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Abstract 
 

Ecosystem services (ES) are the physical goods and associated benefits that are provided 

to humans by ecological systems. Assessment of ES requires knowledge of ecology and 

ecosystem processes, and ES estimates can be improved when they include knowledge of 

nonlinearities, feedbacks, and interactions within ecosystems. A variety of assessment tools have 

been proposed to estimate the provision of ES. However, they fail to acknowledge 

interconnectedness of services or connections between ecosystem processes and services.  

This dissertation examines connections of ecosystem processes and ES with the 

assumption that knowledge of ecosystem ecology and ecosystem processes can be applied to 

improve estimates of ES capacity over time and under a variety of management scenarios. To 

investigate this connection, I modified the ecosystem process model Biome-BGC to simulate the 

provision of ES in exurban Southeastern Michigan. The modification resulted in a new version 

of the model, Biome-BGC-Ex, and involved detailed changes to the source code. The modified 

model included the ability to model competition between turfgrass and open grown trees in a 

single grid cell, to incorporate residential management practices, and to translate model outputs 

into well-defined, quantitative estimates of ES. 

My research was conducted as part of a larger collaboration, the SLUCE (Spatial Land 

Use Change and Ecological Effects) project and addresses the exurban residential landscape as a 

coupled human-natural system. It references and builds on previous elements of the SLUCE 

project including an empirical ecological field study, developer and homeowner interviews, web-

based surveys, and modeling in a coupled human-natural system framework. My contributions to 
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the project, specifically modifying Biome-BGC and linking it to ES, can be applied to future 

research on coupled human-natural systems in exurban residential landscapes.  

Chapter two describes how Biome-BGC was modified for the exurban landscape and 

then calibrated and parameterized for Southeastern Michigan. It examined which yard 

management practices have the greatest effect on carbon sequestration and model results 

suggested N fertilization was the strongest driver across three major vegetation types. Chapter 

three describes how Biome-BGC-Ex was modified to estimate ES capacity of ten services and 

evaluated the impact of yard management practices on ES capacity. Model simulations showed 

trade-offs between ES relating to high amounts of carbon or biomass and freshwater recharge. 

Chapter four took a broader approach and evaluated ecosystem process models as a potential tool 

for ES assessment and discussed how the integration of Biome-BGC-Ex with other tools could 

improve ES assessment. I found that while process models can improve understanding of 

interconnected ecosystem processes and biophysical feedbacks that affect the production of ES, 

they require more detailed data and complex knowledge to run. These chapters also discuss 

limitations of Biome-BGC-Ex and its ability to adequately address ecological complexities of 

exurban landscapes. One major limitation was accurately modelling N dynamics of exurban tree 

cover and model simulations likely overestimating C sequestration under high levels of 

fertilization.   

My dissertation research is the first to modify Biome-BGC to measure ES in a residential 

ecosystem. It is also novel because the work focuses on how human management of the 

landscape affects ES production as opposed to land use or land cover change. My dissertation 

research can likely be replicated in similar ecosystems to inform more complex ES modelling 
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frameworks that rely on ES production modelling grounded in the understanding of ecosystem 

processes and their feedbacks. 
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Introduction 

1.1   BACKGROUND & OVERVIEW 

Broadly, this dissertation examines the connection of ecosystem processes and ecosystem 

services (ES) with the belief that knowledge of ecosystem ecology and ecosystem processes can 

be applied to the field of ES and improve the estimates of ES capacity over time and under a 

variety of management scenarios. To investigate this connection, I have modified the widely-

used ecosystem process model, Biome-BGC, which was designed to represent primarily 

wildland terrestrial biomes, to simulate the provision of ES in the exurban residential landscape 

(Running and Hunt 1993, White et al. 2000, Thornton et al. 2002, Thornton and Rosenbloom 

2005). The modification resulted in a new version of the model, Biome-BGC-Ex, and involved 

detailed changes to the source code of the original model. The modified version includes the 

ability to model the competition between turfgrass and open grown trees in a single grid cell, the 

introduction of residential management practices, and the translation of model outputs into well-

defined, quantified estimates of ES.  

Ecosystem services (ES) are the physical goods and associated benefits that are provided 

to humans by the ecosystems of the planet. ES assessment requires knowledge of ecology and 

ecosystem processes and estimates of ES can be improved when they include knowledge of  

nonlinearities, feedbacks, and interactions within ecosystems (Cumming et al. 2005).  A variety 

of ES assessment tools and methods have been proposed to estimate the provision of ES and the 

goods and benefits they provide to society (see reviews and comparisons by Eigenbrod et al. 



2 

 

2010, Bagstad et al. 2013, Boerema et al. 2017, Sharps et al. 2017, Mandle et al. 2020 for further 

details). However, they neglect to acknowledge the interconnectedness of services or the 

connection between ecosystem processes and services (Seppelt et al. 2011, Bruins et al. 2017, 

Bennett 2017, Lavorel et al. 2017). Ecosystem process models are tools that simulate the storage 

and flux of energy, water, carbon (C), and nutrients that functionally link biotic and abiotic 

components within an ecosystem. ES assessment tools can be improved by including methods 

rooted in ecosystem science including ecosystem process modelling. This dissertation aims to fill 

this gap by taking a model that includes interconnected ecosystem processes and their 

biophysical feedbacks and using it to measure the provision of a suite of ES which fall into the 

supporting, provisioning, and regulating categories of ES. This approach allows for two main 

outcomes; first, it allows us to rely on our extensive knowledge of ecosystem processes, which 

we acknowledge give rise to ES. Second, it gives us the opportunity to understand how different 

drivers of ES capacity including ecosystem structure and human management affect outcomes. 

Exurban development occupies a significant portion of developable land in the United 

States (Theobald 2005, Brown et al. 2005) and the exurban population is projected to continue 

growing in the future (Golding and Winkler 2020). This land includes developer-designed 

subdivisions with large lots as well as individually-developed rural properties, often built on 

preexisting agricultural land or in remnant patches of forest (An et al. 2011). While the 

definitions of exurban land use may vary, the work in this dissertation defines exurban 

residential land use as one housing unit per 0.2 to 16.2 ha (Brown et al. 2005). It is important to 

improve understanding of the ES provided by this landscape as well as how human management 

affects their provision. Suburban and exurban residential developments in the North American 

temperature forest ecosystem are dominated by a human-managed vegetation cover, 
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characterized by maintained turfgrass growing under open grown trees (Luck et al. 2009, Fissore 

et al. 2012, Cook et al. 2012, Huyler et al. 2014a, Groffman et al. 2014a, Currie et al. 2016). 

Additional vegetation cover including standalone turfgrass and remnant forest patches (Currie et 

al. 2016) combined with variable yard management practices (Nassauer et al. 2014) create a 

range of possible C and ES outcomes across the landscape. Ecosystem process models are a tool 

that can be used to simulate large numbers of possible input scenarios and evaluate potential 

outcomes. Simulation results can also be used to inform homeowners, planners, and local policy 

makers on how changes in management can lead to desired ecological outcomes. This 

dissertation uses an ecosystem process model to evaluate how thousands of combinations of yard 

management practices affect C sequestration outcomes as well as a suite of ten ES in the 

residential exurban landscape of Southeastern Michigan.  

This dissertation has five chapters, an introductory chapter followed by three research 

papers as three separate chapters and the final concluding chapter. The first paper (Chapter 2) is 

in the process of being revised and resubmitted to Ecological Modelling. The second paper 

(Chapter 3) will be submitted to Ecological Applications. The journal for the third paper 

(Chapter 4) is to be determined. This introductory chapter provides a description of the three 

papers and their results.  Chapter 2 describes how Biome-BGC-Ex was modified for the exurban 

landscape and then calibrated and parameterized for exurban residential land in Southeastern 

Michigan. The modified model was then used to answer the following question: How do 

individual and combinations of yard management practices affect C sequestration? Chapter 3 

describes how Biome-BGC-Ex was modified to provide outputs that can be used to estimate ES 

capacity of ten services in the residential landscape. The main questions of this component of the 

study, which focused on exurban Southeastern Michigan were: How do individual and 
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combinations of yard management practices affect ES capacity? As well as what are the trade-

offs and synergies found between the modelled services? Chapter 4 takes a broader approach to 

evaluate terrestrial ecosystem process models as a tool for ES assessment. The main questions 

this paper addressed were: Are ecosystem process models a useful tool for estimating ES 

capacity? Along with, how can ecosystem process models be integrated with other tools to 

improve ES assessment?  

While I solely completed the research presented in this d-issertation (unless otherwise 

cited), it was conducted as part of a larger collaboration, the SLUCE project (Spatial Land Use 

Change and Ecological effects (Brown et al. 2008)), which was funded by the National Science 

Foundation’s Program on the Dynamics of Coupled Human and Natural Systems and conducted 

at the University of Michigan.  This project addresses the exurban residential landscape as a 

coupled human-natural system. My research references and builds on previous elements of the 

SLUCE project including an empirical ecological field study (Currie et al. 2016), developer and 

homeowner interviews (Nassauer et al. 2014, Nassauer 2017), web-based surveys (Nassauer et 

al. 2009, Wang et al. 2012, Visscher et al. 2014, 2016), and modeling in a coupled human-

natural system framework (Robinson et al. 2013). My contributions to the project, specifically 

modifying Biome-BGC and linking it to ES, can be applied to future research on coupled human-

natural systems. The conclusion chapter provides some insight into the future direction of this 

research including how Biome-BGC-ES could be coupled with agent-based models and 

economic models developed in the SLUCE project to further explore how landscape 

management decisions affect the provision of ecosystem services.   
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1.2   ADAPTING A WIDELY USED ECOSYSTEM PROCESS MODEL (BIOME-BGC) FOR THE EXURBAN 

RESIDENTIAL LANDSCAPE 

Terrestrial ecosystem process models simulate the stocks and flows of energy, carbon, 

nutrients and water in vegetation and soil. Widely used examples of this type of model include, 

but are not limited to CENTURY (Parton et al. 1993b), Biome-BGC (Running and Hunt 1993, 

Thornton et al. 2002), TEM (McGuire et al. 1992) and PnET (Aber et al. 1996, 1997). Although 

these models were originally designed for wildland ecosystems (e.g. Biome-BGC for forests, 

Running and Hunt 1993; CENTURY for grasslands, Parton et al., 1993), they can be modified to 

understand fluxes of C and N across a range of wildland and human-dominated ecosystems 

including agriculture (Parton and Rasmussen 1994, Foereid and Høgh-Jensen 2004, Wang et al. 

2005, Stehfest et al. 2007), managed forests (Tatarinov and Cienciala 2006, González-Sanchis et 

al. 2015), managed grasslands (Qian and Follett 2002, Bandaranayake et al. 2003, Hidy et al. 

2012), and urban ecosystems (Milesi et al. 2005, Zhang et al. 2012, Trammell et al. 2017).  

In this dissertation I have created a modified version of an “off the shelf” ecosystem 

process model designed for wildland systems (Biome-BGC) for use in the human-dominated 

exurban landscape, hereafter referred to as Biome-BGC-Ex. Modifying an existing model has 

two main benefits; first we are providing adaptations to a model that is already widely regarded 

and used in the scientific community and second, by drawing on extensively validated model 

dynamics we did not spend time having to model a system from scratch, which would have 

required more resources than were available for the scope of this project.  

In the past five years Biome-BGC has been adapted for a variety of human managed 

forest, agricultural, and grassland ecosystems (González-Sanchis et al. 2015, Mao et al. 2016, 

2017, Hidy et al. 2016). Previously, Biome-BGC had been modified to estimate turfgrass (lawn) 
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pools and fluxes in the US (Milesi et al. 2005). Another similar ecosystem process model, 

CENTURY, has been applied to residential ecosystems (Trammell et al. 2017). However, the 

only other available literature on Biome-BGC being modified for or applied to urban or 

residential ecosystems with more extensive tree and turfgrass management is in research 

completed by myself in my first and second paper and previous work by myself and my 

colleagues (Robinson et al. 2013).  

Two limitations of applying Biome-BGC to the residential landscape are that it can only 

simulate a single layer of vegetation and that it does not include yard management practices. This 

dissertation addresses both limitations by creating a modified version of the model, Biome-BGC-
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Ex that allows for competing layers of tree and turfgrass vegetation (

 

 

Figure 1-1) and includes the following residential yard management practices: 

fertilization, irrigation, mower blade height, mulch mowing, pruning intensity and frequency, 

raking, coarse woody debris (CWD) removal, tree planting, and tree removal. This process 

required extensive changes to the model source code including adding a new subroutine to 
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simulate competition between trees and turfgrass for light (radiation), creation of pools and 

fluxes for all vegetation and litter C, nitrogen (N), and water processes for each vegetation layer, 

and modification of existing subroutines to simulate yard management. All modifications were 

carried out in Microsoft Visual Studio using C++ language. A more detailed description of 

changes can be found in Appendix -A.
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Figure 1-1: Conceptual diagram of Biome-BGC-Ex detailing C, N, and water fluxes and 

pools.  

Compared to the original version of Biome-BGC this figure shows the addition of turf vegetation 

and litter pools and the fluxes of radiation, C, N, and water to these pools.  
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1.3   EVALUATING THE EFFECT OF EXURBAN YARD MANAGEMENT PRACTICES ON C 

SEQUESTRATION WITH BIOME-BGC-EX 

The residential landscape has the potential to store C in vegetation and soils over time 

(Raciti et al. 2011, Currie et al. 2016). This potential is limited or enhanced by a variety of social 

and environmental factors including climatic drivers (Boisvenue and Running 2006), land 

development patterns and vegetation choices (Westbrook 2010, Magliocca et al. 2014, Nassauer 

2017), time since development (Golubiewski 2006, Raciti et al. 2011, Huyler et al. 2014a, 

Campbell et al. 2014), neighbor influence (Nassauer et al. 2009, 2014), parcel size (Robinson et 

al. 2009, Huang et al. 2013, Visscher et al. 2014), and the amounts and ages of vegetation, 

particularly trees (Currie et al. 2016). In addition, homeowners’ practices and behaviors affect 

vegetation and soil C pools on their properties. For example, turfgrass management practices 

such as fertilization, irrigation, and mulch mowing have been found to increase soil C pools 

(Pouyat et al. 2002, 2009, Qian et al. 2003, Townsend-Small and Czimczik 2010, Huyler et al. 

2014b). Planting and retaining trees in residential yards can increase soil C accumulation (Huyler 

et al. 2017) and ecosystem C accumulation (Fissore et al. 2012). Tree pruning has not been 

shown to improve C storage, unless it is able to increase tree longevity, while irrigating young 

trees can improve C storage by increasing tree longevity (Nowak et al. 2002).   

Research in exurban and urban landscapes has given us insight into the intensity, 

frequency, and combinations of homeowner yard management practices (Law et al. 2004, Zirkle 

et al. 2011, Nassauer et al. 2014, Currie et al. 2016). It has also led to the realization that this 

landscape includes three dominant vegetation cover types in exurban residential landscape, 

turfgrass, dense woody, and turfgrass with sparse woody (Figure 1-2); referred to in italics to 

correspond with naming and definitions found in Currie et al. 2016. Turfgrass with sparse woody 
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is a novel ecosystem, characterized by maintained turfgrass growing under open grown trees in 

temperate forest ecosystems of North America (Luck et al. 2009, Fissore et al. 2012, Cook et al. 

2012, Huyler et al. 2014a, Groffman et al. 2014a, Currie et al. 2016).  However, there are many 

limitations to collecting adequate field data and designing field experiments to explore how 

management decisions on each of these vegetation types affects C sequestration. Ecosystem 

process models are a tool that can be used to simulate how management and vegetation structure 

affects ecosystem processes and functions on the landscape and estimate C outcomes over 

extended periods of time. The first paper (Chapter 2) presents the ecosystem process model 

Biome-BGC-Ex as a tool designed to estimate C sequestration under a range of homeowner 

management and vegetation structure conditions. 

As mentioned above (Section 1.2), Biome-BGC-Ex was designed to address two main 

limitations of the original Biome-BGC model. First, to simulate turfgrass with sparse woody and 

have tree and turfgrass vegetation compete for light, water, and nutrients. Second, to incorporate 

yard management practices. This model was then initialized, parameterized and calibrated for the 

exurban residential landscape using data previously collected from field studies (Currie et al. 

2016), previous iterations of applying the model to residential land (Milesi et al. 2005, Robinson 

et al. 2013), and MODIS NPP (NTSG, 2014; Zhao et al., 2005; Zhao and Running, 2010). 

Biome-BGC-Ex was used in three separate analyses to evaluate which individual and 

combinations of management practices have the largest effects on C sequestration in the exurban 

residential landscape of Southeastern Michigan over a 50-year time period. In the first analysis 

Monte Carlo methods were used to explore the potential range of combinations of management 

practices currently in use on exurban residential land (Nassauer et al. 2014, Visscher et al. 2014, 

2016). This method allowed us to quantify the full range of C sequestration in residential parcels 
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and to identify which management practices are likely to be the strongest drivers of C 

sequestration or loss. Second, we simulated C sequestration for a typology of six different 

exurban homeowner types and their associated management practices (Homeowner Agent 

Typology, HAT) developed by Nassauer and others (2014). C sequestration was compared 

across each homeowner type for each vegetation cover type to determine which was able to store 

the most C. For the third analysis these results were scaled up to the landscape based on current 

landscape vegetation coverage proportions found in our study region (Currie et al. 2016). Results 

from these analyses showed fertilizer was the strongest driver of C sequestration in turfgrass and 

turfgrass with sparse woody vegetation cover types and homeowner types with the highest rates 

of fertilization sequestered the most carbon at the scale of the parcel and the landscape. 

 

Figure 1-2: Examples of the three dominant vegetation cover types found in exurban 

residential landscape a) turfgrass, b) dense woody, c) turfgrass with sparse woody. 
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1.4   LINKING ECOSYSTEM PROCESSES TO ECOSYSTEM SERVICES WITH BIOME-BGC-EX 

Ecosystem services (ES) are the physical goods and associated benefits that are provided 

to humans by the ecosystems of the planet. Ecosystem processes along with ecosystem 

composition and structure give rise to the production of ES (Fu et al. 2013). When ecosystem 

processes are impacted by human management or other human-caused changes to ecosystem 

structure, feedbacks within biophysical systems and between human and biophysical systems 

occur that impact the production of ES (Figure 1-3) (Fu et al. 2013, Potschin-Young et al. 2018). 

Despite the acknowledgement that ecosystem processes are vital to service production, there is a 

documented but unfulfilled need to bring our knowledge of ecosystem processes to ES science 

(Bennett 2017, Lavorel et al. 2017, Broszeit et al. 2019).  

Assessment of ES contains three main components (Figure 1-3) (Tallis et al. 2012, 

Villamagna et al. 2013, Tomscha et al. 2016): 1) ES capacity (also referred to as ecological 

production function or ES supply) is the potential of an ecosystem to produce and deliver 

services based on biophysical and social properties and functions, 2) ES flow is the realized flow 

of services for which there is demand, 3) ES demand, which includes ES valuation, is the amount 

of services required or desired by society. One limitation of existing ES estimation tools is that 

they neglect to include a functional treatment of the ecological processes that, from a causal 

understanding, produce ES (Seppelt et al. 2011, Currie 2011, Bruins et al. 2017, Lavorel et al. 

2017), which may lead to misunderstanding the mechanisms underlying the effects of 

management decisions on ES (Bennett 2017, Boerema et al. 2017). 

Ecosystem process models are a tool that reflect complexities, such as biophysical 

feedbacks, among processes and with some modification can be used to provide users with 

dynamic and quantitative measures of ES that can be integrated with other types of models and 
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tools. Previous studies have used modified ecosystem process models (e.g., PnET-CN, 

CENTURY, Biome-BGC) to estimate ES capacity. This has included linking Biome-BGC with a 

hydrology model to estimate ES in a watershed (Xu et al. 2016), linking a modified version of 

Biome-BGC (Biome-BGCMuSo) with a crop simulation model (Pokovai et al. 2020), and 

modifying Biome-BGC to estimate ES in a managed forest (Turner et al. 2011). The CENTURY 

model has been applied to residential ecosystems but not with the goal of modeling the provision 

of ecosystem services (Trammell et al. 2017). The second paper (Chapter 3) of this dissertation is 

one of the first analyses that uses Biome-BGC-Ex to examine ES capacity in a residential 

landscape and examine trade-offs and synergies in those ES. This study is also novel because it 

focuses on how human management of the landscape affects ES production as opposed to land 

use or land cover change.   
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Figure 1-3: Simplified ES framework conceptualizing capacity, flow, demand, biophysical 

feedbacks, and human drivers and pressures.  

Based on similar simplified frameworks by Tomscha and others (2016) and Tallis and others 

(2012).This dissertation focuses on how human drivers and pressures in the form of management 

behaviors affect ES Capacity and the biophysical feedbacks occurring in the ecosystem (solid 

white arrows). While this work acknowledges that ES flows affect ES demand (shaded arrow), 

this relationship is beyond the scope of the methods presented in this dissertation. 

 

Biome-BGC-Ex was used in two separate analyses to examine how yard management 

behaviors affect the ES capacity of a suite of ten ES including NPP, soil fertility, firewood 

production, nitrogen retention, freshwater recharge, spring soil water recharge, summer soil 

water retention, climate regulation, microclimate regulation, and air pollution abatement. These 

services were estimated within three vegetation cover types identified as dominant in the exurban 

residential landscape turfgrass, turfgrass with sparse woody, and dense woody (Currie et al. 
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2016). The first analysis used Monte Carlo simulation methods to explore the combined effects 

of interacting, variable values of yard management practices on ES. This allowed us to determine 

which management practices were the strongest influence on each service. The second analysis 

simulated each ES for each of the six exurban homeowner type defined in our Homeowner 

Agent Typology (Nassauer et al. 2014) and allowed us to evaluate how specific management 

behavior combinations drove biophysical feedbacks within and between ecosystem processes 

and ES capacity led to trade-offs and synergies between services and how demand for different 

cultural ecosystem services affected ES Capacity outcomes. Results from these analyses showed 

fertilizer, irrigation, raking. and pruning were the strongest drivers of modeled ES. While most 

services were synergistic, there were trade-offs between many of the services and freshwater 

recharge.  

1.5   EVALUATING ECOSYSTEM PROCESS MODELS AS A TOOL FOR ESTIMATING ES CAPACITY  

Despite the proliferation of ES assessment tools, most do not consider mechanistic 

feedbacks within ecosystems, e.g. feedbacks among biogeochemical cycles, or other biophysical 

interactions among ES; each service is typically estimated independent of other services (Currie 

2011, Bruins et al. 2017, Lavorel et al. 2017). The tools most referred to in the literature and 

used in studies on trade-offs and synergies of ES typically use lookup tables and regression 

equations to simulate ES capacity individually and overlay these results to determine trade-offs 

and synergies (ESTIMAP (Zulian et al. 2018); InVEST (Sharp et al. 2016); LUCI (Trodahl et al. 

2017); EBI (Van der Biest et al. 2014)). Many studies have determined that by not considering 

interactions and biophysical feedbacks between ES or between ecosystem processes and ES, 

scientists and managers may improperly estimate ES capacity and misunderstand the 
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mechanisms underlying the effect of management decisions on service outcomes (Villa et al. 

2014, Bruins et al. 2017, Bennett 2017, Boerema et al. 2017).  

The third paper (Chapter 4) of this dissertation evaluates ecosystem processes models as 

a tool for estimating ES capacity of supporting, regulating, and provisioning ES. This paper has 

three main objectives. First, it reviews how current ES assessment tools estimate ES and 

concludes that although some consider multiple aspects of ES including capacity, flow, and 

demand (Figure 1-3), they do not consider interactions or biophysical feedbacks between 

processes and services. Second, it analyzes benefits and limitations of applying ecosystem 

process models to study ES. Benefits of this approach include: the ability to simulate a variety of 

management, policy, and climate scenarios; the fact that these models have already been verified, 

calibrated, and applied across a range of geographic areas and ecosystems; and the fact that 

ecosystem process models are designed with dynamic flows and biophysical feedbacks in mind. 

Limitations of this approach include the fact that ecosystem process models have significant 

complexity, require large amount of input data collection, require additional modification for 

human-dominated ecosystems or ES output, and may need to link to additional spatial 

frameworks to include a spatial component. Finally, this paper discusses how ecosystem process 

models could be integrated with other methods to provide improved estimation of ES and 

incorporate feedbacks between the human and biophysical systems.  

1.6   CONCLUSIONS 

The model Biome-BGC-Ex addresses two of the main limitations of applying off-the-

shelf ecosystem process models to human-dominated, residential ecosystems. It allows for 

simulation of multiple layers of competing vegetation and incorporates yard management 

practices. Further, this model addresses one of the limitations of current ES assessment tools by 
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linking estimates of ES capacity to an ecosystem process model. The methods and results 

presented in this dissertation advance our understanding of how homeowner management 

practices affect ecosystem processes and how these influence C sequestration and ES outcomes. 

The approaches described in this dissertation have the potential to inform more complex 

ES modelling frameworks that rely on ES capacity modelling grounded in the understanding of 

ecosystem processes and biophysical feedbacks. As improved estimation of ES and C 

sequestration continues to be of importance to ES scientists, land managers, and policy makers, 

these methods can further be integrated withing existing modelling and decision-making 

frameworks. While the methods and model shown in this dissertation were applied to the 

exurban landscape of Southeastern Michigan, they can also be applied to other suburban and 

exurban residential development across broader temperate regions.  
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Modelling the Effect of Exurban Residential Landscape 

Management Practices on Carbon Sequestration in a 

Temperate Forest Biome 

ABSTRACT 

Vegetation and soils in the residential exurban landscape have the potential to store 

significant amounts of carbon (C). However, a variety of human factors and decisions can affect 

C outcomes by altering ecosystem processes and functions on the landscape. Ecosystem process 

models are an important tool that can be used to understand these dynamics and to predict C 

storage outcomes over extended periods of time. In this study we present Biome-BGC-Ex, a new 

version of the ecosystem process model Biome-BGC, that we have modified to include 

competition between trees and turfgrass and residential landscape management practices in the 

exurban landscape. In a series of analyses, we evaluate individual and combinations of 

residential management practices to compare their effect on carbon sequestration in the 

temperate exurban region of Southeastern Michigan, USA over a fifty-year time horizon. For the 

first two analyses we ran Biome-BGC-Ex simulations for three predominant vegetation cover 

types identified in our study region, and model results suggested that N fertilization was the 

strongest driver of C sequestration in two of the cover types turfgrass and turfgrass with sparse 

woody vegetation, however further empirical research is needed to address these findings.  At the 

landscape scale, homeowner type with the highest fertilizer rate had the largest increase in total 

ecological C over 50 years while the type that did not fertilize and pruned annually resulted in a 

loss of total ecological C.  These outcomes were driven by gains and losses of tree biomass and 
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soil C. The main limitation of the modified model involves lack of validation in its ability to 

adequately simulate N dynamics in the exurban landscape. As is, the current model likely 

overestimates C sequestration under high levels of N fertilization. Biome-BGC-Ex can 

potentially be used to measure C dynamics across similar temperate exurban residential 

landscapes, but future work must address limitations in the model’s simulation of N dynamics. 

2.1   INTRODUCTION 

The residential landscape functions as a coupled human–natural system (Liu et al. 2007) 

that has the potential to sequester carbon (C) in vegetation and soils over time (Raciti et al. 2011, 

Currie et al. 2016). The rate of C sequestration in this environment depends on a variety of social 

and ecological factors and their interactions. Homeowner choices and behaviors, which we refer 

to as ‘management practices’ include activities such as mowing, fertilizing, irrigation, and 

pruning. Homeowner management preferences are motivated by a variety of factors including 

aesthetics, safety, leisure provision, neighborhood norms, and environmental concerns (Nassauer 

et al. 2009, Cook et al. 2012, Larson et al. 2016, Locke et al. 2018). Although residential 

homeowners may not fully recognize the impacts of their choices, management practices alter 

the ecological processes that affect vegetation and soil C cycling. The complex interactions 

between homeowner management practices and ecosystem processes produce heterogeneous 

patches of C storage outcomes across the landscape (Rao et al. 2013, Polsky et al. 2014, Currie et 

al. 2016).  

Potential C sequestration in the residential environment is driven by social and ecological 

factors including: climatic drivers (Boisvenue and Running 2006, Pickett and Cadenasso 2008), 

land use history (Raciti et al. 2011, Ziter and Turner 2018, Peach et al. 2019), land development 

patterns and vegetation choices (Magliocca et al. 2014, Nassauer 2017), time since development 
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(Raciti et al. 2011, Huyler et al. 2014a, Campbell et al. 2014), neighbor influence (Nassauer et al. 

2009, 2014), parcel size (Robinson et al. 2009, Huang et al. 2013, Visscher et al. 2014), and the 

amounts and ages of vegetation, particularly trees (Currie et al. 2016). In addition, homeowners’ 

practices and behaviors affect vegetation and soil C pools on their properties. For example, 

turfgrass maintenance practices such as fertilization, irrigation, and the return of mowed turfgrass 

clippings into the lawn can increase soil C pools (Pouyat et al. 2002, 2009, Qian et al. 2003, 

Huyler et al. 2014b). Tree planting and retaining existing trees can increase soil C accumulation 

(Huyler et al. 2017) and ecosystem C accumulation (Fissore et al. 2012). Research in residential 

landscapes has given us insight into the frequency of and variation within each management 

practice (Zirkle et al. 2011, Nassauer et al. 2014, Visscher et al. 2014, 2016, Currie et al. 2016).  

This study focuses on exurban residential development, which increasingly determines 

patterns of land use and vegetation at the urban-rural fringe throughout the U.S. (Brown et al. 

2005, 2008, Churkina et al. 2010, Berger and Kotkin 2017). Exurban land area increased from 

about 5 % (270,608 km2) of total land area of the conterminous US in 1950 to about 25 % 

(1.39 million km2) in 2000 (Brown et al. 2005) and is projected to increase in future decades 

(Golding and Winkler 2020). This land includes developer-designed subdivisions with large lots 

as well as individually-developed rural properties, often built on preexisting agricultural land or 

in remnant patches of forest (An et al. 2011). Exurban residential land use is defined for this 

study as one housing unit per 0.2 to 16.2 ha (Brown et al. 2005). Compared to suburban land use, 

Exurban development is composed of lower-density settlements that may lie adjacent to more 

densely populated suburban areas.  In contrast to suburban areas, exurban parcels are larger, 

farther from city or town centers, and are typically disconnected from municipal services of 

sanitary sewer and water (An et al. 2011).  Exurban landscapes contain a heterogeneous mix of 
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impervious surfaces and vegetation patches, including maintained turfgrass, and remnant forest 

patches, which we refer to as dense woody, scattered throughout the landscape (Brown et al. 

2008, An et al. 2011, Currie et al. 2016). Exurban and suburban development creates a novel 

ecosystem, characterized by maintained turfgrass growing under open grown trees in temperate 

forest ecosystems of North America (Luck et al. 2009, Fissore et al. 2012, Cook et al. 2012, 

Huyler et al. 2014a, Groffman et al. 2014a, Currie et al. 2016), which we will refer to as 

turfgrass with sparse woody vegetation in this study.  

Given the significance of exurban residential land use in the United States and its 

growing spatial footprint, it is important to understand the full extent heterogenous vegetation 

structure and human management has on potential C sequestration in this landscape. Historically, 

global C models and C inventories have not accurately identified exurban residential land, 

typically misidentifying it as forest, agriculture or denser urban (Schneider et al. 2009, Friedl et 

al. 2010), which may lead to over or under estimation of C stored. The effects of human 

management on this land  are not considered in coarse-scale studies of C storage, likely resulting 

in inaccurate estimates of soil and vegetation C in landscapes that contain significant areas of 

exurban settlement (Pataki et al. 2006, Churkina 2008, Raciti et al. 2012). Since residential 

landscapes are managed differently from wildland or agricultural systems, in ways that affect C 

cycling, they should also be modelled differently if we wish to capture the major drivers of 

landscape C storage. The exurban landscape falls on a gradient between wildland and dense 

urban landscapes in many respects.  It contains open grown trees and grasses, but it is not a 

wildland forest or grassland. It contains impervious surfaces and built structures, but at much 

lower densities than those in urban or suburban land.  The effects of these factors and their 

interaction with ecosystem processes and function can be explored with ecological models.  
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Carbon sequestration in vegetation and soil is driven by net ecosystem flows of C, which 

in turn are strongly governed by available water and nitrogen (N). Terrestrial ecosystem 

biogeochemical models simulate nutrient cycling and biogeochemical processes based on soil 

and climate characteristics. Unlike demographic or gap models, which are focused succession 

and individual tree dynamics within a forest patch, these ecosystem process models do not 

include competition and can only simulate the dynamics of a single homogeneous layer of a 

plant functional type (e.g., deciduous tree, C3 grass) at a given point in space. Compared to other 

models of urban and residential C sequestration (e.g. UFORE, Nowak et al. 2008; InVEST, 

Polasky et al. 2011) that predict C sequestration empirically based on ecosystem structure and 

aboveground biomass, ecosystem process models consider the mechanistic relationships and 

biogeochemical feedbacks between pools and fluxes of C, water, and nutrients. This allows users 

to estimate C sequestration under a variety of scenarios and to determine which factors are 

limiting and driving C sequestration, but with a limited ability to model vegetation dynamics. 

Ecosystem process models have been calibrated, validated, and applied to global simulations as 

well as for local, site specific conditions. Although these models were originally designed for 

wildland ecosystems (e.g. Biome-BGC for forests, Running and Hunt 1993; CENTURY for 

grasslands, Parton et al., 1993), they can be modified to understand C/N fluxes across a range of 

wildland and human-dominated ecosystems including agriculture (Parton and Rasmussen 1994, 

Foereid and Høgh-Jensen 2004, Wang et al. 2005, Stehfest et al. 2007), managed forests 

(Tatarinov and Cienciala 2006, González-Sanchis et al. 2015), managed grasslands (Qian and 

Follett 2002, Bandaranayake et al. 2003, Hidy et al. 2012), and urban ecosystems (Milesi et al. 

2005, Zhang et al. 2012, Trammell et al. 2017).  
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Our primary objective in the present analysis was to model how residential landscape 

management practices lead to increased or decreased C sequestration through uptake in soil and 

vegetation in the exurban landscape. Specifically, we were interested in the dynamics of C 

sequestration on the three dominant vegetation cover types in exurban residential landscape, 

turfgrass, dense woody, and turfgrass with sparse woody (referred to in italics to correspond with 

naming and definitions found in Currie et al. 2016). We modified Biome-BGC, a widely used 

ecosystem process model to determine which management practices would affect C 

sequestration. The key additions to the model, now referred to as Biome-BGC-Ex, were creating 

a “biome” to simulate turfgrass with sparse woody vegetation and adding residential yard 

management practices. We then parameterized and calibrated the model based on results from 

our field survey of the exurban landscape and social surveys of exurban homeowners (Nassauer 

et al. 2014, Visscher et al. 2014, 2016, Currie et al. 2016). By expanding on an existing model 

framework, we hope to contribute to a broad understanding of ecosystem processes and C 

sequestration in human-dominated exurban systems that could potentially be applied globally in 

temperate forest biomes.  

We applied Biome-BGC-Ex in three separate analyses to address the question of how do 

individual and combinations of residential yard management practices influence C sequestration 

over a 50-year time horizon? First, at the parcel scale we used a Monte Carlo simulation that 

explores the potential range of combinations of management practices currently in use on 

exurban residential land in our study region, Southeastern Michigan, USA. This method allowed 

us to quantify the full range of C sequestration in residential parcels and to identify and compare 

which management practices are likely to be the strongest, weakest, or insignificant drivers of C 

sequestration or loss. Our first hypothesis was that C sequestration would differ with different 
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management activities and that fertilizer would have the largest influence on C sequestration. 

Second, to account for heterogeneity in management practices among different types of 

homeowners (homeowner agent typology analysis), we analyzed and compared C sequestration 

of different specific sets of management practices found to co-occur in our study region 

(Nassauer et al. 2014) within three predominant vegetation cover types at the scale of the parcel. 

Our second hypothesis was that all homeowner types would have net positive C sequestration in 

turfgrass with sparse woody, with the highest amount found in the homeowner type with the 

highest fertilization rate. Third, we scaled the results of the second analysis to that of residential 

exurban neighborhoods (i.e., subdivisions) found in Southeastern Michigan to compare how 

homeowner agent type influenced C sequestration at this scale. Our third hypothesis was that the 

homeowner types with medium to high fertilization and low amounts of woody biomass removal 

would lead to the largest net C sequestration.  

2.2   METHODS 

2.2.1  MODIFYING BIOME-BGC 

2.2.1.1  OVERVIEW OF BIOME-BGC 

Biome-BGC is a mechanistic biogeochemical model that is used to measure the storage 

and flux of carbon (C), nitrogen (N) and water within and between the atmosphere, vegetation, 

and soil of terrestrial ecosystems (Running and Hunt 1993, White et al. 2000, Thornton et al. 

2002, Thornton and Rosenbloom 2005).  We obtained Biome-BGC 4.2 (Thornton et al. 2002) 

from  the Numerical Terradynamic Simulation group at the School of Forestry, University of 

Montana (http://www.ntsg.umt.edu), and this is the version we will be referring to unless 

otherwise noted. A newer version of the model is available (Biome-BGC-MuSo, Hidy et al. 

http://www.ntsg.umt.edu/
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2016), model modifications for this study were completed prior to its release. This ecosystem 

model provides a suitable platform for this work because it has been widely used and modified to 

quantify ecosystem C balance in a variety of biomes worldwide, including wildland or natural 

forests and grasslands (Bond-Lamberty et al. 2005, Goetz et al. 2012, Lombardi et al. 2016, Sun 

et al. 2017), managed forests (Tatarinov and Cienciala 2006, Migliavacca et al. 2009, González-

Sanchis et al. 2015, Mao et al. 2017),  managed grasslands (Hidy et al. 2012), and urban lawns 

(Milesi et al. 2005) Biome-BGC is a one dimensional model and represents a point in space with 

all fluxes and stocks scaled to a per square meter basis (Golinkoff 2010). Within this point in 

space the model is designed to simulate dynamics of single plant functional type (PFT) e.g., 

deciduous broadleaf forest or C3 grassland.  

