regularizers

In this subsection, we focus on three different example regularizers: quadratic,

entropic, and exponential. All of these regularizers satisfy the theoretical assumptions

of the theoretical analysis in the previous subsection although there are some important

differences amongst them.

6.3.2.1 Quadratic.

The quadratic regularizers are φ(f) = ‖f‖2
2 and similarly for ϕ(g). This regularizer

is thoroughly studied in Blondel et al. (2018b) and, for brevity, we do not discuss it

further. We observe that the regularizer is a co-finite Bregman function.

6.3.2.2 Exponential.

Let φ(f) =
∑n

i=1 e
fi and similarly for ϕ(g). We observe that φ, ϕ are positively

co-finite Bregman functions and, by Theorem 6.2, this formulation of DROT must

destroy mass. To be more concrete, the convex dual of φ is φ∗(x) =
∑n

i=1 xi log(xi)−xi

with the stipulation that xi ≥ 0 and similarly for ϕ∗. In Theorem 6.2, the variable x

in the dual formulation of DROT is x = a− P1m and the requirement that xi ≥ 0

implies

ai − (P1n)i ≥ 0 or ai ≥ (P1n)i.

Hence, the transport process only destroys or preserves mass; it does not create it.

6.3.2.3 Entropy.

Let φ(f) =
∑n

i=1 fi log(fi) − fi and similarly for ϕ(g). The convex dual of φ is

φ∗(x) =
∑n

i=1 e
xi and similarly for ϕ∗. In Remark C.1 in the Appendix, we detail

the additional stipulations we impose when we use the entropic regularizers. These

constraints include that (f)i, (g)i ≥ 0 which implies that in the dual formulation of

175

DROT, the variables x and y satisfy x = a− (P1m)− c1 and y = b− (P T1n)− c2,

where c1, c2 are vectors which non-negative entries. In the optimization problem, we

optimize for c1, c2 as well. We minimize this term in the objective when a−(P1n)−c1

is negative, or when a < (P1n) + c1 (and similarly for b). Because c1 is variable, it is

not clear whether we favor creating or destroying mass. As we will see, however, in

the experiments, we always favor creating mass in this formulation. This matches our

intuition as f , g must be positive.

Algorithm n = 501 n = 1001 n = 5001 n = 10001 n = 20001

Project and Forget 6 s 20 s 265 s 1120 s Out of memory.
LBFGSB 24 s 162 s 4080 s Out of memory.

Mosek primal 7 s 27 s 981 s Out of memory.
Mosek dual 3 s Out of memory.
CPLEX dual 105 s Out of memory.
CPLEX primal Out of memory.

Projected gradient descent Did not converge.

Table 6.1: Time taken in seconds to solve the quadratic regularized problem when the
two distributions are Gaussian distributions. Here we set γ = 1000 and all experiments
were run on a machine with 54 GB of RAM.

6.3.3 Efficient algorithm: Project and Forget

While there are many different potential algorithmic techniques that could be

used to solve this problem, we adopt a new algorithmic method, Project and

Forget Gilbert and Sonthalia (2020a), which is a conversion of Bregman’s cyclic

method into an active set method and, as such, can solve large scale, highly constrained

convex optimization problems. Project and Forget is an iterative method with

three major steps per iteration: (i) an (efficient) oracle to find violated constraints,

(ii) Bregman projection onto the hyperplanes defined by each of the active constraints,

and (iii) the forgetting of constraints that no longer require attention.

To adapt Project and Forget for DROT, the three major steps are as follows.

First, we use a naive oracle that searches through all of the constraints and adds

176

to the current list of active constraints any violated constraint. In particular, since

each constraint is independently satisfied or not, we can do this search in parallel. In

the project step, we observe that the constraints are of the form fi + gj ≤ Cij. To

calculate the projection, we first calculate f ′i , g′j, θ as the solutions to the following

equations, where ei, ej are the i, jth standard basis vectors.

θei := ∇φ(f ′)−∇φ(f) and θej = ∇ϕ(g′)−∇ϕ(g).

An analytic formula for θ, that only depends on fi, gj,Cij for the different regularizers

can be seen in the appendix. Once we have calculated θ, we set c := min(Pij, θ) and

we update Pij ← Pij − c and f , g as follows

f ← ∇φ−1(cei +∇φ(f)) and g ← ∇ϕ−1(cej +∇ϕ(g)).

In the forget step, if Pij = 0, then we forget the related constraint (i.e., remove

it from the list of active constraints). Note that P is the dual variable and is the

desired transportation plan. One feature of Project and Forget is in addition

to calculating the primal variables, we also retain the desired dual variable P , the

transportation plan.

One of the reasons we chose to solve DROT with Project and Forget is for its

convergence analysis and rate. Specifically, Gilbert and Sonthalia (2020a) show that

Project and Forget has a linear rate of convergence and that the rate is at most

L
L+µ2

for some µ ∈ (0, 1], where L is the number of active constraints. Corollary 6.8

gives us an estimate of the sparsity of our solutions P ∗φ,ϕ and, hence, an estimate on

the number of active constraints. (We note that there are comparatively few active

constraints typically). Thus, giving us a reasonable problem specific upper bound on

the rate of convergence.

Much of the previous discussion is theoretical in nature; we also performed extensive

177

comparison experiments to validate our choice of Project and Forget. The

experimental set up is as follows. We take two shifted Gaussian distributions with

means ±15 and variance 10. Then, split the interval [−20, 20] into n points and create

two discrete distributions by sampling the Gaussians on those n points. We use the

squared Euclidean distances between the points as the cost function and quadratic

regularization. This set up is a basic example of the optimal transport problem and is

an important test example for algorithmic comparisons. We solve the dual version

of DROT using Mosek, CPLEX, scipy’s LBFGSB method, and projected gradient

descent. We solve the primal version of DROT using Project and Forget, Mosek,

and CPLEX. To do a fair comparison, we ran all methods until they reached the same

level of convergence (with a feasibility error of 10−8). The convergence details can

be seen in the appendix. From Table 6.1, we can see that if we use Project and

Forget, we can solve the problem for much larger values of n. With Project and

Forget, our formulation of optimal transport can be scaled up and solved for large

number of data points.

6.4 Experiments

In this section, we provide extensive experimental evidence to support the the-

oretical results presented in the previous section, to provide the intuition about

dual regularized optimal transport (where theoretical analysis is unavailable), and to

demonstrate that our new formulation of optimal transport is both different and useful

(performing domain transfer tasks, including color transfer and digit classification).∗

178

(i) Sparsity (ii) Entropy (iii) Quadratic (iv) Exponential

Figure 6.1: (i) Sparsity of the solutions for the different regularizers versus the
regularization parameter; (ii–iv) Error |〈C,P ∗ − P ∗φ,ϕ〉| (blue line) and OT (a, b) −
DROT (a, b) (red line) versus γ for the three different regularizers.

(i) Quadratic (ii) Exponential (iii) Entropy

Figure 6.2: Graphs showing the mass creation and destruction for the different
regularizers. The yellow bars represent the true marginal distribution.

6.4.1 Verifying theoretical properties

The first solution property that we verify experimentally is the sparsity of the

transport plan. To generate a problem instance for verification, we uniformly sample

two distributions a, b from ∆100. Then we sample Cij independently and uniformly

from [0, 1]. As we can see from Figure 6.1i, in all cases, we find solutions that are

sparser than the true optimal transport plan. As the regularization parameter γ

increases, the size of the support of our transport plans increases until we reach the

true support size. For the entropic and exponential regularizers, for γ = 105, the

optimization had not converged so we do not plot those results.

Next, we evaluate how well our objective functions approximate the Wasserstein

distance (the objective of Problem 6.0.1) and how well our transport plans approximate

the true plans. We construct a simple problem instance (as our previous instance
∗All code and data can be found at https://www.dropbox.com/sh/ge52lo3e5vs4dqm/AAC2oFmuS8

oLx1ZzrfMThDxua?dl=0

179

is difficult to calculate for large γ) consisting of two Gaussian distributions with

means ±15 and variance 10. The cost matrix C is given by Cij = 1. Then we

plot OT (a, b) − DROT (a, b) (red line) and |〈C,P ∗ − P ∗φ,ϕ〉| (blue line) versus γ.

Furthermore, the gap between the two lines is φ∗(γ∗(a−P1m)/γ+ϕ∗(γ∗(a−P T1n)/γ.

From our theoretical analysis, we know that all of these quantities should be O(γ−1).

From the plots it is evident that OT (a, b)−DROT (a, b) (red line) and |〈C,P ∗−P ∗φ,ϕ〉|

(blue line) decrease linearly. Finally, since the plots are log-log plot, the plots show

that φ∗(γ ∗ (a−P1m))/γ + ϕ∗(γ ∗ (a−P T1n))/γ also decrease linearly with respect

to γ. Thus, the experiments suggest that the theoretical error rate is tight. That is

the error is Θ(γ−1).

Finally, we test the intuition sketched in our theoretical analysis as to when mass

is created versus destroyed. Specifically that, entropy regularization creates mass, the

exponential regularization destroys mass, and the quadratically regularized problem

does both. To verify this, we uniformly sample two distributions a, b from ∆100 and

sample Cij independently and uniformly from [0, 1]. Then we compute the transport

plan and marginals for all three different regularizers for a variety of different values of

γ. Figure 6.2 shows that our intuition matches exactly what occurs in practice. The

quadratic regularizer both creates and destroys mass; that is, sometimes the yellow

bars (bar chart for a) are bigger and sometimes the yellow bars are smaller. The

exponential regularizer only destroys mass; i.e., the yellow bars are always bigger.

Finally, the entropic regularizer only creates mass; i.e., the yellow bars are always

smaller. In each case, we see that as γ gets bigger, the marginals of the transport plan

better approximate the true marginals.

6.4.2 Domain Transfer

In this section, we explore how our new formulation performs on the task of domain

transfer. We also investigate our intuition as to how the different regularizers affect

180

(i) Source (ii) Exp. (iii) Quad. (iv) Ent. (v) Target

(vi) Source (vii) UOT (viii) ROT (ix) OT (x) Target

(xi) Source (xii) Exp. (xiii) Quad. (xiv) Ent. (xv) Target

(xvi) Source (xvii) UOT (xviii) ROT (xix) OT (xx) Target

(xxi) Source (xxii) Exp. (xxiii) Quad. (xxiv) Ent. (xxv) Target

(xxvi) Source (xxvii) UOT (xxviii) ROT (xxix) OT (xxx) Target

Figure 6.3: Images produced by doing color transfer using different regularizers
(Exponential, Quadratic, Entropy) for DROT and images produced by doing color
transfer using other formulations of optimal transport.

the results. The goal of this section is not to present state of the art results for

domain transfer, but to demonstrate that creating versus destroying mass gives us

different results. And so, being able to decide whether mass is created or destroyed is

a desirable attribute in a problem formulation and algorithmic method.

We compare our formulation DROT against other formulations. Specifically,

181

we compare against standard optimal transport OT, entropic regularization of the

primal ROT, and UOT with entropic regularization of the primal with KL divergence

controlling the deviation from marginals. All of our DROT formulations are solved

using Project and Forget. The other formulations are solved using the python

optimal transport library with the following algorithms: we solve ROT using the

algorithm in Cuturi (2013), OT using the algorithm in Bonneel et al. (2011), and

UOT using the algorithm in Chizat et al. (2016b).

For all domain transfer problems we use the squared Euclidean distance as the cost

function. Thus, once we have computed our transport plans P (obtained from solving

any of the versions of optimal transport), we compute the barycentric projection map

to transfer one data set into the domain of the other data set. That is, because we use

the squared Euclidean distance as the cost, if a, b are the two data sets, the transport

of a to the domain of b, denoted â is given by, âi =
∑n
j=1 Pijbj∑n
j=1 Pij

.

6.4.2.1 Color Transfer.

Color transfer consists of the first domain transfer experiment. In these experiments,

we use the same setup as Blondel et al. (2018b). For each picture, we first perform k

means to cluster the three dimensional pixels in each image, generating k color centers

for each image. These centers are the point masses for the two distributions. The

weight of each center is proportional to the number of points assigned to that cluster

and the cost matrix is given by the Euclidean squared distance between the color

centers. We want to demonstrate two things with this experiment:

1. DROT results in good quality images that look different. The other formulations

of OT, which produce similar pictures, as seen in Figure 6.3.

2. The regularization parameter γ, when used with the quadratic regularizer,

destroys mass and this is evident in the images but when used with the entropic

regularizer, the way in which mass is created is not reflected in the images

182

(although it is in a toy example).

For the first demonstration, we can see the performance of the different regularizers

in Figure 6.3. If we use the entropic regularizer, then the transferred image is more

faithful to the original color distribution. Additionally, we see that entropic regularized

images are cleaner and have fewer artifacts.

For the second demonstration, we see from Figure 6.4, that when γ is small and

we use the quadratic regularizer, we tend to destroy the mass; i.e., the images are

corrupted. Figure 6.4, however, shows that for the entropic regularizer, for all values

of γ, the images look identical. We argue that this phenomenon occurs as a result of

two different phenomena. First, note that the entries in the cost matrix are less than 1.

Because of the entropic regularizer, the critical point of the objective function always

has the entries greater than 1. Thus, the solution to the entropic regularized problem

will always be on the boundary, regardless of the value of γ. That is, mass transport

always occurs. This does not, however, explain why the images look identical. We

conjecture a second phenomenon is at play: when we have a convex cost function, we

conjecture that, changing γ results in creating mass simply by shifting the distribution

upwards (as shown in Figure 6.5). That is, the transport plan maintains the shape

of the distribution and just shifts it up. For images, shifting the distribution by a

bounded amount does not impact the appearance of the color transfer and the images

look similar.

6.4.2.2 MNIST, USPS classification.

Finally, we use domain adaptation for classification. To test the performance of

DROT, we transport between the MNIST training data set and USPS training data

sets. First, we pad the USPS images with zeros so that they are are the same size as

the MNIST images and the use the squared Euclidean distance as the metric between

the two data sets. We then transport the USPS training set to the MNIST domain.

183

(i) γ = 1e1 (ii) γ = 1e2 (iii) γ = 1e3 (iv) γ = 1e4

(v) γ = 1e− 1 (vi) γ = 1e0 (vii) γ = 1e1 (viii) γ = 1e4

Figure 6.4: Images produced by doing color transfer for different values of γ. The top
row is for the quadratic regularizer, and the bottom row is for the entropic regularizer.

(i) γ = 1e1 (ii) γ = 1e2 (iii) γ = 1e3

(iv) Quadratic, γ = 1e1 (v) Quadratic, γ = 1e3 (vi) Quadratic, γ = 1e5

Figure 6.5: Graphs showing that the entropic regularizer maintains the distribu-
tion shape and the quadratic regularizer creates and destroys mass. We used the
squared Euclidean distance as the cost function and performed transport from the red
distribution to the blue distribution.

First, let us examine the appearance of the transported digits. Figure 6.6 shows

what the first 4 digits in the USPS data set look like after they have been transported

to the MNIST domain. We can see again that the entropic regularized transport is the

most faithful to the original image and has the cleanest new digits. We then use the

184

USPS DE OT ROT DQ UOT

Figure 6.6: Images of the first four digits in the USPS dataset, when transported
using to the MNIST domain using various optimal transport problems. DE/DQ refers
to entropic/quadratic regularized version of DROT.

Problem Trained on MNIST Trained on USPS

Dual Entropy 76.46% 62.54%
Dual Quadratic 65.75% 63.79%

OT 62.04% 65.32%
UOT 75.44% 66.16%
ROT 66.99% 63.87%

Table 6.2: Accuracy using a 1 nearest neighbor classifier after transporting the USPS
dataset to the MNIST domain.

transported USPS digits for classification. We try to classify the MNIST digits using

a classifier trained on the transported USPS dataset and to classify the transported

USPS digits using a classifier trained on the MNIST dataset. Table 6.2 shows that

the entropic regularized version performs well.

185

CHAPTER VII

How can Classical Multidimensional Scaling go

Wrong?

7.1 Introduction

Multidimensional scaling (MDS) refers to a class of techniques for analyzing

pairwise dissimilarities between arbitrary objects. The goal is to find an embedding of

points in a (usually) low dimensional space where the pairwise distances between these

points represent, as best as possible, the given pairwise distances between objects

Carroll and Arabie (1998); Borg and Groenen (2005). Apart from the general usefulness

of dimensionality reduction, MDS has been used in a wide variety of applications

including data visualization, data preprocessing, network analysis, bioinformatics, and

data exploration. Due to its long history and being well studied, MDS has many

variations such as nonmetric MDS Shepard (1962a,b), multi-way MDS Kroonenberg

(2008), multi-view MDS Bai et al. (2017), confirmatory or constrained MDS Heiser

and Meulman (1983), etc. (See France and Carroll (2010); Cox and Cox (2008) for

surveys).

One of the oldest and most popular methods for solving MDS comes from Torgerson

Torgerson (1952) who introduced the classical MDS algorithm (cMDS). This algorithm

first centers the squares of the given distance matrix and then uses its spectral

186

decomposition to extract the low dimensional embedding. Part of its popularity is

because this decomposition is very fast and can scale to large matrices. However,

the simplicity and speed of cMDS comes at the cost of being a heuristic; it does not

solve the true MDS problem (compare Equation 7.1 to 7.2). Furthermore, solving the

true MDS problem is computationally expensive. So naturally, a practitioner would

want to know when they can get away with using cMDS and hence a few questions

arise: how bad can the cMDS solution be compared to the true solution? under what

conditions does cMDS perform well/poorly? does the embedding dimension matter?

what if the given (dis)similarity matrix does not come from points in a Euclidean

space? how robust is cMDS (compared to the true solution) to noisy data?

The observation that cMDS is a heuristic or that it can perform poorly in the

presence of noisy data is not new. In addition to the variations of MDS mentioned

previously, several authors Cayton and Dasgupta (2006a); Mandanas and Kotropoulos

(2016); Forero and Giannakis (2012) have proposed even more variations to specifically

address robustness with cMDS. However, despite the widespread use of cMDS and

the awareness of and variations to remedy non-robustness, there is surprisingly little

analysis regarding the above questions. Cayton and Dasgupta (2006a) only give

heuristic arguments that show cMDS is not robust for non-Euclidean distance matrices.

Also mentioned in that paper is the vast body of research on bounding the distortion

of embeddings between various spaces. But this work is motivated more by geometric

and combinatorial concerns and is not related to the above questions which come from

a data analysis perspective.

In this paper we establish theoretical results and give experimental evidence

regarding these questions about cMDS.

187

7.1.1 Problem statements and contributions

Given a distance matrix D whose entries are squared, the MDS problem solves

Dt := arg min
D′=EDM(X),X∈Rr×n

‖D′ −D‖2
F . (7.1)

where given an embedding X, EDM(X) is the corresponding Euclidean distance

matrix. That is,

EDM(X)ij = ‖Xi −Xj‖2
F ,

where Xi, Xj are the ith and jth columns of X.

As mentioned, cMDS does not solve 7.1 but instead solves

Xcmds := arg min
X∈Rr×n

∥∥∥∥XTX −
(
−V DV

2

)∥∥∥∥ , (7.2)

where V is the centering matrix given by V := I − 1
n
J . Here I is the identity matrix

and J is the matrix of all ones.

So we see that Dcmds := EDM(Xcmds) is not the solution to the true MDS problem

but is only an approximation to it. Thus, the question that we are interested in as

follows. Let Dt be the solution to the problem in Equation 7.1, then we are interested

in understanding the quantity err := ‖Dt − Dcmds‖. In particular, can we predict

when err is small without having to compute Dt? Doing so provide practitioners with

multiple advantages.

1. If err is guaranteed to be small, then we can use the cMDS algorithm without

having to worry about loss in quality of the solution.

2. If err is big, we can now make an informed decision about whether benefits of

the speed of cMDS algorithm versus the quality of the solution.

3. Understanding when err is big helps us design algorithms to approximate the

solution to MDS problem that perform better when cMDS fails.

188

4. Understanding err is also the first step in rigorously quantifying the robustness

of the cMDS algorithm.

The main contribution of our paper are as follows.

1. We decompose the error in Equation 7.2 into three terms that depend on the

eigenvalues of a matrix obtained from D. Using this analysis, we show that

there is a term that tells us that as we increase the dimension that we embed

into, eventually, the error starts increasing.

2. Using this analysis, we provide an efficiently computable algorithm that returns a

matrix Dl such that if Dt is the true closest EDM, then ‖Dl−D‖F ≤ ‖Dt−D‖F ,

and empirically we see that ‖Dl −Dt‖F ≤ ‖Dcmds −Dt‖F .

3. While Dl is not metric, when given as input to cMDS instead of D, it results

in solutions that are empirically better than the cMDS solution. This modified

procedure results in a more natural decreasing of the error as the dimension

increases.

7.2 Preliminaries and Background

In this section, we lay out the preliminary definitions and necessary key structural

characterizations of Euclidean distance matrices.

7.2.1 cMDS algorithm

For completeness, we include the classical multidimensional scaling algorithm in

Algorithm 18.

Algorithm 18 Classical Multidimensional Scaling.
1: function cMDS(D, r)
2: X = −V ∗D ∗ V/2
3: Compute µ1 ≥ . . . ≥ µr > 0, U as the eigenvalues and eigenvectors of X
4: return U ∗ diag(

√
µ1, . . . ,

√
µr, 0, . . . , 0)

189

7.2.2 EDM Matrices

Definition 7.1. D ∈ Rn×n is a Euclidean Distance Matrix (EDM) if and only if there

exists a d ∈ N such that there are points x1, . . . , xn ∈ Rd with

Dij = ‖xi − xj‖2
2.

Note that unlike other distance matrices, an EDM consists of the squares of the

(Euclidean) distances between the points.

We give three important structural characterizations of the cone of EDM matrices.

1. Gower (1985a); Schoenberg (1935) show that a symmetric matrix D is an EDM

if only if

F := −(I − 1sT)D(I − s1T)

is a positive semi-definite matrix for all s such that 1T s = 1 and Ds 6= 0.

2. Schoenberg (1938b) showed that D is an EDM if and if exp(−λD) is a PSD

matrix with 1s along the diagonal for all λ > 0. Note here exp is element wise

exponentiation of the matrix.

3. Another characterization is given by Hayden and Wells (1988) in which D is an

EDM if and only if D is symmetric, has 0s on the diagonal, and D̂ is negative

semi-definite, where D̂ is defined as follows

QDQ =

 D̂ f

fT ξ

 . (7.3)

Here f is a vector and

Q = I − 2

vTv
vvT for v = [1, . . . , 1, 1 +

√
n]T . (7.4)

190

Note Q is a unitary matrix.

In addition to characterizations of the EDM cone, we are also interested in the

dimension of the EDM.

Definition 7.2. Given an EDM D, the dimensionality of D is the smallest dimension

d, such that there exist points x1, . . . , xn ∈ Rd with Dij = ‖xi − xj‖2
2.

Let E(r) be the set of EDM matrices whose dimensionality is at most r.

Using Hayden and Wells (1988)’s characterization of EDMs, Qi and Yuan (2014c)

show D ∈ E(r) if and only if D is symmetric, hollow (i.e., 0s along the main diagonal),

and D̂ in Equation 7.3 is negative semi-definite with rank at most r.

This characterization provides the following insight and potential algorithm for

embedding in Rr points whose distances are captured by a general distance matrix

D. First, we conjugate D by Q to obtain the smaller matrix D̂ given in Equation 7.3.

Then, we compute the spectral decomposition of the matrix D̂ and restrict to rank r.

In a sense, the cMDS algorithm attempts to do this; however, it is subtlely different

and, as a result, not the optimal way to reduce the dimension. To make more formal

this analysis in the next section, let us define λ1 ≤ . . . ≤ λn−1 to be the eigenvalues of

D̂.

7.2.3 Conjugation matrices: Q and V

Conjugating distance matrices either by Q (in Equation 7.4) or by the centering

matrix V is an important component of understanding both EDMs and the cMDS

algorithm. We provide some notation and definitions.

Definition 7.3. Given any symmetric matrixA ∈ Rn×n, let us define Â ∈ Rn−1×n−1, f(A) ∈

Rn−1, and ξ(A) ∈ R as follows

QAQ =

 Â f(A)

f(A)T ξ(A)

 .
191

One important connection between Q and V is given in Qi and Yuan (2014c).

Specifically for any symmetric matrix A, we have that

V AV = Q

Â 0

0 0

Q.
Here Â is the matrix given by Definition 7.3.

7.3 Theoretical Results

Throughout this section we fix the following notation. Let D be a dissimilarity

matrix where the entries are squared. Let λ1 ≤ . . . ≤ λn−1 be the eigenvalues of D̂

and U be the eigenvectors. Let ~λ be an n-dimensional vector where ~λi = λi1λi>0 or i>r

for i = 1, . . . , n− 1 and ~λn = 0. Let S = Q ∗

U 0

0 1

. Let Dt and Dcmds be the true

MDS and the classical MDS solutions respectively. Let

C1 =
n−1∑
i=1

λ2
i1i>r or λi>0

C2 = −
n−1∑
i=1

λi1λi>0 or i>r

C3 =
n‖(S ◦ S)~λ‖2

F − C2
2

2

Theorem 7.4. Let r be the dimension we want to embed into and let Dl be the

matrix returned by Algorithm 19. Then,

1. ‖Dt −D‖2
F ≥ ‖Dl −D‖2

F ≥ C1 +
C2

2

r+1

2. ‖Dcmds −D‖2
F = C1 + C2

2 + C3

192

Algorithm 19 Lower Bound Algorithm.
1: function lower(D, r)
2: Compute D̂, f(D) and ξ(D).
3: Compute λ1 ≤ . . . ≤ λn−1, U as the eigenvalues and eigenvectors of D̂
4: Let s = 0.
5: for i = 1 . . . n− 1 do
6: if λi > 0 or i > r then
7: s += λi
8: Set λi to 0
9: E := number of eigenvalues not equal to 0
10: sub := s/(E + 1)
11: ξ(D) += sub, s −= sub
12: for i = 1 . . . n− 1 do
13: if λn−i! = 0 then
14: if λn−i + sub ≤ 0 then
15: λn−i += sub, E −= 1, s −= sub
16: else
17: E −= 1, s += λn−1, sub = s/E
18: λn−1 = 0

19: Let D̂ = U ∗ diag(λ1, . . . , λn−1) ∗ UT

20: return Q ∗
[

D̂ f(D)
f(D)T ξ(D)

]
∗Q

7.3.1 Lower bound for ‖Dt −D‖2
F

In this section, we are interested in finding a lower bound on ‖Dt −D‖F . To do

this, we will construct a matrix M where ‖Dt −D‖F ≥ ‖M −D‖F and hence this

construction provides a new approximation algorithm for the problem. At first, we

treat M as being an EDM matrix in order to decompose ‖M −D‖F . But we will then

relax the EDM conditions on M to obtain the lower bound which we finally denote as

Dl.

Let Q be the unitary matrix in Equation 7.4. Then we know that D is an EDM if

and only if D is symmetric, is hollow and D̂ is negative semi definite. Then conjugating

by Q, due to the invariance of the Frobenius norm, we get that

‖M −D‖F = ‖QMQ−QDQ‖F .

193

Now let

 D̂ f(D)

fT (D) ξ(D)

 = QDQ and let D̂ = UΛUT be the eigen-decomposition.

Then consider the matrix

R :=

U 0

0 1

 .
Then since R is a unitary matrix, we again have that

‖M −D‖F =

∥∥∥∥∥∥∥RTQMQR−

 Λ UTf(D)

fT (D)U ξ(D)

∥∥∥∥∥∥∥
F

Now consider

QMQ =

 M̂ f(M)

fT (M) ξ(M)

If we enforce that M is an EDM, then M needs to be symmetric, hollow, and M̂

needs to be negative semi-definite. Let us now conjugate by R to get

RTQMQR =

 UTM̂U UTf(M)

fT (M)U ξ(M)

Let C := UTM̂U . Then we have that

‖M −D‖2
F =

∑
i 6=j

c2
ij +

n∑
i=1

(cii − λi)2

+ 2‖f(M)− f(D)‖2
2 + (ξ(M)− ξ(D))2

In this case, since M̂ was negative semi-definite and U is unitary, we have that UTM̂U

is still negative semi-definite. If we relax the hollow condition on M , then we can

set f(M) = f(D). Similarly, we know that we must have cii ≤ 0 (C is negative

semi-definite). Thus for all λi > 0, the closest M can be to D is by setting the

194

corresponding cii = 0. Hence if we relax the condition that M must be hollow, then

‖Dt −D‖2
F ≥ ‖M −D‖2

F ≥
n−1∑
i=1

λ2
i1λi>0 =: C1

While this is already a lower bound, we can do better. Instead of completely

getting rid of the hollow condition, we instead relax it so that M has trace 0. In this

case, that is equivalent to RTQMQR having trace 0. Currently, by setting (UTM̂U)ii

to be min(λi, 0), we have that the trace of M is given by

C2 = −
n−1∑
i=1

λi1λi>0.

First note that C2 is negative. Thus, to make the trace 0, we need to increase

the remaining eigenvalues and ξ(M). To find the minimum quadratic solution, we

would need to increase all of the eigenvalues equally. If N is the number of negative

eigenvalues of D̂. Thus we have

‖Dt −D‖2
F ≥ ‖M −D‖2

F ≥
∑
λi>0

λ2
i +

(∑
λi>0 λi

)2

N + 1
.

So far, we have not had any constraint on the dimensionality of the EDM. Let r

be the dimension constraint, that is, we want M ∈ E(r). We have that

‖M −D‖2
F ≥ C1 +

C2
2

r + 1
. (7.5)

However, we may not be able to increase all the eigenvalues equally. This is

because, all of the remaining eigenvalues are negative. It could be possible that if we

increase an eigenvalue by −C2/(r + 1) then it might become positive. Hence, we want

to increase such eigenvalues by as much as we can and have the rest compensate. We

do this on lines 14 through 23 of Algorithm 19.

195

Theorem 7.5. Let κ(r) be the space of symmetric, trace 0 matrices A, such that Â

is negative semi definite of rank at most r. Then we have that Algorithm 19 returns

the matrix Dl such that

Dl = arg min
A∈κ(r)

‖A−D‖2
F .

Note that Theorem 7.5 and Equation 7.5 prove part 1 of Theorem 7.4.

7.3.2 Expression for ‖Dcmds −D‖2
F

In this section we will go through the proof for Theorem 7.4 part 2. The idea is to

decompose

‖Dcmds −D‖2
F = ‖QDcmdsQ−QDQ‖2

F

= ‖D̂ − D̂cmds‖2
F

+ 2‖f(D)− f(Dcmds)‖2
F

+ (ξ(D)− ξ(Dcmds))
2,

which follows from Definition 7.3. We now relate each of these three terms to C1, C2,

and C3.

In the following discussion, let Yr := Xcmds
TXcmds and recall that Xcmds is the

solution to the classical MDS problem given in Equation 7.2.

Lemma 7.6. If G is a positive semi-definite gram matrix, then −1
2
V EDM(G)V =

Q

Ĝ 0

0 0

Q
Proof. First, note that

EDM(G) = diag(G)1T − 2G+ 1diag(G)T

Then since diag(G)1T is a rank 1 matrix where every column is the same, when

196

we center it using V , we see that V diag(G)1TV = 0. Similarly, we have that

V 1diag(G)TV = 0. Thus, we have that

V EDM(G)V = −2V GV

Then dividing by −2 and using the relation between V and Q we get the needed

result.

Lemma 7.7. The actual value obtained by Xcmds in Equation 7.2 is C1

4
. Specifically,

if let Yr := XT
cmdsXcmds, then we have that

4‖Yr − (−V DV)/2‖2
F =

n−1∑
i=1

λ2
i1i>r or λi>0 =: C1.

Proof. To see this, let B be any matrix, then we first note the following

‖B − (−V DV)/2‖2
F =

∥∥∥∥∥∥∥B −Q
−D̂/2 0

0 0

Q
∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥∥QBQ−
−D̂/2 0

0 0

∥∥∥∥∥∥∥

2

F

Here the first equality is true, due to the relationship between Q and V , and the

second is true, due to the unitary invariance of the Frobenius norm. For the classical

MDS algorithm, we minimize the term on the left hand side with the constraint that B

is positive semi-definite with rank at most r. Now conjugating a positive semi-definite

matrix by unitary matrix results in a positive semi-definite matrix and does not change

the rank. Thus, we can solve the MDS problem, by instead minimizing the last term

with the restriction that QBQ is positive semi-definite with rank at most r. We know

the solution to this is to keep the r biggest positive eigenvalues of −D̂/2. Then since

197

λ1 ≤ . . . ≤ λn−1, we have that

‖Yr − (−V DV)/2‖2
F =

1

4

n−1∑
i=1

λ2
i1i>r or λi>0 =

C1

4
.

Lemma 7.8. −1
2
D̂cmds = Ŷr.

Proof. We see this via the following calculation.

Q

−D̂cmds/2 0

0 0

Q = −V DcmdsV/2

= −V EDM(Yr)V/2

= Q

Ŷr 0

0 0

Q
The first equality is due to the relationship between Q and V expressed in Section

7.2.3. The second is because Dcmds, by definition, is given by EDM(Yr). Finally, the

last equality is due to Lemma 7.6.

Lemma 7.9. If Tr(D) = 0, then

(ξ(D)− ξ(Dcmds))
2 =

(
n−1∑
i=1

λi1i>r or λi>0

)2

=: C2
2 .

Proof. Since Dcmds is an EDM, we have that Tr(Dcmds) = 0. Thus, we have that

Tr(D −Dcmds) = 0. Finally, since Tr(QAQ) = Tr(A) for any matrix A, we have that

0 = Tr(D −Dcmds) = Tr(D̂ − D̂cmds) + ξ(D)− ξ(Dcmds)

198

Then we know from the construction in Lemma 2, that

Tr(D̂ − D̂cmds) =
n−1∑
i=1

λi1i>r or λi>0.

Rearranging and solving gives the needed quantity.

Lemma 7.10.

2‖f(D)− f(Dcmds)‖2
F =

n‖(S ◦ S)~λ‖2
F − C2

2

2
=: C3.

Now we have all the pieces that we need to prove Theorem 7.4 part 2. To see that,

write ‖D−Dcmds‖2
F as ‖QDQ−QDcmdsQ‖2

F . Then the difference can be broken down

into ‖D̂ − D̂cmds‖2
F which is given by Lemma 7.7 and 7.8, plus (ξ(D) − ξ(Dcmds))

2

which is given by Lemma 7.9 and finally the 2‖f(D)− f(Dcmds)‖2
F term which is given

by Lemma 7.10.

While C1 and C2 are intuitive enough to think about C3 is more obtuse. To

simplify it, we consider the following. If δ is an entry of a random n by n unitary

matrix, then as n goes to infinity the distribution for δ
√
n converges to N (0, 1) and

that the total variation between the two distributions is bounded above by 8/(n− 2)

Easton (1989); Diaconis and Freedman (1987). Thus, from this we can assume that

the variance of an entry of a random n by n orthogonal matrix is about 1/n. Thus,

this lets us heuristically think about S ◦ S ≈ 1
n
11T . Then we have that

n‖(S ◦ S)~λ‖2
F ≈

n

n2
‖11T~λ‖2

F =
n

n2
‖1C2‖2

F = C2
2 .

Thus, we can think of C3 as roughly constant or at worst being O(C2
2).

199

7.3.3 Error Analysis for cMDS

Now that we have decomposed the error for the cMDS algorithm, we can analyze

this to better understand the failure modes. Through out this discussion let r be the

dimension we are embedding into. First, we compare the cMDS error against our

lower bound for ‖Dt −D‖2
F . Note our lower bound is given by C1 + C2

2/(r + 1). On

the other hand the MDS error is equal to C1 +C2
2 +C3. Taking the difference, we get

C3 +
r

r + 1
C2

2 .

Using our heuristic from before, we expect that C3 is a constant or at worst case

O(C2
2). Thus, this tells us that C2

2 is the term that we should focus our attention

towards. To better understand this, let us recall a couple of facts. First, recall that

λ1 ≤ . . . ≤ λn−1 are the eigenvalues of D̂ and that

C2 =
n−1∑
i=1

λi1i>r orλi>0.

As we increase the embedding dimension, we take more positive eigenvalues of

−V DV/2. Due to our relation between V and Q, we know that if eigenvalues

of −V DV/2 are 0 along with µ1 ≥ . . . ≥ µn−1, where µi = −λi/2. Thus, as as we

increase the embedding dimension, we have that C2 becomes bigger.

If we now suppose that a significant number of the µs are negative, that is, a

significant number of the λs are positive then we could run into an issue. Specifically,

as the embedding dimension increases, we want our error to decrease. However, we

just said that C2 gets bigger as the embedding dimension increases. The only way

C2 becoming bigger implies that C2
2 decreases, is if C2 is negative. However, if a

significant number of the λs are positive, we have that C2 will eventually be positive

and then after that dimension, the error will increase as we increase the dimension!

200

On the other hand, if we give the matrix Dl form Algorithm 19 as input to cMDS,

then we see that the error terms C1 and C2 vanish. Specifically, if Dlcmds is the metric

obtained from running cMDS on Dl, then we have that

‖Dlcmds −Dl‖2
F = 2‖f(Dlcmds)− f(Dl)‖2

F .

Unfortunately, since Dl is not hollow, we cannot use Lemma 7.10 to estimate this.

However, we have gotten rid of the problematic term. Then using the triangle

inequality, we have that

‖Dlcmds −D‖2
F ≤ ‖Dlcmds −Dl‖2

F + ‖Dl −D‖2
F

≤2‖f(Dlcmds)− f(Dl)‖2
F + ‖Dt −D‖2

F .

