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ABSTRACT

Goal-oriented dialog systems assist users to complete tasks such as restaurant reser-
vations and flight ticket booking. Deep neural networks have opened up the possibility
of end-to-end learning of the entire goal-oriented dialog system directly from data. End-
to-end learning enables automatic adaptation of the different parts of the dialog system
accounting for how changes in one part affect the others. Since the entire dialog system is
learned directly from the data, the design of the dialog system need not make any assump-
tions about the domain. This makes it possible to build dialog systems for new domains
with different training data, without much domain-specific hand-crafting of the dialog sys-
tem. With deep neural networks which can potentially capture the complexity of human
dialog in natural language, learning neural goal-oriented dialog systems end-to-end holds
the promise of bringing dialog systems into our everyday lives.

In this thesis, we identify some of the challenges in end-to-end learning of neural goal-
oriented dialog systems and propose methods to address them. We look at four challenges:

1) The challenge posed by the presence of a large number of named entities in goal-
oriented dialog tasks. We propose a method to build neural embeddings for named entities
on the fly and store them in a key-value table with neural embeddings as keys and the actual
named entities as values. The proposed method allows for comparison and retrieval, using
neural embeddings as well as actual named entities, which leads to significant improvement
in performance, especially in the presence of out-of-vocabulary named entities.

2) The challenge of performing supervised learning of goal-oriented dialog systems
with multiple valid next utterances. We propose a method to learn to use different parts
of the neural network to encode different predictions of the next utterances with learning
of one not interfering with the learning of the others. Our experiments show considerable
improvement in the generalization performance.

3) The challenge of handling new user behaviors during deployment of a trained dialog
system. We propose a method that learns to anticipate failures and efficiently transfers
dialogs to human agents in order to make sure the overall task success of the users remains
high. Our experiments show that using our proposed method it is possible to achieve very
high user task success while minimally using human agents.

x



4) The challenge of requiring large amounts of training data for each new dialog task
of interest. We show that by selectively learning from a related task’s data that is already
available, we can improve the performance on a new task of interest that has only a limited
amount of training data.
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CHAPTER 1

Introduction

Natural language dialog is one of the primary means by which humans communicate
with each other and perform many of our day-to-day activities. This includes talking with
our family and friends, ordering lunch at a restaurant, discussing ideas in a meeting at work,
booking a train ticket at the train station counter and resolving an issue with a computer
software by talking to an agent at the support center. It is a long-standing goal of AI to
have intelligent systems that can have seamless dialog with humans in natural language
and thereby help with some of our day-to-day activities.

Dialog systems are broadly categorised as goal-oriented dialog systems and non-goal-
oriented dialog systems. Goal-oriented dialog systems are systems that engage in a dialog
to achieve an explicit goal. They are generally used to assist a user to complete certain
tasks. Examples include dialog systems that assist with purchasing tickets and reservations
for flights, trains, movies, restaurants, hotels etc. Non-goal-oriented dialog systems (also
referred to as chit-chat systems) are systems that engage in dialog that are unstructured
and spread across multiple domains. They mimic idle chit-chat, and are mainly used for
entertainment.

In this thesis, we set our focus on goal-oriented dialog systems. A widely used frame-
work for building goal-oriented dialog systems has been to have a pipeline with different
modules (pipeline-methods) where the input of one module is dependent on the output of
another module. The typical pipeline used for goal-oriented dialog systems has four mod-
ules: 1) Natural Language Understanding (NLU), which converts user utterance into useful
features (e.g., pre-determined semantic slots), 2) Dialog State Tracking, which combines
features of the current user utterance with dialog history and outputs the current dialog
state, 3) Dialog Policy, which takes the current dialog state and selects the dialog system’s
next action, 4) Natural Language Generation (NLG), which maps the selected action to a
natural language response for the user.
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In the past, dialog systems (and the modules therein) were built mainly using hand-
crafted features and rules (Bobrow et al. 1977; Ward and Issar 1994; Goddeau et al. 1996).
Handcrafting the right set of features and rules for a given dialog task requires extensive
domain knowledge of the task. Given the complexity of human dialog in natural language,
handcrafting features and rules that works well requires a lot of effort, making it a difficult
and expensive processes. Even with best efforts, the dialog systems built this way were brit-
tle and not robust in the real world. The extensive effort involved in building goal-oriented
dialog systems with handcrafted features and rules also limited the ability to build dialog
systems for new domains and tasks quickly.

With the progress in areas of statistical methods and machine learning, parts of the
goal-oriented dialog system pipeline which were earlier fully handcrafted started getting
replaced with statistical and machine learning models (Young et al. 2009; Williams 2013).
Over the last decade and a half, neural network based learning methods, especially the ones
using deep learning, have led to great progress in different fields where learning methods
are applicable. This includes vision (Diba et al. 2017; Chen and Yuille 2014), language
(Mikolov et al. 2013a; Bahdanau, Cho, and Bengio 2015b) and control (Mnih et al. 2015;
Lillicrap et al. 2016). This progress is true for dialog systems as well. Chen, Liu, et al.
(2017) provide a good survey on the recent advances in dialog systems. The recent success
of deep learning in these fields can be attributed to a combination of several factors. Some
of the important ones are: 1) an increase in availability of large amounts of training data,
2) developments in hardware and compute that has enabled training of large deep learning
models with large amounts of data in reasonable time, 3) development of specialised deep
learning libraries for programming languages, that have enabled easy and fast construction
of deep neural network models and their training schemes and 4) improvement in deep
neural network architecture and optimization methods.

All of the four modules in the pipeline-method of building goal-oriented dialog systems
have undergone tremendous progress over the last decade with the use of deep neural net-
work based learning methods. Some examples include: 1) natural language understanding:
Tur et al. (2012) and Yao et al. (2014), 2) dialog state tracking: Henderson, Thomson, and
Young (2013) and Mrkšić et al. (2015), 3) dialog policy learning: Cuayáhuitl, Keizer, and
Lemon (2015) and Takanobu, Zhu, and Huang (2019), and 4) natural language generation:
Wen, Gasic, et al. (2015) and Tran, Nguyen, and Nguyen (2017). Deep neural networks
have enabled automatic learning of useful feature representation and complex dialog strate-
gies.

When the learning of the different modules are independent as in pipeline-methods, two
main limitations arise. First, it is hard to propagate end user feedback to all the different
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upstream modules. Second, interdependence of the different independently learned mod-
ules mandates careful adaptation. Since the input of one module depends on the output of
another, modifying one module affects the performance of others. Any adaptation to one
module due to changes in domain/data/training method needs careful adaptation of other
modules to achieve global optimization. This often requires a lot of human effort.

Deep learning has opened up the possibility of performing end-to-end learning of the
entire dialog system (all modules together) directly from data. End-to-end training al-
lows the propagation of end user’s feedback to all the upstream modules and also enables
automatic adaptation of the different modules in the dialog system accounting for how
changes in one module affects the others, thereby overcoming the two main limitations of
pipeline-methods. Since the entire dialog system is learned directly from the dialog task’s
data, the design of the system need not make any assumption about the dialog domain and
is hence applicable to new domains with different training data, without domain-specific
hand-crafting. Learning neural network based goal-oriented dialog systems end-to-end has
shown great promise and gained a lot of interest in recent years (Bordes, Boureau, and We-
ston 2017; Liu and Lane 2017; Wen, Vandyke, et al. 2017). With deep neural networks, that
have the potential to capture the complexity of human dialog in natural language, end-to-
end learning of neural goal-oriented dialog systems holds the promise of achieving the goal
of seamless integration of dialog systems into our everyday lives. In this thesis we identify
some of the challenges in end-to-end learning of neural goal-oriented dialog systems and
propose methods to address them.

1.1 Contributions

We identify four important challenges in end-to-end learning of neural goal-oriented
dialog systems: 1) The challenge posed by the presence of a large number of named en-
tities in goal-oriented dialog tasks. 2) The challenge of performing supervised learning
of goal-oriented dialog systems with multiple valid next utterances. 3) The challenge of
handling new user behaviors during deployment of a trained dialog system. 4) The chal-
lenge of requiring large amounts of training data for each new dialog task of interest. The
contributions of this thesis are outlined below.

1.1.1 NE-Table: A Neural Key-Value Table for Named Entities

The ability to effectively encode, compare and retrieve Named Entities (NE) plays a
crucial role in the success of goal-oriented dialog tasks. The presence of a very large
number of named entities (e.g., different restaurant names and location names) especially
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in large knowledge bases, presents a serious challenge to traditional ways of encoding them
using neural networks. The traditional way of treating named entities as any other word and
adding them to the vocabulary leads to an explosion in the vocabulary size and is unable
to learn good neural embeddings for rarely occurring NEs. The proposed alternative of
using random embeddings for all the named entities leads to a loss of semantics. The other
proposed alternative is to replace all the named entities with their NE tags based on their
type. This removes the ability to reference and distinguish the different individual NEs with
the same NE type. In many scenarios it is easier and more accurate to work with the actual
exact values of NEs rather than their neural embeddings, like providing a phone number to
a user. None of the above neural methods have the ability to work with exact NE values
directly.

We propose a novel method that addresses all the aforementioned issues. There are
three aspects to our method.

• On-the-fly-generation: Neural embeddings for the NEs are generated on the fly using
their context information. This avoids the explosion in vocabulary size, while still
providing meaningful and distinguishable neural embeddings for the different NEs.

• Key-Value-Table: The generated embeddings are stored in a table (NE-Table), with
embeddings as the keys (key-embeddings) and exact NEs as the values (NE-values).

• On-the-fly-Retrieval: The NE-values can later be retrieved from the NE-Table by
attending over the key-embeddings, providing the ability to interact with exact NE
values.

1.1.2 Learning With Multiple Answers

The most common method for end-to-end learning of neural goal-oriented dialog sys-
tems at the moment is to collect a dataset of humans performing the task of interest and
use supervised learning to train the dialog model to mimic the human agents in the dataset.
There could be multiple ways/strategies to complete a given task. When the dataset is col-
lected from different agents performing the task, these different ways of solving the task get
reflected in it. These variations could be as simple as the difference in the order in which
the agent asks the information from the user, or as complex as following a completely
different line of questions/answers to complete the task. For example, in an IT support sce-
nario, there could be different strategies to resolve an issue with a given piece of software.
Therefore, in a dialog, there can be multiple valid next utterances at any point, but we have
access to only one of them in a particular dialog in the dataset. During supervised learning
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the dialog system is trained to predict only one of the multiple valid next utterances. This
results in reducing the probability of other valid next utterances for that dialog and leads to
contradicting updates during training.

We propose a method that learns different valid next utterances without the learning of
one interfering with the learning of the others much. Our proposed method uses only certain
parts of the dialog state vector to predict a particular valid next utterance in a given dialog.
The update from a given dialog data point affects only the parts of the network that were
responsible for the prediction of that particular next utterance. The dialog system can retain
other parts of the state vector and values in the network that stored information about other
valid next utterances. This is achieved by generating a mask which decides which parts of
the dialog state vector should be used for predicting a particular next utterance. The mask
is learned as a function of current dialog state and also the actual next utterance present in
the given dialog data point. Once the dialog system has learned different dialog responses
and behaviors from the dataset safely, we fine-tune the dialog system using reinforcement
learning to choose between the learned different valid next utterances (without access to the
actual next utterance for masking). The dialog system might settle on a unique behavior
that it finds best for it to perform the task and use that behavior during test time as well.

1.1.3 Learning with Maximal User Task Success and Minimal Human Agent Use

The inability to gracefully handle new user behaviors during deployment has limited
the use of end-to-end learned neural goal-oriented dialog systems in the real world. New
behaviors can be for example a different way of a user asking/providing certain information
or could also be as simple as a user utterance with Out-Of-Vocabulary (OOV) words. The
dialog system fails when these new behaviors are beyond the generalization capabilities of
the trained systems. This happens generally because of the limited coverage of training
data collected. For an enterprise that uses this dialog system, these failures could affect
their business, as the unreliability of the dialog system might result in losing both current
and future users/customers. While the dialog system fails for new user behaviors, it can
perform the task well for the majority of user behaviors if trained on reasonable training
data. However, such failures have restricted the deployment of end-to-end learned neu-
ral goal-oriented dialog systems and have forced enterprises to either rely completely on
human agents or on other restrictive systems where the users have very little freedom in
dialog.

We propose a method that learns to anticipate failure and transfer the dialog to human
agents to maximise user’s task success. The proposed method learns to make this decision
through trial and error (reinforcement learning) using the feedback that it receives during
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deployment. The proposed method also learns end-to-end online from the human agent’s
response to reduce the human agent’s load over time. We set the following three goals for
our method:

• Maximize task success rate for the users by transferring to a human agent in cases
where the dialog system might fail.

• Minimize the use of human agents by transferring to a human agent only when it is
essential.

• Learn online from the human agent’s response to reduce the use of human agents
over time.

The reward function for the decision maker that chooses between the dialog system and the
human agent allows the designer to choose the trade off between overall task success and
the load on human agents.

1.1.4 Learning to Learn From Related Tasks

End-to-end learning of neural goal-oriented dialog systems requires large amounts of
training data. The generalization performance of the trained dialog system critically de-
pends on the quantity and quality of the training data used. This means for each and every
new goal-oriented dialog task of interest large amounts of data needs to be collected. While
end-to-end learning of neural goal-oriented dialog systems have saved human effort from
handcrafting features/rules and careful module adaptation as compared to rule based sys-
tems and pipeline-methods respectively, they have increased the human effort involved in
data collection. Collecting data can be a costly and time consuming process.

Instead of collecting large amounts of data for each new dialog task of interest, we show
that we can end-to-end learn neural goal-oriented dialog systems for a new task with only
limited amounts of training data by utilising already available data from a related dialog
task, task that has parts/subtasks that are similar/overlapping with the new task of interest.
The key challenge is to identify which data points of the related task data to learn from and
which data points to not learn from. We want the dialog system to learn from the related
tasks data in a way that helps the dialog system improve its performance on the new task of
interest and not degrade it. We use a meta-gradient based method to learn to assign weights
to related task data points during training to select which data points of the related task data
to learn from and which data points not to learn from so as to perform well on the new task
of interest.

6



1.2 Thesis Structure

The rest of thesis is organized as follows. Chapter 2 provides some background on
the goal-oriented dialog tasks and the neural architecture of the dialog models used in the
thesis. Chapter 3 talks about the challenges in interacting with named entities in goal-
oriented dialog system and presents our method of building a neural key-value table as a
solution. Chapter 4 discusses the issues with using traditional supervised learning methods
in the presence of multiple valid next utterances and presents our two phase method of
masking and reinforcement learning to counter the issue. In chapter 5, we present our
method for learning to minimally use human agents for dialog when essential to maximise
user task success. In chapter 6, we present our work on learning to learn from related tasks
to improve performance on a new task of interest with limited data. Chapter 7 concludes
with the summary of the thesis’ contribution and discussion of possible future work.
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CHAPTER 2

Background

In this chapter, we provide the background necessary to understand the rest of the thesis.
Section 2.1 provides an introduction to end-to-end learning of neural goal-oriented dialog
systems. Section 2.2 introduces the dialog tasks that are used in this thesis to evaluate goal-
oriented dialog systems followed by section 2.3, which describes the Memory Networks
neural architecture that is used in this thesis to build neural dialog systems.

2.1 End-to-end Learning of Neural Goal-Oriented Dialog Systems

End-to-end learned neural goal-oriented dialog systems (commonly referred to as end-
to-end goal-oriented dialog systems) allow training of the entire dialog system directly
from the dialog data. This reduces the domain-specific handcrafting often involved in the
pipeline-methods. For example, most traditional goal-oriented dialog systems are based on
slot filling with handcrafted domain-specific slots for the dialog state. This is inherently
limiting for the task itself and also makes it hard to adapt to new domains. Training directly
from the data removes the need not make any assumptions about the domain and hence the
learning method is applicable to new domains. End-to-end training also removes some of
the other inherent limitations associated with the pipeline-methods: 1) limitations of not
being able to pass end user’s feedback to all upstream modules and 2) limitations of having
to adapt all modules in the pipeline carefully (with human effort) to accommodate for any
changes to one of the modules. End-to-end learning automatically takes care of adaptation
of the different modules in the dialog system accounting for how changes to one module
affects the others.

Building goal-oriented dialog systems using neural networks allows end-to-end train-
ing. Deep neural networks which are universal approximators (Hornik, Stinchcombe,
and White 1989) have the potential to capture the complexity of human dialog in natu-
ral language. The increase in the availability of faster compute, larger training data, better

8



programming libraries and improvements in deep learning architectures and optimization
methods have all together paved the way for successfully learning neural end-to-end goal-
oriented dialog systems. There are two broad ways in which present day neural end-to-end
goal-oriented dialog systems are trained: 1) Supervised Learning (SL) and 2) Reinforce-
ment Learning (RL). In the RL setting, the dialog system learns through trial and error
with reinforcement (rewards at the end or at key dialog points) from a human or a human
simulator. In many cases, it is difficult to define and award appropriate rewards. It is also
difficult to learn language from scratch through scalar rewards. Training of dialog systems
using RL alone generally requires a lot of training interaction. In order to handle these
challenges, RL methods are almost always complimented with a SL phase of pre-training.
In SL setting, a fixed set of dialog data is collected from human agents performing the task
of interest and the dialog system is trained to imitate the human agents in the data. Bor-
des, Boureau, and Weston (2017) and Wen, Vandyke, et al. (2017) and Eric and Manning
(2017) represent some of the important early end-to-end learning works which are based
on supervised learning on a collected dataset. Zhao and Eskenazi (2016) and Liu and Lane
(2017) represent some of the important early works on end-to-end learning of goal-oriented
dialog system using reinforcement learning which allows for exploration of dialog control,
and therefore more robustness.

Goal-oriented dialog systems also often require interaction with external knowledge
sources. For example, for the task of restaurant reservation, the dialog system has to search
for restaurants matching user preferences in an external knowledge base. Traditionally this
is done through symbolic queries to knowledge bases, which makes the retrieval process
non-differentiable, therefore unsuitable for end-to-end training. This is overcome by pa-
rameterizing the retrieval process using neural networks and making it differentiable. For
example, Dhingra et al. (2017) and Eric and Manning (2017) learn a soft distribution over
knowledge base entries and the dialog system uses that distribution for retrieval.

2.2 Goal-Oriented Dialog Tasks: bAbI

To evaluate end-to-end goal-oriented dialog systems, Bordes, Boureau, and Weston
(2017) proposed a testbed: bAbI dialog tasks, a set of five goal-oriented dialog tasks. Since
its release, the bAbI dialog tasks have been used in several research works (Liu and Perez
2017; Wu, Socher, and Xiong 2019). bAbI dialog tasks are synthetically constructed tasks
in the restaurant reservation domain. The goal of bAbI dialog tasks is not to improve the
state-of-the-art in the narrow domain of restaurant reservation, but rather to test the strength
and weakness of end-to-end goal-oriented dialog systems in a reproducible and lightweight

9



way. The restaurant reservation task is split into several sub-tasks to test the different crucial
capabilities required in a goal-oriented dialog system separately.

The dialogs are based on an underlying Knowledge Base (KB) with information about
restaurants, such as the cuisine, location, price range, rating, address and phone number.
Tasks 1 (Issuing API calls) and 2 (Updating API calls) test the dialog system to implicitly
track dialog state, whereas Task 3 (Displaying options) and 4 (Providing extra information)
check if the system can learn to use KB facts in a dialog setting. Task 5 (Conducting full
dialogs) combines all tasks.

Task 1: Issuing API calls. A user’s request for reservation has 0-4 of the required fields
(cuisine, location, price range and number of people). The dialog system should ask for the
remaining required information and make the appropriate API call.