Biome-BGC requires multiple forms of input data including drivers (weather and climate 

data), initial conditions (soil conditions, initial C and N stocks, N deposition), and parameters 

(ecophysiological conditions of vegetation and soil). The model includes detailed daily 

interactions among light, water availability, soil properties, and N cycling, capturing differences 

among biomes.  Carbon is accumulated through photosynthesis and removed during autotrophic 

(maintenance and growth) and heterotrophic (decomposition) respiration. Biome-BGC can 

provide output for a variety of daily, monthly, or yearly data including C, N, and water pools and 

fluxes, NPP, and evapotranspiration.  

Biome-BGC can simulate changes in detrital and soil organic C pools over time resulting 

from temporal dynamics in production and decomposition.  Biome-BGC assumes a uniform 

layer of soil (not divided into soil horizons) that is comprised of four soil organic matter (SOM) 

pools (fast, medium, slow, and recalcitrant). It has several pools that store the C and N of dead 

and decaying wood and leaves. Dead coarse roots and stem wood enter the coarse woody debris 
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(CWD) pool and as they are broken down join fine roots and leaves in four separate litter pools 

(labile, shielded cellulosic, unshielded cellulosic, and lignin). The litter pools decompose and 

enter SOM and as SOM decomposes it is transferred into successively slower decomposing 

pools.  The rate of decomposition and heterotrophic respiration is informed by the empirical 

studies that show  rates are limited by soil water (Orchard and Cook 1983, Andren and Paustian 

1987) and temperature (Lloyd and Taylor 1994). C allocation and decomposition are limited by 

N limitation in the system and the model assumes that microbes and plants have equal weight 

when competing for soil N and that plant and soil C:N ratios (provided by the user) are constant 

across each model run.  

A limitation for the purposes of modeling the residential landscape is that it represents 

each vegetation cover type (referred to as a biome in the model) by a single plant functional type, 

e.g., woody vegetation, tundra plants, or grasses. To represent residential landcover, much of 

which includes lawns of turfgrass mixed with trees (turfgrass with sparse woody), we created a 

modified version of Biome-BGC, hereafter referred to as Biome-BGC-Ex.  This new version 

allowed more than one plant functional type (turfgrass and trees) in vertical layers and simulated 

management practices that directly affect soils and vegetation (Figure 2-1). 
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Figure 2-1: Conceptual diagram of Biome-BGC-Ex carbon (C), nitrogen (N), and water 

dynamics.   

Dashed outlines indicate management practices. Grey filled shapes indicate pools and fluxes 

with potential for multiple vegetation layers. Decomposition refers to fluxes of soil C and N 

including formation of soil organic C, N mineralization, N immobilization, and N volatilization. 

Removal state variables are the C and N that is removed from the system (i.e., N and C pools 

stored here are not considered to be retained in the system). 

2.2.1.2  MULTIPLE PLANT FUNCTIONAL TYPES 

The key modification of Biome-BGC-Ex allows a vegetation cover type with two distinct 

layers of vegetation in which two plant functional types can exist in the same grid cell and to 

compete for resources including light, water, and nitrogen.  This allowed us to simulate turfgrass 

with sparse woody vegetation (Currie et al. 2016) as a distinctive vegetation community with a 

layer of trees above a layer of turfgrass. To simulate turfgrass and dense woody vegetation we 

were able to use the existing capabilities of Biome-BGC.  Following Bond-Lamberty et al. 

(2005), we divided Biome-BGC functionality into site-level variables (meteorology, soil C and 

N) not needing modification from vegetation-level variables that did require changes to the 
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source code. In Biome-BGC-Ex, vegetation-specific processes, such as photosynthesis, 

respiration, and C allocation and daily updates of C, N, and water state variables, are simulated 

separately for each plant functional type. Litter and coarse woody debris variables are considered 

vegetation-specific variables until they enter soil pools. 

Biome-BGC-Ex includes additional modifications to processes where plant functional 

types compete for resources. Competitive advantage for light and precipitation interception is 

determined by vegetation height, which is controlled by two new variables describing the 

relationship between biomass and height for each plant functional type. This relationship is 

modelled following an equation from Bond-Lamberty and others (2005):   

“An exponential equation of the form: 

ℎ = ℎ𝑚𝑎𝑥(1 − 𝑒
−

5

 𝑚ℎ𝑚𝑎𝑥
𝑚

)        (1) 

was chosen to describe this relationship. The two parameters supplied for each vegetation 

type are hmax, the maximum vegetation height, and mhmax, the vegetation mass at which 

this height is attained… At the beginning of each simulation year Biome-BGC computes 

the height of each vegetation type based on current stem (for woody plants) or leaf (for 

grasses) mass and determines a height order. All light and precipitation interception for 

the subsequent year occurs using this height order, with the tallest vegetation intercepting 

first; light or precipitation that is not intercepted becoming available to the next tallest 

vegetation type”. 

In Biome-BGC-Ex, competition between the trees and turfgrass for belowground 

resources of N and soil water is size symmetric (based on plant biomass in each layer). These 

processes follow the pre-existing logic in Biome-BGC (Hara 1993, Bond-Lamberty et al. 2005, 

Pretzsch and Biber 2010). For N, Biome-BGC-Ex assesses total demand for soil available N 

from plant uptake, litter decomposition and soil processes of each layer; if demand is greater than 

the soil mineral N pool, every potential demand flux is reduced by the same proportion, such that 

all available N is used.  
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2.2.1.3  SIMULATING THE EFFECTS OF RESIDENTIAL YARD MANAGEMENT PRACTICES ON 

ECOSYSTEM PROCESSES 

Biome-BGC-Ex tracks the effects on ecosystem function of inputs, removals, storage, 

and transformations of vegetation and detrital C and N, as well as water inputs, associated with 

residential landscape management practices. In Biome-BGC-Ex an additional input file was 

created to supply values for a new set of model drivers representing residential yard management 

practices. The input file includes new variables describing the intensity and frequency of each 

management practice including fertilization, irrigation, mower height, mulch mowing, pruning 

intensity, pruning frequency, raking, coarse woody debris (CWD) removal, tree planting, and 

tree removal.   

Our source code modification for management typically involved adding new 

management practices to similar ecological processes already present in Biome-BGC. Fertilizer 

use was added daily to the soil mineral N pool during the growing season (May 1 – Oct. 1).  For 

irrigation, a user-provided weekly water target was compared to precipitation on a weekly basis 

and if not met the difference was added as irrigation (this assumes less irrigation when rainfall is 

adequate for turf management). Raking was represented as a proportional removal of leaf litter.  

The addition of tree planting to the model required additional modification so that additional tree 

biomass was added to above-and below-ground C and N stocks for woody vegetation.  

Tree removals, pruning, coarse woody debris (CWD) removal and mowing were all 

incorporated as separate processes within the daily mortality function, which simulates the 

fraction of vegetation biomass to be moved to CWD and litter pools. For all mortality removals, 

we made the parsimonious assumption that belowground vegetation mortality was proportional 

to aboveground removals and all belowground mortality was transferred to appropriate litter 
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pools; this follows existing Biome-BGC logic.  For tree removals, the appropriate proportion of 

C and N from aboveground vegetation was removed from the ecosystem, while a corresponding 

proportion of belowground woody C and N entered litter pools. For tree pruning the amount to 

be removed is assumed to be a combination of foliar biomass, small branches, and twigs (Currie 

et al. 2016, unpublished). Because Biome-BGC does not differentiate between fine and coarse 

woody vegetation structures, we made the assumption that 38% of woody biomass is made of 

small branches and twigs (Whittaker et al. 1974) and deducted our pruning removals on that 

proportion of the woody C pool. For mowing of turfgrass, we used LAI as a proxy for height of 

the mower blade.  Each day a LAI threshold value was compared to the projected LAI based on 

turfgrass growth; if higher than the threshold, 20 percent of the above ground turfgrass biomass 

was cut and a corresponding 20% of the belowground turfgrass biomass was assumed to senesce 

and enter litter as a result (Milesi et al. 2005). When mulch mowing was simulated, aboveground 

biomass cut during mowing was transferred to litter pools, but when clipping removal was 

simulated, the cut aboveground biomass was removed from the ecosystem.  Belowground 

turfgrass litter (root litter) always remained in the ecosystem, transferred to litter. Biomass 

removals were considered to be transferred outside the boundary of the modeled system. A 

detailed list of modifications to Biome-BGC source code can be found in Appendix Table B-1. 

2.2.2  STUDY REGION AND BROADER CONTEXT 

Our research was conducted as part of a larger collaboration, the SLUCE project (Spatial 

Land Use Change and Ecological effects, (Brown et al. 2008), which addressed the exurban 

residential landscape as a coupled human-natural system. The empirical context is a study region 

comprising ten counties in Southeastern Michigan that contain the Detroit, Ann Arbor, and Flint 

metropolitan areas (Figure 2-3a) with an estimated total regional population of 5.3 million (U.S. 
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Census Bureau 2021) that are dominated by exurban residential development (Zhao et al. 2007, 

Brown et al. 2008, Huang et al. 2013). In this system we demonstrated individual and collective 

choices about landscape management that affect ecosystem structure and function, which then 

affect C sequestration and the delivery of other ecosystem services to society (Robinson et al. 

2009). This study references and builds on previous elements of the SLUCE project including an 

empirical ecological field study (Currie et al. 2016), developer and homeowner interviews 

(Nassauer et al. 2014, Nassauer 2017), online surveys (Nassauer et al. 2009, Wang et al. 2012, 

Visscher et al. 2014, 2016), and modeling in a coupled human-natural system framework 

(Robinson et al. 2013). 

2.2.3  MODEL INPUT DATA 

A detailed field study conducted in 2009 in exurban residential neighborhoods of nine 

townships within the study region collected data on C and N present in foliage, wood, litter, and 

soil of 26 parcels sampled to exhibit a range of soil conditions (Figure 2-3b; Currie et al. 2016).  

In the current study, results of that prior research were used to parameterize and determine the 

initial conditions for our ecosystem model (Figure 2-1, section 2.2.4  ). This study simulates 

three predominant vegetation cover types identified in our 2009 field study: dense woody 

vegetation, turfgrass, and turfgrass with sparse woody vegetation. Dense woody vegetation has a 

closed to mostly closed canopy and no managed turfgrass. It was present in 8 of the 26 parcels in 

the 2009 study and made up the second largest proportion (22.1%) of land cover in investigated 

subdivisions (Currie et al. 2016). Turfgrass with sparse woody contains managed turfgrass and 

trees, but with gaps present between canopies. This vegetation cover type was identified in 24 of 

the 26 parcels and typically made up the largest proportion (26.3 %) of land cover in investigated 

subdivisions (Currie et al. 2016).  Turfgrass is managed turfgrass or lawn with no woody 
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vegetation. This was present on 24 of the 26 parcels and made up 16.6% of land cover in 

investigated subdivisions.  

All analyses used inputs based on in-person interviews of the same 26 parcels as above, 

which surveyed homeowners on frequency and application amounts for a variety of management 

practices (listed in Table 2-2; Nassauer et al. 2014). Results from these interviews were also used 

by Nassauer and others (2014, unpublished data) to construct the Homeowner Agent Typology 

used in our analysis (Table 2-3).  Management input probabilities for the Monte Carlo Analysis 

(section 2.2.5.1  , Table 2-2) took into account results from the online surveys conducted in the 

207 zip codes of our study region (Figure 2-3a, reported in Visscher et al. 2104 and Visscher et 

al. 2016). Recommendations by the Michigan State Extension were used to improve our 

management distribution ranges for fertilizer (Frank 2015) and irrigation (Frank 2015) inputs and 

national standards of woody plant maintenance were used to improve estimates of pruning 

biomass removal (ANSI 1995). Literature on residential land management was also used to 

confirm ranges of fertilizer and irrigation (Law et al. 2004, Zirkle et al. 2011) and to translate 

mowing height to leaf area index (LAI) at time of mowing (Milesi et al. 2005).
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a. Map displays the ten-

county study region of 

Southeastern Michigan, 

exurban census tracts and 

zip codes boundaries of 

online surveys from 

Visscher et al. 2014, 2016 

(reproduced with permission 

from Nassauer et al. 2009).  

 

 

 

 

 

 

 

b. Map displays 13 sample 

townships dominated by 

exurban land use selected 

for focus by the SLUCE 

project. Red bordered 

townships were the location 

of field surveys in Currie et 

al. 2016 and field interviews 

in Nassauer et al. 2014 

 

  

Figure 2-2: Study Region Extent  
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Table 2-1: Initial carbon pools for each vegetation cover type.  

Values are used in both the Monte Carlo analysis and Homeowner Agent Typologies analyses. 

Carbon pool values are based on average values for each vegetation type measured in the 26 

exurban yards sampled in the study region (Currie et al. 2016).  

 Carbon Pool (kg C m-2) 

Vegetation 

cover type 

Aboveground 

tree vegetation 

Aboveground 

turfgrass 

vegetation 

Litter 

Coarse 

woody 

debris 

Soil to 1 m 

depth 

Turfgrass with 

sparse woody 

(TGW) 

6.17 0.08 0.12 0.0 12.85 

Dense woody 

(DW) 
14.18 NA 0.62 0.18 20.41 

Turfgrass (TG) NA 0.15 0.107 0.0 12.64 
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Table 2-2: Description of management practices and their distributions and probability 

frequencies (from field data and other research studies) used in the Monte Carlo analysis. 

Abbreviations: turfgrass with sparse woody (TGW), turfgrass (TG), dense woody (DW), 

standard deviation (SD) 

 

 

1   Probabilities and distributions are based on homeowner interviews conducted across the study region (Nassauer et al. 2014) 

and supplemented with additional sources as follows.  
2   (Law et al., 2004, Zirkle et al. 2011, MSU Extension 2014a) 
3   (Zirkle et al., 2011, MSU Extension 2014b) 
4   (Milesi et al. 2005) 
5   (ANSI 1995) 

Management 

practice 
Description 

Vegetation 

cover type 

Probability of 

occurrence1 

Distribution 

type 

Distribution 

range1 

Fertilizer  
Nitrogen added (kg N 

m-2 yr-1) 

TGW 

TG 
0.7 Uniform 

0.0048 – 

0.0242 

Irrigation 
total weekly water 

amount (cm) 

TGW 

TG 
0.75 Normal 

Mean: 2.543 

SD: 0.5 

Mow height 
Leaf Area Index (LAI) 

at time of mowing 

TGW 

TG 
1.0 Uniform 1.0 - 4.54 

Mulch mowing  
If yes, grass clippings 

stay on lawn 

TGW 

TG 
0.7 NA NA 

Pruning intensity 

Percent of foliar and 

fine woody biomass 

removed 

TGW 

DW 
0.75 Uniform 5 - 25%5 

Pruning 

frequency 

If pruning occurs, 

yearly or every three 

years  

TGW 

DW 

Yearly: 0.6 

Every 3 years: 

0.4 

NA NA 

Raking 

Percent of 

aboveground tree litter 

biomass removed 

TGW 

DW 
0.55 Uniform 5 - 100% 

Coarse woody 

debris (CWD) 

removal 

Percent of CWD 

removed 

(for TGW all CWD is 

always removed) 

TGW 

DW 

TGW: 1.0  

DT: NA 

TGW: NA 

DT: Uniform 

TGW: 100% 

DT: 0 – 100 

Tree planting 

Aboveground tree 

biomass added (kg C 

m-2) in random year 

from 14-38 

TGW 

DW 
0.7 

Uniform 

 
0.1 - 3.0 

Tree removal 

Percent of tree 

biomass removed in 

random year from 14 

to 38 

TGW 

DW 
1.0 Uniform 0 - 100 
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Table 2-3: Quantification of management practices for each separate Homeowner Agent 

Typology (HAT) in Biome-BGC-Ex simulations for each vegetation cover type.  

(LAI:   Leaf Area Index). Further information on how Homeowner Agent Types were defined by 

Nassauer et al. 2014 can be found in Appendix B.  

 Homeowner Agent Type 

Management Practice 
Neat 

Neighbor 

Lakeshore 

Owner 

Nature 

Neighbor 

Tree 

Planters 

Impro

ver 

View

er 

Turfgrass with sparse woody (TGW) 

Fertilizer  

(kg N m-2 yr-1) 
0.01863 0.00782 0 0.00782 0 

0.007

82 

Irrigation  

(cm week-1) 
2.877 2.203 2.203 2.877 2.203 2.203 

Mow height (LAI) 2.3 2.3 2.3 2.3 2.3 2.3 

Mulch mowing Yes Yes Yes Yes Yes Yes 

Pruning intensity (%) 10 10 10 10 10 10 

Pruning frequency 
Every 3 

years 
Every 3 years 

Every 3 

years 
Yearly Yearly 

Yearl

y 

Raking (%) 100 100 0 0 0 0 

Coarse woody debris (CWD) 

removal (%) 
100 100 100 100 100 100 

One-time tree planting (kg C m-

2) 
0.8251 0 0 2.275 0.8251 2.275 

Year of tree planting 15 NA NA 15 15 15 

One-time Tree Removal (%) 25 25 25 25 25 25 

Year of tree removal 35 35 35 35 35 35 

Dense Woody (DW) 

Coarse woody debris (CWD) 

removal (%) 
60 60 60 60 60 60 

Tree planting  

(kg C m-2) 
0.8251 0 0 2.275 0.8251 2.275 

Year of tree planting 15 NA NA 15 15 15 

Tree Removal (%) 0.25 0.25 0.25 0.25 0.25 0.25 

Year of tree removal 35 35 35 35 35 35 

Turfgrass (TG)  

Fertilizer  

(kg N m-2) 
0.01863 0.00782 0 0.00782 0 

0.007

82 

Irrigation (cm) 2.877 2.203 2.203 2.877 2.203 2.203 

Mow height (LAI) 3.3 3.3 3.3 3.3 3.3 3.3 

Mulch mowing Yes Yes Yes Yes Yes Yes 
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2.2.4  CALIBRATION AND PARAMETERIZATION OF BIOME-BGC 

Initialization of Biome-BGC-Ex followed the original protocol of running the model in 

what is called the spin-up mode until a dynamic equilibrium among vegetation ecophysiology, 

nutrient pools and fluxes, and climate was met (Thornton et al. 2002). The spin-up was run 

separately for each vegetation cover type (dense woody, turfgrass, and turfgrass with sparse 

woody) and provides a set of initial C, N, and water state variables based on this equilibrium. 

Following the method described by Robinson et al. 2013, once equilibrium was reached, we 

augmented the resulting spin-up variables for vegetation and soil C and N based on results of our 

2009 field study (Table 2-1, Currie et al. 2016). The results of the initialization became the initial 

C, N, and water state variables for the calibration. 

We calibrated the model for each vegetation cover type separately with the aim of 

producing a baseline scenario that, with minimal management (discussed below), exhibited 

constant total NPP over a 50-year period. This represents a hypothetical baseline based on the 

site, climate (including moisture), soils, and N availability present in residential parcels in our 

study region.  This stable baseline allowed us to assess departures in ecosystem C storage due to 

management practices. Further information on site, soil, and climate and final ecophysiological 

(EPC) parameters can be found in Appendix B. 

To provide an approximate representation of the dense woody vegetation cover type in 

exurban Southeastern Michigan, we began by using a set of model ecophysiological parameters 

for a deciduous broadleaf forest previously modified for our study region (Robinson et al. 2013). 

The baseline scenario was run with a management strategy of 60% CWD removal. This is based 

on the ratio of the CWD present in the 2009 field study (183 g C m-2) and the amount found in a 

mature temperate deciduous forest at a similar latitude (Hubbard Brook Experimental Forest, 468 
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g C m-2;  Fahey et al. 2005). We also modified the model parameters for leaf water potential, 

described below for turfgrass with sparse woody. This set of conditions produced a relatively 

constant total NPP over 50 years of 730 g C m-2 y-1 (aboveground average 418 g C m-2 y-1). This 

value falls in the expected range for a temperate deciduous forest in the lower peninsula of 

Michigan (Brown and Schroeder 1999, Curtis et al. 2002).  

To provide an approximate representation of the exurban turfgrass vegetation cover type 

in Southeastern Michigan, we chose a baseline management strategy based on the lowest ranges 

found in homeowner interviews and surveys (Nassauer et al. 2014, Visscher et al. 2014, 2016). 

There was mulch mowing when Leaf Area Index (LAI) was greater than 3.1 m2 m-2; no fertilizer 

or irrigation occurred.  We modified the default model parameters for C3 grasses (Thornton and 

Rosenbloom 2005) by changing the lignin, cellulose, and labile portions of fine roots to 12%, 

52%, and 36% respectively and the canopy average specific leaf area (SLA) to 70 m2 kg-1 C  to 

represent turfgrass (Milesi et al. 2005). Calibration increased the C:N ratios of leaves, litter and 

roots over Biome-BGC default values by 20% to 28.8, 58.8, and 50.4 respectively, which lie 

within an accepted range of C3 grasses (White et al. 2000). For the turfgrass baseline scenario 

we were unable to meet the goal of a constant NPP, possibly from a lack of fertilizer in our 

hypothetical baseline.  Instead of constant NPP, we were able to establish a constant value of 

turfgrass vegetation C stock that matched the initial condition of 148 g C m-2 measured in our 

prior field study. 

To provide an approximate representation of the turfgrass with sparse woody vegetation 

cover type in exurban Southeastern Michigan, we used a baseline management strategy of 100% 

CWD removal and mulch mowing when LAI is greater than 1.5 m2 m-2, based on the minimal 

range of management observed in our study region (Nassauer et al. 2014, Visscher et al. 2014, 
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2016). We began by using the model parameters described above for dense woody and turfgrass 

and initial conditions for turfgrass with sparse woody vegetation. Next, we simulated the growth 

of turfgrass with sparse woody for 50 years with the goal of producing a constant NPP that is 

relatively close to the five year (2009-2013) average MODIS NPP (MOD17) of 570 g C m-2 y-1, 

which was calculated from nine predominantly exurban townships in our study region (NTSG, 

2014; Zhao et al., 2005; Zhao and Running, 2010). To calibrate the two-layer model for a good 

fit with observed data we made the parsimonious assumption that the effect of water stress on 

stomatal conductance was the same for both trees and grasses (per unit area) in this environment. 

For trees and grasses we assigned the initial reduction of stomatal conductance to be at a leaf 

water potential of -0.5 (MPa) and the final reduction of stomatal conductance to be at a leaf 

water potential of -2.5 (MPa).  These new values fall within the acceptable ranges of values for a 

parameter that is not well informed empirically (White et al. 2000). This set of initial conditions 

produced a relatively constant total NPP of 564 g C m-2 y-1.  

While the objective of this study is to forecast the space of possibilities in carbon 

sequestration resulting from extensive combinations of management practices over a 50-year 

time horizon, we do not have empirical data available from our study region to validate our 

modifications. In the discussion we address how model results compare with empirical data from 

residential landscapes and urban forests to provide a soft validation of the model to assess if 

carbon sequestration results fall into expected ranges and trends.  

2.2.5  MODEL ANALYSES 

Following our model changes and calibrations, we performed three sets of model 

simulations.  The first was a Monte-Carlo approach designed to randomly sample the space of 

numerous potential interactions among multiple management practices co-occurring at differing 
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frequencies and intensities for each vegetation cover type.  The second simulated specific, 

coordinated sets of management practices carried out by different types of homeowners at the 

scale of the individual parcel. We refer to the coordinated sets of management as a Homeowner 

Agent Typology (HAT), which represents observed combinations of behaviors among groups of 

residential land managers as determined by our homeowner interviews and validated by our 

subsequent online survey (Nassauer et al. 2014, Visscher et al. 2014, 2016).  The third analysis 

expanded the results of the prior HAT simulation to the landscape scale.  

2.2.5.1  MONTE CARLO SIMULATION  

We used Monte Carlo simulation to explore the effects of variable, random combinations 

residential landscape management practices on model outputs, represented by probability 

distributions (Currie and Nadelhoffer 1999). For each model run, different randomly selected 

sets of values from the input probability distributions were used to simulate a particular outcome; 

together a large set of model runs produces a distribution of outcomes.  Plausible ranges for 

model parameters were used to ensure that the distribution of outcomes represents a realistic 

expectation of ranges in carbon cycling (Table 2-2).  Management input values are static for the 

duration of each model run. Each simulation run had a Biome-BGC-Ex management input file 

was filled with randomly selected values, using the Latin hypercube sampling technique ( R 

package ‘lhs’; Carnell 2016), from the probability distributions. Each simulation was run for fifty 

years. For turfgrass and dense woody, which had four and five management practices 

respectively, we performed 3000 simulation runs and for turfgrass with sparse woody, which had 

nine management variables, we performed 7000 simulation runs.  

To investigate which management practices led to positive or negative changes in C 

sequestered in vegetation and soil over time, C values in year fifty were subtracted from year 
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zero, the baseline condition, to determine the change in C over time. For each vegetation type, 

we first predicted the probability of net C sequestration across all simulations. Then, after testing 

for non-linearity and constant variance of residuals, we used multiple linear regression analysis 

to compare the effect of each management practice on total ecosystem C sequestration and 

individual C pools. For easier comparison of independent variables, we include regression results 

where management practices have been normalized on a zero to one scale (the full set of 

normalized and non-normalized results for all C pools can be found in Appendix Table B-5). All 

statistics were conducted in R version 3.3.2 (R Core Team 2019) using the packages: ggplot2 

(Wickham 2016) and rms (Harrell 2020). 

2.2.5.2  HOMEOWNER AGENT TYPOLOGY (HAT) ANALYSES 

In prior work based on homeowner interviews and subsequent web surveys, Nassauer et 

al. (2014) developed a typology of homeowners, each associated with distinct regimes of 

residential landscape management practices. See Appendix B for additional information on how 

these typologies were defined. Each type describes a group of homeowners based on 

characteristics of the properties where they tended to live and management practices they tended 

to use. These six types were: neat neighbor, lakeshore owner, nature neighbor, tree planter, 

improver, and viewer. We refer to these six types as a Homeowner Agent Typology (HAT), 

while retaining the previously published names for each type. We assigned explicit values (Table 

2-3) for each management practice in each vegetation cover type based on the raw interview data 

that were originally used to define the types (Nassauer et al. 2014). Each type differs in the 

combination of fertilizer and irrigation intensity, pruning frequency, and whether raking, tree 

planting, and tree removal occur. Some practices varied little such as mowing amount, mulch 

mowing, pruning intensity, and removal of CWD. For the first HAT analysis, at the scale of the 
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parcel, we separately simulated each combination of homeowner type and vegetation cover type 

for 50 years and report the resulting change in C stored in vegetation and soil pools from the 

initial condition. 

For the second HAT analysis, the prior results for each HAT type were scaled up from 

the parcel to a hypothetical neighborhood (i.e., subdivision) surrounding the parcel based on 

vegetation coverages found in our study region. Then we compared changes in C sequestration 

assuming each HAT was the sole agent type for the neighborhood. This allowed us to examine 

how C is affected by the interaction between homeowner type and current landscape vegetation 

coverage proportions in exurban neighborhoods. For upscaling, we used the average areal 

proportion of each vegetation cover type found in exurban neighborhoods in our region: 14.0% 

for turfgrass, 26.3% for turfgrass with sparse woody, and 24.1% for dense woody (Currie et al. 

2016) and assumed these proportions were the same for all HATs. In upscaling, we used these 

proportions to calculate landscape-scale, area-weighted values of C sequestration in vegetation 

and soil pools for each HAT. Other vegetation categories (old field, gardens, impervious, water) 

represent 35.7% of exurban residential landscapes (Currie et al. 2016) but are excluded from this 

analysis since we are focusing on the dominant vegetation cover and we have only modified 

Biome-BGC to measure effects of management in these vegetation types.  

2.3   RESULTS 

2.3.1  MONTE CARLO SIMULATION: OVERALL C TRAJECTORIES BY VEGETATION COVER TYPE 

Net ecosystem C sequestration varied significantly among vegetation cover types.  

Considering the full set of model runs, which included the full ranges of all the human 

management choices and activities, ecosystem C was sequestered in 65% of the simulations of 

the vegetation cover type turfgrass with sparse woody over the 50-year simulation period. In this 
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vegetation cover type, ecosystem C storage increased by 25% or more in 36% of the simulations 

and increased by 50% or more in 14% of the simulations.  In the dense woody vegetation cover 

type, C was net sequestered in 19% of the simulations over the 50-year period, while in the pure 

turfgrass vegetation cover type ecosystem C was net sequestered in 31% of the simulations. 

Trajectories of increases in C storage in turfgrass with sparse woody and dense woody were 

driven by increases in live tree biomass, while those in turfgrass were driven by increases in soil 

C pools. Of all model runs that did show positive C sequestration over 50 years, turfgrass with 

sparse woody saw on average an increase of 3.17 kg C m-2 (32% increase), dense woody saw on 

average an increase of 3.77 kg C m-2 (11% increase) and pure turfgrass saw on average an 

increase of 1.72 kg C m-2 (13% increase). 

Considering the frequency distributions of the numbers of model runs that produced each 

value of ecosystem C balance, pure turfgrass and dense woody vegetation types each followed a 

quasi-normal, unimodal frequency distribution (not shown).  In contrast, turfgrass with sparse 

woody had a distinct bimodal frequency distribution (Figure 2-3). Further analysis found this 

distribution was related to a decline in tree productivity and biomass, driven by a variety of 

management strategies (explained further in 3.2). This decline typically improved turfgrass 

productivity due to increased availability of light, nutrients, and water. In the left mode of Figure 

2-3 (n=1856), the average turfgrass NPP in years 45 to 50 was greater than 200 g C m-2 y-1 while 

the ecosystem overall exhibited large amounts of C loss due to the decline of trees over time, 

with 97% of simulations exhibiting a loss of tree C over fifty years. In the right, mostly positive 

C mode (n=5144 model runs), tree survival and growth were greater, while the average turfgrass 

NPP was less than 200 g C m-2 y-1 (Figure 2-3).  Tree removals, pruning and fertilizer affected 

the productivity and biomass of trees and drove the ecological dynamics between trees and turf, 
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resulting in the bimodal distribution in the frequencies of model runs with varying levels of 

carbon sequestration (Figure 2-3). 

 

 

Figure 2-3: Frequency distribution of change in total ecosystem C over fifty years in 

vegetation cover type turfgrass with sparse woody from Mote Carlo Simulations.  

The bimodal distribution was divided based on the average turfgrass NPP in years 45 to 50 and 

simulations where the turfgrass NPP was greater than 200 g C m-2 y-1 placed in the left mode 

and simulations turfgrass NPP was less than 200 g C m-2 y-1 were placed in the right mode.  

2.3.2  MONTE CARLO SIMULATION: EFFECTS OF RESIDENTIAL MANAGEMENT PRACTICES  

Recall that among the 13,000 model runs in the Monte Carlo analysis, management 

practices varied randomly through defined ranges, and in stochastic combinations.  Multivariate 

regressions were performed on the database of model results to evaluate which management 

practices correlated with ecosystem C sequestration.  Regression results indicated all 

management practices significantly influenced C sequestration (Table 2-4). Fertilization, tree 

removal, and tree pruning had the strongest effects, whether positive or negative, on total 

ecosystem C sequestration over the 50-year period.  
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Turfgrass with sparse woody was significantly impacted by fertilizer addition, which had 

the largest positive and overall effect on the change in total ecosystem C (Table 2-4). Maximum 

application rates resulted in gains of up to 9.8 kg C m-2 over 50 years, relative to the full ranges 

of other management actions and their combinations using the Monte Carlo approach (Figure 2-4 

a). Pruning at an annual frequency had the largest negative effect on total C followed by tree 

removal and pruning every three years (Figure 2-4b, c).   
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Table 2-4: Normalized multiple linear regression results for total ecosystem carbon in 

turfgrass with sparse woody, dense woody, and turfgrass. 

 Turfgrass with 

sparse woody 
Dense Woody Turfgrass 

Intercept 
3.514*** 5.816*** -5.385*** 

(0.137) (0.099) (0.034) 

Fertilizer 
12.325***  4.590*** 

(0.097)  (0.032) 

Irrigation 
5.254***  -0.573*** 

(0.126)  (0.039) 

Mow height 
-1.754***  2.889*** 

(0.112)  (0.037) 

Mulch mowing 
0.713***  2.148*** 

(0.070)  (0.023) 

Pruning intensity 
-5.937*** -8.000***  

(0.161) (0.148)  

Prune yearly 
-3.784*** -5.536***  

(0.126) (0.115)  

Prune every 3 years 
-0.303** -0.871***  

(0.130) (0.121)  

Raking 
-4.442***   

(0.097)   

Tree planting 
1.383*** -3.141***  

(0.097) (0.103)  

Tree removal 
-4.819*** -6.471***  

(0.112) (0.103)  

Coarse woody debris 

removal 

 1.443***  

 (0.089)  

Observations 7,000 3,000 3,000 

R2 0.819 0.905 0.923 

Adjusted R2 0.818 0.905 0.923 

Note:   *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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Figure 2-4: Partial linear regression fits of a) fertilizer, b) tree removal, c) pruning from 

multiple linear regression for turfgrass with sparse woody.  

Solid lines show the partial regression fit for the coefficient bounded in grey by the 95% 

confidence interval (based on the standard error of the coefficient). This is the expectation of the 

effect of given independent variable, while all other independent variables vary stochastically 

and in combination. The dashed lines represent the 95% prediction interval; the area where 95% 

of the data points are expected to fall given the variation of all other independent variables.  

 

Pruning biomass annually was found to be the strongest overall and strongest negative 

predictor of total ecosystem C sequestration in dense woody (Table 2-4a).  In our results, 

maximum pruning intensity (25%) at a yearly interval reduced total C by up to 12.69 kg C m-2 

over 50 years, relative to the full ranges of other management actions and their combinations (a). 
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The only human management activity that resulted in a positive C trajectory for all carbon pools 

in the dense woody vegetation category was tree planting (Figure 2-5b).  

 

 

Figure 2-5: Partial linear regression fit of a) pruning and b) tree planting from multiple 

linear regression for dense woody.  

Solid lines show the partial regression fit for the coefficient bounded in grey by the 95% 

confidence interval (based on the standard error of the coefficient). This is the expectation of the 

effect of given independent variable, while all other independent variables vary stochastically 

and in combination. The dashed lines represent the 95% prediction interval; the area where 95% 

of the data points are expected to fall given the variation of all other independent variables.  

For the turfgrass vegetation cover type fertilization was found to have the largest positive 

and overall effect on total ecosystem C. Simulation results showed that a combination of 

fertilizer and mulch mowing was required in all instances of positive carbon gain and a 

combination of maximum application and mulch mowing provides a gain of 3.07 kg C m-2  over 

50 years relative to the full ranges of other management actions and their combinations using the 

Monte Carlo approach (Figure 2-6). Irrigation was the only management practice in this 

vegetation type that produced, on average, a loss of ecosystem C over the 50-year period relative 

to the baseline case, although the loss of C was very slight compared to the high range of 

variability in the Monte Carlo set of model results (data not shown).  Even though irrigation 
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increased grass NPP and grass litter production slightly it increased soil C decomposition even 

more, leading to a slight, net negative ecosystem C balance.    

 

Figure 2-6: Partial linear regression fit of fertilizer from multiple linear regression for 

turfgrass.  

Solid lines show the partial regression fit for the coefficient bounded in grey by the 95% 

confidence interval (based on the standard error of the coefficient). This is the expectation of the 

effect of given independent variable, while all other independent variables vary stochastically 

and in combination. The dashed lines represent the 95% prediction interval; the area where 95% 

of the data points are expected to fall given the variation of all other independent variables.  

2.3.3  HOMEOWNER AGENT TYPOLOGY (HAT)  

In our first HAT analysis, which measured the effects of management behaviors 

associated with each of the homeowner agent types on C sequestration within each vegetation 

cover type, human activities most often led to positive changes in total C sequestration relative to 

the baseline (Table 2-5). For turfgrass with sparse woody, homeowners that had the highest 

fertilizer rate and planted trees (Neat Neighbors, Table 2-3) resulted in the greatest increase in 
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ecosystem C storage at 8.51 kg C m-2 due to increases in tree and litter C. They were followed by 

homeowners with a medium fertilizer rate and no raking (Tree Planters and Viewers) with 6.61 

kg C m-2 and 5.162, respectively (Table 2-5). This C increase was driven by tree litter C and soil 

C, as the lack of raking increased leaf litter and led to a readily accessible source of soil C. 

Homeowners that pruned annually and did not fertilize (Improvers) were the only type in 

turfgrass with sparse woody to result in a loss of ecosystem C.  

All HAT types had positive outcomes for C sequestration in the dense woody cover type 

(Table 2-5). Homeowners with the highest amount of tree planting (Tree Planters and Viewers, 

Table 2-3) resulted in the greatest ecological C increase at 3.97 kg C m-2 over 50 years. In 

contrast, for turfgrass, only homeowners with the highest fertilization rate (Neat Neighbors) 

produced a substantial increase in C over 50 years, the majority of which was in soil C (Table 

2-5). Non-fertilizers (Improvers and Nature Neighbors) had combinations of management 

practices resulting in the greatest losses of C in the turfgrass cover type. 

The second HAT analysis, which upscaled changes in C for each homeowner type from 

the scale of the parcel to the neighborhood, found the type with the highest fertilizer rate (Neat 

Neighbors, Table 2-3) had the largest effect on C sequestration, increasing total C stored by 3.0 

kg C m-2 over 50 years (Figure 2-7). Homeowners with a medium fertilizer rate and no raking 

(Tree Planters and Viewers) also provided large increases in C at 2.7 and 2.31 kg C m-2, 

respectively. These increases were predominantly due to growth in tree biomass and 

accumulation of litter from trees over the 50-year period. Homeowners that did not fertilize and 

pruned annually (Improvers) are the only HAT category that resulted in a loss of total ecological 

C at the landscape scale, which was driven by a loss of tree biomass and soil C.  
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Table 2-5: Simulation results from the Homeowner Agent Typology (HAT) analysis for 

each HAT and for each vegetation cover type.  

In dense woody and turfgrass with sparse woody types, tree litter pools include foliar, fine root, 

and woody litter from above and below ground pools.  