Thus, we see that the approximation error produced by this procedure is now only

2‖f(Dlcmds) − f(Dl)‖2
F . This gives us a new approximation algorithm for the true

MDS problem.

(i) SNR 3e4 (ii) SNR 324 (iii) SNR 3.24

Figure 7.1: Plot showing the relative squared error with respect to original EDM
matrix and the perturbed EDM for the cMDS algorithm.

7.4 Experiments

In this section, we look at three important types of input dissimilarity matrices

D for which D̂ has positive eigenvalues. In all cases, we show that the classical

201

(i) Portugal (ii) Isomap with heart (iii) Perturbed with SNR 3.24

Figure 7.2: Plots showing the cMDS error as well as the three terms that we decompose
the error into. For the perturbed EDM input, this is error with respect to the perturbed
EDM.

(i) Portugal (ii) Isomap with Heart (iii) Perturbed with SNR 3.24
- Input

(iv) Perturbed with SNR 3.24 -
Original

(v) Celegans (vi) Heart

Figure 7.3: Plots showing the relative squared error of the solutions with respect to
the input matrix. For the perturbed EDM input, we show the relative squared error
with respect to the original EDM (figure (d)) and the perturbed EDM (figure (c)). For
the Portugal data set, we couldn’t compute the true solution due to computational
restraints.

MDS algorithm does not perform as previously expected; instead, it matches our new

error analysis. In each case, we demonstrate that our new algorithm Lower + cMDS

outperforms cMDS.

Perturbed Euclidean Metrics. Here we take an EDM and perturb it by adding

noise. We consider a variety of different noise levels and show that even in the low

202

(i) Isomap with Heart(ii) Perturbed with
SNR 3.24

(iii) Celegans (iv) Heart

Figure 7.4: Plots showing the relative squared error of the various solutions with
respect to the true solution.

(i) Isomap on Heart (ii) Perturbed with
SNR 3.24

(iii) Celegans (iv) Heart

Figure 7.5: Plot showing the distortion with respect to the input metric. In the case
when the input is a perturbed EDM this is the distortion with respect to the original
EDM. For the Celegans data set the cMDS solution and the Lower + cMDS solution
have infinite distortion and the curves are not plotted.

noise regimes, somewhat counterintuitively, the cMDS error increases as the dimension

increases. If D is the input matrix, we perturb it with a matrix G that is symmetric,

hollow, and has entries drawn independently from a Gaussian. We define the signal

to noise ratio SNR as ‖D‖2
F/‖G‖2

F . We consider 3 different values for the SNR,

specifically 3e4, 3e2 and 3. We use the heart dataset Detrano et al. (1989) and treat

each feature as a coordinate. Doing so produces a Euclidean dataset with a distance

matrix whose dimensionality is lower than the number of features. Hence, the data

live on a lower dimensional structure.

Non-Euclidean Metrics. We know from Section 7.2, that if D is a symmetric,

hollow matrix, and D̂ is negative semi-definite, then D is an EDM. However, when

D is non-euclidean, D̂ necessarily has positive eigenvalues. We use two different

data sets to illustrate non-Euclidean metrics; Celegans Rossi and Ahmed (2015) and

Portugal Rozemberczki et al. (2019). Celegans is an unweighted metabolic graph for

203

the Caenorhabditis elegans worm and Portugal is a social network of Twitch steamers

in Portugal. We use the all pairs shortest path metric.

Isomap. One common dimensionality reduction technique is Isomap Tenenbaum

et al. (2000a). In Isomap, a k nearest neighbor graph is constructed from the data,

on which the all pairs shortest path metric is computed, and then cMDS is used to

embed the metric into Euclidean space. Here, we again use the heart data set.

7.4.1 Results

First, let us see what happens when we perturb an EDM. Here we consider two

different measures. Let D be the original input, Dp be the perturbed, and Dcmds be

the cMDS solution. Then we measure

‖Dp −Dcmds‖2
F

‖Dp‖2
F

and
‖D −Dcmds‖2

F

‖D‖2
F

.

As we can see from Figure 7.1, as the amount of noise increases both quantities

eventually increase. The increase in the first quantity suggests that cMDS does not

approximate its input well. The increase in the second quantity suggests that cMDS

does not do a good job of denoising either. Thus, suggesting that the cMDS objective

is not a good one.

Next, we see how cMDS does on graph datasets and with Isomap on Euclidean

data. Here we plot the relative squared error (‖D−Dcmds‖2
F/‖D‖2

F). Figure 7.3 shows

that, as predicted, as the embedding dimension increases, the cMDS error eventually

increases as well. For both the Portugal dataset alone and with Isomap on the heart

dataset, this error eventually becomes worse than the error when embedding into two

dimensions! As we can see from Figure 7.2, this increase is exactly due to the C2
2

term. Also, as heuristically predicted, the C3 term is roughly constant.

Finally, let us see how the true MDS solution and new approximation algorithm

204

perform. Here we look at the relative squared error again. As we can see from Figure

7.3, in all cases, we have that the true MDS solution performs much better than cMDS.

We can also see from Figure 7.3 (c) and (d) that the true MDS solution and our new

approximation solution are closer to the original EDM compared to the perturbed

matrix. Thus, they are better at denoising than cMDS. In addition to testing it on all

of the previous test cases, we also test its performance for dimensionality reduction

on Euclidean data. Figure 7.3 also shows us that our lower bound actually tracks

the true MDS solution extremely closely. Finally, we see that our new approximation

algorithm Lower + cMDS performs better than just cMDS and, in most cases, fixes

the issue of the error increasing with dimension.

We compare the relative squared difference of the Frobenius norm from the true

solution to the lower bound matrix, the cMDS solution, and our approximation

algorithm solution. As shown in Figure 7.4 both Lower and Lower + cMDS are much

better approximations of the true solution!

Finally, to make sure that cMDS is not just scaling the metric, we examine the

distortion in the output metric as compared to the input. From figure 7.5, we see

that for the heart datatset, for both the heart-isomap input and the perturbed input,

they have roughly the same distortion and it is significantly greater than 1. Thus,

showing that the squared error seen earlier is not just due to a scaling issue. For the

Celegans dataset, both cMDS and our new approximation algorithm Lower + cMDS

have infinite distortion so they are not plotted on the graph.

205

CHAPTER VIII

How to Optimally Train Stacked Linear Denoising

Autoencoders?

8.1 Introduction

All real-world datasets are noisy. One way to deal with this noise is to denoise the

data. See surveys such as Tian et al. (2018, 2020) for many examples of denoising

techniques. If one must work with noisy data, then many different techniques such

as robust optimization Gorissen et al. (2015); Bertsimas et al. (2011); Ben-Tal et al.

(2009), early stopping Prechelt (1998), and various forms of activity and weight

regularization have been historically employed.

A different approach to dealing with noisy data is to learn good representations of

the data. A common way to do this is to add more noise. The archetypal example of

this method is stacked denoising autoencoders Vincent et al. (2010). Here we take our

noisy data, add more noise and train an autoencoder to learn good features. Another

popular strategy is to use Dropout Hinton et al. (2012); Wan et al. (2013); Srivastava

et al. (2014), where we randomly zero out either neurons or connections. Another idea

that is commonly used is data augmentation. In a revolutionary paper, Krizhevsky

et al. (2012) showed that augmenting the dataset with noisy versions of the images,

greatly improved the accuracy. See Shorten and Khoshgoftaar (2019) for a survey on

206

(i) Test Image (ii) More Noisy
Training Image

(iii) Denoised with
θ̂trn = θ̂tst = 168

(iv) Denoised with
θ̂trn = 30 as given
by Equation 8.2

Figure 8.1: Figure showing the noisy versions as well as the denoised version of the
German Flag. Figure (a) shows the test image. Figure (b) shows the noisy image
that we should be training on. Figure (c) shows the denoised version when trained
with θ̂trn = θ̂tst = 168. As example of such an image is Figure (a). Figure (d) shows
the denoised version when trained with θ̂trn = 30. An example of such an image is in
Figure (b). The experiment was run 5 times, and image with the lowest MSE for each
denoiser was chosen. Note the way the data matrix was constructed, the data has
rank 7.

data augmentation methods. Adding noise has also been shown to have a connection

to more traditional techniques such as regularization. For example, it has been shown

that adding Gaussian noise is the equivalent of adding a Tikhonov regularizer Bishop

(1995).

Another area where noise is useful is adversarial learning. Szegedy et al. (2014)

discovered that adding a small amount of noise to images, such that the difference

is not perceptible to the human eye, can completely disrupt a neural network. They

then showed that adding such examples to the training set improved the robustness

of the neural network. See Akhtar and Mian (2018); Chakraborty et al. (2018) for

surveys on the topic.

This dual nature of noise, both as a hindrance and a helpful tool, lets us conclude

that some noise is helpful while too much noise is disruptive. This then leads us to

the following principal question. How much noise is too much noise?

The importance of changing θ̂trn can be seen in Figure 8.1. Here, we took an image

of the German flag and then created a noisy version of the flag, as shown in Figure

207

8.1i. We then train two linear autoencoders to denoise the data. First is trained with

the same noise level as the test set. The second is trained on an image (Figure 8.1ii)

with more noise, whose SNR is given by our formula. As we can see, training with the

SNR adjusted resulted in training a denoiser that performs better.

In this paper, we attempt to answer this question theoretically. The main contri-

butions of our paper are as follows:

1. Under some general assumptions about the noise, we derive an analytical formula

for the expected mean squared generalization error for denoising rank one data

by a linear autoencoder. This formula depends on the number of data points, the

number of features, and the signal to noise ratio (SNR) of the training and test

data. This lets us compute the optimal training SNR to denoise a given data set.

For fixed test data SNR, our formula shows that the optimal training

SNR is usually not the same as that of the test data, but in fact, lies

on a V shaped curve that depends on the number of training points.

2. Let c be the ratio of the number of features to the number of training points.

Then we show via theoretical analysis that the optimal training SNR θ̂opt−trn

depends on c as follows. When c = 0, we show that θ̂opt−trn and the test data

SNR are the same. Then as c→ 1, we have that θ̂opt−trn → 0. Finally, as c→∞,

we have that θ̂opt−trn →∞. Thus, if we plot θ̂opt−trn versus c, then we see that

the curve is V shaped.

3. We empirically verify our theoretical results and demonstrate that the θ̂opt−trn

versus c curve is V shaped for denoising general data with a linear autoencoder.

In terms of related recent theoretical work, Pretorius et al. (2018) derived the

learning dynamics of a linear autoencoder in the presence of noise. They also establish

some relationships between the noise added and weight decay. However, they do not

quantify the optimal amount of noise that should be. Gnansambandam and Chan

(2020) did look at the problem of what is the optimal amount of noise that should

208

be added. However, they looked at it from a perspective of minimizing the variance

of the performance when the amount of noise in the test dataset deviates from the

expected amount.

The rest of this paper will be organized as follows. In Section 8.2, we provide the

mathematical framework for the rest of the paper. In Section 8.3, we derive all of our

theoretical results. In Section 8.4.1, we empirically verify our theoretical findings. In

Section 8.4.2, we show that V shaped θ̂opt−trn versus v shaped curve exists beyond

our theoretical setup.

8.2 Set-Up

In an SDAE, each layer of the initial network is separately pre-trained. Specifically,

let X be training data and X̃ be a noisy version of X. Let f and g be the encoder and

decoder networks respectively. Then in an SDAE, we learn f, g such that we minimize

L(g(f(X̃)), X) for some loss function L. Then the encoder network f , becomes the

first layer of the SDAE. Let X1 = f(X) and X̃1 be a noisy version of X1. We then

train a new encoder f1 and a new decoder g1 to minimize L(g1(f1(X̃1)), X). Then f1

becomes the next layer of the SDAE. In this manner, we create a stacked network

that is then fine tuned on the downstream task.

In Vincent et al. (2010), they suggest that f should be parameterized as f(X) =

sigmoid(WX+ b), whereas for g, they suggest using either an affine decoder, in which

case the loss function L is the L2 loss function or using an affine + sigmoid decoder,

in which case the loss function L should be a cross-entropy type loss. In this paper,

we restrict ourselves to affine decoders and encoders.

8.2.1 Learning Good Representations

To theoretically analyze how much noise should be added, we use the expected

generalization error of the autoencoder as the quantity that we want to optimize.

209

Let Z be some latent variable and let F be a generative model so that our data is

generated as

X = F (Z).

Let Atst be a noise matrix sampled from some noise model so that we have test data

of the form

Ytst = θtstF (Ztst) + Atst ∈ RM×Ntst .

Let θ̂2
tst := ‖θtstF (Ztst)‖2

F/‖Atst‖2
F be the test data signal to noise ratio (SNR), and

assume that θ̂tst is sampled form a distribution Dtst. Additionally, we also have access

to a limited number (Ntrn) of training data. That is, we have

Xtrn = F (Ztrn) ∈ RM×Ntrn .

We are now interested in the following question. What is the optimal distribution

Dtrn, such that if θ̂trn := ‖θtrnF (Ztrn)‖2
F/‖Atrn‖2

F is sampled from Dtrn and we train

our autoencoder to minimize

‖θtrnXtrn − g(f(θtrnXtrn + Atrn))‖2
F ,

then we minimize the expected mean squared generalization error

Eθ̂trn,θ̂tst,Atst,Atrn [‖θtstF (Ztst)− g(f(Ytst))‖2
F/Ntst].

In addition to taking the expectation with respect to the test SNR θ̂tst and the noise

in the test data, we also take the expectation with respect to the training data SNR

θ̂trn and the noise in the training data. Since, we added the noise to the training

data, our learned encoder f and decoder g are random variables. Hence we take the

expectation with respect to the training noise as well. For the rest of this paper, we

210

suppress the variables over which the expectation is being taken, unless it is not clear

from the context. Theta with a hat will always refer to the SNR, while Theta without

a hat will be the constant in front of X. Also, let θ̂opt−trn be the random variable that

is the optimal training SNR. We refer to this random variable and its distribution

interchangeably.

8.2.2 Assumptions about the noise

We consider a fairly general noise model that captures isotropic Gaussian noise

but is applicable beyond that. The specific assumptions on our noise model are as

follows. If A ∈ RM×N is a noise matrix, then we assume that the entries of A are

independent, have zero mean, have variance 1/M , and have bounded fourth moment.

Additionally, we assume that A is bi-unitarily invariant. That is, if Q is an M by M

unitary matrix, A is sampled from the measure space (RM×N , µ), F is the map defined

by A 7→ QA and F∗(µ) is the push-forward measure defined by this map, then we

have that µ = F∗(µ). We also want a similar condition to hold for the map A 7→ AQ̃,

where Q̃ is any unitary N by N matrix. The final assumption is that with probability

1, A has full rank. If a noise matrix A satisfies these assumptions, we use the

phrase A satisfies the standard noise assumptions to signal this fact.

8.2.3 Data Generation Assumptions

For the theoretical part of this paper, we assume that F is a linear function.

Specifically, let u ∈ RM be our feature vector. For ease of notation, we assume that

‖u‖ = 1. Then to generate N data points, we sample our latent variable Z := v ∈ RN

and form the data matrix X = F (Z) = uvT . For us, we have two such vectors

vtrn ∈ RNtrn and vtst ∈ RNtst . Here, we shall assume that ‖vtrn‖2 = 1 and ‖vtst‖2 = 1.

We make no other assumptions on u, vtrn, vtst except that they are given and fixed.

Due to our noise assumptions, we have that E[‖Atrn‖2
F] = Ntrn. Thus, the signal

211

to noise ratio given by θ̂2
trn = ‖Xtrn‖2

F/‖Atrn‖2
F = θ2

trn/Ntrn. Similarly for the test

data.

8.2.4 Problem Set Up

To summarize, we have test data of the form Ytst = θtstXtst + Atst, where Atst

satisfies the standard noise assumptions, and θ̂tst is sampled from some distribution

Dtst. Then, we want to find θ̂opt−trn = θtrn/
√
Ntrn, such that if W is the linear

autoencoder that is the solution to the following problem

minimizeŴ ‖θtrnXtrn − Ŵ (θtrnXtrn + Atrn)‖2
F , (8.1)

then, the expected mean squared error, given by

EMSE := E
[
‖Xtst −WYtst‖2

F

Ntst

]

is minimized.

8.3 Theoretical Results

The main theoretical result of the paper is summarized below in Theorem 8.1.

Theorem 8.1. Let Xtrn = uvTtrn. ∈ RM×Ntrn and Xtst = uvTtst ∈ RM×Ntst , where

‖u‖2 = ‖vtrn‖2 = ‖vtst‖2 = 1. Let Atrn and Atst be noise matrices that satisfy the

standard noise assumption. Let Ytrn = θtrnXtrn +Atrn for some θ̂trn = θtrn/
√
Ntrn and

let Ytst = θtstXtst + Atst, where θ̂tst = θtst/
√
Ntst is sampled from Dtst. Then suppose

that W minimizes ‖θtrnXtrn −WYtrn‖F . Finally, let c = M/Ntrn. Then, if c < 1, we

212

have that

E
[
‖Xtst −WYtst‖2

F

Ntst

]
=

E[θ̂2
tst]

(1 + θ̂2
trnM)2

+
θ̂2
trnc+ θ̂4

trnM

(1 + θ̂2
trnM)2(1− c)

+ o(1)

and if c > 1, we have that

E
[
‖Xtst −WYtst‖2

F

Ntst

]
=

E[θ̂2
tst]

(1 + θ̂2
trnNtrn)2

+
θ̂2
trn

1 + θ̂2
trnNtrn(c− 1)

+ o(1).

The error term o(1) goes to 0 as N,M →∞.

Before we prove this result, let us look at some of its consequences. First, if we

ignore the error term, we can differentiate the above formula to get that the following

formula gives the optimal training SNR.

θ̂2
opt−trn =

E[θ̂2

tst]
(
1− c

2−c

)
− c

M(2−c) c < 1

2E[θ̂2
tst](c− 1)− 1

Ntrn
c > 1

(8.2)

Hence, we can see that if we want to sample θ̂opt−trn from a distribution Dtrn then we

want Dtrn to be a constant distribution at the above value. The formulas in Equation

8.2 also describe the V shaped θ̂opt−trn versus c curve as shown in Figure 8.2.

Second, let us translate this result into the SDAE setup from Vincent et al. (2010).

In the paper, Vincent et al. (2010), showed that adding noise resulted in better

features. One assumption that is implicit in their set up is that their data is already

noise. That is, they are given

X̂trn = F (Ztrn) + Âtrn and X̂tst = F (Ztst) + Âtst.

213

Figure 8.2: Plot showing the equations in Equation 8.2. HereM = 1000 and θ̂tst = 0.1.

In this case, they empirically show, using classification accuracy as the yardstick, that

training with

Ytrn = X̂trn + Ãtrn = F (Ztrn) + Âtrn + Ãtrn,

results in improved performance. This interpretation of Vincent et al. (2010) is

supported by the fact that they show SDAEs have no performance improvement on

MNIST and RECT, but show significant performance improvements on noisy variants

of MNIST and RECT. That is, their results hold when they start with noisy

datasets.

Translating this to our setup, we get the following result. For c < 1, a lower SNR

in the training data as compared to the test data results in better performance. Thus,

we start to provide theoretical justification for the superior performance

of stacked denoising autoencoders.

To begin our theoretical analysis, let us start by first computing the expected

generalization error for a given θtrn and θtst, instead of having distributions for the

two values. We prove Theorem 8.1, via the following steps.

1. Derive an analytical formula for W .

2. Using Step 1, decompose the EMSE into various terms.

3. Estimate each term using random matrix theory.

The proofs for all of the lemmas have been moved to the appendix. Here we present

214

a proof sketch that details most of the high-level ideas.

8.3.1 Step 1: Formula for W

In our current setup, we know that W is the solution to a least-squares problem.

Hence W = XtrnY
†
trn. Expanding this out, we get the following formula for W .

Proposition 8.2. Let h = vTtrnA
†
trn, k = A†trnu, s = (I − AtrnA†trn)u, t = vtrn(I −

A†trnAtrn), β = 1 + θtrnv
T
trnA

†
trnu, σ1 = θ2

trn‖t‖2‖k‖2 + β2, and σ2 = θ2
trn‖s‖2‖h‖2 + β2.

If β 6= 0 and Atrn has full rank then

Wopt =

θtrnβ
σ1

uh+
θ2trn‖t‖2

σ1
ukTA†trn c < 1

θtrnβ
σ2

uh+
θ2trn‖h‖2

σ2
usT c > 1

.

For the case, when we have Gaussian noise, then with probability 1, Atrn has full

rank. Additionally, for Gaussian distributions, β is a random variable whose expected

value is equal to 1, and that the distribution is highly concentrated. Thus, Proposition

8.2 applies when Atrn is isotropic Gaussian noise. We shall show later that any noise

matrix that satisfies the standard noise assumptions, in fact, has that the distribution

for β is highly concentrated around 1.

8.3.2 Step 2: Decompose the formula for EMSE.

First, we decompose the error into two parts.

Lemma 8.3. If Atst has mean 0 entries and Atst is independent of Xtst and W , then

EAtst [‖Xtst −WYtst‖2
F] = EAtst [‖Xtst −WXtst‖2

F]

+ EAtst [‖WAtst‖2
F].

This lets us deal with each term separately. Let us now look at the second term.

215

Lemma 8.4. If the entries of Atst are independent with mean 0, and variance 1/M ,

then we have that EAtst [‖WAtst‖2] = Ntst
M
‖W‖2.

Thus, using Lemmas 8.3 and 8.4, we see that

EAtst [‖Xtst −WYtst‖2
F] = ‖Xtst −WXtst‖2

F +
Ntst

M
‖W‖2

F .

Note that this did not need any assumptions on W or Xtst. All that was needed were

the assumptions on Atst. Thus, this holds more generally. This decomposition also

follows from Bishop (1995).

Before we can decompose the first term, we prove the following lemma.

Lemma 8.5. If W is the solution to Equation 8.1, then

Xtst −WXtst =

β
σ1
Xtst if c < 1

β
σ2
Xtst if c > 1

.

In light of Lemma 8.5 and the fact that ‖Xtst‖2
F = θ2

tst, we see that the expected

mean squared generalization error is given by,

EAtst
[
‖Xtst −WYtst‖2

F

Ntst

]
=

1

Ntst

β

σi
θ2
tst +

1

M
‖W‖2

F ,

where σi depends on whether c < 1 or c > 1.

Finally, let us look at the ‖W‖ term.

Lemma 8.6. If β 6= 0 and Atrn has full rank, then we have that if c < 1,

‖W‖2
F =

θ2
trnβ

2

σ2
1

Tr(hTh) + 2
θ3
trn‖t‖2β

σ2
1

Tr(hTkTA†trn)

+
θ4
trn‖t‖4

σ2
1

Tr((A†trn)TkkTA†trn)

216

and if c > 1, then we have that

‖W‖2
F =

θ2
trnβ

2

σ2
2

Tr(hTh) + 2
θ3
trn‖h‖2β

σ2
2

Tr(hT sT)

+
θ4
trn‖h‖4

σ2
2

Tr(ssT).

8.3.3 Step 3: Estimate using random matrix theory.

While the formula given by Lemmas 8.3, 8.4, and 8.6 are correct, we need a simpler

formula to analyze the situation. Using ideas from random matrix theory, we can

simplify the expression for ‖W‖2
F . To do so, we first need to prove Lemmas 8.7 and

8.8.

The main idea behind the lemmas is that due to the bi-invariance of Atrn, the

expectation of the trace products of various matrices derived from Atrn is determined

by the expected value of some function χ of the eigenvalues of A. However, instead of

directly computing this expected value, we note that for any matrix A, that satisfies

the standard noise assumptions, if we let M,N → ∞, with M/N → c, then the

eigenvalue distribution converges to the Marchenko - Pastur distribution Götze and

Tikhomirov (2011, 2003, 2004, 2005); Bai et al. (2003). Götze and Tikhomirov (2004)

showed that the distribution of the eigenvalues converged almost surely with a rate

of at least O(N−1/2+ε) for any ε > 0. Thus, we can use the expected value of the

χ(λ) for λ sampled from the Marchenko - Pastur distribution as an approximation.

Here we note that the approximation error is a negligible term. Additionally, while we

have limited ourselves to having the Marchenko-Pastur distribution as the limiting

distribution, in principle using the same argument, we could prove analogous results

for any other limiting distribution.

For space reasons, we provide only one instance of the lemmas in the main text.

The complete versions can be found in the appendix.

Lemma 8.7. Suppose A is an p by q matrix such that the entries of A are independent

217

and have mean 0, variance 1/q, and bounded fourth moment. Let Wp = AAT and let

Wq = ATA. Let C = p/q. Suppose λp, λq are a random eigenvalue of Wp,Wq. Then

1. If p < q, then E
[

1
λp

]
= 1

1−C + o(1).

2. If p < q, then E
[

1
λ2p

]
= 1

(1−C)3
+ o(1).

3. If p > q, then E
[

1
λq

]
= C−1

1−C−1 + o(1).

4. If p > q, then E
[

1
λ2q

]
= C−2

(1−C−1)3
+ o(1).

Lemma 8.8. Suppose A is an p by q matrix that satisfies the standard noise assump-

tions. Let x, y be unit vectors in p and q dimensions. Let C = p/q. Then

1. E[Tr(xT (AAT)†x)] =

1

1−C + o(1) p < q

q
p

C−1

1−C−1 + o(1) p > q

.

2. E[Tr(xT (AAT)†(AAT)†x)] =

1

(1−C)3
+ o(1) p < q

q
p

C−2

(1−C−1)3
+ o(1) p > q

.

3. E[Tr(yT (ATA)†y)] =

p
q

1
1−C + o(1) p < q

C−1

1−C−1 + o(1) p > q

.

4. E[Tr(yT (ATA)†(ATA)†y)] =

p
q

1
(1−C)3

+ o(1) p < q

C−2

(1−C−1)3
+ o(1) p > q

.

Using these technical lemmas, we can now deal with all of the terms in the

expressions in Lemma 8.6. First, let us look at the non-trace terms.

Lemma 8.9. If Atrn satisfies the standard noise assumptions, then we have that

1. E[β] = 1 + o(1) and Var(β) =
θ2trnc

(max(M,Ntrn)|1−c|)) + o(1).

2. If c < 1, then E[‖h‖2] =
c2

1− c
+ o(1) and Var(‖h‖2) =

c3(2 + c)

Ntrn(1− c)3
+ o(1).

3. If c > 1, then E[‖h‖2] =
c

c− 1
+ o(1) and Var(‖h‖2) =

c2(4− c)
M(c− 1)3

+ o(1).

4. E[‖k‖2] =
c

1− c
+ o(1) and Var(‖k‖2) =

2− c
M(1− c)3

+ o(1).

5. E[‖s‖2] =
c− 1

c
+ o(1) and Var(‖s‖2) = 2

(c− 1)2

Mc2
+ o(1)

218

6. E[‖t‖2] = 1− c+ o(1), Var(‖t‖2) = 2
(1− c)2

Ntrn

+ o(1).

Let us now look at the various trace terms as well.

Lemma 8.10. Under standard noise assumptions, we have that

E[Tr(hTkTA†trn)] = 0

and

Var(Tr(hTkTA†trn)) = χ3(c)/Ntrn,

where χ3(c) = E[1/λ3], λ is an eigenvalue for AAT and A is as in Lemma 8.8.

Lemma 8.11. Under standard noise assumptions, we have that

Tr((A†trn)TkkTA†trn) =
c2

(1− c)3
+ o(1)

and

Var(Tr((A†trn)TkkTA†trn)) =
3

M
χ4(c)− 1

M

c4

(1− c)6

where χ4(c) = E[1/λ4], λ is an eigenvalue for AAT and A is as in Lemma 8.8.

Lemma 8.12. Under the same assumptions as Proposition 8.2, we have that Tr(hT sT) =

0.

Lemmas 8.9, 8.10, 8.11, and 8.12 tell us that all of the terms are highly concentrated.

Thus, even though such terms may not be uncorrelated, we can use the fact that

|E[XY]−E[X]E[Y]| < |
√

Var(X)Var(Y)|, to treat the terms as if they are uncorrelated.

Since these variances have now been shown to be small, we will abuse notation by

writing an equal to sign while dropping the error terms.

For example, we have that σ1 = β2 + θ2
trn‖t‖2‖k‖2. Using Lemma 8.9, and our

abuse of notation, we have that E[σ1] = 1 + θ2
trnc. Similarly, E[σ2] = 1 + θ2

trn.

219

Finally, using these lemmas, we can simplify the expressions in Lemma 8.6 to get

the following formulas for the expected generalization error. If M < Ntrn, we have

that

EAtrn [‖W‖2] =
θ2
trn

(1 + θ2
trnc)

2

c2

(1− c)
+
θ4
trn(1− c)2

(1 + θ2
trnc)

2

c2

(1− c)3

= c2 θ2
trn + θ4

trn

(1 + θ2
trnc)

2(1− c)
.

On the other hand, M > Ntrn, we have that

EAtrn [‖W‖2] =
θ2
trn

(1 + θ2
trn)2

c

c− 1
+

θ4
trn

(1 + θ2
trn)2

c2

(c− 1)2

c− 1

c

=
c

c− 1

θ2
trn(1 + θ2

trn)

(1 + θ2
trn)2

=
θ2
trn

1 + θ2
trn

c

c− 1
.

If c < 1, then

EAtrn,Atst
[
‖Xtst −WYtst‖

Ntst

]
=

θ2
tst

Ntst(1 + θ2
trnc)

2
+
c2

M

θ2
trn + θ4

trn

(1 + θ2
trnc)

2(1− c)

and if c > 1, then

EAtrn,Atst
[
‖Xtst −WYtst‖

Ntst

]
=

θ2
tst

Ntst(1 + θ2
trn)2

+
1

M

θ2
trn

1 + θ2
trn

c

c− 1
.

Recall that θtrn = ‖Xtrn‖ is not the SNR. Our SNRs are given by θ̂2
trn =

θ2trn
Ntrn

. We

can substitute this into our formulas and get that if c < 1 then

EAtrn,Atst
[
‖Xtst −WYtst‖

Ntst

]
=

θ̂2
tst

(1 + θ̂2
trnM)2

+
θ̂2
trnc+ θ̂4

trnM

(1 + θ̂2
trnM)2(1− c)

220

(i) c = 0.5 (ii) c = 10 (iii) c = 2, θ̂tst = 0.01

Figure 8.3: Figures (a) - (b) show the accuracy of the formula for the expected mean
squared error for c = 0.5, 2 for fixed value of θ̂tst = 0.1. Figure (c) empirically verifies
the existence of a regime where training on pure noise is optimal. Here the red and
green lines represent E[θ̂2

tst] and E[θ̂2
trn] respectively. Each empirical data point is

averaged over at least 50 trials.

and if c > 1, then.

EAtrn,Atst
[
‖Xtst −WYtst‖

Ntst

]
=

θ̂2
tst

(1 + θ̂2
trnNtrn)2

+
θ̂2
trn

1 + θ̂2
trnNtrn

1

c− 1
.

Thus, we have derived formulas for the expected mean squared error. It is important

to note that this is only accurate when Ntrn or M is large. Empirically, being bigger

than 500 seems to be enough.

Finally, we see that the formula for the expected MSE is linear in θ̂2
tst. Thus, if

Dtst is no longer a delta distribution, we can replace θ̂2
tst with E[θ̂2

tst]. Thus, we have

the final piece and we have finished proving Theorem 8.1.

Eθ̂tst,Atrn,Atst

[
‖Xtst −WYtst‖

Ntst

]
=

E[θ̂2
tst]

(1 + θ̂2
trnM)2

+
θ̂2
trnc+ θ̂4

trnM

(1 + θ̂2
trnM)2(1− c)

221

8.3.4 Training with Batches

Suppose our training set data consists of K batches Y (i)
trn = θ

(i)
trnX

(i)
trn + A

(i)
trn for

i = 1, . . . , K. Here we assume that θ̂(i)
trn is sampled from some distribution Dtrn. Let us

assume that we have a total of Ntrn data points and each batch has size Ntrn/K. Then

in this case, we are trying to compute W by minimizing
∑K

i=1 ‖θ
(i)
trnX

(i)
trn −WY

(i)
trn‖2.

This is equivalent to minimizing ‖[X(1)
trn . . . X

(K)
trn]−W [Y

(1)
trn . . . Y

(K)
trn]‖2. Then, we see

that [Y
(1)
trn . . . Y

(K)
trn] = [θ

(1)
trnX

(1)
trn . . . θ

(K)
trnX

(K)
trn] + [A

(1)
trn . . . A

(K)
trn]. We still have that the

norm squared of the noise matrix is Ntrn. However, the norm squared of the signal

matrix is given by
∑k

i=1(θ
(i)
trn)2 = 1

K

∑k
i=1K(θ

(i)
trn)2. Then we have that

1

K

k∑
i=1

K

Ntrn

(θ
(i)
trn)2 =

1

K

K∑
i=2

(ˆθ(i))2 ≈ E[θ̂trn].

Thus, in this case, we see that if we have batches instead, then we should replace

the θ̂2
trn in the formula with E[θ̂2

trn].

8.3.5 Training with no noise

One thing that is important to note is that in the current regime, where we obtain

W = XtrnY
†
trn there is no value of θtrn, even asymptotically, that gives us W = uuT ,

which is the solution obtained when we train with no noise. We would imagine that as

θtrn →∞, W should converge to XtrnX
†
trn = uuT . However, the pseuodoinverse is not

continuous in the limit. In fact, this is also seen from our error formula. For W = uuT ,

we know that the expected generalization error is 1/M . However, using our formula

as θtrn → ∞ our error goes to either 1
M(1−c) or 1

M−Ntrn depending on whether c < 1

or c > 1. Thus, without carefully looking at the formula, it is not clear that training

with noise is even beneficial. Indeed there are regimes where training with noise is

not beneficial. One such regime is when our test data has a high SNR. This further

supports the results from Vincent et al. (2010), where they showed no improvement

222

(i) Theoretical Curve (ii) Empirical Curve on MNIST

Figure 8.4: Plots showing the optimal generalization error versus c. Figure (a) is the
theoretical plot for θ̂tst = 0.1 and M = 1000. Figure (b) is empirically computed on
MNIST for θ̂tst = 0.1.

on MNIST and RECT. Both of which are datasets with high SNR. However, there

exist a lot of regimes where we should train with noise.

8.3.6 c close to 1

We see from our formula that as c → 1, we have that θ̂trn → 0. In fact, we see

that the formulas suggest that θ̂2
trn should be negative when c is close to 1. We should

interpret this as θ̂opt−trn = 0. That is, if we have as many training data points as we

have features, then it is optimal to train on a purely noisy sample! This is extremely

surprising, as either having more or fewer training samples results in a regime where

we do not want to train on only noise!

If we dig deeper and look at the optimal generalization error as c varies (obtained

by plugging in the formula for θ̂opt−trn into the formula for the expected MSE), then we

see a surprising result that as c gets closer to 1, the generalization error increases and

as c goes to 0 or as c goes to infinity, we have that the generalization error decreases.

Thus, if we want to train a linear autoencoder, it might actually be beneficial to

reduce the number of training points (if we only have a limited number to begin with).

We managed to show that this phenomena exists beyond rank 1 data. Specifically, it

exists for MNIST as well. An example of this can be seen in Figure 8.4.

223

(i) Theoretical Curve (ii) Linear model (iii) LRL model (iv) LSLS model

Figure 8.5: Graphs showing the “V” shape for the θ̂opt−trn vs c curve. The theoretical
curve is based on Equation 8.2 with θ̂tst = 0.1 and M = 1000. Figures (b)- (d) are
with the MNIST dataset with Gaussian noise so that ˆthetatrn = 0.1 and the optimal
θ̂trn is computed empirically.

8.4 Experiments

Experimentally, we do two things. First, we experimentally verify our theoretical

formula and predictions. Second, we move beyond linear autoencoders and linear data

and demonstrate the existence of the V shaped optimal θ̂trn versus c. More details,

graphs annd experiments for pre-training SDAEs can be found in the appendix.

8.4.1 Verifying Theoretical Predictions

In our first experiment, we verify the accuracy of our formula for the expected

mean squared generalization error given in Theorem 8.1. For c < 1, we set Ntrn =

Ntst = 1000, M = 500 and θ̂tst = 0.1. For c > 1, we let M = 1000 and Ntrn = 100.

We can see the results in Figure 8.3. Here we see that our formula fits the expected

error almost exactly.

The next thing we empirically verify is that the optimal θ̂trn can be 0. As shown

in Figure 8.3iii, if we let Ntrn = 500, M = 1000, and θ̂tst = 0.01, then the best

generalization error is achieved when we train with θ̂trn = 0.

The above experiments, were for dirac delta distribution for Dtst and a single

batch for Xtrn. Suppose that we have non-constant distributions for Dtst and that

we multiple batches for the training data, where θ̂(i)
trn, the SNR for the ith batch, is

sampled from some non-constant distribution Dtrn. Then to verify that the formulas

224

are still accurate, we present results for two different combinations of distributions for

Dtst and Dtrn. First, Dtrn is an appropriately scaled uniform distribution and Dtst is

an exponential distribution. Second, Dtrn is an exponential distribution and Dtst is a

Gaussian distribution. As shown in Figures D.1vii and D.1viii, as long as E[θ̂2
trn] and

E[θ̂2
tst] are known, then our formula is accurate.

