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PREFACE

Monitoring animals is key to understanding their behavior. Without this understanding, taking
steps to improve animal welfare, both wild and not, becomes a guess-and-check process. Insights
into their behavior give us an idea of metrics concerning habitat use, food requirements, and even
the impacts of humans on their populations. For wild animals, this knowledge has the potential
to influence how humans interact with these animals, and reduce the negative consequences of
our activities. For institutionally-managed animals, this can result in directed, continuous welfare
improvements as their caregivers better understand their needs. Unfortunately, for marine animals,
monitoring is hindered by the environment itself: ocean water limits visibility, attenuates radio
transmissions, and in the wild, makes physical access problematic.

For marine mammals, these limitations have historically resulted in studies being dependent
on observations or interactions with the animals when they are near the surface. Commonly, this
would involve aerial or surface-vehicle surveys to perform observations or direct interactions with
smaller animals through mark-recapture studies [1, 2, 3]. Seafloor-mounted hydrophones have
been used to monitor animal communications, however this is only viable for those with longer-
range vocalizations [4, 5]. In the past few decades, recoverable biologging tags have been used
to extend communication monitoring, and have enabled persistent kinematic data collection and
some of the first continuous localization methods [6, 7, 8]. Figure P.1 provides an illustration of
the various marine animal monitoring options in use to-date.

Despite the improvements tagging has provided, there are still significant gaps in monitoring
methods for these animals. Animal energetics have not been thoroughly explored, due to both
hardware limitations and incomplete computation methods, which impedes our understanding of
their caloric requirements and activity levels. Additionally, localization techniques developed for
tracking animals in the wild do not function well in a managed environment, making it difficult to
investigate animal habitat use and how it relates to other behavior metrics.

At their core, these gaps all reflect limitations in hardware and processing methods for sensing
applications. Any improved approach must be able to accurately track kinematics and perform
localization in a highly dynamic and uncertain setting. This degree of capability has already been
demonstrated in the field of robotics. High-fidelity underwater localization has been explored in the
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field of autonomous underwater vehicle tracking [9]. Robust dynamics and orientation monitoring
has been demonstrated for use with Inertial Measurement Unit (IMU) sensors, in multiple sub-
fields of the discipline [10, 11, 12, 13, 14]. Additionally, accurate and efficient object-tracking
has been developed for use with computer-vision systems [15]. However, while these methods are
powerful for their specific use cases, they do not directly translate for implementation in marine
animal tracking. On their own, these techniques are tools that can provide crucial components to
fill these sensing gaps, but additional frameworks and tools must be built around and alongside
them to provide the necessary information for them to function and to interpret their results.

The goal of this dissertation is to provide both the means and the methods for contextualizing
cetacean swimming behavior according to habitat use in a managed setting, through the imple-
mentation and extension of techniques originally built in the field of robotics. This is done through
the introduction of additional tagging hardware and a new monitoring framework for high-fidelity
persistent localization, kinematics, and energetics estimates of the animals. The performance of
the tag hardware and framework are demonstrated through the monitoring of managed bottlenose
dolphins (T. truncatus). They are further used in a long-term study to explore the potential of the
approach in yielding new knowledge on energetics and localization for these animals.

There are three core contributions in this work. The first is the advancement of animal-borne
sensing for marine animals. This includes the introduction and implementation of a speed sensor
for use with biologging tags, and the production of an improved method for estimating animal
energetics using this sensor. The second contribution focuses on the introduction of a new frame-
work for marine animal localization in a managed setting. This involves the fusion of continuous
tag-based animal kinematics and deep-learning object-tracking techniques to automate the high-
fidelity reconstruction of an animal’s trajectory and pose. The third contribution combines the
previous two by producing new insights into how the dynamics and energetics of the monitored
animals relate to their habitat use. This is done by contextualizing the tag-based activity metrics
via the localization information, presented as not only new knowledge into their behavior, but also
as an example of the potential provided by location-related behavior monitoring in better under-
standing these animals.

While this dissertation focuses on managed cetaceans, the techniques and hardware can be
extended beyond the use cases of this research. The hardware developed to enable animal ener-
getics measurements is suitable for use with wild animals, and the method can be transferred by
modifying animal-specific parameters. Further, the localization framework is capable of use in
other managed habitats with the appropriate hardware, and its core principles can be applied to
wild-animal tracking. As a result, the approach described in this dissertation is presented as a spe-
cific implementation of a more general approach for enhancing marine animal monitoring through
robotics in not only managed settings, but also potentially in the wild.
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Figure P.1: Illustration composite of marine environment sensing methods. This figure provides context of
the current monitoring approaches in use for marine mammals. External sensing methods range from surface
observation platforms, to sub-surface hydrophones and autonomous underwater vehicles, which can record
population data, animal communications, and localization information. Animal kinematics are generally
recorded using on-body biologging tags (bottlenose dolphin: inset, bottom-right), which can have an array
of depth, orientation, acceleration, and acoustic sensing, as well as position estimation via satellite commu-
nications when at the surface. The DTAG-3, a kinematic and acoustic recording device used primarily on
cetaceans (inset, bottom-center [16]), is shown as an example. The primary figure is a modified illustration
obtained from MarineBio.org, and the leaping dolphin inset is from the Chicago Zoological Society.
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ABSTRACT

Marine mammal monitoring has seen improvements in the last few decades with advances

made to both the monitoring hardware and post-processing computation methods. The addition

of tag-based hydrophones, Fastloc Global Positioning System (GPS) units, and an ever-increasing

array of IMU sensors, coupled with the use of energetics proxies such as Overall Dynamic Body

Acceleration (ODBA), has led to new insights into marine mammal swimming behavior that would

not be possible using traditional secondary-observer methods. However, these advances have pri-

marily been focused on and implemented in wild animal tracking, with less attention paid to the

managed environment. This is a particularly important gap, as the cooperative nature of managed

animals allows for research on swimming kinematics and energetics behavior with an intricacy that

is difficult to achieve in the wild.

While proxy-based methods are useful for relative inter-or-intra-animal comparisons, they are

not robust enough for absolute energetics estimates for the animals, which can limit our under-

standing of their metabolic patterns. Proxies such as ODBA are based on filtered on-animal IMU

data, and measure the aggregate high-pass acceleration as an estimate for the magnitude of the

animal’s activity level at a given point in time. Depending on its body structure and locomotive

gait, tag placement on the animal and the specific filtering techniques used can significantly impact

the results. Any relation made to energetics is then strictly a mapping: a relation that may apply

well to an individual or group under specific experimental conditions, but is not generalizable. To

address this gap, this dissertation presents new tag-based hardware and data processing methods

for persistently estimating cetacean swimming kinematics and energetics, which are functional in

both managed and wild settings.
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Unfortunately, localization techniques for managed environments have not been thoroughly

explored, so a new animal tracking method is required to spatially contextualize information on

swimming behavior. State-of-the-art wild cetacean localization operates via sparse GPS updates

upon animal surfacings, and can be paired with biologging-tag-based odometry for a continuous

track. Such an approach is hindered by the structure and scale of managed environments: GPS

suffers from increased error near and within buildings, and current odometry methods are insuffi-

ciently precise for habitat scales where locations of interest might be separated by meters, rather

than kilometers (such as in the wild). There is then a need for a tracking method that uses an

alternate source of absolute animal locations that can achieve the high precision necessary for

meaningful results given the spatial scale. To this end, this dissertation presents a novel animal

localization framework, based on tracking and sensor filtering techniques from the field of robotics

that have been tailored for use in this setting.

To summarize, this dissertation targets two main gaps: 1) the lack of persistent, absolute esti-

mates of animal swimming energetics and kinematics, and 2) the lack of a robust, precise local-

ization method for managed cetaceans. To address these gaps, the hardware and animal tracking

methods developed to enable the rest of the dissertation are first defined. Next, a physics-based

approach to directly monitor cetacean swimming energetics is both presented and implemented

to study animal propulsion patterns under varying effort conditions. Finally, a high-fidelity 3D

monitoring framework is introduced for tracking institutionally-managed cetaceans, and is applied

alongside the energetics estimation method to provide a first look at the potential of spatially-

contextualized animal monitoring.

xx



CHAPTER 1

Introduction

1.1 Motivation: Marine Mammal Monitoring and Tracking

There are two primary method contributions in this work: the advancement of animal energet-
ics/kinematics estimation and development of a new localization framework. To understand the
scope of the contributions from this dissertation, an evaluation of the research motivation and his-
torical methods is necessary. Chapter 2 presents the background description to provide this context.

Historically, both have been studied for cetaceans to some degree, with the extent of each
dependent on the environmental condition (wild or managed), as well as specific limitations on
the hardware or methods used. To understand the context in which the work of this dissertation
is performed, Section 2.1 describes the general approaches and motivations for marine mammal
monitoring studies as performed through external observers (i.e. non-instrumented animal stud-
ies). This section explores the range of methods used in both wild and managed settings, from
historical examples to modern approaches. In general, three types of external observer monitor-
ing methods are used, for both settings: direct observation/interaction, video/image analysis, and
acoustic recording analysis. These methods are best suited for long-term population, health, and
communication analyses.

Tagging provides more in-depth information on individual animals, and its benefits and limita-
tions are addressed in Section 2.2. Biologging tags offer persistent rather than intermittent animal
monitoring, unlike external observation methods, and it is through the introduction of this hard-
ware that makes it possible to quantitatively understand animal kinematics. This helps present the
motivation for contextualizing monitoring information with respect to animal location: the breadth
of new knowledge enabled by persistent monitoring, much of it through tagging, can be more fully
utilized by understanding the environmental stimuli an animal was exposed to when engaged in
particular behavior modes.

As much of the research in this dissertation is built around animal localization, Sections 2.3 and
2.4 describe existing marine localization techniques and modern neural network tracking methods.
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Highlighted in Section 2.3, marine animal tracking has seen strong progress in the last two decades
with the advent of quick-acquisition Global Positioning System (GPS) techniques and tag-enabled
animal-borne dead-reckoning. However, this dissertation focuses on managed environment local-
ization, which the aforementioned methods are not suited for due to their inherent imprecision
having been developed for deployment in the wild. To perform high-fidelity localization in a man-
aged habitat, tracking techniques require much lower position uncertainties to account for the scale
of the region. For this reason, Section 2.4 details state-of-the-art computer-vision object detection,
which is currently built on neural network frameworks. To provide the relevant technical back-
ground, both to understand the structures presented in Section 2.4 and validate those deployed in
Chapters 2 and 4, relevant neural network sub-structures are also detailed.

Finally, Section 2.5 details the historical and current methods for marine mammal energetics
monitoring. While state-of-the-art techniques do provide direct measurements of animal energy
use, they are either non-persistent or physically limit an animal’s kinematic flexibility. Further,
persistent estimations via proxy are not generally applicable across animals, either inter-or-intra-
species. As such, there is potential for a physics-based estimation method for robust and persistent
energetics tracking, whose background theory is presented in this section alongside the direct mea-
surement and proxy techniques.

1.2 Aim 1: Advancing Tools in Marine Monitoring

Marine animal monitoring has primarily focused on enabling research in the wild, which is repre-
sented in the tools developed for the task. The marine environment is hostile towards most types
of sensing and communications protocols, impeding vision and radio transmissions, and subject-
ing submerged hardware to destructive pressures. As a result, external observation techniques (i.e.
not on-animal) rely on visual monitoring only at the surface [3, 4, 17, 18], direct animal contact
[1, 2], or longer-range acoustic sensing deep underwater [5, 19, 20, 21]. On-animal biologging
and satellite localization tags are built to be small yet physically robust [6, 22], and have relatively
constrained sensor options due to the size, packaging, and battery life limitations [23].

The contributions in Chapter 3 are intended to extend our capabilities in marine mammal mon-
itoring. As a portion of the research in this dissertation focuses on localizing animals in managed
environments, the benefits and drawbacks of operating in such a setting must be addressed. Current
state-of-the-art animal tracking methods in the wild depend on quick-acquisition GPS technology
[8, 24]. While localizations can only be performed when the animal has surfaced, this approach
takes advantage of the unobstructed view of the sky present in the open ocean. In contrast, man-
aged settings are often indoors or near buildings, inducing localization errors due to multipathing
effects (satellite signals bouncing off of environmental structures). As GPS precision is at best on
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the order of tens of meters, these errors further increase animal position uncertainties to larger than
the size of the managed habitats, rendering them insufficient for localization in this setting.

Managed environments do have particular benefits to aid in animal observation: the shorter
depth scales and generally higher water clarity offer much better visual monitoring opportunities
than in the wild. So far, this has involved hand-tracked analysis of recorded video [25, 26, 27],
though in recent years work has been done to automate this process through handcrafted image
processing tools [28, 29]. However, handcrafted methods have been surpassed in performance by
tools more commonly found in the field of robotics, in the form of neural network object detectors
[30]. As such, there is room for significant improvement in both the precision and robustness
of automated visual animal tracking in managed settings. Section 3.1 defines the neural network
tracking structure developed, details the specific accommodations required for it to function in an
experimental setting, and demonstrates the opportunities offered by such a system.

While biologging tags offer a host of useful sensing capabilities, animal speed estimation is
a problem that still requires additional attention. To-date, tag-mounted speed sensing has either
required unwieldy hardware [31, 32], or involved methods prone to noise-inducing disturbances
[33, 34]. Section 3.2 presents new tag-based speed sensing hardware, explains the methods used
for its calibration and verification, and demonstrates its capabilities in tracking animal swimming
distances in live experiments. The speed sensor detailed in this section is intended to provide the
necessary animal kinematics information required by the energetics estimation method in Chapter
4 and the localization framework in Chapter 5. Despite the application-focused nature of this
speed sensor, such a device can be useful for understanding other animal swimming behaviors
(e.g. foraging event analysis [35]), although this extension is not realized in this dissertation.

1.3 Aim 2: Persistent Marine Mammal Energetics

One primary component of this dissertation focuses on enabling energetics monitoring of tagged
animals. Current research employs a combination of three types of methods: direct measurements
of physical parameters, proxy mappings, and physics-based estimations. Direct measurements in-
volve animal heart rate or oxygen consumption analyses [36, 37, 38, 39]. While these tend to be the
most accurate approaches, they cannot be used to provide continuous-time (persistent) measure-
ments. On the other hand, proxy methods are not standalone, and involve mapping biologging tag
data to direct measurements [39, 40]. The state-of-the-art proxy method, Overall Dynamic Body
Acceleration (ODBA), involves filtering accelerometer data to obtain proxy estimates of animal
activity levels, and then comparing these time-averaged data to direct measurements (generally
oxygen consumption). As tag data is persistent, proxy mappings can provide continuous estimates
of energy use for individual animals. However, ODBA estimates can vary according to on-body
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tag location and the filtering approach used, which limits their robustness for comparisons between
separate studies, as well as for inter-and-intra species analyses.

Physics-based methods attempt to predict animal propulsive power through fluid-dynamics
models [25, 27, 41]. However, these require measurements of animal kinematics to function, and
so far have relied upon speed and acceleration estimates from hand-annotated video recordings,
rather than using on-animal measurements, which can be time-consuming to collect and have the
potential to suffer from human error. The speed sensor presented in Section 3.2 is used in Chap-
ter 4 to address this deficiency through its direct integration on a biologging tag, and is deployed
alongside a modified version of a well-established physics-based propulsive power model [25].
Six bottlenose dolphins (T. truncatus) were tagged while they completed high-energy lap swim-
ming tasks in a managed institution. Animal propulsive powers were estimated both for full laps
as well as during steady-state (constant speed) travel, and their swimming efficiencies were cal-
culated to observe the behavioral propulsive effort differences between the animals. Additionally,
to demonstrate the capabilities of the method in long-term kinematics and energetics monitoring,
one animal was tagged for a full 24-hour session. The animal’s propulsive effort during its active
(non-resting) phase was contrasted to its lap trial results to compare its behavior during moderate
versus high-energy swimming. Further, its estimated full-day energy consumption was compared
to its measured caloric intake to evaluate the method’s viability for long-term metabolics tracking.

In summary, Chapter 4 presents two contributions: 1) the energetics monitoring framework
and all necessary data processing methods to enable it, and 2) the new knowledge on dolphin
swimming behavior made possible by the framework.

1.4 Aim 3: High-Fidelity 3D Monitoring

As the difficulties in localization presented by the marine environment tend to inhibit continuous
animal tracking, one solution to this data sparsity problem is to directly track the animal when
possible, and estimate its positions through dead-reckoning otherwise. Dead-reckoning requires
subject orientation and speed, which are numerically integrated to provide best-guess animal pose
information [7]. However, such methods have inherent drift, so despite preserving the overall
shape of an animal’s movements the position error will increase over time. By using absolute
position information (i.e. on-tag GPS acquisitions) to anchor a continuous dead-reckoning track,
it has been possible to reduce the error in tagged marine animal tracking both at the acquisition
points and between them by stretching the continuous track to coincide with the absolute positions
[8, 31, 32, 42]. However, tag-only position estimates provide minimum errors in the range of over
10 meters [24, 43], which are not compatible with the physical scales of managed environments,
without even taking into account multipathing effects.
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The contributions in Chapter 5 are intended to extend and enhance the absolute position with
dead-reckoning localization approach through the integration and modification of techniques more
commonly found in robotics. The sensor presented in 3.2 serves to provide accurate direction-of-
travel speed measurements, which when employed alongside Inertial Measurement Unit (IMU)-
estimated orientations [10], yield a high-quality dead-reckoning track for an animal. The neural-
network objection detection method in Section 3.1 then provides the absolute position estimates
when paired with tag-measured depth by processing video recordings of the animal in its habi-
tat. Finally, the dead-reckoning track and absolute position estimates are combined through the
Incremental Smoothing and Mapping (iSAM) optimization method [44], a pose filtering tech-
nique that takes into account the relative uncertainties in each position estimate (dead-reckoning
vs. absolute) at each time step. This approach was chosen for its high performance in detailed
subject tracking tasks in unconstrained environments [9]. To demonstrate the capabilities of this
method in contextualizing marine mammal monitoring, the localization framework was deployed
for the purpose of tracking a tagged bottlenose dolphin during a period of free-swimming. The an-
imal’s locomotive performance was calculated using the energetics estimation technique detailed
in Chapter 4, which was then correlated to the animal’s habitat use.

To summarize, Chapter 5 also presents two contributions: 1) the full localization framework
and the additional sub-structures required for it to function, and 2) preliminary results on contex-
tualized animal energetics monitoring to provide an example of the new opportunities afforded by
the approach.

1.5 Contribution Interactions

The tools developed in Chapter 3 provide the backbone for the rest of the monitoring methods in
this dissertation. The speed sensor hardware serves as the foundation for the energetics estimation
techniques in Chapter 4, the components of which, when combined with the neural network animal
detector, enable the 3D monitoring framework in Chapter 5. Figure 1.1 presents a diagram of how
the separate contributions relate to each other.
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Figure 1.1: Contribution Method Flowchart. The tools developed in Chapter 3 (orange) stem from one of two
core fields that encompass this dissertation: object perception and localization techniques (blue), grounded
in robotics; and animal behavior and swimming biomechanics (red), part of marine animal biologging.
Each tool supports an additional contribution, with speed estimation providing the necessary information
for the physics-based energetics computations in Chapter 4 (green), and neural network in-video animal
detection enabling the high-fidelity 3D monitoring framework in Chapter 5 (teal) when combined with both
the methods and results from Chapter 4. As shown in the flowchart, the contextualized monitoring method
in Chapter 5 represents the culmination of the work in this dissertation.
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CHAPTER 2

Marine Mammal Monitoring and Localization

2.1 External-Observer Monitoring

Marine mammal monitoring has traditionally been performed using external observers. Before
the inexorable miniaturization of electronics made tagging animals possible, observations were
primarily viable through direct data-collection approaches. These included vision and acoustic
sensing, as well as capture-recapture methods, which vary in range, precision, and depth capabili-
ties depending on the method used. While the vast majority of these monitoring procedures were
built for use in the wild, vision and acoustic sensing have been used in managed settings as well.
This chapter section describes external-observer monitoring methods as they have been used to
collect data on marine mammals in both wild and managed environments.

2.1.1 External Observers: Wild Habitats

Visual observation methods have historically been the most commonly used in the wild, due to
their flexibility and variety of implementations. These methods use human-logged qualitative and
quantitative measures, and are most effective when surveying from mobile platforms such as aerial
vehicles or ships [3, 4, 17, 18]. Visual surveys primarily yield information pertaining to animal
populations, as their data are limited to manual logging of individuals within a general area, or
video/photographic records that are later examined. While the former can only give an estimate
of population number and general makeup (e.g. gender, estimated age), the latter does offer the
potential for re-identification of individual animals through bodily markings. This makes it pos-
sible to more precisely identify ingress and egress of individuals from a group, and more reliably
monitor population changes over time for the surveyed region of the environment. Because vi-
sual observation methods focus on regional monitoring, they are limited in their ability to obtain
detailed information on individuals that can travel outside their operational range. Additionally,
observations are restricted to when an animal has surfaced due to the opacity of seawater. This
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method is mostly non-invasive as there are no direct interactions, however in the case of ship-
based monitoring the noise from the vehicle can be sufficient to disturb the animals.

For smaller marine mammals, more direct capture-recapture methods can be used to measure
additional information beyond what purely visual methods can provide. In these instances, animals
are captured via nets, marked using either brands or a physical indicator, and released [1, 2]. During
the period of captivity, animal morphometric measurements and blood draws can be collected for
information on animal physical size distributions, current health state, genetic relationships, and
reproductive conditions. At later dates, when animals are recaptured, the same measurements can
be performed to monitor long-term (multi-year scale) trends. While these studies can be invaluable
for tracking population size and health over a number of years, such methods are not equipped to
provide information on animal swimming behavior or energetics, which are needed to understand
foraging patterns and food intake requirements.

Cetaceans are well-known for their long-distance vocalizations. These are used for commu-
nication as well as echolocation emissions for foraging [45]. While higher-frequency emissions
can travel in seawater for at most hundreds of meters, communication vocalizations can propa-
gate up to hundreds of kilometers for the largest animals. This long-range vocalization makes it
viable to monitor cetacean populations and communications through underwater acoustic detec-
tors. Historically, individual and arrays of hydrophones (fixed location underwater microphones),
and sonobuoys (expendable temporary hydrophones dropped from aircraft) have been used to this
end [5, 19]. With multiple sensors, the range and bearing of vocalizations can be triangulated
for signals with identifiable patterns, even allowing for localization. Further, recent research with
hydrophone-equipped autonomous oceanic vehicles has allowed for odontocetes tracking via the
animals’ higher-frequency, shorter-range echolocation emissions, providing more flexible moni-
toring [20, 21]. While acoustic monitoring does provide more frequent information on the animals
than other external observation methods, acoustic methods still cannot provide continuous infor-
mation on animal behavior due to the potential infrequency of their vocalizations.

2.1.2 External Observers: Managed Habitats

Visual observations have commonly been used to directly monitor cetacean populations in man-
aged settings, and have been implemented in studies concerning animal welfare and energetics re-
search. Data collection tended to be performed real-time, with researchers recording information
on the animals in shifts. Observations in these studies consisted of estimates of animal behavior
patterns, focusing on subjects such as swimming pattern analysis in the search of neurotic behav-
iors [46, 47], and animal stress level monitoring in order to promote better welfare practices in
managed facilities [48, 49, 50]. Given the simplified access to the animals involved in the research,
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these studies also could benefit from animal blood analysis and physiological trend measurements
[47, 48, 50]. These laid the groundwork for understanding the mental and physical conditions of
managed cetaceans, however as these studies involved measurements taken through human obser-
vation, results obtained from visual analysis of animal behaviors in these conditions tended to be
relegated to qualitative estimates. One study was able to perform a quantitative kinematics and
energetics analysis without using recorded video [37]; however, this was only possible by timing
animal swim durations along prescribed paths to obtain speed information.

Studies using video recordings tended to have a heavier focus on animal kinematics and propul-
sion. Such recordings have allowed researchers to produce more quantitative analyses of animal
activity levels. Tracking animals with scale marks (markings placed a known distance apart on
the animal’s body) through manual frame-by-frame video tracking has enabled speed analysis of
bottlenose dolphins for a portion of a resting behavior monitoring study [51]. A similar method
was also used to estimate the steady-state swimming power and drag profiles of multiple species
of cetaceans [25, 26, 27]. The use of video recordings also enabled more precise analysis when
used in social interaction studies [52], given the ability to recheck animal identities when observing
animal pairing behaviors. Video analysis has allowed for more robust and repeatable estimations
of the quantitative aspects of cetacean swimming behavior; however, one inherent drawback with
these methods was the post-processing time: as automated computer-vision tracking methods have
not matured by this period, animal tracking could only be done by hand.

Acoustic studies using environmentally-mounted hydrophones performed in managed settings
have primarily focused on animal communications, although some work has been done in using
vocalizations for animal localization. As cetaceans emit a complicated set of sounds for communi-
cation, special attention has been paid to how these sounds change dependent on the animals’ social
interactions. These have ranged from research on individualized animal vocalizations [53], to spe-
cific analyses of the communication patterns in mother-and-calf interactions [54, 55]. Research
on managed cetacean localization through acoustics is limited; however, animals have been able
to be localized via passive sensors (as opposed to active sonar) by triangulating their vocalizations
[56]. Similar to in the wild, the use of passive sensing in this form of acoustic localization lim-
its measurements to time instances where the animals choose to emit sounds, and cannot provide
perpetual location data.

2.2 Marine Mammal Biologging Tagging

The marine environment is generally hostile to both sensing and communications protocols. In the
best cases, visibility is limited to tens of meters, while cetaceans are capable of diving in excess of
one thousand [57]. These depths also hinder the ability of humans to directly observe the animals
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in a significant portion of their active habitat. Additionally, non-visible light frequencies are heav-
ily attenuated in water, making data transmissions to and from animal-attached sensors limited to
the period when the sensor is at the water’s surface, hindering satellite tracking methods. Acous-
tic monitoring is the only environmentally-mounted method that operates with any long-range
capability underwater. Unfortunately, due to the migration capabilities of larger animals (whose
vocalizations can be detected at distances of multiple kilometers), their effective habitat ranges can
span thousands of kilometers making environment instrumentation difficult [58]. Animal-mounted
biologging tags provide solutions to some of these problems: instead of waiting for an animal to
come near a sensor, the sensor is taken to the animal.

2.2.1 Tagging in the Wild

Given the difficulty of instrumenting the marine environment, animal-borne sensing has proven in-
valuable in obtaining vocalization, kinematics, and location information on cetaceans in the wild.
Some of the earliest research using animal-borne sensing on marine mammals involved recording
diving profiles of Weddell seals (L. weddelli) in 1963-64 [22]. This arrangement used an analog
recording needle inscribing pressure transducer readings onto a smoked glass disc, set to rotate via
attachment to a kitchen timer. Such measures were necessary as depth-pressure recording devices
had not been miniaturized sufficiently for animal attachment, which is one of the hurdles when de-
veloping tagging equipment: while the required sensors may exist, fitting them into a package that
minimally disturbs the animal can be a problem. This has been aided significantly with the advent
of solid-state electronics in on-device data parsing and storage, as well as Micro-Electromechanical
System (MEMS) sensor suites, drastically reducing component sizes on all fronts. Electronic
miniaturization has led to tags being able to include accelerometers, magnetometers, gyroscopes,
depth and temperature sensors, hydrophones, and GPS units [6, 23, 59].

There are two primary types of devices within the domain of biologging tags: archival and
transmitting. Archival tags are attached to the individuals to be monitored and must be recovered
to obtain the recorded data. This requires either an additional encounter with the tagged animal to
remove the device, or the tag must release itself from the animal to be recovered via radio telemetry
while floating on the water’s surface [23, 60]. However, the reduced power usage provided by
archival tags allows recording sessions to extend for multiple days between tagging and recovery.
Additionally, as archival tags are intended to be recovered, the volume of data collected can be
much higher than when deploying transmitting tags. As such, archival tags have been used to
perform extended, continuous studies of animal depth profiles, vocalizations, and kinematics [23,
35, 61, 62, 63]. Further, with the introduction of post-processed methods such as Fastloc-GPS,
archival tags can take advantage of satellite-based telemetry for ocean-surface localization [8].
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Transmitting tags cover some of the same use cases as archival units; however, they are primar-
ily deployed for localization tasks. Tags of this type are attached to the animal and are not intended
to be recovered, instead sending out signals when the animal is at the surface. Early implemen-
tations of transmitting tags (1960s) acted as radio beacons and were attached to larger cetaceans,
allowing researchers to pursue the tagged animals as long as they were within radio range for the
duration of the tag’s battery life [59, 60]. In the past several decades, transmitting tags have seen
success in long-distance intermittent localization tasks. Animals were tracked through tag commu-
nications with Argos satellites, which in turn sent the estimated location information to researchers
[64, 65]. Tag effective durations can be extended by limiting the high-power transmissions to sur-
facing events, triggered by a submersion sensor, allowing for multi-month localization studies [65].
This form of tracking is specifically oriented towards large-scale travel monitoring, such as animal
migration analyses, as the imprecision of even the most advanced satellite tags do not allow for
fine-scale (sub 1-meter) position information for swimming behavior analysis [43].

2.2.2 Tagging in Managed Habitats

Historically, as access to animals in managed habitats is rather straightforward versus in the wild,
direct observation or environmentally-mounted sensing methods have taken precedence in this
setting. As a result, archival biologging tags have only been deployed on managed cetaceans in
limited capacities, as the ease of recovery ensures data loss is infrequent. So far, these studies have
either focused on answering specific biomechanics questions, such as the additional metabolic cost
of archival tag attachment [38], the wave drag effects on a swimming animal [66], and how fluking
gaits trend throughout a typical day [67].

This limited deployment set represents a significant opportunity in unveiling new knowledge on
marine mammals in a managed setting, as tagging offers specific benefits either direct observation
or environmentally-mounted sensing do not. First and foremost, archival tagging has the capa-
bility of persistent monitoring: data from the animal are collected continuously, whereas external
methods tend to be intermittent or opportunistic. As the tag is attached to the animal, recordings
are not interrupted regardless of where the animal is in its habitat, whereas direct observations
require both line-of-sight and sufficient lighting to perform (limiting night monitoring). Second,
tag sensors provide strictly quantitative data collection. This is particularly important for behav-
ior analysis, as human observers provide qualitative assessments and concordance checks must be
performed to ensure data consistency when using multiple observers [49]. Third, the quantitative
data provided by a tag offers the potential for the automation of analysis. As studies increase in
scale, data collection and processing efforts that are completed manually must also increase at a
similar rate, hindering researchers’ ability to extend the scope of their work. Automated tag data
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processing can mitigate this effect, as tag deployments are less intensive than direct observation,
and parsing the data only requires additional computation time. This has the potential to streamline
fields such as behavioral observation, as modern biologging data processing techniques have the
potential to classify behavioral states that would otherwise require qualitative assessment [68].

2.3 Localization

In order to better analyze animal behavior, it is important to understand the stimuli that are pre-
sented to the animal. One component of this is reconstructing where in its environment the animal
has visited, and how its time is divided among these locations. With knowledge of an animal’s
habitat use, it is more feasible to identify the factors in the environment that attract its attention.
Further, when coupled with behavior metrics concurrently obtained from additional sensors (e.g.
biologging tags, acoustic monitoring), knowledge of the animal’s location can allow for the con-
textualization of these behaviors. As such, robust localization can provide new information on how
animals both use and interact with their environments.

2.3.1 Depth Monitoring

In the marine environment, depth tracking is the most straightforward of localization methods due
to the direct relation between environmental pressure and water column depth. As the pressure
transducers used for sensing depth are relatively uninhibited by the marine environment, unlike
visual or radio-based localization, depth measurements can be continuously recorded, yielding
high-density vertical location estimates. For marine mammals, depth monitoring provides infor-
mation on both general statistics concerning water column use as well as the relation of depth to
specific behavior events. One early tagging study on marine mammals was performed specifically
to estimate the general depth profiles of Weddell seals [22], and similar research has been done on
other species of marine mammals [57, 60, 61, 64]. Animal depth profiles have been combined with
IMU and hydrophone data for monitoring behavior in the context of partial location information.
This has allowed researchers to analyze animal dynamics and vocalization patterns present during
foraging events [35, 62, 63, 69], yielding detailed information on how animal vertical habitat use
relates to feeding patterns.

