
Optimization Approaches for Solving Large-Scale
Personnel Scheduling Problems

by

Junhong Guo

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Amy E.M. Cohn, Chair
Professor Marina A. Epelman
Professor Viswanath Nagarajan
Professor John Silberholz

Junhong Guo

jhguo@umich.edu

ORCID iD: 0000-0002-6531-6001

© Junhong Guo 2021

mailto:jhguo@umich.edu

This dissertation is dedicated to people all over the world fighting
COVID-19 and to people promoting world peace.

ii

ACKNOWLEDGEMENTS

I want to first express my gratitude to my advisor and dissertation committee chair: Profes-

sor Amy Cohn. Thank you for providing me with the opportunity to pursue my PhD at UM

and introducing me to two wonderful families: IOE and CHEPS. I am grateful for your

help, support, and patience during this journey. PhD study is never easy and there were

so many challenges, but you have made the past four years also truly enjoyable for me. I

want to thank you for your academic guidance, for caring about my mental well-being at

all times, and for your support during the toughest moments I experienced. Without you,

I would not have been able to accomplish any of my research and reach this point. You

have generously shared a lot of insights on both academia and industry with me, and I

have learned a lot from you, which will help me in paving my own career path. A mentor

of life. I could not be more grateful.

Besides Amy, I would like to thank each member on my committee for their guidance

and help during my PhD journey. Professor Marina Epelman, thank you for working with

me on the crash project for staffing the hospitals at the early stage of the pandemic. I

truly enjoyed our collaboration and I will never forget this valuable experience. Professor

Viswanath Nagarajan, thank you for patiently answering all my questions and for gener-

ously helping me find the supplementary materials and journal papers I requested at all

times. Professor John Silberholz, thank you for meeting with me on several occasions and

sharing your insights on healthcare, engineering, optimization applications, and so much

more with me. Thank you all for your continued guidance and great comments on my

iii

dissertation, which has prepared me to reach this point.

I want to thank my mom and my dad for accompanying me going through this process.

Studying abroad is hard. I encountered many challenges and, particularly during the past

couple of years, I experienced several really tough periods. I have successfully overcome

all of them, which would not be possible without your love and support. I also want to

thank my grandparents, my aunts and uncles, my siblings, and my whole extended family

who witnessed and celebrated every achievement I have made throughout my life.

Next, I want to express my gratitude to all of the faculty and staff who have promoted

me in all different angles and helped me move forward step by step along my educational

journey. It would take a dozen pages to write my appreciation to each of you. Shane, thank

you for advising me on my intriguing master’s degree project at Cornell and introducing

me to the fantastic world of optimization and healthcare. Billy, thank you for onboarding

me during my first day at CHEPS. Besides work, I have learned a lot from you on medical

education, football, and UM’s athletics system, which all have helped me (an international

student) get more familiar with US culture; I really appreciate it. Liz, I cannot be more

thankful for your editorial help on my journal paper submissions, presentation slides, and

symposium posters. Particularly, I want to thank you for reviewing and proofreading this

dissertation, which was really helpful. Gene, every time seeing your warm smiley face

when getting to the CHEPS office would truly make my day. Also, thank you for sharing

your tennis stories with me, and as promised, I will find a chance and go to the US Open

when this pandemic is over and share my experience with you! Tina, thank you for your

continued help on the complicated paperwork and for always being so patient and nice

with me. Thank you again to all of CHEPS and the IOE staff for generously supporting

me during my time at UM.

A special thank you to all of the students who have helped me with my research and its

iv

dissemination. I would like to thank all students in the aviation team for your support on

our crew pairing project. Especially Theodore Endresen, thank you for providing me with

so many creative and fantastic ideas to enhance our approach, carrying out all batches

of different experiments, and reviewing and revising the paper back and forth with me.

We could not achieve those exciting results without your enthusiasm, productiveness, and

dedication. I also want to thank both current and previous students on the block team

for supporting my research on resident scheduling. Shamit, Shraddha, Ziqi, and Jiaqi,

thank you for your help on conducting the experiments and structuring, visualizing, and

analyzing the results. Your hard work has provided me with a great amount of insight on

the directions to further dive into to improve my research.

Next thank you to my mentors Karmel Shehadeh and Donald Richardson. Thank you

for your great advice not only on academic study and research, but also on life and career

development. I could not be more grateful for your supporting my transition to the PhD

study and on my work during the past four years. I also want to thank Weiyu, Adam,

Qi, Sentao, and Yiling for helping me go through each check-point of the PhD process,

generously sharing many great resources with me, and chatting with me every now and

then on a wide range of interesting topics. A big thank you also goes to my amazing Year-

2017 Cohort. I will always keep those precious memories in my mind: that we studied

super hard for homework and exams in the “Dungeon” and we celebrated every milestone

we had achieved along the journey together.

I would like to thank all of my friends for helping me keep a good work-life balance.

Especially, I want to say thank you to Luze, my officemate and best buddy. I really enjoyed

the time we spent together studying for coursework, discussing research questions, playing

basketball, tennis, and video games, watching NBA games, practicing for our driver’s

licenses, and so on. There are so many wonderful moments with you, which have made

v

the past four years one of the most enjoyable periods through my life. Next thank you

to Duoxi for accompanying me every time I went to Boston and cheering with me in TD

Garden for Celtics. I want to also thank Chenyang, Ziyang, Yi, Xingyu, Yukun, and many

other my high school friends for your help and support. I look forward to having reunions

with you all again in the near future. Thank you to all my Pokemon buddies, Weitao,

Zheng, Yuanzhi, Sicen, Guanglong, Xiaoer, Hongling, Xinyan, Xinjing, and Dejiu. We

have attended so many events together, and I will keep those amazing memories in my

mind, forever.

Lastly, I gratefully thank Seth Bonder foundation, IOE Department, and CHEPS for

their generous financial support for my PhD study and research. Especially, I want to

thank Mrs. Merrill Bonder for her continued support and encouragement.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . x

ABSTRACT . xii

CHAPTER

1. Introduction . 1

2. A Delayed Column Generation Approach for Cargo Crew Pairing Construction 10

2.1 Introduction . 10
2.1.1 The Cargo Aviation Industry . 10
2.1.2 Crew Scheduling in Cargo Aviation . 11
2.1.3 Outline . 13

2.2 Problem Statement . 14
2.3 Literature Review . 16
2.4 Model and Solution Framework . 22

2.4.1 A Set Packing Formulation . 22
2.4.2 Delayed Column Generation . 23

2.5 The Pricing Problem Formulation and Solution Approach 24
2.5.1 Flight-based Network . 24
2.5.2 Shortest Path Problem with Resource Constraints (SPPRC) 26
2.5.3 Labeling Algorithm . 34
2.5.4 Speed-up Strategies and Improvements . 36

2.6 Computational Experiments . 38
2.7 Conclusion . 43

3. An Arc Selection Approach for Modeling a Potential Break in Cargo Crew Pairings 45

3.1 Introduction . 45
3.2 Problem Statement . 47
3.3 Related Work . 49
3.4 Model Modification . 51
3.5 An Arc Selection Approach . 59
3.6 Computational Experiments . 65

3.6.1 A Benchmark . 67
3.6.2 Results and Comparisons . 69

vii

3.7 Conclusion . 71
3.8 Appendix . 74

3.8.1 An Example for Step 2. of the Arc Assessment Process in Section 3.5 74
3.8.2 A proof for Proposition 3.1 . 76

4. A Two-Stage Partial Fixing Approach for Solving the Residency Block Scheduling Problem . 79

4.1 Introduction . 79
4.1.1 Residency Programs and the Block Scheduling Problem 79
4.1.2 Research Motivation . 81

4.2 Literature Review . 82
4.2.1 Contributions . 86

4.3 Problem Statement . 87
4.4 Solution Approach . 89

4.4.1 The Base Model . 89
4.4.2 The Causes of the Slow Computational Performance 90
4.4.3 A Two-Stage Partial Fixing Approach . 92
4.4.4 A Network-based Model for Service Selection 104

4.5 Computational Experiments . 113
4.5.1 Experiments on the Number of Selected Services 117
4.5.2 Effectiveness of the Network-Based Model for Service Selection 119
4.5.3 Effectiveness of the Cut Generation Mechanisms and the Design of the First Stage’s

Objective Function . 120
4.6 Conclusion . 124
4.7 Appendix . 126

4.7.1 An Integer Program Formulation for the Residency Block Scheduling Problem . . 126
4.7.2 The Design of the Objective Function and Auxiliary Constraints in the First Stage

Formulation . 131
4.7.3 An Theoretical Analysis on the Occurrence of Case 2 for the Infeasibility of the

Second Stage . 137
4.7.4 Pseudo-code of a Power Iteration Method for solving the PageRank Model to Get

the Service Pickiness Scores . 142

5. Summary and Conclusions . 143

BIBLIOGRAPHY . 148

viii

LIST OF FIGURES

Figure

2.1 The flight-based network. 25
2.2 The number of iterations and runtime as functions of the value of parameter K for both

the “most-negative” strategy and the “first-negative” strategy, i.e., Approach O+(II) and
Approach O+(II)+(III). 40

3.1 The modified flight-based network with break arcs . 52
3.2 A high-level illustration of the proposed 3-step arc assessment process 62
3.3 The original flight-based network for the 3-flight instance with on break arcs. 74
3.4 The corresponding reversed network in Step 2. for the 3-flight instance. 74
3.5 The original non-break-arc network for the mirrored 3-flight instance. 76
4.1 Visualization of residency block scheduling. 91
4.2 A bird’s-eye view of the proposed solution framework. 98
4.3 A visualization of the proposed network for the service selection. The size of each node

reflects the value of its pickiness score k obtained by solving the proposed linear equations
system (PR). 108

ix

LIST OF TABLES

Table

2.1 Computational experiments testing the effectiveness of embedding Improvement (I) and/or
(III) into the labeling process. Here, O refers to the original approach as presented in Algo-
rithm 1, where a valid crew pairing with the most negative reduced cost will be identified
and added to the master problem. 40

2.2 Computational performance of the proposed labeling algorithm with different improve-
ments and strategies incorporated for solving the real-world 606-flight instance, where
K = 20,000 if Improvement (II) is applied. 41

2.3 General information for the three real-world instances from our partnered cargo airline.
“Long-Haul” shows the percentage of flights which have a flight time greater than 4 hours.
“Int-Int” refers to flights whose origin and destination are both outside the U.S., while
“Dom-Int” refers to flights flying from some place in the U.S. to somewhere outside the
country. 42

2.4 A summary of the underlying flight-based network and the full enumeration results for the
three instances. 42

2.5 Computational results for applying the finalized solution approach (K = 20,000) to the
three instances. 43

3.1 General information for the 3 instances. “Long-Haul” shows the percentage of flights
which have a flight time greater than 4 hours. “Int-Int” refers to flights whose origin and
destination are both outside the U.S., while “Dom-Int” refers to flights flying from some
place domestic in the U.S. to somewhere outside the country. 66

3.2 A summary of the underlying flight-based network and the full enumeration results for the
3 instances. 66

3.3 Summarized results for applying the flight partitioning heuristic approach to Instance No.1. 68
3.4 Summarized results for applying the flight partitioning heuristic approach to Instance No.2. 68
3.5 Summarized results for applying the flight partitioning heuristic approach to Instance No.3. 69
3.6 Computational results for applying the arc selection approach to the three instances. Num-

bers in the parentheses correspond to the average performance achieved by the benchmark
approach. Values in columns LP-obj and IP-obj are shown in negative, presenting the
amount of flights covered. 70

4.1 The IP formulation size of the different (sub-)problems of a real-world instance, and the
corresponding runtime by CPLEX. 93

4.2 Basic information of the real-world instances, and the performance of a conventional ap-
proach, i.e., solving the base model (IP) by CPLEX. 113

4.3 Results of applying the proposed two-stage partial fixing approach to instance Year-2018. 115
4.4 Results of applying the proposed two-stage partial fixing approach to instance Year-2019. 115
4.5 Results of applying the proposed two-stage partial fixing approach to instance Year-2020. 115
4.6 Results of applying the proposed approach with varying number of selected services to

instance Year-2018. 118
4.7 Results of applying the proposed approach with varying number of selected services to

instance Year-2019. 118
4.8 Results of applying the proposed approach with varying number of selected services to

instance Year-2020. 118

x

4.9 Comparisons on the computational performance achieved by three different service selec-
tion methods. 120

4.10 The relation between the optimality gap achieved for solving the first stage formulation
and the feasibility status of the subsequent second stage. 121

4.11 The results of applying the proposed solution approach and its two variations to instance
Year-2018. 122

4.12 The results of applying the proposed solution approach and its two variations to instance
Year-2019. 123

4.13 The results of applying the proposed solution approach and its two variations to instance
Year-2020. 124

xi

ABSTRACT

Personnel scheduling is one of the most critical components in logistical planning

for many practical areas, particularly in transportation, public services, and clinical op-

erations. Because manpower is both an expensive and scarce resource, even a tiny im-

provement in utilization can provide huge expense savings for businesses. Additionally,

a slightly better assignment schedule of the involved professionals can significantly in-

crease their work satisfaction, which can in turn greatly improve the quality of the services

customers or patients receive. However, practical personnel scheduling problems (PSPs)

are hard to solve because modeling all of the complicated and nuanced requirements and

rules is challenging. Moreover, since an iterative construction process may be necessary

for handling the multiple-criteria or ill-defined objective nature of many PSPs, the model

is expected to be solved in a short time while providing high-quality solutions, despite

its large size and complexity. In this dissertation, we propose new models and solution

approaches to address these challenges.

We study in total three real-world PSPs. We first consider the crew pairing construc-

tion for a cargo airline. Each crew pairing is a sequence of flights assigned to a specific

line/bid crew to operate in practice. Unlike traditional passenger aviation, due to the cargo

airline’s underlying network, each crew pairing will specify a complete flying schedule for

the assigned crew over the entire planning horizon. Consequently, an extra and unique set

of requirements must be incorporated into the construction process. We solve the prob-

lem using a delayed column generation framework. We develop a restricted shortest path

model to incorporate the entire set of complicated requirements simultaneously and solve

xii

it using a labeling algorithm accelerated by a handful of proposed strategies. Computa-

tional experiments show that our approach can solve the crew pairing problem in a short

time, while almost always delivering an optimal solution.

Second, we consider an extension of the previous cargo crew scheduling problem,

where a “break” is allowed to take place in the “middle” of each crew pairing. This break

feature, working as a special type of conventional deadheading, is expected to significantly

increase the flight coverage for practical deployment. However, incorporating this feature

will result in an extremely dense underlying network, which introduces new computational

challenges. To address this issue, we propose a bidirectional labeling based arc selection

approach, which only needs to work on a tiny sub-network each time but can still guar-

antee the exactness of the delayed column generation process. We demonstrate through

real-world instances that our proposed approach can solve this relaxed problem extension

in a very short time and the resulting flight coverage will increase by over 30%.

Finally, we study a medical resident annual block scheduling problem. We need to as-

sign residents to perform services at different clinical units during each time period across

the academic year so that the residents receive appropriate training while the hospital gets

staffed sufficiently. We propose a two-stage partial fixing solution framework to address

the long runtime issue caused by traditional approaches. A network-based model is also

developed to provide a high-quality service selection to initiate this two-stage framework.

Experiments using inputs from our clinical collaborator show that our approach can speed

up the schedule construction at least 5 times for all instances and even over 100 times for

some huge-size ones compared to a widely-used traditional approach.

xiii

CHAPTER 1

Introduction

Personnel scheduling problems (PSPs) are frequently encountered in a wide range of

practical areas, e.g., healthcare, transportation, protection & emergency, manufacturing,

and military services. Considering the high expense in terms of the human resource as

well as the fact that the decisions on this resource allocation typically need to be made

on a fairly regular basis, high-quality solutions are extremely desirable to assist decision-

makers with better resource management. Even a tiny improvement can bring substantial

benefits in practice.

Generally, PSPs consist of assigning a sequence of tasks to each person involved in the

schedule across a given planning horizon. However, the number of possible assignments

plus nuanced constraints from practical operation restrictions make these scheduling prob-

lems extremely difficult to solve. Multi-criteria, ill-defined objectives introduced by pref-

erences from different stakeholders also add challenges. To address these challenges, a

few iterations of “result, review, and revise” are typically required before the schedule can

be finalized. That is, the decision-makers will review the current solution, provide feed-

back and comments, and, based on that feedback, modifications to the model are made to

generate an updated version, and repeat. Since the planning phase is expected to be done

within a short period to ensure sufficient time for schedule deployment and the associated

1

administrative logistics, the construction time for obtaining high-quality solutions would

in general be the most critical metric for solving practical PSPs.

Many traditional methods in the literature are developed based on idealized assump-

tions, and thus cannot be directly applied to solve practical scenarios. For example, they

only consider and enforce basic, fundamental restrictions or they assume the underlying

structure of the problem holds specific desirable properties. Additionally, many of those

methods have scalability and/or flexibility issues, which prevent them from incorporating

additional requirements and handling problem variations.

In this dissertation, we develop new formulations and solution approaches for large-

scale PSPs that are challenging to solve by traditional methods, with an emphasis on

achieving the following 3 goals:

• Efficiency: Speed is the core. As mentioned above, a single instance often needs

to be solved iteratively as extra requirements or modifications may be proposed by

decision-makers after solution review.

• Solution Quality: The model should be developed with mechanisms to guarantee the

solution quality so that the resulting solutions can be implemented in practice while

also being satisfactory to decision-makers.

• Flexibility: The model should be flexible and it should be easy to incorporate addi-

tional requirements, without a significant modification to the formulation itself.

We mainly focus on solving PSPs in two fields — crew pairing/scheduling for cargo

aviation and resident scheduling for medical trainees. Air cargo is growing significantly

faster than passenger aviation and is forecast to maintain a stable growth rate over the

coming 20 years. Given this, cargo airlines nowadays are facing the challenge of accom-

modating market demand while controlling their operating costs. In particular, contracting

crews introduces the second-highest expense (right after fuel) to the operations of most air-

2

lines’ business, and therefore the quality of crew schedules can be largely decisive to the

profitability of an airline. Residency programs in medical school prepare doctors in dif-

ferent fields to become attending physicians after earning their M.D. degrees. Resident

scheduling is one of the most crucial logistical elements of clinical education. It ensures

residents receive appropriate training, while different units of the hospital where they are

undergoing their training are staffed sufficiently to provide care to patients. Administrative

preferences and resident requests for vacations and electives also need to be considered in

the schedule construction, and a high-quality schedule helps avoid burnout, maintain a

good work-life balance, and ensure residents can pursue the specialties they are interested

in, which is highly desirable to all stakeholders.

We propose new models and solution approaches in this dissertation to deal with PSPs

in these two fields so that high-quality solutions can be more efficiently produced. We

work closely with our industrial collaborators to ensure our models and algorithms are

capable of addressing representative scenarios in these important fields. Consequently,

the high-quality solutions generated can assist our collaborators with much better resource

management and operation cost control, and can also implicitly improve the satisfaction of

people involved in the planning phase during the actual operations. Moreover, our models

and approaches are flexible enough to easily incorporate potential modifications in the

future.

Because crew scheduling in transportation and healthcare provider scheduling in the

clinical environment are the two most representative applications in PSPs, our proposed

formulations and methods can be generalized to solve a wider range of complicated large-

scale PSPs. Thus, our research has the potential to promote the development of healthcare

delivery and scarce resource utilization in many other areas.

The remainder of this dissertation is organized as follows. In Chapter 2, we consider

3

the problem of generating high-quality crew pairings for a cargo airline, where each crew

pairing is a sequence of flights satisfying specific requirements like labor regulations, and

will be assigned to a single crew to carry out. In Chapter 3, we work on an extension

of the cargo crew pairing problem where a potential break period is additionally allowed

to take place in each crew pairing, in order to increase flight coverage. In Chapter 4,

we study an annual block scheduling problem for medical residents, where decisions on

the assignments of residents to different clinical units for each time period (a.k.a. block)

during the academic year need to be made, while a huge set of rules and requirements

must be satisfied. Lastly, in Chapter 5, we summarize our research and provide insights

for future work. A detailed description of the contents of Chapter 2, 3, and 4 is elaborated

below.

Chapter 2: Unlike traditional passenger crew scheduling or pairing problems, the na-

ture of the cargo network that we consider is such that to ensure all pairings are of rea-

sonable length and workload, we are not able to cover all of the flights in the planning

horizon. We, therefore, propose a maximum weighted set packing problem rather than a

set partitioning/covering problem to model this problem. Due to the very large number of

viable pairings, the huge size of the model requires us to use a delayed column generation

approach rather than solving it explicitly. We formulate the pricing problem of the delayed

column generation framework as a shortest path problem with resource constraints (SP-

PRC) to dynamically generate crew pairings — an approach commonly used for routing

and scheduling problems. A labeling algorithm is then developed to solve this SPPRC

formulation, and several modifications are proposed to further improve its computational

performance.

Compared with passenger aviation, crew scheduling and pairing construction for cargo

aviation have received significantly less attention. To the best of our knowledge, almost all

4

work on air cargo scheduling in the literature has focused on flight schedule design, airport

selection, fleet assignment, aircraft routing, and cargo routing, where crew scheduling and

the corresponding restrictions were not taken into account (Yan et al., 2006; Li et al., 2007;

Tang et al., 2008; Derigs et al., 2009; Derigs and Friederichs, 2013). The research in this

chapter, therefore, contributes to filling this gap.

What makes the cargo crew pairing problem unique and difficult to solve is the nature

of its underlying network, which largely consists of long-haul international flights and

lacks repeating daily patterns and opportunities for quick turns. Consequently, each valid

crew pairing has to directly specify the complete flying schedule, spanning approximately

half of a month, for the assigned crew during the entire planning horizon, instead of one to

three days like traditional passenger crew pairings. This introduces an extra set of unique

and complex regulations and agreements to our crew pairing problem, as the conventional

subsequent crew rostering step must now be partially accomplished by this step in the

whole crew schedule planning phase. We present modeling and algorithmic approaches

to overcome these new challenges in this chapter and demonstrate our results using real-

world datasets.

Chapter 3: Due to the nature of the cargo network, we frequently cannot achieve suf-

ficient flight coverage, even by the theoretically best crew pairing solutions. This low cov-

erage is unacceptable for practical deployment since operating the remaining uncovered

flights requires using reserved, extra labor resources, which will be much more expensive.

To address this issue, the cargo airline allows crews to fly home commercially once dur-

ing their assigned flying schedule, which requires us to model a potential “break” in the

“middle” of the crew pairings. By incorporating this break feature, each crew pairing can

then consist of up to two flying segments (which actually re-defines the concept of crew

pairings), where the crew is allowed to head to the base and stay home for some time after

5

the first segment and before starting the second one. Consequently, this break feature, as a

special deadhead, relaxes the leg consistency requirement on crew pairings, and therefore

can significantly boost flight coverage.

The proposed break feature has commonalities with the maintenance requirement in

airline fleet assignment and rolling stock scheduling as well as the day-off feature in driver

scheduling in public transportation and crew scheduling in railways, as they all serve as

the “hole(s)” separating duty segments in the complete schedule. However, having a break

in our crew pairing is an auxiliary option for boosting the underlying network connectivity,

instead of a mandatory requirement that each crew must perform. In addition, unlike the

maintenance, which is often assumed to be done overnight only at some predetermined

spots, there is no such limitation to our break. Instead, we consider the restriction on

the relative position of the break within the whole schedule, which is generally not taken

into account for the maintenance and the day-off features. Given these, the well-studied

approaches proposed in the literature for dealing with the maintenance and the day-off

requirements, e.g., the layered time-space network flow model by Şahin and Yüceoğlu

(2011), the rotation-tour time-space network by Liang and Chaovalitwongse (2013), the

hypergraph representation by Borndörfer et al. (2016), the two-stage heuristic approach

by Zhong et al. (2019), etc., are not applicable to our problem.

Moreover, incorporating this break feature introduces a great number of arcs to the

underlying network. This resulting extremely dense network makes the traditional solution

approach used in Chapter 2 inadequate for solving real-world instances, which introduces

new computational challenges. We present a bidirectional labeling based arc selection

approach, so that the majority of arcs can be temporarily removed from the network, and

thus only a tiny sub-network needs to be considered for each column generation iteration.

We prove that this arc selection is an exact approach and solving the pricing problem of the

6

delayed column generation framework based on the pruned, tiny sub-network is equivalent

to solving the original one. We verify the effectiveness of our approach by computational

tests on real-world instances, and furthermore demonstrate that it can totally outperform

an intuitive partial pricing heuristic, in terms of both runtime and solution quality.

Chapter 4: We move from cargo crew pairing and scheduling to the annual block

schedule construction for medical residents in this chapter. Although the background of

the problems is different, they have many commonalities with each other in features like

the huge number of possible combinations by the large-scale nature, the complicated re-

quirements and rule structures, and so on, which introduce significant difficulties to the

schedule construction. More specifically, to build a valid block schedule for each resident,

besides many side requirements and rules, we need to coordinate a large set of educational

requirements, which ensure residents are receiving appropriate training through perform-

ing services at different clinical units, and a large set of coverage requirements, which

guarantee all units (services) in the hospital are staffed sufficiently. The huge size and

complexity result in an extremely difficult combinatorial problem to solve to produce a

feasible resident schedule. Since a “result, review, and revise” iterative process is required

for decision-makers to gradually adjust requirements to meet actual needs and to incor-

porate preferences from both residents and administration, a feasible schedule for each

round, satisfying all requirements and rules at that moment, is expected to be obtained

within a very short time.

Compared with shift scheduling (Sherali et al., 2002; Cohn et al., 2009; Topaloglu and

Ozkarahan, 2011; Güler et al., 2013), constructing resident block schedules has received

significantly less attention. Furthermore, we have to consider the schedule construction for

multiple residency programs simultaneously because there is a hybrid program that shares

responsibility for covering units under other programs in the specific medical school we

7

collaborate with. As a result, the decomposition by constructing the schedule program

by program is not applicable, and the size of our problem is much larger than problems

typically considered in the literature (Franz and Miller, 1993; Bard et al., 2016, 2017).

A key contribution of this work is in proposing a novel solution framework to address

the computational challenge of solving this large-scale resident scheduling problem, as

conventional, widely-used approaches like branch-and-cut by a mixed integer program

(MIP) solver are shown to be not sufficient in practice. Although there is not a natural

two-stage decision-making structure, we intentionally partition our decision process into

two stages. We first consider making the allocation of residents for a small number of

“picky” services, whose associated constraints already make these assignments highly re-

stricted. Then, we try completing the remaining pieces of the puzzle after partially fixing

these assignments. We develop several cut generation mechanisms to prune off the current

unacceptable fixing once infeasibility arises, which therefore ensures this solution frame-

work is an exact method. We’ve applied this solution framework to practical instances,

and the results show that our cut generation mechanisms can provide a significantly more

robust performance than an intuitive method, while our approach can largely outperform

the traditional approaches that are commonly proposed in the literature.

In order to ensure a desirable performance of this solution framework, we develop a

network structure to quantitatively represent the underlying relationships among different

services in terms of the requirements on resident resource allocation. Based on this, we

formulate and solve a system of linear equations to identify an ideal set of services to be

fixed regarding their assignments in the proposed two-stage approach. This linear equa-

tions system balances our preferences for selecting services based on tradeoffs between

their individual flexibility in terms of resident allocation requirements and restrictiveness

of their interactions with other services. We demonstrate through experiments on real-

8

world instances that this network-based method can significantly reduce the total runtime

required by our proposed two-stage model to solve the original, entire scheduling problem.

In summary, we consider solving three practical large-scale personnel scheduling prob-

lems arising from operations in two important fields. We propose new modeling and

solution approaches to address a wide range of challenges, including the incorporation

of unique requirements, solution quality improvement, the long runtime bottleneck, the

unstable computational performance, and so on, which thus advances the corresponding

science frontier. In addition, we want to point out that the flexibility of all our approaches

enables them to handle problem variations with different or new requirements and objec-

tives, and allows them to be generalized and applied to other applications.

9

CHAPTER 2

A Delayed Column Generation Approach for
Cargo Crew Pairing Construction

2.1 Introduction

In this chapter, we consider a cargo airline crew pairing problem in which the key decisions

are to determine how to sequence flights to be assigned to cockpit crews over a planning

horizon. In this section, we provide an introduction to the air cargo industry and a brief

description of the crew scheduling problem for a specific cargo airline where the crew

pairing is the most critical part.

2.1.1 The Cargo Aviation Industry

In the United States, Europe, and the Asia-Pacific region, air cargo volume has grown on

average 50% faster than air passenger volume from 1995 to 2004 (Wong et al., 2009).

According to Boeing (2018), global air cargo traffic is forecast to grow a robust 4.2% per

year over the next 20 years, the revenue ton-kilometers (RTKs) will more than double from

256 billion in 2017 to 584 billion in 2037, and the number of freighter airplanes will grow

by more than 70% in total. Given this rapid growth, cargo airlines nowadays are facing the

challenge of accommodating this market demand while controlling their operating costs.

A cargo airline accepts requests for goods delivery, from one location to another, from

10

customers including logistic companies, manufacturers, the military, etc. These requests

are gathered and further partitioned into different planning horizons, typically a calendar

month. The cargo airline needs to determine and schedule all necessary tasks and activities

accordingly so that the requests in each planning horizon will be delivered as planned.

The cargo airline that we partnered with has a fleet of airplanes and two types of crews

it can contract. Line/bid crews are awarded a set schedule for the planning horizon while

reserve crews operate open, uncovered flights left by incomplete coverage in the planned

schedule, schedule disruption, or illness of line crews. Scheduling these resources to carry

out the corresponding delivery tasks in the planning horizon is a critical decision-making

process that heavily impacts profitability.

The cargo aviation scheduling process, in most cases, can be divided into several

phases: schedule design, fleet assignment, aircraft routing, crew scheduling, and cargo

routing (Derigs and Friederichs, 2013). Prior to the crew scheduling phase, a set of flights

(specified by aircraft number, origin, destination, departure time, and arrival time) will

be determined, where scheduled requests in the planning horizon will be distributed and

handled across all these flights. Crew scheduling is then assigning each crew to a subset

of these flights to operate in practice.

2.1.2 Crew Scheduling in Cargo Aviation

In this chapter, we consider the crew scheduling phase for our partnered cargo airline.

More precisely, we focus on constructing the flying schedule for the line crews that the

airline contracts with. Due to a large number of nuanced regulations from the Federal

Aviation Administration (FAA) as well as many other side constraints (e.g., tied to labor

contracts), crew scheduling is a complicated and time-consuming decision process. Since

the flight schedule is only set approximately one month ahead, the crew schedules are

11

expected to be constructed in a short time (i.e., four to five days) in order to ensure there is

a sufficient amount of time for implementation and deployment. At our partnered airline,

crew schedules were previously constructed manually, a process that can be error-prone

and time-consuming. Therefore, we set out to develop a more efficient decision support-

based approach.

A key component of crew scheduling is in developing a set of crew pairings. A crew

pairing is a sequence of flights that will be assigned to a single crew to carry out with

specific requirements that must be satisfied. For traditional passenger aviation, the crew

scheduling problem can be split into two sub-problems — the crew pairing problem and

the crew rostering or bidline problem (Gopalakrishnan and Johnson, 2005). The crew pair-

ing problem is to generate a set of valid crew pairings to cover the scheduled flights in the

planning horizon (Anbil et al., 1998; Haouari et al., 2019); the rostering or bidline problem

is to then construct the schedule for individual crews through concatenating the generated

pairings with other activities during the planning horizon (e.g., training and vacations)

(Gamache et al., 1998, 1999; Kasirzadeh et al., 2017). The crew schedule construction at

our partnered airline follows this two-phase subsequent procedure but differs significantly

in both the pairing and rostering steps.

For traditional passenger aviation, the crew pairing problem can usually be further de-

composed. Since almost all flights in the planning horizon are repeated daily for the ma-

jority of domestic passenger carriers, crew pairings that span on the order of one to three

days, starting and ending at the same crew base, are first constructed to cover the daily

flights. Then, these pairings are duplicated and dated accordingly with minor modifica-

tions to cover the entire planning horizon. However, this decomposition doesn’t work for

the pairing problem for our partnered cargo airline because our cargo flight network lacks

any repeating pattern. Instead, we must consider all of the flights scheduled in the plan-

12

ning horizon at the same time to generate crew pairings. In addition, since the majority of

our flights are international and long-haul, each crew pairing for our problem has to corre-

spond to a complete crew schedule (in terms of flying tasks), which spans a much longer

time (e.g., a half month), and is ready to be assigned to a contracted crew to carry out. In

other words, we construct our crew pairings by partially integrating the conventional crew

pairing and crew rostering/bidline phases, as the concatenation of “pairings” will be all set

during this step. For the same reasons, the life of a member of our cargo crew is also very

different from traditional passenger crew’s. The crews in our problem are usually away

from home for the duration of much longer pairings — at least 12 days, versus one to

three, as in the domestic passenger case, and they often fly commercially to the origin of

the first flight in the pairing and home from the destination of the last flight in the pairing.

Since each pairing constructed by the crew pairing phase corresponds to a complete

flying schedule during the planning horizon, the rostering phase for our partnered cargo

airline is trivial. After all of the crew pairings are created, they would be posted for all of

the line crews to view. Then, the crews would select which crew pairing they wanted to

fly, taking their training and vacation preferences into account, in order of their seniority

as determined through their labor contract.