Task 2: Updating API calls. In this task, the user provides all the required information
for the API call, and the task starts with the dialog system making the appropriate API call.
The user might then later update some of the fields. The dialog system has to gather all the
updates and make the corresponding API call with the updated information.

Task 3: Displaying options. The information about the restaurants corresponding to
a given user query is provided as part of the dialog history. The dialog system has to
recommend restaurants based on their ratings until the user accepts a restaurant.

Task 4: Providing extra information. The dialog starts as if the user has finalised the
restaurant that they want to reserve. The information about the restaurant from the knowl-
edge base is added as part of the dialog history. The dialog system should provide in-
formation about the restaurants address, phone number or both depending upon the user’s
query.

Task 5: Conducting full dialogs. Tasks 1-4 are combined to generate full dialog.

Figure 2.1 shows a simplified example of the different bAbI dialog tasks. The system
is evaluated in a retrieval setting. At each turn of the dialog, the system has to select the
correct response from a list of possible candidates (all system utterances that occur in the
dataset). The dataset consists of 1000 dialogs each in train, validation, test and Out-Of-
Vocabulary(OOV) test set. The OOV test set tests generalization to entities (restaurants,
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Figure 2.1: A dialog from the bAbI dialog tasks dataset. A user (in green) chats with a
dialog system (utterances in blue and API calls in orange) to book a table at a restaurant.
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cuisines, locations) that are not seen in the training data. In this thesis we use bAbI dialog
tasks and some modified versions of them to evaluate many of our proposed methods.

2.3 Memory Networks For End-To-End Goal-Oriented Dialog Tasks

Memory networks, proposed by Weston, Chopra, and Bordes (2014) and extended for
end-to-end training by Sukhbaatar et al. (2015), are a class of models that have an explicit
external memory. In memory networks, the inputs are stored in an external memory. When
a query comes in, the relevant information from the memory is retrieved by iteratively at-
tending over the memory. The retrieved information is then used to predict the answer.
Memory networks have been widely applied in a variety of natural language processing
tasks such as language modelling, part-of-speech tagging, sentiment analysis, question an-
swering and dialog. Works showing the application of memory networks on these varied
tasks include Sukhbaatar et al. (2015), and Kumar et al. (2016).

Here we describe the end-to-end memory networks proposed by Sukhbaatar et al.
(2015). They perform well (outperform end-to-end architectures based on Recurrent Neu-
ral Networks (RNN)) on the bAbI dialog tasks discussed in Section 2.2 and used in this
thesis. The dialog systems in this thesis are built based on end-to-end memory networks.
Figure 2.2 shows a single layer version of memory networks. First, the dialog history is
stored in the external memory (both the user and system utterances). Every sentence from
the dialog history is encoded into two separate neural embeddings shown as ai and ci in fig-
ure 2.2 and stored in different memory slots. The embedding representation of a sentence
is calculated by adding the neural embeddings of all the words in that sentence.

The new user utterance acts as a query and is embedded into a neural embedding u.
Based on the query embedding, relevant memory slots are selected. Inner product between
u and the memory embeddings ai followed by a softmax provides the attention weights
(pi) for the different memory slots:

pi = Softmax(uTai). (2.1)

An output vector o is computed by the weighted sum of memory embeddings ci with their
corresponding weights pi as shown below:

o =
∑
i

pici. (2.2)

The output embedding o is the overall context embedding which has selected relevant in-
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Figure 2.2: A single layer version of end-to-end memory networks

formation of the dialog history from the memory. The output embedding o is added to the
query embedding (u) to obtain the dialog state embedding s,

s = o+ u. (2.3)

This process can be repeated multiple times (referred to as hops) to iteratively retrieve
information from the memory by using the current dialog state embedding s as the new
query embedding u. The last dialog state is then used to predict the next system response.
The neural network parameters can either be shared or not shared across different hops.
The entire model can be trained using back propagation by minimizing the standard cross-
entropy loss between the predicted response and the correct ground truth response.
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CHAPTER 3

NE-Table: A Neural Key-Value Table for Named Entities

The ability to effectively encode, compare and retrieve Named Entities (NE) plays
a crucial role in the success of goal-oriented dialog tasks. The presence of a very large
number of named entities (e.g., different restaurant names, location names and phone
numbers) with rare or Out-Of-Vocabulary occurrence of any individual named entity (e.g.,
a particular phone number) presents a serious challenge to the traditional way of encoding
them using neural networks. Adding them to the vocabulary leads to an explosion in
vocabulary size, using random embeddings lead to loss of semantics, and replacing them
with NE tags removes the ability to reference and distinguish the different individual NEs.
We propose a novel method to tackles these challenges. Our proposed method encodes any
NE on the fly using the context and stores them in a key-value table for comparison and
retrieval. Our evaluation results show that the proposed method can be effective in dealing
with both in-vocabulary and OOV NEs.

Published at: Recent Advances in Natural Language Processing (RANLP 2019).
Authors: Janarthanan Rajendran*, Jatin Ganhotra*, Xiaoxiao Guo, Mo Yu, Satinder Singh,
and Lazaros C. Polymenakos.
Collaborations: IBM Research.

*Equal contribution
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3.1 Introduction

Named Entities (NEs) play a crucial role in a goal-oriented dialog task’s successful
completion. Goal-oriented dialog tasks generally also involve interaction with external
knowledge sources such as Knowledge Bases (KB) which could have a large number of
NEs. For example, a dialog system that performs the task restaurant reservation has to deal
with NEs such as restaurant names, restaurant locations, restaurant phone numbers and
food item’s names for successfully completing the task.

The presence of a very large number of named entities with rare or Out-Of-Vocabulary
occurrence of any individual named entity (e.g., a particular phone number) presents a se-
rious challenge to the traditional way of encoding them using neural networks. The tradi-
tional method is to treat NEs as any other word and add each and every NE (including those
in the KB) to the vocabulary. For real world tasks, especially those with large KBs, this
causes an explosion in the vocabulary size and hence the number of neural network param-
eters to learn. There is also the problem of not being able to learn good neural embeddings
for individual NEs, as individual NEs (e.g., a particular phone number) generally occur only
a few times in a dataset. It is also unclear how to represent new out-of-vocabulary named
entities that arise during deployment. Past work has tried a few methods for addressing this
challenge to neural methods posed by NEs. One method is to encode all the NEs with ran-
dom embeddings and keep them fixed throughout (Yin, Lu, et al. 2016) (avoids explosion
in number of neural network parameters to learn), but here we lose the meaning associ-
ated with the neural embeddings. This reduces the ability to compare and retrieve named
entities effectively. We also risk interference and correlation with other named entities em-
beddings in unexpected ways. Another method is to first recognize the NE-type with either
NE taggers (Finkel, Grenager, and Manning 2005) or entity linkers (Cucerzan 2007; Guo,
Chang, and Kiciman 2013), and then replace them with NE-type tags. For example, all
location names could be replaced with the tag NE location. This prevents the explosion in
vocabulary size; however, the system loses the ability to distinguish and reference different
NEs of the same type. There is also the possibility of new NEs arising during test time.
In fact, many of the Out-Of-Vocabulary (OOV) words that arise during test time in many
goal-oriented dialog tasks (e.g., Bordes, Boureau, and Weston (2017)) are NEs. Further-
more, in many scenarios it is easier and accurate to work with the actual exact values of
NEs rather than neural embeddings, like providing a phone number to a user. None of the
above neural methods have the ability to work with exact NE values directly.

We propose a novel neural method that addresses all the aforementioned issues. There
are three aspects to our method.
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• On-the-fly-generation: Neural embeddings for the NEs are generated on the fly using
their context information. This avoids the explosion in vocabulary size, while still
providing meaningful and distinguishable neural embeddings for the different NEs.

• Key-Value-Table: The generated embeddings are stored in a table (NE-Table), with
embeddings as the keys (key-embeddings) and exact NEs as the values (NE-values).

• On-the-fly-Retrieval: The NE-values can later be retrieved from the NE-Table by
attending over the key-embeddings, providing the ability to interact with exact NE
values.

Named Entities (NEs) play a crucial role in successful task completion not just in goal-
oriented dialog tasks, but also in other Natural Language Processing (NLP) tasks such as
Question-Answering (QA), reading comprehension and machine translation. For example,
a QA system for retrieving information about courses offered at a university has to deal
with NEs such as course numbers and instructor names. We demonstrate our proposed
method on a reading-comprehension task, a simple structured Question-Answering (QA)
task, and three goal-oriented dialog tasks. Our method achieves 10% increase in accuracy
for Reading-Comprehension, 19% increase for structured-QA and around 90% increase for
goal-oriented dialog tasks, with respect to their corresponding baselines.

3.2 Proposed Method

Our proposed method (Figure 3.1) has three major aspects to it.

On-the-fly-generation. Neural embeddings for the NEs are generated on the fly using
their context information (shown as the NE-Embedding Generation Module in Fig 3.1),
instead of adding them to the vocabulary. The context information depends on the task.
For a dialog task, the context is the full dialog so far, including the present utterance which
has the NE in it. For the QA task, context is the sentence in which the NE appears. For
the Reading Comprehension task, the sentence where the NE occurs or potentially the full
story can be used as the context. The context could also include the NE-type information
when available. The NE-Embedding Generation Module, denoted (fφ), takes the context
embedding as input and outputs the NE-Embedding. In our experiments, fφ is a multi-layer
perceptron (MLP). The problem of explosion in vocabulary size is avoided, as NEs are not
part of the vocabulary and the NE-Embeddings are generated on the fly. Our proposed
method also generates unique embeddings for different NEs with the same NE-type. This
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Figure 3.1: For input question - Who teaches EECS-545, the NE-Embedding Generation
Module (fφ) takes the context embedding as input and generates a NE-Embedding for the
NE EECS-545. The NE-Embedding is stored in NE-Table with its actual value EECS-545.
The NE-Retrieval Module (gθ) performs attention over the keys in NE-Table to retrieve the
NE-value. We show a simple example here to illustrate fφ and gθ. Depending on the task,
the context can vary and the NE-Table can have more entries.

is better than replacing a NE with its NE-type as that results in all NEs with the same NE-
type having the same embedding and hence, losing the ability to distinguish different NEs
with the same NE-type. The generated NE-Embeddings are meaningful as they are learned
from the context, in comparison to fixed random embeddings and can also be used as the
learned neural embedding for that NE word from thereon.

Key-Value-Table. As discussed in the previous section, there are many scenarios where
it is easier and more accurate to work with the exact values of NEs rather than their neural
embeddings, like providing a phone number to a user or searching for a instructor name
over a KB. For this purpose, the generated NE-Embedding, along with its exact NE value is
stored in a table, NE-Table, as a key-value pair, with the embedding as key (key-embedding)
and the exact NE as value (NE-value).

On-the-fly-Retrieval. The NE-value can later be retrieved from the NE-Table by per-
forming attention over the key-embeddings in the NE-Table. This is performed by the
NE-Retrieval Module (gθ) shown in Figure 3.1. In our experiments, gθ is an MLP. The
input to NE-Retrieval Module also depends on the task. For dialog task, the dialog state
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vector is used, which has information of the dialog so far. For QA task, the encoding of
the input question is used. For Reading Comprehension task, the full story is used as input
to the retrieval module. The retrieved NE-value can be used in the output utterance (e.g.,
providing a phone number) or to do an exact match over values in a KB (e.g., searching for
a instructor name in a KB).

While the matching of a NE-value retrieved from the NE-Table, with other NEs in the
KB is performed through exact value match, the actual retrieval of that NE from the NE-

Table happens using attention in the neural embedding space (using a dot product in our
experiments). This allows the training of the NE-Retrieval Module using the supervision
obtained from the downstream module (e.g., a KB retrieval module) that uses the retrieved
NE-value. This also provides supervision for training the NE-Embedding Generation Mod-

ule. Our intuition is that, this would encourage the NE-Embedding Generation Module to
generate embeddings for the NEs such that the embeddings have relevant and enough in-
formation to allow the NE-Retrieval module to attend and retrieve them correctly when
required later.

Since the embeddings are generated on the fly using the context, the proposed method
works equally well for new NEs that come during test time as it would for the NEs present
in the training data. We show examples for NE-Table for the dialog and Reading Com-
prehension task in Figure 3.2. A new, separate NE-Table is created for each data instance
based on the task. For example, in the dialog task, each dialog will have its own sepa-
rate NE-Table. Only the NEs that have appeared in the dialog so far will be present in its
corresponding NE-Table. The same NE occurring in different dialogs will have different
dialog-context-dependent embeddings in their corresponding NE-Table. Similarly, for the
reading comprehension task, each story will have a separate NE-Table with the NEs present
in that story and for the QA task, each question will have a separate NE-Table. Note that,
a NE that occurs multiple times in the same dialog/story/question will also have multiple
unique embeddings in the NE-Table because of differing contexts as shown in Figure 3.2
(right).

3.3 Experiments and Results

We evaluate our proposed method on three types of tasks: a reading-comprehension
task, a structured-QA task and three goal-oriented dialog tasks. Our proposed method is
generic and can be added to the state-of-the-art approaches for these tasks. But instead of
implementing 3 separate specialized neural architectures, we chose the end-to-end memory
network architecture from Sukhbaatar et al. (2015) described in Section 2.3 as the base
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Figure 3.2: Left: Two dialogs from bAbI task-1. A user (in green) chats with a dialog
system (in blue) to book a table. Each dialog has its own separate NE-Table and a separate
NE-Embedding is generated for the NE London though it appears in both dialogs. Right:
Question from CBT. NE Enrico (highlighted in yellow) occurs twice in the context S, where
a separate NE-Embedding is generated for each occurrence.

architecture for our tasks. This allows us to evaluate the advantage gained by adding our
method to the base architecture instead of trying to get state-of-the-art performance in a
particular task/dataset.

3.3.1 Reading Comprehension Task

The Children’s Book Test dataset (CBT), built from children’s books from Project
Gutenberg, was introduced by Hill et al. (2015) to test the role of memory and context in
language processing and understanding. Questions are formed by enumerating 21 consec-
utive sentences, where the first 20 sentences form the story (S), and a word (a) is removed
from the 21st sentence, which then implicitly becomes the query (q). The specific task is
to predict the correct answer word (a) from a set of 10 candidate words (C) present in the
story or the query. We test our proposed method on the NE questions subset of the CBT
dataset.

We use the Window memory architecture proposed by Hill et al. (2015) for the CBT
dataset as our baseline. The baseline method (W/O-NE-Table) does not distinguish NEs
from normal words, and all words (including NEs) are part of the vocabulary. In Memory
Networks (Sukhbaatar et al. 2015), each complete sentence of S is encoded and represented
in a separate memory slot. For the CBT, this setting would yield exactly 20 memories for
S. In Window memory, instead of a full sentence from the story, a phrase is encoded and
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represented in a separate memory slot. Each phrase s corresponds to a window of text
from the story S centred on an individual mention of a candidate c in S. The window is
constructed as span of words wi−(b−1)/2 ... wi ... wi+(b−1)/2 where b is window size and
wi ∈ C is an instance of one of the candidate words in the question. We perform two
baseline evaluations: encoding the windows using a) Bag-of-Words (BoW) and b) LSTM
(Hochreiter and Schmidhuber 1997).

Method Test Accuracy (%)
W/O-NE-Table (BoW) 41.69

W/O-NE-Table (LSTM) 41.10
With-NE-Table (BoW) 51.28

With-NE-Table (LSTM) 51.08

Table 3.1: Test results on CBT-NE dataset

For each NE (identified by the Stanford Core NLP NER system (Manning et al. 2014)),
the corresponding window is fed to an LSTM to create the context embedding. The con-
text embedding is used as input to NE-Embedding Generation Module (fφ), as shown in
Figure 3.1, to generate the corresponding NE-Embedding, which is added to the NE-Table.
The NE-Embeddings are also added to window memory, in place of the NEs. The query
(q) embedding is used to attend over the memory (list of encoded window memory slots)
to get relevant information from the memory. The internal state generated is given as input
to the NE-Retrieval Module (gθ), for retrieving the correct NE answer (a). Table 3.1 shows
that replacing the baseline with our method achieves higher performance on both BoW and
LSTM baseed baselines. We use a window size of 5 as in Hill et al. (2015). We think that
since the window size is small, both BoW and LSTM encoding perform similarly.

The hyperparameters used for baseline W/O-NE-Table methods are as follows: hops
= 1, embedding size = 100, batch size = 16. The W/O-NE-Table (LSTM) uses an LSTM
for encoding windows with hidden units = 100. They are trained using stochastic gradient
descent (learning rate = 0.05), minimizing a standard cross-entropy loss between predicted
answer â and the correct answer a. We use the same embedding matrix for encoding both
story and the query.

For our With-NE-Table, we use the same hyperparameters as mentioned above. The
With-NE-Table (LSTM) uses separate LSTM cells for 1) generating the context embedding
for NE-Embedding Generation Module (fφ) and 2) encoding the windows.

To further evaluate the impact of OOV NEs, we created additional OOV test sets by
replacing NEs in the test set with new NEs not present in the train and validation sets.
We generate 5 such OOV test sets with varying percentage of OOV NEs (20%, 40%,
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Figure 3.3: Results on CBT-NE OOV test sets

60%, 80% and 100%).The OOV test sets are available - https://github.com/IBM/
ne-table-datasets/. Figure 3.3 shows the comparison of our method with the base-
lines on OOV test-sets. The baseline methods perform poorly as OOV% increases, de-
creasing to as low as 5% from 41%. We observe only a slight reduction in accuracy for
the NE-Table methods from 51% to 46% because the new entities are also part of the win-
dows, used to generate NE-Embeddings. These experiments illustrate that our methods
performance is robust to OOV NEs.

The next two tasks, structured-QA and goal-oriented dialog involve retrieval from an
external KB. This is performed by the KB-Retrieval Module (hψ), which uses a multiple-
attention based neural retrieval mechanism. We describe this next and then present results
on the 2 tasks.

3.3.2 Multiple-Attention Based Neural Retrieval Mechanism

3.3.2.1 Overview

In both structured-QA and goal-oriented dialog tasks, the external knowledge base is
present in the form of a single knowledge base table. For example, in our structured-QA
(which is about course offerings at a university) KB is in the form a single table where, each
row corresponds to a course and the columns correspond to course attributes, such as course
number, course name, instructor name, etc. Each column of the table has a column heading,
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which labels the attribute of that column. These headings are also part of the vocabulary.
While the non-NEs present in the KB are part of the vocabulary and represented by their
learned neural embeddings, the NEs are not part of the vocabulary and are represented by
their exact values.

The KB-Retrieval Module performs attention over both attributes (columns) as well as
rows to select the final cell(s) in 3 steps. In step 1, the column(s) that the final cell(s)
belong to are selected by attention over the column heading embeddings. For the question
Who teaches EECS545?, step 1 selects the column ‘instructor name’. In step 2, separate
attention is performed over the column headings to select the columns, which are used
to represent the rows (to retrieve the final cell) and column ‘course number’ is selected.
Step 3 is to do attention over the rows. For each non-NE column selected in step 2, the
cell embeddings are added together along each row, to generate an embedding for each
row. Attention is performed over these row embeddings to select row(s). For each NE-
column selected in step 2, a NE-value is retrieved from the NE-Table to do an exact match
search over that NE-column to select matching row(s). The intersection of these matching
row(s) gives the final set of selected row(s), and their intersection with the set of column(s)
selected in step 1 gives the retrieved cell(s). For our example, only one column is selected
to represent the rows: ‘course number’, which is a NE-column. Therefore, a NE value is
retrieved from the NE-Table (EECS545) and an exact match search is done over the ‘course

number’ column.
The input to the KB-Retrieval Module depends on the task. For the dialog task, the dia-

log state vector is used, which has the information of the dialog so far. For the QA task, the
encoding of the input question is used. All the attention operations in our experiments are
performed through dot product followed by a sigmoid operation, which allows for multiple
selections. Note that NE-Table can potentially be used with other neural retrieval mecha-
nisms. The multiple-attention mechanism described above is only one of the several neural
retrieval mechanisms (Yin, Lu, et al. 2016).