Figure 8.6: Figure showing the accuracy of the formula when Dtst and Dtrn are
distributions. Here c = 0.1, and θ̂tst = 0.1

8.4.2 Beyond Linear Data and Linear Autoencoders

Instead of rank 1 data, we now switch to using MNIST. For the test data, we use

the standard MNIST test dataset of 10,000 images. Since we are looking at denoising,

we add Gaussian noise to the data to produce a dataset with θ̂tst = 0.1. For the

training set, we consider the first Ntrn images for Ntrn = 20, 200, 700, 1000, 5000, 20000.

Hence, we get a wide variety of values for c. We trained three different autoencoders

on the data. First, a linear autoencoder with the mean squared loss function. Second,

a Linear-ReLU-Linear (LRL) autoencoder with the mean squared loss function. Third,

a Linear-Sigmoid-Linear-Sigmoid (LSLS) autoencoder with binary cross-entropy as

the loss function. As we can see from Figure 8.5ii and Figure 8.5iii, this V shaped

curve exists for real-world data and non-linear LRL autoencoders. However, this V

shaped curve is not always present, as shown in Figure 8.5iv, as it does not exist for

the LSLS architecture.

Finally, we note that when Ntrn = 700, 1000, we have that c ≈ 1 and for the linear

autoencoder, Figure 8.5ii shows that θ̂opt−trn is extremely close to 0. Thus, empirically

verifying that the surprising phenomenon, where we want to train on extremely noisy

data, also exists beyond rank 1 data. Further, we are also interested in how the

optimal generalization error changes as c changes. This can be seen in Figure 8.4. As

we can see, even for MNIST dataset, we have this phenomenon where training on

225

more data can result in worse performance. Fortunately, for the LRL architecture, we

found that training with more data points results in strictly superior performance!

8.5 Future Work

There are many avenues of future work that our paper opens up. One avenue

of future work that the authors are interested in, is to determine, either theoreti-

cally or empirically - for what architectures, training strategies, loss functions, and

generalization error functions does this V curve exist?

226

CHAPTER IX

Deep Greek: A Framework for Reconstructing Greek

Text

9.1 Introduction

Greek papyri are the most ancient form of manuscripts that have preserved Greek

texts for us. They date back from the third century BCE to the sixth century CE and

mostly come from Egypt because only there the climate was dry enough to preserve

them (while in the rest of the Mediterranean world the less dry climate did not allow

for the preservation of these ancient manuscripts—hence we have no papyri surviving

from mainland Greece unless they had been carbonized).

The problem with working with papyri is that they are fragmentary. This means

that the medium (i.e., the papyrus sheet) has holes and breakages because these

texts were found in ancient dumps or submerged by layers of dry sand or in mummy

cartonnages (plastered layers of papyrus used for masks or panels to cover all or part

of the mummified and wrapped body). What we have, therefore, are not complete

manuscripts, but rather tiny fragments of what once were full rolls or codices (these

were the two different formats of ancient books—the switch between roll and codex

occurred around the fourth or fifth century CE, and papyrus was used for both

formats). Scholars aiming at publishing an edition of the texts contained in those

227

fragments are faced with the problem of ‘filling the gaps’ of highly fragmentary texts.

In addition, according to ancient writing conventions, Greek texts were written

without diacritics (i.e., with no accents or breathings—the latter indicated aspiration on

initial vowels), without punctuation marks, and without separation between different

words (i.e., in scriptio continua). Hence, what we normally read as the first line of

the Iliad :
Μῆνιν ἄειδε, θεά, Πηληϊάδεω Ἀχιλῆος

was written as:
μηνιναειδεθεαπηληιαδεωαχιληος

In fact, in a papyrus we might have something like:

μ...να..δεθεα....ιαδε.αχ...ος

where the dots stand for missing letters (due to lacunae, i.e., breakages in the papyrus,

or due to missing fibers or fading of the original ink). Furthermore, the Greek language

in papyri is not standard, and there are many irregularities due to ignorance of standard

forms (if a standard existed), varying dialects, misspellings and typos, and iotacism

(the conversion of several vowel sounds into iota).

In this paper, we take the first step towards literary papyri reconstruction. Specif-

ically, we look at the problem of text reconstruction for texts written in standard

classical Greek, preserved by direct tradition (i.e. medieval manuscripts) and available

through reliable modern editions. This simplifies the problem by getting rid of issues

such as iotacism and misspellings. However, this is already a complex task due to the

highly inflected nature of ancient Greek, and due to the fact that we will strip out

letters and diacritics from our data to ’recreate’ a situation as similar as possible to

that of a ’real’ papyrus text. The advantage of using a corpus of Greek prose and

poetry that is known and transmitted through a reliable tradition is twofold. First, we

can train the model with texts which we can choose as belonging to a specific dialect,

228

time-frame, author, or genre. Second, since we know and can compare the results

with the original texts, we can check the accuracy of the model. We hope to use this

preliminary work as a stepping stone to working with real papyri in the future.

To address the problem of text reconstruction in this controlled environment, we

present a new machine learning model and demonstrate its effectiveness in reconstruct-

ing text. Specifically, the main contributions of our paper are the following.

1. Create a data pipeline that breaks the problem into meaningful steps. We also

present methods for generating synthetic data to train models for each step. We

show that this pipeline results in a 2-7% increase in character accuracy when

compared to models that do not use the pipeline. For example, when we have

30% of the characters missing, our pipeline improves the accuracy from 81% to

87%.

2. When we have a small number of missing characters, our data pipeline can be

used to efficiently and accurately reconstruct the data. When have 10% of the

characters, due to the missing diacritics, about 70% of the input characters are

correct. In such cases our reconstructed texts are about 95% accurate.

3. When we have a large number of missing characters, our data pipeline can be

used to get a reconstructed version of the text. For example, if we start with

texts that are about 45% correct, our pipeline manages to output texts, that

are a valid sequence of Greek words, that are around 75% correct.

4. We also test our model on out of sample texts. That is, texts written in a

different dialect. We have reasonable performance on these texts already. Thus,

suggesting that our trained model can be used for transfer learning.

The rest of the paper is organized as follows. Section 9.2 talks about previous work

done on this problem and related problems. Section 9.3 provides details about the

data used, the specific scope of the problem, and the general workflow to address the

problem. Section 9.4 provides more details on machine learning techniques used to

229

address our problem. Section 9.5 details how we create the synthetic data and provides

more details about the models used. Section 9.6 presents numerical experiments to

demonstrate the ability of our method.

9.2 Related Work

The first attempt at solving the text reconstruction problem with neural networks

was the work of Berglund et al. (2015). In this paper, the authors create the bidirec-

tional RNN model to fill in missing letters in English text. Following this, Sun et al.

(2017) developed a new sampling technique known as bidirectional beam sampling

and made progress in solving the problem in the realm of video captioning. More

recently, with the advent of transformer networks Vaswani et al. (2017) and the BERT

framework Devlin et al. (2019), many different architectures have been developed to

predict a missing word in a given context. However, these techniques work on the

word level, and as we will see, we need to work at the character level.

Recent work by Assael et al. (2019b) looks into reconstructing ancient Greek

inscriptions. Assael et al. (2019b) develop a new model Pythia based on sequence to

sequence networks with attention to address this problem. The input to the problem

addressd in Assael et al. (2019b) is very different from our input. Additionally, the

scope of the problem is also very different, as detailed in Section 9.3.1.

9.3 Reconstructing Text

In this section, we discuss the details related to the exact scope of our problem

and the data used.

230

9.3.1 Scope of DeepGreek

Compared with Pythia, the scope of our model is quite different. Pythia is designed

specifically to fill in Greek inscriptions. Our long term goal, on the other hand, is

to fill in Greek literary papyri. Literary papyri cover, in principle, the entire spectrum

of Greek literature, so the training data has to be different from what was done for

Pythia.

9.3.2 Data Source

Literary texts, both in prose and poetry, can be written in a variety of dialects. The

leading Greek dialectal groups are Ionic, Attic, Aeolic, and Doric. Furthermore, from

the Hellenistic period on (i.e., ca. from the third century BCE on), Greek developed

into a more standard language, roughly corresponding to Attic, called Koine, ‘common

(language)’. Training our model with all types of dialects would have been too vast as

a task. For this first test, we decided to train the model with Attic and Koine Greek.

Hence, we selected texts (both prose and poetry), written in Attic or Koine Greek

from the fifth century BCE to the third century CE, with the earliest author being

Aeschylus (first half of the fifth century BCE) and the latest one Athenaeus (third

century CE). While we have restricted our training data, this is not a restriction on

the model. In principle, we can expand our training data to include texts written

in Ionic, Aeolic, and Doric dialects of Greek. However, for this paper, we will limit

ourselves to Attic and Koine Greek.

Our training data consists of texts that have been preserved by the medieval

manuscript tradition taken from Crane (1987). The full list of texts used can be found

in the Appendix. We focus on using such texts as the goal is to study the ability

of algorithms to reconstruct the text in the simplified setting of standard classical

Greek, before we can build towards being able to look at more complex texts, like

those preserved in papyri.

231

9.3.3 Data Workflow

Figure 9.1: The leftmost circle shows the kind of input that we expect, and the
rightmost circle shows the reconstructed version of the text that we want. The other
circles are intermediate stages of our reconstruction process.

The general workflow by which we will address this problem can be seen in Figure

9.1. The leftmost circle displays the kind of inputs that we expect to get. The final goal

is to reconstruct the text into the form seen in the rightmost circle. The in-between

circles will be the various stages in which the text is reconstructed. The overall stages

are:

1. Filling in letters. Given a text without any punctuation, spaces, and diacritics,

and with missing letters, we want to fill in the missing base Greek letters. The

green circle in Figure 9.1 displays an example of the input text, and the yellow

circle displays an example of the desired output. This problem will be the most

difficult stage. The model to address this problem will be called Learn2Fill.

2. Filling in Diacritics. Given a sequence of Greek characters without any spaces,

punctuation, or diacritics, the goal is to fill in the missing diacritics. The yellow

circle displays an example of the input text, and the red circle displays an

example of the desired output. The model to address this problem will be called

Learn2Diacritic.

3. Filling in spaces. The final stage is to divide the text into words by adding

spaces. Again an example is shown in Figure 9.1. The red circle displays the

input, and the blue circle displays the desired output. The model to address

232

this problem will be called Learn2Space.

Stage 3, is easily addressed by a person with professional knowledge of ancient

Greek. Similarly, adding diacritics, which is part of what we do in stage 2, is entirely

ruled based and is relatively easily achieved. However, these cannot be done until we

have filled in the missing base letters (stage 1).

9.4 Method

To do each stage, we will first train a neural network whose architecture is seen in

Figure 9.2. In each case, the input to the neural network will be a string S of length

2n+ 1. Here we will think of the n+ 1st letter as the letter that we want to either

fill in, put a diacritic on, or decide if there is a space after. Let us call this character

C. Let P be the string of the first n characters before C and let Q be the string

of the last n characters after C. We will assume that the characters come from an

alphabet Σ. Each character will then get a one-hot vector encoding. That is, the ith

character is assigned a vector in R|Σ| where the ith coordinate is a one, and the rest

of the coordinates are zeros. Thus, neural network takes in matrix of size 2n+ 1× |Σ|.

Since we will be using a sequence to sequence model. Our neural network, will output

a matrix of size 2n+ 1× |Σ|.

Let us now suppose that we are trying to fill in the base letter, the rest of the

stages are similar. Thus, we have some text T of length N that has no diacritics,

spaces, and has missing letters. Now in general when we train our model, we will

consider fixed n and N will be bigger than 2n+ 1. Hence we need to do some work

to fill in the whole text. One way in which we could fill in the whole text is that we

could give our model an input of size N × |Σ| and then use the output to fill in the

missing letters. However, if N is large, such a method would require using the model

on inputs that have different distribution (since N 6= 2n+ 1) compared to the training

data. One way to fix this would be instead break the text into chunks of size n and

233

then fill in each independently.

We will instead use beam sampling. To get a handle on beam sampling, let us

assume for now that the first n characters of T do not have any missing letters. Now

let i be the index of the first missing letter. Then consider the sub-string Ti of length

2n+ 1 that starts at the (i−n)th character and continues until the (i+n)th character.

We will give Ti as an input to our neural network and the n+ 1st column of our output

will a prediction for the ith letter. So we let S be a list of the |S| most likely characters

that could be filled into the ith position along with their respective likelihoods. We

then fill in the missing letter with each of the possibilities in S and predict the letter

in the (i+ 1)st position using a sub-string Ti+1. This way for each entry s ∈ S, we get

a list Ls of the possible characters for the (i+ 1)th positions. Thus, for any l ∈ Ls, we

can now compute the probability of having the sequence sl as the characters in the

ith and the (i+ 1)th place. We now have a lot more than |S| sequences of length two,

so we will trim our list of possible sequences to the |S| most likely outcomes. When

we predict a letter that we already know, the list Ls will have size 1, while when we

are predicting a letter that we do not know, the list Ls will have size |Σ|. We will

continue this until our list S contains sequences of length M . This, M is known as

the length of the beam, and |S| is the width of the beam.

Now we had the assumption that the first n characters were present in T . Hence

to fill in the first n characters, we will use the above method, but whenever we want

to predict a character in the ith place for i ≤ n, we will let Ti be the string of the

first 2n+ 1 characters of T and then use the ith column of the output of the neural

network as the prediction. Similarly for the last n characters.

9.4.1 Neural Network Architecture

To address this problem, we are going to use a hybrid neural network structure.

Specifically, we will use the shallow and wide network shown in Figure 9.2. To get a

234

better sense of the neural network, let us discuss what each part of the network does.

Figure 9.2: Neural Network Architecture for Learn2Fill, Learn2Diacritic,
Learn2Space.

9.4.2 Embedding Layer

The first layers of our network are two embedding networks. Recall that out input

does not have any spaces. Hence we cannot use word embeddings as Pythia does.

Instead we will be use character embeddings. Now there are two different kinds of

character embeddings that we could use. The first is a fixed embedding. That is

for each letter s ∈ Σ we have a unique vector vs ∈ Rd where d is the embedding

dimension.

235

Due to the highly inflected nature of the language, we do not want to used fixed

embedding per character. Hence we followed Zhang and LeCun (2015) to learn context

dependent character embeddings. Zhang and LeCun (2015) showed at we can use a

three layer convolutional network to learn context dependent character embeddings.

Here we use 1 dimensional convolutions and pad so that the output sequence has the

same length as the input sequence.

9.4.3 Encoder and Decoder

The encoder is three bidirectional LSTM layers stacked on top of each each other.

While the decoder is four bidirectional LSTM layers stacked on top of each each other.

As with sequence to sequence models, the initial hidden state of the first layer of the

decoder is the set to be the hidden state for the last encoder layer. Since we are using

a bidirectional LSTM for both, this means that the hidden states for the forward

LSTM of the last layer of the encoder is are the hidden states for the forward network

of first layer of the decoder and similarly for the backward LSTM network of the

bidirectional LSTM layer. We also have attention layers between the decoder LSTM

layers.

9.5 Creating Training Data

Since our data consists of complete texts with no characters missing, we must

synthetically create training data that captures the fragmentary nature of papyri. We

also want our training data to have no spaces and diacritics. Furthermore, since we

know that we are going to use beam search to fill in the missing letters in a text,

our training data should replicate the type of inputs that the neural network would

encounter while beam searching.

236

9.5.1 Filling in Letters

For this problem, we expect our input to be a string whose alphabet has 25 different

characters. These 25 characters are the 24 base Greek characters as well as a character

“_” to encode missing data. In ancient Greek, there are actually 25 base Greek

characters. Specifically, there are two different variants of the letter sigma. Sigma,

written as σ, occurs in the middle of the word, whereas ς occurs at the end of the

word. Since we want to work with text that has no spaces, we replace both of these

with the Greek lunate sigma symbol C . The latter is a way to write sigma both in the

middle of words and at the end. It is conventionally used in papyrology because often

scholars do not know where one word ends and the next one begins. Lunate sigma,

then, makes sigma work like any other letter of the Greek alphabet independently

from word-boundaries. An example of the input string, before the one-hot encoding,

can be seen below.

πιτελουμενδεηδη︸ ︷︷ ︸
P

τ︸︷︷︸
C

ουδειπνουτωνφαλ︸ ︷︷ ︸
Q

9.5.1.1 Erasing Characters in Input

During beam search, we fill in the text from left to right. Hence we must have that

all letters are present in P , while Q has missing letters. C will always be assumed to

be missing. Hence we want our input to look like the following:

πιτελουμενδεηδη︸ ︷︷ ︸
P

︸︷︷︸
C

ο δε νου ωνφ︸ ︷︷ ︸
Q

Additionally, different parts of the text will have different percentages of missing

characters. Thus, during training, we want Learn2Fill to encounter varying levels

of missing information in Q. Thus, every time we create a training batch, we sample

a p from uniformly from [0, 2/3]. Then for each character in Q, with probability p, we

change that character to missing. This uniform sampling of missing letters does not

237

precisely match the distribution of missing letters in papyri. In papyri, we tend to

have long runs of missing letters. Hence to account for that, we divide Q into blocks of

k characters, and then for each block, we decide independently if that block is present

or missing. This procedure helps us concentrate the missing information and better

matches the real-world scenario.

9.5.1.2 Corrupting Non Missing Characters

Additionally, when we are using beam search to fill in a text, some of the letters in

P would have been filled in by Learn2Fill earlier. Since Learn2Fill is unlikely to

be 100% accurate, we need to account for this error. Hence, we should corrupt the

letters in P . Specifically, for each character c in P with probability p, we uniformly

randomly select a character ĉ from Σ and replace c with ĉ. Here, every time we create

a new batch of training data, a new p is sampled uniformly from [0, 1/5]. A sample

input now looks like the following. The red characters are corrupted characters.

πζτελωυμενδεηδη︸ ︷︷ ︸
P

︸︷︷︸
C

ο δε νου ωνφ︸ ︷︷ ︸
Q

9.5.2 Filling in Diacritics

For this problem, we expect our input to be a string whose alphabet has 139

different characters. This includes all lower case Greek letters except for ᾒ, ᾢ, ᾲ, ῂ, ῲ,

ᾃ, ᾓ, ᾣ, ᾥ. This is because these letters do not show up in our training texts. Note,

however, that other characters with iota subscripts do appear in the text. The output

of Learn2Diacritic is a 139 dimensional vector. Thus, the base letter in the output

of Learn2Diacritic, need not be the same as the input. Thus, Learn2Diacritic

can correct mistakes in the text.

Again, we would like the input to Learn2Diacritic to match the kinds of inputs

that would be encountered while doing beam search to fill in the diacritics. When

238

doing beam search, we will fill in the diacritics from left to right. Thus, our prefix

P must already have diacritics filled in. We also expect our inputs to be outputs

from Learn2Fill. Thus, we know that the output is not 100% correct. Hence we

corrupt the inputs to Learn2Diacritic during training so that it matches the inputs

received during actual use. We use the same procedure detailed in Section 9.5.1.2.

Here we sample p uniformly from [0, 1/5]. However, for P , we corrupt the letters into

any other letter (with diacritics), and for Q, we only have base letters, so we corrupt

these letters to other base letters. With probability p, we also corrupt C to some

other base letter.

9.5.3 Filling in Spaces

At this point, we have reconstructed most of the missing information, and it is

trivial for a human to fill in the spaces. The inputs to our final neural network

Learn2Space is a text of length 2n + 1 characters with no spaces. Again since

we expect our outputs from Learn2Accent not to be 100% correct, we corrupt

the inputs here as well. The output of the neural network is either a 0 or a 1. It is

supposed to be a 0 if there is no space after the (n+ 1)st character, and it is supposed

to be a 1 if there is a space after the (n+ 1)st character. Here we corrupted 10% of

the letters.

9.6 Experimental Results

To evaluate our model, we will have to test our data pipeline in multiple different

ways and on multiple different types of data sets. In Sections 9.6.2, 9.6.3, and 9.6.4,

we will test the performance of our neural network in solving each of the stages. Here,

the inputs will be synthetically created, as described in Section 9.5. For each model,

we will take a test string with 40,641 characters and test each model by using the

model to address their respective problems on this text using beam search. After we

239

test each individual stage, we will test stages 1 and 2 together in Section 9.6.5. Finally,

we explore whether we can generalize to other types of texts in Section 9.6.6. For all

of the experiments we set n = 10.

9.6.1 Human Evaluation

As was shown in Assael et al. (2019b), humans only got 40% of the missing

characters correct when attempting to fill in the missing letters. In our case, we

postulate that this is even worse, as we start with much less information (no diacritics

and spaces).

9.6.2 Filling in the Missing Letters: Learn2Fill

Block Model Percentage Missing
size 10% 20 % 30% 40% 50%

1 seq2seq 89% 82% 75% 64% 52%
1 BLSTM 85% 79% 72% 61% 50%

2 seq2seq 77% 69% 60% 50% 41%
2 BLSTM 74% 66% 57% 49% 38%

3 seq2seq 63% 58% 49% 42% 34%
3 BLSTM 63% 56% 47% 40% 33%

Table 9.1: Accuracy of missing letter prediction when using beam search to fill in a
∼40,000 character text T for different percentages and block sizes of missing characters
in T for different network architectures.

Since this is the most difficult task in the pipeline, we use this task to compare

against other possible neural network architectures. Specifically, we compare against

a bidirectional LSTM (BLSTM). To make a fair comparison, we give both models

the same amount of context. All models have roughly 10 million parameters. The

embedding layers for each model has the same structure, and we use beam sampling

with the same width and length to fill in the missing letters. All models were trained

with the same compute resources for the same time period. As we can see from Table

240

9.1, when we will use beam sample to fill in our text string for various percentages

and block sizes of missing letters, we see that the sequence to sequence model has the

better performance.

Looking at the results more closely, we see that as the block size increases, that

is, as the missing information gets more concentrated, the performance of our model

decreases. There could be two reasons for this. First, we do not sample the missing

characters in blocks when training the network. Thus, when we test the network on a

text where the missing letters are sampled in blocks our test data is different from

our train data. The other reason could be that as the missing information gets more

concentrated the problem becomes harder. To see this imagine the extreme case where

all of the missing information is concentrated in one contiguous block. We also see

that the concentration of the missing characters has a much more significant impact

on the accuracy when compared to the percentage of missing characters. That is

having the 10% missing in blocks of 3, the accuracy is much worse than having 30%

missing in blocks of 1. This highlights one of the main difficulties with actual papyri -

the concentration of missing text.

9.6.3 Filling in Diacritics: Learn2Diacritic

Figure 9.3 shows us the testing accuracy for the Learn2Diacritics neural

network. Here we have that p% of the characters in the prefix P are corrupted to

some other letter in our alphabet of size 139. The middle character C is corrupted

to one of the base letters with p% of the time, and the post fix Q has p% of the

characters corrupted to other base letters as well. Thus, we have that at least p% of

the characters in the input are not correct. This does not include the fact that Q

has missing diacritics. As we can see from Figure 9.3, once p ≥ 4%, we have higher

accuracy than 100− p. This implies that, in many instances, Learn2Diacritic not

only fills in the missing diacritics but corrects corruptions in the base letter. Thus,

241

Learn2Diacritic will fix some of the mistakes that Learn2Fill makes. This shows

us that our model can be adapted for text emendation.

Figure 9.3: Learn2Diacritic testing accuracy for different probability of corrupting
letters in P,Q,C.

We then took our ∼40,000 character length test text and tested the accuracy of

Learn2Diacritic for different concentrations and percentages of corrupted letters.

Similar to the case when we filled in the missing base letters, to get the beam search

started, we would need to fill the first n characters differently. Thus, to get around

this, we append a known phrase to the beginning and end of our text.

In complete contrast to the situation we have with Learn2Fill, Figure 9.4 shows

that the amount of corrupted information plays a more prominent role than the

concentration. We also see that we do not lose any accuracy when we transition from

the neural network stage to the stage when we use beam search to fill in the diacritics

for a whole text. This is because we make so few errors, and we account for the errors

that we do make by employing corruption during the training stage.

242

Figure 9.4: Accuracy for Learn2Diacritic for a text T of length ∼40,000 characters
for varying block sizes and percentages of corrupted letters in T .

% Missing 10 20 30 40

Block Full Text Character Accuracy
size Orig. Split Comb. Orig. Split Comb. Orig. Split Comb. Orig. Split Comb.

1 69% 97% 94% 62% 93% 89% 54% 87% 81% 46% 79% 74%
2 70% 96% 94% 62% 91% 87% 54% 83% 80% 46% 74% 71%
3 69% 94% 93% 62% 88% 86% 59% 81% 77% 47% 72% 69%

Table 9.2: Percentage of characters correct before (orig) and after having filled in the
base letters and the diacritics for our test text for varying percentage of missing text
and varying block sizes. Here Split refers to the accuracy of using Learn2Fill followed
by Learn2Diacritic, whereas Comb. refers to Learn2FillAndDiacritic.

9.6.4 Filling in Spaces: Learn2Space

Learn2Space has a test accuracy of 96%. Note that we do not have spaces in the

input to the neural network. Thus, in this case, future outputs of the neural network

do not depend on the previous outputs. Hence, beam searching provides no advantage

here, and the additional test is not needed.

243

% Missing 10 20 30 40

Full Text Character Accuracy
O. R. I. O. R. I. O. R. I. O. R. I.

Text 1 69% 97% 28% 63% 96% 33% 56% 91% 35% 48% 84% 36%
Text 2 70% 90% 20% 64% 84% 20% 56% 75% 19% 45% 63% 18%
Text 3 67% 90% 23% 60% 82% 22% 52% 76% 24% 47% 68% 21%
Text 4 66% 78% 12% 61% 72% 11% 54% 64% 10% 47% 56% 9%

Table 9.3: Table showing the percentage of characters correct before (O.) and after
(R.) having filled in the base letters and the diacritics for the 4 out of sample texts
with varying percentage of missing text. The improve (I.) column is the increase in
accuracy between original and the reconstructed text.

9.6.5 Learn2Fill and Learn2Diacritic

Finally, we test our whole pipeline. To do this, we take our ∼40,000 character test

string, throw away some letters, all of the diacritics, and the spaces and fill in the

missing letters and diacritics.

We also demonstrate why the modular pipeline was needed. To do so, we

train a model Learn2FillAndDiacritic that performs stage 1 and stage 2 to-

gether. For the comparison to be fair, Learn2FillAndDiacritic has 20 million

parameters, since Learn2Fill and Learn2Diacritic each had 10 million parame-

ters. Learn2FillAndDiacritic was also trained for the same amount of time as

Learn2Fill and Learn2Diacritic combined.

We can see the accuracy for varying percentages of missing data in Table 9.2.

To get a sense of how much information is reconstructed, Table 9.2 also shows the

percentage correct for the text that we get as input. As we can see from the table,

when we have small amount of missing letters, we reconstruct the text with high

accuracy. In the cases, when we have large amounts of missing text, we achieve

significant improvement in the percentage correct. Additionally, even when we high

amounts of missing data, our output is a sequence of valid Greek words. Thus

showing that this method reconstructs text in this setting. Furthermore, we see that

244

Learn2FillAndDiacritic has a lower accuracy than the split models.

9.6.6 Other Types of Texts

In addition to testing our model on a test text from our corpus, we would also like

to test our model on four texts that differ from our training data. Text 1 is similar

to the text in our model (Attic Greek prose of the fifth century). Text 2 is from the

same period but is poetry instead of prose (Attic comedy). Text 3 is from the same

period, but it is written in a different dialect, not present in our data set (Ionic prose

of the fifth century BCE); text 4 is poetry written much earlier than the fifth century

BCE and in a very different type of Greek compared to what we have in our data set.

Here we tested the accuracy of the letters after filling in the base letter and putting in

the diacritics. As we can see in Table 9.2, as we get further away from the type of

Greek in our corpus, the accuracy of our model decreases. Thus, we see that if we

want to build a general-purpose model to fill in any and all Greek texts, we need to

widen our training data to include samples from different types of Greek. This also

suggests that we could take our already trained model and fine tune it for a different

dialect. The four different Greek texts can be seen in Appendix F.1.1.

9.7 Future Work

A major next step would to be able fill in missing letters when it is unclear how

many characters are missing. In actual papyri as we just have a blank space and

a researcher must estimate how many characters are missing. We also hope that

our work becomes the baseline from which researchers can develop more fine tuned

algorithms for various different types of texts. In terms of filling in the base letters, our

model still makes mistakes. Often, while the output from our pipeline is a sequence

of existing and morphologically correct Greek words, they do not form syntactically

meaningful units. Hence we need to train the model at a deeper level, so that it is

245

able to correctly handle Greek syntax too. This is an avenue for future research.

246

APPENDICES

247

APPENDIX A

Generalized Metric Repair on Graphs

A.1 Transitioning to Graph Metric Repair

A.1.1 The decrease only case

For the problem MR(G,R≤0), consider the following simple algorithm, used in

previous works for the special case when G = Kn.

Algorithm 20 Decrease Metric Repair (Dmr)
1: function DMR(G = (V,E,w))
2: Let W = w
3: For any edge e = uv ∈ E, set W (e) = weight of a shortest path between u and
v

4: return W − w

Theorem 2.5. The problem MR(G,R≤0) can be solved in O(TAPSP) time by the Dmr

algorithm.

Moreover, the problem becomes hard if even a single positive value is allowed. That is,

if 0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

Proof. For the first part, let e ∈ G be an edge whose edge weight is bigger than the

shortest path between the two end points of e. Then in this case e is the heavy edge

248

in a broken cycle. Hence, any decrease only solution must decrease this edge. Thus

all edges decreased by Dmr are edges that must be decreased.

By the same reasoning we see that this new weighted graph has no broken cycles.

Thus, we see that our algorithm gives a sparsest solution to MR(G,R≤0) in Θ(TAPSP)

time.

For the second part, the reduction is the same as that of Fan et al. Fan et al.

(2018d). However, we make the observation that for any value α > 0, by appropriately

scaling the weights of the reduction in Fan et al. Fan et al. (2018d), MR(G,R≤0) is

still APX-Hard in the extreme case when Ω = {0, α}.

Corollary A.1. For any G = (V,E,w) Dmr returns the smallest solution for any `p

norm for p ∈ [1,∞).

Proof. The proof of Theorem 2.5 actually shows that there is a unique support for the

sparsest solution, i.e., the set of all heavy edges. In fact any decrease only solution

must contain all of these edges in its support. We can also see that Dmr decreases

these by the minimum amount so that the cycles are unbroken. Thus, this solution is

in fact the smallest for any `p norm.

A.1.2 Structural results

Proposition 2.7. The Verifier algorithm (Algorithm 1), given a weighted graph G

and a potential support for a solution S, determines in O(TAPSP) time whether there

exists a valid (increase only or general) solution on that support and if one exists finds

one.

Proof. Let G = (V,E,w) be the original graph and let M be the maximum edge

weight from the graph G. The algorithm defines a new graph Ĝ = (V,E, ŵ), with the

249

following weights

ŵ(e) =

w(e) e 6∈ S

M e ∈ S

For each e = (v1, v2) ∈ E, line 4 sets w(e) to be the weight of the shortest path in

Ĝ from v1 to v2. Thus, at the end of the algorithm w(e) satisfies the shortest path

metric of Ĝ. As the algorithm outputs w if and only if only edge weights in S are

modified (increased), it suffices to argue S is a regular cover (light cover) if and only

if only edge weights in S are modified (increased).

Assume that S is a regular or light cover. We argue line 4 only updates the

weights of the edges in S. Note that G \ S has no broken cycles. Thus, for any

e = (v1, v2) ∈ G \ S we have that the shortest path from v1 to v2 must be e. Now

consider any path P from v1 to v2 in Ĝ. If P ∩ S = ∅, then w(P) ≥ w(e). On the

other hand if P ∩ S 6= ∅, then let ẽ ∈ P ∩ S. Then, we have that

w(P) ≥ w(ẽ) = M ≥ w(e)

Thus, in either case, w(P) ≥ w(e). Hence for all e ∈ G \ S we do not change its

weight.

If S is a light cover, we also need to argue that the weights only increased. Let

e = (v1, v2) ∈ S. Let P be a path of smallest weight in Ĝ. Suppose P ∩ S 6= ∅, then,

we have that w(P) ≥M ≥ w(e). Thus, in this case we could not have decreased the

weight. Thus, assume that P ∩ S = ∅. If we still have that w(P) ≥ w(e), then we

could not have decreased the weight. Thus, let us further assume that w(P) < w(e).

In this case, P along with e form a broken cycle in G, with e as the heavy edge. But

then since S is a light cover, we have that P ∩ S 6= ∅. Thus, we have a contradiction

and this case cannot occur. Thus, if S is a light cover, then we only increase the edge

weights.

250

Now assume S is not a regular cover (light cover). Then there exists a broken

cycle C such that none of its (light) edges are in S. Thus, there is a broken cycle C in

Ĝ. Let e be the heavy edge of C, then on line 4 the weight of e will be decreased, and

thus our algorithm will return NULL.

The next theorem shows that once we know the support, the set of all possible

solutions on that support is a nice space.

Theorem A.2. For any weighted graph G and support S we have that the set of

solutions with support S is a closed convex subset of Rn×n. Additionally, if G− S is a

connected graph or we require an upper bound on the weight of each edge, then the

set of solutions is compact.

Proof. Let xij for 1 ≤ i, j ≤ n be our coordinates. Then the equations xij = cij for

(i, j) not in the support and xij ≤ xik + xkj define a closed convex set. Thus, we see

the first part. For the second part we just need to see that set is bounded to get

compactness. If we have that G− S is connected then for all e ∈ S there is a path

between end points of e in G− S. Thus, the weight of this path is an upper bound.

On the other hand 0 is always a lower bound. Thus, we get compactness if G− S is

connected.

A.2 Approximation Algorithms

Here we give the missing proofs from our O(κ log n)-approximation algorithm.

Lemma 2.21. Let G be a positively weighted graph, where for all pairs of vertices

u, v one has constant time access to the value d(u, v). Then for any pair of vertices

s, t, the value #sp(s, t) can be computed in O(m+ n) time.

Proof. Let V = {v1, v2, v3, ..., vn}, and let N(vi) denote the set of neighbors of vi.

Define Xi = {vj ∈ N(vi) | w(vi, vj) + d(vj, t) = d(vi, t)}, that is, Xi is the set of

251

neighbors of vi where there is a shortest path from t to vi passing through that

neighbor. Thus we have,

#sp(vi, t) =
∑
vj∈Xi

#sp(vj, t).

Note that any shortest path from vi to t can only use vertices vj which are closer to t

than vi. So consider a topological ordering of the vertices, where edges are conceptually

oriented from smaller to larger d(vi, t) values. Thus if we compute the #sp(vi, t) values

in increasing order of the index i, then each #sp(vi, t) value can be computed in time

proportional to the degree of vi, and so the overall running time is O(m+ n).

Corollary 2.24. Given constant time access to d(u, v) and #sp(u, v) for any pair of

vertices u and v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G)) in O(m)

time.

Proof. By Lemma 2.22, in constant time we can check whether w(e) = d(s, t)+δ(G), in

which case set Nh(e, δ(G)) = #sp(s, t), and otherwise set Nh(e, δ(G)) = 0. By Lemma

2.23, we can compute Nl(e, δ(G)) with a linear scan of the edges, where for each edge f

in constant time we can compute whether w(f) = d(a, s)+w(e)+d(t, b)+δ(G) and if so

add #sp(a, s) ·#sp(t, b) to the sum over X, and if w(f) = d(b, s)+w(e)+d(t, a)+δ(G)

add #sp(b, s) ·#sp(t, a) to the sum over Y .

A.3 Improved Analysis for Complete Graphs

Here we consider the special case when G = Kn, improving parts of the analysis

from Fan et al. (2018d); Gilbert and Jain (2017). First, we consider the O(OPT 1/3)-

approximation algorithm of Fan et al. (2018d), which works for both MR(Kn,R)

and MR(Kn,R≥0). The running time of this algorithm is Θ(n6), since at some point

it enumerates all cycles of length ≤ 6. With a more careful analysis, we observe

252

it suffices to consider cycles of length ≤ 5, improving the running time to Θ(n5).

For MR(Kn,R≥0) we consider a simple, appealing algorithm with good empirical

performance from Gilbert and Jain (2017), referred to as IOMR-fixed. We prove

that unfortunately it is an Ω(n) approximation.

A.3.1 5 Cycle Cover

Here we argue the running time of the O(OPT 1/3)-approximation algorithm of Fan

et al. (2018d), which works for both MR(Kn,R) and MR(Kn,R≥0), can be improved

from Θ(n6) to Θ(n5). The algorithm presented in Fan et al. (2018d) has 3 major steps.

The first two steps are used to approximate the support of the optimal solution and

then the last step is actually used to find a solution given this support. We shall focus

on the first 2 steps as these are where we make modifications.

(i) (ii)

Figure A.1: Left: Embedding from Fan et al. (2018d). Right: Our modified embedding
for a smaller cycle. Here the black edge is the heavy edge. The blue edges are the light
edges and the red edges are the embedded 4 cycle. The curved blue edge indicates
that there are more vertices along that path

First Step: In the first step, Fan et al. (2018d) find a cover for all broken cycles

of length ≤ m. In particular, the authors use the case when m = 6. As described in

Fan et al. (2018d), we can obtain an m− 1 approximation of the optimal cover for all

253

broken cycles of length ≤ m in O(nm) time. Denote this cover by S≤m.

Second Step: For this step, we need to first define unit cycles. Given a broken

cycle C with heavy edge h, let e be a chord of C. Then e divides C into 2 cycles,

one that contains h, denoted heavy(C, e) and one that does not contain h denoted

light(C, e). We say this cycle is a unit cycle if for all chords e, e is not the heavy edge

of light(C, e).