In this chapter, we mainly focus on solving the crew pairing problem for our partnered

cargo airline, as the crew pairing construction is the most critical part, and largely deter-

ministic for profitability for the whole crew scheduling.

2.1.3 Outline

The remainder of the chapter is structured as follows: in Section 2.2, we present a detailed

statement of our cargo crew pairing problem. In Section 2.3, we briefly discuss previous

work in the literature, particularly on crew scheduling (pairing & rostering). Section 2.4

13

provides a description of the maximum weighted set packing formulation and the delayed

column generation framework that we propose for solving our crew pairing problem. In

Section 2.5, we describe the formulation for the pricing problem, and present a conven-

tional approach for solving it, as well as a set of speed-up modifications and improvements.

Section 2.6 presents computational experiments’ results on real-world instances. Lastly,

in Section 2.7, we conclude and provide thoughts for future work.

2.2 Problem Statement

As mentioned previously, for a crew paring to be valid, several requirements must be satis-

fied. These requirements include basic “laws of physics” (to ensure flights are continuous

in space and time), FAA regulations (for flight safety and the health of the crew), and the

airline’s collective bargaining agreement (for company/worker satisfaction). More specif-

ically, we consider the following seven pairing requirements for our problem:

(1) The origin of a flight should be the same as the destination of its preceding flight, and

there must be a minimum time period (e.g., 45 minutes) between two consecutive

flights for transition.

(2) After continuously working for up to a maximum period of time (e.g., 17 hours), the

crew must have a minimum amount of time for rest (e.g., 10 hours), which is called

a layover. Each working period between layovers is defined as a duty period, and

the idle time between two sequential flights is regarded as working time and counted

toward the duty rules if it is not sufficient to count as a layover (and this short idle

time period is called a sit-time).

(3) During each duty period, in addition to the limit on overall time, the cumulative flight

14

time cannot exceed a specific upper bound (e.g., 12 hours).

(4) If a crew has already had a specific number of duty periods in a row (e.g., 6 consec-

utive duty periods) without a layover in between which is greater than or equal to a

specific lower bound (e.g., 24 hours), then they must have a longer rest period of at

least this minimum amount of time (we call this a day off), before starting the next

duty period.

(5) The time span of the crew pairing cannot exceed a specific upper bound (e.g., 16

days).

(6) The time span of the crew pairing must be greater than or equal to a specific lower

bound (e.g., 12 days).

(7) The total cumulative flight time of the pairing must be greater than or equal to a

specific lower bound (e.g., 70 hours).

The last two requirements, i.e., the lower bounds on the pairing span and total flight

time, need to be explicitly enforced in our context in order to avoid deploying short crew

pairings. This is because our crew pairings will correspond to complete crew flying sched-

ules, and the airline must respect the minimum flying hours for the assigned line crews

per labor contracts, and wants to keep the workload balanced across different crews for

fairness.

In the problem instances that we consider, it is often not possible to construct a set of

valid pairings that collectively fully cover all flights. This is because the flight network

of the cargo airline lacks opportunities for quick turns, and includes many airports with

15

only a small number of associated flights, which results in a much smaller number of

possible flight combinations and a very limited number of valid pairings for covering some

specific flights. Given this fact, the cargo airline will use its reserve crews to handle the

uncovered flights. However, the cost for a reserve pilot to cover these remaining flights is

more expensive both in monetary cost and crew efficiency. Thus, based on the estimated

excessive expense of flying each scheduled flight by a reserve crew, the cargo airline’s

objective is to minimize the total excessive cost, caused by the reserve crew usage.

2.3 Literature Review

Passenger crew scheduling problems have been widely studied over the past 40 years. As

already mentioned in Section 2.1.2, a crew scheduling problem is typically divided and

solved through two sequential sub-problems. First, a crew pairing problem is solved to

generate a valid, unassigned set of crew pairings to cover scheduled fights in the planning

horizon (typically a calendar month). Based on these generated pairings, a crew rostering

or bidline problem is then solved to form a set of complete schedules for crews to operate

in practice, where crew pairings are grouped and concatenated with other personalized

activities and tasks, like training and vacations.

Regarding the crew pairing problem, in many cases, flights in a much smaller horizon

(e.g., a day or a week) will be included for the pairing generation, despite some explicitly

based on the original horizon (e.g., the calendar month) (Erdoğan et al., 2015), depending

on the repeating flight pattern deployed by the airline. For example, the majority of re-

search in the literature deals with daily crew pairing problems (Vance et al., 1997; Klabjan

et al., 2002; Sandhu and Klabjan, 2007; Dunbar et al., 2012; Shao et al., 2015; Haouari

et al., 2019), where the same set of flights are assumed to be flown every day in the plan-

ning horizon. Solutions to this problem will collectively cover all flights occurring within

16

the daily schedule. Later, these pairings will be repeated daily across the original, longer

horizon (e.g., a week or month). These date-specific pairings will then be used to construct

the crew schedules during the subsequent crew rostering/bidline problem. When flight pat-

terns repeat weekly rather than daily, a similar approach may still be used (Lavoie et al.,

1988; Yan and Tu, 2002).

The cost associated with pairings is defined in various ways, taking into account fac-

tors such as time away from base (TAFB), duty costs, layover costs, and potential for

delay/disruption propagation (Lavoie et al., 1988; Barnhart et al., 1994; Desaulniers et al.,

1997; Vance et al., 1997; Anbil et al., 1998; Barnhart and Shenoi, 1998; Klabjan et al.,

2002; Sandhu and Klabjan, 2007; Dunbar et al., 2012; Shao et al., 2015; Cacchiani and

Salazar-González, 2017; Wei and Vaze, 2018; Haouari et al., 2019), as airlines evaluate

the operational costs based on different measurements, and aim to achieve different goals

from different perspectives.

To mathematically formulate the crew pairing problem, set partitioning formulations

and set covering formulations are commonly used, which both select a subset of valid

crew pairings with the collectively smallest cost. The set partitioning formulation enforces

each flight to be covered exactly once (Anbil et al., 1998; Yao et al., 2005; Weide et al.,

2010; Dunbar et al., 2012; Shao et al., 2015; Wei and Vaze, 2018), while the set covering

formulation requires all flights to be covered at least once (Lavoie et al., 1988; Barnhart

et al., 1994). In the latter case, if a specific flight is covered by more than one pairing, only

one of the corresponding assigned crew will actually operate this flight, while the other

crews will fly as passengers.

A number of methods and algorithms have been developed to solve the set partitioning /

covering formulations. TRIP, a local search approach, is one of the first proposed methods

for solving the set partitioning formulation for crew pairing problems (Gershkoff, 1989;

17

Anbil et al., 1992), developed based on TPACS (Rubin, 1973). Brute force methods like

depth-first-search (DFS) that fully enumerate all feasible pairings have also been applied,

where the corresponding formulation is solved explicitly based on the enumeration (Baker

and Fisher, 1981; Aggarwal et al., 2018).

Rather than a few thousand valid pairings that exist in the instance in Baker and Fisher

(1981), the number for carriers nowadays typically will be on the order of millions or

even billions. Thus, both the full enumeration of pairings and explicitly solving the corre-

sponding formulation will be computationally intractable. The delayed column generation

framework has been widely used to address this issue, where pairings are generated on

demand driven by the dual values of the LP-relaxed original formulation. The core of

this approach is its pricing problem formulation and the corresponding solution methods.

Lavoie et al. (1988) constructed an expanded duty-based network such that all paths are in

a one-to-one correspondence with the valid crew pairings. Barnhart et al. (1994) proposed

a time-line network as a variant of the commonly-used time-space network to reduce the

size. Yao et al. (2005) built a pricing problem based on a duty-based network for each

crew respectively. Multiple pairings with negative reduced costs were identified among

the shortest paths from each of these networks through the Dijkstra’s algorithm.

When more complicated requirements on pairings are taken into consideration, paths

in the network may not have a one-to-one correspondence to valid crew pairings, and thus

finding the shortest path is no longer sufficient to solving the pricing problem. In this case,

a shortest path problem with resource constraints is typically modeled in the literature to

enforce the requirements that cannot be ensured by the network structure (Dunbar et al.,

2012; Shao et al., 2015; Ruther et al., 2016; Cacchiani and Salazar-González, 2017; Wei

and Vaze, 2018). This model can be solved exactly by a general labeling algorithm, but

in theory, such a process will take exponential time in the worst case (Warburton, 1987).

18

Therefore, different strategies to speed up the labeling process or directly accelerate the

whole column generation process have been developed. Shao et al. (2015) proposed a

perturbed Lagrangian dual approach along with a specialized deflected sub-gradient op-

timization scheme to avoid stalling of the column generation process. Pre-processing to

prune arcs and nodes from the network, derive desirable paths up front, and help prune

sub-paths during the labeling process more efficiently was applied by Ruther et al. (2016).

Wei and Vaze (2018) solved the pricing problem via a two-phase strategy. Before applying

the labeling algorithm to the original model, a relaxed version, where paths from differ-

ent crew bases were allowed to dominate each other, was first solved to check whether

desirable pairings could just be identified.

Rather than solving the pricing problem as a shortest path problem with resource con-

straints, Anbil et al. (1998) performed a depth-first traversal of the underlying duty-based

network. During this process, the feasibility of the path was always ensured, while a tally

of reduced costs (based on different cost structures) were kept track of.

To obtain a tighter LP-relaxation bound, Vance et al. (1997) introduced an additional

set of binary decision variables to the conventional set partitioning formulation, each cor-

responding to a set of duties that partition the scheduled flights in the planning horizon.

This way, the pairing problem can be viewed as split into two phases, where they first

decide a way to partition the flights into a set of disjoint duties, and then construct crew

pairings just based on this duty set.

Since the delayed column generation approach converges to an optimal solution to the

LP-relaxation of the original set partitioning/covering formulation, further mechanisms

are required to handle the integrality constraints. Lavoie et al. (1988); Barnhart et al.

(1994) and Dunbar et al. (2012) determined an integer solution by directly solving the

original, integrality-constrained formulation based on the pairings generated during the

19

column generation process. On the other hand, to ensure the original formulation is solved

to IP optimality, the branch-and-price framework can be applied (Desaulniers et al., 1997;

Freling et al., 2004; Yao et al., 2005). However, this exact approach could be compu-

tationally expensive and time consuming, so several branching strategies and heuristics

have been proposed in the literature. Anbil et al. (1998) and Ruther et al. (2016) proposed

a dive-and-price method, where follow-ons were only fixed to 1 for each branching. This

method was also adopted by Wei and Vaze (2018) but the branching was directly on the

decision variables (i.e., pairings) instead of follow-ons. Shao et al. (2015) performed the

exact branch-and-bound process on the follow-ons, until a sufficiently large number of

columns have been generated while no integer solution has been found, at which point

they too solve the associated restricted master problem instead.

Additionally, alternative approaches that are independent of the delayed column gener-

ation framework or even independent of the set partitioning/covering formulation, can be

found in the literature as well (Emden-Weinert and Proksch, 1999; Ozdemir and Mohan,

2001; Yan and Tu, 2002; Guo et al., 2006; Deng and Lin, 2011; Haouari et al., 2019).

In order to improve the robustness of the schedule and achieve additional overall sav-

ings of the operational cost for airlines, some work in the literature proposed to integrate

the crew pairing/scheduling problem with several other steps in the overall planning pro-

cedure and address them simultaneously rather than in a sequential manner. For example,

Cohn and Barnhart (2003); Weide et al. (2010); Dunbar et al. (2012) considered the aircraft

routing problem and the crew pairing problem at the same time. In addition, the sched-

ule planning phase was partially incorporated by Klabjan et al. (2002) through allowing

the departure time to be moved within a small time window, to grant more flexibility to

the crew pairing phase. Sandhu and Klabjan (2007); Shao et al. (2015); Cacchiani and

Salazar-González (2017), respectively, proposed integrated models and combined the fleet

20

assignment, aircraft routing, and crew pairing phases together. Ruther et al. (2016) dealt

with an integrated aircraft routing, crew paring, and tail assignment problem in a rolling 7-

day manner, where fights in the first four days must be covered exactly once by an aircraft

and a crew, while only the crew pairing was incorporated for the last three days.

It is worthwhile to mention that there are other problems similar to crew scheduling /

pairing problems, in particular similar to our problem studied in this chapter, while out of

the scope of aviation operations, for instance, rolling stock scheduling and crew schedul-

ing in railways (Şahin and Yüceoğlu, 2011; Borndörfer et al., 2016; Zhong et al., 2019),

and vehicle routing and driver scheduling for long-haul trucks (Rancourt et al., 2013; Ran-

court and Paquette, 2014; Koç et al., 2017). Although a similar network representation

(e.g., time-space network) is often used, the modeling along with the associated solution

approach to these problems is in general not related or applicable to airline crew schedul-

ing / pairing problems because of the differences in the nature of the operations and the

associated requirements. For example, rolling stock scheduling needs to model the unit

coupling and decoupling (a.k.a. composition changes) between connections, while labor

rules in airline crew scheduling have a much more complicated structure than the mainte-

nance and base capacity requirements in rolling stock rotations. Truck routing and driver

scheduling are delivery problems, which typically need to determine the time for the trips

and other activities, considering the allowable time window(s) for each customer, instead

of meeting a predetermined, fixed time point for each trip as in aviation operations. In

addition, these truck transportation problems usually need to take additional constraints

like vehicle capacity explicitly into account.

21

2.4 Model and Solution Framework

2.4.1 A Set Packing Formulation

As mentioned above, not all flights scheduled in the planning horizon are required to

be covered by line/bid crews. Instead, the cargo airline wants to minimize the cost of

using reserve crews for uncovered flights. Therefore, rather than the commonly-used set

partitioning or set covering problem, as typically seen in the passenger aviation literature,

we treat this problem as a set packing problem with the following formulation:

(ISP)

min
xp
− ∑

p∈P
∑

f∈p
c f · xp

s.t. ∑
p∈P

a f ,p · xp ≤ 1 ∀ f ∈ F

xp ∈ {0,1} ∀ p ∈ P.

Here, P denotes the set of feasible crew pairings respecting all of the seven requirements

described in Section 2.1 (i.e., leg consistency, labor regulations and worker satisfaction,

and break restrictions), F corresponds to the set of scheduled flights in the planning hori-

zon, while whether the pairing contains a specific flight f or not is indicated by the boolean

parameter a f ,p. For notation simplicity, we also indicate a flight f being included in a spe-

cific pairing p, i.e., a f ,p = 1, through f ∈ p. The boolean decision variable xp specifies

whether the corresponding crew pairing p will be assigned to a line crew to operate or not.

The constraints ensure that no flight is operated by more than one crew, since carrying ex-

tra crews on board is not allowed. The pairing cost cp is defined by cp :=−∑ f∈p c f , where

c f estimates the excessive cost for operating each flight f ∈ F , if it is not covered by a line

crew. Therefore, minimizing −∑ f∈p c f across all pairings is equivalent to minimizing the

total reserve crew cost.

22

2.4.2 Delayed Column Generation

Initially, we tried a depth-first search (DFS) approach, similar to the ones presented in

the literature, to fully enumerate all feasible crew pairings and construct the complete set

P above. This resulted in approximately half a million pairings for a 600-flight instance.

This huge number indicates that this column generation approach is not appropriate for our

problem, as it will take a great amount of time, consume a large amount of storage space

(we have to write each generated pairing to the hard disk rather storing all of them in

RAM) and cause problems for solving the correspondingly large set packing formulation

(ISP).

Instead, we have chosen to implement a delayed column generation framework (as in

plenty of crew scheduling work) to handle the very large number of feasible pairings.

More specifically, we first consider solving the LP-relaxation of the original set packing

formulation:

(LSP)

min
xp
− ∑

p∈P
∑

f∈p
c f · xp

s.t. ∑
p∈P

a f ,p · xp ≤ 1 ∀ f ∈ F

xp ≥ 0 ∀ p ∈ P.

[Note that xp ≤ 1 is implied by the set packing constraints.]

Rather than solving the above formulation explicitly with the complete set P, we in-

corporate the crew pairings iteratively on demand, driven by the dual values. Each time

we solve formulation (LSP) defined by only the subset of columns (i.e., crew pairings) that

have been generated so far (initially, just with slack variables; P = /0), i.e., the master prob-

lem. After retrieving the dual values π of the corresponding optimal basis, we then seek

a new pairing(s) p′ whose reduced cost, cp′−∑ f∈F π f ·a f ,p′ =−∑ f∈F(c f +π f) ·a f ,p′ , is

23

strictly less than 0, i.e., the pricing problem, and introduce it to the master problem and

thus update the formulation (P = P
⋃
{p′}). We repeat this master-pricing iteration until

no negative reduced cost crew pairing can be identified, which means we have the optimal

solution for (LSP).

Once we have solved the LP-relaxation formulation (LSP) to optimality, we then find a

feasible solution to the crew pairing problem through a heuristic approach — instead of

using a branch-and-price method — by directly applying the mixed integer programming

technique to the original integrality-constrained set packing formulation with the set P

limited to those generated (columns) pairings, as proposed in Barnhart et al. (1994). This

approach typically takes significantly less time compared with the exact branch-and-price

approach that branches on follow-up flights (Desaulniers et al., 1997) since we only apply

the delayed column generation framework to generate crew pairings at the root node. In

addition, we will show in Section 2.6 that this proposed heuristic works effectively, as only

a small gap between the heuristic and optimal objective values has been observed.

The key challenge in this delayed column generation framework is how to formulate

and solve its pricing problem, that is, how to determine whether there is a negative-

reduced-cost pairing or not given the current dual values π and how to generate such

crew pairings if one exists. For the rest of this chapter, we will mainly focus on this core

part of the delayed column generation framework.

2.5 The Pricing Problem Formulation and Solution Ap-
proach

2.5.1 Flight-based Network

To begin, we first construct a flight-based network for modeling the pricing problem of the

proposed delayed column generation framework. In this directed network graph G(V,A),

24

each flight in the planning horizon corresponds to a single node. For simplicity, we just

use the flight set F to denote the set of corresponding flight nodes in the graph G. An arc

from flight fi to f j exists if and only if the origin of f j is the same as the destination of fi

and the gap between these two flights is greater than or equal to the minimum time period

required for transition (i.e., the first requirement in Section 2.2 is satisfied). In addition, a

dummy source node s and a dummy sink node t are introduced. The source node s points

to every flight node f ∈ F in the graph, while the sink node t is pointed to by each of the

flight nodes. That is, V := F
⋃
{s, t} and (s, f),(f , t) ∈ A for ∀ f ∈ F . As we can see, each

s− t path in this network G corresponds to a potential crew pairing, which will be feasible

if all of the six remaining requirements (2–7) listed in Section 2.2 are satisfied. Figure 2.1

provides a simple illustration of this proposed network.

Figure 2.1: The flight-based network.

In the literature, time-space or time-line networks are widely used for crew scheduling

and aircraft routing problems, e.g., (Barnhart et al., 1994; Klabjan et al., 2002; Yan and

Tu, 2002; Guo et al., 2006; Sandhu and Klabjan, 2007; Liang and Chaovalitwongse, 2013).

However, such a structure is not beneficial to represent our cargo flight network for mod-

eling the pricing problem. This is because many airports in our cargo flight network are

only associated with a very small number of flights, and therefore, using a time-space or

25

time-line network does not significantly reduce the arcs in the graph representation, while

the number of nodes may significantly increase. Furthermore, regarding the crew pairing

problem, many networks proposed in the literature are constructed based on the entire set

of feasible duty periods, typically generated through an extra enumeration procedure, e.g.,

(Lavoie et al., 1988; Barnhart et al., 1994; Vance et al., 1997; Yan and Tu, 2002; Yao et al.,

2005; Sandhu and Klabjan, 2007). However, as shown in the computational results in

Section 2.6 later, the majority of flights in our cargo crew pairing problem are long-haul

flights, and therefore, we do not expect a significant difference between the number of

viable duty periods and the number of flights, as well as the difference between the asso-

ciated arcs consequently in the respective networks. In summary, the size of this proposed

flight-based network will not differ a lot compared with the traditional time-space/time-

line network or a duty-based variation. More importantly, we do not expect a significant

difference between these networks in terms of the performance of our proposed solution

approaches introduced in later sections. Therefore, we choose to use this flight-based net-

work to formulate the pricing problem, since it’s more straightforward to interpret while

extra computations (e.g., enumeration, grouping, and sorting) can be avoided.

2.5.2 Shortest Path Problem with Resource Constraints (SPPRC)

To identify negative reduced cost columns (or to ensure that no such columns exist and

therefore the current solution to (LSP) is optimal), we propose a pricing problem based on

the shortest path problem with resource constraints (SPPRC).

SPPRC was first introduced for solving a routing problem with time windows for bus

transportation (Desrosiers et al., 1984). This framework has since been generalized, and

several variants have been proposed, to address a wide range of routing and scheduling

problems in transportation (Desrochers and Soumis, 1989; Dumas et al., 1991; Feillet

26

et al., 2004), including the airline crew scheduling problems (Vance et al., 1997; Gamache

et al., 1998; Kasirzadeh et al., 2017; Wei and Vaze, 2018). In this section, we propose an

SPPRC based on the flight-based network described in Section 2.5.1 to solve the pricing

problem of the proposed delayed column generation framework. We follow the concepts

and terminologies introduced in Irnich and Desaulniers (2005) in the formulation that

follows.

We define in total seven constrained resources, denoted as r1,r2, . . . ,r7, for modeling

our SPPRC. That is, each specific path p = (s, p1, p2, ..., pk) in the network graph G is

associated with a resource vector T p := (T p
1 ,T p

2 , . . . ,T p
7) ∈ R7 to represent the resource

consumption accumulated along this path from the source node s to node pk, where each

entry of this resource vector T p
i presents the status of resource ri for the corresponding

(sub-)pairing (p1, p2, . . . , pk) upon the completion of flight pk.

More specifically, each of the first six resources corresponds to one of the requirements

(i.e., bullets 2–7) in Section 2.2, while the last resource is for the reduced cost calculation:

r1: The amount of time the current duty period has spanned so far (including both flight

time and sit-time between flights).

This resource is defined to enforce Requirement (2) in Section 2.2 that no duty period

exceeds the upper bound on duty length (denoted as dmax).

r2: The cumulative amount of time the crew has flown so far during the current duty

period.

This resource is defined to prevent the violation of the maximum flight time within

each duty period (denoted as fmax), which corresponds to Requirement (3).

r3: The number of duty periods the crew has already completed (plus the current one)

since their last day-off.

27

To enforce Requirement (4), this resource value must never exceed the given upper

bound on the number of duty periods (denoted as cd) the crew can consecutively

operate without a day off (i.e., a rest period of at least the given minimum amount

of time omin, which is longer than the minimum requirement rmin for just having a

layover) in between.

r4: The amount of time the current crew pairing has spanned so far (including all duty

time, layover time, and day-off time).

This resource is defined to track whether the maximum length of the crew pairing

(denoted as pmax), i.e., Requirement (5), is violated or not.

r5: The remaining amount of total time required by the current crew pairing to fulfill the

minimum requirement on the whole time span.

This resource corresponds to Requirement (6) in Section 2.2. It is counted down from

the minimum target on the length of the whole pairing (denoted as pmin) as the crew

sequentially completes each of the assigned flights in the pairing.

r6: The remaining amount of flight time required by the current crew pairing to fulfill the

minimum requirement on the cumulative flight time.

This resource is defined to enforce Requirement (7) that the cumulative flight time

of the pairing must be at least the given lower bound (denoted as lmin), which works

similarly to resource r5 above.

r7: The reduced cost of the current crew pairing.

This is, the negative value of the summation of the excessive costs for using reserve

crews to operate the flights contained in the pairing and also the dual values of the

corresponding constraints in (LSP).

28

Each arc (i, j) ∈ A in the network G is associated with a resource extension function

(REF), hi, j : R7 → R7, which is used to update the resource vector when moving from

node i to j. That is, suppose p = (s, . . . , i) is a path in the network whose resource con-

sumption is specified by its resource vector T p, and suppose we extend p via arc (i, j) to

get a new path p̄ = (s, . . . , i, j). Then,

(ER) T p̄ = hi, j(T p).

The definition of the REFs can naturally be derived, since the way the resource con-

sumption is updated when additional flights are appended to the current pairing should

be consistent with how each corresponding resource is defined above. More specifically,

these REFs do resource-wise consumption augmentation (for r4 and r7), subtraction (for

r5 and r6), or augmentation with reset (for r1,r2 and r3, depending on the length of the idle

period between the corresponding two flights). The complete, detailed definition of hi, j is

categorized as follows:

A) Initializing the Path with the First Flight: arcs pointing from the source node, i.e., for

∀(s, f) ∈ A:

hs, f (T) = (trv f , trv f , 1, trv f , pmin− trv f , lmin− trv f , −c f −π f).

This is a boundary scenario, where we initialize the calculation of the resource con-

sumption (regardless of the resource vector the dummy initial path p := (s) carries).

We initialize the span and the cumulative flight time of the current duty period (i.e.,

r1 & r2) with trv f , i.e., the flight time of f , since f will be the first flight in the first

duty period of this potential crew pairing. Similarly, r3 is set to 1, counting the num-

ber of consecutive duty periods before a day off. We also assign trv f as the current

time length of the pairing (r4). Since we are keeping track of the remaining span

and flight time needed for satisfying the corresponding lower bounds, we subtract

29

trv f from the target values pmin / lmin for r5 / r6, respectively. Lastly, we update the

reduced cost by initializing r7 with −c f −π f . The meaning and the correctness of

this calculation can be derived from the expression of the reduced cost of a specific

pairing g, which is−∑ f∈F(c f +π f) ·a f ,g based on the notation introduced in Section

2.4.2. As this expression can be written as ∑ f∈g(−c f −π f), we have the reduced cost

of a pairing increasing by −c f −π f if a new flight f is appended to it.

B) Completing the Path: arcs pointing to the sink node, i.e., for ∀(f , t) ∈ A:

h f ,t(T) = T.

This is the other boundary scenario, where we obtain an s− t path and thus the corre-

sponding crew pairing becomes complete. Since t is just a dummy node representing

the termination of the pairing, no changes to the resource vector T are warranted.

C) Augmenting the Path with the Next Flight: arcs pointing from one flight node to

another flight node, i.e., for ∀(i, j) ∈ A, where i, j ∈ F

(denote the departure time and arrival time of a specific flight i as d pti and arri,

respectively, and denote the summation of the connection time between two flights

i and j plus the duration of the second flight j itself as augi, j; that is, augi, j :=

arr j−arri.):

c1) If the idle time between flight i and j is not long enough for a layover (i.e.

d pt j−arri < rmin) and thus flight i and j will be in the same duty period:

hi, j(T) = T + (augi, j, trv j, 0, augi, j, −augi, j, −trv j, −c j−π j).

Since the gap between the two adjacent flights i and j is less than rmin, the span

30

of the current duty period (i.e., r1) should be increased by augi, j and the cumu-

lative flight time within the current duty period (i.e., r2) should be increased by

trv j, while the count of the total duty periods since the crew’s last day off (i.e.,

r3) should remain unchanged, because in this scenario flight j is still in the same

duty period as flight i. A value of augi, j will be augmented to the consumption

of resource r4, as the time span of the corresponding pairing will grow by this

amount. By the same logic, we update the consumption of r5 and r6, but rather

than augmenting the corresponding amount we need to respectively do subtrac-

tion according to the definition of these two resources, which are used to enforce

the minimum requirements on the length and cumulative flight time of the pair-

ing, as presented previously. Lastly, −c j−π j is added to r7 for calculating the

reduced cost of this extended pairing (with the new flight j), based on the anal-

ysis provided in scenario A) above.

c2) If flight j will be in a new duty period rather than in flight i’s, but the layover

between these two flights is not long enough for the crew to have a day off (i.e.,

rmin ≤ d pt j−arri < omin):

hi, j(T) = (trv j, trv j, T3+1, T4+augi, j, T5−augi, j, T6−trv j, T7−c j−π j).

In this scenario, the consumption of resources r4, r5, r6, and r7 is updated in

exactly the same way as in the above scenario c1), for exactly the same reason.

With respect to resources r1, r2, and r3, their calculation becomes different, be-

cause now the crew will have a layover between the two flights. The “clock” for

r1 and r2 are both reset to trv j, since a new duty period starts at flight j after the

layover. The consumption of r3 is increased by one unit because the correspond-

31

ing rest period is not long enough to for the crew to have a day off.

c3) Otherwise, the crew will have a day off between flight i and j (i.e., d pt j −

arri ≥ omin):

hi, j(T) = (trv j, trv j, 1, T4 +augi, j, T5−augi, j, T6− trv j, T7− c j−π j).

The consumption of all resources but r3 is updated in exactly the same way as

in the previous scenario c2), since in this scenario the crew will indeed have

a layover and start a new duty period after that with flight j as the first flight.

However, as the layover is long enough to be a day off, the counter for r3 will be

rolled back to 1, indicating the crew is working on the first duty period after the

day off.

In order to ensure the feasibility of the corresponding (sub-)pairing of a specific path,

each node v ∈ V\{s} in the network G is assigned a static upper bound, Uv ∈ R7, for

restricting the resource consumption on the path:

U f = (dmax, fmax, cd, pmax, ∞, ∞, ∞) ∀ f ∈ F

U t = (dmax, fmax, cd, pmax, 0, 0, ∞) for the sink node t.

We say that a specific path p = (s, p1, p2, . . . , pk) is feasible with respect to all resource

constraints if and only if the resource consumption specified by the resource vector of this

path p as well as all of its sub-paths are always within the corresponding upper bound, i.e.,

if and only if resource vector T pi ≤U pi , for i = 1,2, . . . ,k, where pi = (s, p1, p2, . . . , pi) is

the sub-paths of p.

The definition of the upper bound Uv on resources r1, r2, r3, r4, and r7 for all v ∈

V\{s} is straightforward, given the way these resources are defined at the beginning of

this sub-section. For resources r5 and r6, there is no consumption limitation defined for

32

the intermediate paths during the middle of the extension (i.e., U f
5 =U f

6 = ∞ for ∀ f ∈ F),

since each of them may still have the potential to be extended to a complete s− t path

which achieves the minimum requirements on the length and the cumulative flight time

(i.e., Requirement (6) & (7)) with respect to its corresponding crew pairing later. However,

when we reach the sink node t, i.e., when the crew pairing is fixed to be complete, the

zeros in the fifth and sixth coordinate of U t require the values on both r5 and r6 to be

non-positive, which ensures that these two minimum targets have indeed been achieved

already. Through this definition, we can easily verify that the feasibility of a crew pairing

is equivalent to the feasibility of its corresponding s− t path in the network G with respect

to all resource constraints.

Note that if at some point the resource vector of a specific path on r5 / r6 is non-positive,

we know that the minimum requirement on the length / flight time of the pairing should

have already been satisfied. Since additional flights are being appended to the pairing

as we extend the path, neither of these two requirements will be violated once satisfied.

Therefore, in the actual implementation of this SPPRC, we also introduce a lower bound

to each node in the network to do round-ups (to zeros) for these two resources, once the

value of resource vector on them becomes non-positive. It is computationally preferable

to avoid the value (the remaining amount of time) for resources r5 and r6 being negative

because otherwise the labeling process for solving the pricing problem will be slowed

down (see Algorithm 1 in Section 2.5.3 for details). Consequently, this lower bound will

work together with the upper bound, and thus form a resource window for each node,

which follows the more general SPPRC formulation introduced in Irnich and Desaulniers

(2005). We refer the reader to this paper for more detail, while we instead present the more

straightforward implementation here for clarity of exposition.

Let P be the set of all feasible s− t paths with respect to all resource constraints in

33

the network G. Then, the original pricing problem, i.e., determining whether there is a

negative-reduced-cost pairing and generating such a crew pairing if there exists one, is

equivalent to solving the following formulation based on our SPPRC model:

(PP) min
p∈P

T p
7 .

(That is, we look for the minimum value of r7 among the resource vectors of all feasible

s− t paths in the network.)

More specifically, if the optimal objective value of (PP), denoted as z, is strictly less

than 0, then a path p that achieves this z corresponds to a negative reduced-cost pairing.

On the other hand, if z≥ 0, that means no negative-reduced-cost crew pairing exists under

the provided dual values.

2.5.3 Labeling Algorithm

Before we present the algorithm for solving formulation (PP), we first describe two prop-

erties of our SPPRC model that play an important role in the algorithm implementation.

(a) The flight-based network G(V,A) is a directed, acyclic graph. Therefore, we can

topologically order all nodes in the network graph G by applying Kahn’s algorithm

(Kahn, 1962).

(b) According to the REFs defined in Section 2.5.2, there exist no interdependencies

between different resources during the extension. In addition, for each resource, the

corresponding REF on this resource for any arc in the network is always an affine

function with non-negative linear coefficients. That is, denoting the REF for arc

(i, j) on resource r as hr
i, j(·), we have hr

i, j(T) = αr
i, jTr +β r

i, j, where αr
i, j,β

r
i, j ∈ R and

αr
i, j ≥ 0 for all arcs (i, j) and resources r.

34

Particularly based on property (b) above, we can derive the following proposition for

our model:

Proposition 2.1. Given two specific paths p̄ and p̂ that have the same resident node (i.e.,

the last node of the path), if the resource vector of p̄ dominates the resource vector of p̂

(i.e., T p̄ ≤ T p̂ but T p̄ 6= T p̂), then for any extension path e from that resident node, we

have T (p̄,e) ≤ T (p̂,e).