2.3.2 Transmitting/Receiving Tag Telemetry

Radio tags produce electromagnetic signals in frequency bands > 100 MHz, serving as beacons
leading to the tagged animals [60]. These tags could be tracked through directional multi-element
antennas, and required that researchers pursue the tagged animals at distances on the order of
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tens of kilometers to remain within signal range [59]. While these initial models of transmitting
tags served their purpose of aiding researchers in tracking animal locations, they were replaced by
satellite-linked transmitting models. Satellite tags operate on radio frequency bands in the range of
401.6 MHz ±30 kHz and communicate with Argos satellites in low polar orbit [43]. Transmissions
from the satellites are then sent to ground receiving stations. Localizations are performed by
analyzing the Doppler shifts in the tag-transmitted signals as perceived by the satellites, combining
the information from multiple messages sent in succession for ocean surface position estimates.
Satellite tags offer the distinct advantage over radio tags in that localizations can be performed
globally without the need for manually following the animals via a moving instrumented platform;
however, the localization error of the Argos system is at best in the 100s of meters [43, 64].

More recently, advancements in GPS technology have allowed for global localization on tags
using incoming satellite communications. Unlike Argos positioning, GPS-based technologies in-
volve measuring the time-of-flight of 1.23 and 1.58 GHz radio signals sent by GPS satellites to
a receiver, and using these timings to calculate their distances to the receiver [70]. With known
satellite positions, the latitude, longitude, and altitude of the receiver can be estimated with an
accuracy of < 2 meters for high-performance equipment [71]. However, traditional GPS animal
tracking does not perform well in the marine environment for highly dynamic animals. As signal
acquisitions cannot occur at depth due to radio-wave attenuation by seawater, the time windows
for these events are limited to only several seconds when an animal breaches the surface. When
deployed on animals, units are also powered down in between captures to conserve battery power
[70]. As a result, the unit’s Time to First Fix (TTFF), where a “fix” is a localization, is crucial for
animals that are only exposed to the satellites for this short period of time. Traditional GPS units
require time scales on the order of 10s of seconds, which is not viable for marine tracking [24]. To
reduce TTFF, snapshot rapid fix receiver technologies, such as Fastloc, perform only a fraction of
the position estimation process on-device and require additional computation in-post to obtain the
final location data after tag recovery. This partial computation approach allows for snapshots to be
captured in less than 1 second, which are then stored on the device’s internal memory. Even with
limited-window data captures, Fastloc GPS drastically improves upon Argos accuracy when 6 or
more satellites (minimum of 4 to function) are visible to the receiver (50th percentile accuracy: 18
meters, 95th percentile: 71 meters) [24].

Satellite-aided localization methods are capable of providing latitude and longitude estimates
for animals in the wild, however the information provided is limited. Most importantly, there is
no capability for animal tracking when below the water’s surface. These methods provide general
positioning estimates, allowing for migration and habitat use analysis [65], however data logging
frequencies are intermittent with periods between samples dependent on animal surfacing require-
ments (e.g. respiration), resulting in the majority of the animal’s movements not being reported.
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2.3.3 Marine Acoustic and Video Localization

Acoustic localization is enabled by the estimating the range and bearing of animal vocalizations
with respect to hydrophone locations. This can be done with a variety of sensor arrangements
and computation methods. With only a single hydrophone, it is possible to estimate the range of
an animal vocalization through exploitation of the physics involving underwater acoustic reflec-
tions and how they relate to the surrounding geography’s bathymetric profile (elevation structure).
With knowledge of the geometry of a hydrophone’s environment, it is possible to use ray-tracing
techniques (back-calculation of a signal’s origin by estimating reflection angles) on multipathed
vocalizations, as the hydrophone will receive several signals from a single vocalization: the direct
signal, the reflection off of the underside of the water surface, and reflections from the sea floor
[72, 73]. Using measurements of the time differences between reflection arrivals, this leads to
range estimates for the animal using only a single sensor [5].

When using multiple hydrophones, it is possible to compute both range and bearing for vocal-
izations. Individual arrival sound signatures are identified for each hydrophone by cross-correlating
impulse patterns in the recordings, which are used to estimate each Time Delay of Arrival (TDOA)
of a received vocalization between each sensor pair in the array [74]. In this case, rejecting false
correlations due to multipathed reflections is crucial to obtaining accurate TDOA sets [74, 75].
The range and bearing of a vocalization from the array can then be computed by minimizing the
disagreement in the set of predicted distances from source to receiver for all sensors. This is per-
formed by either solving for a system of equations, where the total time delay from source to array
and the source positions are unknown [56, 74], or by finding the maximum in a set of surfaces rep-
resenting the likelihoods of each source location [75]. This type of localization approach has been
performed using static positioned hydrophones in both wild [74, 75] and managed [56] settings, as
well as on mobile platforms in the wild [20, 21].

While acoustic localization has potential in tracking vocalizing animals underwater for both
long and short ranges, there are various drawbacks with the method depending on use case. Pri-
marily, this type of localization requires the animals to actively emit sounds, which can be more
or less frequent depending on the type of animal being tracked as well as the type of activity be-
ing performed, and results in sporadic localizations. Additionally, these methods require thorough
knowledge of the environment’s bathymetry, which is not always feasible in the wild. Even with
this knowledge, multipathing effects due to environmental geometry can also be strong enough to
break the method, such as in managed settings with high numbers of reflective surfaces [56].

Video localization is very rarely used for marine mammal tracking due to its inherent limita-
tions in water, although some examples do exist. For use in wild settings, work has been done to
enable autonomous aerial vehicles to track larger marine animals through handcrafted computer-
vision tracking methods [76]. This method uses image hue and saturation thresholding to remove
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the background and identify patches of the image that correspond to the tracked animal. Such
an approach is sufficient to track a single animal that is primarily close to the surface, although
once the animal dives for any significant period of time re-acquisition will be difficult. In the
managed environment, research that has involved automated video-tracking of marine mammals
has also been relegated to handcrafted computer vision techniques. In one study, both robust
principle component analysis and a mixture of Gaussians were separately used to subtract image
backgrounds and extract animal profiles using underwater cameras; however, these only provided
in-image locations and were not mapped to a general coordinate frame [28]. In a more recent study,
image backgrounds were removed through a variety of image-subtraction methods to obtain ani-
mal profiles, and were converted to 3D habitat-frame coordinates (as opposed to 2D image-frame)
through stereo vision transformations [29]. While both methods were accurate for their particular
use cases, performance can still be improved through more modern detection methods that can
be made robust to changes in lighting conditions and water-surface noise, such as neural network
object tracking.

2.3.4 Dead-Reckoning

Dead-reckoning uses information on a tracked subject’s pose and velocity to generate a continuous
estimate of its trajectory with respect to its initial position [77]. This is contrasted starkly with
the previously detailed methods, as although localization through dead-reckoning is guaranteed
to be continuous, it is prone to drift over time, while satellite, acoustic, and video localization
are not guaranteed to be continuous but are also not subject to drift. As marine mammals almost
exclusively swim in the forward direction, odometry can be generated using an animal’s estimated
speed and 3D orientation (roll, pitch, yaw) [7]. Additionally, vertical velocity components are not
required to be computed as on-tag depth sensing provides absolute water column localization.

2.3.4.1 Continuous Speed Estimation

To reduce the complexity of biologging tag hardware, it is advantageous to obtain additional met-
rics on animal kinematics by only using existing sensors. This keeps power draw consistent, and
does not add additional bulk with the inclusion of another physical component. This has been
accomplished through analysis of both depth and acoustic data. Depth measurements can be com-
puted to speed through trigonometry: differentiated depth information provides the vertical com-
ponent of velocity, and represents the sine (with respect to animal pitch) of the total speed [35].
This method is robust for high magnitude pitch, but once the animal levels off, the accuracy of the
estimate decreases. On the other hand, fluid flow noise levels detected by a tag’s hydrophone can
be mapped to its speed, and this estimate is consistent across all orientations [33]. The mapping
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can be performed on-animal, as depth-estimated vertical speed during steep dives can be compared
to the hydrophone baseline noise levels. These data points are then used to fit an expression that
outputs forward speed dependent on flow noise. Unfortunately, flow noise is not always stable,
leading to fluctuations in the speed estimate that must be filtered out, and this approach does not
perform well at low speeds (exponential magnitude dropoff as speed → 0), or at shallow depths
(flow noise is drowned out by surface noise).

While they do require additional hardware and power consumption, dedicated speed sensors do
offer the potential benefit of reliability. Thus far, sensors such as impeller transducers [31], paddle
wheels [32], and flexible paddles [34], have been used to approach this problem. One particular
point that was addressed with these sensing methods was the ability to accurately estimate very low
speeds, as tagged animals are not always in a high-activity state. Unfortunately, these structures
can be physically large [31, 32], which has the potential to induce unnecessary drag on the tagged
animal during higher speed locomotion, or are susceptible to external noise [34], reducing the
accuracy. Because of these limitations, there is the need for on-tag speed sensing hardware that is
robust while maintaining a minimal size profile, that also has a wide range of detectable speeds.

2.3.4.2 Orientation Estimation

Early animal orientation estimations involved using a gimballed flux-gate compass to estimate tag
orientation with respect to the Earth’s magnetic field [31]. This approach suffered errors if the
animal rolled or pitched over 95°, which in the marine environment is rather common. A solution
to this problem was presented through the filtering of MEMS-based accelerometer and magne-
tometer data [6]. This approach first has a user estimate the pitch, roll, and heading of the tag
with respect to the animal, either through visual inspection upon placement, photographs, or anal-
ysis of accelerometer data during surfacing events (the animal generally needs to have zero pitch
and roll in order to breathe). Roll and pitch are then determined from the relations between ac-
celerometer channels and their angles with respect to gravity. This operates under the assumption
that animal-induced accelerations are trivial in magnitude with respect to gravitational accelera-
tion, which does not always hold for high-dynamics actions. Heading is then estimated by using
animal pitch and roll to transform the magnetometer measurement onto a plane perpendicular to
gravity, and computing the angle with respect to true north. While this approach does offer a non-
physically-constrained estimate of animal orientation, it can still suffer from gimbal-locking due
to its 3D angle representation, as opposed to quaternions or rotation matrices that do not have this
problem. Additionally, the use of acceleration data alone for pitch and roll limits the sensitivity of
the estimate, as accelerometers have inaccurate tracking of high angular rates [78].

Until recently, gyroscopes have had power consumption levels that were too high to include
in tags and still retain acceptable battery durations [23]. The inclusion of gyroscopes alongside
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accelerometers and magnetometers in the orientation sensor set drastically improves the accuracy
and robustness of the estimation. While gyroscopes are prone to drift (being rate sensors), they
perform best at high angular rates where accelerometer and magnetometer readings might lag
or yield noisy measurements. This is exploited in modern estimation methods through sensor
fusion techniques such as high-speed gradient-descent [10], high-accuracy Kalman filtering [11,
13], and magnetic-disturbance rejecting extended complementary filtering [12, 14]. The addition
of gyroscopes as common sensors in biologging tags therefore offers opportunities to improve
orientation accuracy estimates, which can not only enhance dead-reckoning, but has ramifications
for gait and behavioral dynamics analyses as well.

2.3.5 Path Optimization

Combining both dead-reckoning and absolute position estimates (such as from GPS) provides the
continuous tracking benefit of revealing fine-scale animal movement patterns, while anchoring the
track to reduce the effects of drift [32]. The most straightforward method of combining dead-
reckoning and GPS information is to first take the errors between the estimated dead-reckoning
positions and the GPS localizations whenever acquisitions are made. Next, the estimated track is
stretched evenly between acquisitions to anchor it to the GPS localizations [31, 42]. This does not
take into account the error profiles of the data streams being fused, whereas “trusting” each stream
according to its estimated error at the time of fusion can provide a more accurate track. This has
only recently been performed for marine animal tracking, using a state-space model framework
with relative “trust” defined for each data stream according to their position uncertainties at the
moments of absolute position acquisitions (GPS and visual) [8].

The approach presented in [8] offers performance improvements in marine animal tracking,
although more advanced path optimization methods exist in the field of robotics that can be ported
over for use in animal tracking tasks. State-of-the-art pose-graph optimization methods record the
position uncertainty at every step in a tracked object’s dead-reckoned sequence through a linked
set of poses [9, 44]. When there is an absolute position update, the uncertainties in the pose and
the position update at that time are compared to effect a location shift in the pose, and this shift is
propagated throughout the entire set of poses according to their relative uncertainties. This more
optimally represents a tracked object’s position and orientation, and its robustness can be useful
for localization tasks in managed settings where animal trajectories can become highly complex.
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2.4 Neural Network Object Detection

Neural networks are built to operate as universal function approximators. Their uses range from
pattern identification in temporal data, to object detection in images, to even emulation of highly
nonlinear mathematical functions. Their varying functionalities come from the way they are struc-
tured to process and retain information, and their robustness (or lack thereof) have to do with their
abilities’ direct dependence on how they learn to accomplish their given tasks.

In the most general description, a neural network is a highly customized, multi-level weighted
sum. Each node in a level (ℓ𝑖, 𝑖-th level) is connected to a subset of the nodes in the previous
level (ℓ𝑖−1), and takes as inputs the weighted sum of the outputs of its connected nodes in ℓ𝑖−1.
Weights are assigned on a per-connection basis, with values set via training on known input and
output data: an input signal is passed through the network, the output is measured against an
expected ground-truth, and weights are updated according to the resulting error. This is repeated
multiple times for a set of input and output signals until the error (preferably) converges to an
asymptotic lower bound. Core to the functionality of neural networks are activation functions,
which along with other nonlinear data collation and subsampling methods, introduce nonlinearities
in the weighted sums [79]. Without any induced nonlinearities, neural networks would only serve
as overdetermined linear operators. However, while their performance can be state-of-the-art, this
structural complexity does result in neural networks being treated as black-boxes.

2.4.1 Convolutional Neural Network Structure

For this dissertation, we are primarily focused on neural networks that aid in computer-vision
object detection and tracking. For our use, Convolutional Neural Network (CNN) modules are
particularly beneficial for identifying specific structures in images [80]. CNNs operate by applying
convolutions — discrete integral transforms that use small image kernels to apply simple filters to
images — in sequential banks to extract structural information from an input image in the form of
“features” [81]. In this case, the primary modifiers being computed are the kernels themselves: a
single convolution takes as input an image patch the size of the kernel, and outputs a sum of the
weighted pixel-to-pixel products. The output of a convolution applied to an input image is then
the total set of outputs produced by convolving all patches in the input (each patch is centered
about one pixel in the input image), arranged in the output image according to the original patch
locations in the input. Each bank of convolutions takes the filtered image outputs from the previous
convolution bank as inputs (the first bank takes in the original input image), which can allow for
highly complex spatial features to be identified within an image. These features are generally fed
into fully-connected neural network layers, which interpret the outputs of the convolution layers:
which features are detected within an image, and how strongly they are identified, can signify how

18



to classify the input image.

2.4.1.1 Activation Functions

Activation functions are particularly useful in determining whether a neural network node should
be deprioritized based on its overall response to the input (“activation”) [79]. As CNNs are in-
tended to identify specific object classes within an image, if an input does not elicit a strong re-
sponse in a node, that node is less relevant towards correctly classifying the object in the image.
Deprioritizing such nodes is useful in reducing noise in the overall output, and using only priori-
tized nodes results in a more confident classification. Activation functions are placed in CNNs after
each convolution bank, and this subsection presents several of the more commonly-used examples.

Early activation functions consisted of nonlinear expressions that bounded node activations.
Examples of this are the sigmoid (otherwise known as the logistic function), which bounds activa-
tions to [0, 1]:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥 (2.1)

and the hyperbolic tangent (tanh) function, which bounds activations to [−1, 1]:

𝑓 (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.2)

While these activation functions ensure that individual nodes do not activate too strongly, this effect
does cause other problems. When employed in a deep network, activations tend to saturate, which
slows down the learning speed of the network during training [82]. This causes deficiencies in both
convergence and inference accuracy compared to results that use non-saturating functions.

More modern activation functions tend to use the Rectified Linear Unit (ReLU) format, which
are sometimes allowed to saturate activations to a floor of 0, but tend to have no upper bound
[83, 84]. The most common and simple form of this format is the original ReLU function:

𝑓 (𝑥) = max{0, 𝑥} (2.3)

which nullifies negative node activations and passes through positive ones. In some cases, reduced
negative activations can aid in network performance, which are allowed in “Leaky” ReLU [85]:

𝑓 (𝑥) =

𝑥 𝑖 𝑓 𝑥 > 0

𝛼𝑥 𝑖 𝑓 𝑥 ≤ 0
(2.4)

where 𝛼 is a constant multiplier < 1. To further develop on this idea, a form of Leaky ReLU with
a trainable 𝛼 is presented in the form of the Parametric Rectified Linear Unit (PReLU) [86]. This
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allows for self-configurable negative activation multipliers, which can lead to enhanced precision
in the network. Otherwise, 𝛼 values are user-defined (in standard Leaky ReLU), which requires
multiple retraining passes to determine which 𝛼 is most performant. Depending on the use case,
the modified ReLU activation functions are able to outperform the original [87].

2.4.1.2 Pooling

Pooling methods are beneficial to CNN object detection in that they subsample nodes as a method
of noise removal and dimensionality reduction. Images are informationally dense, and not all pixel
information is relevant to object classification. Pooling aids in reducing the unnecessary extra di-
mensionality when processing images, which reduces computational complexity and retains only
general information on the activation of the network at that layer. This aids in preventing over-
fitting (situation where a neural network is too sensitive to specific training examples, limiting
robustness), as this leads the network to perform classifications with only the most relevant node
activations [88]. In general, pooling functions operate by taking a 𝑚 × 𝑛-sized window of spatially
sequential nodes, and computing an aggregate of their activations. This is performed on a node
array by computing the pooled values at each step with a sliding window (𝑚 × 𝑛) across its rows
and columns. Pooling operations do not require a stride of 1 (i.e. that the sliding window traverse
every single row/column), and this range of strides allows for varying window overlap arrange-
ments. In CNNs, a pooling layer is generally only placed after an activation function layer, and
this subsection presents two commonly used examples.

Average pooling is the most conceptually straightforward method of dimensionality reduction:
values in each window are averaged and outputted for use in the next computation layer [89].
Applied to an entire node array, this subsamples the input while not explicitly discarding any
information, as all values in a window contribute to the pooled result. However, while average
pooling reduces the dimensionality of a network, the averaging process has the potential to under-
represent highly activated nodes if they are in the same window as minimally activated ones. This
can limit strong activations, resulting in less confident classifications.

Conversely, maximum (max) pooling intentionally prioritizes strong node activations over oth-
ers: the maximum value in each window is outputted and all others are discarded. While this does
increase susceptibility to overfitting, classification performance is enhanced overall. Stronger node
activations result in wider activation magnitude ranges across nodes, allowing for more discrimi-
nation between possible classifications for an input image.
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2.4.2 CNN Object Classifiers

While the vast majority of CNN-based object classifiers use this general format, they differ heavily
in overall structure, depth (number of convolution banks), types of convolutions used, activation
functions, and subsampling methods [90]. They have become continuously more sophisticated
over time as researchers have worked to understand the limitations and benefits of different modifi-
cations to their sub-structures. Originally, CNNs were not widespread due to the inherent limitation
in raw compute power when they were first introduced in 1989 [80]. Since then, locally-available
computation power has increased by multiple orders of magnitude, enabling the use of CNNs for
image classification tasks in tractable time scales.

AlexNet, a network that succeeded in the 2012 ImageNet Challenge, was one early example
that demonstrated the performance potential of deep neural networks [30]. This network used
sequential banks of progressively smaller convolutions (initial bank: 11 × 11; final bank: 3 × 3)
with ReLU activation functions following each convolution layer, and several max-pooling layers
interleaved in-between. Three fully connected layers were appended to the end to serve as the final
classifiers. This network represented the state-of-the-art upon its reveal; however, its use of larger
convolutions resulted in heavy computation requirements due to the required number of weights.

Very deep networks consisting of only small (3 × 3) convolutions were proposed to improve
on the performance of large convolution-size networks in the form of the Visual Geometry Group
(VGG) nets (named after the groupd that developed them) [91]. Sequential stacks of 3 × 3 convo-
lutions were found to be able to emulate the effects of the larger filters with lower computational
complexity and higher classification performance. The general structure proposed was as follows:
five sequential stacks of 3 × 3 convolution layers, each stack followed by a max-pooling layer,
with three fully-connected layers at the end for final classification. Each stack had a varying num-
ber of convolution banks, with progressively more convolutions per bank as the stacks progressed
deeper into the network. Six networks were demonstrated with this general format, with varying
computational complexity. For the larger networks, 1 × 1 convolution layers were placed before
each pooling layer to induce additional nonlinearity in the network. While performance was in-
creased with respect to older networks, the depths of the networks still resulted in high overall
computational complexity.

The Inception CNN architecture was developed to reduce computational complexity without
sacrificing performance [92]. This architecture differs significantly from the other structures in that
it makes heavy use of varying-size convolution banks, from 1× 1 to 7× 7, in sub-network modules
of parallelized convolutions and pooling layers. Each module terminates with a layer that concate-
nates the outputs of the parallelized operations, ensuring there is not a dimensionality explosion
problem by limiting the number of internal connections from module to module. Subsequent In-
ception architecture versions sought to further limit the computation complexity by factorizing the
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larger convolutions into functionally similar sequential sub-convolutions [93].
While deeper neural networks have enhanced potential for increasingly complex classification

tasks, they also become increasingly difficult to train. This generally manifests itself in longer
time to training convergence, although in the worst cases overall performance can be negatively
impacted with higher classification error. The ResNet CNN architecture was introduced to allow
for networks with high depth while bypassing this particular limitation [94]. While the layout
of the convolution banks is sequential, similar to the VGG networks, the primary contribution
of this architecture is to insert shortcut connections between stacks of convolution banks (e.g. a
connection from layer ℓ𝑖 to ℓ𝑖+3). These shortcuts bypass several layers in the network and add
the activations from the originating layer to the output of the target. This results in increased
network depth being unable to harm the performance: network layers that are not performing
critical operations for classification and could harm the training process can be bypassed. The
only drawback with ResNet networks is that their high depth tends to require high computation
capability. This has been mitigated by combining both Inception and ResNet structures which has
allowed for highly complex networks with relatively lower computation costs [95].

2.4.3 CNN Object Detection

The structures described in Section 2.4.2 are not sufficient to perform object detection (localiza-
tion) within an image; on their own they can only classify the contents. This leads to the require-
ment for methods that allow CNN classifiers to operate on subsets of an image input in order to
both classify and estimate locations of the objects contained within. While it would be possible to
exhaustively scan through an image with varying patch sizes, this quickly becomes computation-
ally inefficient. Modern object detection techniques have therefore prioritized optimization.

The current state-of-the-art method, Faster R-CNN, consists of two primary modules: a Region
Proposal Network (RPN) and a Fast Region-based CNN (R-CNN) detector [15, 96]. The RPN is
a network that shares convolutional features with the classifier used in the Fast R-CNN network,
and serves to propose potential Region of Interest (RoI) bounding boxes for full classification. The
Fast R-CNN network then takes the set of potential regions proposed by the RPN and processes
them through an additional set of convolutions and fully-connected classification layers to identify
which specific RoIs correlate most strongly to a class. Since convolutional features are shared
between the RPN and Fast R-CNN modules, these can be trained concurrently on image sets with
ground-truth object bounding box and class annotations. Additionally, as thousands of RoIs can be
generated per input image, the resulting bounding boxes of successful detections are able to tightly
enclose the objects in the image, providing highly accurate localizations.

For images with high object density and occlusions, it is useful to identify not only the gen-
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eral bounding boxes, but also the specific pixel segments (masks) that correspond to the classified
objects. Mask R-CNN builds on the capabilities of Faster R-CNN by performing additional com-
putations in parallel to the class and bounding box estimation steps to generate object masks for
each detection [97]. This is done by computing potential masks for all object classes for each RoI,
and then outputting the mask that corresponds to the identified object class, discarding the others.
While Mask R-CNN is highly flexible in segmentation tasks, one of the downsides (as with all
segmentation networks) is that training data masks must be manually defined, heavily increasing
the preparation time for new segmentation implementations. As a result, an object detector of the
capability of Mask R-CNN is not always necessary if simple localization is sufficient.

In the case where extreme speed is necessary, single-shot detectors can be useful. The current
state-of-the-art detectors in this field are based on the You Only Look Once (YOLO) architecture
[98]. The core concept of YOLO is that object detection is performed by a single network, and
bounding boxes for all object classes are predicted in an image simultaneously. The image is
broken up into an 𝑆×𝑆 grid, potential bounding boxes are generated for each grid cell (box centers
are placed within a cell, but the bounds can exceed the size of the cell), and the most probable
bounding boxes and their respective classes are determined by using the output of the classifier
network that was run on the entire input image. As the complete image is processed at once, rather
than processing individual regions such as in the R-CNN methods, YOLO is highly capable in
avoiding false-positive detections in the background of the image (regions containing no objects).
Additional updates to the architecture further improved the performance [99, 100]. However, while
the speed and general accuracy of the YOLO detectors are high, they do have difficulty detecting
smaller objects within images.

2.5 Marine Mammal Energetics

Measuring animal energetics is crucial to understanding their welfare in both wild and managed
settings. These provide estimates of an animal’s activity levels, behavior, health, and caloric re-
quirements. In terrestrial animals, experiments that compare the efficiency of different movement
conditions can be conducted in controlled experimental settings where the motion of the body and
ground reaction forces can be measured directly [101, 102]. In contrast, it has been challenging to
create fully instrumented controlled experimental environments for large, swimming animals.

2.5.1 Direct Measurements

Direct measurements of animal energetics rely on the collection of physiological data in response to
varying activity conditions. Early energetics studies involved tracking multi-week carbon-dioxide
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production through the doubly-labeled water method [103, 104]. This involves the ingestion of
water marked through uncommon isotopes of oxygen and hydrogen, and measuring their elimi-
nation rate over time in regularly-drawn blood samples. While doubly-labeled water tracking is a
relatively robust method that captures overall metabolic cost over a period of time, it is unable to
provide metabolic measurements on a short time scale. As a result, it is insufficient to track ener-
getics use of specific swimming patterns or behaviors, and is best served for longer-term studies.

Similar to terrestrial studies, heart-rate monitoring is also possible with swimming animals
[36, 105]. This allows researchers to track animal metabolic rates with high temporal fidelity, as
oxygen consumption can be tracked in real-time through physiological knowledge of its relation
to animal heart rate. Additionally, with simultaneous measurements of travel speed, animal Cost
of Transport (COT) can be estimated, which measures the energy per meter traveled required by
the animal to propel itself. Crucially, COT is a measure of propulsive efficiency, and can yield
valuable insights into how animals optimize their travel through different swimming behaviors.
However, this generally requires the animal to wear a form of harness as the electrodes for the
heart rate monitor must be connected to a receiver moves alongside the animal. These can hinder
animal mobility, which constrains energetics monitoring to swimming tasks with limited speed
variation or spatial range. So far, heart-rate monitoring hardware has also been too cumbersome to
implement as a standalone package (i.e. controlled by a biologging tag).

Respirometry bridges the gap between these two methods by providing non-invasive measure-
ments of metabolic rates for time scales on the order of seconds. Animals breathe into special
apparatuses that take samples of their inhalations and exhalations and send them to a gas analyzer
for partial-pressure decomposition [37, 38, 39, 106]. The flow rate and gas composition are con-
verted into oxygen consumption per breath, which can be directly mapped to caloric use [107].
While this does not allow for real-time energetics estimation, per-activity metabolic rates can still
be computed as long as the animals exclusively breathe through the respirometer. This makes
the method particularly effective in managed settings given the higher likelihood of animal coop-
eration in experiments. For COT estimates, distances traveled must be computed between each
animal breath, so in this case localization methods or high-accuracy speed sensing (for integration
into distance) are key.

2.5.2 Proxy Estimation

One stands to reason that if it is possible to obtain a general metric for animal activity levels
through the analysis of persistent biologging tag data, it may be possible to map this metric to
measured metabolic rates. This is the rationale behind the use of ODBA as a proxy for energetics
estimation [40]. ODBA operates on the concept that any acceleration signals from a biologging
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tag below a frequency threshold (generally the Nyquist frequency of the animal’s nominal gait)
correspond to gravitational accelerations and centripetal effects from turning actions, and signals
above this threshold correspond to movements induced by the animal. In experimental sessions,
ODBA estimates are computed alongside respirometry measurements for prescribed animal tasks,
and a mapping is then computed between the two [39]. This allows researchers to then estimate
continuous metabolic costs of animal activities through tag monitoring, by using the ODBA →
energy relation on accelerometer data from tagging sessions that do not also include any direct
measurement method. Unfortunately, this approach is not generalizable for inter-or-intra-species
comparisons, as ODBA is highly sensitive to both tag placement on the animal and the specific
filtering methods used to perform the high-pass cutoff.

2.5.3 Physics-Based Estimation

Forces on an animal, such as thrust for propulsion or drag acting on the moving body, are difficult
to measure directly in the marine environment. This has led to a body of work performed specif-
ically to understand the fluid dynamics surrounding cetacean propulsion. Marked animals were
requested to swim past high-speed cameras, and the recorded videos were manually analyzed in
post to extract high-accuracy speed and acceleration [25, 26, 27]. These data were used in physics-
based hydrodynamic models coupled with simulation estimates of animal physical structure to
compute drag profiles and propulsive power as it relates to swimming speed. Animal propulsive
force was more intricately explored through digital particle image velocimetry, which mapped the
vortical flow patterns produced by animal fluke strokes in a controlled environment [41]. So far, the
majority of research in this field has focused on steady-state (consistent gait) animal propulsion,
leaving a great deal of work to be done in understanding variable-gait swimming behavior.

Physics-based methods offer a platform for first-principles estimates of animal energetics, and
provide a springboard for persistent metabolics monitoring using biologging tags. By combining
tag-estimated animal kinematics with physics-based energetics models, it will be possible to have
fully continuous power expenditure tracking, so long as animal morphometrics are well understood
(these inform the energetics model sub-parameters). The models require three tag data streams to
function: animal speed, acceleration, and depth. Current biologging tags are capable of reliable
depth estimation, and acceleration can be obtained from on-tag IMUs or by differentiating speed
measurements. As such, there is a general need for robust tag-based speed estimation that does not
induce excessive parasitic drag, in order to preserve the original swimming patterns of the tagged
animal [106]. This can expand energetics monitoring in both wild and managed settings, allowing
for a new chapter of research on the relations between swimming behaviors and metabolics.
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CHAPTER 3

Advancing Tools in Marine Monitoring:
Localization and Kinematics

3.1 Neural Network Animal Tracking

The contribution in this section investigates day-scale swimming kinematics using a neural network-
based computer-automated framework to quantify the positional states of multiple animals simul-
taneously in a managed environment. Video recordings of the animals from a two-camera system
were analyzed using CNN object-detection techniques and were post-processed via Kalman filter-
ing to extract animal kinematics. The resulting kinematic states were used to quantify bottlenose
dolphin habitat usage, kinematic diversity, and movement profiles during daily life. Section 3.1.1
defines the structure itself, and Section 3.1.2 describes the post-processing methods required to
obtain the results described in Section 3.1.3, and later used in the framework detailed in Chapter 5.
This represents a limited form of contextualized animal monitoring, as animal identification and
full 3D localization are not possible with only camera-based information in the given setting.
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3.1.1 CNN Object Detector Structure

The overarching structure employed the Faster R-CNN objection detection platform [15]. This was
chosen as Faster R-CNN is a state-of-the-art method that can enable image classifiers to detect a
wide range of object scales (unlike the YOLO class [98]). Exact animal profiles were not needed,
only their positions, avoiding the extreme annotation time required for a more in-depth segmenting
detector such as Mask R-CNN [97].