3.3.2.2 Details

Figure 3.4 shows the schematic of the entire retrieval process. In order to retrieve a
particular cell from the table, the system needs to find the correct column and row corre-
sponding to it. The KB-Retrieval Module (hψ) does that by generating 3 different attention
key embeddings (vectors): Attention over Columns for Columns (ACC), Attention over
Columns for Rows (ACR), Attention over Rows for Rows (ARR).

The column(s) that the final retrieved cell(s) belong to, are selected by matching ACC

key embeddings with the neural embeddings of the column headings (Course Number,
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Figure 3.4: Multiple-attention based neural retrieval mechanism. The KB-Retrieval Module
attends to the relevant rows and columns of the KB by generating attention key embeddings
ACC, ACR and ARR.

Instructor, Credits etc). A separate ACC key embedding is generated for every column
heading and matched with its embeddings to provide attention scores for all the columns.
For the example, Who teaches EECS545?, the system would want to retrieve the name of
the Instructor. Therefore, the Instructor column heading alone will have high attention
score and be selected. In our experiments, the attention scores are computed through dot
products followed by a sigmoid operation, which allows for multiple selections.

Now that the column(s) are chosen, the system has to select row(s), so that it can get
the cell(s) it is looking for. Each row in the table contains the values (EECS545, Machine
Learning, Scott Mathew etc) of several attributes (Course Number, Course Name, Instructor
etc). But we want to assign attention scores to the rows based on particular attributes that
are of interest (Course Number in this example). The column/attribute headings that the
system has to attend to for selecting these relevant attributes are obtained by matching ACR

(Attention over Columns for Rows) key embeddings with the neural embeddings of the
different column headings.

The last step in the knowledge base retrieval process is to select the relevant rows using
the ARR (Attention over Rows for Rows) key embedding. ARR is split into two parts ARR

NE and ARR non-NE. In a general scenario, ACR can select multiple columns to represent
the rows. For each selected column that is a NE column, a separate NE-value is retrieved
from the NE-Table using a separate ARR NE embedding for each of them. These NE
values are used to do exact match search along the corresponding columns (in the NE row
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representations) to select the matching rows. For the non-NE columns that are selected
by ACR, their neural embeddings are combined together along each row to get a fixed
vector representation for each row in the KB (weighted sum of their embeddings, weighted
by the corresponding column attention scores). ARR non-NE is then used to match these
representations for selecting rows. The intersection of the rows selected in the NE row
representations and the non-NE row representations is the final set of selected rows.

In short, the dialog system can use neural embedding matching for non-NEs, exact
value matching for NEs and therefore a combination of both to decide which rows to attend
to. Depending on the number of columns and rows we match with, we select zero, one
or more output cells. For our running example, ARR NE is used to match with the keys
in the NE-Table to select the row corresponding to EECS 545 and the value EECS 545 is
returned to do an exact match over the NE row representations (represented by the course
number values). This gives us the row corresponding to EECS 545 and hence the cell Scott

Mathew. We could use our NE-Table idea with potentially many types of neural retrieval
mechanisms to retrieve information from the KB. The multiple-attention based retrieval
mechanism, described above, is only one such possible mechanism.

3.3.3 Structured-QA from KB

The task here is to retrieve an answer (single cell in a table) from KB in response to
structured one line questions. We used the details of course offerings at University of
Michigan to create structured Question-Answer (QA) pairs. The KB is a single table of
100 rows (Courses) and 4 columns (Course Number, Course Name, Department, Credits)*,
where course numbers and course names are treated as NEs. The QA pairs are generated
through random sampling from the KB, following the format -
Q: Col-1-type Col-1-value Col-2-type ?

A: Col-2-value

with the following being a specific example:
Q: Course Number EECS545 Credits ? A: 4.

500 QA pairs were created and split randomly between training and test set (400-100),
where the random split results in some NEs (OOV) in the test set, not present in the training
set. The task was specifically constructed to be simple to show the impact of OOV NEs on
performance and evaluate our proposed method.

The experiments were performed on two methods. Both use a Recurrent Neural Net-
work (RNN) to encode the question and use the multiple-attention based neural retrieval

*number of unique course numbers - 100, unique course names - 96, unique department names - 10 and
unique credits - 4
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mechanism to retrieve answers. The baseline method (W/O-NE-Table) does not distinguish
NEs from normal words, and all words (including NEs) that occur in questions and KB are
part of the vocabulary. The With-NE-Table uses our proposed method and builds NE-table

(course numbers and course names are the NEs in this task). In the With-NE-Table, when
a NE word is encountered, the hidden state of the RNN at the previous time step (word) is
used as input to the NE-Embedding Generation Module (fφ). The NE-Embedding gener-
ated by fφ is then fed back to the RNN to continue encoding the question. The generated
NE-Embedding is also stored in the NE-Table associated with this question. The final hid-
den state of the RNN obtained after encoding the full question is provided as input to the
KB-Retrieval Module (hψ).

For our example (Q: Course Number EECS545 Credits ?), both methods perform
attention over the column headings to identify the correct column Credits required for the
answer. Then, both methods attend over column headings to find the column Course Num-

ber used for representing the rows. For W/O-NE-Table, since all course numbers are part of
vocabulary, each row is represented by neural embeddings associated with course numbers
and attention is done over the row embeddings. For With-NE-Table, since course numbers
are NEs, each row is represented with exact course number values. A neural attention over
NE-Table is performed to return the NE value, EECS545, which is then used to perform an
exact match with the course number values.

Both the With-NE-Table and W/O-NE-Table use the following hyperparameters : em-
bedding size = 20, batch size = 16. The RNN used for encoding the sentences has hid-
den units = 20. They are trained using Adam (learning rate = 0.01, epsilon = 1e-8). Super-
vision is provided for KB-Retrieval attentions and standard cross-entropy loss is used.

Method Test Accuracy (%)
W/O-NE-Table 81.0
With-NE-Table 100.0

Table 3.2: Test results on structured-QA task

Table 3.2 shows the retrieval accuracy for both methods. While the test accuracy for
With-NE-Table is 100%, it drops to 81% for W/O-NE-Table. Further analysis shows that
out of the 19% drop, 11% is due to OOV NEs encountered at test time. These OOV NEs
are in the KB, and hence are part of the vocabulary for the W/O-NE-Table method, but have
random embeddings which did not change during the training (as they were never encoun-
tered during the training). The rest 8% drop can be attributed to the method’s inability to
learn good embeddings for unique NEs that were rarely seen during training. However,
these issues do not pose a problem for our With-NE-Table method, since we generate em-
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bedding for a NE on the fly for each question based on the context. This solves both the
problems: 1) whether an NE occurred rarely or 2) it was not present in training data at all.
The With-NE-Table method should also easily scale to large datasets with any number of
NEs without drop in performance.

3.3.4 Goal-Oriented Dialog Tasks

The bAbI dialog tasks (referred to as original-bAbI dialog tasks from here on) dataset
was introduced by Bordes, Boureau, and Weston (2017) (described in Section 2.2) as a
testbed to break down the strengths and shortcomings of end-to-end goal-oriented dialog
systems.

In the original-bAbI dialog tasks, KB-Retrieval is bypassed by providing all possible
system utterances with all combinations of information pre-retrieved from the KB in a
large candidate response list. We extend the original testbed and propose a new testbed:
KB-Augmented-bAbI dialog tasks, by adding an actual external KB so that the system
can also be tested on the ability to retrieve the required information from the KB. We
evaluate our method on the KB-augmented versions of bAbI dialog task 1,2 and 4. The KB-
augmented-bAbI dialog tasks dataset is available at - https://github.com/IBM/
ne-table-datasets/.

For our experiments, we use an end-to-end memory network similar to Bordes,
Boureau, and Weston (2017) (described in Section 2.3), except that we encode sentences
using an RNN, while they use BoW encoding. The encoded sentences, which are part of
the dialog history, are stored in the memory and the query (last user utterance) embedding
is used to attend over the memory to get relevant information from the memory. The gener-
ated internal state is used to select the candidate response, and is also given as input to the
KB-Retrieval Module (hψ). The KB is used to identify the NEs along with their types (if a
word is present in a NE-column in the KB it is a NE; the column where it appears gives its
NE-type).This simple method (based on exact match) though works for this dataset, may
not necessarily be effective for other datasets, as plural or abbreviated NEs will not match.

The experiments are performed on two methods: W/O-NE-Table method (the baseline
method) - All input words including NEs are part of the vocabulary. For NEs, however,
their embedding given to the sentence encoder RNN is the sum of the NE word embedding
and the embedding associated with its NE-type. With-NE-Table method (uses our proposed
method) - When an NE is encountered in the dialog, the last hidden state of the RNN
encoding the sentence is used as input to the NE-Embedding Generation Module (fφ). The
NE-Embedding generated is stored in the NE-Table. The generated NE-Embedding and
the embedding associated with its NE-type are fed to the RNN.
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Note that both the methods have access to the information of whether a given word is a
NE and its NE-type. Supervision is provided for candidate response selection and all atten-
tion operations performed during KB-Retrieval, for both methods. Both the With-NE-Table

and W/O-NE-Table methods use the following hyperparameters : hops = 3, embedding size
= 40, batch size = 16. The RNN used for encoding the sentences has hidden units = 40.
Both methods are trained using Adam (learning rate = 0.001, epsilon = 1e-8) with standard
cross-entropy loss.

3.3.4.1 KB-Augmented-bAbI Dialog Tasks 1 and 2

In the original-bAbI dialog task 1, the conversation between the system and the user
involves getting information necessary to issue an api call. In task 2, the user can ask
the system to update his/her preferences (cuisine, location etc.). The system has to take
this into account and make an updated api call. In our KB-augmented version, once the
system determines that the next utterance is an api call, the system also has to actually
retrieve the restaurant details from the KB (rows) which match user preferences. The
system is evaluated on having conversation with the user, issuing api call and retrieving
the correct information from the KB. The KB is represented as a single table, where each
row corresponds to a unique restaurant and columns correspond to attributes, e.g., cuisine,
location etc. Examples of KB-augmented-dialog bAbI tasks 1 and 2 are provided below.

Original-bAbI dialog task 1:
U: Hi !
S: Hello, what can I help you with today?

U: I’d like to book a table for six people in an expensive price range with British food.
S: I’m on it.

S: Where should it be?

U: In London.
S: Ok, let me look into some options for you.

S: api call British, London, Six, Expensive

KB-augmented-bAbI dialog task 1:
U: Hi !
S: Hello, what can I help you with today?

U: I’d like to book a table for six people in an expensive price range with British food.
S: I’m on it.

S: Where should it be?

27



U: In London.
S: Ok, let me look into some options for you.

S: api call

S (Retrieved Information):

{The Place, british, london, ...}
{The Fancy Pub, british, london, ...}

Original-bAbI dialog task 2:
U: Hi !
S: Hello, what can I help you with today?

U: I’d like to book a table for six people in an expensive price range with British food in
London.
S: Ok, let me look into some options for you.

S: api call British, London, Six, Expensive

U: Instead, could it be Indian cuisine.
S: Sure, is there anything else to update?

U: No.
S: Ok, let me look into some options for you.

S: api call Indian, London, Six, Expensive

KB-augmented-bAbI dialog task 2:
U: Hi !
S: Hello, what can I help you with today?

U: I’d like to book a table for six people in an expensive price range with British food in
London.
S: Ok, let me look into some options for you.

S: api call

S (Retrieved Information):

{The Place, british, london,...}
The Fancy Pub, british, london, ...}
U: Instead, could it be Indian cuisine.
S: Sure, is there anything else to update?

U: No.
S: Ok, let me look into some options for you.

S: api call

S (Retrieved Information):
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{Suvai, Indian, london, ...}
{Madras Masala, Indian, london, ...}

Both W/O-NE-Table and With-NE-Table methods, first select the four relevant (cuisine,
location, price range and number of people) columns to represent each row (restaurant).
The W/O-NE-Table, then selects the rows using attention over the row embeddings obtained
through the combined (additive) representation of the four selected attributes. The With-

NE-Table, splits the row selection into two simpler problems. For cuisine and location
(which are NEs), one NE value each is retrieved from the NE-Table and an exact match
is performed in the KB. The neural embeddings of the non-NE attributes (price range and
number of people) are added to perform attention for selecting rows. The final retrieved
rows are the intersection of the rows selected by NE column and non-NE column based
selections.

Task Method
KB- Per-

Per-Dialog
Per-Dialog

Retrieval Turn + KB-Retrieval

1
W/O-NE-Table 10.2 (7) 100 (98.2) 100 (90.3) 10.2 (6.7)
With-NE-Table 98.5 (99.0) 99.8 (99.8) 98.8 (99) 97.3 (98.0)

2
W/O-NE-Table 0.8 (1.0) 100 (100) 100 (100) 0.0 (0.1)
With-NE-Table 99.6 (99.8) 100 (100) 100 (100) 99.2 (99.7)

Table 3.3: Test results for KB-augmented-bAbI dialog tasks 1 and 2. Accuracy % for
Test and Test-OOV (given in parenthesis). KB-Retrieval %: Retrieval accuracy for rows.
Per-Dialog %: Percentage of dialogs where every dialog response is correct. Per-Dialog +
KB-Retrieval %: Percentage of dialogs where every dialog response and information from
KB retrieval are correct.

The results for tasks 1 and 2 are shown in Table 3.3. The With-NE-Table method
achieves close to 100% accuracy on both tasks, while W/O-NE-Table performs poorly.
During KB retrieval, for With-NE-Table, two NEs are chosen from the NE-Table and
exact matching is done over different cuisines and locations in the KB, but embeddings
for these NEs are learned for W/O-NE-Table. This results in poor KB-Retrieval for
W/O-NE-Table for less frequent and OOV location/cuisine values. Both methods perform
well in Per-dialog accuracy as it does not involve KB retrieval. The system responses
do not contain any NEs, but the system still needs to understand user utterances which
might have NEs. The Per-Dialog accuracy is high for both methods on the normal test
set. However, for task 1 OOV-test set, W/O-NE-Table method is affected by OOV-NEs
(90.3%), while With-NE-Table’s performance is robust (99.0%).
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Detailed results for tasks 1 and 2.
The detailed results for task 1 and task 2 are shown in Tables 3.4.

Task Method ACR ARR Non-NE ARR NE

1
W/O-NE-Table 100 (100) 9.0 (6.9) -
With-NE-Table 99.4 (98.1) 96.9 (96.7) 100,100 (100,100)

2
W/O-NE-Table 100 (100) 8.6 (7.6) -
With-NE-Table 100 (100) 99.1 (99.8) 100,100 (100,100)

Table 3.4: Test results for KB-augmented-bAbI dialog tasks 1 and 2. Accuracy % for
Test and Test-OOV (given in parenthesis). ARR non-NE columns are price and number of
people. ARR NE columns are cuisine and location.

With-NE-Table: For issuing an api call in tasks 1 and 2, four argument values are re-
quired - cuisine, location, price range and number of people. We consider cuisine and
location to be NEs. So whenever cuisine and location names occur in the dialog, a NE key
is generated on the fly and is stored in the NE-Table along with the NE values.

• ACC: For tasks 1 and 2, ACC is not required as we are interested in retrieving rows
(not cells of the table).

• ACR: ACR is used to select the columns required to represent the rows. These are
four columns - NE columns (cuisine and location) and non-NE columns (price range
and number of people)

• ARR-non-NE: Each row in the KB is represented by weighted vector (embedding)
sum of its price range and number of people (embeddings). The relevant rows are
selected using attention on the non-NE columns embeddings.

• ARR-NE: The method attends over the NE-Table by matching (dot product) its gen-
erated key with the keys present in the NE-Table to retrieve NE values. The selected
NE values are then matched (exact-match) with cuisine and location values in KB to
retrieve the relevant rows.

• The final retrieved rows are the intersection of the rows selected by ARR-non-NE
and ARR-NE.

W/O-NE-Table: ACR is used to attend to the four relevant columns. However, each row
is represented by the combined neural embedding representation of all four attribute values,
cuisine, location, price range and number of people. ARR non-NE is used to retrieve the
relevant rows.
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From Tables 3.4 and 3.3, we can see that both the methods perform well in selecting the
relevant columns, but W/O-NE-Table performs poorly in retrieving the rows, while With-

NE-Table performs very well. This results in With-NE-Table method achieving close to
100% accuracy in KB retrieval while W/O-NE-Table performs poorly.

This is because, in With-NE-Table, the task of retrieving rows is split into two simpler
tasks. The NEs are chosen from the NE-Table, and then exact matching is used (which
helps in handling OOV-NEs as well). The non-NEs, price range and number of people, have
limited set of possible values (low, moderate or expensive for price range and 2,4,6 or 8 for
number of people respectively). This allows the system to learn good neural embeddings
for them and hence have high accuracy in ARR non-NE. Whereas in W/O-NE-Table, ARR

non-NE involves the neural representations of cuisine and location values as well, where a
particular location and cuisine value will occur only a few number of times in the training
dataset. In addition to that, new cuisine and location values can occur during the test time
(Test OOV dataset, performance shown in parenthesis).

For the dialog part (which does not involve the KB retrieval aspect) of the KB-
augmented tasks 1 and 2, the system utterances do not have any NEs in them. However,
the user utterances contain NEs (cuisine and location that the user is interested in) and so
the system has to understand them in order to select the right next system utterance. The
accuracy in performing the dialog (by selecting responses from candidate set) is similar for
both the methods on the normal test set. However, in the OOV-test set, for task 1, where
the system has to maintain the dialog state to track which attribute values have not been
provided by the user yet, W/O-NE-Table seems to get affected, while With-NE-Table is
robust to that. While W/O-NE-Table gets a Per-Dialog accuracy of 90.3% in the OOV-test
set, With-NE-Table is able to get 99%.

3.3.4.2 KB-augmented-bAbI Dialog Task 4

The original-bAbI dialog task 4 starts at the point where a user has decided on a par-
ticular restaurant. The system is given information (location, phone number, address etc.)
about only that restaurant as part of the dialog history and the user can ask for its phone
number, address or both. For a given user request e.g., address, the task is to select the
correct response with the restaurant’s address from a list of candidate responses. These
candidate responses have phone number and address information for all the restaurants
mentioned in the KB.

In our KB-augmented version of the task, even though the user has decided a particular
restaurant, its corresponding information is not provided as part of dialog history. This
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makes the task harder but more realistic. Now, the system needs to search for phone
number/address for the restaurant from the full KB while in the original task, the phone
number/address is already provided as part of dialog history. In the KB-augmented
version, the NEs in candidate responses are replaced with their NE-type tags. For
example, Suvai phone is replaced with NE phone. The system has to select the candidate
with correct NE-type tag and then replace the tag with the actual NE-value retrieved
from the KB, similar to Williams, Asadi, and Zweig (2017). This setting is closer to
how a human agent would do this task. An example dialog from the KB-augmented-
bAbI dialog task 4 and it’s comparison with the original-bAbI dialog task 4 is shown below.

Original-bAbI dialog task 4:
KB Information given :
NAME:The Place, CUISINE:British,
LOCATION:London, PRICE RANGE:Expensive,
RATING:7, PHONE:The Place phone,
ADDRESS:The Place address, AVAILABILITY:six
U: Hello
S: Hello, what can I help you with today?

U: I’d like to book a table at The Place.
S: Great, let me do the reservation.

U: May I have the address of the restaurant.
S: Here it is, The Place address.

KB-augmented-bAbI dialog task 4:
KB Information given : Entire KB
U: Hello
S: Hello, what can I help you with today?