Proof. Denote the resident node of p̄ and p̂ as u. To prove this proposition, we only need

to show that for any (u,v)∈ A, path p̄′ = (p̄,v) has a resource vector dominating or exactly

the same as that of path p̂′ = (p̂,v), i.e., T p̄′ ≤ T p̂′ , because the original statement can be

argued by recursively applying this conclusion. By property (b) presented above, we know

that T p̄′
r = hr

u,v(T
p̄) = αr

u,vT p̄
r +β r

u,v ≤ αr
u,vT p̂

r +β r
u,v = hr

u,v(T
p̂) = T p̂′

r for arbitrary

resource r, because T p̄ ≤ T p̂ and αr
u,v ≥ 0. Therefore, we have T p̄′ ≤ T p̂′ .

By this proposition, if the resource vector of a feasible path p̂ is dominated by, or equal

to another feasible path p̄’s (i.e., if T p̄ ≤ T p̂), then we can discard p̂ without considering

its extensions, because p̄ can always provide a no worse alternative.

Based on this proposition plus the fact that all nodes can be topologically ordered,

we develop a labeling algorithm (see Algorithm 1) to solve formulation (PP), which thus

solves the pricing problem.

In sum, we extend the dummy path p= (s) along the network towards the sink node t to

generate s−t paths. However, instead of traversing all sub-paths in the network during this

process, we prune out those infeasible and inferior ones, based on the properties introduced

above. Among all s− t paths we get this way, we dynamically keep track of the one whose

corresponding crew pairing has the smallest reduced cost, and thus eventually return an

optimal solution to the pricing problem formulation (PP).

35

Algorithm 1 Labeling

1: Topologically order all nodes in the network using Kahn’s algorithm (Kahn, 1962);
2: Initialization: intermediate sub-path container U = {(s)}, result = NULL, and ob j =+∞;
3: while U 6= /0 do
4: Choose a path p ∈U whose resident vertex, denoted as v(p), has the smallest topological order;

Remove p from U ;

5: for all possible one-step extensions for p, i.e., for all arcs (v(p),n) ∈ A do
6: Calculate the resource vector T p̄ for the the extended path p̄ := (p,n);
7: if T p̄ ≤Un, i.e., path p̄ is feasible with respect to all resource constraints then
8: if p̄ is an s− t path (i.e., n == t), and achieves a smaller reduced cost than ob j then
9: Update the output variables accordingly: result = p̄ and ob j = T p̄

7 ;
10: else if p̄ is not an s− t path then
11: Loop through all paths p̂ ∈U with v(p̂) == n, and remove those whose resource vector

is dominated by or equal to p̄’s (i.e., T p̄ ≤ T p̂) from U ;

12: if during this process, no path p̂ is found dominating p̄ then
13: Add p̄ to U ;

14: return result and ob j

2.5.4 Speed-up Strategies and Improvements

A simple application of the labeling algorithm presented in the previous section may not

be able to effectively solve the LP-relaxation of the set packing model (LSP) in practice,

considering the size of the problem and the complexity of the requirements. For instance,

we tested the proposed approach on a real-world instance, where there are in total 606

flights scheduled across a monthly planning horizon. Our experiment required 929 itera-

tions between the master and pricing problem with the runtime of each iteration ranging

from 15 to 70 seconds, in total requiring about 12.5 hours to converge. Such computational

performance may delay the schedule implementation and deployment; thus we must speed

up this solution process in order to make our proposed method tractable for practical use.

We propose the following to reduce runtime:

(I) During the labeling process, we prune out “short” paths which cannot possibly be

extended to a full pairing that satisfies the minimum requirements. To achieve this,

we apply backward dynamic programming up front, to calculate, for each flight ver-

tex v, the maximum possible span (denoted as maxSpanv) as well as the maximum

36

possible cumulative flight time (denoted as maxFlyv) starting from there to the sink

vertex. Based on this, we additionally discard paths p̄ during the labeling process that

cannot satisfy condition T p̄
5 ≤maxSpann or T p̄

6 ≤maxFlyn, where n is denoted as the

resident node of p̄. This modification is expected to effectively provide a speed-up

because the values of r4 and r5 in the resource vector for any path will be comple-

mentary (i.e., their summation will always equal pmin) during the early stage of the

extension process, which means we can rarely prune out any feasible paths by just

the dominance rule at the beginning.

(II) We enable multiple pairings to be added to the master problem at each iteration. If

we identify more than one s-t path during the solution process that corresponds to a

pairing with negative reduced cost, we add up to K of them, specifically those with

the most negative reduced costs, to the master problem. We need to use such an up-

per bound K particularly because there could be a big number of desirable pairings

identified during the early stage of the column generation, while we cannot afford to

bring all of them to the master problem.

(III) This is a variation of the previous strategy. Rather than the most negative pairings,

we add the first ones (up to the bound K) we find during the labeling process to the

master problem. Given that pairings achieving smaller reduced costs are not nec-

essarily more beneficial, rather than spending time searching for the most negative

ones among all s−t paths reached by the algorithm, we stop earlier to reduce runtime

spent on solving the pricing problem.

(IV) Before a feasible, non-s− t intermediate path is about to be pruned through dom-

37

inance, we additionally check whether or not it already corresponds to a feasible,

negative reduced cost crew pairing. If so, we treat this pairing as a candidate, which

potentially can be added to the master problem (as one of the K most negative or

the first K negative reduced cost pairings, depending upon whether we implement

Improvement (II) or (III) above).

In Improvement (II) or (III), we seek to derive the K most negative or the first K neg-

ative reduced cost pairings from the identified s− t paths, which are all together added

to the master problem to help reduce the total number of iterations needed to solve the

LP-relaxation (i.e., LSP) to optimality. However, when the total number of such identified

s− t paths is relatively small, it may be beneficial to add valid pairings that have negative

reduced cost even if their corresponding paths are dominated by some others. Thus, in

Improvement (IV), when we prune a dominated path, we also check to see if the two mini-

mum requirements (6) and (7) in Section 2.2 have been satisfied by its corresponding crew

pairing and if its reduced cost is negative. If so, we still consider that pairing as a can-

didate for the K most negative reduced crew pairings to be added to the master problem.

In addition, this improvement can also mitigate the tailing effect of the delayed column

generation process.

2.6 Computational Experiments

We implemented our proposed model associated with the labeling algorithm as well as the

four speed-up improvements using C++ (Visual Studio 2017) with CPLEX (version 12.80)

on a 64-bit operating system computer with two 2.10GHz processors and 128GB RAM.

Note that for all the following experiments for all instances, we treat the excessive cost

for operating an uncovered flight by a reserve crew equally across all scheduled flights.

In other words, we have c f = 1 for all flights f ∈ F in formulation (ISP) and (LSP), and

38

therefore we are simply maximizing the number of flights covered by crew pairings. We

conduct our experiments with this specific objective parametrization because our partnered

cargo airline views flight coverage as the highest priority at the moment, and works under

the assumption that having less flights that need to be assigned to reserve crews will result

in lower overall costs in practice.

Before we present the results of testing the computational performance of the final

solution approach on a set of previous practical instances from our partnered cargo airline,

we first evaluate the effectiveness of the proposed improvements through solving the 606-

flight instance mentioned at the beginning of Section 2.5.4.

For convenience of presentation, we differentiate strategies (III) and (II) + (III) for the

rest of the experiments, where we refer to (III) as the version where we simply terminate

the labeling process in algorithm 1 once an s− t path that corresponds to a negative re-

duced cost crew pairing has been identified, while (II) + (III) corresponds to the original

statement, i.e., adding the first K negative reduce cost pairings identified, as described in

the third bullet of Section 2.5.4.

Our experiments show that the mechanism in (I) helps reduce the solution time for

each iteration of column generation from 15 to 70 seconds to 7 to 40 seconds, and in total

reducing about 30% runtime for solving the LP-relaxation of the set packing formulation

(LSP). Table 2.1 shows that if we just terminate the labeling process once we find an s− t

path that corresponds to a negative reduced cost crew pairing, the “first-negative” strategy

presented in (III) stand-alone will actually increase the overall runtime because much more

iterations will be taken. However, when embedded into the strategy (II) so that multiple

pairings are allowed to be added to the master problem each time, both the original “most-

negative” and the “first-negative” strategies will perform very well when the parameter K

reaches a certain big number, as illustrated in Figure 2.2.

39

Table 2.1: Computational experiments testing the effectiveness of embedding Improvement (I) and/or (III)
into the labeling process. Here, O refers to the original approach as presented in Algorithm 1, where a valid
crew pairing with the most negative reduced cost will be identified and added to the master problem.

Approach #Iterations LP-Runtime
O 929 12hr 37min
O+(I) 896 8hr 13min
O+(III) 5771 2day 5hr
O+(I)+(III) 5899 1day 14hr

Maximum Pairings (K)

10 100 300 500 700 1000 5000 10000

#I

te
ra

tio
ns

0

100

200

300

400

500

600

Most-K negative
First-K negative

Maximum Pairings (K)

10 100 300 500 700 1000 5000 10000

LP
 R

un
tim

e
(m

in
ut

es
)

0

50

100

150

200

250

300

350

Most-K negative
First-K negative

Figure 2.2: The number of iterations and runtime as functions of the value of parameter K for both the “most-
negative” strategy and the “first-negative” strategy, i.e., Approach O+(II) and Approach O+(II)+(III).

Observe that the more pairings we feed to the master problem per iteration, the faster we

can solve the whole problem (LSP), but when K is large, there are not that many s− t paths

with a negative reduced cost in the network for the algorithm to identify. This motivated us

to consider Improvement (IV) in Section 2.5.4. More specifically, since a specific feasible

s− t path will be found during the original labeling process only if none of its sub-paths

are dominated by some others, this strategy can “relax” this requirement, and thus make it

possible to set a higher but still effective K.

By this additional strategy, together with previous improvements (I) and (II), we can

eventually solve the formulation (LSP) for the considered 606-flight instance in a very

short time. Table 2.2 below provides a summary of the computational performance of

this finalized solution approach, i.e., O+(I)+(II)+(IV), and also a comparison between

approaches with different improvements/strategies for demonstrating their effectiveness.

40

Table 2.2: Computational performance of the proposed labeling algorithm with different improvements and
strategies incorporated for solving the real-world 606-flight instance, where K = 20,000 if Improvement (II)
is applied.

Approach LP-obj #Iter. Runtime #Pairings Gen. IP-obj Runtime
O 336.382 929 12hr 37min 929 321 5min 14sec
O+(III) 336.382 5771 2d 5hr 5,771 331 1min 19sec
O+(I) 336.382 896 8hr 14min 896 316 46min 28sec
O+(I)+(II) 336.382 16 9min 17sec 5,949 330 6min 21sec
O+(I)+(II)+(IV) 336.382 10 6min 38sec 23,492 332 2min 38sec

Here, the first column in Table 2.2 shows the approach we use for solving the pricing

problem of the proposed delayed column generation framework. The second column dis-

plays the final objective value (actually, the negative of the objective value, as it can then

represent the number of flights covered) we get for the LP-relaxation of the set packing for-

mulation (i.e., LSP). The number of iterations taken, the total time spent, and the number

of valid crew pairings generated during the delayed column generation process for solving

(LSP) are provided in the third, fourth, and fifth column, respectively. The sixth column

shows the (negative) objective value we can achieve by solving the restricted set packing

formulation (ISP) with just crew pairings generated during the delayed column generation

process (i.e., the heuristic approach described in Section 2.4.2), while the corresponding

time spent for solving this formulation using the branch-and-cut approach by CPLEX is

presented in the last column.

To further verify the effectiveness and robustness of the finalized approach (i.e., the

labeling algorithm with Improvement (I), (II), and (IV)), we apply it to solve two addi-

tional real-world instances. Table 2.3 summarizes the basic information of each of the

three instances (including the previous 606-flight one). Table 2.4 provides some general

information on the flight-based network we proposed in Section 2.5.1, and also shows

the full enumeration results for each of the three instances, where the entire set of valid

crew pairings are generated by a depth-first-search (DFS) approach, and then are used to

41

explicitly solve the original set packing formulation (ISP) to optimality.

Table 2.3: General information for the three real-world instances from our partnered cargo airline. “Long-
Haul” shows the percentage of flights which have a flight time greater than 4 hours. “Int-Int” refers to flights
whose origin and destination are both outside the U.S., while “Dom-Int” refers to flights flying from some
place in the U.S. to somewhere outside the country.

Instance #Flights Long-Haul Int-Int Int-Dom Dom-Int Dom-Dom
No.1 606 92.41% 49.84% 23.93% 25.41% 0.82%
No.2 541 92.24% 50.28% 25.14% 24.03% 0.55%
No.3 644 86.96% 47.36% 23.91% 23.91% 4.81%

Table 2.4: A summary of the underlying flight-based network and the full enumeration results for the three
instances.

Instance #Nodes #Arcs #Valid Pairings Enum. Time #Flt. Cov. Soln Time Coverage
No.1 608 12,539 440,641 30min 34sec 332 1min 14sec 54.79%
No.2 543 10,113 329,145 26min 40sec 281 2min 42sec 51.94%
No.3 646 12,201 462,395 35min 52sec 334 7min 55sec 51.86%

Here, the second and third column in Table 2.4 respectively displays the number of

nodes and arcs in the flight-based network. The number of valid crew pairings satisfying

all of the seven requirements introduced in Section 2.2 is presented in the fourth column,

while the time for enumerating all of these pairings by DFS is shown in the fifth column.

The sixth column provides the optimal objective value (in negative) for solving the set

packing formulation explicitly, and the corresponding solution time by the branch-and-cut

approach by CPLEX is provided in the seventh column. The last column calculates the

flight coverage achieved by the optimal solution.

The computational performance of our finalized approach on these three instances is

provided in Table 2.5. The columns of this table are structured exactly as those in Table

2.2 above, except there is one additional column appended at the end, which displays the

corresponding flight coverage achieved for the corresponding instance by our finalized

approach.

According to these experiments, the number of iterations and the total runtime for solv-

42

Table 2.5: Computational results for applying the finalized solution approach (K = 20,000) to the three
instances.

Instance LP-obj #Iter. Runtime #Pairings Gen. IP-obj Runtime Coverage
No.1 336.382 11 6min 13sec 22,052 332 28sec 54.79%
No.2 284.447 9 3min 36sec 16,642 281 24sec 51.94%
No.3 340.327 10 6min 24sec 23,736 333 5min 20sec 51.71%

ing the corresponding LP-relaxation (i.e., LSP) are both kept to a very small value. In ad-

dition, these experiments overall demonstrate that our proposed approach is able to solve

the whole crew pairing problem much faster than the full enumeration (DFS) method, with

only a small portion of feasible crew pairings generated through the proposed delayed col-

umn generation framework (which is less than 6% for all of our instances). Lastly and

more importantly, the final objective value we get through the heuristic, proposed for han-

dling the integrality constraints, is verified to be exactly the same as, or extremely close

to, the true optimal value.

2.7 Conclusion

In this chapter, we considered a crew pairing problem for our partnered cargo airline,

where the underlying network primarily consists of long-haul, international flights and

lacks repeating patterns. As a result, this crew pairing problem needs to partially ac-

complish the conventional crew rostering phase to directly generate complete flying task

schedules for crews during the planning horizon, and therefore an extra set of unique and

complex regulations and agreements must be addressed simultaneously.

To tackle these challenges, we have modeled the crew pairing problem as a set packing

problem, and proposed a delayed column generation framework — a common way to han-

dle the exponentially-large number of decision variables in the corresponding formulation.

We constructed a flight-based network, and based on that, we formulated the pricing prob-

lem as an SPPRC, where the generated crew pairings are guaranteed to be valid, with all

43

of the unique and complex regulations and rules incorporated and modeled in an efficient

manner. A conventional labeling algorithm, enhanced by several speed-up strategies, was

developed to solve this SPPRC, and thus address the pricing problem.

Computational experiments have shown the effectiveness of the proposed speed-up

strategies. Furthermore, the results have demonstrated that our finalized approach is able

to solve real-world instances in a short time, while it can always produce a set of crew pair-

ings that corresponds to a theoretical optimal solution or is extremely close to optimality.

Consequently, our approach has been verified to significantly outperform the manual con-

struction approach currently used by our partnered cargo airline as well as a full column

enumeration approach.

Although our proposed approach was effective in solving the crew pairing problem,

Table 2.4 shows that even the theoretical optimal flight coverage for the considered real-

world instances is uniformly less than 55%, which may be too low to be directly deployed

in practice. In the next chapter, we consider the method the cargo airline implements to

deal with this low flight coverage issue, and we further develop new modeling and solution

approaches to efficiently incorporate it into the crew pairing construction process.

44

CHAPTER 3

An Arc Selection Approach for Modeling a
Potential Break in Cargo Crew Pairings

3.1 Introduction

In this chapter, we consider an extension of the cargo crew pairing problem we discussed

in the previous chapter. We begin with the motivation for conducting this research and a

brief background for this extension.

In practice, it is frequently not possible to achieve a desirable flight coverage in crew

scheduling for our partnered cargo airline, even by the theoretically best solution, if only

crew pairings that satisfy all requirements and rules are considered. This has also been

demonstrated by our experiments on real-world instances in Section 2.6 in the previous

chapter.

Aside from the strict FAA regulations and bargaining agreements for ensuring crew

pairings’ legality and satisfaction, the low flight coverage issue is primarily due to the

nature of the underlying flight network, since it mostly consists of long-haul flights, and

lacks opportunities for quick turns, while including many airports with only a small num-

ber of associated flights. Consequently, there are only a very small number of possible

flight combinations and a very limited number of valid pairings for covering some specific

flights.

45

Unlike passenger aviation, traditional deadheads (i.e., crew members flying between

two places as passengers by scheduled flights or other external, commercial flights) can-

not be systematically supported in the pairing construction for line crews to increase con-

nectivity in the underlying flight network and thus improve flight coverage because of a

variety of different cost and logistical issues associated with deadheading long-haul, in-

ternational flights. For instance, there is a flight frequency issue. Unlike in the passenger

crew scheduling problem where there are an abundant number of flights between airport

hubs and spokes, this is not necessarily the case for long-haul flights. With long-haul and

international flights, there exists a distinct possibility that, due to the limited number of

flights, a crew may need to wait overnight or even a couple of days, away from base, for

the deadhead flight. Since the time for deadheading accordingly factors into duty time and

crew pairing span limitations, deadheading flights will thus significantly lower crew effi-

ciency and increase operational expenses, which cannot be accepted by the cargo airline.

Given this, in order to address the low flight coverage issue, the cargo airline chooses

to allow crews to fly home commercially and take a break in the middle of their respec-

tive flying schedule during the month. Since the airports right before/after the break are

no longer required to be the same, this break feature, working as a special deadheading

method, relaxes the leg consistency requirement. Therefore, it is expected that, by al-

lowing such a break to take place, the number of valid crew pairings for covering each

specific flight can be significantly increased, and thus much greater flight coverage can be

eventually achieved.

For the remainder of this chapter, we consider incorporating a model of this new break

feature into the cargo crew pairing problem that we studied in the previous chapter, evalu-

ate how it impacts the original model and solution framework, and propose a new approach

to address the additional challenges introduced by it. More specifically, the remainder of

46

this chapter is structured as follows: in Section 3.2, we present a statement of this crew

pairing problem extension, with a detailed description of the additional rules and metrics

introduced by the break feature. In Section 3.3, we summarize the previous work in the

literature that is related to the break feature considered here, as well as compare it to the

approach we propose for effectively modeling it. Section 3.4 introduces a straightforward

modification of the model and the associated solution approach proposed in Chapter 2 to

solve this extension, and also describes the inadequate computational performance of this

modification to solve practical instances. More specifically, we still propose to use a de-

layed column generation framework, and model its pricing problem as a SPPRC. However,

since lots of additional arcs need to be included in the network to incorporate the potential

break while additional resources in the SPPRC need to be defined to enforce the associ-

ated requirements, the pricing problem cannot be solved directly by the original labeling

approach within an acceptable time. Therefore, in Section 3.5, we propose an exact arc

selection approach for more efficiently solving this pricing problem of the delayed col-

umn generation framework, to address the computational challenges. Section 3.6 presents

computational experiment results on real-world instances to evaluate our new approach.

Lastly, in Section 3.7, we conclude and provide thoughts for future work.

3.2 Problem Statement

As described previously, to have a break, the crew is allowed to fly commercially home and

also to resume the rest of assigned flying tasks during the planning horizon. Therefore, the

original leg consistency rule (bullet (1) in Section 2.2) on crew pairing validity is relaxed

as the following:

(1∗) The origin of a flight should be the same as the destination of its previous flight, with

a minimum time period (e.g., 45 minutes) in between for transition, except for the

47

flight right after the break (if it exists), whose origin is not required to match the

destination of the flight right prior to the break.

Besides the FAA regulations and the airline’s collective bargaining agreement (i.e., bul-

lets (2) – (7) in Section 2.2), the following four additional requirements must be satisfied,

to incorporate the described break feature into the crew pairing construction:

(8) The crew can have at most one break within the pairing.

(9) The duration of the break (if it exists) should be greater than or equal to a specific

lower bound (e.g., 6 days). Note that the time for flying home and back is included

in the duration of the break. In other words, the break starts as soon as the final pre-

break cargo flight is completed.

(10) The crew cannot have the break before completing a minimum number of flights

(e.g., 4 flights).

(11) The crew cannot have the break if a maximum number of flights (e.g., 6 flights) that

are already completed is exceeded.

Note that the break, if it exists, counts as a day-off, given its sufficiently long duration,

but its duration is not counted into working time, and not counted into the span of the

whole pairing either. In other words, this break feature indeed yields a new pairing defi-

nition. That is, crew pairings can consist of two segments of flying tasks with a sufficient

gap in between (i.e., bullet (9) above), where each segment should respect all local require-

ments (i.e., bullet (1) – (4) in Section 2.2, and additionally (10) & (11) above for the first

segment), while they two collectively meet the rest of global ones that are imposed on the

48

whole pairing (i.e., bullet (5) – (7) in Section 2.2). The last two requirements above, (10)

and (11), together ensure that if the crew will take a “break” within the pairing, it should

never occur somewhere too early, nor too late, and thus the two flying task segments are

balanced.

From the perspective of both a pilot’s quality of life and the cargo airline’s expenses,

having a break in the middle of the pairing is less preferable than the no-break pairing.

In order to implement as few breaks as possible, in addition to minimizing the previous

excessive cost of flying uncovered flights by reserve crews, a penalty cost is therefore

introduced for each crew pairing that has a break, and should be minimized as well.

3.3 Related Work

The maintenance requirements in aircraft routing (Derigs and Friederichs, 2013; Liang

and Chaovalitwongse, 2013; Cacchiani and Salazar-González, 2017) and in rolling stock

scheduling (Borndörfer et al., 2016; Zhong et al., 2019), and the day-off, weekly/monthly

rest period requirements in railways crew scheduling and airline crew rostering (Gamache

et al., 1999; Şahin and Yüceoğlu, 2011; Kasirzadeh et al., 2017) are features commonly

found in the literature, that separate the corresponding schedule into multiple task seg-

ments. According to the description above, the break feature considered in our extended

crew pairing problem serves a similar function. However, incorporating this feature in the

crew pairing differs greatly from handling those requirements because having a break in

the middle of a crew pairing is not mandatory, but only an optional, and undesirable, relax-

ation the cargo airline accepts in the crew schedule construction to achieve a better flight

coverage. In fact, the day-off rule already considered in our crew pairing problem (i.e.,

bullet (4) in Section 2.2) is much closer to many of those mentioned features in the liter-

ature, as they are required to occur periodically, but this new break feature is not subject

49

to such a restriction. In addition, unlike the requirements on aircraft or rolling stock main-

tenance, which require it to take place at some predetermined spots, and during a specific

time of day (e.g., overnight), the assignment of the break in our problem has much more

flexibility. Due to these differences, many novel approaches for modeling those widely

studied features/requirements are not applicable to our break feature, including the net-

work layering techniques (Şahin and Yüceoğlu, 2011; Liang and Chaovalitwongse, 2013),

the hyperarc network representation (Borndörfer et al., 2016), and so on. Instead, to en-

tirely capture all possible breaks across all pairings, we have to explicitly represent them as

arcs in our network and formulate the corresponding requirements as extra resources in the

SPPRC, which results in an extremely dense network and consequently an unacceptably

slow performance of our labeling algorithm (see the next section for more details).

The approach we propose in this chapter to address the computational challenges is

based on a dynamic arc assessment and filtering process. This idea is inspired by the work

of Barnhart et al. (1995), where they proposed an approach for selecting deadheads to be

incorporated into a pairing generation approach. However, unlike their approach, which is

only a heuristic, our approach, as its extension, can guarantee the exactness of the selection

and ensure the delayed column generation process converges to optimality of the LP.

Our proposed approach is also similar to the bidirectional search approach proposed

by Irnich et al. (2010), which is used to accelerate the branch-and-price process through

efficiently pruning the branching tree. More specifically, they eliminate arcs in the net-

work permanently using the reduced cost fixing technique, where scanning through the

underlying intact network at that moment in both a forward and backward direction is a

necessary step in order to calculate the reduced cost (and/or its attainable upper bound)

of the corresponding implicitly-formulated arc variables. However, their approach is not

applicable to our problem, since we cannot afford to do a full scan due to the high density

50

of the network. Instead, our proposed approach actually targets to address this challenge.

Moreover, in our approach, we only temporarily remove a majority of arcs from the net-

work for each iteration of the delayed column generation process, and then determine (a

small subset of) those beneficial arcs to be brought back to the network by performing a

bidirectional scanning on the remaining sub-network, while no arcs will be deleted perma-

nently. Lastly, as the nature of the reduced cost fixing, the method in Irnich et al. (2010)

only provides a sufficient condition for path elimination, but our approach will prune arcs

in an exact manner, which is described and demonstrated in more detail in the following

sections.

3.4 Model Modification

We can easily modify our approach in the previous chapter to still solve this crew pairing

extension with the break feature incorporated. First, we update the objective function in the

set packing formulation to reflect the additional penalty cost introduced by the deployment

of crew pairings which have a break:

(ISP∗)

min
xp

∑
p∈P

(Ip · cb− ∑
f∈p

c f) · xp

s.t. ∑
p∈P

a f ,p · xp ≤ 1 ∀ f ∈ F

xp ∈ {0,1} ∀ p ∈ P.

Here, all notation is the same as in (ISP) for modeling the original crew pairing problem

in Chapter 2, except for the two new pieces of notation Ip and cb. Boolean parameter

Ip indicates whether pairing p contains a break or not, while constant cb introduces the

associated penalty cost, if so.

As before, we still apply a heuristic to solve this updated set packing formulation. That

is, we first use a delayed column generation approach to solve its LP-relaxation, presented

in (LSP∗) below, and then directly apply mixed integer programming techniques to the

51

Figure 3.1: The modified flight-based network with break arcs

restricted set packing formulation variation (where the set P is limited to those generated

pairings) to produce a final crew pairing schedule.

(LSP∗)

min
xp

∑
p∈P

(Ip · cb− ∑
f∈p

c f) · xp

s.t. ∑
p∈P

a f ,p · xp ≤ 1 ∀ f ∈ F

xp ≥ 0 ∀ p ∈ P.

To model the pricing problem of the delayed column generation approach to (LSP∗),

we first introduce an additional set of break arcs, denoted as B, to the flight-based network

G proposed in 2.5.1. More specifically, for two specific flights, if the idle time between

them is no shorter than the minimum duration required for the crew to have a break (i.e.,

bullet (9) in Section 3.2), then such a break arc is introduced to connect the two nodes they

correspond to. Through this modified flight-based network Ḡ(V, Ā), where Ā = A
⋃

B, we

incorporate the proposed break feature into the crew pairing construction, as now each

valid crew pairing, regardless of whether it contains a break or not, corresponds to a spe-

cific s− t path in Ḡ. Figure 3.1 provides an illustration of this modified network Ḡ, where

dashed arcs represent a subset of those break arcs which are additionally introduced to the

network.

Next, to help verify whether a specific s− t path in Ḡ indeed corresponds to a valid

pairing or not, we update the SPPRC model constructed in Section 2.5.2. We keep all of

52

the original seven resources r1 – r7, as well as each node’s upper bound and the REFs for

the original set of arcs A on these resources, with exactly the same definition as before.

The only thing we need to additionally define is the REFs on the newly introduced break

arcs for these seven resources, i.e., how the resource vector on these resources should be

updated if the corresponding path is extended through a specific break arc (i, j)∈ B, which

are provided below:

h1
i, j(T) = trv j h2

i, j(T) = trv j h3
i, j(T) = 1

h4
i, j(T) = T4 + trv j h5

i, j(T) = T5− trv j h6
i, j(T) = T6− trv j

h7
i, j(T) = T7 + cb− c j−π j.

As introduced previously (for the original SPPRC in the previous chapter), hr
i, j(T) here

corresponds to the value of the updated resource vector on resource r, after the extension

via arc (i, j). trv j represents the flight time of j, while π j is the dual value of the constraint

corresponding to flight j in (LSP∗), under the optimal basis for the current iteration of the

delayed column generation process.

Note that the values on resources r1 and r2 are both reset to trv j, while the value on

r3 is reset to 1 because a new duty period will start after the break. The consumption of

resource r4 is only augmented by trv j because the duration of the break is not counted

into the span of the whole pairing, nor into the total flying time. By the same logic, the

resource extensions on r5 and r6 are defined as shown above. Lastly, an additional amount

cb is added to r7 compared to the resource update through those original arcs in A, as

having a break in the corresponding crew pairing introduces an additional penalty cost.

Moreover, to enforce the additional requirements imposed on the potential break, we

introduce three extra resources in the SPPRC model, in addition to the original ones r1 – r7.

In other words, these three resources are defined to make sure that, when expanding paths

in the udpated network Ḡ, the additional requirements introduced by this break feature

53

(which cannot be guaranteed by the structure of the network) are respected for the validity

of the corresponding pairing. The following list provides the definition of each of these

new resources, and also specifies how REFs associated with different types of arcs in the

network Ḡ update the consumption of these resources and what upper bounds on these

resources are imposed on each node in Ḡ:

r8: The total number of breaks the current crew pairing has contained so far.

This resource is defined to enforce that the crew pairing can contain no more than one

break (i.e., bullet (8) in Section 3.2). Clearly, the value of this resource is initialized

to 0 by any arc from the source node s. For every other original arc in A, the REF

will not update any consumption on this resource, while the value in the resource

vector on this resource will increase by 1 if the corresponding arc is a break arc in B.

The upper bound for the consumption of this resource is 1 for each node (except the

source node s) in the modified network Ḡ.

r9: This resource is defined to enforce the requirement specified by bullet (10) in Section

3.2, i.e., if there is a break, it cannot take place until the minimum number of flights

(denoted as glb) in the pairing has been completed.

Regarding the consumption update (i.e., the definition of the REFs on this resource),

the value of this resource is initialized to−1 (by any arc pointing from s), and then is

decreased by 1 if the corresponding path is extended to a specific flight node through

one of the other original arcs in A; otherwise (i.e., the path is extended via a specific

break arc in B), the value of this resource is increased by glb. Lastly, there is no

change to the value on this resource when completing the path (i.e., for any specific

arc pointing to the sink node t). Value 0 is set as the upper bound for each node

(except s) to limit the consumption, which therefore ensures that no crew can have

54

the break before finishing the minimum number of flights.

r10: This resource is defined to enforce the requirement specified by bullet (11) in Section

3.2, i.e., if there’s a break, the latest time for it to take place is when the crew com-

pletes the maximum number of flights (denoted as gub) in the pairing.

Similarly, regarding the definition of REFs on this resource, its value is initialized

to 1 by any arc from s, while it is kept unchanged for any arc pointing to t (i.e.,

when completing the path). The value in the resource vector of this resource is in-

creased by 1 if the corresponding path is extended through one of the other original

arcs in A; otherwise (i.e., the path is extended via a specific break arc in B), it is

multiplied by (W − gub), where W is a theoretical upper bound on the total number

of flights that can be contained in a crew pairing. For each node (except s) in Ḡ, we

set (gub+1) · (W −gub)−1 as the upper bound for the consumption of this resource.

This way, it is ensured that if the corresponding pairing contains a break, there are at

most gub flights in its first flying segment, before the break.

Based on this updated SPPRC model, we can easily verify that the feasibility of a

crew pairing is equivalent to the feasibility of its corresponding s− t path in the network

Ḡ with respect to all of the ten resource constraints. Thus, the pricing problem of the

delayed column generation approach for this extended crew pairing problem can again be

equivalently transformed to solving the following formulation (PP∗):

(PP∗) min
p∈P ′

T p
7 .

Comparing to the previous formulation (PP) in last chapter, we just replace the set P with

a P ′, which now is the set of all feasible s− t paths with respect to all resource constraints

in the updated network Ḡ.

According to the updated SPPRC model detailed above, there are no interdependencies

55

among the ten resources with respect to the calculation of their consumption accumula-

tion, while their respective updates via any arc in the network are always either augmen-

tation, subtraction, or multiplication. In other words, all REFs in this updated SPPRC are

still coordinate-wise independent, affine functions with non-negative linear coefficients.

Therefore, Proposition 2.1 for the original model still holds here, so we can simply ap-

ply the previous labeling algorithm, i.e., Algorithm 1, to solve this updated formulation

(PP∗), which thus solves the pricing problem of the delayed column generation framework

for this extended crew pairing problem.