All modules used in the implementation were present in the MATLAB Deep Learning Toolbox
excepting the PReLU activation function, which was defined with a custom neural network layer
per directions in the MATLAB online documentation [86, 108]. The CNN classification structure
used in the Faster R-CNN framework is as follows. For the input layer, the size was chosen
to be similar to the smallest bounding boxes in a set of manually scored animal profiles, in the
format of (𝑙,𝑙,3), where 𝑙 is 2× the side length of the smallest bounding box major axis. This
can change according to the experimental conditions (e.g. camera angle and distance from the
environment), and the sizes of the animals being tracked. The input layer had a third dimension of
3 as input images were in the RGB colorspace. The feature extraction layers were developed with
two separate sub-structures:

(i) Four sets of 2D 3 × 3 convolution layers, each followed by batch normalization, PReLU
activation, and 2× 2 max pooling (stride 2) layers, in that order. The four convolution layers
had, in order: 64, 96, 128, and 128 filters.

(ii) Four blocks of the same layout but different numbers of convolution filters. Each block
consisted of two consecutive 3 × 3 convolution layers, then a batch normalization and a
PReLU activation layer. A 2 × 2 max pooling layer (stride 2) followed each block. Each
convolution layer within the main four blocks had, respectively, 64, 96, 128, and 128 filters.

The first sub-structure was developed for initial animal detection tasks, and deployed in the
experimental research described throughout Section 3.1. The second sub-structure is a refinement
of the first, and was deployed for the later research performed in Chapter 5. Each convolution
was executed with one layer of zero padding along the edges of the inputs to avoid discounting
the corners/edges. The classification layers used the extracted features from the previous layers
to identify an image region as either an animal or the background. They consisted of: 1) A fully
connected layer, length 512, to extract features from the final convolution layer, followed by a
PReLU activation; 2) A fully connected layer, length 2, to determine non-scaled classification
activations; 3) A softmax function layer to convert these into the final probabilities of the image
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region’s classification, as the final activations can be arbitrarily large in magnitude:

𝜎(z)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗
for 𝑖 = 1, . . . , 𝐾; z = (𝑧1, . . . , 𝑧𝐾) ∈ R (3.1)

The highest probability from the softmax layer corresponded to the most likely classification for
the region, and the magnitude of this probability indicated the confidence of the classification.

This classifier follows along the lines of the VGG structure [91], and was chosen for its low
computational complexity to enable more efficient animal detection processing for longer record-
ing sessions. While more intricate classifiers such as ResNet or Inception may offer marginally
better accuracy [92, 94], this was not necessary given that the larger networks (including the
deeper versions of VGG) were originally intended to discern between a wide variety of classes,
while this implementation must only classify one type of animal. While this can be extended for
multiple classes (animals or other dynamic objects) with more complex classifiers, computation
performance will suffer as a result.

3.1.2 Experimental Deployment

The CNN object detector was used to monitor the behavior of a group of marine mammals both
qualitatively and quantitatively in a managed setting. Camera-based animal position data were
used to quantify habitat usage, as well as where and how the group of animals moved throughout
the day. The position data were decomposed into kinematics metrics, which were used to dis-
criminate between two general movement states — static and dynamic — using the velocities of
the tracked animals. A general ethogram of the animals’ behaviors monitored in this research is
presented in Table 3.1. The kinematics metrics were further used to refine our understanding of the
behavioral states the animals experienced both in and out of training sessions through a combina-
tion of Kolmogorov-Smirnov (K-S) statistical analyses and joint differential entropy computations.
The study protocol was approved by the University of Michigan Institutional Animal Care and Use
Committee and the Brookfield Zoo.

Approximately 99.5 hours of data from two cameras were collected for this experiment, re-
sulting in ∼ 14 million individual frames of data. To extract spatial information about habitat use
and swimming kinematics, we first needed to identify animals in the frames. These detections
were filtered and associated with short trajectories (tracklets) from individual animals. Kinematic
data (position, velocity and heading) from the tracklets were then used to parameterize and form
probability distributions that were used to identify tendencies in animal motion during In Training
Session (ITS) and Out of Training Session (OTS) swimming.
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Table 3.1: Behavior condition ethogram of dolphins under professional care

Category Behavior Definition
ITS Animal Care Session Time period in which animal care specialists

work with the dolphins to learn new behaviors
or practice known behaviors without public au-
dience.

ITS Formal Presentation Time period in which animal care specialists
work with the dolphins in front of an audience
to present educational information to the public.

OTS Static Animal movement state with little to no active
fluking at a rate of speed less than 0.5 m s−1.

OTS Dynamic Animal movement state with active fluking at a
rate of speed greater than 0.5 m s−1.

3.1.2.1 Experimental Environment

Seven bottlenose dolphins with an average age of 17 ± 12 yrs and length of 247 ± 17 cm were
observed using a dual-camera system in the Seven Seas building of the Brookfield Zoo, Brookfield
IL. The complete environment consists of a main habitat with public viewing, two smaller habitats
behind the main area, and a medical habitat (not shown) between the two smaller habitats (Fig.
3.1). The main habitat is 33.5 m across, 12.2 m wide, and 6.7 m deep. The back habitats have
circular diameters of 10.7 m and are 4.3 m deep, and the medical area is 7.6 m in diameter and 2.4
m deep. The habitats are connected through a series of gates. During formal training sessions in
the main habitat, animal care specialists primarily engage with the animals on the island between
the gates to the other areas. There are underwater observation windows for the viewing public on
the far side of the main habitat from the island (not shown), and smaller windows looking into
the offices of the animal care specialists on the island and next to the right gate (Fig. 3.2, top).
Recordings of the main habitat took place across multiple days (between Feb. 6 and March 27,
2018), for varying portions of each day, for a total of 99.5 hours over 20 recordings. Data collection
began at the earliest at 07:41 and ended at the latest at 16:21. During the recorded hours, the
dolphins participated in four formal training sessions according to a regular, well-defined Animal
Care Specialist (ACS)-set schedule.

A formal training session consisted of time in which the ACSs work with the dolphins to learn
new behaviors or practice known behaviors. At the beginning of each formal training session, the
dolphins were asked to maintain positions directly in front of the ACS (formally known as “station-
ing”). The animal care specialists then presented discriminative stimuli or gestures that indicated
which behaviors they requested each dolphin produce. If a dolphin produced the desired behavior,
they received a reward (i.e., reinforcement). If they chose not to produce the behavior, a specialist
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Figure 3.1: Diagram of the experimental setup. TOP: Illustration of the main habitat, with camera place-
ments (blue enclosures) and fields of view (gray cones). BOTTOM: 𝑥-𝑦 view of example tracklets (red and
green on gray lines) of two dolphins (highlighted light orange), which are also visible in the top of this
figure. BOTTOM-ZOOM (RIGHT): Vector illustrations of the two example tracks. Example notation for
tracklet 𝑗 (red): position (p( 𝑗 ,𝑡′) ), velocity (v( 𝑗 ,𝑡′) ), yaw (\ ( 𝑗 ,𝑡′) ), and yaw rate ( ¤\ ( 𝑗 ,𝑡′) ). BOTTOM-ZOOM
(LEFT) Illustration of tracklet generation, with detections (stars) and tracklet proximity regions (dashed).
Example notation for tracklet 𝑗 (red): position (p( 𝑗 ,𝑡) ), velocity (v( 𝑗 ,𝑡) ), Kalman-predicted future position
(p̂( 𝑗 ,𝑡+1) ), true future position (p( 𝑗 ,𝑡+1) ), and future animal detection (u( 𝑗 ,𝑡+1,𝑖′) ).
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Figure 3.2: Combined figure demonstrating camera overlap, bounding box meshing, and animal position
uncertainty. TOP: Transformed individual camera views, with objects in the habitat marked. Yellow –
Dolphin bounding boxes, Green – Drains, Red – Gates between regions, Orange – Underwater windows
(3 total). Correlated bounding boxes are indicated by number, and the habitat-bisecting lines (𝑙𝑠) for each
camera frame in solid red. Distances from Box 2 to the closest frame boundary (𝑑𝑏) and the boundary
to the bisecting line (𝑑𝑙) are highlighted in yellow. MIDDLE: Combined camera views including dolphin
bounding boxes (yellow), with the location uncertainty distribution (A) overlaid for Box 2. BOTTOM: 2D
uncertainty distribution (A) with major (a-a, black) and minor (b-b, red) axes labeled and separately plotted.
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Table 3.2: Block time intervals

Time Interval
Block OTS ITS

1 08:00 – 09:30 09:30 – 10:00
2 10:00 – 11:30 11:30 – 12:00
3 12:00 – 13:00 13:00 – 13:30
4 13:30 – 14:30 14:30 – 15:00
5 15:00 – 16:00 N/A

The ITS blocks (1 and 3) are animal care sessions, and the OTS blocks (2 and 4) are formal
presentations.

may request the same behavior again or move on to a different behavior. When the animals were
in a formal training session (abbreviated ITS), they experienced two formats of training during
the data collection period: non-public animal care sessions and formal public presentations. Time
outside of formal training sessions (abbreviated OTS) was defined as when the animals were not
interacting with ACSs. During the OTS time periods, the ACSs would provide enrichment objects
for the animals to interact with and select which parts of the habitat the animals could access using
gates on either side of the main island. The time intervals for the OTS and ITS blocks are displayed
in Table 3.2.

3.1.2.2 Experimental Equipment

Two AlliedVision Prosilica GC1380C camera sensors with Thorlabs MVL5M23 lenses were sep-
arately mounted in Dotworkz D2 camera enclosures, which were attached to 80/20 T-slotted alu-
minum framing. On the frame, the cameras were spaced approximately 2m apart. The frame was
mounted to a support beam directly above the main habitat, with the cameras angled to give full
coverage of the area when combined. Figure 3.1, top, illustrates the habitat, camera placement,
and field of view coverage. For data collection, the cameras were connected through the Gigabit
Ethernet protocol to a central computer with an Intel i7-7700K CPU. Recordings were executed
using the MATLAB Image Acquisition Toolbox, in the RGB24 color format at a frame rate of
20Hz. Each camera was connected to a separate Ethernet port on an internal Intel PRO/1000 Pt
PCIe card. A separate computer system was used for detection inference, and was outfitted with
an Intel i7-8700K processor clocked to 4.8 GHz and a Nvidia Titan V graphics processing unit in
Tesla Compute Cluster mode.
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3.1.2.3 Network Training

Ground truth data were scored by a trained observer by manually defining bounding boxes that
identified the locations of the dolphins in the training/testing frames (Fig. 3.2, A). These ground
truth data were selected over a range of lighting conditions and dolphin locations to ensure ro-
bustness of the detection network. For each camera, 100 frames were extracted from each of 11
separate recordings, with evenly spaced time intervals between frames. The recordings were col-
lected in May 2017, and February, March, and August 2018. Over 940 frames from each of the left
and right cameras were found to contain usable dolphin locations, i.e. human-detectable dolphin
profiles. Each usable dolphin location in the selected frames was manually given a bounding box
tightly enclosing the visible profile. The detector for the left camera was trained on 1564 profiles
and tested on 662, and the detector for the right camera was trained on 1482 profiles and tested on
662. The dolphin detectors were trained using the MATLAB implementation of Faster R-CNN,
employing the first version of the previously-defined CNN structure as the classification method.

3.1.2.4 Detection Post-Processing

Detections were performed over all 99.5 hours of recorded data from both cameras, at 10Hz inter-
vals (total of 7.16 × 106 frames), using a 95% minimum confidence threshold to ensure accuracy.
The fields of view of the two cameras overlap for a portion of the habitat, resulting in some dol-
phins being detected simultaneously by both cameras. This yielded multiple sets of conflicting
detection bounding boxes spanning the two fields of view, which necessitated associating the most
likely left/right box pairs. Before conflict identification was performed, the detection boxes were
first transformed into a common plane of reference termed the world frame. Using known world
point coordinates, homographies from each camera to the world frame were generated using the
normalized Direct Linear Transform method [109]. These homographies were used to convert the
vertices of the bounding boxes to the world frame using a perspective transformation. Intersect-
ing boxes were identified by evaluating polygonal intersections, and Intersection over Union (IoU)
metrics were computed for intersecting boxes to measure how well they matched. Associations
were identified between pairs of left/right intersecting boxes with the highest mutual IoU values.

Associated boxes’ world frame centroid locations were meshed using a weighted mean. First,
the boundaries of each camera’s field of view were projected into the world frame, allowing us to
obtain the line in the world frame 𝑦-direction defining the center of the overlap region, denoted
𝑙𝑠 = 𝑥𝑚𝑖𝑑 (Fig. 3.2, middle). 𝑥𝑚𝑖𝑑 is the 𝑥-coordinate in the world frame midway between the
physical placement of the cameras. For each detection (𝑢), the distance (𝑑𝑏) in the 𝑥-direction
from 𝑢 to the nearest projected camera boundary line (𝑏𝑛) was then determined. Next, the distance
(𝑑𝑙) in the 𝑥-direction from line 𝑙𝑠 through 𝑢 to 𝑏𝑛 was found. Finally, the weight for the camera
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corresponding to 𝑏𝑛 was calculated as 𝑤𝑛 = 𝑑𝑏/2𝑑𝑙 , with the weight for the other (far) camera as
𝑤 𝑓 = 1 − 𝑤𝑛. This ensured that if detection 𝑢 was on 𝑙𝑠, then 𝑤𝑛 = 𝑤 𝑓 = 0.5, and as 𝑢 moved
closer to 𝑏𝑛, we would have 𝑤𝑛 → 0 and 𝑤 𝑓 → 1.

In specific circumstances, the shapes of the drains at the bottom of the habitat were warped by
the light passing through rough surface water, and resulted in false dolphin detections. Separate
(smaller) image classifiers for each camera were trained to identify these false positive drain detec-
tions, and were run on any detections that occurred in the regions of the video frames containing
the drains. These detectors were strictly CNN image classifiers and were each trained on over 350
images and tested on over 150 images. For the drain detector, the input layer size had the format of
(𝑙𝑑 , 𝑙𝑑 , 3), where 𝑙𝑑 is the mean side length of the detection bounding boxes being passed through
the secondary classifiers. The feature detection layers had the same general structure as the Faster
R-CNN classifier network, except in this case the convolution layers had, in order: 32, 48, 64, and
64 filters each. In the classification layers, the first fully connected layer had a length of 256.

3.1.2.5 Tracklet Formation

Each experimental session involved the detection of multiple animals throughout their habitat.
However, animal detections were done independently for each frame of the video. To extract kine-
matic information from the animals in the video, the detection associations needed to be preserved
across frames. Short continuous tracks (i.e. tracklets) were generated for each detected animal
instance by identifying the most likely detection of that animal in the subsequent frame. To gen-
erate multiple individual tracklets in series of video frames, an iterative procedure of prediction

and association was conducted under a Kalman filter framework with a constant velocity model.
This is not necessary when only a single animal is present in the environment, or if the animal can
be individually identified by the classifier. However, given the resolution and distance from the
habitat of the cameras, identification was rendered impossible, requiring the use of tracklets as a
result. The method for generating tracklets from animal detections was devised and executed by

D. Zhang1, and is included in this dissertation for completeness.
The position of the 𝑖-th detected animal in one video frame at time 𝑡 is denoted as u(𝑡,𝑖) =

[𝑢(𝑡,𝑖)𝑥 , 𝑢
(𝑡,𝑖)
𝑦 ]. Each detection, u(𝑡,𝑖) was either associated with a currently existing tracklet or used

to initialize a new tracklet. To determine which action was taken, for each tracklet, denoted as T(𝑘)

for the 𝑘-th tracklet, this process first predicted the state of the tracked animal in the next frame
(T̂(𝑘,𝑡+1)) based on the current state information of the animal T(𝑘,𝑡) .

1In: J. Gabaldon, D. Zhang, L. Lauderdale, L. Miller, M. Johnson-Roberson, K. Barton, K. A. Shorter, “High-
fidelity bottlenose dolphin localization and monitoring in a managed setting,” To be published in Science Robotics.
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T(𝑘,𝑡) = [p(𝑘,𝑡) , v(𝑘,𝑡)] (3.2)

= [𝑝 (𝑘,𝑡)𝑥 , 𝑝
(𝑘,𝑡)
𝑦 , 𝑣

(𝑘,𝑡)
𝑥 , 𝑣

(𝑘,𝑡)
𝑦 ] (3.3)

T̂(𝑘,𝑡+1) = [p̂(𝑘,𝑡+1) , v̂(𝑘,𝑡+1)] (3.4)

= [𝑝 (𝑘,𝑡+1)
𝑥 , 𝑝

(𝑘,𝑡+1)
𝑦 , �̂�

(𝑘,𝑡+1)
𝑥 , �̂�

(𝑘,𝑡+1)
𝑦 ] (3.5)

where p(𝑘,𝑡) = [𝑝 (𝑘,𝑡)𝑥 , 𝑝
(𝑘,𝑡)
𝑦 ] denotes the filtered position of the animal tracked by the 𝑘-th tracklet

at time 𝑡 and v(𝑘,𝑡) = [𝑣 (𝑘,𝑡)𝑥 , 𝑣
(𝑘,𝑡)
𝑦 ] is the corresponding velocity. Under a constant velocity model,

the predicted next frame position p̂(𝑘,𝑡+1) = [𝑝 (𝑘,𝑡+1)
𝑥 , 𝑝

(𝑘,𝑡+1)
𝑦 ] was obtained by integrating the cur-

rent velocity over one frame period and summing this to the current frame position. The predicted
velocity remained constant.

𝑝
(𝑘,𝑡+1)
𝑥 = 𝑝

(𝑘,𝑡)
𝑥 + 𝑣 (𝑘,𝑡)𝑥 Δ𝑡 (3.6)

𝑝
(𝑘,𝑡+1)
𝑦 = 𝑝

(𝑘,𝑡)
𝑦 + 𝑣 (𝑘,𝑡)𝑦 Δ𝑡 (3.7)

�̂�
(𝑘,𝑡+1)
𝑥 = 𝑣

(𝑘,𝑡)
𝑥 (3.8)

�̂�
(𝑘,𝑡+1)
𝑦 = 𝑣

(𝑘,𝑡)
𝑦 (3.9)

Using the predicted position, the 𝑘-th tracklet checked whether there existed a closest detection
in the next frame that was within the proximity region of the predicted position. If true, that
detection, denoted as u(𝑘,𝑡+1,𝑖) for the 𝑖-th detection in frame 𝑡 + 1 associated with the 𝑘-th tracklet,
was used as the reference signal of the Kalman filter to update the state (position and speed)
of tracklet T(𝑘) . If false, the unassociated tracklet continued propagating forward, assuming the
animal maintained a constant velocity. If a tracklet continued to be unassociated for 5 consecutive
frames (empirically determined), it was considered inactive and was truncated at the last confirmed
association. All information related to the 𝑘-th tracklet was saved after its deactivation:

T(𝑘) = [T(𝑘,𝑡𝑠𝑡𝑎𝑟𝑡 ) , . . . ,T(𝑘,𝑡−1) ,T(𝑘,𝑡) ,T(𝑘,𝑡+1) , . . . ,T(𝑘,𝑡𝑒𝑛𝑑)]𝑇 (3.10)

As illustrated in Figure 3.1, the tracklet formation operation linked each animal’s individual
detections (u) over consecutive frames and returned not only the positions (p) of the animals, but
also the forward speed (𝑣), yaw (heading, \), and turning rate ( ¤\), which could then be used to
parameterize the positional states of the animals.
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Figure 3.3: Diagram of projection and refraction effects on estimated dolphin location. 𝐿 ′ is the location
of the dolphin image apparent to the camera when converted to world-frame coordinates, and 𝐿 is the true
position. Refraction and camera perspective effects then cause the dolphin at depth 𝑑 to be perceived at
position 𝐿 ′ with an offset of 𝛿. The yellow region represents the camera FOV.

3.1.2.6 Position Uncertainty

There was a general position uncertainty for each animal detection due to noise in the Faster R-
CNN detections. This was caused by a combination of limited camera resolution and distortion
of an animal’s image from waves and ripples on the surface of the water. Additionally, since the
homographies used to transform detections from camera to world frame are computed with respect
to the plane of the water’s surface, a detection corresponding to an object not on the surface would
be incorrectly “shifted” along this 2D plane. This is due to refraction and perspective effects
(Fig. 3.3), where an agent’s observed 2D position is shifted from 𝐿 to 𝐿′.

For accurate 3D localization, it is important to find the “shifts” for an animal when it is below
the surface, i.e. correctly project the “shifted” 2D image position to a 3D world position. For
a known depth, a position in top-down view 2D (Fig. 3.2, middle) is projected into 3D via the
following steps:

(i) Before any shift computations, the detections are projected back into their respective camera
frames. This ensures the camera resolution and Field of View (FOV) values are used in the
correct frame of reference.

(ii) Assuming the camera orientation is known, 𝛼𝑐, the angle of the camera image center with
respect to the world-frame 𝑧-axis (world vertical), can be extracted. Using this convention,
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𝛼𝑐 is always ≥ 0. The angle offset of a detection w.r.t. the camera image center is given by:

𝛽 = tan−1 [(2𝑝/𝑟 − 1) tan(𝐹/2)] (3.11)

with 𝛽 ∈ [−𝐹/2, 𝐹/2]. 𝑝 is the pixel value of the object in the image, 𝑟 is the full frame
resolution in pixels, and 𝐹 is the FOV in radians. The angle of the detection with respect to
the world vertical is then given by:

𝛼𝑝 = 𝛽 + 𝛼𝑐 (3.12)

(iii) Next, use the detection angle to compute the necessary shift with respect to the camera
orientation. Using Snell’s Law, the shift is given by:

𝛿 = 𝑑 tan
[
sin−1

(
𝑛𝑎

𝑛𝑤
sin(𝛼𝑝)

)]
(3.13)

where 𝑑 is the depth of the tag in meters, 𝑛𝑎 = 1.0003 is the refraction coefficient of air, and
𝑛𝑤 = 1.330 is the refraction coefficient of water.

(iv) Apply steps (ii) and (iii) for both 𝑥 and 𝑦 image axes. These are the shifts (𝛿𝑥,𝑐, 𝛿𝑦,𝑐) w.r.t.
the camera.

(v) The camera orientation also yields the yaw with respect to the world frame, and this can be
used to rotate the computed 𝛿 values into the world frame through a 2D rotation matrix to
obtain 𝛿𝑤. The true detection 𝑥-𝑦 location, 𝐿, is then obtained with:

𝐿 = 𝐿′ + 𝛿𝑤 (3.14)

where 𝐿′ is the original location estimate.

Despite the use of two cameras, lens FOVs did not allow for full stereo imaging, so animal
depth could not be measured with this experimental setup. This induced uncertainties in the world-
frame 𝑥-𝑦 location estimates that could not be corrected. The detection uncertainty was therefore
represented as a 2D Probability Density Function (PDF), whose size and shape depended on the
location of the detection with respect to the cameras (Fig. 3.2, bottom). The short (minor) axis, 𝐷1,
was a Gaussian uncertainty distribution defined according to a heuristically estimated error in the
camera detections (∼ 0.2 m), and represented the general position uncertainty in the Faster R-CNN
detections (Fig. 3.2, bottom, b-b). The long (major) axis of the distribution, 𝐷2, represented the
position uncertainty caused by the perspective and refraction effects (uncertainty from unknown
depth). A 1D PDF was defined according to previously measured animal depth data (total of 9.8
hours during separate OTS time blocks), obtained via non-invasive tagging, which represented the
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general distribution of depths occupied by the animals. This was convolved with 𝐷1 to produce
the general shape of 𝐷2 (Fig. 3.2, bottom, a-a). The 𝑥-axis length scale for 𝐷2 for a particular
detection was obtained from the maximum position error in the detection’s 𝑥-𝑦 location. This was
the magnitude of the 𝑥-𝑦 position difference (original versus corrected 𝑥-𝑦 position) if the detection
happened to be at maximum depth (∼ 7 m). This magnitude varied dependent on the world-frame
original location of the detection.

3.1.2.7 Mapping Animal Kinematics to Habitat

Heatmaps of dolphin position and speed were used to map animal positional state to the habi-
tat. The dolphins were defined to be static or minimally mobile (drifting) when they were trav-
eling at speeds below 0.5 m s−1, and dynamic otherwise. To generate the positional heatmaps,
a blank 2D pixel map of the main habitat, 𝑀 , was first created. Then, for each pixel represen-
tation 𝑝 of a detection 𝑢, the maximum possible magnitude of location error due to depth was
determined, defined as 𝑒𝑚 (pixels, scale 1 pix = 5 cm), along with the orientation of the error
propagation, 𝜓𝑚 (radians). The perimeter of the habitat served as a hard constraint on the loca-
tion of the animals, thus 𝑒𝑚 was truncated if the location of the point with the maximum possible
shift, [𝑝𝑥 + 𝑒𝑚 cos(𝜓𝑚), 𝑝𝑦 + 𝑒𝑚 sin(𝜓𝑚)], fell outside this boundary. The minor axis of the 2D
uncertainty distribution, 𝐷1, was a 1D PDF in the form of a Gaussian kernel with 𝜎𝑔𝑎𝑢𝑠𝑠 = 0.2𝑠
(0.2 meters scaled to pixels by scaling factor 𝑠 = 20). Next, the depth PDF was interpolated to
be 𝑒𝑚 pixels long, and was convolved with 𝐷1 (to account for measurement uncertainty in the
camera detections). This yielded the major axis 1D PDF, 𝐷2. The 2D (unrotated) occupancy PDF,
𝐸 = 𝐷>

1 𝐷2, was then computed, where 𝐷1, 𝐷2 were horizontal vectors of the same length. The 2D
rotated occupancy PDF, 𝐹, was calculated by rotating 𝐸 by an angle of 𝜓𝑚 through an interpolating
array rotation. The MATLAB implementation of imrotate was used for this calculation. 𝐹 was
then normalized to ensure the distribution summed to 1. Finally, 𝐹 was locally summed into 𝑀 ,
centered at location [𝑥𝑢, 𝑦𝑢] = [𝑝𝑥 + 0.5𝑒𝑚 cos(𝜓𝑚), 𝑝𝑦 + 0.5𝑒𝑚 sin(𝜓𝑚)], to inject the occupancy
probability distribution for 𝑢 into map 𝑀 . This process was then repeated for all detections. For
the sake of visibility, all heatmaps were sub-sampled down to the scale of 1 pix = 1 meter.

A similar process was used to form the speed heatmaps. In a speed heatmap, the values of 𝐹
are additionally scaled by the scalar speed of the animal, 𝑣, that corresponds to detection 𝑢, and
then locally summed into a separate map, 𝑁 (sum 𝐹 · 𝑣 into 𝑁 centered at [𝑥𝑢, 𝑦𝑢]). Element-wise
division of 𝑁 by 𝑀 was performed to generate 𝑆, a map of the average speed per location.

Lastly, the direction of motion of the animals throughout the monitored region was described
using a quiver plot representation. To formulate the quiver plot, two separate heatmaps were
generated, 𝑄𝑥 and 𝑄𝑦, one each for the 𝑥 and 𝑦 components of the animals’ velocities. 𝑄𝑥 was
created using a similar method to the speed heatmap, but in this case 𝐹 was scaled by the 𝑥-
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component of the animal’s velocity (sum 𝐹 · 𝑣 cos(\) into 𝑄𝑥 centered at [𝑥𝑢, 𝑦𝑢]), where \ was
the heading of the animal corresponding to detection 𝑢. Similarly for 𝑄𝑦, 𝐹 was scaled by the
𝑦-component of the animal’s velocity (sum 𝐹 · 𝑣 sin(\) into 𝑄𝑦 centered at [𝑥𝑢, 𝑦𝑢]). The vector
components 𝑄𝑥 and 𝑄𝑦 combined represented the general orientation of the animals at each point
in the habitat.

3.1.2.8 Probability Distributions of Metrics and Entropy Computation

For each time block of OTS and ITS, the PDFs of speed (m s−1) and yaw (rad) were numerically
determined. These were obtained by randomly extracting 105 data samples of both metrics from
each time block of OTS and ITS, and producing PDFs for each metric and time block from these
data subsets.

Additionally, the joint differential entropies of speed and yaw were computed for each time
block of OTS and ITS. In this case, the joint entropy of animal speed and yaw represents the
coupled variation in these metrics for the animals. This indicates that speed-yaw joint entropy can
be considered a proxy for measuring the diversity of the animals’ kinematic behavior. To compute
the joint entropy ℎ for one time block, the randomly sampled speed (continuous random variable
S) and yaw (continuous random variable 𝚿) data subsets (𝑆 and Ψ, respectively) of that time block
were used to generate a speed/yaw joint PDF: 𝑓 (𝑠, 𝜓), where 𝑠 ∈ 𝑆, 𝜓 ∈ Ψ. 𝑓 was then used to
compute ℎ with the standard method:

ℎ(S,𝚿) = −
∫
𝑆,Ψ

𝑓 (𝑠, 𝜓) ln[ 𝑓 (𝑠, 𝜓)]𝑑𝑠𝑑𝜓 (3.15)

3.1.2.9 Kolmogorov-Smirnov Statistics

To evaluate the statistical differences in animal dynamics between time blocks, the two-sample
K-S distances (Δ𝑘𝑠) and their significance levels (𝛼) were computed for each of the following
metrics: speed (m s−1), yaw (rad), yaw rate (rad s−1), and the standard deviations of each [110].
These were done by comparing randomly-sampled subsets of each time block, with each subset
consisting of 104 data samples per metric. Only time blocks of similar types were compared (i.e.
no ITS blocks were compared to OTS blocks, and vice-versa). The computations were performed
using the MATLAB statistics toolbox function kstest2.
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3.1.3 Results

3.1.3.1 Detector and Filter Performance

During evaluation, the Faster R-CNN detectors for the left and right cameras achieved Average
Precision scores of 0.76 and 0.78, respectively. The CNN drain classifiers for the left and right
cameras achieved respective accuracy scores of 92% and 94%. Processing all 99.5 hours of record-
ings yielded 5.92 × 106 detections for the left camera and 6.35 × 106 detections for the right. The
initial set of detections took ∼ 8.4 days to compute when performed on the Titan V computer
system. Of these, 3.83 × 104 (0.65%) detections from the left camera and 3.02 × 104 (0.48%) de-
tections from the right camera were found to be drains misclassified as dolphins. After removing
the misclassified detections, meshing the left and right detection sets yielded a total of 1.01 × 107

individual animal detections within the monitored habitat. The tracklet generation method used
in this work associated animal track segments containing gaps of up to 4 time steps. As a re-
sult, the prediction component of the tracklet generation method’s Kalman filter was used to fill in
short gaps in the tracking data. Generating tracklets from the meshed detections yielded a total of
1.24 × 107 estimated dolphin locations, from 3.44 × 105 total tracklets.

3.1.3.2 Spatial Distribution — Position

During OTS, the tracked animals were found to be in a dynamic swimming state ∼ 77% of the
time and a static state for ∼ 23% of the time. The static OTS behavior tended to be associated
with particular features of their habitat: the gates that lead to the other areas of the habitat or at the
underwater windows that offered views of the animal care specialist staff areas (Fig. 3.4). When
swimming dynamically during OTS, the dolphins tended to spend more time near the edges of
their habitat, with the most time focused on the island side with the gates and the windows (Fig.
3.5, left column). This was especially true during Block 5, with additional weight placed along the
edge of the central island.

Throughout ITS, the dolphins were asked to engage in dynamic swimming tasks ∼ 62% of the
time, and were at station (in front of the ACSs) for the remaining ∼ 38% of the time. During ITS,
the dolphins had a heavy static presence in front of the central island, where the animals were sta-
tioned during formal training programs. Less emphasis was placed on the edges, contrasted to their
locations during OTS (Fig. 3.6, left column). During ITS, the ACSs presented discriminative stim-
uli or gestures corresponding to specific animal behavior, which defined the spatial distributions
of the dolphins’ movements during these time blocks. Additionally, there were spatial distribu-
tion similarities between training sessions of similar type, e.g. Blocks 1, 3 were animal care and
husbandry sessions, and 2, 4 were formal public presentations. Note the structure of the spatial
distributions across the top of their habitat, where during the care sessions (Blk. 1, 3) the dolphins’
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Out of Training Session In Training Session

Figure 3.4: Static position distributions for OTS and ITS. A note on the format of the training sessions:
Dolphins spent more time stationed at the main island during public presentations than non-public animal
care sessions. During formal public presentations, ACSs spend a higher portion of the training session on
the main island because it is within view of all of the public attending the presentation. Non-public animal
care sessions are more fluid in their structure than public sessions. ACSs often use the entire perimeter of
the habitat throughout the session.

positions were focused on specific points in the area, while during the presentations (Blk. 2, 4)
their positions were distributed across the edge of the central island. This captured the formation
used during presentations with animals distributed more uniformly across the island.