U: I’d like to book a table at The Place.
S: Great, let me do the reservation.

U: May I have the address of the restaurant.
S: Here it is, NE address.

S: The Place address (retrieved information)

For With-NE-Table, the restaurant name that appears in the dialog would be stored in
NE-Table. When the user asks for information such as phone number, the restaurant name
stored in NE-Table is selected and used for retrieving its phone number from the KB. In
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W/O-NE-Table, all input words (including NEs) are part of vocabulary and phone number
is selected by neural embedding attention over all restaurants names.

Method KB-Retrieval Per-Turn Per-Dialog
Per-Dialog

+ KB-Retrieval
W/O-NE-Table 0.0 (0.0) 100 (100) 100 (100) 0.0 (0.0)
With-NE-Table 100 (100) 100 (100) 100 (100) 100 (100)

Table 3.5: Test results for KB-augmented-bAbI dialog task 4. Accuracies in % for Test
and Test Out-Of-Vocabulary (given in parenthesis). KB-Retrieval %: Retrieval accuracy
for a particular cell. Per-Dialog %: Percentage of dialogs where every dialog response is
correct. Per-Dialog + KB-Retrieval %: Percentage of dialogs where every dialog response
and information from KB retrieval are correct.

The results for task 4 are shown in Table 3.5. We observe that both methods perform
well in Per-dialog accuracy. The W/O-NE-Table method fails in KB-retrieval (0%) because
it needs to learn neural embeddings for all restaurant names, while With-NE-Table per-
forms well (100%) as it uses our proposed method to generate NE-Embeddings on the fly
and use the actual NE values later for exact value matching over restaurant names in the KB.

Detailed results for task 4.
Detailed results for task 4 are shown in Tables 3.6.

Method ACR ACC ARR Non-NE ARR NE
W/O-NE-Table 100 (100) 100 (100) 0.0 (0.0) -
With-NE-Table 100 (100) 100 (100) - 100 (100)

Table 3.6: Test results for KB-augmented-bAbI dialog task 4. Accuracies in % for Test and
Test Out-Of-Vocabulary (given in parenthesis).

With-NE-Table: In task 4, the user tells the system, the restaurant in which he/she wants
to book a table. The restaurant name, which is a NE, is stored in the NE-Table along with
it’s generated key. When the user asks for information about the restaurant such as, phone
number, the NE restaurant name stored in the NE-Table is selected and used for retrieving
its corresponding phone number from the KB. For this particular case, ACC attends over
the column Phone and ACR attends over Restaurant Name. Since the column selected by
ACR is a NE column, the NE value (here the actual restaurant name given by the user) is
retrieved using ARR NE from the NE-Table. The retrieved NE value is used to do an exact
match over the KB column selected by ACR to select the rows. The cell that intersects the
selected row and the column selected by ACC is returned as the retrieved information and
used to replace the NE-type tag in the output response.
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W/O-NE-Table: Here, all input words (including NEs) are part of the vocabulary and for
NEs, their embedding given to the sentence encoder is the sum of the NE word embedding
and the embedding associated with its NE-type. The candidate response retrieval (dialog) is
same as the above method and the column attentions are also similar. However, the methods
differ with respect to attention over rows. Since NEs are not treated special here, attention
over rows happens through ARR non-NE. For this task, when ACR is selected correctly
(restaurant name), each row will be represented by the neural embedding representation of
its restaurant names. ARR non-NE generates a key to match these neural embeddings to
attend to the row corresponding to the restaurant name mentioned by the user.

3.3.4.3 Comparison With Original-bAbI Dialog Tasks

We choose the best method (MemN2N + match-type features) from (Bordes, Boureau,
and Weston 2017) (they use match-type features for dealing with entities) and update the
baseline method by using RNN encoding for sentences (similar to With-NE-Table). Note
that we achieve higher accuracy for our updated baseline method for original-bAbI tasks
than reported in (Bordes, Boureau, and Weston 2017), which we attribute to the use of
RNN for encoding sentences (they use BoW encoding).

For match-type features, (Bordes, Boureau, and Weston 2017) add special words
(R CUISINE, R PHONE etc.), for each KB entity type (cuisine, phone, etc.) to the vo-
cabulary. The special word (e.g., R CUISINE) is added to a candidate if a cuisine (e.g.,
Italian) appears in both dialog and the candidate. For each type, the corresponding type
word is added to the candidate representation if a word is found that appears 1) as a KB
entity of that type, 2) in the candidate, and 3) in the input or memory. For example, for
a task 4 dialog with restaurant information about RES1, only one candidate ”here it is

RES1 phone” will be modified to ”here it is RES1 phone R PHONE”. Now, if the user
query is for the restaurant’s phone number, using match-type features essentially reduces
the output search space for the dialog model and allows it to attend to specific candidates
better. Hence, match-type features can only work in a retrieval setting and will not work in
a generative setting. Our With-NE-Table method will work in both retrieval and generative
settings.

Table 3.7 compares the performance of the With-NE-Table method in the KB-
augmented-bAbI dialog tasks with that of a baseline method on the original-bAbI tasks.
Note that KB-augmented-bAbI dialog tasks require the dialog system to do strictly more
work compared to the original-bAbI dialog tasks. Though not a strictly fair comparison
for our method, we observe that the performance of our With-NE-Table method in KB-
augmented-bAbI dialog tasks is as good as the performance of updated baseline method
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Task Method Evaluation Task 1 Task 2 Task 4
Original Baseline Per-Dialog 100 (100) 99.9 (50.6) 100 (100)

KB-Augmented With-NE-Table
Per-Dialog

97.3 (98.0) 99.2 (99.7) 100 (100)
+ KB-Retrieval

Table 3.7: Performance comparison of our method in the KB-Augmented-bAbI dialog
tasks, with a baseline method in the original-bAbI tasks. Accuracies in % for Test and Test
Out-Of-Vocabulary (given in parenthesis).

in original-bAbI tasks. In addition to that, for bAbI task 2 OOV test set, With-NE-Table’s
performance in the KB-augmented-bAbI dialog task, is actually much higher compared to
the baseline method on the original-bAbI task (99.7% vs 50.6%).

3.4 Related Work

NE in QA. Neelakantan, Le, and Sutskever (2015) and Yin, Lu, et al. (2016) transform a
natural language question/query to a program that could run on Knowledge Bases (KB), but
those approaches are only verified on small or synthetic KBs. Other works dealing with
large Knowledge Bases (KB) usually rely on entity linking techniques (Cucerzan 2007;
Guo, Chang, and Kiciman 2013), which links entity mentions in texts to KB queries. Yih
et al. (2015), Yin, Yu, et al. (2016), and Yu et al. (2017) compare the text spans in ques-
tions with KB entity names at the character-level for entity linking; after the linked entities
have their properties extracted, the corresponding text spans are replaced with special NE
tags for further text processing like KB relation extraction. Recently, Liang et al. (2017)
extended end-to-end neural methods to Question Answering (QA) over KB, which could
work for large KB and large number of NEs. However, their method still relies on entity
linking to generate a short list of entities linked with text spans in the questions, in advance.
Yin, Lu, et al. (2016) propose ’Neural Enquirer’, a neural network architecture similar to
the neural retrieval mechanism used in this chapter, to execute natural language queries on
KB. They keep the randomly initialized embeddings of the NEs fixed as a method to handle
NEs and OOV words.

NE in Dialog. There has been a lot of interest in end-to-end training of dialog systems
(Vinyals and Le 2015; Serban, Sordoni, et al. 2016; Lowe et al. 2015; Kadlec, Schmid,
and Kleindienst 2015; Shang, Lu, and Li 2015; Guo, Klinger, et al. 2017). Among recent
work, Williams and Zweig (2016) use an LSTM model that learns to interact with APIs on
behalf of the user; Dhingra et al. (2017) use reinforcement learning to build the KB look-
up in task-oriented dialog systems. But the look-up actions are defined over each entity in
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the KB and is therefore hard to scale up. Most of these works actually do not discuss the
issue of handling NEs though they are present. Williams, Asadi, and Zweig (2017) propose
Hybrid Code Networks and achieve state-of-the-art on the bAbI dataset, but their approach
involves a developer writing domain-specific software components.

NE in Reading Comprehension and Others. For certain tasks such as Machine Transla-
tion and summarization, neural copying mechanisms (Gulcehre et al. 2016; Gu et al. 2016)
have been proposed as a means for handling OOV words. Our NE-Table method can be
used along with such copying mechanisms for things like dialog generation.

3.5 Conclusion

We proposed a novel method for handling NEs in neural settings for goal-oriented di-
alog tasks. It is also applicable to other NLP tasks with NEs. Our experiments on the
CBT dataset illustrate that the method with NE-Table perform better than methods without
NE-Table, and clearly outperform the baseline methods on the OOV test sets. We observe
similar results for our experiments on the structured-QA task and goal-oriented bAbI dia-
log tasks. We also show that our method can be used for NEs in the external KB provided.
Overall, these experiments show that the proposed method can be useful for various NLP
tasks where it is beneficial to work with actual NE values, and/or it is hard to learn good
neural embeddings for NEs. An interesting future direction is to explore the use of pre-
trained embeddings: word2vec (Mikolov et al. 2013b), ELMo (Peters et al. 2018) etc., to
bootstrap the learned NE-embeddings in the NE-Table.
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CHAPTER 4

Learning With Multiple Answers

In a dialog, there could be multiple valid next utterances at any point. The present
end-to-end neural methods for dialog do not take this into account. They learn with the
assumption that at any time there is only one correct next utterance. In this chapter, we
focus on this problem in the goal-oriented dialog setting where there are different paths to
reach a goal. We propose a new method, that uses a combination of supervised learning
and reinforcement learning approaches to address this issue. We also propose a new and
more effective testbed, permuted-bAbI dialog tasks by introducing multiple valid next
utterances to the original-bAbI dialog tasks. We show that there is a significant drop in
performance of existing end-to-end neural methods from 81.5% per-dialog accuracy on
original-bAbI dialog tasks to 30.3% on permuted-bAbI dialog tasks. We also show that
our proposed method improves the performance and achieves 47.3% per-dialog accuracy
on permuted-bAbI dialog tasks.

Published at: Empirical Methods in Natural Language Processing (EMNLP 2018).
Authors: Janarthanan Rajendran*, Jatin Ganhotra*, Satinder Singh, and Lazaros C. Poly-
menakos.
Collaborations: IBM Research.

*Equal contribution
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4.1 Introduction

The task of having a dialog with a human in natural language has some unique prop-
erties that many other machine learning tasks do not. For any given dialog state or input,
multiple correct next utterances or answers may be possible; i.e., given the dialog so far,
there are several different utterances which one can say next that would be valid. However,
this property of dialog is not taken into account in the present way of end-to-end training
of neural dialog systems from dialog data.

Present day neural dialog systems are trained using (broadly) either Supervised Learn-
ing (SL) or Reinforcement Learning (RL) or a mix of both (refer Section 2.1 for more
discussion). In the RL setting, the dialog system learns through trial and error with rein-
forcement (rewards at the end or at key dialog points) from a human or a simulator. In the
SL setting, a fixed set of dialog data is collected from human-human chatlogs and the dia-
log system is trained to imitate that data using some form of mini-batch gradient descent. It
is not possible to know all of the valid next utterances for a given dialog state at any single
time. A particular dialog in the dataset has access to only one of the valid next utterances
given the dialog history and the current utterance. Another valid next utterance could be
present in some other dialog in the dataset.

Since for a given dialog only one correct answer is available, the gradients (from a
mini-batch of the dataset) are calculated based on the assumption that there is only one
correct next utterance for the given dialog state. This results in reducing the probability of
other valid next utterances for that dialog. While all this is true for dialog in general, in this
chapter, we focus on the goal-oriented dialog setting.

We propose a novel method which handles the issue of learning multiple possibilities
for completing a goal-oriented dialog task. Our presentation is organized as follows: In
Sections 4.2 and 4.3, we define the multiple-utterance problem and point out the limitations
of current learning methodologies.

The rest of the chapter is organized as follows. Section 4.4 describes our proposed
method, which combines Supervised Learning and Reinforcement Learning approaches
for handling multiple correct next utterances. In Section 4.5, we introduce permuted-bAbI
dialog tasks, which is our proposed testbed. Section 4.6 details our experimental results
across all datasets and all methods.
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4.2 Multiple-Utterance Problem in Goal-Oriented Dialog

Goal-oriented dialog tasks, where there is an explicit goal that the system tries to
achieve through the dialog, typically involve getting some information from the user, in-
teracting with an external Knowledge Base (KB) and giving back information to the user.
Simple examples (form filling) include restaurant reservation, hotel booking etc., whereas
complex tasks could involve a combination of informative and form filling tasks (e.g., IT
support, customer care etc.).

There could be multiple ways/strategies to achieve a given task. When a dataset is
collected from different people performing the task, these different ways of solving the task
get reflected in it. These variations could be as simple as difference in the order in which
the system asks the information from the user, or as complex as following a completely
different line of questions/answers to achieve the task. For example, in an IT support
scenario, one may ask a sequence of standard questions or start from common problems
and once eliminated, follow the standard set of questions. In the dataset, they turn into
multiple valid next utterances for a given dialog so far.

Our objective is not to mimic all humans from whom the data was collected from or all
the possible strategies, but rather to use that knowledge and learn to perform the task better
and faster.

4.3 Issues With the Present Methods

Consider a goal-oriented dialog dataset for restaurant reservation where the dialog
system has to acquire cuisine, location, number of people and price range information
from the user before retrieving restaurant options. Consider two dialogs (A and B) in the
dataset which have the same first system utterance (S1a is same as S1b). Let their dialog
state vector after encoding the dialog until S1 be s. This state vector s is what will be used
for next utterance generation or retrieval. Their next utterance is different because of the
variation in the order in which the information is asked from the user as shown below, i.e.,
S2a is different from S2b.

Dialog A
U: Hello !
S1a: Hello, what can I help you with today?

U: Can you book a table for six people with French food?
S2a: Where should it be?
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U: In Bombay
S3a: Which price range are you looking for?

U: I am looking for a cheap restaurant.
S4a: Ok, let me look into some options for you.

Dialog B
U: Hello !
S1b: Hello, what can I help you with today?

U: Can you book a table for six people with French food?
S2b: Which price range are you looking for?

U: I am looking for a cheap restaurant.
S3b: Where should it be?

U: In Bombay
S4b: Ok, let me look into some options for you.

Figure 4.1: Mask-memN2N - Left: A single layer version of memN2N. Right: Masking

These two dialogs might be present in different places in the dataset. When dialog A is
part of the mini-batch for which loss is calculated and parameters are updated, the dialog
system is asked to produce S2a from s. Here, the loss could be negative log-likelihood,
squared error or anything that tries to push s towards producing S2a. In this process, the
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probability of the dialog system producing S2b, an equally valid answer, is reduced. The
reverse happens when the dialog system encounters a mini-batch with dialog B. This is true
whether a softmax or a sigmoid non-linearity for each unit is used in the output layer. In
essence, the system is expected to learn a one to many function, but is forced to produce
only one of the valid outputs at one time (that is all we have at any one time), while telling
that all other outputs are wrong.

Note that this could be a problem even when the dialogs are similar (semantically) in
the beginning, but not the same exact dialog. For simplicity, we show an example where
two dialogs have the same beginning and only 2 valid next utterances occur.

4.4 Proposed Method

The proposed method has two phases. In phase one, the dialog system tries to learn how
to perform dialog from the dataset by trying to mimic it and in phase two it learns through
trial and error. The former uses supervised learning and the latter uses reinforcement learn-
ing. Consider a dialog state vector s. This has all the information from the dialog so far
and is used for next utterance generation or retrieval. Any neural method such as memory
network (Weston, Chopra, and Bordes 2014), HRED (Sordoni et al. 2015) etc. can be used
for encoding and producing the dialog state vector s. As discussed earlier for the state
vector s, there could be multiple valid next utterances.

During the SL phase, at each data point, the dialog system is trained to produce the
one next utterance provided in that data point and is penalized even if it produces one of
the other valid next utterances. We avoid this by providing the dialog system, the ability
to use only parts of the state vector to produce that particular next utterance. This allows
only parts of the network to be affected that were responsible for the prediction of that
particular answer. The dialog system can retain other parts of the state vector and values in
the network that stored information about other valid next utterances. This is achieved by
generating a mask vector m which decides which parts of the state vector s should be used
for producing that particular answer. This is achievable, as m is learned as function of s
and the actual answer a present in the given dialog data point.

In the RL phase, however, the dialog system is rewarded if it produces an answer that
is among any of the set of valid correct answers. While in the SL phase the dialog system
had access to the actual answer a at given time to produce the mask, in the RL phase the
dialog system produces the mask by only using the dialog state vector s.
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Supervised Learning phase: (4.1)

m = σ(Wss+Waa+ bsl),

s′ = m ∗ s,

Reinforcement Learning phase: (4.2)

m = σ(Wss+Wrs+ brl),

s′ = m ∗ s,

where W ’s and b’s are the parameters learned, σ is an element wise sigmoid non-
linearity and s′ is the masked dialog state vector that is used by the dialog system to perform
the downstream task such as next utterance generation or retrieval. The parameters of the
network that produce s and that follow s′ are shared between the two phases. While there
are different ways of combining the two phases during training, the RL phase which does
not use the answer for its mask is what is used during testing. The masking approach
described above is illustrated in Fig 4.1.

In our experiments, SL phase is performed first, followed by RL phase. In the SL phase,
the dialog system learns different dialog responses and behaviours from the dataset. It has
the ability to learn multiple possible next utterances without one contradicting/hindering
the learning of the other much. In the RL phase, the dialog system might settle on a unique
behaviour that it finds best for it to perform the task and uses that during test time as well.

4.5 Permuted bAbI Dialog Tasks

Bordes, Boureau, and Weston (2017) proposed bAbI dialog tasks, a testbed to break
down the strengths and shortcomings of end-to-end dialog systems in goal-oriented ap-
plications (described in detail in Section 2.2). Bordes, Boureau, and Weston (2017) used
natural language patterns to create user and system utterances. There are 43 patterns for the
user and 20 for the system, which were combined with the KB entities to form thousands
of different utterances. However, on a closer analysis of the testbed, we observe that even
though there are thousands of different utterances, these utterances always follow a fixed
deterministic order (predefined by the simulation). For example, for Task 1, the system
follows a predefined order to ask for missing fields required to complete the dialog state. In
Task 3, all restaurants retrieved have a unique and different rating. While this makes evalu-
ation deterministic and easier, these hidden settings in the simulation create conversations,
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Figure 4.2: Permuted-bAbI dialog tasks. A user (in green) chats with a dialog system (in
blue) to book a table at a restaurant. At a given point in the dialog, the dialog system has
multiple correct next utterances (in orange). The dialog system can choose either of the
multiple correct utterances as the next utterance. The list of restaurants are returned from
the API call (in grey) also contain multiple restaurants with the same rating, giving the
dialog system more options to propose to the user.

which are simpler compared to real-world conversations for restaurant reservation without
the issue of multiple next utterance in the dataset.

We propose permuted-bAbI dialog tasks (available at https://github.com/
IBM/permuted-bAbI-dialog-tasks), an extension of original-bAbI dialog tasks,
which make our proposed testbed more appropriate for evaluating dialog systems in goal-
oriented setting. In original-bAbI dialog tasks at a given time in the conversation, there
is only one correct system utterance. Permuted-bAbI dialog tasks allow multiple correct
system utterances at a given point in the conversation.

We propose the following changes to original-bAbI dialog tasks. In Task 1, a user
request defines a query that can contain from 0 to 4 of the required fields to make a reserva-
tion. The system asks questions to fill the missing fields and eventually generate the correct
corresponding API call. However, the system asks for information in a deterministic order
-
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Cuisine→ Location→ People→ Price

to complete the missing fields. In permuted-bAbI dialog tasks, we don’t follow a determin-
istic order and allow the system to ask for the missing fields in any order.

