
A Comprehensive Computational Model of PRIMs Theory for
Task-Independent Procedural Learning

by

Bryan Stearns

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor John E. Laird, Chair
Professor Nikola Banovic
Emeritus Professor David Kieras
Professor Priti Shah
Professor Niels Taatgen, University of Groningen

“Stimulus-response theory and production systems represent an approach to procedu-
ral knowledge which has not been very popular in cognitive psychology. They attempt
to analyze all procedural knowledge into a fixed set of primitives. These primitives are
the atoms out of which a great variety of cognitive behavior is constructed – language
comprehension, language generation, inference making, question answering, problem
solving, executing instructions, etc. If such a set of primitives can be found, this would
seem to constitute an enormous advance because the few principles that describe these
primitives could be used to account for all of cognitive behavior.”

(John R. Anderson, 1976, p. 80)

Bryan Stearns
stearns@umich.edu

ORCID iD: 0000-0002-2422-9286

©Bryan Stearns 2021

Acknowledgments

I must first thank my Creator and Lord, Jesus Christ, for teaching me and lov-
ingly providing for me throughout this whole journey.
I also must thank my family profusely for their endless love, support, and pa-
tience; my father, who showed me perseverance with a sense of humor, my
mother, who showed me gentleness and critical thinking, and my sister, who
showed me joy and the constant spark of creativity. I love you all very much.
I would especially like to thank my advisor and mentor, John, for his tireless
coaching and counsel and support. It is an understatement to say I could not
have done this without him. And I am very grateful to my committee, Nikola,
David, Priti, and Niels, for their patience and feedback and counsel, and for the
hours they have contributed to the completion of this work. I must also thank
my compatriots in the Soar lab, especially Steven, Peter, and Mazin, for their
friendship, feedback, brainstorming sessions, and for showing me the ropes.
You guys are the best.
And a big thank you must go to my bride, Rachel, who has supported and en-
couraged me especially through these last months. You have made this journey
worthwhile.

The work described here was supported in part by the ONR under Grant
Numbers N00014-15-1-2058, N00014-18-1-2010, F048875-093099, and the
AFOSR under Grant Number F050045-094301. The views and conclusions
contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressly or implied, of ONR,
AFOSR, or the U.S. Government.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

List of Tables . viii

List of Appendices . ix

List of Abbreviations . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Model Desiderata . 2
1.2 Research Approach . 5
1.3 Evaluation Approach . 6
1.4 Contributions . 7

1.4.1 Theory Contributions . 7
1.4.2 Modeling Contributions . 8

1.5 Outline . 9

2 Background . 10

2.1 Cognitive Architecture . 10
2.2 Human Skill Learning . 12
2.3 Theory Evaluation . 16

3 Methodology . 19

4 PRIMs and Actransfer . 25

4.1 Overview . 26
4.2 PRIMs Phase Details and Challenges . 31

4.2.1 P1: Primitives . 31
4.2.2 P2: Retrieval Selection . 31
4.2.3 P3: Instruction Evaluation . 32
4.2.4 P4: Procedure Execution . 33
4.2.5 P5: Procedure Combination . 33
4.2.6 P6: Latency . 34

iii

4.2.7 Summary . 35
4.3 Actransfer’s Completeness for Implementing PRIMs 35

4.3.1 P1 . 36
4.3.2 P2 . 38
4.3.3 P3 . 38
4.3.4 P4 . 39
4.3.5 P5 . 40
4.3.6 P6 . 40

5 Actransfer Experimentation . 42

5.1 Mental Arithmetic Task . 42
5.2 Editors Task . 44

5.2.1 Timing Methodology . 45
5.3 WM Training and Stroop Experiment . 47
5.4 Task-switching Experiment . 49

6 Soar . 51

6.1 Operators . 51
6.2 Working Memory . 52
6.3 Long-term Declarative Memory . 53
6.4 Problem-Space Computational Model . 54
6.5 Chunking . 56

7 PROPs Iteration 1: Defining Support for Working Memory Operations 57

7.1 Introducing A New Primitive Operation . 58
7.2 Distinguishing Primitive Operators from PRIMs 60
7.3 Supporting Ordered Retrievals . 63
7.4 Simulating Gradual Learning . 64
7.5 Computational Motivations for Gradual Learning 65
7.6 Combining PRIMs as Sets . 67
7.7 Evaluation . 69

7.7.1 Initial Replication Results . 72
7.7.2 Experiment 1: Effects of PRIM Resolution 74
7.7.3 Transfer . 78
7.7.4 Experiment 2: Effects of θp . 80

7.8 Discussion . 82

8 PROPs Iteration 2: Defining Declarative Retrievals 86

8.1 Problem 1: Retrieval Selection . 87
8.1.1 Using Spreading Activation . 88
8.1.2 Approach . 89

8.2 Problem 2: Gradual Chunking . 92
8.3 Connecting Three-Phase Theory . 93
8.4 Evaluation . 94

8.4.1 Arithmetic Task . 97
8.4.2 Editors Task . 101

iv

8.5 Discussion . 105

9 PROPs Iteration 3: Defining Decision Making and Timing 109

9.1 Problem 1: Choice-based Decision Making . 110
9.1.1 Procedure Contexts . 111
9.1.2 Task Sets . 115
9.1.3 Learned Decision Making . 117

9.2 Problem 2: Task-Independent Timing . 119
9.3 Three-Phase Parameters . 122
9.4 Evaluation . 123

9.4.1 Evaluation 1: Hierarchical Procedure Composition 124
9.4.2 Evaluation 2: Rapid Decision Making 131

9.5 Discussion . 140
9.6 Soar Agent Design . 143

10 Discussion and Related Work . 145

10.1 Identifiability Problems . 145
10.2 Adult Learning with Primitives . 146
10.3 Procedure Comprehension . 147
10.4 Theory of Goal-Stacks . 148
10.5 Rapid Task Switching . 149
10.6 Rapid Instruction Task Learning . 151

11 Conclusion . 152

Bibliography . 154

Appendices . 160

v

LIST OF FIGURES

2.1 The Common Model of Cognition. 11
2.2 How performance changes with practice in three phases of knowledge representation. . 14

4.1 The flow diagram of the PRIMs theory procedural learning pipeline. 25
4.2 An example PRIMs instruction made of condition and action lines. 27
4.3 A simplified example of Actransfer memory systems and task processing. 28
4.4 Hierarchical clustering of PRIMs procedures with repeated practice. 30
4.5 The Actransfer cognitive architecture memory model. 36

5.1 Example arithmetic task procedure. 42
5.2 Example arithmetic task inputs. 43
5.3 Human and Actransfer performance in the arithmetic task. 44
5.4 Human and Actransfer performance for the editors task. 45
5.5 Actransfer agent for the editors task, without declarative retrieval latency. 46
5.6 Actransfer agent for the arithmetic task, without declarative retrieval latency. 46
5.7 Human and Actransfer performance for the Stroop task. 48
5.8 Human and Actransfer performance in the task-switching transfer experiment. 50

6.1 The Soar decision cycle. 51
6.2 Example Soar WM graph structure. 53
6.3 The Soar PSCM model for hierarchical operator execution. 55
6.4 Hierarchical problem spaces for the transcribe-text task. 55
6.5 Soar chunking. 56

7.1 A review of the Actransfer flow diagram. 57
7.2 PRIM resolution steps in Soar WM for a COPY operation. 59
7.3 PRIMs and PROPs in the PROPs system for the “read-prompt” instruction. 61
7.4 PRIMs and PROPs in the PROPs system for the “read-prompt” instruction after the

agent has learned compositions of PROPs. 62
7.5 Illustration of different rule learning paths for transfer. 66
7.6 PROP1 replication for the arithmetic task. 72
7.7 PROP1 replication for the arithmetic task with higher resolution. 74
7.8 PROP1 models with and without PRIM Resolution (PR). 75
7.9 The PROP1 models without the final Auto rule learning stage, with and without PRIM

Resolution (PR). 76
7.10 The best r2 fit PROP1 model compared with both human and Actransfer performance. 77
7.11 The change in transfer in the arithmetic task with increase in θp. 81

vi

8.1 The PROP1 flow diagram. 86
8.2 Spreading activation in Soar. 89
8.3 Example PROP2 SMEM structures for spreading activation. 90
8.4 A review of human, Actransfer, and PROP1 Deliberate performance alongside

PROP2 Deliberate performance for the arithmetic task. 97
8.5 PROP2 Auto performance for the arithmetic task. 98
8.6 Deliberate-Known PROP2 model with 50 msec and 37 msec for decision latency. 99
8.7 Human, Actransfer, and PROP2 model results for the editors task. 102
8.8 Best PROP2 model fits to human and Actransfer data for the editors task. 103
8.9 The KRK model of learning phases and catastrophic memory failure. 107

9.1 The PROP2 flow diagram and its completeness for phases 1-6. 109
9.2 The PROP3 procedure context model in Soar. 112
9.3 The starting “Transcribe Text” elaboration context structure for the transcribe-text task. 114
9.4 Human, Actransfer, PROP2, and PROP3 performance for the arithmetic task. 125
9.5 Human, Actransfer, and PROP3 performance for the editors task. 128
9.6 Human and model performance for the editors task when Tretrieve is added to PROP3. . 130
9.7 The hierarchical goal design of the PROP3 model for the Stroop task. 134
9.8 PROP3 model interference in the WM/Stroop experiment. 136
9.9 The hierarchical goal design of the PROP3 model for the task-switching test task. . . . 138
9.10 Human, Actransfer, and PROP3 model results for the task-switching experiment. . . . 139
9.11 The PROP3 flow diagram and completeness for my desiderata. 141

A.1 The Soar cognitive architecture. 160

C.1 The procedure context structures for “read-prompt” in the transcribe-text task. 167
C.2 Procedure contexts as PRIMs instructions in WM, according to the Soar PSCM. . . . 174
C.3 Procedure contexts for the “answer-next” instruction depicted in Figure 4.4. 178
C.4 Chunks learned for the “answer-next” apply contexts depicted in Figure C.3. 181

vii

LIST OF TABLES

3.1 Methodology steps for comparing architectures . 19
3.2 Methodology sub-steps for extending PRIMs . 20

7.1 Primitive memory operation types through which PROPs are proposed and applied. . . 62
7.2 PROP1 goodness-of-fit measures for arithmetic data. 76
7.3 PROP1 transfer for arithmetic component steps. 79
7.4 PROP1 transfer for arithmetic integrative steps . 80

8.1 PROP2 goodness-of-fit measures for arithmetic data. 100
8.2 PROP2 transfer for arithmetic component steps. 100
8.3 PROP2 transfer for arithmetic integrative steps . 101
8.4 PROP2 goodness-of-fit measures for the editors task. 104
8.5 PROP2 transfer in the editors task, along with differences compared to humans. 105

9.1 PROP3 goodness-of-fit measures for the arithmetic task. 126
9.2 PROP3 transfer for arithmetic component and integrative steps. 127
9.3 PROP3 transfer for arithmetic integrative steps . 128
9.4 PROP3 goodness-of-fit measures for the editors task. 130
9.5 PROP3 transfer in the editors task, along with differences compared to humans. 131
9.6 PROP3 goodness-of-fit measures for the WM/Stroop experiment. 136
9.7 PROP3 goodness-of-fit measures for the task-switching task. 140
9.8 PROP3 goodness-of-fit measures for the Stroop task in the task-switching experiment. 140

viii

LIST OF APPENDICES

A Soar Memory Systems . 160

B WM Theory and PRIMs . 162

C Implications of Procedure Contexts . 165

ix

LIST OF ABBREVIATIONS

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

PFC Pre-Frontal Cortex

PRIM Primitive information processing element

PROP Primitive Operator

PSCM Problem-Space Computational Model

LTDM Long-term Declarative Memory

RITL Rapid Instructed Task Learning

RL Reinforcement Learning

SMEM Semantic Memory

WM Working Memory

x

ABSTRACT

The human ability to reason about and learn practically any task has been studied for countless

years, but to date we still do not truly understand how human learning is task-independent at the

computational level. Researchers have theorized that we can account for many human cognitive

behaviors if we combine a task-independent set of primitive procedures with a robust, general

learning mechanism that compiles them into cognitive skills for various tasks. The PRIMs theory

of procedure learning and transfer is a cognitive architecture theory of human learning that shows

how a task-independent set of primitive procedures can support learning in any task that is also

supported by the underlying architecture. However, its published architecture implementation,

Actransfer, focuses on modeling transfer and does not specify all of the computational details of

PRIMs theory.

This thesis presents a computationally comprehensive cognitive architecture model of PRIMs

theory that I call the PROPs system. I comprehensively define each of the processing steps that

PRIMs theory requires and implement these in an agent model using the Soar cognitive architec-

ture. I do this through a methodology for incrementally refining a cognitive architecture model. I

use this methodology to extend PRIMs theory and unify it with three-phase learning theory from

human performance research, task set theory from psychology and neuroscience, and Soar theory

from cognitive architecture research. This achieves several improvements in the model’s ability to

replicate human learning behavior.

Among the contributions of this work, I introduce a novel form of primitive processing that

explains the origins of the primitive procedures of PRIMs theory and supports procedural learning

in an unbounded, dynamic working memory space. I show that this improves the model’s ability

to match human power-law learning. I also extend Soar cognitive architecture theory with grad-

xi

ual procedural learning in a manner consistent with Soar’s existing theory and introduce a novel

computational approach by which a cognitive architecture model can learn to guide automatic long-

term declarative memory retrievals based on working memory contents. I finally introduce a novel

computational approach by which a model can guide deliberate retrievals through choice-based

decision making.

In my evaluation of the PROPs system, I identify ways in which PRIMs theory for procedural

learning might be further unified with neuroscience theory to broaden the model to include declar-

ative learning. I also identify boundaries where PRIMs models can or cannot currently account for

types of human cognitive processing when the models are constrained to be fully task-independent

and consistent with the surrounding cognitive architecture. This reveals a path for future cognitive

architecture research and development.

xii

CHAPTER 1

Introduction

Humans demonstrate the epitome of general skill learning. We can enter seemingly any unfamiliar
domain and learn how to perform effectively in it in a short amount of time. If you were given
the task of transcribing text from a piece of paper into a computer text editor, you could almost
certainly do it, even though you were not born with most of the necessary skills, such as how
to read the paper and the computer screen, how to use the particular text editor’s interface for
moving the cursor and editing the document, or how to type accurately and quickly. But while
we see the human ability to learn such tasks everywhere around us, we still do not have a detailed
understanding of how we do it. Whatever the answer, it is clear that humans must have some forms
of innate, task-independent skills and learning abilities.

This thesis pursues a greater understanding of human task-independent procedural learning.
“Task-independent” here refers to the ability to be effective in many tasks without constraint or
specialization for any particular task. Rather, the breadth of tasks is unspecified. Task indepen-
dence is distinct from the ability to function in every task domain, which might be referred to as
task generality. I pursue task-independence comparable to that shown by humans. “Procedural
learning” here refers to the learning of tacit, procedural skill knowledge, such as the skill to ef-
fectively type on a computer keyboard, in contrast with explicit, declarative knowledge about task
skills, such as the knowledge of how one intends to type on a keyboard. The question of task-
independent procedural learning is the question of how humans are able to develop procedural
skills for practically any task.

The last half-century of research has seen much progress in the quest for understanding task-
independent human learning. Research in procedural learning has theorized that a fixed set of
innate, primitive procedural knowledge can be used as the building blocks from which humans
learn the great variety of cognitive behaviors that we learn (Anderson, 1987). But while many
researchers in the community have done a great deal to forward our understanding of human pro-
cedural learning over the course of many decades (Anderson, 1982; Fitts, 1954; Kim et al., 2013),
current models still do not provide computationally comprehensive and precise accounts of the
primitive procedures that allow humans to function across a wide variety of tasks and of the ways

1

that humans compose these when learning task skills. The current state-of-the-art in terms of task-
independence is the PRIMitive Elements (PRIMs) theory put forward by Taatgen (2013). This
theory describes how the process of composing cognitive skills from task-independent procedural
primitives provides an explanation for human transfer behavior. The original publication of PRIMs
theory included a computational cognitive architecture implementation of its principles, called Ac-
transfer, that replicated human learning and transfer trends in many tasks. Unlike prior work, this
model defines primitive procedures that can be composed into skills for any task supported by the
underlying cognitive architecture. However, its implementation focused more on demonstrating
the mechanics of transfer and less on the computation that supports the whole of PRIMs theory,
and it left several gaps in its computational explanation of the cognitive processing steps required
in the theory.

In this thesis, I extend the work of PRIMs by developing a novel, computationally precise
model of task-independent human procedural learning called the PRimitive OPerators (PROPs)
system. PROPs extends PRIMs theory and its Actransfer model by defining and implementing the
gaps in its computational explanation. I extend PRIMs theory by drawing from the computational
theory of the Soar cognitive architecture (Laird, 2012), three-phase theory from human skill learn-
ing research (Fitts & Posner, 1967; Gray & Lindstedt, 2017), task set theory from psychology and
neuroscience (Sakai, 2008), and from other related research into human cognition.

1.1 Model Desiderata

The research presented here comes primarily from the domain of cognitive architectures (Kot-
seruba & Tsotsos, 2018; Newell, 1990). Cognitive architectures pursue a computational under-
standing of the structure and processing of general human cognition. Allen Newell, one of the
founders of cognitive architecture research, outlined three paradigms for this kind of work in his
famous “20 Questions” paper (1973). I constrain the PROPs system to specifically satisfy Newell’s
first and third paradigms:1

“The first suggestion is to construct complete processing models rather than the partial
ones we now do. [...] The attempts in some of the other papers to move toward
a process model by giving a flow diagram (Cooper-Shepard and Klahr) seem to me
not to be tight enough. Too much is left unspecified and unconstrained. To make
the comparison with Chase and Simon somewhat sharp, these flow diagrams are not
sufficient to perform their tasks.”

1Newell’s second paradigm concerns the coordination of psychological experiments alongside modeling and is
beyond the scope of this thesis.

2

“The third alternative paradigm we have in mind is to stay with the diverse collection
of small experimental tasks, as now, but to construct a single system to perform them
all. This single system (this model of the human information processor) would have
to take the instructions for each, as well as carry out the task. For it must truly be a
single system in order to provide the integration that we seek.”

I extract four desiderata from these paradigms:

D1. The model must be comprehensive. That is, it must specify and constrain the details of
any cognitive processing that is necessary for its execution.

D2. The model must be able to perform its tasks. That is, it must be possible to implement it
within an input/output environment to test its learning behavior in practice.

D3. The model must be task-independent. That is, it must be implemented as a single system
that is used to perform all experimental tasks, with variation only in the form of different
task instructions given to the system.

D4. The model must be a model of human information processing. That is, the model’s
computation must be consistent with the current understanding of the human cognitive ar-
chitecture.

The first two desiderata derive from Newell’s first paradigm, in which he champions “complete
processing models.” First is that the model be comprehensive, such that it enacts all the computa-
tion that is described in its theory. Second is that the model be able to perform in an input/output
environment. Note that while Newell did promote the pursuit of a complete end-to-end model of
all processes needed between environment input and output, D2 only constrains this thesis work
to be embedded within a system that can interact with the environment so that its cognitive pro-
cessing can be applied in simulated experiments. A complete model of human perception or motor
learning, for instance, is outside the scope of this thesis. The third desideratum reflects Newell’s
third paradigm, in which he calls for a general single system, which can carry out a variety of tasks
after receiving the different instructions for each. The variation between task models should only
be in terms of the task instructions given to the computer program. The process by which those
instructions are interpreted and carried out should be common across tasks. The fourth and final
desideratum flows from Newell’s third paradigm as well as the overall mission of the field, which
is to make a single computational system that models the human information processor. While
it might be the case that there are other computational approaches that could achieve human-like
learning other than the approach used by humans (whatever that approach might be), there are no
other known demonstrations of human cognitive capabilities in nature. Our lack of understanding

3

in how all the components of cognition fit together constrains me to be as faithful as possible to
the human standard as I pursue an understanding of human procedural learning.

To satisfy D1, it is not enough to merely supply a functional model that generates PRIMs
theory’s predicted behavior if it does not implement the details of the theorized processing. I
explain this idea by an example. Assume that you wish to model a theory of human decision
making for the task of transcribing text that was mentioned in the first paragraph of this thesis,
and one decision you wish to model in this task is the choice between either copy-pasting or
retyping text. You theorize that when subjects make this choice, they first imagine the futures of
each potential action and how long each would take, and then they choose the one with the least
expected effort. Assume your theory also predicts that the time required for decision making is a
function of the number of steps the person requires to imagine each outcome. You might develop
a computer model of this theory in which the computer agent “imagines” how long each edit
operation takes by retrieving the answer from a provided lookup table. Then you might simulate
the latency of the agent’s decision making based on a mathematical function of the lookup table
values that the agent examined. This kind of model implementation might provide the outward
functional behavior that your theory predicts. However, it does not perform the computation that
your theory prescribes because the model does not imagine the futures of its actions to generate
its decision, and its timing is not a direct function of the agent’s processing steps. You might be
tempted to build your model this way because the computational details of imagination are too
complex or unknown to implement, but omitting these from the implementation means that the
model computation does not completely simulate the processing prescribed by your theory. For
my model to be computationally comprehensive, I must implement and demonstrate the processes
that are prescribed by the theory I am modeling.

D2 and D3 are relatively straightforward today given the significant prior work that has been
done in this domain. To satisfy D2, I embed my model within the Soar cognitive architecture,
which provides an interface for models to interact with environment input and output, and I use
PRIMs theory to define a task-independent processing by which to apply Soar’s mechanisms for
human-like learning and transfer. The main contributions of this thesis stem from combining these
with D1. I develop the PROPs system to represent a comprehensive computational model of the
task-independent primitive procedural learning outlined by PRIMs theory and embedded within
the interactive processing of Soar.

Where D1 constrains the model to implement computation for each step of PRIMs theory,
D4 constrains the model so that its implementation is consistent with what is known about ac-
tual human processing and the human architecture. My model of procedural learning would not
be conducive to understanding human cognition if its computational details were inconsistent with
human processing. For instance, the current consensus of the Common Model of Cognition (Laird,

4

Lebiere, et al., 2017; West, 2020) is that human procedural memory systems do not directly inter-
act with motor systems but rather that any interaction must first pass through working memory and
requires deliberate decision making. I use decades of research in human processing and behav-
ior to inform my model’s computational implementation, both from the human theory integrated
within the Soar cognitive architecture and the Common Model and from other disciplines of human
research.

In short, my goal is to develop a comprehensive computational model of all the internal process-
ing steps described by the PRIMs theory of procedural learning and transfer. In order to function
as a model of learning, it must use these steps to actually perform real tasks, and it must do so
using computation that represents a consistent model of task-independent human cognition.

1.2 Research Approach

As stated above, I develop my model within the Soar cognitive architecture, and primarily draw
from cognitive architecture theory to constrain and define the details of the PROPs system. I select
the Soar cognitive architecture for my work because of its focus on computational science and its
applicability for real artificial intelligence while also modeling human intelligence.

As I describe in more detail in chapter 3, I use an iterative approach to develop a comprehensive
implementation of PRIMs theory. I begin by replicating the original Actransfer implementation in
Soar without attempting to add computational detail beyond what is necessary for the system to
perform the tasks. Wherever Actransfer used computation that produced necessary functional be-
havior but which did not reflect the processing steps prescribed by PRIMs theory, I do the same.
I then incrementally fill or replace the incomplete portions of the implementation with novel, de-
tailed computation, and evaluate each change relative to the performance of the prior iteration.

Soar as an architecture is task-independent, but to make a system that satisfies D3, the agent
design that runs using the architecture must also be task-independent. While this should follow
naturally from implementing the overall agent design of PRIMs theory, I take care to preserve
task-independence in my Soar agent design through each iteration of development.

The PROPs system does not attempt to address learning that is outside the scope of PRIMs
theory, such as declarative learning that constructs explicit knowledge about what to perform in
a task. Further, in order to prevent assumptions about knowledge representation from interfering
with the model of task-independent primitive skill composition, I constrain PROPs to use innate,
architectural processes and innate knowledge alone to model task learning. That is, I do not pro-
gram any PROPs models with procedural knowledge if in theory that knowledge must at some
point be learned. If it is necessary to use more complex, composed knowledge to model a task,
to represent knowledge that a task subject would already know before beginning the task, then I

5

am constrained to first compose that knowledge through agent learning rather than through hand-
written assumption. I can then copy the knowledge that the agent learns and use it as assumed
starting knowledge for a particular task if it makes sense for that task’s starting conditions or if I
wish to disable the process of learning that knowledge during evaluation. Thus, even if I provide
the system with non-innate knowledge for a task, it will derive from the same model of primitive
procedural learning that I develop in this thesis.

1.3 Evaluation Approach

The original Actransfer implementation of PRIMs theory was evaluated with a suite of four human
learning and transfer experiments involving six different tasks (Taatgen, 2013). This demonstrated
both the various aspects of PRIMs theory and its task independence. The same system performed
each task with the only major variation being the task-specific instructions and environments; how-
ever, some architecture parameters were varied for each task as is not uncommon in cognitive
modeling.

To ensure that the PROPs system satisfies D3 and maintains the same task-independence and
generality prescribed by PRIMs theory, I apply PROPs to the same suite of experiments, similarly
varying only the task instructions and environments across tasks. This provides evidence that
PROPs has the same capabilities. In order to isolate and evaluate the effects of my implementation
changes, to the furthest extent possible, I use not only the same suite of experiments as Actransfer
but also the same task instructions and environments. Thus, the computation that implements the
instructions is the only variable when comparing the different models.

Before I can evaluate PROPs with respect to D1, specifically how comprehensively it imple-
ments the steps of PRIMs theory, I must first formally define the processing steps prescribed by
PRIMs theory. I do this in chapter 4. I then determine to what extent Actransfer implements all
of these steps. For each iteration of developing the PROPs system, I then determine the extent to
which it also implements these steps. We consider an implementation of PRIMs theory complete if
it implements all steps according to this specification. The formal specification of Actransfer and
PROPs’ implementation of the PRIMs flow diagram supplies evidence that PROPs sufficiently im-
plements each step to satisfy D1. The experimental comparison with Actransfer for each iteration
then reveals any behavioral or theoretical consequences of the differences.

As I explore in section 2.3, this sort of internal processing comparison has, to my knowledge,
rarely, if at all, been attempted before in cognitive modeling research and demonstrates an evalua-
tion approach that could be more broadly used in the research community to compare competing
theories and their implementations.

Finally, as I evaluate the effects of each implementation change, I compare PROPs system

6

performance with human performance in these same tasks. Though I use Actransfer as a reference
for testing the effects of computational modifications, my goal is that these modifications result in
equivalent or superior fits to human performance.

1.4 Contributions

There are two categories of contributions from this work. The first category is for the set of
theoretical advances introduced by the PROPs model that result from addressing the challenges
I faced in defining the details of its computation. I present five main theoretical contributions
in this category. These are the main contributions of this thesis. The second category is for the
contributions that can aid future work in cognitive modeling, as described in section 1.4.2.

1.4.1 Theory Contributions

The PROPs system represents a theory of computation for general procedural learning that extends
PRIMs theory in four chief ways. I summarize these here along with the section reference where
each is explained in the thesis:

z I introduce a new layer of primitive procedural memory processing to the production
system architecture model of procedural learning. I demonstrate that this additional layer
results in a more human-like power-law learning and transfer profile that is absent from
Actransfer results. (7.1)

z I introduce a new approach by which a cognitive model learns to use the state of work-
ing memory to guide long-term declarative memory retrievals. I demonstrate that this
learning process replicates aspects of human behavior that previous models could not. (8.1.2)

z I extend the Soar cognitive architecture to support gradual procedural learning in a
manner consistent with existing architecture theory. I demonstrate that this can replicate
the gradualness of human learning. (8.2)

z I introduce a novel cognitive architecture model of human task sets. I demonstrate how
this can model human choice-based decision making, task switching, and working memory
interference effects. (9.1.1-9.1.2)

There are other minor extensions or novel distinctions that I introduce to PRIMs theory that I
discuss in this thesis. my evaluations focus on the four contributions listed above, however.

7

1.4.2 Modeling Contributions

The work of developing the PROPs system results in the following two secondary contributions,
which can assist with future cognitive modeling research:

1. I develop the PROPs system code as a robust, task-independent tool for developing cognitive
model agents.2

2. I define and demonstrate a two-part methodology for developing and evaluating incremental
advances to cognitive architecture theories. (chapter 3)

First is the PROPs agent code, which future researchers can use for general cognitive modeling
in Soar. While Soar has been used for cognitive modeling practically since its inception, PROPs
provides a structured and constrained task-independent framework for applying Soar to human
behavior modeling. Agent programmers can leverage the PROPs system’s built-in processing for
procedural learning, transfer, and decision making, and need only encode task-specific instructions
using a high-level problem space description. This simplifies agent development considerably
compared to most cognitive architecture agent implementations, which require one to define all
system-level behavior for the architecture mechanism interactions. The PROPs system provides
these out of the box in a manner that is consistent with human cognitive theory. In computer
science terms, this is analogous to providing a higher-level programming language like Python
compared to a more fundamental language like C.

Second is the methodology I use for developing and evaluating PROPs as an implementation
of PRIMs theory. As described in the next chapter, there is little precedent in the literature for
how to compare my work with prior cognitive architecture research. This contribution comes in
two interrelated parts. First is a methodology for evaluating my architecture model against a prior
model. Second is a methodology for extending that prior model. These are defined and integrated
in Tables 3.1 and 3.2 on page 19.

2This is publicly available at https://github.com/Bryan-Stearns/PROPs.

8

1.5 Outline

The rest of this dissertation is organized into the following sections:

2. Background. I summarize related work in computational models of task-independent hu-
man skill learning.

3. Methodology. I describe my approach for developing the PROPs system and for evaluating
it in terms of my desiderata.

4. PRIMs and Actransfer. I give an overview of PRIMs theory and a specification of its pro-
cessing steps that I implement with PROPs. I also discuss how PRIMs has been implemented
in Actransfer and the ways I need to expand upon this implementation.

5. Actransfer Experimentation. I describe the Actransfer experiment suite, which I use to
evaluate PROPs, as well as Actransfer’s original performance.

6. Soar. I describe the relevant theoretical and computational principles of the Soar cognitive
architecture to the extent that they inform my design of the PROPs system.

7. PROPs Iteration 1: Defining Support for Working Memory Operations. I describe
the first iteration of the PROPs system, which replicated Actransfer processing in Soar and
introduced a new layer of primitive processing for that purpose.

8. PROPs Iteration 2: Defining Declarative Retrievals. I describe the second iteration of the
PROPs system, which introduced gradual procedural learning in Soar and extended PRIMs
theory and computation for memory retrievals using related work in cognitive science.

9. PROPs Iteration 3: Defining Decision Making and Timing. I describe the third and final
iteration of the PROPs system, which unified Soar theory with PRIMs theory, integrated task
set theory for human decision making and task switching, and completed the computational
model that I present here in this thesis.

10. Discussion and Related Work. I discuss the PROPs system in connection to related re-
search and review outstanding questions and areas of potential future work.

11. Conclusion. I briefly summarize this work’s contributions and directions for further study.

9

CHAPTER 2

Background

In this chapter, I review three lines of research relevant to this thesis. First is the field of cognitive
architecture. Second is research in general human skill learning and the associated cognitive pro-
cesses. Third is the work related to the problem of evaluating models of cognition, which has been
a difficult endeavor since the beginnings of cognitive modeling.

2.1 Cognitive Architecture

To paraphrase Laird, Lebiere, et al. (2017), a cognitive architecture defines a general purpose
computational device capable of running programs on data, with the difference being that the
programs and data are limited to those appropriate for human-like intelligent behavior and are
ultimately intended to be learned from experience rather than programmed, aside from possibly a
limited set of innate programs. Commonly, the programs they run for different tasks are referred
to as agents or simply models, and researchers often test different theories of cognition by imbuing
agents with knowledge that leads them to behave in the theorized way.