 
Change in carbon over 50 years within each Homeowner Agent Type 

(kg C m-2) 

Vegetation 

Cover Type 

Carbon 

Pool 

Neat 

Neighbor 

Lakeshore 

Property 

Nature 

Neighbor 

Tree 

Planters 
Improver Viewer 

Turfgrass 

with sparse 

woody 

(TGW) 

Tree 

Vegetation 
6.920 1.815 0.163 2.412 -3.696 1.271 

Turf 

Vegetation 
-0.080 -0.025 -0.025 -0.076 -0.007 -0.055 

Tree Litter 1.953 1.203 1.077 2.503 0.759 2.250 

Turf Litter -0.030 0.064 0.081 -0.021 0.094 0.025 

Soil -0.256 -0.342 -0.261 1.790 -0.711 1.671 

Total 

Ecosystem 
8.507 2.715 1.035 6.608 -3.560 5.162 

Dense woody 

(DW)  

Vegetation 0.718 0.359 0.359 1.345 0.718 1.345 

Tree Litter  3.182 3.064 3.064 3.389 3.182 3.389 

Soil -0.822 -0.856 -0.856 -0.765 -0.822 -0.765 

Total 

Ecosystem 
3.077 2.567 2.567 3.969 3.077 3.969 

Turfgrass   

(TG) 

Vegetation 0.027 0.013 -0.047 -0.003 -0.047 0.013 

Turf Litter  0.113 0.084 0.031 0.072 0.031 0.084 

Soil 2.516 0.028 -2.108 -0.001 -2.108 0.028 

Total 

Ecosystem 
2.655 0.124 -2.125 0.069 -2.125 0.124 
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Figure 2-7: Changes in C pool sizes over 50 years for each HAT is scaled up to the neighborhood based on the proportion of 

each vegetation cover type in the exurban residential study region.  

Tree litter carbon pools include above and below ground fine and coarse woody debris (CWD) litter.  Soil refers to mineral soil 

organic matter, excluding surface litter pools.  
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2.4   DISCUSSION 

2.4.1  C SEQUESTRATION IN EXURBAN RESIDENTIAL LANDSCAPES  

2.4.1.1  TURFGRASS WITH SPARSE WOODY 

Results of both our Monte Carlo and Homeowner Agent Typology (HAT) analyses 

confirmed our first hypothesis and showed that fertilizer, pruning, and tree removals had the 

largest impacts, whether positive or negative, on the outcome of ecosystem C sequestration. 

Turfgrass with sparse woody, which we modeled here using a new approach and is the main 

vegetation cover type in residential yards in our exurban landscape (Currie et al. 2016), has a 

high likelihood of sequestering C given that many homeowners follow a management regime of 

little to no pruning, few tree removals and medium to high levels of fertilization.  While not 

considered in this analysis, this suggests that the relative frequency of the different HAT types 

among the population has the potential to have a large influence on the carbon storage potential 

of the region. Neighborhoods dominated by types that fertilize, plant trees, and remove less 

biomass from the system (Neat Neighbor, Tree Planter and Viewer, Table 2-3) have the greatest 

potential for C sequestration. These types tend to associate with a different parcel size (small, 

medium, and large respectively) and are known to coexist on the landscape (Nassauer et al. 

2014). These types averaged a net accumulation rate of 0.09 and 0.11 kg C m-2 yr-1 in the last five 

simulation years, which is similar to rates found in urban tree cover, but less than the 0.22 kg C 

m-2 yr-1  estimated for Michigan (Nowak et al. 2013).  

These three management practices also drove the bimodal distribution of C sequestration. 

In the left mode, yearly pruning occurred in 60%, zero fertilization occurred in 73%, and tree 

removals were greater than 25% in 77% of simulations. In Biome-BGC-Ex these particular 
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management practices made it difficult for trees to not only increase biomass but to harvest 

enough light and to acquire enough N to maintain the biomass already established in the initial 

conditions, resulting in increased tree mortality over time relative to the baseline case. Tree 

mortality, by allowing more light to reach the grass layer, subsequently allowed turfgrass to 

increase in productivity, thus increasing turfgrass vegetation and litter C pools, although not at a 

high enough level to make up for the loss of C from tree mortality. In the right mode (Figure 2-3) 

85.5% of simulations had fertilizer application and only 40% had yearly pruning. Thus, in 

Biome-BGC-Ex, in the turfgrass with sparse woody vegetation type, increased fertilizer and 

decreased pruning frequency allowed trees to increase in biomass giving them an increased 

competitive advantage over turfgrass for light, water and N, which resulted in decreased NPP 

and carbon sequestration for turfgrass. 

Fertilizer addition was found to have a significant effect on tree vegetation C 

sequestration in our modeling simulation results.  However, the model’s N dynamics, especially 

at high levels of N addition, likely do not adequately simulate the dynamics of plant N 

assimilation and N immobilization by decomposers. Following the same process as Biome-BGC, 

Biome-BGC-Ex calculates N demand based on the C:N ratios for different plant, litter and soil 

pools that are established as constants for the system prior to running the simulations (Appendix 

B). When N demand exceeds available N, actual N assimilation and N immobilization are 

reduced proportionally to their demand. Studies on N cycling in forested ecosystems have 

consistently shown that gross immobilization by decomposers far exceeds root N uptake 

(Nadelhoffer et al. 1999). In our model simulations, when soil C makes up the majority of total C 

combined with soil’s lower C to N ratios, this relationship is reflected (data not shown). 

However, when tree vegetation C increases (typically due to fertilization) N demand increases in 
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tandem resulting in proportionally less N available for immobilization. The model has no 

mechanism in place to adjust how N demand and N uptake may change based on relative 

biomass pools and N fertilization in the system. This results in Biome-BGC-Ex likely 

overestimating the amount of tree C storage when fertilization occurs. Future model versions 

should consider additional dynamics of N uptake and demand when fertilization is present 

including incorporating dynamics informed by N fertilization studies in forest and grassland 

ecosystems. 

2.4.1.2  TURFGRASS 

In our study region, turfgrass is unlikely to lead to increases in C sequestration over time, 

unless it is heavily nitrogen enriched. Of the simulation runs where turfgrass resulted in an 

increase in C over time, 100% had fertilizer inputs and 97% had mulch mowing. This is 

consistent with other modeling studies which found positive relationships between fertilizer and 

soil C in turfgrass (Campbell et al. 2014) as well as those that found established turfgrass grown 

without nitrogen inputs results in a loss or negligible gain of ecosystem C (Milesi et al. 2005) 

and soil C (Qian et al. 2003). The HAT results further verify this relationship, as the only 

substantial increases in C occurred with the highest level of fertilizer inputs (Neat Neighbor, 

Table 2-3), which averaged a net soil accumulation rate of 0.04 kg C m-2 yr-1 averaged across the 

last five simulation years. This rate falls within the range of empirical residential turfgrass 

studies and is lower than surface soil accumulation measured in residential turfgrass in 

Baltimore, MD of 0.08 kg C m−2 yr−1 (Raciti et al. 2011), but higher compared to 0.026 kg C m-2 

yr-1 in Alabama (Huyler et al. 2014b) or 0.029 (Smith et al. 2018) in Utah.  

Based on other studies we hypothesized that irrigation would increase C sequestration in 

our simulations (Qian et al. 2010, Zirkle et al. 2011). However, we found irrigation to lower 
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ecosystem C storage overall in the turfgrass cover type. This echoes the results of Milesi et al. 

(2005), which used Biome-BGC to model turfgrass across the United States and found irrigation 

was not necessary for turfgrass growth in southeastern Michigan. The negative relationship 

between irrigation and C is due to increased soil organic matter decomposition and heterotrophic 

respiration in Biome-BGC-Ex when soil moisture and evapotranspiration increases (data not 

shown). This is an ecological process known to factor into residential carbon storage (Kaye et al. 

2005, Groffman et al. 2009, Qian et al. 2010), and has been validated by empirical studies 

demonstrating that increases in evapotranspiration (as a proxy for increases soil temperature and 

soil moisture) are positively related to increases in decomposition (Meentemeyer 1978, Currie et 

al. 2009).   

The effect of fertilizer and irrigation on carbon sequestration may have also been 

impacted by the initial conditions we used and the baseline we established. As previously 

mentioned (section 2.2.3  2.2.4  ), although our baseline conditions did not include fertilizer 

management, the ecophysiological parameters describing C:N ratios and initial pools of 

vegetation and soil C and N were established based on results of the 2009 field study (Currie et 

al. 2016), where 65% of the sites had been fertilized for at least one growing season. These 

conditions assumed that turfgrass was already established and that initial soil C and N reflected 

the relatively high values we observed in the field in exurban yards in our region (Table 2-3). 

The combination of these high observed initial values and constant C:N ratios over the 

simulations led to a high demand for N in the processes of vegetation C allocation and 

decomposition. Simulation runs with lower levels of N inputs were not able to sustain these 

initial C and N pools due to a higher demand for N than available, resulting in C losses from 

soils over the 50-year period. However, our modeling results are consistent with empirical 
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studies of turfgrass in residential landscapes that show a declining relationship between turfgrass 

carbon and time since development, typically leveling out or decreasing between 40 and 50 years 

(Qian and Follett 2002, Pouyat et al. 2009, Huyler et al. 2017).  

Our results for turfgrass illustrate the limitations of our project design and the model’s N 

dynamics in multiple ways. First, by having constant C to N ratios and initializing the model 

with high N concentrations in soil and vegetation we made additional high levels of fertilization 

necessary to meet plant and soil N demands. Second, plant N demand and microbial N demand 

are calculated based on the C:N ratios of vegetation, litter, and soil pools that are established as 

constants for the system prior to running the model simulations (Appendix B). Based on these 

values and the system’s potential assimilation and immobilization, N demand is calculated. If N 

demand can’t be met, N assimilation and N immobilization are reduced proportional to their total 

demand. Under differing levels of fertilization, the relationships between assimilation and 

immobilization may no longer represent what is found in real world systems. For example,  

studies showing that microbes are more competitive for mineral N than plant roots over short-

term period (Kuzyakov and Xu 2013, Ouyang et al. 2016), studies showing microbes typically 

assimilate an order of magnitude more mineral N than plant roots (Nadelhoffer et al. 1999), and 

studies on how plants and soils adapt to N limitations (Shi et al. 2006, Yao et al. 2011). Third, by 

having management practices remain constant over the duration of the simulation managers were 

unable to respond to biomass loss on the landscape by adjusting their management strategy. The 

results for turfgrass illustrate while this model can simulate similar patterns to other empirical 

and modelling studies of turfgrass, there are still important limitations that must be addressed 

and verified when modelling human management of turfgrass systems.  
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2.4.1.3  DENSE WOODY 

The dense woody vegetation cover type tends to increase in C sequestration over time, 

unless pruning occurs. A majority of the dense woody simulations had a net loss of carbon 

relative to the baseline due to high rates of pruning.  The HAT results, which did not include 

pruning as a dense woody management strategy, all resulted in net C sequestration gains. The 

lack of pruning within dense woody patches is consistent with the “zone of care” concept 

(Nassauer et al. 2014), in which residents on large parcels more actively manage only a portion 

of their yards that sits closer to their homes, generally not including  dense woody cover. While 

residents responding to the study are survey indicated some intermittent management  outside the 

zone of care (Nassauer et al. 2014), actual rates were highly variable.  

2.4.2  IMPORTANCE OF FERTILIZER AS A MANAGEMENT PRACTICE  

Fertilizer addition is considered standard practice in turfgrass management by residential 

homeowners (Milesi et al. 2005). In addition, most native and construction-disturbed urban soils 

cannot supply adequate amounts of nutrients for normal growth of landscape plants and 

turfgrass, so fertilizers are often used (Carey et al. 2012). Our simulation results found similar 

results to other empirical (Campbell et al. 2014) and modelling (Qian et al. 2003, Milesi et al. 

2005) studies, showing nitrogen enrichment was necessary for C sequestration in turfgrass. In 

turfgrass and turfgrass with sparse woody our initial hypothesis that fertilizer would be the 

strongest influence on C sequestration was observed in our model simulations. As previously 

mentioned (2.4.1), while the positive relationship between fertilization and C sequestration 

shown in our simulations results match those found in empirical studies, the strength of the 

relationship estimated in the simulations may be greater than what is found in reality, especially 

at the highest levels of fertilization.  
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In turfgrass with sparse woody simulations fertilizer additions also drove C sequestration, 

typically through increased tree productivity.  Biome-BGC-Ex assumed size-symmetric 

competition for N between trees and turfgrass, meaning that the model determines the daily N 

need for both trees and turfgrass and then allocates the available N proportionally (Hara 1993). 

Although homeowners may fertilize to affect turfgrass, fertilizer added to our turfgrass with 

sparse woody simulations was available to both tree and turfgrass vegetation. In Biome-BGC-EX 

trees competed for and obtained much of the added N leading to a positive response in tree NPP 

and woody biomass growth, driving the C increases we observed in many model results (Figure 

2-3). In simulations where nitrogen was added, tree vegetation carbon increased on average by 

37%. In model simulations increases in tree biomass contributed to increases in belowground 

litter C from dead roots leading to soil C increases over time, which is a process also observed in 

empirical residential field studies (Huyler et al. 2017).  

The relationship between tree carbon and fertilizer addition is difficult to evaluate in the 

context of the exurban landscape, since there is a lack of studies evaluating the effect of nitrogen 

enrichment explicitly in this landscape. In a study region overlapping our study’s, Kahan and 

others (2014) found that vegetation and soil in protected areas bordering residential development 

had increased concentrations of N and lower C to N ratios as housing density increased. 

Compared to other temperate deciduous forests in the US they found higher foliar N 

concentrations in protected areas bordering development, indicating that urban tree cover does 

respond to N enrichment. In denser urban environments, trees on streets, in parks, and on 

residential property often receive additional nutrients and water, whether applied directly or 

indirectly (McHale et al. 2009, Shober et al. 2010). Recommendations for urban tree fertilization 

geared toward land managers and arboriculturists do exist, with values falling within the range 
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applied in the turfgrass with sparse woody scenarios (Scharenbroch and Lloyd 2004). However, 

the response of urban trees to fertilization across species may not be uniform (Ferrini and Baietto 

2006).  

While the vegetation structure of turfgrass with sparse woody may be more like urban 

parks or forest patches (McPherson et al. 1997), temperate forests also provide an opportunity for 

comparison.  Studies on nitrogen deposition in North American temperate forests have found 

evidence of added nitrogen leading to increases in living and dead wood of around 10% (Magill 

et al. 2004, Pregitzer et al. 2008). However, other studies have shown trees take up limited 

amounts of additional nitrogen and show only minor increases in C (Nadelhoffer et al. 1999, 

Currie et al. 2004). Further field and empirical research on the application and effects of fertilizer 

in managed vegetation mixtures of grasses and open trees within the exurban landscape would be 

useful in further assessing the N dynamics and ecological competition in this unique vegetation 

community.  

Our simulations found mulch mowing significantly reduced the amount of fertilizer 

necessary for C sequestration in both turfgrass and turfgrass with sparse woody. In the pure 

turfgrass vegetation cover scenarios we found that the amount of fertilizer necessary for carbon 

sequestration is more than double when grass clippings are removed compared to when they are 

mulch mowed. This relationship has been observed in empirical turfgrass studies which found 

that grass clippings increase soil C pools in N limited ecosystems (Kaye et al. 2005, Huyler et al. 

2014a, Peach et al. 2019). Our simulations showed that mulch mowing increased the amount of 

soil C in turfgrass soil by 40%, which is consistent with other modelling studies that have found 

mulch mowing increases the amount of soil C sequestered in turf by 11 to 59% over a 10- to 50-

year period (Qian et al. 2003, Milesi et al. 2005).  
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2.4.3  MODELING EXURBAN RESIDENTIAL LANDSCAPE AND FUTURE RESEARCH 

Our study found that different realistic sets of management practices, as examined in the 

HAT analysis, have differential effects on C sequestration, and these differences can have 

significant impacts when scaled up to the landscape. Our study shows that increases in woody 

biomass are the strongest driver of C increases in the residential landscape, which is consistent 

with empirical studies (Golubiewski 2006, Fissore et al. 2012, Huyler et al. 2017). Our 

colleagues have found that a homeowner’s preference for trees is driven by many factors 

including: aesthetic preferences (neatness, views), a desire for privacy, neighborhood norms, and 

parcel size (Nassauer et al. 2014, Visscher et al. 2016). Efforts to increase exurban carbon 

storage should consider these preferences along with the coinciding management practices that 

encourage tree growth.  

One of the major contributions of Biome-BGC-Ex is the ability for the user to model and 

simulate the dynamics of multiple plant functional types in two distinct vertical layers in the 

same grid cell. This gave us the ability to evaluate the dominant vegetation cover type found in 

the exurban residential landscape of our study region, turfgrass with sparse woody. The turfgrass 

with sparse woody landcover is a product of human management, in which turfgrass is planted 

and maintained on residential property along with an overstory of sparse tree cover. In our study 

region, turfgrass with sparse woody cannot be maintained without human intervention, as 

turfgrass cannot outcompete increased tree cover that would occur under natural or non-managed 

conditions. The new exurban “biome” introduced in this model could be used to investigate C 

dynamics in residential landscapes found in similar temperate forest biomes, assuming they 

display a similar ecosystem structure and function (Groffman et al. 2014, 2017). There is also 

potential for Biome-BGC-Ex to be used in other landscapes with sparser, open grown tree cover 
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caused by human intervention such as temperate agroforestry ecosystems which experience size 

asymmetric competition for light above ground and size symmetric competition for soil water 

and nutrients below ground (Jose et al. 2009). The ability of Biome-BGC-Ex to measure how 

management practices affect C dynamics across a variety of vegetation covers means it can be 

used as a tool by scientists and policy makers to target which landscape management practices 

will produce desired C outcomes.  

This study assumes model variables such as C:N ratios and management practices are 

constant over the 50-year period. As mentioned previously (2.4.1.2), constant C:N ratios may 

limit the model’s ability to accurately simulate N dynamics. It is a common limitation of models 

like Biome-BGC, that are not individual-based or species-specific, and that are not meant to 

capture tree species change or community change over time, to have constant C:N ratios in plant 

tissues over time and across species.  In reality, in a forest or tree community, species 

composition, tree size, and tree management might change over time resulting in changes to C:N 

ratios.  The assumption of a constant tree community composition and average tree size over the 

50-year modelling period is one of many simplifying assumptions in our simulation of exurban 

vegetation.  It is also likely that homeowners will adjust their behavior when resulting changes in 

the appearance of a residential landscape do not fit into the norms of their neighborhood or fit 

their preferences, and these norms and preference may also change over time (Nassauer et al. 

2014). While this study examined the question of which practices drive carbon sequestration, it 

does not follow how humans might respond to or provoke changes in the landscape leading to 

feedbacks between the human and ecological system. The second HAT analysis also does not 

account for different combinations and locations of HATs within the neighborhood. This study 

contributes to these considerations in our larger project (SLUCE), which aims to understand how 
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social-ecological drivers on the landscape impact C balance by explicitly simulating developers 

and residents as human agents with environmental decision-making functions (Robinson et al. 

2013). Future models that combine Biome-BGC-Ex with an Agent Based Model would be one 

strategy for understanding how dynamic homeowner preferences and behaviors affect C 

outcomes and how feedbacks both within an ecosystem and between humans and the ecosystem 

affect C. 

Our results show the importance of management practices affecting nitrogen availability 

in exurban land. While these practices positively affect the ecosystem service of C sequestration, 

they are also linked to outcomes of other ecosystem services that are not explored in this analysis 

(Groffman et al. 2009, Carey et al. 2012). Excessive lawn fertilizer use is known to have 

negative effects on the landscape such as decreased water quality (Carey et al. 2012, Hobbie et 

al. 2017).  Hobbie and others (2017) estimated that 8% of residential N inputs were lost via 

runoff in a mixed density urban watershed, which is an important ecosystem loss of N that 

Biome-BGC-Ex does not account for.  The current version of Biome-BGC-Ex is limited in its 

ability to simulate surface loss of N or fertilizer and in its soil hydrology sub-models. This could 

be addressed by linking Biome-BGC-Ex with a spatially explicit model such as SWAT 

(Francesconi et al. 2016), watershed models (Samal et al. 2017), or surface waterflow models 

(Xu et al. 2016). Additionally, a new version of Biome-BGC, Biome-BGCMuSo, was released 

after modifications of Biome-BGC-Ex were complete and includes a multilayer soil model that 

has improved the simulation of soil hydrology including runoff (Hidy et al. 2012, 2016).  These 

factors along with other observations on the model’s N dynamics (2.4.1.2  could be considered in 

future versions of Biome-BGC-Ex. 
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The small sample of data available from our 26 sampled parcels for model 

parameterization and calibration along with an overall lack of long term or chronosequence data 

from exurban land did not allow for a robust validation of Biome-BGC-Ex as a tool for 

simulating ecosystem processes in exurban ecosystems. However, a comparison of trends shown 

between our model results and empirical studies of other urban ecosystems indicate our model is 

performing as expected. Fissore and others (2012) estimated C accumulation in mixed tree and 

turfgrass residential yards across a density gradient and found it ranged between 0 - 1.1 kg C 

m−2 yr−1, with higher values found with increased parcel size and tree density. This study, which 

accounted for tree and turfgrass NPP, heterotrophic respiration, and leaf management, 

underscored the wide span of potential C accumulation in the residential landscape. Nowak and 

others (2013) estimated C accumulation in urban tree cover across the US and found temperate 

regions to vary between 0.08 - 0.3 kg C m−2 yr−1. For Michigan they estimated a rate of 0.22 kg C 

m−2 yr−1. In this study, for turfgrass with sparse woody the HAT C accumulation range is 

between 0.08 - 0.68 kg C m−2 yr−1 when averaged across the last five simulation years (data not 

shown). For dense woody the HAT results range between 0.21 to 0.23 kg C m−2 yr−1 when 

averaged across the last five simulation years (data not shown). As previously mentioned, 

(2.4.1.2  ) Neat Neighbor, the only HAT that sequesters carbon in turfgrass, averaged a soil C 

accumulation rate of 0.04 kg C m−2 yr−1. This falls within the range (0.026 - 0.08 kg C m−2 yr−1) 

measured in urban residential yards (Raciti et al. 2011, Huyler et al. 2014b, Smith et al. 2018). 

As discussed in the previous section (2.4.2  ), the dynamics of nitrogen in exurban ecosystems 

are not well studied and the response of urban trees to fertilizer varies across species (Ferrini and 

Baietto 2006). Future research specifically investigating competition dynamics between open 
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grown trees and turfgrass, particularly regarding nitrogen, would improve confidence in the 

model.   

We acknowledge that this study is not a full-scale carbon budget. We are only 

considering the C in soils and vegetation and are not accounting for C losses that arise from the 

application of these management practices (e.g., gas-powered lawn mowers, running sprinklers, 

production of N fertilizer) or losses that may occur due to people living away from urban centers 

(e.g. transportation), which are known to have significant impacts on urban C and N fluxes 

(Fissore et al. 2011). Selhorst and Lal (Selhorst and Lal 2013) estimated the average C 

equivalent (Ce) emissions for lawn mowing as 0.019 g Ce m-2 y-1 and 0.006 g Ce m-2 y-1 for 

fertilizer application (including production, packaging, storage, and distribution). Using these 

values applied across all Monte Carlo simulation results, 10% fewer turfgrass with sparse woody 

simulations and 40 % fewer in turfgrass would have sequestered carbon. We also did not 

consider the fate of any C removed from the system, when in many cases homeowner may keep 

collected woody biomass on their property (Currie et al. 2013). If the full C costs of each 

management practice were considered it may produce different outcomes (Selhorst and Lal 2013, 

Contosta et al. 2020). Future studies could use Biome-BGC-Ex in conjunction with other tools to 

estimate residential carbon budgets. 

2.5   CONCLUSION 

In this study we adapted an ecosystem process model designed for wildland systems to 

the human-dominated exurban landscape. Models such as Biome-BGC-Ex can give insight into 

the mechanisms of growth and decay within a system and can be used to simulate potential 

variation in ecosystem states and fluxes given sets of assumptions, drivers, and initial conditions 

(Tatarinov and Cienciala 2006, Robinson et al. 2009, 2013, Lei et al. 2015).  Models are not 
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meant to be perfect predictors of future outcomes; however, for our study they allow us to 

compare how C sequestration could respond to a range of input scenarios under a constrained set 

of site and climate conditions. Through simulations with Biome-BGC-Ex we found that 

homeowners’ management practices can have significant impact on outcomes of C sequestration 

in the residential exurban environment. These simulations suggested that N fertilization in the 

turfgrass with sparse woody and turfgrass vegetation cover types was necessary for C 

sequestration. In turfgrass with sparse woody fertilizer was assumed to be applied uniformly to 

both trees and turf, which maintained and increased tree biomass leading to C sequestration.  In 

turfgrass fertilizer was necessary for C sequestration in order to meet the vegetation and soil 

nitrogen demands, however mulch mowing can significantly reduce the amount of fertilizer 

needed. In the dense woody vegetation cover type pruning and tree removals had the largest 

impact on C sequestration and should be minimized to improve C outcomes. At the landscape 

scale, management that increases woody biomass is the strongest driver of C sequestration in 

exurban residential land and efforts to increase C should consider homeowner preferences and 

management practices that encourage tree growth. Overall, our study results illustrate the 

strength of assessing the effects of human management by using an ecosystem process model 

with C, N, and water dynamics in vegetation and soil linked through functional ecosystem 

processes. 
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Simulating the Effects of Yard Management Practices on 

Ecosystem Service Capacity in Residential Landscapes 

ABSTRACT 

Ecosystem process models can be adapted to represent the complex interactions among 

social and ecological processes in human-dominated ecosystems. We adapted the Biome-BGC-

Ex model to estimate the ecological production of a suite of ten supporting, regulating, and 

provisioning services in exurban ecosystems of Southeastern Michigan. Using Monte Carlo 

simulation methods, we simulated potential combinations of ten separate yard management 

practices and found that the ES capacity for each service varies with the management activities. 

All services across all vegetation types have significant changes in capacity due to at least one 

yard management practice. Fertilizer is an important driver for almost all ES explored here. Our 

analysis of trade-offs and synergies between the modeled services under six different homeowner 

agent types (HATs) found that differences and trade-offs in ES capacity between HATs can be 

explained by biophysical feedbacks modelled within the ecological system. Our study shows 

trade-offs between ES relating to high amounts of carbon or biomass and freshwater recharge. 

Our results indicate that homeowner efforts to improve locally beneficial services have the 

potential to positively affect those with benefits at a coarser scale. Our methodology is an 

advance toward fully anticipating the consequences of homeowner yard management choices.    
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3.1   INTRODUCTION 

Ecosystem services (ES) are the physical goods and associated benefits provided to 

humans by the ecosystems of the planet. The Millennium Ecosystem Assessment (MA, 2005) 

highlighted the importance of nonlinearities, feedbacks, and interactions within ecosystems and 

in the provision of ES (Cumming et al. 2005). This highlights the importance of the dynamics of  

integrated social-ecological systems (SES) in which interactions exist within and between human 

and ecological systems ( Carpenter et al. 2009; Ostrom et al., 2007). By addressing these 

interactions, ES science can support decision-making that recognizes how landscape ecological 

functions affect the provision of ES and how land management practices might affect future 

provision and trade-offs among ES (Villamagna et al. 2013, Bennett 2017).  

A full analysis of ES requires that both ecological and socio-economic aspects and their 

relationship need to be considered. A variety of overarching frameworks have evolved from the 

original framework proposed by the MA report (2005) that attempted to identify the relationships 

between goods and services provided by ecosystems and  improvements to human wellbeing 

(e.g., ES supply chain (Tallis et al. 2012), ES cascade model (Haines-Young and Potschin 2010), 

ES delivery process (Villamagna et al. 2013)). The key components of these frameworks can be 

distilled to ES capacity, ES flow, and ES demand.   ES capacity is the potential of an ecosystem 

to produce and deliver services based on biophysical and social properties and functions 

(Villamagna et al. 2013). ES flow is the realized flow of services for which there is demand. ES 

demand is the amount of services required or desired by society. These frameworks recognize 

that ES demand generates human pressures on ecological systems that drive changes in ES 

capacity. This study focuses on how these human pressures, in the form of residential 

homeowner management behaviors, affect ES capacity in the exurban residential landscape.  
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ES capacity is reliant on interactions between the ecological processes of ecosystems and 

human drivers and pressures on those ecosystems, including design, planning, and management 

actions (Termorshuizen et al. 2009, Fu et al. 2013, Bruins et al. 2017). Ecosystem processes are 

flows of energy, water, carbon (C), and nutrients that link biotic and abiotic factors within an 

ecosystem; they are interconnected by direct and indirect biophysical feedbacks (Currie 2011). 

Although human activity tends to modify these processes one at a time (e.g., irrigating lawns, 

adding N fertilizer), alteration of one process nearly always induces alteration of other processes 

(Finzi et al. 2011). As a result of human activity there are complex feedbacks between ecosystem 

processes and ES capacity. These feedbacks are described as balancing (negative) when they 

dampen change or reinforcing (positive) when they stimulate change. These dynamics lead to 

trade-offs and synergies in the production of ES, where trade-offs describe losing capacity of one 

service in return for the gain of another and synergies describe the positive response of multiple 

ES to change in a driver (Bennett et al. 2009).  Despite the proliferation of ES assessment tools, 

most do not consider mechanistic biophysical feedbacks, e.g. feedbacks among biogeochemical 

cycles, or other mechanistic interactions among ES; each service is typically estimated 

independent of other services (Nicholson et al. 2009, Seppelt et al. 2011, Currie 2011, Bruins et 

al. 2017, Lavorel et al. 2017). If knowledge of ecosystem processes and functions, including 

interactions with human actions and behaviors, is not adequately incorporated into ES models, 

scientists,  managers, and other practitioners may misunderstand the mechanisms underlying the 

effects of management decisions on ES capacity, improperly estimate the production of services, 

and possibly take actions that have consequences that could have been better anticipated (Bruins 

et al. 2017, Bennett 2017, Boerema et al. 2017). 
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Ecosystem process models are tools that have been designed to simulate biogeochemical 

processes and feedbacks within ecosystems. They have been verified, calibrated, and applied to 

global simulations as well as for local, site specific conditions across a range of wildland and 

human-dominated ecosystems including agriculture (Parton and Rasmussen 1994, Stehfest et al. 

2007, Wang et al. 2012), managed forests (Tatarinov and Cienciala 2006, González-Sanchis et 

al. 2015), managed grasslands (Qian and Follett 2002, Bandaranayake et al. 2003, Hidy et al. 

2012), urban ecosystems (Milesi et al. 2005, Zhang et al. 2012, Trammell et al. 2017), and 

exurban residential landscapes (Chapter 2). These models can provide quantifiable outputs of 

ecosystem C, N, and water pools and fluxes that can be used to estimate ES capacity.  Because 

ecosystem process models can reflect complexities such as feedbacks among processes occurring 

in an ecosystem, they can provide users with dynamic and quantitative measures of ES that can 

be integrated with other types of models and tools. Such models can provide robust measures of 

ES capacity, and they have the potential to be adapted to include human management because 

they employ transparent assumptions to extrapolate beyond known conditions (Cuddington et al. 

2013a).   

In this study, we applied a generalizable method to improve estimates of the provision of 

ES in the exurban residential landscape. We used the model Biome-BGC-Ex to estimate a suite 

of ES which fall into the supporting, provisioning, and regulating categories defined by the MA 

report (2005). Biome-BGC-Ex is a version of the ecosystem process model Biome-BGC 

(Running and Hunt 1993, Thornton and Rosenbloom 2005) that has been modified to simulate 

ecosystem processes in the residential exurban landscape (Chapter 2). Previous studies have used 

Biome-BGC to estimate ES capacity. This has included linking Biome-BGC with a hydrology 

model to estimate ES in a watershed (Xu et al. 2016), linking a modified version of Biome-BGC 
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(Biome-BGCMuSo) with a crop simulation model (Pokovai et al. 2020), and modifying Biome-

BGC to estimate ES in a managed forest (Turner et al. 2011).  Although other ecosystem process 

models have been modified for urban residential land (Trammell et al. 2017), this study will be 

the first that uses one to examine ES capacity in a residential landscape and focus on how 

homeowner yard management affects ES.  

Exurban residential land use is low-density settlement characterized by relatively large 

yards or private gardens for individual residences. Exurban land area increased from about 5 % 

(270,608 km2) of total land area of the conterminous US in 1950 to about 25 % 

(1.39 million km2) in 2000 (Brown et al. 2005) and the exurban population is projected to 

increase in future decades (Golding and Winkler 2020). In the US, exurban land use includes 

subdivisions, typically established by a single developer, as well as individually-developed 

properties, typically subdivided parcels on prior agricultural or forest land (An et al. 2011). 

Exurban residential land use is defined for this study as one housing unit per 0.2 to 16.2 ha 

(Brown et al. 2005). Exurban development is composed of lower-density settlements that may lie 

adjacent to more densely populated suburban areas.  In contrast to suburban areas, exurban 

parcels are larger, farther from city or town centers, and are typically disconnected from 

municipal services of sanitary sewer and water (An et al. 2011). Exurban landscapes are also 

known as peri-urban landscapes (Geneletti et al. 2017), and sometimes, characterized 

pejoratively as urban sprawl (Berger and Kotkin 2017). The yards that characterize this land use 

can provide ES, especially in comparison with conventional agriculture or dense urban areas 

(Nassauer et al. 2004, Raudsepp-Hearne et al. 2010, Radford and James 2013, Visscher et al. 

2016).  
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Although exurban residents affect ES in many ways, this study is specifically concerned 

with yard management behaviors that may affect ecosystem processes and drive differences in 

ES capacity. We focus on two behaviors that have pervasive effects.  The first behavior relates to 

vegetation choices made by developers or residents, particularly the creation of a novel 

ecosystem characterized by maintained turfgrass growing under open grown trees (Cook et al. 

2012, Groffman et al. 2014b, Currie et al. 2016). We refer to this vegetation community as 

turfgrass with sparse woody.  The second behavior involves, vegetation and soil management 

practices, which directly affect water, carbon, and nitrogen flows.  These include fertilization, 

irrigation, mowing, pruning, raking, tree removals, and tree planting. Developer and resident 

behaviors are driven by a variety of factors including parcel size (Nassauer et al. 2014), 

neighborhood norms  (Nassauer et al. 2009, Visscher et al. 2014, Sisser et al. 2016)and ease of 

maintenance (Carrico et al. 2013). These behaviors may also be directly or indirectly motivated 

by a demand for ES or avoidance of ecosystem disservices. This includes cultural ES, such as 

aesthetic services of beauty, neatness, safety, relaxation, and leisure provision; provisioning 

services of food and firewood production; and regulating services such as habitat for wildlife, 

biodiversity, and soil stability (Visscher et al. 2016, Larson et al. 2016, Barnes et al. 2020). 

Ecosystem disservices include as aesthetic unpleasantness, high-cost maintenance, and nuisances 

(e.g., allergenic plants, mosquitoes, rodents) (Wang et al. 2012, Nassauer 2017, Barnes et al. 

2020). While homeowners may choose a behavior in response to their demand for an individual 

ES, the behavior is likely to induce either a synergistic or trade-off response in one or more ES.  

This project simulates human pressures, in the form of homeowner management behaviors, that 

result from these ES demands. It then analyzes their effect on ecological processes with the goal 

of expanding our understanding of how human pressures and ecological feedbacks affect ES 
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capacity in the exurban landscape, specifically residential land uses characterized by trees and 

turfgrass landcover. t  

This study uses the ecosystem process model, Biome-BGC-Ex, to estimate the ecological 

production of a suite of ten supporting, regulating, and provisioning services in the exurban 

residential landscape of Southeastern Michigan, USA: NPP, soil fertility, firewood production, 

nitrogen retention, freshwater recharge, spring soil water recharge, summer soil water retention, 

climate regulation, microclimate regulation, and air pollution abatement. The main questions of 

this study were: 1) how do individual and combinations of yard management practices affect ES 

capacity? 2) what are the trade-offs and synergies between the modelled services? First, we used 

a Monte Carlo simulation that explores the potential range of combinations of management 

practices to analyze how management practices affect the ES capacity of each service.  Our first 

hypothesis was that, for each service, the capacity of the ecosystem to provide that service would 

differ among different management practices. Next, we compared trade-offs and synergies 

between the modeled services under different homeowner agent types (HATs), each 

characterized by different management intensities, combinations, and motivations reflective of 

those reported by interviewees in our study region. Our second hypothesis was that most 

simulated services would have synergistic responses to management, although the magnitude of 

response would vary between combinations. These analyses allow us to consider how different 

management practices drive ES capacity individually and in combination.  

3.2   METHODS 

3.2.1  STUDY REGION AND BROADER CONTEXT 

This study was conducted as part of a larger collaboration, the SLUCE project (Spatial 

Land Use Change and Ecological effects (Brown et al. 2008), which addressed the exurban 
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residential landscape as a coupled human-natural system. The empirical context is a 1.7 million 

ha study region (Figure 3-1) comprising ten counties in Southeastern Michigan that contain the 

Detroit, Ann Arbor, and Flint metropolitan areas with an estimated total regional population of 

5.3 million (U.S. Census Bureau 2021) that is dominated by exurban residential development 

(Zhao et al. 2007, Brown et al. 2008, Huang et al. 2013). Here we draw on products of a larger 

interdisciplinary project including an empirical ecological field study (Currie et al. 2016), 

developer and homeowner interviews (Nassauer et al. 2014, Nassauer 2017), online surveys 

(Nassauer et al. 2009, Wang et al. 2012, Visscher et al. 2014, 2016), modeling in a coupled 

human-natural system framework (Robinson et al. 2013), and adapting Biome-BGC to represent 

exurban vegetation cover types and management practices in Biome-BGC-Ex (Kiger et al. 

Chapter 2).  
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a. Map displays the ten-

county study region of 

Southeastern Michigan, 

exurban census tracts and 

zip codes boundaries used in 

online surveys from 

Visscher et al. 2014, 2016 

(reproduced with permission 

from Nassauer et al. 2009).  

 

 

 

b. Map displays 13 sample 

townships dominated by 

exurban land use selected 

for focus by the SLUCE 

project. Red bordered 

townships were the location 

of field surveys in Currie et 

al. (2016) and field 

interviews in Nassauer et al. 

(2014). 