Lastly, we introduce three additional improvements to accelerate the convergence of the

delayed column generation process for solving (LSP∗), working together with Improve-

ments (I), (II) and (IV) that we adopted in the finalized approach to the original crew

pairing construction in Section 2.6:

(V) We do a warm start for solving the LP-relaxation of the set packing formulation

(LSP∗) by first solving its variation where the break feature is not incorporated, i.e.,

the crew pairing problem introduced in Chapter 2, to produce a set of non-break

pairings.

Clearly, this improvement is guaranteed to provide a valid warm start to the whole

column generation process. Furthermore, given the size of the underlying flight-based

network and the dimension of the defined resources, solving the SPPRC described in Sec-

tion 2.5.2 for the original crew pairing problem is much easier than solving this modified

one. Particularly, the experimental results in Table 2.5 (the fourth and fifth column, more

specifically) have demonstrated that this warm start process can be done in just a handful

of minutes, and produce a decent amount of non-break crew pairings for typical real-world

intances. In addition, the generated warm start will “weaken” the dual values, because if

initialized just with slack variables (without warm start), almost any valid crew pairing

56

will achieve a negative reduced cost during the first few iterations. Therefore, the warm

start will result in more paths pruned during the labeling process at an early stage of the

column generation. Thus, this warm start generation is expected to improve the overall

computational performance.

(VI) During the labeling process, we additionally prune out “useless” paths which cannot

possibly be extended to a full pairing that achieves a negative reduced cost.

This is very similar to Improvement (I) we proposed for solving the previous SPPRC

for the original crew pairing problem in Section 2.5.4. However, rather than doing pruning

by dynamic programming up front, here we need to do backward dynamic programming

each time we solve the pricing problem, as the dual values vary for different iterations.

More specifically, we calculate for each node in the network the minimum reduced costs

starting from this specific node to the sink node considering two different cases, where no

break arc is allowed to be traversed in the first case, while at most one break arc can be

traversed in the other one. Note that this improvement is also applicable to solving the

original SPPRC by the labeling process in the previous chapter. However, we choose not

to apply it there because this enhancement requires us to do dynamic programming during

each iteration, while the pricing problem for the original crew pairing problem can already

be solved in a short time, as demonstrated by experiments on pratical instances.

(VII) We customize the dominance rule to help prune out more paths that are indeed infe-

rior (although their resource vectors may be non-dominated under the conventional

definition), when compared with some others during the labeling process.

This improvement is proposed to address the complementary relationship between re-

sources r9 and r10. That is, since we restrict the location of the break in the pairing to be

neither too early nor too late, if the value of the resource r9 for a specific path is smaller

57

than the value for another path, then it’s very likely that the value of r10 for the former path

is greater than the value for the latter path. By the default definition of dominance, neither

of these two paths can dominate the other one. However, in many cases with this circum-

stance, one path is indeed inferior compared with the other one, and can be pruned out. For

example, suppose T p = (T p
1 , . . . ,T p

7 , 1, −1, 41)T and T q = (T q
1 , . . . ,T

q
7 , 1, −2, 42)T are

the resource vectors for paths p and q, respectively, where p and q have the same resident

node (i.e., end at the same node), and with T p
1 ≤ T q

1 , T p
2 ≤ T q

2 , . . . , T p
7 ≤ T q

7 . In other

words, path p has no greater consumption on the first 7 resources (i.e., r1 – r7) compared

with path q, and both of these two paths have already traversed a break arc, as T p
8 = T q

8 = 1;

in addition, the corresponding pairing of q has one more flight in total than the pairing of

p, while both of these two pairings have the same number of flights in their respective first

part, before the break, as T p
9 = −1, T q

9 = −2 and T p
10 = 41, T q

10 = 42. Although by the

default definition T q is not dominated by T p (because T p
9 > T q

9), path q is actually inferior,

since for any feasible extension (q,e), the alternative extension (p,e) will also be feasible

while achieving a no worse objective value (i.e., r7). This is because both p and q already

contain a break (thus, any valid extension e cannot include a break arc), and thus we can

ignore the three additional resources introduced by the break feature (i.e., r8, r9 and r10) in

terms of the dominance checking. Since path p has no greater consumption on the other 7

resources (i.e., r1 – r7) than q, path q is thus indeed inferior.

However, even with these additional improvements, we still find the delayed column

generation to converge unacceptably slow. For example, we applied this proposed, mod-

ified approach to model and solve the extended crew pairing problem (with the break

feature incorporated) for the 606-flight instance described in Section 2.6. It took more

than ten hours to solve the pricing problem in the first iteration alone (where more than

2.6 million negative reduced cost pairings were identified). This is mainly a function of

58

the density of the modified underlying network Ḡ with the associated large number of new

arcs added. For this 606-flight instance, the total number of arcs increases from 12,539 to

123,612, which is more than one third the number of arcs in the corresponding complete

graph. Since pruning paths also becomes harder due to the increased resource dimension,

the labeling process proceeds unacceptably slowly.

To address this computational challenge, we propose an alternative, exact approach

based on an arc selection process, which is detailed in the next section.

3.5 An Arc Selection Approach

To model the break in the crew pairing construction, a large number of break arcs are intro-

duced to the underlying network, as the example above suggests, which causes the severe

bottleneck for the labeling process. However, not all of those break arcs will necessarily

appear in a negative reduced cost pairing during a specific iteration, particularly when the

dual values are sufficiently “weakened” after several iterations have been completed. In-

troducing all such arcs to the network increases run time without any associated benefit.

Therefore, we propose to only include (a subset of) those break arcs which are guaranteed

to appear in at least one valid, negative reduced cost crew pairing in the network for each

specific iteration.

As already mentioned in Section 3.2, for a specific crew pairing with a break to be

valid, its first flying task segment, before the break, should satisfy all requirements except

the three global requirements imposed on the whole pairing. The same thing applies to

the second segment. Then, after concatenating these two parts via the break (with suf-

ficient duration), those global requirements should be collectively satisfied. In addition,

to constitute a desirable pairing (for the delayed column generation procedure), these two

segments should, together, achieve a negative reduced cost after incorporating the penalty

59

for the break. By this analysis, we develop a 3-step arc assessment process, based on a

bidirectional labeling procedure on a tiny sub-network, to determine, for a specific itera-

tion, which break arcs will appear in at least one valid negative reduced cost pairing so

that they are beneficial to be included in the network:

• Step 1. We model the updated SPPRC (i.e., the one with ten resources in Section 3.4)

but on the original (i.e., non-break-arc) network G. Then, we identify and store the

set of efficient paths E f , whose resource vectors are non-dominated, for each flight

node f ∈ F through the proposed labeling process (with the proposed, appropriate

speed-up improvements).

• Step 2. We reverse the original, non-break-arc network G by flipping the direction

of each arc a ∈ A. Then, we define a SPPRC similar to the original one with seven

resources on this reversed network, where the resource vector represents the status

of the reversed crew pairing that corresponds to the path “backward” from the “sink

node” t (see an example in Appendix 3.8.1 for demonstration). Similarly, for each

node f ∈ F , we identify and store the set of efficient paths Ē f , from t “backward” to

f , through the labeling process with appropriate speed-up improvements.

• Step 3. For each break arc b := (i, j) ∈ B, we check if there exists an efficient path

ei ∈ Ei, from s towards i, and an efficient path ē j ∈ Ē j, from t “backward” to j, such

that the s− t path, the concatenation (ei,b, ê j), corresponds to a valid crew pairing

with negative reduced cost. Here, ê j denotes the path ē j in the reverted direction in

the original network, from j towards t. More specifically, we focus on the values

of resources on crew pairing span and cumulative flight time requirements plus the

reduced cost in the corresponding resource vectors, denoted as T ei and T̄ ē j for path

60

ei and ē j in the respective SPPRC model described in Step 1. and Step 2. above,

and check whether the summation of the respective values in these two resource vec-

tors meets the target value set for satisfying the corresponding minimum/maximum

requirements imposed on the entire pairing. The detail of this process is provided in

Algorithm 2 below. If this check is passed (i.e., once such a concatenation is found),

then b is proven beneficial to be kept in the network; otherwise, after all concatena-

tions are exhausted, we can discard b for this specific iteration.

Algorithm 2 Arc Check

1: function CHECK(b := (i, j))

2: for all efficient paths ei in Ei do
3: Denote the resource vector of path ei in Step 1.’s SPPRC model as T ei ;
4: if T ei

9 ≤−glb and T ei
10 ≤ gub then

5: for all efficient paths ē j in Ē j do
6: Denote the resource vector of path ē j in Step 2.’s reversed SPPRC model as T̄ ē j ;

7: if pmin ≤ T ei
4 + T̄

ē j
4 ≤ pmax and T ei

6 + T̄
ē j

6 ≤ lmin and T ei
7 + T̄

ē j
7 <−cb then

8: return TRUE;

9: return FALSE

Note that the condition in line 4 of Algorithm 2 checks whether the break period takes

place at an acceptable position (i.e., bullet (10) and (11) in Section 3.2) in the crew

pairing that the concatenation (ei,b, ê j) corresponds to. The three conditions in line

7 respectively check whether the corresponding crew pairing respects the minimum

and maximum length (i.e., bullet (5) and (6) in Section 2.2), satisfies the minimum

cumulative flight time (i.e., bullet (7) in Section 2.2), and achieves a negative reduced

cost.

Figure 3.2 provides a high-level illustration of this 3-step arc assessment process.

Based on this arc assessment process, we develop the following alternative approach

(Algorithm 3) to solve the pricing problems (PP∗) during the delayed column generation

approach proposed in Section 3.4, to eventually address the extended crew pairing problem

61

Figure 3.2: A high-level illustration of the proposed 3-step arc assessment process

we consider in this chapter.

Algorithm 3 Arc Selection
1: (For solving each specific pricing problem during the delayed column generation process)

2: Follow the 3-step arc assessment process proposed above to check each of the break arcs;
3: Randomly select up to H break arcs that pass the previous check. Keep them in the underlying

network Ḡ, while temporarily remove the other ones for this specific iteration;

4: Model the updated SPPRC, proposed in Section 3.4, just on this trimmed network;
5: Solve it using the conventional labeling algorithm (Algorithm 1) with all adopted speed-up strate-

gies (i.e., Improvement (I), (II) and (IV) in Section 2.5.4 plus (V – VII) in Section 3.4);

6: if no pairings are identified then
7: Terminate the whole delayed column generation process (i.e., stop the solving of (LSP∗));
8: else
9: Add pairings output from the labeling algorithm to the master problem;

10: The delayed column generation proceeds;

We only select up to H of those break arcs (typically controlled within a few hundred)

that pass the proposed arc assessment process to keep in the network (line 3 in Algorithm

3) for each specific iteration, instead of all of them. This is to control the size of the

62

finalized, trimmed network and thus ensure the tractability of the corresponding updated

SPPRC on it. This additional selection is necessary because a great number of break

arcs may pass the check (i.e., appear in at least one valid negative reduced cost pairing),

especially during the early stages of the delayed column generation process, while it will

not impact the exactness of our approach (see Proposition 3.1 below).

In summary, this new approach can be viewed as that we first temporarily remove all

break arcs from the network (i.e., we just work on the original non-break-arc network G),

and based on that we perform a bidirectional scanning to help determining (a small subset

of) those break arcs that are beneficial to the delayed column generation process and thus

restore them back to the network. This arc assessment process is expected to be done

in a short time because of the efficiency of the bidirectional scanning, as demonstrated

by experiments in Section 2.6 in the previous chapter. Moreover, by this method, the

finalized network will be much smaller (sparser) than the original Ḡ, while with respect

to solving the pricing problem (LSP∗), the updated SPPRC model on the trimmed network

can be shown to be equivalent to the model on the intact Ḡ (see more details below).

As the numbers specified by the 606-flight instance at the end of Section 3.4 suggest,

the final, trimmed network we work on for solving the pricing problem will consist of at

most 12,539+H arcs, which is much smaller than the 123,612 arcs in the corresponding

Ḡ, and consequently by our experiments, only several seconds are typically required for

performing the labeling process on these trimmed networks.

We want to point out that the approach we proposed above is an exact approach, which

guarantees the LP-relaxation of the set packing formulation (LSP∗) to be solved to opti-

mality. This exactness can be shown through the following proposition, whose rigorous

proof is provided in Appendix 3.8.2.

Proposition 3.1. A break arc b passes the check in Step 3. during our proposed arc

63

assessment process (i.e., Algorithm 2 returns “true”) for a specific iteration, if and only

if there exists a valid, negative-reduced-cost crew pairing which contains a break that

corresponds to b.

More specifically, when the halting criterion (i.e., line 6 of Algorithm 3) is satisfied, it is

clear that no valid crew pairing without a break existing in the instance achieves a negative

reduced cost. Additionally through this proposition, we know that no break arc could

have passed the check during the arc assessment process in this case, because otherwise

at least one of such qualified break arcs should be kept in the network, which would lead

to a valid crew pairing with a negative reduced cost identified during the labeling process.

This implies that there does not exist a valid, negative-reduced cost crew pairing in the

instance which contains a break. Therefore, we can conclude that all valid crew pairings

have a non-negative reduced cost at this point, and thus the LP-relaxation of the set packing

formulation (LSP∗) has been solved to optimality.

Lastly, there exists another alternative way to solve the pricing problem, based the

method proposed above. That is, in addition to applying the original approach to the orig-

inal crew pairing variation (no break incorporated) to identify a set of non-break pairings,

we produce additional crew pairings which each contains a break through trying all pos-

sible concatenations during Step 3. (i.e., fully enumerating the combinations between the

set of “forward” efficient paths and the set of “backward” efficient paths for all break arcs).

During this process, besides the identified non-break pairings, we directly add (overall up

to K) the corresponding pairings of those who pass the check (i.e., line 4 & 7 in Algorithm

2) to the master problem to proceed, instead of terminating each specific enumeration

once a satisfactory concatenation is found, while updating the network accordingly and

performing another labeling process on the finalized network once all enumerations are

done. Since crew pairings constructed this way are guaranteed to be valid and achieve

64

a negative reduced cost (see the “only if” part in Appendix 3.8.2 for the proof), we can

ensure that only desirable columns are introduced to the master problem for each specific

iteration, and furthermore, by Proposition 3.1 and the analysis above, the exactness pre-

serves. However, we choose to not implement this approach because there could be too

many possible concatenations, as thousands of efficient paths may exist in both sets Ei and

Ē j, and thus a significant amount of time would be spent to check all combinations. In

addition, an unnecessarily large number of desirable pairings would eventually be iden-

tified this way, especially during the early stages of the column generation. Therefore,

rather than explicitly enumerating pairings that include a break through this brute-force

approach, we instead do an arc selection by the proposed check, which can be done in a

much shorter time, and then leverage the efficiency of the labeling algorithm on the SPPRC

to generate an appropriate number of satisfactory crew parings as described in Algorithm

3.

3.6 Computational Experiments

We implemented the updated model and proposed solution approach using C++ (Visual

Studio 2017) with CPLEX (version 12.80) on a 64-bit operating system computer with

two 2.10 GHz processors and 128GB RAM. To evaluate its effectiveness for the extended

cargo crew pairing problem, we applied it to solve the previous three typical real-world

problem instances in Section 2.6 from our cargo airline partner. We present the results in

this section.

Table 3.1 below summarizes the basic information of each of these three datase, which

is just a copy of Table 2.3, and provided here again simply for an easier reference. Table

3.2 provides some general information of the updated flight-based network Ḡ we proposed

in Section 3.4 together with the full enumeration results for each of the three instances as in

65

Table 2.4 for the previous problem. Here, the entire set of valid crew pairings are generated

by a similar depth-first-search (DFS) approach to the one used in the previous chapter for

the original crew pairing problem.

Table 3.1: General information for the 3 instances. “Long-Haul” shows the percentage of flights which have
a flight time greater than 4 hours. “Int-Int” refers to flights whose origin and destination are both outside the
U.S., while “Dom-Int” refers to flights flying from some place domestic in the U.S. to somewhere outside
the country.

Instance #Flights Long-Haul Int-Int Int-Dom Dom-Int Dom-Dom
No.1 606 92.41% 49.84% 23.93% 25.41% 0.82%
No.2 541 92.24% 50.28% 25.14% 24.03% 0.55%
No.3 644 86.96% 47.36% 23.91% 23.91% 4.81%

Table 3.2: A summary of the underlying flight-based network and the full enumeration results for the 3
instances.

Instance #Nodes #Arcs |A| |B| #Valid Pairings Enum. Time
No.1 608 123,612 12,539 111,073 142,777,637 3day 02hr
No.2 543 097,716 10,113 087,603 079,648,029 1day 21hr
No.3 646 134,907 12,201 122,706 133,208,846 3day 02hr

The numbers show that, although allowing the crew to have a break within the pair-

ing could potentially increase flight coverage significantly, the number of feasible crew

pairings, besides the tremendous enumeration time, is too huge for us to even explicitly

define the set packing formulation (ISP∗) in CPLEX. Moreover, the huge number of break

arcs (i.e., |B|) for modeling this break feature in the crew pairing construction makes the

proposed flight-based network Ḡ extremely dense. All of these require us to again utilize

a delayed column generation framework, while in addition, developing new approaches to

overcome the density issue, as we’ve presented in detail in the previous sections.

For all three instances in the following experiments, we treat the excessive cost for

operating an uncovered flight by a reserve crew equally across all scheduled flights (like

what we did in Section 2.6) and ignore the penalty cost of having a break. In other words,

we have cb = 0, while c f = 1 for all flights f ∈ F in formulation (ISP∗) and (LSP∗), and

66

therefore we are simply maximizing the number of flights covered by crew pairings. The

reason for this parameterization is exactly the same as it for the experiments on the original

crew pairing problem in the previous chapter. That is, our partnered cargo airline views

flight coverage as the highest priority at the moment and works with the assumption that

having less flights that need to be assigned to reserve crews will result in lower overall

costs in practice.

3.6.1 A Benchmark

We consider a simple partial pricing heuristic here to provide a benchmark in order to

demonstrate the effectiveness of our proposed arc selection approach in terms of solving

our pricing problem for this extended crew pairing problem.

More specifically, for each pricing problem of a specific iteration, we randomly, evenly

partition the set of flights scheduled during the planning horizon, and construct the mod-

ified flight-based network (with break arcs) as described in Section 3.4 based on each of

these two subsets of flights separately. Then, we simply define the updated SPPRC inde-

pendently on these two “halved” networks, and solve them using the conventional labeling

algorithm (Algorithm 1) with the proposed speed-up improvements. We introduce the neg-

ative reduced cost crew pairings identified from both networks to the master problem to

proceed. If neither of these two networks can provide desirable crew pairings, then we

stop and terminate the delayed column generation process.

Please note that the LP-relaxation of the set packing formulation (LSP∗) is not guar-

anteed to be solved to optimality when the previous criterion is met, because we skip the

possibilities of flight combinations across the two networks. Therefore, this benchmark

approach is simply a partial pricing heuristic. However, it can effectively address the de-

scribed computational challenge, as the runtime of the labeling process is highly dependent

67

on the number of nodes in the network (Warburton, 1987), and from experiments, it will

only take around one minute for the conventional approach to label the “halved” network

for our typical, practical instances.

We applied this heuristic approach to solve the three instances described previously to

obtain the benchmark results, where we set the parameter K in Improvement (II) proposed

in Section 2.5.4 equal to 20,000. In addition, we limit a total maximum 4 hours spent dur-

ing the whole delayed column generation process for solving the LP-relaxation (LSP∗) to

avoid the tailing effect of its convergence, while we also set a maximum 2 hours on solving

the restricted IP (i.e., the set packing formulation ISP∗ with decision variables limited to

those introduced during the column generation process for solving its LP-relaxation LSP∗).

Given the randomness associated with this approach (as we randomly partition the flights

each time), we repeated solving each instance independently ten times to avoid “luckily”

just reporting the best or the worst case as the benchmark, presuming the heuristic may

not perform stably. The corresponding results, summarized by the mean, the standard de-

viation (SD), and the minimum and maximum of the ten trials for the three instances are

respectively provided in Table 3.3, 3.4 and 3.5. Runtimes are all presented in seconds.

Table 3.3: Summarized results for applying the flight partitioning heuristic approach to Instance No.1.

Instance No.1 LP-obj #Iter. Time #Pairgs Gen. IP-obj Time Gap(%) Covrg.(%)
Mean 551.53 129.50 14,400 61,600 494.20 7,200 10.89 81.55
SD 000.70 4.54 0 04,809 4.64 0 01.07 00.77

Minimum 550.70 120 14,400 54,231 487 7,200 09.66 80.36
Maximum 552.70 134 14,400 71,445 500 7,200 12.39 82.51

Table 3.4: Summarized results for applying the flight partitioning heuristic approach to Instance No.2.

Instance No.2 LP-obj #Iter. Time #Pairgs Gen. IP-obj Time Gap(%) Covrg.(%)
Mean 475.28 133.20 6,108.57 46,363 426.90 7,200 09.93 78.91
SD 004.13 29.51 1,330.93 04,393 5.96 0 01.21 01.10

Minimum 467.31 079 3,852.64 40,622 416 7,200 07.60 76.89
Maximum 480.66 178 8,446.83 56,665 439 7,200 11.39 81.15

68

Table 3.5: Summarized results for applying the flight partitioning heuristic approach to Instance No.3.

Instance No.3 LP-obj #Iter. Time #Pairgs Gen. IP-obj Time Gap(%) Covrg.(%)
Mean 569.37 132.40 13,066.05 58,888 510.30 7,200 10.85 79.24
SD 002.71 22.11 2,328.57 03,425 6.83 0 01.12 01.06

Minimum 563.14 083 07,776 55,027 499 7,200 08.73 77.48
Maximum 572.10 158 14,400 67,331 523 7,200 12.82 81.21

Here, the second column displays the final objective value (actually, the negative ob-

jective value, as it can then be interpreted as the number of flights covered) we get for the

LP-relaxation of the set packing formulation (i.e., LSP∗). The number of iterations taken,

the total time spent, and the number of valid crew pairings generated during the delayed

column generation process are provided in the third, fourth, and fifth column, respectively.

The sixth column shows the (negative) objective value we can achieve by solving the re-

stricted set packing formulation (ISP∗) by CPLEX with just crew pairings generated during

the delayed column generation process (i.e., the heuristic approach described at the begin-

ning of Section 3.4), while the corresponding time spent on solving this integer program is

presented in the seventh column. The eighth column provides the remaining LB/UB gap

of the branch-and-cut process by CPLEX, when the 2-hour time limit has been reached

(or when the optimality has been proved). The last column displays the corresponding

achieved flight coverage.

3.6.2 Results and Comparisons

The final results of applying our proposed arc selection approach to deal with the pricing

problem for solving the three practical extended cargo crew pairing instances are presented

(in the corresponding first row) in Table 3.6. Here, we set H = 250 in Algorithm 3, i.e., up

to 250 qualified break arcs are kept in the network for each specific iteration, where this

number was selected based on computational experimentation. As previously, the param-

eter K in Improvement (II) in Section 2.5.4 is set as 20,000 for testing all three instances.

69

We still limit a total maximum 4 hours spent during the whole delayed column generation

process, and a maximum 2 hours on solving the restricted original IP. The columns of the

table are the same as in the three tables for the benchmark in the previous sub-section.

Lastly, to provide a direct comparison, the average value for each attribute achieved by the

partial pricing heuristic, i.e., the benchmark approach, in Section 3.6.1 (i.e., row “Mean”

in Table 3.3, 3.4 and 3.5) is copied in the parentheses in the corresponding second row.

We choose to compare the results against only the mean values from the partial pricing

heuristic, because this benchmark approach is shown to be not sensitive to its associated

randomness, as demonstrated by the small SD values and the small gaps between the re-

spective minimum and maximum values.

Table 3.6: Computational results for applying the arc selection approach to the three instances. Numbers
in the parentheses correspond to the average performance achieved by the benchmark approach. Values in
columns LP-obj and IP-obj are shown in negative, presenting the amount of flights covered.

Instance LP-obj #Iter. Time #Pairgs Gen. IP-obj Time Gap(%) Covrg.(%)

No.1
563.29 41 07,766 79,730 521 7,200 07.81 85.97

(551.53) (129.50) (14,400) (61,600) (494.20) (7,200) (10.89) (81.55)

No.2
492.10 35 04,447 58,448 454 7,200 07.89 83.92

(475.28) (133.20) 0(6,109) (46,363) (426.90) (7,200) 0(9.93) (78.91)

No.3
584.42 37 07,009 85,050 551 7,200 05.72 85.56

(569.37) (132.40) (13,066) (58,888) (510.30) (7,200) (10.85) (79.24)

According to these results, we can first see that the 4-hour limit has never been reached

when the delayed column generation process is terminated, which implies that the LP-

relaxation (LSP∗) is indeed solved to optimality by our arc selection approach using just a

couple of hours in total. This demonstrates that our proposed approach indeed effectively

addresses our computational challenge, as originally the cost of the modified approach

in Section 3.4, i.e., the straightforward modification of the original approach proposed in

Chapter 2, was over ten hours for a single iteration. By comparing to the benchmark,

this arc selection approach is shown to outperform the simple heuristic in terms of both

70

efficiency and solution quality. First of all, a better objective value for the LP-relaxation

(LSP∗) is naturally achieved (the corresponding values in the table are displayed in nega-

tive of the true ones, to interpretably represent the amount of covered flights), as this arc

selection approach is exact, and it solves each instance to optimality. Furthermore, our arc

selection approach needs even fewer iterations and less total time for achieving a better

objective value (proving the optimality). This is even true if comparing to the best result

(i.e., the respective minimum) achieved by the benchmark heuristic among the repetitions

for instances No.1 and No.3, while only a slightly greater total runtime is observed for in-

stance No.2. Consequently, a higher objective value to the original integer program (ISP∗)

can always be provided by our proposed approach through the heuristic method for han-

dling the integrality constraints mentioned at the beginning of Section 3.4. (Note that this

heuristic method is workable since only a very small number of feasible crew pairings —

less than 0.1% — are generated and explicitly incorporated into the formulation.) More

specifically, the arc selection approach achieves around five more percent flight coverage

in average. It leads to approximately 85% coverage at the end using in total only a handful

of hours, which is a very high coverage value in practice, achieved in a sufficiently short

time, and specifically is highly satisfactory to our partnered cargo airline.

3.7 Conclusion

In this chapter, we consider solving an extension of the original crew pairing problem in

the previous chapter, where the cargo airline in addition accepts a break to take place in the

middle of crew pairings. The incorporation of this feature is necessary because otherwise

valid crew pairings are frequently not able to cover sufficient flights for the airline to make

profits, due to the nature of the underlying low-connectivity flight network. This break

feature is thus introduced, working as a special deadheading method, to relax the original

71

crew pairing problem, in order to greatly boost flight coverage at the end.

A straightforward modification of the previous solution framework proposed in Chap-

ter 2 can make it still applicable to this extended variation. That is, we again modeled the

crew pairing problem as a set packing problem, and adopted a delayed column generation

framework to handle the exponentially-large number of decision variables in the corre-

sponding formulation. An extra set of break arcs were introduced into the flight-based

network to incorporate this break feature, based on which the SPPRC model was updated

to enforce the additional requirements on the break to formulate the pricing problem.

Although the conventional labeling algorithm proposed to address the original crew

pairing problem can still in theory solve this updated SPPRC model exactly, the extremely

high density of the flight-based network, caused by the incorporation of the great number

of break arcs, makes it proceed unacceptably slowly if we apply it directly to practical

instances, even enhanced by all of our proposed speed-up improvements.

To address this computational challenge, we proposed an arc selection approach to

dynamically trim the updated, dense network through a bidirectional search based arc

assessment process to temporarily prune most of arcs for each specific column generation

iteration. This way, we can equivalently solve the original pricing problem by simply

performing the conventional labeling algorithm on a much smaller sub-network, as we’ve

shown that this arc selection is an exact approach. Based on our experiments on real-world

instances, this proposed approach was demonstrated to successfully address the described

computational challenge, and it can always help producing high quality solutions at the end

in a very short time. Moreover, compared to a simple partial pricing heuristic approach, our

arc selection approach was shown through experiments to be able to achieve a dominating

performance, in terms of both solution quality and runtime effeciency.

Although the details of the proposed arc selection approach and the associated logic

72

are specific to the extended crew pairing problem of our partnered airline, the general

approach can be adapted to solve other applications. For example, the idea of the arc

assessment process is applicable to any problem where an SPPRC model is formulated

and solved (e.g., in traditional passenger crew scheduling problems and vehicle routing

problems), while the proposed approach may greatly improve runtime particularly when

the underlying network is dense. The exactness of this approach will be preserved if the

following three conditions are satisfied: 1) it is applied to a set of mutually exclusive arcs;

2) for every restricted resource defined in the SPPRC, its resource consumption is always

accumulated independently; 3) for every restricted resource, either its accumulation is

augmentation (or with reset) plus there is a same upper bound on its consumption on

every node in the network, or its accumulation is subtraction plus there is only an effective

upper bound on its consumption at the end of the network (i.e., on the sink node). Since

the SPPRC of many general routing and scheduling problems satisfies these described

properties, this proposed approach is expected to be able to help solving many practical

applications in an exact manner.

In terms of future research, we would like to reduce the optimality gap when solving the

integrality-constrained restricted master of the set packing formulation (ISP∗), given that a

gap of over 5% between the LB and UB was consistently observed in all our experiments

(Table 3.6) within the time limit. Potential methods include solving the corresponding

theta body (i.e., semidefinite relaxation) and additionally generating maximal clique in-

equalities (Conforti et al., 2014), to help derive a tighter lower bound. In addition, we plan

to explore other ways to deal with the integrality constraints in the original set packing

formulation, including both other heuristics (e.g., dive-and-price in Ruther et al. (2016);

Wei and Vaze (2018)) and exact methods (e.g., branch-and-price framework in Desaulniers

et al. (1997); Freling et al. (2004)).

73

3.8 Appendix

3.8.1 An Example for Step 2. of the Arc Assessment Process in Sec-
tion 3.5

To demonstrate Step 2. of the proposed arc assessment process, let’s consider a toy in-

stance, composed of, in total, three flights. Figure 3.3 shows the original non-break-arc

flight-based network (i.e., the one used in Step 1.) for this instance, where the origin with

the departure time and the destination with the arrival time for each flight are displayed

in the associated parenthesis. Figure 3.4 illustrates the corresponding reversed network

proposed in Step 2..

Figure 3.3: The original flight-based network for the
3-flight instance with on break arcs.

Figure 3.4: The corresponding reversed network in
Step 2. for the 3-flight instance.

To provide some insights on how the SPPRC is similarly defined on this reversed net-

work, let’s calculate the resource vector T̄ p̄1, T̄ p̄2 on the first three resources for “back-

ward” paths p̄1 := (t, f2, f1) and p̄2 := (t, f3, f1). Assume the minimum time for a layover

is 10 while the minimum time for a day-off is 24. Then for path p̄1, where f2 and f1 are in

the same duty period since the gap between them is only 2 hours, we have T̄ p̄1
1 = 8, as the

span of the current duty period in the corresponding pairing is 8; T̄ p̄1
2 = 6, as the cumula-

tive flight time in the current duty period is 6; T̄ p̄1
3 = 1, as the number of duty periods since

last day-off (i.e., the beginning of the pairing) is 1. However, things are different for p̄2,

flying f3 “followed” by f1, because now the crew will have a layover (but not a day-off)

74

in between. We have T̄ p̄2
1 = 4, T̄ p̄2

2 = 4 and T̄ p̄2
3 = 2 because a new duty period starts after

f3, where f1 is its first flight and its only flight at this point.

To summarize, the resources defined on this reversed network are the same as those on

the original one (no break feature and requirements incorporated) in Section 2.5.2. How-

ever, rather than representing the status of the (sub-)pairing specified by a “forward” path

from s, upon the completion of its current flight, the resource consumption here is back-

tracked from the last flight in the (sub-)pairing specified by a “backward” path from t, upon

its current, first one. In other words, the only difference is that the resource consumption

here is accumulated through the reversed direction, since for a specific “backward” path

in the reversed network, we only know for its corresponding (sub-)pairing which flights

are to be completed in the future, rather than the flights the assigned crew has completed

in the past. That is, although for a specific arc in the reversed network the point-to flight

in reality happens before the point-from flight, we still view the point-to flight as to be

completed “following” the point-form flight in terms of the resource consumption calcu-

lation. For example, for path p̄2 mentioned above, the values of its resource vector on the

first two resources are both 4 (which are defined by the current flight in the corresponding

reversed crew pairing, i.e., f1) instead of 12, the flight time of the actual last flight f3 in

the corresponding pairing.

A more elegant way in terms of implementing Step 2. is through creating a mirror of

the original instance, where we swap the origin and the destination of each flight while we

also swap and negate the corresponding departure time and arrival time. Then, we exactly

follow the procedure we introduced in Section 2.5: construct the non-break-arc network,

model the SPPRC (with seven resources; no resources defined for the break feature), and

solve the corresponding formulation using the labeling algorithm for this mirror instance,

which then just accomplish Step 2.. Figure 3.5 below provides an illustration of this mirror

75

instance method on the toy 3-flight instance.

Figure 3.5: The original non-break-arc network for the mirrored 3-flight instance.