In Task 3, for the API call matching the user request, the facts are retrieved from the
KB and provided as part of dialog history. The system must propose options to users
by listing the restaurant names sorted by their corresponding rating (from higher to lower)
until users accept. However, each restaurant has a different rating. In permuted-bAbI dialog
tasks, multiple restaurants can have the same rating but the system must still propose the
restaurant names following the decreasing order of rating, which allows multiple valid next
utterances.

In Task 5, Tasks 1-4 are combined to generate full dialogs. In permuted-bAbI dialog
tasks, we incorporate the changes for both Task 1 and Task 3 mentioned above to the final
Task 5 (Conducting full dialogs).

Fig 4.2 shows a dialog sample from permuted-bAbI dialog tasks. We release two ver-
sions of permuted-bAbI dialog tasks 1) permuted-bAbI dialog task*, which contains all
permutations (the full dataset). There are around 11,000 dialogs in each set and the exact
number varies for train, validation, test and test-OOV sets; 2) permuted-bAbI dialog task,
which contains 1000 dialogs randomly sampled (we used random seed = 599 for sampling)
from permuted-bAbI dialog task*. We choose a random 1000 subset from each of train,
validation, test and test-OOV sets to match the number of dialogs in original-bAbI dialog
task. Another key point to choose a small subset and to not include all permutations in
the training set is that it allows to mimic real-world data collection. For a real-world use-
case, as the number of required fields and user options increase, the cost for gathering data
covering all permutations will increase exponentially, and one can’t guarantee that enough
training examples for all permutations will be present in the collected dataset. Note that,
since there are multiple correct next utterances, we also modify the evaluation criteria so
that the system is rewarded if it predicts any of the multiple correct next utterances.

4.6 Experiments and Results

We use end-to-end memory networks (Sukhbaatar et al. 2015), an extension of Mem-
ory Networks proposed by Weston, Chopra, and Bordes (2014) as our base dialog model
architecture. We perform experiments on the three datasets mentioned. We also perform
experiments with match-type features proposed by Bordes, Boureau, and Weston (2017),
which allow the dialog model to use type-information for entities like location, cuisine,
phone number etc. The results for our baseline method, our proposed method and results
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Dataset
No Match-Type + Match-Type

Per-Turn Per-Dialog Per-Turn Per-Dialog
Original-bAbI 98.5 77.1 98.8 81.5

Permuted-bAbI* 96.4 58.2 96.9 63.9
Permuted-bAbI 91.8 22 93.3 30.3

OOV: Original-bAbI 65.6 0 78.3 0
OOV: Permuted-bAbI* 63.6 0 78.4 0
OOV: Permuted-bAbI 63.4 0.5 78.1 0.6

Table 4.1: Test results for our baseline end-to-end memory network model across the three
datasets. Results (accuracy %) are given in the standard setup and out-of-vocabulary (OOV)
setup. Results are given for both with and without match-type features.

on our ablation study are described below. The test results reported are calculated by choos-
ing the model with highest validation per-turn accuracy.

4.6.1 Baseline Method: memN2N

We use end-to-end memory networks (memN2N) as our baseline method. A single
layer version of the memN2N is shown in Fig.4.1. The detailed description of memN2N
is provided in Section 2.3. The hyperparameters used for the baseline method are as fol-
lows: hops = 3, embedding size = 20, batch size = 32. The entire model is trained using
stochastic gradient descent (SGD) (learning rate = 0.01) with annealing (anneal ratio =
0.5, anneal period = 25), minimizing a standard cross-entropy loss between â and the true
label a. We add temporal features to encode information about the speaker for the given
utterance (Bordes, Boureau, and Weston 2017) and use position encoding for encoding the
position of words in the sentence (Sukhbaatar et al. 2015). We learn two embedding ma-
trices A and C for encoding story, separate embedding matrix B for encoding query and
weight matrices TA and TC for encoding temporal features. The same weight matrices are
used for 3 hops.

Our results for our baseline method across the three datasets are given in Table 4.1.
The first 3 rows show the results for the three datasets in the standard setup, and rows

4-6 show results in the Out-Of-Vocabulary (OOV) setting. Per-response accuracy counts
the percentage of responses that are correct (i.e., the correct candidate is chosen out of all
possible candidates). Note that, as mentioned above in Section 4.5, since there are multiple
correct next utterances, a response is considered correct if it predicts any of the multiple
correct next utterances. Per-dialog accuracy counts the percentage of dialogs where every
response is correct. Therefore, even if only one response is incorrect, this might result in
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a failed dialog, i.e., failure to achieve the goal of restaurant reservation. We report results
both with and without match type features, shown in the last two columns.

From Table 4.1, we observe that the baseline method performs poorly on permuted-
bAbI dialog tasks (both full dataset and 1000 random dialogs). For permuted-bAbI dialog
task*, the baseline method achieves 58.2% on per-dialog accuracy, but the number de-
creases to only 22% for permuted-bAbI dialog task (1000 random dialogs). This implies
that only 1 out of every 4 dialogs might be successful in completing the goal. The results
improve slightly by using match-type features. These results clearly demonstrate that the
end-to-end memory network dialog model does not perform well on our proposed testbed.

4.6.2 Mask End-to-End Memory Network: Mask-memN2N

Our method, Mask-memN2N, shown in Fig 4.1, is built on the baseline memN2N
method described above, except for an additional masking performed to the dialog state
vector. The SL phase is performed for the first 150 epochs. The best performing model
chosen based on validation accuracy is used as a starting point for the RL phase. All
parameters except for the network that produces the masks are shared between the two
phases. During the SL phase, the mask parameters of the RL phase are pre-trained to
match the mask produced in SL phase using an L2 loss. Through this approach, when the
model transitions in the RL phase, it does not need to explore the valid masks and hence,
the answers from scratch. Instead, its exploration will now be more biased towards relevant
answers. For the RL phase, we use REINFORCE (Williams 1992) for training the system.
An additional loss term is added to increase entropy. We use the same hyperparameters as
the baseline method mentioned above. The additional hyperparameters are as follows: L2
loss coefficient = 0.1 for pre-training the RL phase mask, entropy with linear decay from
0.00001 to 0, positive reward = 5 for every correct action and negative reward = - 0.5 for
an incorrect action.

4.6.3 Model Comparison

Our results for our proposed method and comparison with other methods for permuted-
bAbI dialog task are given in Table 4.2. Table 4.2 follows the same format as Table 4.1,
except we show results for different methods on permuted-bAbI dialog task. We show
results for three methods - memN2N, memN2N + All-Answers and our proposed method,
Mask-memN2N.

In the memN2N + All-Answers method, we extend the baseline memN2N method and
though not realistic, we provide information on all correct next utterances during training,
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Method
No Match-Type + Match-Type

Per-Turn Per-Dialog Per-Turn Per-Dialog
memN2N 91.8 22 93.3 30.3

memN2N + All-Answers† 88.5 14.9 92.5 26.4
Mask-memN2N 93.4 32 95.2 47.3
OOV: memN2N 63.4 0.5 78.1 0.6

OOV: memN2N + All-Answers† 60.8 0.5 74.9 0.6
OOV: Mask-memN2N 63.0 0.5 80.1 1

Table 4.2: Test results for various methods on permuted-bAbI dialog task. Results (ac-
curacy %) are given in the standard setup and OOV setup; and both with and without
match-type features.

instead of providing only one correct next utterance. The memN2N + All-Answers method
has an element-wise sigmoid at the output layer instead of a softmax, allowing it to predict
multiple correct answers. This model serves as an important additional baseline, and clearly
demonstrates the benefit of our proposed approach.

From Table 4.2, we observe that the memN2N + All-Answers method performs poorly,
in comparison to the memN2N baseline both in standard setup and OOV setting, as well
as with and without match-type features. This shows that the existing methods do not
improve the accuracy of a dialog system even if all correct next utterances are known and
used during training the dialog model. Our proposed method performs better than both
the baseline methods. In the standard setup, the per-dialog accuracy increases from 22%
to 32%. Using match-type features, the per-dialog accuracy increases considerably from
30.3% to 47.3%. In the OOV setting, all methods perform poorly and achieve per-dialog
accuracy of 0-1% both with and without match-type features. These results are similar to
results for original-bAbI dialog Task 5 from Bordes, Boureau, and Weston (2017) and our
results with the baseline method.

Overall, Mask-memN2N is able to handle multiple correct next utterances present in
permuted-bAbI dialog task better than the baseline methods. This indicates that permuted-
bAbI dialog task is a better and effective evaluation proxy compared to original-bAbI di-
alog task. This also shows that we need better neural approaches, similar to our proposed
method, Mask-memN2N, for goal-oriented dialog in addition to better testbeds for bench-
marking goal-oriented dialogs systems.

4.6.4 Ablation Study

Here, we study the different parts of our method for better understanding of how the
different parts influence the overall performance. Our results for ablation study are given
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Method Per-Turn Per-Dialog
Mask-memN2N 93.4 32

Mask-memN2N (w/o Entropy) 92.1 24.6
Mask-memN2N (w/o L2 Mask Pre-Training) 85.8 2.2

Mask-memN2N (Reinforcement Learning Phase Only) 16.0 0

Table 4.3: Ablation study of our proposed method on permuted-bAbI dialog task. Results
(accuracy %) are given in the standard setup, without match-type features.

in Table 4.3. We show results for Mask-memN2N in various settings - a) without entropy,
b) without pre-training mask c) reinforcement learning phase only.

Adding entropy for the RL phase seems to have improved performance a bit by assisting
better exploration in the RL phase. When we remove L2 mask pre-training, there is a huge
drop in performance. In the RL phase, the action space is large. In the bAbI dialog task,
which is a retrieval task, it is all the candidate answers that can be retrieved which forms
the action set. L2 mask pre-training would help the RL phase to try more relevant actions
from the very start.

From Table 4.3 it is clear that the RL phase individually does not perform well; it is
the combination of both the phases that gives the best performance. When we do only
the RL phase, it might be very tough for the system to learn everything by trial and error,
especially because the action space is so large. Preceding it with the SL phase and L2 mask
pre-training would have put the system and its parameters at a good spot from which the
RL phase can improve performance. Note that it would not be valid to check performance
of the SL phase in the test set as the SL phase requires the actual answers for it to create
the mask.

4.7 Related Work

The idea of allowing the system to learn to attend to different parts of the state vector
at different times depending on the input that the proposed model uses has been used in
different settings before. To name a few, Bahdanau, Cho, and Bengio (2015a) use it for
Machine Translation (MT), where the MT system can attend to different words in the input
language sentence while producing different words in the output language sentence. Xu,
Ba, et al. (2015) use it for image caption generation where the system attends to different
parts of the image while generating different words in the caption. Madotto and Attardi
(2017) use it for Question Answering (QA), where the QA system attends and updates
different parts of the Recurrent Neural Network story state vector based on the sentence the
system is reading in the input story.

48



In recent years, several corpora have been made available for building data-driven dia-
log systems (Serban, Lowe, et al. 2018). However, there are not as many good resources to
train and test end-to-end models in goal-oriented scenarios. Some datasets are proprietary
(e.g., Chen, Hakkani-Tür, et al. (2016)) or require participation to a specific challenge and
signing a license agreement (e.g., DSTC4 (Kim et al. 2017)). Several datasets have been
designed to train or test dialog state tracker components (Henderson, Thomson, and Young
(2014), El Asri et al. (2017)), which are unsuitable for training end-to-end dialog systems,
either due to limited number of conversations or due to noise. Recently, some datasets
have been designed using crowdsourcing (Hixon, Clark, and Hajishirzi (2015), Wen, Gašić,
Mrkšić, Su, et al. (2015), Su et al. (2015)) e.g., Amazon Mechanical Turk, CrowdFlower
etc., but dialog systems built for them are harder to test automatically and involve another
set of crowdsource workers for comparing them. Datasets designed using Wizard-of-Oz
setting (Eric and Manning (2017), Wen, Vandyke, et al. (2017)) showed promise, but they
were limited in scale. A recent dataset, Multi-Domain Wizard-of-Oz (MultiWOZ) is one
of the largest goal-oriented dialog dataset. It was first introduced in Budzianowski et al.
(2018), followed by corrections and improvements done by Ramadan, Budzianowski, and
Gasic (2018) and Eric, Goel, et al. (2019). It has human-human written conversations
spanning over six domains: booking, restaurant, hotel, attraction, taxi and train.

4.8 Conclusion

We propose a method that uses masking to handle the issue of making wrong updates
at different times because of the presence of multiple valid next utterances in a dataset,
but having access to only one of them at any time. The method has a SL phase where the
mask uses the answer as well, and an RL phase, where the system learns to generate the
mask solely from its dialog state vector. We modify the original-bAbI dialog task to create
permuted-bAbI dialog task (which we have made publicly available), that has the issue
of multiple next utterances as would be the case with any dataset created from human-
human dialogs. Our experiments show that there is a significant drop in performance of the
present neural methods in the permuted-bAbI dialog task compared to their performance
on the original-bAbI dialog task. The experiments also confirm that the proposed method
is a step in the right direction for bridging this gap.
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CHAPTER 5

Learning with Maximal User Task Success and Minimal
Human Agent Use

Goal-oriented dialog systems could reduce the workload of human agents for customer
service and also reduce wait time for users. End-to-end learned neural goal-oriented dialog
systems have shown great promise in recent years. However, their inability to handle new
user behavior at deployment has limited their usage in real world. In this chapter, we
propose an end-to-end trainable method for neural goal-oriented dialog systems which
handles new user behaviors at deployment by transferring the dialog to a human agent
intelligently. The proposed method has three goals: 1) maximize user’s task success by
transferring to human agents, 2) minimize the load on the human agents by transferring
to them only when it is essential and 3) learn online from the human agent’s responses to
reduce human agents load further. We evaluate our proposed method on a modified-bAbI
dialog task that simulates the scenario of new user behaviors occurring at test time.
Experimental results show that our proposed method is effective in achieving the desired
goals.

Published at: Transactions of the Association for Computational Linguistics (TACL
2019).
Authors: Janarthanan Rajendran, Jatin Ganhotra, and Lazaros C. Polymenakos.
Collaborations: IBM Research.
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5.1 Introduction

End-to-end learned neural dialog systems show huge potential for various goal-oriented
dialog tasks such as restaurant reservation, flight ticket booking and hotel reservation. How-
ever, their use in the real world has been limited. One main reason is their inability to handle
new user behavior at deployment.

As discussed in Section 2.1, there are two main methods to build neural end-to-end
goal-oriented dialog systems. In the first method, large amounts of human-human chat
logs of a particular task are collected and then the dialog system is trained to mimic the chat
logs using Supervised Learning (SL) (Bordes, Boureau, and Weston (2017)). In the second
method, the dialog system is trained to complete the task against a human or a simulator
(Zhao and Eskenazi (2016)). The training is done using Reinforcement Learning (RL)
by providing reward for task completion and also intermediate rewards for pre-identified
sub-task completion. This is often accompanied by a SL pre-training as in Liu and Lane
(2017).

Dialog systems built using either of these methods would fail in the presence of new
user behaviors during deployment, which were missing during training. Failure here refers
to the inability of the dialog system to complete the task for the user. The new behaviors
can be a different way of a user asking/providing certain information or could also be
as simple as an user utterance with Out-Of-Vocabulary (OOV) words. The failure happens
when these new behaviors are beyond the generalization capabilities of the trained systems.
This happens generally because of the limited coverage of training data collected. For a
real-world use-case, it is difficult to collect chat logs and/or to build a user simulator that
covers all possible user behaviors, which implies that users with new behaviors are bound
to come by during deployment. The new user behaviors that we refer to and focus here are
only those that are valid and acceptable, i.e., these user behaviors should ideally have been
part of the training data (chat logs in the case of SL and user simulator behavior pattern in
the case of RL).

For an enterprise that uses this dialog system, these failures could affect their business
directly. In addition to losing customers who faced these failures, the enterprise also loses
future users/customers, as it also affects the perceived reliability of the dialog system and
hence, the enterprise’s reputation. While the dialog system fails for new user behaviors, it
can perform the task well for majority of user behaviors. However, these failures have re-
stricted the deployment of neural end-to-end goal-oriented dialog systems and have forced
the enterprises to either rely completely on human agents or on other restrictive systems
where the users have very little freedom in dialog.
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There have been recent works on using user feedback (Liu and Lane (2017)) and active
human teaching (Liu, Tür, et al. (2018)) during deployment to improve robustness to new
user behaviors. While they have produced better systems, they are not yet good enough
to be deployed in the real world. In this chapter, we propose a method which can be used
in addition to the aforementioned ideas and enables a dialog system to perform well in the
real world.

We propose an end-to-end trainable method, in which the dialog system can automat-
ically identify a new user behavior during deployment that the system might fail at and
transfer the task to a human agent, such that the user’s task is completed without any issue.
At the same time, the dialog system also learns from the human agent’s response to han-
dle that new user behavior in future. Our method also allows one to choose the trade-off
between maximizing user’s task success and minimizing the workload on human agents.

We set the following three goals for our method:

• Maximize task success rate for the user by transferring to a human agent in cases
where the dialog system might fail

• Minimize the use of human agent by transferring to the human agent only when it is
essential

• Learn online from the human agent’s response to reduce the use of human agent over
time

The rest of the chapter is organized as follows. Section 5.2 describes the proposed
method. In Section 5.3, we introduce modified-bAbI dialog tasks, which simulate new
user behaviours occurrence at deployment and serve as testbed for evaluating our proposed
method. Section 5.4 details our experimental results on modified-bAbI dialog tasks. Sec-
tion 5.5 discusses related work and Section 5.6 concludes.

5.2 Proposed Method

Consider a neural dialog model M trained for a goal-oriented dialog task. We also have
a human agentH who is trained for the same task. BothM andH can take the dialog so far
as input and produce the response for the user utterance (u). There is a neural transferrer T
which uses the dialog state vector (s) from model M as input and decides whether to use
the modelM to provide response to the user or to transfer to the human agentH who could
then provide the response to the user. The proposed method is shown in Fig 5.1 (right).
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Figure 5.1: Left: A single layer version of memN2N (dialog model M ) Right: Proposed
Method

In a real world setting, we cannot expect the same exact user utterances to come during
deployment, that the model came across during its training. Therefore, for a new dialog, it
is not possible to know beforehand if model (M ) would provide a correct response or not.
The transferrer (T ) has to learn this through trial and error and generalize. Therefore, the
transferrer is trained using Reinforcement Learning (RL).

The transferrer is provided a high reward if it chooses the model M and the model
produces a correct/valid response. The transferrer is however provided a relatively smaller
reward if it chooses the human agent instead. We assume that the human agent’s response
is always correct. If the transferrer chooses the model M and the model provides an in-
correct response, the transferrer (T ) is penalized heavily. The validation, if a response is
correct or not is provided by the user as feedback. The transferrer is trained using RL to
make decisions (take actions) in order to maximize the above reward function. The reward
function helps achieve two of our aforementioned goals -

• Maximize task success rate for the user: The reward function encourages the trans-
ferrer to learn the dialog scenarios in which the model M might fail and choose a
human agent instead. Therefore, the transferrer helps to avoid sending an incorrect
response to the user from the dialog model.

• Minimize human agent use: The reward function also encourages the transferrer to
learn, identify and choose the model M in cases where the model has a high chance
of providing the correct response, as the transferrer gets a higher reward compared
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to choosing a human agent. This minimizes the use of human agent to only when it
is essential.