  

 Figure 3-1: Study Region Extent 
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3.2.2  MODEL INPUT DATA 

In 2009 our detailed field study gathered social and ecological data in exurban residential 

neighborhoods of nine townships within the study region (Figure 3-1b). This study collected data 

on C and N present in foliage, wood, and litter of tree and turfgrass vegetation and soil of 26 

parcels (Currie et al. 2016) and on homeowner landscape management preferences and practices 

within these parcels (Nassauer et al. 2014). These parcels were selected from a pool of 600 

respondents to an internet-based survey of exurban residential landscape preferences conducted 

in prior work in the study region (Nassauer et al. 2009, Figure 3-1a). A subset of 53 respondents 

from this pool was invited to participate in an on-site interview and biophysical site survey. The 

subset was selected to represent stages (i.e., parcels that had been converted to residential land in 

each decade from the 1960s to the 2000s) and types (i.e., across the four types of exurban 

developments in our study region defined by An et al. 2011) of residential development in the 

region (based on aerial photos) and typical soils in the region (clay-rich soils were excluded 

based on STATSGO data) (Currie et al. 2016). Of this subset 26 households agreed to participate 

(Currie et al. 2016).   

This study simulates three predominant vegetation cover types identified as being the 

dominant cover types in the exurban residential neighborhoods of our study area: dense woody 

vegetation, turfgrass, and turfgrass with sparse woody vegetation (Currie et al. 2016). These 

landcover types occur on land that was historically forest or been cultivated or grazed crop or 

pasture. The current vegetation composition depends on active human management (tree and 

stump removal and turfgrass seeding, together with continued mowing). Dense woody vegetation 

has a closed to mostly closed canopy and no managed turfgrass. It was present in 8 of the 26 

parcels in the 2009 study and made up the second largest proportion (22.1%) of land cover in 
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investigated subdivisions (Currie et al. 2016). Turfgrass is managed turfgrass or lawn with no 

woody vegetation. This was present on 24 of the 26 parcels and made up 16.6% of land cover in 

investigated subdivisions. Turfgrass with sparse woody contains managed turfgrass and trees, but 

with gaps present between canopies. This vegetation cover type was identified in 24 of the 26 

parcels and typically made up the largest proportion (26.3 %) of land cover in investigated 

subdivisions (Currie et al. 2016).   

All analyses used inputs based on in-person interviews of the same 26 households as 

above, which surveyed homeowners on frequency and application amounts for a variety of 

management practices (listed in Table 3-1; Nassauer et al. 2014).  Management input 

probabilities for the Monte Carlo Analysis (section 3.2.5.1) took into account results from the 

online surveys conducted in the 207 zip codes of our study region (Figure 3-1a, reported in 

Visscher et al. 2104 and Visscher et al. 2016). Recommendations by the Michigan State 

Extension were used to improve our management distribution ranges for fertilizer (Frank 2015) 

and irrigation (Frank 2015) inputs and national standards of woody plant maintenance were used 

to improve estimates of pruning biomass removal (ANSI 1995). Literature on residential land 

management was also used to confirm ranges of fertilizer and irrigation (Law et al. 2004, Zirkle 

et al. 2011) and to translate mowing height to leaf area index (LAI) at time of mowing (Milesi et 

al. 2005). Results of the 2009 field study were also used to parameterize and determine the initial 

conditions of the model simulations (see 2.2.4  Appendix C; Currie et al. 2016).  

Results from the 26 household interviews were also used by Nassauer and others (2014) 

to construct the Homeowner Agent Typology used in our analysis (section 3.2.5.2  Table 2-3). 

As part of our larger project, Nassauer et al. (2014) developed a typology of exurban 

homeowners in our study area, each with distinct yard management regimes. The six types were: 
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neat neighbor, lakeshore owner, nature neighbor, tree planter, improver, and viewer (Figure 

3-2). We refer to these six types as a Homeowner Agent Typology (HAT). HATs are based on a 

combination of parcel size, parcel characteristics and homeowner behaviors. These behaviors are 

related to many factors including neighborhood norms and parcel size, but for the purpose of this 

study we are most interested in which ES they desire from their yards. Neat neighbors were 

small parcel owners with turf-dominated yards that were fertilized and planted with trees.  They 

noticed their neighbors’ yards and expected their neighbors to notice theirs. Their behaviors were 

related to an ES demand of a yard that is aesthetically neat. Lakeshore property owner owned 

small lake front or adjacent parcels. They fertilized but did not plant new trees. They desired 

aesthetic water views and low maintenance tree management. Nature neighbors lived on small 

parcels adjacent to large woodlands. They did not fertilize. They managed to maintain aesthetic 

woodland views. Tree planters owned medium parcels with large amounts of turfgrass with 

sparse woody vegetation cover. They planted trees on their property and used fertilizer. They 

were influenced by neighbors’ perceptions and aspiring to a “more natural” approach to property 

maintenance. Improvers own large parcels with large amounts of dense woody vegetation cover. 

They tended to not fertilize but did manage tree vegetation. They managed their properties with a 

desire for recreation and relaxation as well as wildlife viewing. Viewers owned large parcels that 

included large patches turfgrass either open or under woody vegetation. Their behaviors were 

related to interest in wildlife viewing and aesthetic characteristics of turf lawns beneath canopy 

trees. While these interviews qualitatively assessed motivations for management behaviors that 

the current study translated to ES demand, it was not designed to assess whether residents’ 

demands had been met or how satisfied residents were with the resulting ES flow.   
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Table 3-1: Description of management practices and their distributions and probability 

frequencies used in the Monte Carlo Analysis.   

Abbreviations: TGW = turfgrass with sparse woody, TG = turfgrass, DW = dense woody, SD = 

standard deviation; NA = not applicable.  

 

 

††
   Probabilities and distributions are based on homeowner interviews conducted across the study region (Nassauer et al. 2014) 

and supplemented with additional sources as follows.  
‡‡   (Law et al., 2004, Zirkle et al. 2011, MSU Extension 2014a) 
§§   (Zirkle et al., 2011, MSU Extension 2014b) 
***   (Milesi et al. 2005) 
†††   (ANSI 1995) 

Management 

practice 
Description 

Vegetation 

cover type 

Probability of 

occurrence†† 

Distribution 

type 

Distribution 

range1 

Fertilizer  
Nitrogen added (kg N 

m-2 yr-1) 

TGW 

TG 
0.7 Uniform 

0.0048 – 

0.024‡‡ 

Irrigation 
total weekly water 

amount (cm) 

TGW 

TG 
0.75 Normal 

Mean: 2.54§§ 

SD: 0.5 

Mow height 
Leaf Area Index (LAI) 

at time of mowing 

TGW 

TG 
1.0 Uniform 1.0 - 4.5*** 

Mulch mowing  
If yes, grass clippings 

stay on lawn 

TGW 

TG 
0.7 NA NA 

Pruning intensity 

Percent of foliar and 

fine woody biomass 

removed 

TGW 

DW 
0.75 Uniform 5 - 25%††† 

Pruning 

frequency 

If pruning occurs, 

yearly or every three 

years  

TGW 

DW 

Yearly: 0.6 

Every 3 years: 

0.4 

NA NA 

Raking 

Percent of 

aboveground tree litter 

biomass removed 

TGW 

DW 
0.55 Uniform 5 - 100% 

Coarse woody 

debris (CWD) 

removal 

Percent of CWD 

removed 

(for TGW all CWD is 

always removed) 

TGW 

DW 

TGW: 1.0  

DT: NA 

TGW: NA 

DT: Uniform 

TGW: 100% 

DT: 0 – 100 

Tree planting 

Aboveground tree 

biomass added (kg C 

m-2) in random year 

from 14-38 

TGW 

DW 
0.7 

Uniform 

 
0.1 - 3.0 

Tree removal 

Percent of tree 

biomass removed in 

random year from 14 

to 38 

TGW 

DW 
1.0 Uniform 0 - 100 
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Table 3-2: Quantification of management practices for each separate Homeowner Agent Typology (HAT) in Biome-BGC-Ex 

simulations for each vegetation cover type.   

For all vegetation cover types: If tree planting is stated to occur it is applied one-time at the start of year 15. If tree removals are stated 

to occur this is applied one time at the end of the growing season in year 35. Terminology for HATs is from (Nassauer et al. 2014) and 

photo representations of the HATs can be found in Figure 3-2. Neat Neighbor and Lakeshor Owner were not included in the dense 

woody analysis as this vegetation cover type was not found in these yards. (LAI:   Leaf Area Index, m2 m-2). 

 Homeowner Agent Type 

Management 

Practice 

Neat 

Neighbor 
Lakeshore Owner 

Nature 

Neighbor 
Tree Planters Improver Viewer 

Turfgrass with sparse woody (TGW) 

Fertilizer  

(kg N m-2 yr-1) 
0.01863 0.00782 0 0.00782 0 0.00782 

Irrigation  

(cm week-1) 
2.877 2.203 2.203 2.877 2.203 2.203 

Mow height (LAI) 2.3 2.3 2.3 2.3 2.3 2.3 

Mulch mowing Yes Yes Yes Yes Yes Yes 

Pruning intensity (%) 10 10 10 10 10 10 

Pruning frequency 
Every 3 

years 
Every 3 years Every 3 years Yearly Yearly Yearly 

Raking (%) 100 100 0 0 0 0 

Coarse woody debris 

(CWD) removal (%) 
100 100 100 100 100 100 

One-time tree 

planting (kg C m-2) 
0.8251 0 0 2.275 0.8251 2.275 

Year of tree planting 15 NA NA 15 15 15 

One-time Tree 

Removal (%) 
25 25 25 25 25 25 

Year of tree removal 35 35 35 35 35 35 

Dense Woody (DW) 

Coarse woody debris 

(CWD) removal (%) 
NA NA 60 60 60 60 

Tree planting  

(kg C m-2) 
NA NA 0 2.275 0.8251 2.275 
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Year of tree 

planting 
 NA NA NA 15 15 15 

 
Neat 

Neighbor 
Lakeshore Owner 

Nature 

Neighbor 
Tree Planters Improver Viewer 

Tree Removal (%) 0.25 0.25 0.25 0.25 0.25 0.25 

Year of tree 

removal 
35 35 35 35 35 35 

Turfgrass (TG)  

Fertilizer  

(kg N m-2) 
0.01863 0.00782 0 0.00782 0 0.00782 

Irrigation (cm) 2.877 2.203 2.203 2.877 2.203 2.203 

Mow height (LAI) 3.3 3.3 3.3 3.3 3.3 3.3 

Mulch mowing Yes Yes Yes Yes Yes Yes 

Main ES 

Demand(s) 

Aesthetic 

– 

neatness;  

Aesthetic – lake 

views; low 

maintenance 

Aesthetic - 

wooded views 

Aesthetic – turf lawns 

beneath canopy trees. 

Recreation, 

wildlife 

viewing 

Aesthetics – large lawn 

area; wildlife viewing 

Parcel size‡‡‡ small small small medium large large 

Sample size (n = 

26) 

6 3 2 7 4 4 

 

 

‡‡‡ Parcel sizes defined as large (>1.1 acre), medium (0.5-1.1 acre) and small (<0.5 acre). 
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Figure 3-2: Typical backyards of each of the six homeowner agent types (HATs). 

Used with permission from Nassauer et al. 2014.
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3.2.3  THE MODEL: BIOME-BGC-EX 

This study simulates ecosystem processes and services with Biome-BGC-Ex, a version of 

the ecosystem process model Biome-BGC 4.2 (Thornton et al. 2002) modified by our team to 

simulate carbon storage in the exurban landscape (Chapter 2). Biome-BGC was chosen for 

adaptation because it has been widely used to quantify detailed ecosystem processes and 

interactions including light, water availability, soil properties, and N and C cycling in a variety of 

biomes worldwide, including forest and grassland biomes (Thornton et al. 2002, Turner et al. 

2006, Hidy et al. 2012, Goetz et al. 2012, González-Sanchis et al. 2015).  It also included enough 

detail in soil processes to allow it to realistically capture changes in soil organic C and mineral N 

pools over time, related to changes in Net Primary Production (NPP) or leaf litter treatments 

resulting from yard management practices.  

Biome-BGC-Ex augments Biome-BGC with the ability to model multiple vertical layers 

of vegetation within a single spatial grid cell and the ability to simulate yard management 

practices that directly affect soils and vegetation (Chapter 2). Biome-BGC-Ex can model 

turfgrass and dense woody as a single vegetation cover type along with turfgrass with sparse 

woody vegetation, which is comprised of two distinct layers of vegetation (turfgrass and 

deciduous woody).  Thus, it embodies different vegetation cover types competing for above and 

belowground resources (e.g., light, water, nitrogen) within the same grid cell. It also gives the 

user the ability to simulate a suite of management practices: nitrogen (N) fertilization, irrigation, 

mowing and fate of clippings, pruning, raking, coarse woody debris (CWD) removal, tree 

planting, and tree removal. Further detail on Biome-BGC-Ex can be found in Chapter 2. 

Operating Biome-BGC-Ex begins by supplying ecophysiological parameters and initial 

carbon and nitrogen pools for each vegetation cover type. Our initial carbon (C) and N pools 



107 

 

were based on results of our field study (Currie et al. 2016). Ecophysiological parameters were 

modified from default Biome-BGC parameters for C3 grasses (Appendix Table C-2, Thornton 

and Rosenbloom 2005) and deciduous broadleaf forests (Appendix Table C-3) in our study 

region based on results of the field study and our model calibration (Robinson et al. 2013).  We 

calibrated the model for each vegetation cover type separately with the aim of producing a 

baseline scenario for each that, with minimal yard management, exhibited constant total NPP 

over a 50-year period. These represent hypothetical baselines based on the site, climate 

(including moisture), soils, and N availability present in residential parcels in our study region 

(greater detail provided in Chapter 2, Appendix C).  Dense woody assumed removal of 60% of 

coarse woody debris (CWD). Turfgrass assumed mulch mowing when turf Leaf Area Index 

(LAI) is greater than a 3.1 m2 m-2; no fertilizer or irrigation occurred. For turfgrass with sparse 

woody we assumed a baseline management strategy of 100% CWD removal and mulch mowing 

when turf LAI is greater than 1.5 m2 m-2. These stable baselines for each vegetation cover type 

allowed us to assess differences in ES due to management practices.  

3.2.4  DESCRIPTION OF SERVICES MODELLED 

Using Biome-BGC-Ex, we simulated a suite of ecosystem services.  These included NPP, 

soil fertility, firewood production, nitrogen retention, freshwater recharge, spring soil water 

recharge, summer soil water retention, climate regulation, microclimate regulation, and air 

pollution abatement. The ecological production of these services was calculated directly or 

indirectly using outputs from Biome-BGC-Ex (Table 3-3Table 3-3: Description of ecosystem 

services and their calculation from Biome-BGC-Ex model results.).   
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Table 3-3: Description of ecosystem services and their calculation from Biome-BGC-Ex 

model results. 

NPP = net primary productivity; SOC = soil organic carbon.  

 

Ecosystem 

Service 

Description Calculation/Indicator 

NPP  Carbon fixed by plants above and 

belowground after autotrophic respiration 

is accounted for.  

Annual NPP (kg C m-2 y-1) of the full 

vegetation community in year 50. 

Soil Fertility  Soil must have sufficient nutrients and 

organic matter to provide an optimal 

growing environment for plants. Soil 

organic carbon (SOC) retains water and 

nutrients and supports soil microbes. Soil 

mineral nitrogen (N) is directly available 

for plant uptake.  

Index (0-100) based on SOC and soil 

mineral N in year 50. Each variable was 

normalized and then weighted evenly 

(0.5) to create the index (Maes et al. 

2011).  

Firewood  Wood that is harvested and can be used 

as fuelwood 

Woody biomass (kg C m-2 yr-1): CWD 

collected in year 50 plus firewood 

available from tree removals. Tree 

removal firewood is expressed as an 

annual average.  

Nitrogen 

Retention  

Avoided nitrogen pollution from leaching 

& volatilization – two processes which 

contribute to air and water pollution 

Proportion of nitrogen retained in year 

50. Calculated as§§§: 

1 – (N exports [leaching + 

volatilization]/N inputs [deposition + 

fixation + fertilization)  

Freshwater 

Recharge  

Water that moves through system into a 

groundwater pool, aquifer, or surface 

water pool.  

Measured as soil water outflow (mm yr-1) 

in year 50. 

Spring Soil 

Water 

Recharge 

Additional water the soil retains over the 

winter months, which is available to 

plants at the start of the growing season   

Measured as additional water retained 

(mm yr-1) in the soil water pool over the 

non-growing season (Nov in year 49-

April in year 50). Calculated as: 

water inputs [precipitation] - water 

exports [evapotranspiration + soil water 

outflow + snow sublimation] 

 

 

§§§ note: we are not considering N contained in biomass removed from the system. 
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Summer Soil 

Water 

Retention 

Proportion of incoming water the soil 

retains at height of growing season, 

indicates soil moisture during growing 

season 

Proportion of water retained in July of 

year 50. Calculated as:****: 

1 – (water exports [evapotranspiration + 

soil water outflow]/water inputs 

[precipitation + irrigation])  

Climate 

Regulation 

Carbon sequestration and storage – 

Carbon sequestration regulates global 

climate by taking up carbon that may 

have otherwise contributed to 

atmospheric CO2 (Nowak 1994, 

McPherson 1998) 

Net change in total carbon stored in 

vegetation and soils (kg C m-2) over 50-

year period. 

Microclimate 

Regulation 

Potential for the system to reduce air 

temperature. Cooling effects are the 

result of evapotranspiration (Taha 1997, 

Bolund and Hunhammar 1999, Qiu et al. 

2013) 

Total evapotranspiration (mm yr-1) in 

year 50. 

Air pollution 

Abatement 

Potential to capture and remove air 

pollutants. The reduction is primarily 

caused by foliage filtering pollution and 

particles from the air, which can be 

measured with Leaf Area Index (Bolund 

and Hunhammar 1999, Maes et al. 2011, 

Andersson-Sköld et al. 2018) 

Leaf Area Index in year 50 – a higher 

value indicates a greater potential to 

remove pollutants. 

 

  

 

 

**** note: this number can be less than zero due to export of water stored previously in soil water pool. 
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3.2.5  MODEL ANALYSES 

We performed two sets of model simulations for each vegetation cover type, each of 

which aimed to meet one of our two research objectives.  For the first objective, we used a 

Monte-Carlo approach to randomly sample the space of numerous potential interactions among 

multiple management practices co-occurring at differing frequencies and intensities.  For the 

second objective, we simulated specific, coordinated sets of management practices carried out by 

different types of homeowners. We refer to the coordinated sets of management practices as a 

Homeowner Agent Typology (HAT), which represents observed combinations of behaviors 

among exurban land developers and homeowners, as determined by our homeowner site visits 

and interviews and subsequently validated by our survey (Nassauer et al. 2014, Visscher et al. 

2014, 2016).  

3.2.5.1  MONTE CARLO SIMULATION 

We used Monte Carlo simulation methods (Currie and Nadelhoffer, 1999) to explore the 

combined effects of interacting, variable values of yard management practices on ES, each 

represented by probability distributions (Table 3-1) sampled with the Latin hypercube technique 

(R package ‘lhs’; Carnell 2016).  Each vegetation cover type had a corresponding set of plausible 

homeowner management practices (Table 3-1). These realistic ranges of yard management 

practices helped to ensure that the distribution of model outcomes represents a realistic 

expectation of ranges for each ES.   

We ran each simulation for fifty years with the value of each ES in year fifty reported in 

the results. For turfgrass and dense woody, which had four and five management practices 

respectively, we performed 3000 simulation runs. For turfgrass with sparse woody, which had 
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nine management variables, we performed 7000 simulation runs. Together, these large sets of 

model runs produced distributions of ES outcomes for each vegetation cover type.     

To investigate which management practices led to positive or negative changes in each 

ES, we used multiple linear regression analysis for each ES within each vegetation cover type. 

For easier comparison of independent variables, we include regression results where regression 

coefficients for each management practice have been normalized on a zero to one scale (the full 

set of normalized results, regression coefficient plots, and additional partial linear regression 

figures can be found in Appendix Table C-5, Figure C-1, and Figure C-2, respectively). Pearson 

coefficient of correlation was calculated for relationships between carbon and nitrogen pools, 

management practices and ecosystem services. All statistics were conducted in R version 3.3.2 

(R Core Team 2019) on RStudio (RStudio Team 2016), using the packages: ggplot2 (Wickham 

2016), rms (Harrell 2020), and corrplot (Wei and Simko 2017). 

3.2.5.2  HOMEOWNER AGENT TYPOLOGY ANALYSIS (HATS) 

While the Monte Carlo analysis allows us to see a full range of potential outcomes, the 

HAT analysis is designed to simulate ES capacity for coordinated sets of management practices 

known to be carried out by homeowners at the scale of the individual parcel in our study region. 

Based on the raw interview data that Nassauer, et al. (2014) used to define the HATs, we 

assigned explicit values (Table 3-2) for each HAT’s management practice in each vegetation 

cover type. Each HAT differed in the combination of fertilizer and irrigation intensity, pruning 

frequency, and whether raking, tree planting, and tree removal occurred. Some practices varied 

little among HATs, e.g., mowing, pruning intensity, and removal of CWD. Each combination of 

HAT and vegetation type (turfgrass, woody, and turfgrass with sparse woody) was simulated in 

Biome-BGC for 50 years, except for the combinations of Neat Neighbor and Lakeshore Owner 
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and dense woody as these combinations were not found in our study region. The results across 

HATs and within each service were normalized (0 - 100) and displayed in a radar chart to assess 

the trade-offs and synergies among ecosystem services. A higher score within each ES is 

interpreted as, relative to other management types, more ES capacity for that service.  

3.3   RESULTS 

3.3.1  MONTE CARLO SIMULATION 

3.3.1.1  TURFGRASS WITH SPARSE WOODY 

Across all ecosystem services (ES) in this vegetation cover type, fertilization, irrigation, 

raking, and pruning were the strongest drivers of differences in ES capacity among model runs 

(Figure 3-3), with fertilizer as the strongest driver for eight of ten modeled ES. NPP, soil fertility, 

climate regulation, and air pollution abatement are services directly related to above or 

belowground biomass and fertilizer were shown to be strongly positively correlated with tree 

vegetation and litter C and soil C and N (Figure 3-4). In this vegetation cover type, nitrogen was 

the most limiting factor to biomass increases in Biome-BGC-Ex and higher fertilizer application 

was strongly linked to increased availability of above and belowground biomass.    
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Figure 3-3: Partial linear regression results from the Monte Carlo analysis for ecosystem 

services where fertilizer is the strongest driver of the given ecosystem service in the 

turfgrass with sparse woody vegetation cover type.  

Solid lines show the partial regression fit for the coefficient bounded in grey by the 95% 

confidence interval (based on the standard error of the coefficient). This is the expectation of the 

effect of given independent variable, while all other independent variables vary stochastically 

and in combination. The dashed lines represent the 95% prediction interval; the area where 95% 

of the data points are expected to fall given the variation of all other independent variables.  
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Figure 3-4: Results from the 

Monte Carlo analysis on 

correlation between carbon and 

nitrogen pools, management 

practices, and ecosystem services 

for turfgrass with sparse woody. 

Positive correlations are displayed 

in blue and negative correlations in 

red color. Color intensity and the 

size of the circle are proportional 

to the correlation coefficients. 
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Fertilizer addition also led to significant increases in nitrogen retention, spring soil water 

recharge and summer soil water retention (Figure 3-3). Nitrogen retention was strongly linked to 

the presence of fertilizer, with small amounts of fertilizer providing large gains that level off with 

additional increase. This relationship was driven by Biome-BGC-Ex requiring nitrogen additions 

to maintain growth in this vegetation cover type. If fertilizer was not added simulated vegetation 

mortality began to increase as nitrogen demands could not be met which led to an overall loss of 

nitrogen.  Without fertilizer, irrigation provided significant negative impacts on nitrogen 

retention due to increased nitrogen leaching.  Fertilizer led to increases in spring soil water 

recharge and summer soil water retention due to biomass in vegetation and soil preventing loss 

of water through soil water outflow. Fertilizer addition led to a significant decrease in freshwater 

recharge because fertilizer resulted in greater NPP and greater water demand and uptake by 

plants.  Without fertilizer applied, greater rates of raking led to an increase in freshwater supply 

because reduced leaf litter results in lower soil organic carbon (SOC) and soil water holding 

capacity, which led to decreased water retention in soil. 

After fertilization, the next strongest driver varied among the ES.  For NPP, irrigation 

was the next strongest driver, however this effect interacted with the amount of fertilization. 

When fertilizer was not applied, water and NPP were strongly positively linked. The ES of 

climate regulation was negatively correlated with pruning intensity and frequency.  For the ES of 

soil fertility, increased raking of plant litter resulted in lower soil fertility because it lessened the 

amount of C and N that was incorporated in soil organic pools over time.   

There were trade-offs between many services due to how these services responded to 

fertilizer and tree removals. Soil fertility and firewood increased with fertilizer application and 

tree removals. Fertilizer increased tree biomass for firewood and directly improved soil mineral 
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N increasing soil fertility. The model assumed all aboveground biomass is removed from the 

system with tree removal, which can directly provide firewood. Belowground biomass remained 

in the system as litter, which increased soil fertility as it decomposed. Climate and microclimate 

regulation, NPP, and air pollution abatement increased with fertilizer but declined with tree 

removals because they are all strongly linked to either total biomass production or leaf biomass. 

In contrast, freshwater recharge decreased with fertilizer but increased with tree removals. 

Fertilization increased biomass leading to increased plant water uptake and less water available 

to leave the system while tree removals decreased biomass and total plant water uptake.  

Microclimate regulation was the only service driven primarily by irrigation. Increased 

irrigation resulted in increased evapotranspiration, which can lower the local temperature 

through evaporative cooling and thus improving the microclimate service. Fertilizer had a small 

but significant positive impact on evapotranspiration because increased biomass increased plant 

transpiration in our simulations. 

3.3.1.2  TURFGRASS 

For the turfgrass vegetation cover type, fertilizer and irrigation were significant for all 

services. Fertilizer addition was the strongest driver of services that are directly impacted by 

fluxes of carbon and nitrogen in vegetation and soil: NPP, soil fertility, nitrogen retention, and 

climate regulation (Figure 3-5). Mulch mowing also increased available nitrogen. Soil fertility, 

climate regulation, and NPP are all services strongly related to the system’s ability to increase 

carbon stored in ecosystem pools and fertilizer was shown to positively correlate to soil C and N 

(Figure 3-6). In the case of simulations, nitrogen limited growth in the Biome-BGC-Ex model, 

and thus increasing additions of fertilizer and mulch mowing increased those services. Nitrogen 
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retention was also strongly related to the presence of fertilizer, as zero fertilizer addition led to 

turfgrass mortality in our simulations, which resulted in an overall loss of nitrogen.  

In the turfgrass vegetation cover type mow height and irrigation were significant drivers 

for freshwater recharge, spring soil water recharge, microclimate regulation, summer oil water 

retention, climate regulation, and air pollution abatement. There were trade-offs between 

microclimate regulation, climate regulation, and freshwater recharge. due to how these services 

responded to irrigation and mow height. Irrigation presence and amount were strong positive 

drivers of microclimatic cooling via evapotranspiration. There was also a strong interaction 

between irrigation and mow height. When there was no irrigation a higher mow height had little 

effect on microclimatic regulation, likely because there is not enough irrigation to allow for the 

additional leaf area to greatly increase transpiration. However, when there was irrigation, there 

was additional water available for transpiration in proportion with the additional leaf area in 

model runs where mow height was greater. In the case of climate regulation, irrigation had a 

negative effect because irrigation increased decomposition which released carbon in our 

simulations. However, mow height was positively related to vegetation biomass increases 

leading to increased climate regulation. For freshwater recharge, irrigation had a positive effect 

and mow height had a negative effect. Increased biomass from higher mow heights results in 

more plant water uptake reducing water available for recharge. Irrigation directly increases the 

pool of soil water available for recharge.  
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Figure 3-5: Partial linear regression for ecosystem services where fertilizer is the strongest 

driver of the given ecosystem service in the turfgrass vegetation cover type.  

The impact of mulch mowing is shown in black, while scenarios where clippings are removed 

are shown in red. Solid lines show the partial regression fit for the coefficient bounded in grey by 

the 95% confidence interval (based on the standard error of the coefficient). This is the 

expectation of the effect of given independent variable, while all other independent variables 

vary stochastically and in combination. The dashed lines represent the 95% prediction interval; 

the area where 95% of the data points are expected to fall given the variation of all other 

independent variables.  
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Figure 3-6: Results from the Monte Carlo analysis on correlation between carbon and 

nitrogen pools, management practices, and ecosystem services for turfgrass.  

Positive correlations are displayed in blue and negative correlations in red color. Color intensity 

and the size of the circle are proportional to the correlation coefficients. 
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3.3.1.3  DENSE WOODY 

Simulations for the dense woody vegetation cover type did not include fertilization and 

irrigation(Nassauer et al. 2014, Visscher et al. 2014).. In dense woody pruning was the strongest 

driver for four of the ten modeled services: NPP, soil fertility, climate regulation, and air 

pollution regulation (Figure 3-7). Coarse woody debris (CWD) removal and tree removals also 

resulted in decreases to these services, but to a lesser degree. Yearly pruning was the strongest 

driver of biomass loss in dense woody and yearly pruning was found to have a strong negative 

correlation with vegetation and soil C (Figure 3-8). The loss of biomass led to decreases in NPP 

and climate regulation (ecosystem C storage). Since pruning disproportionately favors the loss of 

leaves and small branches, LAI of the woody vegetation is reduced, leading to reductions in air 

pollution abatement.  

Coarse woody debris (CWD) removal poses a trade-off between services as firewood and 

nitrogen retention benefited from the CWD removals while the other services saw losses due to 

CWD removal (Figure 3-8). Most variability within nitrogen retention relates to nitrogen 

volatilization, and this is most strongly driven by a positive relationship with CWD removal as 

the removal of dead biomass decreases potential volatilization. Firewood increased with tree 

removals used as firewood.  
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Figure 3-7: Partial linear regression for ecosystem services where pruning is the strongest 

driver of the given ecosystem service in the dense woody vegetation cover type.  

The impact of pruning yearly is shown in red, while scenarios where pruning is every three years 

are shown in red. Solid lines show the partial regression fit for the coefficient bounded in grey by 

the 95% confidence interval (based on the standard error of the coefficient). This is the 

expectation of the effect of given independent variable, while all other independent variables 

vary stochastically and in combination. The dashed lines represent the 95% prediction interval; 

the area where 95% of the data points are expected to fall given the variation of all other 

independent variables.  
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Figure 3-8: Results from the Monte Carlo analysis on correlation between carbon and 

nitrogen pools, management practices, and ecosystem services for dense woody.  

Positive correlations are displayed in blue and negative correlations in red color. Color intensity 

and the size of the circle are proportional to the correlation coefficients. 

 

3.3.2  HOMEOWNER AGENT TYPOLOGY (HAT) 

Our HAT analysis examined the effect of management behaviors associated with each 

HAT on trade-offs and synergies of ES within each vegetation cover type. Synergies arise when 

multiple services are enhanced simultaneously by a given HAT, while trade-offs arise when one 

service is improved at the expense of another service’s production. For turfgrass with sparse 

woody management by HATs varied for fertilizer, irrigation, pruning intensity and frequency, 
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raking removals, and tree planting (Figure 3-9a). Neat neighbor (light blue triangles) 

management behavior was related to neighborhood norms and a desire of aesthetic neatness, 

which they manage for with high fertilizer, irrigation and raking along with infrequent pruning. 

This type scores highest in four ES: firewood, N retention, spring soil water recharge and climate 

regulation, but the lowest in freshwater recharge.  This contrasts with Tree Planter (black 

outlined squares) whose management behavior was related to neighbor perception along with a 

desire for an aesthetic view of horticultural trees and plantings. Compared to Neat Neighbors 

they applied less fertilizer, pruned more frequently, and planted more trees. They scored 

similarly for many services, but we found they trade off in soil fertility, firewood, summer soil 

water, and climate regulation. Viewer (green diamond) had low values of fertilizer and irrigation 

but high values of pruning and tree planting, and a desire for the aesthetic characteristics of turf 

lawns beneath canopy trees. Viewer scored close to or slightly lower than Neat Neighbor and 

Tree Planter for all ES except for summer soil water retention and air pollution abatement. 

Improver (dark blue circles) management behavior was related to wanting a yard suited for 

recreation and wildlife viewing. They managed less than Neat Neighbor by applying no fertilizer 

and lower amounts of irrigation but pruned yearly, which results in the lowest scores for all ES 

except for freshwater recharge where they scored the highest. Nature Neighbor (yellow circles) 

behaviors were influence by a desire for aesthetic views of woodlands and their management was 

comparatively minimal. Their results followed the same pattern as Improver, but with slightly 

higher scores for all ES except for freshwater recharge where they scored lower. Lakeshore 

Owner (orange squares) had management behaviors that were related to lake views and low 

maintenance. Their results followed the pattern of Nature Neighbor with higher values in all ES 

except for freshwater recharge.  
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Figure 3-9: Comparison of ecosystem service production across Homeowner Agent 

Typologies (HATs) for a. turfgrass with sparse woody b. turfgrass, c. dense woody.  

Simulation results for each HAT have been normalized within each service for comparison.  

For turfgrass (Figure 3-9b) synergies and trade-offs tended to vary based on homeowner 

agent types.  Neat Neighbor (blue triangle), which managed for property neatness with high 

fertilizer and irrigation rates, had the highest score for seven ES: NPP, soil fertility, nitrogen 

retention, spring soil water recharge, climate regulation, microclimate regulation, and air 

pollution abatement. High production of these services came at the expense of production in 

freshwater recharge and summer soil water retention, relative to other HATs. Nature Neighbor 

and Improver (yellow circle) types, which managed for recreation and adjacent wooded views 

with no fertilizer and low irrigation, scored the lowest for all services but freshwater recharge. 
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Tree Planter (black outlined square), which managed for the aesthetics of horticultural plantings, 

fertilize at a lower rate than Neat Neighbor but had similar scores for many of the ES except for 

climate regulation, NPP and soil fertility, which were lower. Tree Planter also had higher 

production of freshwater recharge and summer soil water retention compared to Neat Neighbor 

because the resulting lower plant biomass required less water uptake leaving more water 

available to the soil pool. HATs with lower levels of both fertilizer and irrigation (Lakeshore 

Owner, Viewer) had overall lower production of services compared to those with high fertilizer 

and irrigation and showed positive relationships between nitrogen retention, spring soil water 

recharge, microclimate regulation and air pollution abatement. These services showed a trade-off 

with NPP, soil fertility, freshwater recharge, and summer soil water retention.  Nature Neighbor 

and Improver (yellow circle) types, which managed for recreation and adjacent wooded views 

with no fertilizer and low irrigation, scored the lowest for all services but freshwater recharge.  

In the dense woody vegetation type, all HATs show synergies between NPP, soil fertility, 

N retention, spring soil water recharge, microclimate regulation, and air pollution abatement 

(Figure 3-9c). The HATs with the most tree planting (Tree Planter, Viewer) show additional 

synergies among firewood, freshwater recharge, and climate regulation, but a slight trade-off 

with summer soil water retention. The other HATs show trade-offs with firewood, freshwater 

recharge, and climate regulation, with the trade-off strongest for HATs that do not plant trees 

(Lakeshore Owner and Nature Neighbor). Under the conditions established for these scenarios, 

homeowners that desire woodland views or the aesthetic characteristics of turf lawns beneath 

canopy trees and periodically add large amounts of additional biomass to the system – in the 

form of tree planting - realize many enhanced ecosystem services.  
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3.4   DISCUSSION 

Results of our Monte Carlo simulation confirmed our first hypothesis that for each service ES 

capacity would differ with management activities. All services across all vegetation types had 

significant changes in ES capacity due to at least one individual yard management practice. In 

turfgrass with sparse woody most management practices had significant influence on ES 

estimates and multiple linear regressions of the management practices explained high amounts of 

variation for most services, except for those focused on soil water recharge and retention.  In 

turfgrass all ES estimates were significantly impacted by at least three of the four management 

practices and regression models explained most of the variation within each service. In dense 

woody all services were found to be significantly influenced by at least one management 

practice. However, management practices were less likely to explain ES estimate, especially for 

services related to water storage and flow. 

Results of our Homeowner Agent Typology (HAT) give us the ability to probe how trade-

offs and synergies vary between common resident behavior combinations and how feedbacks 

within the ecosystems drive these relationships. This analysis also provided an opportunity to 

evaluate how cultural ES demands, which are one factor that can affect resident management 

behavior, related to ES estimated by Biome-BGC-Ex. We found that the two HATs with the 

highest overall scores across ES in turfgrass with sparse woody trade-off in soil fertility, 

firewood, summer soil water, and climate regulation that are a result of their varying 

management behaviors. High levels of fertilization in Neat Neighbor, which were related to 

cultural neighborhood norms and the desire for an aesthetically neat yard, resulted in greater 

climate regulation and firewood ES. However, lower fertilization and high levels of tree planting 

in Tree Planter, which were related to neighborhood norms that followed a desire for aesthetic 
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views of turf lawns beneath canopy trees, were able to still score high in these categories while 

also having higher soil fertility and summer soil water retention. As in the Monte Carlo Analysis, 

the HAT results also displayed trade-offs between freshwater recharge and other services. Within 

HATs most services followed synergistic patterns except for freshwater recharge, which traded-

off with the other services. The Improver type desired a property suitable for recreation and 

wildlife viewing, but their management combination of no fertilizer and frequent pruning led to 

the lowest values for all ES except for freshwater recharge.  

3.4.1  ROLE OF FERTILIZER AND NITROGEN IN THE ECOLOGICAL PRODUCTION OF RESIDENTIAL 

ECOSYSTEM SERVICES 

Fertilizer was an important driver for almost all ES explored in this paper. Biome-BGC-

Ex allows us to explore the complex ways of how fertilizer application affects ecosystem 

function and resulting ecosystem services. While fertilizer addition directly impacts the N cycle, 

reinforcing feedbacks between the N and C cycle drove many of the ES explored in this study. 