While the field was pioneered by a small handful of architectures such as Soar and ACT-
R (Anderson, 2007), today it is estimated that there are close to 300 architectures in existence,
with at least a third of them actively used for cognitive modeling (Kotseruba & Tsotsos, 2018).
The Common Model of Cognition is an emerging consensus in the cognitive architecture com-
munity regarding the general computational framework of human cognitive processing (West,
2020). Figure 2.1 depicts the high-level structure of the Common Model. The two cognitive
architectures I focus on in this thesis, Soar and Actransfer (as a derivative of ACT-R), both fol-
low this model. Both use symbolic graph-based data structures to model the contents of Working
Memory (WM). Both use if-then production rules to represent procedural knowledge and the
computational means by which an agent modifies its WM. Example production rules might be,
IF (prompt is shown) THEN (read the prompt), or IF (prompt asks for

report) THEN (set goal to check progress). Both architectures also define a

10

Long-term Declarative Memory (LTDM) where their agents can store or retrieve explicit, sym-
bolic knowledge, such as “The prompt says ‘Hello.”’ or “2 + 5 = 7.”

Figure 2.1: The Common Model of Cognition, taken from (Laird, Lebiere, et al., 2017).

To date, cognitive architectures have been used to successfully model a wide variety of human
task behaviors. ACT-R is the most commonly used in cognitive modeling, having been used in
over 1,100 publications (Ritter et al., 2019). However, most cognitive architecture publications
use different agent model designs within the architecture, not a “single system” design that can be
applied to model multiple, diverse tasks. But progress is beginning to be made in this direction.
Researchers using ACT-R have begun to make use of a common set of agent procedural rules for
learning in multiple tasks (Anderson et al., 2019). Similarly, the Soar agent Rosie (Kirk, 2019) is a
single system that can learn 60 different games and a variety of mobile robot tasks by instruction,
though Rosie has focused on achieving task performance rather than on modeling human learning.

In contrast, work with PRIMs theory (Taatgen, 2013) has provided a cognitive model of proce-
dural learning and transfer that is truly task independent and consistent with the Common Model
of Cognition. Agents based on PRIMs theory generate all their behavior from a small set of innate
primitive knowledge, and they require only task-specific instructions in order to be applied to tasks
supported by the architecture.

Taatgen (2013) embedded PRIMs theory in ACT-R, and the resulting architecture is called
Actransfer. Though most of its core processing is the same as that of ACT-R, Actransfer is its own
architecture. Actransfer thus generally satisfies D2 as a system that can be applied to real tasks
just as ACT-R is, and it also satisfies D3 as a task-independent system that can model a variety of
tasks. Further, it is based on a large body of ACT-R and independent human research that implies
it is consistent with D4 (Huijser et al., 2018; Taatgen, 2019). However, based on the analysis
presented below, Actransfer is incomplete in terms of D1 as a comprehensive model of PRIMs
theory. Actransfer provides architectural computational for procedure learning and transfer as

11

prescribed by PRIMs theory, but it elides important details in the theorized processes that support
the main theory, particularly in areas of memory use and decision making. As I discuss in chapter 4,
it does not entirely satisfy D4 to the extent that it uses ACT-R components in ways that appear to
deviate from their intended theory for modeling human cognition. For example, to implement
agent decision making, Actransfer employs the ACT-R declarative retrieval mechanism, although
in ACT-R theory, a different utility-based process is hypothesized to represent human decision
making (Anderson, 2007). It should be noted, however, that sometimes an architecture simply
does not provide all the mechanisms that the theory calls for, and to evaluate the theory at all with
an existing architecture requires using the existing architecture’s mechanisms in a manner contrary
to their original design. When this happens, it can motivate a reformulation of the theory that
one wishes to model, a modification to the architecture, or else a completely new architecture that
implements the theory through a novel approach to representing human cognitive processing. This
must be kept in mind with my work with PROPs as well as I apply PRIMs theory in the Soar
cognitive architecture.

2.2 Human Skill Learning

A theory of human learning that has had great impact and is still in use today is the three-phase
theory of skill acquisition by Fitts and Posner (1967). Three-phase theory correlates outward
transitions in learning performance with theoretical transitions in mental processing. In the first
cognitive phase, a subject is still learning what approach to use when performing the task and
must therefore deliberately reason over each cue, action, and desired outcome while performing
the task. Thus, this phase is characterized by the need for intense cognitive effort as well as highly
variable or incorrect actions while the subject uses trial and error to learn. The second associative

phase follows once the subject has learned a stable approach for the task and is then learning to
perform that approach well. In this phase, repeated practice lets the subject become increasingly
fluid and accurate as they gain automatic procedural skills for responding to task cues. In the final
autonomous phase, the subject has proceduralized their approach enough so that they can perform
in the task with expertise almost entirely automatically, subject to little cognitive effort or control
or cognitive interference, such that the subject can engage in unrelated reasoning while performing
the task. Three-phase theory has influenced most of the other works I describe below. In the years
since its introduction, Posner and others have found that each phase corresponds to processing
within particular brain regions (Perez et al., 2018). These different brain regions can operate in
parallel, such that there is some overlap when progressing from one phase to the next, though as a
whole a learner follows an ordered progression through each phase.

Psychology research has also come to distinguish between declarative and procedural long-

12

term memory knowledge over many decades of research, and these terms are now well established
(Kump et al., 2015; Radvansky & Tamplin, 2012; Squire, 1986, 2004). Generally speaking, declar-
ative knowledge is explicit, factual knowledge about the world. It usually can be verbalized (is
declarable) and manipulable by deliberate reasoning. Procedural knowledge, on the other hand, is
tacit knowledge for performing cognitive or motor actions, and it can only be accessed by using it
for performance. Procedural knowledge is generally skill that is learned through repeated practice,
and, as non-declarative memory, it cannot be directly inspected or modified by deliberate reason-
ing. It is thus resistant to change and lasts a long time compared to declarative memory (Radvansky
& Tamplin, 2012). Since the 1980s, it has been understood that procedural knowledge is in fact one
of multiple different kinds of non-declarative memory. Other kinds include memory for perception
or memory for emotional responses (Squire, 2004). Procedural memory is the memory for skills
and habits, both motor skills and cognitive skills.

Anderson (1982) incorporated the declarative/procedural distinction and three-phase theory
within his theory for the ACT cognitive architecture, a precursor to ACT-R. ACT represents declar-
ative knowledge with symbolic graph structures, and procedural knowledge with production rules.
In ACT, the three phases are called the declarative, transition, and procedural phases. In the first
declarative phase, the architecture reasons over and arranges declarative facts about the task do-
main. In the second transition phase, the agent learns to encode declarative knowledge about
procedures into the production rules. Once the agent skill knowledge is primarily represented in
production rule form, the learner is said to be in the third procedural phase. This work has been
continued and expanded upon by others in cognitive modeling, such as in KRK theory (Kim et al.,
2013). KRK theory additionally incorporates a theory of forgetting during the learning phases.
The alignment of three-phase theory with stages of declarative and procedural knowledge repre-
sentation is depicted in Figure 2.2.

The smooth curve in this figure typifies the result of averaging human data across many indi-
viduals. A single individual’s performance might not be so smooth. The Plateaus, Dips, and Leaps
(PDL) framework by Gray and Lindstedt (2017) complements the three-phase theory by describ-
ing the nuanced role of progression through the three phases in an individual. In this framework,
a learner’s progression through the three phases consists of multiple smaller cycles of progression
through the phases, marked by plateaus, dips, and leaps in task performance. As a learner gains
associative/autonomous phase expertise in a particular task approach, their performance reaches a
plateau. The subject can then recognize that they must alter their approach to achieve even greater
performance, and then re-enter the cognitive phase by attempting a alternate, novel approach. This
can lead to a slight dip in performance. Then, as the subject gains mastery in their new, superior
approach, their performance leaps to new levels of mastery. A single subject can exhibit multiple
transitions through plateaus, dips, and leaps in a single session of practice.

13

Figure 2.2: How performance changes with practice in three phases of knowledge representation.
Figure taken from (Kim & Ritter, 2015), originally used for depicting KRK theory.

Bovair and Kieras (1991) described a model of procedural learning that distinguishes between
procedure comprehension and procedure interpretation in the context of learning skills through
reading text descriptions of the task. Procedure comprehension is the stage when declarative rea-
soning constructs an internal mental representation for the approach described in the written pro-
cedures, represented in terms of known skill knowledge that can apply that approach. Procedure
interpretation invokes these constructions to actually execute the procedures. The procedure com-
prehension process was specifically described in terms of the cognitive / declarative phase of skill
learning.

A significant portion of research in procedural learning concerns the nature of transfer. Broadly
speaking, transfer is an improvement in one’s ability to learn one skill due to prior learning in an-
other skill. Thorndike (1922) proposed the identical elements theory of transfer, which states that
a person transfers knowledge from one skill to another because the mental procedures in both in-
voke the same skill knowledge elements. Singley and Anderson (1985) proposed a computational
definition for procedural transfer through the identical productions model. This model uses pro-
duction rules as the identical skill elements that are reused across tasks. When an agent for this
model learns a rule for one task that can be reused later when performing a second task, the agent
does not need to learn that rule again for the second task, which reduces learning time. Singley and
Anderson (1987) evaluated the identical productions model using ACT. By comparing the model
with human performance, they found that in some cases the model produced a fairly accurate rela-
tive prediction of human data. In other cases, it achieved only half the transfer measured in human
participants, indicating that the model was not a complete explanation of transfer.

14

Bovair and Kieras (1986) analyzed cognitive phase learning in humans and showed that us-
ing individual conditions and actions within instructed task rules as identical elements of transfer
predicts human transfer fairly closely. Though their work primarily concerned declarative compre-
hension of task rules, this result supported the notion that individual, generalizable conditions and
actions might be identical elements of transfer in human procedural learning as well, rather than
whole task-specific productions. This follows from the three-phase understanding that humans
learn procedural representations from declarative representations. Bovair and Kieras used regres-
sion to show how the various factors of task training, such as training order and rule elements,
contributed to learning and transfer. For example, subjects for this research would take about 8
sec longer to learn completely novel task rules compared to rules with transferred conditions or
actions.

Taatgen (2013) proposed PRIMs theory, which I describe in more detail in chapter 4, as a
modification of the identical productions model of transfer that expands the idea of transfer across
rule conditions and actions. PRIMs theory describes a task-independent cognitive architecture
approach that generates human procedural learning and transfer behavior based on the actual
computation of composing task rules from individual condition and action memory operations.
These memory operations are task independent because they are defined in terms of the architec-
ture’s memory systems (e.g. the general action of copying a value from one particular memory
slot to another). These condition and action procedural primitives (“PRIMs”) form the basis of
an assembly-like language by which any task can be instructed, executed, and learned. Taatgen
(2013) used the Actransfer implementation of PRIMs theory to generate human transfer behaviors
in a wide variety of tasks.

Like KRK and other theories, PRIMs describes skill learning as a process of learning auto-
matic procedural knowledge from practice, based on declarative knowledge of a task approach.
The PRIMs agent begins with declarative instructions for which primitive procedures to execute,
and, with practice, the agent’s architecture compiles these primitives together into larger, more
specialized procedures that provide faster performance. PRIMs, as implemented in Actransfer,
achieves more transfer than prior models due to the generality of its primitive production rules.

In its implementation of PRIMs theory, the Actransfer architecture focused on the computa-
tional representation of primitive skills through production rules and on how they can be compiled
for transfer with practice. However, its implementation elides the computation of some supporting
processes, such as the process of how the initial declarative instructions are retrieved into WM for
the agent to examine and execute.

A newer evolution of Actransfer has been developed, simply referred to as the PRIMs architec-
ture (Huijser et al., 2018), which has some experimental variations from Actransfer (N. Taatgen,
personal communication, Dec 17, 2019). However, publications that use this variation have not de-

15

scribed its mechanics or evaluated its modifications compared to Actransfer. For this thesis, I focus
on the original publication of Actransfer, which more directly reflects the mechanics of ACT-R.1

PRIMs theory assumes that a subject has already derived an internal declarative representation
for a task approach that they wish to practice, and it only attempts to model the process of compil-
ing that representation into procedural knowledge. As I discuss in section 8.3, this corresponds to
the associative/autonomous phases of three phase theory. My work excludes the cognitive / declar-
ative phase and the question of how humans use reasoning or creativity to derive ideas about a task
approach. I am concerned primarily with creating a task-independent model of what Bovair calls
the procedure interpretation process. This thesis presents a comprehensive computational model
of PRIMs theory for procedural learning and transfer during the procedure interpretation process,
not a complete model of the entire process of learning task procedures, which would also include
what Bovair calls the procedure comprehension process.

2.3 Theory Evaluation

A computational model allows a theory to be implemented and tested in a controlled settings. But
one can implement a single theory with different computational models, and not all implementa-
tions will necessarily make the same predictions or be consistent with what is known about human
processing. Details matter, and the computational details refine and constrain the theory to the
extent that they are meant to represent processing done by humans. I must therefore evaluate the
merits of my implementation choices.

Researchers often compare different model implementations in terms of how well they repro-
duce external human behavior for specific tasks. If one model reproduces human behavior more
accurately than another, this gives weight to the theory behind that implementation. If both models
can generate the same external behavior even when using different computation, it is difficult to
evaluate whether either implementation reflects human cognition more accurately than the other,
or whether one will be more fruitful for future research. This is an instance of what are known as
identifiability problems in cognitive modeling (Beck & Chang, 2007).

There are two types of identifiability problems, the uniqueness problem, in which many differ-
ent computational approaches can produce equivalent external behavior, and the discovery prob-

lem, in which the space of possible solutions is vast but there is little guidance for finding the
correct one (Anderson, 1993). Indeed, evaluating models of the internal processes of cognition
has been called a form of black-box testing (Ritter et al., 2019), analogous to trying to determine a
computer’s machine language when the only available data are program outputs (Newell, 1973).

1Actransfer was a modification of ACT-R 6.

16

There has been some prior work comparing cognitive architectures. Wharton and Lewis (1990)
compared Soar and the Construction-Integration Model on a trivial button-press task, but the archi-
tectural mechanisms were apparently not comparable enough to associate with outward behavioral
differences. Johnson (1997) reviewed and compared theoretical assumptions in ACT-R and Soar,
but without experimentation. Ritter and Wallach (1998) compared an ACT-R model of simple de-
cision making with a projected (but not implemented) Soar approach. R. M. Jones et al. (2007)
analyzed theoretical differences between ACT-R and Soar with respect to their procedural memory
and decision making implementations, but also did not connect this analysis to experimental model
results. Kennedy and Trafton (2007) analyzed procedural learning behaviors between these archi-
tectures using the same task and comparable agent designs, but they focused on the scaling of the
computational implementations and not on the theory for human cognition and did not compare
with human performance. Muller et al. (2008) compared ACT-R and Soar with identical models
for a common task and discussed related human cognitive theory at a high level, but their com-
parison similarly focused on internal program design only and did not discuss how differences in
computation led to differences in model task behavior.

Some work by Sun et al. (2004) is closer in spirit to my approach that I describe in the next
section. They compared Soar with the CAST architecture for multi-agent communication, for
which CAST is specially designed. Each architecture model used the same task knowledge but
different computational mechanisms, and their experiment compared the different decision making
tendencies of each. Using the same task knowledge allowed computational mechanisms to be more
isolated as a variable for evaluation. Their analysis examined computational differences in how
each architecture let agents communicate with each other and how this contributed to net decision
making patterns. However, they examined net decision making of groups of agents only, and did
not explore any other computational facets of these architectures that contributed to their behavior,
nor did they vary internal computation elements to determine the effects on external behavioral
differences.

Kieras (2016) describes an approach of incremental modifications to agent designs for the
purpose of honing in on better models of human processes, using the EPIC architecture. This is
also similar to my proposed approach, except that I incrementally compare architectural system
processing rather than agent reasoning designs.

In sum, there is not yet agreement on what computational processes provide which human
behaviors for tasks, and little uniform precedent in cognitive architecture research for how I might
evaluate my computational enactment of PRIMs theory. Therefore, I introduce the novel evaluation
approach described in the next section. This approach breaks down the barrier between analyzing
external task behavior and the effects of internal processing components. This should allow a
greater understanding of the merits of the contrasted architectural theory components, and thereby

17

contribute toward resolving the discovery problem.

18

CHAPTER 3

Methodology

For the reasons described above, there are two goals for my methodology: first to develop a com-
prehensive, task-independent model of human procedural learning that satisfies my four desiderata,
and second to evaluate the relative computational and theoretical contributions of my approach in
Soar. I aim to accomplish both together through an iterative design and evaluation process.

I begin by reimplementing the model design of Actransfer using Soar, as best as reasonably
possible. I then alternate between evaluating model performance and introducing incremental ex-
tensions or modifications to the model. This iterative process allows me to experimentally isolate
the effects of each change between Actransfer and PROPs in my attempt to make a comprehen-
sive model of PRIMs theory. It also lets me use each evaluation to inform the next incremental
modification of the model.

I outline my methodology in Table 3.1 and Table 3.2. Table 3.1 shows my methodology for
comparing two different cognitive models that apply the same high-level theory. This approach
could be used to evaluate other high-level theories of cognition besides PRIMs and using other
architectures besides ACT-R and Soar. The main method steps are described in the center column.
The specific application for my work for each step is shown in the right-hand column.

Step Method Application
1.a Select high-level theory PRIMs theory
1.b Define theory flow diagram See chapter 4
1.c Select two computational architectures/approaches ACT-R and Soar
2.a Implement diagram with 1st approach Actransfer
2.b Replicate 1st implementation in 2nd architecture PROP1

Iterate until 2nd implementation complete:
3.a Evaluate 2nd vs human and 1st, by total and increment See chapters 7–8
3.b Revise one part of 2nd implementation toward goal of 2nd approach See Table 3.2
3.c Evaluate completed 2nd implementation See section 9.4

Table 3.1: Methodology steps for comparing architectures

19

Step Method
3.b.1 Identify gap in model for high-level theory
3.b.2 Identify 2nd architecture solution(s) and select one
3.b.3 Constrain solution to fit model theory and related human theory
3.b.4 Implement revisions to 2nd architecture model

Table 3.2: Methodology sub-steps for extending PRIMs

Table 3.1 includes three main steps. Step 1 and its parts establish the groundwork for the
research. Step 2 initializes the actual cognitive modeling. Step 3 iteratively develops the model.

Table 3.1 could be applied to compare any two architecture models that were already defined.
However, I use the iteration of step 3 to incrementally develop the PROPs model and thereby extend
prior PRIMs work. Table 3.2 shows my methodology for step 3. I now describe each methodology
step in more detail.

Step 1.a As described, I select PRIMs theory as the high-level theory for the processing pipeline
and principles of task-independent procedural learning, in accordance with D3.

Step 1.b I then formally define a flow diagram of PRIMs theory. This diagram defines the pro-
cesses that I must comprehensively implement to satisfy D1. I describe my diagram of PRIMs
theory in chapter 4.

Step 1.c To compare different computational definitions of the diagram processes, (at least) two
architectures must be used to implement it. I specifically compare ACT-R and Soar as two of the
most prominent cognitive architectures in the field. ACT-R shares many high-level principles with
Soar and other architectures, aligning with the Common Model of Cognition (Laird, Lebiere, et al.,
2017), but differs in terms of the computational details it defines and how it defines them. Where
ACT-R has been prominent in cognitive modeling, Soar has historically been developed from the
context of artificial intelligence and its computational realization, but Soar has been rooted in
modeling human cognition as well. I believe this computational focus allows Soar to better define
aspects of PRIMs that were elided in its Actransfer application. Finally, there is a great deal of local
expertise in Soar, and PRIMs theory has already been applied and tested using ACT-R theory.

PRIMs theory could potentially be applied in other architectures, such as perhaps LIDA (Faghihi
& Franklin, 2012), and the comparison between ACT-R and Soar as performed in this thesis could
thereby be extended. However, building a unified task-independent system of procedural learn-
ing within one architecture is a sufficiently expansive task to make the development of further
architectural applications intractable for one thesis.

20

Step 2.a Once the theoretical groundwork is laid in step 1, the high-level theory must be imple-
mented in both selected architectures. As stated, PRIMs theory has already been implemented in
ACT-R, resulting in the Actransfer architecture. This serves as the first architecture implementa-
tion. PROPs in Soar is the second.

Step 2.b There are two possible avenues for creating PROPs as a Soar model of PRIMs theory.
First is to directly modify the architecture to reflect PRIMs principles. This was the approach used
to develop Actransfer from ACT-R. If PRIMs requires a certain type of automatic processing not
apparent in Soar, I could add a special component to Soar devoted to that function. A benefit
of this approach is that the resulting system would be its own task-independent architecture, and
it would properly distinguish its automatic, general processes as architectural. Task-specific in-
structions given to the model would then also be clearly separated as agent code that runs on the
architecture. A downside of the this approach is that architectural modifications would be fairly
unconstrained. Overwriting or inserting code in the Soar architecture’s definition risks replac-

ing aspects of Soar theory with a programmer’s naive conceptualization of PRIMs theory. It also
tempts over-simplifying process implementation in cases where it might be easy to replicate some
desired process output with a custom function rather than actually enact the theorized cognitive
processing. This further risks not taking advantage of or investigating avenues that Soar might
already provide for enacting PRIMs processing, if overlooked for the sake of expedient develop-
ment.

The second option is to implement PROPs with production rules that run using unmodified
Soar, with the constraint that the rules must be task-independent. A benefit of this approach is
that it is constrained to use existing Soar theory. Additionally, it clearly separates the stable Soar
theory base from research code. A downside of this approach is that it represents PRIMs processes
that are theoretically architectural and automatic as part of the agent’s procedural knowledge. This
approach also assumes that Soar’s automatic mechanisms are already sufficient to comprehensively
model PRIMs theory. If this is not the case, I would still need to complement agent programming
with architectural modifications. Developing PROPs as a Soar agent then would let me explore
whether changes in Soar are indeed necessary to support PRIMs.

I select the second approach for my research. I iteratively develop PROPs as a task-independent
production rule agent that runs using existing Soar in a manner that reflects Soar theory. Only if
it is shown that PRIMs functionality is not reasonably feasible when using Soar according to its
theory and design do I add or modify the underlying code that defines Soar’s architecture.

My first implementation of PRIMs theory in Soar is called PROP1, which largely replicates
Actransfer’s processing. Where this is inconsistent with Soar processing, PROP1 simulates Ac-
transfer behavior via agent decision making. For example, where Soar’s procedure learning works

21

differently than ACT-R’s automatic pairwise procedure compilation, PROP1 uses agent reasoning
to deliberately remember pairs of procedures and set them up for the architecture to compile.

Step 3.a: In this step, I incrementally experiment and introduce changes in PROPs to define
more complete PRIMs processing using Soar theory. These incremental additions are reflected in
version names: PROP1, PROP2, and PROP3. At each iteration, I evaluate PROPs according to
three dimensions:

• How completely does it model every process in the PRIMs flow diagram, including those
that were not fully developed in Actransfer?

• How well does it reflect Soar theory?

• How well does it replicate human learning behavior?

The first two evaluations measure the state of PROPs development. PROPs is complete once it both
fully models every process of PRIMs and reflects Soar theory. The third evaluation, comparing
with human behavior, measures the effects of each processing change during iterative development.
The primary measure of interest is whether response time latency for task actions matches human
learning and transfer profiles. This also will serve as a final measure of PROPs as a complete
model of task-independent procedural learning.

Table 3.1 notes two varieties of evaluation for step 3.a: by total and by increment. For each
iteration, I can compare PROPs as a whole with human and Actransfer behavior to determine
the total results of development up to that point. However, I also want to evaluate the individual
changes of each iteration. There are two ways to evaluate incremental changes in PROPs. One
is to compare the model with its prior iteration. In the first iteration of step 3.a, I would compare
PROP1 with Actransfer, then PROP2 with PROP1, and then PROP3 with PROP2. This method is
appropriate when an iteration changes an aspect of the system design of the previous iteration.
However, when an iteration of design instead adds a new process detail, it is possible for me to be
more precise in evaluating it. I can enable or disable the new system as a hyper-parameter so that
I can directly observe the effects on the model’s task behavior. This second type of evaluation is
preferred wherever possible.

To compare with human learning, as stated, I apply PROPs to the same suite of experiments
used to evaluate Actransfer in (Taatgen, 2013), using the same task instructions. By using these
different approaches to produce the same task behavior and theoretical cognitive processes, I ex-
ploit rather than avoid the uniqueness problem and thereby gain a better understanding of each
approach. I particularly examine whether PROPs processing results in superior, worse, or similar
fits to human performance compared to the approach of the previous iteration or Actransfer. Wher-
ever results are similar despite different computational approaches, it might indicate a property of

22

either PRIMs theory itself or of the specific task instructions. Wherever results are different, it
must be due to the different model processing.

For both Actransfer and PROPs, I use the same experimental tasks, the same designs of task
instructions, the same design of virtual task environments, and the same policies for calculating
latencies for environment interactions (such as motor or visual actions). These are all taken from
supplementary materials from (Taatgen, 2013).1 If a difference in the mechanisms of Soar and
ACT-R/Actransfer requires that the task instruction designs differ in order to supply equivalent
functionality, I make this clear and attempt to make the designs as equivalent as possible.

The chief purpose of having a breadth of experimental tasks during evaluation is to verify that
PROPs maintains equivalent functionality and generality as Actransfer in the final model. Using all
experiments is not a requirement for intermediate iterations of development. Since each experiment
model in the Actransfer suite explains behavior using particular processes, and each iteration of
PROPs development modifies different portions of model processing, experiments at each iteration
are selected for their relevance in evaluating the modified processing.

Actransfer uses simple time estimates for motor and visual actions in its models, such as 0.25
sec for every eye movement and keyboard stroke. These numbers were not presented as though
intended to be particularly precise, but rather to serve as functional approximations. However,
because these times do not reduce with procedural learning, they shape the baseline of how fast an
agent can perform after all procedural learning is accomplished.

I do not attempt to explore alternate models of task reasoning or motor/visual timing from
those provided in the Actransfer experiment suite. The purpose of this research is to fill the gaps
in the task-independent PRIMs processes that support this task-specific reasoning and to evaluate
the effects of doing so, not to provide better models of task-specific reasoning. I only alter the task
reasoning where it is necessary for the PROPs system in Soar to support the overall computation
of the original models.

As described above, I at first simulate some of Actransfer’s theory in Soar using agent decision
making. This exists in PROP1 and PROP2, and this decision making takes time during task execu-
tion. In general, I can ignore the time for these decisions during post-experiment analysis so that
it is as if this functionality had been architectural.

Step 3.b: After each iteration of evaluation, I extend and refine the model further so long as it is
not yet complete. In this case, I consider the PROPs system complete when it satisfies all four of
my desiderata. PROPs satisfies D1 when it comprehensively models each part of the PRIMs flow
diagram. I consider both it and Actransfer to already satisfy D2 as implementable models, since
they are by design embedded in architectures that are capable of full environment interaction.

1Available at https://www.ai.rug.nl/∼niels/actransfer.html

23

https://www.ai.rug.nl/~niels/actransfer.html

Actransfer similarly already satisfies D3 as a task-independent model, with the exception of the
way it uses task-specific timing parameters, as I will discuss in the next chapter. The PROPs
system satisfies D3 when it is task-independent in these parameters as well as the ways Actransfer
is already task-independent. Finally, PROPs will satisfy D4 as a model of human cognition when
each component of its implementation is consistent as a unified cognitive architecture model that
aligns with current theory for human cognition and learning.

Step 3.b.1 of my methodology is to identify a gap in the existing cognitive architecture model
of PRIMs theory. Step 3.b.2 is to then examine Soar theory to determine any solution it might
offer. It is possible that multiple solutions might be consistent with a proper use of Soar. This
might indicate a lack of constraint in Soar theory. In this case, I must still select one to implement
in PROPs. I could attempt to select the solution that is also most consistent with PRIMs theory,
but thoroughness would demand that I explore both solutions in different iterations of PROPs
development, so far as that is tractable. Step 3.b.3 is to constrain the selected solution to satisfy
the various needs of PRIMs theory and human learning theory as well as the existing Soar model.
My priority with this step is to maintain a reasonable and consistent model of human learning, and
thus satisfy D4. Step 3.b.4 is to then implement the chosen computation for experimentation.

Step 3.b.3 in particular integrates and unifies Soar theory with PRIMs theory, and the resulting
marriage extends both. PRIMs theory contributes to Soar a structure for using its task-independent
mechanisms, and Soar contributes a constrained architectural basis for realizing the ideas of PRIMs
theory. The model that emerges might include elements not present in either PRIMs or Soar the-
ory alone, thereby extending that prior work. Where neither PRIMs nor Soar defines a process
and where their unification implies no further definition, I do not attempt to introduce additional
computational explanations for human learning. Rather, I seek to unify existing models.

Step 3.c: Once I complete an iteration of the PROPs system that satisfies all desiderata, the only
step that remains is to evaluate this final model. This evaluation process is the same as in step 3.a.
After all work has been completed, however, I am able to draw firmer conclusions regarding the
implications of any architectural or human learning theory that we use in the development process.

As stated above, I iterate through three versions of the PROPs system: PROP1, PROP2, and
PROP3. PROP1 (described in chapter 7) is the initial implementation that replicates basic Ac-
transfer computation using Soar’s memory systems. PROP2 (described in chapter 8) modifies this
design to incorporate gradual procedural learning using Soar principles. The final iteration of de-
velopment creates PROP3 (described in chapter 9), which more broadly incorporates Soar theory
on goals and decision making. This completes my work in developing the PROPs system. My
evaluation of PROP3 constitutes step 3.c for my methodology.

24

CHAPTER 4

PRIMs and Actransfer

PRIMs theory describes a processing pipeline by which an agent can both execute tasks and learn
new procedural rules from primitive “PRIM” rules. Below, I first give a high-level overview of
PRIMs theory and its flow diagram before I explain each element in more detail. I then discuss
the implementation questions and problems that each phase presents. I then describe the extent to
which Actransfer satisfies my desiderata for each phase of the theory, which informs my approach
in developing PROPs.

Legend

Procedures Unknown Retrieve instruction
to WM

Select/Reject
instruction

Execute using known
procedures

Gradually available

Learn procedures
as pairwise

combinations of
practiced procedures

Initializes
Defines

instruction
language

Declarative
Memory

Procedural
Memory

Primitive
Procedures

Calculate latency from # retrievals

1

2 3 4

6

5

Lo
ng

-te
rm

m
em

or
y

Complete:
Not Complete:

Inconsistent:

Select

Reject

Figure 4.1: The flow diagram of the PRIMs theory procedural learning pipeline. Color indicates
completeness of Actransfer’s implementation of each phase.

I formally describe PRIMs theory processing with the flow diagram shown in Figure 4.1. The
top half of the figure shows declarative and procedural memory stores available to the learner.
The lower half depicts the actual procedural learning process. The figure includes numbers 1-6,
which mark 6 key phases of PRIMs learning. I will use this numbering to structure my discussion
throughout this thesis. I will refer to these phases as P1-P6. In the figure, I color the different
phases according to how completely I believe Actransfer implements the theory of each phase in a
manner that satisfies my desiderata. Green indicates that the implementation for that phase satisfies
all four desiderata. Red indicates that it does not. Gray indicates that the implementation could
be considered complete on its own but that it is inconsistent with the human cognitive architecture

25

theory used for the rest of the implementation and therefore arguably does not satisfy D4. I will
explain coloring further in section 4.3.

4.1 Overview

In PRIMs theory, the processing summarized in Figure 4.1 begins anytime the agent does not have
automatic procedural knowledge that can apply in its current context. Specifically, the PRIMs
process begins anytime the agent does not have rules in its long-term procedural memory that
match the current state of Working Memory (WM).