From the definition of a unit cycle, a light cover of all unit cycles light covers all

broken cycles. Hence, step 2 of the algorithm from Fan et al. (2018d) light covers

all unit cycles not covered by S≤6 as follows. Let C be such a unit cycle. Now we

know that C has at least 7 edges. Consider the red C4 shown in Figure A.1. We know

that for each e ∈ C4, we have that heavy(C, e) is a broken cycle with at most 6 edges.

Hence, we must have at least 1 edge in S≤6. But since C has no light edges in S≤6,

we must have e ∈ S≤6. Thus, we know all edges in C4 are edges in S≤6. Moreover,

observe that either chord of C4 is a light edge of C. Thus it suffices to compute a

cover with least one chord of every four cycle from the edges in S≤6, a step which the

authors in Fan et al. (2018d) denote chord4(S≤6).

In Figure A.1, we observe that the same 4 cycle can be embedded in a 6 cycle

instead of a 7 cycle. Thus, our modified algorithm is shown in Algorithm 21.

Algorithm 21 5-Cycle Cover
1: function 5 Cycle Cover(G = (V,E,w))
2: Compute a regular cover of S≤5 of all broken cycles with ≤ 5 edges
3: Compute a cover Sc = chord4(S≤5)
4: return Verifier(G,Sc ∪ S≤5)

A.3.2 IOMR-fixed

We will now show that IOMR-fixed is an Ω(n) approximation algorithm. The

algorithm presented in Gilbert and Jain Gilbert and Jain (2017) is as follows:

254

Algorithm 22 IOMR Fixed
Require: D ∈ Symn(R≥0)
1: function IOMR-Fixed(D)
2: D̂ = D
3: for k ← 1 to n do
4: for i← 1 to n do
5: D̂ik = max(D̂ik,maxj<i(D̂ij − D̂jk))

6: return D̂ −D

Lemma A.3. For every n, there exists a weighted graph G such that IOMR-Fixed

repairs
(
n−1

2

)
edge weights while an optimal solutions repairs at most (n − 2) edge

weights.

Proof. Consider a matrix D where

Dij =

0 if i 6= 1, j 6= 1

2i if j = 1, i > 1

2j if i = 1, j > 1

This matrix D will be the weight matrix for the input graph Kn.

First, we claim that all entries of the form Ds1 will never be updated as entries

will only be updated the first time they are seen. Thus

Ds1 = max(Ds1,max
t<s

(Ds1 −D1t)) = max(2s,max
t<s

(2s − 2t)) = 2s

Now we just have to verify that the rest of the non-diagonal entries are updated.

Let us look at the first time an entry Drs is updated. (Here r < s.) Then we have

that

D̂rs = max(Drs,max
t<s

(Dst −Dtr)) = max
t<s

(Dst −Dtr) [Since Drs = 0]

≥ Ds1 −D1r = 2s − sr > Drs.

255

Thus all other non-diagonal entries will be updated the first time seen. Thus, for the

solution W = D̂ −D that IOMR-fixed returns, we see that Wij > 0 for exactly all

1 < i, j ≤ n and i 6= j. Thus, we repaired
(
n−1

2

)
edge weights.

Finally, a sparser increase only solution W can be obtained as follows. For all

s > 1 we set

W1s = Ws1 = 2n −Ds1

and all other entries of W are 0. This then gives us the desired result.

Corollary A.4. IOMR-fixed is an Ω(n) approximation algorithm.

256

APPENDIX B

Tree! I am not a Tree! I am a Low Dimensional

Hyperbolic Embedding

B.1 Metric First Discussion and Justification

Table 5.4 shows that for most of the data sets, learning a tree structure first and

then embedding it into hyperbolic space, yields embeddings with better MAP and

average distortion compared to methods that learn the embedding directly. One

possible explanation for this phenomenon is that the optimization problems that seek

the embeddings directly are not being solved optimally. That is, the algorithms get

stuck at some local minimum. Another possibility is that there is a disconnect between

the objective being optimized and the statistics calculated to judge the quality of the

embeddings.

We propose that there are geometric facts about hyperbolic space that suggest

embedding by first learning a tree is the correct approach. The tree-likeness of

hyperbolic space has been studied from many different approaches. We present details

from Hamann (2018); Dyubina and Polterovich (2001) and looks at the geometry of

Hk at its two extremes; large scale and small scale. Since Hk is a manifold, we know

257

that at small scales hyperbolic space looks like Euclidean space. Additionally, in the

Poincare disk, the hyperbolic Riemannian metric is given by 4
(1−x2−y2)2

(dx2 + dy2) and

is just a re-scaling of the Euclidean metric. Thus, at small scales, hyperbolic space is

similar to Euclidean space.

Hence to take advantage of hyperbolic representations (i.e., why learn a hyperbolic

representation instead of a Euclidean one), we want to embed data into Hk at scale. To

study the large scale geometry of Hk, we consider the asymptotic cone for hyperbolic

space Con(Hk). In particular, we can think of the asymptotic cone as the “view of our

space from infinitely far away”. See the more detailed discussion in Appendix B.3 for

examples and complete definitions. The following connects Con(Hk) to R-tree spaces.

Theorem B.1. Young (2008) Con(Hk) is a complete R-tree.

Thus, we see that the large scale structure of hyperbolic space is a tree, indicating

a strong connection between learning trees and learning hyperbolic embeddings.

Furthermore, it can be shown that Con(Hk) is a 2ℵ0-universal tree. That is, any tree

with finitely many nodes can be embedded into Con(Hk) exactly. However, these are

still embeddings into Con(Hk). We would like to study embeddings into Hk.

Definition B.2. A metric space (T, dT) admits an isometric embedding at infinity

into the space (X, dX) if there exists a sequence of positive scaling factors λi → ∞

such that for every point t ∈ T , there exists an infinite sequence {xit}, i = 1, 2, . . . of

points in X such that for all t1, t2 ∈ T limi→∞ dX(xit1 , x
i
t2

)/λi = dT (t1, t2)

Theorem B.3. Dyubina and Polterovich (2001) Con(Hk) can be isometrically em-

bedded at infinity into Hk.

Thus, we can embed any tree into Hk with arbitrarily low distortion. A type of

converse is also true.

Definition B.4. A (geodesic) ray R is a (isometric) homeomorphic image of [0,∞),

such that for any ball B of finite diameter, R lies outside B eventually.

258

Hamann (2018) showed that we can construct a rooted R-tree T inside Hk, such

that every geodesic ray in Hk eventually converges to a ray of T . Thus, showing that

any configuration of points at scale in Hk can be approximated by a tree. Additionally,

larger the scale points can be better approximated by trees. More details can be found

in Appendix B.4. Thus, showing that learning a tree and then embedding this tree

into Hk is equivalent to learning hyperbolic representations at scale.

This provides an explanation for why as the scale and dimension increased,

TreeRep found a tree that better approximated the hyperbolic metric in Section

5.4.2. This also provides a justification for why learning a tree first, results in better

hyperbolic representations.

B.2 Proofs

B.2.1 Tree Representation Proofs

Lemma 5.11. Given a metric d on three points x, y, z, there exists a (weighted) tree

(T, dT) on four nodes x, y, z, r, such that r is adjacent to x, y, z, the edge weights are

given by w(x, r) = (y, z)x, w(y, r) = (x, z)y and w(z, r) = (x, y)z, and the metric dT

on the tree agrees with d.

Proof. The basic structure of this tree can be seen in Figure 5.1iv. To prove that the

metrics agree we such need to see the following calculation.

dT (x, y) = w(x, r) + w(r, y)

= (y, z)x + (x, z)y

=
1

2
(d(x, y) + d(x, z)− d(y, z)

+ d(x, y) + d(y, z)− d(x, z))

= d(x, y)

259

Here dT is the metric on the tree T .

One important fact that we need is that if (X, d) is a metric graph, then for any

three distinct points x, y, z ∈ X, the geodesics connecting them intersect at a unique

point. As seen in Lemma 5.11, we refer to this point a Steiner point r. It is now

important to note that even though r may not be a point in the data set we are given,

but r ∈ X Bridson and Häfliger (2013). Thus, in the following lemmas, whenever we

find a Steiner point, we will assume that the metric d is defined on r.

Lemma B.5. If d is a tree metric and x, y, w are three points then

1. (x, y)w = 0 if and only if w ∈ g(x, y)

2. (x, y)w = d(x,w) if and only if (w, y)x = 0.

3. (x, y)w = d(y, w) if and only if (w, x)y = 0.

Here g(x, y) is the unique path connecting x and y.

Proof. For 1. we see that

0 = (x, y)w =
1

2
(d(w, x) + d(w, y)− d(x, y))

⇒ d(x, y) = d(w, x) + d(w, y)

Thus we have that w ∈ g(x, y).

For 2. we see that

(x, y)w = d(x,w)⇒ d(w, x) + d(w, y)− d(x, y)

= 2d(w, x)

⇒ d(w, x) + d(x, y)− d(w, y) = 0

⇒ 2(w, y)x = 0

The proof for 3 is similar to that of 2.

260

Lemma 5.13. Let (X, d) be a tree space. Let w, x, y, z be four points in X and let

(T, dT) be the universal tree on x, y, z with node r as the Steiner node. Then we can

extend (T, dT) to (T̂ , dT̂) to include w such that dT̂ = d.

Proof. We note that there are four different possible cases for the configuration of

x, y, z, w depending on the relationship amongst the Gromov products. Each case

determines a different placement of r, as follows:

1. If (x, y)w = (x, z)w = (y, z)w = 0, then replace r with w to obtain T̂ .

2. If (x, y)w = (x, z)w = (y, z)w = c > 0, then connect w to r via an edge of weight

c to obtain T̂ .

3. If there exists a permutation π : {x, y, z} → {x, y, z} such that,

(πx, πy)w = (πx, πz)w = c < (πy, πz)w

and d(πx,w) = (πx, πy)w, then connect w to πx via an edge of weight c to

obtain T̂ .

4. If there exists a permutation π : {x, y, z} → {x, y, z} such that,

(πx, πy)w = (πx, πz)w = c < (πy, πz)w

and d(πx,w) > (πx, πy)w, then add a Steiner point r̂ on the edge x, r with

d(πx, r̂) = d(πx,w)− c and connect w to r̂ via an edge of weight c to obtain T̂ .

To prove that these extensions of T are consistent, first let us prove that there are

exactly four cases. To do that, first note that since we have a 0-hyperbolic metric, at

least two of the three Gromov products must be equal. Using the triangle inequality,

261

we can see that for any three points a, b, c the following holds

0 ≤ (a, b)c ≤ d(a, c).

That is, either we are in the first two cases and three of products are equal, or we have

that two of the products are equal. In the case that two of the products are equal,

the permutation π tells us which of the two are equal and we further subdivide into

the case whether d(πx,w) = (πx, πy)w or d(πx,w) > (πx, πy)w as we cannot have

d(πx,w) < (πx, πy)w.

Therefore, there are at most four possible configuration cases and it remains to

show that the new tree dT̂ is consistent with d on the four points. In each case, we

present the high level intuition for why these modification result in a consistent tree.

The low level details about the metric numbers can easily be checked.

Case 1: If (x, y)w = (x, z)w = (y, z)w = 0, then we replaced r with w in

T̂ . In this case, using Lemma B.5, we see that w must lie on all tree geodesics

g(x, y), g(x, z), g(y, z). Since the metric comes from a tree, these three geodesics can

only intersect at one point r. Thus, we must replace r with w.

To see that the metric is consistent, we need to verify that d(w, x) = dT̂ (r, x). To

see we have the following:

dT̂ (r, x) = (y, z)x

= (y, z)x + (x, y)w + (x, z)w − (y, z)w

= d(w, x)

Case 2: If

(x, y)w = (x, z)w = (y, z)w = c > 0,

then we can see that (x,w)r = (y, w)r = (z, w)r = 0. In this case, r lies on geodesics

262

g(x, y), g(x, z), g(x,w), g(y, w), g(y, z), g(z, w). Thus, we must have a star shaped

graph with r in the center.

To see that the metric is consistent we just need to verify that d(w, x) = dT̂ (w, x).

To see that we have the following calculation.

dT̂ (w, x) = dT̂ (w, r) + dT̂ (x, r)

= (x, y)w + (y, z)x

= (x, y)w + (x, z)w − (y, z)w + (y, z)x

= d(w, x)

Case 3: In this case suppose condition 4 is true. Without loss of generality assume

that π is the identity map. In each case, we have a tree that looks like a tree in Figure

5.1. In this case, we can do the calculations and see that (w, y)r = (w, z)r = 0. That

is, the geodesics g(w, y), g(w, z), g(y, z), g(x, y), g(x, z) all intersect at the same point.

Thus, again telling us our tree structure.

To check that the metric is consistent, we need to verify that d(w, y) = dT̂ (w, y) =

dT̂ (w, r) + dT̂ (r, y). Before we can do that, let us first verify that

dT̂ (w, r) = (y, z)w

263

To verify this we need to the following calculation

dT̂ (w, r) = dT̂ (r, r̂) + dT̂ (r̂, w)

= c+ dT (x, r)− dT̂ (x, r̂)

= c+ (y, z)x − (d(x,w)− c)

= 2c+ (y, z)x − d(x,w)

= (x, y)w + (x, z)w + (y, z)x − d(w, x)

= (y, z)w

We then can see that

dT̂ (w, y) = dT̂ (w, r) + dT̂ (r, y)

= (y, z)w + (x, z)y

= (y, z)w + (x, y)w − (x, z)w + (x, z)y

= d(w, y)

Note dT̂ (w, r) = (y, z)w and the consistency of the metric implies that d(w, r) =

(y, z)w. Finally, we can see (w, y)r = 0 as follows.

2(w, y)r = d(w, r) + d(r, y)− d(w, y)

= (z, y)w + (x, z)y − d(w, y)

=
1

2
(d(w, z)− d(w, y) + d(x, y)− d(x, z)

= (x, z)w − (x, y)w

= 0

Note that this also implies that (w, x)r > 0.

Case 4: In this case, suppose condition 3 is true. Without loss of generality assume

264

that π is the identity map. Then in this case, we still have that (w, y)r = (w, z)r = 0,

but in addition we have that (w, y)x = (w, z)x = 0. Thus, again telling us our tree

structure.

In this case, to verify that the metric is consistent, we need to check that d(w, y) =

dT̂ (w, y) = dT̂ (w, x) + dT̂ (x, y). To see this we have the following calculations.

dT̂ (w, x) + dT̂ (x, y) = (x, y)w + d(x, y)

= 2(x, y)w − (x, z)w + d(x, y)

= d(w, y) + (w, z)x

Thus, now it suffices to show that (w, z)x = 0, which can be seen using the following

calculations.

(x, z)w = d(w, x)⇒ 0 = d(x,w) + d(x, z)− d(w, z)

⇒ (w, z)x = 0

This also implies that (w, z)r = 0.

The proof of Lemma 5.13 shows that there are a number of ways to extend T to

include the new point w. To clarify our discussion of the extension of T , we introduce

new terminology.

Lemma B.6. Let (X, d) is a metric tree. Let x, y ∈ X and let r ∈ g(x, y) if and

only if X \ {r} has at least two disconnected components and x, y are in distinct

components.

Proof. Suppose r ∈ g(x, y). In metric trees, we know that there exist unique simple

path between any two points. Therefore, if, after removing r, a path connecting x, y

remained (i.e., they are in the same component), then there are two simple paths

connecting x, y in X, which is not possible.

265

Suppose x, y are in two separate components of X \ {r}, then because X is path

connected, the geodesic between x and y must pass through r.

Lemma 5.15. Given (X, d) a metric tree, and a universal tree T on x, y, z, we have

the following

1. If w ∈ Zone1(x), then for all ŵ 6∈ Zone1(x), we have that x ∈ g(w, ŵ).

2. If w ∈ Zone2(x), then for all ŵ 6∈ Zonei(x) for i = 1, 2, then we have that

r ∈ g(w, ŵ).

Proof. First let us prove statement 1. To do this, let us analyze the possible zones to

which ŵ belongs.

Case 1: Suppose ŵ ∈ Zone1(y) (similar for ŵ ∈ Zone1(z)). Then we have that

d(ŵ, y) = (x, y)ŵ. This, implies that (ŵ, x)y = 0. Thus, by Lemma B.5, we have that

y ∈ g(ŵ, x). Similarly we have that x ∈ g(w, y).

Now since w ∈ Zone1(x), we know that g(x,w) ∩ g(x, y) = {x}. Similarly, know

that g(x, y) ∩ g(y, ŵ) = {y}. Then using Lemma B.6, on removing x, we see that

w and y are different connected components. Then since x 6∈ g(ŵ, y), we see that

ŵ, y is in one connected component. Thus, w, ŵ are in different components. Thus,

x ∈ g(w, ŵ) by Lemma B.6.

Case 2: Suppose ŵ ∈ Zone2(y) (similar for ŵ ∈ Zone2(z)). Now let r be the

Steiner node of the universal tree on x, y, z. In this case we know from Lemma 5.13

that r ∈ g(ŵ, x) and that g(w, x) ∩ g(x, r) = {x}.

Now since w ∈ Zone1(x), we know that g(x,w) ∩ g(x, r) = {x}. Similarly, know

that g(x, r) ∩ g(r, ŵ) = {r}. Then using Lemma B.6, on removing x, we see that

w and r are different connected components. Then since x 6∈ g(ŵ, r), we see that

ŵ, r is in one connected component. Thus, w, ŵ are in different components. Thus,

x ∈ g(w, ŵ) by Lemma B.6.

Case 3: ŵ ∈ Zone2(x). Let r be the Steiner node for the universal tree on x, y, z.

266

Now my Lemma 5.13, we know that x ∈ g(w, r). Thus, again by removing x and using

Lemma B.6, r and w are in different. We also have that by Lemma 5.13 x 6∈ g(ŵ, r).

Thus r, ŵ are in the same connected component of X \ {x}. Thus, w and ŵ are in

different connected components. Thus, by Lemma B.6, x ∈ g(w, ŵ)

Thus in all cases, we can see that x ∈ g(w, ŵ)

Now let us prove statement 2. Without loss of generality assume that

ŵ ∈ Zonei(y)

for i = 1, 2. Then from Lemma 5.13, we know that r 6∈ g(w, x) and r 6∈ g(ŵ, y),

but r ∈ g(x, y). Thus, using Lemma B.6 on removing r, x and y and in different

components and w is in the same component as x and ŵ is in the same component as

y. Thus, again using Lemma B.6, we have that r ∈ g(w, ŵ).

Theorem 5.9. Given (X, d), a δ-hyperbolic metric space, and n points x1, . . . , xn ∈ X,

TreeRep returns a tree (T, dT). In the case that δ = 0, dT = d, and T has the fewest

possible nodes. TreeRep has worst case run time O(n2). Furthermore the algorithm

is embarrassingly parallelizable.

Proof. The proof of this theorem follows directly from our structural lemmas. More

precisely, we show that for δ = 0, TreeRep returns a consistent metric via induction

on n, the number of data points.

Base Case: The case when n ≤ 3 is covered by Lemma 5.11. And, the case when

n = 4 is covered by Lemma 5.13.

Inductive Hypothesis: Assume that for all k ≤ n, our data set of k points is

consistent with a 0-hyperbolic metric d, then TreeRep returns a tree (T, dT) that is

267

consistent with d on the k points.

Inductive Step: Assume that w is the last vertex attached to T . By the inductive

hypothesis, we know that without w, (T, dT) is consistent on with d so we only need

to show that it is consistent with the addition of w.

Now let x, y, z be the universal tree used to sort w in the penultimate recursive step.

Let r be the Steiner node. Then by Lemma 5.13, we know that dT (w, x) = d(w, x),

dT (w, y) = d(w, y), and dT (w, z) = d(w, z).

Now without loss of generality assume that w was sorted in a zone for x. That is,

w ∈ Zonei(x) for i = 1, 2.

Case 1: If w ∈ Zone1(x). Then from Lemma 1, we know that for all ŵ 6∈ Zone1(x),

we have that x ∈ g(w, ŵ). Thus, having dT (x,w) = d(x,w) and dT (x, ŵ) = d(x, ŵ) is

sufficient to show consistency.

Now, since w was placed last there is at most one other point w̃ in Zone1(x), and

dT (w, w̃) = d(w, w̃) due to Lemma 5.11.

Case 2: If w ∈ Zone2(x). Then from Lemma 2, we know that for all ŵ 6∈ Zonei(x),

for i = 1, 2 we have that r ∈ g(w, ŵ). Thus, having dT (r, w) = d(r, w) and dT (r, ŵ) =

d(r, ŵ) is sufficient to show consistency.

Suppose ŵinZone1(x). Then from Lemma 1, we have that x ∈ g(w, ŵ). Thus,

having dT (x,w) = d(x,w) and dT (x, ŵ) = d(x, ŵ) is sufficient to show consistency.

Finally, since w was the last node placed there are no other nodes in Zone2(x).

Thus, we have the the tree returned by TreeRep is consistent with the input

metric d.

Notice that whenever we add a Steiner node r we fix the position of at least one

data point node. We then look at O(n) Gromov inner products. Thus, we have a

worst case running time of O(n2).

Additionally, the part where we place nodes into their respective zones can be

268

done in parallel. Thus, if we have K threads then the running time is O
(
n2

K

)
for the

worst running times.

The final part of the theorem is that we return the tree with the smallest possible

nodes. Whenever we look at any triangle formed by three points x, y, z, we place

a Steiner node r. Now, if none of the distances from x, y, z to r is 0, then this

Steiner node must exist in all tree consistent with d. If one of these distances is 0, we

contracted that edge and got rid of r. Thus, along with the local consistency argument

above this shows that all Steiner nodes that we have placed are necessary (the local

consistency argument implies that no two of the Steiner nodes placed could in fact be

made into one node due to the nodes beings in different regions). Thus, we have the

fewest possible nodes.

B.2.2 Tree Approximation Proofs

Proposition 5.16. Given a δ-hyperbolic metric d, the universal tree T on x, y, z and

a fourth point w, when sorting w into its zone zonei(πx), TreeRep introduces an

additive distortion of δ between w and πy, πz

Proof. Without loss of generality assume that π is the identity. In this case, we know

that dT (w, r) = (y, z)w, and that dT (y, r) = (x, z)y. Thus, we have the following:

269

|dT (w, y)− d(w, y)| = |dT (w, r) + dT (r, y)− d(w, y)|

= |(y, z)w + (x, z)y − d(w, y)|

=
1

2
|d(w, z) + d(y, x)

− d(w, y)− d(x, y)|

= |(x, y)w − (x, z)w|

≤ δ

B.3 Geometry: Asymptotic Cones

Definition B.7. An ultrafilter F on X is a subset of P(X) such that

1. If A ∈ F and A ⊂ B then B ∈ F

2. A,B ∈ F then A ∩B ∈ F

3. For any A ⊂ X, exactly 1 of A,X \ A is in F

4. ∅ 6∈ F .

One way to view F is as defining a probability measure on X. In particular, we

will view the sets in F to be large and the sets not in F to be small. Hence, we can

define a measure ν such that for all A ∈ F we have that ν(A) = 1 and for all A 6∈ F

we have that ν(A) = 0.

In this way, we can see that ν is a finitely additive measure on X. One common

method to define ultrafilters is to take a point x ∈ X and let F be the set of all sets

that contain x. In this case, the measure ν has a point mass at x and zero mass

elsewhere. Such filters are known an principal ultrafilters.

Given a measure ν on N, we can use it to define limits and convergence in X. In

270

particular, we have that a sequence xi converges to x, if for all ε > 0 we have that

ν ({xi : |xi − x| < ε}) = 1

We will denote limits of this form as limν xi = x.

We will make use of ultrafilters to construct the asymptotic cone. We will do this

via looking at a non-principal ultrafilter on N. We consider non-principal ultrafilters

as we want to get a view from infinity, and we do not want to be in the case when one

particular index in N has the entire mass. Hence we restrict ourselves to non-principal

ultrafilters. One nice characterization of non-principal ultrafilters is that they are

exactly the ultrafilters that have no finite sets.

Now that we have mathematical framework in which we can take limits, let us

define our asymptotic cone. Let ω be a non-principal ultrafilter on N. Let {bi}i∈N be

a sequence of base points and let {λi}i∈N be a sequence of scaling factors that go to

infinity. Let d be the metric on our space X. Then let

Xω,bi,λi = {{yi} : yi ∈ X and d(bi, yi) ≤ const{yi}λi}

While this space looks huge we will define an equivalence relation and mod out by

this relation to obtain better structure on this space. Given two points y = {yi}, z =

{zi} ∈ Xω,bi,λi we say that y ∼ z if

lim
ω

d(yi, zi)

λi
= 0

We can now define our asymptotic cone Conω(X) = X(ω, bi, λi)/ ∼. We can also

define a metric on this space as follows, given y = {yi}, z = {zi} ∈ Conω(X)

dω(y, z) := lim
ω

d(yi, zi)

λi

271

Let us look at a few examples to get a handle on what Conω(X) looks like.

1. Example 1: Let us first consider X = Rn. We know that Rn is scale invariant.

This results in Conω(Rn) being equivalent to Rn. In fact, if we assume that

bi ≡ 0, then the map x 7→ {λix} is an isometry from Rn to Conω(Rn)

2. Example 2: Suppose X is a bounded metric space. In this case Conω(X) is a

single point.

Definition B.8. A metric space (X, dx) can be isometrically embedded into a metric

space (Y, dy) if there exists a map f : X → Y such that for all x1, x2 ∈ X we have

that

dx(x1, x2) = dy(f(x1), f(x2))

Such a map f is known as an isometry.

Definition B.9. A metric space (X, d) is homogenous if for all x, y ∈ X there exists

an isometry f : X → X such that f(x) = y.

Definition B.10. Given a R-tree T , the valency of a point x ∈ T in an R-tree is the

number of connected components in T \ {x}. Let the valence of a the tree, denoted

val(T), be the maximum valence of any point in T .

Definition B.11. A R-tree T is a µ-universal if every R-tree T̂ with val(T̂) ≤ µ can

be isometrically embedded into T .

Here we can see that we can embed any finite tree into a 2ℵ0-universal tree T .

Hence, if could isometrically embed T into Con(Hn) then we can embed any tree into

Con(Hn). This and more turns out to be true.

Theorem B.12. Dyubina and Polterovich (2001) Any 2ℵ0-universal R-tree can be

isometrically embedded into the asymptotic cone for any complete simply connected

manifold of negative curvature.

272

B.4 Geometry: Geodetic Tree

In general, it is rare to be able isometrically embed one space into another. Hence,

we have the following weaker definition.

Definition B.13. We say that we can quasi isometrically embed a metric space

(X, dx) into a metric space (Y, dy) if there exists a map f : X → Y and real numbers

c, λ ∈ R such that λ ≥ 1, c > 0 and for all x1, x2 ∈ X we have that

1

λ
dx(x1, x2)− c ≤ dy(f(x1), f(x2)) ≤ λdx(x1, x2) + c

Such isometries are called (λ, c)-quasi-isometries.

It is has been shown that any δ-hyperbolic metric space (X, d) with bounded

growth admits a quasi-isometric embedding into Hk Bonk and Schramm (2000).

Definition B.14. We say that a ray R is quasi geodetic if instead of being an isometric

image of [0,∞), we have that R is an quasi-isometric image of [0,∞).

Definition B.15. A ray is eventually (quasi) geodetic if it has a subray that is (quasi)

geodetic.

Theorem B.16. Hamann (2018) For all λ ≥ 1,c ≥ 0 there is a constant κ = κ(δ, λ, c),

such that for every two points x, y ∈ Hk, every (λ, c)-quasi-geodesic between them lies

in a κ-neighborhood around every geodesic between x and y and vice versa.

Definition B.17. Two geodetic rays π1, π2 are equivalent if for any sequence (xn) of

points on π1, we have lim infn→∞ d(xn, π2) ≤M for an M <∞

Definition B.18. The boundary ∂Hk of Hk is the equivalence class of all geodesic

rays.

Theorem B.19. Hamann (2018) There is an R-tree T ⊂ Hk such that the canonical

map γ from ∂T to ∂X exists and has the following properties.

273

1. It is surjective;

2. there is a constant M <∞ depending only on k such that γ−1(η) has at most

M elements for each η ∈ ∂Hk.

Theorem B.20. Hamann (2018) Let T be the R-tree in Theorem B.19 with root r.

There exist constants λ ≥ 1, c ≥ 0 such that every ray in T starting at the root is a

(λ, c)-quasi-geodetic ray in Hk.

The above two theorems tell us that given any geodesic ray R in Hk there is exists

a ray in T that is equivalent to R (via ∼ in Definition B.17). Furthermore this ray in

T is (λ, c)-quasi-geodetic ray in Hk. Thus, due to Theorem B.16 any configuration of

points at scale in Hk can be approximated by a tree such that the larger the scale,

better the approximation.

B.5 TreeRep Best

So far all numbers for the TreeRep algorithm that we have reported are averages.

But due to the speed of the algorithm, we can actually run the experiment multiple

times and pick the tree with the best metric.

Table B.1: TreeRep Best Numbers

No Opt Heuristic Opt Full Opt

Graph MAP Distortion MAP Distortion MAP Distortion

Celegan 0.508 0.173 0.539 0138 0.547 0.119
Diseasome 0.912 0.134 0.911 0.106 0.890 0.092
CS PhD 0.987 0.134 0.984 0.119 0.968 0.121
Yeast 0.841 0.171 0.833 0.150 0.808 0.135

Grid-worm 0.727 0.154 0.728 0.125 - -
GRQC 0.699 0.175 0.694 0.152 - -

274

B.6 Improving Distortion

We have seen that in the case of unweighted graphs TreeRep produces better

MAP than PM, LM, and PT. However, PT tends to have better average distortion.

Hence, we want to be able to improve the distortion. Once we have learned the tree

structure we can set up an optimization problem to learn the edge weights on the tree

to improve the distortion. Specifically, since the metric comes from the tree, for any

pair of data points, there is exactly one path connecting the two data points. Thus,

regardless of the edges weights, this path is the shortest path between the data points.

Thus, we can set up an optimization problem of the following form:

arg min
w

‖AW −D‖2.

Here W is a vector containing the edge weights, D is a vector containing the

original metric, and A is a matrix that encodes all of the paths. This optimization

problem however, is unfeasible as n gets longer. So instead we sample some rows of A

and solve a heuristic problem. As can be seen from Table B.2, we are still faster than

NJ but now have improved our distortion without sacrificing MAP.

Table B.2: MAP and average distortion for the TreeRep and MST after doing the
heuristic optimization. The time taken for both optimizations is the same.

Graph Time Distortion MAP Distortion MAP

TreeRep MST

Celegans 0.69 0.157 0.504 0.195 0.357
Diseasome 1.56 0.121 0.891 0.111 0.774
CS Phd 1.2 0.152 0.971 0.170 0.989
Yeast 4.2 0.163 0.813 0.171 0.862

Grid Worm 32 0.164 0.707 0.151 0.768
GRQC 68 0.157 0.676 0.159 0.669

275

B.7 Experiment and Practical Details

B.7.1 MAP and Average Distortion

Definition B.21. Given two metrics d1, d2 on a finite set X = x1, . . . , xn the average

distortion is:
1(
n
2

) n∑
i=1

∑
j<i

|d1(xi, xj)− d2(xi, xj)|
d2(xi, xj)

Smaller average distortion implies greater similarity between d1 and d2.

In many cases, the metric learned by the various algorithms will be a scalar multiple

of the actual metric, so we will solve for the scale α := arg minc ‖D − cD̂‖F , before

calculating the average distortion.∗

Definition B.22. Let d be a metric on the nodes of a graph G = (V,E). For v ∈ V ,

let N(v) = {u1, . . . , udeg(v)} be the neighborhood of v. Then let Bv,ui = {u ∈ V \ {u} :

d(u, v) ≤ d(v, ui)}. Then the mean average precision (MAP) is defined to be

1

n

∑
v∈V

1

deg(v)

|N(v)|∑
i=1

|N(v) ∩Bv,ui|
|Bv,ui |

Closer MAP is to 1, the closer d is to approximating dG.

B.7.2 TreeRep

There are a few practical details that must be discussed in relation to the TreeRep

algorithm.

1. Pre-allocate the matrix for the weights of edges of the tree as a dense matrix.

Doing this greatly speeds up computations. Note the proof of Lemma 5.13,

show that we need at most n Steiner nodes. Thus, the tree has about 2n nodes.
∗For NJ and LT, computing this α made the average distortion worse, so we report numbers

un-scaled. Additionally, computing α is too computationally expensive for bigger data sets and was
not done for the Enron and Wordnet data set.

276

Since the input to the algorithm is a dense n× n matrix, we already need O(n2)

memory. Thus, having a dense 2n× 2n matrix is still linear memory usage in

the size of the input.

2. When doing zone 2 recursions pick the node closest to r as the new z as suggested

by Proposition 5.16.

3. The placement of nodes into their respective zones can be done in parallel. For

all of the experiments in the paper, we used 8 threads to do the placement for

all of the experiments, except that we used 1 thread for the random points from

Hk experiment and for CBMC experiment.

4. All of the numbers reported are averages over 20 iterations. We could have also

picked the best over 20 iterations as our algorithm is fast enough for this to be

viable.

5. When checking for equality, instead of checking for exact equality, we checked

whether two numbers are within 0.1 of each other.

6. It is possible for some of the edge weights to be set to a negative number. In

this case, after the algorithm terminated we set those edge weights to 0.

B.7.3 Bartal

We sample 200 trees from the distribution and compute the metric assuming that

we are embedding into the distribution restricted to these 200 trees.

B.7.4 Neighbor Join

The following implementation of NJ was used: http://crsl4.github.io/PhyloNetworks.jl/latest/.

We set the options so as to not have any negative edge weights.

277

B.7.5 MST

Prim’s algorithm for calculating MST was used. We used the implementation at

https://github.com/JuliaGraphs/LightGraphs.jl

B.7.6 LS

Low stretch spanning trees are calculated using Laplacian package in Julia. This

code is based an adaptation of Alon et al. (1995) by the authors of Elkin et al. (2005).

B.7.7 LevelTree and ConstructTree

To the best of the authors knowledge there does not exist a publicly available

implementations of these algorithms. Both of these algorithms were implemented by

the authors.

Note that LevelTree claims to be a O(n) algorithm, but this only true, once we

have calculated the sphere Sn needed for the algorithm. However, it takes O(n2) time

to calculate the spheres Sn (equivalent to solving single source all destination shortest

path problem).

B.7.8 PM and LM

The following options were used. The number of epochs was to set to be higher

than default. Everything else was left at default. One note about PM and LM is that

their objective function is set up to optimize for MAP and not average distortion.

1. -lr 0.3

2. -epochs 1000

3. -burnin 20

4. -negs 50

5. -fresh

6. -sparse

278

7. -train_threads 2

8. -ndproc 4

9. -batchsize 10

For PM we used -manifold poincare, for LM we used -manifold lorentz. The

code is taken from https://github.com/facebookresearch/poincare-embeddings

B.7.9 PT

The following options were used. We used the –learn-scale option as based on

the discussion in the appendix of Sala et al. (2018) learning the scale results in better

quality metrics. Additionally, we add a burnin phase to the optimization. Finally,

based on the discussion in Sala et al. (2018), the objective function for PT has a

lot of shallow local minimas. Thus, we added momentum and used Adagrad for the

optimization to try and avoid these local minimums.

1. –learn-scale

2. –burn-in 100

3. –momentum 0.9

4. –use-adagrad

5. –l 5.0

6. –epochs 1000

7. –batch-size 256

8. –subsample 64

The code is taken from https://github.com/HazyResearch/hyperbolics

B.7.10 Hardware

All experiments were run on Google cloud instances. For PM, LM and PT we

created a fresh instance for each algorithm. Each instance for an algorithm only

had the bare minimum installed to run those algorithms. We used n1-highmem-8

279

instances. The specification of each of the instances are as follows:

1. 8 cores each with 6.5 GB of ram.

2. Ubuntu-1604-xenial-v20190913 operting system.

3. 100 standard persistent disk.

For TreeRep, NJ, CT, LT and MST, we ran all code via a Jupyter notebook

interface running Julia 1.1.0. All experiments (except for the experiments with Enron

and Wordnet), we done on instances with the same specification as above.

For Enron and Wordnet, we need more memory to store the distance matrices.

Thus, used an since with the following specifications.

1. 24 cores each with 6.5 GB of ram.

2. Ubuntu-1604-xenial-v20190913 operting system.

3. 100 standard persistent disk.

B.7.11 Synthetic 0-hyperbolic metrics

To produce random synthetic 0-hyperbolic metrics, we do the following. First, we

take a complete binary tree of depth i. We then compute its double tree. Then for

each node in this tree we sample a number C from 2 to 10 and replace the node with

a clique of size C. We then pick a random node in the tree and compute the breadth

first search tree from that node. We then assign edge uniformly randomly, sampled

from [0, 1].

B.7.12 Synthetic Data Sets

Here we sampled coordinates from the standard normal N (0, 1). The final coordi-

nate x0 is set so that the point lies on the hyperboloid manifold. In the presence of a

scale we just multiplied each coordinate by that scale before calculating x0. We ran

TreeRep with 1 thread.

280

Figure B.1: Figure for Sarich data produced by PT code

B.7.13 Phylogenetic and Single Cell Data

The immunological distances can be seen in Figure B.2. The matrix is symmeterized

by averaging across the diagonal. In this case, we ran TreeRep 10 times and picked

the tree with the lowest average distortion.

The figures for the trees are produced using an adaptation of Sarkar’s construction

for Euclidean space. The code from PT also produces a picture. This picture can be

seen in Figure B.1. As we can see, this figure is similar to the one in the main text.