Fertilizer increased N availability in Biome-BGC-Ex, which drove increased NPP because the 

model considers the N limitations of plant production. As more biomass was produced, greater 

amounts of C were stored in above and belowground vegetation, which led to greater climate 

regulation, microclimate regulation and air pollution abatement. As the resultant increased 

biomass died and flowed into litter and soil organic matter, soil fertility was boosted along with 

soil water holding capacity, which led to improved spring soil water recharge and summer soil 

water retention along with decreased freshwater supply. Increased aboveground tree biomass 

also provides a greater amount of wood that can potentially be harvested for firewood.  

The role of fertilizer plays in the flux and storage C, N, and water has been a focus of 

studies of urban ecosystems, although most of this focus is on parcels and developments that are 
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denser and closer to city centers than those considered for this analysis. However, there are fewer 

studies that examine the relationship between ES and fertilizer in urban environments. Fertilizer 

addition is known to increase soil C in residential yards (Townsend-Small and Czimczik 2010, 

Huyler et al. 2014a). and studies have shown positive relationships between fertilizer and soil 

quality and NPP (Acosta-Martínez et al. 1999, Kaye et al. 2005, Campbell et al. 2014). Our 

results indicate a strong positive relationship between turfgrass NPP and fertilizer application 

(Figure 3-5), which was also shown in previous applications of Biome-BGC (Milesi et al. 2005). 

However, Lilly and others ( 2015) found that while fertilizer was correlated with increased C 

allocation in turfgrass it had no effect on NPP.  

The linkages between fertilizer and water related ecosystem services in residential 

landscapes have not been as thoroughly explored with empirical studies. Easton and Petrovic 

(2004) found that fertilizer application leads to lower soil moisture levels in urban turfgrass 

vegetation due to the increase in biomass. Urban turfgrass grown in the western US was shown 

to increase ET with increased mowing height and increased fertilizer (Feldhake et al. 1983). 

Across ecosystems types increased soil organic matter increases the water holding capacity of 

soils, which leads to a reduction in water moving into groundwater (Libohova et al. 2018). Our 

simulations found that fertilizer is a negative driver of freshwater recharge and summer soil 

water retention (water that enters and is retained by the system). In this study, freshwater 

recharge is measured as the water that moves through soil solum into groundwater or surface 

water pools. In our simulations, fertilizer addition increased NPP and ecosystem C which led to 

two balancing feedbacks that decreased freshwater recharge. First the increase in above and 

belowground biomass required greater plant water uptake to meet model requirements for 

evapotranspiration. Second, higher amounts of litter and soil organic matter led to increases in 
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soil water holding capacity, which decreased the amount of water moving through the soil. 

Fertilizer caused a similar decline in summer soil water retention due to increased 

evapotranspiration. Freshwater recharge and summer soil water retention traded off with spring 

soil water recharge and microclimate regulation because these services had the opposite response 

to fertilizer additions. Microclimate regulation increased with the increased evapotranspiration 

required by additional biomass from fertilization. Spring soil water recharge increased with 

improved soil quality and litter biomass that is provided by fertilizer.  

The prevalence of fertilizer application in residential landscapes is well documented 

(Carey et al. 2012, Cook et al. 2012, Visscher et al. 2014), and interviews with residents in our 

study region found that 65% fertilize their lawns (Nassauer et al. 2014). Homeowners most 

commonly cite concern for social and neighborhood appearance norms and aesthetics as their 

reasoning for fertilizer application (Cook et al. 2012, Carrico et al. 2013, Fraser et al. 2013, 

Visscher et al. 2014, Martini et al. 2015).  Although our study showed that fertilizer use can 

enhance a suite of ES, given the assumptions of our model, Biome-BGC-Ex, these outcomes are 

subject to inherent limitations of our model, which we describe below.  

The negative ecological effects of management practices such as fertilizer application in 

the residential landscape have been addressed in many urban ecological studies. This literature 

focuses predominantly the relationships between fertilizer application and nitrogen pollution 

including increased stream nitrate concentrations (Groffman et al. 2004), increased storm water 

N levels (Hobbie et al. 2017), increased N concentrations in lechate (Petrovic 1990, Chen et al. 

2018), and increased nitrous oxide emissions (Townsend-Small and Czimczik 2010, Livesley et 

al. 2010, Braun and Bremer 2018). Although our model was able to simulate pools and fluxes of 

N from fertilizer within the boundaries of our modelled system, it was not designed to 
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incorporate the surface flow of fertilizer out of the yard or the full carbon costs of mowing and 

fertilization in the system. Including these costs would directly impact estimates of N retention 

and C sequestration, while indirectly affecting the other services. Hobbie and others (2017) 

found that an estimated 8% of N inputs are lost runoff in a mixed density urban watersheds. This 

loss is not insignificant and should be taken into consideration, especially in relation to where the 

property is situated in the landscape and its potential for water runoff. As shown in the previous 

chapter (Chapter 2), including emissions from lawn mowing and fertilizer application would 

reduce climate regulation across all Monte Carlo simulations, and in the case of the HAT 

analysis, would decrease the gap between Climate Regulation scores for those that fertilize (Neat 

Neighbor, Lakeshore Owner, Tree Planter, Viewer) versus those that do not (Nature Neighbor, 

Improver).  

Our simulations found that fertilizer application was positively linked to nitrogen 

retention, which was defined as avoided nitrogen pollution from leaching and volatilization. This 

could be due to a several factors. First, although Biome-BGC-Ex simulates N exports from 

leaching and volatilization, as mentioned above it does not take into account surface losses of N. 

Inclusion of this export could potentially lead to larger losses of N in heavily fertilized yards.  

Second, primary production in Biome-BGC is assumed to be nitrogen limited and this aspect was 

not adjusted for in Biome-BGC-Ex. Even with the highest level of fertilizer additions nitrogen 

demand is typically not met in our simulations, which needs further investigation as our study 

region is known for being N saturated (Kahan et al. 2014)f.  Third, the temporal design of the 

model has nitrogen demand and uptake being assessed daily and taken up immediately by 

biomass, while in reality fertilizer may be sitting on vegetation or soil surface for a longer period 

and thereby subject to runoff and export from the system. Older established lawns, like those in 
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our simulations, have been shown to retain a high proportion of nitrogen and function as nitrogen 

sinks with high gross immobilization and root nitrogen uptake (Groffman et al. 2004, Raciti et al. 

2008, Weitzman and Kaye 2016).  Since our study was at the scale of the vegetation cover type it 

only focused on avoided nitrogen pollution from leaching and volatilization and did not consider 

the fate of N in vegetation removed from the system. However, Hobbie and others (2017) found 

that removal of resident yard waste was a significant N export at the watershed scale, and 

estimated removals from mowed and raked litter to be 25% of N export in their least dense urban 

site. Future applications of this model might consider a more complex fertilizer model that 

accounts for additional complexity in the temporal and spatial dynamics of fertilizer in the 

residential landscape. 

3.4.2  ECOSYSTEM SERVICE CAPACITY IN THE EXURBAN RESIDENTIAL LANDSCAPE  

The main advantage of our study is the ability to look beyond simple linkages and 

correlations to demonstrate the effects of management practices on ES as they manifest in 

exurban ecosystems.  The approach of using an ecosystem process model such as Biome-BGC-

Ex allows the user to consider how ecosystem processes and functions can be affected directly 

and indirectly and how these relationships lead to trade-offs and synergies. Overall, our study 

shows trade-offs between ES relating to high amounts of carbon or biomass (NPP, soil fertility, 

N retention, climate regulation, microclimate regulation, air pollution abatement) and freshwater 

recharge. These services also typically trade off with firewood production. Other studies of urban 

or residential landscapes have found similar synergies and trade-offs between services.  Similar 

to our study, increased urban greenery and plant biomass have been found to show synergies 

between nutrient pollution reduction (nitrogen retention), improvements in air quality (air 

pollution abatement), and increases in evapotranspiration that lead to local cooling (microclimate 
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regulation) (Livesley et al. 2016a). Studies have also reported on a trade-off between carbon 

sequestration (climate regulation) and water yield (freshwater recharge) (Qin et al. 2015) as well 

as trade-offs between regulating services and provisioning services (firewood) (Raudsepp-

Hearne et al. 2010). 

One benefit of the ecosystem process model approach to ES is that we can gain a better 

understanding of how underlying ecosystem feedbacks lead to trade-offs and synergies of ES. 

For example, the underlying ecological feedbacks that drive the trade-offs between soil fertility, 

firewood, and climate regulation between Neat Neighbor and Tree Planter  in turfgrass with 

sparse woody. NPP scores were similar despite lower fertilizer and frequent pruning in the Tree 

Planter type, but Neat Neighbor had higher climate regulation, which means it sequestered more 

carbon. This was likely driven by the frequent pruning of Tree Planter removing proportionally 

more fine woody biomass. This frequent biomass removal also caused a reinforcing feedback of 

less woody biomass being built up over time leading to less coarse woody biomass available for 

firewood. Comparatively, soil fertility was higher for Tree Planter because there was no raking 

and a reinforcing feedback in response to pruning led to increased root mortality which 

eventually decomposed and contributed to soil fertility.  

In the turfgrass HAT analysis we found that Neat Neighbors, who managed for 

aesthetically neat lawns with high levels of fertilization and irrigation, had the highest scores for 

all ES but summer water retention and freshwater recharge. However, Tree Planters fertilized at 

a lower rate and still scored very close to Neat Neighbor for most services, except climate 

regulation, NPP and soil fertility. This demonstrates that while lower fertilizer rates decreased 

some services, it did not necessarily provide losses for all of them because many of services rely 

on water processes that were still being maintained. 
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As discussed above, homeowner yard management practices are determined and 

influenced by a variety of factors.  Larson et al. (Larson et al. 2016) found that cultural services, 

which include aesthetics, low-maintenance, and personal enjoyment, drive homeowner 

behaviors. For the HATs in our analysis, we measured only ES that could be modeled in Biome-

BGC-Ex.  However, many of the HAT types were initially characterized in part by homeowner 

preferences for certain aesthetics or maintenance (Nassauer et al. 2014). For example, Improvers 

did not fertilize and enjoyed wildlife viewing and recreation on their property while Viewers 

fertilized, planted relatively more trees, enjoyed wildlife viewing, and the preferred the aesthetic 

characteristics of turf lawns beneath canopy trees. The management behaviors associated with 

these preferences led to lower scores for Improvers all services except for freshwater recharge.  

 

 This can be interpreted as the cultural service preferences for wildlife viewing and 

recreation of Improvers trading off with most of the modelled services, while the Viewers 

cultural service preferences of wildlife viewing and aesthetics have a synergistic relationship 

with these same services. This difference is driven by their lack of fertilizer application, which as 

discussed above is positively correlated to many services. In this case if we consider the full 

framework cycle of ES) we expect that Improvers may change their behaviors if ES flows do not 

meet their demands. While this project uses static resident behaviors for model inputs and did not 

consider whether residents’ ES demands had been met, future research could allow for dynamic 

behaviors that responds to ES flows).    

Investigations into homeowner management behavior have shown a mismatch between 

the spatial scale of a services ecological production and its societal demand (García-Nieto et al. 

2013, Baró et al. 2017). Homeowners are typically motivated to manage for ES they directly 
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benefit from such as aesthetic value, soil fertility, microclimate regulation, and water regulation. 

Homeowners may be less likely to manage for ES with a demand at a regional to global scale 

(climate regulation, freshwater recharge). However, the results of our study indicate that efforts 

to improve locally beneficial services have the potential to positively affect those with benefits at 

a coarser scale. For example, practices that increase vegetation biomass such as fertilization, 

irrigation, and no raking or pruning can increase locally beneficial services such as microclimate 

regulation, air pollution abatement, and soil fertility while also increasing more widely beneficial 

services such as nitrogen retention and climate regulation.   

Biome-BGC-Ex was designed with the intention of estimating ecological processes 

occurring on exurban residential land (Chapter 2) and the ranges and combinations of resident 

behavior in this study are distinct from behavior on smaller urban parcels (Nassauer et al. 2014). 

Within the exurban landscape there is variation in parcel size and development configuration (An 

et al. 2011), which has been linked with different types of resident behaviors and ecological 

outcomes (Nassauer et al. 2014, Visscher et al. 2014, Currie et al. 2016). If results of the HAT 

analysis were scaled from per unit area in each vegetation cover type to the area of the parcel or 

development different HATs may be found to have a larger impact on ES Capacity.  For example 

Neat Neighbor was defined as occurring on smaller parcels in denser developments dominated 

by turfgrass (Nassauer et al. 2014).  While it scores high in many ES for turfgrass with sparse 

woody, its main impact on the landscape will be in relation to turfgrass ES. In contrast, Tree 

Planter was defined as occurring on medium sized parcels with vegetation cover predominantly 

in turfgrass with sparse woody (Nassauer et al. 2014). Its high scores in this vegetation cover 

type indicate that is a relatively positive combination of management behaviors (low fertilizer 

and high tree planting) to promote ES in this landscape.  Nassauer and others (2014) found that 
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homeowners of large parcels, which typically follow management combinations found in Viewer 

and Improver, manage a smaller proportion of their total property (referred to as the zone of 

care) than homeowners on small and medium parcels. They also tend to have a larger proportion 

of their property as dense woody vegetation and include turfgrass with sparse woody (Currie et 

al. 2016). Our HAT analysis found Viewer scored relatively high, but typically lower than Tree 

Planter and Neat Neighbor for ES in turfgrass with sparse woody and had highest score for most 

ES in dense woody. The Viewer management combination is the same as Tree Planter except for 

a lower amount of irrigation and indicates that a combination of low fertilizer, high planting, 

frequent pruning, and no raking can lead to a synergistic combination of ES in the exurban 

landscape.   

Biome-BGC-Ex is a modelling tool that can estimate ES capacity across a suite of 

provisioning, supporting, and regulating services. In addition to the ES included in this study, 

Biome-BGC has also been used to estimate provisioning services not as common in residential 

land such as timber or agricultural production. However, it has limitations in the breadth of ES it 

can include. Other ES assessment tools (e.g., InVEST (Tallis and Polasky 2009), LUCI  (Jackson 

et al. 2013)) include estimates of regulating services such as biodiversity, pollination, and habitat 

quality that Biome-BGC-Ex is not equipped to address. While vegetation cover or land use could 

be used as a proxy for these services, more robust estimates would require linking or combining 

Biome-BGC-Ex with additional models. One ES assessment tool, ARIES, has proposed an 

approach that gives users the ability to create a network of ecological process models to improve 

the accuracy and breadth of estimates (Villa et al. 2014).  
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3.5   CONCLUSION  

This study shows how ecosystem process models can be adapted to include human-

dominated ecosystems, allowing us to consider how human management behaviors drive 

interactions and feedbacks within ecological processes and between processes and ES. To 

explore exurban ecosystems, we used Biome-BGC-Ex, a dynamic ecological model that we 

adapted from Biome-BGC to estimate a suite of ecosystem services while linking their 

production to the interaction of ecosystem process and human management behaviors. Compared 

to other approaches, this methodology accounts for the interconnected processes that produce 

ecosystem services on the landscape and allows projection of ecosystem services produced over 

time and across a variety of management behaviors occurring on the landscape. Importantly, 

results of our investigation demonstrate the wide variability in ES capacity that is driven by 

landscape management decisions. We suggest that our method is an advance toward fully 

anticipating the consequences of our management choices. 
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Evaluating Ecosystem Process Models as a Tool for 

Ecosystem Service Assessment: A Review of Current 

Methods for Assessing Ecosystem Service Capacity 

ABSTRACT 

Ecosystem services (ES) are the physical goods and associated benefits that are provided 

to humans by the ecosystems of the planet. This study addresses the need for ES assessment and 

estimation tools that can address limitations in current methods including the ability to estimate 

supporting and regulating ES capacity and to include interactions and biophysical feedbacks 

between ES and ecosystems. I propose that ecosystem process models be used as a tool to 

estimate ES capacity, as they are already designed with many of the desired attributes of ES 

capacity or ecological production function. In this chapter, I first review current assessment tools 

and their methods for estimating ES capacity. ES assessment tools vary in which services they 

model, how they estimate the capacity of ES, and the type and scope of input data they require to 

estimate capacity. However, they still fall short of addressing the complex biophysical dynamics 

inherent in estimating ES capacity. Next, I analyze the benefits and shortcomings of applying 

ecosystem process models to study and estimate ES. The ecosystem process model approach 

gives users the ability to estimate and predict quantifiable ES outcomes across a variety of 

management, policy, and climate scenarios (i.e., pressures). The main limitation for usability of 

these models is the amount and difficulty of acquiring input data on the initial conditions, ES 

drivers and ecosystem parameters. Lastly, I discuss how ecosystem process models can be 

integrated with other methods to provide improved estimation of ES. For instance, our model 
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Biome-BGC-Ex can be linked to agent-based models of human management to study the 

dynamics between ES capacity, flow, and demand. 

4.1   INTRODUCTION 

Ecosystems are comprised of biotic and abiotic components that are linked through 

nutrient cycles and energy flows. Our knowledge of wildland ecosystems is well documented 

and in recent decades the field has grown to incorporate human-dominated ecosystems through 

research in urban, agricultural, managed forests, and managed grassland ecosystems. Ecosystem 

services (ES) are the physical goods and associated benefits that are provided to humans by the 

ecosystems of the planet. The Millennium Ecosystem Assessment (MA) report (2005) 

highlighted the role ecosystems play in the assessment of ES. Specifically, it highlighted the 

importance of understanding how nonlinearities, feedbacks, and interactions within ecosystems 

affect the production ES (Cumming et al. 2005). Many computer-based tools exist to analyze and 

quantify ES (hereafter, ES assessment tools), however most do not consider biophysical 

feedbacks or interactions between ecosystem processes and ES.  In this chapter, I address the 

question of whether ES assessment tools currently in use are capable of capturing nonlinearities, 

biophysical feedbacks and interactions in ecosystem processes, and whether a stronger 

foundation from ecosystem process modeling could be used to improve ES assessment tools.   

4.1.1  CLASSIFICATION, CONCEPTUAL FRAMEWORKS, & ASSESSMENT OF ES 

ES have traditionally been divided into four categories: supporting, provisioning, 

regulating, and cultural. Supporting services are functions that underpin the production of all 

other services. Provisioning services are physical products and goods directly obtained from the 

ecosystem (e.g., food, fiber, timber). Regulating services include those that both directly (e.g., 

pollution regulation, carbon sequestration) and indirectly (e.g., regulation of climate and water 
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flows) sustain environmental quality. Cultural services encompass tangible uses (e.g., recreation) 

and less tangible benefits (e.g., spiritual, aesthetic, educational). In this article I focus on 

supporting, provisioning, and regulating services.  

A full analysis of ES requires that ecological, social, and economic (or other measure of 

human well-being) aspects and their relationship need to be considered. A variety of overarching 

frameworks have evolved from the original framework proposed by the MA report (2005) that 

attempted to identify the relationships between goods and services provided by ecosystems and 

the improvements to human wellbeing including the ES supply chain (Tallis et al. 2012), the ES 

cascade model (Haines-Young and Potschin 2010), the Economics of Ecosystems and 

Biodiversity Framework (Braat and de Groot 2012), and the ES delivery process (Villamagna et 

al. 2013). The key components of these frameworks can be distilled to ES capacity, ES flow, and 

ES demand (Error! Reference source not found.).  ES capacity, also referred to in the literature a

s the ‘ecological production function’ (Tallis and Polasky 2009), is the potential of an ecosystem 

to produce and deliver services based on biophysical and social properties and functions 

(Villamagna et al. 2013). ES flow is the realized flow of services for which there is demand. ES 

demand is the amount of services required or desired by society. These frameworks also 

recognize that ES demand may result in pressures that drive changes in ES capacity. For the 

purposes of this chapter, I focus on discussing biophysical feedbacks occurring within and 

between ecosystems processes and ES capacity as well as the human drivers and pressures that 

may alter both. These feedbacks are described as balancing (negative) when they dampen change 

or reinforcing (positive) when they stimulate change. In many cases these human drivers and 

pressures are part of their own feedback loops within social (human) systems or between social-

ecological systems, but consideration of these feedbacks is beyond the scope of this chapter.  
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Figure 4-1: Simplified ES framework conceptualizing capacity, flow, demand, biophysical 

feedbacks, and human drivers and pressures.  

Based on similar simplified frameworks by Tomscha and others (2016) and Tallis and others 

(2012).This chapter focuses on how human drivers and pressures in the form of management 

behaviors affect ES Capacity and the biophysical feedbacks occurring in the ecosystem (solid 

white arrows). While this work acknowledges that ES flows affect ES demand (shaded arrow), 

this relationship is beyond the scope of the methods presented in this paper. 

 

In addition to ES frameworks, a variety of methods and tools for assessment have been 

created to quantify ES capacity, flow, and demand (Table 1). Many have been comparatively 

reviewed in the literature including how assessment tools measure or consider different aspects 

of ES delivery (Villamagna et al. 2013), their suitability and classification as decision-support 

tools (Bagstad et al. 2013b, Vorstius and Spray 2015, Hugé et al. 2020), their ability to forecast 

changes in ES due to land degradation and restoration (Turner et al. 2016), their sensitivity to 

land use and land cover change (LULCC) and ability to accurately provide output data (Sharps et 
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al. 2017),  and their ability to adequately quantify biological and economic aspects of ES 

(Boerema et al. 2017).  

Despite the proliferation of ES assessment tools, most do not consider mechanistic 

biophysical feedbacks, e.g. feedbacks among biogeochemical cycles, or other mechanistic 

interactions among ES; each service is typically evaluated independent of other services 

(Nicholson et al. 2009, Seppelt et al. 2011, Currie 2011, Bruins et al. 2017, Lavorel et al. 2017). 

If knowledge of ecosystem processes and functions, including interactions with human actions 

and behaviors, is not adequately incorporated into ES models, scientists,  managers, and other 

practitioners may misunderstand the mechanisms underlying the effects of management 

decisions on ES capacity, improperly estimate the production of services, and possibly take 

actions that have consequences that could have been better anticipated (Bruins et al. 2017, 

Bennett 2017, Boerema et al. 2017). 

As pointed out by Sutherland and others (2018), there has been an underemphasis on 

regulating and supporting ES classes in ES quantification, ES valuation, and decision-making 

tools partially due to the difficulty in measuring or estimating them. The difficulties in 

quantifying regulating ES capacity are due to their dynamic nature regarding their temporal and 

spatial variability as well as their response to ecological pressures. These services are key to 

maintaining the environmental quality of the ecosystem and the provision of other ES. There is a 

demonstrated need for ES modelling and estimation tools that can address limitations in current 

methods including the ability to estimate supporting and regulating ES capacity and to include 

interactions and feedbacks between ES capacity and ecosystem processes.  
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4.1.2  ECOSYSTEM PROCESS MODELS 

Ecosystem processes include nutrient cycling and flows of energy, water, and carbon that 

link biotic and abiotic factors within an ecosystem; they are interconnected, and feedbacks exist 

both directly and indirectly among them (Currie 2011). Ecosystem processes along with 

ecosystem composition and structure give rise to the production of ES (Fu et al. 2013). When 

ecosystem processes are impacted by human management or other human-caused changes to 

ecosystem structure, biophysical feedbacks occur that impact the production of ES (Error! R

eference source not found.) (Fu et al. 2013, Potschin-Young et al. 2018). 

Ecologists use ecosystem process models to represent integrated understanding of 

ecosystem dynamics and stability, and how flows of carbon (C), nitrogen (N), water, and energy 

move and interact within a system. Over time, ecosystem process models have become more 

sophisticated and generalizable, applied to multiple biomes (Running and Hunt 1993); used and 

compared in local (Robinson et al. 2009), regional (McGuire et al. 1992) and global level 

analyses (Churkina et al. 1999, Cramer et al. 1999); and linked to biogeography (Sitch et al. 

2003) and climate models (Bachelet et al. 2001, Randerson et al. 2009). These models can 

provide quantifiable outputs of ecosystem C, N, and water pools and fluxes that can be translated 

into ES frameworks, especially regarding supporting and regulating services.   

This chapter focuses on ecosystem process models that simulate terrestrial nutrient 

cycling and biogeochemical processes based on soil and climate characteristics. Widely used 

examples of this type of model include, but are not limited to CENTURY, Biome-BGC, TEM 

and PnET (Table 2). This class of models was considered for this review for two reasons. First, 

potential applications range from finer scale site-level analyses up to continental scale analyses, 

which aligns with other tools used to estimate ES capacity. This is compared to other ecological 
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models such as dynamic global vegetation models (DGVMs), which are aimed at regional to 

global analyses. Second, the focus on biogeochemical processes in vegetation and soil aligns 

with many regulating services that are based on stocks and flows of carbon, nitrogen, and water. 

This contrasts with demographic models which are focused on growth, mortality, and 

recruitment of individual plants or physiological models which are focused on plant 

photosynthesis and biomass accumulation (Peters 2011).  

4.1.3  OBJECTIVES 

I propose that when considering methods for estimating ES capacity of supporting, 

regulating, and provisioning services, scientists should consider the use of ecosystem process 

models for many reasons. First, ecosystem processes could provide a foundation for 

understanding mechanisms giving rise to the production of ES and these models are based on 

extensive knowledge of ecosystem processes. Second, current tools for estimating ES capacity 

often conceptualize ES as discrete entities as opposed to integrated or interdependent suites of 

ES. Third, ecosystem process models give us the opportunity to understand how different 

ecological pressures and drivers of ecological change such as climate, human management, and 

ecosystem structure mechanistically affect the production of ES. This chapter will discuss these 

factors in more detail by first reviewing current assessment tools and their methods for 

estimating ES capacity. Second, by providing analysis on benefits and shortcomings of applying 

ecosystem process models to study ES. Third, by discussing how ecosystem process models 

could be integrated with other methods to provide improved estimation of ES. 

4.2   CHARACTERISTICS OF ES ASSESSMENT TOOLS 

The ES assessment tools, also referred to in the literature as ES modeling tools, most 

often cited for estimating ES typically contain multiple submodules for individual services or are 
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comprised of multiple pre-existing models. These assessment tools often contain separate models 

that estimate the potential capacity for services, the flow of services, the desired amount of 

service, and in some cases the economic value of that service (Table 2). The goal of using 

ecosystem process models to quantify ES is not to compete with these tools, but to better inform 

the aspects that lead to their estimation of ES capacity. This section will first broadly explain 

some of the assessment tools, explain in more detail how they estimate the production of ES, and 

what the benefits and limitations of these methods are compared to ecosystem process models.  

4.2.1  ES ASSESSMENT TOOL OVERVIEW 

The growing need for understanding the connections for all stages of ES including 

capacity, flow, demand, and economic valuation has led scientists to develop tools that can 

assess ES across these stages. Among some of the emerging tools for quantifying ES are the: 

Multi-scale Integrated Model of Ecosystem Services (MIMES, (Boumans et al. 2015)), Artificial 

Intelligence for Ecosystem Services (ARIES, (Villa et al. 2014)),Integrated Valuation of 

Ecosystem Services and Trade-offs (InVEST, (Tallis and Polasky 2009, Doug et al. 2020)), Land 

Utilization and Capability Indicator (LUCI, (Jackson et al. 2013)), Ecosystem Service Mapping 

Tool (ESTIMAP, ((Zulian et al. 2013, 2018)), and Ecosystem Service Bundle Index (EBI (Van 

der Biest et al. 2014)). See Appendix Table D-1 for more detailed descriptions. Many of these 

tools have been compared in the literature for different ecosystems (e.g., marine ecosystems 

(Lavorel et al. 2017)), geographic areas (e.g., UK watersheds (Sharps et al. 2017), African 

Biosphere Reserves (Hugé et al. 2020)), and user types (Waage et al. 2008, Balvanera et al. 

2017, Kienast and Helfenstein 2018). Resources from academic and governmental institutions 

are also available to help users identify which tool is right for them such as ValuES (Schmidt and 

Seppelt 2018), the US Climate Resilience Toolkit (Gardiner et al. 2019), and the 
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Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services’ Policy 

Support Tool (Krug et al. 2020).  While these tools require different inputs and integrate 

ecosystem and socio-economic processes through distinct approaches, they find commonality in 

that they can estimate multiple services, provide spatially explicit results, and simulate the 

effects of development and land management on ecological and human systems (Francesconi et 

al. 2016, Sharps et al. 2017).  

ES assessment tools have been designed and tested for different geographical locations 

and extents. At the large scale, tools such as InVEST have received broad attention and been 

applied to a range of landscapes across the globe. Other tools have been applied mostly at the 

national or continental level such as ESTIMAP in the EU (Zulian et al. 2018). Others have 

determined that despite their usefulness at relatively large scales, most of these approaches lack 

the level of spatial and thematic detail required to conduct assessments at the regional and local 

level (Derkzen et al. 2015, Martínez-López et al. 2019). Customizable ES tools such as ARIES 

provide a useful solution to this issue, but have a similar limitation to ecosystem process models 

(see section 3.4) in that accurate estimation requires readily available local data or models that 

can be parameterized with local data (Martínez-López et al. 2019, Paulin et al. 2020). 

4.2.2  HOW DO ES ASSESSMENT TOOLS ESTIMATE ES CAPACITY? 

For the purposes of discussion regarding the use of ecosystem process models to estimate 

the production of ES, I focus here on methods ES assessment tools use to estimate ES capacity. 

These methods along with the type and scope of input data they require vary widely. ES 

assessment tools vary according to the services they model, how they estimate the capacity of 

ES, and the type and scope of input data they require to estimate capacity.  
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The simplest approach, used by ESTIMAP, is a statistical modelling approach that uses 

individual regressions to estimate each service that are based on ecological indicators that can be 

accessed in GIS layers (Zulian et al. 2018). Similarly, the EBI modelling tool does not rely on 

ecological processes, but instead uses biophysical indicator variables to calculate ES potentials 

(Van der Biest et al. 2014). This approach does not consider ecosystem processes, biophysical 

feedbacks, or interactions between processes and services. However, there are benefits to this 

approach in that input data is easily accessible and understandable and can be found for most 

geographic areas.   

A step-up in complexity is the approach InVEST takes by creating individual empirical 

production functions for each service. These functions were created with knowledge of 

ecosystem processes, but are simplistic and do not incorporate biophysical feedbacks or 

interactions between processes and services (Tallis and Polasky 2009, Doug et al. 2020). Each 

service is also estimated independently of other services. For example, C sequestration is 

estimated with an equation assuming linear change in C sequestration over time based on initial 

land use/land cover (LULC) and current C pools provided by the user. Additionally, any ES that 

may be linked to C sequestration, such as urban cooling, are calculated by separate models and 

the only shared data is LULC. Similarly, the LUCI tool simulates biophysical processes such as 

nutrient loading that can feed into hydrological models, but they only use simple lookup tables 

and regression models (Sharps et al. 2017) . The main benefit of this approach is that the required 

input data can still be easily acquired from available GIS data layers and LULC maps while 

providing a production function grounded in the knowledge of ecosystem processes.  

The MIMES modelling tool takes an ecosystem accounting approach that simulates 

changes in biophysical conditions due to human impacts over space and time (Altman et al. 
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2014, Boumans et al. 2015). In theory this approach allows for dynamics and interactions among 

services and between processes and services. However, the creation of the ecosystem production 

function is left in the hands of the user, as opposed to a preestablished model being provided 

(Boumans et al. 2015). The main disadvantage of this approach is that the framework requires 

specialized knowledge and training and there have been few studies following the model’s initial 

introduction.  

The ARIES modelling tool is more complex in two main ways. First, the platform was 

developed to allow the building and integration of various kinds of models based on what data 

are available for the site in question (Villa et al. 2014, Sharps et al. 2017). The eventual goal of 

this framework is to allows users to couple models such as an ecosystem process model to 

estimate carbon and nutrient services with a hydrology model to estimate flooding and erosion 

(Villa et al. 2014).  Second, it has been designed to use probabilistic or Bayesian methods to 

estimate any insufficient local data for the biophysical equations (Bagstad et al. 2014); this 

aspect is also used by the EBI modelling tool (Van der Biest et al. 2014). Probabilistic methods 

also give users the ability to estimate the uncertainty for each service outcome. While this 

increases the complexity of knowledge needed to understand how services are being quantified, 

it also allows for more complex modelling that can potentially include interconnected ecosystem 

processes and biophysical feedbacks. However, at this time most analyses are focused more on 

the probabilistic methods while choosing the best individual model for each service (Martínez-

López et al. 2019, Domisch et al. 2019). This may allow for the potential inclusion of interaction 

between process and services but does not rely on truly interconnected process modelling.  

Compared to ecosystem process models, many ES assessment tools have the advantage 

of considering multiple aspects of ES, usually estimating capacity along some aspects of flow or 
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demand (i.e., valuation). However, they still fall short of addressing the complex biophysical 

dynamics inherent in estimating ES capacity. The benefits of reduced complexity and ease of use 

in these tools have come at the expense of being able to dynamically model ecosystem processes 

and ES capacity. Access to improved information on ES capacity would give scientists and land 

managers more information to aid in maximizing potential capacity and meeting demand. 

However, this addition to modelling frameworks could increase the cost and time of assessment 

and limit the potential users.  

4.3   WHY SHOULD PROCESS MODELS BE CONSIDERED FOR ESTIMATING ES CAPACITY? 

4.3.1  ECOSYSTEM PROCESSES GIVE RISE TO THE PRODUCTION OF ECOSYSTEM SERVICES 

Within the context of biophysical or ecological systems, ES capacity relies on both 

ecosystem structure and ecosystem processes (Fu et al. 2013). Frameworks of ES (Error! R

eference source not found.) acknowledge that understanding ecosystem structure and function 

is integral to estimating ES capacity (Haines-Young et al. 2012, Villamagna et al. 2013) and that 

ecosystem properties including ecosystem processes and dynamics drive the capacity of an 

ecosystem to provide a given service (Bastian et al. 2012, 2013).  As mentioned above (section 

4.2.2), most ES assessment tools do not consider integrating ecosystem processes and ES and a 

review of the literature found that only 26% of studies that evaluate more than one ES investigate 

the relationships between those ES (Boerema et al. 2017).  

ES capacity, also referred to as ‘ecological production function’ or EPF (Tallis and 

Polasky 2009), is the quantification of the ability for an ecosystem to supply ecosystem services 

(Villamagna et al. 2013).  When ecosystem structure and function is altered by natural 

disturbances or human modification, ES capacity adjusts the amount of various services that can 

potentially be produced. Bruins et al. (2017) proposed a nine-point list of “desired attributes of 
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EPFs” which includes: quantified ES outcomes, ability to predict the outcome of management 

scenarios, ability to reflect ecological complexities such as nonlinearities and biophysical 

feedbacks, and an ability to perform well across a broad range of geographic areas. I propose that 

ecosystem process models can be used as a tool to estimate ES capacity, as they are already 

designed with many of these attributes in mind.  

4.3.2  HOW HAVE PROCESS MODELS BEEN USED TO ESTIMATE ECOSYSTEM SERVICES? 

Although most ecosystem process models were originally designed for wildland systems, 

in their original form they may be limited in their ability to include human interactions with the 

ecological system (Cuddington et al. 2013b). However, it has been common for researchers to 

modify models for their desired questions and needs. This can include, as shown in Table 4-1, 

adding additional processes, increasing complexity of existing pools and flows, integrating 

effects of climate change including changes to temperature and precipitation, or expanding the 

model to include human managed ecosystems (agriculture, managed forest, urban environments).  

While initial modification can be time consuming to code, calibrate and test, the resulting 

modified models are typically available for future use. These models can also be modified to 

incorporate human pressures and drivers on ES capacity such as human management or changes 

in land cover or ecosystem type. While ecosystem process models are typically not spatially 

distributed, some ecosystem process models have been linked with models that incorporate 

spatial relationships across a landscape. However, there are countless other studies that have 

used ecosystem process models to estimate factors that are closely aligned with key ES (NPP, C 

sequestration, biomass yields, nitrogen retention, etc.) even though the ES terminology and 

concepts were not explicitly used. The following studies have explicitly stated the use of 

ecosystem process models as a tool to estimate ES.  
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Table 4-1: Ecosystem process model comparison.  

A comparison of terrestrial ecosystem process models used for productivity, carbon, and nitrogen cycling.  Scale (cell resolution) 

refers to the range of scales over which the model has been applied in the literature.  Abbreviations: C = carbon, W = water, N = 

nitrogen, P = phosphorus, S = sulfur 

 

Model Scale  

(cell 

resolution) 

Layers of 

Plant 

Functional 

Types 

(PFTs) 

Typical Biomes 

/ Ecosystem 

Types 

Cycles Notes Timestep / 

Temporal 

Resolution 

Options 

included for 

human 

management 

or impacts 

Key Citations 

Biome-

BGC 

 

Plot to 0.5° 

grid 

Original 

version: one 

layer 

Modified 

version: 

Multiple – 

can have an 

overstory 

and 

understory  

Wildland: 

Forest, 

grassland, 

shrubland 

Managed: forest 

(Tatarinov and 

Cienciala 2006) 

(González-

Sanchis et al. 

2015), 

agriculture 

(Wang et al. 

2005), grassland 

(Hidy et al. 

2012), urban 

residential 

(Milesi et al. 

2005, Kiger 

Chapter 2, 3) 

C, W, 

N 

Can be 

integrated with 

remote sensing 

input data 

Has LAI as an 

output variable 

– can be used 

to validate 

Daily 

(photosynthesis and 

evapotranspiration) 

and Annual 

(allocation, 

decomposition, N 

cycle) 

Fertilizer, 

irrigation, 

mowing, 

mulch 

mowing, 

pruning, tree 

planting, tree 

removal, 

raking, CWD 

removal 

(Running and 

Hunt 1993, 

Thornton et al. 

2002) 

modifications: 

(Bond-

Lamberty et 

al. 2005, Kiger 

Chapter 2, 3) 
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CENTURY  

 

Plot to 0.5° 

grid 

Two – can 

have 

shading and 

nitrogen 

competition 

between 

forest and 

grassland 

Wildland: 

Grassland, 

forest & 

savanna 

Managed: 

turfgrass (Qian 

and Follett 

2002, 

Bandaranayake 

et al. 2003), 

agriculture 

(Parton and 

Rasmussen 

1994, Foereid 

and Høgh-

Jensen 2004, 

Stehfest et al. 

2007), urban 

residential 

(Trammell et al. 