3.1.3.3 Spatial Distribution — Speed/Quiver

In Block 1 of OTS, the dolphins had relatively low speeds (mean 1.30 m s−1) across their habitat,
and based on the vector field of the quiver plot for the block, were engaged in large, smooth
loops along the edges of the habitat (Fig. 3.5, right column). This was contrasted with Block 2,
which saw a higher general speed (mean 1.57 m s−1) as well as diversified movement patterns, with
the right half exhibiting counter-clockwise chirality while the left half maintained the clockwise
motion pattern. Blocks 3-5 exhibited higher mean speeds (Blk. 3: 1.45 m s−1, Blk. 4: 1.41 m s−1,
Blk. 5: 1.43 m s−1) than Block 1, and lower than 2, with the dolphins’ movement patterns shifting
between each OTS block.

During ITS, the care blocks’ (Blk. 1, 3) speed distributions and vector fields qualitatively
demonstrated similar structures, while those of the presentations (Blk. 2, 4) were more mixed,
with more similarities along the left and right far sides, but fewer in the center (Fig. 3.6, right
column). The mean speeds did not share particular similarities between blocks of similar type
(Blk. 1: 1.39 m s−1, Blk. 2: 1.45 m s−1, Blk. 3: 1.44 m s−1, Blk. 4: 1.39 m s−1).

3.1.3.4 Statistical Comparison of Metrics

Figure 3.7, top, displays the overlaid PDFs of the speed and yaw metrics during OTS, and Figure
3.7, middle, displays the PDFs during ITS. The K-S distances for all six metrics were reported in
Table 3.3, with all values rounded to 3 digits of precision. For OTS, we saw from the K-S results
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Figure 3.5: Spatial distributions for dynamic OTS, with position distributions along the first column and
speed distributions/quiver plots along the second column. Prior to the first full training session of the day at
9:30 a.m., the dolphins were engaged in low intensity (resting) swimming clockwise around the perimeter
of the habitat, with the highest average OTS speeds recorded after the 9:30 sessions. From there, speeds
trail off for the subsequent two time periods. The 1:30-2:30 p.m. time block is characterized by slower
swimming in a predominantly counterclockwise pattern. There is an increase in speed and varied heading
pattern during the 3:00-4:00 time block.
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Figure 3.6: Spatial distributions for dynamic ITS, with position distributions along the first column and
speed distributions/quiver plots along the second column. Speeds across the entire habitat are higher during
public presentations than non-public animal care sessions because high-energy behaviors (e.g., speed swims,
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Though non-public presentations include high-energy behaviors, non-public animal care sessions also focus
on training new behaviors and engaging in husbandry behaviors. Public presentations provide the opportu-
nity for exercise through a variety of higher energy behaviors, and non-public sessions afford the ability to
engage in comprehensive animal care and time to work on new behaviors.
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that Blocks 1 and 2 varied the most with respect to the others in terms of speed, which was observed
in Figure 3.7, top, while the yaw values were not generally significantly different, again observed
in Figure 3.7, middle, (given the high number of samples used to generate the K-S statistics, we
were able to compare the significance levels to a stronger threshold of 𝛼𝑐𝑟𝑖𝑡 = 0.001). Across the
board, Block 2 generally differed significantly from the rest of the OTS blocks for the most metrics,
with Block 1 following close behind. In contrast, Blocks 3-5 differed the least significantly from
each other, indicating similarities in the dolphins’ dynamics patterns for Blocks 3-5.

For ITS, we note that the significant differences in metrics generally followed the structure type
of each ITS block: comparisons between Blocks 1 vs. 3, and 2 vs. 4, were found to be significantly
different the least often. This was to be expected, given Blocks 1 and 3 were animal care sessions,
and 2 and 4 were presentations. Of particular note are the yaw std. dev. and yaw rate std. dev.
metrics, with entire order of magnitude differences in K-S distances when comparing similar vs.
different types of ITS blocks.

3.1.3.5 Speed and Yaw Joint Entropy

The joint differential entropies of speed and yaw per time block are displayed in Figure 3.7, bottom,
with values reported in Table 3.4. The time blocks in this figure were presented in chronological
order, and with that in mind we observed that the first blocks of each OTS and ITS had the least
joint entropy (variation in speed and yaw throughout the time block), followed immediately by a
peak in the second block of each. Subsequent time blocks for both OTS and ITS then yielded lower
entropies that were sustained. Overall, ITS blocks were observed to have higher speed-yaw joint
entropy than OTS blocks in similar time windows.

3.1.4 Discussion

3.1.4.1 Automatic Dolphin Detection

This contribution presents a framework that enables the persistent monitoring of managed dolphins
through external sensing, performed on a scale that would otherwise require a prohibitively high
amount of human effort. Both the Faster R-CNN dolphin detection and CNN drain detection
methods displayed reliable performance in testing, and enabled large-scale data processing at rates
not achievable by humans. Given that the total duration of video processed was ∼ 199 hours (2
cameras × 99.5 hours each), an inference time of ∼ 202 hours (1.013×) represents at minimum an
order-of-magnitude increase in processing speed when compared to human data annotation. This
estimate was obtained from prior experience in manual animal tracking, which could take over 10
hours of human effort per hour of video (frame rate of 10 Hz) annotated for a single animal. As
such, the performance of this detection framework presents new opportunities in long-term animal
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Table 3.3: Kolmogorov-Smirnov session comparison

Speed Yaw Yaw Rate
Blk. Δ𝑘𝑠 𝛼 Δ𝑘𝑠 𝛼 Δ𝑘𝑠 𝛼

O
T

S
1 2 0.187 < 0.001 0.028 < 0.001 0.047 < 0.001
1 3 0.095 < 0.001 0.021 0.025 0.034 < 0.001
1 4 0.080 < 0.001 0.019 0.049 0.057 < 0.001
1 5 0.079 < 0.001 0.021 0.027 0.035 < 0.001
2 3 0.096 < 0.001 0.028 < 0.001 0.017 0.099
2 4 0.111 < 0.001 0.025 0.003 0.028 < 0.001
2 5 0.110 < 0.001 0.023 0.012 0.016 0.148
3 4 0.026 0.002 0.019 0.046 0.025 0.004
3 5 0.026 0.003 0.022 0.012 0.010 0.685
4 5 0.018 0.093 0.013 0.403 0.030 < 0.001

IT
S

1 2 0.059 < 0.001 0.028 < 0.001 0.022 0.017
1 3 0.021 0.019 0.020 0.039 0.008 0.871
1 4 0.059 < 0.001 0.028 0.001 0.021 0.020
2 3 0.061 < 0.001 0.023 0.009 0.028 < 0.001
2 4 0.043 < 0.001 0.010 0.638 0.008 0.940
3 4 0.068 < 0.001 0.029 < 0.001 0.028 < 0.001

Speed σ Yaw σ Yaw Rate σ

Blk. Δ𝑘𝑠 𝛼 Δ𝑘𝑠 𝛼 Δ𝑘𝑠 𝛼

O
T

S

1 2 0.047 < 0.001 0.035 < 0.001 0.076 < 0.001
1 3 0.012 0.434 0.026 0.002 0.053 < 0.001
1 4 0.025 0.004 0.029 < 0.001 0.062 < 0.001
1 5 0.014 0.249 0.015 0.222 0.040 < 0.001
2 3 0.047 < 0.001 0.031 < 0.001 0.033 < 0.001
2 4 0.065 < 0.001 0.039 < 0.001 0.043 < 0.001
2 5 0.051 < 0.001 0.048 < 0.001 0.043 < 0.001
3 4 0.025 0.005 0.016 0.153 0.014 0.264
3 5 0.008 0.889 0.026 0.002 0.026 0.002
4 5 0.025 0.003 0.032 < 0.001 0.035 < 0.001

IT
S

1 2 0.033 < 0.001 0.108 < 0.001 0.092 < 0.001
1 3 0.027 0.001 0.012 0.423 0.016 0.139
1 4 0.040 < 0.001 0.096 < 0.001 0.086 < 0.001
2 3 0.046 < 0.001 0.103 < 0.001 0.100 < 0.001
2 4 0.014 0.303 0.014 0.264 0.026 0.003
3 4 0.056 < 0.001 0.093 < 0.001 0.095 < 0.001

Table 3.4: Speed and yaw joint differential entropy

OTS ITS
Block 1 2 3 4 5 1 2 3 4

Entropy 2.358 2.599 2.543 2.508 2.541 2.521 2.675 2.584 2.605
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Figure 3.7: Speed and yaw probability distributions and joint differential entropies, respective to time block.
TOP: Probability density functions of animal speed (m s−1) for OTS (left) and ITS (right). MIDDLE: Prob-
ability density functions of yaw (rad) for OTS (left) and ITS (right). BOTTOM: Joint differential entropy of
speed and yaw for each block of OTS (left) and ITS (right), with limited-range 𝑦-axes to more clearly show
value differences.
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monitoring, and enables the automated processing of longer duration and more frequent recording
sessions. For Section 3.1, the detection framework provided the large-scale animal position and
dynamics data necessary to yield insights into animal kinematic behavior and spatial use.

3.1.4.2 Kinematic Diversity

Joint dynamic entropy was used to quantify differences in animal kinematic diversity throughout
the day to explore how temporal changes in the dolphins’ habitat would result in modified kine-
matic diversity levels (Fig. 3.7, bottom). While the use of entropy as a proxy for kinematic diversity
has been applied in the past to characterize prey motion unpredictability for predator evasion, in
this work it serves to provide a measure of animal engagement [111]. We observed the lowest
kinematic diversity in the mornings as the ACSs were arriving at work and setting up for the day.
The highest kinematic diversity when not interacting with animal care specialists then occurred
immediately after the first ITS time block. In general, the first time blocks of both OTS and ITS
showed the lowest kinematic diversity of their type, the second of each showed the highest, and
the following blocks stabilized between the two extremes. The speed/quiver plots (Figs. 3.5-3.6,
right) provide a qualitative understanding of the entropy results. For example, in Block 1 of OTS
(Fig. 3.5, top-right) the dolphins engaged in slow swimming throughout their habitat in smooth
consistent cycles along the environment edge, yielding the lowest joint entropy. Joint entropy then
increased during both the morning ITS and OTS blocks and remained elevated for the rest of the
day, representing higher animal engagement through the middle of their waking hours.

This is consistent with previous research on animal activity and sleep patterns, which reports
a diurnal activity cycle for managed animals [51]. However, it is interesting to note that changes
in animal kinematic diversity throughout the day during OTS are not gradual: the OTS time block
displaying the minimum value is immediately followed by the block displaying the maximum, and
are only separated by the first training session (30 minute duration). This sudden shift may not be
fully explained by only the dolphins’ diurnal activity cycle, and may be related to the fact that their
first daily interactions with the ACSs occur between these two OTS time blocks.

3.1.4.3 Habitat Use

The kinematic data also enabled the investigation into how features in the habitat influenced animal
behavior and spatial use, particularly during OTS. The animals tended to have a general focus
on the area between the gates along the edge of the central island (Fig. 3.5, left). Additionally,
throughout the OTS position plots (including static, Fig. 3.4, left) four animal-preferred locations
were observed. The two hot spots to the left and right of the central island are gates (Fig. 3.1,
middle, Fig. 3.2, top), where the dolphins could communicate with conspecifics when closed or
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pass through to other areas of their habitat when open. Conversely, the two hot spots nearer the
middle of the island edge corresponded to underwater windows that led to an ACS work area (two
central windows in Fig. 3.2, top/middle). Through these windows the dolphins may observe the
ACSs, view conspecifics in one of the back habitats (through an additional window, not shown
in Fig. 3.2), or observe enrichment occasionally placed on the other side of the glass (mirrors,
videos, etc.). Regions of the habitat in proximity to these two windows experienced some of the
highest occupancy in all OTS position plots, both static and dynamic. This indicates that particular
attractors for the dolphins’ attention were observable through those windows, whether they were
the ACSs, conspecifics, or enrichment.

These attractors also influenced the dolphins’ kinematics and activity levels. Of all the regions
in the environment, only the positions in front of the central windows consistently recorded peak
or near-peak location-specific animal swimming speeds for all OTS time blocks (Fig. 3.5, right).
When combined with the results from the position distributions (Fig. 3.5, left), this implies that
these dolphins not only focused their attention on these attractors, their presence correlated to
higher activity levels in the dolphins when swimming in their vicinity.

3.1.4.4 Behavior Classification from Dynamics Metrics

During ITS blocks, ACSs asked for specific behaviors from the dolphins and these behaviors were
often repeated. Elements of public educational presentations (ITS 2/4) were varied to include a
mixture of both high and low energy segments, and this blend resulted in similar dynamic patterns
for the public sessions. In contrast, the non-public animal husbandry and training sessions (ITS
1/3) were less dynamic overall, and yielded similar dynamic patterns for these sessions. Qualita-
tive similarities in the pairs of animal training sessions were observable in both the position and
speed/quiver plots in Figure 3.6, and the probability density functions presented in Figure 3.7.

The K-S statistics were used to quantify the similarities and differences between time blocks
within both OTS and ITS. As the ACSs requested similar behaviors during ITS blocks of the same
type, we expected similarities in the dynamics metrics for Blocks 1 vs. 3 and Blocks 2 vs. 4, and
differences between the metrics for blocks of different types. The pattern displayed by the K-S
statistics in Table 3.3 (particularly in the std. devs.) showed by far the most significant differences
between time blocks of different types, and the fewest for blocks of the same type. Without prior
knowledge of the block types, it would be possible to use this pattern to identify that Blocks 1
and 3 were likely the same type, as were 2 and 4. This demonstrated that the presented method of
obtaining and analyzing dolphins’ dynamics metrics was sufficient to differentiate between general
behavior types.

This was useful for analyzing the OTS results, as the position and speed/quiver plots in Figure
3.5 only showed patterns in the animals’ location preferences within their habitat. In contrast, the
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K-S statistics gave a clearer view of the differences between OTS time blocks. Block 2 separated
itself significantly from all other time blocks in nearly every metric, while Block 1 was in a similar
position (though not as pronounced). Blocks 3-5 showed few significant differences for metrics
comparisons between each other. This indicated that the dolphins had more distinct dynamics for
Blocks 1 and 2, and maintained similar dynamics patterns throughout Blocks 3-5. When combined
with the joint differential entropy values, these results indicated there may be three general OTS
behavior types for the dolphins in this dataset (in terms of kinematic diversity [KD]): “Low KD” at
the beginning of the day (Block 1), “High KD” immediately after the first training session (Block
2), and “Medium KD” for the remainder of the day (Blocks 3-5).

3.2 Persistent Biologging Tag Speed Sensing

The contribution in this section integrates a uni-directional turbine-based fluid speed sensor into a
bio-logging tag and presents a systematic evaluation and calibration of the resulting system. The
sensor configuration used in each experiment is defined in Section 3.2.1. In Section 3.2.2, the
performance of the integrated system is evaluated in both steady and variable flow speeds using
particle image velocimetry (PIV) to measure the local flow at the sensor and in the free stream [112,
113]. The characterized system was then used in Section 3.2.3 to make measurements of speed
and total distance traveled from bottlenose dolphins in a managed environment during a controlled
swimming task. Finally, Section 3.2.4 describes the uncertainty analysis that was performed to
evaluate the inter-and-intra-sensor reliability of four custom made tag housings with integrated
sensors. The inclusion of the sensor on a biologging tag is intended to provide a platform for
energetics estimation (Chapter 4), and improve localization estimates of free-swimming animals
(Chapter 5).

3.2.1 Configurations

The physical structure of the speed sensor is an ellipsoidal 5 mm diameter micro-turbine with 2
curved blades, connected to a fin through both ends of a wire passing through its central axis.
The wire is secured to a plastic fin that is attached to a surface using adhesive. The turbine was
originally developed by Coxmate Pty. Ltd. to measure the through water speed of racing shells,
and is marketed to the public as a “Micro Impeller.” As with the racing shells, cetacean movement
can be assumed to be in the direction of motion.

For two experiments in this chapter, the off-the-shelf ellipsoid/fin assembly was secured di-
rectly to an existing DTAG3 bio-logging tag (Configuration A, Fig. 3.8, bottom-left), and oriented
such that the sensitive direction corresponds with the forward direction of the instrument (Fig. 3.8,
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top). The turbine contains a magnet, whose field strength is recorded by a magnetometer in the
tag housing (Fig. 3.9). Moving fluid rotates the turbine, creating a magnetometer signal that fluc-
tuates at the turbine rotation frequency. The frequency of the turbine signal is then correlated with
the fluid speed in the vicinity of the sensor. Figure 3.8, top, also presents experimentally derived
speed data from a bottlenose dolphin during a continuous swimming task (black). As the animal
makes propulsive fluke strokes, the speed oscillates around an average value (𝑢𝑎𝑣𝑒) with a given
frequency ( 𝑓 ) and amplitude (𝑎𝑝𝑒𝑎𝑘 ) that are dependent on the animal’s gait and speed. The ability
of a uniaxial speed sensor to capture the full signal is dependent on the location of the tag and the
amount of out-of-plane motion the tag will experience on the swimming animal.

A separate experiment used a custom housing (Configuration B) designed specifically to in-
tegrate the ellipsoidal speed sensor (Fig. 3.8, bottom-right). The new housing was 3D-printed
on a Formlabs (Somerville, MA) Form 2 printer, using Durable resin. The housing measures
15.0 × 7.4 × 4.7 cm. The micro-turbine was removed from its original plastic mounting fin, and
directly inserted into the integrated mounting fin on the printed tag body via Nitinol wire. The use
of the 3D printed body improved the repeatability of the manufacturing process and enhanced the
structural strength of the exposed fin and rotating turbine, important considerations for an instru-
ment used with large marine mammals. In the new design, turbine rotations are directly counted
via a Panasonic AN48846B Hall-effect sensor, capable of detecting rotations of up to ∼ 1500 Hz,
which are written to a data file at 0.2 second intervals.

3.2.2 Calibration Experiment - Flume

3.2.2.1 Method

Sensor Configuration A was first calibrated by measuring flow speeds and turbine rotational fre-
quency in steady flow using a flow chamber. A cylinder was then placed in front of the tag to
create oscillating flows to test the sensor’s response to a dynamic input. For both experiments,
the flow over the tag and turbine was visualized in a temperature controlled recirculating flume
(Engineering Laboratory Design, Inc., freshwater, 20°C) using Particle Image Velocimetry (PIV)
(Fig. 3.9). The test section of the flume was 1730 mm in the streamwise direction, 450 mm in the
cross-stream direction, and 450 mm in depth. The tag, which is 175 mm long, 100 mm wide, and
38 mm tall, was mounted on the downward facing side of a flat plate, suspended horizontally in the
flume test section. The plate spanned the full test section length and width, and its bottom surface
was 230 mm above the bottom of the flume. The top of the tag was approximately 190 mm from
the bottom of the flume. The leading edge of the plate was machined to a 10°knife edge to control
boundary layer formation. The tag was centered in the cross-stream direction and the front end of
the tag was 372 mm behind the leading edge of the flat plate (i.e., the inlet of the test section). Flat
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plate boundary layer theory, Blasius for laminar flow and 1/7th power profile for turbulent [114],
predicts the boundary layer thickness on the plate to be in the range of 3 – 14 mm at the location
of the tag for all of our experiments, taking into account the potential of the boundary layer flow
being laminar or turbulent. Therefore, the turbine — spanning 43 to 52 mm above the flat plate —
was not within the boundary layer of the flat plate. A rough estimate of the boundary layer on the
tag body from the same flat plate theories is 1 – 4 mm. Since the turbine spans 5 – 14 mm above
the tag surface, it is not expected to be in the tag boundary layer either. Most importantly, this fact
was supported by the PIV data.

The turbine was subjected to a steady free-stream flow for 33 minutes, incrementally down-
stepping flow for 16 minutes, and up-stepping flow for 17 minutes, where each step in flow speed
was observed to reach steady-state before transitioning to subsequent steps. This portion of the
experiment provided distinct, extended sections of consistent flow, at varying flow rates, used in the
subsequent turbine rotation frequency/free-stream speed correlation analyses. Mean streamwise
free-stream flow speeds, 𝑈, ranged from 0.28 to 1.1 m/s representing length (or local) Reynolds
numbers, Re𝑥 , of 1 − 4 × 105 at the front of the tag (𝑥 = 372 mm).

Next, the performance of the sensor Configuration A in variable flow was examined. To create
an oscillating flow at the sensor, a vertical cylinder with a diameter, 𝐷, of 48 mm and a height of
200 mm was mounted to the plate approximately 150 mm ahead of the tag (Fig. 3.9, bottom). At
the Re𝐷 of these experiments (2−5×104), it is well known that vortices are shed from the cylinder
at a frequency, 𝑓 , that can be predicted using the Strouhal number:

𝑆𝑡 =
𝑓 𝐷

𝑈
(3.16)

Vortex shedding has been found to result in a relatively universal Strouhal number of about
0.20 over a wide range of Re𝐷 including our range of Re𝐷 . Therefore, for a given flow speed and
cylinder diameter, the frequency of the fluid oscillations can be calculated, and will increase with
free-stream speed. For the oscillatory flow test, the cylinder and turbine-tag arrangement was first
exposed to a steady free-stream flow rate for 9 minutes. Next, the speed was stepped down over 12
minutes until the flow was too slow to turn the turbine. Then, the flow was stepped upwards over a
period of 6 minutes. Ultimately, 7 distinct mean free-stream flow speeds, 𝑈, were tested, ranging
from 0.43 to 1.1 m s−1. Note that speeds measured for the oscillatory flow trials refer to the flow
speeds measured in the wake of the cylinder by PIV just upstream from, or “near”, the turbine,
𝑢𝑛𝑒𝑎𝑟 , and directly adjacent the turbine, 𝑢𝑠𝑒𝑛𝑠 𝑛𝑟 , and are computed using the calibration from the
steady flow trials. Those flow speeds are lower (0.3 – 0.7 m s−1) than the mean free-stream flow
speeds,𝑈, impinging on the cylinder and turbine-tag arrangement.

The set-up and parameters for PIV were as follows. 70 g of white nylon particles (Vestosint
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1164, mean diameter 50 µm, density 1.06 g cm−3, Evonik Industries) were added to the flume (vol-
ume 5.74 m3) and illuminated them with a pulsed laser sheet 1-2 mm in thickness and wide enough
to visualize a region of flow 160 mm in the streamwise direction. The laser (Firefly, Oxford Lasers,
808 nm, 0.2 – 30 mJ/pulse) has built-in optics to generate the laser sheet. It was mounted on a 3-
axis motorized traverse under the transparent bottom of the flume and aimed upward toward the
upside-down tag (Fig. 3.9, Side View). The sheet was oriented parallel to the streamwise direction
and fell along the centerline of the tag. This allowed for the illumination of the flow in the plane
of the turbine sensor and in the free stream.

The particles were imaged with a monochrome digital camera with a resolution of 1024×1024
8-bit pixels (Fastcam SA3, Photron, 50 mm AF Nikkor lens, Nikon) mounted perpendicular to
the light sheet on a 2-axis motorized traverse next to the test section. The motorized traverses,
constructed of linear slides (Techno-Isel) and controlled by software and hardware from National
Instruments (LabVIEW, legacy FlexMotion toolbox and PCI-7344 motion controllers), allowed
the camera and laser sheet to be precisely positioned and focused. They were also used to move
the camera FOV up-and-downstream to create streamwise mosaics of the flow around the tag
(Fig. 3.11, top). FOVs were 110 mm×110 mm for the PIV data used to calibrate and compare
the turbine velocity readings, and 157 mm×157 mm for the mosaics. The mosaics were not used
to calibrate the turbine or determine velocities in oscillatory flow experiments, they were simply
used to visualize the time-averaged flow field around the entire tag. Image fields of view were
auto-calibrated (DaVis 8.2, La Vision, Inc.) from pixels to millimeters using an image of a grid of
2.0 mm diameter dots on 1.00 cm centers.

The camera acquired images at 60 Hz, but the experiments were carried out in a dark laboratory
and the laser pulses were timed to straddle the exposure periods of pairs of successive images,
producing pairs of strobe images of particles in the flow separated by 0.4 – 2.0 msec (shorter for
faster flow to restrict particle displacement in pixels to single digits for PIV algorithm accuracy).
This results in a flow field visualization rate of 30 Hz. The velocity fields were calculated from the
strobe pairs using a multi-pass 2D Fast-Fourier Transform (FFT) approach (DaVis 8.2, La Vision,
Inc.), which essentially cross-correlates the particle patterns in corresponding subwindows of an
image pair to find the mean particle displacement in each subwindow location. We performed
one FFT pass for 64 × 64 pixel subwindows and 2 passes for 32 × 32 pixel subwindows, all with
50% overlap of one subwindow with another as the algorithm moved through an image pair. This
resulted in velocity fields with a 64 × 64 grid of 2D vector components over the image FOV.
Regions of the image showing the tag were masked from the algorithm.

The density of particles determined from the images was about 540 particles cm−3. This is
roughly in keeping with the mass of particles added to the flume and distribution of particle diam-
eter about the mean of 50 µm. More importantly, sample images from the experiment gave a mean
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of 12.7 particles per 32 × 32 subwindow with a standard deviation of 2.9. This degree of density
and homogeneity of seeding resulted in very good velocity vector calculations. The uncertainties
in the PIV velocities in the steady flow trials were only 0.9% – 1.9%. In the oscillatory flow cases
— with the upstream cylinder —the uncertainties were higher (7.4% – 18.0%) as expected due
to increased velocity gradients in the flow behind the cylinder causing greater deformation of the
particle patterns in strobe image pairs. Nevertheless, time-averaged velocities and power spectra
of the velocities determined by PIV and the turbine sensor in the cylinder experiments showed
good agreement. The uncertainties in the PIV velocities were determined using LaVision’s PIV
software, DaVis 8.4. The software uses a method that compares the actual correlation of particle
patterns in subwindow pairs to the ideal correlation that assumes no deformation of the particle
pattern [115].

PIV image data was taken for 10 seconds at each flow speed used in the experiments. This
resulted in 300 PIV velocity fields per flow speed. In 10 seconds, 23 – 100 separate volumes of
fluid passed through the FOV given our range of oncoming flow speeds, 𝑈. The free-stream flow,
𝑈 or 𝑢 𝑓 𝑠, and flow near the turbine, 𝑢𝑛𝑒𝑎𝑟 , were determined by sampling sub-regions of the PIV
fields at roughly the starred positions on Figure 3.10, top. The sub-region for determining 𝑢 𝑓 𝑠
was a rectangle 40 mm long and 20 mm tall, 110 mm from the flat plate, which contained 276
velocity vector grid points. The sub-region for determining 𝑢𝑛𝑒𝑎𝑟 was a rectangle 25 mm long
and 10 mm tall, but rotated 22° so it could be set very close to the upstream edge of the angled
turbine mount. It was positioned outside of the tag boundary layer and contained 85 grid points.
A streamwise velocity vs. time at each of these positions was generated from the spatial average
of streamwise velocity over the sub-regions in each of the 300 velocity fields in a 10 sec sequence.
The time-averages of those velocity time series were used to determine overall average velocities
as in Figure 3.10, middle-right. Standard deviations in velocity (𝑢 𝑓 𝑠 and 𝑢𝑛𝑒𝑎𝑟) in these time series,
in the steady flow cases, were only 0.01 – 0.03 m s−1 for means of 0.28 – 1.17 m s−1, respectively.

Mosaics of the velocity field around the tag were created at flow speeds of 𝑈 = 0.36, 0.73,
and 1.1 m s−1. The traverses carrying the camera and laser were moved to obtain four partially
overlapping streamwise FOVs resulting in a velocity field 515 mm in the streamwise direction and
157 mm in the vertical. The field begins 179 mm upstream of the tag. At each FOV position and
free-stream speed, 𝑈, the 300 velocity fields were averaged to produce a time-averaged velocity
field. These were then knit together using position information from the motorized traverse, creat-
ing a new grid over the 515 mm×157 mm area, and using MATLAB’s linear interpolation function,
interp2. This was sufficient given that the mosaics were used primarily for a qualitative look at
flow over the tag. Figure 3.10 (top) shows a portion of the mosaic for𝑈 = 1.1 m s−1.

The raw turbine magnetometer signal was sampled at 200 Hz. To calculate the frequency
of the measured signal, a spline interpolant was used to locate zero-crossings in the sinusoidally
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Figure 3.10: Results from the steady (i.e. unobstructed) flow tests. TOP: PIV calculated flow field during
the fastest condition (𝑈 = 1.1 m s−1). As expected, the shape of the tag increases the speed of the fluid
as it moves over the front of the body at the sensor location, �̄�𝑛𝑒𝑎𝑟 = 1.2 m s−1. MIDDLE: Measurements
of the changing magnetic field created by the spinning turbine made by the tag magnetometer during the
𝑈 = 1.1 m s−1 condition are shown on the left. The calibration generated during the experiment near the
sensor(�̄�𝑛𝑒𝑎𝑟 , red squares), and the free-stream (𝑈, black circles), along with the linear fits to the data, are
shown on the right. The secondary lines represent the 95% confidence interval. BOTTOM: A comparison
of the free-stream speed measurements during the 𝑈 = 1.1 m s−1 condition made using PIV (𝑢 𝑓 𝑠), and the
turbine (𝑢𝑠𝑒𝑛𝑠 𝑓 𝑠), using the turbine calibration from the mean free-stream flow (middle-right of this figure,
black).
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Figure 3.11: Results from the oscillatory flow tests. TOP: Streamwise flow speeds in the wake of a cylinder
by the turbine (𝑢𝑠𝑒𝑛𝑠 𝑛𝑟 , gray) and PIV (𝑢𝑛𝑒𝑎𝑟 , black) exhibit a similar high frequency oscillation with
comparable low frequency speeds (red solid and dashed; free-stream flow,𝑈 = 0.51 m s−1). The magnitudes
do not track precisely, but a power spectrum of the two time traces shows that the oscillations do have
essentially the same frequency (MIDDLE). BOTTOM: A comparison of dominant frequencies of oscillation
from the power spectra (left) and the mean fluid speed (right) measured by the turbine vs. the measured PIV
data near the sensor. Covariance ellipses for the velocity data are also shown.
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fluctuating signal using built-in MATLAB spline interpolation functions. To ease computation re-
quirements, these interpolation analyses were performed for 5 second intervals of the data, and the
times of the zero crossings of each interpolated interval were extracted and assembled in a vector.
Each zero-crossing represents the starting point of a one-half period of rotation of the turbine; the
rotation periods of the turbine were therefore obtained by determining the time differences be-
tween every other zero-crossing. These period durations were calculated in seconds, and inverted
to give the turbine’s instantaneous frequency, 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒, in Hertz. The running standard deviation
of the frequency for each test was calculated using a sliding centered window of 801 samples.
The steady-state standard deviation in turbine frequency was calculated for each flow rate by man-
ually determining the steady-state regions in each test and taking the standard deviation. These
steady-state regions were determined by observing where the flow would settle for each test, and
heuristically picking regions within these bounds.

Linear regressions between PIV-generated mean flow speeds and the corresponding mean
𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 were calculated to display the correlation between the 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 and flow speeds at two lo-
cations: the free stream and near the sensor. In this section, instantaneous streamwise free-stream
flow speed is represented as 𝑢 𝑓 𝑠, mean streamwise free-stream flow speed as 𝑈 (i.e., the time av-
erage of 𝑢 𝑓 𝑠), instantaneous streamwise flow near the sensor as 𝑢𝑛𝑒𝑎𝑟 , and the time average of the
latter as �̄�𝑛𝑒𝑎𝑟 . To clarify, 𝑢 𝑓 𝑠,𝑈, 𝑢𝑛𝑒𝑎𝑟 , and �̄�𝑛𝑒𝑎𝑟 , all correspond to to PIV-measured flow speeds.
Each 95% Confidence Interval (CI) of each regression are shown as secondary lines of lower in-
tensity. 𝑃-values were calculated to assess statistical significances. 𝑢𝑠𝑒𝑛𝑠 𝑓 𝑠 is used to represent
the instantaneous flow as estimated by the turbine, when the turbine is calibrated using the PIV-
measured free-stream steady flow. Similarly, 𝑢𝑠𝑒𝑛𝑠 𝑛𝑟 is used to represent the turbine-estimated
flow when the turbine is calibrated using the PIV-measured steady flow near the sensor.