With the PRIMs process, the agent composes condition/action rule behavior for a task from
primitive rules (PRIMs). PRIMs make up each condition and action in each composed rule. Ini-
tially the agent only knows innate PRIM rules, defined for the agent in the first phase of PRIMs
theory, marked P1. The upper half of Figure 4.1 shows P1 and the process of initializing long-term
memory. In P2-P5, in the lower half of the figure, the agent compiles condition PRIMs and action
PRIMs together to form a single condition/action task rule that it previously did not know as pro-
cedural knowledge. Once the agent adds this new rule to its procedural memory, it can then use it
to perform the procedure more quickly in the future, as calculated via P6.

In more detail, the agent compiles condition and action PRIM rules together using declarative

knowledge about a single condition/action task rule, which it retrieves from Long-term Declarative
Memory (LTDM) into Working Memory (WM) via P2. The retrieved instruction includes multiple
instruction lines for each rule condition and rule action. The agent is assumed to have already
been taught declarative instructions that it can use to arrange PRIMs into specific task operations.1

Once it has retrieved an instruction for PRIMs into WM via P2, the agent uses condition PRIMs
in P3 to test whether it should execute the instructed rule actions in P4. In P5, the architecture
automatically learns new rules that compile the condition and action PRIMs that the agent used
in P3 and/or P4, and it adds these to the agent’s procedural memory. This compilation process
happens gradually and hierarchically, as I will describe shortly.

Figure 4.2 shows the structure of a declarative instruction that can invoke PRIM rules. From
here on, I will use the terminology as depicted. An instruction triggers condition PRIMs with
declarative “condition lines” (shown in white) and triggers action PRIMs with “action lines”
(shown in gray). The instruction in this figure describes a single task rule as written on the left: “IF
(goal==’get-text’) AND (input<>nil), THEN (COPY input to slot1) AND (COPY ‘write-text’ to
goal).” In English this could be read, “IF the goal is ‘get-text’ and input is not missing, then copy
the input to slot1 in WM and set the goal to ‘write-text’.”

1The declarative instructions would be created through some unspecified declarative reasoning and comprehension
process, such as might be involved in interactive task learning (Laird, Gluck, et al., 2017) with a human instructor.

26

cond1: "goal==const1"

action1:
"COPY-input-to-slot1"

cond2: "input<>nil"

const1: "get-text"

action2:
"COPY-const2-to-goal"

const2: "write-text"

Condition lines

Action lines

Rule-specific values

Instruction

read-prompt

read-prompt

IF
 (goal == "get-text") AND
 (input <> nil)
THEN
 (COPY input to slot1)
 (COPY "write-text" to goal)

Figure 4.2: An example PRIMs instruction made of condition and action lines.

Notice in the figure that the condition and action lines do not include the values “get-text”
and “write-text” explicitly. These are represented separately (as shown in red) in a cache of rule-
specific values. This is because PRIM rules for conditions and actions are defined in terms of
specific WM operations on specific WM locations. The values “get-text” and “write-text” are not
memory locations, but values that can be within memory locations. The first condition line in the
figure might more accurately be read, “Test if the value in WM location goal is equal to the value
in WM location const1.” When an agent retrieves an instruction into WM via P2, it also retrieves
rule-specific values into a reserved set of WM locations so that the agent can use them in general
PRIM operations.

In this manner, PRIM rules are like assembly operations in a computer processor that manipu-
late the values among specific registers in memory. The declarative instructions are the assembly
program knowledge by which the agent can invoke these operations to perform any computation
supported by the architecture.

The specific types of PRIM operations that could be instructed with condition and action lines
depend on the architecture used to implement PRIMs theory. In Taatgen (2013)’s models, most
operations can be instructed using only the two basic == and <> types of condition and the single
COPY action, though each use of a condition or action across different WM locations requires its
own unique PRIM rule. For instance, “COPY-input-to-slot1” and “COPY-const2-to-goal” are each
applied with a different PRIM rule.

Figure 4.3 shows a simplified example of how phases P1-P6 work in Actransfer’s memory
systems using instructions as just described. The modeler initializes (P1) procedural memory with
PRIM rules that can read single condition lines and action lines. These rules are the same for
any task or domain. The figure shows procedural memory with two rules at the top that represent
example initial PRIM rules. The modeler can then also initialize LTDM with task instructions
that invoke these rules. In the figure, LTDM has three task instructions, labeled “find-prompt,”
“read-prompt,” and “type-word.” In this example, these instructions provide operations used in a
transcribe-text task. In this task, the agent needs to transcribe text from a prompt into a text editor.

27

Working Memory

Long-term Declarative Memory Procedural Memory

IF (action: "COPY-input-to-slot1")
THEN (COPY input to slot1)

IF (condition: "goal==const1")
THEN (return (goal==const1))

...

...

Retrieve
Modify

Learn

IF (actions include:
 "COPY-input-to-slot1"
 + "COPY-const2-to-goal")
THEN (COPY input to slot1)
AND (COPY const2 to goal)

Learned:

1 12 4

5

read-prompt

cond1: "goal==const1"

action1:
"COPY-input-to-slot1"

cond2: "input<>nil"

const1: "get-text"

find-prompt

cond1: "goal==const1"

action1:
"COPY-const2-to-motor"

cond2: "input==nil"

const1: "get-text"
const2: "look-right"

type-word

cond1: "goal==const1"

action1:
"COPY-slot1-to-output"

const1: "write-text"

cond2: "slot1<>const2"

const2: "eol"action2:
"COPY-const2-to-goal"

const2: "write-text"

action2: "CLEAR-slot1"

cond1 cond2 cond3

"goal==const1" "input<>nil" nil nil

cond4

action1 action2 action3

"COPY-input-
 to-slot1"

"COPY-const2-
 to-goal"

nil nil

action4

const1 const2 const3

"get-text" "write-text" nil nil

const4

input goal slot1

"Hello" "get-text" nil nil

slot2

66

Figure 4.3: A simplified example of Actransfer memory systems and task processing.

If the agent does not yet have text to write, it can attempt to look at the prompt by following the
“find-prompt” instruction. After it has done so, it can follow the “read-prompt” instruction to copy
what it sees into its WM. Armed with this knowledge, the agent can then begin transcribing the
text using the “type-word” instruction.

The figure shows the agent’s WM right after it has retrieved (P2) the “read-prompt” instruction.
The red, white, and gray boxes show WM slots that the agent loads the component elements of an
instruction into. Slot labels are shown in bold, and slot contents are shown underneath each label.
The agent has a fixed WM capacity, in this example only four slots for each kind of element, though
it only needs two of each in this case. The green boxes show general WM slots that are not specific
to the retrieved instruction. In detail, the “read-prompt” instruction describes the rule, “If the value
of the goal slot is “get-text”, and the value of the input slot is not nil, then copy the value of the
input slot to the slot1 slot, and copy the value “write-text” to the goal slot.”

Once the instruction is in WM, the agent can begin evaluating the condition lines (P3) with
PRIM condition rules. This is when the agent decides whether it should perform the instructed
actions or not. As shown in the top-right of the figure, the agent has a primitive rule in procedural
memory, IF (condition: "goal==const1") THEN (return (goal==const1)).
This rule matches on the “goal==const1” value in the cond1 slot of WM, and has the action of
telling the architecture whether the contents of the goal slot are indeed the same as the contents of
the const1 slot. Another PRIM rule (not shown) will similarly evaluate the “input<>nil” condi-
tion line held in the cond2 slot. The architecture collects the true/false results from these condition
PRIM rules for all condition lines in WM.

If all conditions are satisfied, then the agent can also perform the instructed actions (P4). In

28

this phase, action PRIMs respond to the action lines in WM. The figure shows procedural mem-
ory with a rule, IF (action: "COPY-input-to-slot1") THEN (COPY input to

slot1). This rule fires, and the contents of the input slot (“Hello”) get copied into the slot1 slot.
Similarly, another PRIM (not shown) will copy the value “write-text” from const2 to goal.

During this process, the architecture composes new rules (P5) from pairs of PRIMs that fire in
sequence. The figure shows one such newly-learned rule at the bottom of procedural memory. The
agent would have learned this rule after firing the PRIM action rules for “COPY-input-to-slot1”
and “COPY-const2-to-goal” one right after the other in sequence. This new rule can apply these
two actions at once for any instruction that includes both of these action lines, even if mixed with
additional actions or different const values. This provides the characteristic transfer behavior of
PRIMs theory. Since each rule-firing cycle takes time (P6), the agent speeds up task performance
by using learned, composite rules in place of multiple primitive rules.

As the new, composite rules execute instructions in future iterations of practice, the archi-
tecture further composes pairs of these together into even more specialized new rules. It first
composes rules that evaluate condition lines together alongside rules that perform action lines to-
gether. With repeated practice, it then learns a rule that performs all condition and action lines
together at once. Finally, it learns a rule that performs the entire set of operations at once without
the need for an instruction in WM, such as the single rule, IF (goal=="get-text") AND

("input<>nil") THEN (COPY input to slot1) AND (COPY "write-text" to

goal). Since declarative retrievals also take time, this further speeds performance. Once the
agent has fully learned rules for all instructed procedures, this PRIMs learning process with its
declarative instruction retrievals becomes entirely unnecessary.

Figure 4.4 demonstrates how gradual pairwise hierarchical rule learning works in PRIMs the-
ory, using a more complex instruction with two condition lines and four action lines, adapted from
(Taatgen, 2013). In the figure, each circle or cluster of circles represents a single rule that the
agent uses to apply the instruction line(s) underneath it. At the base of the figure are the individual
sequential PRIMs needed to execute each condition and action line.

A PRIMs learning agent learns only one layer of this hierarchy at a time. It is built up gradually
over multiple iterations of instruction practice, and with each higher layer of composition, the
agent needs fewer rules to execute its instruction lines. After one pass at executing the action lines
in Figure 4.4, the PRIMs that execute the first two action lines might be combined into a new
composite rule, and the PRIMs for the last two action lines might also be combined in that same
pass. The next time the agent needs to apply this instruction, the agent might use just these two
new rules to execute all four actions. With that pass, the agent learns a single specialized procedure
that carries out all four actions at once. This composition theory comes from ACT-R’s model of
production rule learning (Ritter et al., 2019).

29

Figure 4.4: Hierarchical clustering of PRIMs procedures with repeated practice, adapted from
Taatgen (2013).

As shown at the top of the figure, after all conditions and actions have been combined, the
final learning step embeds rule-specific values within the conditions and actions for a single task-
specific rule. The agent then uses this rule to perform the task-specific behavior automatically
without the need for declarative instruction. The PRIMs process then becomes unnecessary for
that operation.

Though the agent performs most quickly by only using the largest compositions of its rules,
all rules in the learning hierarchy are available for use in the agent’s procedural memory. Even if
the agent has fully learned a single task-specific rule for an instruction, it might still need a more
primitive set of rules to apply a different instruction. This allows PRIMs theory to model transfer
across different task domains. The agent can use the intermediate compositions in the middle of
the depicted learning hierarchy when applying a different instruction that uses subsets of the same
instruction lines. For example, assume an agent practiced the instruction in Figure 4.4 (call it “I1”)
enough times to learn a rule for the first pair and a rule for the last pair of action lines, as shown
above. If the agent attempts some other instruction (“I2”) that includes the same first two action
lines as I1, the agent can immediately use its learned rule to perform them both together, even
if it had never practiced I2 before. This transfer of memory operation combinations was a major
contribution of PRIMs theory.

The net result of this entire PRIMs learning pipeline is that the agent converts declarative
descriptions of procedures into more efficient procedural representations through practice.

30

4.2 PRIMs Phase Details and Challenges

In this section, I describe each PRIMs phase in greater detail along with the particular theoreti-
cal and implementation problems associated with each. A model of PRIMs theory that satisfies
desideratum D1 (that is, is a comprehensive model of PRIMs theory) must address each of these.

4.2.1 P1: Primitives

PRIM rules are the innate building blocks for creating all other procedural rules that a PRIMs
agent learns. Therefore, if they are not properly defined, they significantly constrain which task
behaviors the PRIMs agent is capable of. Desideratum D3 requires that the cognitive model be
task-independent. When implementing P1 in the context of a cognitive architecture, this means
that the innate PRIM rules initialized into the agent must be as task-independent as the underlying
architecture. It should be possible to compose any task behavior that the surrounding architecture
supports using the set of innate PRIM rules.

An additional challenge for implementing P1 is that the specification of the innate PRIMs de-
fines and constrains the rest of P2-P6. This is because each of those phases depend on PRIM
rules in some form. The format of the PRIM rules constrains the format of the declarative instruc-
tions, and this constrains the processes that retrieve them and carry them out for task behavior and
decision making.

4.2.2 P2: Retrieval Selection

P2 is when the agent selects a procedure instruction from LTDM to retrieve into WM. As I define
it here, P2 is not the process of retrieving an instruction but rather the process of selecting a
particular instruction from LTDM during a retrieval once that retrieval is initiated. The retrieval
itself is initiated by the architecture either when the PRIMs process first begins or when P3 rejects
a retrieved instruction.

The primary goal of P2 is to select an instruction that has satisfied condition lines. If the
condition lines for the retrieved instruction are not satisfied, the agent will reject the instruction
when it gets to P3 and will then attempt another retrieval.

PRIMs theory does not define a particular approach by which P2 should select an instruction
from LTDM. The agent’s reasoning processes cannot know whether the condition lines in an
instruction are satisfied until the agent evaluates them in P3. Taatgen (2013) hypothesizes that a
spreading activation mechanism might be used to bias the agent toward retrieving an instruction
that would have satisfied conditions in the its current context.

The biggest challenge of P2 is maintaining enough efficiency to support real-time tasks. Some

31

human tasks, such as many arcade games, can require very rapid real-time responsive behavior
on the order of seconds or milliseconds per action. The agent will waste time if it retrieves an
instruction with unsatisfied condition lines and needs to reattempt a retrieval. If the agent takes too
long searching for an instruction to use, it might not be able to respond quickly enough to perform
its task at all.

Desideratum D2 requires that the agent can perform its tasks, while D3 requires that the agent
is as task-independent as its architecture in the scope of tasks it can learn, and D4 requires that the
agent’s processing models human processing. All together, these require P2 to be fast and accurate
enough that the agent can support the wide variety of rapid, real-time tasks that humans do, so
far as is within the scope of the architecture. P2 retrievals need not be perfectly efficient, just as
humans are not perfectly efficient task performers, but they must be efficient enough to permit
human-like performance.

4.2.3 P3: Instruction Evaluation

P3 is the phase in which the PRIMs agent evaluates a retrieved instruction and determines whether
to apply its action lines or not. During P2, the agent cannot guarantee that the retrieved instruction
has satisfied conditions. Thus, once it has retrieved any instruction, the agent first uses known
condition PRIMs (or rules that combine condition PRIMs) to test each of the retrieved condition
lines against the current state of WM. If any of the condition lines is not satisfied, the agent
discards the instruction and repeats P2 to try a different instruction. The more time the agent wastes
retrieving and evaluating instructions that are not satisfied, the slower the agent’s task performance
will be. Once the agent retrieves and evaluates an instruction that does have fully satisfied condition
lines it can proceed to P4 to apply their action lines.

P3 is a process in which the agent decides whether it should execute the retrieved instruction.
This is a form of decision making, and an implementation will thus depend on the underlying
architecture’s decision making theory. Even if the condition lines for an instruction are satisfied,
it is possible the agent might not want to use that instruction at that point in time. There might
be other instructions that the agent would be better off applying instead. PRIMs theory does not
define any particular constraints for P3, however, other than that it should reject an instruction if
any of its condition lines are not satisfied.

The greatest challenge for P3 is D4, which is to maintain consistency with current theory for
the human cognitive architecture. In particular, a P3 implementation must be consistent with its
architecture’s theory for human decision making. Should the agent always choose to apply the
first instruction it retrieves that has satisfied conditions? Should it search memory multiple times
to see if there are more instructions it could apply instead? If there are multiple instructions it

32

could choose to apply at a given moment, how many should it retrieve before it decides it has
examined enough options to make a sound decision? Because the agent cannot know what choices
are available to it until after it retrieves them into WM, these challenges are intimately connected
with the implementation of P2.

4.2.4 P4: Procedure Execution

P4 is the phase when the agent uses known PRIM action rules (or rules that combine PRIM action
rules) to apply the action lines of the instruction it selected in P3. Action rules are special in that
they do not require any task-specific conditions. They only need to test whether the agent in P3
chose to apply the instruction, plus of course the presence of the specific action lines in WM.

P4 processing is responsible for selecting which known rules the agent should use to apply its
action lines. At first, the agent will only have PRIM action rules to choose from. However, as the
agent learns combinations of PRIM rules in P5, it will have more and more rules at its disposal.
And what the agent learns in P5 will depend on which rules the agent uses in P4, and this will
largely define the agent’s ability to transfer procedural knowledge. The processing needs of P4 are
thus intimately connected with P5.

Depending on how P3 is implemented, the connection with P5 applies to the use of condition
PRIMs in P3 as well. The original publication of PRIMs theory assumes this is the case (Taatgen,
2013). However, as I discuss in chapter 9, this need not necessarily be true.

While the agent can always use PRIM rules to apply a selected instruction, effective learning
in PRIMs theory requires that the agent transition to using learned rules. Otherwise, there is little
advantage from the PRIMs learning process.

The main challenge for implementing P4 is D4. The implementation of P4 will have a signif-
icant impact on shaping the model’s task performance and learning curve, and thus whether these
will be similar to human learning or not.

4.2.5 P5: Procedure Combination

P5 is the process of gradually compiling practiced rules together for faster future execution. PRIMs
theory requires an architectural mechanism that compiles pairs of practiced rules automatically.
This should result in a binary hierarchy of composed rules over time, as depicted in Figure 4.4.

P5 differs from P2-P4 in that it is an automatic background architectural process invoked during
the agent processing in P2-P4. PRIMs theory assumes that the underlying architecture provides an
automatic procedural learning mechanism, as is the case in both ACT-R and Soar.

It is important in PRIMs theory that the agent compose conditions and actions separately. If
the agent applies any action lines at the same time that it tests only a subset of the condition lines,

33

it may find that the remaining condition lines are not satisfied. Then it would need to undo the
actions.

For the context of this thesis, I am working with the Actransfer and Soar cognitive architec-
tures. Each of these already defines its own automatic procedural learning mechanism (Actrans-
fer’s comes from ACT-R). These mechanisms are also already task-independent in their design,
and thus already satisfy D3. Therefore, my main concern for P5 is D4, specifically that the agent
use the architecture’s learning mechanism in a manner consistent with the architecture’s theory and
human learning theory in general.

4.2.6 P6: Latency

P6 is the process of calculating the time cost of P2-P5, specifically for modeleing human task
performance. Without a specific method for translating agent processing to task reaction time,
there would be no way to measure if the model can explain how humans improve in reaction time
with procedural learning and transfer. In PRIMs theory, there are two specific assumptions that
define P6. First is that it takes the same amount of time to use a PRIM rule as a rule that is
composed of two or more PRIMs. This means that an agent takes less time to perform its task
operations when it uses learned composite rules in place of many separate primitive rules. Second
is that it takes time to retrieve an instruction from LTDM. PRIMs processing always requires at
least one instruction retrieval. This means that an agent also takes less time when it uses fully-
proceduralized rules (such as shown at the top in Figure 4.4) for its task operations in place of
PRIMs processing.

PRIMs theory does not, however, define further details for P6, such as how much time to allot
per procedural or declarative retrieval or what other parameters, if any, shape the latency of PRIMs
processing. In my case, these details come from the theory of the underlying cognitive architecture
used in the implementation. Taatgen (2013) used the timing theory of ACT-R to define P6 in
Actransfer.

P6 is important especially for desiderata D3 and D4. To satisfy D3 for task-independence, the
method of calculating latency from procedural learning should be common across tasks. To satisfy
D4, the way that the agent demonstrates procedural learning should also be consistent with the
way the underlying cognitive architecture is intended to be used as a model of human cognition.
For instance, the model of procedural learning should not be primarily based on an architectural
function for getting faster at perceptual processing, but it should use the architecture’s function for
getting faster at procedural processing.

34

4.2.7 Summary

In summary, each of these phases pose the following challenges:

1. Primitives: What initial set of primitive procedures supports truly task-independent behav-
ior?

2. Retrieval selection: How does the agent select a specific instruction when retrieving from
LTDM?

3. Instruction evaluation: How does the agent evaluate and choose to apply a retrieved in-
struction with decision making?

4. Procedure execution: How does the agent use known procedures to execute a selected
instruction?

5. Procedure combination: How does the agent compose practiced procedures into new pro-
cedures?

6. Latency: How does the agent’s cognitive processing with PRIMs map to temporal costs in
task behavior to allow comparison with humans?

In later chapters I present the PROPs system as a theory and model that comprehensively
addresses each of these phases in a way that satisfies my desiderata.

4.3 Actransfer’s Completeness for Implementing PRIMs

In the rest of this chapter, I briefly describe how the Actransfer implementation of PRIMs theory
does or does not satisfy my desiderata for each of P1-P6. This establishes where PROPs needs
to focus to supply a comprehensive implementation of PRIMs theory. I do not attempt to provide
a full description of how Actransfer functions. For a more in-depth description of Actransfer’s
approach, see (Taatgen, 2013).

As mentioned earlier, color in Figure 4.1 indicates the degree to which I believe Actransfer’s
implementation satisfies my desiderata for each of P1-P6. Specifically, green indicates complete
satisfaction. Gray indicates completeness that might be inconsistent with architectural theory. Red
indicates processing that produces the desired task functionality but does not model the cognitive
processing as constrained by my desiderata. Based on my analysis, Actransfer’s computation
satisfies my desiderata for P3, P4 and P5, but not for P1, P2, and P6.

35

4.3.1 P1

Consistent with ACT-R theory, Actransfer defines PRIMs as production rules in procedural mem-
ory, where the architecture selects one rule to fire per decision cycle.

Each PRIM rule in Actransfer is defined as one specific assembly operation on specific WM
slots. Actransfer requires a different innate PRIM rule for each possible condition or action line
that uses different slots. For example, it would need one PRIM rule for the action “COPY-input-to-
slot1” and another PRIM rule for the action “COPY-input-to-slot2,” and so on for all permutations
of slots. The agent’s procedural memory is initialized with the full set of possible permutations of
memory operations across all slots. The total number of PRIM rules depends on the number of
WM slots. In Actransfer, this is an architectural parameter. When Taatgen configured Actransfer
with 31 WM slots, this resulted in 1,693 PRIMs for the combinations of these slots with each type
of operation (Taatgen, 2013).2 Figure 4.5 shows the Actransfer WM model and the relation of
PRIMs to individual WM slots. The white circle and arrow represents a specific condition PRIM
rule that can compare the values of two slots. The gray circle and arrow represents a specific action
PRIM that can copy the value from one slot to another.

Figure 4.5: The Actransfer cognitive architecture memory model, taken from (Taatgen, 2013).

In order to initialize these permutations of PRIMs across all WM slots, Actransfer added a
constraint to ACT-R’s use of WM. ACT-R organizes WM into a number of buffers, each of which

2The choice of 31 slots is arbitrary, but was chosen by Taatgen as sufficient to support the processing needed for
his task models without entailing a prohibitively large burden to memory or processing.

36

interface with a specific module of the architecture. Figure 4.5 shows five ACT-R modules also
used in Actransfer, such as the “Visual Module,” the “Declarative Memory Module,” and so on.
In ACT-R, each WM buffer for each module is capable of holding a single declarative chunk. An
ACT-R chunk is a single declarative object made of any number of slot elements. A buffer might
first hold a chunk that contains 4 slot elements, and then the agent’s decision making might replace
that chunk with a different chunk that contains 10 slots. Actransfer changed this model so that
each buffer is constrained to have a fixed small number of slots.3 The figure depicts each buffer
with 4 slots.

This restriction deviates slightly from ACT-R theory by constraining the way declarative knowl-
edge must fit into WM. At first it might seem to be an inconsequential modification, but it could
have significant implications on agent theory and function. Actransfer’s constrained WM capacity
constrains all the agent’s LTDM representations, because a long-term memory must be retrieved
into WM to be useful. Actransfer models are as a whole constrained to only use algorithms that
can work with the given limited WM chunk capacity. In ACT-R models, by contrast, WM chunk
capacity is constrained by the agent’s cognitive processing and by how the agent forms and uses
knowledge for its context. As a computational model, Actransfer’s design also inserts the strong
assumption that the configuration of possible WM slots within buffers is fixed and innate in human
cognition, while ACT-R only entails the assumption that the number of buffers is fixed and innate
while the content in them can change over time. Actransfer also requires that procedural memory
is initialized with PRIMS, whose number scales combinatorially with the number of configured
WM slots.

It is doubtful that the computation of Actransfer was meant to present a particular stance in
the human memory debate rather than to simply allow a functional model of PRIMs learning,
and Taatgen (2013) did show that Actransfer computation was sufficient to demonstrate PRIMs
theory. It is also possible that, for most practical purposes, this design choice for Actransfer merely
constrains ACT-R’s usage without sacrificing its overall capabilities. Nevertheless, I note that it
does represent a change from ACT-R theory that constrains the representation of task knowledge
and the content of PRIMs instructions. For this reason, while it might be considered to satisfy D1
as a comprehensive implementation of PRIMs theory, and while it might also perhaps satisfy D4 as
a model of a theory of human WM with respect to only P1, this could be considered to not satisfy
D4 with respect to consistency with the whole architectural model. P1 is therefore marked in gray
in Figure 4.1.

3Architecture parameters set the exact number of slots for each buffer.

37

4.3.2 P2

Actransfer relies on ACT-R’s declarative activation mechanism to support P2, the process of se-
lecting an instruction during a LTDM retrieval. However, the architecture uses oracle knowledge
of which instructions have satisfied conditions to artificially bias the agent toward retrieving those
instructions. I do not consider this to represent a sufficient model of human cognitive processing
for the purposes of my desiderata.

As stated earlier, Taatgen (2013) hypothesized that some sort of spreading activation among
memories, such as ACT-R supports, might achieve the behavior PRIMs requires for instruction
memories. That is, declarative knowledge about the task and the world state would be associated
with long-term instruction memories in some way so that instructions with satisfied conditions
would have priority for retrieval over non-satisfied instructions. But this was not implemented in
the published account of Actransfer. Instead, Actransfer introduced an automatic routine within
the ACT-R system so that, whenever the agent attempts to retrieve a declarative instruction, the
architecture performs a brute-force evaluation of all conditions of all instructions in LTDM, testing
whether they match current WM. Then the architecture increases the activation of instructions
with satisfied conditions. The ACT-R retrieval mechanism retrieves a single chunk from LTDM,
with priority to memories with the highest activation. (moderated with some random noise). Thus,
since this added routine in Actransfer ensures that instructions with satisfied conditions will have
high activation, the agent will almost always retrieve an instruction with satisfied conditions.

This computation is sufficient to allow the agent to function, but it does not perform the hy-
pothesized spreading activation for P2, and thus it does not satisfy D1 for comprehensive modeling.
Actransfer’s approach for P2 is therefore marked in red.

4.3.3 P3

In Figure 4.1, P3 is shaded both red and green, with red coming from a red arrow between P2 and
P3. In PRIMs theory, P2 and P3 are intimately connected. While Actransfer’s implementation of
P3 satisfies my desiderata, it cannot function satisfactorily due to the limited options passed to P3
from P2.

Actransfer uses ACT-R’s long-established rule selection and firing mechanism to test instructed
condition lines, via PRIM rules and their compositions. In ACT-R’s design, the architecture asso-
ciates a utility value with each rule in procedural memory, and when multiple rules in procedural
memory have satisfied conditions, the architecture biases the agent to select the one with the high-
est utility. This is conceptually similar to the way that the agent is biased to retrieve a declarative
instruction with the highest activation, but they each function differently. Activation is altered by
how often an agent uses a declarative memory and by spreading activation. Utility is altered by

38

how often an agent uses a procedural rule and by environment reward, as well as by the procedural
learning mechanism that I will describe shortly. The architecture also updates activation and utility
using different formulas according to what has been shown to align with human behavior for each
process.

Actransfer uses this mechanism to select which rules it uses to evaluate retrieved condition
lines in P3. For any instruction that the agent retrieves via P2, the agent uses one or more decision
cycles to fire condition rules that evaluate the retrieved condition lines. Like ACT-R, Actransfer
requires one decision cycle per rule.

Inconsistent with ACT-R theory, Actransfer does not use this rule selection and firing mecha-
nism to select from among competing behaviors for the actual task. This is because Actransfer’s
P2 only ever provides one choice to P3 at a time, and P3 immediately selects it for execution if its
condition lines are satisfied. If the agent has multiple instructions it could follow, which are equally
valid and have satisfied conditions, the agent’s declarative retrieval process determines which one
to use and not its decision making process. Thus, P2 retrieval selection is the locus of task decision
making, instead of P3 or the architectural rule selection mechanism. This is counter to ACT-R
theory.

Thus, while Actransfer uses ACT-R theory properly to moderate declarative retrievals in P2
as well as to evaluate conditions in P3, it goes against ACT-R theory to the extent that it uses P2
retrieval selection to replace choice-based decision making. This means it does not satisfy D4 for
my work as a consistent architecture model of human cognition.

4.3.4 P4

Actransfer uses the same utility-based rule selection and firing mechanism to apply action lines as
it uses to evaluate condition lines. As was the case for P3, this decision making process in ACT-R
is a reasonable model of PRIMs theory for P4.

ACT-R’s utility-based rule selection process provides the solution by which the Actransfer
agent selects whether it uses primitive rules or learned composite rules to apply instruction lines
(for both action lines in P4 and condition lines in P3). At first, a learned rule that combines two
other rules might not have a high utility, and the agent might not be likely to use it. However,
each time the agent practices the two component rules together in sequence again, the architecture
increases the utility for the learned rule that combines them. Thus, learned rules gradually increase
in utility until they are used in place of their component rules. This also substantiates PRIMs
processing without notable deviation from ACT-R theory, and satisfies D4 and the other desiderata.
P4 is therefore marked in green.

39

4.3.5 P5

Actransfer uses ACT-R’s procedure compilation mechanism to learn new rules. ACT-R attempts
to combine4 any two rules used in two sequential decisions into a single new rule. This provides
the hierarchical pairwise hierarchy of PRIM composition depicted in Figure 4.4 (and is integral
in the design of PRIMs theory to begin with). This substantiates PRIMs processing according to
ACT-R’s well-supported procedure compilation mechanism, and this satisfies D4 and the other
desiderata. Thus, P5 is marked in green.

4.3.6 P6

Actransfer models calculate latency for cognitive processing as a mix of declarative retrieval and
decision cycle times, using the same approach for these as ACT-R. Each declarative retrieval is
simulated to take a variable amount of time, according to a formula I will describe shortly. Each
decision cycle corresponds to the use of a single rule from procedural memory, and is simulated as
requiring 50 msec. Actransfer models also include time for motor actions and perception in their
predictions for total task reaction times, but these are outside the scope of cognitive processing that
PRIMs theory describes and must be added separately.

ACT-R calculates latency for a declarative retrieval according to the activation of the retrieved
memory, where more highly-activated memories take less time to retrieve. The exact formula is:

Tretrieve = Fr × e−A (4.1)

where A is the activation of the retrieved declarative chunk, and Fr is a latency factor parameter
that can vary from model to model (Brasoveanu, 2015). The default value is Fr = 1.0.

The architecture adjusts activations for long-term declarative memories over time as those
memories are used. This represents a declarative learning process in ACT-R. A memory’s ac-
tivation increases from being retrieved frequently into WM, and thus its retrieval time decreases
with repeated access. Other factors such as association with other activated memories in WM or
perception (spreading activation) also increase a memory’s activation. A memory’s activation de-
creases over time. Equation 4.1 means that Actransfer models an instruction retrieval as requiring
less time the more the instruction is used.