3.8.2 A proof for Proposition 3.1

For the “only if” part: let e∗i ∈ Ei and ē∗j ∈ Ē j be the two efficient paths that result in the

break arc b := (i, j) passing the check in Step 3. (i.e., make Algorithm 2 return true). We

claim that the s− t path, i.e., the concatenation pc := (e∗i ,b, ê
∗
j), corresponds to a valid

crew pairing (denoted as c) which achieves a negative reduced cost. First, it’s obvious that

bullet (1∗), (8) and (9) in Section 3.2 are respected by pairing c, as they are ensured by

the structure of the underlying network. The break arc b corresponds to is guaranteed to

take place in the “middle” of c (i.e., bullet (10) and (11)) because the condition in line

4 of Algorithm 2 is passed. According to the way we define the SPPRC in Step 2., the

resource consumption is still accumulated through either augmentation, augmentation with

reset, or subtraction for all resources, exactly the same as it is achieved in the SPPRC for

the original crew pairing problem introduced in the previous chapter but just in a reversed

direction. Therefore, with respect to a specific resource, for each path within its two

adjacent resets (if applicable), the consumption on this resource accumulated “backward”

along this path in the reversed SPPRC is always the same as the amount accumulated

“forward” along this path in the original SPPRC. We know that the “backward” path ē∗j is

76

feasible in the reversed SPPRC while the break period is long enough so that consumption

values for resources r1,r2 and r3 will all be reset. In addition, we know that in both

directions the consumption of these three resources is non-decreasing between adjacent

resets. Therefore, we can conclude that the corresponding requirements specified by bullet

(2), (3) and (4) in Section 2.2 are always respected by pairing c. Based on the same

analysis, we also have T e∗i
4 + T̄

ē∗j
4 equals T pc

4 , the total resource consumption of path pc

on r4 under the definition of the updated SSPRC in Section 3.4 (i.e., the total time span

of pairing c), while similarly T e∗i
6 + T̄

ē∗j
6 = lmin +T pc

6 . Lastly, T e∗i
7 + T̄

ē∗j
7 = T pc

7 − cb, since

neither the corresponding reduced cost resource value of e∗i nor ē∗j includes the additional

cost (resource consumption), i.e., cb, introduced by the break. Since the three conditions

in line 7 of Algorithm 2 are passed, we have that the corresponding crew pairing c satisfies

requirements specified by bullet (5), (6) and (7) in Section 2.2, and achieves a negative

reduced cost. Therefore, we conclude that c is such a pairing we are looking for.

For the “if” part: suppose there is a valid crew pairing with a negative reduced cost

which contains a break. Denote the s− t path it corresponds to in the updated network

Ḡ in Section 3.4 as (e′i,b, ê
′
j), where e′i is the sub-path from s to i, b := (i, j) is the break

arc corresponding to the break period in the pairing, and ê′j is the sub-path from j to t.

In addition, let ē′j be the path in the reversed network in Step 2., from t “backward” to

j, that corresponds to ê′j. Clearly, e′i is a feasible path in the SPPRC modeled in Step 1.

of the arc assessment process. So is ē′j in the reversed SPPRC in Step 2., because of the

features and relationship in terms of the resource consumption accumulation, compared

to the original SPPRC, we analyzed in the previous paragraph. Therefore, based on the

property presented by Proposition 2.1, we know that there exist a “forward” efficient path

e∗i ∈ Ei and a “backward” efficient path ē∗j ∈ Ē j such that T e∗i ≤ T e′i and T̄ ē∗j ≤ T̄ ē′j . Since

the s− t path (e′i,b, ê
′
j) is feasible with respect to all resource constraints defined in the

77

extended SPPRC (i.e., the one with ten resources, described in Section3.4) with a negative

value of r7, by the same reasoning as in the previous paragraph, the conditions in line

4 and line 7 of Algorithm 2 will be satisfied by resource vectors T e′i and T̄ ē′j , if directly

plugged in. Note that pmin≤ T ei
4 + T̄ ē j

4 is equivalent to T ei
5 + T̄ ē j

5 ≤ pmin for any pair of ei, ē j

respectively in the original/reversed SPPRC. Therefore, we can conclude that Algorithm

2 on the corresponding break arc b will return true, at least when e∗i and ē∗j are traversed

respectively by the nested loops, which means b will pass the check in Step 3..

78

CHAPTER 4

A Two-Stage Partial Fixing Approach for
Solving the Residency Block Scheduling

Problem

4.1 Introduction

In this chapter, we consider constructing a feasible schedule to a large-scale medical resi-

dency scheduling problem in which the key decisions are to determine how to assign each

resident to different services for different time periods across the academic year. In this

section, we provide a brief overview of residency, describe the problem in more detail

with respect to our collaborating institution (the University of Michigan Medical School,

UMMS), and introduce the basic concepts behind this research. In addition, we present

our research motivation as to the need for a new approach to solving this problem.

4.1.1 Residency Programs and the Block Scheduling Problem

In the United States, typical medical training starts with an undergraduate pre-medical

program, followed by four years of medical school to complete the M.D. degree. Then,

trainees typically spend another three to four years in residency, training and caring for

patients under the supervision of more senior physicians before either continuing on to

fellowship or beginning fully independent practice.

79

During residency, these trainees focus on pursuing their educational goals including

specialization, while at the same time they provide patient staffing to provide care through-

out different units in the hospital and in outpatient settings. Residency scheduling must

therefore allocate this scarce resource (i.e., the residents) so as to satisfy multiple objec-

tives related both to training and to patient care.

UMMS provides residency programs in many fields, including Pediatrics (Peds), Inter-

nal Medicine (IM), and a hybrid of the two, called Med-Peds (MP). Each of these pro-

grams requires its residents at different levels, i.e., Post-graduate Year (PGY) 1, 2, 3 and

4, to complete different services during the academic year (from July 1st to June 30th).

Here, a service is a specialty in a specific unit in the hospital, for instance Ambulatory

(AMB), Emergency Room (ER), etc. The academic year is evenly divided into several

time periods, typically 24 or 26, so that each corresponds to a half month or two weeks,

and we call each time period a block. The residency block scheduling problem is thus to

assign residents to specific services on specific time blocks, so as to meet training and

patient care needs.

The chief residents and program directors at UMMS must construct the annual block

schedule for each resident before the academic year starts. As mentioned above, this

block schedule should ensure the residents meet their educational requirements while also

staffing the hospital to provide sufficient patient care coverage. In addition, before the con-

struction of the schedules, each resident submits a survey to indicate his or her prioritized

requests on vacation times and electives. A high quality schedule should consider such

preferences at an individual level, and ensure fairness across the residency programs, i.e.,

no resident receives a significantly easier or more desirable schedule than any other resi-

dents for the academic year, while also taking the logistics preferences from the residency

programs into account.

80

4.1.2 Research Motivation

Although the resident block scheduling problem at UMMS has many objective criteria,

related both to patient care and resident training and personal satisfaction, in this chapter

we focus specifically on the feasibility problem. This problem in turn is the underlying

foundation for our approach to supporting UMMS in building an acceptable schedule.

In particular, we have implemented an interactive approach whereby we provide feasi-

ble solutions to our clinical collaborators (the program directors and chief residents), they

provide feedback, and we generate a modified schedule to better match their requests. We

repeat this review-and-refine process multiple times until the finalized schedule is satis-

factory to all stakeholders.

We use this interactive approach, rather than formulating an objective function with

all preferences incorporated and optimizing it, because it is hard to quantitatively formu-

late some preferences and to properly trade-off the importance of different metrics in the

objective function, as they are depending on the subjective judgement of our clinical col-

laborators. Moreover, many requirements and preferences are subject to change after our

collaborators review the current schedule. Therefore, optimizing an objective function is

neither sufficient nor effective to handle the preferences from different stakeholders and a

satisfactory schedule cannot be expected to be produced by one shot.

Clearly, this interactive approach requires us to be able to generate feasible schedules in

a reasonable amount of time, as we will repeat the process multiple times over the course

of finalizing a schedule. In our experience, a straightforward, conventional approach to

modeling and solving this problem is not viable, with some instances taking as much as

days or even weeks to solve. Thus, we are motivated to develop a new approach to identify

feasible solutions to this challenging combinatorial problem.

The remainder of the chapter is structured as follows: in Section 4.2, we briefly discuss

81

previous work in the literature on personnel scheduling, with an emphasis on applications

to healthcare, and outline the contributions we make to this area. Section 4.3 presents

the statement of the problem we are considering here. In Section 4.4, we first provide

a high-level summary of the base model — an integer program (IP) for formulating our

problem, where a conventional branch-and-cut approach can naturally be used to solve

it. We describe the long runtime issue associated with this approach, and briefly ana-

lyze its underlying causes. We then propose a two-stage partial fixing approach for more

efficiently solving our block scheduling problem, in order to address this computational

challenge. Section 4.5 presents computational results on real-world instances. Lastly, in

Section 4.6, we conclude and provide thoughts for future work.

4.2 Literature Review

In terms of assignment and allocation of hospital staff and resources, the nurse scheduling

problem is studied in the majority of the literature. Miller et al. (1976) developed a math-

ematical programming model that schedules days-on and days-off for all nurses in a given

unit for a given shift across a given several weeks’ time horizon. A similar days-on/off

scheduling problem was also described in the paper of Weil et al. (1995), but the model

in this paper was formulated and solved using constraint programming. Alternatively, a

goal programming model was used by Azaiez and Al Sharif (2005) to handle multiple

objectives, where functions for measuring deviations from 5 different goals were formu-

lated, weighted and incorporated into the objective. A goal programming formulation was

also proposed in the paper of Berrada et al. (1996), and a tabu search method for solv-

ing the model was introduced. Moreover, a sequential technique and a equivalent weight

technique were also proposed, both of which are able to help generate Pareto-optimal

solutions. Brusco (1998) modeled a tour scheduling problem (which is similar to shift

82

scheduling) as a generalized set-covering formulation. The model was presented in the

form of a Beale tableau, and solved using Gomory’s dual, all-integer cutting plane, which

was further accelerated by a customized source row selection rule, objective cuts, and an

advanced start point.

Resident scheduling problems in most cases not only need to take the service and

staffing coverage requirements into consideration but also the trainees’ educational re-

quirements. In the literature, resident shift scheduling problems were found more fre-

quently discussed compared with block or rotation scheduling. Cohn et al. (2009) consid-

ered a problem assigning residents to three different hospitals simultaneously. A mixed

integer programming (MIP) model was formulated, based on which the authors used a

three-phase interactive approach to resolve the multi-objective issue arising from the prob-

lem. Güler et al. (2013) proposed a goal programming model to enforce the hard rules

while penalizing the violations of soft constraints. Analytical hierarchy process (AHP)

was used to quantify the weights of the deviation from different goals in the objective

function. A similar model was also presented by Topaloglu and Ozkarahan (2011). They

used a hierarchical method to solve their model, which considers only a single metric each

time by the order of their priority. Sherali et al. (2002) solved a night shift scheduling

problem using a MIP formulation. They proved that by minor relaxations, the formulation

will become a bounded variables linear network flow programming problem, which will

be totally unimodular.

Regarding resident block/rotation scheduling, Guo et al. (2014) proved that the basic

resident scheduling feasibility problem is NP-complete. The paper of Franz and Miller

(1993) seems to be the first one in the literature to solve a resident rotation scheduling

problem. The authors formulated the problem as a MIP, which was then solved by a round-

ing heuristic. Bard et al. (2016) focused on assigning clinic sessions in different weekly

83

templates to construct annual monthly block schedules for residents. A MIP formulation

was first provided. Then, three heuristics, including a local branching technique, were pro-

posed and used to generate high-quality schedules. Another paper written by these authors

expanded the previous problem to schedule construction for three hospitals simultaneously

(Bard et al., 2017). A similar MIP formulation was built and a trial-and-errors heuristic

was used to produce high-quality schedules. In addition, another MIP model was formu-

lated to help figure out the most-diversified subset of a given number of optimal solutions

by minimizing the greatest pairwise similarities.

From the above, problems are most commonly formulated as a (mixed) integer pro-

gram, which will then be directly solved by some branch-and-bound methods or heuristics

to generate solutions. But when it comes to dealing with a large-scale scheduling problem,

a column generation formulation, solved through a branch-and-price (B&P) framework,

could be a more powerful method, and is also widely used. For most of those papers in the

literature, the master problem’s decision variables correspond to feasible schedules with

respect to individual residents or nurses (Jaumard et al., 1998; Maenhout and Vanhoucke,

2010; Brunner and Edenharter, 2011). However, Belien and Demeulemeester (2006) pro-

vided a formulation where each column in the master problem corresponds to a feasible

assignment pattern for a specific activity (rotation). Detailed computational results about

the comparison between these two different formulation schemes can be found in another

paper by them (Beliën and Demeulemeester, 2007). Regarding the pricing problem, it can

be formulated as a restricted shortest path problem (Belien and Demeulemeester, 2006;

Beliën and Demeulemeester, 2007) or a higher-dimensional resource-constrained shortest

path problem (i.e., SPPRC) (Jaumard et al., 1998; Maenhout and Vanhoucke, 2010), and

then solved via a dynamic programming and/or labeling approach. It may also be effi-

cient enough to just formulate the pricing problem as a MIP and solve it directly (Brun-

84

ner and Edenharter, 2011). In terms of the branching during the B&P for solving the

master problem to integrality, Maenhout and Vanhoucke (2010) and Belien and Demeule-

meester (2006), respectively, proposed and compared different branching strategies as well

as different variable selecting strategies. A handful of speed-up techniques, including La-

grangian dual pruning and reduce cost fixing, were also proposed and used in their papers.

Constraint programming (CP) is another method, independent of any previous MIP/IP

framework, commonly-used for solving personnel scheduling problems in healthcare (Weil

et al., 1995; Cheng et al., 1997; Chan et al., 1998; Trilling et al., 2006; Rahimian et al.,

2017). By utilizing effective global constraints and propagation mechanisms, CP has been

demonstrated to be efficient on finding feasible solutions to large-scale combinatorial prob-

lems, which can also be easily generalized to solve optimization versions. Besides CP,

more and more research nowadays focuses on applying genetic algorithms to construct per-

sonnel schedules and/or timetables (Aickelin and Dowsland, 2004; Aickelin et al., 2008;

Adamuthe and Bichkar, 2011; Leksakul and Phetsawat, 2014; Syberfeldt et al., 2015).

They developed and experimented with different selection methods and crossover and/or

mutation approaches, to rapidly produce high-quality solutions.

Lastly, many papers in the literature considered producing more reliable and globally

higher-quality schedules through integrating multi-stage decision-making phases together.

Kim and Mehrotra (2015) addressed a nurse shift scheduling problem, where the staffing

level for a 12-week horizon is first determined 6 weeks ahead, while shifts can be fur-

ther added and deleted at the beginning of each week for the following week over the

12-week period when a better understanding of the demand is available. The problem was

formulated as a two-stage stochastic integer program, while the second stage was con-

vexified by mixed-integer rounding inequalities. A thin direction branching strategy, an

aggregation of the Bender’s cut from different scenarios, and a modified L-shaped method

85

were used to achieve a better computational performance. An employee timetabling prob-

lem was solved by Detienne et al. (2009), which is to determine the working pattern for

each employee first, and then for each working period in the assigned patterns, determine

the corresponding qualification that should be used for satisfying coverage requirements.

A matching-based cut generation heuristic approach was proposed to solve the problem,

which does not require any third party solver. Guyon et al. (2010) integrated an employee

timetabling problem with its associated production scheduling problem, which naturally

resulted in a two-stage decision-making structure. That is, effective working periods are

first set to employees by working pattern assignment, and then competence matching and

jobs processing schedule are determined. Besides a conventional Bender’s decomposi-

tion, another decomposition scheme with a different cut generation process was proposed,

which was developed based on a maximum flow model.

4.2.1 Contributions

Compared with shift scheduling, constructing annual block schedules has received sig-

nificantly less attention, as discussed above. Our research contributes to filling this gap.

Furthermore, we have to consider the schedule construction for three residency programs

simultaneously because residents from the hybrid program MP share responsibility for

covering units in both of the other two, IM and Peds. As a result, the size of our problem

is much larger than problems typically considered in the literature. We need to assign

approximately 250 residents to around 100 services and sub-services over the year, rather

than a few dozen.

A key contribution of our work is in proposing a novel solution framework to ad-

dress the computational challenge of solving this large-scale problem, as conventional

approaches like branch-and-cut by a MIP solver are shown to be insufficient in practice.

86

Although there is not a natural two-stage decision-making structure, we intentionally parti-

tion our decision process into two stages. We first consider accomplishing the assignment

of a small number of “picky” services, whose associated constraints already make their

assignments highly restricted, and then try completing the remaining pieces of the puzzle

after partially fixing these assignments. We develop several cut generation mechanisms

to prune off the current unacceptable fixing once infeasibility arises, which therefore en-

sures this solution framework is an exact method. We verify the effectiveness of our pro-

posed approach by carrying out computational tests on real-world instances. Lastly, the

flexibility of our approach allows it to be applicable to other applications, particularly to

combinatorial feasibility problems in personnel scheduling and vehicle routing.

4.3 Problem Statement

In order to constitute a valid schedule for residents, several requirements from different

perspectives, e.g., residents’ education, patient care coverage for hospital units, the ad-

ministrative logistics of the residency programs and so on, must be satisfied as discussed

previously. More specifically, the requirements and rules we consider for constructing the

resident block schedule at UMMS can be categorized into the following four groups:

1. Basic Assignment Rules: Each resident must be assigned to exactly one service for

each block (i.e., time period). These rules ensure a complete schedule structure.

2. Resident Education Requirements: Each resident education requirement is defined

by a resident, a set of services, a set of time periods, a lower bound, and an upper

bound. It says that the total number of blocks in the given time period set, during

which the resident is assigned to services in the given service set, should be greater

than or equal to the given lower bound but less than or equal to the given upper bound.

87

For example, a possible requirement is: Resident-1 should complete service Cardi-

ology (Cards) or VA Wards (VW) cumulatively at least 2 but no more than 4 blocks

during the whole academic year.

3. Service Coverage Requirements: Each service coverage requirement is defined by

a set of residents, a set of services, a set of time periods, a lower bound, and an upper

bound. It says that the total cumulative number of blocks that the given set of res-

idents are assigned to the given set of services during the time periods in the given

set must be greater than or equal to the given lower bound but less than or equal to

the given upper bound. For example, a possible requirement is: service Pediatric

Emergency Room (PER) requires at least 6 but no more than 7 residents from pro-

gram Peds or MP in total during the block of the first half of August. For another

example: the total number of blocks that PGY-1 residents from program Peds or MP

are assigned to service General Inpatient Wards (General) or Pediatric Cardiology

(MP-PedsCards) cumulatively across the whole academic year should be at least 200

but no more than 245.

4. Miscellaneous Rules: This group contains all of the additional constraints needed

to ensure a feasible schedule. For example, for any resident from the MP program,

he/she cannot be assigned to service General Medicine (GM) before completing at

least one block of service Hospitalist (HOS) or Pediatric ICU (PICU). For another ex-

ample, the number of residents assigned to service Pediatric Hematology/Oncology

(PHO) must be kept the same within each month during the academic year (i.e., the

same for each pair of blocks within the same month). For the complete list of these

miscellaneous requirements by type, please refer to the notation section in Appendix

88

4.7.1, where we explain each type and its associated structure in detail.

The objective of our problem is to construct a resident block schedule so that all of the

above four groups of rules are satisfied.

4.4 Solution Approach

In this section, we first describe the base model, a pure integer program (IP), for formu-

lating our resident block scheduling problem. The conventional branch-and-cut approach

can be applied to solve this model. However, for our practical instances, this approach

is shown to perform unacceptably slowly even using a cutting-edge commercial solver.

Given this, we present a high-level analysis of the potential causes of this performance

issue. Then, we propose a novel two-stage partial fixing approach to address this compu-

tational challenge, and thus significantly speed up the construction of a feasible resident

block schedule.

4.4.1 The Base Model

The series of primary decisions we need to make is that, for each resident in UMMS res-

idency programs, for each service, and for each block during the academic year, whether

this resident will be assigned to this service for this block or not. By accordingly defin-

ing this set of binary decision variables, we can formulate our resident block scheduling

problem as an integer linear program. The complete formulation is provided in Appendix

4.7.1, and here, without loss of generality, we simply write it in the following general form

for reference:

(IP)

max 0

s.t. Ax≤ b

x integer.

89

Note that the objective function in (IP) is maximizing 0, as our goal is to find a feasible

schedule to our resident scheduling problem. The linear constraints Ax ≤ b enforce all of

the four groups of requirements introduced in Section 4.3, and the variables bounds, i.e.,

0 ≤ x ≤ 1 needed to ensure that all decisions are binary, are incorporated into this linear

system as well.

Naturally, we can apply the commonly-used branch-and-cut method to solve this model.

However, for our instances, this approach may take a few days or even over a week, which

is too slow to make the interactive, review-and-refine construction framework perform ef-

fectively. Therefore, we set out to develop a more efficient approach to address our resident

block scheduling problem.

4.4.2 The Causes of the Slow Computational Performance

Before we present our proposed approach to address the described computational chal-

lenge, we first give a high-level analysis of the root causes of this long runtime issue for

constructing our block schedule.

First and foremost, the slow performance is due to the huge size of our instances. More

specifically, there are approximately 250 residents in total across the three residency pro-

grams at UMMS, while there are around 100 different services, and 24 (or 26) blocks (i.e.,

the academic year is evenly divided into half months or two-week periods). These numbers

together specify a huge number of possible combinations. As a result, the corresponding

formulation (IP) typically consists of roughly 1 million decision variables and 2 million

constraints, whose size is too large for its corresponding LP-relaxation to be solved in a

short time (please find more details in Computational Experiments, Section 4.5). Since a

large number of such LP-relaxations must be processed during a traditional branch-and-cut

procedure, this long runtime eventually leads to unacceptably slow performance.

90

Secondly, unlike traditional nurse shift scheduling problems, where only coverage re-

quirements need to be taken care of, we have to, in addition, satisfy individual person’s

educational requirements. The coordination between these two types of requirements si-

multaneously introduces a significant amount of complexity to our problem. More in-

tuitively, completing our scheduling tasks here can be visualized as filling the following

table (Figure 4.1), where each row corresponds to each resident while each column cor-

responds to each block, and we need to place the service names into all of its cells. The

resident education requirements (Group 2 in Section 4.3) respectively impose restriction

on filling service names in each row while the service coverage requirement (Group 3)

impose restriction on columns. We need to complete this table coordinating these hori-

zontal restrictions and vertical restrictions, which is much more complicated than dealing

with only one single direction (e.g., the vertical one for nurse shift scheduling). By this

visualization, solving our residency block scheduling problem can also be analogized to

solving an advanced Sudoku game. However, our problem is much more difficult, because

of both the number and the complexity of the horizontal and vertical restrictions. Particu-

larly, these requirements of our problem apply not just to individual columns or individual

rows, but also to subsets of rows and subsets of columns.

Figure 4.1: Visualization of residency block scheduling.

Lastly, the slow computational performance is often caused by the significant amount

of symmetry in our problem. More specifically, some residents (or blocks) are locally

interchangeable in terms of their respective assignments. Consequently, for any given

91

fractional (vertex) solution at a specific node in the branch-and-bound tree, there may

exist a very large number of other fractional (vertex) solutions that can be formed by a

simple permutation on any subset of the fractional “assignments” on those residents (or

blocks). This means it will be extremely unlikely that we are lucky to obtain an integral

solution directly by solving a specific node among the top layers. We instead need to

dive deep into the branch-and-bound tree before we can reach a “leaf node.” On the other

hand, if we encounter an infeasible node along a specific path in the branch-and-bound

tree, then there may exist a very large number of other similar paths (e.g., paths that are

identical under permutation of the assignments on those locally interchangeable residents

or blocks) which leads to the same infeasibility. For instance, a path that assigns resident

r1 to service s1 at block t1 and assigns resident r2 to service s2 at block t2, is different

from another path which assigns r2 to s1 at t1 while r1 to s2 at t2. However, they both

could potentially lead to an infeasible node with exactly the same underlying root cause,

if residents r1 and r2 are locally (i.e., at block t1 and t2) interchangeable across all of their

involved requirements (which is very likely if they are at the same level and from the same

residency program). Therefore, we may repeatedly encounter the same infeasibility along

different paths many times, before we can eventually jump out of the loop and find a valid

path which specifies a feasible solution.

4.4.3 A Two-Stage Partial Fixing Approach

It is clear that if only Basic Assignment Rules and Resident Education Requirements (i.e.,

Group 1 & 2 in Section 4.3) are enforced, the corresponding IP formulation will become

almost trivially easy to solve, since the problem can be decomposed to construct a feasible

schedule for each individual resident separately, in addition to the significantly reduced

formulation size. Furthermore, we have observed in our computational experiments that

92

if the requirements in the Miscellaneous Rules (i.e., Group 4) are also incorporated, the

corresponding IP model can still be solved in a relatively short time. This is expected

as the coordination between the educational requirements and coverage requirements is

actually the most complicated puzzle we need to solve for constructing our resident block

schedule as discussed previously. Table 4.1 below provides the respective formulation

size and runtime results for these (sub-)problems using a real-world instance. Intuitively,

based on this analysis, we can use a cut generation procedure, where we restore, step

by step, coverage requirement constraints that are violated by the current solution of the

corresponding relaxed sub-problem. However, this approach does not work in practice

because a large number of iterations will be required, while the model will eventually

grow to a comparable size to the original formulation.

Table 4.1: The IP formulation size of the different (sub-)problems of a real-world instance, and the corre-
sponding runtime by CPLEX.

(Sub-)problem Group 1 & 2 Group 1, 2 & 4 Original (All 4 Groups)
#Rows 32,998 2,650,722 2,654,927

#Columns 617,500 1,332,500 1,332,500
Runtime 7 seconds 33 seconds > 1 week

Our idea is to complete the feasible schedule construction through a two-stage decision-

making process, reducing the problems we need to consider at each step to an acceptable

size. During the first stage, we focus on accomplishing the assignments of a small subset of

services, by solving a relaxed sub-problem where only a small number of service coverage

requirements that are relevant to these selected, small subset of services are incorporated.

In our computational experiments, we have found that this relaxed problem can be solved

quickly. Once we get a feasible schedule to this sub-problem, we partially fix the assign-

ments of those selected services through introducing additional constraints to the original

formulation. Then, we try accomplishing the assignments of the remaining services with

the goal of producing a feasible schedule through solving this updated formulation (with

93

all original and these additional constraints) during the second stage. Since a significant

portion of cells in the scheduling table (Figure 4.1) will be filled, we have observed that

this updated formulation during the second stage can also be solved in a relatively short

time. Therefore, this proposed two-stage solution framework is expected to significantly

reduce the runtime for solving our block scheduling problem, assuming the assignment

fixing of those selected services, as the results from the first stage, is acceptable (i.e., will

not result in infeasibility for the second stage).

Mathematically, we can describe our proposed two-stage partial fixing approach via

the formulation below. Here, given the selected, small subset of services L, we divide the

decision variables x into two parts, x := (xp,xq), where xq correspond to the variables that

these selected services L are involved in. Initially, we partition the linear constraints Ax≤ b

accordingly into two groups as well, denoted as A1x ≤ b1 and A2x ≤ b2, respectively.

The second linear subsystem A2x ≤ b2 consists of constraints which enforce the service

coverage requirements that are not related to any of those selected services in L. That is to

say, subsystem A1x ≤ b1 is comprised of all of the remaining constraints, including those

for the other three groups of requirements (except service coverage) in Section 4.3, the

variable bounds (i.e., 0≤ x≤ 1), and the ones for service coverage requirements where at

least one of the selected services L is involved.

Stage 1:

(SG1)

max
x:=(xp,xq)

f (x)

s.t. A1
pxp +A1

qxq ≤ b1

x integer.

Stage 2:

(SG2)

max
y:=(yp,yq)

0

s.t. A1
pyp +A1

qyq ≤ b1 (π1)

A2
pyp +A2

qyq ≤ b2 (π2)

x∗q− yq ≤ 0 (ρ)

y integer.

94

Note that we have introduced an objective function f (x) in the first stage’s model (SG1).

The purpose of doing so is that we want the solver to provide us with a solution that leaves

sufficient room for the assignments of the rest of the services (i.e., those not in L), rather

than giving us an arbitrary feasible solution. Incorporating an objective function is com-

putationally feasible because we should be able to very easily get a feasible solution to

(SG1) as analyzed above, while we will set an acceptable time limit for solving this opti-

mization model, since it’s not necessary to attain its optimality. For the same purpose, we

also introduce a small number of auxiliary constraints, designed based on the unenforced

constraints A2x ≤ b2, to the first stage’s model to reduce the possibility that the second

stage will become infeasible. The details on the design of the objective function f (x) and

these auxiliary constraints are provided in Appendix 4.7.2.

For the formulation (SG2) in stage 2, x∗ := (x∗p,x
∗
q) denotes the solution to the first

stage’s model. Constraints x∗q−yq ≤ 0 ensure that any assignment on the selected services

L, specified by the resulted schedule from the first stage, must be maintained (i.e., if the

value in x∗q is 1, then the corresponding value for the variable in yq must be 1, given all

variables are bounded between 0 and 1 by A1y ≤ b1). On the other hand, if a specific

assignment is not made during the first stage, we do not prohibit this assignment, and

allow it to be made if all other constraints can be satisfied. This is why we call it a partial

fixing approach.

This proposed solution framework is very similar to the well-known two-stage stochas-

tic program, but they differ in the following aspects. First, there is no uncertainty in our

problem. Thus, there is only one possible realization of the second stage. Second, there is

not a structural or temporal difference between the stage one and stage two decisions, but

rather we partition solely for the sake of computational efficiency. Lastly, our goal is not

to find a first stage solution which optimizes the objective function f (x). In fact, f (x) is

95

viewed more as an auxiliary function, and we instead focus on ensuring the feasibility of

the second stage, whose solution specifies the actual schedule we are looking for.

In the case that the second stage formulation (SG2) is infeasible because of an invalid

partial fixing on variables yq (i.e., the assignments specified by x∗q on the selected services

L is infeasible), we require some mechanism to generate cuts to prune off the current

unacceptable first stage decisions (i.e., prune off x∗) and then start over, similar to how we

generate Bender’s cuts to solve the traditional two-stage stochastic program. The easiest

way to prune the current fixing on variables yq is adding the corresponding no-good cut

(Balas and Jeroslow, 1972) to the first stage’s model. More specifically, given x∗q from the

final solution to the first stage, we add the following constraint to its formulation (SG1):

(No-good) ∑
i: (x∗q)i=1

(xq)i ≤ ∑
i
(x∗q)i−1.

However, from our experiments, this no-good cut cannot provide a consistent com-

putational performance. That is, for some instances, applying this approach can help to

generate a feasible solution to our block scheduling problem in a very short time, but for

some other instances, it fails to find a solution within the time limit. This unstable perfor-

mance is expected, given that a very large number of assignment symmetries may exist as

analyzed in Section 4.4.2. In other words, although the current unacceptable assignments

on those selected services in L can be avoided by (No-good), similar assignments under

permutation of locally interchangeable residents and/or blocks can lead to virtually the

same infeasibility during the second stage, which is not prohibited by this cut. Therefore,

some more robust cut generation mechanisms are required.

To effectively prune off the current solution and similar ones, we alternatively propose

two cut generation mechanisms based on two different cases, depending upon whether the

LP-relaxation of the second stage’s formulation (SG2) is infeasible too or not. For both

cases, we will identify a small number of service coverage constraints that are not enforced

96

in the first stage model (i.e., those among A2x ≤ b2), and that “cause” the current infeasi-

bility during the second stage, and bring them back to the first stage. Then, we accordingly

update the partitioning of the constraints in the original linear system, i.e., we remove the

identified constraints from subsystem A2x ≤ b2 and add them to the subsystem A1x ≤ b1.

Then, we repeat the solution process. Note that the objective function and the auxiliary

constraints in (SG1) will not be updated during the progress of this iterative process in our

current design. We leave this potential enhancement for future research. Also note that the

partitioning of decision variables, x := (xp,xq), will remain unchanged during this iterative

process, as the services whose assignments will be partially fixed during the second stage

are always just those in L. For example, suppose service AMB is the only selected service

in L (i.e., L = {AMB}). Thus, the coverage constraints in subsystem A1x ≤ b1 at the be-

ginning should only be those where service AMB is involved. Then, as we iterate through

the first and second stages based on our proposed cut generation mechanisms, this subsys-

tem A1x≤ b1 evolves, and additional coverage constraints which do not explicitly impose

restrictions on AMB but on some other services, say, GM and HOS, will be incorporated

into it and enforced during the first stage. However, services GM and HOS will not be

added to set L, and only the assignments on service AMB will be partially fixed during the

second stage each time. The detailed design and analysis of our proposed cut generation

mechanisms for the described two cases, together forming an alternative to the no-good

cut approach, are respectively presented in the following two sub-sections (Section 4.4.3

Case 1 and 4.4.3 Case 2).

Figure 4.2 below outlines the whole solution framework we propose for identifying a

feasible solution to our resident block scheduling problem.

97

Figure 4.2: A bird’s-eye view of the proposed solution framework.

Cut Generation Case 1 — Infeasible LP-relaxation

We first consider the scenario that not only is the second stage formulation (SG2) infeasible

(given the first stage solution x∗), but also so is its LP-relaxation, which is provided in

(R-SG2). Let π1,π2 and ρ be the dual variables corresponding to the first and second

group of constraints and the partial fixing constraints, respectively. Then, we have the dual

formulation of the second stage’s LP-relaxation in (D-SG2).