For the Zeisel data we did the same pre-processing as done in Dumitrascu et al.

(2019). For PM and MST, we use 10 nearest neighbor graph. For LS we used the

complete graph.

281

Figure B.2: Immunological distances from Sarich (1969)

For the CBMC data we did the same pre-processing as done in Dumitrascu et al.

(2019). For MST and LS we used the complete graph.

B.7.14 Unweighted Graphs

Some of the graphs are disconnected. The largest connected component of each

graph was used.

For δ calculation, we normalized the distances so that the maximum distance was

1 and then calculated δ. For Celegans, Diseasome, and Phds„ this calculation is exact.

For Yeast, Grid-worm and GRQC, we fixed the base point to be w = 1 and then

calculated δ. It is known from theory that for any fixed base point the δ is at least

half of the δ for the whole metric Bridson and Häfliger (2013). Thus, we get the

inequality.

All experiments with a “-” were terminated after 4 hours.

B.7.15 Calculating α

Can be calculated directly using

α =
Tr(D′ ∗D
‖D‖2

F

282

Algorithm 23 Recursive parts of TreeRep.
1: function zone1_recursion(T , dT , d, L, v)
2: if Length(L) == 0 then
3: return T
4: if Length(L) == 1 then
5: Set u = pop(L) and add edge (u, v) to E
6: Set edge weight dT (u, v) = d(u, v)
7: return T
8: Set u =pop(L), z =pop(L)
9: return recursive_step(T, L, v, u, z, d, dT)
10:
11: function zone2_recursion(T , dT , d, L, u, v)
12: if Length(L) == 0 then return T

13: Set z= the closest node to v.
14: Delete edge (u, v)
15: return: recursive_step(T, L, v, u, z, d, dT)

B.8 Tree Representation Pseudo-code

We can see examples of what happens when we set the new Steiner node for the

two different kinds of recursion in Figure B.3

Figure B.3: Figure showing the placement of the Steiner node R′ for the Zone 1 and
Zone 2 recursion. The nodes in orange are Steiner nodes and the nodes in green come
from the data set V .

283

Algorithm 24 Metric to tree structure algorithm.
1: function Tree structure(X, d)
2: T = (V,E, d′) = ∅
3: Pick any three data points uniformly at random x, y, z ∈ X.
4: T = recursive_step(T,X, x, y, z, d, dT ,)
5: return T
6:
7:
8: function recursive_step(T,X, x, y, z, d, dT ,)
9: Let Z1(r → [], x → [], y → [], z → []), Z2(x → [], y → [], z → []) //

Dictionaries of list for various zones
10: Place an additional node r in V and add edges xr, yr, zr to E
11: Set the weights dT (x, r) = (y, z)x, dT (y, r) = (x, z)y, and dT (z, r) = (x, y)z //

If edge weight = 0, contract the edge.
12: for all remaining data points w ∈ X do
13: a = (x, y)w, b = (y, z)w, c = (z, x)w, m = 0, m2 = 0
14: if a == b == c then
15: push(w, Z1[r])
16: Set dT (w, r) = (x, y)w
17: else if a == maximum(a, b, c) then
18: π = (x→ z, y → y, z → x)
19: m = b, m2 = c
20: Set dT (w, r) = a
21: else if b == maximum(a, b, c) then
22: π = (x→ x, y → y, z → z)
23: m = a, m2 = c
24: Set dT (w, r) = b
25: else if c == maximum(a, b, c) then
26: π = (x→ y, y → x, z → z)
27: m = a, m2 = b
28: Set dT (w, r) = c

29: if d(w, πx) == m or d(w, πx) == m2 then
30: push(w, Z1[πx])
31: else
32: push(w, Z2[πx])

// recurse on each of the zones
33: T = zone1_recursion(T, dT , d, Z1[r], r)
34: T = zone1_recursion(T, dT , d, Z1[x], x)
35: T = zone1_recursion(T, dT , d, Z1[y], y)
36: T = zone1_recursion(T, dT , d, Z1[y], z)
37: T = zone2_recursion(T, dT , d, Z2[x], x, r)
38: T = zone2_recursion(T, dT , d, Z2[y], y, r)
39: T = zone2_recursion(T, dT , d, Z2[z], z, r)

return T

284

APPENDIX C

Dual Regularized Optimal Transport

C.1 Proofs

Theorem 6.2. For the discrete problem, if we add the assumption that φ, ϕ are co-

finite Bregman functions then the following problem is the dual problem to DROT(a, b).

Furthermore, strong duality holds for this problem.

6.6Minimize: 〈C,P 〉+ φ∗(γ(a−P1m)
γ

+
ϕ∗(γ(b−P T 1n))

γ

Subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0
(C.1)

If we only have the assumption that φ (and similarly for ϕ) is positively (negatively)

co-finite, then we need to add the constraint a− P1 > 0 (a− P1 < 0).

Proof. Since Bregman functions are strictly convex and we have linear inequality

constraints, it is easy to see that DROT(a, b) is a convex program. Furthermore,

strong duality holds if Slater’s condition Slater (2014) holds. Specifically, given C,

we need to show the existence of an f and g such that for all i, j we have that

285

fi + gj < Cij. To do so, set

f = −‖C‖∞1n and g = −‖C‖∞1m.

Thus, we have strong duality.

Let us now compute the dual of the problem. To do so, let P be the dual variables

and obtain the Lagrangian L(f , g,P):

L(f , g,P) =
1

γ
φ(f) +

1

γ
ϕ(g)− fTa− gTb

+ 〈P ,f1Tm + 1ng
T −C〉. (C.2)

Now we know that the dual problem is given by

max
Pij≥0

min
f ,g

L(f , g,P). (C.3)

Let us do some simplifications to get this into the standard form. We first note that

the Lagrangian L can be rewritten as

L(f , g,P) =
1

γ
φ(f) +

1

γ
ϕ(g)− 〈f ,a− P1n〉

− 〈g, b− P T1m〉 − 〈P ,C〉. (C.4)

Now, for fixed P consider the function

F (f) =
1

γ
φ(f)− 〈f ,a− P1m〉.

Due to the strict convexity and co-finiteness of φ, we have that F is a strictly convex

function. and has a unique stationary point that corresponds to its global minimum f ∗.

We can solve for this as follows. For the case when we have positive co-finiteness only,

286

we need a− P < 0 for F to have a stationary point. Note if these conditions are not

satisfied then the value of L(f , g,P) is negative infinity, however if it is satisfied then

it is a finite number. Thus, since we have the outer maximization, this is equivalent

to adding the constraint.

0 = ∇F (f ∗) =
1

γ
∇φ(f ∗)− a+ P1m.

Thus, we have that
1

γ
∇φ(f ∗) = a− P1m.

Now from Bauschke and Borwein (1998), if we can show that φ is essentially

strictly convex then due to φ being co-finite, we have that ∇φ∗∇φ(f) = f . Hence via

Lemma C.2, we have that

f∗ = ∇φ∗ (γ(a− P1m))

Performing a similar calculation for g and substituting into Equation C.3, we get the

following equation for dual.

max
Pij≥0

−〈C,P 〉+
1

γ
φ(∇φ∗(γ(a− P1m)))

−〈∇φ∗(γ(a− P1m)),a− P1n〉

+
1

γ
ϕ(∇ϕ∗(γ(b− P T1m)))

−〈∇ϕ∗(γ(b− P T1m)), b− P T1n〉

To simplify this, Amari (2016) tells us that

ψ∗ (∇ψ(x)) = xT∇ψ(x)− ψ(x) (C.5)

287

From Rockafellar (1970), we know that φ∗∗ = cl(conv(φ)). However, since φ is closed

and convex, we have that φ∗∗ = φ. Additionally, since we also have that φ∗ is closed

and convex Rockafellar (1970), we also have that φ∗∗∗ = φ∗. Thus, we have that

1

γ
φ(∇φ∗(γ(a− P1m))) = 〈a− P1m,∇φ∗(γ(a− P1m))〉

− 1

γ
φ∗(γ(a− P1m))

Substituting back, we get that dual of DROT(a, b) is given by

Minimize: 〈C,P 〉+ φ∗(γ(a−P1m)
γ

+
ϕ∗(γ(b−P T 1n))

γ

Subject to: ∀i ∈ [n],∀j ∈ [m], Pij ≥ 0

Remark C.1. Our proof of strong duality, as written, does not hold for the entropic

regularizer. For the entropic regularized version we need to add the assumption that

Cij > 0 for all i, j. If this is the case, then letting f , g = 0 works. Therefore, for

all experiments involving the entropy regularizer, we add a small number to the cost

matrix to guarantee that all the costs are positive.

We also need to add the constraint that f , g ≥ 0 so, in the dual formulation, we

add the dual variables c1, c2 that correspond to these constraints.

Lemma C.2. If φ is a Bregman function, then φ is essentially strictly convex

Proof. From Rockafellar (1970), we know that a function φ is essentially strictly

convex if for all convex S ⊂ {x : ∇φ(x) 6= 0} =: dom(∂φ), φ is strictly convex on S.

From Rockafellar (1970), we also know that dom(∂φ) ⊂ domφ. Thus, since Bregman

functions are strictly convex, we have that φ is essentially strictly convex.

Proposition 6.3. Let P ∗,f ∗, g∗ be the optimal solutions, primal and dual, to the

Monge-Kantorovich formulation (Problem 6.0.2) and let P ∗φ,ϕ,f ∗φ,ϕ, g∗φ,ϕ be the optimal

288

solutions to DROT, Problem 6.4. Then we have that the following are true.

1. The difference between the value of the DROT objective and that of the Monge-

Kantorovich formulation is upper and lower bounded by

φ
(
f ∗φ,ϕ

)
+ ϕ(g∗φ,ϕ) ≤ γ(OT(a, b)− DROT(a, b))

≤ φ(f ∗) + ϕ(g∗).

2. We can estimate the quality of the approximation (as a function of the regularizers

φ and ϕ) as

γ〈C,P ∗ − P ∗φ,ϕ〉 ≤φ(f ∗) + ϕ(g∗)+

φ∗(γ(a− P ∗φ,ϕ1m))+

ϕ∗(γ(b− (P ∗φ,ϕ)T1n))

3. and

φ∗(γ(a− P ∗φ,ϕ1m)) + ϕ∗(γ(b− (P ∗φ,ϕ)T1n)) ≤

γ〈C,P ∗ − P ∗φ,ϕ〉 − φ(f ∗φ,ϕ)− ϕ(g∗φ,ϕ).

Proof. Let us first prove the lower bound for part 1. To do this note that since f ∗φ,ϕ

and g∗φ,ϕ satisfy the constraints f ∗φ,ϕ1Tm + 1n(g∗φ,ϕ)T ≤ C, we have that

〈f ∗φ,ϕ,a〉+ 〈g∗φ,ϕ, b〉 ≤ 〈f ∗,a〉+ 〈g∗, b〉 = OT (a, b)

Then subtracting 1
γ
φ
(
f ∗φ,ϕ

)
+ 1

γ
ϕ
(
g∗φ,ϕ

)
from both sides and rearranging gives us the

the lower bound.

289

For the upper bound, note that f ∗1Tm + 1n(g∗)T ≤ C, hence we have that

1

γ
φ(f ∗) +

1

γ
ϕ(g∗)− (f ∗)Ta− (g∗)Tb ≥ −DROT (a, b).

Thus, rearranging gives us the upper bound.

Now for part 2, we have that

〈C,P ∗〉 = 〈f ∗,a〉+ 〈g∗, b〉.

Then we subtract (φ(f ∗) + ϕ(g∗))/γ from both sides to get

〈C,P ∗〉 − 1

γ
(φ(f ∗) + ϕ(g∗) = 〈f ∗,a〉+ 〈g∗, b〉 − 1

γ
(φ(f ∗) + ϕ(g∗).

Then we have that

〈f ∗,a〉+ 〈g∗, b〉 − 1

γ
(φ(f ∗) + ϕ(g∗) ≤ DROT (a, b).

Thus, we get that

〈C,P ∗〉 − 1

γ
(φ(f ∗) + ϕ(g∗) ≤ 〈C,P ∗φ,ϕ〉

+
φ∗(γ(a− P ∗φ,ϕ1m))

γ

+
ϕ∗(γ(b− (P ∗φ,ϕ)T1n))

γ

Rearranging the above equation gives us part 2

For part 3, note that

〈C,P ∗〉 = 〈f ∗,a〉+ 〈g∗, b〉 ≥ 〈f ∗φ,ϕ,a〉+ 〈g∗φ,ϕ, b〉.

290

Then we subtract (φ(f ∗φ,ϕ) + ϕ(g∗φ,ϕ))/γ from both sides to get

〈C,P ∗〉 − 1

γ
(φ(f ∗φ,ϕ) + ϕ(g∗φ,ϕ)) ≥ DROT (a, b)

Substituting in the primal objective for DROT and rearranging gives us part 3.

Corollary 6.4.If P ∗γ is the solution to DROT (a, b) for a given γ, and P ∗ is the

solution to OT(a, b) then, ‖a−P ∗γ 1m‖ and ‖b− (P ∗γ)T1n‖, OT (a, b)−DROT (a, b),

and |〈C,P ∗ − P ∗γ 〉| are all O(γ−1).

Proof. Note that at the optimal point, by the KKT conditions, we have stationarity.

So we have that

1

γ
∇φ(f ∗φ,ϕ) = a− P ∗φ,ϕ1m ⇒ ‖a− P ∗φ,ϕ1m‖ =

1

γ
‖∇φ(f ∗φ,ϕ)‖

Now due to the convexity of φ, and part 1 of proposition 1, we have that φ(f ∗φ,ϕ)

is bounded from above. Then again due to the convexity of φ, this implies that

‖∇φ(f ∗φ,ϕ)‖ is bounded from above, Thus, ‖a− P ∗γ 1m‖ is O(γ−1).

Similarly, noting that convex functions are bounded from below, due to Proposition

6.3 part 1, we have that OT (a, b)−DROT (a, b) is O(γ−1).

Finally, since ‖a−P ∗φ,ϕ1m‖ is bounded, we have that a−P ∗φ,ϕ1m lives in a bounded

set whose diameter is O(γ−1). Thus, φ∗(γ(a − P ∗φ,ϕ1m)) is bounded. Thus, using

similar reasoning to before and Proposition 6.3 parts 2,3, we have that |〈C,P ∗−P ∗γ 〉|

is O(γ−1).

Proposition 6.7. Given two discrete measures µ, ν, a cost function c, and Bregman

regularizers φ, ϕ and γ−1 ∈ [0,∞), the value function V is well defined and continuous

on [0,∞) and the optimal policy correspondence x∗ is also well defined and continuous

on (0,∞). Furthermore, if φ, ϕ are both positive co-finite or both negative co-finite,

then the optimal policy correspondence is upper hemicontinuous on [0,∞).

291

Proof. Let us start by defining a new problem DROTn as follows. Here we add the

following new constraints: −n ≤ fi, gj. In this case, we have that the feasible region

is bounded and closed and hence is compact.

We are going to show continuity using Berge’s maximal theorem. Hence we need

to show the assumptions for Berge’s theorem are true. Here let Kn = {[f , g] ∈ R2n :

−n ≤ fi, gj}, then we have

Xn = {[f , g] ∈ R2n : fi + gj ≤ Cij} ∩Kn

This Xn will be the feasible region for the problem DROTn. Now let Θ = [0,∞). Now

define T : Xn ×Θ→ R that is defined as follows.

T (f , g, γ−1) = 〈f ,a〉+ 〈g, b〉 − γ−1φ(f) + γ−1ϕ(g)

Finally, let us define Gn(θ) = Xn for all θ ∈ Θ. In this case, we have that the value

function is

Vn(θ) = max
x∈Gn(θ)

T (x, θ),

and the optimal policy correspondence is

x∗n(θ) = {x ∈ Gn(θ) : T (x, θ) = Vn(θ)}.

The first few assumption for Berge’s maximal theorem are that T is a continuous

function, Θ is closed and Xn is closed. These are clearly true. Thus, we just need

to show that G is compact valued and continuous. First, we see that Xn is compact.

Hence G is compact valued. Thus, we just need to show that G is continuous.

We shall do this by showing that Gn is upper and lower hemicontinuous.

For upper hemicontinuity, we need to show that for all θ ∈ Θ that for every

292

sequence (θj)j∈N) with θj → θ and every sequence (xj)j∈N with xj ∈ Gn(θj) for all j,

there exists a convergent sub-sequence xjk such that xjk → x ∈ Gn(θ). In this case,

since Gn(θj) = Xn for all θj, we have that xj ∈ Xn. Then since Xn is compact, we

have a convergent sub-sequence.

For lower hemicontinuity, we need to show that for all θ ∈ Θ, for every open set

X ′ ⊂ Xn with Gn(θ) ∩X ′ 6= ∅, there exists a δ > 0 such that for every θ′ ∈ Nδ(θ),

Gn(θ′) ∩X ′ 6= ∅. In this case, since Gn(θ) = Xn for all θ, this is trivially true.

Thus, Gn is compact valued and continuous. Thus, by the Berge’s maximal

theorem, we have that Vn is well defined and continuous. Also we have that x∗n is

upper hemicontinuous. Now we have that for a fixed θ ∈ (0,∞), [f , g]→ T (f , g, θ)

is a strictly concave function and Gn(θ) is a convex. Thus, we have that there has a

unique maximizer. Thus, x∗n(θ) is a singleton set. Thus, being upper hemicontinuous

implies continuity and that the function θ 7→ [f , g] ∈ x∗n(θ) is a continuous function.

Let V, x∗ be the value function and optimal policy correspondence for DROT. Then

we need to show that V, x∗ are continuous at all θ ∈ (0,∞). To do this let θ ∈ (0,∞)

and let f ∗φ,ϕ, g∗φ,ϕ be the optimal solutions. Then we know there exists an n such that

[f ∗φ,ϕ, g
∗
φ,ϕ] ∈ int(Kn). Thus, due to the continuity of x∗n there is a ball B around θ,

such that x∗n(B) ⊂ int(Kn) and x∗n = x∗ on B. Thus, V = Vn on B. Thus, V, x∗ is

continuous on (0,∞). Finally part 1 of Proposition 6.3 shows that V is continuous at

0.

The final detail that we need to prove is the fact that x∗ is upper hemicontinuous

at 0. First, suppose both φ and ϕ are negative co-finite. Then since convex functions

are bounded from below and

φ(f ∗φ,ϕ) + ϕ(g∗φ,ϕ) ≤ φ(f ∗) + ϕ(g∗).

We see that φ(f ∗φ,ϕ), ϕ(g∗φ,ϕ) are bounded from above. Thus, since the two functions

293

are negative co-finite, there exists an N such that, N ≤ f , g. Thus, we see that,

x∗ = x∗N . Thus, we have upper hemi-continuous at 0.

Let us now suppose that both φ and ϕ are negative co-finite. Then since convex

functions are bounded from below and

φ(f ∗φ,ϕ) + ϕ(g∗φ,ϕ) ≤ φ(f ∗) + ϕ(g∗).

We see that φ(f ∗φ,ϕ), ϕ(g∗φ,ϕ) are bounded from above. Thus, since the two functions

are negative co-finite, there exists an N such that, N ≥ f , g.

Now we know that at γ−1 → 0, we have that

‖〈f ∗ − f ∗φ,ϕ,a〉+ 〈g∗ − g∗φ,ϕ, b〉‖ → 0.

Thus now assume for the sake of contradiction that

f ∗φ,ϕ → −∞

as γ−1 → 0. Then we have that

〈f ∗ − f ∗φ,ϕ,a〉 → −∞

as γ−1 → 0. Thus, we must have that

〈g∗ − g∗φ,ϕ, b〉 → ∞

as γ−1 → 0. But then this would imply that g∗φ,ϕ → ∞ as γ−1 → 0. This is a

contradiction. Thus f ∗φ,ϕ is bounded from below.

Similarly, we have that g∗φ,ϕ is bounded from below. Thus, there exists an N such

that x∗ = x∗N . Thus, x∗ is upper hemicontinuous at 0.

294

Corollary 6.8. Suppose that we have an instance of Problem 6.0.2 such that for

any two optimal dual solutions (f ∗1 , g
∗
1), (f ∗2 , g

∗
2), we have that f ∗1 − f ∗2 = c1, and

g∗1 − g∗2 = −c1. Then there exists Γ such that for all γ ≥ Γ, if P ∗γ is the solution to

DROT Problem 6.4 for γ and P ∗ is any optimal solution to Problem 6.0.2, then we

have that supp(P ∗γ) ⊂ supp(P ∗).

Proof. First, we note that the solution to the optimal transport problem is now unique

upto constants. Then due to the existence of strictly complementary solutions. We

see that all solution must be strictly complementary.

Let f ∗, g∗ be the optimal solutions to the regularized problem. Then we know

that supp(P ∗) = {i, j : f ∗i + g∗j < Ci,j}. Then there is an ε > 0, such that for any

non active constraint we have that

f ∗i + g∗j −Cij < −ε

Then let V = {f , g : ‖f ∗ − f‖ < ε/3, ‖g − g∗‖ < ε/3}. Then by upper continuity

we know that there exists a δ > 0 such that for all γ−1 < δ we have that f ∗φ,ϕ, g∗φ,ϕ ∈ V .

Thus, by complementary slackness we have the needed result.

C.2 Algorithmic Details

C.2.1 Calculating θ

For quadratic, we have that θ =
Cij−fi−gj

2γ
, in the case of entropy we have that

θ = log

(
Cij

fi + gj

)
/γ,

295

in the case of exponential it is given by

θ = −
efi + egj ±

√
(efi + egj)2 − 4(efi+gj − eCij)

2

For exponential, this is done by solving the Lagrange multiplier problem. However,

this problem doesn’t always a solution in this set up. Such a situation arises when we

set γ to be large. Hence, we don’t make γ too large in any of our experiments.

In the case, we want to mix, then this calculation becomes more difficult. For example,

if φ is quadratic and ϕ is entropy, then θ is the root of ex + x+ fi + gj −Cij.

C.3 Experiment Details

All experiments were run on a machine with 8 cores and 56 GB of memory.

C.3.1 Solver choice

For this experiment, we took two Gaussian distributions with means ±15 and

variance 10. We then sampled n equidistant points on [−20, 20] and formed two

discrete distributions on these n by sampling from the Gaussians. The cost matrix C

is given by the squared Euclidean distance. We then solved the quadratic regularized

version of the problem with γ = 1e3.

The feasibility error for Mosek and CPLEX are those reported by the solvers. For

project and forget, we calculate the feasibility error by

max
i,j

fi + g−Cij

2γ
.

As we can see from Table C.1, the solvers have roughly reached the same level

of convergence. One thing of note, is that the Mosek solver consistently has very

different objective values compared to the other solvers.

296

Objective Feasibility Error
Solver n Primal Dual Primal Dual

Project and Forget 501 3.8416076 3.8416077 7.8e-09 0
Mosek Primal 501 3.8414023 3.8414023 3.8e-08 2.8e-10

LBFGSB 501 n/a 3.8416114 n/a 0
Mosek Dual 501 3.8303160 3.8303203 3.5e-8 2.2e-11
CPLEX Dual 501 3.8416376 3.8416076 8.44e-07 1.13e-04
CPLEX Primal 501 Ran out of memory

Project and Forget 1001 1.947531924 1.947532070 9.3e-9 0
Mosek Primal 1001 1.947091229 1.947091203 2.7e-08 8.4e-11

LBFGSB 1001 n/a 1.947548404 n/a 0
Mosek Dual 1001 Ran out of memory
CPLEX Dual 1001 Ran out of memory
CPLEX Primal 1001 Ran out of memory

Project and Forget 5001 3.94655624e-01 3.946556176e-01 1.42e-09 0
Mosek Primal 5001 3.880175376e-01 3.880175255e-01 1.2e-08 7.4e-11

LBFGSB 5001 n/a 3.947709104e-01 n/a 0
Mosek Dual 5001 Ran out of memory
CPLEX Dual 5001 Ran out of memory
CPLEX Primal 5001 Ran out of memory

Table C.1: Table showing the convergence details for the various solvers.

All experiments were run on a machine with 8 cores and 56 GB of memory.

C.3.2 Verifying theoretical properties

Here all experiments were run until the project and forget feasibility error was

smaller than 1e-15.

C.3.3 Color Transfer

Here we used k = 4096 clusters. For the quadratic regularizer γ = 1e4, for the

entropic regularizer γ = 1e4, for the exponential regularizer, γ = 10log10(e10) ≈ 104.34.

Here we picked γ that looked best for the first set of images and used the same γ for

the second set.

For ROT we set γ = 1e− 2. For UOT we set the regularizer γ1 = 1e− 2, and we

297

set the penalty γ3 = γ2 = 1e1.

C.3.4 MNIST-USPS

For the quadratic regularizer, we set γ = 1e7, the entropic regularizer we set

γ = 1e5. These were the smallest γ’s at which transport happened. For ROT and

UOT we set γ = γ1 = γ2 = γ3 = 1.

Note γ was finalized before we looked at any of the digits or the prediction accuracy.

It was chosen whenever the transport plan P had non trivial number of non-zero

entries.

298

APPENDIX D

How to Optimally Train a Stacked Linear Denoisng

Autoencoder?

D.1 Proofs

In this section we present all of the proofs for the results in the main text. Here

we present the proofs in the same order they appear in the text.

D.1.1 Step 1: Formula for Wopt

Proposition 8.2. Let h = vTtrnA
†
trn, k = A†trnu, s = (I − AtrnA†trn)u, t = vtrn(I −

A†trnAtrn), β = 1 + θtrnv
T
trnA

†
trnu, σ1 = θ2

trn‖t‖2‖k‖2 + β2, and σ2 = θ2
trn‖s‖2‖h‖2 + β2.

If β 6= 0 and Atrn has full rank then

Wopt =

θtrnβ
σ1

uh+
θ2trn‖t‖2

σ1
ukTA†trn c < 1

θtrnβ
σ2

uh+
θ2trn‖h‖2

σ2
usT c > 1

.

Proof. Let us first proof the case when c > 1. Here we know that u is arbitrary. Here

we have that Atrn has full rank. Thus, since c > 1, we have that M > Ntrn, thus Atrn

299

has rank Ntrn. Thus, the rows of Atrn span the whole space. Thus, vtrn lives in the

range of ATtrn. Finally, since β 6= 0, we want Theorem 5 from Meyer (1973).

Here let us further define

p2 = −θ
2
trn‖s‖2

β
A†trnh

T − θtrnk and qT2 = −θtrn‖h‖
2

β
sT − h

and finally σ2 = θ2
trn‖s‖2‖h‖2 + β2. Then we have from Meyer (1973) that

(Atrn + θtrnuv
T
trn)† = A†trn +

θtrn
β
A†trnh

T sT − β

σ2

p2q
T
2

In our case, we only care about θtrnuvTtrn(Atrn + θtrnuv
T
trn)†. Thus let us multiply

this through and see what we get.

θtrnuv
T
trn(Atrn + θtrnuv

T
trn)† = θtrnuv

T
trn(A†trn +

θtrn
β
A†hTuT − β

σ2

p2q
T
2)

= θtrnuh+
θ2
trn‖h‖2

β
usT +

θtrnβ

σ2

uvTtrn

(
θ2
trn‖s‖2

β
A†trnh

T + θtrnk

)
qT2

= θtrnuh+
θ2
trn‖h‖2

β
usT +

θ3
trn‖s‖2‖h‖2

σ2

uqT2 +
θ2
trnβ

σ2

uhuqT2

Then we have that

θ3
trn‖s‖2‖h‖2

σ2

cqT2 = −θ
4
trn‖s‖2‖h‖4

σ2β
usT − θ3

trn‖s‖2‖h‖2

σ2

uh (D.1)

and

θ2
trnβ

σ2

uhuqT2 = −θ
3
trn‖h‖2

σ2

uhusT − θ2
trnβ

σ2

uhuh. (D.2)

300

Using that β − 1 = θtrnv
T
trnA

†
trnu = θtrnhu, we get that

θ2
trnβ

σ2

uhuqT2 = −θ
2
trn‖h‖2(β − 1)

σ2

usT − θtrnβ(β − 1)

σ2

uh. (D.3)

Substituting back in and collecting like terms we get that

θtrnuv
T
trn(Atrn + θtrnuv

T
trn)† = θtrnu

(
1− θ2

trn‖s‖2‖h‖2

σ2

− β(β − 1)

σ2

)
h

+ θ2
trnu

(
‖h‖2

β
− θ2

trn‖s‖2‖h‖4

σ2β
− ‖h‖

2(β − 1)

σ2

)
sT

We can then simplify the constants as follows.

1− θ2
trn‖s‖2‖h‖2

σ2

− β(β − 1)

σ2

=
σ2 − θ2

trn‖s‖2‖h‖2 − β2 + β

σ2

=
β

σ2

and

‖h‖2

β
−θ

2
trn‖s‖2‖h‖4

σ2β
−‖h‖

2(β − 1)

σ2

=
‖h‖2(σ2 − θ2

trn‖s‖2‖h‖2 − β(β − 1)

βσ2

=
‖h‖2β

βσ2

=
‖h‖2

σ2

.

This gives us the result for c < 1.

If c > 1, then we have that M < Ntrn. Thus, the rank of Atrn is M the range of

Atrn is the whole space. Thus, u lives in the range of Atrn. In this case, we then want

Theorem 3 from Meyer (1973). In this case, we define

p1 = −θ
2
trn‖k‖2

β
tT − k and qT1 = −θtrn‖t‖

2

β
kTA†trn − h.

Then in this case, we have that

(Atrn + θtrnuv
T
trn)† = A†trn +

θtrn
β
tTkTA†trn −

β

σ1

p1q
T
1 .

Then we simplify the equation as we did before!

301

D.1.2 Step 2: Formula for the Expected MSE

Lemma 8.3. If Atst has mean 0 entries and Atst is independent of Xtst and W , then

EAtst [‖Xtst −WYtst‖2
F] = EAtst [‖Xtst −WXtst‖2

F] + EAtst [‖WAtst‖2
F].

Proof. Using the fact that for any two matrices ‖G−H‖2
F = ‖G‖2

F+‖H‖2
F−2Tr(GTH),

we get that

‖Xtst −WYtst‖2 = ‖Xtst −WXtst −WAtst‖2
F

= ‖Xtst −WXtst‖2
F + ‖WAtst‖2 − 2Tr((Xtst −WXtst)

TWAtst).

Then since the trace is linear, and Xtst,W are independent of Atst, and Atst has mean

0 entries, we see that

EAtst [Tr((Xtst −WXtst)
TWAtst)] = 0.

Thus, we have the needed result.

Lemma 8.4. If the entries of Atst are independent with mean 0, and variance 1/M ,

then we have that EAtst [‖WAtst‖2] = Ntst
M
‖W‖2.

Proof. To see this, we note if we look at AtstATtst, then this is a M by M , for which

the expected value of the off diagonal entries is equal to 0, while the expected value of

each diagonal entry is Ntst/M . That is, EAtst [AtstATtst] = Ntst
M
IM .

Then note that

‖WAtst‖2 = Tr(ATtstW
TWAtst) = Tr(W TWAtstA

T
tst) = Tr(W TWAtstA

T
tst).

302

Using the fact that the trace is linear again, we see that

EAtst [Tr(W TWAtstA
T
tst)] = Tr(W TWEAtst [AtstATtst]) =

Ntst

M
Tr(W TW) =

Ntst

M
‖W‖2

F .

Lemma 8.5. If W is the solution to Equation 8.1, then

Xtst −WXtst =

β
σ1
Xtst if c < 1

β
σ2
Xtst if c > 1

.

Proof. To see this, we have the following calculation for when Ntrn > M .

Xtst −WXtst = Xtst −
θtrnθtstβ

σ1

uhuvTtst −
θ2
trnθtst‖t‖2

σ1

ckTA†trnuv
T
tst

= Xtst −
θtrnθtstβ

σ1

uvTtrnA
†
trnuv

T
tst −

θ2
trnθtst‖t‖2

σ1

ukTA†trnuv
T
tst.

First, we note that β = 1 + θtrnv
T
trnA

†
trnu. Thus, we have that θvTtrnA

†
trnu = β − 1.

Thus, substituting this into the second term, we get that

Xtst −WXtst = Xtst −
θtstβ(β − 1)

σ1

uvTtst −
θ2
trnθtst‖t‖2

σ1

ukTA†trnuv
T
tst.

For the third term, we note that k = A†trnu. Thus, we have that kTA
†
trnu = kTk = ‖k‖2.

Substituting this into the expression, we get that

Xtst −WXtst = Xtst −
θtstβ(β − 1)

σ1

uvTtst −
θ2
trnθtst‖t‖2‖k‖2

σ1

uvTtst.

303

Noting that Xtst = θtstuv
T
tst, we get that

Xtst −WXtst = Xtst

(
1− β(β − 1)

σ1

− θ2
trn‖t‖2‖k‖2

σ1

)
.

To simplify the constants, we note that σ1 = θ2
trn‖t‖2‖k‖2 + β2. Thus, we get that

σ1 + β − β2 − θ2
trn‖t‖2‖k‖2

σ1

=
β

σ1

.

For the case when Ntrn < M , we note that the first term of W is the same (modulo

replacing σ1 for σ2) as it is for the case when c > 1. Thus, we just need to deal with

the last term. Here we see that the last term is

θ2
trnθtst‖h‖2

σ2

usTuvTtst.

Here we note that s = (I − AtrnA†trn)u. Thus, in particular, s is the projection of u

onto the kernel of ATtrn. Thus, we have that u = s+ ŝ, where s ⊥ ŝ. This then tells us

that sTu = ‖s‖2. Thus, for this term, we get that it is equal to

θ2‖h‖2‖s‖2

σ2

Xtst.

For this term we note that σ2 = β2 + θ2‖h‖2‖u‖2. Thus, doing the same simplification

as before, we see that for the case when Ntrn < M , we have that

Xtst −WXtst =
β

σ2

Xtst.

In light of Lemma 8.5 and the fact that ‖Xtst‖2
F = θ2

tst. We see that if we look at

304

the expected MSE, we have that,

EAtst
[
‖Xtst −W (Xtst + Atst)‖

Ntst

]
=

β

Ntstσi
θ2
tst +

1

M
‖W‖2

F ,

where σi depends on whether c < 1 or c > 1.

Finally, let us look at the ‖W‖ term.

Lemma 8.6. If β 6= 0 and Atrn has full rank, then we have that if c < 1,

‖W‖2
F =

θ2
trnβ

2

σ2
1

Tr(hTh) + 2
θ3
trn‖t‖2β

σ2
1

Tr(hTkTA†trn) +
θ4
trn‖t‖4

σ2
1

Tr((A†trn)TkkTA†trn)

and if c > 1, then we have that

‖W‖2
F =

θ2
trnβ

2

σ2
2

Tr(hTh) + 2
θ3
trn‖h‖2β

σ2
2

Tr(hT sT) +
θ4
trn‖h‖4

σ2
2

Tr(ssT).

Proof. To deal with the term Tr(W TW) we are again going to have to look at whether

Ntrn is bigger than or smaller than M . First, let us start by looking at the case when

Ntrn > M . Here we have that

‖W‖2
F = Tr(W TW)

= Tr

((
θtrnβ

σ1

uh+
θ2
trn‖t‖2

σ1

ukTA†trn

)T (
θtrnβ

σ1

uh+
θ2
trn‖t‖2

σ1

ukTA†trn

))

=
θ2
trnβ

2

σ2
1

Tr(hTuTuh) + 2
θ3
trn‖t‖2β

σ2
1

Tr(hTuTukTA†trn) +
θ4
trn‖t‖4

σ2
1

Tr((A†trn)TkuTukTA†trn)

=
θ2
trnβ

2

σ2
1

Tr(hTh) + 2
θ3
trn‖t‖2β

σ2
1

Tr(hTkTA†trn) +
θ4
trn‖t‖4

σ2
1

Tr((A†trn)TkkTA†trn).

Where the last inequality is true due to the fact that ‖u‖2 = 1. How about when

Ntrn < M . Then we have the following string of equalities instead.

305

‖W‖2
F = Tr(W TW)

= Tr

((
θtrnβ

σ2

uh+
θ2
trn‖h‖2

σ2

usT
)T (

θtrnβ

σ2

uh+
θ2
trn‖h‖2

σ2

usT
))

=
θ2
trnβ

2

σ2
2

Tr(hTuTuh) + 2
θ3
trn‖h‖2β

σ2
2

Tr(hTuTusT) +
θ4
trn‖h‖4

σ2
1

Tr(suTusT)

=
θ2
trnβ

2

σ2
2

Tr(hTh) + 2
θ3
trn‖h‖2β

σ2
2

Tr(hT sT) +
θ4
trn‖h‖4

σ2
2

Tr(ssT).

D.1.3 Step 3: Estimate using random matrix theory.

Lemma 8.7. Suppose A is an p by q matrix such that the entries of A are independent

and have mean 0, variance 1/q, and bounded fourth moment. Let Wp = AAT and let

Wq = ATA. Let C = p/q. Suppose λp, λq are a random eigenvalue of Wp,Wq. Then

1. If p < q, then E
[

1
λp

]
= 1

1−C + o(1).

2. If p < q, then E
[

1
λ2p

]
= 1

(1−C)3
+ o(1).

3. If p > q, then E
[

1
λq

]
= C−1

1−C−1 + o(1).

4. If p > q, then E
[

1
λ2q

]
= C−2

(1−C−1)3
+ o(1).