Here is an example reward function, which would achieve the desired goals:

• +1 : if human H is chosen

• +2 : if model M is chosen and the model’s response is correct

• -4 : if model M is chosen and the model’s response is incorrect

The reward function allows the designer to choose the trade off between maximizing the
user task completion vs minimizing the human agent’s workload. For example, when the
model (M ) is chosen, increasing the positive reward if the model’s response is correct and
reducing the penalty when the model’s response is incorrect would encourage the overall
system to use model (M ) more to respond to the user.

The gradient updates obtained for the transferrer through the rewards received are also
propagated back to the model M through the dialog state vector. This trains the model M
to incorporate a) essential information about the dialog so far and b) the model’s confidence
in producing the correct response, in the dialog state vector, such that the transferrer can
utilize it to make the right decision.

Whenever the transferrer chooses the human agent (H), the dialog interaction (includ-
ing the human response) is also added to the training data of the model (M ) and the model
is updated online using supervised learning (SL). This helps achieve our third goal:

• Reduce human agent use over time: The online update allows the dialog model M
to respond to the corresponding new user behavior and provide the correct response
if a similar dialog scenario occurs in the future. This also enables the transferrer to
reduce its dependence on the human agent (H) over time.

The transferrer keeps changing during its lifetime to adapt to the changes in the model
M . Note that a human agent is involved only when the transferrer transfers the dialog to
a human. The idea is generic enough to be used with any neural dialog model (M ), e.g.,
HRED (Sordoni et al. 2015), end-to-end memory network (Sukhbaatar et al. 2015) etc. In
our experiments, we use the end-to-end memory network for our model M and a Multi-
Layer Perceptron (MLP) for the transferrer T . Additional details on the model architecture
and training are provided in Section 5.4.
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5.3 Modified-bAbI Dialog Tasks

bAbI dialog tasks (referred to as original-bAbI dialog tasks) were proposed by Bordes,
Boureau, and Weston (2017) as a testbed to evaluate the strengths and shortcomings of end-
to-end dialog systems in goal-oriented applications (described in detail in Section 2.2).

We propose modified-bAbI dialog tasks, an extension of original-bAbI dialog tasks
(Bordes, Boureau, and Weston 2017). We modify the original-bAbI dialog tasks, by re-
moving and replacing certain user behaviors from the training and validation data. The test
set is left untouched. This simulates a scenario where some new user behaviors arise dur-
ing the test (deployment) time that were not seen during the training and hence allows us to
test our proposed method. This also mimics real-world data collection via crowdsourcing
in the sense that certain user behavior is missing from the training data. Fig 5.2 shows a
dialog sample from modified-bAbI dialog tasks.* We propose the following changes to the
training and validation data of the original-bAbI dialog tasks:

• In Task 1, a user places a request that can contain from 0 to 4 of the required fields to
book a table. The system asks questions to retrieve values for the missing fields and
generate the correct corresponding API call. In modified-bAbI dialog tasks, the user
doesn’t provide the value for the price range by himself/herself and only provides
that information when asked by the system.

• In Task 2, the user can request the system to update any of his/her preferences (cui-
sine, location, price range and number of people). In modified-bAbI dialog tasks, the
user doesn’t update his/her location preference.

• In Task 3, for the API call matching the user request, information retrieved from the
KB is provided as part of dialog history. The system must propose options to the
user by listing the restaurant names sorted by their corresponding rating (in decreas-
ing order). The system keeps proposing a new restaurant until the user accepts. In
modified-bAbI dialog tasks, the user always accepts first or second recommended
restaurant.

• In Task 4, the user can ask for phone number or address for the selected restaurant.
In modified-bAbI dialog tasks, the user does not ask for phone number.

We incorporate the changes mentioned above to the final Task 5 (Conducting full di-
alogs). We perform experiments on modified-bAbI dialog task-5. The statistics for new
user behavior in the test set (which was left untouched) are shown in Table 5.1 and 5.2.

*modified-bAbI dialog tasks - https://github.com/IBM/modified-bAbI-dialog-tasks
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Figure 5.2: Modified-bAbI dialog tasks. A user (in green) chats with a dialog system (in
blue) to book a table at a restaurant. We update each subtask in the original-bAbI dialog
task with specific changes (in yellow).
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Behavior Type # Dialogs
Task-1 494
Task-2 539
Task-3 561
Task-4 752

Table 5.1: Modified-bAbI test set statistics. The numbers shown represent number of di-
alogs in test data (Task 5) out of 1000 dialogs where a certain type of new user behavior is
encountered.

# New Behavior 0 1 2 3 4
# Dialogs 20 178 350 340 112

Table 5.2: Modified-bAbI test set statistics. The numbers shown represent number of di-
alogs in test data (Task 5) out of 1000 dialogs, where no new user behavior or one or more
type of new user behavior is encountered.

5.4 Experiments and Results

5.4.1 Baseline Method: M

A dialog model M is trained on the modified-bAbI dialog task and is used for deploy-
ment. The model is not updated during test/deployment. An end-to-end memory network
(Sukhbaatar et al. 2015) (described in detail in Section 2.3) architecture is used for the
model M .

A single layer version of the memN2N model is shown in Fig.5.1 (left). The model is
trained using SL on the training data. The trained model is then used during deployment.
In our case, deployment is same as testing the model on the test data. Our results for the
baseline method for the original and modified-bAbI dialog tasks are given in Table 5.3.

The hyperparameters used for the training the memN2N model in our baseline method
are as follows: hops = 3, embedding size = 20, batch size = 32. The entire dialog model
is trained using stochastic gradient descent (SGD) with learning rate = 0.01 and annealing
(anneal ratio = 0.5, anneal period = 25), by minimizing the standard cross-entropy loss be-
tween the predicted response and the correct response. We learn two embedding matrices
A and C for encoding context (input and output representations) and a separate embedding
matrix B for encoding the query. We use position encoding for encoding word position in
the sentence (Sukhbaatar et al. 2015). We also add temporal features to encode information
about the speaker for the given utterance (user/system), similar to Bordes, Boureau, and
Weston (2017) and weight matrices TA and TC are learned for encoding temporal features.
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The same weight matrices mentioned above are reused for the 3 hops. The test results re-
ported for the baseline method are calculated by choosing the model with highest validation
per-turn accuracy.

Per-turn accuracy measures the percentage of responses that are correct (i.e., the cor-
rect candidate is selected from all possible candidates). Note that, as mentioned above in
Section 5.3, we only modify the training and validation sets, and use the same test set.
Per-dialog accuracy measures the percentage of dialogs where every response is correct.
Therefore, even if only one response in a dialog is incorrect, this would result in a failed
dialog, i.e., failure to achieve the goal of booking a table.

Dataset Per-Turn Per-Dialog
Original-bAbI 98.5 77.1
Modified-bAbI 81.7 3.7

Table 5.3: Test results (accuracy %) for our baseline method (M :memN2N) across original
and modified bAbI dialog tasks.

From Table 5.3, we observe that the baseline method of using the trained memN2N di-
alog model performs poorly on modified-bAbI dialog tasks, which has new user behaviors
at test time that the model has not seen during training. For modified-bAbI dialog tasks,
the baseline method achieves 81.7% on per-turn accuracy and the per-dialog accuracy de-
creases to 3.7%. This implies that majority of dialogs would be unsuccessful in completing
the goal. These results clearly demonstrate that the baseline method (end-to-end mem-
ory network) does not perform well on our proposed testbed, which simulates new user
behaviours occurrence at deployment.

5.4.2 Proposed Method: M∗ + T ∗

We use the same memN2N dialog model used in the baseline method for the model
M here. However, in our proposed method, we also have a transferrer T which takes
as input the dialog state vector s and makes a decision on whether to use the model to
respond to the user or to transfer the dialog to a human agent. For our experiments, T
is a Multi-Layer-Perceptron (MLP) which outputs a probability distribution over the two
actions. The sampled action is performed and the user feedback is used to determine the
reward obtained, which is then used to train the transferrer and the model.

The following scenarios arise during deployment depending on the transferrer’s action
and the model’s prediction:
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Method User Accuracy Model Ratio Final Model Accuracy
Per-Turn Per-Dialog Per-Turn Per-Dialog

M 81.73± 0 3.7± 0 100.0± 0 81.73± 0 3.7± 0
Reward: 1, 2, -4

M + T ∗ 92.85± 1.58 33.48± 10.59 51.97± 8.22 81.73± 0 3.7± 0
M∗ + T ∗ 96.28± 1.16 54.5± 10.72 64.06± 4.65 90.83± 0.82 14.82± 3.7
M∗

a + T ∗ 96.19± 1.21 54.44± 11.40 61.14± 6.9 88.98± 0.34 10.26± 1.39
Reward: 1, 3, -3

M + T ∗ 91.31± 1.15 26.50± 7.57 58.82± 4.62 81.73± 0 3.7± 0
M∗ + T ∗ 94.67± 1.20 43.48± 8.80 70.33± 2.13 89.27± 0.74 12.84± 2.22
M∗

a + T ∗ 94.08± 1.0 38.8± 8.15 69.69± 6.14 88.75± 0.91 11.62± 2.61

Table 5.4: Test results for the different methods on the modified-bAbI dialog task. The
numbers represent the mean and standard deviation of running the different methods across
5 different permutations of the test set. User Accuracy: Task success rate for the user;
Model ratio: Percentage of time the transferrer chooses the model M ; Final Model Accu-
racy: Accuracy of the model M at the end of testing.

• The transferrer could choose a human agent H to respond to the user. Since we use
the test data of the modified-bAbI dialog task as a way to test deployment perfor-
mance, we already have the ground truth labels for the different dialog scenarios that
arise during the deployment. We use these ground truth labels as the human response.

• The transferrer chooses the model M and the model produces a correct or incorrect
response. In real world, this validation/feedback on whether the response was correct
or not is obtained from the user during deployment. For our experiments, we use the
ground truth labels for test data to provide the validation from the user. In a sense,
we mimic an ideal user using the test data ground truth labels.

We have two versions of the proposed method: a) the model trained on the training data
is kept fixed during deployment and only the transferrer is updated (M + T ∗) b) both the
model and the transferrer are updated (M∗ + T ∗) during deployment. For both versions,
the transferrer T is initialized randomly and is updated only during deployment. We use
REINFORCE (Williams (1992)) for training the transferrer using the rewards obtained.

For M∗ + T ∗, the model is updated using the following three ways:

• The gradients obtained for the transferrer T are passed through the dialog state vector
s to the model.

• The human responses provided for cases where the transferrer transferred the dialog
to a human agent, are added to the training data to augment it and are also used to
update the model using supervised learning.
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• Dialogs are sampled from the augmented training data and are used to update the
model using supervised learning to avoid forgetting.

The M∗ + T ∗ method uses a fixed number of samples, e.g., 2 batches for our experi-
ments, from augmented training data to update the dialog model. We also implement and
evaluate a variant of M∗+T ∗ method: M∗

a +T ∗ where the number of samples are decided
based on the model M ’s performance on validation data. During deployment, after each
batch of test data, the model is evaluated on the validation data. The difference between
the current validation per-turn accuracy (vcurrentacc ) and the best validation per-turn accuracy
so far (vbestacc ) estimates the loss in information learned from original training data during
deployment. This is used to determine the number of batches (b ≥ 0) for updating the
model, as per the equation:

b = α ∗ (vcurrentacc − vbestacc ). (5.1)

The M∗
a + T ∗ (a - adaptive) method tries to update the model with the right number of

dialog samples from the augmented data.
We use the same hyperparameters as the baseline method mentioned above for train-

ing the model M . The transferrer T is trained using REINFORCE (Williams 1992) with
a learning rate of 0.01. In M + T ∗ after every batch of test data, the transferrer MLP is
updated. In M∗ + T ∗ after every batch of the test data (deployment), along with the trans-
ferrer MLP update, the model is also updated in the three ways discussed. In M∗ + T ∗ the
update using the human responses is done multiple times after every batch (3 in our case).
For the update with the training data, two batches of training data are randomly sampled
after every batch of test data.

We perform our experiments on two sets of reward functions. The first reward function
is as follows:

• +1 : if human H is chosen

• +2 : if model M is chosen and the model’s response is correct

• -4 : if model M is chosen and the model’s response is incorrect

The results are shown in Table 5.4. The test data is provided sequentially, which mim-
ics the deployment in a real-world setting. Since the performance depends on the order in
which the test dialogs are provided, we evaluate our proposed method on 5 different per-
mutations of the test set. We present the mean and standard deviation of the performance
measures across the 5 permutations.

The performance measures used for evaluation are:
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• User Accuracy: Task success rate as perceived by the user, irrespective of whether
the response is provided by the human agent H or the model M . This measures our
goal #1 - Maximize task success rate

• Model ratio: Percentage of time the transferrer T provides the model response to the
user, i.e., human agent is not involved. This measures our goal #2 - Minimize human
agent use

• Final Model Accuracy: Accuracy of the model M on the test data at the end of
testing. This is obtained by evaluating the model M on the test data again after the
testing phase is over. This measures our goal #3 - Reduce human agent use over time,
by online learning of the model.

While the baseline methodM gets a per-turn user accuracy of 81.73%, using and learn-
ing a transferrer (M + T ∗) achieves user accuracy of 92.85%, an increase of more than
10 percentage points. If the model is also updated during the deployment (M∗ + T ∗), we
observe further increase in per-turn accuracy (96.28%). While M +T ∗ achieves better per-
formance by using the model 51.97% of the time,M∗+T ∗ achieves high accuracy by using
model even more (64.06%), thereby reduces the human agent’s workload. This is attributed
to the improvement in the model during the deployment for the M∗ + T ∗ method. This is
supported by the improvement in the model accuracy, going from 81.73% at the start of
test to 90.83% by the end (shown as the final model M ’s accuracy in Table 5.2). We ob-
serve that M∗

a + T ∗ does not provide an improvement, but performs similar to M∗+ T ∗ on
all performance measures. The numbers reported are calculated as the running average of
the different performance measures by evaluating on the fixed size test data (1000 dialogs)
once sequentially. We expect an improvement in the various performance measures over
longer periods of deployment (test time).

The reward function determines the trade off between the user’s task success rate and
the human agent’s load. We perform additional experiments by modifying the reward func-
tion to showcase this trade off. For example, if we want to reduce the load on the human
agent further, we can increase the reward provided when the model M is chosen and the
model’s response is correct and decrease the penalty when the model is chosen and model’s
response is incorrect. One such reward function is as follows:

• +1 : if human H is chosen

• +3 : if model M is chosen and the model’s response is correct

• -3 : if model M is chosen and the model’s response is incorrect
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The results for the new reward function are shown in the last three rows of Table 5.4.
In comparison with performance measures for reward function (1,2,-4), for both methods
- M + T ∗ and M∗ + T ∗, we observe a small drop in the user accuracy and a significant
increase in model ratio, which showcases our intended goal in altering the reward function.

Table 5.5, 5.6, and 5.7 shows the results for (M∗ + T ∗), (M∗
a + T ∗) and (M + T ∗)

methods respectively on all the 5 individual permutations of the modified-bAbI dialog task
test set.

5.5 Related Work

The most common methods for end-to-end learning of neural goal-oriented dialog sys-
tems have been to either use supervised learning to train the dialog model on collected chat
logs of the dialog task (Bordes, Boureau, and Weston (2017); Eric and Manning (2017);
Wen, Vandyke, et al. (2017)) or use reinforcement learning to train against a user simulator
or human agents, mostly with supervised learning pre-training (Li, Chen, et al. 2017; Hen-
derson, Lemon, and Georgila 2008; Williams, Asadi, and Zweig 2017; Zhao and Eskenazi
2016).

The most common way to cope with new user behaviors during deployment has been
to use reinforcement learning and learn from the failures using user feedback (Williams
and Zweig 2016). These user feedback are generally binary (positive / negative) signals
provided at the end of the dialog. Liu, Tür, et al. (2018) on top of learning from user feed-
back, also ask the users to correct the mistake by providing the correct system response.
The dialog system is trained using both imitation learning (on the correct response) and
reinforcement learning (from user feedback) to learn from the mistakes. The main draw-
back with these methods is that they do not really handle new user behaviors when they
happen, i.e., they do not avoid task failures, rather they only provide a means to learn from
the failures. Therefore, there might be lot of task failures for the users while the dialog sys-
tem is learning to correct its predictions. Our proposed method on the other hand learns to
proactively transfer the dialog to human agents anticipating a mistake in prediction, thereby
avoiding some potential task failures for the users.

There has also been recent work on actively using human in the loop to teach and
assist the learning of neural dialog systems prior to deployment.Asghar et al. (2017) use
human agents to provide feedback by selecting the best response among the top responses
predicted by the agent at any moment. Li, Miller, et al. (2017) use human agents to provide
both numerical rewards as in conventional reinforcement learning and also textual feedback
in natural language with richer information during training. Liu and Lane (2017) instead
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Method User Accuracy Model Ratio
Per-Turn Per-Dialog

M 81.73 3.7 100.0
Reward: 1, 2, -4

M + T ∗

92.44 33.1 50.98
92.57 32.7 53.22
93.96 42.0 44.63
94.7 43.0 45.82

90.59 16.6 65.24
Reward: 1, 3, -3

M + T ∗

90.41 21.1 54.67
92.25 36.1 54.79
92.12 32.5 58.07
89.75 18.2 65.69
92.05 24.6 60.92

Table 5.5: Test results for M + T ∗ method on different permutations of modified-bAbI
dialog task’s test set

Method User Accuracy Model Ratio Final Model Accuracy
Per-Turn Per-Dialog Per-Turn Per-Dialog

M 81.73 3.7 100.0 81.73 3.7
Reward: 1, 2, -4

M∗ + T ∗

97.49 65.2 62.15 91.33 18.2
96.4 55.1 60.45 90.58 12.7

94.47 38.3 71.13 89.54 9.7
97.07 62.9 60.23 91.65 18.4
95.99 51.0 66.35 91.06 15.1

Reward: 1, 3, -3

M∗ + T ∗

92.77 29.2 73.7 88.52 11.4
94.23 41.3 68.6 88.79 12.3
95.22 46.5 70.1 89.19 11.3
95.47 49.2 68.45 89.39 12.5
95.68 51.2 70.8 90.46 16.7

Table 5.6: Test results for M∗ + T ∗ method on different permutation of modified-bAbI
dialog task’s test set
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Method User Accuracy Model Ratio Final Model Accuracy
Per-Turn Per-Dialog Per-Turn Per-Dialog

M 81.73 3.7 100.0 81.73 3.7
Reward: 1, 2, -4

M∗
a + T ∗

96.15 51.8 64.64 88.52 9.9
94.69 43.4 66.96 89.16 8.8
96.52 56.5 56.57 88.75 9.6
97.99 72.9 51.26 89.37 12.5
95.63 47.6 66.27 89.12 10.5

Reward: 1, 3, -3

M∗
a + T ∗

92.51 26.9 79.16 87.81 9.9
95.23 49.3 65.67 88.8 12.0
94.03 36.4 70.06 87.82 8.2
94.55 41.4 63.03 89.73 14.8
94.1 40.0 70.57 89.57 13.2

Table 5.7: Test results for M∗
a + T ∗ method on different permutation of modified-bAbI

dialog task’s test set

of using a human agent in the loop learn and improve a user simulator. They achieve
this jointly optimizing the dialog agent and the user simulator using deep reinforcement
learning.

While these approaches have focused on different ways to improve the neural goal-
oriented dialog systems and maximize user success rate by a) improving the model or, b)
better ways of online learning or, c) through human teaching; the problem of handling new
user behaviors during deployment has not been handled yet. Our proposed method directly
optimizes for maximum user success and provides a framework where existing techniques
for model learning, online learning and human teaching can be used in tandem, to enable
the end-to-end goal-oriented dialog systems ready for real-world use.