In Actransfer, procedural learning also gradually reduces the number of declarative instruction
retrievals. The agent retrieves condition and action lines one at a time right before it uses a rule to
perform each, and each gets its own added Tretrieve. Task-specific constants also require a separate
retrieval. Thus, an agent that has not yet learned any rules would use 8 declarative retrievals to

4Not every pair of rules can be combined. For example, two rules in which the first initiates a LTDM query and
the second reacts to the query result cannot be combined while preserving the desired functionality.

40

invoke a declarative instruction made up of 3 condition lines and 4 action lines, one for each con-
dition and action line plus one at the start for the constants. Overall, while this makes declarative
retrieval time tied to procedural learning, Tretrieve is still declarative retrieval time and theoretically
distinct from procedural learning time.

As stated, PRIMs theory describes procedural learning and transfer as a result of the proce-
dural learning process of P5. But for some Actransfer models, most of the decrease in latency is
due to the declarative learning process that comes from increasing declarative memory activation,
separate from the results of P5 learning. This is demonstrated in the next section. Furthermore,
in order to achieve fits to human data for different tasks, the value of Fr in some cases differs by
an order of magnitude for each task. Tuning Fr to fit human profiles for different tasks is com-
mon in ACT-R models (Brasoveanu, 2015), but it does not align with D3 for my work. Taatgen
(2013) does not mention declarative activation effects as part of PRIMs theory. Though PRIMs
theory requires declarative retrievals for the procedural learning process, declarative learning and
procedural learning are separate learning processes. ACT-R theory also distinguishes that one
should use decision-cycle latency to model procedural learning and declarative activation to model
declarative learning (Anderson et al., 2019). Thus, to the extent that declarative learning replaces
procedural learning in Actransfer as its computational model of human procedural learning, Ac-
transfer deviates from PRIMs theory and does not satisfy D1. P6 is therefore marked in red in
Figure 4.1.

41

CHAPTER 5

Actransfer Experimentation

I now describe the Actransfer experiments and results from (Taatgen, 2013). These demonstrate
PRIMs theory and Actransfer as just described and supply the context for my iterative development
of PROPs. I then describe my PROPs implementation in contrast to Actransfer in chapters 7-9.

Taatgen (2013) demonstrated his theory and its applicability for modeling human transfer us-
ing a suite of 4 human experiments, involving 6 tasks. These are the experiments I also use for
evaluating PROPs, as follows:

1. (Elio, 1986): Mental arithmetic task

2. (Singley & Anderson, 1985): Text editors task

3. (Chein & Morrison, 2010): Complex Verbal WM task, Stroop task

4. (Karbach & Kray, 2009): Task Switching task, Count Span task, Stroop task

I will briefly review each experiment and the modeling results from Actransfer. These are the
results to which I compare my iterations of PROP development.

5.1 Mental Arithmetic Task

Step Calculation Op Type
1: Particulate rating Solid× (lime4 − lime2) Component
2: Mineral rating greater of (algea/2)(solid/3) Component
3: Index 1 Particulate +Mineral Integrative
4: Marine hazard (toxinmax + toxinmin)/2 Component
5: Index 2 Index1/Marine Integrative
6: Overall quality Index2−Mineral Integrative

Figure 5.1: Example arithmetic task procedure. Component steps only reference inputs. Integrative
steps require remembering results of previous calculations.

42

SOLID ALGAE LIME TOXIN

6 2 3 4
5 8
1 7
9 2

Figure 5.2: Example arithmetic task inputs. Participants look up hypothetical water sample data
from among ten values provided per trial. For lime or toxin values, procedure directions either
specify the row index to look up or instruct to find the max or min value.

The mental arithmetic task involved calculating hypothetical pollution rates based on water
samples. Subjects repeatedly performed mental calculations using given input values. In the hu-
man study (Elio, 1986), subjects were trained in an initial procedure until they achieved perfect
recall, and were then tasked with performing it 50 times on various inputs. Following this, subjects
were assigned to 50 trials of one of three transfer conditions: transferred integrative, transferred
component, and a control. The first two of these were different math procedures that shared dif-
ferent types of calculations with the training, either the integrative steps, which were steps that
required remembering results of other steps, or component steps, which did not. The control
shared no calculations with training.

Figure 5.3 shows human performance in blue. The first 50 trials show the reported power-law
fit to performance in training. Trials 51-100 show reported data for the three transfer conditions.
Elio (1986) reported transfer data as the mean from the first and last 25 trials per subject.1 In the
original study, results for component and integrative calculations were reported separately. I show
data for component steps in Figure 5.3a and for integrative steps in Figure 5.3b.

A basic ACT-like identical productions model would predict transfer from the training pro-
cedure to procedures that shared calculations, but would not predict transfer to the control. Yet
transfer to the control was evident in the human results.

Figure 5.3 shows Actransfer model performance in red. Results are the average of 8 experiment
repetitions. The key result is that this model produces the same relative transfer trends in the control
case. The agent also displays a higher percentage of transfer for the transferred component case
in Figure 5.3a and for the transferred integrative case in Figure 5.3b. These cases respectively
share component or integrative calculations with the training, and this allows classic identical
productions transfer in addition to primitive instruction line transfer. The Actransfer model overall
is not a perfect fit to the human plot, but it shows the same transfer trends. I show no error bars
for the Actransfer model data because standard error is too small to be visually meaningful (about
0.01 sec for most data points).

1The original 1986 human data is not available - only the data shown (R. Elio, personal communication, May 18,
2018).

43

(a) Component steps (b) Integrative steps

Figure 5.3: Human and Actransfer performance. Data for problems 1-50 show training perfor-
mance. Data for problems 50-100 show performance for each of the three transfer conditions.
Actransfer data were generated using supplementary materials from Taatgen (2013).

5.2 Editors Task

In the editors task (Singley & Anderson, 1985), typists modified documents according to written
edit directions. Example directions included replacing one word with another or deleting a sen-
tence. Three keyboard-only editors were used with which participants had no prior experience:
ED, EDT, and EMACS. These each require different keyboard commands, and ED and EDT also
differ from EMACS by being simpler single-line editors.

The experiment took place over six days, with some participants switching editors after two
days to test transfer. If a participant spent two days each on ED, EDT, and EMACS in that order,
call this case ED-EDT-EMACS. If EDT performance was faster after using ED than when using
EDT on day one, this indicated transfer to EDT.

For brevity, Figure 5.4 shows only human and Actransfer performance when transferring from
ED to EDT-EMACS, as other editor results are comparable. The figure on the left is scaled to
show all data points. The figure on the right shows the same data at a smaller scale to better see
the details on days 3-6. Model results are the average of 12 experiment repetitions. No error bars
were provided in the original human study, and standard error for the Actransfer model is less than
1 sec and not visible at the scale in these figures. Again, human performance is shown in blue, and

44

(a) Full scale (b) Half scale

Figure 5.4: Human data from (Singley & Anderson, 1985) and the Actransfer model from (Taatgen,
2013), demonstrating transfer between editors.

Actransfer model performance is shown in red. Humans are almost as fast at EDT after two days
of ED as after two days of EDT, indicating substantial transfer. They show similarly significant
transfer to EMACS on day five. (EMACS-only users required about 80 sec on day 1, not shown).
The Actransfer model is faster than human performance during days 1-2, but the chief result of
this model is that transfer trends are again the same.

5.2.1 Timing Methodology

The editors and arithmetic experiments demonstrate Actransfer’s application of P6 described in the
previous section. As stated, Actransfer uses Equation 4.1 (Tretrieve = Fr × e−A) to calculate how
long each memory retrieval takes, with a task-specific latency scaling factor Fr. Because the effect
of this parameter for a model depends on the way memory activations change within the specific
model, I re-ran the Actransfer model for the editors and arithmetic tasks and measured the time for
each retrieval. For the original editors task, Fr was set to 1.5. Combined with the model’s use of
memory, this meant early instruction retrievals took about 0.95 seconds per operation, and gradu-
ally reduced to about 0.3 seconds by the end of day 6, as activation for task-relevant instructions
increased. By contrast, for the arithmetic task model Fr was set to 0.15. Arithmetic task retrievals
decreased from 0.07 to 0.03 seconds over the course of that task.

To better evaluate the effects of this Fr scaling in Actransfer modeling, I also re-ran the Ac-
transfer agents for both tasks with Fr set to 0, so that LTDM retrievals took no simulated time.
Results are shown in Figure 5.5 and Figure 5.6. Figure 5.5 shows clearly that most of the editors
agent’s timescale is from Tretrieve. Figure 5.6 shows that Tretrieve plays a less significant role in the
arithmetic task, since Fr was set to a low value from the beginning, but it is still appreciable. By

45

itself this result would not necessarily mean that most of the editors learning was declarative learn-
ing, since the number of declarative retrievals reduces with procedural learning. But, as stated,
each individual retrieval in the editors task reduced from about 0.95 sec to 0.3 sec over the course
of the task, more than a two-thirds change. Thus, more than two-thirds of the difference between
Figure 5.4 and Figure 5.5 is from declarative learning specifically, not procedural learning.

Figure 5.5: Actransfer agent for the editors task, without declarative retrieval latency.

(a) Component steps (b) Integrative steps

Figure 5.6: Actransfer agent for the arithmetic task, without declarative retrieval latency.

These tasks are designed to predominantly test the subjects’ procedural rather than their declar-
ative abilities in the sense that they test how subjects learn to perform routines rather than to report

46

memorized facts. Nevertheless, it is possible that subjects in the editors task might require signif-
icantly more declarative effort than for the arithmetic task, due to the need to remember different
keyboard commands. The higher Fr might represent this. However, the free-parameter nature of
Fr highlights the need for a more precise computational definition of how this latency arises, and
why there is such a difference in scale between these tasks. The dependence of the models upon
Fr to demonstrate human performance shows that something significant is missing from the model
computation.

5.3 WM Training and Stroop Experiment

In the (Chein & Morrison, 2010) experiment, subjects were trained for 20 days on a complex WM
task. As part of this task, subjects were sequentially shown a series of single letters on the screen,
and then asked to report the sequence. The sequence would increase or decrease in length (and
difficulty) if subjects consistently remembered the list accurately or inaccurately. Between each
letter, subjects were given a distractor task of identifying a word (e.g. “blick”) as real or not.

Before and after this training, subjects were given a battery of cognitive assessments to mea-
sure how training transferred to other cognitive abilities. Control subjects were assessed before
and after 20 days of no training. One assessment that showed surprising results was the Stroop
task, in which a single word describing a color (e.g. “red”) was shown in a font of a potentially
different color (e.g. blue), and subjects were asked to report the color of the font. A series of
such prompts were shown to participants, with small pauses between each trial. The assessment
measured Stroop Interference: the difference in average response time from when text and font
colors are incongruent (e.g. “red” in blue font) and congruent (e.g. “red” in red font).

Figure 5.7 shows human performance for this Stroop assessment in blue. In the figure, inter-
ference indicates the difference in average response time between the incongruent and congruent
Stroop words. The horizontal axis shows the change in interference before and after the 20 day
WM training period. Results showed surprisingly significant transfer from WM practice toward
reduction in Stroop interference.

The Actransfer model of this experiment explained this as transferred decision making, specif-
ically the decision to prepare for task stimuli in between trials. During pauses in the training task,
the model prepared by rehearsing the sequence of known letters. During pauses in the Stroop
task, the model could choose to either be idle or to prepare to focus on font color. In the model,
the instructions for the prepare operation were composed of the same PRIMs in both tasks. This
meant that both instructions increased in activation during practice. This higher activation biased
the agent to retrieve the prepare instruction in the Stroop task.

Actransfer generated Stroop interference data via LTDM retrieval latency, based on Equa-

47

Figure 5.7: Interference in the Stroop task, before / after WM training. Human data are from Chein
and Morrison (2010) and Actransfer data from Taatgen (2013).

tion 4.1. The contents of the agent’s visual buffer in WM spread activation to associated declarative
memories in LTDM. If the agent had conflicting stimuli in the its visual buffer in WM (the written
color word and the font color were incongruent), this spread was diluted across memories for both
colors. If the agent chose to prepare, however, it would choose to only allow the presented font
color to be loaded into its visual buffer. In that case, only that font color’s declarative memory
received spreading activation. This resulted in higher activation and therefore a faster retrieval.

Figure 5.7 shows Actransfer results in dark red. Results are the average of 9 experiment rep-
etitions. This model of transferred decision making produces substantial reduction in interference
with training. Performance is again not an exact match to human data, but it shows the same overall
transfer trends.2

I also ran an Actransfer model with Fr set to 0. These results are shown in bright red in
the figure ((no RT) for no retrieval time), but they have little meaning because the model defines
interference using Tretrieve. Without Tretrieve, the model demonstrates negative interference regard-
less of training. That is, the model is slightly faster for incongruent prompts than for congruent
prompts.

2Actransfer was also used to model human subjects’ improved declarative memory recall in the WM training
task over the course of training. I ignore this model here because it demonstrates the ACT-R declarative learning
mechanism, which is already well established, rather than procedural learning with PRIMs.

48

This experiment demonstrated how the use of PRIMs can transfer decision making, given how
P2 determines decision making in Actransfer. A consideration for my work with PROPs is whether
this same transfer holds when P2 is implemented to reflect both PRIMs and Soar theories.

5.4 Task-switching Experiment

The task-switching experiment from (Karbach & Kray, 2009) tested whether training in task
switching within one set of tasks transfers to task switching with a different set of tasks, as well as
to performance in various cognitive test tasks. Similar to the Chein and Morrison experiment, hu-
man subjects were given a battery of cognitive tests before and after training. This battery included
a task-switching task (which differed from the training task-switching task) and a Stroop test.3

In the training, subjects were iteratively shown different images containing either one or two
planes or cars. Subjects had to switch between two different response tasks, given the same types
of images. The first task was to report whether the image showed planes or cars. The second was
to report whether there were one or two items shown in the image. Subjects were trained in blocks
of just one of these two tasks and in blocks of switching between these two tasks every second
trial. Training took place over the course of four days, each of which involved 8 single-task and 12
task switching blocks. Control subjects, however, trained only in single-task blocks.

In the pre- and post-tests, the alternate task-switching task was like the training task, except
pictures were of vegetables and fruit rather than cars and planes, and subjects reported whether
these were small or large instead of whether there were one or two. The Stroop task was much
the same as that used in (Chein & Morrison, 2010), except neutral trials were used in place of
congruent trials (non-color text was used with each font color).

Results of this experiment are shown in blue in Figure 5.8. Switching costs in Figure 5.8a
refers to the difference between the average amount of time to do a trial when switching a task and
the average amount of time to a trial that is a repeated task. Training significantly transferred to
all these test tasks. Interestingly, in the Stroop test, the control case of training only on single-task
blocks worsened WM interference.

The Actransfer model of this experiment again bases transfer on the decision to prepare during
inter-trial wait periods. During training, the agent always practices the prepare operation between
trials, while during testing it has the choice to either prepare or be idle. Practicing the prepare
operation biases the agent to prepare during testing. Practicing the single-task case in the control
setting, by contrast, forces the agent to practice not preparing, which biases the agent to not prepare

3Actransfer was also used to model a WM span task from the original human experiment. I ignore this model
because it primarily demonstrates ACT-R’s declarative learning mechanism, which is already well established, rather
than procedural learning with PRIMs.

49

(a) Task switching test (b) WM digit span test

Figure 5.8: Human data from Karbach and Kray (2009) and Actransfer model data from Taatgen
(2013) in the task-switching transfer experiment.

during subsequent Stroop testing.
Original Actransfer model results are shown in dark red in Figure 5.8, and Actransfer results

omitting Tretrieve in bright red. Model results are the average of 21 experiment repetitions. Again,
the original model captures the same transfer trends, though fits are inexact. The Actransfer (no
RT) model is closer to human performance in the task-switching test, because in this case Tretrieve
does not add to its switching costs. In the Stroop test, however, (no RT) once again leads to
negative interference.

50

CHAPTER 6

Soar

The design of PROPs draws deeply from the underlying theory and design of Soar to unify the
architecture with PRIMs theory. I must therefore explain the key principles of Soar that influence
the PROPs design.

I do not attempt to cover all aspects of the architecture, but only those necessary for under-
standing the contributions of PROPs. For a more detailed discussion of Soar’s components, see
appendix A.

6.1 Operators

Soar defines procedures and decision making differently than ACT-R. In the ACT-R tradition, a
single decision corresponds to the selection and firing of a single if-then rule in procedural memory.
Only one rule fires per decision cycle. In Soar, a decision cycle corresponds to the selection and
application of a single operator. An operator is a special structure in the architecture that is
created, selected, and applied by multiple rules to guide decision making. In Soar, whenever a rule
can fire, it will fire, in parallel in practice with all other matching rules.

Operator ApplicationOperator Selection

Input Elaboration rules Decision Elaboration rules OutputApply rules

Elaboration rules:

State elaborations
Operator proposals

Operator preferences

Figure 6.1: The Soar decision cycle, adapted from (Laird, 2012).

Figure 6.1 shows the Soar decision cycle, which is divided into the operator selection stage, and
the operator application stage. Operator selection begins after the Soar agent receives input from
its environment. In this stage, the agent selects a single operator as its decision for that cycle. In
the operator application stage, the agent then performs various actions that carry out that decision.

51

There are two main types of rules that can fire during these stages: elaboration rules, and apply
rules. Elaboration rules fire during both stages. Apply rules only fire during the application
stage. Elaboration rules come in three kinds, state elaborations, operator proposals, and operator

preferences. In both stages of the decision cycle, any matching elaboration rules fire first, and if
the effects of these allow more elaboration rules to fire, those will also fire before proceeding to
the next part of the cycle. The WM changes made by an elaboration rule only persist so long as
the rule’s conditions match, but changes made by an apply rule persist until changed by additional
rules. Since apply rules only fire in response to selected operators, operator decision making is
what causes persistent changes to WM.

An operator proposal elaboration rule makes an operator available for the architecture to
select in decision making. A proposal rule’s actions create a special “operator proposal” declarative
structure in WM that tells the architecture about the potential decision, and which remains in
WM for as long as the proposal’s conditions are satisfied. As elaboration rules, proposal rules
can fire during any stage of the decision cycle, but the operator proposals they create only affect
the decision made at the end of the selection stage. If there are multiple proposed operators,
operator preference rules can create preferences to select among them. Preference rules normally
use symbolic logic, such as “IF (get-command and idle are both proposed) THEN (prefer
get-command over idle).” Soar also supports Reinforcement Learning (RL) preference rules,
which add or subtract utility to a proposed operator within the architecture, so that Soar can use
built-in probabilistic selection policies to select among operators based on those utilities. Any other
elaboration rules that do not create proposals or preferences are simply called state elaboration
rules. These can be used to support other information in WM that could influence decision making.
Once no more elaborations fire in response to input, the architecture selects the preferred operator
as the decision for that cycle. Then the operator application stage begins, in which apply rules fire
to carry out the chosen operator. Additional elaboration rules can also fire in response to apply
rules. After no more rules fire in the operator application stage, any output is sent to the agent’s
environment, and the cycle repeats.

This contrasts with the ACT-R/Actransfer design where each rule is available for decision mak-
ing based on that single rule’s conditions, where the decision is made based on the utility values of
the matched rules, and where the decision is applied according to the selected rule’s actions. Soar
uses separate rules for each of these three processes in a decision cycle.

6.2 Working Memory

When a rule fires, it modifies Soar’s WM. Figure 6.2 depicts a sample portion of Soar’s directed
cyclic graph WM. Each node (circle) represents a WM identifier (ID), and each edge (arrow)

52

represents an attribute. Nodes can have any number of incoming or outgoing edges. Each edge
points from an ID to a single value, either another ID or a constant number or string. Each edge
corresponds to what is called a Working Memory Element (WME), defined by an id:attribute:value
triple. The WM graph is always rooted in a state ID, S1 in the figure, and each possible edge path
through the graph from that state ID defines a unique WME address, a path for accessing that WME
from the root. Thus, Soar’s graph WM is not a fixed set of buffers or slots, but is unbounded in
size and structure, able to change during agent processing as memory operations add or remove
WMEs.

^Task
S1

O41

O3

O76

^Retrieval

2 ^item1

3
^item

2

^Query

^start
^end

^iterations

1
4

2

^type"sequence"

O4

^Action

Figure 6.2: Example Soar WM structure. WM is a directed graph rooted in a single state ID (shown
as S1). Graph edge names are preceded with ∧.

Soar rules use variables to match the contents and structure of the WM graph. As a pseudo-code
example, using the structure in Figure 6.2, a rule could test a condition (S1.Task.<var> >

2). The variable <var>would bind to end, since the value at S1.Task.end is greater than two.
Similarly, a rule might test the condition (S1.<var1>.<var2> == 2), and this general con-
dition is satisfied if any value that is two edges away from the root had a value of two. In this case,
the condition matches twice, on both S1.Retrieval.item1 and S1.Task.iterations.

6.3 Long-term Declarative Memory

Like ACT-R, Soar has LTDM storage for symbolic memory content. In Soar, LTDM is divided into
two long-term memory systems, Semantic Memory (SMEM), and Episodic Memory. SMEM
can hold any number of graph-based structures, either stored deliberately by the agent from its WM
contents or stored by the agent designer before the agent’s operation begins. Episodic Memory
automatically records snapshot episodes of the agent’s WM content as it runs. I use SMEM as
the equivalent of ACT-R’s LTDM for the purposes of this thesis (namely as the storage system
for task instructions), and I do not discuss Episodic Memory further. I use the term LTDM when
referring to the long-term declarative memory system prescribed by PRIMs theory as a whole or

53

to Actransfer’s specific design, and I use SMEM when referring specifically to Soar’s long-term
declarative memory system.

6.4 Problem-Space Computational Model

Soar decision making is organized according to the Problem-Space Computational Model (PSCM)
(Newell, 1990). Newell and Simon (1972) define a problem space as having three components: 1)
an initial state with a goal that needs to be achieved, 2) a set of operators relevant to that goal that
can be used to change WM to achieve it, and 3) the ability to test whether a particular state achieves
the goal. The purpose of the Soar decision cycle is to select and apply operators to progress the
WM state toward the goal state.

In Soar, if an agent does not have operator proposal, preference, or apply rules that let it
progress in its problem space, this is called an impasse. An impasse will also occur when a selected
operator is too complex to apply with a single decision cycle. An impasse needs to be resolved in
a child problem space before decision making can continue in the original parent problem space.
When there are impasses, the Soar architecture maintains a stack of WM states, each associated
with a particular problem space, and each a graph with its own root state ID. Each state’s problem
space has its own set of relevant operators that can be proposed and which modify that state toward
achieving its particular goal. A state is added to the stack when an impasse arises. The implicit
goal in a newly created child state is to resolve the impasse of the parent state. Once agent pro-
cessing solves an impasse, such as when substate operators apply a parent state’s operator that had
been missing an apply rule, then the parent state operators can continue for the first problem space,
and the child state is removed from the WM stack. In Soar terminology, the stack of states is also
referred to as a stack of goals and subgoals.

Figure 6.3 depicts a stack of Soar goals, with one main task goal and two nested subgoals.
The inner rectangle on the left shows the space of operators proposed for the first task goal. In
the middle is a goal to resolve an impasse in the first problem space, in this case the problem of
applying the operator selected in that first problem space. On the right is a problem space for
applying an operator selected from that middle problem space.1

Soar determines whether a particular WM (sub)state achieves a goal by testing whether the
agent can continue its decision making for the parent goal (by selecting and applying operators).
In the sub-subgoal frame on the right in the figure, the selected operator does not cause another
subgoal because the agent has rules that can apply it. If that operator changes the parent WM state
such that its impasse is resolved and decision making is able to continue, it continues there, and the

1There are other ways the PSCM and substates can be used beyond applying parent-goal operators. I do not
describe these for brevity.

54

Task goal

WM
state

Proposed
operators

Task subgoal

WM
substate

Selected
operator

Proposed
operators

Selected
operator

WM
sub-

substate

Proposed
operators

Task sub-subgoal

Selected
operator

Figure 6.3: The Soar PSCM model for hierarchical operator execution, adapted from (Laird, 2012).

child state is removed from the stack. Because states are added for impasses in decision making,
the decision cycle of operator proposal, selection, and application happens only for the deepest
state in the stack. Impasses can also be resolved when environment perception changes to allow
decision making to continue in a parent problem space. For example, if an agent is busy typing
text into a computer, and someone asks it to stop and switch to a card-sorting task, this makes the
original goal and its impasses irrelevant. In this case, Soar then removes any irrelevant descendant
subgoal problem spaces and their associated WM state structures from the stack and continues
decision making in the main task problem space (for the different task).

write-text
type-word

place-cursor

get-text
read-prompt

find-prompt

Transcribe Text

finish

get-text

write-text

Figure 6.4: Hierarchical problem spaces for the transcribe-text task.

In the PSCM, an agent’s task behavior can be described in terms of a hierarchy of goals and
problem spaces. Figure 6.4 shows a hierarchy of problem spaces for the transcribe-text task. In
the figure, each problem space is shown as a triangle, with operators relevant to that problem space
shown to its right. The goal for the main “Transcribe Text” problem space is to copy a prompted
line of text into a computer text editor. The problem space involves two main operators: get the
text from the prompt, and then write the text into the editor. Getting the text requires finding the
prompt and reading the text, as shown with the child “get-text” problem space. The “write-text”
problem space for writing the text requires placing the edit cursor at the correct location before
typing the prompted text. The finish operator is shown to not require its own problem space or
subgoal. It can be carried out with a single apply rule. This arrangement of problem spaces for
this task is not the only possible arrangement. One can imagine other valid hierarchies that also

55

achieve the task goal, including one where all operators are included in one problem space. One
can also imagine a hierarchy where there are even more problem spaces for other operations such
as checking how far along the writing process is or checking for whether one needs to stop and
do some other task like card-sorting or for directing more fine-grained operations such as typing
individual keys. There is no theoretical limit to the depth or branching factor of a problem space
hierarchy.

6.5 Chunking

“Chunking” is Soar’s procedural learning mechanism. It creates rules that summarize subgoal
problem solving so that it can be quickly replicated in the future without using a subgoal. These
learned rules are called chunks.2

Figure 6.5: Soar chunking.

Figure 6.5 depicts the chunking process. Boxed letters represent a WM state at different points
in time, and arrows represent operators that modify WM. Decision making for “Goal 1” requires a
subgoal to resolve the impasse at state C. The architecture creates a new WM substate for the new
subgoal, labeled “Goal 2.” Two subgoal operators then perform the steps needed to resolve the
impasse in C, and these require two decision cycle steps, 3 and 4. After step 4, a rule modifies WM
in state C, resulting in D, from which decision making can continue. Soar chunking summarizes
the final result of these subgoal operators into a single learned rule, such that the next time the
agent is in the same scenario as C, it applies the result immediately with the chunk in one decision
cycle.

The computation of Soar operators, WM, and the PSCM with chunking has broad implications
for the PROPs system implementation, and gives rise to its name as the PRimitive OPerators

(PROPs) system.

2Unrelated to ACT-R declarative chunks.

56

CHAPTER 7

PROPs Iteration 1: Defining Support for Working
Memory Operations

In this chapter I describe PROP1, the first iteration of the PROPs system. As I described in my
methodology in chapter 3, the purpose of PROP1 was to replicate Actransfer’s computation as
much as practically possible so that in future iterations I could attempt to address gaps in the
model. Any substantial computational differences between Actransfer and PROP1 should only be
because some aspect of the Actransfer computation is not readily compatible with Soar.

Actransfer’s implementation was indeed incompatible with a Soar implementation in several
ways. The chief issue was reconciling Actransfer’s definition of primitives, P1 in the PRIMs flow
diagram, with Soar’s definition of WM. Soar’s WM does not have a fixed size and structure that
allows me to define the initial set of primitives in the way that was done for Actransfer. Thus, in
order to replicate Actransfer I also flesh out the computational definition of P1 and the theory of
how PRIMs relate to WM. This is circled in blue in Figure 7.1, which otherwise is the same as the
flow diagram in Figure 4.1.

Legend

Procedures Unknown Retrieve instruction
to WM

Select/Reject
instruction

Execute using known
procedures

Gradually available

Learn procedures
as pairwise

combinations of
practiced procedures

Initializes
Defines

instruction
language

Declarative
Memory

Procedural
Memory

Primitive
Procedures

Calculate latency from # retrievals

1

2 3 4

6

5

Lo
ng

-te
rm

m
em

or
y

Complete:
Not Complete:

Inconsistent:

Select

Reject

Figure 7.1: A review of the Actransfer flow diagram. PROP1 addresses incomplete computation
circled in blue.

The result of this work led to an extension of PRIMs theory. I introduce a new primitive
process that explains where the PRIM rules of Actransfer come from and how an agent can learn

57

PRIM rules for any specific WM locations starting with only innate procedural knowledge for each
generic PRIM operation type.

While designing PROP1, I identified other smaller inconsistencies between Actransfer’s ap-
proach and Soar’s. In the next section of this chapter, after I describe how I address the P1 problem,
I describe each of these and our solutions. Then I present and discuss the evaluation of PROP1.

7.1 Introducing A New Primitive Operation

Actransfer’s P1 that defines PRIMs from permutations of WM slots is incompatible with Soar’s
theory for WM structure. Soar represents WM as an unbounded graph, which can grow or shrink
or change in structure as edges and nodes are added or removed throughout the lifetime of the
agent. Thus, there is no fixed set of WM addresses or slots. Rather, Soar’s unbounded graph
would entail infinitely many unique PRIMs for all the ways of adding or removing WMEs to form
different graphs. Even if Soar did not have an unbounded WM space, the combinatorics of PRIMs
are already substantial. Even a small number of WM slots requires an enormous number of PRIM
rules for all possible operation combinations among them.

I could have replicated Actransfer by constraining Soar WM to a graph that is isomorphic to
the configuration of slots Taatgen (2013) used for Actransfer. The root node in the graph could
point to nodes labeled “const1,” “action1,” “slot1,” and so on for every Actransfer slot. Then
I could initialize procedural memory with rules specially designed to use each specific slot-like
node in the graph. However, I observed that I could instead introduce a true solution for P1 that
1) is consistent with Soar theory for WM, and 2) which I can enable or disable in such a way that,
when it is disabled, the computation is equivalent to that of Actransfer. This accelerates PROPs
evaluation and lets me establish the first iteration PROPs system in a manner that is more consistent
with Soar.

I address the P1 problem by introducing a new type of primitive operation that supports the
original PRIM operations of Actransfer. In Soar, I represent this as a new subgoal and prob-
lem space whose operators construct the behavior of a specific PRIM operation for specific WM
elements, according to whatever is instructed by condition or action lines. When chunking sum-
marizes the results of this subgoal processing, the agent learns chunks that carry out the condition
and action lines of its task instruction, equivalent to the PRIM rules that Actransfer begins with.
I am able to toggle this learning on or off by initially providing the agent with the chunks that it
would otherwise learn through this process.

The PROP1 agent begins with only a single rule instance in procedural memory for each PRIM
operation type, not a different instance for each possible use of that type across WM. That is, the
agent starts with a single generic (<x> == <y>) rule for all equality conditions, a single (COPY

58

^Task
S1

O41

O3

O76

^Retrieval

2 ^item1

3
^item

2

^Query

^start
^end

^iterations

1
4

2

^type"sequence"

O4

^Action

1

2
3

2COPY ^newit
em

Figure 7.2: PRIM resolution steps in Soar WM for a COPY operation.

<x> to <y>) rule for all copy operations, and so on. The goal of the new subgoal processing is
to bind the variables (<x>, <y>, etc.) for a single generic rule to specific WM locations. I call
this subgoal processing PRIM resolution. The subgoal processing of PRIM resolution “resolves”
the unbound generic PRIM-type rule by binding it to specific locations in the WM graph.