Proof. Suppose A is an p by q matrix such that the entries of A are independent

and have mean 0, variance 1/q, and bounded fourth moment. Then we know that

Wp = AAT is an p by p Wishart matrix with c = C. If we send p, q to infinity such

that p/q remains constant, then we have the eigenvalue distribution Fp converges to

the Marchenko Pastur distribution F in probability.

From Rao and Edelman (2008), we know there exists a bi variate polynomial

L(m, z) = czm2 − (1− c− z)m+ 1 such that the zeros of L(m, z) given by L(m(z), z)

are such that

m(z) =

∫
1

λ− z
dF (λ) = Eλ

[
1

λ− z

]
.

306

For the Marchenko-Pastur distribution, we have that for z = 0, we get that

m(z) = 1/(1− c). Thus, for λp is an eigenvalue value of Wp, we have that

E
[

1

λp

]
=

1

1− c
+ o(1).

For Eλ
[

1
(λ−z)2

]
we need to calculate m′(0). Using the implicit function theorem,

we know that

m′(z) = −1

(
∂L

∂m
(m(z), z)

)−1
∂L

∂z
(m(z), z).

Here we can see that ∂L/∂m = 2czm + c + z − 1. Thus, at (1/(1 − c), 0), this

is equal to c − 1. Also ∂L/∂z = cm2 + m. Again at (1/(1 − c), 0) this is equal to

c
(1−c)2 + 1

1−c = 1
(1−c)2 . Thus, we have that

m′(0) =
1

(1− c)3
.

On the other hand if q < p, then Wq := ATA is not a Wishart matrix here, because

it is scaled by the wrong constant. However, multiplying it by 1/C gives us the correct

scaling. Thus, ATA/ is a Wishart matrix with c = 1/C Thus, for λq is an eigenvalue

value of Wq, we have that

E
[

1

λq

]
=

C−1

1− C−1
+ o(1).

Lemma 8.8. Suppose A is an p by q matrix that satsifies the standard noise assump-

tions. Let x, y be unit vectors in p and q dimensions. Let C = p/q. Then

1. E[Tr(xT (AAT)†x)] =

1

1−C + o(1) p < q

q
p

C−1

1−C−1 + o(1) p > q

.

307

2. E[Tr(xT (AAT)†(AAT)†x)] =

1

(1−C)3
+ o(1) p < q

q
p

C−2

(1−C−1)3
+ o(1) p > q

.

3. E[Tr(yT (ATA)†y)] =

p
q

1
1−C + o(1) p < q

C−1

1−C−1 + o(1) p > q

.

4. E[Tr(yT (ATA)†(ATA)†y)] =

p
q

1
(1−C)3

+ o(1) p < q

C−2

(1−C−1)3
+ o(1) p > q

.

Proof. Let A = UΣV T be the SVD. Then we have that (AAT)† = U(Σ2)†UT . Then

since A is bi-unitary invariant, we have that U is a uniformly random unitary matrix.

Thus, a = xTU is a uniformly random unit vector. Note with probability 1, the rank

of A is full and that the non-zero eigenvalues of ATA and AAT are the same.

If p < q, then we have that

E[Tr(xT (AAT)†x)] =

p∑
i=1

a2
i

1

σ2
i

.

Using Lemma 8.7, we have that E[1/σ2
i] = 1/(1− C) + o(1). Thus, we have that

E[Tr(xT (AAT)†x)] =

p∑
i=1

1

p

1

1− C
+ o(1).

On the other hand, if p > q, from Lemma 8.7, we have that E[1/σ2
i] = C−1/(1 −

C−1) + o(1). Thus,

E[Tr(xT (AAT)†x)] =

q∑
i=1

1

p

C−1

1− C−1
+ o(1).

Similarly, if we had we looking at Tr(xT (AAT)†(AAT)†x), we would have a 1/σ4
i

308

term instead. Thus, if p < q, we would have that

E[Tr(xT (AAT)†(AAT)†x)] =
1

(1− C)3
+ o(1).

A similar calculation holds for the others.

Now we have the following Lemma in the main text. However, here instead of

having one big proof, we will separate each term out into its own lemma.

Lemma 8.9. If Atrn satisfies the standard noise assumptions, then we have that

1. E[β] = 1 + o(1) and Var(β) =
θ2trnc

(max(M,Ntrn)|1−c|)) + o(1).

2. If c < 1, then E[‖h‖2] =
c2

1− c
+ o(1) and Var(‖h‖2) =

c3(2 + c)

Ntrn(1− c)3
+ o(1).

3. If c > 1, then E[‖h‖2] =
c

c− 1
+ o(1) and Var(‖h‖2) =

c2(4− c)
M(c− 1)3

+ o(1).

4. E[‖k‖2] =
c

1− c
+ o(1) and Var(‖k‖2) =

2− c
M(1− c)3

+ o(1).

5. E[‖s‖2] =
c− 1

c
+ o(1) and Var(‖s‖2) = 2

(c− 1)2

Mc2
+ o(1)

6. E[‖t‖2] = 1− c+ o(1), Var(‖t‖2) = 2
(1− c)2

Ntrn

+ o(1).

Lemma D.1. β term.

Proof. First, we calculate the expected value of β. To do so, let Atrn = UΣV T be

the SVD. Then since Atrn is bi-unitarily invariant, we have that U, V are uniformly

random unitary matrices. Since u, vtrn are fixed. We have that a := vTtrnV ∈ RNtrn

and b := UTu ∈ RM are uniformly random unit vectors. In particular, we have that

E[ai] = 0,E[bi] = 0,Var(ai) = 1/Ntrn,Var(bi) = 1/M .

Thus, if σi are the singular values for Atrn, then we have that

β = 1 + θtrn

min(M,Ntrn)∑
i=1

1

σi
aibi.

309

Thus, if you take the expectation you get that

E[β] = 1.

On the other hand, lets look at the variance. For the variance, we need to compute

E[β2]. Now if we let T := θtrnv
T
trnA

†
trnu. Then we have that

β2 = 1 + T 2 + 2T.

Thus, again if we take the expectation, we get that

E[β2] = 1 + E[T 2].

Again due to the fact that a, b are independent have have mean 0 entries, the cross

terms in E[T 2]. Thus, we have that

E[T 2] = θtrn2E

min(M,Ntrn)∑
i=1

1

σ2
i

a2
i b

2
i

 = θtrn2 1

MNtrn

E

min(M,Ntrn)∑
i=1

1

σ2
i

 .
Now we need to case on whether M > Ntrn or M < Ntrn. Now to use Lemma 8.7,

we note that q = M and p = Ntrn.

Suppose we have that M > Ntrn, then in this case, we have that q > p. Thus, we

have that

E
[

1

σ2
i

]
=

1

1− C
+ o(1),

where C = p/q = Ntrn/M = 1/c. Thus, we have that

E
[

1

σ2
i

]
=

1

1− 1/c
+ o(1) =

c

c− 1
+ o(1).

310

Thus, we have that

E[T 2] = θtrn2 c

M(c− 1)
+ o

(
1

M

)
.

Thus, we have

Var(β) = θtrn2 c

M(c− 1)
+ o

(
1

M

)
.

On the other hand, if M < Ntrn. Then we have that q < p. Thus, we have that

E
[

1

σ2
i

]
=

C−1

1− C−1
+ o(1),

where C = p/q = Ntrn/M = 1/c. Thus, we have that

E
[

1

σ2
i

]
=

c

1− c
+ o(1).

Thus, we have that

E[T 2] = θtrn2 1

Ntrn

(
c

1− c
+ o(1)

)
=

c

Ntrn(1− c)
+ o

(
1

Ntrn

)
.

Thus, we have

Var(β) = θtrn2 c

Ntrn(1− c)
+ o

(
1

Ntrn

)
.

Lemma D.2. ‖h‖2 term.

Proof. We want to do a calculation similar to that in Lemma 1. Here we have that

‖h‖2 = Tr(hTh) = Tr((A†trn)Tvtrnv
T
trnA

†
trn) = Tr(vTtrnA

†
trn(A†trn)Tvtrn) = Tr(vTtrn(ATtrnAtrn)†vtrn).

To use Lemma 8.8, we note that A = ATtrn, q = M , p = Ntrn. Let us now suppose that

311

M < Ntrn. Then again taking the expectation, we see that

E[‖h‖2] =
M

Ntrn

(
c

1− c
+ o(1)

)
=

c2

1− c
+ o(1).

For the expectation of ‖h‖4, let Atrn = UΣV T be the svd. Then h = vTtrnV Σ†UT . Let

a = vTtrnV and note that a is a uniformly random unit vector. Thus, we have that

‖h‖2 =
M∑
i=1

1

σ2
i

a2
i .

For the expectation of ‖h‖4, we note that

‖h‖4 =
M∑
i=1

M∑
j=1

1

σ2
i σ

2
j

a2
i a

2
j =

M∑
i=1

1

σ4
i

a4
i +

∑
i 6=j

1

σ2
i

1

σ2
j

a2
i a

2
j .

Taking the expectation of the first term, we get

M∑
i=1

E
[

1

σ4
i

]
E[a4

i] =
3M

N2
trn

(
c2

(1− c)3
+ o(1)

)
= 3

c3

Ntrn(1− c)3
+ o(1).

Taking the expectation of the second term, we get

M(M−1)E
[

1

σ2
i

]2

E[a2
i]

2 = M(M−1)
1

N2
trn

(
c2

(1− c)2
+ o(1)

)
=

c4

(1− c)2
− c3

Ntrn(1− c)2
+o(1).

Thus, we have that

E[‖h‖4] =
c4

(1− c)2
+

c3(2 + c)

Ntrn(1− c)3
+ o(1).

Thus, the variance is

Var(‖h‖2) =
c3(2 + c)

Ntrn(1− c)3
+ o(1).

312

For M > Ntrn, we instead have that

E[‖h‖2] =
Ntrn

Ntrn

(
c

c− 1
+ o(1)

)
=

c

c− 1
+ o(1).

For the expectation of ‖h‖4, we note that

‖h‖4 =
Ntrn∑
i=1

Ntrn∑
j=1

1

σ2
i σ

2
j

a2
i a

2
j =

Ntrn∑
i=1

1

σ4
i

a4
i +

∑
i 6=j

1

σ2
i

1

σ2
j

a2
i a

2
j .

Taking the expectation of the first term, we get

Ntrn∑
i=1

E
[

1

σ4
i

]
E[a4

i] =
3Ntrn

N2
trn

(
c2

(c− 1)3
+ o(1)

)
= 3

c2

Ntrn(c− 1)3
+ o(1).

Taking the expectation of the second term, we get

Ntrn(Ntrn − 1)E
[

1

σ2
i

]2

E[a2
i]

2 = Ntrn(Ntrn − 1)
1

N2
trn

(
c2

(c− 1)2
+ o(1)

)
=

c2

(c− 1)2
− c2

Ntrn(c− 1)2
+ o(1).

Thus, we have that

E[‖h‖4] =
c2

(c− 1)2
+

c2(4− c)
Ntrn(c− 1)3

+ o(1).

Thus, the variance is

Var(‖h‖2) =
c2(4− c)

Ntrn(c− 1)3
+ o(1).

Lemma D.3. ‖k‖2 term.

Proof. First note that k only appears in the formula when c < 1. Thus, we can focus

313

on this case. As with h, we have that

‖k‖2 = Tr(uT (A†trn)TA†trnu) = Tr(uT (AtrnA
T
trn)†u).

Again using Lemma 8.8, with q = M, p = Ntrn, A = Atrn, y = u. Thus, since we have

q = M < Ntrn = p, we get that

E[‖k‖2] =
c

1− c
+ o(1).

To calculate the variance, we need to calculate the expectation of ‖k‖4. Here be

again let A = UΣV T be the SVD. Then let b := UTu. Then we have that

‖k‖2 =
M∑
i=1

1

σ2
i

b2
i .

Thus, we see that

‖k‖4 =
M∑
i=1

1

σ4
i

b4
i +

∑
i 6=j

1

σ2
i

1

σ2
j

b2
i b

2
j .

Taking the expectation of the first term we get

3
M

M2

c2

(1− c)3
=

3c2

M(1− c)3
.

Taking the expectation of the second term we get

M(M − 1)

M2

c2

(1− c)2
=

c2

(1− c)2
− c2

M(1− c)2
.

Thus, we have that

E[‖k‖4] =
c2

(1− c)2
+

2− c
M(1− c)3

+ o(1).

314

Thus, we have that

Var(‖k‖2) =
2− c

M(1− c)3
+ o(1).

Lemma D.4. ‖s‖2 term.

Proof. First, we note that s only appears when M > Ntrn. Thus, we only need to

deal with that case. For this term, we note that (I − AtrnA†trn) is a projection matrix

onto a uniformly random M −Ntrn dimensional subspace. Thus, we have that

E[‖s‖2] =
M −Ntrn

M
=
c− 1

c
.

Similarly, we have that

E[‖s‖4] =
M∑
i=1

E[s4
i] +

∑
i 6=j

E[s2
i]E[s2

j]

= 3M
(M −Ntrn)2

M4
+M(M − 1)

(M −Ntrn)2

M4
+ o(1)

= 3
(c− 1)2

Mc2
+

(c− 1)2

c2
− (c− 1)2

Mc2
+ o(1)

=
(c− 1)2

c2
+

2(c− 1)2

Mc2
+ o(1).

Thus, we have that

Var(‖s‖2) = 2
(c− 1)2

Mc2
+ o(1).

Lemma D.5. ‖t‖2 term.

Proof. First, we note that t only appears when M < Ntrn. Thus, we only need to deal

with that case. For this term, we note that (I −A†trnAtrn) is a projection matrix onto

315

a uniformly random Ntrn −M dimensional subspace. Thus, we have that

E[‖t‖2] =
Ntrn −M
Ntrn

= 1− c.

Similarly, we have that

E[‖t‖4] =
Ntrn∑
i=1

E[t4i] +
∑
i 6=j

E[t2i]E[t2j]

= 3Ntrn
(Ntrn −M)2

N4
trn

+Ntrn(Ntrn − 1)
(Ntrn −M)2

N4
trn

+ o(1)

= 3
(1− c)2

Ntrn

+ (1− c)2 − (1− c)2

Ntrn

+ o(1)

= (1− c)2 +
2(1− c)2

Ntrn

+ o(1).

Thus, we have that

Var(‖t‖2) = 2
(1− c)2

Ntrn

+ o(1).

Now we could just use the the fact that |E[XY]− E[X]E[Y]| <
√

Var(X)Var(Y).

Another way to do this is via using big O in probability. Which is defined as follows:

Definition D.6. We save that a sequence of random variables Xn is OP (an), if there

exists an N such that for all ε > 0, there exists a constant L such that for all n ≥ N ,

we have that Pr[|Xn| > Lan] < ε.

Using this, we can have see that σ terms are as follows. Here the big O for terms

come from the variance.

Lemma D.7. σ1 term.

Proof. We know that we only use σ1 when M < Ntrn. In this case, we have that

316

σ1 = β2 + θ2
trn‖t‖2‖k‖2.

σ1 = 1+OP

(
θ2
trnc

Ntrn(1− c)

)
+θ2

trn

(
(1− c) +OP

(
2

(1− c)2

Ntrn

))(
c

1− c
+OP

(
2− c

M(1− c)3

))

Thus, we get that σ1 = 1 + θ2
trnc+OP (Eσ1), where

Eσ1 =
θ2
trnc

Ntrn(1− c)
+ 2

θ2
trnc(1− c)
Ntrn

+
θ2
trn(2− c)
M(1− c)2

+
2θ2

trn(2− c)
NtrnM(1− c)

.

Lemma D.8. σ2 term.

Proof. We know that we only use σ2 when M > Ntrn. In this case, we have that

σ2 = β2 + θ2
trn‖s‖2‖h‖2.

σ1 = 1+OP

(
θ2
trnc

Ntrn(1− c)

)
+θ2

trn

(
c− 1

c
+OP

(
2

(c− 1)2

Mc2

))(
c

c− 1
+OP

(
c2(4− c)

Ntrn(c− 1)3

))

Thus, we get that σ2 = 1 + θ2
trn +OP (Eσ2), where

Eσ2 =
θ2
trnc

Ntrn(1− c)
+ 2

θ2
trn(c− 1)

Mc
+
θ2
trnc(4− c)
Ntrn(c− 1)2

+
2θ2

trn(4− c)
NtrnM(c− 1)

.

Then the trace terms.

Lemma 8.10. Under standard noise assumptions, we have that

E[Tr(hTkTA†trn)] = 0

and

Var(Tr(hTkTA†trn)) = χ3(c)/Ntrn,

where χ3(c) = E[1/λ3], λ is an eigenvalue for AAT and A is as in Lemma 8.8.

317

Proof. First we note that

Tr(hTkTA†trn) = Tr((A†trn)Tvtrnu
T (A†trn)TA†trn) = uT (A†trn)TA†trnA

†
trn)Tvtrn).

Again let Atrn = UΣV T be the SVD. Then, we have the middle terms depending on

Atrn simplifies to

(A†trn)TA†trn(A†trn)T = U(Σ†)TΣ†(Σ†)TV T .

Thus, again letting b = uTU and a = V Tvtrn. We see that

Tr(hTkTA†trn) =
M∑
i=1

aibi
1

σ3
i

.

Now if take the expectation, since a, b are independent and mean 0, we see that

EAtrn [Tr(hTkTA†trn)] = 0.

Let us also compute the variance. Here we have that

E[Tr(hTkTA†trn)2] =
M∑
i=1

E
[

1

σ6
i

]
E[a2

i]E[b2
i] + 0.

Now for the Marchenko Pastur distribution we have that the expectation of 1/λ3 =

χ3(c). where χ3 is some function. Thus, we have that

E[Tr(hTkTA†trn)2] =
1

Ntrn

χ3(c) + o(1).

Lemma 8.11. Under standard noise assumptions, we have that

Tr((A†trn)TkkTA†trn) =
c2

(1− c)3
+ o(1)

318

and

Var(Tr((A†trn)TkkTA†trn)) =
3

M
χ4(c)− 1

M

c4

(1− c)6

where χ4(c) = E[1/λ4], λ is an eigenvalue for AAT and A is as in Lemma 8.8.

Proof. Now using Lemma 8.8, we see that

EAtrn [Tr((A†trn)TkkTA†trn)] =
c2

(1− c)3
.

Similar to proofs before, we have that

EAtrn [Tr((A†trn)TkkTA†trn)2] =
M∑
i=1

3

M2
χ4(c) +

∑
i 6=j

1

M2

c4

(1− c)6
+ o(1).

Where χ4(c) = E[1/λ4] for the Marchenko Pastur distribution. Thus, we have that

Var(Tr((A†trn)TkkTA†trn)) =
3

M
χ4(c)− 1

M

c4

(1− c)6
+ o(1).

Lemma 8.12. Under the same assumptions as Proposition 8.2, we have that

Tr(hT sT) = 0.

Proof. Here we note that hT = (A†trn)Tvtrn and sT = uT (I − AtrnA†trn)T . Thus, we

have that

Tr(hT sT) = Tr((A†trn)Tvtrnu
T − (A†trn)Tvtrnu

T (AtrnA
†
trn)T)

= Tr(vTtrnA
†
trnu)− Tr(uT (AtrnA

†
trn)T (A†trn)Tvtrn)

= Tr(vTtrnA
†
trnu)− Tr(vTtrnA

†
trnAtrnA

†
trnu)

= Tr(vTtrnA
†
trnu)− Tr(vTtrnA

†
trnu)

= 0

319

As we can see that if we take the expectation of ‖W‖ over Atrn, since the variance

of each of the terms is small, we can approximate E[XY] with E[X]E[Y]. Then we

get the following.

If M < Ntrn, we have that

EAtrn [‖W‖2] =
θ2
trn

(1 + θ2
trnc)

2

c2

(1− c)
+ 0 +

θ4
trn(1− c)2

(1 + θ2
trnc)

2

c2

(1− c)3

= c2 θ2
trn + θ4

trn

(1 + θ2
trnc)

2(1− c)
.

On the other hand, M > Ntrn, we have that

EAtrn [‖W‖2] =
θ2
trn

(1 + θ2
trn)2

c

c− 1
+

θ4
trn

(1 + θ2
trn)2

c2

(c− 1)2

c− 1

c

=
c

c− 1

θ2
trn(1 + θ2

trn)

(1 + θ2
trn)2

=
θ2
trn

1 + θ2
trn

c

c− 1
.

Now combining everything together, we get that

EAtrn,Atst
[
‖Xtst −W (Xtst+ Atst)‖

Ntst

]
=

θ2tst

Ntst(1+θ2trnc)
2 + 1

M
c2 θ2trn+θ4trn

(1+θ2trnc)
2(1−c) c < 1

θ2tst
Ntst(1+θ2trnc)

2 + 1
M

θ2trn
1+θ2trn

c
c−1

c > 1

.

D.1.4 Proof of Theorem

We can see that the main text has how to put all of the pieces together to prove

the main Theorem. We don’t replicate that here.

D.1.5 Formula for θ̂opt−trn

As stated in the main text, we only need to take the derivative. So, we don’t

present that calculation here as it is fairly straightforward.

320

D.2 Experiments

We now present extra details and graphs to support the experiments.

D.2.1 Flag Experiment

Here, we took a 176 by 179 pixel image of the German flag. It was a png hence

has 4 channels. We concatenate all of the channels to get a 4× 176 by 179 matrix.

We then replicate each data point 4 times, so we get a 708 by 718 data matrix. In

principle this matrix should be rank 1, but due to real world data issues, the matrix

was rank 7.

Here we added Gaussian noise sampled from a standard Gaussian distribution.

This results in us having θ̂tst ≈ 168. Using these numbers we compute θ̂opt−trn ≈ 30.

This is what we use to train the second denoiser.

Here the traditional autoencoder has an error of approximately 220 while our

decoder has an error of approximately 190. The best MSE for traditional was 200 and

the best MSE for our autoencoder was 160.

These experiments were run on a free Google Colab instance. The experiment was

run multiple times. In many cases, we have that the traditional autoencoder has fewer

vertical lines that are wrong, but at the top of the yellow strip, there are usually a

horizontal strip of corrupted pixels that doesn’t exist for our autoencoder.

D.2.2 Linear Autoencoder

Here we provide more examples of c and how our theoretical formula matches the

experimental performance exactly.

Each empirical point is the average over 50 trials. These were run on a laptop

with 8gb of RAM and an i3 processors. The average time to produce any of these

plots is about 10 to 30 minutes.

321

(i) c = 0.1 (ii) c = 0.5 (iii) c = 0.9

(iv) c = 2 (v) c = 10 (vi) c = 2, θ̂tst = 0.01

(vii) c = 0.3 (viii) c = 2

Figure D.1: Figures (a) - (e) showing the accuracy of the formula for the expected mean
squared error for c = 0.1, 0.5, 0.9, 2, 10 for fixed value of θ̂tst. Figure (f) empirically
verifies the existence of a regime where training on pure noise is optimal. Figures (g)
and (h) show the accuracy of the formula when Dtst (exponential in (g) and Gaussian
in (h)) and Dtrn (uniform in (g) and exponential in (h)) are non constant distributions.
Here the red and green lines represent E[θ̂2

tst] and E[θ̂2
trn] respectively. Each empirical

data point is averaged over at least 50 trials.

D.2.3 Rank 2 Data

Let us now demonstrate that the V shaped curve exists beyond rank 1 data and

linear autoencoders. We will do this by gradually making the set up more complicated

until we can no longer recreate this phenomena. First, we consider rank 2 data is of

the following form. Let Wdata be some fixed matrix, then our data is generated by

X = relu(Wdatarelu(uvT).

322

Where a different v is sampled for the training and test data. the results for this can

be seen in Figure D.2. As we can from the figure, we have the exact same qualitative

trend for c that we saw before. That is, as c goes from 0 to 1, we have that θ̂trn goes

from θ̂tst to 0, and then as c→∞, we have that θ̂trn goes to infinity as well.

(i) c = 0.3 (ii) c = 0.5 (iii) c = 0.9

(iv) c = 2 (v) c = 10

Figure D.2: Rank 2

D.2.4 MNIST Data

D.2.4.1 Linear Autoencoder

This experiment was run on laptop with 8gb of RAM and an i3 processor. Each

empirical data point on each was run 5 times.

D.2.4.2 Non-linear Autoencoder

Here, we trained each network for 1500 epochs. During each epoch we computed

a gradient using the whole data set. We used Adam as the optimizer with the code

written in Pytorch. Each data point was generated over 20 trials.

These experiments take a little bit more time to run and the one with bigger

323

(i) c = 0.04 (ii) c = 0.16 (iii) c = 0.784

(iv) c = 1.12 (v) c = 3.92 (vi) c = 39.2

Figure D.3: MNIST

amounts of data can take upto 5 hours on a google cloud instance with 16gb RAM.

Here we used a Telse P4 gpu.

(i) c = 0.261 (ii) c = 0.784 (iii) c = 1.57

(iv) c = 3.92 (v) c = 39.2

Figure D.4: MNIST - LSLS model

324

(i) c = 0.261 (ii) c = 0.784 (iii) c = 1.12

(iv) c = 1.57 (v) c = 3.92

Figure D.5: MNIST - LRL model

D.3 Pre-training SDAEs

From the previous section, we see that we understand the phenomenon that occurs

when using a linear autoencoder. However, we do not fully understand the phenomenon

for a non-linear autoencoder. Hence, we want to see if understanding the linear version

is enough. That is, suppose we use the linear autoencoders to initialize an SDAE, how

does this compare to the non-linear version? To test this, we consider two different

noise models. First is Gaussian noise, and the second is salt and pepper noise added

only to the background. For salt and pepper noise, each pixel of the background is set

to 1 with probability 0.25, is set to −1 with probability 0.25, and we leave it to be 0

with probability 0.5. Let A be the noise matrix for either noise model.

For each noise model, let Xtrn, Xtst be the true MNIST data. Then the corrupted

datasets are X̂trn = Xtrn + Atrn and Xtst = X̂tst + Atst. The final goal for the SDAE

is to classify the images in the dataset X̂tst. However, to pre-train the SDAE, we

train autoencoders on data that has even more noise. Let X̃trn be the noisy version of

X̂trn. For the Gaussian noise case, we just add more Gaussian noise, for the salt and

325

pepper noise case, we use a masking noise. We consider two training objectives for

the autoencoders; L(X, X̃) and L(X̂, X̃). That is, is our target is the noisy X̂ or the

noiseless version X. For the linear decoder, we use the mean squared loss. For the

non-linear autoencoder, we use an affine + sigmoid encoder and decoder and use the

cross entropy loss. To train these networks, we re-sample the noise to go from X̂ to X̃

every iteration and train the models using the Adam optimizer for 1000 epochs. We

then stack two such layers, add a new layer for classification and fine tune the model

on X̂trn for the classification task for an 1000 epochs. We then test on X̂tst. Here we

used the basic MNIST dataset as our data. So we have 12000 training samples and

50,000 test samples. Figure D.6 shows the results for the 4 experiments.

We see that in some cases, the linear version does better and in some cases the non-

linear one is better. Thus, showing that further work needs to be done to understand

the non-linear case.

(i) Autoencoder target
X

(ii) Autoencoder tar-
get X̂

(iii) Autoencoder tar-
get X

(iv) Autoencoder tar-
get X̂

Figure D.6: Plots comparing the classification accuracy for SDAEs pre-trained with
linear versus non-linear autoencoders. The results are averaged over 5 trials Figures
(a) - (b) are with Gaussian noise, where as Figures (c) - (d) are with salt and pepper
noise.

326

APPENDIX E

How Can Classical Multidimensional Scaling go

Wrong?

E.1 Proofs

Lemma 7.10.

2‖f(D)− f(Dcmds)‖2
F =

n‖(S ◦ S)~λ‖2
F − C2

2

2
=: C3.

Proof. First, we note that if Λ is the diagonal matrix whose diagonal is given by the

first n− 1 entries of ~λ then we have that

UΛUT = D̂ − D̂cmds.

This is true due to Lemmas 7.6 and 7.8. Then we can see the following spectral

327

decomposition as well

Q

U 0

0 1

Λ 0

0 0

UT 0

0 1

Q = Q

D̂ − D̂cmds 0

0 0

Q.
From Hayden and Wells (1988), we have that if F is a symmetric matrix, then there

are unique f , ξ such that

Q

 F̂ f

fT ξ

Q
is hollow. The unique f , ξ are given by

2f

ξ

 =
√
nQdiag

Q
F̂ 0

0 0

Q
 .

Now, note that D and Dcmds are already hollow, thus, we have that

2f(D)

ξ(D)

 =
√
nQdiag

Q
D̂ 0

0 0

Q
 .

2f(Dcmds)

ξ(Dcmds)

 =
√
nQdiag

Q
D̂cmds 0

0 0

Q
 .

Taking the difference, we get that

2f(D)− 2f(Dcmds)

ξ(D)− ξ(Dcmds)

 = nQdiag

Q
D̂ − D̂cmds 0

0 0

Q

Then using the theorem on diagonalization and the Hadamard product from Million

328

(2007), we know that

diag

Q
D̂ − D̂cmds 0

0 0

Q
 = (S ◦ S)diag(~λ).

Thus, using Lemma 7.9 taking the norm and noting that Q is unitary, we get that

∥∥∥∥∥∥∥
2f(D)− 2f(Dcmds)

ξ(D)− ξ(Dcmds)

∥∥∥∥∥∥∥

2

2

= n‖(S ◦ S)diag(~λ)‖2
F .

Thus, we have that

2‖f(D)− f(Dcmds)‖2 =
n‖(S ◦ S)diag(~λ)‖2

F − C2
2

2
.

E.2 Extra Datasets

We perform the same experiments as in Section 9.6 on another data set called

Sonar Gorman and Sejnowski (1988). The results are shown in Figures E.1, E.2, E.3,

and E.4. In addition, we compute the additive distortion for this data set. As we can

see, all of the trends for this data set are consistent with the results in Section 9.6.

We note that the overall behavior of the additive distortion somewhat matches that

of the distance to the true solution. In other words, the data set in the main paper

is not a special one. We also performed the same experiments for the Arrhythmia

Guvenir et al. (1997), Glass Evett and Spiehler (1989), Musk Dietterich et al. (1993),

Orl, Libras Dias et al. (2009), and Ionosphere Sigillito et al. (1989). All data sets

exhibited the same behavior.

All data and code can be found at:

329

(i) Sonar (ii) Isomap (iii) Perturbed - Input(iv) Perturbed - Origi-
nal

Figure E.1: Distance to Input Matrix.

(i) Sonar (ii) Isomap (iii) Perturbed

Figure E.2: Distance to true solution

https://www.dropbox.com/sh/rf3cr4teta79do3/AADtURRC-AhFGivB6-xs6ZEQa?dl=0

E.3 Computing True MDS solution

The algorithm in Hayden and Wells (1988) does not use any dimension constraint

and so we use the result from Qi and Yuan (2014c) to adapt it. The algorithm in

Hayden and Wells (1988) is Bregman’s cyclic method or Dykstra’s method of alternate

projections. Instead of projecting D̂ onto the cone of negative semi definite cone, we

(i) Sonar (ii) Isomap (iii) Perturbed

Figure E.3: Multiplicative Distortion

330

(i) Sonar (ii) Isomap (iii) Perturbed

Figure E.4: Average Additive Distortion

project onto E(r).

We performed each true MDS computation until the change in D̂ is at most 0.1,

where the difference is measured as the Frobenius norm.

331

APPENDIX F

Deep Greek: Reconstructing Greek Test

F.1 Appendix

F.1.1 Four Texts

The four texts are the following.

1. Plato, Phaedrus - 231e3-232b5.

2. Aristophanes, Lysistrata - 306-325.

3. Herodotus, 3.40.

4. Homer, Iliad 24.522-542.

F.1.2 Neural Network implementation details

F.1.2.1 The Character Encoding Layers

The character encoding layers are one 1D convolutions layers. In each layer, we

pad so that the length of the output sequence does not change, and all of the kernels

332

Figure F.1: Text 1 mentioned in Section 9.6.5

Figure F.2: Text 2 mentioned in Section 9.6.5

333

Figure F.3: Text 3 mentioned in Section 9.6.5

334

Figure F.4: Text 4 mentioned in Section 9.6.5

335

have length 3. The layer has 256 filters. The character embedding layers are not

shared between the three recurrent parts of the network. Each recurrent part has its

own character embedding network.

F.1.2.2 The Encoder LSTM Network

The encoder LSTM network has 3 LSTM layers. Each LSTM layer has 256 units.

In this case, we unroll our network for n steps. Each layer returns the whole sequence.

The last layer also returns the hidden states.

F.1.2.3 The Decoder LSTM Network

The encoder LSTM network has 4 LSTM layers. Each LSTM layer has 256 units.

In this case, we unroll our network for n steps. Each layer returns the whole sequence.

The first layer hidden states is initialized using the last layer from the encoder network.

F.1.2.4 Training Details

We trained each network on ∼11,00 batches, each having have 1024 samples. We

used one GPU, and each epoch on a single GPU took 35 minutes for n = 10.

Learn2Fill was trained for 50 epochs. Learn2Accent was trained for 13

epochs and Learn2space was trained for 1 epochs.

Our training data is a corpus of 70 texts, and we used an 80-10-10 train-validation-

test split when training the neural networks. The list of tests used are as follows:

1. Aelius Aristides - Ars Rhetorica

2. Aeschines - Speeches

3. Aeschylus - Agamemnon

4. Aeschylus - Eumenides

5. Aeschylus - Libation Bearers

6. Aeschylus - Persians

336

7. Aeschylus - Prometheus Bound

8. Aeschylus - Seven Against Thebes

9. Aeschylus - Suppliant Women

10. Andocides - Speeches

11. Appian - The Civil War

12. Appian - The Foreign Wars

13. Aristophanes - Clouds

14. Aristophanes - Peace

15. Aristotle - Athenian Constitution

16. Aristotle - Economics

17. Aristotle - Eudemian Ethics

18. Aristotle - Metaphysics

19. Aristotle - Nicomachean Ethics

20. Aristotle - Politics

21. Aristotle - Rhetoric

22. Aristotle - Virtues and Vices

23. Arrian - Anabasis

24. Arrian - Cynegeticus

25. Arrian - Indica

26. Arrian - Periplus Ponti Euxini

27. Arrian - Tactica

28. Athenaeus - The Deipnosophists: Book 1-15

29. Chrysostom Dio - Orationes

30. Demades = On the Twelve Years

31. Demosthenes - Speeches 1 - 61

32. Diodorus Siculus - Bibliotheca Historica Books I - V, XVIII - XX

33. Dionysius of Halicarnassus - Ad Ammaeum

337

34. Dionysius of Halicarnassus - Antiquitates Romanae Books I - XX

35. Dionysius of Halicarnassus - De Antiquis Oratoribus

36. Dionysius of Halicarnassus - De Compositione Verborum

37. Dionysius of Halicarnassus - De Demosthene

38. Dionysius of Halicarnassus - De Dinarcho

39. Dionysius of Halicarnassus - De Isaeo

40. Dionysius of Halicarnassus - De Isocrate

41. Dionysius of Halicarnassus - De Lysia

42. Dionysius of Halicarnassus - De Thucydide

43. Dionysius of Halicarnassus - De Thucydidis Idiomatibus (Epistula ad Ammaeum)

44. Dionysius of Halicarnassus - Epistula ad Pompeium Geminum

45. Dionysius of Halicarnassus - Libri Secundi de Antiquis Oratoribus Reliquia

46. Euripides - Bacchae

47. Euripides - Electra

48. Euripides - Hecuba

49. Euripides - Helen

50. Euripides - Heracles

51. Euripides - Ion

52. Euripides - Iphigenia in Aulis

53. Euripides - Iphigenia in Tauris

54. Euripides - Orestes

55. Euripides - Phoenissae

56. Euripides - Rhesus

57. Euripides - Supplicants

58. Euripides - The Trojan Women

59. Hyperides - Speeches

60. Lysias - Speeches

338

61. Plato - Republic

62. Polybius - Histories

63. Sophocles - Antigone

64. Sophocles - Ajax

65. Sophocles - Electra

66. Sophocles - Oedipus at Colonus

67. Sophocles - Oedipus Tyrannus

68. Sophocles - Philoctetes

69. Sophocles - Trachiniae

70. Xenophon - Anabasis

F.1.3 Phrase Appended for Filling in Diacritics

This is the phrase that we append when solving stage 2. We found that switching

up the phrase did not have much of an impact on the performance.

ἐπειδὴπσανπόλινὁρῶμεν

339

BIBLIOGRAPHY

340

BIBLIOGRAPHY

Abraham, I., Y. Bartal, T. Chan, K. Dhamdhere, A. Gupta, J. Kleinberg, O. Neiman,
and A. Slivkins (2005), Metric embeddings with relaxed guarantees, in 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 83–100.

Abraham, I., M. Balakrishnan, F. Kuhn, D. Malkhi, V. Ramasubramanian, and
K. Talwar (2007), Reconstructing Approximate Tree Metrics, in Proceedings of
the Twenty-sixth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’07, pp. 43–52, ACM, New York, NY, USA.

Abraham, I., C. Gavoille, A. Gupta, O. Neiman, and K. Talwar (2014), Cops, rob-
bers, and threatening skeletons: padded decomposition for minor-free graphs, in
Symposium on Theory of Computing (STOC), pp. 79–88.

Abraham, I., S. Chechik, and S. Krinninger (2017), Fully dynamic all-pairs shortest
paths with worst-case update-time revisited, in Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 440–452.

Agarwal, A., N. Alon, and M. Charikar (2007), Improved approximation for directed
cut problems, in Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), pp. 671–680.