5.6 Conclusion

We introduce a new method for designing and optimizing goal-oriented dialog sys-
tems geared for real-world use. Our method allows the designer to determine the trade-off
between the desired user’s task success and human agent workload. Specifically, the pro-
posed method allows us to maximize user success rate by minimally using human agents
instead of the dialog model for cases where the model might fail. Our evaluation on the
modified-bAbI dialog task shows that our proposed method is effective in achieving the
desired goals. We believe this opens up a new and promising research direction that would
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spark an increase in the use of end-to-end learned neural goal-oriented dialog systems in
the real world soon.

There are several limitations to our current evaluation, which we discuss below and
hope is overcome in future works. For our experiments, we use an artificially constructed
dataset, modified-bAbI dialog tasks, which incorporates two essential assumptions: a) a
perfect human-agent and b) correct user feedback. For actual real-world deployments with
real users, while the former assumption might still hold true, the latter might not always be
true. While we use simple techniques for the different components in our method, they can
be replaced with more sophisticated state of the art techniques for improved performance.
For example, while we use REINFORCE, an on-policy method for training the transfer-
rer, it would be interesting to try off-policy reinforcement learning techniques to use the
samples more effectively. We could also try state of the art online learning methods to
see how they affect the performance. In our experiments, the learning of the transferrer T
starts from scratch during the deployment. An interesting future work is to explore ways of
pre-training the transferrer before deployment, so that the learning of T can happen faster,
with fewer samples during deployment. Another interesting direction is to draw on ideas
from novelty detection methods to see if they can help the transferrer to generalize better.
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CHAPTER 6

Learning to Learn From Related Tasks

For each new goal-oriented dialog task of interest, large amounts of data need to be
collected for end-to-end learning of a neural dialog system. Collecting dialog data is
a costly and time-consuming process. Instead of collecting large amounts of data for
each new dialog task of interest, in this chapter we show that we can learn end-to-end
goal-oriented dialog systems for a new task of interest with only limited amounts of
training data by utilising already available data from a related dialog task. Using a
meta-learning based method that selectively learns from the related dialog task data, our
evaluation results show significant improvement in performance on the new task of interest.

Collaborators: Jonathan K. Kummerfeld and Satinder Singh.
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6.1 Introduction

End-to-end learning of neural goal-oriented dialog systems has allowed learning and
improving the dialog systems directly from data. It has reduced the human effort involved
in designing dialog systems compared to pipeline-methods which require careful human
adaptation of the different modules. Since the entire dialog system is learned directly from
the dialog task’s data, the design of the system need not make any assumption about the
dialog domain and hence applicable to new domains with different training data, without
much domain-specific hand-crafting, compared to rule based dialog systems. However, the
human effort in data collection has significantly increased, as successful end-to-end train-
ing of neural goal-oriented dialog systems require large amounts of training data. As we
discussed in Section 2.1, one common method for training neural end-to-end goal-oriented
dialog systems is Supervised Learning (SL). For supervised learning of dialog systems, first
a dataset of dialogs from human agents performing the task of interest is collected. The di-
alog system is then trained to imitate the human agent’s dialogs in the collected dataset
(Bordes, Boureau, and Weston 2017; Eric and Manning 2017; Wen, Vandyke, et al. 2017).
The performance of the trained dialog system during deployment critically depends on the
quantity and the quality of the data used for training. Typically, the higher the quantity
and the quality of the data used for training, the better the generalisation performance of
the trained dialog system can be. Therefore, for each new dialog task of interest, large
amounts of new data has to be collected. It often costs a lot of money, effort and time to
collect large amounts of data.

Instead of collecting large amounts of data for each new dialog task of interest, in this
chapter we show that we can learn an end-to-end goal-oriented dialog system for a new
task with only limited amounts of training data by utilising already available data from a
related dialog task. Related dialog tasks are tasks that have parts/subtasks that are similar
to / overlap with the new task of interest. For example, consider a scenario where we
have collected data for, and built a dialog system to perform the task of hotel reservation
and are now interested in building a system for the task of restaurant reservation. The
dialog data used for training the hotel reservation system could have parts that might be
useful to learn from, for the new task of restaurant reservation. E.g., the parts involving
greeting and obtaining a user’s name/contact information. They could also have parts that
are contradictory for supervised learning of restaurant reservation. E.g., hotel reservation
might require the dialog system to ask for the user’s duration (number of days) of stay while
the restaurant reservation might require the dialog system to ask for the particular day and
time of table reservation. There could also be a lot of irrelevant information in the related
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tasks’ data that would be best to ignore for a learning system with limited capacity. E.g., in
the hotel reservation task, the user might enquire about the availability of fitness facilities
and pool in the hotel which are irrelevant for the task of restaurant reservation. Data from
the related tasks could also provide rich information about different user behaviors and
natural language in general of both users and agents.

Tapping into and learning from the related tasks’ data that is already available can
potentially allow us to build dialog systems with improved performance on the new task
of interest with only a limited amount data collected, saving us time, effort and money in
data collection. One setting where the related tasks are naturally present is where the new
task of interest is a modified/updated way of performing the task which was done earlier.
For example, these modification can include things like asking for the email ID of the user
instead of their mailing street address.

The key challenge in applying supervised learning on the data from a related task for
the new task of interest is to identify which data points of the related task’s data to learn
from and which data points not to learn from. We want the dialog system to learn from the
related task’s data in a way that helps the dialog system improve its performance on the new
task of interest and not degrade it (negative transfer (Wang et al. 2019)). In this chapter, we
show that by selectively learning from the related task data, we can significantly improve
the performance of end-to-end learned neural goal-oriented dialog system for a new task of
interest with only limited amount of training data. For selectively learning from the related
task data, we use a method that uses meta-gradients to automatically meta-learn which data
points of the related task data to learn from and which data points not to learn from so as
to perform well on the new task of interest. The rest of the chapter is organized as follows.
Section 6.2 describes the proposed method. In Section 6.3, we describe the evaluation
settings, experiments and results. Section 6.4 discusses the related work and Section 6.5
concludes the chapter.

6.2 Proposed Method

Let T P be the new task of interest (primary task) for which we have collected a limited
amount of training data. Let TR be the related task for which we have relatively large
amounts of data already available. We are interested in building a dialog system for the
task T P . The data points are of the form (context c, dialog system’s next utterance a) pairs,
where context has the history of the dialog so far including the recent user utterance. We
learn a dialog model M parameterized by θ that takes as input the context c and predicts
the next dialog system utterance a.
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Algorithm overview. The algorithm is specified in Algorithm 1. Each iteration of the
training is comprised of the following three major steps. 1) The dialog model is updated
using a batch of data points from the primary task. 2) The dialog model is updated using a
batch of data points from the related task, where each related task data point’s training loss
is weighted between (0, 1). 3) The related task data point’s weights are updated. These
three steps are repeated at each iteration. We describe each step in detail below.

Updating the dialog model using primary task data points. We sample a batch of
data points {. . . , (cPi , aPi ), . . .} from the primary task T P . Let L(Mθ(ci), ai) represent the
supervised learning prediction loss between Mθ(ci): the next utterance predicted by the
dialog model and ai: the ground truth next utterance. Model Mθ is updated using the
supervised learning prediction loss of the primary task data points LP as shown below:

LP (θ) =
∑
i

L
(
Mθ(c

P
i ), a

P
i

)
(6.1)

θ ← θ − α∇θL
P (θ), (6.2)

where α is the learning rate and ∇θL
P (θ) represents the gradient of the loss LP (θ) with

respect to θ.

Updating the dialog model using weighted related task data points. We sample a
batch of data points {. . . , (cRi , aRi ), . . .} from the related task TR. The supervised learning
prediction loss L(Mθ(ci), ai) for each data point in the batch is weighed by a scalar weight
wi ∈ (0, 1) corresponding to each of the data points. The scalar weight for each of the
related task data point is obtained as a function of that particular data point. Let P param-
eterized by η be the module that outputs the weights. The weight for a related task data
point is calculated as shown below:

wi(η) = σ(Pη(c
R
i , a

R
i )), (6.3)

where σ is a sigmoid function used to normalize the output of P to (0, 1). Model Mθ is
updated using the weighted prediction loss of related task data points LR as shown below:

LR(θ, η) =
∑
i

wi(η)L
(
Mθ(c

R
i ), a

R
i

)
(6.4)

θ ← θ − β∇θL
R(θ, η), (6.5)
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Algorithm 1
1: Input: learning rate parameters α, β and γ
2: Init: initialize θ and η with random values
3: repeat
4: Updating dialog model using primary task data
5: Sample a batch of primary task data: {. . . , (cPi , aPi ), . . .}
6: Calculate loss: LP (θ) =

∑
i L
(
Mθ(c

P
i ), a

P
i

)
7: Update dialog model Mθ: θ ← θ − α∇θL

P (θ)
8: Updating dialog model using weighted related task data
9: Sample a batch of related task data: {. . . , (cRi , aRi ), . . .}

10: Calculate weights: wi(η) = σ(Pη(c
R
i , a

R
i ))

11: Calculate loss: LR(θ, η) =
∑

iwi(η)L
(
Mθ(c

R
i ), a

R
i

)
12: Update dialog model Mθ: θ ← θ − β∇θL

R(θ, η)
13: Updating related task data points’ weights
14: Sample a batch of related task data: {. . . , (cRi , aRi ), . . .}
15: Calculate weights: wi(η) = σ(Pη(c

R
i , a

R
i ))

16: Calculate related task loss: LR(θ, η) =
∑

iwi(η)L
(
Mθ(c

R
i ), a

R
i

)
17: Simulate dialog model update Mθ: θ′ = θ − β∇θL

R(θ, η)
18: Sample a batch of primary task data: {. . . , (cPi , aPi ), . . .}
19: Calculate primary task loss: LP (θ′) =

∑
i L
(
Mθ′(c

P
i ), a

P
i

)
20: Update related task data points’ weights: η ← η − γ∇ηθ

′∇θ′L
P (θ′)

21: until done

where β is the learning rate and ∇θL
R(θ, η) represents the gradient of the loss LR(θ, η)

with respect to θ. The weights wi allow for selectively using data points from the related
task data for updating the dialog model.

Updating the related task data points’ weights. In this key step of our proposed
method, we update the related task data points’ weights wi(η). The update increases the
weights of related task data points that improve the dialog model’s performance on the pri-
mary task (our task of interest) when learned from and decreases the weights of those that
degrade the dialog model’s performance on the primary task.

We first sample a batch of related task data points and simulate how the model param-
eters θ would change if we update the model with a batch of related task data points with
the current assignment of weights provided by Pη:

LR(θ, η) =
∑
i

wi(η)L
(
Mθ(c

R
i ), a

R
i

)
(6.6)

θ′ = θ − β∇θL
R(θ, η). (6.7)
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We then evaluate how the updated model Mθ′ performs on the primary task to decide
how to change Pη that assigned weights to the related task data points that resulted in Mθ′:

LP (θ′) =
∑
i

L
(
Mθ′(c

P
i ), a

P
i

)
, (6.8)

where LP (θ′) is the supervised learning loss of the updated model Mθ′ on a new batch
of data points sampled from the primary task. The parameters of Pη are updated as shown
below:

η ←η − γ∇ηL
P (θ′) (6.9)

=η − γ∇ηθ
′∇θ′L

P (θ′), (6.10)

where γ is the learning rate and ∇ηL
P (θ′) represents the gradient of the loss LP (θ′)

with respect to η. The gradient, ∇ηL
P (θ′) is split into products of two gradients ∇ηθ

′ and
∇θ′L

P (θ′) using the chain rule. ∇ηθ
′ can be calculated using meta-gradients as follows:

∇ηθ
′ =∇η(θ − β∇θL

R(θ, η)) (6.11)

=∇η

(
β∇θL

R(θ, η)
)

(6.12)

=∇η

(
β∇θ

(∑
i

wi(η)L(Mθ(c
R
i ), a

R
i )

))
(6.13)

=β
∑
i

∇ηwi(η)∇θL(Mθ(c
R
i ), a

R
i ). (6.14)

Discussion. The proposed method therefore learns a dialog model from the primary task
data points and also selectively from the related task data points. The proposed method
meta-learns, at different points in training of the dialog model, which related task data
points to learn from (and also to what degree (0, 1)). The weight assigned to a particular
related task data point can therefore vary across training.

For simplicity, we described our proposed method with one update using primary task
data points, one update using weighted related task data points and one update of related
task data point weights in each iteration. But in practice, we make multiple updates to
the related task data points’ weights (η parameters) within each iteration. Also, for each
η update we simulate how the model parameters θ change over multiple gradient updates
(instead of just one as described in equations 6.6 and 6.7). This allows for a better estimate
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of how the updates using related task data points with the current parameters η affect the
updated dialog model’s performance on the primary task. Note that our proposed method
is agnostic to the exact neural network architecture of the model M and weight module P .
Also, while we focus on settings with a single related task, the proposed method naturally
extends to settings with more than one related tasks.

While in our proposed method, we achieve selective learning by meta-learning the
weights of the related task data points, there are other techniques in the machine learning
literature that could potentially be used for learning/assigning these weights to the related
task data points. Some of these techniques are discussed in Section 6.4.

6.3 Experiments and Results

We first illustrate our proposed method on a simple image classification task with a
hand designed related task that allows us to verify if the proposed method can learn mean-
ingful/expected weights for the related task data points. We then evaluate our proposed
method on the task of personalized restaurant reservation.

6.3.1 MNIST Image Classification

The purpose of this experiment is to illustrate in a very simple setting how our proposed
method works. For this, we design the experiment such that there is a clear expectation on
which related task data points should have high weights and which should have low weights
for it to be useful for the primary task.

The primary task of interest is the classification of hand-written digits from the MNIST
dataset (LeCun, Cortes, and Burges 2010). The related task is created by taking the primary
task data and changing the label to an incorrect one for 75% (37,500 data points) of the
training data. So among the related task data points, 25% (12,500 data points) of them are
useful for the primary task while 75% (37,500 data points) of them with incorrect labels
are not. We also add an indicator to every related task data point that tells whether that data
point has correct label or not.

Our proposed method has three high level steps at each iteration 1) updating the model
with primary task data, 2) updating the model with weighted related task data and 3) up-
dating the weights of the related task data points. To study closely the effect of our learned
related task data point weights on the performance, in this experiment we perform only the
last two steps. i.e., we update the model only using the weighted related task data. No
updates are made to the model using the primary task data. Primary task data is however
used while calculating the meta-gradients for step 3, for updating the weights of the related
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task data points. In order for the dialog model to perform well on the primary task, the data
points with incorrect labels in the related task data should be weighed less compared to the
data points that have the correct label.

6.3.1.1 Architecture and Training Details

The MNIST dataset contains 60,000 training images and 10,000 testing images. Among
the training images, we use 50,000 for training and 10,000 for validation. The MNIST
hand-written digit images are resized to 28 x 28 images and the pixel values are normalized
to [0, 1]. The images are flattened to a 1-D array of 784 features (28 x 28). We use a logistic
regression as our classification model (Mθ) and a perceptron with sigmoid non-linearity at
the output for the weight generation module (Pη). The weight generation module takes as
input the image, its label and the indicator that tells if that label is correct or not for that
image, and produces a scalar weight between (0, 1) as the output. The training uses a batch
size of 256, with Adam optimizer (learning rate = 0.001, epsilon = 1e-8).

6.3.1.2 Results

Figure 6.1 (left) and Figure 6.2 (left) shows the weights assigned for the different related
task data points by our proposed method during different stages of training. The points in
red and green correspond to the weights of data points that have incorrect and correct labels
respectively. Figure 6.1 (right) and Figure 6.2 (right) shows the histograms of number of
data points in the different interval of weights. The histogram in red and green correspond
to the related task data points with incorrect and correct labels respectively. We observe
that, our proposed method with the meta-gradient based update to the weight generation
module learns to give high weights to the data points with correct labels and low weights to
the data points with incorrect labels. We observe similar weight assignment over multiple
runs with different random seeds. In the last epoch of training, the average weight given to
the related task data points with correct labels is 0.9747 ± 0.0004 and the average weight
given to those with incorrect labels is 0.0074 ± 0.0002 (mean and standard deviation over
5 runs). Note that the method starts with random weights and updates the weights during
training. The average weight across all the training epochs, given to the related task data
points with correct labels is 0.8558±0.0020 and to the related task data points with incorrect
labels is 0.1508± 0.0041.

Table 6.1 shows the performance of the classification model with different types of
weighting for the related task data points.
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Figure 6.1: (Part 1/2) MNIST image classification. Left: The weights assigned for the
different related task data points by our proposed method during different stages of training.
The points in red and green correspond to the weights of the related task data points that
have incorrect and correct labels respectively. Right: Histograms of the number of data
points in the different interval of weights. The histograms in red and green correspond to
the related task data points with incorrect and correct labels respectively. Refer to Figure
6.2 for Part 2/2.
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Figure 6.2: (Part 2/2) MNIST image classification. Left: The weights assigned for the
different related task data points by our proposed method during different stages of training.
The points in red and green correspond to the weights of the related task data points that
have incorrect and correct labels respectively. Right: Histograms of the number of data
points in the different interval of weights. The histograms in red and green correspond to
the related task data points with incorrect and correct labels respectively. Refer to Figure
6.1 for Part 1/2.
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Method: Weighted Related
% Accuracy

Weights
1 for All 21.63± 3.81

Random-Fixed 20.81± 4.46
Random-Changing 20.40± 4.42

Learned (Proposed Method) 87.86± 0.17
1 for Correct and 0 for Incorrect Labels (Perfect) 90.32± 0.33

Table 6.1: Test results, % classification accuracy (mean and standard deviation over 5 runs).

Random-Fixed: Assign a random weight between (0, 1) for each of the related task data
points. The weight for each of the data point is sampled once at the start of the training and
then fixed throughout the training.

Random-Changing: Assign a random weight between (0, 1) for each of the related task
data points. Each time a data point is used, a new random weight is sampled for that data
point.

From the results, we observe that selectively learning from the related task data points
with learned weights (row 4) performs much better than the methods that use all the data
points uniformly (row 1) or assigns random weights to the data points (rows 2 and 3). The
proposed method’s performance is very close to the method which has access to the perfect
weights for the related task data points from the start (row 5) and throughout the training.
We attribute this small gap mainly to the lingering effects of incorrect weights used for
learning from the related task data points in the early stages of training in the proposed
method.

6.3.2 Personalized Restaurant Reservation

Personalizing dialog system responses based on the user that the dialog system is inter-
acting with will be a key step in seamless integration of dialog systems into our everyday
lives. Recognizing this, Joshi, Mi, and Faltings (2017) proposed the first open dataset for
training end-to-end dialog systems where the dialog system responses are based on the
profile of the user. Their dataset is set in the domain of restaurant reservation, built as
an extension of the bAbI dialog tasks released by Bordes, Boureau, and Weston (2017)
(original-bAbI dialog tasks).

Original-bAbI dialog tasks is a testbed to evaluate the strengths and shortcomings of
end-to-end dialog systems in goal-oriented applications (described in detail in Section 2.2).
Figure 6.3 (Left) shows an example of Task 5 from the original-bAbI dialog tasks. In
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Figure 6.3: A user (in green) chats with a dialog system (in blue) to book a table at a
restaurant. Left: (Related Task) An example dialog from Original-bAbI dialog Task 5.
Right: (Primary Task) An example dialog from Personalized-bAbI dialog Task 3.
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Joshi, Mi, and Faltings (2017)’s extension of the original-bAbI dialog tasks (referred to
as personalized-bAbI dialog tasks from here on), in addition to the goal of the original-
bAbI dialog tasks, the dialog system should also use the additional user profile information
provided, to personalize the response styles and reasoning over the Knowledge Base (KB).
The user profile consists of the user’s age (young, middle-aged, elderly), gender (male,
female), dietary preference (vegetarian, non-vegetarian) and favorite food item (Fish and
Chips, Biryani, etc). The style of the dialog system’s response depends on the age and
the gender of the user. In Task 3, from the restaurants retrieved through the API call (that
match the user’s preferences), the dialog system now has to sort and suggest restaurants
based not just on the restaurant’s rating, but also based on the user’s dietary preference and
favorite food item. For this, the personalized-bAbI dialog tasks have additional information
of restaurant type (vegetarian or non-vegetarian) and restaurants speciality (Fish and Chips,
Biryani etc) of each restaurant added to the KB. Figure 6.3 (Right) shows an example of
Task 3 from the personalized-bAbI dialog tasks.