Figure 7.2 demonstrates the subgoal processing of PRIM resolution in more detail. This fig-
ure specifically shows PRIM resolution for the action, “COPY Retrieval.item1 to Query.newitem.”
This action should create a new edge in the agent’s WM graph at “Query.newitem” with the value
found at “Retrieval.item1.” But the agent begins with only a rule for (COPY <x> to <y>).
Because the agent lacks a specific rule for this action, this creates an impasse, and the agent enters
a PRIM resolution subgoal. In this subgoal, the agent first attempts to resolve the variable <x>. It
reads the action line and finds the text, “Retrieval.item1.” This describes two connected edges in
the graph. Subgoal operators interpret this label and trace the corresponding path through WM to
find the referenced memory element. This requires two steps, one for each traversed graph edge,
as shown in the figure with green arrows “1” and “2.” Once the agent has traced this path and
found the referenced element (in this case, the number circled in green), it can return this element
as the result of subgoal processing and also learn a chunk that can repeat this process in the future
for this WM reference. At this point, the agent is still missing the binding for variable <y>, and so
the agent enters another PRIM resolution subgoal. In this subgoal, it similarly reads the action line
to trace the single graph edge “Query” to find the reference O3. The last edge in the action line,
“newitem,” will be created, so PRIM resolution stops the trace at O3. It returns this reference to
the parent state, and the PRIM COPY operation is now resolved to (COPY Retrieval.item1

to Query.newitem). The net effect of PRIM resolution is thus to convert a declarative de-
scription of a WM element into a usable procedural reference.

This slightly modifies the computational meaning of a PRIM. In my PROPs system, PRIM
rules are no longer operations that are bound to specific WM slots, but rather they define generic

59

operation types (such as add, remove, etc.) that can apply to any WM location.
Note that chunks learned from the PRIM resolution process are transferable wherever the same

variable reference is used for a single instruction line argument. This is a finer level of transfer
than even the lowest level of PRIM combinations in Actransfer, which only transfer when the
same WM slots are used in a pair of two different PRIM operations. While a PROPs agent using
PRIM resolution initially requires more processing than an Actransfer agent, it quickly learns all
the chunks it needs to perform as quickly as Actransfer for its given task instructions. The PROPs
agent using PRIM resolution also has a provably smaller procedural memory footprint than an
Actransfer agent. The proof for this is trivial. Actransfer requires procedural memory to begin
with a PRIM rule for every possible permutation of every primitive operation in WM. A PROPs
agent only learns chunks for operations that task instructions require in practice, which are less
than or equal to the full set of Actransfer PRIM rules. Further, the PROPs agent only needs a
single chunk per single variable binding, rather than a rule for every pair of variable bindings.
This further reduces the footprint. In practice, the PROP1 agent only needs to learn about 100
PRIM resolution chunks for a single task in the Actransfer experiment suite, in contrast to the
1,693 PRIM rules that Actransfer must start with when using 31 WM slots.

In summary, I introduce a new layer of primitive procedural memory processing and transfer
to the PRIMs theory of procedural learning. As I describe later in section 7.7, this extra layer
of primitive processing leads to a more human-like power-law learning and transfer profile that
is absent from Actransfer results (Stearns et al., 2017). PRIM resolution could theoretically be
applied in other production system architectures besides Soar, potentially in ACT-R, even if they
do not have Soar’s unbounded or hierarchical WM.

7.2 Distinguishing Primitive Operators from PRIMs

A PRIM rule in the original sense defined by Taatgen (2013) is both a primitive rule and a primitive
decision cycle operation. This follows from the way that a single fired rule in ACT-R represents
a single decision cycle. This is not the case in Soar, where there is a single operator per decision
cycle but potentially many proposal, preference, and apply rules fire in parallel. And yet the agent
does not begin with innate operators but innate rules. Operators do not exist in a Soar agent’s
procedural memory as known rules, but rather they are constructs created on-line by proposal rules
and applied by apply rules. Thus, a primitive rule in Soar is not the same as a primitive decision
cycle operation (a rule in ACT-R).

I introduce a new construct to PRIMs theory called the PRimitive OPerator (PROP), for which
the PROPs system is named. From here on, I refer to the innate, primitive rules in the PROPs agent
as “PRIM rules” or “PRIMs,” in the same sense as used in Actransfer, and to the primitive decision

60

read-prompt

cond1: "goal==const1"

action1:
"COPY-input-to-slot1"

cond2: "input<>nil"

const1: "get-text"

action2:
"COPY-const2-to-goal"

const2: "write-text"

IF (action-type: "COPY")
AND (conditions satisfied)
THEN (propose (COPY <x> to <y>))

IF (cond-type: "==")
AND (arg1 <x>)
AND (arg2 <y>)
THEN (propose test (<x> == <y>))

IF (cond-type: "<>")
AND (arg1 <x>)
AND (arg2 <y>)
THEN (propose test (<x> <> <y>))

COPY "const2" to "goal"

COPY "input" to "slot1"

test "input" <> nil

test "goal" == "const1"

Instruction lines in WM Primitive Rules
(PRIMs)

Primitive Operators
(PROPs)

Figure 7.3: PRIMs and PROPs in the PROPs system for the “read-prompt” instruction.

cycle operations done by the agent as “PROPs.” In the PROPs system, the general, innate rules
such as (COPY <x> to <y>) that can be bound to specific WM elements are the PRIM rules.
When the PROP1 agent retrieves a task instruction into its WM, it can use PRIM rules to propose
a PROP specific to each instruction line.

Figure 7.3 depicts the distinction between PRIMs and PROPs in the scenario when an agent
retrieves the “read-prompt” instruction into WM. The agent has three relevant PRIM rules that can
match on this instruction. (Not shown is the PRIM resolution process that binds the instruction
line arguments to the PRIM rule variables.) Each of these proposes a PROP that carries out the
instructed primitive operation. (Not shown are other PRIM rules that would apply these operators
if they were selected.)

There are four main categories of PRIM rules in the PROPs system. The first is for primitive
condition lines, the second is for primitive action lines, the third is for operator preference elabo-
rations, and the fourth is for supporting the overall process of proposing operators from instruction
lines. Table 7.1 lists the PRIM rules types for the PROPs system according to these four categories.
The number in parentheses after each entry in the first three columns is the number of WM location
arguments required for PRIM resolution to resolve a PRIM. In PROP1 there are two PRIM rules
for each of these types, one to propose the corresponding PROP and one to apply it.

Conceptually, the first two categories for conditions and actions include the same rule types as
those that exist in Actransfer, although the Soar architecture supports slightly different operations.
For instance, Soar tests whether a WM graph element does not exist rather than whether it has a
nil value, and it can add an ID node to the graph as an action. The third category of Soar PRIMs,
operator preferences, allow task instructions to guide operator preference. Actransfer/ACT-R does
not use preference rules, so this category is irrelevant to replicating Actransfer. I show it here for
completeness, since preference rules provide a class of primitive memory operation in Soar.

The fourth category, proposal support, is unlike the others. The first type of PRIM rule in this

61

Conditions Actions Preferences Proposal Support
Equal (2) Copy (2) Acceptable (1) PRIM resolution
Unequal (2) Remove (1) Indifferent (1) Propose actions
Exists (1) Add ID (1) Better (2)
Not Exists (1) Worse (2)
Type Equal (2) Best (1)
Greater (2) Worst (1)
Greater/Equal (2) Reject (1)
Less (2) Require (1)
Less/Equal (2) Prohibit (1)

Table 7.1: Primitive memory operation types through which PROPs are proposed and applied.

read-prompt

cond1: "goal==const1"

action1:
"COPY-input-to-slot1"

cond2: "input<>nil"

const1: "get-text"

action2:
"COPY-const2-to-goal"

const2: "write-text"

IF (action-type: "COPY")
AND (conditions satisfied)
THEN (propose (COPY <x> to <y>))

IF (cond-type: "==")
AND (arg1 <x>)
AND (arg2 <y>)
THEN (propose test (<x> == <y>))

IF (cond-type: "<>")
AND (arg1 <x>)
AND (arg2 <y>)
THEN (propose test (<x> <> <y>))

COPY "const2" to "goal"

COPY "input" to "slot1"

test "input" <> nil

test "goal" == "const1"

Instruction lines in WM Primitive Rules
(PRIMs)

Primitive Operators
(PROPs)

IF (action: "COPY-input-to-slot1")
AND (action: "COPY-const2-to-goal")
AND (conditions satisfied)
THEN (propose actions)

COPY "input" to "slot1"
COPY "const2" to "goal"

IF (cond: "goal==const1")
AND (cond: "input<>nil")
THEN (propose tests)

test "goal" == "const1"
test "input" <> nil

Figure 7.4: PRIMs and PROPs in the PROPs system for the “read-prompt” instruction after the
agent has learned compositions of PROPs.

category provides PRIM resolution behavior. The implementation of the PROPs system in fact
uses multiple rules to perform PRIM resolution, but the net behavior is a single process, and so it
is listed as a single entry in Table 7.1. The second type of PRIM rule in this category is the rule
that allows the agent to propose instructed action lines after all the associated condition lines are
found to be satisfied. This is a single PRIM rule that fires when the count of satisfied condition
lines is equal to the total number of condition lines.

My work with PROP1 showed that this design allows the PROPs agent to generate PROPs for
general memory operations on-line for any structure of Soar WM (Stearns et al., 2017).

When learning combinations of WM operations (P5), PROP1 learns to compose PROPs by
learning chunks (rules) for pairs of proposal rules as well as for pairs of apply rules. Initially,
given task instructions in WM, the agent proposes an operator for each primitive operation, as

62

shown in Figure 7.3. With chunking, the agent learns proposal rules for operators that apply
multiple primitive operations at once, and in order to apply these operators the agent must also
learn the apply rules that carry out multiple operations at once. Unlike PRIM rules, these chunks
are already bound to specific WM elements. Figure 7.4 shows the PRIM rules from Figure 7.3
alongside chunks for composed PROPs, drawn with bold lines. (The PROP1 agent prefers to use
these larger compositions of PROPs.)

In terms of cognitive theory, PRIM rules are supposed to represent primitive procedural knowl-
edge. PROPs, by contrast, represent primitive processing done using procedural knowledge. The
distinction that I introduce here is that there need not be a one-to-one mapping between these. A
small set of primitive procedural knowledge can support a much larger set of primitive memory
operations.

7.3 Supporting Ordered Retrievals

As described earlier, P2, the retrieval selection phase, presents a significant gap in Actransfer’s
implementation of PRIMs theory. Actransfer does not define how the agent knows which instruc-
tions are appropriate to retrieve from LTDM. Actransfer includes a custom, automatic architectural
process that tests all conditions of all instructions and then increases the activation of instructions
that have satisfied conditions. This way, the agent retrieves an instruction that is practically already
guaranteed to have satisfied conditions when it tests them in P3. Clearly, this custom architectural
processing is performing the test work of P3 ahead of time so that the agent does not use many
decision cycles in P3 on instructions that it has to discard. This is not part of PRIMs theory, but it
at least serves to let Actransfer run in absence of an more detailed model for P2-P3.

My goal for PROPs is to fill such gaps. However, as described in chapter 3, for PROP1, I
first implement Actransfer functionality in Soar as closely as possible so that I can evaluate iter-
ative changes that I then introduce. But, as also described in chapter 3, I do not wish to do this
by modifying the Soar architecture. Therefore, I do not attempt to replicate the custom architec-
tural modification of Actransfer that bias declarative retrievals toward instructions with satisfied
conditions.

Given that the main effect of the Actransfer P2 approach is to make it likely that the agent
never retrieves an instruction it cannot execute, I instead have the PROP1 agent deliberately rea-
son over rote declarative knowledge of the sequence of instructions it needs to retrieve (e.g.
“Instr1→ Instr45→ Instr2→ Done”). The agent keeps an explicit declarative, task-specific
representation of a sequence of instructions in its long-term SMEM storage. This is the first thing
the agent retrieves into WM when given the name of a task to perform. If the agent retrieves (and
applies) instructions according to this sequence, the instructions it retrieves always have satisfied

63

conditions.
This assumes that the task allows such deterministic behavior, and this assumption is not valid

for all experiments in the Actransfer suite, particularly the WM/Stroop and task-switching exper-
iments. However, it is sufficient for an initial replication and test of PROP1 when deterministic
behavior is possible.

The PROP1 agent always retrieves instructions with satisfied conditions, so long as the given se-
quence is reliable. Since Actransfer uses random noise to moderate its retrievals, and can therefore
occasionally retrieve an unsatisfied instruction, PROP1 has slightly fewer rejected retrievals. Since
retrievals take time, PROP1 ought to therefore be slightly faster in task performance. However, as
is discussed in section 7.7, I show that the net behavior is comparable.

This design leaves the same gap for P2 that Actransfer did and should come close to replicating
its behavior without the need to modify the architecture. It could, however, also be a simple model
of a human task subject who follows a memorized routine of instructions or who remembers an
instructor’s demonstration of each step for a task.

7.4 Simulating Gradual Learning

As described earlier, Actransfer uses ACT-R’s procedure compilation mechanism to implement
gradual learning (P5). Any time the agent fires two rules in two sequential decision cycles, the
architecture combines the two rules into a new learned rule, if possible. This learning is one-shot,
but the learned rule starts with a low utility, which means that at first it is not likely to be used. But
its utility increases each time the agent repeats those two component rules in sequential decision
cycles the same way it did to generate the learned rule. Eventually, the utility of that learned rule
increases enough so that it is used in place of its component rules. The net effect of this approach
is that the agent must practice using its primitive rules for several repetitions before it actually uses
learned rules in their place.

Since gradual learning is a key element of PRIMs theory, I must include this behavior in PROPs.
However, while Soar chunking is also one-shot learning, Soar does not define any gradual process
for adopting learned rules the way ACT-R does. I therefore do not have the option of using chunk-
ing directly to emulate the Actransfer gradual learning process, and I do not wish to modify the
architecture.

PROP1 simulates gradual chunking by using agent decisions to mediate and control the learning
process, such that the agent deliberately makes its learning gradual. I designed the PROP1 agent to
keep declarative knowledge of all pairs of component rules that it practices together and to track
how many times each pair has been seen together during practice. If this co-occurrence count
passes a parameterized threshold, which I here call θp, then and only then does the agent turn on

64

chunking for that substate and learn the rule. This simulates ACT-R gradual learning by delaying
how long it takes to add a rule to procedural memory rather than by delaying how long it takes to
use that rule after it is added. This difference is necessary because Soar will always fire a chunk
whenever its conditions are satisfied. Setting θp to 1 is equivalent to standard one-shot chunking in
Soar. If θp was set to 2, then the architecture must attempt to create a chunk twice before it actually
stores it in procedural memory, and so on.

As explained in my methodology in chapter 3, during experimentation I omit agent task latency
that is due to agent decisions such as these that replicate an Actransfer architectural process that
has not yet been implemented in Soar. These decision cycles fill in for the required processing
until future PROPS iterations can address the problem directly.

In summary, I identify how Soar theory can be expanded to support gradual procedural learning
in a manner consistent with existing architecture theory. As I will discuss in section 7.7, experi-
mentation showed that this approach to gradual procedural learning can provide equivalent or even
superior learning profiles compared to the gradual utility-based learning of ACT-R for these tasks
(Stearns et al., 2017).

7.5 Computational Motivations for Gradual Learning

In this section, I briefly pause my description of PROP1 in order to explain a theoretical principle I
uncovered in my research that is crucial to understand how and why I used Soar to learn primitives
the way I did. This is the principle of why an agent should learn rules gradually. PRIMs theory
requires gradual learning as a means for emulating human learning patterns. But what are the
computational effects of gradual learning, and does it serve a practical benefit? If a rule could be
learned and used now rather than later, why not learn it immediately and reap the performance
benefits right away?

I found that gradualness is essential for PRIMs theory learning to ensure proper transfer of the
learned rules. In broader psychology research, it is known that the variability and rate of the skills
practiced during training can shape transfer (National Research Council, 1994). However, while
there continue to be many studies into how gradual skill practice can shape human transfer (Sabah
et al., 2019; Sawers & Hahn, 2013; Shahar & Meiran, 2015), I am unaware of any prior work in the
cognitive architecture field that has discussed the computational motivation for why the learning
mechanism should compose rules gradually to enhance transfer.

As Stearns et al. (2017) observed, gradual learning in PRIMs theory serves the function of
letting the architecture experience which PRIM combinations are used the most across multiple
practiced instructions before favoring a particular learning path. Consider the example in Fig-
ure 7.5, in which there are two instructions, “Instruction1” composed of primitives A, B, C, D and

65

“Instruction2” composed of E, B, C, and F. If the agent waits to compile the first layer of new rules
until after practicing both Instruction1 and Instruction2, experience reinforces to the architecture
that B and C appear together more frequently than other primitives across both instructions. Thus,
the architecture prefers the learning path shown on the left in the figure, and the agent benefits
from transfer. However, if the agent instead learns greedily with one-shot learning, it might per-
form Instruction1, be given the option of composing either (AB), (BC), or (CD), and randomly
choose (AB). Then it would be forced to follow the learning path shown on the right, which allows
no transfer across these instructions.

A B C D CE B

CBEDCBA

BC

EBC

Instruction1 Instruction2

ABCD

ABC

F

F

EBCF

(a) Transfer

A B C D CE B

CBEDCBA

CD EB

Instruction1 Instruction2

ABCD

F

F

AB CF

EBCF

(b) No Transfer

Figure 7.5: Examples of different rule learning paths over time, based on which pairs of rules are
compiled first. Circles indicate instruction lines; rectangles indicate rules that execute those lines.
Learning path (a) allows transfer between the instructions. Learning path (b) does not.

Anderson (1982) similarly observed that an agent that uses pairwise production compilation
can risk learning new rules that are useless or which can even prevent the agent from learning
more useful rules. His proposed solution, however, was not gradual learning but to use subgoaling
to group productions that could more safely be composed.

Some theoretical work in researching the neural mechanisms of human rapid instructed task
learning predicts that a faster learning rate in the Pre-Frontal Cortex (PFC) regions that build rep-
resentations for task skills might actually cause slower overall task learning (Cole et al., 2013).
Their argument is that a higher learning rate would result in overfitting, and that this would there-
fore result in less-generalizable compositional structures, which would slow down progress in the
long-term. This is essentially the same concept I describe here and experimentally demonstrate
later in this chapter in section 7.7.3.

66

7.6 Combining PRIMs as Sets

Actransfer uses ACT-R’s production compilation mechanism to learn rules, and this entails a par-
ticular approach to building rule combinations that is not directly compatible with Soar theory.
As described in chapter 4, the ACT-R mechanism compiles rules that are sequentially adjacent to
each other during task practice. If an Actransfer agent practices A->B->C->D, in that order, it can
learn the combinations (AB), (BC), and (CD), but not, for instance, (BD). But in theory the relative
order of execution does not matter for primitive conditions or actions within an instruction, so long
as the conditions are tested before the actions are executed. If A, B, C, and D are all conditions or
all actions, (AB), (AC), (AD), (BC), and (BD) should all be valid combinations. That is, PRIMs
theory regards conditions and actions as sets rather than sequences.

This presents a gap in Actransfer’s implementation that I desired to address with PROPs. This
was particularly relevant for me to address with PROP1 because the design of Soar chunking, which
is based on summarizing substate processing, does not natively support the sequential compilation
approach of ACT-R. I could not easily implement Actransfer’s sequence-based learning approach.
But Soar could easily support a set-based learning approach, similar to that which is actually
desired for PRIMs theory.

There are multiple ways that I could have made PROP1 combine primitives as sets. The first
approach I investigated was to have the agent compile all possible pairs of practiced conditions or
actions during each iteration of practice. For instance, if the agent practiced A->B->C->D, in that
order, it could learn the combinations (AB), (BC), and (CD) like Actransfer, but also learn (AC),
(AD), and (BD) from that same round of practice. However, this approach highlights a combina-
torics problem. The learned rules can then be practiced alongside more primitive rules and thus can
be combined with them in future iterations of learning. This means that each newly learned rule
could lead to many more future rule combinations. For instance, after learning (AB), (BC), (CD),
(AC), (AD), and (BD), the next layer of learning could include ((AB)(CD)), ((AB)C), ((AB)D),
(A(BC)), ((BC)D), (A(CD)), (B(CD)), ((AC)(BD)), ((AC)B), ((AC)D), ((AD)B), ((AD)C),
(A(BD)), and/or ((BD)C), fourteen more rules, many of which are redundant. Continuing this hi-
erarchy of learning could in the worst case lead to a total of 32 rules learned for the sake of the four
primitive operations. This number would grow significantly for each additional primitive added to
the set in a single instruction. And an agent can have many instructions for a single task, each with
its own set of operations.

Brief experimentation showed that this kind of learning significantly impairs the agent’s ability
to run. Running Soar on my lab desktop computer, the agent would grind to a near-halt after only a
few cycles of learning. In this case, the slowdown came from the architectural process of matching

the learned rules. As the number of known rules for applying a sequence of primitives grows with

67

learning, so also does the workload for the architecture to update which rules match and which do
not. In this case, the growing number of proposal rules particularly exacerbates the problem. When
there are multiple competing operator proposals, the agent also needs to use preference rules that
match on pairs of proposals to give relative preference among them so that the agent can choose
one. This multiplies the processing workload by a factor of up to

(
n
2

)
, where n is the number

of proposals, and a preference rule matches on 2 proposals. Thus, for each proposal rule the
agent learns there is a combinatorial cost to compete it against other proposal rules. But the more
preference rules I use to filter out proposals, the greater the immediate processing load to match
the preference rules. However, the fewer preference rules I use, the less I can control whether the
agent even uses newer learned operator combinations rather than more primitive operators, and this
would decrease the effectiveness of learning new rules. Clearly there needs to be a more principled
constraint on rule learning.

My goal for PROP1 was to find an approach that allows conditions and actions to be treated as
sets rather than sequences, according to the general principles of PRIMs theory, but that also allows
efficient transfer from practice without combinatoric explosions in memory use or processing.

The solution I employed is as follows:

1. The agent proposes all known operators that can execute condition or action lines in the
given instruction.

2. Preference rules prioritize operators that represent the largest known combination of condi-
tion or action lines, or choose randomly when there is a tie.

3. The agent iteratively retracts any proposals for operators that execute condition or action
lines that have already been completed.

4. Once done executing all condition/action lines, increase the count of co-occurrence for all
pairs of operator proposal rules and pairs of operator apply rules that were involved in the
selected operators.

5. Once a co-occurrence count is past the chunking threshold, θp, chunk that pair of proposal
or apply rules into a new rule that can be used in the future.

In other words, the PROP1 agent does not chunk operator combinations until after they have
co-occurred enough times to pass the θp threshold, and when the agent executes an instruction it
uses only the largest possible operator combinations as soon as they are available. The agent then
only combines together the fired rules that are used for the selected operators. It does not combine
proposal rules that fired but which did not propose the selected operators.

68

By contrast, Actransfer/ACT-R combines any pair of co-occurring rules and adds them to pro-
cedural memory right away, but the agent is not likely to use its learned rules until after it gradually
learns to increase their utility values, and even then it will select them with only gradually increas-
ing probability. This means that Actransfer will have many more different mixtures of redundant

operation combinations. For example, assume an agent is given an instruction for A, B, C, D, and
has already practiced enough so that it must choose between executing either (AB) then (CD), or
A then (BC) then D. An Actransfer agent might choose (AB) then (CD) one time, but because
it selects probabilistically, the next time it might instead choose to perform A then (BC) then D.
When it practices (AB) then (CD), it then learns the new rule ((AB)(CD)). When it later practices
A then (BC) then D, it then learns the new rules (A(BC)) and ((BC)D). If it later practices these
again, it will learn the rule (A(BC)D). The Actransfer agent will then have learned redundant rules
for both ((AB)(CD)) and (A(BC)D) along with the full set of combinations that led to both paths:
(AB), (BC), (CD), (A(BC)), and ((BC)D). This allows more breadth of rules that can be used or
potentially transferred in the future, but many of them are unnecessary, and this approach does not
scale well computationally if the number of valid operation combinations is large for a task or set
of tasks.

The PROP1 agent could practice either (AB) then (CD) or A then (BC) then D many times,
and then eventually chunk either ((AB)(CD)) or (A(BC) or ((BC)D), but only one of these three.
Whichever chunk it makes will depend on which combination is used most in the other instructions
it practices over time. Assume it chunks (A(BC)). Then after more practice it will in total have
learned only the combinations (AB), (BC), (CD), (A(BC)), and ((A(BC))D), and no more. This
approach still allows transfer for the instructions actually used in practice without the large scaling
footprint of Actransfer.

7.7 Evaluation

While the effort to define the computational details of PRIMs theory for Soar led to the theoretical
contributions and distinctions listed above, there are two particular computational changes in the
model that I need to evaluate.

• The effects of introducing PRIM resolution

• The effects of varying the chunking threshold, θp.

I can evaluate these two factors by toggling them on and off when running the model. As men-
tioned earlier, I can effectively turn off PRIM resolution and the corresponding layer of learning
by providing the agent with the set of chunks that it would learn through PRIM resolution for its

69

specific task. If I disable PRIM resolution in this manner, I will describe this agent configuration
with the term No PR.

I can also test the effects of varying θp, the number of times two rules must be seen together to
be chunked into a new rule, by simply changing that parameter value.

These two factors are features I introduced to PRIMs theory with PROP1, but there is another
learning behavior that also exists in Actransfer that I can toggle in PROP1, which is the last stage
of PRIMs learning. This is the stage in which the agent compiles a single rule that carries out the
practiced instruction automatically, that is, without retrieving the instruction. (This is the top layer
in the hierarchy shown in Figure 4.4.) Actransfer always performs this final layer of learning, but
subsequent experimental modifications to that architecture disabled it for computational reasons.1

In later experimentation with PROP2, which I discuss in chapter 8, I also found that disabling
this final layer of learning improved the model’s ability to match human behavior. For reasons
that I also discuss in that chapter, I describe this setting using the term Auto for when this last
learning level is enabled, and Deliberate for when it is disabled. Because this last learning step
lets the agent perform task operations automatically without retrieving an instruction, it provides
significant gains in performance speed relative to other steps of learning. Thus, I can predict that
toggling this last layer of learning will significantly change the scale of agent performance.

I can predict that an Auto PROP1 agent should be able to achieve more extreme gains in
performance speed after practice than an Actransfer agent, because Soar will adopt learned rules
instantly and consistently once they are learned, whereas Actransfer will adopt them gradually and
probabilistically. It could be the case that PROP1 performance would be more similar to Actransfer
in Deliberate mode than Auto mode.

Beyond these factors that I can toggle in PROP1, I can show the theoretical implications of
the other differences with Actransfer without experimentation. My approach for retrieving in-
structions through WM knowledge rather than automatic architecture bias should have practically
undetectable differences if implemented correctly, since both approaches have the same result that
the agent retrieves the same sequence of instructions. The only difference might be a slight de-
crease in latency for the PROP1 agent, since the Actransfer agent can technically have some wasted
cycles from retrieving the wrong instructions from time to time due to random noise.

I was also interested in the consequences of how I made PROP1 use deliberate co-occurrence
counting to enact gradual learning, in contrast to ACT-R’s mechanism for gradually adopting new
rules. However, given that I had to use a different mechanism in order to support PRIMs learning
in Soar at all, there is no way to simply toggle this kind of learning on and off in PROP1 for the
sake of comparison. Instead, I look to whether PROP1 is capable of producing the same learning
trends as Actransfer during experimentation. Still, one might predict that the PROP1 agent will

1(N. Taatgen, personal communication, July 11, 2017.)

70

display more pronounced performance boosts from chunking, even if using this gradual approach,
since it always uses newly composed rules in favor of more primitive components when possible,
where Actransfer adopts new rules more probabilistically.

I also cannot simply toggle the way PROP1 chunks sets of operators used together in a substate
versus the way Actransfer composes sequential rules. There is no easy way to compare how
Soar would perform with one alongside the other, since Soar does not natively support chunking
sequential operators. However, I predict that the PROP1 agent should be capable of slightly more
transfer than Actransfer, since it has more pairs of operations to choose from at each stage of PRIM
composition. Greater flexibility in the choice of which operations to combine should allow greater
possibilities for achieving transfer.

All together, I predict that the main learning profiles of the architectures will be similar, in-
cluding the amounts of transfer they provide, since they share the same core hierarchical learning
theory from PRIMs. But I also predict that the absolute manner with which PROP1 adopts newly
learned rules will give it more absolute performance improvements from learning Auto rules. I
also predict that PROP1’s ability to combine pairs of primitives from across sets of condition or
action lines rather than sequences will produce more transfer. And finally I predict that a PROP1

agent that uses PRIM resolution will have a higher initial performance cost and then steeper learn-
ing curve as it learns to use the necessary memory elements.

Testing these predictions, I gave a PROP1 agent declarative instructions to perform in a sim-
ulation of the Elio (1986) arithmetic task experiment described in section 5.1. I copied the agent
instruction logic and memory organization from what was used in the Actransfer simulation by
Taatgen (2013), so that both model implementations learned to compose equivalent sequences of
primitive operations.

The arithmetic task is well-suited for testing PROP1, because it is a simple monotonic learning
task that does not require too many complex reasoning strategies. This made it easier to isolate dif-
ferent learning behaviors for comparison between PROP1 and Actransfer for this more constrained
proof-of-concept stage of development.

A brief sweep of θp showed that values in the range of 16 to 24 provide comparable behavior
to human and Actransfer results with PROP1. If not otherwise noted, I use θp = 16 below.

I ran two main experiments, as also described by Stearns et al. (2017). First, I toggled whether
the agent performed PRIM resolution or not. Second, I evaluated the detailed effects of varying
the chunking threshold θp.

As described above, when plotting model behavior I omit latency that is due to agent decisions
that support gradual learning, since these substitute for a necessary architectural mechanism that
was not yet defined in Soar theory. I do, however, count latency for instruction retrievals. Because
Soar does not include an approach for calculating the latency of declarative retrievals, I take these

71

numbers from Actransfer. Specifically, for each task step, I take the average retrieval time gener-
ated by the Actransfer agent and use that as the PROP1 agent’s retrieval time within that step. All
data for the arithmetic task were averaged over 8 repetitions, as in Taatgen’s originally reported
results.

Actransfer follows ACT-R in assuming 50 msec per decision by default. I similarly use 50 msec
per Soar decision. (This is true of all models discussed in this thesis.) Besides decision cycle time
and declarative retrieval time, the Actransfer models also include time for visual/motor actions. In
the arithmetic task, the Actransfer model used 0.3 sec to look up a single number from the prompt,
1 sec to find the max or min of a set of numbers, and 0.3 sec to enter a calculated number. I used
the same times for PROPs.

7.7.1 Initial Replication Results

I show the initial results of my attempt to replicate Actransfer with PROP1 before I show the results
of my two experiments.

(a) Component steps (b) Integrative steps

Figure 7.6: PROP1 agent performance for the arithmetic task.

Figure 7.6 shows human, Actransfer, and PROP1 performance for the arithmetic task. Again,
on the left is the plot of time required to do component steps in the arithmetic algorithms, and
on the right is the plot for integrative steps. Human performance is in blue, Actransfer in red, and
PROP1 in green. Here I use No PR and Auto for the PROP1 agent, which is to say I disable PRIM

72

resolution and keep the final layer of learning. This is the configuration most similar to Actransfer
in terms of learning theory.

As predicted, both models show similarly-shaped learning curves and transfer profiles, though
the PROP1 agent does perform faster than the Actransfer agent, particularly for component steps
in the task. Figure 7.6a shows that the PROP1 agent reaches optimal performance by the end of the
50 training trials. Optimal performance in this case occurs when all instructions are fully learned
with final Auto rules. That the PROP1 agent is able to level off at optimal performance where
the Actransfer agent does not is also as predicted. As described earlier, this is due to the way that
Actransfer is less able to take advantage of Auto rules after they are learned.