3.2.2.2 Results

PIV data were used to reconstruct flow field data for the recirculating flume experimental condi-
tions. Figure 3.10, top, presents a representative flow field during the 𝑈 = 1.1 m s−1 steady flow
condition, and illustrates the increased fluid velocity, �̄�𝑛𝑒𝑎𝑟 = 1.2 m s−1, due to the acceleration of
flow over the tag geometry. Figure 3.10, middle-left, shows raw data recorded by the magnetome-
ter during the 𝑈 = 1.1 m s−1 trial that demonstrates the sinusoidal signal created by the spinning
magnetic bead. Calibration curves relating 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 to fluid speeds 𝑢 𝑓 𝑠 and 𝑢𝑛𝑒𝑎𝑟 were calculated
using mean free-stream flow (𝑈 = �̄� 𝑓 𝑠, black) and mean flow near the sensor (�̄�𝑛𝑒𝑎𝑟 , red), respec-
tively (Fig. 3.10, middle-right, and Table 3.5). Figure 3.10, bottom, shows a comparison of the
time series of 𝑢 𝑓 𝑠, and the speeds predicted by the sensor calibrated by the mean free-stream flow,
𝑢𝑠𝑒𝑛𝑠 𝑓 𝑠. Not surprisingly, the time averages of both 𝑢 𝑓 𝑠 and 𝑢𝑠𝑒𝑛𝑠 𝑓 𝑠 are close to 1.1 m s−1 due to
the calibration, and as the flow is being sampled at two different locations, velocity fluctuations in
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Table 3.5: Correlation analysis of uniform and oscillatory flow tests

Fit Coefficient Offset R2 P
Free-stream Speed (𝑈 vs. 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒) 0.019 0.17 0.99 < 10−4

Flow Speed at Sensor (�̄�𝑛𝑒𝑎𝑟 vs. 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒) 0.020 0.19 0.99 < 10−4

Frequency ( 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 vs. 𝑓𝑛𝑒𝑎𝑟) 0.93 0.35 0.89 0.002
Flow Speed (behind cylinder, �̄�𝑠𝑒𝑛𝑠 𝑛𝑟 vs. �̄�𝑛𝑒𝑎𝑟) 1.03 0.04 0.85 0.003

𝑢 𝑓 𝑠 and 𝑢𝑠𝑒𝑛𝑠 𝑓 𝑠 exhibit no obvious correlation. In general, it was found that the turbine required a
minimum flow speed of𝑈 ≈ 0.25 m s−1 to turn; data captured below this limit were unreliable.

During the oscillating flow trials, the calibrated turbine captured the mean local velocity, �̄�𝑛𝑒𝑎𝑟
(red line, Fig. 3.10, middle-right), and frequency of fluid oscillation ( 𝑓𝑛𝑒𝑎𝑟) well, but did not track
the large changes in amplitude precisely. Representative data (Fig. 3.11, top) from a trial in which
𝑈 = 0.51 m s−1 illustrates this (note that mean streamwise flows in the wake of the cylinder, �̄�𝑛𝑒𝑎𝑟
and �̄�𝑠𝑒𝑛𝑠 𝑛𝑟 , were about 0.3 – 0.4 m s−1). Sliding-window means of 𝑢𝑛𝑒𝑎𝑟 and 𝑢𝑠𝑒𝑛𝑠 𝑛𝑟 (red solid
and dashed lines, respectively) are comparable, but amplitude tracking (gray and black lines) is
poor. Sliding-window means were computed using Savitzky-Golay smoothing, with windows of
four times the respective update rate for each sensing method (i.e. windows of 800 points for the
turbine, and 120 points for the PIV). This results in a smoothed mean computed over a sliding
four-second window for each data set. The mismatch of amplitudes was particularly noticeable at
low flow speeds, although the turbine was able to capture the frequency content of the measured
PIV signal (Fig. 3.11, middle). For PIV validation purposes, in the 𝑈 = 0.51 m s−1 case, flow
fluctuation frequency was measured to be ∼ 2.3 Hz, yielding a Strouhal number (Eq. 3.16) of 0.22,
close to the value expected (𝑆𝑡 ≈ 0.20) in vortex shedding from a cylinder.

For the seven free-stream speeds tested in the oscillating flow trials (𝑈 = 0.43 − 1.1 m s−1),
there was good linear correlation between the frequencies of oscillation ( 𝑓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 vs. 𝑓𝑛𝑒𝑎𝑟), and
between the mean speeds in the wake of the cylinder (�̄�𝑠𝑒𝑛𝑠 𝑛𝑟 vs. �̄�𝑛𝑒𝑎𝑟 , Fig. 3.11, bottom-left,
and Table 3.5). The covariance ellipses plotted with the mean velocity data illustrate the ability
of the sensor to track the magnitude of oscillation at the different flow speeds (Fig. 3.11, bottom-
right). The longer major axes of the covariance ellipses occurring at higher𝑈 graphically illustrate
a decrease in turbine tracking performance as the magnitude and frequency of the flow oscillations
increased.
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3.2.3 Validation Experiment

3.2.3.1 Method

To demonstrate the efficacy of sensor Configuration A, controlled swimming trials were conducted
with an institutionally-managed bottlenose dolphin, at Dolphin Quest Oahu (Oahu HI). A new tur-
bine (same model, separate unit) was attached to a DTAG3 unit with a higher sampling rate (625
Hz) than the original used in the flow chamber (200 Hz), allowing for higher detectable rotation fre-
quencies of the turbine. The tag and turbine were secured to the animal using an array of the same
minimally invasive suction cups used to secure the tag in the flume. For experimental verification,
four dolphins were outfitted with the turbine-tag module, over a total of six sessions. During the
trials, the dolphins performed a straight-line swimming task between set points at a self-selected
pace. These six sessions produced a total of 41 recorded sections of animal travel, of lengths vary-
ing between 5.9 and 76.3 meters. All experimental protocols were approved by the Institutional
Animal Care and Use Committee at the University of Michigan (Protocol #PRO00006909).

To verify the measurements made with the tag, the dolphin’s position was also hand-tracked
using an overhead camera setup. Tracking was performed manually rather than using the method
described in Section 3.1 for the sake of expediency, as few videos had to be processed and an en-
tirely new neural network would have been required given the separate experimental environment.
The overhead video recordings were made using a GoPro HERO5 camera, which was mounted on
the edge of the first-floor balcony of the building overlooking the lagoon. Videos of the sessions
were recorded at a resolution of 1920×1440, at NTSC 60 Hz, and downsampled in post to 10 Hz to
expedite the manual tracking process. The OCamCalib omnidirectional camera calibration toolbox
was used to find the fisheye distortion model for the camera, by passing 128 distinct checkerboard
images through the toolbox [116].

Specific locations on the perimeter of the lagoon were mapped, through tape measurement and
triangulation, with respect to a common origin. These served as the world-frame perimeter points.
Their corresponding pixel locations in the image frame were undistorted with the computed model,
and used with the world-frame perimeter points to compute the homography transform that maps
undistorted pixel locations to world-frame locations. Through this, the undistortion model and the
homography transform make it possible to convert pixel locations in the original video to world-
frame locations on the surface of the lagoon. This assumption is used due to the structure of the
lagoon, as the testing region was shallow (< 3 meters) enough to ensure the dolphins’ movements
were primarily planar.

To examine the performance of sensor Configuration A with respect to the established ground-
truth of the camera, the distance traveled estimates of both were compared. The camera estimate of
distance traveled was computed by directly summing the distances between camera-detected dol-
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Figure 3.12: Results of the dolphin swimming experiment. TOP: Sample speed estimates for one trial lap,
comparing turbine (blue) to camera (red) data. BOTTOM: The histogram of % error in distance traveled of
the turbine estimate (assuming camera data represents the ground-truth) is shown on the left. The correlation
between camera and turbine distance traveled estimates is shown on the right.

phin positions, while the turbine estimate was computed through a trapezoidal discrete integration
of the measured speed. Both full-session and individual-lap distances were compared, to examine
drift over time as well as short-term accuracy. To reduce the differentiation noise in the camera
speed estimate (generated for visualization), the camera speeds were smoothed with a 1-second
span moving average, while the turbine speed estimate was left unfiltered.

3.2.3.2 Results

A sample section of animal speed from the validation experiments, derived from camera distance
data, is plotted alongside the corresponding turbine measurement with PIV calibration, Figure
3.12, top. For the experimental verification, the percentage errors in distance traveled for each
of the 41 trials were computed using the final distance traveled values for each recording section,
and resulted in a final mean percentage error of 6.91%, with a standard deviation of 4.67%. The
full distribution of percentage error can be seen in Figure 3.12, bottom-left. A linear regression
comparing the turbine and camera distance estimates was also used to examine the performance of
the tag-based sensor, Figure 3.12, bottom-right. This resulted in a regression coefficient of 0.97,
and an offset of 1.01 meters. The 𝑅2 coefficient of the regression was found to be 0.95.
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3.2.4 Calibration Experiment - Basin

3.2.4.1 Method

A final set of experiments to assess inter-and-intra-sensor variation of the speed sensor was con-
ducted in the physical modeling basin of the Marine Hydrodynamics Laboratory at the University
of Michigan. These experiments were conducted with sensor Configuration B, and employed
the range of speeds observed during the animal trials (1-4 m s−1). To perform this experiment,
the tags were mounted to a metal plate that was pulled through a large stationary body of water
(109.7×6.7× ∼ 3.1 meters) by a moving carriage. The plate, dimensions 18×24×0.5 inches, was
machined from 6061-T651 alloy aluminum, with a 0.25 inch radius rounded front and 7° double-
sided chamfered rear edge. This was vertically mounted to another 6061-T651 aluminum plate,
which served as the interface between the tag mounting plate and a steel hydrodynamic strut at-
tached to the moving carriage. The carriage was then returned to its starting position at a speed of
1 m s−1, and held stationary for a minimum of 30 seconds before the next run was initialized. The
carriage contained a set of encoders that directly output the carriage’s current position, updated at
a rate of 2000 Hz.

Two tags at a time with sensor Configuration B were attached to the mounting plate via suction
cups, one tag centered on either side of the plate, and were aligned with the direction of flow by
ensuring the tag orientations were parallel to the edge of the plate via a level. The steel strut was
lowered sufficiently into the water to submerge the tags by approx. 1 meter, to avoid free-surface
effects. Four tags with sensor Configuration B were tested in two separate sessions. In each
experimental session, the tags were subjected to four separate speeds (1, 2, 3, 4 m/s), with six runs
per speed, in a randomized order. The maximum of 4 m s−1 was chosen as the water basin was not
long enough to support steady-state run speeds faster than 4 m s−1 for longer than a few seconds.
To perform a run, the carriage was accelerated to the target speed over a period of 10 seconds,
held at the steady-state speed for as long as possible, and decelerated to 0 m/s over a period of 10
seconds. This resulted in usable steady-state durations ranging from 64 seconds for 1 m s−1, down
to as short as 5 seconds for 4 m s−1.

The measurements made using sensor Configuration B were compared using, 1) the linearity
of the sensors’ responses, and 2) analysis of inter-and-intra-sensor variation. For the linearity
analysis, the turbine spin data and carriage position data were directly extracted from each steady-
state region of each run. The carriage position data were differentiated to calculate an estimate
of speed, and smoothed with a 1-second span moving average to remove high-frequency noise.
The turbine spin data were left unfiltered. The mean spin rates of the turbine and the speeds
of the carriage were then extracted from the steady-state of each run and compared via a linear
regression. In addition to the linear fit coefficients and offsets, the 𝑅2, 𝑃-values, and the 95%
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CIs of the linear fits were computed. To numerically represent a CI of a linear fit, the differences
between the best-fit line and 95% CI bound coefficients and offsets were computed. For example:
for Turbine 1, the 95% CI of the linear fit is bounded below by the line 𝑢𝑇1− = 0.026 𝑓 − 0.131,
and above by 𝑢𝑇1+ = 0.028 𝑓 + 0.168. Thus for Turbine 1, this yields a Δ𝑐𝑜𝑒 𝑓 = ±1.48 × 10−3 and
Δ𝑜 𝑓 𝑓 𝑠𝑒𝑡 = ±0.150 for a 95% CI.

The inter-and-intra-sensor variation analysis was performed by computing the Coefficients of
Variation (CV) of the turbine spin rates at the four separate speeds between sensors and between
runs of a particular sensor, respectively. A one-way analysis of covariance of the regressions was
computed with an 𝛼 = 0.05, and used in a multiple comparison of coefficients to determine if the
turbines’ individual linear regressions were significantly different. The linear regression results
also illustrate the differences in responses each sensor has to similar flow profiles.

3.2.4.2 Results

During the trials to examine the uncertainty of measurements made using sensor Configuration
B, the carriage speed during steady-state was extremely stable, with an overall standard deviation
from the target speeds of only 4.28 × 10−4 m s−1. As a result, carriage speed variation was not
considered in the analysis. The results presented in Table 3.6 indicate that the response of the four
tags with sensor Configuration B were all linear, with 𝑅2 values over 0.98, and excepting Turbine
1, very small 95% CI bounds (Fig. 3.13, top). Figure 3.13, bottom, presents data from experimental
trials measured using Turbine 3, and illustrates a representative example of the ability of a sensor to
repeatedly track the speed of the carriage. In general, there was variability between the responses of
the four tags, particularly at the higher speeds. As speeds increase, each data set remains clustered
closely to itself, but separates from the other data sets (Fig. 3.13, top). This result is expected
after comparing coefficients of the individual regressions in Table 3.6, where in an extreme case,
Turbine 4 is 22% more sensitive (i.e. higher rotations per m s−1) than Turbine 1.

The CV results also show that the performance discrepancy between individual tags with sen-
sor Configuration B increases at higher speeds. Furthermore, the mean CVs for each tag, all in the
range of ∼ 1%, are a fraction of the mean for the combined dataset, at 5.31%. Comparing the linear
regression values to those of the calibration in Configuration A (coefficient=0.019, offset=0.17),
we see the individual and combined regressions all have similarly low line offsets, but also all use
larger coefficients in their linear regressions. All individual linear regressions of sensors in Config-
uration B were determined to be statistically different from each other, as the multiple comparison
of coefficients yielded p-values < 10−2 for all comparisons.
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Figure 3.13: Results from the uncertainty analysis experiment. TOP: Linear regression results for all four
turbines, with best-fit lines (black) of the raw data (shape markers) flanked by 95% confidence interval
bounds (shaded regions). The data markers and confidence interval shadings have colors corresponding
to their respective turbines. BOTTOM: Comparison of carriage speed (black) versus speed measured by
Turbine 3 (red), flanked by 1 standard deviation bounds of the measured values (gray dashed), visualized
according to % of trial. The measured speed results were collated and averaged by speed section (1 – 4
m s−1), and smoothed with a 2%-span moving average for visibility. Turbine 3’s specific calibration was
used to compute the measured values.
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Table 3.6: Uncertainty analysis results

Parameter T1 T2 T3 T4 Comb.
Line Coef. 0.027 0.022 0.024 0.021 0.023
Line Offset 0.018 0.210 0.158 0.259 0.228
𝑅2 0.985 0.999 0.998 0.999 0.971
𝑃-value < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

CI Δ𝑐𝑜𝑒 𝑓 1.48E-3 2.70E-4 4.83E-4 3.17E-4 8.07E-4
CI Δ𝑜 𝑓 𝑓 𝑠𝑒𝑡 0.150 0.031 0.052 0.038 0.089
CV% - 1 m/s 0.306 1.306 2.619 2.011 2.317
CV% - 2 m/s 1.085 1.275 0.540 0.391 4.719
CV% - 3 m/s 1.253 1.344 1.000 0.492 5.368
CV% - 4 m/s 2.475 0.318 0.255 0.905 8.819
CV% - Mean 1.280 1.061 1.103 0.950 5.306

3.2.5 Sensor Calibration General Discussion

In the steady (unobstructed) flow, the relationship between sensor Configuration A measurements
and the fluid speeds from PIV were linear and highly correlated (𝑅2 = 0.99, P< 10−4). The flow
speed near the sensor was affected by the tag geometry, but this effect can be corrected by calibrat-
ing the sensor against the free-stream PIV data. This enables “corrected” speed measurements of
the animal as long as the tag is placed in a location where the flow conditions are similar to this
experiment (i.e. where boundary layer thickness on the animal is less than the sensor height).

The oscillatory flow trials demonstrated that sensor Configuration A was able to measure mean
speed and frequency of oscillation of the local flow, but it did not track the amplitude of the dis-
turbed flow precisely. This was particularly true when the speed of the oscillating flow dropped
below the turbine stall speed (𝑈 ≈ 0.25 m s−1). While dolphin swimming speed can vary widely,
the oscillating speed created by animal fluking should be well above the stall velocity for the sensor
during routine animal swimming speeds. Nominal dolphin swimming speeds have been reported
to range from 1.6 – 5.6 m s−1, with minimum transport costs observed at swimming speeds of 2.1
– 2.5 m s−1 [37, 105, 117, 118]. These results from the literature, along with our own experimental
results, indicate that the expected oscillatory swimming speeds will be at magnitudes measurable
by the proposed sensor system.

Importantly, we were able to verify the performance of sensor Configuration A with free swim-
ming animals. While the work in the flow chamber was conducted at speeds of around 1 m s−1, the
experimental verification of the sensor with free-swimming dolphins successfully demonstrated
that the our PIV-based calibration can be extended for use in the field. As an example, Figure 3.12
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indicates swimming speeds agree well with the measurements calculated from the camera data,
and measured speeds 5 times higher than those we were able to create in the flume. In addition to
the qualitative comparisons, the accuracy of the sensor was demonstrated using the turbine-camera
distance estimate comparisons, with a mean percentage error of less than 7% for the 41 trials.

Complementing the results from the first two experiments, the uncertainty analysis performed
using sensor Configuration B indicates that the response of sensor Configuration B to flow speeds
in our range of interest is linear, but that there is variability between the individual tags. This could
be due to variability in the manufacturing of the turbine and tag body, or variability between tags
at the housing/impeller interface.

3.3 Conclusion

The contributions in this chapter represent the tools built for marine animal monitoring that enable
the development of further work in this area. Neural network object detection provides new op-
portunities in managed animal tracking by simultaneously reducing localization error, increasing
repeatability, and simplifying data processing for extended monitoring sessions. The capabilities
of the method are further explored through the analysis of animal intra-day kinematics trends and
habitat use, demonstrating the flexibility of the approach in monitoring animal behaviors through-
out large datasets. As such, the localization method detailed in Section 3.1 provides a persistent,
automated approach for estimating animal location in managed settings with accuracy and scala-
bility not feasible with established tracking methods.

The speed sensor implemented, calibrated, and validated in Section 3.2 has large ramifications
for biologging-tag animal monitoring. It displayed low noise, a highly linear response to a wide
range of fluid speeds, and demonstrated its viability through real-world on-animal measurement
tasks. The accuracy, reliability, and size limitations of previously developed speed estimation
methods (dedicated hardware or otherwise) has thus far limited their performance or inclusion
on animal-borne tags. This sensor can further the capabilities of these tags by providing robust
and predictable speed measurements, and its straightforward physical integration and miniaturized
profile simplify its addition to a device platform.
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CHAPTER 4

Persistent Marine Mammal Energetics:
A Physics-Based Approach

This contribution investigates bottlenose dolphin swimming biomechanics using tag-measured
swimming kinematics, through the extension of a physics-based hydrodynamic model to estimate
propulsive power, work, and COT during locomotion. Tag data enabled the use of information
from thousands of fluke strokes to estimate mechanical work and power during both steady-state
and transient swimming behaviors. Prescribed straight-line swimming was used to characterize
steady-state performance of six animals over a range of swimming speeds, and a 24-hour period
of data during an animal’s daily life was used to quantify preferred swimming biomechanics. The
contributions of this chapter include: 1) the experimental design used to collect data for the frame-
work from animals in human care (Section 4.1); 2) experimental investigation of mechanical work
and power during high-effort steady-state swimming (Section 4.3); and 3) the quantification of
the day-scale biomechanics of a free-swimming animal in a managed environment (Section 4.4).
Importantly, this chapter demonstrates the viability of the approach for analyzing swimming me-
chanics during an animal’s daily life by estimating its energy budget during a 24-hour period, an
important step for the use of this approach with animals in the wild.

4.1 Energetics Monitoring Framework

4.1.1 Tag Hardware

MTags (Movement Tags) are persistently-monitoring biologging tags with internal electronics built
on the OpenTag3 platform with the addition of integrated speed sensing. These are effectively

Content of this chapter also to be submitted as:
J. Gabaldon, D. Zhang, J. Rocho-Levine, M. Moore, J. van der Hoop, K. Barton, and K. A. Shorter, “Tag-based

estimates of bottlenose dolphin swimming biomechanics and energetics,” in The Journal of Experimental Biology.
Copyright may be transferred without notice, after which this version may no longer be accessible.
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a refined iteration of Tag Configuration B in Section 3.2.1. Kinematic sensors include: 3-axis
accelerometer, 3-axis magnetometer, 3-axis gyroscope, temperature sensor, and ambient pressure
sensor. Speed through water was measured using a secondary circuit board with a 1-axis Hall-
effect sensor, and a free-spinning uniaxial magnetic micro-turbine mounted in line with the tag fin
(Fig. 4.1, popout). Rotations created by water moving past the turbine were recorded by the Hall-
effect sensor. Forward velocity (𝑣𝑡𝑎𝑔) was obtained using methods outlined Section 3.2.4. The
accelerometer, magnetometer, and gyroscope were sampled at 50Hz, and the remaining sensors at
5Hz. The MTag electronics were powered by a 1100 mAh lithium-ion battery, enough to record
continuously for ∼3 days. Four silicone suction cups were used to secure each tag to the animal
(Fig. 4.1). Three MTag units were used for the 2018 experimental sessions, and three different
units were used for the 2019 sessions.

4.1.2 Power Estimation

In this section it is assumed that the tagged animal can control buoyancy to balance the gravitational
force acting on the body, so the remaining forces acting on the animal are combined into net thrust
and net drag (Fig. 4.1) that are related to the animal’s motion by:

𝑚†𝑎𝑐𝑜𝑚 = 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 + 𝐹𝑑𝑟𝑎𝑔 (4.1)

where 𝑚† is the total effective mass and 𝑎𝑐𝑜𝑚 is the Center of Mass (COM) acceleration of the
animal. Power (𝑃) is related to force (𝐹) and velocity (𝑣) through 𝑃 = 𝐹 · 𝑣:

𝑃𝑐𝑜𝑚 = 𝑚†𝑎𝑐𝑜𝑚 · 𝑣𝑐𝑜𝑚 = 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 · 𝑣𝑐𝑜𝑚 + 𝐹𝑑𝑟𝑎𝑔 · 𝑣𝑐𝑜𝑚 (4.2)

The power generated by the animal during swimming locomotion was then defined as follows:

𝑃𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑚
†𝑎𝑐𝑜𝑚 · 𝑣𝑐𝑜𝑚︸           ︷︷           ︸

Inertial

− 𝐹𝑑𝑟𝑎𝑔 · 𝑣𝑐𝑜𝑚︸        ︷︷        ︸
Drag

(4.3)

where 𝑚† is the mass of the animal (𝑚) plus the induced (added) mass of the fluid displaced by the
animal during movement (𝑚𝑎𝑑𝑑): 𝑚† = 𝑚 + 𝑚𝑎𝑑𝑑 . For a swimming animal, 𝑚𝑎𝑑𝑑 = 0.4𝜌𝑉 , where
𝜌 is the density of the fluid medium and 𝑉 is animal volume [119]:

𝑚† = 𝑚 + 0.4𝜌𝑉 (4.4)

Here, 𝜌 is the density of seawater (𝜌 = 1030 kg/m3), and 𝑉 was obtained from a 3D model of an
animal. MTag-estimated speed (𝑣𝑡𝑎𝑔) was used to approximate 𝑣𝑐𝑜𝑚, and 𝑎𝑐𝑜𝑚 was approximated
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Figure 4.1: Diagram of forces on a swimming dolphin. This contribution focuses on the thrust and drag
forces that act in the animal’s direction of travel, and assumes that the buoyancy and gravitational forces
cancel. The approximate MTag placement on the animal is displayed between the animal’s blowhole and
dorsal fin, with the fin of the tag parallel to the dorsal fin. POPOUT: The location of the micro-turbine is
indicated (𝑣𝑡𝑎𝑔), along with the 𝑥 and 𝑧 tag accelerometer axes. SECTION A-A: View of the tag placement
with animal-frame coordinate axes.

by numerically differentiating 𝑣𝑡𝑎𝑔 and smoothing the result using a 2-second moving average to
reduce noise.

Drag acting on the animals was modeled according to work by F. Fish [25]:

𝐹𝑑𝑟𝑎𝑔 = −0.5𝜌𝐴𝑠𝐶𝐷𝑣2
𝑐𝑜𝑚 (4.5)

where 𝐴𝑠 is the wetted surface area of the animal and𝐶𝐷 is the drag coefficient. However, Equation
4.5 does not account for increased drag due to surface drag effects [120]. A multiplier, 𝛾, based on
on depth was applied to the drag coefficient to account for surface effects: 𝐶𝐷𝑑 = 𝐶𝐷𝛾. Applying
the modified drag coefficient to Equation 4.5 yields:

𝐹𝑑𝑟𝑎𝑔 = −0.5𝜌𝐴𝑠𝐶𝐷𝛾𝑣2
𝑐𝑜𝑚 (4.6)

Animal surface area was obtained using 𝐴𝑠 = 0.08𝑚0.65, where 𝑚 is animal mass [25]. Non-depth
normalized drag coefficients were computed using the relation 𝐶𝐷 = 16.99 Re−0.47 [41], with
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Figure 4.2: Illustration of animal drag multiplier 𝛾 and its relation to depth. LEFT: Example dive profile for
dolphin T2, with high 𝛾 regions (𝛾 ≥ 1.5) in blue and low 𝛾 regions (𝛾 < 1.5) in red. Depth is estimated for
the COM of the animal, so the depth will not read 0 m during a surfacing event (i.e. only the blowhole is at
the surface with the rest of the body underwater). RIGHT: Plot of the drag multiplier 𝛾 due to an animal’s
proximity to the surface, as a function of body diameters below the surface. As before, high 𝛾 is plotted in
blue and low 𝛾 in red. The multiplier maximizes at -0.5 depth/body diameter, at 𝛾 = 5.05. Note: The true
depth vs. 𝛾 relation presented here is specific to dolphin T2; only the depth/body diameter vs. 𝛾 relation
applies in the general case.

Re = 𝐿𝑣𝑡𝑎𝑔/a. 𝐿 is animal length and a = 1.044×10−6 m2/s is the kinematic viscosity of seawater.
Values for 𝛾 range from 1 to 5.05 for underwater swimming, and are dependent on the number of
body diameters the animal is below the surface (Fig. 4.2, right). The depth/body diameter to 𝛾
relation was obtained from Hertel [121]. As before, 𝑣𝑡𝑎𝑔 is used as the best approximation of 𝑣𝑐𝑜𝑚.

The final expression for thrust power is then:

𝑃𝑡ℎ𝑟𝑢𝑠𝑡 = (𝑚 + 0.4𝜌𝑉)𝑎 𝑓 𝑤𝑑𝑣𝑡𝑎𝑔︸                      ︷︷                      ︸
Inertial

+ 0.5𝜌𝐴𝑠𝐶𝐷𝛾𝑣3
𝑡𝑎𝑔︸              ︷︷              ︸

Drag

(4.7)

A nondimensional form of thrust power was also computed to better compare animals of varying
lengths and masses:

𝑃𝑡,𝑛𝑑 = 𝑃𝑡ℎ𝑟𝑢𝑠𝑡/(𝑚𝑔1.5𝐿0.5) (4.8)

4.1.3 Work and COT Estimation

Work estimates (𝑊𝑡ℎ𝑟𝑢𝑠𝑡) were obtained by numerically integrating sequences of 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 data using
a trapezoidal sum. Only positive power components were included to ensure that periods where
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there was no active fluking did not artificially lower the work estimates (e.g. negative power/work
during braking). Total Distance Traveled (TDT) estimates for discrete time intervals were calcu-
lated by numerically integrating 𝑣𝑡𝑎𝑔, also using a trapezoidal sum. Instantaneous mass-specific
cost of transport (COT𝑀𝑆,𝐼) was obtained with the expression:

COT𝑀𝑆,𝐼 = 𝑃𝑡ℎ𝑟𝑢𝑠𝑡/(𝑚𝑣𝑡𝑎𝑔) (4.9)

Time-interval mass-specific COT (COT𝑀𝑆,𝑇 ) was obtained using:

COT𝑀𝑆,𝑇 = 𝑊𝑡ℎ𝑟𝑢𝑠𝑡/(𝑚 · TDT) (4.10)

To account for energy loss as chemical energy is converted into mechanical energy, the mam-
malian metabolic-to-muscle power efficiency (chemical) was taken to be [𝑚𝑠 = 0.25 [122]. Muscle-
to-propulsion power efficiency (mechanical) was taken to be [𝑠𝑝 = 0.85 for Tursiops truncatus

[26]. Using these efficiencies, and an animals’ Resting Metabolic Rate (RMR), total metabolic
power requirements for propulsion were computed as:

𝑃𝑚𝑒𝑡 = 𝑃𝑡ℎ𝑟𝑢𝑠𝑡/([𝑚𝑠[𝑠𝑝) + 𝑃𝑟𝑚𝑟 (4.11)

where 𝑃𝑟𝑚𝑟 is the RMR power in Watts. Numerically integrating 𝑃𝑚𝑒𝑡 (again only using 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 >
0) yielded the metabolic work 𝑊𝑚𝑒𝑡 . Similar to COT𝑀𝑆,𝐼 , the mass-specific metabolic COT for a
given animal can be calculated as:

COT𝑚𝑒𝑡 = (𝑃𝑡ℎ𝑟𝑢𝑠𝑡/([𝑚𝑠[𝑠𝑝) + 𝑃𝑟𝑚𝑟)/(𝑚𝑣𝑡𝑎𝑔) (4.12)

4.1.3.1 Resting Metabolic Rate

A previous study at Dolphin Quest Oahu had assessed the mass-specific RMR of dolphin T2 (the
animal used in the 24-hour study) to be 6.33 ml O2 kg−1 min−1 ([38], Table 1, non-fasted). A non-
fasted/fasted ratio of 1.53 was computed from the multi-animal RMR results presented in [38].
Dividing T2’s non-fasted RMR by this ratio yielded a fasted mass-specific RMR of 4.13 ml O2

kg−1 min−1. RMR in ml O2 min−1 was computed using T2’s mass of 𝑚𝑇2 = 209 kg, for 1,322
(non-fasted) and 863 (fasted) ml O2 min−1 (Table 4.1). Dolphin T2’s RMR was converted to units
of power using the relation of 20.1 kJ (or 4.8 kcal) per liter O2, to obtain 𝑃𝑟𝑚𝑟𝑛 𝑓 ,𝑇2 = 442.9 W
(non-fasted) and 𝑃𝑟𝑚𝑟 𝑓 ,𝑇2 = 289.0 W (fasted) [107].
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4.1.3.2 Metabolic Power and COT versus Speed

In order to find direct expressions from animal speed to 𝑃𝑚𝑒𝑡 and COT𝑚𝑒𝑡 for dolphin T2, the best-
fit relation between T2’s 24-hour steady-state low-𝛾 (𝛾 < 1.5) Day time (08:00-18:00) 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 and
𝑣𝑡𝑎𝑔 data was computed and then applied to Equations 4.11 and 4.12. A zero-intercept third-order
polynomial was used for the initial fit (corresponding to the 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 ∝ 𝑣3

𝑡𝑎𝑔 relation), and fit using
the least squares method, yielding the expression:

�̄�𝑡ℎ𝑟𝑢𝑠𝑡 (𝑣𝑡𝑎𝑔) = 𝑎𝑣3
𝑡𝑎𝑔 + 𝑏𝑣2

𝑡𝑎𝑔 + 𝑐𝑣𝑡𝑎𝑔 (4.13)

where 𝑎, 𝑏, and 𝑐 are fitting coefficients. This was applied to Equation 4.11 to produce the
metabolic power/speed relation:

�̄�𝑚𝑒𝑡,𝑇2(𝑣𝑡𝑎𝑔) = (𝑎𝑣3
𝑡𝑎𝑔 + 𝑏𝑣2

𝑡𝑎𝑔 + 𝑐𝑣𝑡𝑎𝑔)/([𝑚𝑠[𝑠𝑝) + 𝑃𝑟𝑚𝑟𝑛 𝑓 ,𝑇2 (4.14)

�̄�𝑡ℎ𝑟𝑢𝑠𝑡 was then applied to Equation 4.12 to produce the metabolic COT/speed relation:

COT𝑚𝑒𝑡,𝑇2(𝑣𝑡𝑎𝑔) =
1

𝑚𝑇2𝑣𝑡𝑎𝑔

(
𝑎𝑣3

𝑡𝑎𝑔 + 𝑏𝑣2
𝑡𝑎𝑔 + 𝑐𝑣𝑡𝑎𝑔

[𝑚𝑠[𝑠𝑝
+ 𝑃𝑟𝑚𝑟𝑛 𝑓 ,𝑇2

)
(4.15)

4.1.4 MTag Data Post-Processing

An estimate of the dolphin orientation was used to compute dolphin center-of-mass depth to de-
termine the corresponding surface drag coefficient. Accelerometer, magnetometer, and gyroscope
data were used with the Madgwick orientation filter to estimate animal orientation [10]. Before
the orientation filter was applied, accelerations resulting from the the dynamic motion of the ani-
mal were removed from the accelerometry measurements using the following method. Note: axes
with apostrophes (e.g. 𝑖′) belong to the tag reference frame, and those without belong to the world
reference frame.