(R-SG2)

max
y:=(yp,yq)

0

s.t. (π1) A1
pyp +A1

qyq ≤ b1

(π2) A2
pyp +A2

qyq ≤ b2

(ρ) x∗q− yq ≤ 0.

(D-SG2)

min
(π1,π2,ρ)

π1b1 +π2b2−ρx∗q

s.t. π1A1
p +π2A2

p = 0

π1A1
q +π2A2

q−ρ = 0

π1,π2,ρ ≥ 0.

Note that 0 is a feasible solution to this dual problem (D-SG2). Thus, it is unbounded

when the LP-relaxation of the second stage problem (R-SG2) is infeasible (i.e., this Case

1). Suppose we apply the dual simplex algorithm to solve the LP-relaxation (R-SG2),

and suppose (π∗1 ,π
∗
2 ,ρ

∗) is the dual extreme ray provided by the solver which proves

98

its infeasibility. In other words, (π∗1 ,π
∗
2 ,ρ

∗) is a feasible solution to the dual (D-SG2),

and satisfies π∗1 b1 + π∗2 b2− ρ∗x∗q < 0. Denote the constraints among the second group

in (R-SG2) whose corresponding dual values in π∗2 are positive as A2+
p yp +A2+

q yq ≤ b2+.

Then, we add constraints A2+
p xp+A2+

q xq ≤ b2+ to the first stage, and update the constraint

partitioning of the original linear system Ax ≤ b through {A1x ≤ b1} ← {A1x ≤ b1}+

{A2+x≤ b2+}, while {A2x≤ b2}← {A2x≤ b2}\{A2+x≤ b2+}.

By the theorem provided by Gleeson and Ryan (1990), we know that the support of

the dual extreme ray (π∗1 ,π
∗
2 ,ρ

∗) specifies an irreducible infeasible subsystem (IIS) for the

primal formulation (R-SG2). Therefore, π∗2 6= 0, so that the identified set of constraints

{A2+x≤ b2+} is non-empty, because otherwise (x∗p,x
∗
q) should be an infeasible solution to

the previous first stage problem. On the other hand, by the described cut generation method

above, it can be seen that the previous solution x∗q can be prohibited from the current,

updated first stage. Furthermore, the following theorem shows that this cut generation

approach performs better than the traditional Bender’s approach which is widely applied

to two-stage stochastic programming.

Theorem 4.1. When the LP infeasibility arises during the second stage, the cuts A2+
p xp +

A2+
q xq ≤ b2+ generated by our approach form a tighter first stage formulation than the

Bender’s feasibility cut π∗1 b1 +π∗2 b2−ρ∗xq ≥ 0 does.

Proof. Given our cuts A2+
p xp +A2+

q xq ≤ b2+, we have π
∗+
2
(
A2+

p xp +A2+
q xq

)
≤ π

∗+
2 ·b2+,

where π
∗+
2 are the corresponding positive entries in π∗2 . Since the corresponding dual

extreme ray, which proves the infeasibility, satisfies (π∗1 ,π
∗
2 ,ρ

∗)≥ 0,

(4.1) π
∗
2
(
A2

pxp +A2
qxq
)
= π

∗+
2
(
A2+

p xp +A2+
q xq

)
≤ π

∗+
2 ·b

2+ = π
∗
2 ·b2,

as the other coordinates in π∗2 , except those specified by π
∗+
2 , are all valued 0.

In addition, since (π∗1 ,π
∗
2 ,ρ

∗) is an extreme ray to (D-SG2), we know that π∗1 A1
p+π∗2 A2

p =

99

0, and therefore for any xp, we have

(4.2) π
∗
1 A1

pxp +π
∗
2 A2

pxp = 0.

Given the constraints in the first stage (SG1), i.e., A1
pxp +A1

qxq ≤ b1, we have that

(4.3) π
∗
1 (A

1
pxp +A1

qxq) ≤ π
∗
1 ·b1

becasue π∗1 ≥ 0 as mentioned above.

By (4.1) − (4.2) + (4.3), we can derive

π
∗
1 A1

qxq +π
∗
2 A2

qxq ≤ π
∗
1 b1 +π

∗
2 b2,

which is just the Bender’s feasibility cut π∗1 b1+π∗2 b2−ρ∗xq ≥ 0, since ρ∗ = π∗1 A1
q+π∗2 A2

q

according to (D-SG2).

Therefore, we conclude that the cuts generated by our approach, when introduced to the

first stage, help form a tighter formulation than the conventional Bender’s feasibility cut

does.

Remark 1. In general, for the two-stage stochastic program, the IIS specified by a dual

extreme ray can imply the corresponding Bender’s feasibility cut (which can be proved

by a similar logic as above). However, if we are directly introducing those IIS cuts to

the first stage, then additional decision variables (i.e., the second stage variables, y) will

be explicitly formulated in the first stage as well, which is typically not computationally

preferable or even affordable. In contrast, our approach will only focus on a small portion

of the dual values, and then accordingly add just a small subset of the identified IIS to

the first stage, while transforming everything into the original variables. Therefore, only

a small number of cuts will be introduced to the first stage, and all of them are solely

restricted on the original first stage decision variables. Moreover, according to the above

theorem and proof, the cuts added to the first stage by our approach are still stronger than

the Bender’s feasibility cut.

100

Cut Generation Case 2 — Feasible LP-relaxation

We now consider the case where (R-SG2) is feasible (As we discuss in Appendix 4.7.3, this

is theoretically possible, but a rare occurrence in practice). In this case, we can no longer

leverage the duality theorem like the previous one to identify a (irreducible) subset of the

unenforced constraints which “cause” the infeasibility of the second stage. Instead, we

have to potentially enumerate all of those unenforced constraints (i.e., those in A2x ≤ b2)

in order to achieve a similar result.

Besides effectively pruning off the current unacceptable partial fixing, there are two as-

pects we need to take care of simultaneously. On the one hand, the number of the identified

constraints must be kept small, because otherwise the first stage problem will become too

hard to solve. On the other hand, the identification needs to be completed in a reasonable

time, and should never congest the proposed two-stage iterative process. Simply applying

the built-in conflict analysis tool of a commercial solver like CPLEX or a well-known fil-

ter algorithm, e.g., the additive or deletion method (Chinneck and Dravnieks, 1991; Tamiz

et al., 1996), to identify an IIS to our infeasible second stage problem can be very time

consuming. This is because there are typically a few thousand unenforced constraints

that will potentially be enumerated one by one during the identification process, while,

for each iteration, a large-scale IP needs to be solved. Thus, in order to address these

two issues and balance the size and the time of the identification, we propose a new cut

generation (identification) approach based on a customized filter procedure, similar to the

additive/deletion hybrid method along with the grouping strategy by Guieu and Chinneck

(1999), to efficiently deal with this infeasibility case, which is detailed as follows.

We first perform an additive procedure to the subsystem of the second stage model

(SG2), where the constraints that are not enforced in the first stage, A2y ≤ b2, are tenta-

tively removed (i.e., the following F with K = Rn). However, rather than enumerating

101

each unenforced constraint individually, we each time consider restoring a group of those

unenforced constraints, which are related to a specific service, back to this subsystem.

More specifically, we loop through each service (more precisely, each of those not in L),

and add the corresponding unenforced constraints of it (denoted as D), i.e., imposing some

coverage requirement on this specific service, to polyhedron K (initialized as Rn). We re-

peat updating/tightening K through K ← K
⋂

D as we go through all services, until the

region specified by the following formulation F becomes empty.

F := {y ∈ K | A1
pyp +A1

qyq ≤ b1, x∗q− yq ≤ 0, y integer}.

If the number of constraints in K is small enough (e.g., less than 5% of the total number

of unenforced constraints), then we bring them all back to the first stage, and accordingly

update the partitioning of the original linear system Ax≤ b. Otherwise, we further apply a

conventional IIS filter algorithm like the deletion approach (or a solver’s built-in conflict

analysis tool) to K, to further reduce it to an irreducible subset, which still maintains F to

be empty. Then, as before, we add this irreducible subset of constraints to the first stage,

and update the partition accordingly. Algorithm 5 below presents this filter procedure,

using the deletion approach, in more detail (line 10 – 15), while also providing the pseudo-

code of the whole cut generation approach we propose here for handling this case (i.e.,

(R-SG2) is feasible).

Note that only a small number of services will typically be looped through before F

becomes empty. This means that we need to solve a very small number of IPs during

this step, while the resulting K will be much smaller than the original, entire set of unen-

forced constraints, for the application of the follow-up filter procedure (i.e., the deletion

procedure), if necessary. Therefore, the whole process can be completed in a much shorter

time than directly using a conventional approach or the built-in tool of a solver, although

the constraints we bring back to the first stage are no longer always irreducible. In other

102

Algorithm 4
1: Initialize K = Rn;
2: for each service s not in L do
3: Let Ds be (the polyhedron defined by) the set of unenforced constraints among A2x≤ b2, which

each corresponds to a specific coverage requirement imposed on service s;

4: K← K
⋂

Ds;
5: if region F := {y ∈ K | A1

pyp +A1
qyq ≤ b1, x∗q− yq ≤ 0, y integer} is empty then

6: break;

7: if the number of constraints in K is greater than 5% of the current unenforced ones then
8: for each constraint d ∈ K do
9: K← K\{d}, i.e., remove constraint d from polyhedron K

10: if region F 6= /0 then
11: K← K

⋂
{d}, i.e., bring constriant d back to K

12: Incorporate the constraints in K to the first stage formulation (SG1), and accordingly update the parti-
tioning of the original linear system:

{A1x≤ b1}← {A1x≤ b1}+K {A2x≤ b2}← {A2x≤ b2}\K

words, our proposed approach also trades off between the size of the generated cuts and

the generation time, which can overall provide a more desirable performance.

Remark 2. In practice, we may apply this proposed service-level additive procedure (line

2 – 8 in Algorithm 5) to Case 1 as well, if the corresponding LP-relaxation (R-SG2) is too

hard to solve (i.e., prove infeasibility). More specifically, we terminate the dual simplex

algorithm once a specific time limit is reached, and apply our proposed additive procedure

to obtain a much smaller infeasible subsystem (i.e., region F when the for-loop in line 2 is

broken). Then, we start things over, and apply the dual simplex algorithm to solve the LP-

relaxation of this identified subsystem instead. We follow the steps described in Section

4.4.3 to generate cuts if this relaxation turns out to be infeasible too. Otherwise, we resume

the rest of the steps in Algorithm 5, and may further reduce the identified constraints to an

irreducible subset through a filter procedure.

103

4.4.4 A Network-based Model for Service Selection

A key decision required by our proposed two-stage partial fixing approach is to select the

services (i.e., the set L) whose assignments are to be partially locked in after the first phase.

That is, for these services we will lock in all the decisions that ensure their corresponding

coverage constraints are satisfied and fix these as inputs to the second stage. The selection

of these services L will significantly impact the computational performance of the whole

two-stage solution framework, because it is directly related to the possibility that we will

encounter infeasibility during the second phase. On the one hand, if a service has limited

flexibility (e.g., tightly-bounded coverage constraints), then there will be little room to

make additional assignments for it in other unlocked cells in the scheduling table (Figure

4.1) in the second stage, which might make it difficult to satisfy the coverage requirements

of the remaining, non-selected services. On the other hand, flexibility is also frequently

limited by the interaction between groups of services that collectively are very restrictive

with respect to a set of potential assignments, and thus should be collectively included in

the set L.

More specifically, our service selection method is designed mainly based on the fol-

lowing two observations:

• First, we observe that it would be preferable to select a service which has wide bounds

on its coverage requirements (i.e., a big difference between the corresponding upper

bound and lower bound on the number of residents needed for the specified block(s)).

The reason is that, typically, as few assignments on this service (if selected in set L)

as possible will be made in the first stage because of the design of the objective func-

tion. Therefore, after the assignments specified by the first stage’s solution have been

locked in, it’s very likely that there is sufficient room left for us to make additional

assignments on this service, to ensure the remaining coverage constraints for those

104

non-selected services can be satisfied during the second stage.

For example, suppose that the general emergency room service (ER) requires exactly

two residents during each block, while the pediatric emergency room service (PER)

requires 1 or 2 resident during each block. Suppose also that there are three residents

who have to be assigned to either ER or PER in a given block, according to their

respective educational requirements. In this case, suppose that service ER is included

in set L, i.e., selected to be partially fixed (assuming PER is not). We may find that

in the first stage none of these three residents was assigned to service ER during that

block (i.e., two other residents will be assigned to ER to ensure the corresponding

coverage requirement is satisfied), since assigning all of them to service PER could

be feasible because service PER is not included in L. However, in doing so, this

will violate the coverage constraints for service PER by assigning too many residents

during the second stage. Because service ER has limited flexibility (i.e., the required

2 slots of coverage has been locked in for those two other residents), we cannot move

any of those three residents from service PER to service ER in the second stage and

therefore the second stage will be infeasible.

• We also observe that if two services compete heavily for a shared set of resources

(i.e., a specific group of residents over a specific set of time periods), then it is likely

for infeasibility to arise during the second stage if only one of them is included in

set L. In other words, it would be preferable to bind two specific services when

forming set L, if there are coverage requirements on them collectively specifying a

relatively high lower bound on the number of required assignments (i.e., the number

of residents assigned during the specified time periods).

For example, assume there are, in total 10, residents in a specific cohort. Suppose the

105

general medicine service (GM) requires at least 5 but no more than 7 of them to pro-

vide coverage during the second half of October, while the generalist service (Gen-

eral) also needs at least three residents from this cohort during this block. Suppose

also that three specific residents in this cohort, denoted as Resident-1, Resident-2 and

Resident-3, who are all required to do 2 blocks of service in either AMB, VW or GM

during the whole October, according to their educational requirements. If we only

select service GM to form set L without service General, then it is possible that dur-

ing the first stage, we decide to have Resident-1 to perform service AMB, Resident-2

and Resident-3 to do service VW during the whole October, while selecting some

other 5 residents from the cohort to provide coverage to service GM. Since these 5

assignments on service GM will be locked in the second stage, while Reisident-1,

Resident-2 and Resident-3 cannot provided coverage for service General during the

second half of October, then we will be short of residents for covering service Gen-

eral when its coverage requirement is factored in, and thus the second stage will be

infeasible.

To incorporate these two aspects into the service selection, our idea is to use an undi-

rected network to link different services, where each node (i.e., service) carries a flexibility

measurement value (for the first bullet above) while a weight value is designed and as-

signed to each edge to represent how intensively the corresponding two services compete

for assignments (for the second bullet above). More specifically, the smaller the node flex-

ibility measurement value is, the more likely that selecting the corresponding service will

cause infeasibility during the second stage; the greater the weight for an edge, the more

urgent it would be to bind the selection of the corresponding two services. Then, for each

service (node), we normalize the weights of its associated edges into “probability” values,

which each can be interpreted as how “likely” we will encounter infeasibility during the

106

second stage if we select only this service without selecting the other one specified by the

corresponding edge as well. Based on this design, in addition to the normalized flexibility

measurement values across all services, we derive a pickiness score for each service to re-

flect the necessity of selecting this specific service, in order to avoid infeasibility, through

solving a system of linear equations. Based on these scores, we lastly select a handful of

services among the top to constitute set L. A more detailed description of each of these

steps is provided as follows.

We construct an undirected graph G(S,E), where the set of nodes in the network is

the set of services S. Each node (service) s has a value hs, which reflects the flexibility

of making additional assignments on service s if we choose to partially fix it based on

first stage’s solution. Each edge e := (i, j) ∈ E, connecting services (nodes) i and j, is

associated with a weight we to indicate how intensively these two services compete for

the constrained resource. The complete description and logic of the calculation of values

hs and weights we are provided below. Figure 4.3 provides a simple visualization of this

proposed network.

Let Cov be the set of service coverage requirements (i.e., Group 3 in Section 4.3). For

each c ∈ Cov, denote its involved set of residents/services/time periods, respectively, as

cR/cS/cT , while its lower/upper bound value as clb/cub. Then, for every node (service)

s ∈ S, we choose to estimate its flexibility hs, defined as:

(flx) hs = ∑
t

 min
c∈Cov:

cS={s}, cT={t}

cub− clb +0.1
|cR|− clb

 ∀s ∈ S.

A higher value of hs represents higher flexibility of the corresponding service in terms of

the bounds of its coverage requirements, which indicates that service s is a good choice to

be included in the selection L for the first stage.

To calculate hs, we loop through each block t in the planning horizon. For each block,

107

Figure 4.3: A visualization of the proposed network for the service selection. The size of each node reflects
the value of its pickiness score k obtained by solving the proposed linear equations system (PR).

we find the tightest coverage requirement c which imposes restriction solely on service s

during this specific block (i.e., cS = {s} and cT = {t}), and add the ratio between the gap

of its lower bound and upper bound (i.e., cub− clb) and the excessive number of involved

residents, compared to its minimum required headcount (i.e., |cR− clb|), to the flexibility

measurement value hs. Note that it is the most common case for practical instances that a

coverage requirement is simply on a single service while on a single block.

Note that the value of hs increases when all constraints on service s have significant

range between the upper and lower bound, i.e., when there is the option to assign it to

additional residents in the second stage if needed. Additionally, we choose to divide the

range by the excessive number of residents, instead of simply using the range value for

the calculation of hs, in order to differentiate coverage requirements that have the same

difference between the respective lower bound and upper bound. More specifically, if the

opportunity to be additionally assigned to service s in the second stage needs to be shared

by a larger group of people, then it indeed offers less flexibility. This is because the larger

108

the number of surplus residents, the more likely the assignments on service s that turn out

to be additionally required in the second stage will be a large number, and thus the more

likely we will run out of the buffer offered by the range of the coverage requirement in

the second stage. From another angle, if a coverage constraint has very narrow bounds

(e.g., cub = clb), then the larger the specified group of residents means the more people

are subject to this restriction (in other words, the fewer people, out of this group, are free

from the control of this restriction, who can be assigned to service s arbitrarily in the

second stage if needed). Lastly, the 0.1 in the numerator of (flx) is added to ensure that

when multiple requirements each respectively have a zero gap (i.e., cub = clb), i.e., offer

no flexibility on making additional assignments during the second stage on service s at

some block t, then the one which has more surplus residents over the required minimum

headcount will be considered to have tighter coverage requirement for the calculation of

hs at t, as its tightness will impact a larger number of residents.

For each edge e ∈ E connecting service i and j, we define its weight by the following

expression:

(wgt) we := ∑
c1,c2∈Cov: c1

S={i},
c2

S={ j}, c1
T=c2

T ,

c1
R⊆c2

R or c2
R⊆c1

R

c1
lb + c2

lb

|c1
T | ·max{|c1

R|, |c2
R|}

+ ∑
c∈Cov:

i∈cS, j∈cS

clb

|cR| · |cT |
· 2
|cS|

.

A higher value of we represents higher intensity of the competition between the corre-

sponding two services for the shared sets of resident resources, which indicates that the

selection of the two services that edge e connects should be bounden when forming set L

for the first stage.

The idea underlying this calculation design is that, if services i and j need to coordi-

nate their assignments on some set of cells in the scheduling table (Figure 4.1), then the

corresponding weight we will increase. The more challenging this coordination is (i.e., the

more intensive the competition between them for the involved residents across the speci-

109

fied blocks there is), the larger we will grow. More specifically, for the first term in (wgt),

we consider the case that services i and j compete with each other through two separate

coverage requirements c1 and c2, where one is imposed solely on service i (i.e., c1
S = {i})

while the other one is solely on service j (i.e., c2
S = { j}). If the time period sets specified

by these two coverage requirements are exactly the same (i.e., c1
T = c2

T), and if there exists

an inclusive relationship between their resident sets (i.e., c1
R ⊆ c2

R or c2
R ⊆ c1

R), then we

know that services i and j will compete across, in total, |c1
T | ·max{|c1

R|, |c2
R|} cells for

at least c1
lb + c2

lb assignments. Therefore, we add the corresponding ratio (which can be

interpreted as the minimum amount of contribution required by each involved cell for the

satisfaction of these two requirements, if evenly distributed) to the weight of edge (i, j) to

reflect how tight the room is to satisfy the assignments of these two services. The same

logic is applied to the second term in (wgt). The only difference is that in this case we

focus on each single coverage requirement c which imposes restrictions on multiple ser-

vices together, where services i and j are included simultaneously (i.e., i, j ∈ cS). Again,

the value of this term represents the evenly-distributed contribution required from each in-

volved resident during each involved block to the assignments on these two services i and

j by the coverage requirement c. Since this per-cell contribution also reflects the intensity

of the competition among services i and j within a specific set of cells in the scheduling

table, we add it to weight we as well.

Given this graph G with flexibility measurement values h ∈ R|V | and weights W ∈

R|V |×|V | defined above, we propose to use the following linear system to formulate the

pickiness scores k ∈ R|V |, which can be viewed as a variant of the PageRank model (Brin

and Page, 1998).

(PR) k = θW̄k+(1−θ)h̄.

Here, W̄ := {w̄i, j} is a stochastic matrix, which is derived by normalizing matrix W

110

by column (i.e., ∑i w̄i, j = 1 for every j). w̄i, j represents the relative necessity of selecting

service i, in order to avoid infeasibility during the second stage, if service j has already

been selected. Similarly, vector h̄ is the normalization of h, which reflects the relative

likelihood that the second stage will turn out to be feasible by considering the flexibility of

each service independently. Parameter θ , a scalar in (0,1), specifies how the competitive

relationships among different services and the flexibility offered by each individual service

are balanced in calculating the pickiness scores k.

By this design, on the one hand, the larger the hs is for a specific service s (which

means the more flexibility there is for making additional assignments on s during the sec-

ond stage), the larger h̄s will be after normalization, and therefore the larger the resulting

pickiness score ks could be, which means the more likely service s will be selected, as

desired. On the other hand, a large value of we for a specific arc e := (i, j) (which means

services i and j compete heavily with each other) is more likely to result in a large value

of w̄i, j and w̄ j,i. Therefore, if eventually service i carries a big pickiness score ki, then

service j is likely to take a big pickiness score k j as well (and vice versa), which implies a

binding relationship between these two services with respect to the selection for set L, as

desired. Moreover, this design implicitly ensures that service s which has very low demand

on residents across all blocks (i.e., small lower bound values for all involved coverage re-

quirements) will get a small pickiness score ks because w̄s,i for all i ∈ S should be very

small, as service s then barely competes with any other service for any shared resources.

This implication is also desired because we want to avoid selecting a service which cannot

result in a sufficient number of assignments locked in, in order to ensure the problem size

of the resulting second stage will be significantly reduced. In summary, by the design of

the flexibility measurement values h, the weights W , and the linear equations system (PR),

the two aspects mentioned at the beginning of this sub-section are incorporated simulta-

111

neously, which is thus expected to help us determine a high-quality service selection for

initiating our proposed two-stage partial fixing approach.

By Perron–Frobenius theorem, we know that matrix I− θW̄ is non-singular for arbi-

trary 0 < θ < 1 (assuming that the proposed network graph G(S,E) as shown in Figure

4.3 is strongly connected with strictly-positive-weight edges; this assumption should gen-

erally hold for any real-world instance, given the way the weights are derived, i.e., (wgt),

and the structure of the coverage requirements on all of the services in practice). There-

fore, according to (PR), our pickiness scores k = (1− θ) · (I− θW̄)−1h̄. In practice, we

use a power iteration method as in Arasu et al. (2002) to instead approximate k by conver-

gence (a copy of the pseudo-code is provided in Appendix 4.7.4 for reference), which is

terminated when the norm of the difference between two subsequent iterations is within a

specific small threshold. Once k is obtained, we form set L for our proposed two-stage par-

tial fixing solution framework by selecting a handful of services with the highest pickiness

scores indicated by k.

Note that the linear equations system (PR) we propose here is not the only possible way

to help us determine set L to achieve a desirable performance of the two-stage framework.

For example, selecting services simply based on the cumulative weights across all edges

for each node in the network may also be sufficient to ensure an adequate computational

performance. For the same reason, there exist many other ways to define the weights W

and the flexibility values h, or even other ways to design the network structure, which

also make sense and are effective. We choose to only propose this specific approach here,

since our primary goal is simply to ensure a good service selection, while there is no need

(or it’s yet impossible) to identify the “best” one. In addition, our experiments (see the

next section) have demonstrated that this proposed approach works sufficiently well for all

instances during the past years at UMMS.

112

4.5 Computational Experiments

We implemented our proposed approach using C++ (Visual Studio 2017) with CPLEX

(version 12.80) on a 64-bit operating system computer with two 2.10GHz processors and

128GB RAM. The CPLEX solver was configured with its default settings for all exper-

iments in this section, unless otherwise specified. To evaluate the effectiveness of our

approach, we applied it to solve three real-world instances from our clinic collaborator

UMMS for constructing its resident annual block schedules for the past three years, and

we present the results in this section.

Table 4.2 summarizes the basic information of each of these three instances, and the

computational performance of directly solving the corresponding base model (IP) by CPLEX.

More specifically, the second, third, and fourth column, respectively, provide the number

of residents, services, and blocks (i.e., time periods) considered in the corresponding in-

stance. The table’s fifth and sixth column present the number of rows and columns (i.e.,

constraints and variables) that the base model (IP), i.e., the integer program formulation,

consists of, while the the seventh and eighth column show the number of constraints in

the base model for enforcing the resident education requirements and the service coverage

requirements (i.e., Groups 2 and 3 in Section 4.3). The last column gives the total runtime

of CPLEX to solve the corresponding base model.

Table 4.2: Basic information of the real-world instances, and the performance of a conventional approach,
i.e., solving the base model (IP) by CPLEX.

Instance #Resdt #Serv #Blk #Row #Coln #Edu #Cov Runtime
Year-2018 249 92 24 1.8M 1.2M 08,693 3,398 32 mins
Year-2019 250 95 26 2.7M 1.3M 26,498 4,205 272 hrs
Year-2020 253 94 26 2.4M 1.3M 23,651 3,972 236 hrs

Note that the numbers in the table suggest that the constraints for education and cov-

erage requirements are only a small fraction of the total number. In fact, this is because

113

many of the constraints in the model are to ensure the structure of the output schedule,

while there are some miscellaneous rules (i.e., Group 4 in Section 4.3) that each require

a series of constraints, rather than just a single constraint, to be defined in the model to

enforce. However, this does not mean the resident education requirements and the service

coverage requirements only comprise a tiny portion of all the explicit rules a valid resident

block schedule should satisfy. We refer readers to Appendix 4.7.1 to see the complete

requirements definition and the full formulation to get a better sense of this point.

We can observe that, even for the middle-size instance Year-2018, where there are much

fewer educational requirements and other miscellaneous rules, the base model will have

a huge size, and it will take a significant amount of time for CPLEX to solve. Further-

more, the runtime for the large-scale instances, Year-2019 and Year-2020, will explode to

be more than 1 week, which is unacceptable for practical implementation. These results

require us to develop new approaches to overcome the computational issue and more ef-

ficiently complete the resident schedule construction, such as the one we’ve presented in

the previous sections.

We present the results of the experiments on applying our approach to the three in-

stances, respectively, in Table 4.3, 4.4, and 4.5 below. For each experiment, we first con-

struct and solve the network-based model proposed in Section 4.4.4, where we set balance

parameter θ = 0.85 in formulation (PR), and at the end select six services that have the

hightest pickiness score according to the converged k values. Please note that based on

our experiments, the eventual service selection was shown to not be sensitive to the value

of θ (by varying it from 0.8 to 0.95). Once this process is done, we initiate the two-stage

partial fixing approach described in Section 4.4.3 with the selected services to identify a

feasible block schedule to the corresponding instance. Here, we set the time limit to be 1

hour and the stopping optimality gap to be 5% for solving the first stage model (SG1) for

114

instance Year-2019 and Year-2020. This setting ensures we provide a sufficient amount

of time to the solver to optimize the provided objective function for finding a high-quality

partial fixing on the selected services, but prevent it from spending an excessive amount

of time on it and ruining the overall performance. We decrease these two parameters to

5 minutes and 1%, respectively, for instance Year-2018, because we know that it is much

smaller and easier to solve, and are confident that a near-optimal solution for its first stage

formulation can be obtained within a short time.

Table 4.3: Results of applying the proposed two-stage partial fixing approach to instance Year-2018.

TotTime #Itr #ICstr #FCstr
Iteration Details

#Assign Additive Dual Filter SecTime #RCstr

6 mins 2 435 444
1,488 No Yes No 28 secs 9
1,488 - - - 41 secs -

Table 4.4: Results of applying the proposed two-stage partial fixing approach to instance Year-2019.

TotTime #Itr #ICstr #FCstr
Iteration Details

#Assign Additive Dual Filter SecTime #RCstr

1 hr 2 562 588
1,738 No Yes No 30 secs 26
1,739 - - - 27 mins -

Table 4.5: Results of applying the proposed two-stage partial fixing approach to instance Year-2020.

TotTime #Itr #ICstr #FCstr
Iteration Details

#Assign Additive Dual Filter SecTime #RCstr

47 hrs 5 566 722

1,687 Yes No Yes 49 mins 52
1,687 Yes No Yes 10 hrs 52
1,695 No Yes No 2 mins 26
1,695 No Yes No 8 mins 26
1,689 - - - 29 hrs -

In these tables, the first column shows the total runtime for the proposed two-stage ap-

proach to solve the corresponding instance, while the second column indicates the number

of iterations it takes. The third and fourth column present the number of coverage con-

straints incorporated in the first stage’s model (SG1) during the first and last iteration re-

spectively, and thus their difference corresponds to the number of coverage constraints re-

115

stored by our cut generation approaches during the entire process. The remaining columns

in the table provide detailed information for each specific iteration. More specifically, the

fifth column shows the total number of assignments that are fixed for the selected services

(i.e., whose corresponding value in the first stage’s solution x∗q is 1) during the second

stage. Column ‘Additive’ indicates whether the proposed service-level additive procedure

in Section 4.4.3 is triggered or not. In other words, according to the practical implementa-

tion mentioned in Remark 2, it will show ‘Yes’ if the dual simplex algorithm fails to con-

clude whether the LP-relaxation of the second stage’s model is feasible within the given

time limit (which we set to be 1 hour here); and show ‘No’ otherwise. Column ‘Dual’

indicates whether the restored constraints are identified based the dual extreme ray by the

dual simplex algorithm as described in Section 4.4.3. Column ‘Filter’ indicates whether

the filter procedure will be applied to further reduce the size of the identified constraint set

(it is ‘Yes’ if and only if dual simplex algorithm fails to specify an IIS, while the resulting

set K by the additive procedure is not small enough). The second-to-last column shows

the solution time for solving the second stage model if it is the last iteration (i.e., a feasible

schedule is then constructed and the entire process terminates). Otherwise, it presents the

total runtime cost by the cut generation approaches to identify the unenforced constraints

for eliminating the current infeasible partial fixing (in this case, the infeasibility of the

second stage’s model can typically be proved in a very short time, so we choose to not

show that in this table due to the space limit). The last column presents the number of

unenforced constraints that have been identified, and are to be restored in the first stage’s

formulation for the next iteration.

By these results, our approach is shown to be able to solve the resident block scheduling

problem in a much shorter time than the conventional approach that applies the mixed

integer program (MIP) techniques directly. Specifically, a feasible solution to Instance

116

Year-2018 and Year-2020 can be identified more than 5 times faster, while the total runtime

is decreased from 272 hours to only 1 hour for solving Instance Year-2019. Moreover, the

effectiveness of our approach is demonstrated by the small number of iterations it takes as

well as the very limited portion of the coverage constraints that need to be incorporated

for producing a feasible schedule.

There are a few critical aspects of our proposed solution framework remaining for eval-

uation. First, fixing the number of selected services to be six may not be a good choice

for all cases. For example, the very long runtime, i.e., 29 hours, for solving the final sec-

ond stage model for Instance Year-2020 as shown in Table 4.5 suggests that more services

would preferably be selected to further alleviate the challenges of this solution process.

Moreover, we need to make sure we do not make the conclusion on the performance of

our approach based on either the best or the worst scenario in terms of the number of ser-

vices selected. Thus, we want to further perform an evaluation by varying this number

for all instances. Second, we want to overall justify whether it is beneficial to build a

complicated network-based model to assist us with the service selection. In addition, the

effectiveness of the proposed cut generation mechanisms as well as the incorporation of

a well-designed objective function in the first stage should be verified. We’ve carried out

experiments to accordingly evaluate each of these aspects, and the results are presented in

the next sub-sections.

4.5.1 Experiments on the Number of Selected Services

We vary the number of the top pickiness score of the services that we select to initiate the

two-stage partial fixing approach for all three instances. The results are provided in the

following Tables 4.6, 4.7, and 4.8. Note that unlike in the previous tables, the detailed

information for each iteration of the two-stage process is not provided here due to the

117

limited space. Instead, the last two columns, ‘#FAssign’ and ‘FSecTime’, respectively,

present the number of assignments fixed for the selected services in the second stage for

the final iteration and the time for solving this final second stage’s formulation to obtain

the feasible schedule.

Table 4.6: Results of applying the proposed approach with varying number of selected services to instance
Year-2018.

#Serv TotTime #Itr #ICstr #FCstr #FAssign FSecTime
3 20 mins 1 289 289 0,758 19 mins
4 06 mins 1 339 339 1,046 04 mins
5 03 mins 1 387 387 1,278 01 mins
6 06 mins 2 435 444 1,488 41 secs
7 19 mins 3 483 498 1,693 23 secs

Table 4.7: Results of applying the proposed approach with varying number of selected services to instance
Year-2019.