2017) 

C, W, 

N, P, 

S 

Does allow 

easy 

integration of 

management 

Plant 

production 

does not 

include a 

photosynthesis 

model – just 

uses a simple 

net primary 

production 

model 

No LAI output 

CENTURY is 

monthly, but 

companion model 

DAYCENT is daily 

(Parton et al. 1998) 

Fertilizer 

irrigation, 

cultivation, 

grazing, 

harvesting, 

biomass 

removal & 

addition, 

climate, 

elevated CO2 

(Parton et al. 

1987, 1993b) 

PnET-CN 

 

Stand to 

watershed 

single Wildland: 

Temperate and 

boreal forest  

Managed: 

temperate forest 

Other biomes 

are in the 

progress (Thorn 

et al. 2015) 

C, W, 

N 

No grassland 

biome  

Has been 

linked with 

SWAT to 

model water 

availability 

(Kirby and 

Durrans 2007) 

Daily and monthly 

– set of nested 

models where 

canopy flux is daily 

but other functions 

and allocations are 

monthly 

Fertilizer, 

biomass 

removal, 

elevated CO2 

(Aber et al. 

1995, 1996, 

1997) 
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TEM  

 

Plot to 0.5° 

grid 

single Wildland: 

boreal, 

temperate, and 

tropical forest; 

grassland; 

tundra 

C, W, 

N 

Only one 

carbon pool for 

vegetation and 

one pool for 

soil 

Includes a 

dynamic soil 

thermal 

(permafrost) 

model (Zhuang 

et al. 2003) 

monthly Climate, 

elevated CO2 

(Raich 1991, 

McGuire et al. 

1992, Felzer et 

al. 2009) 
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The Photosynthesis and Evapotranspiration (PnET) model has been coupled with other 

models to study the effects of climate change and land use change on ES capacity in forested 

ecosystems. Samal and others (2017) linked PnET-CN to an aquatic ecosystem model to estimate 

a suite of environmental indicators representing provisioning and regulating water ES for a 

forest-dominated watershed in New Hampshire. Further iterations of this project incorporated ES 

demand models into the framework and allowed researchers to estimate trade-offs between a mix 

of ten ES (Borsuk et al. 2019). ForeSAFE, a model that integrates PnET with three other 

biogeochemical models, was used to simulate trade-offs between a suite of five forest 

provisioning and regulating services in  a Swedish spruce forest (Zanchi and Brady 2019).  

The CENTURY model has been used to estimate supporting, regulating, and 

provisioning ES in agricultural, grassland, and rangeland ecosystems. Belem and Saqalli (2017) 

integrated CENTURY with agent-based models (ABMs) to estimate the impact of farming 

practices and settlement development on ES capacity (soil fertility, crop yields) in West Africa at 

multiple scales (plot to region). Iravani and others (2019) proposed an innovative approach to 

parameterize CENTURY using an inverse modelling approach in order to aid in estimating C 

related services in native grasslands of Alberta, Canada. G-Range, a version of the CENTURY 

model that has been modified to simulate plant population dynamics and competition between 

plant functional types at a coarse resolution (0.5 degree × 0.5 degree or coarser) than the original 

model, was used to estimate global changes in rangeland ES capacity (NPP, herbaceous NPP, 

carbon storage) under varying climate scenarios (Boone et al. 2018).  Other studies have used an 

off-the-shelf version  of CENTURY to estimate differences in carbon related ES due to 

ecosystem restoration in China’s Grain to Green Program (Feng et al. 2013), LULCC scenarios 

in a subtropical region of India (Liu et al. 2018), and in agricultural ecosystems under varying 
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crop management scenarios in the Pampas of Argentina (Caride et al. 2012) and the Campos 

Gerais region of Brazil (Potma Gonçalves et al. 2018).  

Biome-BGC has been adapted to simulate ES capacity of supporting, provisioning, and 

regulating ES within mixed-use, urban, and forest ecosystems. The Procedure for Ecological 

Tiered Assessment of Risk (PETAR) framework uses Biome-BGC alongside models of LULCC 

and surface water flow to estimate water and C related ES in a mixed-use watershed of the 

Yangtze River Delta in China (Xu et al. 2016). Biome-BGCMuSo, a version of Biome-BGC 

with a multilayered soil module and management modules for croplands, grasslands, and forests 

(Hidy et al. 2012, 2016), was linked to a crop simulation model to estimate crop yields and 

nitrate leaching under a range of fertilization and climate scenarios in Hungary (Pokovai et al. 

2020). Othoniel and others (2019) used an integrative modelling approach that links a land cover 

change model with Biome-BGC (C sequestration) and InVEST (crop yields and pollination) to 

investigate ES trade-offs at the local and country scale in Luxembourg. A version of Biome-

BGC that has been modified for managed forests in the Pacific Northwest region of the US was 

used to consider relationships between carbon sequestration, wood production, and biodiversity 

(Turner et al. 2011). The previous chapters of this dissertation use Biome-BGC-Ex, which I 

modified to simulate homeowner management practices and ecosystem structure specific to 

residential areas (turfgrasses, dense woody patches, and open grown trees over turfgrass) to 

simulate a suite of ten provisioning, regulating, and supporting services in exurban Southeast 

Michigan.  
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4.3.3  BENEFITS OF A PROCESS MODEL APPROACH 

The ecosystem process model approach to estimating ES capacity has many benefits. It 

gives users the ability to estimate and predict quantifiable ES outcomes across a variety of 

management, policy, and climate scenarios (i.e., pressures). Ecosystem process models can 

already simulate dynamic relationships and biogeochemical feedbacks between pools and fluxes 

of carbon, water, and nutrients, which can be extended to the ES they are able to inform. 

Ecosystem process models have been verified, calibrated, and applied to global simulations as 

well as for local, site specific conditions across a range of wildland and human-dominated 

ecosystems including agriculture (Parton and Rasmussen 1994, Foereid and Høgh-Jensen 2004, 

Wang et al. 2005, Stehfest et al. 2007), managed forests (Tatarinov and Cienciala 2006, 

González-Sanchis et al. 2015), managed grasslands (Qian and Follett 2002, Bandaranayake et al. 

2003, Hidy et al. 2012), urban ecosystems (Milesi et al. 2005, Zhang et al. 2012, Trammell et al. 

2017), and the exurban residential landscapes (BIOME-BGC-Ex, Chapter 3). With current 

computing power these models can run thousands of times in a short span of time which gives 

users the ability to simulate a multitude of scenarios and assess the impacts on ES.  

Although ecosystem process models were not originally designed for ES quantification, 

many models directly output ES capacity estimates, output variables that are indicators of ES, or 

can be modified to estimate production of supporting, provisioning, and regulating ES. For 

example, Biome-BGC-Ex estimated residential ES using all three methods (Chapter 3). NPP 

(supporting), freshwater recharge (regulating) and C sequestration (regulating) were estimated 

directly from model outputs. Microclimate regulation (regulating), air pollution abatement 

(regulating) and soil fertility (supporting) were estimated from indicators based on model output. 

Firewood (provisioning), water retention (regulating & supporting) and nitrogen retention 
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(regulating) required some model modification and were calculated based on multiple model 

outputs. However, one challenge of this task is determining which model outputs and processes 

might translate into services that are valued by either by users or society. Although there are 

frameworks which identify lists of potential ES (e.g., (Maes et al. 2016)), the user must decide 

for themselves based on their question, study system, and model ability.  For example, in 

Chapter 3 I determined two water retention ES that would be valued by homeowners. The first, 

spring soil water recharge estimated the amount of water retained over winter that would be 

available to support spring plant growth. This growth would underpin many of the other services 

(e.g., C sequestration, microclimate regulation). The second, summer soil water retention, 

measured the proportion of water retained in the soil at the height of the growing season. In a 

residential system this service can relate to localized water flow regulation and also availability 

of water to maintain a lush lawn.   

One of the major benefits of the ecosystem process model approach to quantifying ES 

capacity is that it can simulate dynamic biophysical feedbacks that affect ES Capacity and the 

trade-offs and synergies between the services that are rooted in ecosystem processes.  These 

models rely on the understanding of how nutrient, C, and water flows occur within an ecosystem 

and how they rely on each other for an ecosystem to function.  For example, in most ecosystems 

C (biomass) accumulation is dependent on nitrogen availability, water availability, or a 

combination of both. Plants will take up water and nitrogen (N) until growth is limited, and any 

remaining water and nitrogen will either remain in soil or flow from the system. As shown in 

Chapter 3, three potential services that result from this simple relationship are carbon 

sequestration, nitrogen retention (reduced water pollution), and freshwater provision. These 

services are all interconnected due to their underlying processes. Our study found (Chapter 3) 
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that in model simulations of mixed turf and trees fertilizer increased N availability, which drove 

increased NPP because growth is limited by N. As more biomass was produced, greater amounts 

of C were stored in above and below ground vegetation, which led to greater climate regulation. 

Since all additional N was taken up for growth nitrogen retention remained high. Water was also 

limited and led to most water inputs being taken up for growth which led to declining freshwater 

provision. However, when irrigation was added to fertilized simulations climate regulation 

decreased, due to increased soil decomposition. This method also allowed us to examine how ES 

Capacity compared across different realistic combinations of management behavior. I compared 

ES Capacity in a mixed tree and turfgrass vegetation cover (turfgrass with sparse woody) for six 

different realistic combinations of management behaviors (Homeowner Agent Typology 

Analysis Chapter 3, based on (Nassauer et al. 2014). We found that homeowners who demanded 

an aesthetically neat lawn (referred to as Neat Neighbors) managed with a combination of high 

fertilizer, irrigation and raking and infrequent pruning, which led to the comparatively highest 

ES capacity in firewood, N retention, spring soil water recharge and climate regulation. 

Homeowners who demanded an aesthetic view of horticultural trees and plantings applied less 

fertilizer (referred to as Tree Planters), pruned more frequently, and planted more trees. While 

Tree Planters also resulted in comparatively high ES capacity for many services, the two types 

of managers experienced trade-offs between soil fertility, firewood, and climate regulation. Both 

types had similar NPP, despite lower fertilizer and frequent pruning in the Tree Planter type, but 

Neat Neighbor had higher climate regulation, which means it sequestered more carbon. This is 

likely driven by frequent pruning of Tree Planters, which removed proportionally more fine 

woody biomass. This frequent biomass removal caused a balancing feedback of less woody 

biomass being built up over time there leading less coarse woody biomass available for 
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firewood. Comparatively, soil fertility was likely higher for Tree Planters because there was no 

raking and another reinforcing feedback caused by pruning led to increased root mortality which 

eventually is decomposed and contributes to soil fertility. An ecosystem process model is 

designed to include the dynamic relationships between these processes and can simulate how the 

processes are dependent on each other. It can simulate how a change in one pool or flux feeds 

into the others. This is also true of the services estimated with this method, as it can show how 

different climate or management scenarios lead to services having a synchronous response or 

trading off.  

Similar to some ES assessment tools, ecosystem process models also allow for multiple 

management, climate, and other pressures to be modelled as scenarios, which allows for the user 

to determine the full scope of potential outcomes. This could be in the form of a sensitivity 

analysis to see how the range of management affects ES capacity or by considering uncertainty 

in the form of running multiple proposed climate scenarios. Biome-BGC-Ex was run 13,000 

times to examine how the combination of a range of management and ecosystem structure 

variables affected ES capacity outcomes (Chapter 3). This comparative approach allowed us to 

see the full range of possible outcomes based on our knowledge of homeowner management and 

provided a way to examine which management practices were the most important for service 

production. From this analysis we found that human drivers and pressures in the form of yard 

management practices led to significant ES capacity variation across the modelled services. We 

also determined that fertilizer application was a significant driver of most of the ES and that 

trade-offs exist between freshwater regulation and all other ES we modelled, Caride and others 

(2012) used CENTURY to model the combined impacts of crop sequence, fertilization, and 

tillage system on future agricultural ES across multiple scenario combinations. The advantage of 



170 

 

 

running scenarios of different pressures in ecosystem process models is, as described in the 

previous paragraph, that they simulate the effect of pressures on the underlying processes that 

support the suite of modelled services.  

Biophysical and socio-economic patterns and processes occur over a wide range of 

interrelated spatial and temporal dimensions. Depending on the model, aspects of scale that 

affect these dynamic relationships may be predetermined or adjustable by the user. Most models 

can be run for short time periods such as one growing season to long-term simulations that run 

for hundreds of years. Within the model, processes themselves run on predetermined time scales 

with processes such as photosynthesis and evapotranspiration accounted for on a daily timestep 

and other aspects addressed on a weekly, monthly, or yearly timestep (Table 1). Ecosystem 

process models applied in a spatial framework often assume homogeneous vegetation coverage 

within a grid cell, and the spatial resolution for each cell can be from the size of a plot or yard up 

to a 0.5 ° latitude and longitude. Chapter 3 shows an example that simulated ES capacity in 

residential yards of Southeastern Michigan at the scale of vegetation cover type and landscape 

scale with Biome-BGC-Ex over a period of 50 years.  The model G-Range, which was 

developed based on CENTURY, tracked global rangeland ES at a 0.5 degree x 0.5 degree 

resolution for 120 year simulations (Boone et al. 2018). Although process models do not 

consider flows of C, nutrients, and water between cells (see section 3.4), they can represent 

heterogeneity across a landscape due to differences in ecosystem structure, ecosystem type, and 

differences in ecosystem pressures such as heterogenous management practices. CENTURY has 

been used to measure agricultural related ES in West Africa at multiple scales from farm to 

country over a period of 30 years (Belem and Saqalli 2017). This study was able to model 

heterogeneity in C related ecosystem services and crop yields across the landscape.  
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4.3.4  LIMITATIONS OR SHORTCOMINGS OF ECOSYSTEM PROCESS MODELLING APPROACH TO 

ESTIMATING ES 

While one benefit of ecosystem process models is that they allow users to simulate 

complex interactions and feedbacks, the downside of this complexity is that it may create 

barriers to their use for modelling ES (Paruelo et al. 2016, Rieb et al. 2017). Typically, these 

models are designed for scientists and researchers as opposed to land managers and planners. 

They require knowledge of ecological specific terminology, ecophysiology, and how ecological 

processes occur and interact. The user-interface of some of these models are also outdated and 

not designed with a non-specialist user in mind. A conceptual limitation to ecosystem process 

models is their inability to model the entire chain of ES from capacity to flow to demand. 

However, I do see an opportunity for ES modelling frameworks to incorporate some of the 

important aspects of these models into a more user-friendly format. 

The main limitation for usability of these models is the amount and difficulty of acquiring 

input data. Typically, these models require multiple forms of input data including initial 

conditions (current biomass, soil conditions, nitrogen availability, etc.), drivers (weather and 

climate data, management scenarios), and parameters (ecophysiological conditions of vegetation 

and soil). Information on initial site conditions and drivers needs to be provided for the given 

research question. In many cases this can be select from a standardized set of parameters based 

on the given ecosystem.  

As mentioned previously, most of these models have been designed for wildland 

ecosystems as opposed to ecosystems with a major human component. If parameter sets for 

human-dominated ecosystems are not available, then substitutions for the affected variables need 

to be acquired. This can be accomplished through surveying the literature, field data collection, 
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or remote sensing.  In the case of modifying Biome-BGC for measuring exurban residential ES, 

existing exurban field research and literature on urban and exurban applications of Biome-BGC 

were used to adjust the model parameters (Chapter 3). However, there was a long decision-

making process for determining how to calibrate the model, which values from the study region 

to use as initial C and N stocks, and how to parameterize C to N ratios of vegetation and soil. 

Iravani and others (2019) have proposed an inverse modelling approach that can be used to aid in 

parameterizing ecosystem process models, in their case they applied this method to estimate 

grassland C ES in grasslands using the CENTURY model. 

An additional issue of models designed for wildland system is that changes to processes 

impacted by humans may be not reflected in the model code. One issue with Biome-BGC-Ex 

that was not fully rectified was how the model estimated N demand and N saturation. Biome-

BGC in its original form was always meant to be N limited, as it was originally designed for a 

region that was known to have N as a limiting factor for growth (Running and Gower 1991). 

Despite initializing the model with soil C and N pools which represented a N saturated study 

region, N demand was never met in the simulations even with the highest level of fertilizer 

additions. It was later determined that since Biome-BGC-Ex limits plant growth and 

decomposition as opposed to adjusting C:N ratios when nitrogen is limited the low plant C:N 

ratios required high levels of N inputs to maintain living biomass. In reality, we would expect 

plant growth to be limited in the short-term with C:N ratios adjusting in plant matter over time.  

Although decision making and policy aimed at ES can be improved with accurate and 

defendable quantification, spatially explicit units are needed to quantify ES because supply and 

demand for ecosystem services are spatially explicit (Crossman et al. 2013). Ecosystem process 

models are best able to estimate ES capacity at the local to regional scale and a resolution of less 
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than 0.5 degrees. If users are interested in modelling at a coarser scale, models such as DGVMs 

may be a better choice. One of the main limitations of the models discussed in this chapter is that 

they are nonspatial within a grid cell. Each simulation is spatially bound to an area with 

homogeneous vegetation, soil, and climate conditions. This can especially limit the 

understanding of services that relate to flow across space such as water flow services. In some 

cases, there may be other ecological models better suited to measuring the movement of services 

across a landscape, but they also have their own limitations. For example, the Soil and Water 

Assessment Tool (SWAT) is a spatially explicit model that has been used as a tool to model 

water quantity and sediment regulation, but is limited in its ability to model services involving C 

and N in terrestrial ecosystems (Francesconi et al. 2016). LANDIS-II is a model that combines 

terrestrial ecosystem processes (from PnET and CENTURY), forest succession, and disturbances 

across forested landscapes (Scheller et al. 2007). While this model includes a spatial component, 

it designed for large landscape tracts (>1 million ha) and is limited in its ability to estimate 

services in nonforest ecosystems or landscape types. This limitation can also be addressed by 

linking an ecosystem process model to other models with spatial components such as linking 

with a watershed model (Samal et al. 2017), surface waterflow models (Xu et al. 2016), or plant 

dynamics (Boone et al. 2018).   

Usability may also be limited by the user-interfaces of these models. For example, it may 

be difficult to know where and how to provide input data. Data output may not be in a format 

that is instantly beneficial to the user, such as in a large table of values. Since these models are 

nonspatial, results would need to be put through an additional step of mapping to see results over 

the project’s spatial extent.  This contrasts with models designed specifically for ES that are 

spatially explicit and can provide map-based outputs. 
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Ecosystem process models would need to be considered as part of a broader modelling 

framework, as shown in Figure 4-2, to address the full conceptual model of ES capacity, flow, 

and demand.  While in some cases they can measure the realized use of some provisioning 

services through management scenarios (e.g., forest harvest, crop yield), ecosystem process 

models are best suited for estimating ES capacity and are not designed to consider human 

demand or valuation of services.  In addition, while ecosystem process models are suitable for 

modelling services classified as production, regulation and supporting, they would need to be 

used in conjunction with other models or information to measure the capacity of cultural services 

and the regulating services of pollination, habitat quality, and biodiversity. In Chapter 3 we 

showed how it is possible to consider cultural ecosystem services including aesthetics as part of 

what drives human management behavior. However, the project was not designed with dynamic 

management behavior that could change based on the resulting ES flows or simulate feedbacks 

between the human to the ecological system.  In the next section I will explore how the strengths 

of ecosystem process models can address limitations of existing modelling frameworks and vice 

versa. 

4.4   NEXT STEPS: INTEGRATING ECOSYSTEM PROCESS MODELS WITH OTHER TOOLS TO IMPROVE 

ES ASSESSMENT 

Ecosystem process models are a tool that can improve our ability to understand the 

complex dynamics of ES capacity.  Based on our knowledge of ES assessment tools, there are a 

few ways which these methods can be reconciled. First, ecosystem process models could be 

considered as one part of an assemblage of models. For example, the MIMES and ARIES 

assessment tools consider the dynamics of ecosystem processes. ARIES chooses the best models 
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available in its database for each user’s question and service choices (Villa et al. 2014), however 

at this time the only ecosystem model included is LPJ-Guess a DGVM model designed for 

regional to global scale analysis. Ecosystem process models could be added to such databases 

and given preference if more than one service could be estimated with the model or if the users 

are estimating services at the local scale. While this may increase the complexity of modelling, 

including feedbacks and interactions between ecosystem processes could give users more 

accurate estimates of service trade-offs and synergies. Although this option could increase data 

input demands, most models have default parameters based on ecosystem type and the Bayesian 

methods in the ARIES tool could be used for parameters where uncertainties exist.  

A second option would be to use ecosystem process models to estimate ES capacity and 

link this with other existing models to create an integrated model ES assessment tool that can 

estimate ES flow, ES demand, and ecological pressures (Figure 4-2). Belem and Saqalli (2017) 

demonstrate this by linking the CENTURY model with agent-based models that represent 

household decisions and livestock management to assess the impacts of climate change and agro-

ecosystem management on ES in West Africa.  Biome-BGC has previously been linked with 

agent-based models to estimate differences in carbon storage under varying land management 

and policy scenarios (Robinson et al. 2013).  
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Figure 4-2: Proposed process-informed integrated modelling framework.  

This framework would link multiple models to estimate ES capacity, flow, and demand in a 

given ecosystem. The linked models (gray ovals in diagram) would represent a process-informed 

ES analysis framework. Abbreviations: LULCC = land use and land cover change. 

 

Following this strategy Biome-BGC-Ex (Chapter 3) could be linked to an agent-based 

model of human management to study the dynamics between ES capacity, flow, and demand and 

simulate feedbacks that exist between human and ecological systems. At a higher resolution 

(parcel level) this could consider how homeowners or land managers are making decisions. For 

example, agent type could be determined based on their ES demands (e.g., lush lawn, views of 

surrounding nature, cooler microclimate) which could be based on social and economic factors 

(e.g. Homeowner Agent Types from previous chapters, Nassauer et al. 2014). Agent 

management practices (e.g., fertilization, biomass removal, irrigation) would change over time to 

best meet their demands. At a coarser resolution (neighborhood or city level) this could consider 

local government decisions on environmental quality (e.g., fertilizer reduction initiatives), 
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developer economic incentives (e.g., payments or tax benefits for not removing large trees) or 

federal economic incentives (e.g., carbon credits).  This type of dynamic framework could allow 

agents to change their behavior over time based on what is occurring within their site or 

community and have that behavior create feedbacks between the human and biophysical system 

(Figure 4-1: Simplified ES framework conceptualizing capacity, flow, demand, biophysical 

feedbacks, and human drivers and pressures.Figure 4-1).  

A third and final option that addresses the issue of data acquisition would be to simplify 

the input parameter sets of ecosystem process models to what can easily be accessed from 

remote sensing or spatial databases. For example, with Biome-BGC-Ex, future users could use 

the parameter sets proposed in Chapter 3 or the default parameters of the model, but site level 

initial soil conditions could be supplemented with a geographic soil database (e.g., SSURGO-

30), vegetation initial conditions could be based on MODIS outputs or NDVI, and ecosystem 

structure could be informed by land cover and land use maps. 

Scientists have continued to call for tools that can model the complex relationship 

between and within ecosystem processes and ES (Cuddington et al. 2013b, Paruelo et al. 2016).  

The need for assessment tools that integrate knowledge of ecosystem processes and services will 

continue to grow as governments begin to require estimation and monitoring of ecosystem 

services. For example, the European Union 2020 Biodiversity Strategy called for EU Member 

States to map, assess, and enhance ecosystem services within national territories, to promote and 

integrate these values into national accounting and reporting at the national and EU level (EC 

2011, 2019). This will require standardization and harmonization of data, indicators, and 

methods to assess ecosystem services (Paulin et al. 2020). By including our knowledge of 

interactions and biophysical feedbacks that affect ecosystem processes and ES in the models and 
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tools that predict ES, users will be better equipped to recognize how ecosystems affect the 

provision of services, trade-offs associated with environmental management decisions, and how 

changes in land management might affect the future provision of ES. 
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Conclusion 

 

Assessment of ecosystem services (ES) and the effect of pressures and feedbacks on them 

requires knowledge of ecosystem ecology and ecosystem processes. Despite acknowledgement 

that ecosystem processes are vital to service production, there is a documented but unfulfilled 

need to bring our knowledge of ecosystem processes to ES science (Bennett 2017, Lavorel et al. 

2017, Broszeit et al. 2019). Current assessment tools are limited in their ability to estimate ES 

capacity as they do not include interactions and biophysical feedbacks between ES and 

ecosystem functions. The overarching goal of this dissertation was to evaluate how ES 

assessment can be improved by applying ecosystem process models modified for human-

dominated ecosystems as a tool to improve estimates of supporting, regulating, and provisioning 

ES. This dissertation provides an example of such an improved tool by modifying a widely used 

ecosystem model, Biome-BGC, and assessing the methods and results in that example in the 

broader context of ES assessment tools currently in use in the field.  I summarize here the 

findings of the three research papers presented in this dissertation, addresses limitations of this 

project, and proposes future research directions.   

5.1   SUMMARY OF DISSERTATION OBJECTIVES AND CONCLUSION 

This study applies ecosystem ecology theory and ecosystem process models to human-

dominated ecosystems, specifically to residential yards in exurban Southeastern Michigan. The 
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main products of this dissertation are: 1) the creation of a new version of the ecosystem process 

model Biome-BGC, referred to as Biome-BGC-Ex, that can simulate processes in vegetation 

cover types and yard management practices found in residential yards; 2) the conversion of 

Biome-BGC-Ex model outputs to a suite of ten ES; and 3) an evaluation of ecosystem processes 

models as a tool for estimating ES capacity. The primary goals and findings of each chapter are 

detailed below.  

In the first paper of the dissertation (Chapter 2) I focus on addressing two limitations of 

current ecosystem process models for human-dominated residential ecosystems 1) inability to 

model multiple layers of competing vegetation, such as combined layers of trees and turfgrass in 

residential yards and 2) lack of management practices found in residential yards. The study 

introduces Biome-BGC-Ex, a new version of the ecosystem process model Biome-BGC, that I 

have modified to include competition between trees and turfgrass as well as residential landscape 

management practices including fertilization, irrigation, mower blade height, mulch mowing, 

pruning intensity and frequency, raking, coarse woody debris (CWD) removal, tree planting, and 

tree removal. Following these modifications, the model was calibrated and parameterized for 

exurban residential land in Southeastern Michigan. It was then used to answer the following 

question: How do individual and combinations of yard management practices affect C 

sequestration? 

In a series of analyses, we evaluated the impact of individual and combinations of 

residential management practices on carbon sequestration in the temperate exurban region of 

Southeastern Michigan, USA over a fifty-year time horizon. For the first two analyses we ran 

Biome-BGC-Ex simulations for three predominant vegetation cover types identified in our study 

region turfgrass with sparse woody, turfgrass, and dense woody and model results suggested that 
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N fertilization was the strongest driver of C sequestration. Our analysis of Homeowner Agent 

Types (HAT) at the scale of the parcel and the landscape, found that different realistic sets of 

management practices have differential effects on C sequestration, and these differences can 

have significant impacts when scaled up to the landscape. The HAT with the highest fertilizer 

rate had the largest increase in total ecological C over 50 years, while the HAT that did not 

fertilize and that pruned trees annually resulted in a loss of total ecological C over the same time 

period.   

Across vegetation cover types, my simulations predicted that fertilization, pruning and 

tree removals have the largest impacts on C due to biophysical feedbacks that impact tree 

biomass and soil C. In the turfgrass with sparse woody cover type, fertilization was the primary 

positive driver of C storage while pruning and tree removals drove decreases in C. These 

practices significantly affected the ecological dynamics between trees and turfgrass in this cover 

type and led to significant declines of both trees and overall C storage when tree removals, 

frequent pruning, and the absence of fertilization occurred together.  In the turfgrass cover type, 

ecosystem C increases required fertilizer in 100 percent of simulations and mulch mowing in 97 

percent. The Dense woody cover type had the highest occurrence of ecosystem C increase when 

pruning and tree removals were lowest.  

Overall, the study results illustrate the strength of assessing the effects of human 

management by using an ecosystem process model with C, N, and water dynamics in vegetation 

and soil linked through functional ecosystem processes. Biome-BGC-Ex can potentially be used 

to measure C dynamics across similar temperate exurban residential landscapes. One limitation 

of this study is that it simplifies management practices to be constant over the 50-year period, as 

opposed to using realistic dynamic decision making. To address this limitation the model could 
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be linked with other tools such as Agent Based Models, such as those proposed in the SLUCE 

project (Robinson et al. 2013), to further investigate how dynamic residential management 

behaviors affect C outcomes. 

The second paper of this dissertation (Chapter 3) addresses two limitations of current ES 

assessment tools: 1) that they neglect to consider mechanistic ecosystem feedbacks, e.g. 

feedbacks among biogeochemical cycles, or other mechanistic interactions among ES (Nicholson 

et al. 2009, Seppelt et al. 2011, Currie 2011, Bruins et al. 2017, Lavorel et al. 2017); and 2) the 

underemphasis on regulating and supporting ES classes (Sutherland et al. 2018). This chapter 

describes how Biome-BGC-Ex was modified to provide outputs that can be used to estimate ES 

capacity for a suite of services in the residential landscape. The main questions of this study, 

which focused on exurban Southeastern Michigan were: 1) which individual and combinations of 

yard management behaviors have the greatest effect on ES capacity? and 2) what are the trade-

offs and synergies found between the modelled services?   

In a series of analyses, we estimated ES capacity of ten services: NPP, soil fertility, 

firewood production, nitrogen retention, freshwater recharge, spring soil water recharge, summer 

soil water retention, climate regulation, microclimate regulation, and air pollution abatement.  

Based on these results, we evaluated which individual and combinations of residential 

management practices have the largest effect on carbon sequestration in the temperate exurban 

region of Southeastern Michigan, USA over a fifty-year time horizon. Using Monte Carlo 

simulation methods, we simulated potential combinations of ten yard management practices and 

found that the ES capacity for each service varies with the management activities. All services 

across all vegetation types have significant changes in capacity due to at least one yard 

management practice.  Fertilizer was the strongest driver for many of the modelled services. Our 



194 

 

 

analysis of trade-offs and synergies between the modeled services under six different homeowner 

agent types (HATs) found that differences and trade-offs in ES capacity between HATs can be 

explained by feedbacks within the ecological system. Our study shows trade-offs between ES 

relating to high amounts of carbon or biomass and freshwater recharge.   

The approach of using an ecosystem process model such as Biome-BGC-Ex allows the 

user to consider how homeowner management behaviors affects ecosystem processes and 

functions directly and indirectly through biophysical feedbacks. For example, we were able to 

show that in model simulations of mixed turf and trees (turfgrass with sparse woody) fertilizer 

additions increased N availability, which drove increased NPP because growth is limited by N. 

As more biomass was produced, greater amounts of C were stored in above and below ground 

vegetation, which led to greater climate regulation. As all additional N was taken up for growth 

nitrogen retention remained high. Water was also limited and led to most water inputs being 

taken up for growth which led to declining freshwater provision. However, when irrigation was 

added to fertilized simulations climate regulation decreased, due to increased soil decomposition.   

The main advantage of this study is the ability to look beyond simple linkages and 

correlations among ES to demonstrate the effects of management practices on ES as they 

manifest, through causal ecosystem interactions, in exurban ecosystems. Results of our 

investigation demonstrate that analysis of ecological processes in novel ecosystems underscore 

the complexity of landscape management decisions. One limitation of our current version of 

Biome-BGC-Ex is how N dynamics are simulated in the model. First, surface N loss is not 

adequately considered in this model; N loss is primarily represented by N leaching through the 

soil water exports and through N volatilization. Second, C to N ratios are constant in the model 

and do not adjust with management. Future research should include additional field components 
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to inform better N dynamics in the model. A second limitation of this method as an approach to 

estimating ES is that Biome-BGC-Ex is aspatial and does not include flows of inputs or outputs 

across the landscape. This could be addressed by linking Biome-BGC-Ex with a spatially explicit 

model such as SWAT (Francesconi et al. 2016), watershed models (Samal et al. 2017), or surface 

waterflow models (Xu et al. 2016).  

The third paper of this dissertation (Chapter 4) evaluated terrestrial ecosystem process 

models as a potential tool for ES assessment. This paper is framed around the principle that 

ecosystem processes along with ecosystem composition and structure give rise to the production 

of ES (Fu et al. 2013). Current assessment tools do not include mechanistic biophysical 

feedbacks or interactions between ES or between ecosystem processes and ES, which may lead 

to incorrect estimates of ES capacity. The main questions this paper addressed were: Are 

ecosystem process models a useful tool for estimating ES capacity? Also, how can ecosystem 

process models be integrated with other tools to improve ES assessment? 

This paper first reviews the most cited and referred to ES assessment tools and evaluates 

their ability to model ES capacity. It then provides a detailed synthesis of the benefits and 

limitations of the proposed approach of using ecosystem process models as a tool to estimate ES 

capacity. We find that while process models increase the complexity of knowledge needed to 

understand how services are being quantified, it also allows for more complex modelling that 

includes interconnected ecosystem processes and feedbacks. Compared to ecosystem process 

models, ES assessment tools have the advantage of considering all areas of ES including 

capacity, flow, and demand. However, they fall short of addressing the complex biophysical 

dynamics inherent in estimating ES capacity. The benefits of reduced complexity and ease of use 

in these tools have come at the expense of being able to dynamically model ecosystem processes 
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and ES capacity that incorporates greater ecological understanding. We conclude the paper by 

offering future steps for integrating ecosystem process models with other tools to improve ES 

assessment. 

5.2   LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

The results of both the first and second paper highlighted the importance of N availability 

in model simulations. Ecosystem processes that affect C accumulation (photosynthesis, plant 

growth, decomposition) are limited by a combination of light, water, and N availability. In our 

simulations, N limitation was the driving factor in C sequestration and ES that were directly 

related to biomass. Further examination of the model revealed that it may need additional 

modifications to represent the dynamics of N more accurately in human-dominated systems with 

a large influx of N imports and competition between trees and turfgrass. First, there is a lack of 

empirical data on competition between trees and turfgrass for N. Urban trees have been shown to 

take up excess N (Livesley et al. 2016b) and have higher LAI on high fertility sites (Groffman et 

al. 2006). Studies on savanna ecosystems, where trees and grasses also coexist, do not show 

definitively that trees and grasses have balanced competition for water and N (Donzelli et al. 

2013), as we have chosen to assume in Biome-BGC-Ex. Further studies on the competitive 

dynamics between trees and turfgrass in managed ecosystems are necessary to improve this 

aspect of the model. In addition, if we want Biome-BGC-Ex to become a widely used ecological 

model for residential ecosystems, applications to other similar geographic areas need to be 

completed and compared.  

Second, the original Biome-BGC model assumes that that microbes and plants have equal 

weight when competing for soil N. This assumption does not consider studies showing that 
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microbes are more competitive for mineral N than plant roots over short-term period and that  

(Kuzyakov and Xu 2013, Ouyang et al. 2016). In addition, by reducing N demand fluxes for each 

process by the same proportion when N demand is not met, we may not be accurately simulating 

how plants and soils adapt to N limitations (Shi et al. 2006, Yao et al. 2011). There are also 

complex interactions between plant roots, soil microbes, human management and seasonality 

that may drive important N dynamics in residential yards that are not addressed by the model 

(Yao et al. 2011, Jacoby et al. 2017). In the absence of empirical data on N assimilation by roots 

and microbes in residential yards, future versions of Biome-BGC-Ex could consider creating a 

new parameter that allows the user to adjust the proportion of N assimilated between plants and 

soil microbes.  

A third limitation of our model simulations was that we adjusted the parameters for plant 

C:N ratios based on results of our empirical field study (Currie et al. 2016). Since our study 

region is N enriched (Kahan et al. 2014) we used low C:N ratios, or a higher proportion of N per 

unit of C. However, since this ratio is a constant for the duration of model simulations it caused 

N to constrain plant growth in simulations where no additional N fertilizer was added. This led to 

large amounts of mortality, especially for trees that could not meet their N demand. Ideally, C:N 

ratios would be dynamic based on management inputs and while mortality may still occur, we 

would also expect C:N ratios to adjust for management over time.  

As mentioned in the second and third papers (Chapters 3 & 4), one limitation of 

ecosystem process models as a tool for estimating ES is that they do not consider the full 

conceptual model of ES capacity, flow, and demand. While in some cases they can measure the 

realized use of some provisioning services through management scenarios (e.g., forest harvest, 

crop yield), ecosystem process models are best suited for estimating ES capacity and are not 
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designed to consider human demand or valuation of services.  Ecosystem process model 

limitations are similar within the context of Coupled Human and Natural Systems (CHANS) or 

socio-ecological systems. Process models can dynamically simulate impacts of drivers and 

pressures on natural systems as well as exports of ES and benefits to human systems. However, 

they do not have the capability to dynamically model how human or social processes change due 

to ES or how these changes affect pressures and drivers that feed into natural systems.  

One way to address this limitation is through coupling ecosystem process models with 

agent-based models (ABM) that can dynamically simulate agent behavior and their resulting 

changes in management based on their demand for ES.  This approach was originally proposed 

by the SLUCE project as a way to integrate an ABM based on homeowner yard management 

decisions with an ecosystem process model to estimate C sequestration in the exurban 

landscape(Robinson et al. 2013). For example, agent types could be determined based on the 

desire to sequester carbon and they could make management decisions based on current C stored 

in the landscape. These decisions would affect C storage (simulated in the ecosystem process 

model) and then this would feed back to the agents again. A similar method can be followed for 

a greater variety of ES, where agent types could be created based on their ES demands.   

Finally, we acknowledge that this study does not address the full ecological impacts of 

human management and development of exurban residential areas. To do this we would need to 

move beyond models solely of ecosystem processes and dynamics and include life-cycle analysis 

of C, N, and water in the exurban landscape. This study only considers the pools and fluxes of 

ecosystem processes and ES in soils and vegetation and does not account for gains and losses 

that arise from the application of these management practices (e.g., gas-powered lawn mowers, 

electric-powered sprinklers) or losses that may occur due to people living away from urban 
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centers (e.g., transportation). We also did not consider the fate of any C or N removed by 

homeowners from the system, when in many cases homeowner may keep collected woody 

biomass on their property or burn firewood collected (Currie et al. 2013). If the full ecological 

costs of each management practice were considered it may produce different outcomes (Fissore 

et al. 2012, Lerman and Contosta 2019).  