The relative speed increase is evident in Figure 7.6b for the integrative steps as well, though
the gains in speed are less monotonic. With further inspection, the reason the agent performance
jumps up and down is due to the affect of learned Auto rules on sequential instruction retrieval. As
I described in section 7.3, PROP1 keeps WM knowledge of where it is in its instruction sequence.
Because Auto rules fire automatically without deliberate instruction retrieval, the agent does not
know to update its WM knowledge of where it has progressed within the instruction sequence.
Once the agent needs to rely on instructions again, it has to spend time searching through the
sequence of its instructions to catch up to where its Auto rules had progressed in the task. The
reason this results in the non-monotonic learning behavior for the integrative steps but not the
component steps is due to the complexity of the instructions for those steps. Some of instructions
for the integrative steps that are used in sequence have fewer condition and action lines than other
steps. This means that the agent can compile Auto rules for each of these with fewer iterations
of practice than it requires for other steps. When the agent learns Auto rules for one block of
instructions faster than the rest, the agent is able to skip through a large chunk of the task at once
when at the learned block, but it then has to slow down when it reaches a block of instructions it has
not yet learned in order for its WM representation to catch up. The component steps, by contrast,
are more uniform in complexity, such that the agent can compile those instructions at about the
same rate.

In Elio (1986)’s original publication, the human transfer data over trials 51-100 were averaged
into two points, as I also show above for Actransfer and PROP1. But I am able to examine the
Actransfer and PROP1 data for trials 51-100 in greater detail. This is shown in Figure 7.7.

This figure better shows the relative transfer effects for the different transfer conditions. Each
of the first data points in the transfer conditions is lower than the first data point in the training
period, though not by much for two of the three transfer conditions. In the rest of this thesis, I
show the averaged transfer data as before, to better compare with human data as well as to improve
readability in the figures.

73

(a) Component steps (b) Integrative steps

Figure 7.7: PROP1 agent performance for the arithmetic task with higher resolution for transfer
data.

7.7.2 Experiment 1: Effects of PRIM Resolution

I now describe my first experiment, in which I test the effects of PRIM resolution.
Recall that PRIM resolution at first requires subgoal processing to find the WM references

needed for each condition and action line. The prediction is that, this extra processing should slow
down agent initially, but that it should quickly catch up as the agent learns chunks for primitive
memory operations on specific WM locations.

Figure 7.8 shows this to be the case. This figure shows the same Actransfer and PROP1 agents
as above in Figure 7.6, with the addition of the plots for the agent that has PRIM resolution enabled,
shown in light green. I observe two main effects of adding PRIM resolution. First is that the overall
scale of task latency is stretched vertically to be longer. Second is that, as predicted, the amount
of latency reduction in this stretching is disproportionately higher for the early part of the learning
curve. Note that the first three data points on the light green plot are much further from those of
the dark green plot in the training case than are the following points. Both PROP1 plots converge
to the same optimal performance as they learn Auto rules for the task. To better see the effect of
PRIM resolution, I disable Auto rules, as shown in Figure 7.9.

Figure 7.9 shows the PROP1 agents with and without PRIM resolution, both set to Deliberate
rather than Auto. This more clearly shows that the learning curves with PRIM resolution are prac-
tically parallel to those without it except for the first few data points. Intuitively, this makes sense.

74

(a) Component steps (b) Integrative steps

Figure 7.8: PROP1 models with and without PRIM Resolution (PR).

PRIM resolution provides an extra layer of processing and learning that comes at the start of task
practice only.

There are a few notable takeaways from these results. Firstly, PROP1 with PRIM resolution
results in a much more human-like power-law learning curve for training trials 1-50. This was not
my aim when I introduced PRIM resolution, but it supports the addition of this deeper primitive
layer of processing in the model. Secondly, PROP1 set to Deliberate is indeed more aligned
with the original Actransfer model. However, Actransfer achieved a slightly lower latency than
PROP1 Deliberate can by the end of the trials, since it can learn and eventually use Auto
rules. Thirdly, the way I modified P2 in PROP1 so that the agent relies on WM knowledge to select
instructions from SMEM introduces the possibility of non-monotonic behavior in the learning
curve. This was unexpected and produces different behavior from Actransfer. A non-smooth
learning curve is within the realm of realistic human behavior for an individual. The smooth power-
law curve of the human data here is taken from averaging the results of all human participants, and
the data for individuals is not available. Though model data is averaged over the course of 8
repetitions, there is little room for variation or randomness in the PROP1 model. Effectively, the
model data shown is that of a single individual.

There also appears to be a constant vertical shift in performance when PRIM resolution is
enabled. With further inspection of the agent behavior, this is due to an increase in processing
overheads that comes with supporting PRIM resolution in the PROP1 implementation.

Figure 7.10 shows the PROP1 (Deliberate) model alongside Actransfer and human perfor-

75

(a) Component steps (b) Integrative steps

Figure 7.9: The PROP1 models without the final Auto rule learning stage, with and without PRIM
Resolution (PR).

mance for comparison. The similarity in training trial learning curves between human data and the
PROP1 model is striking, though reaction time is shifted up in the PROP1 model.

Component Steps Integrative Steps
Model r2 MAE MAPE r2 MAE MAPE

Actransfer 0.808 0.84 15.7 0.758 0.58 14.2
PROP1 (No PR, Auto) 0.941 1.94 41.9 0.737 0.93 26.7

PROP1 (Auto) 0.988 1.28 29.4 0.937 0.89 29.2
PROP1 (No PR, Deliberate) 0.898 0.74 11.7 0.838 0.59 15.1

PROP1 (Deliberate) 0.994 2.71 61.3 0.969 2.05 72.2

Table 7.2: PROP1 goodness-of-fit measures for arithmetic data. MAE is Mean Absolute Error.
MAPE is Mean Absolute Percentage Error.

I use two kinds of quantitative goodness-of-fit measures to compare model results with human
performance. I first use r2 to measure how well each model produces the same shape of learning
curve as humans. This is particularly lets me measure how well the model’s overall learning
and transfer mirrors human processing. It does not measure whether the data points are close to
human data, however, only whether the shape of learning and transfer is the same. Therefore,
I also use both Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) as
goodness-of-fit measures. MAE is the average of the differences between the model and human
data,

∑n
i=1 |hi−mi|

n
, where hi and mi are human and model data points, respectively. MAE measures

76

(a) Component steps (b) Integrative steps

Figure 7.10: The best r2 fit PROP1 model compared with both human and Actransfer performance.

error in the same scale as the data being measured. For a more normalized measure, MAPE
instead shows the error between model and human performance as a percentage of the human
performance, 100

n

∑n
i=1

|hi−mi|
hi

. This second kind of measure does not directly show how well the
shape of learning curve mirrors humans, but it does measure the closeness of the data points to
human performance on average.

Table 7.2 shows these goodness-of-fit measures for the arithmetic task training trials. The
model with the closest fit to humans is shown in bold in each column. PROP1 (Deliberate) has
the best r2 measure for both the component and integrative steps. This shows that this model does
indeed mirror the shape of the human learning curve better than Actransfer or alternate PROP1

models. However, PROP1 (Deliberate) also has the worst MAE and MAPE results, due to the
vertical shift in the baseline of performance.

The similar shape but upward shift in PROP1 (Deliberate) performance compared to hu-
mans implies the learning approach of PROP1 is good, but that there is a processing overhead in
PROP1 that a better model would not include. The implication of unnecessary processing is not
surprising, given how much of PROP1’s processing uses agent decision cycles to simulate Actrans-
fer’s architectural processing. I show in sections 8.4 that when I develop the PROPs system further
to be more consistent with the surrounding Soar architecture, the upward shift is reduced while the
shape is maintained. In section 9.4 I show that incorporating Soar’s theory for parallel proposal

77

rules into PRIMs processing makes the shift go away entirely.

7.7.3 Transfer

Elio (1986) originally measured transfer as the difference between the average performance in
the control condition and the transferred integrative or transferred component conditions. I re-
port this same metric for both Actransfer and the PROP1 models. However, because each model
shows a different scale in its learning curve, it is difficult to compare these values meaningfully.
I therefore add an additional metric for transfer, which is the percent of transfer in each transfer
condition relative to its preceding training condition. The specific formula I use is (trainstart −
transferstart)/(trainstart − trainend)× 100. I use the average of the first 25 trials in the training
data for trainstart to match the transfer condition data. For trainend, I use the value at trial 50
in the training data. A score of 100% means that the agent started the transfer task with the same
average performance it had achieved by the end of the training task. A score of 0% means the
agent starts the transfer task with the same average performance it had at the start of the training
task. Because the starting inputs are averaged, an agent could get a score greater than 100% if it
continues learning during the first 25 trials of a transfer condition beyond the level of skill it had
achieved by the end of training. Negative transfer is also possible if the agent begins a transfer
condition with worse average performance than it had in training.

The benefit of my percentage metric is that it measures transfer relative to each model’s learn-
ing, and is invariant to differences in scale across different models. However, meaningful interpre-
tation of this metric assumes that a model’s learning curve for a transfer condition looks identical
to that of the training condition if it had not been preceded by training. In Elio’s experiment, the
calculations for the training and transfer conditions were drawn from the same pool of mathemati-
cal operations and allocated to training or transfer conditions randomly per subject, and therefore
this assumption should hold as a close approximation. True transfer percentages require measuring
the transfer conditions without preceding them with training. This was missing from the human
data, however.

All transfer scores are shown in tables 7.3 and 7.4. The table columns separate transfer scores
for control, integrative, and component transfer conditions. The top half of each table shows the
“Difference from Control” score, as used by Elio (1986). The lower half shows my alternate
“Percent Transfer” measure. The transfer percents for each model are followed in parentheses by
the difference from the human percent transfer. The original human transfer is shown at the top
of each section for each measure. For instance, in Table 7.3, the percent transfer for humans in
the control condition is 11.75%. The percent transfer for PROP1 (Deliberate) in that condition
is 13.50%, which is a difference of +1.75%. Models with percent transfer closest to humans are

78

marked in bold. The PROP1 (No PR, Auto) model has the smallest difference in the control
condition from human transfer at +1.64%, and so it is marked in bold in that column.

Component Step Transfer
Model Control Integrative Component

Difference from Control
Human 0.48 1.01

Actransfer -0.11 1.81
PROP1 (No PR, Auto) -0.20 2.28

PROP1 (Auto) -0.20 3.86
PROP1 (No PR, Deliberate) -0.08 1.86

PROP1 (Deliberate) -0.04 2.88
Percent Transfer

Human 11.75% 27.38% 44.63%
Actransfer 38.09% (+26.34) 34.51% (+7.13) 95.23% (+50.60)

PROP1 (No PR, Auto) 13.39% (+1.64) 6.13% (-21.25) 96.23% (+51.60)
PROP1 (Auto) 29.02% (+17.27) 25.46% (-1.92) 97.58% (+52.95)

PROP1 (No PR, Deliberate) -16.89% (-28.63) -20.98% (-48.36) 78.66% (+34.02)
PROP1 (Deliberate) 13.50% (+1.75) 12.55% (-14.82) 88.72% (+44.08)

Table 7.3: PROP1 transfer for arithmetic component steps.

Overall, transfer trends are similar across models. Both Actransfer and PROP1 models achieve
roughly double transfer than humans in the transferred component condition for the component
steps and in the transferred integrative condition for the integrative steps. This indicates that there
are more nuances in the transferred knowledge for humans than the models capture. This is likely
a property of the written task instructions, though it is difficult to draw conclusions.

Notably, the PROP1 (No PR, Deliberate) agent showed negative transfer in the control
and integrative transfer conditions. That is, its initial performance in these was poorer than in the
initial training trials. With inspection, this is due to the LTDM retrieval time taken from Actransfer
combined with a relatively greater number of retrievals done by the PROP1 agent compared to the
Actransfer agent. In Actransfer, the average initial time per retrieval for these transfer conditions
is about 0.10-0.14 sec, while the average initial retrieval time for the training is about 0.06-0.07
sec. In PROP1, the decrease in the number of decision cycles that comes with procedural learning
for these cases is not enough to compensate for this doubling in retrieval time, and thus the overall
effect is worse performance.

Relative to humans, there is no clear winner for which model has the most similar percentage
transfer. For component steps (Table 7.3), different PROP1 models are closest for each transfer
condition, though among the PROP1 model variants, PROP1 (Deliberate) comes in second for
all transfer conditions. For integrative steps (Table 7.4), the PROP1 (No PR, Deliberate)

79

Integrative Step Transfer
Model Control Integrative Component

Difference from Control
Human 1.63 0.47

Actransfer 1.03 0.04
PROP1 (No PR, Auto) 1.52 -0.94

PROP1 (Auto) 2.05 -1.62
PROP1 (No PR, Deliberate) 0.63 0.04

PROP1 (Deliberate) 0.82 0.06
Percent Transfer

Human -1.62% 71.84% 19.56%
Actransfer 36.89% (+38.51) 89.07% (+17.23) 39.14% (+19.57)

PROP1 (No PR, Auto) 36.26% (+37.88) 105.88% (+34.04) -6.69% (-26.25)
PROP1 (Auto) 59.70% (+61.32) 104.70% (+32.86) 24.15% (+4.58)

PROP1 (No PR, Deliberate) 35.88% (+37.50) 78.12% (+6.28) 38.80% (+19.24)
PROP1 (Deliberate) 65.34% (+66.96) 89.95% (+18.11) 67.10% (+47.54)

Table 7.4: PROP1 transfer for arithmetic integrative steps

model is closest for two of the three transfer conditions.

7.7.4 Experiment 2: Effects of θp

To test the effects of the θp chunking threshold, I performed a sweep across different values from
θp = 1 to θp = 24. Figure 7.11 shows this sweep for component steps for both No PR, Auto

and No PR, Deliberate models.
Note how in Figure 7.11a the first data point for the transferred component condition (the first

plus sign) is the same for all values of θp except for θp = 1 (dark green) and θp = 24 (pink). The
first data points for the other transfer conditions by contrast gradually increase in value with higher
θp. Similarly, in Figure 7.11b, all first data points for the transferred component condition remain
the same despite the increase in θp.

The fact that going from θp = 1 to θp = 2 decreases latency for the transferred component
condition in Figure 7.11a shows that higher values of θp can allow greater transfer, as hypothesized
in section 7.5. The higher threshold allows the agent to practice more varieties of PRIM combina-
tions, and thus to find which combinations will be most transferable. However, there are no further
gains in transfer in this task from increasing θp higher than 2. Beyond that point, increasing θp only
increases the learning time.

The fact that even an order of magnitude increase in θp from 2 to 20 is not enough to increase
the learning time for the transferred component condition indicates that the gains from transfer are
great enough to render the higher threshold irrelevant, at least until θp = 24 in the Auto model.

80

(a) Component, Auto, No PR (b) Component, Deliberate, No PR

Figure 7.11: The change in transfer in the arithmetic task with increase in θp.

Though θp = 2 was sufficient for maximal transfer in this task, the proper value for maximal
transfer in general is going to be dependent on both the variety of PRIMs within practiced rules and
on the variety of rules practiced across tasks. The greater the variety of PRIMs within practiced
rules, the more options there are for combining them, the more experience the agent needs to
determine which combinations are optimal. The order of practiced task instructions will also affect
the optimal θp. For example, if an agent repeatedly practices one instruction twenty times in a row
before then practicing second twenty times, the agent cannot incorporate any experience from the
second within its procedural learning unless its θp is greater than twenty. That is, it must wait to
compile procedures until after it has started practicing the second. However, if the agent alternates
back and forth between both instructions every other attempt rather than twenty attempts at a time,
θp could be as low as two. Since the optimal θp in this task is two, this implies that, in the time it
takes for the agent to experience a combination of PRIMs two times, it will have experienced all
the other relevant combinations of PRIMs that it needs to consider.

An investigation of the processing that led to these results showed that much of the transfer
benefits of increasing θp = 1 to θp = 2 came because of PROP1’s use of sets rather than sequences

when representing instruction lines. The set representation allows the architecture to potentially
combine any pair PRIMs used for an instruction group of conditions or actions, while the sequence
representation only allows pairs of adjacent conditions and adjacent actions. The more possible

81

pairings of the set representation thus increases the benefit of gradual learning so that the architec-
ture can gather more experience for which pairs might transfer most.

7.8 Discussion

With PROP1 I replicated the processes of Actransfer in Soar, and made a few modifications to the
computational theory to be compatible with the Soar architecture. A significant aspect of this work
was not only to make the computation compatible with Soar, however, but also to wrestle with the
theory of what exactly is a PRIM? Though it has a clear computational meaning in the context of
ACT-R and Actransfer, as a primitive rule, this meaning does not transfer cleanly to Soar, because
rules in Soar represent different processing.

I introduced PRIM resolution to support P1 in Soar’s unbounded graph memory space, and
I showed that this leads to a more pronounced power-law learning curve. The PROP1 models
that include PRIM resolution provide the best fits the human data in terms of shape. Omitting
PRIM resolution, however, roughly emulates Actransfer’s learning profile. At the very least, this
implies that an additional type of primitive processing and an extra layer of learning is desirable
for modeling humans.

PROP1 extends PRIMs theory by providing an explanation for where the PRIM rules of Ac-
transfer come from. It posits that innate, general processing can apply PRIM operations to any
WM element address, and that this application is learned to form the specific PRIM rules used
in Actransfer. The shape of the model’s performance matches human subjects when it uses this
processing in this learning at the start of this task.

Independent of Soar’s unbounded memory, PRIM resolution allows a level of rules that are
even simpler than Actransfer PRIMs that leads to better learning performance than the PRIMS of
Actransfer. Thus, applying PRIM resolution to Actransfer with its fixed slots ought to improve its
ability to match human performance as well. I know of no reason that PRIM resolution could not
be implemented in Actransfer. It is necessary to support PRIMs theory with Soar’s design of WM,
but ACT-R’s rules can also use variables like Soar’s, and its WM space is no more complex than
Soar’s. Actransfer’s WM could even be entirely implemented within Soar’s as a constrained type
of WM graph, where each buffer is its own node in the graph with a child WME for each slot.
(This is similar to the example WM graph shown in Figure 6.2.)

Adding PRIM resolution to Actransfer would also allow it to be consistent with ACT-R’s stand-
ing design for WM while also greatly simplifying the initialization of procedural memory. Actrans-
fer would require additional reserved WM locations to cache the memory references it would find
with PRIM resolution. It could then have generic PRIM rules per operation type that bind variable
values to the references held in this cache.

82

PRIM resolution was necessary in Soar not just because Soar’s WM is unbounded, but also
because it is hierarchical. If Soar’s WM was unbounded but flat, where all WMEs were held under
the root state node, then no search would be required to access them. But no innate rule can directly
access the items kept at an unbounded depth (with variable structure) without first traversing the
graph to find them. PRIM resolution is a general way of learning more direct ways of accessing
memory that suit whichever hierarchical WM structure is used by a subject.

An open question for PRIMs theory is what the most primitive layer of knowledge ought to
correspond with in humans. Why, for instance, would adult subjects in these tasks still need to
learn to compile skills for individual PRIMs if they were, indeed, primitive? Shouldn’t adults
have had enough experience before beginning an experimental task to have already compiled a
great deal of procedural knowledge beyond the primitive level, which could be transferred to each
task from the start? It could be that in humans the relevant set of WM “addresses” is unique per
task. This would support the need for PRIM resolution when learning a new task. It could also be
that the kind of knowledge that is called “primitive” in PRIMs theory is at a level of abstraction
that obscures an even more primitive layer that humans would build up during their lifetime, and
that the kind of learning demonstrated with PRIMs should be considered a more short-term or
context-specific sort of learning. This would go against the classic ACT-R theory notion that
production rules correspond with permanent basal ganglia procedures. However, there is some
recent research suggests the theory that production rules in cognitive architectures ought to be
considered to correspond with different brain regions depending on their function (Rice & Stocco,
2018). I discuss the question of developmental and adult learning for PRIMs further in chapter 10.

Future work might explore how PRIM resolution affects computational load of using proce-
dural memory. In theory, it should improve it considerably compared to the Actransfer approach,
since it reduces the number of potentially matching rules in procedural memory.

I also added the distinction between primitive rules (PRIMs) and primitive operators (PROPs).
This incorporates part of Soar theory, but does not noticeably affect the agent’s task performance.

The PROP1 model with the most similar learning curve to humans in terms of overall shape
was the Deliberate model. As I will discuss in greater detail in the next chapter, this supports
the view that subjects in this task do not ever proceduralize it so far that they can carry it out
completely autonomously without loading declarative task knowledge into WM. This might not
be the case for all tasks. More physical skills such as running or martial arts are known to be
cases where highly-trained humans can act without much declarative awareness of effort. Any
arithmetic algorithm with multiple steps, however, will almost certainly always require some level
of cognitive awareness and control.

I designed the PROP1 agent to control P2 retrieval selection using a rote retrieval sequence kept
in WM and not through automatic architectural condition checking. Like Actransfer’s solution for

83

P2, this allows the model to function (and replicate Actransfer), but it is not meant to provide a
detailed cognitive model of P2 processing.

I built the PROP1 agent to chunk pairs of instruction lines together gradually by having the
agent deliberately count up each occurrence of a potential chunk until it had seen it θp times. Only
after the agent noticed through its reasoning that the count had passed the θp threshold would it
let the architecture chunk the pair together. This substituted for a lack of Soar support for gradual
chunking. An actual model of subject reasoning in Soar should never include such decision making
as a means of controlling an architectural process. I therefore omitted the decision cycle time for
this process from the final model results. Even so, removing the need for this processing was a
high priority for me in future iterations of PROPs.

It was difficult for me to define gradual learning in PROP1 for Soar, because the original pub-
lication of PRIMs theory assumes the ACT-R mechanism for gradual rule learning. I therefore
emulated ACT-R’s mechanism. However, is this assumption necessary for implementing the the-
ory in other architectures? Ultimately, Soar’s procedural learning is simply very different from that
of ACT-R. That difference required the agent to control its architectural processing. The contrast
between Soar and ACT-R learning computation theory becomes more apparent as I discuss subse-
quent iterations of the PROPs system, since my work in those iterations was to progressively adapt
the system to reflect Soar theory and incorporate the features it can contribute.

I designed the PROP1 agent to compile instruction lines by compiling pairs from the set of
lines in the instruction rather than from only the sequentially adjacent lines. I was not able to
easily toggle this feature on an off for experimentation due to the fact that Soar naturally favors
a set representation, and a sequential representation would require a fundamentally different and
custom-tailored agent constructed differently from the ground up. However, as stated, this differ-
ence contributed to the pronounced transfer benefit of increasing θp = 1 to θp = 2. Otherwise, I do
not observe a significant net effect in agent performance, though the number of variables at play,
such as θp itself, make such a determination difficult.

A θp as low as 2 was sufficient to achieve optimal within-task transfer for the simple arithmetic
task. But it would be expected that the more complex the tasks and the longer the span of learn-
ing for an agent, the higher this threshold ought to be. Future work might investigate what kind
of formal relation might be found between the optimal chunking threshold and the ordering and
complexity of different practiced procedures. This could then be compared with what is known
about how practice structure affects transfer in humans (see (National Research Council, 1994) for
discussion).

My work with PROP1 showed that despite differences between ACT-R and Soar models of WM
and learning, PRIMs theory can be implemented in both to achieve similar results. In so doing, I
introduced the PRIM resolution approach for information processing in unbounded memory spaces

84

like Soar’s. Because this model defines primitive rules that support task-independent processing in
a way that is consistent with Soar theory, PROP1 addresses the P1 implementation gap.

For additional discussion on how the definition of a PRIM relates to how an architecture defines
“working memory,” see appendix B.

85

CHAPTER 8

PROPs Iteration 2: Defining Declarative Retrievals

Legend

Procedures Unknown Retrieve instruction
to WM

Select/Reject
instruction

Execute using known
procedures

Gradually available

Learn procedures
as pairwise

combinations of
practiced procedures

Initializes
Defines

instruction
language

Declarative
Memory

Procedural
Memory

Primitive
Procedures

Calculate latency from # retrievals

1

2 3 4

6

5

Lo
ng

-te
rm

m
em

or
y

Complete:
Not Complete:

Inconsistent:

Select

Reject

Figure 8.1: The PROP1 flow diagram. PROP2 addresses incomplete computation circled in blue.

Figure 8.1 shows the PRIMs flow diagram colored according to the completion level of PROP1.
Once I had established PROP1 as a working replication of Actransfer’s main functions using Soar,
I began building PROP2 to address computational gaps in the procedural learning pipeline, specif-
ically the P2 retrieval selection phase, as circled in blue in the figure. In addition to implementing
P2 for PRIMs theory, I also set out to define gradual procedural learning for Soar, a capability that
was missing from that architecture, as I described in the previous section.

Thus, PROP2 specifically targeted the following two problems:

1. The Actransfer model does not define a computational approach for selecting an instruction
during retrievals (P2).

2. Soar does not define gradual chunking.

As I described in chapter 4, PRIMs theory does not define why the agent might retrieve an
instruction that is already likely to have satisfied conditions. Actransfer used an architectural pre-
processing step that would analyze all instructions and their conditions prior to every retrieval to
ensure that usable instructions were likely to be selected. This allowed enough P2 functionality

86

so that the transfer mechanics of Actransfer could be evaluated, but otherwise represents a sig-
nificant gap in the overall computational pipeline and theory. The PROP1 approach for guiding
retrievals was similarly only meant to be a simple functional substitute that allowed the agent to
run. A properly-defined computational approach that attempted to address cognitive theory was
still missing.

I saw two possible solutions for P2 that might work in Soar. First was Taatgen’s hypothesis
that a spreading activation mechanism might define the retrieval process. At the time of finishing
PROP1, a spreading activation mechanism had been recently added to Soar (S. J. M. Jones et al.,
2016), though its capabilities were largely untested. Second was a more classic Soar approach in
which agent decision making could directly influence retrievals. As I described under step 3.b.2 of
my methodology, since both options were plausible, I set out to implement and evaluate both and
compare their merits. PROP2 attempted the first possible solution: using spreading activation.

In chapter 7 I introduced the second problem that I address with PROP2, how to define gradual
procedural learning. As I described in chapter 6, Soar rules are always used whenever their condi-
tions are satisfied. This makes Actransfer’s ACT-R-based approach for gradually adopting the use
of a learned rule impossible for Soar without a significant change in Soar theory.

For this problem, I took the experimental approach of PROP1 that used deliberate agent de-
cision making to simulate gradual chunking and implemented it as an architectural mechanism
in Soar. I then restructured the agent design accordingly to leverage this new gradual chunking
mechanism.

8.1 Problem 1: Retrieval Selection

My work with PROP2 to define retrieval selection using spreading activation had three parts, to
identify answers to the following three questions:

1. What knowledge structures and/or rules does an agent need for spreading activation to pro-
vide desired PRIMs theory behavior?

2. What would be required for these knowledge structures and/or rules to be learned as part of
general skill learning?

3. What do the answers to the above computational questions imply for cognitive theory?

I describe my explorations of each of these questions below.

87

8.1.1 Using Spreading Activation

What would it take to use spreading activation to guide the instruction retrieval process in Soar? I
review the problem, the computational theory of Soar, and my solution.

The Problem For PRIMs theory to be practical for human modeling, any instruction that the
agent retrieves into WM ought to already be very likely to have satisfied condition lines. Spreading
activation would need to alter the relative activations of different instructions in LTDM so that
instructions with satisfied conditions are the most likely to be retrieved.

How likely must it be that all conditions in the retrieved instruction are satisfied? If the agent
retrieves an instruction and even one condition is not satisfied, then the agent must discard them
and attempt another retrieval, and this takes time. For the tasks involved in Actransfer’s experiment
suite, a model of human performance cannot afford to reject instructions except on rare occasions.
This is because these tasks, particularly those for the Stroop and task-switching experiments, re-
quire stimulus-response reaction times on the order of fractions of a second. If instruction retrievals
can take anywhere from 0.3-0.9 sec, as is the model for some Actransfer agents, then multiple re-
trievals for instructions would quickly prevent human-like response times for these tasks.

Soar Computation In this thesis I aim to fill in the gaps in Actransfer’s theory using Soar’s
cognitive architecture computation. How does spreading activation work in Soar?

First, the main function of activation in Soar is to break ties when there are multiple possible
results for a query to SMEM. When this happens the agent retrieves the memory with the highest
activation. Second, spreading in Soar works by increasing the activations of memories associated
with the contents of WM. Any long-term memories that are active in WM boost the activations of
other long-term memories to which they are associated. For example, consider Figure 8.2 below.
On the left of the figure is SMEM. On the right is WM. There are three long-term memories
currently active in WM, labeled N1, N2, and N6, shown as gray circles. Because these are in WM,
they get an activation boost, shown via thicker black circles in SMEM. In SMEM, these memories
are connected to other long-term memories, specifically N4, N5, and N8. Soar spreading activation
boosts the activations of those connected memories. Soar normalizes the amount of spread given
by a memory across its descendants (the fan effect). In this case, N2 gives less boost to each of
N4 and N5 because it divides the total amount of spread between them, whereas N1 gives its full
boost straight to N4. Any spread given to these immediate descendants continues to spread to their
descendants. The amount of spread decays with distance. In this case, N4 passes some spread
along to N7 and N8, and N5 also passes some along to N8. Because N8 receives spread from N6
as well as decayed spread from N1 and N2, it has the highest total activation in this example. If
the agent did a retrieval for one of these memories, it would retrieve N8 into WM.

88

N1

N4

N2

N5

N3

N8N7

N6

SMEM Working Memory

N1 N2 N6

S1

Figure 8.2: Spreading activation in Soar. Gray circles depict memories from semantic memory
(SMEM) that are currently active in working memory. Line thickness on circles in SMEM depicts
the activation of those memories. Arrow thickness in SMEM represents the relative strength of
activation spreading from those memories.

To use such a mechanism for the goals of P2 in PRIMs theory is non-trivial. Preliminary
experimentation showed that if the instruction activation is defined as a simple linear function of
the number of satisfied conditions (add a constant amount of activation for each satisfied condition),
then it is easy to reach scenarios where instructions with fully-satisfied conditions never have the
highest activation. Imagine two instructions, one with conditions A,B,C,D and another with only
conditions A,B. If only conditions A,B,C are actually satisfied in WM, then the first instruction
would receive more activation boost than the second, even though the first still has an unsatisfied
condition while the second does not.

Because instructions should ideally be retrieved only if all their conditions are satisfied, and
because activation for biasing retrievals must spread from knowledge that is explicitly in WM, this
implies that the agent must have declarative knowledge of satisfied conditions in WM in some
form. No other approach would let satisfied conditions define the results of spreading activation.
So an additional question is how can SMEM memory elements related to conditions be placed into
WM in order to initiate spreading? In Soar, this can happen in only two ways: SMEM memories
can be retrieved into WM through a deliberate retrieval or query action, or they can be created
in WM through a chunk that recreates a past retrieval.1 Somehow, the agent must obtain WM
knowledge of satisfied conditions before it goes through the effort of retrieving an instruction that
uses those conditions, and do this without compromising human-like speed in task performance.

8.1.2 Approach

My approach is depicted in Figure 8.3. The figure shows my representation in SMEM for two
instructions and their associated spreading structures, labeled “Skill 1” and “Skill 2.” The top
row of circles, labeled “Knowledge of satisfied conditions” represents declarative knowledge of

1Creating such memories through chunks is a feature of Soar 9.6 developed by Mazin Assanie.