#Serv TotTime #Itr #ICstr #FCstr #FAssign FSecTime
4 73 hrs 2 404 0,430 1,252 73 hrs
5 13 hrs 3 484 0,784 1,711 03 hrs
6 01 hrs 2 562 0,588 1,739 27 mins
7 36 hrs 10 608 2,142 2,185 19 mins

Table 4.8: Results of applying the proposed approach with varying number of selected services to instance
Year-2020.

#Serv TotTime #Itr #ICstr #FCstr #FAssign FSecTime
6 47 hrs 5 566 722 1,689 29 hrs
7 05 hrs 3 649 753 1,803 17 mins
8 06 hrs 4 727 831 2,061 14 mins
9 11 hrs 5 783 918 2,215 46 mins

By these experiments, we see that a better overall computational performance can in-

deed be achieved by selecting a different number of services with the top pickiness scores

for different instances. More specifically, we can observe that, for the most part, the trend

is that the more services we select the less time will be spent by solving the final second

stage formulation, but the more iterations may be needed to reach that final step. This

matches the intuition naturally, as the more assignments we fix, the smaller size the sec-

118

ond stage problem can be reduced to, while it is more likely that we enforce part of those

assignments at some wrong spots, which then causes infeasibility for completing the rest

of the puzzles. In other words, the size of the selected services trades off the time spent

on solving the final second stage formulation and the time spent on cut generation for cor-

recting infeasible assignment fixings. As we can observe a V-shape in terms of the total

runtime as we vary the number of selected services, it would be beneficial to be able to

identify the “sweet spot” up front for each specific instance. However, this aspect is cur-

rently not considered in this research, and we plan to explore how to achieve that as future

work. Lastly, we want to point out that although the computational performance varies

significantly depending on the size of the service selection, we can still always largely

reduce the total runtime for solving the resident block scheduling problem compared to

using the traditional MIP techniques, regardless of the number of services we select.

4.5.2 Effectiveness of the Network-Based Model for Service Selection

The objective of the proposed network-based model in Section 4.4.4 is to assist us with a

high-quality service selection (i.e., whose assignments should be partially locked in during

the second stage), so that the proposed two-stage approach can overall achieve an efficient

and robust performance. To evaluate whether this objective can be achieved adequately by

the proposed design, we compare the computational performance of the service selection

based on our network-based model against two other selection methods, using Instance

Year-2019. The results are summarized in Table 4.9 below. Here, for each fixed selection

size (from four to seven), we present the results for the total of three service selection

methods, specified by Column ‘SlctMtd’, in three rows. Row ‘NTW’ stands for the method

of selecting the services with the top pickiness scores k by solving (PR) in the network-

based model we propose; Row ‘TEN’ is a random selection among the ten services who

119

have the greatest pickiness scores by our network-based model; ‘RDM’ corresponds to a

random selection among all services involved in the instance.

Table 4.9: Comparisons on the computational performance achieved by three different service selection
methods.

#Serv SlctMtd TotTime #Itr #ICstr #FCstr #FAssign FSecTime

4
NTW 73 hrs 2 404 0,430 1,252 73 hrs
TEN 50 hrs 2 342 0,461 0,936 44 hrs
RDM > 3 D 3 263 0,524 0,733 -

5
NTW 13 hrs 3 484 0,784 1,711 03 hrs
TEN 15 hrs 1 508 0,508 1,152 15 hrs
RDM > 3 D 6 542 1,295 0,842 -

6
NTW 01 hrs 2 562 0,588 1,739 27 mins
TEN 57 hrs 6 591 1,169 1,730 33 hrs
RDM 63 hrs 8 384 0,834 1,364 39 hrs

7
NTW 36 hrs 10 608 2,142 2,185 19 mins
TEN 28 hrs 11 687 1,823 1,968 25 mins
RDM 52 hrs 2 381 0,382 1,094 51 hrs

We can observe that methods ‘NTW’ and ‘TEN’ can almost provide a comparable

result, except for the case of selecting six services where the ’NTW’ method results in

a much better performance. On the other hand, method ‘RDM’ consistently achieves

the worst result, and there are even a couple of times that it fails to make the two-stage

iterative partial fixing process converge within the time limit, i.e., 3 days. Therefore, we

can conclude that the proposed network-based method is effective and robust for clustering

preferable services for partial fixing, and it can make those services stand out more likely.

4.5.3 Effectiveness of the Cut Generation Mechanisms and the Design
of the First Stage’s Objective Function

Table 4.10 reflects the likelihood that the second stage’s model is feasible based on the

final optimality gap when the solution process of the first-stage problem terminates. More

specifically, the first row in this table displays the frequencies of achieving the correspond-

ing optimality gap, as indicated by the column, when the first stage is solved; the second

120

row shows the number of times among those occurrences that the solution to the first stage

specifies a feasible partial fixing and thus a feasible schedule can be obtained by solving

the subsequent second stage. Please note that the information presented here not only in-

cludes the results from the iterations in the previous experiments that have been shown

above, but also the results of some other preliminary/intermediate experiments, e.g., using

various time limits on the first stage’s solution process, on different random service selec-

tions, and so on (where the majority are on instance Year-2018 because of its smaller size

for testing efficiency).

Table 4.10: The relation between the optimality gap achieved for solving the first stage formulation and the
feasibility status of the subsequent second stage.

OptGap < 5% 5-10% 10-20% 20-50% > 50%
#Occurrence 86 7 3 2 92
#FeasSecStg 62 4 1 2 23

Although a feasible solution to the first stage’s model can frequently be obtained within

a short time, it is likely (1− 23/92 = 75%) the subsequent second stage will be infeasi-

ble according to this table, if that first stage’s solution does not achieve a good objective

value, while we cannot further improve it within the rest of the time limit. However, if

we are lucky that that arbitrary solution is near optimal, or if we successfully reduce the

optimality gap to a small value, then we are almost 3 times more likely to get a feasible

solution in the second stage. Moreover, this table also shows that for the majority of the

cases we test, the corresponding iterative two-stage process has been terminated by a first

stage’s solution which is close to optimal. All of these demonstrate that the design of our

objective function in the first stage’s formulation is effective to reduce the likelihood that

we encounter infeasibility when solving the second stage.

Next, we further compare the performance of our proposed approach (denoted as ‘PPS’)

against its two variations with a different configuration, where one implements the no-good

121

cut (No-good) to prune off the infeasible partial fixing on the selected variables (denoted

as ‘NGC’), instead of the cut generation mechanisms detailed in Section 4.4.3 and 4.4.3,

while the other one does not incorporate any objective function f (x) in the first stage

(denoted as ‘NOF’), and thus will terminate solving it once any feasible solution has been

found. The experiment results on the three real-world instances are presented in Table

4.11, 4.12, and 4.13 respectively. To provide a reference, the computational results of

solving the base model directly using the conventional MIP techniques by CPLEX are in

addition pinned at the top of each of these tables, where the values under Column ‘#ICstr’

and ‘#FCstr’ in the corresponding row ‘MIP’ indicate the total number of the coverage

constraints in the formulation (IP) instead.

Table 4.11: The results of applying the proposed solution approach and its two variations to instance Year-
2018.

#Serv Config TotTime #Itr #ICstr #FCstr #FAssign FSecTime
- MIP 32 mins - 3,398 3,398 - -

3
PPS 20 mins 1 0,289 0,289 0,758 19 mins
NGC 20 mins 1 0,289 0,289 0,758 19 mins
NOF 11 mins 1 0,289 0,289 0,762 11 mins

4
PPS 06 mins 1 0,339 0,339 1,046 04 mins
NGC 06 mins 1 0,339 0,339 1,046 04 mins
NOF 33 mins 1 0,339 0,339 1,047 32 mins

5
PPS 03 mins 1 0,387 0,387 1,278 68 secs
NGC 03 mins 1 0,387 0,387 1,278 69 secs
NOF 02 mins 1 0,387 0,387 1,278 89 secs

6
PPS 06 mins 2 0,435 0,444 1,488 41 secs
NGC 05 mins 2 0,435 0,435 1,488 35 secs
NOF 04 mins 2 0,435 0,445 1,491 37 secs

7
PPS 19 mins 3 0,483 0,498 1,693 23 secs
NGC 60 mins 12 0,483 0,483 1,691 30 secs
NOF 07 mins 3 0,483 0,500 1,702 30 secs

According to these comparisons, using no-good cut (No-good) to eliminate infeasible

assignment fixing on selected services (i.e., ‘NGC’) cannot provide a consistent computa-

tional performance, as expected. Although it can help the two-stage partial fixing approach

122

Table 4.12: The results of applying the proposed solution approach and its two variations to instance Year-
2019.

#Serv Config TotTime #Itr #ICstr #FCstr #FAssign FSecTime
- MIP 272 hrs - 4,205 4,205 - -

4
PPS 073 hrs 2 0,404 0,430 1,252 72 hrs
NGC 012 hrs 29 0,404 0,404 1,252 10 hrs
NOF 042 hrs 7 0,404 1,329 1,441 09 hrs

5
PPS 013 hrs 3 0,484 0,784 1,711 03 hrs
NGC 003 hrs 6 0,484 0,484 1,508 02 hrs
NOF 019 hrs 6 0,484 1,437 1,673 04 hrs

6
PPS 001 hrs 2 0,562 0,588 1,739 27 mins
NGC 001 hrs 2 0,562 0,562 1,739 29 mins
NOF 031 hrs 9 0,562 1,905 1,883 43 mins

7
PPS 036 hrs 10 0,608 2,142 2,185 19 mins
NGC 002 hrs 2 0,608 0,608 2,098 38 mins
NOF 022 hrs 7 0,608 1,874 2,278 27 mins

solve instance Year-2019 universally in a shorter time, it fails to make the process converge

within the given 3-day limit for any selection size considered for instance Year-2020. This

non-robustness prevents this intuitive method from being used in practice, which justifies

the necessity of proposing our cut generation mechanisms.

In addition, we can observe that our proposed approach (i.e., ‘PPS’) results in a com-

parable performance with the variation ‘NOF,’ where the objective function is removed

from the first stage formulation (SG1), and we cannot conclude which one is better in

practice. The fact is that although the design of the objective function has been shown to

be effective previously, there are many iterations where we fail to reduce the optimality

gap significantly and the final gap remains very large. For those iterations, computational

time is “wasted” without providing the desirable benefits of reducing the likelihood of in-

feasibility of the second stage, and therefore, if the solution process is terminated instead

once a feasible solution has been identified, a better computational performance can natu-

rally be achieved as a result. We believe this is the primary reason why in some cases the

proposed approach ‘PPS’ outperforms the no-objective-function variation ‘NOF’, while in

123

Table 4.13: The results of applying the proposed solution approach and its two variations to instance Year-
2020.

#Serv Config TotTime #Itr #ICstr #FCstr #FAssign FSecTime
- MIP 236 hrs - 3,972 3,972 - -

6
PPS 47 hrs 5 0,566 0,722 1,689 29 hrs
NGC > 3 D 71 0,566 0,566 1,689 -
NOF 36 hrs 4 0,566 0,670 1,678 32 hrs

7
PPS 05 hrs 3 0,649 0,753 1,803 17 mins
NGC > 3 D 73 0,649 0,649 1,811 -
NOF 02 hrs 2 0,649 0,701 1,805 38 mins

8
PPS 06 hrs 4 0,727 0,831 2,061 14 mins
NGC > 3 D 77 0,727 0,727 2,061 -
NOF 05 hrs 5 0,727 0,859 2,063 02 hrs

9
PPS 11 hrs 5 0,783 0,918 2,215 46 mins
NGC > 3 D 80 0,783 0,783 2,219 -
NOF 02 hrs 3 0,783 0,839 2,217 34 mins

the other cases ‘NOF’ dominates ‘PPS’. In particular, it explains why the ‘NOF’ performs

consistently better than ‘PPS’ for solving instance Year-2020, since solver logs indicate

that the optimality gaps are never improved after the first feasible solution is found across

all of the experiments on it.

Based on this analysis, we ideally can mix the usage of the designed objective function

with an empty objective in the first stage of the proposed framework, to overall achieve a

shorter total solution time. We may also use them alternatively and vary the time limit set

on the process of the first stage in an adaptive way. We leave this enhancement for future

consideration.

4.6 Conclusion

In this chapter, we consider a resident annual block scheduling for a medical school, where

residents from different programs and levels should be assigned to a set of services in the

hospital during each time period across the academic year. In addition to the huge prob-

lem size, the coordination between residents’ individual educational requirements and the

124

coverage requirements for ensuring appropriate staffing levels in all units, along with a

large number of other side constraints, make this scheduling task extremely complicated.

Conventional approaches including the MIP techniques have been shown to be computa-

tionally insufficient to solve practical instances.

We proposed a two-stage partial fixing framework to address the computational chal-

lenge. During the first stage, we solve a relaxed variation of the original problem by only

incorporating a limited number of coverage requirements. Based on its solution, we par-

tially fix the assignments for a pre-determined set of services, which are selected upfront,

and we then try completing the rest of the pieces in the scheduling puzzle during the sec-

ond stage, to obtain an overall valid resident schedule. We also developed cut generation

mechanisms to prune off unacceptable fixings of the assignments of the selected services

to start over, if a feasible solution is failed to be produced during the second stage. Lastly,

we proposed a network-based model to assist with the selection of services whose assign-

ments should be partially fixed during the proposed two-stage iterative process. Based

on our computational experiments, our proposed approach was demonstrated to be both

efficient and robust for solving practical instances for our clinical collaborator, and was

shown to totally outperform the conventional MIP approach offered by CPLEX.

In terms of future research, we would like to explore additional cut generation ap-

proaches to more efficiently prune off the bad assignment fixing on the selected services

once infeasibility arises, since this part is currently the biggest bottleneck for further re-

ducing the convergence time of the two-stage iterative process. In addition, we plan to

develop an adaptive mechanism for the incorporation of the objective function during the

first stage, and/or a dynamic time limit setting, as mentioned previously, so that the un-

necessary solution time spent at this stage could potentially be saved. Lastly, we would

like to consider and experiment with other service selection approaches for initiating the

125

proposed two-stage partial fixing process, including using a hypergraph representation to

explicitly model the competition intensity among more than two services for the linear

equations system. In particular, we also plan to incorporate the decision on the number of

services to be selected into the selection process. We expect that this way will allow us

to systematically and better balance the trade-off between the total number of iterations

(and the associated cut generation time) of the proposed solution framework and the time

spent on solving the final second stage problem, and overall improve the computational

performance of our approach.

4.7 Appendix

4.7.1 An Integer Program Formulation for the Residency Block Schedul-
ing Problem

In order to precisely define our block scheduling problem, we introduce an additional

concept, called rotation. Basically, a rotation is the combination of a specific service plus

an associated duration, in terms of a number of blocks. It says that a resident assigned to

such a rotation will perform the corresponding service for a consecutive number of blocks,

specified by the associated duration. For example, if a 4-block AMB rotation is scheduled

at the beginning of July, then the assigned resident will do AMB service for 4 consecutive

time periods, from July to August (assuming each block’s length is a half month). By

this definition, our residency scheduling can also be interpreted as assigning the residents

in all programs to a sequence of rotations for the upcoming academic year. This rotation

concept is necessary to define our problem because some rules impose restrictions on the

assignment of rotations rather than on individual services. More details can be found in

the definitions of all of the rules as follows.

126

Notation

Sets & Definitions

R : The set of residents.

S : The set of services.

A : The set of possible rotations.

T : The set of time periods (blocks), indexed as {0,1,2, ...,23 (or 25)}, each of

which corresponds to a half month (or two weeks) in the academic year.

Edu : The set of resident education requirements. Each resident education require-

ment ed ∈ Edu is defined by a resident edr ∈ R, a set of services edS ⊆ S, a set

of time periods edT ⊆ T , a lower bound edlb, and an upper bound edub. It says

that the total number of blocks in the given time period set edT , during which

the resident edr is assigned to services in the given service set edS, should be

greater than or equal to the given lower bound edlb but less than or equal to the

given upper bound edub.

Cov : The set of service coverage requirements. Each service coverage requirement

cv ∈Cov is defined by a set of residents cvR ⊆ R, a set of services cvS ⊆ S, a set

of time periods cvT ⊆ T , a lower bound cvlb, and an upper bound cvub. It says

that the total cumulative number of blocks for which the given set of residents

cvR are assigned to the given set of services cvS during the time periods in the

given set cvT must be greater than or equal to the given lower bound cvlb but

less than or equal to the given upper bound cvub.

127

Par : The set of resident pairing rules. Each pairing rule pr ∈ Par is defined by two

groups of residents prR1, prR2 ⊆ R, two services prs1, prs2 ∈ S, and two blocks

prt1, prt2 ∈ T . It says that the number of residents in the first group prR1 that are

assigned to the given first service prs1 during the given first block prt1 should

be equal to the number of residents in the second group prR2 that are assigned

to the second service prs2 at prt2.

Pre : The set of service pre-assignment requirements. Each service pre-assignment

sa ∈ Pre is defined by a specific resident sar ∈ R, a service sas ∈ S and a time

period sat ∈ T . It says that the given resident sar must be assigned to service

sas during time period sat .

SPh : The set of service prohibition requirements. Each service prohibition sp ∈ SPh

is defined by a specific resident spr ∈ R, a service sps ∈ S and a time period

spt ∈ T . It says that the given resident spr cannot be assigned to service sps

during time period spt .

APh : The set of rotation prohibition requirements. Each rotation prohibition ap ∈

APh is defined by a specific resident apr ∈ R, a rotation apa ∈ A and a time

period apt ∈ T . It says that the given resident apr cannot start a rotation apa

from time period apt .

Spa : The set of spacing rules. Each spacing rule sc ∈ Spa is defined by a resident

scr ∈ R, two rotations sca1,sca2 ∈ A, and a gap value scg in terms of the number

of blocks. It says that, for resident scr, there must be a minimum number of

blocks scg between the end of any rotation sca1 and the start of any rotation sca2

assigned to him/her.

128

Seq : The set of sequencing rules. Each sequencing rule sq ∈ Seq is defined by a

resident sqr ∈ R, a service sqs ∈ S and a group of other services sqS ⊆ S. It

says that, before resident sqr can be assigned to service sqs, he/she must have

already been assigned to at least one of the services in the given service set sqS

previously.

Functions

d(s) : the set of rotations d(s)⊆ A that are associated with service s ∈ S. d(s) 6= /0 for

∀s ∈ S.

l(a) : the length (in terms of the number of blocks) of rotation a ∈ A.

Variables

Xr,s,t : Binary variables for ∀r ∈ R,∀s ∈ S,∀t ∈ T . 1 if resident r will be assigned to

service s during time period t; 0 otherwise.

Yr,a,t : Binary variables for ∀r ∈ R,∀a ∈ A,∀t ∈ T . 1 if resident r will start a rotation a

from the beginning of time period t; 0 otherwise.

Formulation

∑
s∈S

Xr,s,t = 1 ∀r ∈ R, ∀t ∈ T(a1)

Xr,s,t = ∑
a∈d(s)

t

∑
p=max(0, t−l(a)+1)

Yr,a,p ∀r ∈ R, s ∈ S, t ∈ T(a2)

edlb 6 ∑
s∈edS

∑
t∈edT

Xedr,s,t 6 edub ∀ed ∈ Edu(a3)

129

cvlb 6 ∑
r∈cvR

∑
s∈cvS

∑
t∈cvT

Xr,s,t 6 cvub ∀cv ∈Cov(a4)

∑
r∈prR1

Xr,prs1,prt1 = ∑
r∈prR2

Xr,prs2,prt2 ∀pr ∈ Par(a5)

Xsar,sas,sat = 1 ∀sa ∈ Pre(a6)

Xspr,sps,spt = 0 ∀sp ∈ SPh(a7)

Yapr,apa,apt = 0 ∀ap ∈ APh(a8)

Yscr,sca1,t +Yscr,sca2,p ≤ 1 ∀sc ∈ Spa,(a9)

∀t ∈ T : t 6 |T |−1− l(sca1), ∀p ∈ T : t + l(sca1)≤ p≤ scg + t + l(sca1)−1

Xsqr,sqs,t ≤
t−1

∑
p=0

∑
v∈sqS

Xsqr,v,p ∀sq ∈ Seq, ∀t ∈ T.(a10)

Constraints (a1) enforce the basic assignment rules (Group 1 in Section 4.3), i.e., each

resident must be assigned to exactly one service for each block. Constraints (a2) build the

relationship between variables {Xr,s,t} and variables {Yr,a,t}, i.e., connect the assignment

of rotations with the assignment of services. Constraints (a3) and (a4), respectively, ensure

the satisfaction of the resident education requirements and the service coverage require-

ments that are described in Section 4.3 (i.e., Group 2 and 3). Constraints (a5) enforce

the resident pairing rules, while constraints (a6) ensure that all of the pre-assignments

are scheduled properly. Constraints (a7) and (a8) enforce the given service prohibitions

and rotation prohibitions, respectively. Constraints (a9) enforce the spacing rules, while

constraints (a10) ensure all of the sequencing rules are satisfied.

130

4.7.2 The Design of the Objective Function and Auxiliary Constraints
in the First Stage Formulation

The objective function and the auxiliary constraints we propose to incorporate into the

formulation of the first stage (i.e., (SG1)) are described in the following two subsections.

Then, the resulted, complete first stage formulation is sketched at the end.

Note that both the objective function and the auxiliary constraints presented below are

derived based on the initial partitioning of the linear system Ax ≤ b, i.e., prior to the very

first iteration of the proposed two-stage solution process, and will remain unchanged and

simply be applied to all iterations afterwards. In theory, it would be ideal to update them

accordingly as additional coverage constraints will be brought back to the first stage (i.e.,

based on the new partitioning) as the solution process proceeds. Such dynamic updates

should be straightforward given our proposed design below, and we leave this extension

for future exploration.

The Objective Function

We design an objective function f (x) to incorporate into the first stage’s model (SG1), so

that we are fixing the assignments of the selected services L wisely, leaving sufficient room

for the remaining services’ assignments, and achieving more flexibility for satisfying the

rest of coverage constraints that are restored during the second stage.

Note that it’s not necessary to find an optimal solution to this f (x) in the first stage as

discussed previously. The purpose of having an objective function is to guide the solver

to provide us with a high-quality solution, instead of an arbitrary one, if possible, so that

we are less likely to encounter infeasibility during the second stage. In practice, besides

an optimality gap bound, we also set a time limit for solving (SG1) during the first stage,

to avoid spending a large amount of time on further improving the objective value.

131

The objective function f (x) we propose consists of four parts:

(I) Avoid assigning selected services to highly demanded cells. Some (resident, time)

combinations (i.e., the cells in the scheduling table in Figure 4.1) are required by

a significant number of unenforced coverage constraints. If in the solution of the

first stage the selected services are assigned to those cells, then it becomes very hard

to satisfy the corresponding unenforced constraints during the second stage because

those cells will be locked due to the partial fixing. Thus, we’d like to penalize making

such assignments.

We focus on the lower bounds of the unenforced service coverage requirements (de-

note them as Cov ⊆Cov, which just corresponds to a subset of constraints A2x ≤ b2

resulting from the initial partitioning by our proposed two-stage approach in Sec-

tion 4.4.3). More specifically, we loop through each of the unenforced requirements

cv ∈Cov, which explicitly is modeled in the following form as presented by (a4) in

Appendix 4.7.1:

cvlb 6 ∑
r∈cvR

∑
s∈cvS

∑
t∈cvT

Xr,s,t 6 cvub.

We evenly distribute its lower bound cvlb to each involved assignments. That is,

cvlb/(|cvR| · |cvS| · |cvT |) is the contribution required from each involved assignment

Xr,s,t , in order to ensure the lower bound of this requirement cv is satisfied.

Then for each cell (r, t), ∀r ∈ R,∀t ∈ T , in the scheduling table, we calculate the

accumulated contribution O(r,t) that is required from (r, t) across all of the unenforced

coverage requirements:

O(r,t) := ∑
s∈S

max
cv∈Cov:

r∈cvR,s∈cvS,t∈cvT

cvlb

|cvR| · |cvS| · |cvT |
.

In other words, we first figure out the greatest contribution that is required for each

specific assignment Xr,s,t across all unenforced coverage constraints. Then, for each

132

cell (r, t), its accumulated required contribution will be the summation over all ser-

vices of the greatest contribution of the corresponding assignment.

We can see that the larger O(r,t) is, the more likely it is that cell (r, t) must be assigned

to some other services (i.e., other than the ones in L) for satisfying the remaining

unenforced requirements. Thus, we penalize by an amount O(r,t) in the objective

function if we assign one of the selected service in L to resident r at block t.

(II) Prefer assigning selected services in pairs. More specifically, if we assign one

of the selected services to a specific cell (r, t) in the scheduling table (Figure 4.1),

we’d like to also assign a selected service to its counterpart cell (r, t̄), so that the

corresponding “full” month for resident r is taken by some selected service(s). Here,

we group the set of blocks in the academic year in pairs (where each pair corresponds

to a calendar month, if the blocks are half-months), while the counterpart block is

thus defined as the other one in a specific pair (i.e., counterpart of t̄ is either t − 1

or t + 1). In other words, for example, if a specific selected service in L is to be

assigned to Resident-1 during the first half of July, then we prefer having a selected

service also assigned to Resident-1 during the second half of July, to assigning it

to Resident-1 instead during some other block, say, the first half of August. The

reason for this assignment preference is that many services at UMMS are subject to

a specific duration rule, which requires them to be always performed in a 2-block

rotation, while such a rotation should never start from the middle of a month (i.e.,

from the second block in a specific pair). Therefore, assigning the selected services

in L to paired cells will leave more room for completing the remaining assignments

during the second stage, compared to locking two “halves” separately.

Similar to the previous bullet I, for each cell (r, t), we calculate the accumulated

133

contribution, denoted as Ō(r,t), across all duration-restricted services (denoted as S̄⊆

S) on its counterpart (r, t̄):

Ō(r,t) = ∑
s∈S̄

max
cv∈Cov:

r∈cvR,s∈cvS,t̄∈cvT

cvlb

|cvR| · |cvS| · |cvT |
.

We will then penalize an amount of Ō(r,t) in the objective function if we assign one

of the selected services to cell (r, t) but without making a similar assignment to its

counterpart (r, t̄).

(III) Distribute the assignments of the selected services across all residents in a bal-

anced way. We have two hyper-parameters, B and Ores, that for each specific res-

ident, if the number of selected services assigned to him/her during the whole aca-

demic year (in the first stage) exceeds B, then a penalty of Ores will be introduced

into the objective function for each of the excessive assignments.

(IV) Evenly distribute the assignments of the selected services across all time periods

for each cohort (i.e., residents from the same program and at the same PGY

level). Since in practice, the majority of the coverage requirements are specified to

cohorts, and are applied to a specific single time period (i.e., |cvT | = 1), we want

to balance the assignment fixing across all time periods within each cohort as best

as we can, in order to reduce the risk of tightening the space too much to meet the

unenforced constraints.

Therefore, for each cohort ch, let lch and uch be variables respectively specifying the

smallest and the greatest number of residents in the cohort who are assigned to the

selected services, across all time periods. We penalize an amount of Oblk · (uch− lch)

in the objective function, where Oblk is a hyper-parameter from input.

134

Auxiliary Constraints

The auxiliary constraints are designed based on the service coverage requirements imposed

on the non-selected services, i.e., constraints A2x ≤ b2 that are skipped during the initial

first stage, to further restrict the corresponding decision-making so that it is less likely to

result in an invalid assignment fixing and an infeasible second stage.

The auxiliary constraints enforce those skipped service coverage requirements Cov in

an aggregated manner, which thus work as a relaxation of system A2x ≤ b2 (specified by

the very first partitioning) but of a much smaller size. More specifically, for a specific

group of residents RG ⊆ R (in practice, we specify RG to be the residents in a group of

cohorts, i.e., a specific combination of a set of programs and a set of PGY levels), we

derive the following auxiliary constraint to further tighten the first-stage model:

lbRG ≤ ∑
r∈RG

∑
s∈L

Xr,s,t ≤ ubRG ∀t ∈ T.

Here,

lbRG := |RG|− ∑
s∈S\L

min
cv∈Cov: s∈cvS,
RG⊆cvR, t∈cvT

{ubcv} , ubRG := |RG|− ∑
s∈S\L

max
cv∈Cov: cvS={s},
cvR⊆RG, cvT={t}

{lbcv} .

Basically, for each non-selected service s ∈ S\L, the min term in lbRG (the max term in

ubRG , respectively) above provides a theoretical upper bound (lower bound, respectively)

on the number of residents in group RG that can be assigned to service s at block t. More

specifically, it loops through all of the unenforced coverage requirements in Cov whose

corresponding upper bound (lower bound, respectively) is applicable to the assignments of

residents RG to service s at t, and finds the tightest one. Summing over these tightest upper

bounds (lower bounds) then produces a valid upper bound (lower bound) on the number of

residents in RG that can be assigned to non-selected services at t. Consequently, the values

lbRG and ubRG are, respectively, a valid lower bound and upper bound on the number of

135

residents in RG that can be assigned to some selected services at time period t, which just

specify the proposed auxiliary constraint.

For instance, consider a group of 10 residents, and 4 non-selected services (i.e., S\L):

ER, PICU, NICU, and Cards. Suppose there are in total 4 unenforced coverage require-

ments comprising Cov: service ER requires exactly 1 resident from this group at block

t; exactly 2 residents from the group should be assigned to PICU at t or t + 1 cumu-

latively; NICU requires at least 1 but no more than 2 residents at block t, while in to-

tal at most 3 residents from the group can be assigned to either NICU or Cards at t.

Then, according to the above formulation, we have lbRG = 10− (1+ 2+ 2+ 3) = 2, and

ubRG = 10− (1+0+1+0) = 8 for this resident group at block t, as it is clear that at least

2 but no more than 8 residents in the group can be assigned to selected services (i.e., other

than these 4 services) at t.

Note that the auxiliary constraints derived based on the proposed method above are

not guaranteed to be tight, because we only consider each single non-selected service

individually when calculating the bounds lbRG and ubRG . For example, for the described

instance above, a tighter lower bound lbRG = 4 is indeed valid. However, in practice,

since most of the service coverage requirements are imposed on a single service, skipping

the combinations of different non-selected services will not be a big deal for the bound

calculation, and we are still able to derive sufficiently tight and effective constraints.

A sketch of the complete first stage formulation (SG1)

Additional Notation

H : The set of resident cohorts (i.e., program, PGY level combinations).

R(ch) : The set of residents in cohort ch ∈ H. R(ch)⊆ R.

136

Zr,t : Binary variables for ∀r ∈R,∀t ∈ T . 1 if one of the selected services is assigned

to cell (r, t), while it is not the case to its counterpart (r, t̄); 0 otherwise.

Br : Non-negative continuous variables for r ∈ R. The excessive number (i.e., the

amount over B) of assignments of selected services to resident r during the

whole academic year.

Formulation

min ∑
r∈R,t∈T

O(r,t) ·
(

∑
s∈L

Xr,s,t

)
+ ∑

r∈R,t∈T
Ō(r,t) ·Zr,t + ∑

r∈R
Ores ·Br + ∑

ch∈H
Oblk · (uch− lch)

s.t. A1x ≤ b1

(i.e., all constraints in Appendix 4.7.1 except the unenforced coverage ones) +

∑
s∈L

Xr,s,t− ∑
s∈L

Xr,s,t̄ ≤ Zr,t ∀r ∈ R, ∀t ∈ T

∑
s∈L

∑
t∈T

Xr,s,t−B≤ Br ∀r ∈ R

lch ≤ ∑
r∈R(ch)

∑
s∈L

Xr,s,t ≤ uch ∀t ∈ T, ∀ch ∈ H

lbRG ≤ ∑
r∈RG

∑
s∈L

Xr,s,t ≤ ubRG ∀t ∈ T, ∀H ′ ⊆ H, RG :=
⋃

ch∈H ′
R(ch).

4.7.3 An Theoretical Analysis on the Occurrence of Case 2 for the
Infeasibility of the Second Stage

We first summarize some key properties of the formulation we proposed for solving our

problem. Based on them, we show, by construction, that when the second stage (SG2)

is infeasible, Case 2, i.e., its LP-relaxation actually being feasible, is possible. Then, we

provide a brief analysis on why we rarely encounter this case in practice.

Properties of the Formulation

According to the detailed formulation provided in Appendix 4.7.1, the following two prop-

erties hold for our base model, assuming that we write it in the general form as in (IP) for

137

simplicity:

• The feasible region is bounded by the unit hyper-cube, i.e., every feasible solution

x ∈ Rn to (IP) or its relaxation satisfies x ∈ [0,1]n, since the model consists of only

binary variables.

• The coefficient matrix A is a (0,±1) matrix, i.e., every entry in A is either -1, 0 or 1,

while the right hand side vector b is integral.

These two properties also hold for both the first stage formulation (SG1) and the sec-

ond stage formulation (SG2). In particular, they are valid for the following intermediate

formulation as well, where x∗ := (x∗p,x
∗
q) is denoted to be the solution to the first stage

(SG1) as previous:

(Intm)

max
y:=(yp,yq)

0

s.t. A1
pyp +A1

qyq ≤ b1

x∗q− yq ≤ 0

y integer.

Note that although we are considering the scenario that the second stage (SG2) is in-

feasible, this intermediate formulation (Intm) is indeed feasible, since y = x∗ is clearly a

valid solution.