The measured acceleration on the tag (A𝑚) consists of the acceleration in the direction of the
animal’s motion (A) plus the tangential and radial components of the acceleration due to animal
rolling (cylindrical representation, Fig. 4.1, Section A-A):

A𝑚 = A + [𝑟𝑑𝜔2
𝑖′
]𝑒𝑟 + [𝑟𝑑𝛼𝑖′]𝑒\ (4.16)

Here, [𝑟𝑑𝜔2
𝑖′
]𝑒𝑟 is the radial (centripetal) acceleration effect on 𝐴𝑚,�̂� ′, [𝑟𝑑𝛼𝑖′]𝑒\ is the tangential

acceleration effect on 𝐴𝑚, 𝑗 ′, and 𝜔𝑖′ and 𝛼𝑖′ are the tag-frame angular velocity and acceleration,
respectively, about 𝑖′. These two acceleration effects must be removed for a more accurate estimate
of A. The magnitude of the radial acceleration measured at the accelerometer during a roll was
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computed directly using the dolphin radius 𝑟𝑑 and the gyroscope measurement of 𝜔𝑖′ (Fig. 4.1,
popout). To obtain 𝛼𝑖′, the gyroscope reading of 𝜔𝑖′ was smoothed using a Savitsky-Golay filter
with a 0.25 second window and numerically differentiated. This produced the estimate of angular
acceleration about 𝑖′: �̄�𝑖′. The tangential acceleration effect was estimated as [𝑟𝑑�̄�𝑖′]𝑒\ . The error-
compensated tag-frame acceleration estimate was then:

Ā = A𝑚 − [𝑟𝑑𝜔2
𝑖′
]𝑒𝑟 − [𝑟𝑑�̄�𝑖′]𝑒\ (4.17)

Ā was used in the orientation filter alongside the gyroscope and magnetometer raw data. The filter
was implemented as recommended in [10], with 𝛽 = 0.041, using the Matlab toolbox distributed
by the authors of the filter.

4.1.4.1 Depth Correction

The orientation from the filter was used to compute the MTag �̂�-location with respect to the animal
centerline one animal radius beneath the tag. This location was selected instead of true animal
COM as the COM location with respect to the MTag changed according to animal morphology
during locomotion (spine flexing and curling through fluking), and it was a similar depth to COM
during horizontal swimming. The orientation filter output the tag orientation in quaternion form
(q𝑡 at time step 𝑡), and taking its conjugate (q∗

𝑡 ) yielded the tag orientation with respect to the world
frame. Converting q∗

𝑡 to rotation-matrix form (R∗
𝑡 ∈ R3×3) made it possible to convert the vector

distance from the tag to the animal centerline from the tag frame (δ) into the world frame (𝚫):

𝚫𝑡 = R∗
𝑡 δ; δ = [𝛿𝑖′, 𝛿 𝑗 ′, 𝛿 �̂� ′]

> = [0, 0, 𝑟𝑑]> (4.18)

where 𝚫𝑡 = [Δ𝑖,𝑡 ,Δ 𝑗 ,𝑡 ,Δ�̂� ,𝑡]>. Δ�̂� ,𝑡 was the 𝑡-th time step world-frame vertical distance from the
MTag to the animal centerline, and this was used to more closely estimate animal depth:

𝑑
†
𝑡 = 𝑑𝑡 − Δ�̂� ,𝑡 (4.19)

where 𝑑𝑡 was the original animal depth estimated from the pressure sensor at time step 𝑡.
To correct for measurement error created by fluid moving across the cylindrical cavity that

housed the pressure sensor, Bernoulli’s equation for incompressible flow along a streamline was
used (seawater is insignificantly compressible for this analysis):

𝑝 + 0.5𝜌𝑣2 + 𝜌𝑔ℎ = constant (4.20)

where 𝑝 is the fluid pressure, 𝜌 is the density, 𝑣 is the fluid velocity, 𝑔 is the acceleration due to
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gravity, and ℎ is the height in the water column (positive upwards). When comparing two different
points on a streamline, Equation 4.20 becomes:

𝑝1 + 0.5𝜌𝑣2
1 + 𝜌𝑔ℎ1 = 𝑝2 + 0.5𝜌𝑣2

2 + 𝜌𝑔ℎ2 (4.21)

For this case, it was assumed Point 1 was static (𝑣1 = 0) directly in front of the tag, and Point 2
was moving across the pressure sensor. The depth difference between points was assumed to be
minimal (ℎ1 = ℎ2). Applying these assumptions to Equation 4.21 yielded the pressure difference
due to relative fluid velocity change:

𝑝1 − 𝑝2 = 0.5𝜌𝑣2
2 (4.22)

The relation between a fluid pressure differential and the corresponding depth difference was also
computed with Equation 4.21, this time neglecting the 𝑣-terms (pressure change due to only a
change in depth):

𝑝1 − 𝑝2 = 𝜌𝑔(ℎ2 − ℎ1) (4.23)

Combining Equations 4.22 and 4.23 yielded the depth estimation error due to fluid flow across the
pressure sensor:

Δℎ = ℎ2 − ℎ1 = 𝑣2
2/(2𝑔) (4.24)

with 𝑣2 = 𝑣𝑡𝑎𝑔. The final estimate for animal depth was obtained by combining the results from
Equations 4.19 and 4.24:

𝑑
‡
𝑡 = 𝑑𝑡 − Δ�̂� ,𝑡 − Δℎ,𝑡 (4.25)

where Δℎ,𝑡 is the velocity-induced depth error Δℎ at time step 𝑡. The corrected depth (𝑑‡) values
were then used for estimating 𝛾 in the thrust power computation.

4.1.4.2 Surface Speed Estimation

The micro-turbine on the MTag was designed for underwater-only speed estimation. As a result,
each time the tag is out of the water, the speed measurement is interrupted, causing periodic er-
rors in the thrust power estimates. Speed gap data indices were identified by extracting regions
of zero speed bounded by low-then-high acceleration jumps outside of heuristically-defined limits
(∓3.4 m s−12). To capture only transient animal surfacings, gaps that were longer than 3 seconds
or bounded by speeds lower than 0.25 m s−1 were ignored (both thresholds also heuristically de-
termined). This ensured that true sustained zero-speed data (e.g. when a dolphin was observing
something outside of its habitat, above the water’s surface) remained unaltered. Linear interpola-
tions between values immediately before to immediately after each gap were used to estimate the
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missing speed data.

4.1.5 Steady-State Segmentation

Steady-state portions of animal swimming data (regions of minimal speed fluctuation) were ex-
tracted using a heuristically-tuned automated method. First, speed data (𝑣𝑡𝑎𝑔) were smoothed
using a 2-second Savitzky-Golay filter to produce �̄�𝑡𝑎𝑔. This filtering method was chosen for its
ability to perform smoothing while preserving overall signal shape, which was useful when iden-
tifying specific time indices. A 2-second moving-window standard deviation was computed for
�̄�𝑡𝑎𝑔, to produce 𝜎�̄�. Regions with minimal variation in speed would then result in low 𝜎�̄�, and
the smoothing ensured that only overall speed trend changes (rather than noise) were represented
in the standard deviation estimate. Low 𝜎�̄� alone was not sufficient to extract steady-state por-
tions of swimming data, as small 𝜎�̄� values also occurred when an animal was not moving. During
steady-state swimming, a dolphin would be fluking to overcome drag effects, which would result in
positive 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 rather than zero during no motion, hence minimal-movement low 𝜎�̄� segments were
filtered out by removing segments with low thrust power. Thrust power data were also smoothed
with a 2-second Savitzky-Golay filter to produce �̄�𝑡ℎ𝑟𝑢𝑠𝑡 , for noise reduction. A dolphin was then
considered to be in a steady-state swimming pattern when 𝜎�̄� ≤ 0.045 m s−1 and �̄�𝑡ℎ𝑟𝑢𝑠𝑡 ≥ 50 W,
both thresholds heuristically determined. Close-up examples of steady-state swimming are shown
in Figure 4.3 (left side, yellow highlight).

4.2 Experimental Deployment

Experiments were conducted at Dolphin Quest Oahu, Oahu, HI, with six bottlenose dolphins par-
ticipating in the study (morphometric measurements are reported in Table 4.1). Data were collected
during prescribed swimming (lap trials), and from a single 24-hour session where the animal swam
freely. For both cases, dolphins were trained by the ACSs to wear biologging MTags placed be-
tween the blowhole and dorsal fin, in the orientation indicated in Fig. 4.1. For the lap trials, the
dolphins were asked to start at a floating dock (denoted “at station”), swim around an ACS located
in the water typically 35 meters from the dock, and then return to station to complete the lap, all
underwater. During the lap trials the animals completed up to 16 consecutive laps per session with
one to three breaths taken between each lap. An example lap trajectory is displayed in Fig. 4.3,
overlaid on a diagram of the lagoon. During the experiment, thirty trials were conducted, for a
total of 282 laps between all six dolphins. The number of completed laps per dolphin is reported
in Table 4.1. For the 24-hour trial, one dolphin (T2) was asked to wear an MTag for approximately
24 hours, from ∼09:00 to ∼09:00 the next day. Dolphin T2 was exempt from the lap trials for that
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Figure 4.3: Dolphins were asked to perform laps in the Dolphin Quest Oahu Lagoon 2 (bottom-right).
Nominal lap trajectory is shown by the red loop. Laps began at the dock (beige), looped around an ACS
in the water (hairpin turn), and ended at the same dock. The depth (light gray), power (black), speed (red),
forward acceleration (blue), and relative pitch (dark gray) of a sample lap (gray highlight) are shown on the
left, with steady-state swimming regions highlighted in yellow.

day, so as to observe the animal’s activity levels as it went through a standard day consisting of:
free-swimming, standard ACS interactions, and public interaction sessions. Experimental sessions
occurred between May 13th-28th and October 10th-13th in 2018, and May 5th-9th in 2019.

4.3 Lap Trials

4.3.1 Results

Mean lap trial swimming metrics were extracted for each dolphin with respect to full lap and
steady-state time intervals. Swimming metrics from low-𝛾 (𝛾 < 1.5, threshold heuristically deter-
mined) steady-state segments were further isolated from the complete set to allow for comparisons
to results from existing literature, and provide a view of animal swimming profiles during higher
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Table 4.1: Lap trial metrics: animal measurements and summary parameters for the lap swimming
trials. Parameters were extracted with respect to full lap, steady-state, and low-𝛾 (surface drag
multiplier < 1.5) steady-state time intervals. Dolphins ranged from 2.31-2.72 m in length and
143-245 kg in mass. Most animals (T1-T5) spent > 33% of swimming time in steady-state, with
a separate majority (T2-6) maintaining mean 𝛾 penalties of ≤ 5% while in steady-state. Mean lap
distances ranged from 62.2-86.3 m, and mean steady-state speeds ranged from 2.8-5.0 m s−1.

Dolphin T1 T2 T3 T4 T5 T6

Ph
ys

. Mass (kg) 245 209 186 156 143 186
Length (m) 2.72 2.57 2.46 2.37 2.31 2.52
Radius (cm) 22.7 23.0 21.2 19.4 20.1 20.2

SS

Segment Count 86 95 85 74 119 10
Time Fraction of Lap (%) 36.7 34.7 33.3 35.0 33.4 7.6
Mean 𝛾 1.32 1.00 1.00 1.00 1.02 1.05
Mean Speed (m s−1) 5.0 3.7 4.2 2.8 3.9 3.4
Mean SS Work/Lap (kJ) 12.2 5.1 6.0 3.1 3.9 0.7
Mean SS TDT/Lap (m) 31.6 29.4 31.6 29.3 27.0 4.6
Mean COT𝑀𝑆 (J [kg m]−1) 1.59 0.79 1.02 0.61 0.98 0.81

SS
γ
<

1.
5 Segment Count 65 95 85 74 118 10

Mean Duration (s) 4.7 4.1 4.2 4.0 4.2 3.5
Mean Speed (m s−1) 5.2 3.7 4.2 2.8 3.9 3.4
Mean Power (kW) 1.71 0.67 0.81 0.28 0.56 0.56
Mean COT𝑀𝑆 (J [kg m]−1) 1.32 0.79 1.02 0.61 0.98 0.81

Fu
ll

L
ap

s

Lap Counts 65 48 47 28 70 24
Mean 𝛾 1.59 1.15 1.12 1.08 1.14 1.26
Mean Speed/Lap (m s−1) 4.3 3.3 3.6 2.6 3.4 2.9
Mean Power/Lap (kW) 1.71 0.67 0.75 0.27 0.61 0.54
Mean Work/Lap (kJ) 29.2 14.2 15.9 8.0 11.8 10.1
Mean TDT/Lap (m) 79.9 80.7 86.3 83.6 78.1 62.2
Mean COT𝑀𝑆/Lap (J [kg m]−1) 1.50 0.83 0.99 0.61 1.07 0.87
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efficiency propulsion. The extracted metrics corresponded to animal speed, work/power, distance
traveled, COT, and achieved 𝛾 values. Full lap metrics were computed first with respect to each
lap, and these were averaged with respect to each animal to produce the final metrics estimates.
Steady-state metrics were computed first for each steady-state interval, and these were then aver-
aged with respect to each animal.

General metrics for “Full Laps”, differentiated by animal, are reported in Table 4.1. Each
dolphin completed between 28 (T4) and of 70 (T5) laps across all trials. Mean speed per lap
varied between animals, from T4 at 2.6 m s−1 to T1 at 4.3 m s−1. The mean work per lap varied
greatly between animals, from T4 at 8.0 kJ to T1 at 29.2 kJ. The mean total distance traveled per
lap was relatively consistent across dolphins T1-5, from 78.1 m to 86.3 m, with T6 as the notable
outlier at 62.2 m. These work and distance estimates resulted in differences in COT𝑀𝑆 per lap that
ranged from T4 at the lowest value of 0.61 J/[kg m] (the lowest work per lap but the second-highest
distance), up to T1 with 1.50 J/[kg m] (highest work per lap and middling distance).

Steady-state segments were extracted from each lap, for a total of 469 segments over the 282
laps. Individual animal steady-state segment counts and percent time per lap spent in steady-state
were reported in Table 4.1, heading “SS”. The majority of the dolphins (T1-5) spent one-third
or more of their lap time in steady-state, with T6 as the outlier at 7.6%. All animals except T1
maintained mean steady-state 𝛾 close to 1, indicating the effects of surface drag were typically low
during the lap trials.

Isolating the low-𝛾 steady-state segments left 447 intervals across all animals (Table 4.1, head-
ing “SS 𝛾 < 1.5”). Nearly all high-𝛾 (𝛾 ≥ 1.5) segments were from T1 (T5 had one segment),
with approximately 24% of steady-state segments for T1 having mean 𝛾 ≥ 1.5. Dolphin low-𝛾
steady-state segment durations ranged from 3.5 s (T6) to 4.7 s (T1), with most (T2-5) maintaining
a duration closer to 4 s. Mirroring the full lap data, mean low-𝛾 steady-state speeds ranged from
2.8 m s−1 (T4) to 5.2 m s−1 (T1). Mean powers ranged from 0.28 kW (T4) to 1.71 kW (T1), a factor
of ∼ 6. When compared to the full lap values, mean low-𝛾 steady-state COT𝑀𝑆 for T2-4 remained
similar (< |4|% change), with a change of −12% for T1, −8.0% for T5, and −7.5% for T6.

The per-segment means of length-normalized dolphin speed (𝑣𝑛𝑑 = 𝑣𝑡𝑎𝑔/𝐿) and nondimen-
sional thrust power (𝑃𝑡,𝑛𝑑) data from the low-𝛾 segments were correlated using a zero-intercept
power fit (Fig. 4.4, top). The nondimensionalized power fit relation was found to be 𝑃𝑡,𝑛𝑑 =

0.023𝑣2.54
𝑛𝑑

, with an adjusted 𝑅2 of 0.917. The per-segment means of dolphin speed (𝑣𝑡𝑎𝑔) and
thrust power (𝑃𝑡ℎ𝑟𝑢𝑠𝑡) data from the low-𝛾 segments were also correlated using a zero-intercept
power fit for comparison to existing literature (Fig. 4.4, bottom). The power fit relation was found
to be 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 = 10.08𝑣3.04

𝑡𝑎𝑔 , with an adjusted 𝑅2 of 0.916.
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Figure 4.4: Comparisons of animal speed vs. power for steady-state time segments. TOP: Dimensionless
animal swim trial data (gray shapes) were fit to a zero-intercept power curve (black). Each data point cor-
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4.3.2 Discussion

During the prescribed swimming trials, data from 282 trials were collected and analyzed from 6
animals to investigate steady-state work and power during a straight-line swimming task. Each
trial consisted of a lap from station to an ACS and back (range of 36.7 − 98.6 m), resulting in 22.4
km of swimming data for the analysis. During the trials, the animals swam over a range of speeds
(lap means of 1.9 − 6.1 m s−1), spanning preferred speeds that have been reported in the literature
[105]. Lap trial data were separated into transient and steady-state components to facilitate the
comparison with results from the literature. Additionally, only the steady-state portions of the trials
that were deep enough to avoid high surface drag effects were used for the analysis (Fig. 4.4).

During the lap trials, the dolphins tended to swim at depths that reduced the effects of surface
drag on swimming performance. All six dolphins generally maintained relatively efficient depths
(such that 𝛾 < 1.5) while in steady-state motion over a wide range of speeds and steady-state
segment durations, with dolphins T1–5 in the steady-state swimming mode for more than 30%
of the laps. Additionally, dolphins T2–6 maintained hydrodynamically efficient depths (minimal
deviation from 𝛾 = 1) during high-effort steady-state swimming. Only T1 swam at steady-state
depths with non-trivial penalties (mean 𝛾 = 1.32, 24% of laps 𝛾 ≥ 1.5). Despite the ∼ 30%
increase in drag at this average swimming depth, T1 had the highest average swimming speed of
∼ 5 m s−1, along with the highest per-lap swimming power. The resulting average cost of transport
for T1 was more than twice as large as the most efficient swimmer, T4 (1.5 vs. 0.61 J [kg m]−1).
The thrust power estimated from the low-𝛾 steady-state swimming compared well to the existing
literature (Fig. 4.4, bottom, in SI units). This was true for both Chopra’s hydrodynamic model
[26], and Fish’s experimental methods [41], verifying the results from the proposed approach.

4.4 24-Hour Session

4.4.1 Results

Transient, steady-state, and general (transient
⋃

steady-state) swimming metrics were extracted
for dolphin T2 from the 24-hour session. Low-𝛾 steady-state segments were also isolated from
this complete set to provide comparisons between swimming profiles for T2’s lap trial and 24-
hour results. Extracted values for the 24-hour data concerned the same metric types as those
in the lap trials. General and transient metrics were computed with respect to their entire data
set/subset: general metrics were computed directly from the entire data set, and transient data
intervals were first concatenated and then processed appropriately according to metric type (e.g.
averaged, numerically integrated, etc.). 24-hour steady-state metrics were computed in the same
format as the lap trials to allow for comparisons to existing literature and for consistency when

80



performing statistical comparisons between lap trial and 24-hour session data. All metrics for the
24-hour session were computed for the Day, Night, and Overall (full session) time intervals.

Animal metrics for dolphin T2’s 24-hour recording session were reported in Table 4.2, in terms
of the following swimming modes: Transient, Steady-State, Steady-State 𝛾 < 1.5 (as a subset
of the full Steady-State dataset), and General. Examples of 24-hour steady-state swimming data
were highlighted (yellow) in Figure 4.5, top. Within these modes, the data were further split into
“Day” (08:00-18:00) and “Night” (18:00-08:00) columns, with values in the “Overall” column
using data from the entire 24-hour session. While in transient motion, T2 was less active (half the
mean speed, one third the work done, and 77% distance traveled) at Night versus during the Day.
Overall COT𝑀𝑆 values for T2 during the 24-hour trial were lower than those of the lap trials, and
transient Night COT𝑀𝑆 values were less than half of those during the day. Mean 𝛾 values remained
relatively high (≥ 1.5) during transient motion for T2.

To visualize dolphin T2’s activity and work done over time, the mean thrust power (averaged
within 1-minute bins) and thrust work per hour (neglecting the efficiency losses) were visualized in
Figure 4.6 (top and bottom, respectively). Both plots have Day and Night time intervals indicated,
and the work done per hour was further decomposed into steady-state and transient. T2 exhibited
the highest sustained thrust power at three intervals in the Day: 09:00-11:25, 11:50-14:05, and
14:30-16:20. The highest observed 1-minute thrust power was 571 W at 09:28. T2 had sporadic
peaks of high activity at Night at 19:25, 03:52, and 07:33, with corresponding powers of 297 W,
327 W, and 355 W. General mean thrust power was 137 W during the Day and 29 W at Night. The
maximum thrust work done in a single hour interval was 916 kJ, from 10:00-11:00. This interval
also featured the highest single-hour steady-state and transient work values, at 220 kJ and 697 kJ,
respectively. The minimum thrust work done in an hour interval was 30 kJ, from 21:00-22:00.

The highest percentage of hourly work done while in steady-state was 32.6%, from 14:00-
15:00, and the lowest was 0.2% from 00:00-01:00. T2 exerted a total thrust work of 6.64 MJ for
the 24-hour period, with 5.07 MJ during the Day (1.07 MJ steady-state, 4.00 MJ transient), and
1.57 MJ at Night (0.10 MJ steady-state, 1.47 MJ transient) (Table 4.2). T2 was fed throughout
the Day time period, and was considered to be under the non-fasted RMR condition from hours
08:00 to 18:00, transitioning from non-fasted to fasted from 18:00 to 22:00 (the 4 hours following
the Day interval: food passage time through a bottlenose dolphin’s digestive tract was estimated to
be ∼ 4 hours [123]), and under the fasted condition otherwise. The transition from non-fasted to
fasted RMR was modeled as a linear trajectory from 𝑃𝑟𝑚𝑟𝑛 𝑓 ,𝑇2 (442.9 W) at hour 18:00 to 𝑃𝑟𝑚𝑟 𝑓 ,𝑇2

(289.0 W) at hour 22:00. Accounting for efficiency losses and adding the varying RMR across the
24-hour interval, T2 achieved a metabolic work of𝑊𝑚𝑒𝑡 = 62.9 MJ for that day, or 15,030 kCal.

During the 24-hour session, the majority of T2’s time in steady-state occurred during the Day
(80%), with 12.6% of its Day time swimming in steady-state as compared to 1.7% at Night. Similar
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Figure 4.5: TOP: High activity time window displaying a 2-minute sample of T2’s depth (gray), thrust
power (black), forward speed (red), and forward acceleration (blue). Surfacing events are indicated (light
gray, dashed/starred). Steady-state segments are highlighted (yellow). BOTTOM: Steady-state low-𝛾 Day
COT𝑚𝑒𝑡 and speed data points (gray triangles) from the T2 24-hour session, with the corresponding best-fit
curve (gray). The COT𝑚𝑒𝑡 curve from Yazdi et al. (black) is shown for comparison. Diamonds on the curves
show the optimal swimming speed region limits (Exp. Fit: 1.2–2.4 m s−1, Yazdi et al.: 1.9–3.2 m s−1). T2’s
speed PDF during steady-state low-𝛾 Day swimming (red) corresponds to the right-sided 𝑦-axis.
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Table 4.2: T2 24-hour session metrics: summary parameters for T2’s 24-hour free-swimming
session. Parameters were extracted with respect to transient, steady-state, low-𝛾 (surface drag
multiplier < 1.5) steady-state, and general (transient & steady-state) time intervals. Parameters
were calculated for Day (08:00-18:00), Night (18:00-08:00), and Overall (Day & Night) for each
time interval type. Over the 24-hour period, T2 swam 78.1 km and produced 6.64 MJ of propulsive
work (before accounting for efficiencies). Note: values in the Overall column were averaged from
the Day and Night values using the durations of the Day and Night time intervals as weights.

Metric Day Night Overall

Tr
an

si
en

t Mean Speed (m s−1) 1.20 0.59 0.83
Work Done (MJ) 4.00 1.47 5.47
TDT (km) 37.8 29.0 66.8
Mean COT𝑀𝑆 (J [kg m]−1) 0.51 0.24 0.39
Mean 𝛾 2.66 2.84 2.77

St
ea

dy
-S

ta
te

Segment Count 1243 268 1511
Mean Duration (s) 3.66 3.17 3.57
Time Fraction in SS (%) 12.6 1.7 6.2
Mean Speed (m s−1) 2.22 1.44 2.10
Mean Power (W) 237 119 216
Work Done (MJ) 1.07 0.10 1.17
TDT (km) 10.1 1.2 11.3
Mean COT𝑀𝑆 (J [kg m]−1) 0.51 0.41 0.50
Mean 𝛾 1.59 2.33 1.72
Time Frac. 𝛾 < 1.5 (%) 71.0 37.7 65.8

SS
γ
<

1.
5

Segment Count 864 104 968
Mean Duration (s) 3.74 3.08 3.67
Mean Speed (m s−1) 2.43 1.65 2.35
Mean Power (W) 233 107 219
Work Done (MJ) 0.76 0.04 0.79
TDT (km) 7.8 0.5 8.4
Mean COT𝑀𝑆 (J [kg m]−1) 0.43 0.27 0.41

G
en

er
al

Mean Speed (m s−1) 1.33 0.60 0.90
Work Done (MJ) 5.07 1.57 6.64
TDT (km) 47.9 30.2 78.1
Mean COT𝑀𝑆 (J [kg m]−1) 0.51 0.25 0.41
Mean 𝛾 2.53 2.83 2.70
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to the transient results, activity levels for T2 were much lower at Night (65% of the mean speed and
half the mean power). Compared to the transient values, COT𝑀𝑆 during steady-state was equivalent
during the Day and higher at Night (171%), for an overall higher mean COT𝑀𝑆 during steady-state
(128%). Again compared to transient, the steady-state 𝛾 values were lower during both Day (60%)
and Night (82%). Dolphin T2 spent a majority of its Day steady-state swimming in regions of low-
𝛾, and a majority of its Night steady-state swimming in regions of high-𝛾. Combining distances
traveled for transient and steady-state, T2 swam a total of 78.1 km over the entire 24-hour session.

Equation 4.12 was used to combine 𝑃𝑟𝑚𝑟𝑛 𝑓 ,𝑇2, [𝑚𝑠, and [𝑠𝑝 with mean 𝑃𝑡ℎ𝑟𝑢𝑠𝑡 and 𝑣𝑡𝑎𝑔 values
from T2’s 24-hour steady-state low-𝛾 Day segments to generate the experimental speed versus
COT𝑚𝑒𝑡 data points (Fig. 4.5, bottom). The best-fit curve of the experimental data (gray) was
contrasted to the COT curve computed by Yazdi et al. (black) [37]. The best-fit speed versus
�̄�𝑚𝑒𝑡 and COT𝑚𝑒𝑡 relations for T2 (Equations 4.14 and 4.15) were found to have fit coefficients
of 𝑎 = 14.0, 𝑏 = −20.1, and 𝑐 = 52.5. The optimal (minimum) COT𝑚𝑒𝑡 for T2 was found to be
2.57 J/(kg m) at 1.78 m s−1, with a maximum range speed interval (speeds yielding COT𝑚𝑒𝑡 within
10% of the minimum) of 1.24–2.43 m s−1. The steady-state Day time low-𝛾 speed PDF for T2 was
plotted on a secondary axis (Fig. 4.5, bottom, red). The speed PDF peaked at 2.40 m s−1 (std. dev.
of 0.50 m s−1) with values ranging from 1.13–4.98 m s−1.

4.4.2 Discussion

The 24-hour data collection session was used to create a continuous measure of animal activity and
estimated energy expenditure over an extended duration of free-swimming. These data yielded a
detailed picture of T2’s activity, with variable levels during the day and reduced activity at night.
During the 24-hour session, T2’s activity peaked in the morning (∼10:00 local), decreased during
the rest of the day, and dropped at night (Fig. 4.6). This behavioral pattern has been reported in
the literature for managed dolphins [51], where activity levels of the animals are closely associated
with the schedule put in place by the ACSs. The Hourly Work plot (Fig. 4.6, bottom, per-hour
transient vs steady-state work) indicates that T2 engaged in more sustained (i.e. steady-state) bouts
of swimming during the Day time not just overall, but also as a larger fraction of its active time
when compared to Night. This pattern is present qualitatively in the Hourly Work plot, and quanti-
tatively in Table 4.2, where the steady-state time fraction was an order of magnitude larger for the
Day versus Night time.

The 24-hour free-swimming session also provided an opportunity to collect baseline data about
T2’s movement in the lagoon environment. T2 swam 78.1 km (47.9 km during the Day and 30.2
km during at Night) while wearing the tag, with a mean speed of 1.3 m s−1 during the Day and 0.6
m s−1 at Night. The 78 km traveled was higher than expected, and represents the first persistently-
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estimated 24-hour range measurement for a bottlenose dolphin. Interestingly, the animal still
swam ∼ 30 km at night when activity levels were significantly reduced. The longest distance
traveled in a day for wild dolphins reported in the literature is 47 km/day between two separate
sightings [124]. This was recorded as a minimum distance as the estimate only considered the
regional travel distance and not local transient travel (foraging, diving, etc.). Bottlenose dolphins
can have extended habitat ranges [124, 125], and the total distance traveled observed in this lagoon
environment sheds light on the per-day travel capabilities of these animals.

Steady-state power estimates and the corresponding distances traveled were used to calculate
T2’s cost of transport over the 24-hour tag deployment. The steady state COT𝑚𝑒𝑡 curve during the
day is presented in Figure 4.5, and indicates a minimum COT𝑚𝑒𝑡 of 2.57 J/(kg m) at a swimming
speed of 1.78 m s−1, with an optimal speed range (where COT𝑚𝑒𝑡 is within +10% of the minimum)
of 1.24 – 2.43 m s−1. The mean recorded steady-state swimming speed of 2.22 m s−1 is at the
high end of what would be considered optimal, and may indicate that T2’s preferred swimming
speed was influenced by factors beyond cost minimization alone. A total COT𝑚𝑒𝑡 of 0.51 J/(kg m)
during the Day and 0.25 J/(kg m) at Night was calculated from the data. In addition to average
cost of transport, T2’s 24-hour metabolic energy usage was estimated to be 𝑊𝑚𝑒𝑡 = 15, 030 kCal,
which was compared to its reported daily caloric intake. T2 was fed 13,337 kCal of a mixture of
mackerel and squid each day for the month of May 2018, assuming an assimilation efficiency of
87%, T2 had ∼ 11, 600 kCal of available metabolic energy per day [126]. By this measure, 𝑊𝑚𝑒𝑡

overestimated T2’s metabolic energy use by 30% for that day.
The overestimate of T2’s daily energy consumption may be attributed to several factors. The re-

search presented here uses a drag coefficient (𝐶𝐷) formula estimated from animals engaged in low
amplitude swimming [41], and this 𝐶𝐷 was employed in our calculations for all identified periods
of locomotion. Future work could explore the use of separate expressions for 𝐶𝐷 for fluking and
gliding swimming modes, as these may differ in drag characteristics. Next, the assumed resting
metabolic rate for the animals accounts for a significant portion of the estimated daily metabolic
energy requirements (50.3% for T2’s 24-hour session). Our work used values measured by van
der Hoop et al. [38], and additional data collection could improve animal-specific measurements
to raise the accuracy of the approach. Finally, as thermoregulatory costs constitute a portion of a
dolphin’s RMR, there is reason to explore a variable RMR dependent on the dolphin’s propulsive
effort [37]. As propulsive effort increases, it is expected that the waste heat from muscular inef-
ficiency ([𝑚𝑠) provides some portion of the animal’s thermoregulatory requirements. This would
lower the overall RMR requirements during motion and lower the estimated energy consumption.