89

conditions that can be retrieved into WM. (I will discuss how these can be created in WM shortly.)
The next two rows labeled “Knowledge of rule condition structure” represent SMEM structures
that normalize the spreading effect so that the agent is more likely to only retrieve instructions with
all conditions satisfied. The lower two circles labeled “Instructions,” I1 and I2, and the connected
“PROP conditions and actions” are the actual instructions that the agent must retrieve to perform
a task operation. Skill 1 has four conditions, labeled P1, P2, P3, and P4, which correspond with
C1, C2, C3, and C4. Skill 2 has only two conditions, P5 and P6, corresponding also with C5 and
C6. P7 at the bottom could represent an action primitive that is shared by both instructions, but is
irrelevant for this example. Note the distinction between the PROP condition structures shown at
the bottom, which describe the rule conditions, and the C1-C6 structures at the top, which describe
whether particular conditions are satisfied. In the figure, three of four conditions are known to be
satisfied for Skill 1, and two of two conditions are satisfied for Skill 2. The depicted structure takes
advantage of the way Soar normalizes spread to ensure that I1 thus gets 3/4 of a full activation
boost, while I2 gets a full 2/2 boost.

C1 C2 C3 C4 C5

K1

I1

N1 N2 N3 N4 N5

K2

I2

N6

C6

P4 P7P3P2 P5 P6P1

Knowledge of
satisfied conditions

Knowledge
of rule condition
structure

Instructions

PROP conditions
and actions

Skill 1 Skill 2
SMEM Working Memory

S1

C1 C2 C3 C5 C6

Figure 8.3: Example PROP2 SMEM structures for spreading activation. Nodes in gray are present
in working memory. Line thickness in SMEM indicates activation strength. Spread from these is
normalized over the number of a rule’s conditions.

Normalizing Spread The “Knowledge of skill condition structure” layer in Figure 8.3 uses the
Soar approach for normalizing spread across a node’s children in order to also normalize the
amount of spread any instructions receive from satisfied conditions. In the figure, any spread
that passes through node K1 will be divided by four, because it has four child nodes. Any spread
that passes through K2 will be divided by two. Thus, with three of four conditions satisfied, the in-
struction for Skill 1 (I1) receives 3/4 normalized spread, and, with two of two conditions satisfied,

90

the instruction for Skill 2 (I2) receives 2/2 spread. I2 therefore has the greater activation, and will
be preferred during instruction retrieval. The approach of the SMEM structure shown in the figure
is engineered, but follows directly from the theory of Soar’s spreading normalization.

Learning to Recognize Satisfied Conditions For spreading to activate instructions appropri-
ately, the PROP2 agent must create or remove long-term memory elements within WM, causing
spread, whenever conditions for instructions become satisfied or stop being satisfied. How can the
agent do this? Doing a deliberate SMEM retrieval to update which conditions were considered
satisfied every time WM changed would take far too much modeling time to allow human-like
performance. But if the agent creates SMEM memories in WM via chunks, then potentially no
time cost is required.

I therefore design the PROP2 agent to learn to create knowledge of satisfied conditions in WM
as sources of spread whenever the corresponding conditions are true and remove them when they
is false. This not only fills the computational gap left from the Actransfer implementation, it also
broadens the theory of the cognitive model of task learning.

The PROP2 agent begins each instruction retrieval with an open query for any instruction,
so that the result can be determined by activation. At first, the agent has no knowledge of the
conditions that might be attached to that instruction. Retrieval results will therefore be random
at first, since there will be no meaningful spreading and all instructions will have roughly equal
activation. After a retrieval, however, the agent can examine the conditions in whatever instruction
it retrieved. The agent can then learn these conditions through practice in evaluating them. When
the agent finds that any single condition is satisfied, it creates WM knowledge of this fact as a
substate result, and this can be chunked into an elaboration rule. As an elaboration rule, this
chunk will recreate this condition fact any time the condition is satisfied in the future, and the
chunk will retract, and therefore remove the fact from WM, whenever the condition is no longer
satisfied. Even when examining an instruction that does not have matching conditions, this practice
gradually allows the agent to learn condition-evaluating chunks that trigger spreading activation,
and eventually the agent learns enough conditions so that it always retrieves instructions with
satisfied conditions.

This learning process works even if the agent starts by searching its memory for an instruction
in a completely random manner. However, this approach is still inefficient. Basic experimentation
showed that this approach could require the equivalent of days of model time before the agent
would start to reach the level of accuracy necessary to perform the task reliably, depending on
how many instructions the agent had to randomly search through in SMEM in order to find an
instruction with satisfied conditions. But there is no reason the agent has to search its memory
blindly when it learns to perform a task, any more than humans would be expected to perform

91

tasks without instruction or prompts. I gave the PROP2 agent the ability to use learn its procedural
knowledge of the sequence of task operations based on given declarative knowledge. The agent
always begins P2 by using spreading to control which instruction it retrieves. Call this method,
“free recall.” If after a free recall the agent finds that it retrieved an instruction with unsatisfied
conditions, it then retrieves the explicit declarative retrieval sequence from its SMEM, the same
sequence as used for PROP1, and uses that to explicitly retrieve the next instruction. Call this
method, “cued recall.” The agent only falls back on cued recall if a free recall fails to give it a
usable instruction by default.

As I mentioned in chapter 3, I do not attempt to model where declarative knowledge about
instructions comes from. I assume SMEM knowledge that describes conditions is provided at the
same time as instructions, structured in the format shown in Figure 8.3. Still, it was uncertain at the
time that I developed this approach whether or not learning P2 ought to be considered declarative
or procedural in terms of cognitive modeling. The functionality that I described followed from
the joing constraints of P2 in PRIMs theory and Soar’s spreading activation. Experimentation and
evaluation of the PROP2’s behavior helped answer this theoretical questions.

In summary, I introduce a new approach by which a cognitive model can learn to use the state
of WM to guide LTDM retrievals. I go on to show in section 8.4 that this learning process replicates
aspects of human behavior that previous models could not.

8.2 Problem 2: Gradual Chunking

The PROP1 approach simulates gradual learning behavior as desired, but its approach does not fit
into the broader cognitive model and does not reflect Soar learning theory. Procedural learning
should be an automatic process controlled by the architecture, not deliberate agent reasoning. The
results from PROP1 experimentation indicated that such a mechanism was both possible and de-
sirable. I determined that an architectural change was needed for Soar to properly support gradual
procedural learning.

The work here was fairly straightforward. In line with the PROP1 approach, I added gradual
procedural learning to Soar, not by delaying when a learned rule would be used in practice, but
by delaying when Soar would actually learn the rule. I modified the architecture so that a specific
chunk must be (re)learned multiple times before the architecture actually saves it to procedural
memory, where it then is able to match and fire whenever its conditions are satisfied. I again use
θp as a parameter to control how many times the agent must attempt to learn a chunk before the
chunk is saved to long-term procedural memory. The behavior of this parameter is the same as I
described for PROP1.

With this learning mechanism available, PROP2 no longer needed agent decisions to simulate

92

gradual composition, and this allowed me to remove much of the overhead decision making from
the PROP1 design. The agent did not need to track how many times it practiced any operation,
but would learn new rules simply by repeatedly practicing its task instructions. This reduced the
number of computation cycles needed to process task instructions, even cycles that were not di-
rectly part of the simulated architectural processing that I omitted from PROP1 results. The overall
decision making and operator composition of PROP2 were still inherited from PROP1, however,
and thus agent decision making was still used to control the binary structure of the hierarchical
composition of practiced procedures. These still need to be removed from model results during
evaluation.

8.3 Connecting Three-Phase Theory

During this research, I discovered a correspondence between these two types of learning and the
types of learning described in Fitts and Posner’s (1967) three-phase theory.

Recall that in three-phase theory the cognitive phase is the phase when a subject learns how to
properly approach the task in practice, and learns the correct order and nature of the operations it
needs to execute. Once the subject has learned what to practice and proceeds to practice it and gain
expertise in that practice, it has reached the second associative phase. Then once the subject has
gained enough expertise in that practice to be able to execute the task without significant cognitive
effort or attention, and can think about other things while performing the task, it has reached the
autonomous phase.

PROP2 progresses through the classic three phases of skill learning, and particularly adds the
cognitive phase to Actransfer computation by learning P2. When starting the first cognitive phase,
the agent knows how to retrieve and execute instructions but does not know when specific instruc-
tions should be retrieved and practiced. Until it learns when to retrieve and practice each of the
different relevant instructions for the task, retrievals are random and the agent can retrieve irrel-
evant instructions. But after some practice, the agent gains enough experience to always retrieve
instructions that are immediately relevant, and it spends more of its time increasing its expertise
by practicing those specific instructions. It is then in the associative phase. In this phase, it learns
increasingly task-specific rules that reduce instruction execution latency. Eventually the agent
learns rules to perform a task automatically without the need to use task instructions or reason over
condition and action lines. The agent is then in the autonomous phase.

I can enable or disable the processing that corresponds to cognitive and autonomous learning,
and I use this to align computational theory with the cognitive theory for human performance
profiles. I can toggle P2 learning on and off by toggling whether the agent attempts an activation-
based retrieval vs. whether it only follows the rote retrieval sequence the way the PROP1 agent did.

93

And as with PROP1, I can toggle whether the agent learns Auto rules by enabling or disabling
whether it chunks the processing of its outer substate. These two settings give me two parameters
for PROP2, which correspond closely to the descriptions of the cognitive phase and the autonomous

phase:

1. Learned / Known - whether the agent learns how and when to cognitively arrange procedures

for the task or whether this knowledge is already known

2. Deliberate / Auto - whether the agent is always deliberate with cognitive control over task

operations or whether it can learn automatic task execution

If P2 is Learned, then during execution the PROP2 agent learns rules that induce spreading
activation for satisfied condition lines. If P2 is Known, the agent always retrieves through cognitive
control by following a declarative retrieval sequence.

The Deliberate / Auto parameter is the same as I used when experimenting with PROP1.
If set to Auto, the agent eventually learns a single rule (the top-most composition depicted in Fig-
ure 4.4) that performs task operations without declarative instruction or cognitive control over
them. Auto rules effectively bypasses the entire PRIMs learning pipeline once learned. If set to
Deliberate, this final composition step never occurs, so that execution must always be deliber-
ate using the PRIMs pipeline.

A PROP2 agent with Learned enabled has to learn P2 retrieval, which is the process of
learning which skills to use and their order when executing the task. Thus, toggling Learned /

Known effectively should toggle whether the agent needs to progress through the cognitive phase
or whether it begins the task already at the associative phase. Toggling Deliberate / Auto

toggles whether the agent gains enough task-specific specialized expertise so that it does not need
to use cognition with declarative knowledge of its actions in order to perform its actions during the
task. An agent that has fully learned all Auto rules for its task acts effectively by reflex as one
procedural rule fires one after the other.

Actransfer is an (Auto, Known) model, since it assumes P2 retrieval functionality (by hard-
coding activation behavior) and allows Auto task rules to be fully learned. Theoretically, the
PROP2 model is similar to Actransfer when using Auto-Known.

In summary, I identify how specific learning processes in my implementation of PRIMs theory
correspond with with the phases of the three-phase theory of human learning.

8.4 Evaluation

I evaluated PROP2 behavior against human behavior using the mental arithmetic task (Elio, 1986)
as I did before with PROP1, and I also introduced the text editors task (Singley & Anderson, 1985)

94

to the suite of PROPs experiments. While the arithmetic task is key for evaluating the learning
curve, the editors task allows me to examine transfer in greater detail.

There are two contributions of PROP2 that I aimed to evaluate.

1. My approach for learning P2 instruction retrieval

2. My implementation of gradual chunking

I evaluate the first by comparing PROP2 Known and PROP2 Learned performance in the
manner I described above. This also lets me examine the theoretical correspondence between this
learning behavior and cognitive phase learning behavior. The profile of human cognitive phase

learning is not precise enough for me to make an exact comparison, but I can compare the dif-
ference in PROP2 with and without Learned P2 and thus measure the amount of latency that
this learning process adds to the model. As with PROP1, I also compare PROP2 Deliberate

and PROP2 Auto performance. With the theoretical foundation of three-phase theory, I can now
similarly compare this learning behavior to what is expected for the autonomous phase in human
learning. I can predict that using Learned should cause the agent to start off slower in its task
until it learns P2, since until then it wastes time searching through LTDM for an instruction to use.
I also expect similar effects for Auto as with PROP1, namely that it allows the agent to converge
to super-human performance.

I evaluate the second by comparing the overall PROP2 learning curve to that of PROP1 and Ac-
transfer to see whether and how the PROP2 agent reproduces gradual learning. Actransfer’s grad-
ual learning comes from ACT-R’s production compilation mechanism. PROP1’s gradual learning
comes from a simulation of ACT-R’s production compilation within Soar. PROP2’s gradual learn-
ing reflects a union of what is required for PRIMs theory with Soar’s built-in chunking approach.
I hypothesized that the PROP2 approach to gradual learning should be equivalent for practical pur-
poses to PROP1. The high-level theory of gradual chunking is the same, but the fact that the agent
no longer uses deliberate reasoning to group and prefer pairs of instruction lines means that the
PROP2 agent could potentially generate a slightly different learning hierarchy. It is difficult to pre-
dict the exact effects, however, because of the complex cascading nature of hierarchical learning
and transfer, where later iterations of learning depend on what is learned in previous iterations.

I also predict that the PROP2 agent will be slightly faster than PROP1, since the introduction of
gradual chunking to Soar let me remove some processing from the PROP1 design.

According to my methodology, I use the same task instructions used for the Actransfer agents,
as well as the same latency values for visual/motor environment interaction. As with PROP1, I
also still define P2 retrieval latency for PROP2 by copying the values used for Actransfer, since
PROP2 still does not address P6 and the way that latency is calculated. To select θp, I performed a
parameter sweep (not shown) to find the value that provides the closest fit to the Actransfer model

95

for comparison. I use a threshold of 48 for the editors task models and 10 for arithmetic task
models below. The Actransfer model similarly uses different learning rates for each task. Recall
that PROP1 used θp = 16 for the arithmetic task. Due to the transition from PROP1’s explicit agent
control over its learning to PROP2’s automatic architectural learning, there are slight differences in
how the agents select pairs of rules to combine together. This means the value of θp for PROP2 is
not fully comparable to the value of θp for PROP1.

As before, results for the arithmetic task are averaged over 8 repetitions. Results in the edi-
tors task for Actransfer and for PROP2 are averaged over 12 repetitions. These models are fairly
deterministic, and variance is low.

Again, I use the same timing approach as the Actransfer agent. The arithmetic model times are
as discussed previously in section 7.7. The Actransfer editors model used 0.25 sec for the time to
press one key as well as for the visual time to move attention from one item to another.

96

8.4.1 Arithmetic Task

(a) Component steps (b) Integrative steps

(c) Component steps (d) Integrative steps

Figure 8.4: A review of human, Actransfer, and PROP1 Deliberate performance alongside
PROP2 Deliberate performance for the arithmetic task.

I can compare PROP2 results in the arithmetic task with those from PROP1 to see whether and how
the new gradual learning mechanism in Soar is equivalent to PROP1’s simulation of Actransfer.

Figure 8.4a and Figure 8.4b show again the results from section 7.7 for humans, the Actransfer
model, and the PROP1 (Deliberate) model in the arithmetic task. Figure 8.4c and Figure 8.4d

97

show the PROP2 (Learned, Deliberate) and (Known, Deliberate) models.
One immediately visible result is that PROP2 performance is faster than PROP1 by a fairly

constant amount. This is as predicted, due to the way the gradual chunking mechanism in Soar
simplified agent processing. Also worth noting is that the power-law performance from PROP1

PRIM resolution is preserved in PROP2. One can also see that the Learned model catches up
to the Known model after 15 trials. It does not catch up entirely in Figure 8.4c due to the fuzzy
nature of using activation. For component steps, some instructions were similar enough to each
other in their conditions that the agent could sometimes retrieve the wrong instruction and delay
its performance.

(a) Component steps (b) Integrative steps

Figure 8.5: PROP2 Auto performance for the arithmetic task.

Figure 8.5 shows the Auto models. As with PROP1, the Auto parameter results in eventual
super-human performance. The (Auto, Known) learning curve is not smooth. In the integrative
steps, the Auto parameter even results in worsening performance after about 20 trials of training.
This same effect was observed with PROP1, and occurs when Auto rules perform the task auto-
matically without updating the agent’s declarative retrieval sequence. The agent must then spend
time to step through its memory of the task steps to catch up to the task state. By contrast, the
(Auto, Learned) agent does not exhibit this catastrophic memory failure, and proceeds with
smooth monotonic learning after trial 20. This indicates that the PROP2 learning approach for
conditions and spreading activation is robust against disruption from Auto rules.

I also observe that while there are many summed components in the total model latency, such as
retrieval time and motor latency, the amount by which (Deliberate, Known) behavior differs

98

(a) Component steps (b) Integrative steps

Figure 8.6: Deliberate-Known PROP2 model with 50 msec and 37 msec for decision latency.

from human performance is nearly an exact multiple of decision cycle latency. Setting decision
cycle time to 37 msec results in almost an exact fit to the human curve, as shown in Figure 8.6.2

While not a standard timing, this is consistent with neural modeling that predicts cycle times of
approximately 40 msec for simple actions (Stewart et al., 2010).

Table 8.1 shows the goodness-of-fit measures for the various PROP2 models for the component
and integrative operations, respectively. Examined alongside the various plots, the differences in
r2 above 0.98 appear to be fairly negligible. One can see that the the PROP2 (Deliberate,
Known, 37ms) model has the best measures, as is expected from viewing Figure 8.6, with the
exception of r2 for integrative steps. In that instance, the relatively slow performance on trial
10 gives (Deliberate, Known, 37ms) a slightly worse fit than (Deliberate, Known).
The second closest model in terms of error scores is the Actransfer model, though the PROP2

(Deliberate, Known) model is similar.
2This can not be achieved by changing θp, as that alters the learning curve shape in addition to scale.

99

Component Steps Integrative Steps
Model r2 MAE MAPE r2 MAE MAPE

Actransfer 0.808 0.84 15.7 0.758 0.58 14.2
PROP1 (Deliberate, Known) 0.994 2.71 61.3 0.969 2.05 72.2
PROP2 (Deliberate, Learned) 0.993 2.00 36.0 0.960 1.29 36.0
PROP2 (Deliberate, Known) 0.995 1.04 20.2 0.991 0.88 28.6

PROP2 (Auto, Learned) 0.976 2.28 44.0 0.945 1.23 36.1
PROP2 (Auto, Known) 0.992 0.89 16.6 0.938 1.19 45.9

PROP2 (Deliberate, Known, 37ms) 0.997 0.12 1.84 0.988 0.18 6.05

Table 8.1: PROP2 goodness-of-fit measures for arithmetic data. MAE is Mean Absolute Error.
MAPE is Mean Absolute Percentage Error.

Component Step Transfer
Model Control Integrative Component

Difference from Control
Human 0.48 1.01

Actransfer -0.11 1.81

PROP1 (Deliberate, Known) -0.04 2.88

PROP2 (Deliberate, Known) -0.06 2.12

PROP2 (Deliberate, Learned) -0.07 3.33

PROP2 (Auto, Known) 0.02 3.00

PROP2 (Auto, Learned) -0.04 3.20

Percent Transfer
Human 11.75% 27.38% 44.63%

Actransfer 38.09% (+26.34) 34.51% (+7.13) 95.23% (+50.60)

PROP2 (Deliberate, Learned) 26.70% (+14.95) 25.30% (-2.08) 92.08% (+47.44)

PROP1 (Deliberate, Known) 13.50% (+1.75) 12.55% (-14.82) 88.72% (+44.08)

PROP2 (Deliberate, Known) 38.36% (+26.62) 36.96% (+9.58) 92.50% (+47.86)

PROP2 (Auto, Known) 36.36% (+24.61) 36.77% (+9.40) 92.84% (+48.21)

PROP2 (Auto, Learned) 39.89% (+28.14) 39.30% (+11.93) 83.21% (+38.58)
PROP2 (Deliberate, Known, 37ms) 34.59% (+22.84) 32.90% (+5.52) 91.42% (+46.79%)

Table 8.2: PROP2 transfer for arithmetic component steps.

100

Integrative Step Transfer
Model Control Integrative Component

Difference from Control
Human 1.63 0.47

Actransfer 1.03 0.04

PROP1 (Deliberate, Known) 0.82 0.06

PROP2 (Deliberate, Known) 0.32 0.04

PROP2 (Deliberate, Learned) 1.05 0.04

PROP2 (Auto, Known) 1.00 -1.09

PROP2 (Auto, Learned) 0.92 0.03

Percent Transfer
Human -1.62% 71.84% 19.56%

Actransfer 36.89% (+38.51) 89.07% (+17.23) 39.14% (+19.57)
PROP1 (Deliberate, Known) 65.34% (+66.96) 89.95% (+18.11) 67.10% (+47.54)

PROP2 (Deliberate, Known) 83.25% (+84.87) 94.21% (+22.37) 84.50% (+64.94)

PROP2 (Deliberate, Learned) 62.54% (+64.16) 90.69% (+18.85) 63.57% (+44.01)

PROP2 (Auto, Known) 146.90% (+148.52) 208.84% (+137.00) 79.79% (+60.23)

PROP2 (Auto, Learned) 61.53% (+63.15) 81.45% (+9.61) 62.17% (+42.61%)

PROP2 (Deliberate, Known, 37ms) 80.37% (+81.99) 92.82% (+20.98) 81.89% (+62.33)

Table 8.3: PROP2 transfer for arithmetic integrative steps

Table 8.2 and Table 8.3 show the transfer for PROP2 alongside Actransfer and PROP1. There is
no clear trend for which model provides the best fit. It is worth noting that PROP2 (Deliberate,
Known, 37ms) does not have a particularly close fit in percent transfer except in component
step transfer for integrative and component tests. Additionally, Actransfer has some of the worst
transfer fits for component steps, but two of the best fits for integrative steps. The lack of a clear
trend implies that something is missing in the model of transfer for this task. Later experimentation
with PROP3 reveals some insights into what this might be, as I discuss in section 9.5.

8.4.2 Editors Task

Figure 8.7 shows human and Actransfer editors data alongside PROP2 results for the two param-
eters. The top two plots show human and Actransfer performance at different scales. The lower
two plots show PROP2 performance using the different learning parameters. PROP2 is fairly de-
terministic even when using Learned. Standard error is < 0.02 sec for each point for Learned
models and < 0.008 sec for Deliberate models.

101

(a) (b)

(c) (d)

Figure 8.7: Human, Actransfer, and PROP2 model results for the editors task.

One immediately noticeable result is that Learned performance in PROP2 is always slower
on days 1-2, which provides a closer fit to human behavior (as I discuss further below). As pre-
dicted, the agent is slower on these days because it spends extra time searching LTDM for instruc-
tions with satisfied conditions until it learns P2. After the agent learns P2 by around days 3-4,
however, Learned models are not far behind the Known models in performance. This demon-
strates that Learned models learn P2 in parallel with normal PRIMs procedures for executing the
task. Deliberate, Learned performance does remain slightly slower than Deliberate,
Known performance throughout all six days. This is because the Known model still experiences
some failed retrievals on occasion even after learning condition satisfaction.

As predicted, Auto models achieve super-human performance by day 6, at under 20 sec. Hu-
man and Actransfer models, by contrast, end near 30 sec, as do PROP2 Deliberate models. As
with PROP1, learned Auto rules allow the agent to skip the PRIMs instruction process entirely,
and this leads to much faster performance.

102

I also observe that, as desired, these PROP2 models provide gradual learning behavior compa-
rable to Actransfer’s using the gradual learning mechanism that I introduced to Soar.

(a) (b)

Figure 8.8: Best PROP2 model fits to human and Actransfer data for the editors task.

Figure 8.8 shows the best PROP2 fits for the Actransfer and human editors plots, respectively.
As stated earlier, the Actransfer model is (Auto, Known) in theory, and in this case the PROP2

(Auto, Known) model is a close fit to Actransfer. But as with PROP1, the PROP2 agent performs
faster after learning due to Soar’s more absolute use of learned Auto rules, and it is slightly slower
at the start due to its PRIM resolution. By contrast, the PROP2 (Deliberate, Learned)
model is the closest fit to human data in terms of shape. The cost of using Learned accounts
for slower human performance during the first days, while its continued Deliberate learning
paces its progress to finish at nearly the same performance as humans on day 6. Performance on
days 1-3 is slightly fast for EDT but slightly slow for ED, implying the task instructions for EDT
should be more complex and those for ED slightly less so.

I do not show the model with decision cycle time set to 37 msec as I did with the arithmetic
task. For the editors task, this reduces the scale of agent timing by < 3 sec, just as it does with the
arithmetic task. This is negligible in the scale of the editors task, where declarative retrieval time
dominates.

Table 8.4 shows the r2 and other goodness-of-fit measures for the various editors models. The
PROP2 (Deliberate, Learned) model has the best overall fit in terms of shape, as indicated
by the high r2 scores, and also has the least error for the EDT-EDT-EMACS learning condition.
The PROP2 (Deliberate, Known) model has the least error for the ED-EDT-EMACS condi-
tion, however, because of its slightly faster performance.

Table 8.5 shows transfer scores for the editors task models. The formula for measuring percent

103

Model ED-EDT-EMACS EDT-EDT-EMACS
r2 MAE MAPE r2 MAE MAPE

Actransfer 0.965 10.27 13.4 0.958 31.13 26.7
PROP2 (Deliberate, Learned) 0.994 11.28 22.4 0.995 15.21 13.9
PROP2 (Deliberate, Known) 0.977 5.86 10.8 0.991 24.83 21.6

PROP2 (Auto, Learned) 0.980 7.99 17.9 0.962 25.35 34.2
PROP2 (Auto, Known) 0.986 8.71 16.8 0.993 30.57 33.5

Table 8.4: PROP2 goodness-of-fit measures for the editors task. MAE is Mean Absolute Error.
MAPE is Mean Absolute Percentage Error.

transfer comes from Singley and Anderson (1987) for the original experiment, and is as follows:

%transfer =
(single1 − transfern)
(single1 − singlen)

× 100

In this formula, single1 and singlen are the subject performance times when practicing a single
editor on day 1 and day n. The value of transfern is the subject performance on day n for the
same editor after practicing a different editor for all preceding days. For example, compare two
agents, “ED-EDT” who practiced ED for days 1-2 followed by EDT on day 3, and “EDT-EDT”
who practiced EDT all three days. If “EDT-EDT”’s average performance was 100 sec on day 1
and 50 sec on day 3, while “ED-EDT”’s was 60 sec on day 3, then the transfer from ED to EDT
would be calculated as (100− 60)/(100− 50)× 100 = 80%.

The original report on human transfer distinguished between time spent planning to move a
cursor to a line and time spent planning to actually edit text. I similarly report these as well as the
overall “Global” transfer in Table 8.5. Also in the same manner as the original report, I average
together transfer from ED and EDT to EMACS, as the first two are single-line editors and relatively
similar to each other, while EMACS is a visual editor and fairly different from the other two. As
before for reporting arithmetic transfer, I note the differences between model and human transfer
in parentheses to the right of each model transfer score. Models with the closest transfer to humans
are marked in bold.

Overall, the PROP2 (Deliberate, Known) model exhibits transfer most similar to hu-
mans. Actransfer has the closest transfer score when averaging together EDT and ED transfer
toward EMACS, however. Though the (Deliberate, Learned) model has the more human-
like learning curve shape, its curve is shifted slightly higher than the other models for days 2-6,
particularly on day 3, which is when transfer is measured.

Most models exhibit less transfer between the two line editors than humans overall. The PROP2

(Auto, Known) agent in particular exhibits instances of negative transfer. This results from the
catastrophic forgetting behavior that can result from that parameter combination, as I described

104

Model Global Planning Move to Line Planning Edit Text
ED to EDT Editors Transfer

Human 94.97% 87.50% 104.62%
Actransfer 83.54% (-11.42) 82.03% (-5.47) 88.35% (-16.27)

PROP2 (Deliberate, Learned) 74.90% (-20.07) 48.72% (-38.78) 27.44% (-77.18)
PROP2 (Deliberate, Known) 86.95% (-8.02) 85.88% (-1.62) 88.47% (-16.15)

PROP2 (Auto, Learned) 68.12% (-26.85) 32.11% (-55.39) 14.66% (-89.96)
PROP2 (Auto, Known) 85.92% (-9.05) 52.31% (-35.19) -205.60% (-310.22)

EDT to ED Editors Transfer
Human 97.18% 91.84% 99.09%

Actransfer 90.85% (-6.33) 89.93% (-1.91) 91.80% (-7.29)
PROP2 (Deliberate, Learned) 84.65% (-12.54) 73.85% (-17.99) 34.99% (-64.10)
PROP2 (Deliberate, Known) 96.22% (-0.96) 92.65% (+0.81) 102.23% (+3.14)

PROP2 (Auto, Learned) 73.31% (-23.87) 60.75% (-31.09) -2.46% (-101.55)
PROP2 (Auto, Known) 95.82% (-2.37) 88.04% (-3.80) 197.80% (+98.71)

EDT/ED to EMACS Editors Transfer
Human 64.81% 61.03% 62.29%

Actransfer 63.41% (-1.40) 66.70% (+5.66) 57.26% (-5.03)
PROP2 (Deliberate, Learned) 74.47% (+9.65) 13.39% (-47.64) 16.66% (-45.64)
PROP2 (Deliberate, Known) 84.07% (+19.25) 91.04% (+30.01) 126.92% (+64.63)

PROP2 (Auto, Learned) 60.06% (-4.76) 42.81% (-18.22) 12.36% (-74.65)
PROP2 (Auto, Known) 73.51% (+8.70) 40.77% (-20.26) -7.39% (-69.68)

Table 8.5: PROP2 transfer in the editors task, along with differences compared to humans.

with PROP1 and which I further discuss in section 8.5. In this case, the agent ends up with worse
performance on day 3 than on day 1 when the learned Auto rules interfere with the agent’s ability
to efficiently access declarative knowledge about the task. This causes the denominator in the
transfer function to be negative.

These results support the idea that a model of this task should account for the process of learn-
ing P2. The PROP2 models that do so with Learned provide the closest fits to human performance
by accounting for the extra time required for learning during the first few days of the task.

8.5 Discussion

These results demonstrate a general principle for human modeling, that consideration for the stages
of learning and these agent parameters is critical for human modeling. Whether an subject learns
P2 during the experiment or has already learned it beforehand should be reflected in the model.

With PROP2, I successfully imbued a PRIMs agent with the ability to learn associations be-
tween states in WM and task instructions in SMEM through experience. This allows spreading
activation to bias the agent to retrieve instructions that have satisfied condition lines. I model cog-

105

nitive phase learning with a novel use of Soar chunking by which chunks create or retract sources
of spreading activation. This general learning method is not limited to modeling PRIMs, but can
be applied whenever an agent needs to learn context-appropriate retrievals.

The PROP2 agent demonstrates progress through Fitts and Posner’s (1967) three stages of skill
learning: it begins in the cognitive phase as it Learns which task instructions to retrieve and
perform, progresses to the associative phase as it then compiles hierarchical instruction lines for
the instructions that it practices, and finally reaches the autonomous phase as it collects Auto rules
that perform the various task operations without the need for declarative instructions.

In the editors task, Learned P2 accounts for initial human behavior in ways Known P2 could
not. However, in the arithmetic task, Known models were most accurate. I believe this reflects
the natures of the tasks. Human subjects performed the arithmetic task after being trained in the
algorithms, while editors subjects memorized only an editor’s individual keyboard commands prior
to experimentation. Subjects performing the arithmetic experiment should therefore have already
mostly completed the cognitive phase. Human subjects in the editors task, however, were not
allowed to practice the task prior to measurement. Thus, results should be expected to include
a cognitive phase of learning. Therefore, any accurate computational model of that task should
account for cognitive phase learning, in addition to other phases.

The relation between the Learned setting in PROP2 and the cognitive phase helps clarify the
boundaries between declarative and procedural learning within a model of PRIMs theory. Cog-
nitive phase learning is often considered specifically a type of declarative learning rather than
procedural learning (Kim & Ritter, 2015). Even in PROP2, the chunks that the agent creates for
Learned mode merely create declarative associations between WM conditions and SMEM in-
structions. If this kind of learning does correspond to the cognitive phase, as it seems to, then
it likely should not be modeled using procedural learning processes such as chunking but as a
declarative learning process. In any case, the PROP2 model also does not address the origin of the
declarative SMEM structures that allow normalized spreading. A complete model of declarative
learning is outside the practical scope of this thesis, but some mechanic for P2 is still required for
PRIMs theory.