Possibility in Theory

The following lemma and theorem show that when the second stage model (SG2) turns

out to be infeasible due to an invalid assignment fixing, its LP-relaxation can still in theory

be feasible. In other words, after incorporating the linear constraints A2
pyp +A2

qyq ≤ b2

(which satisfies the second property above), the polyhedron of the LP-relaxation of the

138

above intermediate formulation (Intm) can be nonempty, while all of the integer points it

contains will be pruned off.

Lemma 4.2. Let P be the polyhedron of the LP-relaxation of the intermediate model

(Intm). Suppose x∗ = (x∗1,x
∗
2, . . . ,x

∗
n)
> is the solution to the first stage model (SG1).

Without loss of generality, we assume the first k coordinates of x∗ are 1s, while the rest

are 0s. That is, x∗1 = x∗2 = · · · = x∗k = 1, and x∗k+1 = · · · = x∗n = 0. Then, constraint

c := {∑k
i=1 yi − ∑

n
i=k+1 yi ≤ k−1} cuts off integer solution y = x∗ to (Intm), but does not

cut off any other vertex of P.

Proof. Clearly, solution y = x∗ violates constraint c, and therefore, it is cut off. Next, we

only need to show that no any other vertex of P is cut off by c.

We prove this by contradiction. Suppose there is another vertex of P, denoted as ȳ, violat-

ing constraint c as well. Then, let’s consider the following polyhedron P̄:

P̄ :=


yi ≤ 1 For i = 1,2, . . . ,k

yi ≥ 0 For i = k+1, . . . ,n

∑
k
i=1 yi − ∑

n
i=k+1 yi ≥ k−1.

Clearly, ȳ ∈ P̄. In addition, P̄ is a polytope (i.e., bounded), as 0≤ yi ≤ 1 for i = 1,2, . . . ,n

can be deduced from the constraints.

Let’s consider a series of integer points {V j} for j = 1,2, . . . ,n defined as follows:

V j :=


V j

i = x∗i If i 6= j

V j
i = 1 If i = j, j > k

V j
i = 0 Otherwise.

In other words, {V j} are the n corner vertices adjacent to x∗ in the unit hyper-cube [0,1]n,

where each exactly has one coordinate (i.e., j) having the opposite value comparing to x∗.

It is easy to check that these n integer points V j ∈ P̄. Furthermore, they are vertices of

139

the polytope P̄, because constraints {yi ≤ 1 for i = 1,2, . . . ,k; i 6= j}, {yi ≥ 0 for i = k+

1, . . . ,n; i 6= j} and ∑
k
i=1 yi − ∑

n
i=k+1 yi ≥ k−1 are active at V j, and they are independent.

Moreover, in the same way, we can check that y = x∗ is also a vertex of P̄. Since polytope

P̄ is defined by, in total, n+1 constraints, it can have at most n+1 vertices. Therefore, we

know that {V j} and x∗ are the entire set of vertices describing polytope P̄.

Since ȳ ∈ P̄ and P̄ is bounded (so there is no extreme ray), we know that, by the resolution

theorem, there exists a convex combination ȳ = λ1V 1 +λ2V 2 + · · ·λnV n +λn+1x∗, where

∑
n+1
m=1 λm = 1 and λm ≥ 0. Furthermore, we have λn+1 > 0 because otherwise, ȳ will be a

convex combination of {V j}, which are all right on the hyper-plane ∑
k
i=1 xi − ∑

n
i=k+1 xi =

k−1, and thus ȳ will be on this hyper-plane as well, and cannot violate constraint c.

Since ȳ is a vertex of P, we know that there exists a constraint αy ≤ β , among the ones

that describe polyhedron P, which is active on ȳ but not active on x∗ (since y = x∗ is

clearly also a vertex of P). Suppose αx∗ < β without loss of generality. Then, we claim

that there exists a V j such that αV j > β . By contradiction, if αV j ≤ β for all j, then

α ȳ = λ1αV 1 +λ2αV 2 + · · ·λnαV n +λn+1αx∗ < β , since λn+1 > 0, which contradicts the

fact that constraint αy≤ β is active at ȳ.

Denote α := (α1,α2, . . . ,αn). Then, we know that α j 6= 0 (because otherwise αx∗ = αV j,

which is impossible), and there exists 0 < γ < 1 such that y′ = γx∗+(1− γ)V j is right on

the hyperplane αy = β . More specifically regarding y′, since V j is only different from x∗

on coordinate j, we have:

y′ :=


y′i = x∗i i 6= j

y′j = γ If j ≤ k

y′j = 1− γ If j > k.

In other words, y′ has integer values on coordinates i 6= j, while have a fractional value

on coordinate j (because 0 < γ < 1). Since α has coefficients 0 or ±1 (due to the second

140

property) while α j 6= 0, we know that αy′ is fractional. However, since β is an integer,

this contradicts the fact that αy′ = β . Therefore, we can conclude that there is no other

vertex of polyhedron P violating constraint c.

Theorem 4.3. If the polyhedron P, i.e., the LP-relaxation of the intermediate model (Intm),

is nontrivial (i.e., it has at least one non-integral vertex), then there exists a set of con-

straints A′y≤ b′, where A′ is also a (0,±1) matrix while b′ is integral, such that polyhedron

P′ := {y | y ∈ P, A′y≤ b′} is nonempty, but it does not contain any integer points.

Proof. This theorem is obvious given the above lemma. Let A′y≤ b′ be the linear system

just comprising the constraint c (in the above lemma) for each of the integral vertices of

P. Clearly, by this construction, A′ and b′ satisfy the required property. Then, the updated

polyhedron P′ of course does not contain any integer points, since they are all cut off by

their respective constraint c in the system A′y ≤ b′. Lastly, since P has a non-integral

vertex (denoted as ŷ), which satisfies constraint c as indicated by the above lemma, and

thus satisfies A′ŷ≤ b′, therefore we know that ŷ ∈ P′. Thus, P′ is not empty.

Analysis in Reality

The previous theorem implies that if we are extremely “lucky,” e.g., if the unenforced

constraints A2y ≤ b2 we restore during the second stage constitute exactly, or very close

to, the system A′x≤ b′ constructed above, then we will encounter Case 2, where the second

stage formulation (SG2) is infeasible but its LP-relaxation is feasible.

However, in practice, we rarely fall into this scenario. This is primarily because the

constraints we bring back to the formulation during the second stage are all correspond-

ing to service coverage rules, which have further properties than the general two listed

at the beginning of this subsection. More specifically, the coefficients of coverage con-

straints are either (0,1) or (0,−1). However, this is not the case for the derived constraint

141

c in the lemma, as its coefficients are (1,−1). On the contrary, those c’s can often be

viewed as the relaxation of our coverage constraints. More specifically, we can see that

∑
k
i=1 yi − ∑

n
i=k+1 yi ≤ k−1 can be derived from ∑

k
i=1 yi ≤ k−1, which is the relaxation

of a potential coverage constraint ∑
k
i=1 yi ≤ ub, since typically the upper bound value ub

is much smaller then the “headcount.” On the other hand, ∑
k
i=1 yi − ∑

n
i=k+1 yi ≤ k− 1

can be derived from ∑
n
i=k+1 yi ≥ 1, which may further be the relaxation of a nontrivial

coverage constraint ∑
n
i=k+1 yi ≥ lb.

Therefore, unlike the derived c’s which cut off just the “corners” of the hyper-cube

without pruning any other vertices of the polyhedron P, when we restore the unenforced

constraints (i.e., unenforced coverage rules) during the second stage, each of them may

perform a much bolder cutting. Thus, besides the corresponding corner, a big chunk of

P in the specified direction could be pruned off by each restored constraint, including

the great amount of “symmetry” near that corner point and potentially also many other

non-integral vertices of the polyhedron P. Thus, if at the end all integral vertices of P

(the corners of the hyper-cube) are pruned off, then it’s very likely that the whole updated

polyhedron P′ becomes empty (i.e., we will encounter Case 1, rather than Case 2).

4.7.4 Pseudo-code of a Power Iteration Method for solving the PageR-
ank Model to Get the Service Pickiness Scores

Algorithm 5

1: Initialize k = (1
|V | ,

1
|V | , . . . ,

1
|V |)
>;

2: Initialize Boolean indicator I = true, and the stop threshold ε = 10−4;
3: while I do
4: k′← θW̄k+(1−θ)h̄;
5: if |k− k′|1 ≤ ε then
6: I← false;

7: k← k′;

8: return k;

142

CHAPTER 5

Summary and Conclusions

In this dissertation, we studied in total three large-scale PSPs from two practical applica-

tions — two variations of cargo crew scheduling and medical resident block scheduling.

We developed new modeling and/or solution approaches to more efficiently generate high-

quality solutions to address the challenges of solving these problems.

In Chapter 2, we investigated crew pairing construction for a cargo airline. Due to

the nature of its underlying flight network, the conventional subsequent crew rostering

phase needs to be partially accomplished during this crew pairing construction process,

which introduces a set of unique and complicated requirements. We proposed an SPPRC

model to formulate the pricing problem of a delayed column generation framework to

solve the crew pairing problem, which effectively incorporates all of those requirements

into the identification of desirable crew pairings. We further developed several strategies

and enhancements to accelerate the process of solving the proposed SPPRC model by a

labeling algorithm. Experiments on real-world instances showed that our approach can

solve the crew pairing problem in a much shorter time than a conventional DFS approach.

In Chapter 3, we studied an extension of the previous cargo crew pairing problem. A

potential break in the middle of each crew pairing needs to be modeled in the construction

process in order to improve the flight coverage achieved by the final crew pairing sched-

143

ule. Although a straightforward modification of the proposed approach to the original

crew pairing problem can be applied to solve this extension, solving the modified SPPRC

model will take an extremely long time because a great number of additional arcs need to

be introduced to update the network. To address this network density issue, we proposed

an arc selection approach. By this approach, a significant number of arcs can temporarily

be removed from the updated network for each specific iteration of the delayed column

generation process, based on the results of a bidirectional labeling on the much sparser

network model for the original crew pairing problem. Besides the significant improve-

ment in the computational performance, we proved that this arc selection approach is an

exact approach, which ensures the quality of the final output schedule. In experiments

on practical instances from our partnered cargo airline, our approach was demonstrated

to be able to solve this extended crew pairing problem in a short time while the achieved

flight coverage was indeed improved by a great amount compared to the original problem

without the break feature.

Lastly, in Chapter 4, we considered annual block scheduling for medical residents. Un-

like traditional nurse shift scheduling, we must satisfy not only coverage requirements to

guarantee an acceptable staffing level for different units (services) in the hospital, but also

education requirements to ensure residents receive appropriate training to pursue their

individual (sub-)specialty interests. This complex requirement structure, as well as the

huge size and great amount of underlying symmetries, makes resident block scheduling a

complicated combinatorial optimization problem. Solving a conventional integer program

formulation for its practical instances directly using traditional MIP techniques will result

in unacceptably slow performance. To address this computational challenge, we proposed

a partial fixing approach, which completes the schedule construction iteratively through

two sequential stages. The first stage focuses on the resident assignments for a small

144

set of predetermined units (services) through solving a much smaller and easier problem

relaxation, while the second stage completes the rest of the schedule construction after

fixing those assignments specified by the first stage’s solution. We developed cut gener-

ation mechanisms to prune off the bad decisions made by the first stage if infeasibility

arises. We additionally proposed a network-based model to assist us with an effective unit

(service) selection for the first stage to work on the corresponding resident assignments,

in order to overall achieve an efficient and robust performance of the proposed two-stage

iterative approach. We applied the proposed approach to solve real-world instances pro-

vided by our collaborating medical school. The experimental results demonstrated that our

approach can solve the resident block scheduling problem in a dramatically shorter time

than applying traditional MIP techniques directly to the integer program formulation.

Although the details of the proposed approaches and the associated logic in this disser-

tation are specified based on the practical operations of the cargo airline and the medical

school we collaborated with, the general approaches and frameworks are flexible to in-

corporate additional features and requirements from the corresponding application back-

ground and can be adapted to solve problem variations and even other applications. More

specifically, the flexibility of the proposed delayed column generation solution framework

for cargo crew pairing is empowered by the SPPRC model. In generally, almost all com-

mon features and typical requirements in personnel scheduling and vehicle routing prob-

lems can be effectively incorporated through the underlying network design and its asso-

ciated SPPRC modeling. Regarding medical resident scheduling, our proposed two-stage

partial fixing approach is a general methodology, independent of any specific constraint

structure once the problem can be formulated as a MIP base model. Therefore, this ap-

proach can be easily adapted to solve a wide range of PSPs from a variety of application

areas, as the majority of rules and requirements in PSPs can easily be formulated in linear

145

constraints. All of these demonstrate how the flexibility target we set with respect to the

development of new solution models and approaches at the beginning of this dissertation

(Chapter 1) has been achieved, in addition to the efficiency and solution quality achieve-

ments as highlighted in the respective chapters previously.

In future research, we plan to incorporate reserve crew scheduling into our cargo crew

pairing construction phase so that a more realistic cost structure could be explicitly mod-

eled to produce even better crew pairings for practical use. In addition, we’ll consider

incorporating other planning phases, e.g., fleet assignment and aircraft routing, into our

crew pairing construction, to potentially further increase crew utilization and flight cover-

age and to improve the quality of the overall logistics schedule for the cargo airline. For

resident block scheduling, we plan to design additional mechanisms to incorporate prefer-

ences from residents and the hospital administration explicitly into the proposed two-stage

partial fixing construction process. We expect this way, a better-quality solution, rather

than an arbitrary feasible solution, can be identified still within a reasonably short time,

which can potentially reduce the needed iterations of “result, review, and revise” sched-

ule construction process and overall speed up finalizing the schedule. Furthermore, we

would like to apply our proposed approaches to other applications. For instance, we want

to test whether our arc selection approach can also significantly reduce the solution time

for long-haul vehicle/driver routing and how it impacts the corresponding solution quality.

Additionally, we plan to apply our two-stage partial fixing framework to solve traditional

nurse shift scheduling problems and trainer timetable construction problems and evaluate

whether our approach is also beneficial to handle these much smaller, less complicated

problems.

Moreover, to further increase the flexibility of our proposed approaches and address

any remaining generalizability concerns, there are a couple of general feature research di-

146

rections we can explore. First, we would like to consider how to expand the proposed arc

selection approach for cargo crew pairing to work for more general setting where more

than one break periods (or similar concepts in other applications) is allowed. A poten-

tial method we can explore is to recursively apply this proposed approach to one by one

incorporate the potential breaks into the crew pairing construction. Second, for the pro-

posed two-stage partial fixing approach, besides the incorporation of metrics and objec-

tives explicitly into the iterative process as mentioned in the previous paragraph, we want

to in addition consider generalizing it to be applicable to problems where the base model

contains non-linear constraints. We would like to further develop and customize cut gen-

eration mechanisms depending on different types/features of the constraints that will not

be enforced during the first stage to ensure that the overall efficiency is preserved for the

corresponding non-linear scenario. This way, our two-stage iterative solution framework

would be effective to more general problems, even for the ones from other applications

outside the scope of personnel scheduling.

147

BIBLIOGRAPHY

Adamuthe, A. C. and Bichkar, R. (2011). Hybrid genetic algorithmic approaches for personnel timetabling
and scheduling problems in healthcare. In International Conference on Technology Systems and Manage-
ment.

Aggarwal, D., Saxena, D. K., Emmerich, M., and Paulose, S. (2018). On large-scale airline crew pairing
generation. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 593–600. IEEE.

Aickelin, U., Burke, E. K., and Li, J. (2008). An evolutionary squeaky wheel optimization approach to
personnel scheduling. IEEE Transactions on evolutionary computation, 13(2):433–443.

Aickelin, U. and Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-scheduling problem.
Computers & operations research, 31(5):761–778.

Anbil, R., Forrest, J. J., and Pulleyblank, W. R. (1998). Column generation and the airline crew pairing
problem. Documenta Mathematica, 3(1):677.

Anbil, R., Tanga, R., and Johnson, E. L. (1992). A global approach to crew-pairing optimization. IBM
Systems Journal, 31(1):71–78.

Arasu, A., Novak, J., Tomkins, A., and Tomlin, J. (2002). Pagerank computation and the structure of the web:
Experiments and algorithms. In Proceedings of the Eleventh International World Wide Web Conference,
Poster Track, pages 107–117.

Azaiez, M. N. and Al Sharif, S. (2005). A 0-1 goal programming model for nurse scheduling. Computers &
Operations Research, 32(3):491–507.

Baker, E. and Fisher, M. (1981). Computational results for very large air crew scheduling problems. Omega,
9(6):613–618.

Balas, E. and Jeroslow, R. (1972). Canonical cuts on the unit hypercube. SIAM Journal on Applied Mathe-
matics, 23(1):61–69.

Bard, J. F., Shu, Z., Morrice, D. J., and Leykum, L. K. (2017). Constructing block schedules for internal
medicine residents. IISE Transactions on Healthcare Systems Engineering, 7(1):1–14.

Bard, J. F., Shu, Z., Morrice, D. J., Leykum, L. K., and Poursani, R. (2016). Annual block scheduling for
family medicine residency programs with continuity clinic considerations. IIE Transactions, 48(9):797–
811.

Barnhart, C., Hatay, L., and Johnson, E. L. (1995). Deadhead selection for the long-haul crew pairing
problem. Operations Research, 43(3):491–499.

Barnhart, C., Johnson, E. L., Anbil, R., and Hatay, L. (1994). A column-generation technique for the long-
haul crew-assignment problem. In Optimization in industry 2, pages 7–24. John Wiley & Sons, Inc.

Barnhart, C. and Shenoi, R. G. (1998). An approximate model and solution approach for the long-haul crew
pairing problem. Transportation Science, 32(3):221–231.

148

Belien, J. and Demeulemeester, E. (2006). Scheduling trainees at a hospital department using a branch-and-
price approach. European journal of operational research, 175(1):258–278.

Beliën, J. and Demeulemeester, E. (2007). On the trade-off between staff-decomposed and activity-
decomposed column generation for a staff scheduling problem. Annals of Operations Research,
155(1):143–166.

Berrada, I., Ferland, J. A., and Michelon, P. (1996). A multi-objective approach to nurse scheduling with
both hard and soft constraints. Socio-Economic Planning Sciences, 30(3):183–193.

Boeing (2018). World air cargo forecast 2018-2037, https://www.boeing.com/

resources/boeingdotcom/commercial/about-our-market/cargo-market-detail-wacf/

download-report/assets/pdfs/2018_WACF.pdf.

Borndörfer, R., Reuther, M., Schlechte, T., Waas, K., and Weider, S. (2016). Integrated optimization of
rolling stock rotations for intercity railways. Transportation Science, 50(3):863–877.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.

Brunner, J. O. and Edenharter, G. M. (2011). Long term staff scheduling of physicians with different expe-
rience levels in hospitals using column generation. Health care management science, 14(2):189–202.

Brusco, M. J. (1998). Solving personnel tour scheduling problems using the dual all-integer cutting plane.
IIE transactions, 30(9):835–844.

Cacchiani, V. and Salazar-González, J.-J. (2017). Optimal solutions to a real-world integrated airline
scheduling problem. Transportation Science, 51(1):250–268.

Chan, P., Heus, K., and Weil, G. (1998). Nurse scheduling with global constraints in chip: Gymnaste. In
Proc of Practical Application of Constraint Technology (PACT98), London, UK.

Cheng, B. M. W., Lee, J. H. M., and Wu, J. C. K. (1997). A nurse rostering system using constraint
programming and redundant modeling. IEEE Transactions on Information Technology in Biomedicine,
1(1):44–54.

Chinneck, J. W. and Dravnieks, E. W. (1991). Locating minimal infeasible constraint sets in linear programs.
ORSA Journal on Computing, 3(2):157–168.

Cohn, A., Root, S., Kymissis, C., Esses, J., and Westmoreland, N. (2009). Scheduling medical residents at
boston university school of medicine. Interfaces, 39(3):186–195.

Cohn, A. M. and Barnhart, C. (2003). Improving crew scheduling by incorporating key maintenance routing
decisions. Operations Research, 51(3):387–396.

Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer programming, volume 271. Springer.

Deng, G.-F. and Lin, W.-T. (2011). Ant colony optimization-based algorithm for airline crew scheduling
problem. Expert Systems with Applications, 38(5):5787–5793.

Derigs, U. and Friederichs, S. (2013). Air cargo scheduling: integrated models and solution procedures. OR
spectrum, 35(2):325–362.

Derigs, U., Friederichs, S., and Schäfer, S. (2009). A new approach for air cargo network planning. Trans-
portation Science, 43(3):370–380.

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M. M., and Soumis, F. (1997).
Crew pairing at air france. European journal of operational research, 97(2):245–259.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit crew scheduling
problem. Transportation Science, 23(1):1–13.

149

https://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/cargo-market-detail-wacf/download-report/assets/pdfs/2018_WACF.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/cargo-market-detail-wacf/download-report/assets/pdfs/2018_WACF.pdf
https://www.boeing.com/resources/boeingdotcom/commercial/about-our-market/cargo-market-detail-wacf/download-report/assets/pdfs/2018_WACF.pdf

Desrosiers, J., Soumis, F., and Desrochers, M. (1984). Routing with time windows by column generation.
Networks, 14(4):545–565.

Detienne, B., Péridy, L., Pinson, É., and Rivreau, D. (2009). Cut generation for an employee timetabling
problem. European Journal of Operational Research, 197(3):1178–1184.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time windows.
European journal of operational research, 54(1):7–22.

Dunbar, M., Froyland, G., and Wu, C.-L. (2012). Robust airline schedule planning: Minimizing propagated
delay in an integrated routing and crewing framework. Transportation Science, 46(2):204–216.

Emden-Weinert, T. and Proksch, M. (1999). Best practice simulated annealing for the airline crew scheduling
problem. Journal of Heuristics, 5(4):419–436.

Erdoğan, G., Haouari, M., Matoglu, M. Ö., and Özener, O. Ö. (2015). Solving a large-scale crew pairing
problem. Journal of the Operational Research Society, 66(10):1742–1754.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algorithm for the elementary shortest
path problem with resource constraints: Application to some vehicle routing problems. Networks: An
International Journal, 44(3):216–229.

Franz, L. S. and Miller, J. L. (1993). Scheduling medical residents to rotations: solving the large-scale
multiperiod staff assignment problem. Operations Research, 41(2):269–279.

Freling, R., Lentink, R. M., and Wagelmans, A. P. (2004). A decision support system for crew planning
in passenger transportation using a flexible branch-and-price algorithm. Annals of Operations Research,
127(1-4):203–222.

Gamache, M., Soumis, F., Marquis, G., and Desrosiers, J. (1999). A column generation approach for large-
scale aircrew rostering problems. Operations research, 47(2):247–263.

Gamache, M., Soumis, F., Villeneuve, D., Desrosiers, J., and Gelinas, E. (1998). The preferential bidding
system at air canada. Transportation Science, 32(3):246–255.

Gershkoff, I. (1989). Optimizing flight crew schedules. Interfaces, 19(4):29–43.

Gleeson, J. and Ryan, J. (1990). Identifying minimally infeasible subsystems of inequalities. ORSA Journal
on Computing, 2(1):61–63.

Gopalakrishnan, B. and Johnson, E. L. (2005). Airline crew scheduling: state-of-the-art. Annals of Opera-
tions Research, 140(1):305–337.

Guieu, O. and Chinneck, J. W. (1999). Analyzing infeasible mixed-integer and integer linear programs.
INFORMS Journal on Computing, 11(1):63–77.

Güler, M. G., İdi, K., Güler, E. Y., et al. (2013). A goal programming model for scheduling residents in an
anesthesia and reanimation department. Expert Systems with Applications, 40(6):2117–2126.

Guo, J., Morrison, D. R., Jacobson, S. H., and Jokela, J. A. (2014). Complexity results for the basic residency
scheduling problem. Journal of Scheduling, 17(3):211–223.

Guo, Y., Mellouli, T., Suhl, L., and Thiel, M. P. (2006). A partially integrated airline crew scheduling
approach with time-dependent crew capacities and multiple home bases. European Journal of Operational
Research, 171(3):1169–1181.

Guyon, O., Lemaire, P., Pinson, É., and Rivreau, D. (2010). Cut generation for an integrated employee
timetabling and production scheduling problem. European Journal of Operational Research, 201(2):557–
567.

150

Haouari, M., Zeghal Mansour, F., and Sherali, H. D. (2019). A new compact formulation for the daily crew
pairing problem. Transportation Science, 53(3):811–828.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In Column genera-
tion, pages 33–65. Springer.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2010). Path-reduced costs for eliminating arcs in
routing and scheduling. INFORMS Journal on Computing, 22(2):297–313.

Jaumard, B., Semet, F., and Vovor, T. (1998). A generalized linear programming model for nurse scheduling.
European journal of operational research, 107(1):1–18.

Kahn, A. B. (1962). Topological sorting of large networks. Communications of the ACM, 5(11):558–562.

Kasirzadeh, A., Saddoune, M., and Soumis, F. (2017). Airline crew scheduling: models, algorithms, and
data sets. EURO Journal on Transportation and Logistics, 6(2):111–137.

Kim, K. and Mehrotra, S. (2015). A two-stage stochastic integer programming approach to integrated
staffing and scheduling with application to nurse management. Operations Research, 63(6):1431–1451.

Klabjan, D., Johnson, E. L., Nemhauser, G. L., Gelman, E., and Ramaswamy, S. (2002). Airline crew
scheduling with time windows and plane-count constraints. Transportation science, 36(3):337–348.

Koç, Ç., Jabali, O., and Laporte, G. (2017). Long-haul vehicle routing and scheduling with idling options.
Journal of the operational research society, pages 1–13.

Lavoie, S., Minoux, M., and Odier, E. (1988). A new approach for crew pairing problems by column
generation with an application to air transportation. European Journal of Operational Research, 35(1):45–
58.

Leksakul, K. and Phetsawat, S. (2014). Nurse scheduling using genetic algorithm. Mathematical Problems
in Engineering, 2014.

Li, D., Huang, H.-C., Chew, E.-P., and Morton, A. (2007). Simultaneous fleet assignment and cargo routing
using benders decomposition. In Container Terminals and Cargo Systems, pages 315–331. Springer.

Liang, Z. and Chaovalitwongse, W. A. (2013). A network-based model for the integrated weekly aircraft
maintenance routing and fleet assignment problem. Transportation Science, 47(4):493–507.

Maenhout, B. and Vanhoucke, M. (2010). Branching strategies in a branch-and-price approach for a multiple
objective nurse scheduling problem. Journal of Scheduling, 13(1):77–93.

Miller, H. E., Pierskalla, W. P., and Rath, G. J. (1976). Nurse scheduling using mathematical programming.
Operations Research, 24(5):857–870.

Ozdemir, H. T. and Mohan, C. K. (2001). Flight graph based genetic algorithm for crew scheduling in
airlines. Information Sciences, 133(3-4):165–173.

Rahimian, E., Akartunalı, K., and Levine, J. (2017). A hybrid integer and constraint programming approach
to solve nurse rostering problems. Computers & Operations Research, 82:83–94.

Rancourt, M.-E., Cordeau, J.-F., and Laporte, G. (2013). Long-haul vehicle routing and scheduling with
working hour rules. Transportation Science, 47(1):81–107.

Rancourt, M.-E. and Paquette, J. (2014). Multicriteria optimization of a long-haul routing and scheduling
problem. Journal of Multi-Criteria Decision Analysis, 21(5-6):239–255.

Rubin, J. (1973). A technique for the solution of massive set covering problems, with application to airline
crew scheduling. Transportation Science, 7(1):34–48.

151

Ruther, S., Boland, N., Engineer, F. G., and Evans, I. (2016). Integrated aircraft routing, crew pairing, and
tail assignment: branch-and-price with many pricing problems. Transportation Science, 51(1):177–195.

Şahin, G. and Yüceoğlu, B. (2011). Tactical crew planning in railways. Transportation Research Part E:
Logistics and Transportation Review, 47(6):1221–1243.

Sandhu, R. and Klabjan, D. (2007). Integrated airline fleeting and crew-pairing decisions. Operations
Research, 55(3):439–456.

Shao, S., Sherali, H. D., and Haouari, M. (2015). A novel model and decomposition approach for the
integrated airline fleet assignment, aircraft routing, and crew pairing problem. Transportation Science,
51(1):233–249.

Sherali, H. D., Ramahi, M. H., and Saifee, Q. J. (2002). Hospital resident scheduling problem. Production
Planning & Control, 13(2):220–233.

Syberfeldt, A., Andersson, M., Ng, A., and Bengtsson, V. (2015). Multi-objective evolutionary optimization
of personnel scheduling. International Journal of Artificial Intelligence & Applications, 6(1):41–52.

Tamiz, M., Mardle, S. J., and Jones, D. F. (1996). Detecting iis in infeasible linear programmes using
techniques from goal programming. Computers & operations research, 23(2):113–119.

Tang, C.-H., Yan, S., and Chen, Y.-H. (2008). An integrated model and solution algorithms for passenger,
cargo, and combi flight scheduling. Transportation Research Part E: Logistics and Transportation Review,
44(6):1004–1024.

Topaloglu, S. and Ozkarahan, I. (2011). A constraint programming-based solution approach for medical
resident scheduling problems. Computers & Operations Research, 38(1):246–255.

Trilling, L., Guinet, A., and Le Magny, D. (2006). Nurse scheduling using integer linear programming and
constraint programming. IFAC Proceedings Volumes, 39(3):671–676.

Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L. (1997). Airline crew scheduling: A new
formulation and decomposition algorithm. Operations Research, 45(2):188–200.

Warburton, A. (1987). Approximation of pareto optima in multiple-objective, shortest-path problems. Op-
erations research, 35(1):70–79.

Wei, K. and Vaze, V. (2018). Modeling crew itineraries and delays in the national air transportation system.
Transportation Science, 52(5):1276–1296.

Weide, O., Ryan, D., and Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing
and crew scheduling. Computers & Operations Research, 37(5):833–844.

Weil, G., Heus, K., Francois, P., and Poujade, M. (1995). Constraint programming for nurse scheduling.
IEEE Engineering in medicine and biology magazine, 14(4):417–422.

Wong, W. H., Zhang, A., Van Hui, Y., and Leung, L. C. (2009). Optimal baggage-limit policy: airline
passenger and cargo allocation. Transportation Science, 43(3):355–369.

Yan, S., Chen, S.-C., and Chen, C.-H. (2006). Air cargo fleet routing and timetable setting with multiple
on-time demands. Transportation Research Part E: Logistics and Transportation Review, 42(5):409–430.

Yan, S. and Tu, Y.-P. (2002). A network model for airline cabin crew scheduling. European Journal of
Operational Research, 140(3):531–540.

Yao, Y., Zhao, W., Ergun, O., and Johnson, E. (2005). Crew pairing and aircraft routing for on-demand
aviation with time window. Available at SSRN 822265.

Zhong, Q., Lusby, R. M., Larsen, J., Zhang, Y., and Peng, Q. (2019). Rolling stock scheduling with mainte-
nance requirements at the chinese high-speed railway. Transportation Research Part B: Methodological,
126:24–44.

152

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	A Delayed Column Generation Approach for Cargo Crew Pairing Construction
	Introduction
	The Cargo Aviation Industry
	Crew Scheduling in Cargo Aviation
	Outline

	Problem Statement
	Literature Review
	Model and Solution Framework
	A Set Packing Formulation
	Delayed Column Generation

	The Pricing Problem Formulation and Solution Approach
	Flight-based Network
	Shortest Path Problem with Resource Constraints (SPPRC)
	Labeling Algorithm
	Speed-up Strategies and Improvements

	Computational Experiments
	Conclusion

	An Arc Selection Approach for Modeling a Potential Break in Cargo Crew Pairings
	Introduction
	Problem Statement
	Related Work
	Model Modification
	An Arc Selection Approach
	Computational Experiments
	A Benchmark
	Results and Comparisons

	Conclusion
	Appendix
	An Example for Step 2. of the Arc Assessment Process in Section 3.5
	A proof for Proposition 3.1

	A Two-Stage Partial Fixing Approach for Solving the Residency Block Scheduling Problem
	Introduction
	Residency Programs and the Block Scheduling Problem
	Research Motivation

	Literature Review
	Contributions

	Problem Statement
	Solution Approach
	The Base Model
	The Causes of the Slow Computational Performance
	A Two-Stage Partial Fixing Approach
	Cut Generation Case 1 — Infeasible LP-relaxation
	Cut Generation Case 2 — Feasible LP-relaxation

	A Network-based Model for Service Selection

	Computational Experiments
	Experiments on the Number of Selected Services
	Effectiveness of the Network-Based Model for Service Selection
	Effectiveness of the Cut Generation Mechanisms and the Design of the First Stage's Objective Function

	Conclusion
	Appendix
	An Integer Program Formulation for the Residency Block Scheduling Problem
	Notation
	Formulation

	The Design of the Objective Function and Auxiliary Constraints in the First Stage Formulation
	The Objective Function
	Auxiliary Constraints
	A sketch of the complete first stage formulation (SG1)

	An Theoretical Analysis on the Occurrence of Case 2 for the Infeasibility of the Second Stage
	Properties of the Formulation
	Possibility in Theory
	Analysis in Reality

	Pseudo-code of a Power Iteration Method for solving the PageRank Model to Get the Service Pickiness Scores

	Summary and Conclusions
	BIBLIOGRAPHY