Ailon, N., M. Charikar, and A. Newman (2005), Aggregating Inconsistent Infor-
mation: Ranking and Clustering, in STOC’05: Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pp. 684–693, ACM, New York, doi:
10.1145/1060590.1060692.

Akhtar, N., and A. Mian (2018), Threat of adversarial attacks on deep learning in
computer vision: A survey, IEEE Access, 6, 14,410–14,430.

Al-Homidan, S., and H. Wolkowicz (2005), Approximate and exact completion prob-
lems for euclidean distance matrices using semidefinite programming, Linear Algebra
and its Applications, 406, 109 – 141, doi:https://doi.org/10.1016/j.laa.2005.03.021.

Alaya, M. Z., M. Berar, G. Gasso, and A. Rakotomamonjy (2019), Screening sinkhorn
algorithm for regularized optimal transport, in Advances in Neural Information Pro-
cessing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché
Buc, E. Fox, and R. Garnett, pp. 12,169–12,179, Curran Associates, Inc.

Alon, N., and S. Gutner (2010), Balanced families of perfect hash functions and their
applications, ACM Trans. Algorithms, 6 (3), 54:1–54:12.

341

Alon, N., R. M. Karp, D. Peleg, and D. West (1995), A graph-theoretic game and
its application to the k-server problem, SIAM J. Comput., 24 (1), 78–100, doi:
10.1137/S0097539792224474.

Alvarez-Melis, D., T. Jaakkola, and S. Jegelka (2018), Structured optimal transport, in
Proceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research, vol. 84, pp. 1771–1780,
PMLR, Playa Blanca, Lanzarote, Canary Islands.

Amari, S. (2016), Information Geometry and Its Applications, Applied Mathematical
Sciences, Springer Japan.

Amato, G., F. Falchi, and L. Vadicamo (2016), Visual recognition of ancient inscriptions
using convolutional neural network and fisher vector, J. Comput. Cult. Herit., 9 (4),
21:1–21:24, doi:10.1145/2964911.

Arabie, P., M. S. Aldenderfer, D. Carroll, and W. S. DeSarbo (1987), Three Way
Scaling: A Guide to Multidimensional Scaling and Clustering, vol. 65, Sage.

Assael, Y., T. Sommerschield, and J. Prag (2019a), Restoring ancient text using deep
learning: a case study on greek epigraphy.

Assael, Y., T. Sommerschield, and J. Prag (2019b), Restoring ancient text using deep
learning: a case study on greek epigraphy, EMNLP 2019.

Avadesh, M., and N. Goyal (2018), Optical character recognition for sanskrit using
convolution neural networks, 2018 13th IAPR International Workshop on Document
Analysis Systems (DAS), pp. 447–452.

Avis, D., P. Hayden, and M. M. Wilde (2010), Leggett-Garg Inequalities and the
Geometry of the Cut Polytope, Phys. Rev. A (3), 82 (3), 030,102, 4, doi:10.1103/
PhysRevA.82.030102.

Backurs, A., Y. Dong, P. Indyk, I. Razenshteyn, and T. Wagner (2019), Scalable
nearest neighbor search for optimal transport.

Bahdanau, D., K. Cho, and Y. Bengio (2014), Neural machine translation by jointly
learning to align and translate, CoRR, abs/1409.0473.

Bai, S., X. Bai, L. J. Latecki, and Q. Tian (2017), Multidimensional scaling on
multiple input distance matrices, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31.

Bai, Z., B. Miao, and J. Yao (2003), Convergence rates of spectral distributions of
large sample covariance matrices, SIAM J. Matrix Anal. Appl., 25, 105–127.

Baier, G., T. Erlebach, A. Hall, E. Köhler, P. Kolman, O. Pangrác, H. Schilling, and
M. Skutella (2010), Length-bounded cuts and flows, ACM Trans. Algorithms, 7 (1),
4:1–4:27.

342

Bakonyi, M., and C. Johnson (1995), The euclidian distance matrix completion
problem, SIAM Journal on Matrix Analysis and Applications, 16 (2), 646–654,
doi:10.1137/S0895479893249757.

Balas, E., and W. Pulleyblank (1983), The Perfectly Matchable Subgraph Polytope
of a Bipartite Graph, in Proceedings of the symposium on the matching problem:
theory, algorithms, and applications (Gaithersburg, Md., 1981), vol. 13, pp. 495–516,
doi:10.1002/net.3230130405.

Balzano, L., and W. U. Z. Bajwa (2010), Column subset selection with missing data,
NIPS Workshop on Low-Rank Methods for Large-Scale Machine Learning.

Banham, M., and A. Katsaggelos (2012), Digital image restoration.

Banjac, G., P. Goulart, B. Stellato, and S. Boyd (2019), Infeasibility detec-
tion in the alternating direction method of multipliers for convex optimiza-
tion, Journal of Optimization Theory and Applications, 183 (2), 490–519, doi:
10.1007/s10957-019-01575-y.

Bansal, N., A. Blum, and S. Chawla (2004), Correlation Clustering, Mach. Learn.,
56 (1-3), 89–113, doi:10.1023/B:MACH.0000033116.57574.95.

Barahona, F. (1993), On Cuts and Matchings in Planar Graphs, Math. Programming,
60 (1, Ser. A), 53–68, doi:10.1007/BF01580600.

Barahona, F., and A. R. Mahjoub (1994), Compositions of Graphs and Polyhedra.
I. Balanced Induced Subgraphs and Acyclic Subgraphs, SIAM J. Discrete Math.,
7 (3), 344–358, doi:10.1137/S0895480190182666.

Baraty, S., D. A. Simovici, and C. Zara (2011), The impact of triangular inequality
violations on medoid-based clustering, in Foundations of Intelligent Systems, edited
by M. Kryszkiewicz, H. Rybinski, A. Skowron, and Z. W. Raś, pp. 280–289, Springer
Berlin Heidelberg, Berlin, Heidelberg.

Bartal, Y. (1998), On Approximating Arbitrary Metrics by Tree Metrics, in Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pp.
161–168, ACM, New York, NY, USA.

Bauschke, H., and J. J. Borwein (1998), Legendre Functions and the Method of
Random Bregman Projections, Journal of Convex Analysis, 4.

Bauschke, H. H., and J. M. Borwein (1997), Legendre Functions and the Method of
Random Bregman Projections, J. Convex Anal., 4 (1), 27–67.

Bauschke, H. H., and A. S. Lewis (2000a), Dykstras Algorithm with Bregman
Projections: A Convergence Proof, Optimization, 48 (4), 409–427, doi:10.1080/
02331930008844513.

343

Bauschke, H. H., and A. S. Lewis (2000b), Dykstra’s Algorithm with Bregman
Projections: a Convergence Proof, Optimization, 48 (4), 409–427, doi:10.1080/
02331930008844513.

Beck, A., and M. Teboulle (2009), A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems, SIAM J. Imaging Sci., 2 (1), 183–202, doi:10.1137/
080716542.

Belkin, M., and P. Niyogi (2003), Laplacian eigenmaps for dimensionality reduc-
tion and data representation, Neural Comput., 15 (6), 1373–1396, doi:10.1162/
089976603321780317.

Bellet, A., A. Habrard, and M. Sebban (2013a), A survey on metric learning for feature
vectors and structured data, CoRR, abs/1306.6709.

Bellet, A., A. Habrard, and M. Sebban (2013b), A Survey on Metric Learning for
Feature Vectors and Structured Data, ArXiv, abs/1306.6709.

Ben-Tal, A., L. Ghaoui, and A. Nemirovski (2009), Robust Optimization, Princeton
Series in Applied Mathematics, Princeton University Press.

Benamou, J.-D., and Y. Brenier (2000), A computational fluid mechanics solution to
the monge-kantorovich mass transfer problem, Numerische Mathematik, 84, 375–393.

Benamou, J.-D., G. Carlier, M. Cuturi, L. Nenna, and G. Peyré (2015), Iterative
bregman projections for regularized transportation problems, SIAM Journal on
Scientific Computing, 37 (2), A1111–A1138, doi:10.1137/141000439.

Benesty, J., J. Chen, and Y. Huang (2010), Study of the widely linear wiener filter
for noise reduction, 2010 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 205–208.

Bengio, Y., J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet
(2003), Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral
clustering, in Proceedings of the 16th International Conference on Neural Information
Processing Systems, NIPS’03, pp. 177–184, MIT Press, Cambridge, MA, USA.

Berglund, M., T. Raiko, M. Honkala, L. Kärkkäinen, A. Vetek, and J. T. Karhunen
(2015), Bidirectional recurrent neural networks as generative models, in Advances
in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, pp. 856–864, Curran Associates, Inc.

Bermudo, S., J. M. Rodríguez, J. M. Sigarreta, and J.-M. Vilaire (2013), Gromov
Hyperbolic Graphs, Discrete Mathematics, 313 (15), 1575 – 1585.

Bertsekas, D. P., and D. Castanon (1989), The auction algorithm for the transportation
problem, Annals of Operations Research, 20, 67–96.

344

Bertsimas, D., D. Brown, and C. Caramanis (2011), Theory and applications of robust
optimization, SIAM Rev., 53, 464–501.

Bishop, C. M. (1995), Training with noise is equivalent to tikhonov regularization,
Neural Comput., 7 (1), 108–116, doi:10.1162/neco.1995.7.1.108.

Blasius, T., T. Friedrich, A. Krohmer, and S. Laue (2018), Efficient Embedding of
Scale-Free Graphs in the Hyperbolic Plane, IEEE/ACM Transactions on Networking,
26 (2), 920–933.

Blondel, M., V. Seguy, and A. Rolet (2018a), Smooth and sparse optimal transport,
in AISTATS.

Blondel, M., V. Seguy, and A. Rolet (2018b), Smooth and Sparse Optimal Transport,
in Proceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, Proceedings of Machine Learning Research, vol. 84, pp. 880–889,
PMLR.

Bodwin, G. (2018), On the structure of unique shortest paths in graphs, CoRR,
abs/1804.09745.

Boggs, P., and J. Tolle (1995), Sequential Quadratic Programming, Acta Numerica, 4,
1–51, doi:10.1017/S0962492900002518.

Bonk, M., and O. Schramm (2000), Embeddings of Gromov Hyperbolic Spaces,
Geometric & Functional Analysis GAFA, 10 (2), 266–306.

Bonneel, N., M. van de Panne, S. Paris, and W. Heidrich (2011), Displacement
interpolation using lagrangian mass transport, ACM Trans. Graph., 30 (6), 1–12,
doi:10.1145/2070781.2024192.

Borg, I., and P. J. Groenen (2005), Modern multidimensional scaling: Theory and
applications, Springer Science & Business Media.

Bourgain, J. (1985), On lipschitz embedding of finite metric spaces in hilbert space,
Israel Journal of Mathematics, 52 (1-2), 46–52.

Brand, C., H. Dell, and T. Husfeldt (2018), Extensor-coding, in Symposium on Theory
of Computing (STOC), pp. 151–164.

Brickell, J., I. Dhillon, S. Sra, and J. Tropp (2008a), The metric nearness problem,
SIAM Journal on Matrix Analysis and Applications, 30 (1), 375–396.

Brickell, J., I. Dhillon, S. Sra, and J. Tropp (2008b), The metric nearness problem,
SIAM J. Matrix Analysis Applications, 30 (1), 375–396, doi:10.1137/060653391.

Brickell, J., I. S. Dhillon, S. Sra, and J. A. Tropp (2008c), The Metric Nearness
Problem, SIAM J. Matrix Anal. Appl., 30 (1), 375–396, doi:10.1137/060653391.

345

Bridson, M., and A. Häfliger (2013), Metric Spaces of Non-Positive Curvature,
Grundlehren der mathematischen Wissenschaften, Springer Berlin Heidelberg.

Brualdi, R. A. (2006), Combinatorial Matrix Classes, Encyclopedia of Mathematics
and its Applications, Cambridge University Press, doi:10.1017/CBO9780511721182.

Buades, A., B. Coll, and J. Morel (2005), A non-local algorithm for image denois-
ing, 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), 2, 60–65 vol. 2.

Buss, J., and J. Goldsmith (1993), Nondeterminism within p∗, SIAM Journal on
Computing, 22 (3), 560–572, doi:10.1137/0222038.

Cai, H., V. W. Zheng, and K. Chang (2018), A comprehensive survey of graph embed-
ding: Problems, techniques, and applications, IEEE Transactions on Knowledge
and Data Engineering, 30 (09), 1616–1637, doi:10.1109/TKDE.2018.2807452.

Campbell, L. (2013), Historical Linguistics: An Introduction, Edinburgh University
Press.

Candès, E., and B. Recht (2012), Exact matrix completion via convex optimization,
Commun. ACM, 55 (6), 111–119.

Candès, E., and T. Tao (2010), The power of convex relaxation: Near-optimal matrix
completion, IEEE Transactions on Information Theory, 56, 2053–2080.

Carnahan, S. (2010), It is Well Known that Hyperbolic Space is δ-Hyperbolic, but
what is Delta?, MathOverflow.

Carroll, J. D., and P. Arabie (1998), Multidimensional scaling, Measurement, judgment
and decision making, pp. 179–250.

Carroll, J. D., and J.-J. Chang (1970), Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition,
Psychometrika, 35 (3), 283–319.

Cayton, L., and S. Dasgupta (2006a), Robust euclidean embedding, in Proceedings of
the 23rd international conference on machine learning, pp. 169–176.

Cayton, L., and S. Dasgupta (2006b), Robust euclidean embedding, in Proceedings
of the 23rd International Conference on Machine Learning, ICML ’06, p. 169–176,
Association for Computing Machinery, New York, NY, USA, doi:10.1145/1143844.
1143866.

Censor, Y., and S. Reich (1998), The Dykstra Algorithm with Bregman Projections,
Communications in Applied Analysis, 2, 407–419.

Censor, Y., and S. Zenios (1997), Parallel Optimization: Theory, Algorithms, and
Applications, Oxford University Press.

346

Cerliani, M. (2020), Group2vec for advance categorical encoding.

Chakraborty, A., M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay (2018),
Adversarial attacks and defences: A survey, ArXiv, abs/1810.00069.

Chan, T., K. Dhamdhere, A. Gupta, J. Kleinberg, and A. Slivkins (2009), Metric
embeddings with relaxed guarantees, SIAM J. Comput., 38 (6), 2303–2329.

Chandran, L. S., V. V. Lozin, and C. R. Subramanian (2005), Graphs of low chordality,
Discrete Mathematics and Theoretical Computer Science, 7, 25–36.

Chandrasekaran, K., L. A. Végh, and S. Vempala (2012), The Cutting Plane method
is Polynomial for Perfect Matchings, in 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science—FOCS 2012, pp. 571–580, IEEE Computer Soc.,
Los Alamitos, CA.

Charikar, M., V. Guruswami, and A. Wirth (2005), Clustering with Qualitative
Information, J. Comput. System Sci., 71 (3), 360–383, doi:10.1016/j.jcss.2004.10.012.

Chawla, S., R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar (2006), On the
hardness of approximating multicut and sparsest-cut, Computational Complexity,
15 (2), 94–114.

Chekuri, C., and V. Madan (2017), Approximating multicut and the demand graph,
in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 855–874.

Chen, Y., and T. Pock (2017), Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39, 1256–1272.

Chepoi, V., and F. Dragan (2000), A Note on Distance Approximating Trees in
Graphs, European Journal of Combinatorics, 21 (6), 761 – 766.

Chepoi, V., F. Dragan, B. Estellon, M. Habib, and Y. Vaxès (2008), Diameters,
Centers, and Approximating Trees of δ-Hyperbolic Geodesic Spaces and Graphs, in
Proceedings of the Twenty-fourth Annual Symposium on Computational Geometry,
SCG ’08, pp. 59–68, ACM, New York, NY, USA.

Chizat, L., G. Peyré, B. Schmitzer, and F.-X. Vialard (2015), Unbalanced optimal
transport: Dynamic and kantorovich formulation, arXiv: Optimization and Control.

Chizat, L., G. Peyré, B. Schmitzer, and F.-X. Vialard (2016a), Scaling Algorithms for
Unbalanced Transport Problems, Mathematics of Computation, 87, doi:10.1090/
mcom/3303.

Chizat, L., G. Peyré, B. Schmitzer, and F.-X. Vialard (2016b), Scaling Algorithms for
Unbalanced Transport Problems, Mathematics of Computation, 87, doi:10.1090/
mcom/3303.

347

Cho, K. (2013), Boltzmann machines and denoising autoencoders for image denoising,
CoRR, abs/1301.3468.

Choi, J. H., O. A. Elgendy, and S. H. Chan (2019), Optimal combination of image
denoisers, IEEE Transactions on Image Processing, 28 (8), 4016–4031, doi:10.1109/
TIP.2019.2903321.

Christofides, N. (1976a), Worst-case analysis of a new heuristic for the travelling
salesman problem, Tech. Rep. 388, Graduate School of Industrial Administration,
Carnegie Mellon University.

Christofides, N. (1976b), Worst-case analysis of a new heuristic for the traveling
salesman problem.

Chung, F., M. Garrett, R. Graham, and D. Shallcross (2001), Distance realization
problems with applications to internet tomography, J. Comput. Syst. Sci., 63 (3),
432–448.

Chuzhoy, J., and S. Khanna (2009), Polynomial flow-cut gaps and hardness of directed
cut problems, J. ACM, 56 (2), 6:1–6:28.

Coifman, R. R., and S. Lafon (2006), Diffusion maps, Applied and Computational
Harmonic Analysis, 21 (1), 5 – 30, doi:https://doi.org/10.1016/j.acha.2006.04.006,
special Issue: Diffusion Maps and Wavelets.

Comon, P. (1994), Independent component analysis, a new concept?, Signal Process.,
36, 287–314.

Cox, M. A., and T. F. Cox (2008), Multidimensional scaling, in Handbook of data
visualization, pp. 315–347, Springer.

Crane, R. R. (1987), Perseus digital library.

Crank, J., and P. Nicolson (1947), A practical method for numerical evaluation of
solutions of partial differential equations of the heat-conduction type, P. Camb.
Philos. Soc., 43, 50–64.

Cuturi, M. (2013), Sinkhorn Distances: Lightspeed Computation of Optimal Transport,
in Advances in Neural Information Processing Systems 26, edited by C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, pp. 2292–2300,
NeurIPs.

Davis, C., and W. M. Kahan (1970), The rotation of eigenvectors by a perturbation.
iii, SIAM Journal on Numerical Analysis, 7 (1), 1–46, doi:10.1137/0707001.

Davis, J. V., B. Kulis, P. Jain, S. Sra, and I. S. Dhillon (2007), Information-Theoretic
Metric Learning, in Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pp. 209–216, ACM, New York, NY, USA.

348

Dessein, A., N. Papadakis, and J.-L. Rouas (2018a), Regularized Optimal Transport
and The Rot Mover’s Distance, J. Mach. Learn. Res., 19 (1), 590–642.

Dessein, A., N. Papadakis, and J.-L. Rouas (2018b), Regularized optimal transport and
the rot mover’s distance, Journal of Machine Learning Research, abs/1610.06447.

Detrano, R., A. Jánosi, W. Steinbrunn, M. Pfisterer, J. Schmid, S. Sandhu, K. Guppy,
S. Lee, and V. Froelicher (1989), International application of a new probability
algorithm for the diagnosis of coronary artery disease., The American journal of
cardiology, 64 5, 304–10.

Devlin, J., M. Chang, K. Lee, and K. Toutanova (2018), BERT: pre-training of deep
bidirectional transformers for language understanding, CoRR, abs/1810.04805.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019), Bert: Pre-training of
deep bidirectional transformers for language understanding, in NAACL-HLT.

Dey, S. S., and M. Molinaro (2018), Theoretical Challenges Towards Cutting-Plane
Selection, Math. Program., 170 (1, Ser. B), 237–266, doi:10.1007/s10107-018-1302-4.

Deza, M., and M. Laurent (1994), Applications of Cut Polyhedra. I, II, J. Comput.
Appl. Math., 55 (2), 191–216, 217–247, doi:10.1016/0377-0427(94)90020-5.

Dhillon, I., S. Sra, and J. Tropp (2005), Triangle fixing algorithms for the metric
nearness problem, in Advances in Neural Information Processing Systems 17 (NIPS
2004), edited by L. K. Saul, Y. Weiss, and L. Bottou, pp. 361–368, MIT Press.

Dhillon, I. S., and J. A. Tropp (2007), Matrix Nearness Problems with Bregman
Divergences, SIAM J. Matrix Anal. Appl., 29 (4), 1120–1146, doi:10.1137/060649021.

Dhingra, B., C. J. Shallue, M. Norouzi, A. M. Dai, and G. E. Dahl (2018), Embedding
Text in Hyperbolic Spaces.

Diaconis, P., and D. Freedman (1987), A dozen de finetti-style results in search of
a theory, Annales De L Institut Henri Poincare-probabilites Et Statistiques, 23,
397–423.

Dias, D. B., R. B. Madeo, T. Rocha, H. H. Bíscaro, and S. M. Peres (2009), Hand
movement recognition for brazilian sign language: A study using distance-based
neural networks, 2009 International Joint Conference on Neural Networks, pp.
697–704.

Dietterich, T. G., A. Jain, R. Lathrop, and T. Lozano-Perez (1993), A comparison of
dynamic reposing and tangent distance for drug activity prediction, in NIPS.

Dokmanic, I., R. Parhizkar, J. Ranieri, and M. Vetterli (2015), Euclidean distance
matrices: Essential theory, algorithms, and applications, IEEE Signal Processing
Magazine, 32 (6), 12–30.

349

Domahidi, A., E. Chu, and S. Boyd (2013), ECOS: An SOCP solver for embedded
systems, in European Control Conference (ECC), pp. 3071–3076.

Donahue, J., L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama,
K. Saenko, and T. Darrell (2017), Long-term recurrent convolutional networks
for visual recognition and description, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39 (4), 677–691, doi:10.1109/TPAMI.2016.2599174.

Donoho, D. (2006), Compressed sensing, IEEE Transactions on Information Theory,
52, 1289–1306.

Donoho, D. L., and C. Grimes (2003), Hessian eigenmaps: New locally linear embedding
techniques for high-dimensional data.

Dua, D., and C. Graff (2017), UCI machine learning repository.

Duff, I., and J. Koster (2001), On algorithms for permuting large entries to the diagonal
of a sparse matrix, SIAM J. Matrix Anal. Appl., 22, 973–996.

Dumitrascu, B., S. Villar, D. G. Mixon, and B. E. Engelhardt (2019), Optimal Marker
Gene Selection for Cell Type Discrimination in Single Cell Analyses, bioRxiv.

Dunning, I., J. Huchette, and M. Lubin (2017), Jump: A modeling language for math-
ematical optimization, SIAM Review, 59 (2), 295–320, doi:10.1137/15M1020575.

Dyubina, A., and I. Polterovich (2001), Explicit Constructions of Universal R-Trees and
Asymptotic Geometry of Hyperbolic Spaces, Bulletin of the London Mathematical
Society, 33 (6), 727?734.

Easton, M. L. (1989), Chapter 7: Random orthogonal matrices, Regional Confer-
ence Series in Probability and Statistics, vol. Volume 1, pp. 100–107, Institute of
Mathematical Statistics and American Statistical Association, Haywood CA and
Alexandria VA, doi:10.1214/cbms/1462061037.

Elfving, T. (1989), An Algorithm for Maximum Entropy Image Reconstruction from
Noisy Data, Math. Comput. Modelling, 12 (6), 729–745, doi:10.1016/0895-7177(89)
90358-0.

Elkin, M., Y. Emek, D. A. Spielman, and S.-H. Teng (2005), Lower-stretch spanning
trees, in Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, p. 494–503, Association for Computing Machinery, New
York, NY, USA, doi:10.1145/1060590.1060665.

Emanuel, D., and A. Fiat (2003), Correlation Clustering—Minimizing Disagreements
on Arbitrary Weighted Graphs, in Algorithms—ESA 2003, Lecture Notes in Comput.
Sci., vol. 2832, pp. 208–220, Springer, Berlin, doi:10.1007/978-3-540-39658-1_21.

Essid, M., and J. Solomon (2017), Quadratically-Regularized Optimal Transport on
Graphs, SIAM J. Scientific Computing, 40, A1961–A1986.

350

Evett, I., and E. Spiehler (1989), Rule induction in forensic science, Knowledge Based
Systems, pp. 152–160.

Fan, C., A. C. Gilbert, B. Raichel, R. Sonthalia, and G. V. Buskirk (2018a), Generalized
metric repair on graphs, ArXiv, abs/1807.07619.

Fan, C., B. Raichel, and G. V. Buskirk (2018b), Metric violation distance: Hardness
and approximation, in SODA.

Fan, C., B. Raichel, and G. Van Buskirk (2018c), Metric Violation Distance: Hard-
ness and Approximation, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 196–209, doi:10.1137/1.9781611975031.14.

Fan, C., B. Raichel, and G. Van Buskirk (2018d), Metric violation distance: Hardness
and approximation, in Symposium on Discrete Algorithms (SODA), pp. 196–209.

Fan, C., A. Gilbert, B. Raichel, R. Sonthalia, and G. V. Buskirk (2020), Generalized
metric repair on graphs, in SWAT.

Fan, R.-E., P.-H. Chen, and C.-J. Lin (2005), Working Set Selection Using Second
Order Information for Training Support Vector Machines, J. Mach. Learn. Res., 6,
1889–1918.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008), LIBLINEAR:
A Library for Large Linear Classification, Journal of Machine Learning Research, 9,
1871–1874.

Fedus, W., I. Goodfellow, and A. M. Dai (2018), MaskGAN: Better text generation via
filling in the _______, in International Conference on Learning Representations.

Fefferman, C., S. Ivanov, M. Lassas, and H. Narayanan (2019), Reconstruction of a
riemannian manifold from noisy intrinsic distances.

Feige, U. (1998), A threshold of ln n for approximating set cover, J. ACM, 45 (4),
634–652, doi:10.1145/285055.285059.

Feldman, U., E. Landi, and N. A. Schwadron (2005), On the sources of fast and slow
solar wind, J. Geophys. Res.-Space, 110 (A9), 7109–+, doi:10.1029/2004JA010918.

Ferradans, S., N. Papadakis, G. Peyré, and J.-F. Aujol (2014), Regularized discrete
optimal transport, SIAM Journal on Imaging Sciences, 7 (3), 1853–1882, doi:10.
1137/130929886.

Fiorini, S., S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf (2012), Linear vs.
Semidefinite Extended Formulations: Exponential Separation and Strong Lower
Bounds, in STOC’12—Proceedings of the 2012 ACM Symposium on Theory of
Computing, pp. 95–106, ACM, New York, doi:10.1145/2213977.2213988.

351

Fisk, L. A. (2003), Acceleration of the solar wind as a result of the reconnection
of open magnetic flux with coronal loops, J. Geophys. Res.-Space, 108, 1157–+,
doi:10.1029/2002JA009284.

Fisk, L. A., and N. A. Schwadron (2001), Origin of the Solar Wind: Theory,
Space Sci. Rev., 97, 21–33.

Fisk, L. A., N. A. Schwadron, and T. H. Zurbuchen (1998), On the Slow Solar Wind,
Space Sci. Rev., 86, 51–60, doi:10.1023/A:1005015527146.

Fisk, L. A., T. H. Zurbuchen, and N. A. Schwadron (1999), Coronal Hole Boundaries
and their Interactions with Adjacent Regions, Space Sci. Rev., 87, 43–54, doi:
10.1023/A:1005153730158.

Flum, J., and M. Gorhe (2006), Parameterized Complexity Theory, Springer.

Forero, P. A., and G. B. Giannakis (2012), Sparsity-exploiting robust multidimensional
scaling, IEEE Transactions on Signal Processing, 60 (8), 4118–4134.

France, S. L., and J. D. Carroll (2010), Two-way multidimensional scaling: A review,
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 41 (5), 644–661.

Frogner, C., C. Zhang, H. Mobahi, M. Araya-Polo, and T. Poggio (2015), Learning
with a Wasserstein Loss, in Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’15, p. 2053–2061, MIT
Press, Cambridge, MA, USA.

Fukushima, K., and S. Miyake (1982), Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position, Pattern Recognition,
15 (6), 455 – 469, doi:https://doi.org/10.1016/0031-3203(82)90024-3.

Gabow, H. (1985), Scaling algorithms for network problems, J. Comput. Syst. Sci.,
31, 148–168.

Ganea, O., G. Becigneul, and T. Hofmann (2018), Hyperbolic Neural Networks, in
Advances in Neural Information Processing Systems 31, pp. 5345–5355, Curran
Associates, Inc.

Gangbo, W., and A. Swiech (1998), Optimal maps for the multidimensional monge-
kantorovich problem.

Garg, N., V. Vazirani, and M. Yannakakis (1996), Approximate max-flow min-
(multi)cut theorems and their applications, SIAM J. Comput., 25 (2), 235–251.

Garstka, M., M. Cannon, and P. Goulart (2019), COSMO: A conic operator splitting
method for large convex problems, in European Control Conference, doi:10.23919/
ECC.2019.8796161.

352

Geiss, J., G. Gloeckler, and R. von Steiger (1995), Origin of the Solar Wind From
Composition Data, Space Sci. Rev., 72, 49–60, doi:10.1007/BF00768753.

Genevay, A., M. Cuturi, G. Peyré, and F. Bach (2016), Stochastic optimization for
large-scale optimal transport, in Advances in Neural Information Processing Systems
29, edited by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
pp. 3440–3448, Curran Associates, Inc.

Gilbert, A. C., and L. Jain (2017), If it ain’t broke, don’t fix it: Sparse metric repair,
ArXiv e-prints.

Gilbert, A. C., and L. Jain (2017), If it ain’t broke, don’t fix it: Sparse metric repair,
2017 55th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 612–619.

Gilbert, A. C., and L. Jain (2017), If it Ain’t Broke, Don’t Fix it: Sparse Metric
Repair, in 2017 55th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 612–619, doi:10.1109/ALLERTON.2017.8262793.

Gilbert, A. C., and R. Sonthalia (2018a), Unsupervised Metric Learning in Presence of
Missing Data, 2018 56th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pp. 313–321.

Gilbert, A. C., and R. Sonthalia (2018b), Generalized metric repair on graphs, in
submission.

Gilbert, A. C., and R. Sonthalia (2018c), Unsupervised metric learning in presence of
missing data, in 56th Annual Allerton Conference on Communication, Control, and
Computing, Allerton 2018, Monticello, IL, USA, October 2-5, 2018, pp. 313–321.

Gilbert, A. C., and R. Sonthalia (2020a), Project and Forget: Solving Large Scale
Metric Constrained Problems.

Gilbert, A. C., and R. Sonthalia (2020b), Project and Forget: Solving Large Scale
Metric Constrained Problems.

Gloeckler, G., and J. Geiss (1998), Interstellar and Inner Source Pickup Ions Ob-
served with SWICS on ULYSSES, Space Sci. Rev., 86, 127–159, doi:10.1023/A:
1005019628054.

Gloeckler, G., and J. Geiss (2001), Composition of the Local Interstellar Cloud from
Observations of Interstellar Pickup Ions, in Joint SOHO/ACE workshop ”Solar and
Galactic Composition”, American Institute of Physics Conference Series, vol. 598,
edited by R. F. Wimmer-Schweingruber, pp. 281–289.

Gloeckler, G., T. H. Zurbuchen, and J. Geiss (2003), Implications of the observed
anticorrelation between solar wind speed and coronal electron temperature, J. Geo-
phys. Res.-Space, 108, 1158–+, doi:10.1029/2002JA009286.

353

Glunt, W., T. L. Hayden, S. Hong, and J. Wells (1990a), An alternating projection
algorithm for computing the nearest euclidean distance matrix, SIAM J. Matrix
Anal. Appl., 11 (4), 589–600.

Glunt, W., T. L. Hayden, S. Hong, and J. Wells (1990b), An Alternating Projection
Algorithm for Computing the Nearest Euclidean Distance Matrix, SIAM J. Matrix
Anal. Appl., 11 (4), 589–600, doi:10.1137/0611042.

Glunt, W., T. L. Hayden, S. Hong, and J. Wells (1990c), An alternating projection
algorithm for computing the nearest euclidean distance matrix, SIAM Journal on
Matrix Analysis and Applications, 11 (4), 589–600, doi:10.1137/0611042.

Glunt, W., T. L. Hayden, S. Hong, and J. Wells (1990d), An alternating projection
algorithm for computing the nearest Euclidean distance matrix, SIAM J. Matrix
Anal. Appl., 11 (4), 589–600, doi:10.1137/0611042.

Gnansambandam, A., and S. Chan (2020), One size fits all: Can we train one denoiser
for all noise levels?, in ICML.

Gombosi, T. I. (1998), Physics of the Space Environment, 339 pp., Cambridge Univer-
sity Press, Cambridge, UK.

Gomory, R. E. (1960), An Algorithm for the Mixed Integer Problem.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014), Generative adversarial nets, in Advances in
Neural Information Processing Systems 27, edited by Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, pp. 2672–2680, Curran Associates,
Inc.

Gorissen, B. L., İhsan Yanıkoğlu, and D. den Hertog (2015), A practical guide to
robust optimization, Omega, 53, 124 – 137, doi:https://doi.org/10.1016/j.omega.
2014.12.006.

Gorman, R. P., and T. Sejnowski (1988), Analysis of hidden units in a layered network
trained to classify sonar targets, Neural Networks, 1, 75–89.

Gosling, J. T., J. Birn, and M. Hesse (1995), Three-dimensional magnetic reconnection
and the magnetic topology of coronal mass ejection events, Geophys. Res. Lett., 22,
869–872.

Götze, F., and A. Tikhomirov (2003), Rate of convergence to the semi-circular law,
Probability Theory and Related Fields, 127, 228–276.

Götze, F., and A. Tikhomirov (2004), Rate of convergence in probability to the
marchenko-pastur law, Bernoulli, 10, 503–548.

Götze, F., and A. Tikhomirov (2005), The rate of convergence for spectra of gue and
lue matrix ensembles, Central European Journal of Mathematics, 3, 666–704.

354

Götze, F., and A. Tikhomirov (2011), On the rate of convergence to the marchenko–
pastur distribution, arXiv: Probability.

Gower, J. (1985a), Properties of euclidean and non-euclidean distance matrices, Linear
Algebra and its Applications, 67, 81–97, doi:10.1016/0024-3795(85)90187-9.

Gower, J. C. (1975), Generalized procrustes analysis, Psychometrika, 40 (1), 33–51,
doi:10.1007/BF02291478.

Gower, J. C. (1982), Euclidean distance geometry, Math. Sci., 7 (1), 1–14.

Gower, J. C. (1985b), Properties of Euclidean and non-Euclidean distance matri-
ces, Linear Algebra and Its Applications, 67 (C), 81–97, doi:10.1016/0024-3795(85)
90187-9.

Graham, R. L., and P. M. Winkler (1985), On Isometric Embeddings of Graphs, Trans.
Amer. Math. Soc., 288 (2), 527–536.

Grohe, M. (2020), word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector
embeddings of structured data, Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems.

Gromov, M. (1987), Hyperbolic Groups, pp. 75–263, Springer New York, New York,
NY.

Grötschel, M., L. Lovász, and A. Schrijver (1981), The Ellipsoid Method and its
Consequences in Combinatorial Optimization, Combinatorica, 1 (2), 169–197, doi:
10.1007/BF02579273.

Gulcehre, C., et al. (2019), Hyperbolic Attention Networks, in International Conference
on Learning Representations.

Guvenir, H. A., B. Açar, G. Demiroz, and A. Çekin (1997), A supervised machine
learning algorithm for arrhythmia analysis, Computers in Cardiology 1997, pp.
433–436.

Hajiaghayi, M. T., R. Khandekar, and G. Kortsarz (2017), Fpt hardness for clique
and set cover with super exponential time in k.

Hamann, M. (2018), On the Tree-Likeness of Hyperbolic Spaces, Mathemati-
cal Proceedings of the Cambridge Philosophical Society, 164 (2), 345–361, doi:
10.1017/S0305004117000238.

Hayden, T., and J. Wells (1988), Approximation by matrices positive semidefinite
on a subspace, Linear Algebra and its Applications, 109, 115 – 130, doi:https:
//doi.org/10.1016/0024-3795(88)90202-9.

Heiser, W. J., and J. Meulman (1983), Constrained multidimensional scaling, including
confirmation, Applied Psychological Measurement, 7 (4), 381–404.

355

Hinton, G. E., and S. Roweis (2002), Stochastic neighbor embedding, in NIPS.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2012),
Improving neural networks by preventing co-adaptation of feature detectors, ArXiv,
abs/1207.0580.

Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural Comput.,
9 (8), 1735–1780, doi:10.1162/neco.1997.9.8.1735.

Hoeffding, W. (1963), Probability inequalities for sums of bounded random variables,
Journal of the American Statistical Association, 58 (301), 13–30.

Hundhausen, A. J., H. E. Gilbert, and S. J. Bame (1968), Ionization State of the
Interplanetary Plasma, J. Geophys. Res., 73, 5485–5493.

Hwang, K., and W. Sung (2016), Character-level language modeling with hierarchical
recurrent neural networks, 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5720–5724.

IBM (), Cplex.

Indyk, P. (1999), Sublinear Time Algorithms for Metric Space Problems, in Annual
ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pp. 428–432, ACM,
New York, doi:10.1145/301250.301366.

Indyk, P., and J. Matoušek (2004), Low-distortion embeddings of finite metric spaces,
in Handbook of Discrete and Computational Geometry, pp. 177–196, CRC Press.

Ipavich, F. M., et al. (1998), Solar wind measurements with SOHO: The
CELIAS/MTOF proton monitor, J. Geophys. Res., 103, 17,205–17,214, doi:
10.1029/97JA02770.