5.3   FINAL THOUGHTS 

This dissertation presented a novel approach to improving our understanding of 

ecosystem processes and ES in the residential exurban landscape. It focused on understanding 

how human management behaviors drive changes in ecological systems but altering the flux and 

storage of carbon, nitrogen, and water on the landscape. This research proposes that one 

approach to improving ES assessment is by utilizing ecosystem process models to improve our 

estimates ES Capacity. It is also novel because its focus is on how human management of the 

landscape affects ES production as opposed to land use or land cover change. I hope that the 

tools and methods presented in this research can be replicated in similar ecosystems to inform 

more complex ES modelling frameworks that rely on ES production modelling grounded in the 

understanding of ecosystem processes and their feedbacks. 
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Appendix -A-1 

Detailed modifications for a multi-layer vegetation layer model that includes residential 

yard management practices. Brackets indicate the corresponding name of the function or 

subroutine in the Biome-BGC(-Ex) code. All code was modified in Visual Basic Studio using 

C++. 

1. [bgc_struct.h, bgc_io.h] hold and define data structures for bgc 

a. Data Structures and model variables that are vegetation dependent now have 

multiple “subsets” (used to be just x but now x1, x2, x3 ). 

i. [cinit] – carbon state initialization variables 

ii. [phenarray] – phonological control arrays 

iii. [phenology] – daily phonological data arrays 

iv. [mgmt] – management variables (this is a new structure for this version)  

v. [epconst] – canopy ecophysiological constants 

vi. [psn] – photosynthesis routine variables 

vii. [pment] – photosynthesis routine meteorological variables 

viii. [restart_data] – restart file variables 

b. For data structures that contain both site and vegetation dependent variables, 

vegetation variables are tracked by separate sub-structures, site level variables are 

calculated, and then all variables are encompassed in a site level “super-

structure”.  

i. [metvar] – meteorological variables  

ii. [wstate] – water state variables  

iii. [wflux] – water flux variables  

iv. [cstate] – carbon state variables 

v. [cflux] – carbon flux variables 

vi. [nstate] – nitrogen state variables 

vii. [nflux] – nitrogen flux variables 

viii. [ntemp] – temporary nitrogen variables for reconciliation of 

decomposition immobilization fluxes and plant growth N demands 

ix. [epvar] – ecophysiological variables 

x. [summary] – summary variables 

c. Some structures have no changes 

i. [control] – simulation control variables 

ii. [co2control] – annual co2 concentration 

iii. [ndepcontrol] – annual nitrogen deposition 

iv. [metarr] – meteorological variable arrays 

v. [siteconst] – soil and site constants 

2.  [bgc_func.h, pointbgc_func.h] header file for function prototypes for bgc and pointbgc  

a. These files basically lay out which structures and variables the functions need to 

have access to when they are run.  



206 

 

 

b. If a function needs to be run for each vegetation type, the variable ‘nvegtypes’ 

was added to the code here.  

c. Structure names are also changed to reference changes addressed above.  

d. All new functions for competition were added to [bgc_func] here 

i. [prioritize_light], [prioritize_rain], [prioritize_soilwater], 

[prioritize_nutrients], [competition_init] – these are all grouped into one 

main function [competition] 

3. [bgc, pointbgc] files are the functions for core model logic 

a. [pointbgc] – front-end to Biome-BGC, calls up and organizes all data from the 

INI files and then passes this information into [bgc], which does the ecology, and 

then takes information back from [bgc] and puts it into output file for user.  

i. Reorganized how some of the data structures are initialized because we 

need to know how many vegetation types there before they can be called 

up.  

b. [bgc] – this function preforms all ecological processes and calls up all ecological 

functions.  

i. Main changes were updating code to include new structure names and 

adding in loops to run functions for multiple vegetation types or to adjust 

array sizes to accommodate multiple vegetation layers.  

ii. The competitive ability of vegetation layers are compared (using height 

functions) and re-resorted yearly, at the start of the annual loop. 

4. Individual functions – these functions carry out ecological processes as well as other 

operations necessary for the logic of Biome-BGC  

a. Some functions were updated to run for each individual layer and/or to include 

the new structure names but no changes were made to the functions themselves. 

i. [baresoil_evap] – daily bare soil evaporation (run once for the site) 

ii. [check_balance] – daily test of mass balance for water, carbon, and 

nitrogen state variables (run for each vegetation layer and then once for 

the site) 

iii. [daymet] – transfer one day of meteorological data from [metarr] structure 

to [metv] structure (run once for the site) 

iv. [maint_resp] – daily maintenance respiration routine (run separate for each 

vegetation layer) 

v. [mortality] – daily mortality fluxes (run for each vegetation layer) 

vi. [nleaching] – daily nitrogen leaching flux (run once for the site) 

vii. [outflow] – daily hydrologic outflow (run once for the site) 

viii. [make_zero_flux_struct, precision_control, presim_state_init, 

zero_srcsnk] – forces water, carbon, nitrogen, and/or summary flux and/or 

state structure values to zero for multiple reasons depending on function 

ix. [phenology] – daily phenology fluxes (run once for each vegetation layer) 

x. [photosynthesis] – daily c3/c4 photosynthesis model (run once for each 

vegetation layer) 
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xi. [snowmelt] – daily snowmelt and sublimation (run once for the site) 

xii. [state_update] – resolve the fluxes in the daily loop to update state 

variables 

xiii. [summary] – summary variables for potential output (run for each 

vegetation layer and the for the site) 

xiv. [output_ctrl] – reads output control information from the INI file 

(produces one output file per vegetation layer and just repeats any of the 

site-level variables in each of the files).  

xv. [restart_init] – initialize restart parameters (run for each vegetation layer) 

b. Some functions were updated to run for each individual layer and/or to include 

the new structure and had changes to their internal function due to having 

multiple vegetation layers. 

i. [canopy_et] – canopy evapotranspiration  

1. For each individual vegetation layer no changes were made (no 

change in the ecological process). However, this function has a 

built-in check to make sure transpiration is not greater than 

available soil water. Code was added so transpiration for all 

vegetation layers is summed and compared to soil water in order 

for the model to continue forward.  

ii. [daily_allocation] – daily allocation of carbon and nitrogen, as well as the 

final reconciliation of N immobilization by microbes. 

1. Updated so demands and allocation could be completed for all 

vegetation layers and the site. First the N demand for each 

vegetation layer is determined and then summed along with 

decomposition immobilization (from [decomp]). This is compared 

to N supply and if it is not limiting processes can proceed at 

potential rates. If N is limiting it is divided up with a proportion 

going to immobilization and the remaining divided size-

symmetrically between vegetation types.  

iii. [decomp] – daily decomposition fluxes 

1. No change to processes but updated to do litter decomposition for 

each vegetation layer first and then move on to soil decomposition.  

iv. [prcp_route] – routing of daily precipitation to canopy, soil, snowpack 

1. Canopy routing of precipitation is determined by which vegetation 

layer is determined to be the “highest” layer in the canopy. This 

layer intercepts precipitation routed to the canopy based on all-

sided LAI and user defined interception rate. The precipitation 

remaining after interception is available for the next layer of 

vegetation to intercept and so on until all layers of vegetation have 

intercepted precipitation or there is none remaining. Any 

precipitation remaining after canopy interception moves to soil 

water.  
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v. [rad_trans] – calculates canopy radiation interception and transmission 

1. [bgc] determines which layer of vegetation has access to light first 

and then runs that layer through this function. The first layer has 

access to all available shortwave radiation and PAR for that day 

and absorption values are determined based on that layer’s LAI 

and other variables. The remaining shortwave radiation and PAR 

(that would be filtered through this layer of this canopy) is then 

calculated and made available for the next layer of vegetation.  

vi. [epc_init] – reads in the EPC file and calculates any variables needed from 

this data 

1. Changes file to read in multiple EPC files depending on the 

number of vegetation layers specified in the INI file. Adds in code 

to read new variables for maximum vegetation height and mass at 

max height.  

vii. [state_init] – initialize water, carbon, and nitrogen state variables for 

pointbgc simulation 

1. In this function we now initialize the data structure for [wstate, 

cstate, nstate]. This was previously done by the function 

[presim_state_init] very early in [pointbgc] but it is now done here 

when we know how many vegetation types are present.  

c. New functions were added to Biome-BGC to adapt the model for competition 

with multiple layers of vegetation. 

i. [mgmt_init] – added a function that initializes management parameters 

supplied in the input file 

ii. [competition] - added functions that initialize data structures, calculate 

vegetation height, and prioritize vegetation access to light and water.  

Model changes to modify for management – these changes were added to the model after 

the model was tested to successfully run the multi-layer version.  

 

5. Added new management variables to necessary Data Structures found in [bgc_struct.h]  

a. [cstate, nstate, cflux, nflux] – carbon and nitrogen state and flux structures 

i. tree removal pool variables for leaf, live and dead stems 

ii. raking removal pool variables for all litter pools 

iii. cwd removal pool variable 

iv. pruning removal pool variables for leaf, live and dead stems 

v. mower clipping removal pools 

vi. For all above variables: flux variables were added to move C/N from the 

original (ecosystem) pool to the removal pool  

vii. tree planting addition pool variables for leaf, live and dead stems  

viii. Tree planting C/N flux variables to move from addition pool to the 

ecosystem pool  



209 

 

 

b. [summary] – new summary variables describing the management practices were 

added to this structure 

c. [mgmt] – A new structure was added to the model that includes all the 

management variables that the user supplies to the model. This structure defines 

all the variables in the user supplied management file.  

6. Added new management function definitions to the function prototype files 

[bgc_func.h, pointbgc_func.h] for the functions [tree_plant_init, tree_plant, mgmt_init] 

7. Modifications to functions 

a. [bgc] – This function includes core model logic. However, it also includes some 

sub-routines that might have been better off in their own functions such as 

nitrogen deposition. 

i. I added fertilizer to the model through the nitrogen deposition subroutine 

during the growing season (May 1 to Sept 30). I add the ‘daily fertilizer’ 

variable to the ‘daily N deposition’ variable to determine the total amount 

of outside N added to soil mineral N for that day.  

b.  [metarr_init] – this function reads in the meteorological data and creates an array 

of meteorological for every day the model is run 

i. I added in an irrigation subroutine to this function. During the growing 

season (May 1 to Sept 30) it measures precipitation on a weekly basis and 

compares it to the user supplied irrigation amount. If the irrigation amount 

isn’t met by the weekly precipitation, extra precipitation is added to the 

model on the first day of the week to meet the user requirement.  

c. [check_balance] – daily test of mass balance 

i. Even though the C/N is removed from the ecological processes the model 

still needs to achieve mass balance so all the new C/N pool variables for 

removals are still counted in the mass balance equations (follow same 

methodology as other mortality pools) 

d. [morality] – daily morality fluxes 

i. CWD removal was added as a subroutine to this function within the 

current tree specific mortality C/N flux routine.  

ii. Tree Removals were added as a separate routine in this function that 

occurs if the model flags it as a year for tree removals. This code basically 

follows the tree morality code but uses different C/N flux and pool 

variables. It transfers aboveground removals into removal pools and 

equivalent belowground removals into litter pools. 

iii. Pruning was added as a separate routine and first determines if it is the 

correct year to prune. For pruning the user provides a percent removal 

value. However, Since Biome-BGC doesn’t differentiate between woody 

vegetation structures, for all woody biomass fluxes we multiplied the 

removal value by .38 to determine the total removal flux. This is based on 

research that states 38% of woody biomass is made of small branches and 

twigs (Whittaker et al. 1974). Aboveground removals are transferred into 
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removal pools and equivalent belowground removals turnover into litter 

pools. 

iv. Mowing was added as a separate routine in which mowing is signaled if 

the user supplied LAI reaches the models ‘projected LAI’. If mulch 

mowing occurs, 20% of the leaf and fine root C/N pools turnover into 

litter pools. If mower clippings are removed 20% of aboveground C/N 

pools are transferred to a removal pool while 20% of roots turnover into 

litter pools.  

e. [phenology] – daily phenology fluxes 

i. Raking was added as a subroutine to the leaf litterfall routine. The user 

supplies a percentage of aboveground leaf biomass that is removed from 

the system. In the model we take the daily fluxes of leaf C/N to litter pools 

and multiply them by this number and then subtract this value out of the 

model into raking removal pools.  

8. New Functions 

a. [tree_plant_init] – This function was added to initialize data structures for tree 

planting, if it is chosen by the user to occur. It determines how to divide up the 

user supplied biomass value into the C pools required by Biome-BGC and also 

determines proportional N values. (Abbreviations: Tree Planting Biomass (TP), 

aboveground (AG), belowground (BG) 

i. The user supplies an aboveground biomass value for tree planting 

(TPAG). The proportional belowground amount (TPBG) is determined 

based on the proportion of belowground to aboveground biomass currently 

in the tree vegetation layer.   

𝑇𝑃𝐵𝐺 =
𝑇𝑃𝐴𝐺

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺)
      (1) 

ii. The tree planting aboveground total is divided into carbon pools for leaf, 

live stem, and dead stem carbon based on the proportions of these pools in 

current biomass.  

𝑇𝑃 𝑙𝑒𝑎𝑓𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑎𝑓𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺     (2) 

𝑇𝑃 𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺    (3) 

𝑇𝑃 𝑑𝑒𝑎𝑑𝑠𝑡𝑒𝑚𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑎𝑑𝑠𝑡𝑒𝑚𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺   (4) 

iii. The belowground total is divided into carbon pools for fine roots, life 

roots, and dead roots 

𝑇𝑃 𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺    (5) 

𝑇𝑃 𝑙𝑖𝑣𝑒𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑣𝑒𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺    (6) 

𝑇𝑃 𝑑𝑒𝑎𝑑𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑎𝑑𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺    (7) 

iv. The accompanying nitrogen pools are determined based on the C:N ratios 

supplied in the ecophysiology parameter file. 
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b. [tree_plant] – This function was added to carries out the flux of C and N from the 

pools determined in the tree_plant_init function to the C/N pools in the 

ecosystem. [ 

c. [mgmt_init] – This function was added to initialize the simulation management 

parameters; basically reads the management input file into the model.  
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Appendix B Supplementary Information, Tables, and Figures for Chapter 2 
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Table B-1 Summary of Biome-BGC functions changed in Biome-BGC-Ex modification 

Summary of Biome-BGC functions whose logic was fundamentally changed by modifying the 

model for multiple vegetation types and residential management practices for the exurban 

environment version Biome-BGC-Ex. The list will be of most use when working with the model 

source code.  

Existing Functions 

Function Name Purpose Description of Changes 

bgc Core model logic All code is updated to include new structure names that 
represent separate vegetation and site level variables.  
Loops are added to run functions for multiple 
vegetation layers and adjust array sizes to 
accommodate multiple layers 
Competition indices are recalculated annually. 
Fertilizer is added to the soil mineral nitrogen pool daily 
during the growing season (May 1 - Oct 1). 
Tree planting occurs the first day of the given year.  

canopy_et Calculate canopy 
evapotranspiration 

Transpiration calculated for each vegetation layer, 
summed to site level, and checked against soil water to 
make sure sufficient water is available.  

check_balance Daily test of mass 
balance 

Even though C/N is removed from the ecological 
processes, the model still needs to achieve mass 
balance so all the new C/N pool variables for removals 
are still counted in the mass balance equations 
(following same pattern as other mortality pools). 

daily_allocation Daily allocation of C/N; 
reconciliation of 
microbial N 
immobilization 

Total N demand across all vegetation layers is summed 
with demand from litter and soil processes in [decomp] 
below. This is compared to N supply and if not limiting 
processes can proceed at potential rates. If N is limiting, 
this function assesses allocation with a proportion going 
to immobilization and the remaining divided size 
symmetrically between vegetation layers.  

decomp Calculate daily 
decomposition fluxes 

Immobilization potential demand calculated for each 
vegetation layer and soil processes and then summed to 
the site level. 
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metarr_init Generates an array of 
daily meteorological 
data   

An irrigation subroutine was added to this function. 
During the growing season (May 1 to Sept 30), 
precipitation is measured on a weekly basis and 
compared to user supplied irrigation amount. If 
irrigation isn’t met by weekly precipitation, extra 
precipitation is added to the model on the first day of 
the week to meet the user requirement.  

mortality Calculate daily mortality 
fluxes 

CWD removal was added as a subroutine within the 
current tree mortality C/N flux routine. 
Tree removals were added as a separate routine that 
runs if the model flags it as a year for tree removals. It 
transfers user defined amounts of C/N from 
aboveground vegetation into tree removal specific pools 
and equivalent belowground removals into litter pools.  
Pruning was added as a separate routine. If flagged, it 
first determines if it is the correct year to prune. Then it 
transfers user defined amounts of C/N from above 
ground vegetation into pruning removal specific pools 
and equivalent belowground removals into litter pools.  
Mowing was added as a separate routine which is 
signaled if the user supplied LAI reaches the model’s 
‘projected LAI’. If mulch mowing is flagged, 20% of the 
leaf and fine root C/N pools turnover into litter pools. If 
mower clippings are removed 20% of aboveground C/N 
pools are transferred to mowing removal pools while 
20% of roots turnover into litter pools.  

phenology Calculates daily 
phenology fluxes 

Raking was added as a subroutine to the leaf litterfall 
routine. The proportion of litter removed supplied by 
the user is subtracted from the daily fluxes of leaf C/N 
to litter pools and moved to the raking removal pools.   

prcp_route Routing of daily 
precipitation to canopy, 
soil, and snowpack 

Called for each vegetation layer in order of height.  Each 
layer intercepts and stores water separately and 
precipitation remaining after interception is available 
for each successive layer until no layers are remaining. 
Any remaining precipitation moves to soil water.  

radtrans Calculates canopy 
radiation interception 
and transmission 

Called for each vegetation layer in order of height. The 
highest layer has access to all available shortwave 
radiation for interception. The remaining radiation (that 
would be filtered through this layer of the canopy) is 
then calculated and made available for the subsequent 
layers.  
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New Functions 

 

Function Name Purpose 

competition Calculates vegetation height and prioritizes vegetation access to light 
and water 
Two new variables were added to describe the relationship between 
biomass and height in the ecophysiological (EPC) input file. Following 
a similar method used in Bond-Lamberty et al. (2005):   
“An exponential equation of the form: 

 ℎ = ℎ𝑚𝑎𝑥(1 − 𝑒
−

5

 𝑚ℎ𝑚𝑎𝑥
𝑚

)   (1)  

was chosen to describe this relationship. The two parameters 
supplied for each vegetation type are hmax, the maximum vegetation 
height, and mhmax, the vegetation mass at which this height is 
attained… At the beginning of each simulation year Biome-BGC 
computes the height of each vegetation type based on current stem 
(for woody plants) or leaf (for grasses) mass and determines a height 
order. All light and precipitation interception for the subsequent year 
occurs using this height order, with the tallest vegetation intercepting 
first; light or precipitation that is not intercepted becoming available 
to the next tallest vegetation type.” 

mgmt_init Reads the new management input file into the model and initializes 
the new management parameters for the model. 

Tree_plant_init Calculates how the user supplied tree biomass value is translated into 
the C pools required by the model and then determines proportional 

N values.  (Abbreviations: Tree Planting Biomass (TP), 
aboveground (AG), belowground (BG) 

1. The user supplies an aboveground biomass value for tree 

planting (TPAG). The proportional belowground amount 

(TPBG) is determined based on the proportion of 

belowground to aboveground biomass currently in the tree 

vegetation layer.   

𝑇𝑃𝐵𝐺 =
𝑇𝑃𝐴𝐺

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺)
     (2) 

2. The tree planting aboveground total is divided into carbon 

pools for leaf, live stem, and dead stem carbon based on 

the proportions of these pools in current biomass.  

𝑇𝑃 𝑙𝑒𝑎𝑓𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑎𝑓𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺    (3) 

𝑇𝑃 𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑣𝑒𝑠𝑡𝑒𝑚𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺   (4) 

𝑇𝑃 𝑑𝑒𝑎𝑑𝑠𝑡𝑒𝑚𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑎𝑑𝑠𝑡𝑒𝑚𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝐺
∗ 𝑇𝑃𝐴𝐺  (5) 
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3. The belowground total is divided into carbon pools for fine 

roots, life roots, and dead roots 

𝑇𝑃 𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑖𝑛𝑒𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺   (6) 

𝑇𝑃 𝑙𝑖𝑣𝑒𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑣𝑒𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺   (7) 

𝑇𝑃 𝑑𝑒𝑎𝑑𝑟𝑜𝑜𝑡𝐶 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑎𝑑𝑟𝑜𝑜𝑡𝐶

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐵𝐺
∗ 𝑇𝑃𝐵𝐺   (8) 

4. The accompanying nitrogen pools are determined based on 

the C:N ratios supplied in the ecophysiology parameter file. 

 

Tree_plant Carries out the flux of C/N from the pools determined in 
tree_plant_init function to the C/N pools in the ecosystem.  
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Description of Homeowner Agent Types 

Homeowner Agent Types (HATs) were developed by Nassauer et al. (2014) based on interviews 

with 26 exurban homeowners in our project’s study region. HATs are based on a combination of 

parcel size, parcel characteristics and homeowner behaviors. Parcel sizes defined as large (>1.1 

acre), medium (0.5-1.1 acre) and small (<0.5 acre). 

1. Neat neighbors (n = 6) were small parcel owners who lived in newer homes with turf-

dominated yards. They had no mature indigenous trees on their property, some planted 

trees and all fertilized. They noticed their neighbors’ yards and expected their neighbors to 

notice theirs.  

2. Lakeshore property owners (n = 3) owned lake front or adjacent parcels. They had mature 

indigenous trees but did not plant new trees. Most fertilized but other practices varied. 

They were influenced by neighbors’ perceptions, access to water views, and a desire for low 

tree maintenance.  

3. Nature neighbors (n = 2) lived on small parcels with mature indigenous trees and were 

adjacent to large woodlands. They did not fertilize. They were influenced by enjoying and 

maintaining aesthetic woodland characteristics. 

4. Tree planters (n = 7) owned medium parcels with large amounts of turfgrass with sparse 

woody vegetation cover. They did not have mature indigenous trees, but most had mature 

horticultural trees and had planted trees on their property. Most used fertilizer. They were 

influenced by neighbors’ perceptions and aspiring to a “more natural” approach to property 

maintenance.  

5. Improvers (n = 4) own large parcels with large amounts of low-maintenance old field and 

dense woody vegetation cover.   Management practices for fertilization and tree planting 
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varied. All were interested in watching wildlife on their properties and having autonomy in 

their management decisions.  

6. Viewers (n=4) owned large parcels that included patches of turfgrass with sparse woody. All 

viewers had planted trees and most fertilized. All enjoyed watching wildlife on their 

properties and having nature in their view. 
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Table B-2 Biome-BGC-Ex Dense Woody ecophysiology (EPC) parameters. 

Default values from the Biome-BGC deciduous tree biome are used unless specified.  The 

Keywords are parameter names predefined in Biome-BGC. The ‘Type’ abbreviations DIM 

implies the parameter is dimensionless. 

Keyword Value Type Description Source  
(if not default value) 

WOODY_FLAG 1 flag 1 = woody             0 = non-
woody 

 

EVERGRN_FLAG 0 flag 1 = evergreen         0 = 
deciduous 

 

C3_FLAG 1 flag 1 = C3 photosynthesis           0 
= C4 photosynthesis 

 

MODEL_PHEN_FLAG 1 flag 1 = model phenology   0 = 
user-specified phenology 

 

ONDAY 0 yday Year-day to start new growth 
(when phenology flag = 0) 

 

OFFDAY 0 yday Year-day to end litterfall 
(when phenology flag = 0) 

 

TRNS_GR_PROP 0.2 proportion transfer growth period as 
fraction of growing  

 

LIT_FALL_PROP 0.2 proportion litterfall as fraction of growing 
season 

 

LFR_TURNOVER 1 1/yr annual leaf and fine root 
turnover fraction 

 

LWOOD_TURNOVER 0.7 1/yr annual live wood turnover 
fraction 

 

MORT_FRAC 0.02 1/yr annual whole-plant mortality 
fraction 

Robinson et al. 2013 

FIRE_MORT_FRAC 0 1/yr annual fire mortality fraction We are assuming no 
fire in this system 

ALLOC_FR_LEAF 1.2 ratio  ratio of new fine root C to 
new leaf C 

 

ALLOC_STEM_LEAF 2.2 ratio  ratio of new stem C to new 
leaf C 

 

ALLOC_LWOOD_ 
TOTWOOD 

0.16 ratio  ratio of new live wood C to 
new total wood C 

 

ALLOC_CROOT_STEM 0.22 ratio  ratio of new root C to new 
stem C 

 

GR_PROP 0.5 proportion  current growth proportion 
 

LEAF_CN 19.8 kgC/kgN C:N of leaves 2009 Field Data 

LLITTER_CN 48 kgC/kgN C:N of leaf litter, after 
retranslocation 

2009 Field Data 

FR_CN 84.6 kgC/kgN C:N of fine roots 2009 Field Data 
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LWOOD_CN 84.6 kgC/kgN C:N of live wood Same as fine roots, 
based on White et al. 
2000 

DWOOD_CN 550 kgC/kgN C:N of dead wood 
 

SOIL1_CN 
SOIL2_CN 

12.0 kgC/kgN C:N of fast and medium 
decomposition soil pools 

Included in a separate 
constants file 

SOIL3_CN 
SOIL4_CN 

10.0 kgC/kgN C:N of slow and recalcitrant 
decomposition soil pools 

Included in a separate 
constants file 

LIT_LAB_PROP 0.38 proportion leaf litter labile proportion 
 

LIT_CEL_PROP 0.44 proportion leaf litter cellulose proportion 
 

LIT_LIG_PROP 0.18 proportion leaf litter lignin proportion 
 

FR_LAB_PROP 0.34 proportion fine root labile proportion 
 

FR_CEL_PROP 0.44 proportion fine root cellulose proportion 
 

FR_LIG_PROP 0.22 proportion fine root lignin proportion 
 

DWOOD_CEL_PROP 0.77 proportion dead wood cellulose 
proportion 

 

DWOOD_LIG_PROP 0.23 proportion dead wood lignin proportion 
 

CANOPYW_INT_ 
COEF 

0.045 1/LAI/d canopy water interception 
coefficient 

 

CANOPY_LT_EXT_ 
COEF 

0.54 DIM canopy light extinction 
coefficient 

 

LEAF_AREA_RAT 2 DIM all-sided to projected leaf 
area ratio 

 

AVG_SLA 32 m2/kgC canopy average specific leaf 
area (projected area basis) 

 

SHADE_SUN_SLA_ 
RAT 

2 ratio ratio of shaded SLA to sunlit 
SLA 

 

FLNR 0.07 DIM fraction of leaf N in Rubisco Robinson et al. 2013 

GS_MAX 0.006 m/s maximum stomatal 
conductance (projected area 
basis) 

 

GC_MAX 0.0000
6 

m/s cuticular conductance 
(projected area basis) 

 

GB 0.01 m/s boundary layer conductance 
(projected area basis) 

 

PSI_MIN -0.5 MPa leaf water potential: start of 
conductance reduction 

Calibrated (see 
methods) 

PSI_MAX -2.5 MPa leaf water potential: 
complete conductance 
reduction 

Calibrated (see 
methods) 

VPD_MIN 1100 Pa vapor pressure deficit: start of 
conductance reduction 

 

VPD_MAX 3600 Pa vapor pressure deficit: 
complete conductance 
reduction 
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Table B-3 Biome-BGC-Ex Turfgrass ecophysiology (EPC) parameters. 

Default values from the Biome-BGC C3 grass biome are used unless specified.  The Keywords 

are parameter names predefined in Biome-BGC. The ‘Type’ abbreviations DIM implies the 

parameter is dimensionless. 

Keyword Value Type Description Source  
(if not default value) 

WOODY_FLAG 0 flag 1 = woody             0 = non-
woody 

 

EVERGRN_FLAG 0 flag 1 = evergreen         0 = 
deciduous 

 

C3_FLAG 1 flag 1 = c3 psn            0 = c4 psn 
 

MODEL_PHEN_FLAG 1 flag 1 = model phenology   0 = 
user-specified phenology 

 

ONDAY 0 yday Year-day to start new growth 
(when phenology flag = 0) 

 

OFFDAY 364 yday Year-day to end litterfall 
(when phenology flag = 0) 

 

TRNS_GR_PROP 1 proportion transfer growth period as 
fraction of growing 

 

LIT_FALL_PROP 1 proportion litterfall as fraction of growing 
season 

 

LFR_TURNOVER 1 1/yr annual leaf and fine root 
turnover fraction 

 

LWOOD_TURNOVER 0 1/yr annual live wood turnover 
fraction 

 

MORT_FRAC 0.01 1/yr annual whole-plant mortality 
fraction 

 

FIRE_MORT_FRAC 0 1/yr annual fire mortality fraction 
 

ALLOC_FR_LEAF 1 ratio  ratio of new fine root C to 
new leaf C 

Robinson et al. 2013 

ALLOC_STEM_LEAF 0 ratio  ratio of new stem C to new 
leaf C 

 

ALLOC_LWOOD_ 
TOTWOOD 

0 ratio  ratio of new live wood C to 
new total wood C 

 

ALLOC_CROOT_STEM 0 ratio  ratio of new root C to new 
stem C 

 

GR_PROP 0.5 proportion  current growth proportion 
 

LEAF_CN 28.8 kgC/kgN C:N of leaves 20% higher than the 
default value 

LLITTER_CN 58.8 kgC/kgN C:N of leaf litter, after 
retranslocation 

20% higher than the 
default value 

FR_CN 50.4 kgC/kgN C:N of fine roots 20% higher than the 
default value 
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LWOOD_CN 0 kgC/kgN C:N of live wood 
 

DWOOD_CN 0 kgC/kgN C:N of dead wood 
 

SOIL1_CN 
SOIL2_CN 

12.0 kgC/kgN C:N of fast and medium 
decomposition soil pools 

Included in a separate 
constants file 

SOIL3_CN 
SOIL4_CN 

10.0 kgC/kgN C:N of slow and recalcitrant 
decomposition soil pools 

Included in a separate 
constants file 

LIT_LAB_PROP 0.39 proportion leaf litter labile proportion  

LIT_CEL_PROP 0.44 proportion leaf litter cellulose proportion  

LIT_LIG_PROP 0.17 proportion leaf litter lignin proportion  

FR_LAB_PROP 0.36 proportion fine root labile proportion Milesi et al. 2005 

FR_CEL_PROP 0.52 proportion fine root cellulose proportion Milesi et al. 2005 

FR_LIG_PROP 0.12 proportion fine root lignin proportion Milesi et al. 2005 

DWOOD_CEL_PROP 0 proportion dead wood cellulose 
proportion 

  

DWOOD_LIG_PROP 0 proportion dead wood lignin proportion   

CANOPYW_INT_ 
COEF 

0.01 1/LAI/d canopy water interception 
coefficient 

 

CANOPY_LT_EXT_ 
COEF 

0.6 DIM canopy light extinction 
coefficient 

 

LEAF_AREA_RAT 2 DIM all-sided to projected leaf 
area ratio 

 

AVG_SLA 70 m2/kgC canopy average specific leaf 
area (projected area basis) 

Milesi et al. 2005 

SHADE_SUN_SLA_ 
RAT 

2 ratio ratio of shaded SLA to sunlit 
SLA 

 

FLNR 0.3456 DIM fraction of leaf N in Rubisco Calculated based on 
leaf C:N ration from 
equation in White et 
al. 2000 

GS_MAX 0.005 m/s maximum stomatal 
conductance (projected area 
basis) 

 

GC_MAX 0.0000
1 

m/s cuticular conductance 
(projected area basis) 

 

GB 0.04 m/s boundary layer conductance 
(projected area basis 

 

PSI_MIN -0.5 MPa leaf water potential: start of 
conductance reduction 

Calibrated (see 
methods) 

PSI_MAX -2.5 MPa leaf water potential: 
complete conductance 
reduction 

Calibrated (see 
methods) 

VPD_MIN 930 Pa vapor pressure deficit: start of 
conductance reduction 

 

VPD_MAX 4100 Pa vapor pressure deficit: 
complete conductance 
reduction 
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Table B-4 Site and atmospheric initial conditions for all vegetation cover types. 

 

Model Parameter Value 

Effective Soil Deptha 1 m 

Soil Textureb 
 

Sand 63% 

Silt 20.4% 

Clay 16.6% 

Site Elevation 200 m 

Site Latitude 41.98 degrees 

Atmospheric CO2
c 396.48 ppm 

Total Nitrogen Depositionc 0.000979 kg N m-2 yr-1 
a(Currie et al. 2016) 
b NOAA 2014 
c Based on a five-year average of 2008-2012. Wet and dry inorganic N deposition from EPA CASNET. 

Atmospheric organic nitrogen was calculated as fifty percent of total inorganic deposition (Neff et al. 

2002). 

 

Description of Climate Parameters 
Identical climate files were used for each year so that variations in climate would not mask the effects of 

management. We created the climate file based on fifty years (1956-2006) of past daily climate data in 

the study region from the National Climatic Data Center (NCDC).  For each month, we randomly created 

precipitation events to be equal to the mean number of historical precipitation days in that month, with 

the distribution of rainfall amounts chosen from an exponential decay model. We used the MTCLIM model 

(Running et al. 1987, Thornton and Running 1999) to produce daily values of short-wave radiation (W m-

2), vapor pressure deficit (Pa), average daylight temperature, and day length.   
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Table B-5 Additional results tables for normalized linear regression C pools analyses (1-3) 

and non-normalized linear regression C pool analyses (4-6). 

Additional results tables for normalized linear regression C pools analyses (1-3) and non-

normalized linear regression C pool analyses (4-6). Standard errors are in parentheses. 

 

  

1. Turfgrass with sparse woody vegetation (TGW) – Normalized Multiple Linear Regression results for total, 
vegetation, litter, and soil carbon.   

Total 
ecosystem 
carbon 

Tree 
vegetation 
carbon 

Turf 
vegetation 
carbon 

Tree litter 
carbon 

Turf litter 
carbon 

Soil carbon 

Intercept 
3.514*** 3.685*** -0.046*** 0.658*** 0.037*** -0.899*** 

(0.137) (0.113) (0.001) (0.019) (0.002) (0.032) 

Fertilizer 
12.325*** 7.953*** -0.072*** 1.702*** -0.105*** 2.847*** 

(0.097) (0.080) (0.001) (0.013) (0.001) (0.023) 

Irrigation 
5.254*** 4.074*** -0.031*** 0.717*** -0.058*** 0.553*** 

(0.126) (0.105) (0.001) (0.017) (0.002) (0.030) 

Mow height 
-1.754*** -1.759*** 0.045*** -0.336*** 0.075*** 0.220*** 

(0.112) (0.093) (0.001) (0.015) (0.001) (0.026) 

Mulch mowing 
0.713*** 0.264*** 0.005*** 0.068*** 0.008*** 0.369*** 

(0.070) (0.058) (0.001) (0.010) (0.001) (0.017) 

Pruning 
intensity 

-5.937*** -5.693*** 0.034*** -0.256*** 0.043*** -0.064* 

(0.161) (0.134) (0.001) (0.022) (0.002) (0.038) 

Prune yearly 
-3.784*** -3.889*** 0.004*** 0.130*** 0.008*** -0.036 

(0.126) (0.105) (0.001) (0.017) (0.002) (0.030) 

Prune every 3 
years 

-0.303** -0.508*** -0.009*** 0.215*** -0.013*** 0.012 

(0.130) (0.107) (0.001) (0.018) (0.002) (0.031) 

Raking 
-4.442*** -2.232*** 0.023*** -0.571*** 0.020*** -1.682*** 

(0.097) (0.081) (0.001) (0.013) (0.001) (0.023) 

Tree planting 
1.383*** 1.086*** 0.0003 0.219*** 0.0003 0.077*** 

(0.097) (0.080) (0.001) (0.013) (0.001) (0.023) 

Tree removal 
-4.819*** -4.755*** 0.006*** -0.091*** 0.005*** 0.016 

(0.112) (0.093) (0.001) (0.015) (0.001) (0.026) 

Observations 7,000 7,000 7,000 7,000 7,000 7,000 

R2 0.819 0.804 0.715 0.746 0.671 0.753 

Adjusted R2 0.818 0.804 0.715 0.746 0.670 0.752 

Note:     *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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2. Dense woody (DW) - Normalized Multiple Linear Regression results for total, vegetation, litter, 
and soil carbon. 

 Total ecosystem 
carbon 

Tree vegetation 
carbon 

Tree litter 
carbon 

Soil carbon 

Intercept 
5.816*** 1.020*** 4.724*** -0.198*** 

(0.099) (0.092) (0.026) (0.013) 

Pruning intensity 
-8.000*** -5.980*** -1.145*** -0.875*** 

(0.148) (0.138) (0.039) (0.019) 

Prune yearly 
-5.536*** -4.728*** -0.519*** -0.289*** 

(0.115) (0.107) (0.031) (0.015) 

Prune every 3 
years 

-0.871*** -1.167*** 0.110*** 0.186*** 

(0.121) (0.112) (0.032) (0.016) 

Tree planting 
-3.141*** 0.374*** -2.565*** -0.950*** 

(0.103) (0.095) (0.027) (0.013) 

Coarse woody 
debris removal 

1.443*** 0.927*** 0.418*** 0.098*** 

(0.089) (0.083) (0.024) (0.012) 

Tree removal 
-6.471*** -5.279*** -0.888*** -0.304*** 

(0.103) (0.095) (0.027) (0.013) 

Observations 3,000 3,000 3,000 3,000 

R2 0.905 0.873 0.835 0.837 

Adjusted R2 0.905 0.872 0.834 0.837 

Note:     *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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3. Turfgrass (TG) - Normalized Multiple Linear Regression results for total, vegetation, litter, and soil 
carbon.  