When comparing T2’s best-fit COT𝑚𝑒𝑡 curve (Eq. 4.15) to the COT curve from Yazdi et al.
[37], our model was higher over all speed ranges, penalized higher speeds more heavily, and had
slower and smaller-range optimal speed regions (this experiment: 1.24–2.43 m s−1, Yazdi et al.:
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1.9–3.2 m s−1). T2’s steady-state low-𝛾 Day time swimming speed PDF peak (2.40 m s−1) fell
within the optimal speed region proposed by Yazdi et al., and just inside the optimal region found
in this research. For reference, Yazdi et al. employed respirometry to measure the metabolic rates
of the dolphins in a controlled environment (exempting their data from efficiency conversions), and
estimated animal swimming speeds through direct observation (speed extrapolation from duration
and distance traveled). They observed speeds in the range of 0.8–2.6 m s−1, with speeds above this
range (denoted “high-speed”) assigned a general value of 3 m s−1 (it was also noted that there was
uncertainty on the accuracy of the high-speed values as they could not be reliably measured). In
contrast, the speeds used in our COT estimation ranged from 1.13–4.98 m s−1, all of which were
directly measured by the MTag’s onboard sensor.

A separate study performed by Williams et al. used electrocardiography to estimate bottlenose
dolphin metabolic rates (using a data-driven relation of heart rate to metabolic rate) as they kept
pace with a boat traveling in open water [36]. These speed and power data were used to produce
COT estimates for their animals, and for higher speed (non wave-riding) travel, they found that
their dolphins had a mean COT of 2.85 J [kg m]−1 at 2.9 m s−1. At the same speed, the model in
Yazdi et al. predicted 1.21 J [kg m]−1 (58% lower), and the model from this research predicted 3.26
J [kg m]−1 (14% higher). As each study used widely different methods of estimating metabolic rate
(respirometry, electrocardiography, and fluid dynamics + RMR), a further investigation where all
three data streams are used to estimate cost is warranted.

4.5 Experimental Condition Comparison

Dolphin T2’s low-𝛾 lap trial versus 24-hour session steady-state swimming speed, power, and COT
were compared via averages, with statistical significance evaluated using the two-sample t-test.
The Day interval values were used for this comparison, as this was when the animal was assumed
to be “active” and not in a resting state. Further comparisons were made between T2’s achieved
𝛾 values during active swimming: full lap and Day time general 𝛾 means were compared, and lap
trial steady-state and Day time steady-state 𝛾 means were compared. The statistical significance
was again evaluated using the two-sample t-test.

T2’s free-swimming results differed from the lap trials in several key aspects: general activity
level, depth selection, and percent of time spent in steady-state. To make a direct comparison be-
tween similar swimming modes, steady-state low-𝛾 segments from the 24-hour session (Table 4.2,
heading “SS 𝛾 < 1.5”) were compared with the swimming metrics for T2 from the lap trials (Ta-
ble 4.1, heading “SS 𝛾 < 1.5”). Assuming T2’s active portion of the 24-hour session to be during
Day time, activity levels for this period were lower during free-swimming than in the lap trials.
Day time steady-state low-𝛾 COT was significantly lower for the free-swimming session versus
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the lap trials (0.43 vs. 0.79 J [kg m]−1 or 54%, 𝑝 = 6.7 × 10−68). This directly follows from the
corresponding lower relative swimming speed (2.4 vs. 3.7 m s−1 or 66%, 𝑝 = 5.2 × 10−87) and
power (233 vs. 672 W or 35%, 𝑝 = 5.3 × 10−95) results.

Although T2 achieved a lower COT during the 24-hour session than during the lap trials, this
was not due to minimizing surface drag. T2’s 𝛾-values seen during Day time free-swimming
were significantly higher than those achieved during the lap trials (General: 2.53 vs. 1.15 or 220%,
𝑝 < 10−307; Steady-State: 1.59 vs. 1.00 or 159%, 𝑝 = 9.1×10−9). This indicated that while T2 used
efficient swimming depths at high activity levels when completing a task (lap trials), minimizing

surface drag was not heavily prioritized at lower travel speeds (24-hour session). The difference in
T2’s surface drag results indicates that it adjusted to the higher drag experienced during the high-
intensity lap trials by prioritizing efficient travel depths. Further research is necessary to determine
whether this behavior is observed in other dolphins in similar swimming conditions.

Dolphin T2 also did not engage in steady-state swimming nearly as frequently in the 24-hour
session as in the lap trials (12.6% [Day] vs. 34.7%). Similarly, the percent distance traveled while
in steady-state was lower in the 24-hour session than in the lap trials (21.1% [Day] vs. 36.4%
[TDT/Lap]), as is the case with the total work done (21.1% [Day] vs. 35.9% [Work/Lap]). This
could be due to increased use of a mixed fluke-and-glide gait during self-selected swimming that
dolphins are known to use for extended-duration motion [67], as the acceleration-to-deceleration
profile of this gait is not consistent with the uniform-speed requirements of steady-state. The dol-
phin’s fluctuating use of transient versus steady-state fluking dependent on swimming condition
(mixed-speed free-swimming versus high-speed lap trials) demonstrates the necessity for metabol-

ics estimation methods to be robust to both steady-state and transient swimming. The method
presented in this chapter is intended to satisfy this necessity through its ability to persistently mon-
itor animal speed and power, allowing for fine-scale metabolics analyses.

4.6 Future Work and Conclusions

While the lap trial results offered insights into the similarities and differences between individ-
ual dolphin swimming behaviors, more work can be done to relate mechanical work and power
to metabolic cost. Combining tag-based power estimates with respirometry-based metabolic mea-
surements has the potential to enhance our understanding of the relation between animal propulsive
power and metabolic rate [127]. The residual of the measured metabolic cost after accounting for
thrust power can be used to provide insight into the non-propulsive components of a dolphin’s en-
ergy expenditures (thermoregulation, digestion, etc.) during controlled experiments. Quantifying
these additional components would then help build a more accurate model to estimate an animal’s
energetics using this combination of tag-based kinematic estimates and hydrodynamic models.
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The 24-hour trial offered quantitative insight into day-scale biomechanics, though more data
collection is required to build a baseline data set that can be used to examine generalizable trends
observed for animals in this environment. To extend this research, additional dolphins from this
population can be tagged for extended durations in repeated sessions during different times of the
year. These data could be used to investigate topics concerning this population such as: detailed
circadian rhythm, activity level dependency on proximity to conspecifics, generalized cost of trans-
port estimation, and seasonal energy expenditure changes. This framework can also be extended to
wild animals with small modifications to the biologging tags used in this work. The tags currently
in use have not been outfitted for open-water retrieval, which will be necessary due to their archival
(versus transmitting) design. Additionally, the speed sensor requires the tag to be aligned with the
animal’s body for optimal performance, so it may be necessary to update the suction cup design to
limit the chance of tag slippage (and misalignment) after initial placement.

This contribution paired measured kinematics with a physics-based thrust model which yielded
insights into the swimming biomechanics of managed bottlenose dolphins and how they modulate
their propulsive effort during high-intensity directed tasks and varying-intensity free-swimming.
The ability to measure speed from the animal using a biologging tag was a key technical compo-
nent that enabled the framework presented in this chapter. Additionally, this research produced new
knowledge about the day-scale range capability of a bottlenose dolphin in a lagoon environment,
including a 78 km total distance traveled estimate for the animal. Finally, the estimated propulsive
power combined with a resting metabolic rate from the literature were used to estimate an animal’s
total metabolic rate and steady-state cost of transport throughout a free-swimming recording ses-
sion. While the total metabolic rate model can be refined, the results in this manuscript offer a
representative example of the opportunities for investigation afforded by the proposed approach.
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CHAPTER 5

High-Fidelity 3D Monitoring:
Spatially Contextualized Animal Metrics

The ability to accurately and precisely track animals in their habitat can enable an entirely
new vein of research on managed marine animals. While bottlenose dolphins are presented in this
chapter as a case study, the monitoring framework presented in this chapter can be modified and
extended to apply to other commonly tagged underwater animals. At its heart, the framework is
based on fusing high-frequency dead-reckoning using the approach from Section 3.1 with low-
frequency external localizations through pose-graph optimization [44], and this property is what
allows it to be generalized to other localization applications. As a biologging tag is core to the
operation of this method, tag-based metrics on animal behavior can now be examined with respect
to where they occurred within the environment. To demonstrate this capability, animal energetics
are estimated using the method from Chapter 4 and contextualized via location. Since the majority
of the method is automated, the framework presented here also makes processing long-duration
datasets more feasible, simplifying and standardizing large-scale raw data analysis. This chapter
details the hardware and analysis methods used as part of the monitoring framework (Section 5.1),
demonstrates their use by tracking a bottlenose dolphin in a managed setting (Section 5.2), and
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explores the opportunities of the resulting data in evaluating swimming behavior and energetics as
they pertain to location (Section 5.3).

5.1 Framework Structure

This section describes the general structure of the framework, with the following subsections de-
scribing each process in more detail. Data for this research was collected through a combination
of a biologging tag attached to the animal, and a pair of environmentally-mounted video cam-
eras (Fig. 5.1, A). This is the same experimental environment used in Section 3.1.2, and uses
the MTag hardware described in Section 4.1.1. First, data from the tag was used to produce an
odometry (dead-reckoning) estimate of animal movement. Next, the locations of all animals in
the environment were tracked in recorded video through a CNN object detector. These detections
were error-corrected dependent on depth information from the tag, and were combined with the
odometry estimate through a particle filter to produce a drift-corrected track of the dolphin. Fi-
nally, animal localization was further improved by: 1) exploiting temporal associations between
CNN localizations to identify detections that corresponded to the tagged animal, and 2) fusing the
odometry and identified detections through pose-graph optimization.

5.1.1 Odometry Generation

Before animal odometry can be produced, the raw tag data must be processed. Odometry requires
two principal components at each time step: 1) body orientation, and 2) distance traveled. Body
orientation was obtained by passing IMU data through the Madgwick orientation filter [10]. To
do this, acceleration data (A) were first pre-processed to remove effects on the tag from animal
rolling actions (tangential and centripetal), using the method described in Section 4.1.4. The mod-
ified acceleration data (Ā) were then combined with the gyroscope and magnetometer data in the
Madgwick filter to produce the full animal orientation as a set of 3D rotation matrices from animal
to world-frame (R ∈ R3×3). This research uses right-handed axis conventions of 𝑥-right, 𝑦-front-to-
back, and 𝑧-up with respect to the local habitat for the world frame (Fig. 5.1, top), and 𝑥-forward,
𝑦-left, and 𝑧-up with respect to the orientation of the MTag for the animal frame. World-frame
velocity (v𝑤) was generated by rotating the animal-frame velocity (v𝑎) using v𝑤 = Rv𝑎, where
v𝑎 = [𝑣𝑡𝑎𝑔, 0, 0]>, at each time step. Specific acceleration (A𝑠) was computed by rotating Ā into
the world frame and subtracting gravitational effects at each time step:

A𝑠,𝑘 = R𝑘Ā𝑘 − [0, 0, 𝑔]>, Ā𝑘 ∈ R3×1 (5.1)
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Figure 5.1: Experimental setting/sensing hardware relation to the localization framework methods. A: Dia-
gram illustrating the experimental habitat, on-animal tag placement, and environmental camera setup used in
this research. The main habitat of the Seven Seas Dolphinarium (bottom-right) is overlooked by two cameras
in weatherproof housing (top). These are used to visually record a tagged bottlenose dolphin (bottom-left).
B: Block diagram of the localization framework. Sensor data from the cameras and biologging tag are fed
into two interconnected computation streams, which are combined to provide a high-fidelity estimate of
animal locations and kinematics.
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Procedure 5.1 Drift-Correcting Kalman Filter
1: procedure MODIFIED KALMAN FILTER (3D)(u, z, n𝑢,𝑎, n𝑢,𝑑 , n𝑧, 𝑇)

2: F =



1 −𝑇 0 0 0 0
0 1 0 0 0 0
0 0 1 −𝑇 0 0
0 0 0 1 0 0
0 0 0 0 1 −𝑇
0 0 0 0 0 1


, B =



𝑇 −𝑇2/2 0 0 0 0
0 𝑇 0 0 0 0
0 0 𝑇 −𝑇2/2 0 0
0 0 0 𝑇 0 0
0 0 0 0 𝑇 −𝑇2/2
0 0 0 0 0 𝑇


3: H =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0


4: Q = B diag( [𝑛2

𝑢,𝑎𝑥
, 𝑛2
𝑢,𝑑𝑥

, 𝑛2
𝑢,𝑎𝑦

, 𝑛2
𝑢,𝑑𝑦

, 𝑛2
𝑢,𝑎𝑧

, 𝑛2
𝑢,𝑑𝑧

])B>

5: `1 = 06×1, 𝚺1 = 06×6
6: for 𝑘 ∈ [2, 𝑁] do
7: ¯̀𝑘 = F`𝑘−1 + Bu𝑘
8: �̄�𝑘 = F𝚺𝑘−1F> + Q
9: R = diag( [𝑛2

𝑧𝑥,𝑘
, 𝑛2
𝑧𝑦,𝑘
, 𝑛2
𝑧𝑧,𝑘

])
10: K𝑘 = �̄�𝑘H>(H�̄�𝑘H> + R)−1

11: `𝑘 = ¯̀𝑘 + K𝑘 (z𝑘 − H ¯̀𝑘 )
12: 𝚺𝑘 = (I6×6 − K𝑘H)�̄�𝑘
13: end for
14: return `
15: end procedure

where 𝑘 is the time step and 𝑔 is gravitational acceleration (magnitude). World-frame velocity
and specific acceleration were fused to create a filtered velocity signal (v̂𝑤) using a drift-correcting
Kalman filter (Alg. 5.1). Odometry position (p̂𝑜𝑑) is computed by numerically integrating (v̂𝑤) via
trapezoidal sum. Full odometry pose is then represented by the combination of odometry position
and animal body orientation at each time step 𝑘:

P𝑜𝑑,𝑘 =

[
R(3×3)
𝑘

p̂(3×1)
𝑜𝑑,𝑘

01×3 1

]
(5.2)

Notes on algorithm inputs and component variables:

• u: Primary input array of acceleration data A𝑠. Format: u = [u𝑥 , 0, u𝑦, 0, u𝑧, 0]>.

• z: Sensor update array of velocity data v𝑤. Format: z = [z𝑥 , z𝑦, z𝑧].

• n𝑢,𝑎: Noise standard deviation for input array. Format: n𝑢,𝑎 = [n𝑢,𝑎𝑥 , n𝑢,𝑎𝑦 , n𝑢,𝑎𝑧 ].

• n𝑢,𝑑: Drift standard deviation for input array. Format: n𝑢,𝑑 = [n𝑢,𝑑𝑥 , n𝑢,𝑑𝑦 , n𝑢,𝑑𝑧 ].
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• n𝑧: Noise standard deviation for sensor update. Format: n𝑧 = [n𝑧𝑥 , n𝑧𝑦 , n𝑧𝑧 ].

• 𝑇 : Iteration period (seconds).

• `: Output state vector. Format: ` = [v𝑥 , v𝑥,𝛿, v𝑦, v𝑦,𝛿, v𝑧, v𝑧,𝛿]. [v𝑥 , v𝑦, v𝑧] represent the
velocity components and [v𝑥,𝛿, v𝑦,𝛿, v𝑧,𝛿] represent the velocity drift components.

5.1.2 Animal Tracking

The same validation and training data as in Section 3.1.2.3 were used to train updated Faster R-
CNN object detectors (one for each camera) using the second classifier structure from Section
3.1.1. Bounding-box conflicts between overlapping detections were resolved and false-positives
were removed using the methods found in Section 3.1.2.4. This portion of the framework did
not change significantly from the approach in Section 3.1, with the most meaningful modification
being made to the CNN classifier structure for more robust animal detection.

5.1.3 Depth-Based Position Correction and Particle Filtering

Just as in Section 3.1, animal detected locations were subject to systematic errors due to depth-
based camera perspective and optical refraction effects. The method for correcting these errors
follows the same concept as in Section 3.1.2.6. However, in this case tag-based depth readings
are present to enable exact position corrections. These corrections were applied to all detections
regardless of tagging condition: since only the tagged animal is being tracked by the framework,
erroneous position corrections applied to other animals in the area are irrelevant. As MTags are
used in this framework, two sources of error in tag-estimated depth must be addressed: 1) er-
rors due to animal in-place rotations, and 2) errors due to the fluid pressure drop during dolphin
swimming. These were corrected using the method derived in Section 4.1.4.1.

The following method was devised and executed by D. Zhang1, and is briefly described here for

completeness. Depth-corrected animal detections were fused with 2D (world-frame 𝑥-𝑦) odometry
data in a non-causal particle filter [128]. The odometry was sub-sampled to match the sampling fre-
quency of the detection data. Randomly instantiated particles were weighted (“rewarded”) based
on their proximity to a detection within a general radius of attraction (4.5 meters). Particles were
then propagated forward in time according to the yaw and speed of the 𝑥-𝑦 components of the
odometry. This reward-propagate process would continue with particles being resampled if differ-
ences in weights surpassed a heuristically-defined threshold. The estimated position of the animal

1In: D. Zhang, J. Gabaldon, L. Lauderdale, M. Johnson-Roberson, L. J. Miller, K. Barton, and K. A. Shorter,
“Localization and Tracking of Uncontrollable Underwater Agents: Particle Filter Based Fusion of On-Body IMUs and
Stationary Cameras,” 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 6575-6581, doi:
10.1109/ICRA.2019.8794141.

94



0 50 100 150 200 250 300

0

10

20

30

x 
[m

]
Boundary Particle Filter Ground Truth Pose-Graph TKL - All TKL - Assoc. TKL - Assoc. (2nd)

0 50 100 150 200 250 300

0

10

20

30

x 
[m

]

0 50 100 150 200 250 300
Time [s]

0

10

20

30

x 
[m

]

A

B

C

Figure 5.2: Demonstration of the tracklet association process. A: Particle filter 𝑥-position versus time (blue),
overlaid with all existing tracklets (gray) during the five-minute subsection of a processed track. As there
can be up to seven animals in the main habitat at one time, the association tool must be able to contend with
all of these at once. B: Particle filter 𝑥-position versus time, overlaid with all potentially associated tracklets.
Confirmed associations (post tie-breaking) are shown in green and discarded (secondary) associations are
shown in purple. C: Final pose-graph 𝑥-position (red) and ground-truth (black) versus time, overlaid with
the confirmed associated tracklets. This demonstrates how the associated tracklets, when present, enable the
localization framework to closely follow the true animal position.

at each time step was defined according to the weighted mean of particle locations. As this com-
putation was performed entirely in-post, particles could receive additional priority dependent on
the magnitude of rewards they would receive in subsequent time steps. Any particles that were
prioritized this way were defined as “non-causal” and were used in a separate weighted mean for
a secondary, more accurate track estimate. The work in this chapter uses the non-causal filtering
approach for enhanced tracking performance.

5.1.4 Detection Association

This section represents one of the primary method contributions of the chapter: building the lo-
calization framework mainly involved the integration of methods previously detailed in Chapters
3 and 4, and what follows is a novel method required to link animal tag data with the animal’s
corresponding localizations. To associate specific detections with the tagged animal, they were
first temporally linked through the process of tracklet generation as described in Section 3.1.2.5.

Tracklet generation provides the benefit of linking localizations that correspond to a single an-
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imal; however, they cannot identify the animal. A further step was required to associate individual
tracklets to the tagged animal, which is not a trivial endeavor when multiple animals are present
in the monitored environment (Fig. 5.2, A). Applying the particle filter reduced localization drift
while preserving the spatial shape of the tagged animal’s movements. This made it possible to as-
sociate tracklets to the tagged animal by comparing tracklet shape to the shape of the particle filter
output track. Segments of the particle filter track were extracted at time intervals corresponding
to each tracklet’s time interval. As the particle filter was set to match the detection data sampling
frequency, each extracted track and corresponding tracklet had an equal number of points. For
each comparison, 𝑥-𝑦 particle filter and tracklet location data were first conditioned to reduce scale
discrepancies caused by short-term drift. Conditioning was performed as follows, for a 2D position
sequence p ∈ R2×𝑛, where 𝑛 is the number of points in the sequence:

o = [mean(p𝑥),mean(p𝑦)] (5.3)

𝑠 =
√

2/mean
(√︃

(p𝑥 − 𝑜𝑥 · 11×𝑛)2 + (p𝑦 − 𝑜𝑦 · 11×𝑛)2
)

(5.4)

T =


𝑠 0 −𝑜𝑥𝑠
0 𝑠 −𝑜𝑦𝑠
0 0 1

 (5.5)

p̄ = T[p>, 1𝑛×1]> (5.6)

where the first two rows of p̄ are the conditioned 𝑥 and 𝑦 location values, respectively. This
conditioning method was sourced from the normalized Direct Linear Transform [109], and was
found to aid in tracklet association robustness in this research.

Conditioned track and tracklet data were then aligned using the Iterative Closest Point (ICP)
scan-matching method [129]. Figure 5.3 displays four examples of conditioned particle filter track
segments and tracklets both before and after scan-matching. The track segments were used as the
point models to which the tracklets were matched. Tracklets were discarded if they failed a set
of threshold requirements that evaluated the differences from their corresponding track segments.
Each tracklet was evaluated according to four metrics, the thresholds heuristically determined:

1. Distance: The Root Mean Square (RMS) distance between a tracklet and its track segment
(before conditioning) was computed, with an allowable maximum of 10 meters. This ensured
the overall distance between point sets was not extreme (e.g. opposite ends of the habitat).

2. Root Mean Square Error (RMSE): The 𝑥-𝑦 position RMSE of the conditioned tracklet as
compared to its corresponding track segment was computed, both before and after scan-
matching, with an allowable maximum of 0.7 meters. The minimum of the two was used, as
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in rare cases circular movement patterns could cause the ICP process to arbitrarily rotate the
tracklet, yielding excessive errors. This ensured the overall shapes matched.

3. Rotation: The 2 × 2 rotation matrix output from the ICP scan-matching was converted to its
corresponding angular rotation, with an allowable maximum magnitude of 15°. The rotation
metric was only checked if the post-ICP RMSE was used, as otherwise circular tracklets
could experience a false rejection. This ensured the tracklet could not be a similar shape but
a completely different orientation compared to the track segment.

4. Travel Direction: The conditioned track segment and tracklet position data were numerically
differentiated and passed through the atan2 function to obtain their estimated directions of
travel between each time step. The same tracklet position data that produced the minimum
for the RMSE metric were used in this computation for consistency. Tracklet data were
smoothed pre-differentiation using a 1 second window Savitsky-Golay filter to reduce noise.
The RMS difference between these was then computed, with an allowable maximum of
60°. This ensured that the tracklet and particle filter segment were not traveling in opposing
directions, as ICP does not explicitly account for point ordering.

Tracklets satisfying these requirements were placed into a set of potential associations (Fig. 5.2,
B). Dolphins do engage in paired swimming, and as a result there can exist tracklets of similar
shape and position occurring simultaneously. It is also possible for similarly-shaped simultaneous
movement patterns to occur purely by chance when there are multiple dolphins in the same habitat.
Potential associations without temporal overlaps were placed into a set of confirmed associations.

When determining overlaps, special cases were handled where a potentially associated tracklet
had a temporal overlap with another tracklet less than 1 second long and under 25% of its total
duration. The overlapping section was removed, and the two tracklets were re-labeled as not
overlapping, preserving any other overlaps with other tracklets. This could occur when another
tracklet was instantiated in close proximity to the tracklet in question, and erroneously hijacked
what would be the rest of the tracklet. This would end the first tracklet prematurely with both
tracklets corresponding to the same animal, and a short overlap between the two.

After handling the special cases, tie-breakers were performed to identify the most-likely as-
sociated tracklets among the overlapping subset. Potential associations were scored according to
how close they came to surpassing each threshold for the distance, RMSE, and travel direction
metrics. The total score for a potential association was computed as the mean of the metric frac-
tions (computed metric value divided by its maximum allowable threshold). Overlapping tracklets
with the lowest scores among their overlap group were placed into the confirmed set.
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Figure 5.3: Four examples of conditioned particle filter, tracklet, and post-ICP scan-matched tracklet po-
sition data. All four tracklets were identified as associated with the tagged dolphin. These tracklets were
selected to demonstrate the flexibility of the method, which is able to associate track shapes with high ec-
centricity (A), fully enclosed narrow loops (B), simple linear progression (C), and circular wide loops (D).
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5.1.5 Pose-Graph Optimization

The full 3D odometry (P𝑜𝑑) was fused with the associated tracklet position data through the iSAM
pose-graph optimization method [44], as implemented in the GTSAM MATLAB toolbox [130].
As the environmentally-mounted cameras did not offer a full stereo view of the habitat, the camera
data could not provide depth information. The MTag-based depth data were used as a substitute,
and when paired with the associated tracklet data provided absolute position estimates used in
the pose-graph localization method. To evaluate the performance of the individual tracking steps
(odometry, particle filtering, and pose-graph optimization), the 𝑥-𝑦 positions of each were com-
pared to manually-tracked 𝑥-𝑦 position data by computing their 2-norm error values.

5.2 Experimental Deployment

5.2.1 Experimental Setup

One bottlenose dolphin from a group of seven individuals was outfitted with an MTag biologging
device (Section 4.1.1) and recorded in video in the Seven Seas dolphinarium at the Brookfield Zoo,
Brookfield, IL using the same camera setup as described in Section 3.1.2. Recordings were cap-
tured at 20 Hz in the RGB-24 color format and object detection was performed at 10 Hz to reduce
computation time. The dataset used to validate the framework performance was recorded during
a tagging session in September 2018, which contained two segments (18 and 19 minutes each)
where the tagged dolphin was continuously present in the portion of the habitat monitored by the
cameras. Ground-truth data were generated by hand-tracking the tagged dolphin in a panoramic
stitched video that combined the two camera views (e.g. Fig. 5.1, A, bottom-right), with a tracking
rate of 10 Hz. For the work performed in this chapter, an updated computer system was used for
detection inference, and was outfitted with an AMD 5900X processor and a Nvidia RTX 3090
graphics processing unit to expedite the inference process. The MTag housing and internal hard-
ware remained unchanged from Chapter 4.

5.2.2 Localization Results and Performance

For both segments, the pose-graph (PG) optimized track was more accurate than the particle filter
(PF) result for all metrics (Table 5.1). Note: the 𝑧-axis was not considered when computing the
errors as the ground-truth obtained from manual video annotation was only capable of providing
𝑥 and 𝑦 localizations, so in this case, the tag provides the sole depth estimate. Mean PG errors
were less than half those of the PF, and median PG errors were roughly one-third of the PF results.
PG error standard deviations were relatively high compared to the means, which is understandable
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Table 5.1: Localization framework performance

Parameter Segment 1 Segment 2
Duration [min] 18 19

E
rr
𝑃
𝐹

Mean [m] 1.80 2.66
Median [m] 1.55 2.24
Std. Dev. [m] 1.21 1.97

E
rr
𝑃
𝐺

Mean [m] 0.85 1.03
Median [m] 0.58 0.63
Std. Dev. [m] 0.79 1.11

Mean Err𝑃𝐺 – With TKL [m] 0.50 0.61
Mean Err𝑃𝐺 – No TKL [m] 1.33 1.52

Notation: PF corresponds to the particle filter track and PG to the pose-graph track.
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Figure 5.4: Comparison of particle filter, pose-graph, and ground-truth tracks for Segment 1. TOP-RIGHT:
3D view of the dolphin’s trajectory for this segment, color-coded according to depth for visibility. The upper
edge of the habitat is lined in gray, and the bottom edge in black. BOTTOM: 𝑥 and 𝑦 position versus time
results for the particle filter (blue) and pose-graph (red) tracks as they compare to the ground-truth positions
(black), with the habitat bounds marked in gray. Shaded regions under the 𝑥 and 𝑦 plots represent times
where animal-associated tracklets were present. The tracking error for each position estimate is shown in
the final plot, demonstrating the overall performance advantage for the pose-graph result over the particle
filter. TOP-LEFT (POPOUT): Spatial 𝑥-𝑦 comparison between the particle filter and pose-graph tracks as
they compare to the ground-truth for a 2-minute subset of the data at the beginning of the segment.
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when observing Figure 5.4: tracking error only significantly increased when no tracklets were de-
tected for the animal (absence of shaded regions in the plot) for tens of seconds at a time, and these
spikes in error contributed to the higher standard deviation values. This is to be expected, as the
odometry is guaranteed to drift over time, and is the driving component in the localization process
when no external observations are present to anchor the track. This indicates that improvements to
the framework’s tracking performance would primarily require further advancements in odometry
estimation, as mean errors when the tracklets were present are well below 1 meter, versus more
than double when no animal-associated tracklets appear (Table 5.1).

The dolphin traversed the majority of the habitat throughout Segment 1, primarily focusing on
swimming in the upper third (42% of the time) and at the bottom third (51%), with the middle
third (7%) of the environment primarily reserved for transient actions such as diving and surfacing
(Fig. 5.4, top-right). Despite the segment only being 18 minutes in length, animal exploration
for this period was relatively thorough. However, to produce generalized statistics on habitat use
and related animal behavior metrics similar to those in Section 3.1, significantly more recording
sessions are required.

5.3 Contextualized Monitoring

To provide an example of the potential provided by contextualizing animal swimming behavior
via localization, animal COT (non-metabolic) was calculated using the approach in Chapter 4 and
analyzed with respect to its track, using Segment 1 as a case study. Cost of Transport is an impor-
tant metric as it explicitly tracks an animal’s locomotive efficiency. Monitoring COT then provides
an understanding of the propulsive effort ramifications of an animals’ chosen gait at a given time.
This can inform researchers on correlations between different animal behavioral states and power
modulation, indicating which situations result in an animal prioritizing efficiency, and which do
not. An extreme case of varying efficiency prioritization was explored in Chapter 4, where an ani-
mal avoided parasitic drag during high-intensity directed swimming tasks, and made no such effort
when in low-intensity free-swimming. COT analysis can also provide a more nuanced view of how
animals approach propulsion according to behavioral sub-states. For example, paired versus un-
paired swimming (i.e. when an animal is alongside/tailing another; occurs during free-swimming),
may have differing effort profiles due to the effects of the social interactions between that partic-
ular pair of dolphins. It is then important to verify the significance of such interactions on animal
behavior, and quantify how these effects manifest themselves.

Figure 5.5 displays a temporal view of animal position throughout Segment 1, and has been
color-coded according to the animal’s mass-specific COT (Eq. 4.9). Note: while the dolphin
achieved a peak of 3.75 J/[kg m], this was a transient shallow-water high-speed activity spike
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Figure 5.5: Segment 1 pose-graph animal track, color-coded according to swimming COT. This provides
a temporal view of animal swimming effort with respect to 3D position, allowing for qualitative analyses
of swimming behavior trends. Additionally, mean animal COT is discretized according to each axis (gray
bars). The animal engaged in looping swimming patterns throughout the segment, with COT generally
rising during the central portions of the 𝑥 and 𝑦 axes. Swimming effort increased in shallow water during
the diving portions of its short swimming bouts. During transitions between shallow and deep regions, if a
COT spike was observed it tended to occur at the beginning of each long dive/ascent. COT peaks in deep
water were short but sporadic, and tended to occur 1 meter above the bottom of the environment.

within the first minute of the track. All other values in the segment fell below 2.0 J/[kg m], so the
colormap was capped at this value to better differentiate COT peaks and troughs throughout the
entire segment. The dolphin engaged in paired swimming with another animal for the majority of
Segment 1, interacting with floating enrichment for the first 100 seconds and briefly (∼ 5 s) right
before the 10-minute mark. These behaviors were manually observed in the video recording.