Iusem, A. N. (1991), On Dual Convergence and the Rate of Primal Convergence
of Bregman’s Convex Programming Method, SIAM J. Optim., 1 (3), 401–423,
doi:10.1137/0801025.

Iusem, A. N., and A. R. De Pierro (1990), On the Convergence Properties of Hildreth’s
Quadratic Programming Algorithm, Math. Programming, 47 (1, (Ser. A)), 37–51,
doi:10.1007/BF01580851.

Jackson, J. D. (1999), Classical Electrodynamics, 3rd ed., 808 pp., John Wiley & Sons,
United States of America.

Jahren, B. (2012), Geometric Structures in Dimension Two.

Jaimovich, A., G. Elidan, H. Margalit, and N. Friedman (2006), Towards an Integrated
Protein-Protein Interaction Network: A Relational Markov Network Approach,
Journal of computational biology : a journal of computational molecular cell biology,
13 2, 145–64.

356

Joachims, T., T. Finley, and C.-N. J. Yu (2009), Cutting-Plane Training of Structural
SVMs, Machine Learning, 77, 27–59.

Johnson, W. (1984), Extensions of lipschitz mappings into hilbert space, Contemporary
mathematics, 26, 189–206.

Johnson, W. B., and J. Lindenstrauss (1984), Extensions of Lipschitz mappings into a
Hilbert space, in Conference in modern analysis and probability (New Haven, Conn.,
1982), Contemp. Math., vol. 26, pp. 189–206, Amer. Math. Soc., Providence, RI.

Jutten, C., and J. Hérault (1991), Blind separation of sources, part i: An adaptive
algorithm based on neuromimetic architecture, Signal Process., 24, 1–10.

Karp, R. (1972), Reducibility among combinatorial problems, in Proceedings of a
symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., pp.
85–103.

Khot, S. (2002), On the power of unique 2-prover 1-round games, in Proceedings on
34th Annual ACM Symposium on Theory of Computing (STOC), pp. 767–775.

Khot, S., and O. Regev (2003), Vertex cover might be hard to approximate to within
2-ε.

Khot, S., and O. Regev (2008a), Vertex cover might be hard to approximate to within
2-epsilon, J. Comput. Syst. Sci., 74 (3), 335–349, doi:10.1016/j.jcss.2007.06.019.

Khot, S., and O. Regev (2008b), Vertex cover might be hard to approximate to within
2-epsilon, J. Comput. Syst. Sci., 74 (3), 335–349.

Khrulkov, V., L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempitsky (2019),
Hyperbolic Image Embeddings.

Kleinman, D., and M. Athans (1968), The design of suboptimal linear time-varying
systems, IEEE Transactions on Automatic Control, 13 (2), 150–159.

Klimovskaia, A., D. Lopez-Paz, L. Bottou, and M. Nickel (2019), Poincaré Maps for
Analyzing complex Hierarchies in Single-Cell Data, bioRxiv, doi:10.1101/689547.

Kolar, M., and H. Liu (2012), Marginal regression for multitask learning, in Proceedings
of the Fifteenth International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, vol. 22, edited by N. D. Lawrence and
M. Girolami, pp. 647–655, PMLR, La Palma, Canary Islands.

Kolouri, S., S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde (2017), Optimal Mass
Transport: Signal Processing and Machine-Learning Applications, IEEE Signal
Processing Magazine, 34 (4), 43–59, doi:10.1109/MSP.2017.2695801.

Kraft, D. H. (1988), A software package for sequential quadratic programming.

357

Krioukov, D., F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá (2010),
Hyperbolic Geometry of Complex Networks, Physical Review E, 82 (3), doi:10.1103/
physreve.82.036106.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification with
deep convolutional neural networks, Communications of the ACM, 60, 84 – 90.

Kroonenberg, P. M. (2008), Applied multiway data analysis, vol. 702, John Wiley &
Sons.

Kruskal, J. B. (1964), Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis, Psychometrika, 29 (1), 1–27, doi:10.1007/BF02289565.

Kuhnle, A., V. Crawford, and M. Thai (2018), Network resilience and the length-
bounded multicut problem: Reaching the dynamic billion-scale with guarantees, in
Abstracts of the 2018 ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), pp. 81–83.

Laurent, M. (1998a), A connection between positive semidefinite and euclidean distance
matrix completion problems, Linear Algebra and its Applications, 273 (1), 9 – 22.

Laurent, M. (1998b), A Connection Between Positive Semidefinite and Euclidean
Distance Matrix Completion Problems, Linear Algebra Appl., 273, 9–22, doi:10.
1016/S0024-3795(98)90126-4.

Laurent, M. (1998c), A connection between positive semidefinite and Euclidean
distance matrix completion problems, Linear Algebra and Its Applications, 273 (1-3),
9–22, doi:10.1016/S0024-3795(97)83714-7.

LeCun, Y., B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard,
and L. D. Jackel (1990), Handwritten digit recognition with a back-propagation
network, in Advances in Neural Information Processing Systems 2, edited by D. S.
Touretzky, pp. 396–404, Morgan-Kaufmann.

Lee, E. (2017a), Improved hardness for cut, interdiction, and firefighter problems, in
44th International Colloquium on Automata, Languages, and Programming (ICALP),
pp. 92:1–92:14.

Lee, E. (2017b), Improved hardness for cut, interdiction, and firefighter problems, in
44th International Colloquium on Automata, Languages, and Programming (ICALP),
pp. 92:1–92:14.

Leskovec, J., and A. Krevl (2014), SNAP Datasets: Stanford Large Network Dataset
Collection.

Lichtenstein, D. (1982), Planar formulae and their uses, SIAM Journal on Computing,
11 (2), 329–343.

358

Liero, M., A. Mielke, and G. Savaré (2017), Optimal Entropy-Transport Problems
and a New Hellinger–Kantorovich Distance Between Positive Measures, Inventiones
mathematicae, 211 (3), 969–1117, doi:10.1007/s00222-017-0759-8.

Lin, B., A. Monod, and R. Yoshida (2018), Tropical Foundations for Probability
Statistics on Phylogenetic Tree Space, ArXiv e-prints.

Lin, T., T. Guo, and K. Aberer (2017), Hybrid neural networks for learning the trend
in time series, in Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAI’17, pp. 2273–2279, AAAI Press.

Linial, N. (2002), Finite Metric Spaces: Combinatorics, Geometry and Algorithms,
in Proceedings of the Eighteenth Annual Symposium on Computational Geometry,
SCG ’02, pp. 63–63, ACM, New York, NY, USA.

Linial, N., E. London, and Y. Rabinovich (1995a), The Geometry of Graphs and Some
of its Algorithmic Applications, Combinatorica, 15 (2), 215–245.

Linial, N., E. London, and Y. Rabinovich (1995b), The geometry of graphs and
some of its algorithmic applications, Combinatorica, 15 (2), 215–245, doi:10.1007/
BF01200757.

Lorenz, D. A., P. Manns, and C. Meyer (2019), Quadratically Regularized Optimal
Transport.

Lucien, B. (2001), An alternative point of view on Lepski’s method, Lecture Notes–
Monograph Series, vol. Volume 36, pp. 113–133, Institute of Mathematical Statistics,
Beachwood, OH, doi:10.1214/lnms/1215090065.

Maaten, L. V. D., and G. E. Hinton (2008), Visualizing data using t-sne, Journal of
Machine Learning Research, 9, 2579–2605.

Mandanas, F. D., and C. L. Kotropoulos (2016), Robust multidimensional scaling
using a maximum correntropy criterion, IEEE Transactions on Signal Processing,
65 (4), 919–932.

Matoušek, J. (2013), Lecture notes on metric embeddings, available at: http://kam.
mff.cuni.cz/~matousek/ba-a4.pdf.

McComas, D. J., et al. (2000), Solar wind observations over Ulysses’ first full polar
orbit, J. Geophys. Res., 105, 10,419–10,434, doi:10.1029/1999JA000383.

Meyer, C. D., Jr. (1973), Generalized inversion of modified matrices, SIAM Journal
on Applied Mathematics, 24 (3), 315–323, doi:10.1137/0124033.

Mikolov, T., M. Karafiát, L. Burget, J. Cernocky, and S. Khudanpur (2010), Recurrent
neural network based language model, in INTERSPEECH.

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean (2013), Efficient estimation of word
representations in vector space, in ICLR.

359

http://kam.mff.cuni.cz/~matousek/ba-a4.pdf
http://kam.mff.cuni.cz/~matousek/ba-a4.pdf

Million, E. (2007), The hadamard product elizabeth million april 12 , 2007 1 introduc-
tion and basic results.

MOSEK ApS (), Parametric fusion.

Nadakuditi, R. R. (2014), Optshrink: An algorithm for improved low-rank signal matrix
denoising by optimal, data-driven singular value shrinkage, IEEE Transactions on
Information Theory, 60 (5), 3002–3018, doi:10.1109/TIT.2014.2311661.

Narayanan, A., M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal
(2017), graph2vec: Learning distributed representations of graphs, ArXiv,
abs/1707.05005.

Nedić, A. (2011), Random Algorithms for Convex Minimization Problems, Math.
Program., 129 (2, Ser. B), 225–253, doi:10.1007/s10107-011-0468-9.

Neelakantan, A., L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and J. Martens
(2015), Adding gradient noise improves learning for very deep networks, ArXiv,
abs/1511.06807.

Nesterov, Y. E. (1983), A Method for Solving the Convex Programming Problem with
Convergence Rate O(1/k2), Dokl. Akad. Nauk SSSR, 269 (3), 543–547.

Nickel, M., and D. Kiela (2017), Poincaré Embeddings for Learning Hierarchical
Representations, in NIPS.

Nickel, M., and D. Kiela (2018a), Learning continuous hierarchies in the lorentz model
of hyperbolic geometry, ArXiv, abs/1806.03417.

Nickel, M., and D. Kiela (2018b), Learning Continuous Hierarchies in the Lorentz
Model of Hyperbolic Geometry, in ICML.

Nocedal, J., A. Wächter, and R. A. Waltz (2009), Adaptive barrier update strategies
for nonlinear interior methods, SIAM Journal on Optimization, 19 (4), 1674–1693,
doi:10.1137/060649513.

O’Donoghue, B., E. Chu, N. Parikh, and S. Boyd (2016), Conic optimization via
operator splitting and homogeneous self-dual embedding, Journal of Optimization
Theory and Applications, 169 (3), 1042–1068.

O’Donoghue, B., E. Chu, N. Parikh, and S. Boyd (2019), SCS: Splitting conic solver,
version 2.1.2, https://github.com/cvxgrp/scs.

Palacios-Gomez, F., L. Lasdon, and M. Engquist (1982), Nonlinear Optimization by
Successive Linear Programming, Management Science, 28 (10), 1106–1120.

Palaniappan, S., and R. Adhikari (2017), Deep learning the indus script, CoRR,
abs/1702.00523.

360

https://github.com/cvxgrp/scs

Pan, X., D. S. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. I. Jordan
(2015), Parallel Correlation Clustering on Big Graphs, in NIPS.

Panagopoulos, M., C. Papaodysseus, P. Rousopoulos, D. Dafi, and S. Tracy (2009),
Automatic writer identification of ancient greek inscriptions, IEEE Trans. Pattern
Anal. Mach. Intell., 31 (8), 1404–1414, doi:10.1109/TPAMI.2008.201.

Pandove, D., S. Goel, and R. Rani (2018), Correlation Clustering Methodologies and
their Fundamental Results, Expert Systems.

Parker, E. (1959), Extension of the Solar Corona into Interplanetary Space, J. Geo-
phys. Res., 64, 1675–1681.

Parker, E. N. (1958), Dynamics of the Interplanetary Gas and Magnetic Fields., ApJ,
128, 664–676.

Peleg, D., and J. D. Ullman (1989), An Optimal Synchronizer for the Hypercube,
SIAM Journal on Computing, 18 (4), 740–747.

Petric Maretic, H., M. El Gheche, G. Chierchia, and P. Frossard (2019), Got: An
optimal transport framework for graph comparison, in Advances in Neural Informa-
tion Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, pp. 13,876–13,887, Curran Associates, Inc.

Peyré, G., and M. Cuturi (2018), Computational Optimal Transport.

Poirrier, L., and J. Yu (2019), On the Depth of Cutting Planes, arXiv e-prints,
arXiv:1903.05304.

Polyak, B. T. (2001), Random Algorithms for Solving Convex Inequalities, in Inherently
parallel algorithms in feasibility and optimization and their applications (Haifa,
2000), Stud. Comput. Math., vol. 8, pp. 409–422, North-Holland, Amsterdam,
doi:10.1016/S1570-579X(01)80024-0.

Poole, B., J. Sohl-Dickstein, and S. Ganguli (2014), Analyzing noise in autoencoders
and deep networks, ArXiv, abs/1406.1831.

Prechelt, L. (1998), Early Stopping - But When?, pp. 55–69, Springer Berlin Heidelberg,
Berlin, Heidelberg, doi:10.1007/3-540-49430-8_3.

Pretorius, A., S. Kroon, and H. Kamper (2018), Learning dynamics of linear denoising
autoencoders, ArXiv, abs/1806.05413.

Prim, R. C. (1957), Shortest Connection Networks and Some Generalizations, The
Bell System Technical Journal, 36 (6), 1389–1401.

Qi, H., and X. Yuan (2014a), Computing the nearest euclidean distance matrix with
low embedding dimensions, Mathematical Programming, 147, 351–389.

361

Qi, H., and X. Yuan (2014b), Computing the nearest euclidean distance matrix with
low embedding dimensions, Mathematical Programming, 147, 351–389.

Qi, H.-D., and X. Yuan (2014c), Computing the nearest euclidean distance matrix
with low embedding dimensions, Mathematical Programming, 147 (1), 351–389.

Rao, N. R., and A. Edelman (2008), The polynomial method for random matrices,
Foundations of Computational Mathematics, 8, 649–702.

Redko, I., N. Courty, R. Flamary, and D. Tuia (2019), Optimal transport for multi-
source domain adaptation under target shift, in Proceedings of Machine Learning
Research, Proceedings of Machine Learning Research, vol. 89, pp. 849–858, PMLR.

ren Fang, H., and D. P. O’Leary (2012), Euclidean distance matrix completion
problems, Optimization Methods and Software, 27 (4-5), 695–717.

Rockafellar, R. (1970), Convex Analysis, Princeton Landmarks in Mathematics and
Physics, Princeton University Press.

Rossi, R. A., and N. K. Ahmed (2015), The network data repository with interactive
graph analytics and visualization, in AAAI.

Rothvoss, T. (2014), The Matching Polytope has Exponential Extension Complexity,
in STOC’14—Proceedings of the 2014 ACM Symposium on Theory of Computing,
pp. 263–272, ACM, New York.

Roweis, S. T., and L. K. Saul (2000), Nonlinear dimensionality reduction by locally
linear embedding, Science, 290 (5500), 2323–2326, doi:10.1126/science.290.5500.
2323.

Rozemberczki, B., C. Allen, and R. Sarkar (2019), Multi-scale attributed node embed-
ding.

Ruggles, C., N. Veldt, and D. F. Gleich (2019), A Parallel Projection Method for
Metric Constrained Optimization, arXiv e-prints, arXiv:1901.10084.

Sahni, S., and T. Gonzalez (1976), P-complete approximation problems, J. ACM,
23 (3), 555–565, doi:10.1145/321958.321975.

Saitou, N., and M. Nei (1987), The Neighbor-joining Method: A New Method for
Reconstructing Phylogenetic Trees., Molecular biology and evolution, 4 4, 406–25.

Sala, F., C. De Sa, A. Gu, and C. Re (2018), Representation Tradeoffs for Hyperbolic
Embeddings, Proceedings of the 35th International Conference on Machine Learning,
pp. 4460–4469.

Santambrogio, F. (2014), Introduction to Optimal Transport Theory, doi:10.1017/
CBO9781107297296.002.

Sarich, V. M. (1969), Pinniped Phylogeny, Systematic Biology, 18 (4), 416–422.

362

Sarkar, R. (2012), Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane,
in Proceedings of the 19th International Conference on Graph Drawing, GD’11, pp.
355–366, Springer-Verlag, Berlin, Heidelberg.

Schmitzer, B. (2019), Stabilized sparse scaling algorithms for entropy regularized
transport problems, SIAM J. Scientific Computing, 41, A1443–A1481.

Schoenberg, I. J. (1935), Remarks to maurice fréchet’s article “sur la définition
axiomatique d’une classe d’espaces distanciés vectoriellement applicable sur l’espace
de hilbert”. annals of mathematics 36(3.

Schoenberg, I. J. (1938a), Metric Spaces and Positive Definite Functions, Trans. Amer.
Math. Soc., 44 (3), 522–536, doi:10.2307/1989894.

Schoenberg, I. J. (1938b), Metric Spaces and Positive Definite Functions, Transactions
of the American Mathematical Society, 44 (3), 522, doi:10.2307/1989894.

Scholz, M., F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig (2005), Non-linear pca: a miss-
ing data approach, Bioinformatics, 21 (20), 3887–3895, doi:10.1093/bioinformatics/
bti634.

Schrieber, J., D. Schuhmacher, and C. Gottschlich (2017), DOTmark – A Benchmark
for Discrete Optimal Transport, IEEE Access, 5, 271–282.

Seguy, V., B. B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel (2018),
Large scale optimal transport and mapping estimation, in International Conference
on Learning Representations.

Shepard, R. N. (1962a), The analysis of proximities: multidimensional scaling with an
unknown distance function. i., Psychometrika, 27 (2), 125–140.

Shepard, R. N. (1962b), The analysis of proximities: Multidimensional scaling with
an unknown distance function. ii, Psychometrika, 27 (3), 219–246.

Shorten, C., and T. Khoshgoftaar (2019), A survey on image data augmentation for
deep learning, Journal of Big Data, 6, 1–48.

Sidiropoulos, A., D. Wang, and Y. Wang (2017), Metric embeddings with outliers,
in Proc. Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 670–689.

Sierksma, G. (1996), Linear and integer programming - theory and practice, in Pure
and applied mathematics.

Sietsma, J., and R. J. F. Dow (1991), Creating artificial neural networks that generalize,
Neural Networks, 4, 67–79.

Sigillito, V., S. Wing, L. Hutton, and K. Baker (1989), Classification of radar returns
from the ionosphere using neural networks.

363

Slater, M. (2014), Lagrange Multipliers Revisited, pp. 293–306, Springer Basel, Basel,
doi:10.1007/978-3-0348-0439-4_14.

Sokal, R., C. Michener, and U. of Kansas (1958), A Statistical Method for Evaluating
Systematic Relationships, University of Kansas science bulletin, University of Kansas.

Solomon, J., F. de Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du,
and L. Guibas (2015), Convolutional Wasserstein Distances: Efficient Optimal
Transportation on Geometric Domains, ACM Trans. Graph., 34 (4), doi:10.1145/
2766963.

Sontag, D., and T. S. Jaakkola (2008), New Outer Bounds on the Marginal Polytope,
in Advances in Neural Information Processing Systems 20, edited by J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, pp. 1393–1400, Curran Associates, Inc.

Sontag, D., T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss (2008), Tightening LP
Relaxations for MAP Using Message Passing, in Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI’08, pp. 503–510, AUAI
Press, Arlington, Virginia, United States.

Sontag, D., D. K. Choe, and Y. Li (2012), Efficiently Searching for Frustrated
Cycles in MAP Inference, in Proceedings of the Twenty-Eighth Conference Annual
Conference on Uncertainty in Artificial Intelligence (UAI-12), pp. 795–804, AUAI
Press, Corvallis, Oregon.

Sontag, D. A., and T. S. Jaakkola (2007), On Iteratively Constraining the Marginal
Polytope for Approximate Inference and MAP, Semantic Scholar.

Sonthalia, R., and A. C. Gilbert (2018), Unsupervised metric learning in the presence
of missing data, Proceedings of Allerton Conference on Communication, Computing,
and Control.

Sonthalia, R., and A. Gilbert (2020a), Project and forget: Solving large-scale metric
constrained problems, in Submitted to JMLR.

Sonthalia, R., and A. C. Gilbert (2020b), Dual regularized optimal transport, in
Submitted to ICML 2021.

Sonthalia, R., and A. C. Gilbert (2020c), Tree! i am no tree! i am a low dimensional
hyperbolic embedding, in NeurIPS.

Sonthalia, R., and R. R. Nadakuditi (2021), How to optimally train stakced linear
denoising autoencoders?, in Submitted to ICML 2021.

Sonthalia, R., F. Schironi, and R. R. Nadakuditi (2020), Deepgreek: A framework for
greek text reconstruction, in Submitted to NAACL.

Sonthalia, R., G. V. Buskirk, B. Raichel, and A. C. Gilbert (2021), How can, in
Submitted to ICML 2021.

364

Souto, M., J. D. Garcia, and Á. Veiga (2018), Exploiting low-rank structure
in semidefinite programming by approximate operator splitting, arXiv preprint
arXiv:1810.05231.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014),
Dropout: A simple way to prevent neural networks from overfitting, Journal of
Machine Learning Research, 15 (56), 1929–1958.

Stein, C. (1956), Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution, in Proceedings of the Third Berkeley Symposium on Mathemat-
ical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics,
pp. 197–206, University of California Press, Berkeley, Calif.

Stellato, B., G. Banjac, P. Goulart, A. Bemporad, and S. Boyd (2017), OSQP: An
operator splitting solver for quadratic programs, ArXiv e-prints.

Stoeckius, M., C. Hafemeister, W. Stephenson, B. Houck-Loomis, P. K. Chattopad-
hyay, H. Swerdlow, R. Satija, and P. Smibert (2017), Simultaneous epitope and
transcriptome measurement in single cells, Nature Methods, 14 (9), 865–868, doi:
10.1038/nmeth.4380.

Sun, Q. H., S. Lee, and D. Batra (2017), Bidirectional beam search: Forward-backward
inference in neural sequence models for fill-in-the-blank image captioning, 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7215–7223.

Sutskever, I., J. Martens, and G. Hinton (2011), Generating text with recurrent neural
networks, in Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 1017–1024, Omnipress, USA.

Sutskever, I., O. Vinyals, and Q. V. Le (2014), Sequence to sequence learning with
neural networks, in Advances in Neural Information Processing Systems 27, edited
by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
pp. 3104–3112, Curran Associates, Inc.

Suárez Díaz, J. L., S. García, and F. Herrera (2018), A Tutorial on Distance Metric
Learning: Mathematical Foundations, Algorithms and Software, arxiv eprint.

Swanson, K., L. Yu, and T. Lei (2020), Rationalizing text matching: Learning
sparse alignments via optimal transport, in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 5609–5626, Association for
Computational Linguistics, Online, doi:10.18653/v1/2020.acl-main.496.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus (2014), Intriguing properties of neural networks, CoRR, abs/1312.6199.

Taguchi, Y.-H., and Y. Oono (2005), Relational patterns of gene expression via
non-metric multidimensional scaling analysis, Bioinformatics, 21 (6), 730–740.

365

Takeda, H., S. Farsiu, and P. Milanfar (2007), Kernel regression for image processing
and reconstruction, IEEE Transactions on Image Processing, 16, 349–366.

Tang, Y. (2013), Deep Learning Using Support Vector Machines, ICML 2013 Chal-
lenges in Representation Learning, abs/1306.0239.

Tenenbaum, J., V. de Silva, and J. Langford (2000a), A global geometric framework
for nonlinear dimensionality reduction., Science, 290 5500, 2319–23.

Tenenbaum, J. B., V. d. Silva, and J. C. Langford (2000b), A global geometric
framework for nonlinear dimensionality reduction, Science, 290 (5500), 2319–2323,
doi:10.1126/science.290.5500.2319.

Tenenbaum, J. B., V. d. Silva, and J. C. Langford (2000c), A global geometric
framework for nonlinear dimensionality reduction, Science, 290 (5500), 2319–2323,
doi:10.1126/science.290.5500.2319.

The Packard Humanities Institute (2005), PHI greek inscriptions, https://
inscriptions.packhum.org/, accessed on 2019-04-24.

Tian, C., Y. Xu, L. Fei, and K. Yan (2018), Deep learning for image denoising: A
survey, ArXiv, abs/1810.05052.

Tian, C., L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin (2020), Deep learning
on image denoising: An overview, Neural networks : the official journal of the
International Neural Network Society, 131, 251–275.

Torgerson, W. S. (1952), Multidimensional scaling i: Theory and method.

Torgerson, W. S. (1958), Theory and methods of scaling.

Tropp, J., and A. Gilbert (2007), Signal recovery from random measurements via
orthogonal matching pursuit, IEEE Transactions on Information Theory, 53, 4655–
4666.

Valiant, L. (1979), The complexity of enumeration and reliability problems, SIAM J.
Comput., 8 (3), 410–421.

van Dijk, D., et al. (2018), Recovering gene interactions from single-cell data using
data diffusion, Cell, doi:https://doi.org/10.1016/j.cell.2018.05.061.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin (2017), Attention is all you need, in Advances in Neural
Information Processing Systems 30, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, pp. 5998–6008, Curran
Associates, Inc.

Vazirani, V. (2001), Approximation Algorithms, Springer-Verlag New York, Inc., New
York, NY, USA.

366

https://inscriptions.packhum.org/
https://inscriptions.packhum.org/

Veldt, N., D. Gleich, A. Wirth, and J. Saunderson (2019), Metric-Constrained Opti-
mization for Graph Clustering Algorithms, SIAM Journal on Mathematics of Data
Science, 1, 333–355, doi:10.1137/18M1217152.

Verbeek, K., and S. Suri (2016), Metric Embedding, Hyperbolic Space, and Social
Networks, Computational Geometry, 59, 1 – 12.

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010), Stacked
denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion, J. Mach. Learn. Res., 11, 3371–3408.

Vinyals, O., A. Toshev, S. Bengio, and D. Erhan (2015), Show and tell: A neural
image caption generator, in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3156–3164, doi:10.1109/CVPR.2015.7298935.

von Steiger, R., and J. Geiss (1993), Solar wind composition and expectations for high
solar latitudes, Advances in Space Research, 13, 63–74, doi:10.1016/0273-1177(93)
90392-O.

von Steiger, R., J. Geiss, G. Gloeckler, and A. B. Galvin (1995), Kinetic Properties of
Heavy Ions in the Solar Wind From SWICS/Ulysses, Space Sci. Rev., 72, 71–76,
doi:10.1007/BF00768756.

Wan, L., M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus (2013), Regularization of neural
networks using dropconnect, in Proceedings of the 30th International Conference on
Machine Learning, Proceedings of Machine Learning Research, vol. 28, edited by
S. Dasgupta and D. McAllester, pp. 1058–1066, PMLR, Atlanta, Georgia, USA.

Wang, F., and J. Sun (2015), Survey on distance metric learning and dimensionality
reduction in data mining, Data Mining and Knowledge Discovery, 29 (2), 534–564.

Wang, L., Z. Cao, Y. Xia, and G. de Melo (2016), Morphological segmentation with
window lstm neural networks, in AAAI Conference on Artificial Intelligence.

Wang, M., and D. P. Bertsekas (2013), Incremental Constraint Projection-Proximal
Methods for Nonsmooth Convex Optimization, http://www.mit.edu/ dimitrib/.

Wang, M., Y. Chen, J. Liu, and Y. Gu (2015), Random Multi-Constraint Projection:
Stochastic Gradient Methods for Convex Optimization with Many Constraints,
ArXiv, abs/1511.03760.

Wang, Y., L. Xu, Y. Chen, and H. Wang (2013), A Scalable Approach for General
Correlation Clustering, in ADMA.

Wang, Z., and T. Oates (2015), Encoding time series as images for visual inspection
and classification using tiled convolutional neural networks, in AAAI Workshops.

367

Weinberger, K. Q., and L. K. Saul (2004), Unsupervised learning of image manifolds
by semidefinite programming, in Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 988–995,
doi:10.1109/CVPR.2004.1315272.

Wiener, N. (1949), Extrapolation, interpolation, and smoothing of stationary time
series, with engineering applications.

Wimmer-Schweingruber, R. F. (2003), Solar Wind Composition, in Solar Wind Ten,
American Institute of Physics Conference Series, vol. 679, edited by M. Velli,
R. Bruno, F. Malara, and B. Bucci, pp. 577–582.

Xie, Y., M. Chen, H. Jiang, T. Zhao, and H. Zha (2019), On scalable and efficient
computation of large scale optimal transport, in ICML.

Yang, K. D., and C. Uhler (2019), Scalable Unbalanced Optimal Transport Using
Generative Adversarial Networks, in International Conference on Learning Repre-
sentations.

Yannakakis, M. (1981a), Computing the minimum fill-in is np-complete, SIAM Journal
on Algebraic Discrete Methods, 2, 77–79.

Yannakakis, M. (1981b), Edge-deletion problems, SIAM Journal on Computing, 10 (2),
297–13.

Yanover, C., T. Meltzer, and Y. Weiss (2006), Linear Programming Relaxations and
Belief Propagation—An Empirical Study, J. Mach. Learn. Res., 7, 1887–1907.

Young, R. (2008), Notes on Asymptotic Cones.

Yu, T., and C. M. De Sa (2019), Numerically Accurate Hyperbolic Embeddings Using
Tiling-Based Models, in Advances in Neural Information Processing Systems 32, pp.
2021–2031, Curran Associates, Inc.

Yu, Y., T. Wang, and R. J. Samworth (2014), A useful variant of the Davis–Kahan
theorem for statisticians, Biometrika, 102 (2), 315–323, doi:10.1093/biomet/asv008.

Zeisel, A., et al. (2015), Cell Types in the Mouse Cortex and Hippocampus Revealed
by Single-cell rna-seq, Science, 347 (6226), 1138–1142.

Zhang, X., and Y. LeCun (2015), Text understanding from scratch, ArXiv,
abs/1502.01710.

Zhang, X., J. Zhao, and Y. LeCun (2015), Character-level convolutional networks
for text classification, in Advances in Neural Information Processing Systems 28,
edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, pp.
649–657, Curran Associates, Inc.

Á. Carreira-Perpiñán, M., and Z. Lu (2011), Manifold learning and missing data recov-
ery through unsupervised regression, Proceedings - IEEE International Conference
on Data Mining, ICDM, pp. 1014–1019.

368

	ACKNOWLEDGEMENTS
	LIST OF ALGORITHMS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Data Geometry
	Dimensionality Reduction
	Denoising Data
	Learning Embeddings
	Learning Combinatorial Structure

	Parameter Geometry
	Connection between Data and Parameter Geometry
	In this thesis
	Learning Good Metrics
	Chapter II - Sparse Metric Repair.
	Chapter III - Geometric Manifold Repair in the Presence of Missing Data.
	Chapter IV - Project and Forget: Solving Highly Constrained Convex Optimization Problems.
	Chapter V - Learning Good Quality Hyperbolic Representations Quickly.
	Analyzing Representation Learning Methods
	Chapter VI - Dual Regularized Optimal Transport.
	Chapter VII - Robustness of cMDS via Spectral Analysis.
	Chapter VIII - Probabilistic Analysis of Denoising Autoencoders.
	Chapter IX - Reconstructing Ancient Greek Text.

	Generalized Metric Repair on Graphs
	Introduction-GMR
	Preliminaries
	Notation and problem definition
	Previous results

	Transitioning to Graph Metric Repair
	Structural results
	Reducing MR(G, R0) to MR(G, R)

	Hardness
	Fixed Parameter Analysis for -Chordal Graphs
	Approximation Algorithms
	L-approximation
	O(logn)-approximation

	Manifold Repair In Presence of Missing Data
	Introduction
	Problem Set Up
	Previous work
	Our approach and contributions

	Background
	Manifolds and Geodesic distances
	Multidimensional Scaling
	Metric Repair

	Metric repair on manifolds
	Theory Result

	Experiments
	Unlabeled Data
	Synthetic Manifolds
	MR-missing vs nlPCA vs mDRUR

	Labeled Data

	Conclusion and Future Work

	Project and Forget: Solving Large Scale Metric Constrained Problem
	Introduction
	Preliminaries
	Convex Programming
	Linear Inequality Constraints
	General Convex Constraints

	Metric Constrained Problems
	Projections

	Project and Forget: Linear Inequalities
	Finding Violated (Metric) Constraints
	Project and Forget Steps
	Truly Stochastic Variant
	Convergence Analysis: Linear Inequality Constraints

	Project and Forget: General Convex Constraints
	Algorithm
	Convergence Analysis

	Applications: Metric Constrained Problems
	Metric Nearness
	Experimental Set Up:
	Results

	Weighted Correlation Clustering on General Graphs.
	Experimental Set up
	Results

	Applications: General algorithm
	Sparse Optimal Transport
	Dual Problem
	Sparsity
	Experimental Results

	Information Theoretic Metric Learning
	Support Vector Machines
	Results

	Conclusion and Future work
	Proofs
	Proof of part 1 of Theorem 4.16 for oracles that satisfy property 4.1
	Proof of part 1 of Theorem 4.16 for oracles that satisfy property 4.2
	Proof of part 2 of Theorem 4.16
	Proof of part 2 of Theorem 4.16—Quadratic Case
	Proof of part 2 of Theorem 4.16—General

	Proof of Theorem 4.20
	General Convex Proof
	Convergence Rate for Quadratic Objective Function

	Tree! I am no Tree! I am a Low Dimensional Hyperbolic Embedding
	Introduction
	Preliminaries
	-Hyperbolic Metrics.
	Trees as Hyperbolic Representation.

	Tree Representation
	TreeRep for General -Hyperbolic Metrics.
	Steiner nodes.

	Experiments
	Tree Reconstruction Experiments.
	Random points on Hyperbolic Manifold.
	Biological Data: scRNA seq and phylogenetic data.
	Unweighted Graphs.

	Broader Impact

	Dual Regularized Optimal Transport
	Introduction
	Background
	Our Contribution.

	Preliminaries
	Background Problem Formulations
	Regularized and Unbalanced Optimal Transport.

	Dual regularized optimal transport (DROT)
	Extension to Multi-marginal Transport.

	Theoretical analysis
	Solution properties
	Example regularizers
	Quadratic.
	Exponential.
	Entropy.

	Efficient algorithm: Project and Forget

	Experiments
	Verifying theoretical properties
	Domain Transfer
	Color Transfer.
	MNIST, USPS classification.

	How can Classical Multidimensional Scaling go Wrong?
	Introduction
	Problem statements and contributions

	Preliminaries and Background
	cMDS algorithm
	EDM Matrices
	Conjugation matrices: Q and V

	Theoretical Results
	Lower bound for "026B30D Dt - D"026B30D F2
	Expression for "026B30D Dcmds-D"026B30D F2
	Error Analysis for cMDS

	Experiments
	Results

	How to Optimally Train Stacked Linear Denoising Autoencoders?
	Introduction
	Set-Up
	Learning Good Representations
	Assumptions about the noise
	Data Generation Assumptions
	Problem Set Up

	Theoretical Results
	Step 1: Formula for W
	Step 2: Decompose the formula for EMSE.
	Step 3: Estimate using random matrix theory.
	Training with Batches
	Training with no noise
	c close to 1

	Experiments
	Verifying Theoretical Predictions
	Beyond Linear Data and Linear Autoencoders

	Future Work

	Deep Greek: A Framework for Reconstructing Greek Text
	Introduction
	Related Work
	Reconstructing Text
	Scope of DeepGreek
	Data Source
	Data Workflow

	Method
	Neural Network Architecture
	Embedding Layer
	Encoder and Decoder

	Creating Training Data
	Filling in Letters
	Erasing Characters in Input
	Corrupting Non Missing Characters

	Filling in Diacritics
	Filling in Spaces

	Experimental Results
	Human Evaluation
	Filling in the Missing Letters: Learn2Fill
	Filling in Diacritics: Learn2Diacritic
	Filling in Spaces: Learn2Space
	Learn2Fill and Learn2Diacritic
	Other Types of Texts

	Future Work
	APPENDICES
	Transitioning to Graph Metric Repair
	The decrease only case
	Structural results

	Approximation Algorithms
	Improved Analysis for Complete Graphs
	5 Cycle Cover
	IOMR-fixed

	Metric First Discussion and Justification
	Proofs
	Tree Representation Proofs
	Tree Approximation Proofs

	Geometry: Asymptotic Cones
	Geometry: Geodetic Tree
	TreeRep Best
	Improving Distortion
	Experiment and Practical Details
	MAP and Average Distortion
	TreeRep
	Bartal
	Neighbor Join
	MST
	LS
	LevelTree and ConstructTree
	PM and LM
	PT
	Hardware
	Synthetic 0-hyperbolic metrics
	Synthetic Data Sets
	Phylogenetic and Single Cell Data
	Unweighted Graphs
	Calculating

	Tree Representation Pseudo-code
	Proofs
	Algorithmic Details
	Calculating

	Experiment Details
	Solver choice
	Verifying theoretical properties
	Color Transfer
	MNIST-USPS

	Proofs
	Step 1: Formula for Wopt
	Step 2: Formula for the Expected MSE
	Step 3: Estimate using random matrix theory.
	Proof of Theorem
	Formula for opt-trn

	Experiments
	Flag Experiment
	Linear Autoencoder
	Rank 2 Data
	MNIST Data
	Linear Autoencoder
	Non-linear Autoencoder

	Pre-training SDAEs
	Proofs
	Extra Datasets
	Computing True MDS solution
	Appendix
	Four Texts
	Neural Network implementation details
	The Character Encoding Layers
	The Encoder LSTM Network
	The Decoder LSTM Network
	Training Details

	Phrase Appended for Filling in Diacritics

	BIBLIOGRAPHY