Total ecosystem carbon Turf vegetation 
carbon 

Turf litter 
carbon 

Soil carbon 

Intercept 
-5.385*** -0.143*** -0.099*** -5.140*** 

(0.034) (0.001) (0.001) (0.033) 

Fertilizer 
4.590*** 0.037*** 0.061*** 4.492*** 

(0.032) (0.001) (0.001) (0.031) 

Irrigation 
-0.573*** 0.008*** -0.021*** -0.561*** 

(0.039) (0.001) (0.001) (0.037) 

Mow height 
2.889*** 0.109*** 0.171*** 2.609*** 

(0.037) (0.001) (0.001) (0.036) 

Mulch 
mowing 

2.148*** 0.039*** 0.041*** 2.068*** 

(0.023) (0.001) (0.001) (0.022) 

Observations 3,000 3,000 3,000 3,000 

R2 0.923 0.828 0.923 0.923 

Adjusted R2 0.923 0.827 0.923 0.923 

Note:   *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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4. Turfgrass with sparse woody vegetation (TGW) – Non-normalized Multiple Linear Regression results for total, vegetation, litter, and soil 
carbon.   

Total ecosystem 
carbon 

Tree vegetation 
carbon 

Turf vegetation 
carbon 

Tree litter carbon Turf litter 
carbon 

Soil carbon 

Intercept  
4.016*** 4.187*** -0.059*** 0.754*** 0.015*** -0.962*** 

(0.152) (0.126) (0.001) (0.021) (0.002) (0.036) 

Fertilizer  
78436.070*** 50613.160*** -460.524*** 10830.310*** -667.030*** 18120.160*** 

(615.713) (510.837) (4.600) (84.864) (7.582) (145.448) 

Irrigation  
1.136*** 0.881*** -0.007*** 0.155*** -0.013*** 0.119*** 

(0.027) (0.023) (0.0002) (0.004) (0.0003) (0.006) 

Mow height  
-0.501*** -0.503*** 0.013*** -0.096*** 0.022*** 0.063*** 

(0.032) (0.026) (0.0002) (0.004) (0.0004) (0.008) 

Mulch mowing  
0.713*** 0.264*** 0.005*** 0.068*** 0.008*** 0.369*** 

(0.070) (0.058) (0.001) (0.010) (0.001) (0.017) 

Pruning intensity  
-23.750*** -22.774*** 0.134*** -1.024*** 0.171*** -0.257* 

(0.644) (0.534) (0.005) (0.089) (0.008) (0.152) 

Prune yearly  
-3.784*** -3.889*** 0.004*** 0.130*** 0.008*** -0.036 

(0.126) (0.105) (0.001) (0.017) (0.002) (0.030) 

Prune every 3 
years  

-0.303** -0.508*** -0.009*** 0.215*** -0.013*** 0.012 

(0.130) (0.107) (0.001) (0.018) (0.002) (0.031) 

Raking  
-4.442*** -2.232*** 0.023*** -0.571*** 0.020*** -1.682*** 

(0.097) (0.081) (0.001) (0.013) (0.001) (0.023) 

Tree planting  
0.461*** 0.362*** 0.0001 0.073*** 0.0001 0.026*** 

(0.032) (0.027) (0.0002) (0.004) (0.0004) (0.008) 

Tree removal  
-4.819*** -4.755*** 0.006*** -0.091*** 0.005*** 0.016 

(0.112) (0.093) (0.001) (0.015) (0.001) (0.026) 

Observations 7,000 7,000 7,000 7,000 7,000 7,000 

R2 0.819 0.804 0.715 0.746 0.671 0.753 

Adjusted R2 0.818 0.804 0.715 0.746 0.670 0.752 

Note:   *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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5. Dense woody (DW) – Non-normalized Multiple Linear Regression results for total, vegetation, 
litter, and soil carbon. 

 Total ecosystem 
carbon 

Tree vegetation 
carbon 

Tree litter 
carbon 

Soil carbon 

Intercept 
5.546*** 1.020*** 4.724*** -0.198*** 

(-0.099) (-0.092) (-0.026) (-0.013) 

Pruning intensity 
-32.010*** -23.928*** -4.580*** -3.502*** 

(-0.593) (-0.551) (-0.158) (-0.077) 

Prune yearly 
-5.536*** -4.728*** -0.519*** -0.289*** 

(-0.115) (-0.107) (-0.031) (-0.015) 

Prune every 3 years 
-0.871*** -1.167*** 0.110*** 0.186*** 

(-0.121) (-0.112) (-0.032) (-0.016) 

Tree planting 
-3.141*** 0.374*** -2.565*** -0.950*** 

(-0.103) (-0.095) (-0.027) (-0.013) 

Coarse woody 
debris removal 

0.481*** 0.309*** 0.139*** 0.033*** 

(-0.030) (-0.02) (-0.008) (-0.004) 

Tree removal 
-6.471*** -5.279*** -0.888*** -0.304*** 

(-0.103) (-0.095) (-0.027) (-0.013) 

Observations 3,000 3,000 3,000 3,000 

R2 0.905 0.873 0.835 0.837 

Adjusted R2 0.905 0.872 0.834 0.837 

Note:     *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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6. Turfgrass (TG) – Non-normalized Multiple Linear Regression results for total, vegetation, litter, 
and soil carbon.  

Total ecosystem carbon Turf vegetation 
carbon 

Turf litter 
carbon 

Soil carbon 

Intercept 
-6.211*** -0.174*** -0.148*** -5.886*** 

(0.041) (0.001) (0.001) (0.040) 

Fertilizer 
29215.890*** 232.573*** 387.318*** 28596.000*** 

(203.895) (6.114) (5.763) (196.229) 

Irrigation 
-0.134*** 0.002*** -0.005*** -0.131*** 

(0.009) (0.0003) (0.0003) (0.009) 

Mow height 
0.826*** 0.031*** 0.049*** 0.746*** 

(0.011) (0.0003) (0.0003) (0.010) 

Mulch 
mowing 

2.148*** 0.039*** 0.041*** 2.068*** 

(0.023) (0.001) (0.001) (0.022) 

Observations 3,000 3,000 3,000 3,000 

R2 0.923 0.828 0.923 0.923 

Adjusted R2 0.923 0.827 0.923 0.923 

Note:   *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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Appendix C Supplementary Information, Tables, and Figures for Chapter 3 



231 

 

Appendix C-1 

Table C-1 Initial carbon pools for each vegetation cover type, used in both the Monte Carlo 

analysis and Homeowner Agent Typologies analyses. 

Carbon pool values are based on average values for each vegetation type measured in exurban 

yards of the study region (Currie et al. 2016). 

 Carbon Pool (kg C m-2) 

Vegetation 

cover type 

Aboveground 

tree vegetation 

Aboveground 

turfgrass 

vegetation 

Litter 

Coarse 

woody 

debris 

Soil to 1 m 

depth 

Turfgrass with 

sparse woody 

(TGW) 

6.17 0.08 0.12 0.0 12.85 

Dense woody 

(DW) 
14.18 NA 0.62 0.18 20.41 

Turfgrass (TG) NA 0.15 0.107 0.0 12.64 
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Table C-2 Biome-BGC-Ex Dense Woody ecophysiology (EPC) parameters. 

Default values from the Biome-BGC deciduous tree biome are used unless specified.  The 

Keywords are parameter names predefined in Biome-BGC. The ‘Type’ abbreviations DIM 

implies the parameter is dimensionless. 

Keyword Value Type Description Source  
(if not default value) 

WOODY_FLAG 1 flag 1 = woody             0 = non-
woody 

 

EVERGRN_FLAG 0 flag 1 = evergreen         0 = 
deciduous 

 

C3_FLAG 1 flag 1 = C3 photosynthesis           0 
= C4 photosynthesis 

 

MODEL_PHEN_FLAG 1 flag 1 = model phenology   0 = 
user-specified phenology 

 

ONDAY 0 yday Year-day to start new growth 
(when phenology flag = 0) 

 

OFFDAY 0 yday Year-day to end litterfall 
(when phenology flag = 0) 

 

TRNS_GR_PROP 0.2 proportion transfer growth period as 
fraction of growing  

 

LIT_FALL_PROP 0.2 proportion litterfall as fraction of growing 
season 

 

LFR_TURNOVER 1 1/yr annual leaf and fine root 
turnover fraction 

 

LWOOD_TURNOVER 0.7 1/yr annual live wood turnover 
fraction 

 

MORT_FRAC 0.02 1/yr annual whole-plant mortality 
fraction 

Robinson et al. 2013 

FIRE_MORT_FRAC 0 1/yr annual fire mortality fraction We are assuming no 
fire in this system 

ALLOC_FR_LEAF 1.2 ratio  ratio of new fine root C to 
new leaf C 

 

ALLOC_STEM_LEAF 2.2 ratio  ratio of new stem C to new 
leaf C 

 

ALLOC_LWOOD_ 
TOTWOOD 

0.16 ratio  ratio of new live wood C to 
new total wood C 

 

ALLOC_CROOT_STEM 0.22 ratio  ratio of new root C to new 
stem C 

 

GR_PROP 0.5 proportion  current growth proportion 
 

LEAF_CN 19.8 kgC/kgN C:N of leaves 2009 Field Data 

LLITTER_CN 48 kgC/kgN C:N of leaf litter, after 
retranslocation 

2009 Field Data 

FR_CN 84.6 kgC/kgN C:N of fine roots 2009 Field Data 
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LWOOD_CN 84.6 kgC/kgN C:N of live wood Same as fine roots, 
based on White et al. 
2000 

DWOOD_CN 550 kgC/kgN C:N of dead wood 
 

SOIL1_CN 
SOIL2_CN 

12.0 kgC/kgN C:N of fast and medium 
decomposition soil pools 

Included in a separate 
constants file 

SOIL3_CN 
SOIL4_CN 

10.0 kgC/kgN C:N of slow and recalcitrant 
decomposition soil pools 

Included in a separate 
constants file 

LIT_LAB_PROP 0.38 proportion leaf litter labile proportion 
 

LIT_CEL_PROP 0.44 proportion leaf litter cellulose proportion 
 

LIT_LIG_PROP 0.18 proportion leaf litter lignin proportion 
 

FR_LAB_PROP 0.34 proportion fine root labile proportion 
 

FR_CEL_PROP 0.44 proportion fine root cellulose proportion 
 

FR_LIG_PROP 0.22 proportion fine root lignin proportion 
 

DWOOD_CEL_PROP 0.77 proportion dead wood cellulose 
proportion 

 

DWOOD_LIG_PROP 0.23 proportion dead wood lignin proportion 
 

CANOPYW_INT_ 
COEF 

0.045 1/LAI/d canopy water interception 
coefficient 

 

CANOPY_LT_EXT_ 
COEF 

0.54 DIM canopy light extinction 
coefficient 

 

LEAF_AREA_RAT 2 DIM all-sided to projected leaf 
area ratio 

 

AVG_SLA 32 m2/kgC canopy average specific leaf 
area (projected area basis) 

 

SHADE_SUN_SLA_ 
RAT 

2 ratio ratio of shaded SLA to sunlit 
SLA 

 

FLNR 0.07 DIM fraction of leaf N in Rubisco Robinson et al. 2013 

GS_MAX 0.006 m/s maximum stomatal 
conductance (projected area 
basis) 

 

GC_MAX 0.0000
6 

m/s cuticular conductance 
(projected area basis) 

 

GB 0.01 m/s boundary layer conductance 
(projected area basis) 

 

PSI_MIN -0.5 MPa leaf water potential: start of 
conductance reduction 

Calibrated (see 
methods) 

PSI_MAX -2.5 MPa leaf water potential: 
complete conductance 
reduction 

Calibrated (see 
methods) 

VPD_MIN 1100 Pa vapor pressure deficit: start of 
conductance reduction 

 

VPD_MAX 3600 Pa vapor pressure deficit: 
complete conductance 
reduction 

 

 



234 

 

 

Table C-3 Biome-BGC-Ex Turfgrass ecophysiology (EPC) parameters. 

Default values from the Biome-BGC C3 grass biome are used unless specified.  The Keywords 

are parameter names predefined in Biome-BGC. The ‘Type’ abbreviations DIM implies the 

parameter is dimensionless. 

Keyword Value Type Description Source  
(if not default value) 

WOODY_FLAG 0 flag 1 = woody             0 = non-
woody 

 

EVERGRN_FLAG 0 flag 1 = evergreen         0 = 
deciduous 

 

C3_FLAG 1 flag 1 = c3 psn            0 = c4 psn 
 

MODEL_PHEN_FLAG 1 flag 1 = model phenology   0 = 
user-specified phenology 

 

ONDAY 0 yday Year-day to start new growth 
(when phenology flag = 0) 

 

OFFDAY 364 yday Year-day to end litterfall 
(when phenology flag = 0) 

 

TRNS_GR_PROP 1 proportion transfer growth period as 
fraction of growing 

 

LIT_FALL_PROP 1 proportion litterfall as fraction of growing 
season 

 

LFR_TURNOVER 1 1/yr annual leaf and fine root 
turnover fraction 

 

LWOOD_TURNOVER 0 1/yr annual live wood turnover 
fraction 

 

MORT_FRAC 0.01 1/yr annual whole-plant mortality 
fraction 

 

FIRE_MORT_FRAC 0 1/yr annual fire mortality fraction 
 

ALLOC_FR_LEAF 1 ratio  ratio of new fine root C to 
new leaf C 

Robinson et al. 2013 

ALLOC_STEM_LEAF 0 ratio  ratio of new stem C to new 
leaf C 

 

ALLOC_LWOOD_ 
TOTWOOD 

0 ratio  ratio of new live wood C to 
new total wood C 

 

ALLOC_CROOT_STEM 0 ratio  ratio of new root C to new 
stem C 

 

GR_PROP 0.5 proportion  current growth proportion 
 

LEAF_CN 28.8 kgC/kgN C:N of leaves 20% higher than the 
default value 

LLITTER_CN 58.8 kgC/kgN C:N of leaf litter, after 
retranslocation 

20% higher than the 
default value 

FR_CN 50.4 kgC/kgN C:N of fine roots 20% higher than the 
default value 
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LWOOD_CN 0 kgC/kgN C:N of live wood 
 

DWOOD_CN 0 kgC/kgN C:N of dead wood 
 

SOIL1_CN 
SOIL2_CN 

12.0 kgC/kgN C:N of fast and medium 
decomposition soil pools 

Included in a separate 
constants file 

SOIL3_CN 
SOIL4_CN 

10.0 kgC/kgN C:N of slow and recalcitrant 
decomposition soil pools 

Included in a separate 
constants file 

LIT_LAB_PROP 0.39 proportion leaf litter labile proportion  

LIT_CEL_PROP 0.44 proportion leaf litter cellulose proportion  

LIT_LIG_PROP 0.17 proportion leaf litter lignin proportion  

FR_LAB_PROP 0.36 proportion fine root labile proportion Milesi et al. 2005 

FR_CEL_PROP 0.52 proportion fine root cellulose proportion Milesi et al. 2005 

FR_LIG_PROP 0.12 proportion fine root lignin proportion Milesi et al. 2005 

DWOOD_CEL_PROP 0 proportion dead wood cellulose 
proportion 

  

DWOOD_LIG_PROP 0 proportion dead wood lignin proportion   

CANOPYW_INT_ 
COEF 

0.01 1/LAI/d canopy water interception 
coefficient 

 

CANOPY_LT_EXT_ 
COEF 

0.6 DIM canopy light extinction 
coefficient 

 

LEAF_AREA_RAT 2 DIM all-sided to projected leaf 
area ratio 

 

AVG_SLA 70 m2/kgC canopy average specific leaf 
area (projected area basis) 

Milesi et al. 2005 

SHADE_SUN_SLA_ 
RAT 

2 ratio ratio of shaded SLA to sunlit 
SLA 

 

FLNR 0.3456 DIM fraction of leaf N in Rubisco Calculated based on 
leaf C:N ration from 
equation in White et 
al. 2000 

GS_MAX 0.005 m/s maximum stomatal 
conductance (projected area 
basis) 

 

GC_MAX 0.0000
1 

m/s cuticular conductance 
(projected area basis) 

 

GB 0.04 m/s boundary layer conductance 
(projected area basis 

 

PSI_MIN -0.5 MPa leaf water potential: start of 
conductance reduction 

Calibrated (see 
methods) 

PSI_MAX -2.5 MPa leaf water potential: 
complete conductance 
reduction 

Calibrated (see 
methods) 

VPD_MIN 930 Pa vapor pressure deficit: start of 
conductance reduction 

 

VPD_MAX 4100 Pa vapor pressure deficit: 
complete conductance 
reduction 

 



236 

 

 

 

  



237 

 

Table C-4 Site and atmospheric initial conditions for all vegetation cover types. 

 

Model Parameter Value 

Effective Soil Deptha 1 m 

Soil Textureb 
 

Sand 63% 

Silt 20.4% 

Clay 16.6% 

Site Elevation 200 m 

Site Latitude 41.98 degrees 

Atmospheric CO2
c 396.48 ppm 

Total Nitrogen Depositionc 0.000979 kg N m-2 yr-1 
a(Currie et al. 2016) 
b NOAA 2014 
c Based on a five year average of 2008-2012. Wet and dry inorganic N deposition from EPA CASNET. 

Atmospheric organic nitrogen was calculated as fifty percent of total inorganic deposition (Neff et al. 

2002). 

 

Description of climate parameters 

Identical climate files were used for each year so that variations in climate would not mask the effects of 
management. We created the climate file based on fifty years (1956-2006) of past daily climate data in 
the study region from the National Climatic Data Center (NCDC).  For each month, we randomly created 
precipitation events to be equal to the mean number of historical precipitation days in that month, with 
the distribution of rainfall amounts chosen from an exponential decay model. We used the MTCLIM 
model (Running et al. 1987, Thornton and Running 1999) to produce daily values of short-wave radiation 
(W m-2), vapor pressure deficit (Pa), average daylight temperature, and day length. 
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Table C-5 Additional results tables for normalized linear regression ES analyses for 1) turfgrass with sparse woody, 2) 

turfgrass, and 3) dense woody.  

Standard errors are in parentheses.   
1. Ecosystem Services normalized regression results for turfgrass with sparse woody vegetation (TGW) 

 Total NPP 
Soil 

Fertility 
Firewood 

Nitrogen 
Retention 

Freshwater 
Recharge 

Spring Soil 
Water 

Recharge 

Summer 
Soil Water 
Retention 

Climate 
Regulation 

Microclimate 
Regulation 

Air Pollution 
Abatement 

 (kg C m-2 y-1) 
Index  
(0-1) 

(kg C m-2 yr-1) 
Prop. 
(0-1) 

(mm  yr-1) (mm  yr-1) 
Prop. 
(0-1) 

(kg C m-2) (mm yr-1) (m2 m-2) 

Intercept 
0.448*** 0.244*** 0.181*** 0.935*** 28.657*** 185.516*** -0.133*** 3.514*** 761.527*** 3.822*** 

(-0.007) (-0.003) (-0.005) (-0.001) (-1.534) (-0.835) (-0.007) (-0.137) (-1.928) (-0.048) 

Fertilizer 
0.681*** 0.226*** 0.246*** 0.102*** -84.633*** 32.779*** 0.377*** 12.325*** 84.685*** 2.864*** 

(-0.005) (-0.002) (-0.004) (-0.001) (-1.087) (-0.591) (-0.005) (-0.097) (-1.366) (-0.034) 

Irrigation 
0.339*** 0.038*** 0.132*** -0.010*** 20.843*** -5.605*** 0.103*** 5.254*** 433.565*** 0.893*** 

(-0.006) (-0.003) (-0.005) (-0.001) (-1.416) (-0.77) (-0.006) (-0.126) (-1.779) (-0.044) 

Mow 
height 

0.037*** 0.044*** 0.010*** -0.004*** -8.852*** 4.394*** 0.022*** 0.713*** 8.816*** 0.172*** 

(-0.004) (-0.002) (-0.003) (-0.001) (-0.789) (-0.429) (-0.003) (-0.07) (-0.992) (-0.025) 

Mulch 
mowing 

-0.087*** 0.044*** -0.055*** -0.002** 12.537*** -1.683** -0.022*** -1.754*** -12.690*** 0.856*** 

(-0.006) (-0.003) (-0.004) (-0.001) (-1.253) (-0.682) (-0.005) (-0.112) (-1.575) (-0.039) 

Pruning 
intensity 

-0.151*** -0.143*** -0.070*** -0.001 30.660*** -15.558*** -0.040*** -4.442*** -30.194*** -0.697*** 

(-0.005) (-0.002) (-0.004) (-0.001) (-1.093) (-0.595) (-0.005) (-0.097) (-1.374) (-0.034) 

Prune yearly 
-0.040*** 0.024*** -0.217*** -0.0003 21.690*** -8.847*** -0.065*** -5.937*** -24.802*** -0.197*** 

(-0.008) (-0.004) (-0.006) (-0.002) (-1.809) (-0.984) (-0.008) (-0.161) (-2.273) (-0.056) 

Prune every 
3 years 

-0.029*** 0.001 -0.128*** 0.001 5.144*** -2.517*** -0.015** -3.784*** -4.142** -0.06 

(-0.006) (-0.003) (-0.005) (-0.001) (-1.415) (-0.77) (-0.006) (-0.126) (-1.779) (-0.044) 

Raking 
0.011* -0.009*** -0.003 0.0001 -5.385*** 3.165*** -0.024*** -0.303** 6.475*** -0.112** 

(-0.006) (-0.003) (-0.005) (-0.001) (-1.456) (-0.792) (-0.006) (-0.13) (-1.83) (-0.045) 

Tree planting 
-0.002 0.008*** 0.038*** -0.001 -0.298 0.423 -0.004 1.383*** -0.47 -0.016 

(-0.005) (-0.002) (-0.004) (-0.001) (-1.088) (-0.592) (-0.005) (-0.097) (-1.367) (-0.034) 

Tree removal 
-0.023*** 0.013*** 0.246*** 0 7.890*** -3.608*** -0.014*** -4.819*** -7.435*** -0.204*** 

(-0.006) (-0.003) (-0.004) (-0.001) (-1.253) (-0.682) (-0.005) (-0.112) (-1.575) (-0.039) 

Observations 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 

R2 0.775 0.692 0.74 0.628 0.526 0.377 0.498 0.819 0.902 0.547 

Adjusted R2 0.775 0.691 0.74 0.627 0.525 0.376 0.497 0.818 0.902 0.547 

Note: *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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 2. Ecosystem Services normalized regression results for turfgrass (TG) 

 Total NPP 
Soil 

Fertility 
Nitrogen 
Retention 

Freshwater 
Recharge 

Spring Soil 
Water 

Recharge 

Summer Soil 
Water 

Retention 

Climate 
Regulation 

Microclimate 
Regulation 

Air Pollution 
Abatement 

 (kg C m-2 y-1) 
Index  
(0-1) 

Prop. 
 (0-1) 

(mm  yr-1) (mm  yr-1) Prop. (0-1) (kg C m-2) (mm yr-1) m2 m-2 

Intercept 
0.155*** -0.058*** 0.938*** 186.425*** 15.182*** -0.140*** -5.385*** 604.624*** 1.014*** 

(-0.003) (-0.004) (-0.001) (-2.872) (-0.222) (-0.009) (-0.034) (-2.556) (-0.002) 

Fertilizer 
0.710*** 0.547*** 0.094*** -24.525*** 2.505*** 0.103*** 4.590*** 24.983*** 0.118*** 

(-0.003) (-0.004) (-0.001) (-2.673) (-0.206) (-0.008) (-0.032) (-2.379) (-0.001) 

Irrigation 
0.122*** -0.027*** -0.009*** 189.975*** -12.377*** 0.503*** -0.573*** 229.453*** 0.006*** 

(-0.003) (-0.005) (-0.002) (-3.216) (-0.248) (-0.01) (-0.039) (-2.863) (-0.002) 

Mulch 
mowing 

0.119*** 0.248*** -0.010*** -0.922 -0.364** 0.049*** 2.148*** 2.375 0.025*** 

(-0.002) (-0.003) (-0.001) (-1.943) (-0.15) (-0.006) (-0.023) (-1.729) (-0.001) 

Mow 
 height 

-0.0004 0.183*** 0.007*** -237.997*** 22.457*** -0.420*** 2.889*** 237.569*** 3.526*** 

(-0.003) (-0.004) (-0.002) (-3.081) (-0.238) (-0.01) (-0.037) (-2.743) (-0.002) 

Observations 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 

R2 0.965 0.914 0.617 0.762 0.795 0.613 0.923 0.824 0.999 

Adjusted R2 0.965 0.914 0.617 0.761 0.794 0.612 0.923 0.824 0.999 

Note: *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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3. Ecosystem Services normalized regression results for dense woody (DW) 

 

Total NPP 
Soil 

Fertility 
Firewood 

Nitrogen 
Retention 

Freshwater 
Recharge 

Spring 
Soil 

Water 
Recharge 

Summer 
Soil Water 
Retention 

Climate 
Regulation 

Microclimate 
Regulation 

Air 
Pollution 

Abatement 
 

(kg C m-2 y-1) 
Index  
(0-1) 

(kg C m-2 yr-1) 
Prop.  
(0-1) 

(mm  yr-1) (mm  yr-1) Prop. (0-1) (kg C m-2) (mm yr-1) m2 m-2 

Intercept 0.699*** 0.931*** 0.161*** 0.858*** -2.039* 32.477*** 0.144*** 5.546*** 810.639*** 4.220*** 

(-0.002) (-0.002) (-0.006) (-0.0002) (-1.11) (-0.063) (-0.001) (-0.099) (-1.109) (-0.011) 

Pruning 
intensity 

-0.041*** -0.238*** -0.217*** 0.004*** 1.404 0.04 -0.006*** -8.000*** -1.828 -0.727*** 

(-0.003) (-0.003) (-0.009) (-0.0002) (-1.663) (-0.095) (-0.001) (-0.148) (-1.662) (-0.016) 

Prune yearly -0.034*** -0.083*** -0.128*** 0.005*** 2.005 -0.184** 0.003*** -5.536*** -1.768 -0.188*** 

(-0.002) (-0.002) (-0.007) (-0.0002) (-1.291) (-0.074) (-0.001) (-0.115) (-1.291) (-0.013) 

Prune every 
3 years 

0.004* 0.049*** -0.004 -0.003*** 0.431 -0.039 0.003*** -0.871*** -0.797 -0.01 

(-0.002) (-0.003) (-0.007) (-0.0002) (-1.353) (-0.077) (-0.001) (-0.121) (-1.353) (-0.013) 

CWD 
removal 

0.017*** -0.258*** 0.124*** 0.018*** 0.519 -0.023 0.001 -3.141*** -0.511 0.105*** 

(-0.002) (-0.002) (-0.006) (-0.0002) (-1.152) (-0.066) (-0.001) (-0.103) (-1.151) (-0.011) 

Tree planting -0.005*** 0.031*** 0.044*** -0.003*** -0.051 0.002 -0.0002 1.443*** 0.047 -0.032*** 

(-0.002) (-0.002) (-0.005) (-0.0001) (-1.000) (-0.057) (-0.001) (-0.089) (-0.999) (-0.01) 

Tree removal -0.003* -0.076*** 0.374*** 0.006*** 4.858*** -0.277*** 0.003*** -6.471*** -4.832*** -0.020* 

(-0.002) (-0.002) (-0.006) (-0.0002) (-1.153) (-0.066) (-0.001) (-0.103) (-1.152) (-0.011) 

Observations 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 

R2 0.424 0.933 0.731 0.877 0.011 0.011 0.016 0.905 0.011 0.728 

Adjusted R2 0.423 0.933 0.731 0.877 0.009 0.009 0.014 0.905 0.009 0.728 

Note: *p<0.1; **p<0.05; ***p<0.01; SE in parentheses 
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1) Results from the Monte Carlo analysis for turfgrass with sparse woody.  Regression 
coefficient plots for each ecosystem service showing the coefficient estimate for each 
management practice, with lines that indicate the 95% confidence interval (based on the 
standard error of the coefficient).  
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2) Results from the Monte Carlo analysis for turfgrass.  Regression coefficient plots for each 
ecosystem service showing the coefficient estimate for each management practice, with 
lines that indicate the 95% confidence interval (based on the standard error of the 
coefficient). Note that firewood is not included for this vegetation cover. 

 

 



243 

 

3) Results from the Monte Carlo analysis for dense woody.  Regression coefficient plots for 
each ecosystem service showing the coefficient estimate for each management practice, 
with lines that indicate the 95% confidence interval (based on the standard error of the 
coefficient). Note that firewood is not included for this vegetation cover 

 

Figure C-1 Regression Coefficient Plots for 1) turfgrass with sparse woody, 2) turfgrass, 

and 3) dense woody.   
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1)Turfgrass with Sparse woody vegetation
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2)Turfgrass 
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3) Dense Woody
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Figure C-2 Partial linear regression plots for each ES and their top management drivers for 1) turfgrass with sparse woody, 2) 

turfgrass, and 3) dense woody  
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Appendix D Supplementary Information, Tables, and Figures for Chapter 4 
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Table D-1 Comparison of ES Assessment Tools 

Assessment 
Tool 

Model Description  Strengths Limitations Sources 

ARIES - 
Artificial 
Intelligence for 
Ecosystem 
Services 
Available at:  
http://aries.int
egratedmodelli
ng.org/ 
 

• Couples probabilistic or 
deterministic models of 
ecosystem service supply 
and demand with network 
flow propagation models 
that quantify service flows. 
Bayesian networks or 
deterministic models are 
used, as appropriate, to map 
the ecological and 
socioeconomic factors 
contributing to the provision 
and use of ecosystem 
services (Bagstad et al. 
2014). 

• Is built as an online platform 
that allows the building and 
integration of various kinds 
of models. The most 
appropriate ecosystem 
services model is assembled 
automatically from a library 
of modular components, 
driven by context-specific 
data and machine-
processed ecosystem 

• Spatially assess ES synergies 
and trade-offs 

• Can be linked to other 
models, including 
ecosystem process models 
and agent-based models.  

• Goal of becoming a large-
scale meta-modeling 
framework.  

• “The artificial intelligence-
assisted process pioneered 
in ARIES emphasizes user 
simplification without 
trivializing the application, a 
paradigm that could also be 
valuable for broader 
application in modern 
environmental and 
economic decision-making” 
(Villa et al. 2104). 

•  “When equipped with 
appropriate decision rules, 
ARIES can determine which 
areas of the landscape to 
apply which data and 
models toward, better 

• Does not necessarily rely on 
feedbacks between 
ecological processes 

• A user workflow that hides 
complexities under familiar 
metaphors and can 
transparently produce 
sophisticated models can 
carry subtle but important 
disadvantages. Early pilot 
tests with users have 
highlighted that while even 
limited user-level 
complexity is poorly 
tolerated by users, a lack of 
it can be perceived as lack of 
sophistication in the 
approach and lead to 
incorrect assumptions that 
influence decisions (Villa et 
al. 2014). 

• “None of these models fully 
consider the complex 
interdependencies and 
feedback flows among 
ecosystems and socio-

(Bagstad et al. 
2013a, 2014, 
Villa et al. 
2014, Zank et 
al. 2016, 
Martínez-
López et al. 
2019) 
 

http://aries.integratedmodelling.org/
http://aries.integratedmodelling.org/
http://aries.integratedmodelling.org/
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services knowledge (Sharps 
et al. 2017).   

accounting for key 
contextual factors in 
ecosystem service 
provision” (Bagstad et al. 
2011) 

•  “ARIES represents a good 
option in data scarce areas 
and its probabilistic 
approach can cope with 
data gaps, providing maps of 
modelled outputs along 
with associated 
uncertainty…can provide 
information (e.g. flows, 
mass, concentrations) for 
every point in the 
landscape” Sharps et al. 
2017. 

economic systems at large 
scale” (Arbault et al. 2014). 

 

EBI – 
ecosystem 
service bundle 
index 

• Goal to map ecosystem 
services in terms of their 
supporting systems, namely 
the biophysical potential for 
the delivery of services (Van 
Der Biest et al. 2014). 

• Causal network combines 
GIS data-layers of 
biophysical characteristics 
and land use as inputs, to 
calculate the delivery of 
ecosystem services as an 

• Spatially assesses ES. 

• Bayesian methods can make 
predictions when 
information on the state of 
input variables is partially 
missing. 

• Assesses the capacity of 
ecosystems to deliver 
services regardless of the 
actual land use as well as the 
effect of different land use 
scenarios (Van Der Biest et 
al. 2014). 

• Uses indicators to calculate 
probabilities and does not 
rely on ecosystem processes. 

• “As feedback mechanisms 
can be difficult to implement 
in Bayesian belief networks, 
another challenge when 
increasing the number of 
services lies in implementing 
spatial and temporal 
interactions between 
ecosystem services and 

(Van der Biest 
et al. 2014) 
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integrated ecosystem 
service bundle index (EBI). 

• Uses Bayesian belief 
network modeling for when 
data is limited or uncertain.  

• Since multiple services are 
comprised in the index, 
optimization scenarios for a 
whole bundle of services can 
be developed by managing 
controlling factors 
(biophysical and land use) 
toward a maximum total 
ecosystem service delivery 
scenario (Van Der Biest et al. 
2014). 

conditions” (Van Der Biest et 
al. 2014). 

• Does not seem to be a 
publicly accessible model – 
more proof of concept at this 
point.  

ESTIMAP – 
Ecosystem 
service 
mapping tool 

• Collection of spatially 
explicit models that were 
originally developed to 
support European policies at 
a local scale.  

• Includes different models 
for different services that 
consist of either a lookup 
table or a regression that is 
filled by GIS data.  

• “ An effective analytical 
framework for mapping and 
assessing ES should exist 
within a basic conceptual 
structure and include 
models and spatially explicit 
indicators to provide a 
holistic and consistent view 
that informs an evaluation 
of multiple ES.” (Zulian et al. 
2018) 

• Service models are not 
interconnected and do not 
depend on ecosystem 
processes 

(Zulian et al. 
2013, 2018) 

InVEST - 
Integrated 
Valuation of 
Ecosystem 
Services and 
Trade-offs 
Available at: 
naturalcapitalp
roject.org 

• Combines land use and land 
cover (LULC) data with 
information on the supply 
(biophysical processes) and 
demand of ecosystem 
services to provide a 
spatially explicit service 
output value in biophysical 

• Production functions are 
based on ecology. 

• Spatially assess ES synergies 
and trade-offs. 

• InVEST has been used 
widely, has a comprehensive 
user manual and provides 
example input data per 
model (Doug et al. 2020). 

• Production functions are not 
linked to ecosystem 
processes. 

• There are no feedbacks 
between services. 

• “These approaches fail to 
explicitly account for the 
dynamic character of 
CHANS despite the fact that 

(Tallis and 
Polasky 2009, 
Doug et al. 
2020)  
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or economic terms (Sharps 
et al. 2017). 
 

• “In addition to biophysical 
outputs, InVEST also 
provides estimates of 
valuation, based on user 
inputs, highlighting areas 
with high levels of provision 
for particular services… 
straightforward and simple 
to use for those with basic 
GIS skills; the gathering of 
input data is often the most 
time consuming step” 
(Sharp et al. 2017). 

• “InVEST is useful for 
understanding the 
consequences of alternative 
decisions when little 
information exists about a 
system (or when it is 
otherwise necessary to rely 
on more generalized 
functional 
relationships)”(Boumans et 
al. 2015). 

concepts such as 
sustainability and adaptation 
(often stated goals of EBM) 
require a dynamic 
perspective. These core 
concepts are based upon the 
principles that Earth is made 
up of human and natural 
elements that interact and 
have feedbacks, 
characteristics unique to 
time-evolving 
systems”(Boumans et al. 
2015). 

•  “None of these models fully 
consider the complex 
interdependencies and 
feedback flows among 
ecosystems and socio-
economic systems at large 
scale” (Arbault et al. 2014). 

LUCI -  Land 
Utilization and 
Capability 
Indicator 
Available at: 
https://www.l
ucitools.org/ 

• Uses a digital elevation 
model (DEM), land cover 
information, and soil 
information to determine 
the spatial distribution, 
supply, and opportunities of 
individual ecosystem 

• Spatially assess ES synergies 
and trade-offs. 

• Can be run at multiple 
scales. 

• “LUCI's traffic light maps 
allow quick and easy 
interpretation of the model 

• Does not rely on ecosystem 
processes or on feedback 
between processes and 
services. 

(Jackson et al. 
2013, Trodahl 
et al. 2017) 
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services. It generates a series 
of ecosystem service maps to 
show where trade-offs or 
synergies in ecosystem 
services exist (LUCI website).   

• The models incorporate 
biophysical processes, 
applying topographical 
routing for hydrological and 
related services, and uses 
lookup tables where 
appropriate (Sharps et al. 
2017). 

output. LUCI is also the only 
tool with a trade-off 
module, providing a useful 
visual output of the impacts 
of land-use change on 
multiple services, and the 
only tool that respects fine-
scale spatial configuration of 
landscape elements” 
(Sharps et al. 2017). 

• “can provide information 
(e.g. flows, mass, 
concentrations) for every 
point in the landscape” 
(Sharps et al. 2017). 

MIMES - Multi-
scale 
Integrated 
Model of 
Ecosystem 
Services 
Available at:  
http://www.af
ordablefutures
.com 
 

• Is analytical framework 
designed to assess the 
dynamics associated with 
ecosystem service function 
and human activities. It 
requires that multiple 
ecological and human 
dynamics be specified, and 
that outputs may be 
understood through 
different temporal and 
spatial lenses to assess the 
effects of different actions in 
the short and long term and 
at different spatial scales 
(Boumans et al. 2015). 

• Potential to link processes 
with services and to have 
feedbacks between them. 

• Spatially assess ES synergies 
and trade-offs. 

• Can be run at multiple 
scales. 

• Modular, tiered approach to 
deal with data availability 

• “The benefits of this 
complex nature are that an 
implementation can be used 
to execute different kinds of 
scenarios, even those which 
were not anticipated during 
the initial development 

• Currently has not 
demonstrated 
interconnectedness 
between multiple processes 
and services. 

• Requires a lot of data input 
and data gathering. 

• Requires training. 

(Boumans et 
al. 2002, 
2015, Arbault 
et al. 2014, 
Boumans and 
Costanza 
2015) 
 

http://www.afordablefutures.com/
http://www.afordablefutures.com/
http://www.afordablefutures.com/
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stages of the model” 
Boumans et al. 2015. 

• “able to take into account 
the inter-linkages among 
natural and human-driven 
systems, their feedback and 
the resulting connections 
among multiple 
environmental mechanisms 
in a holistic way”  (Arbault et 
al. 2014, in reference to 
GUMBO a previous iteration 
of MIMES). 

 