Despite the tagged dolphin exhibiting consistent looping patterns in the 𝑥-𝑦 plane (varying
amplitude sinusoidal motion in the 𝑥 and 𝑦 axes) both at the surface and at the bottom of the
habitat (Fig. 5.5), temporal patterns in COT primarily correlated to depth, rather than any particular
phase in an 𝑥-𝑦 loop. The most predictable pattern occurred in the top third of the habitat, where
the animal would increase swimming effort immediately after respiration during a surfacing event
as it dove back into the water. This aligns with the “respiration → dive → fluke → glide →
repeat” gait pattern seen in literature [67]. Overall COT was higher in the top third of the habitat
(0.65 ± 0.50 std. dev. J/[kg m]) than the bottom third (0.46 ± 0.37 std. dev. J/[kg m]). Figure 5.6
aids in this visualization, presenting average animal propulsive COT according to spatial location
for both the top and bottom thirds of the environment (middle is not shown due its low use rate).
The environment was subsampled into 1×1 meter squares similar to Section 3.1.3, however in this
case it is now possible to differentiate animal swimming behavior according to depth condition.

The most likely explanation for the discrepancy in COT between the top and bottom thirds of
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Figure 5.6: Animal mean COT with respect to position for top and bottom thirds of the habitat. Each square
represents a 1 × 1 meter area. Top third COT values are higher overall, though the bottom third sees more
even habitat coverage. The middle third was neglected due to its low (7%) usage rate, only employed by the
dolphin for transitions between the other two regions.

the habitat can be given through a combination of two factors: wave drag and oxygen availability.
As shown in Chapter 4, wave drag drastically increases an animal’s required propulsive effort
dependent on the animal’s proximity to the surface, consequently decreasing its efficiency. Further,
an animal can afford to sacrifice efficiency at the surface as it has quick access to a fresh supply
of oxygen. However, these factors may not fully explain the spatial patterns observed in Figure
5.6: the tracked animal engaged in paired swimming (with the same conspecific) regardless of
depth condition, yet the spatial spread of propulsive efficiencies varied drastically dependent on
where in the water column the swimming took place. The top third displayed a near-random COT
distribution with large scattered spikes, while the bottom third displayed more even coverage along
the edges of the environment. Despite the animal being in the same social state for both depth
regions, there was a fundamental shift in swimming behavior as the animal switched between the
two. This is supported through manual inspection of the video data: shallow swimming entailed
more varied movement patterns, and the opposite was true for deep water swimming. Further
recording sessions are required to determine the significance of this observation.
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5.4 Future Work and Conclusions

The localization framework itself represents the primary contribution of this chapter, and thus far
has demonstrated its capability in providing across-the-board improvements in tracking precision
and accuracy, in some cases achieving legitimately sub-1-meter errors. This is not possible even
when using state-of-the-art localization techniques originally developed for the wild [24]. Further,
it achieves continuous localization while preserving high-frequency animal kinematics information
through the combination of tag and camera sensor fusion, which has not been feasible with existing
camera-only indoor tracking solutions [28, 29].

The method can still be improved, however, with the introduction of additional hardware. The
ability to achieve full stereo coverage of the monitored habitat would provide a secondary depth
estimate, allowing for enhanced vertical accuracy during high-speed swimming: as the depth cor-
rection process relies on fluid speed information, any noise or lag in the signal has the potential to
reduce the efficacy of the corrections. A secondary depth estimate could then provide additional
robustness to edge cases, including out-of-water leaping height estimates, which are currently not
modeled at all. The odometry performance also indicates that continuously improved speed and
orientation estimation may also be required. While the speed sensor represents an advancement in
accuracy and robustness compared to existing methods, it is limited by its uniaxial structure. As
dolphins can drift slightly during banking, the assumption that velocity is primarily in the direction
of the animal’s orientation begins to break down as turns sharpen or speeds increase. The develop-
ment of an omnidirectional speed sensor of similar or better performance versus the micro-turbine
used in this dissertation would then enable more accurate animal odometry.

The contextualized monitoring example presented in this chapter is only intended to serve as
a case study, and for the full potential of this framework to be realized a longer, more in-depth
monitoring experiment is required. Further recording sessions with the same and additional dol-
phins are necessary to achieve statistically significant results on animal kinematics and energetics
and how these metrics relate to location-specific stimuli. Consistent recording sessions can then
yield insights into how behaviors vary throughout a typical day and across seasons, and the use
of the framework presented in this chapter will enable higher precision than in Section 3.1, which
attempted such a feat. Further, as this framework is equipped to perform animal identification,
specific individual monitoring is possible. This has the potential to inform both researchers and
managing institutions on animal engagement, biomechanics, and welfare, offering the opportu-
nity to gain new insights into behavioral patterns and continuously refine institution management
practices to safeguard animal mental and physical health.
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CHAPTER 6

Conclusion

6.1 Contribution Summary

The limitations in marine animal monitoring inspired the contributions of this dissertation in push-
ing advancements to both hardware and computation methods. These in turn led to new insights
on animal behaviors concerning kinematics, energetics, and habitat exploration. As existing meth-
ods have been primarily developed for use in wild animal monitoring, they do not abide by the
constraints set by the managed environment. The contributions presented here have been designed
to overcome these particular hurdles by adopting and blending methods from the field of robotics
with those of marine mammal science.

Before any novel insights on animal behavior could be made, additional tools were necessary
to enable this research. Chapter 3 presents two contributions of this nature: CNN-based visual
localization, and a robust on-tag speed sensor. While Section 3.1 did not advance the field of
CNN object detection itself, the unique method in this case concerned the structure surrounding
the detector. By accounting for the limitations set by the environment and the complications of
simultaneously tracking multiple targets, the object detection method was able to provide gener-
alized statistics describing the behaviors of a population of bottlenose dolphins, gaining insights
into environmental attractors of their attention and intra-day kinematics trends. This research pro-
vides a direct example of the integration of a method novel to the field of marine mammal science
furthering our understanding of animal behavior.

In contrast, the speed sensor represents the introduction and validation of a tool that has not
existed thus far. Section 3.2 proposes, calibrates, and verifies the performance of a miniaturized
speed measurement device, intended to provide direct animal kinematic monitoring capabilities to
biologging tags. The validation of the sensor’s performance then lent confidence to the research
relying upon it further into the dissertation.

Chapter 4 extends state-of-the-art physics-based animal energetics models [25], to account for
the newfound kinematics monitoring capabilities of a speed-instrumented biologging tag. The
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result was a refined method to persistently monitor animal work and power without the use of
external observers. This enabled a new look at dolphin swimming behaviors and how they re-
late to conditions requiring varying propulsive intensities, prompting an enhanced understanding
of efficiency-driven behavior (or lack thereof). Further, the method presents new opportunities
in long-term swimming effort analysis, which was demonstrated through the first persistently-
monitored 24-hour range estimate for a bottlenose dolphin, in addition to a detailed quantitative
view of its energetics fluctuations throughout this time.

The culmination of this dissertation is realized in Chapter 5 by combining the contributions in
Chapters 3 and 4 to produce a high-fidelity 3D monitoring framework. By fusing biologging tag
and recorded video data, fine-scale localization became possible for cetaceans in a highly dynamic
multi-animal environment. This heavily relied on techniques originally developed in the field of
robotics, in total combining robust IMU orientation estimation [10], Faster R-CNN object detection
[15], particle filtering [128], ICP scan-matching [129], and pose-graph optimization [44]. The
completed framework represents a contribution to the field of robotics, not just marine mammal
science: while it was developed with the intent of tracking animals, it operates on the principle of
combining on-agent and environmental sensor streams through the identification and localization
of a target agent in a crowded environment. To demonstrate an example of the contextualized
monitoring capability of the framework, animal COT was computed with methods from Chapter
4, and was analyzed with respect to the animal’s trajectory.

6.2 Research Impacts

Both the individual tools (Chapter 3) and the enhanced monitoring methods (Chapters 4 and 5)
have potential in implementations beyond the scope of this dissertation. While they are generally
suited for use in managed settings, some extensions can be made for wild animal monitoring.

The CNN-based animal tracking method has already demonstrated its capabilities in not only
localization, but general animal kinematics monitoring as well. This opens up a host of additional
opportunities such as tracking trends in activity levels across years and seasons, or observing an-
imal responses to changing environmental conditions (e.g. toy presence, human crowd densities,
etc.). Further, such an approach can be deployed in any habitat where cameras can be placed with
clear views of regions of interest. In general, camera-based monitoring is flexible as it does not
explicitly require permanent hardware installations [29].

The ramifications of the speed sensor and the ensuing kinematics/energetics monitoring frame-
work are applicable regardless of environmental condition (wild or managed), although there may
be some limitations with compatible species. Since the MTag design functions as a standalone
device, it is possible to be deployed on any animal that supports suction-cup adhesion. Similar to
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the DTAG line of devices [6, 23], the internal MTag hardware (e.g. IMU, temperature, pressure)
will function regardless of orientation on the animal. However, as the speed sensor is uniaxial,
its performance will suffer when not aligned with the animal’s primary direction of motion. The
methods defined in Chapter 4 can function for any animal the MTag can be stuck to, though this
will require careful placement and orientation, which is not possible when tagging larger cetaceans
(i.e. whales in the wild). Therefore, while the energetics monitoring approach can apply to any
setting, it is best suited for wild tagging studies where animals can be captured and released, or
managed studies where animal cooperation is possible.

The benefits of the energetics monitoring framework are not restricted to answering purely bi-
ological questions. As marine mammal science can be inspired by robotics, so too can robotics
rely on bio-inspired design. Cetaceans are known to be highly efficient swimmers [26], and under-
standing how they modulate their fluking frequency, amplitude, and duty cycle (for fluke-and-glide
propulsion) can inform physical designs on potential opportunities in advancing underwater robot
efficiency and mobility. By emulating highly adapted marine animals, there is potential to further
the field of robotics in turn.

In its current state, the 3D monitoring framework is primarily suited for managed settings due
to the limitations of camera performance in the wild. Despite it requiring the most setup, involving
both tagging and camera recordings, this framework does offer the richest possible options in
animal kinematics and localization analysis. Deploying the framework in a managed habitat can
enable researchers and ACSs to understand how swimming animals use their environment with
exacting detail, while allowing them to process data on a scale otherwise untenable with manual
annotation methods. This has the potential to inform highly in-depth studies on specific behavior
patterns, habitat region use, location-specific kinematics trends, and in the case where multiple
animals are tagged at once, behavioral effects of social interactions with conspecifics.

Beyond the scope of marine mammal science, the 3D monitoring framework also has potential
in localizing sensor-limited mobile robots. Miniaturized robot platforms may not support a full
suite of self-localizing sensors (e.g. Light Detection and Ranging (LIDAR), multi-camera arrays)
due to size or power constraints. To address this, a customized version of the framework could
allow odometry-enabled robot localization by combining their dead-reckoning data with drift-
correcting absolute position updates from environmentally-mounted sensors. This would require
that individual identification still be possible through associating robot odometry with partially-
continuous external sensor-based tracks (in line with Section 5.1.4). Sensor-limited robots could
then have higher accuracy trajectory estimates without the introduction of additional onboard hard-
ware beyond the minimum requirements to perform odometry.
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6.3 Future Extensions

While the contributions in this dissertation offer general performance improvements in localization
and new opportunities overall in kinematics and energetics monitoring, there are still improvements
that can be made and additional paths to explore. Modifications range from general advancements
in the capabilities of the monitoring frameworks to the full decoupling of tag and external camera
sensor streams for animal localization.

With respect to the CNN object detection method, one clear revision can be the introduction of
full stereo vision. As the system currently in place at the Brookfield Zoo uses two cameras with
minimally-overlapping FOVs, the use of additional sensors or wide-angle lenses offers the poten-
tial for complete localization [29], rather than the current method of 𝑥-𝑦 position with uncertain
depth. Further, the modification of the CNN classifier to handle additional dynamic environmental
elements such as humans or enrichment will offer the potential to observe behaviors as they re-
late to the evolving habitat. These changes would provide localization performance benefits and
additional behavior monitoring options without drastically changing the structure of the method.

The energetics monitoring framework has the potential for improvements in both hardware and
its mathematical model. The most important hardware modification would come in the form of a
new speed sensor. While the current sensor’s performance is robust, its uniaxial design limits its
capabilities in monitoring larger animals in the wild where device placement cannot be guaranteed.
An omnidirectional sensor would then offer the potential for kinematics and energetics tracking
regardless of orientation, which additionally guards against device shifting that may occur over
long recording sessions, where the tag’s suction cups can slide along the animal during highly
dynamic actions or in the event of cup partial pressure loss. This cascades into improvements for
the localization framework as well, which can experience disruptions in the event of a tag slide.

In terms of mathematical model, modifications can be made to the computation of animal
drag coefficients. As the current model relies on steady-state swimming kinematics [25, 41], this
disregards the fact that cetaceans commonly engage in fluke-and-glide swimming for propulsive
efficiency benefits [67], and in this case the gliding component would rely on a separate drag
model. Employing a multi-state drag model would then enhance the power estimate accuracy.
Separately, an additional complication appears when attempting to estimate full animal metabolic
expenditures, as these rely on RMR estimates to provide a significant portion of the total energy
rate (Section 4.1.3.1). However, these values vary according to feeding patterns [123] and activity
levels as a result of thermoregulatory requirements [37]. Accurately estimating true metabolic rate
then requires a more sophisticated RMR model.

Overall, the hardware changes proposed to aid the CNN object detection technique and the
energetics monitoring framework can improve the performance of the localization framework as
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well. The inclusion of depth estimates from stereo camera data provides more information for the
pose-graph optimizer to access, and an omnidirectional speed sensor can offer improved odometry
for lower drift when no camera detections are available. However, this still requires that the frame-
work rely on environmentally-mounted cameras to provide absolute position estimates, which has
several drawbacks:

1. Occlusions in the environment, such as water-surface glare or other animals, can directly
impede animal localization resulting in incomplete camera information.

2. Water opacity and surface ripples prevent individual animal identification due to image ob-
fuscation, requiring additional methods to associate portions of camera track data with the
tagged animal.

3. Environmentally-mounted cameras are ineffectual in the wild due to limited sight lines. In-
strumenting a wild habitat with cameras would provide anecdotal information as animals
would only appear in-frame when in close proximity. Otherwise, a prohibitively large num-
ber of cameras would be required for more complete environmental coverage.

One potential solution would be to forgo environmentally-mounted cameras in their entirety,
and instead adopt absolute position estimation into the tag itself. This is already attempted through
GPS-based technologies [8], although such localizations are only possible when an animal has
surfaced, yielding no potential for drift correction underwater. This problem has been studied for
autonomous underwater vehicle localization, and involves performing Simultaneous Localization
and Mapping (SLAM) on camera-generated maps of the environment [9]. Theoretically, it is pos-
sible to localize a marine animal in this way through the inclusion of one or more cameras into
a biologging tag. However, this will not work in open water due to habitat visibility constraints,
and as such would be relegated to regions with exceptionally clear water or shallow depths (e.g.
Sarasota, Florida, USA). This method would invariably perform more optimally in managed en-
vironments due to their relatively shallow habitats and limited spatial scales. Regardless, such an
endeavor would render environmentally-mounted camera localization unnecessary, simplifying the
animal monitoring process while providing additional information as it explores its habitat.

While it is clear there is much work to be done in this field, much of it just to enable ani-
mal observations, with a wide-reaching multidisciplinary approach it is possible to overcome the
challenges put forth by the environment itself.
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[63] S. Isojunno, C. Curé, P. H. Kvadsheim, F. P. A. Lam, P. L. Tyack, P. J.
Wensveen, and P. J. O. Miller, “Sperm whales reduce foraging effort during exposure
to 1-2 kH z sonar and killer whale sounds,” Ecological Applications, vol. 26,
no. 1, pp. 77–93, jan 2016. https://esajournals.onlinelibrary.wiley.com/doi/full/10.
1890/15-0040https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/15-0040https:
//esajournals.onlinelibrary.wiley.com/doi/10.1890/15-0040
(Back reference pages: 10, 12)

[64] B. S. Stewart, S. Leatherwood, P. K. Yochem, and M. Heide-
Jørgensen, “HARBOR SEAL TRACKING AND TELEMETRY BY SATEL-
LITE,” Marine Mammal Science, vol. 5, no. 4, pp. 361–375, oct
1989. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.1989.tb00348.
xhttps://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.1989.tb00348.xhttps:
//onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.1989.tb00348.x
(Back reference pages: 11, 12, and 13)

[65] R. D. Andrews, R. L. Pitman, and L. T. Ballance, “Satellite tracking reveals
distinct movement patterns for Type B and Type C killer whales in the southern
Ross Sea, Antarctica,” Polar Biology, vol. 31, no. 12, pp. 1461–1468, nov 2008.
https://link.springer.com/article/10.1007/s00300-008-0487-z
(Back reference pages: 11, 13)

[66] Y. Akiyama, Y. Matsuda, N. Sakurai, and K. Sato, “Evaluation of wave drag on bottlenose
dolphin Tursiops truncatus from swimming effort,” Coastal marine science, vol. 38, pp. 42–
46, 2015.
(Back reference page: 11)

117

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.2008.00241.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.2008.00241.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.2008.00241.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.2008.00241.x
https://www.jstor.org/stable/43924653
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/10.1890/15-0040
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/10.1890/15-0040
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/15-0040 https://esajournals.onlinelibrary.wiley.com/doi/10.1890/15-0040
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.1989.tb00348.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.1989.tb00348.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1748-7692.1989.tb00348.x https://onlinelibrary.wiley.com/doi/10.1111/j.1748-7692.1989.tb00348.x
https://link.springer.com/article/10.1007/s00300-008-0487-z


[67] K. Alex Shorter, Y. Shao, L. Ojeda, K. Barton, J. Rocho-Levine, J. van der Hoop, and
M. Moore, “A day in the life of a dolphin: Using bio-logging tags for improved animal
health and well-being,” Marine Mammal Science, vol. 33, no. 3, pp. 785–802, jul 2017.
https://onlinelibrary.wiley.com/doi/full/10.1111/mms.12408https://onlinelibrary.wiley.com/
doi/abs/10.1111/mms.12408https://onlinelibrary.wiley.com/doi/10.1111/mms.12408
(Back reference pages: 11, 88, 102, and 108)

[68] O. S. Eyobu and D. S. Han, “Feature representation and data augmentation for
human activity classification based on wearable IMU sensor data using a deep
LSTM neural network,” Sensors (Switzerland), vol. 18, no. 9, p. 2892, sep 2018.
www.mdpi.com/journal/sensors
(Back reference page: 12)

[69] P. L. Tyack, M. Johnson, N. Aguilar Soto, A. Sturlese, and P. T. Madsen, “Extreme diving
of beaked whales,” Journal of Experimental Biology, vol. 209, no. 21, pp. 4238–4253, nov
2006.
(Back reference page: 12)

[70] S. M. Tomkiewicz, M. R. Fuller, J. G. Kie, and K. K. Bates, “Global positioning system and
associated technologies in animal behaviour and ecological research,” pp. 2163–2176, jul
2010.
(Back reference page: 13)

[71] GPS.gov, “GPS.gov: GPS Accuracy.” https://www.gps.gov/systems/gps/performance/
accuracy/
(Back reference page: 13)

[72] L. N. Frazer and P. I. Pecholcs, “Single-hydrophone localization,” The Journal
of the Acoustical Society of America, vol. 88, no. 2, pp. 995–1002, aug 1990.
https://doi.org/10.1121/1.399750
(Back reference page: 14)

[73] E. K. Westwood and D. P. Knobles, “Source track localization via multipath correlation
matching,” The Journal of the Acoustical Society of America, vol. 102, no. 5, pp.
2645–2654, nov 1997. https://doi.org/10.1121/1.420318
(Back reference page: 14)

[74] P. Giraudet and H. Glotin, “Real-time 3D tracking of whales by echo-robust precise TDOA
estimates with a widely-spaced hydrophone array,” Applied Acoustics, vol. 67, no. 11-12,
pp. 1106–1117, nov 2006.
(Back reference page: 14)

[75] C. O. Tiemann, M. B. Porter, and L. N. Frazer, “Localization of marine mammals near
Hawaii using an acoustic propagation model,” The Journal of the Acoustical Society of
America, vol. 115, no. 6, pp. 2834–2843, jun 2004. https://doi.org/10.1121/1.1643368
(Back reference page: 14)

118

https://onlinelibrary.wiley.com/doi/full/10.1111/mms.12408 https://onlinelibrary.wiley.com/doi/abs/10.1111/mms.12408 https://onlinelibrary.wiley.com/doi/10.1111/mms.12408
https://onlinelibrary.wiley.com/doi/full/10.1111/mms.12408 https://onlinelibrary.wiley.com/doi/abs/10.1111/mms.12408 https://onlinelibrary.wiley.com/doi/10.1111/mms.12408
www.mdpi.com/journal/sensors
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
https://doi.org/10.1121/1.399750
https://doi.org/10.1121/1.420318
https://doi.org/10.1121/1.1643368


[76] W. Selby, P. Corke, and D. Rus, “Autonomous aerial navigation and tracking of marine
animals,” in Proceedings of the 2011 Australasian Conference on Robotics and Automation,
2011.
(Back reference page: 14)

[77] R. P. Wilson and M.-P. Wilson, “Dead reckoning: a new technique for determining penguim
movements at sea,” Meeresforschung (Hamburg), vol. 32, no. 2, pp. 155–158, 1988.
(Back reference page: 15)

[78] R. A. Hyde, L. P. Ketteringham, S. A. Neild, and R. J. Jones, “Estimation of upper-limb
orientation based on accelerometer and gyroscope measurements,” IEEE Transactions on
Biomedical Engineering, vol. 55, no. 2, pp. 746–754, feb 2008.
(Back reference page: 16)

[79] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” nov 2018.
http://arxiv.org/abs/1811.03378
(Back reference pages: 18, 19)

[80] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, dec 1989. http://direct.mit.edu/neco/article-pdf/1/
4/541/811941/neco.1989.1.4.541.pdf
(Back reference pages: 18, 21)

[81] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and applications in
vision,” in ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems:
Nano-Bio Circuit Fabrics and Systems, 2010, pp. 253–256.
(Back reference page: 18)

[82] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Journal of Machine Learning Research, vol. 9. JMLR Workshop and
Conference Proceedings, mar 2010, pp. 249–256. http://www.iro.umontreal.
(Back reference page: 19)

[83] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visual pattern
recognition,” Neural Networks, vol. 1, no. 2, pp. 119–130, jan 1988.
(Back reference page: 19)

[84] V. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,”
in ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010,
pp. 807–814.
(Back reference page: 19)

[85] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing, vol. 30, no. 1. Citeseer, 2013, p. 3.
(Back reference page: 19)

119

http://arxiv.org/abs/1811.03378
http://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
http://direct.mit.edu/neco/article-pdf/1/4/541/811941/neco.1989.1.4.541.pdf
http://www.iro.umontreal.


[86] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Proceedings of the IEEE International
Conference on Computer Vision, vol. 2015 Inter, 2015, pp. 1026–1034.
(Back reference pages: 19, 27)

[87] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in
Convolutional Network,” may 2015. http://arxiv.org/abs/1505.00853
(Back reference page: 20)

[88] H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Networks, a
Review,” sep 2020. http://arxiv.org/abs/2009.07485
(Back reference page: 20)

[89] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten digit recognition with a back-propagation network,” Advances in neural in-
formation processing systems, vol. 2, 1989.
(Back reference page: 20)

[90] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent architectures
of deep convolutional neural networks,” Artificial Intelligence Review, vol. 53, no. 8, pp.
5455–5516, dec 2020. https://doi.org/10.1007/s10462-020-09825-6
(Back reference page: 21)

[91] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings. International Conference on Learning Representations,
ICLR, sep 2015. http://www.robots.ox.ac.uk/
(Back reference pages: 21, 28)

[92] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 07-12-June, 2015,
pp. 1–9.
(Back reference pages: 21, 28)

[93] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Ar-
chitecture for Computer Vision,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 2016-Decem, 2016, pp. 2818–2826.
(Back reference page: 22)

[94] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2016-Decem, 2016, pp. 770–778. http://image-net.org/challenges/
LSVRC/2015/
(Back reference pages: 22, 28)

120

http://arxiv.org/abs/1505.00853
http://arxiv.org/abs/2009.07485
https://doi.org/10.1007/s10462-020-09825-6
http://www.robots.ox.ac.uk/
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/


[95] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet
and the impact of residual connections on learning,” in 31st AAAI Conference on Artificial
Intelligence, AAAI 2017, vol. 31, no. 1, feb 2017, pp. 4278–4284. www.aaai.org
(Back reference page: 22)

[96] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), dec 2015.
(Back reference page: 22)

[97] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), oct 2017.
(Back reference pages: 23, 27)

[98] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 2016-Decem, 2016, pp. 779–788.
http://pjreddie.com/yolo/
(Back reference pages: 23, 27)

[99] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), jul 2017.
(Back reference page: 23)

[100] ——, “YOLOv3: An Incremental Improvement,” CoRR, vol. abs/1804.0, 2018.
http://arxiv.org/abs/1804.02767
(Back reference page: 23)

[101] R. J. Full and M. S. Tu, “Mechanics of a rapid running insect: Two-, four- and six-legged
locomotion,” Journal of Experimental Biology, vol. 156, no. 1, pp. 215–231, mar 1991.
(Back reference page: 23)

[102] H. Pontzer, “A unified theory for the energy cost of legged locomotion,” Biology
Letters, vol. 12, no. 2, feb 2016. http://dx.doi.org/10.1098/rsbl.2015.0935orviahttp:
//rsbl.royalsocietypublishing.org.Biomechanics
(Back reference page: 23)

[103] D. P. Costa and R. L. Gentry, “Chapter 5. Free-Ranging Energetics of Northern Fur Seals,”
in Fur Seals. Princeton University Press, dec 2014, pp. 79–101.
(Back reference page: 24)

[104] J. R. Speakman and E. Król, “Comparison of different approaches for the calculation of
energy expenditure using doubly labeled water in a small mammal,” pp. 650–667, jul 2005.
https://www.journals.uchicago.edu/doi/abs/10.1086/430234
(Back reference page: 24)

[105] T. M. Williams, W. A. Friedl, and J. E. Haun, “The physiology of bottlenose dolphins (Tur-
siops truncatus): heart rate, metabolic rate and plasma lactate concentration during exer-
cise.” The Journal of experimental biology, vol. 179, no. 1, pp. 31–46, jun 1993.
(Back reference pages: 24, 65, and 80)

121

www.aaai.org
http://pjreddie.com/yolo/
http://arxiv.org/abs/1804.02767
http://dx.doi.org/10.1098/rsbl.2015.0935orviahttp://rsbl.royalsocietypublishing.org.Biomechanics
http://dx.doi.org/10.1098/rsbl.2015.0935orviahttp://rsbl.royalsocietypublishing.org.Biomechanics
https://www.journals.uchicago.edu/doi/abs/10.1086/430234


[106] J. M. van der Hoop, A. Fahlman, K. A. Shorter, J. Gabaldon, J. Rocho-Levine, V. Petrov,
and M. J. Moore, “Swimming energy economy in bottlenose dolphins under variable drag
loading,” Frontiers in Marine Science, vol. 5, no. DEC, dec 2018.
(Back reference pages: 24, 25)

[107] K. Schmidt-Nielsen, Animal physiology: adaptation and environment. Cambridge univer-
sity press, 1997.
(Back reference pages: 24, 71)

[108] Mathworks, “Define a Custom Deep Learning Layer with Learnable Parameters,” 2019.
https://www.mathworks.com
(Back reference page: 27)

[109] R. I. Hartley, “In Defense of the Eight-Point Algorithm,” IEEE TRANSACTIONS ON PAT-
TERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 19, no. 6, 1997.
(Back reference pages: 33, 96)

[110] F. C. Porter, “Testing Consistency of Two Histograms,” apr 2008. http://arxiv.org/abs/0804.
0380
(Back reference page: 39)

[111] T. Y. Moore, K. L. Cooper, A. A. Biewener, and R. Vasudevan, “Unpredictability
of escape trajectory explains predator evasion ability and microhabitat preference
of desert rodents,” Nature Communications, vol. 8, no. 1, pp. 1–9, dec 2017.
www.nature.com/naturecommunications
(Back reference page: 47)

[112] C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments in Fluids,
vol. 10, no. 4, pp. 181–193, 1991. https://link.springer.com/article/10.1007/BF00190388
(Back reference page: 49)

[113] R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annual
Review of Fluid Mechanics, vol. 23, no. 1, pp. 261–304, 1991. www.annualreviews.org
(Back reference page: 49)

[114] R. W. Fox, A. T. McDonald, and J. W. Mitchell, Fox and McDonald’s introduction to fluid
mechanics. John Wiley & Sons, 2020.
(Back reference page: 53)

[115] B. Wieneke, “PIV uncertainty quantification from correlation statistics,” Mea-
surement Science and Technology, vol. 26, no. 7, p. 074002, jun
2015. https://iopscience.iop.org/article/10.1088/0957-0233/26/7/074002https://iopscience.
iop.org/article/10.1088/0957-0233/26/7/074002/meta
(Back reference page: 55)

[116] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A flexible technique for accurate omnidi-
rectional camera calibration and structure from motion,” in Proceedings of the Fourth IEEE
International Conference on Computer Vision Systems, ICVS’06, vol. 2006, 2006, p. 45.
(Back reference page: 60)

122

https://www.mathworks.com
http://arxiv.org/abs/0804.0380
http://arxiv.org/abs/0804.0380
www.nature.com/naturecommunications
https://link.springer.com/article/10.1007/BF00190388
www.annualreviews.org
https://iopscience.iop.org/article/10.1088/0957-0233/26/7/074002 https://iopscience.iop.org/article/10.1088/0957-0233/26/7/074002/meta
https://iopscience.iop.org/article/10.1088/0957-0233/26/7/074002 https://iopscience.iop.org/article/10.1088/0957-0233/26/7/074002/meta


[117] S. H. Shane, “Behavior and Ecology of the Bottlenose Dolphin at Sanibel Island, Florida,”
The Bottlenose Dolphin, pp. 245–265, 1990.
(Back reference page: 65)

[118] C. Lockyer and R. Morris, “Observations on diving behaviour and swimming speeds in a
wild juvenile bottlenose dolphins,” Aquatic Mammals, vol. 13, no. 1, pp. 31–35, 1987.
(Back reference page: 65)

[119] S. Vogel, Life in Moving Fluids: The Physical Biology of Flow-Revised and Expanded
Second Edition. Princeton University Press, 2020.
(Back reference page: 68)

[120] D. Au and D. Weihs, “At high speeds dolphins save energy by leaping,” Nature, vol. 284,
no. 5756, pp. 548–550, 1980.
(Back reference page: 69)

[121] H. Hertel, “Structure, form, movement,” 1966.
(Back reference page: 70)

[122] S. Faraji, A. R. Wu, and A. J. Ijspeert, “A simple model of mechanical effects to estimate
metabolic cost of human walking,” Scientific Reports, vol. 8, no. 1, pp. 1–12, 2018.
(Back reference page: 71)

[123] R. A. Kastelein, C. Staal, and P. R. Wiepkema, “Food consumption, food passage time,
and body measurements of captive Atlantic bottlenose dolphins (¡I¿Tursiops truncatus¡/I¿),”
Aquatic Mammals, vol. 29, no. 1, pp. 53–66, 2005.
(Back reference pages: 81, 108)

[124] R. H. Defran, D. W. Weller, D. L. Kelly, and M. A. Espinosa, “Range characteristics of
Pacific coast bottlenose dolphins (Tursiops truncatus) in the Southern California Bight,”
Marine Mammal Science, vol. 15, no. 2, pp. 381–393, 1999.
(Back reference page: 86)

[125] A. Dinis, C. Molina, M. Tobeña, A. Sambolino, K. Hartman, M. Fernandez, S. Magalhães,
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