For our experiments, we use Task 3 from the personalized-bAbI dialog tasks as our
primary task of interest T P , and Task 5 of the original-bAbI dialog tasks as the related
task TR. 100% (1000 dialogs) of the training dialogs of the original-bAbI dialog Task 5
are available as the related task data. For the primary task, we simulate the limited data
availability setting by restricting the number of training and validation dialogs available.
We look at three data settings with 5% (50 dialogs), 10% (100 dialogs) and 15% (150
dialogs) of the primary task training and validation dialogs from the dataset made available.
We use 100% (1000 dialogs) of the test dialogs from the dataset for testing.

Let us look at the similarities and differences between the related task (Task 5 of the
original-bAbI) and the primary task (Task 3 of the personalized-bAbI). The related task
has parts in its dialog, such as the greetings and getting information from the user, that are
semantically similar to that of the primary task. They are not exactly the same due to the
differences in response style (the style differs based on the user profile in the primary task).
Due the presence of different response styles, the vocabulary of the primary task is also
much larger and different than that of the related task. The related task also has parts in
its dialog that are semantically different, such as the ordering of the restaurants to suggest
to the user. In the primary task the ordering should be based on the restaurant’s rating,
user’s dietary preference and favorite food, while its based just on the restaurant’s rating in
the related task. There are also parts in the related task dialog that are not relevant to the
primary task. These includes the parts corresponding to Task 2 and Task 4 of the related
task. i.e., parts corresponding to updating API calls and providing extra information such
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as the restaurant’s direction or contact information. These sub tasks are not part of the
primary task.

6.3.2.1 Architecture and Training Details

As noted earlier, our proposed method is agnostic to the dialog model’s (Mθ) architec-
ture. In our experiments we use the same dialog model architecture as used in Joshi, Mi,
and Faltings (2017), end-to-end memory networks (Sukhbaatar et al. 2015) (described in
detail in Section 2.3). The sentences in the dialog are encoded using BoW (Bag of Words)
encoding. The encoded sentences, which are part of the dialog history, are stored in the
memory and the query (last user utterance) embedding is used to attend over the memory
(3 times) to get relevant information from the memory. The generated internal state is used
to select the candidate response from the list of candidates. The entire network is trained
end-to-end using cross-entropy loss of the candidate selection.

We use an end-to-end memory network for the module Pη (that produces the weights
for each of the related task data points) as well. In this case, the internal state generated
after attending over the memory is used to generate the scalar (0, 1) weight.

At each iteration of training, we make one update to the dialog model using primary
task data (Equation 6.2), one update to the dialog model using weighted related task data
(Equation 6.5) and 10 updates to the related task data points’ weights, η (Equation 6.10)
using meta-gradients. For each of the meta-gradient update we simulate how the model
parameters θ changes over 5 gradient updates of weighted related task data points. We use
the same hyper-parameters used by Joshi, Mi, and Faltings (2017) for both our end-to-end
memory networks: embedding size = 20, batch size = 32, optimizer = Adam (learning rate
= 0.001, epsilon = 1e-8).

6.3.2.2 Results

Table 6.2 shows the performance of our proposed method along with the baselines of
not using related task and other conventional ways of using the related task data.

Primary: The dialog model is trained using only the primary task data.

Primary + Related Pre-Training: The dialog model is pre-trained with the related task
data and then fine-tuned with the primary task data.

Primary + Related: The dialog model is trained using both related task and primary task
data points.
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Primary + Auxiliary Related (Multi-Task): The dialog model has two prediction heads,
one for the primary task, and one for the related task, with a shared end-to-end memory
network body that generates the internal state used for selecting the candidate response.
This is similar to the conventional way of performing multi-task learning. This can also be
interpreted as using related task prediction as an auxiliary task.

Primary + Weighted Auxiliary Related (Proposed Method): The dialog model has two
prediction heads, one for the primary task and one for the related task, with a shared end-to-
end memory network body that generates the internal state used for selecting the candidate
response. The prediction loss of the related task is weighted by the weights learned by our
proposed method during training.

Method
Number of primary task dialogs

50 100 150
Primary 54.7± 1.3 59.3± 0.5 61.1± 0.5

Primary + Related Pre-Training 32.8± 3.5 42.1± 4.7 47.8± 0.8
Primary + Related 37.1± 4.1 50.9± 1.7 58.6± 0.7

Primary + Auxiliary Related
51.2± 2.4 58.2± 1.2 60.6± 0.7

(Multi-Task)
Primary + Weighted Auxiliary Related

57.7± 1.6 64.6± 0.8 67.1± 0.6
(Proposed Method)

Table 6.2: Test results, % Per-turn retrieval accuracy (mean and standard deviation over 5
runs) in predicting the next dialog system utterance.

From the results in Table 6.2, we observe that, in all the three data settings, the con-
ventional methods of using the related task data that we compare with (rows 2,3,4) lead to
a reduction in performance (negative transfer) compared to not using the related task data
points for training (row 1: Primary). The highest reduction in performance comes from
pre-training with the related task data points (row 2: Primary + Related Pre-Training). We
hypothesise that, due to the differences (vocabulary, contradicting and irrelevant sub-tasks)
in the primary and related task, starting from the pre-trained network weights obtained us-
ing related task data leads to a worse local minima during fine-tuning with primary task
data compared to starting from a randomly initialized network weights and training with
primary task data alone. Learning from both the primary task data and related task data
simultaneously with shared network body, and separate prediction heads (row 3: Primary
+ Auxiliary Related) seems to reduce the amount of net negative transfer, as the network
weights do not specialize just for the related task. Our proposed method (row 4: Primary
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+ Weighted Auxiliary Related) which weights the auxiliary related task update between
(0, 1) and selectively learns from them avoids negative transfer and provides a ≈ 6.5% in-
crease in performance across all three data settings, compared to the method with a uniform
weight of 1 (row 3: Primary + Auxiliary Related). The net improvement in performance,
compared to not using the related task data for training (row 1: Primary) is around ≈ 3%,
≈ 5% and ≈ 6% for the data setting of 50, 100, and 150 primary dialogs respectively.
The increase in improvement with the increase in number of primary task data available
indicates that the related task data (fixed in size) can be utilised better with more primary
task data. There could be two explanations for this. 1) More primary task data facilitate our
meta-gradient based proposed method to learn better weights. 2) More primary data leads
to a dialog representations learned by the neural network that better utilises related task data
and generalizes to the primary task. Further study is required to disentangle and understand
these two possibilities. Also, note that the performance of the proposed method using 100
primary task dialogs is better than that of the method that learns from just the primary
task dialogs with 150 dialogs. While selectively learning can always help with avoiding
negative transfer by lowering the weights for data points that lead to negative transfer, the
improvement in performance (compared to not using related task data) possible by using
the related task data points will depend on the relationship between the primary task and
the related task.

Method: Primary + Weighted Auxiliary Related Number of primary task dialogs
Weights 50 100 150

0 ≡ Primary 54.7± 1.3 59.3± 0.5 61.1± 0.5
1 ≡ Primary + Auxiliary Related 51.2± 2.4 58.2± 1.2 60.6± 0.7

Random-Fixed 50.7± 2.0 58.7± 0.8 61.2± 1.0
Random-Changing 52.3± 0.9 58.7± 1.0 59.8± 0.8

Learned (Proposed Method) 57.7± 1.6 64.6± 0.8 67.1± 0.6

Table 6.3: Test results, Per-turn % retrieval accuracy (mean and standard deviation over 5
runs) in predicting the next dialog system utterance.

To verify that it is not any random weighting of the auxiliary related task that leads
to the improvement in performance, Table 6.3 compares the performance of the method:
Primary + Weighted Auxiliary Related with different types of weighting for the related
task data points. It is clear from Table 6.3 that not any random weighting can lead to
the improvement in performance that we observe when we learn the weights using our
proposed method.

Figure 6.4 (left) and Figure 6.5 (left) show the weights assigned for the different related
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Figure 6.4: (Part 1/2) Personalized Restaurant Reservation. Left: The weights assigned
for the different related task data points by our proposed method during different stages
of training. Right: Histograms of the number of data points in the different interval of
weights. Refer to Figure 6.5 for Part 2/2.
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Figure 6.5: (Part 2/2) Personalized Restaurant Reservation. Left: The weights assigned
for the different related task data points by our proposed method during different stages
of training. Right: Histograms of the number of data points in the different interval of
weights. Refer to Figure 6.4 for Part 1/2.
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task data points by our proposed method during different stages of training. Figure 6.4
(right) and Figure 6.5 (right) shows the histograms of number of data points in the differ-
ent interval of weights. The weight assignment and the histograms at different stages of
training look different for a different run of the experiment with a different random seed.
Unlike the simple MNIST image classification (Section 6.3.1), here it is not clear which
related task data points should have high weights and which data points should not. Upon
a closer investigation of the weights assigned to individual data points across training, we
observe that some of them vary widely across training. The optimal weights for the related
task data points at any given stage of training can be different from the optimal weights
for them at a different stage of training, i.e., the optimal weights for the related task data
points are non-stationary, as the optimal weights depend on the current state (parameters
of the dialog model M ) of the dialog system. For example, some data points of the related
task which are quite different from the primary task might still be useful to learn from at
the early stages of training to help with learning better representations for the vocabulary.
Some data points that the dialog system has already learned from might get lower weights
at later stages of learning so as to avoid overfitting and thereby helping with the prediction
of other data points.

6.4 Related Work

Recognizing the difficulty in collecting large amounts of data for every new dialog
task of interest, there have been several papers that look at ways to transfer knowledge
from data from other tasks to cope with limited availability of training data for the task
of interest. Zhao, Wu, et al. (2020) split the dialog model such that most of the model
can be learned independent of the task of interest. They use large number of other dialogs
tasks and unstructured documents to train these parts of the model. Only a small part of
the dialog model with a small number of parameters needs to be trained with the limited
number of dialogs from the task of interest. Wen, Gašić, Mrkšić, Rojas-Barahona, et al.
(2016) pre-train the model with counterfeited data generated from different tasks while
Lin et al. (2020) use pre-trained language models as initialization for the encoder and the
decoder. Both works then fine-tune the dialog model with the data from the task of interest.

Recently, there have been works that explore ways to automatically learn some aspects
of the transfer process using meta-learning. Xu, Zhu, et al. (2020) looks at the problem
of learning a joint dialog policy using reinforcement learning in a multi-domain setting
which can then be transferred to a new domain. For this, they decompose the state and
action representation into features that correspond to low level components that are shared
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across domains, facilitating cross-domain transfer. They also propose a MAML (Model
Agnostic Meta Learning) (Finn, Abbeel, and Levine 2017) based meta-learning extension
that learns to adapt faster to a new domain. Madotto, Lin, et al. (2019), Mi et al. (2019),
Qian and Yu (2019) and Dai et al. (2020) also look at multi-domain settings. They all
use MAML based meta-learning method to learn an initialization that adapts fast with few
dialog samples from a new task. Dai et al. (2020), in addition to learning an initialization
using MAML that adapts fast to a new task, also learn whether to use the model’s prediction
or to shift to a human agent. All of the above papers look at settings where there is access
to a large set of training tasks. The meta-learning system learns to transfer knowledge to a
new task at test time by learning how to do that for different tasks during training. Though
an individual task might have only a limited amount of dialog data, they need a lot of such
tasks during training. In contrast, in this chapter we look at a setting where the task from
which we want to transfer knowledge from and the task that we want to transfer knowledge
to are the only tasks that we have access to at the training time. Any learning on how to best
transfer knowledge has to happen from just these two tasks. None of the above methods are
applicable to this setting. In our setting, the meta-learning agent has to transfer knowledge
from the related task to the primary task while also learning how to do it well with just
those two tasks to train on.

Learning a task, while simultaneously meta-learning certain aspects of the learning pro-
cess has been done successfully in some supervised learning and reinforcement learning
settings recently. Wu, Ren, et al. (2018) and Wichrowska et al. (2017) use meta-learning
to adapt the hyperparemeters such as learning rate and and even learn the entire optimiz-
ers themselves during training for supervised learning tasks such as image classification.
Given a single task, Zheng, Oh, and Singh (2018) successfully meta-learn intrinsic rewards
(starting from a random values for the intrinsic rewards) that help the agent perform well on
that task. Xu, Hasselt, and Silver (2018) use meta-gradients to learn reinforcement learning
training hyper-parameters such as discount factor and bootstrapping parameters that work
well for a given task. The meta-gradient technique used in our proposed method is closely
related to my prior work Rajendran et al. (2020). There, we learn intrinsic rewards for a
reinforcement learning agent acting in given domain, such that learning with those intrinsic
rewards in that domain, improves the performance of the agent in the task of interest in a
different domain.

In this chapter, our focus is on showing that the we can improve the performance of end-
to-end learned neural goal-oriented dialog systems on the primary task of interest with only
limited training data available, by selectively learning from a related task with relatively
more training data. While we use a meta-learning based method for learning the weights
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for the related task data points, there are other techniques in the machine learning literature,
especially in computer vision literature, that can potentially be used to learn the weights.
A large section of these recent techniques are based on learning an adversarially trained
discriminator for estimating the weights of related image classification task data points
(Zhao, Zhang, et al. 2018; Cao et al. 2018; Sankaranarayanan et al. 2018; Wang et al.
2019). Jiang and Zhai (2007) use a combination of several domain adaptation heuristics to
assign weights and evaluate on NLP tasks. Moon and Carbonell (2017) cluster the related
task data points and learn attention weights for the clusters. An interesting future direction
would be to study which weighting methods are best suited for end-to-end learning of
neural goal-oriented dialog systems using related tasks and under what settings.

6.5 Conclusion

End-to-end learning of neural goal-oriented dialog systems requires large amounts of
data for training. Collecting data is a costly and time consuming process. In this chapter
we proposed a method that can utilise a related task’s data when available so as to learn
the new task of interest with only a limited amount of data. The related task data might
however have some data points that are irrelevant or worse detrimental to learn from for
the new task of interest. Our proposed method uses meta-learning to automatically learn
which of the related task data points to selectively learn from. Our evaluation on learning
the personalized restaurant reservation task by using additional data from a related restau-
rant reservation task shows that you can obtain a significant increase in performance by
selectively learning from related task data using our proposed method.
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CHAPTER 7

Conclusion

In this chapter, I conclude my thesis by first summarizing the contributions of this
thesis, then discussing possible future work.

7.1 Summary of Contributions

In this thesis, we have identified and made progress in tackling four challenges in end-
to-end learning of neural goal-oriented dialog systems.

NE-Table: A neural key-value table for named entities. For interacting with the large
number of named entities that we encounter in goal-oriented dialog tasks, we proposed a
method to build neural embeddings for them on the fly using their context, avoiding an
explosion in vocabulary size. The context information enables distinguishing the different
named entities from one another. By storing them in a key-value table with neural embed-
ding as keys and the actual named entities as values, the proposed method allows for com-
parison and retrieval, using neural embeddings as well as actual named entities. This led to
significant improvement in performance, especially in the presence of Out-Of-Vocabulary
named entities.

Learning with multiple answers. For tackling the challenge of supervised learning with
multiple valid next utterances but with access to only one of them, we proposed a method
to learn to use different parts of the neural network to encode different predictions of next
utterances. This helped with the learning of one while not interfering with the learning of
others. Our experiments show considerable improvement in generalization performance.

Learning with maximal user task success and minimal human agent use. For the
challenge of handling new user behaviors during deployment, we proposed a method to
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learn to efficiently transfer dialogs to human agents in order to make sure overall user task
success remains high. The proposed method also allows for learning in an online fashion,
on how to respond to the new user behaviors by looking at the human agent’s responses.
This helps reduce human agent’s work load over time. Our experiments show that it is
possible to achieve very high task success by minimally using human agents in the loop.

Learning to learn from related tasks. While neural network based dialog systems can
achieve very high performance, they need a lot of quality data to learn from. We show that
by selectively learning from a related task’s data that is already available, we can improve
the performance of a new task of interest that has only limited amount of training data.

7.2 Future Work

Actively learning from human agents. End-to-end training of goal-oriented dialog sys-
tems allows learning directly from data and user feedback. An interesting future direction
is to explore ways to actively learn from the human agents during training of the dialog
system, i.e., prior to deployment. The dialog system should identify parts of the dialog task
that it needs help with and actively seek the human agent’s help for those parts during train-
ing. This can potentially result in a dialog system with better performance at deployment.
This could also reduce the amount of training data that needs to be collected, by removing
redundancy in data collection and training. Overall, it would provide a means to make the
training more effective and efficient.

Learning to learn from related data. Data useful for a dialog task of interest (related
data) could be present in different formats. The related data need not necessarily be just in
the form of another dialog task (as it is in Chapter 6). The related data could include, for
example, natural language instructions on how to perform the task of interest, or dialog data
from a related dialog task along with a description of how the new dialog task of interest is
different from the related dialog task. In order to successfully utilise such related data, the
system needs to identify what to learn from the related data. An interesting future direction
is to explore ways to automatically learn what to learn from the related data. Apart from
allowing us to use related data that are not dialog tasks, the system could potentially allow
extraction of more useful information from a related dialog task than a fixed supervised
learning prediction loss allows.
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Leveraging pre-trained language models for dialog systems. End-to-end learned dia-
log systems use the dialog data to learn the natural language, its syntax, and semantics as
a part of learning the dialog task of interest. In recent years, large language models such
as GPT-3 (Brown et al. 2020) and BERT (Devlin et al. 2019) showing good understand-
ing of the natural language have been successfully built. An interesting future direction is
to explore ways to leverage such powerful language models for end-to-end learned neural
goal-oriented dialog systems. Using pre-trained language models for encoding and gen-
erating the user/system dialog utterances can potentially reduce the amount dialog data
required for training the dialog systems. They could also potentially facilitate learning of
dialog systems using human feedback in natural language.

Lifelong learning dialog systems. To prevent performance degradation after deploy-
ment, dialog systems have to adapt to changes over time in user preferences, behaviors,
and the tasks themselves. For example, a personalized movie recommendation system for
a family has to identify when and how a person’s preferences have changed and change the
recommendations accordingly. If a new member joins the family, the system has to quickly
learn the preferences of the new member in order to provide good recommendations. In the
case of a flight ticket booking system, if there are changes to the information that need to
be provided to and obtained from the user (e.g., information pertaining to health and safety,
as was the case during the COVID-19 pandemic), the dialog system has to quickly learn to
do that. Dialog systems that perform multiple tasks, have to be able to learn new tasks after
deployment. While learning a new task, we want the dialog system to not forget the exist-
ing tasks, and use the knowledge of how to perform the existing tasks to learn the new task
with minimal additional training. An interesting future direction is to identify and address
the challenges in building neural end-to-end goal-oriented dialog systems that continually
learn throughout their lifetime.

7.3 Concluding Remarks

In this thesis we identified some important challenges in end-to-end learning of neural
goal-oriented dialog systems and made progress in tackling them. We believe the contri-
butions of this thesis are also valuable for other researchers and engineers working on end-
to-end goal-oriented dialog systems. By making progress in these challenges, we believe
we have taken a step towards achieving the goal of seamless integration of goal-oriented
dialog systems into our everyday lives.
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