The question of learning P2 is therefore outside the scope of my modeling work for this thesis,
and represents a much larger scope of research than was originally anticipated. This PROP2 model
for learning P2 helps draw this distinction and inform an understanding of how PRIMs processing
is situated with respect to other learning processes.

As a topic of future investigation, it would make sense that individual humans both construct
and modify the declarative structures of their task understanding during task execution in a manner
similar that described in the PDL model (Gray & Lindstedt, 2017).

It should be noted that a newer experimental PRIMs architecture was independently developed

106

that learns associative connections from declarative goals to practiced task instructions using a
reinforcement learning function (Arslan et al., 2017). This is similar to what PROP2 does at a high
level, though neither the details of this mechanism nor what it represents for cognitive theory have
been published to my knowledge.

Figure 8.9: The KRK model of learning phases and catastrophic memory failure, taken from (Kim
et al., 2013).

The PROP2 agent also exhibits a pronounced catastrophic forgetting effect similar to that de-
scribed by the KRK theory of skill learning, depicted in Figure 8.9. The PROP2 agent begins to
learn Auto rules, and then these interfere with its ability to access declarative knowledge about
what to do next if the agent does not also have a robust set of Learned rules for automatically
accessing that knowledge. In KRK theory, this kind of catastrophic memory failure is said to result
from memory decay. That is, the agent is unable to quickly retrieve the declarative knowledge it
needs because the activation of that knowledge is too low. The (Auto, Known) agent’s behavior
is because of extra effort used to retrieve instructions rather than because of activation decay, but
the high-level theory that the declarative knowledge is less accessible remains the same.

In human performance research, it is known that autonomous behavior is observed more in
overtly motor tasks, and is less possible for cognitive reasoning tasks. In PROP2, though Auto

allows faster execution, I observed that Deliberate achieves the closest human performance
in both tasks. Within my model this similarly implies that humans do not perform these tasks
entirely by reflex after training, but continue to reason over each step. The editors task requires
some involved motor skills related to typing. However, the task subjects were already experienced
typewriter typists, and already had mastery of autonomous typing skills. What they lacked was the
cognitive reasoning skills for using these computer editors.

Taken together, experimentation with PROP2 implies that the (Deliberate, Known) con-

107

figuration is most appropriate for PRIMs processing. Auto makes more sense for a model of
motor skill learning, and Learned makes more sense for a model of declarative learning and
reasoning. The next and final iteration of PROPs, PROP3, was designed with these principles in
mind. However, the PROP2 use of spreading activation in combination with chunking in Soar is
novel and powerful, and it might be employed in other Soar agents in the future whenever there
are retrievals that need to be based on rule-like WM conditions.

Gradual learning in Soar takes the form of delaying the addition of a rule to procedural memory
until its value passes a parameter threshold, θp. The arithmetic task used θp = 10, while the
editors task used θp = 48. This threshold as a parameter is still task-specific, and corresponds
to the learning rate parameter in Actransfer and ACT-R. This learning rate in cognitive models
is considered to correspond to the amount of prior life-experience the average subject transfers
into a task, where faster learning stands in for higher transfer (Anderson et al., 2019). Thus, this
task-specific parameter is likely impossible to remove until I achieve a life-long learning agent
that acquires actual life-experience prior to task experiments. The extent to which this parameter
represents prior declarative learning or prior procedural learning is impossible to determine with
certainty given the current understanding in the field, but it is likely closely tied to the question of
adult PRIMs learning discussed in section 10.2, since it is a question of how adults might transfer
prior experience.

The PROP2 arithmetic task model is almost identical to the human model when decision cycle
time is just under 40 msec. By contrast, changing cycle times has little effect on the editors
model, since it performs at the scale of 100 sec, largely due to memory retrieval times. Editors
agents also employ a higher chunking threshold than used by arithmetic agents, implying that
human processing is more complex for the editors task than for the arithmetic task compared to
my models, which also makes sense given the different time scales. The appropriate complexity of
task models and the validity of 40 msec cycles for primitive skills present intriguing questions for
future study, but are beyond the scope of this thesis. However, as I will describe in the next section,
there is another, perhaps more elegant, way to achieve a human-like model that defines instruction
retrievals without the need for non-standard decision cycle times.

108

CHAPTER 9

PROPs Iteration 3: Defining Decision Making and
Timing

Legend

Procedures Unknown Retrieve instruction
to WM

Select/Reject
instruction

Execute using known
procedures

Gradually available

Learn procedures
as pairwise

combinations of
practiced procedures

Initializes
Defines

instruction
language

Declarative
Memory

Procedural
Memory

Primitive
Procedures

Calculate latency from # retrievals

1

2 3 4

6

5

Lo
ng

-te
rm

m
em

or
y

Complete:
Not Complete:

Inconsistent:

Select

Reject

Figure 9.1: The PROP2 flow diagram and its completeness for phases 1-6. PROP3 addresses
incomplete computation circled in blue.

I previously mentioned that there are two apparent Soar solutions for P2 retrieval selection.
The first is the spreading activation approach I just described for PROP2. The second uses Soar’s
theory for decision making to influence P2. I apply this solution in PROP3.

PROP3 fills the last gaps in the PRIMs model that are needed to satisfy my desiderata. These
are circled in blue in Figure 9.1. While PROP2 did address the P2 gap, PROP3 also addresses
the P3 problem, in which the Actransfer and PROP models up to now have not had the ability to
use architectural processes for decision making. This problem was because P2 only ever retrieved
a single instruction at a time, leaving only one choice for P3 to either accept or reject. I also
address P6 by removing task-specific parameters from the model timing. I specifically remove
Tretrieve from the model timing and require the model timing to be purely a function of the agent’s
processing cycles. In so doing, we distinguish a new source of processing latency that was not
represented in prior models. Thus, PROP3 specifically targeted the following two problems:

1. The Actransfer model’s instruction retrieval (P2) does not provide decision making (P3) with
more than one choice of task response at a time.

109

2. The Actransfer model uses task-specific scaling to tune latency (P6) for specific task results.

I explain each of these in turn in the coming sections. With these changes, PROP3 unifies
PRIMs theory and Soar theory for all of P1-P6 in a manner that satisfies my desiderata for this
thesis work.

9.1 Problem 1: Choice-based Decision Making

Actransfer, PROP1, and PROP2 models are not able to use decision making to select an instruction
from among multiple concurrent choices. But this ability is necessary for P3 to satisfy D4 as a
consistent architectural model of human processing. In order to allow P3 decision making to select
from among multiple instruction choices, multiple instructions must be in WM at once. However,
the process of sequentially retrieving multiple instructions to WM before making a choice among
them could take prohibitively long for many tasks, for the reasons discussed in sections 4.2.2 and
8.1.1.

These constraints imply that the agent must retrieve multiple task instructions into WM at once,
in parallel. If P2 retrieves a set of instructions at once, and if these are the set of instructions that
have satisfied conditions and thus are relevant to the agent’s P3 decision making, then P3 could
process them as a batch and select one instruction for execution. This would satisfy both PRIMs
theory and architectural decision making. The problem then is how could P2 determine which set

of instructions to retrieve at once? One might consider having the agent retrieve a cluster of the
most highly-activated instructions from LTDM at once. However, neither Soar nor ACT-R support
such a retrieval. I identify another solution, however, that is provided by Soar PSCM theory.

In PROP3, I organize task instructions in LTDM according to the agent’s problem spaces, that
is the spaces of operators relevant to each known goal or subgoal. I modified the agent so that
during a single P2 cycle it selects and retrieves a bundle of instructions associated with a single
problem space.

Not all of the instructions for the operators of a single problem space will necessarily have
satisfied conditions at once, just as not every operator for a problem space will be proposed at
once. But by definition, each instruction is relevant for the agent’s problem solving goals. The
problem space provides a way that the agent can reduce the scope of instructions it considers to a
relatively small yet contextually-relevant size.

Soar problem spaces are hierarchical, as described in section 6.4. The agent’s operator choices
in one problem space can represent choices for other problem spaces that the agent can enter. As I
explain, this means that organizing instructions by problem space unifies the solutions for both P2
and P3. In P3, the agent’s decision making selects which problem space the agent enters next, and

110

this determines the bundle of instructions the agent retrieves next via P2. The instructions that the
agent retrieves with P2 then define the choices for future problem spaces that the agent can select
with P3, and so on.

While developing this approach, I discovered a close similarity between the computation of
Soar problem spaces for PRIMs theory and that of task sets from psychology research. At the same
time, I also observed that this approach allows a task-general feature set for Soar’s Reinforcement
Learning (RL), by which the PROP3 agent can learn P3 for task decision making. I explore both
of these subjects briefly in this thesis and use them in the PROP3 models that I evaluate in section
9.4, but both represent intriguing avenues for further future study.

In the rest of this section, I first explain my solution for P2/P3 in more detail. I then discuss
the similarity between the PROP3 approach and and task set theory, followed by an explanation of
how I apply task-independent RL with this same approach.

9.1.1 Procedure Contexts

I define a procedure context as a declarative structure that includes the instructions for a problem
space of operators in Soar. A single procedure context does not correspond to a single condi-
tion/action rule, as with an Actransfer instruction, but to a set of operators that can be proposed
within the same problem space. This could include instructions for proposal, preference, and/or
apply rules, depending on the nature of the problem space.

To support different kinds of problem spaces, I define two types of procedure context, which
also correspond to Soar’s distinction between operator proposal rules and operator apply rules:
For problem spaces of different competing operators that represent different task behaviors, an
elaboration context instructs conditions and actions for elaborations and proposal rules in Soar.
For problem spaces in which an agent needs to apply a single action for an operator in a parent
problem space, an apply context instructs actions for a Soar apply rule.

The distinction between Soar operator proposals and Soar operator applications aligns with
the distinction between P3 and P4 in PRIMs theory. I use elaboration contexts to represent PRIMs
condition lines, and apply contexts to represent PRIMs action lines. Thus, I separate condition lines
and action lines into different structures in LTDM. I arrange procedure contexts hierarchically in
Soar’s SMEM according to the hierarchy of operator proposals and applications for a task, and this
hierarchical structure collectively forms the PRIMs instructions for that task.

Figure 9.2 depicts the processing of PROP3 using procedure contexts in Soar’s memory sys-
tems. The layout is the same as that of Figure 4.3 on page 28, but for Soar and PROP3 instead of
Actransfer. The figure shows procedure contexts as triangles, and each represents a single declar-
ative memory structure that describes the set of operators for a particular problem space of the

111

Working Memory

Long-term Declarative Memory Procedural Memory

Decision Making
write-text

"type-word"

"place-cursor"Transcribe Text

"finish"

"get-text"
"write-text"

get-text

"read-prompt"

"find-prompt"

read-prompt

"COPY-input-to-slot1"

IF (COPY decision)
THEN (perform described COPY)

IF (instructed conditions true)
THEN (propose instructed decision)

...

get-text

read-prompt

COPY-input-to-slot1

Goal 1:

Goal 2:

Goal 3:

 ...

 ...

...

...

...

...

...

...

... Retrieve

Transcribe Text

"finish"

"get-text"
"write-text"

get-text

"read-prompt"

"find-prompt"

^input

^output

^slot1
^slot2

"Hello"
"Hello"
"Done"
nil

Modify

Propose

Decide

Goal 1:

Goal 2:

Goal 3: read-prompt

"COPY-input-to-slot1"

finish
"COPY-slot2-to-output"
"REMOVE-slot1"

Learn

IF ("read-prompt" decision)
THEN (COPY-input-to-slot1)Learned:

1 12

3

4

5

6

Figure 9.2: The PROP3 procedure context model in Soar. Procedure contexts and rules for condi-
tion lines are shown in white, and for action lines in gray. Circled numbers mark corresponding
PRIMs phases.

agent’s task. These are arranged hierarchically in LTDM. All PRIMs instructions for any task are
encoded within such a procedure context hierarchy in PROP3. The procedure contexts in this figure
are for the transcribe-text task, described previously in chapter 4. Again, the goal of this task is
to copy a prompted line of text into a computer text editor, and this task is broken into component
problem spaces such as “get-text” and “write-text.”

In the figure, the agent has six elaboration contexts (white) in LTDM that represent its under-
standing of the hierarchical goal structure for the task. For the PROP3 agent to begin operation, I
give it the command to perform the transcribe-text task, and the task name becomes a keyword that
allows the agent to directly retrieve the root “Transcribe Text” procedure context into its WM. The
name of the procedure context represents the agent’s goal for the corresponding state or substate
the procedure context is retrieved into. In this case, the agent’s top-level goal, marked “Goal 1” in
the figure, is “Transcribe Text.” The “Transcribe Text” procedure context is an elaboration context
that includes the condition lines for three different operators, which in Actransfer would be three
different PRIMs instructions, “get-text,” “write-text,” and “finish.” In this example, assume that
whenever the agent does not know what text it should be transcribing, this satisfies the conditions
for “get-text.” When it does know what text to write, this satisfies the conditions for “write-text.”
In PROP3, the agent proposes any instructed operator as soon as its condition lines are satisfied in
WM. For this example, assume only one of these operator is proposed at a time, but in PROP3 any
number of operators can be proposed in parallel so long as their condition lines are satisfied, just
as Soar theory prescribes.

The first task action needed for the “Transcribe Text” task is to read the text prompt. Assume
the agent first proposes and selects the “get-text” operator. There is no single apply rule that can

112

apply this operator because its goal requires an extended sequence of actions over time (find the
prompt if needed, read the prompt once it is found). Since the agent does not know an apply rule
for the “get-text” operator, an impasse arises and the architecture creates a new subgoal and WM
substate. The new subgoal and corresponding substate are marked “Goal 2” in the figure. Because
the agent knows the goal of “Goal 2” is to apply “get-text,” it retrieves the “get-text” procedure
context into the substate from SMEM without any search. In this way, I use the Soar model of
navigating problem spaces to define processing for P2/P3 in PRIMs and solve the problem of
accessing PRIMs instructions from LTDM.

If the agent in this example is not yet looking at the text prompt, then it can similarly select the
“find-prompt” operator and enter another subgoal to carry out that action. However, let’s assume
the agent is already looking at the prompt, and instead proposes “read-prompt.” As before, an
impasse arises because the agent does not have an apply rule for “read-prompt,” and therefore it
makes “read-prompt” its subgoal, marked “Goal 3” in the figure. However, when the agent then
retrieves the “read-prompt” procedure context, it finds that this is not an elaboration context like
“Transcribe Text” and “get-text,” but is an apply context. This apply context instructs a single
action line, “COPY-input-to-slot1.” As soon as the agent retrieves this apply context into WM for
“Goal 3,” a primitive apply rules fires and performs the described COPY operation. Now the “read-
prompt” operation is complete, and the agent can exit that subgoal. In fact, the “get-text” operation
is now also complete, and the agent exits that subgoal and proceeds to propose and apply “write-
text” from “Goal 1.” Once the agent completes its “read-prompt” COPY operation and thereby
applies that operator, Soar chunking learns a new apply rule for that instructed COPY. This chunk
is shown in the figure as just-learned in procedure memory.

Elaboration contexts are special in the PROP3 model. They instruct elaboration rules, and
elaboration rules in Soar match and fire in parallel with each other. This allows the agent to
evaluate all condition lines for all retrieved proposal instructions in parallel as a batch as soon
as the agent retrieves the procedure context. Without this ability, the agent would need to spend
up to a decision cycle per condition line for all proposals per procedure context before it could
consider each instructed proposal as a competing decision choice. With this ability, PROP3 only
ever requires a single decision cycle for P3 to evaluate all operator proposal instructions. This also
means that there is no more practical benefit from compiling condition PRIM rules together. In
PROP3, P5 is only needed to compile action (apply) PRIM rules together.

Figure 9.3 shows an example of the initial “Transcribe Text” elaboration context. Again, the
context instructs proposals for three operators, “get-text,” “write-text,” and “finish.” The logic of
the conditions for the three operators shown is as follows: Define slot1 to hold the text that
the agent can read from the prompt. (Recall that “COPY-input-to-slot1” places the input in that
WM slot.) Propose “get-text” if there are not yet any active slot1 contents in WM, that is, if the

113

L1

L2P1

"get-text"
^name

"write-text"
^name

slot1

^condition

^context

"Transcribe Text"

"finish"
^name

L3

^op

^op

^op

"equals"^type^condition

C3
^arg1

"exists"^type

slot1
C4

^arg1

C1

slot1^arg1
"not-exists"^type^condition

C2

slot1^arg1
"not-equals"^type

^arg2 Consts.slot1

^condition

Consts.slot1^arg2

X1 "\n"^slot1

^consts

Figure 9.3: The starting “Transcribe Text” elaboration context structure for the transcribe-text task.

agent does not know any input from the prompt in its WM. Propose “write-text” if there is active
slot1 content in WM and if that content is not the end-of-line character, “\n.” (This assumes that
the end-of-line character indicates that there is no more text to write from this prompt.) Finally,
propose “finish” if the contents of slot1 actually are the end-of-line character.

Notice the consts link coming from node P1, which points to the node labeled X1. All
elaboration contexts have such a link. The consts link keeps the rule-specific values needed for
all the condition lines of all the proposals instructed in the elaboration context. In this case, there is
only a single slot under X1 called slot1. Condition lines reference this slot as Consts.slot1
(to distinguish it from the global slot1). The X1 object could point to any number of values,
however.

In summary, the use of procedure contexts to model PRIMs theory in Soar presents four key
differences with the Actransfer design. First, Actransfer instructions are self-contained bundles
of conditions and actions without the hierarchical structure that PROP3 uses. Only one Actransfer
instruction can be in WM at a time, whereas PROP3 allows one procedure context hierarchy branch
at a time. Actransfer retrieves the instruction with the highest activation.

Second, Actransfer shields decision making from irrelevant procedures by conditioning rule
logic on explicit goal names in WM, as is standard in ACT-R, Soar, and other architectures. PROP3

shields decision making via the context-specific set of available operator proposals, without the
need for explicit goal names. Effectively, the name of the procedure context is the goal name, but
this label is more for the sake of the human agent designer than the agent. The PROP3 agent’s
condition lines do not need to test this name.

114

Third, Actransfer goal names are like any other WM value, and the Actransfer agent can change
them in parallel with other WM operations using rule actions, without additional latency. In the
procedure context approach, switching contexts must be a separate serial action with its own per-
formance cost.

Fourth, Actransfer treats condition PRIMs and action PRIMs the same, where a separate de-
cision cycle is needed for each condition PRIM rule in P3 or for each rule that composes PRIM
rules. PROP3 represents condition PRIMs as Soar elaboration rules, which means they fire in par-
allel with each other. This allows the agent to process sets of instructions at once without impacting
real-time task performance.

In section 9.4 I show that this approach is sufficient for the behaviors that humans demonstrate
in the experimental tasks of the Actransfer suite, with one notable exception.

For a more detailed explanation and discussion of how procedure contexts function in PROP3,
see appendix C.

9.1.2 Task Sets

I now describe the theoretical correlate of procedure contexts in human WM research, the task set.
The link between PRIMs theory and task sets via procedure contexts is a novel contribution of my
work.

The term task set (Rangelov et al., 2013; Sakai, 2008) is used in psychology and neuroscience
research to describe a mental configuration that corresponds with the intention to do a task. A
subject’s active task set must change when the subject intends to switch tasks. Task sets are of-
ten measured as brain activity patterns in the Pre-Frontal Cortex (PFC) associated with sets of
context-specific stimulus-response behavior. Though they are defined abstractly as psychologi-
cal constructs, they bear startling similarity to what procedure contexts describe computationally
(Stearns & Laird, 2020).

The existence of a task set is often measured through neural activity that is sustained while a
subject comprehends instructed task behavior, waits to perceive task stimuli, recognizes them, and
responds. It is considered to be a WM representation of a set of contextually associated stimulus-
response rules, which make behaviors available to decision making (Oberauer, 2010). Studies
indicate a hierarchical organization of task sets across the PFC and to some degree the anterior
cingulate cortex (Dosenbach et al., 2006), distributed according to the abstractness of the repre-
sented procedures (Sakai, 2008). Task sets that deal with more primitive, sensory-based stimulus-
response rules are found to activate the posterior PFC, while more abstract, cognitive rules activate
the anterior PFC. As people practice rule-based task behavior, their task set activation patterns
also have been observed to transition from the anterior to the posterior, indicating a transition from

115

an early abstract representation into a more concrete form as the subject gains experience (Cole
et al., 2013). The hierarchical nature of task sets allows a degree of partial transfer among them
(Rangelov et al., 2013).

Neural activity associated with a task set changes when a human switches tasks or switches
to different operations within a single task. Specific operations, such as comparing whether two
objects are the same, have been linked with specific neurons (Sakai, 2008). The time required to
establish a task set is a dominant component of task switch costs and of WM interference. By
configuring stimulus-response mappings for current goals, task sets filter the scope of perceived
stimuli and available responses, thereby shielding decision making from irrelevant information
(Dreisbach & Haider, 2008). The cost of switching to a new task is considered to be a consequence
of successful shielding during the prior task.

This description bears striking similarity to the Soar problem-space computational model in
three particular ways. First, both task sets and problem spaces describe sets of operations (oper-
ators) related to a task goal. Second, both are represented hierarchically. Third, both serve the
function of shielding decision making from irrelevant stimulus-response rules (proposals). Proce-
dure contexts appear to be especially similar to task sets in that they are structures in WM that drive
the theoretical function of problem spaces in a Soar agent. Procedure contexts also are similar to
task sets in that it takes time to switch the active procedure context, according to Equation 9.1.

An additional connection with PROPs research is how task sets are learned. Task sets are the-
orized to consist of a configuration of the perceptual, attentional, mnemonic, and motor processes
necessary to perform a task that is learned after repeatedly practicing and interpreting task instruc-
tions received verbally from an instructor (Sakai, 2008). By this description, learning a task set
is cognitive phase learning (Fitts & Posner, 1967). As I discussed with PROP2, cognitive phase
learning corresponds with the process of learning how to use declarative task instructions to ac-
complish a task (Stearns & Laird, 2018). I argue that procedure contexts correspond with task sets,
and that time required to establish a procedure context in WM corresponds to the time required to
establish a task set.

This insight gives me a connection between PRIMs theory and broader ideas surrounding hu-
man WM. Specifically, it shows how procedure contexts might be used to model WM interference
and the latency of task switching in general. Task set theory describes latency for task switching
based on the time required to establish a task set in WM. WM interference occurs when the active
contents of WM interfere with (slow down) one’s ability to access a different task set. PROP3’s
design entails that the time required to establish a procedure context in WM is the decision cycle
time required to establish any new subgoals and retrieve procedure contexts from SMEM into the
subgoal’s WM partition. I can thus model task switching in PROP3 as the process of switching
subgoals, and WM interference as a delay in establishing the desired procedure context in WM.

116

One direct way to model this kind of interference is through the complexity of the procedure con-
text hierarchy stored in LTDM. Not all procedure contexts are connected directly to each other.
If the agent has a chain of procedure contexts linked in the order W->X->Y->Z, and the agent
currently only has W in its WM, then it will take twice as long for it to access Y as it will to access
X, and three times as long to access Z. The more distant the desired procedure context, the more
processing an agent must do before it can invoke the instructed task operations.

In summary, though procedure contexts were designed specifically to address the P2/P3 compu-
tation problems, they fundamentally shape the whole of PROP3 processing, contribute new insights
for each of the P1-P6 phases, and connect PRIMs theory in Soar with a rich line of neuroscience
and decision making research in task sets.

9.1.3 Learned Decision Making

The procedure context approach I described above lets P3 process the conditions of task instruc-
tions. P3 must also be able to select an instruction when there are multiple choices. One approach
would be to include instructions for preference rules within elaboration contexts. It would then be
up to the agent designer to define useful preference rule instructions for each task. However, the
agent designs I borrow from the Actransfer experiments do not define preference rules. Another
approach would be to use Soar’s Reinforcement Learning (RL) to learn P3.

As mentioned in section 6.1, Soar allows an agent to use RL to learn utility-based preferences
for operators, similar to the way ACT-R agents learn utility for rules. RL is well established within
both artificial intelligence and cognitive science for its ability to replicate human behaviors and
even achieve super-human task performance if used in a specialized manner. RL in Soar is an
architectural process, and the architecture handles how the agent updates operator utilities based
on reward and how those utilities affect decision making, though it is up to the agent designer to
choose to enable RL in Soar and to choose specific parameters for the RL processing.

Actransfer does provide environment reward functions for RL in the experiment suite. The
Actransfer agents use this to learn rule selection after they have proceduralized their instructions
enough to no longer need the PRIMs process. I use this to let the PROP3 agent learn operator
selection during the PRIMs process using Soar’s RL. In the process, I show how Soar’s RL can
combine with PRIMs principles to use value function features that are both task-independent and
transferable. In section 9.4, I show that this approach achieves human-like learning patterns in
some tasks.

Soar represents utility values for operators by including them in the agent’s numeric-indifferent

preference rules. An example numeric-indifferent preference rule could be, “IF (‘get-text’ is pro-
posed AND the prompt is flashing) THEN (add utility 0.6 to ‘get-text’).” The condition-action

117

structure of these rules must be provided by the agent designer, but the architecture adjusts the
numeric utility value over time based on environment feedback. For example, if the agent learns
from experience that it generally gets little (or negative) reward from the action “get-text” when
the prompt is flashing, it can modify the example rule above into, “IF (‘get-text’ is proposed AND
the prompt is flashing) THEN (add utility -0.03 to ‘get-text’).” A numeric-indifferent preference
rule that has its utility value updated over time is called an RL rule in Soar.

When agent designers use Soar RL rules, they define the value function features by how they
design the condition/action structure of those rules. In the example rule above, “the prompt is
flashing” is the environment feature that the programmer builds into the agent, and which Soar
will learn utility for over time. But this feature is only relevant in a task that can have a flashing
prompt. To make PROP3 task-independent and able to use Soar’s RL to apply P3 decision making
for PRIMs theory, I need to make the value function features task-independent.

I observed that the union of PRIMs theory and Soar provides two classes of features that RL
rules can condition on and that can make RL in PROP3 truly task-independent and task-relevant.
These two classes of features correspond with the conditions and actions of any decision. First
are the general condition line primitives used for an operator proposal. These can transfer across
decision making the same way that PRIMs can. Second are the names for the specific procedure

contexts that each proposal points to, which the agent would retrieve if it selected each proposed
operator. While individual procedure contexts are usually specific to a particular task, the fact that
procedure context names are invoked in all tasks means that the agent can use the same primitive
RL rule base for all procedure context names.

PROP3 uses primitive RL rule templates1 to generate RL rules for each condition line and
proposed operator name on-line as they are experienced. Once generated, the agent can thereafter
learn utility values for each based on reward from the environment. Initially, each RL gives a utility
of 0.0. For example, consider the elaboration context shown in Figure 9.3 on page 114, and the
conditions for the “write-text” operator proposal. There are two task-independent condition lines,
“(slot1 <> Consts.slot1)” and “(slot1 exists),” plus the single name of the operator
that would be proposed if these conditions were satisfied, “write-text.” Thus, the first time the
agent retrieves this elaboration context into WM it will create the three RL rules, “IF (slot1 <>

Consts.slot1) THEN (add 0.0 utility to the proposed operator),” “IF (slot1 exists) THEN
(add 0.0 utility to the proposed operator),” and “IF (“write-text” is proposed) THEN (add 0.0 utility
to the proposed operator).” After creating these three rules, the architecture can adjust the utility
values for each based on ongoing experienced reward.

Similar to ACT-R’s mechanic that increases the utility of learned rules that are frequently prac-

1Template rules are a feature of Soar for generating rules based on a primitive template rule. For further details,
see the Soar literature.

118

ticed, I built PROP3 to generate intrinsic reward for completing an instruction. The more often the
agent practices a particular instructed operator, the greater its utility for that operator.

The utility associated with a condition line represents the utility associated with considering
the particular environment feature during decision making. The utility associated with a named
procedure context represents associated with a proposed action. Thus these two classes of RL rules
are general across all condition/action behavior that could be represented in Soar. What if an agent
designer wished to associate a particular utility with a particular conjunction of conditions, such as
“IF (the prompt is flashing and the text has been transcribed) THEN (add 1.0 utility to the proposed
operator)” or “IF (the prompt is flashing and the text has not been transcribed) THEN (add -1.0 to
the proposed operator)?” This could easily be done in PROP3 by having an instructed elaboration
create a new WM element for the conjunction of conditions, and then associating the desired utility
with that new WM element. This would turn the above rules into “IF (flashing-and-transcribed)
THEN (add 1.0 to the proposed operator)” and “IF (flashing-and-not-transcribed) THEN (add -1.0
to the proposed operator),” where “flashing-and-transcribed” and “flashing-and-not-transcribed”
refer to a single WM element with that name.

It should be noted, however, that the use of condition lines as value function features does
not inherently support the ability for the agent to be influenced by features that are not part of a
proposed operator’s conditions. For an environment feature to influence PROP3 decision making,
that feature must be included in the condition lines of the relevant operators in some form. I discuss
this question further in appendix section C.3.2.

The approach I described for RL in PROP3 is task-independent, and it solves the problem of
defining how P3 can be learned in Soar. To my knowledge, Soar RL has not been used with
task-independent, transferable RL rules in the manner of PROP3 before.

There are many ways that one could explore the merits and trade-offs of this type of RL learning
with respect to the field of RL research as a whole. For example, how well does this approach
compare with state-of-the-art RL algorithms for basic or challenging benchmark tasks in AI, and
what kind of constraints might this approach impose on an AI agent design? However, my thesis
focuses on modeling human procedural learning with Soar and PRIMs theory, so these questions
are outside the scope of this present work.

9.2 Problem 2: Task-Independent Timing

The problem of P6 is how a modeler can ensure a robust, reliable, task-independent function for
mapping computation to human time. If the function used is not reliable, then it is difficult to draw
conclusions about the quality of the model.

I discussed in section 4.3 how Actransfer uses Tretrieve (Equation 4.1) from ACT-R in such a

119

way that a task-specific parameter Fr changes the way that computation maps to time for each
task. Fr is not consistent across models for different tasks, and while this might be common in the
ACT-R tradition, I believe this prevents meaningful conclusions about any model that is supposed
to be task-independent. Further, it means that much of the evaluation of Actransfer’s procedural
learning model is based on a declarative learning function. Thus, I marked P6 in red in Figure 9.1.

In PROP3 I remove Tretrieve from the model’s task behavior. Tretrieve is not task-independent
and becomes a confounding variable when evaluating the effects of PRIMs processing. It is true
that PRIMs processing should affect the timing of the model’s declarative processes. Declarative
retrievals should take some amount of time, and compiling PRIM rules results in fewer declarative
retrievals, and this should therefore reduce model timing. However, the problem with Tretrieve for
my work is that it is not a constrained enough model of timing to allow me to isolate the effects of
PRIMs processing so long as it is present.

I therefore derive timing for PRIMs processing in PROP3 only from the number of processing
cycles required by the model. I believe this clarifies the boundaries between what PROP3’s proce-
dural learning computation can and cannot model while also satisfying D3 for task-independence.

I time PROP3 using 50 msec per decision cycle. Soar requires a decision cycle to propose and
select an operator, a decision cycle to enter a subgoal, and two decision cycles to query for and
receive a procedure context structure from SMEM. These three behaviors supply all timing for
the PROP3 agent’s cognitive processing. Besides this, I only add the environment interaction time
such as for motor actions, using the same times as used for the Actransfer experiments.

While removing Tretrieve significantly reduces the time observed in the model’s task perfor-
mance, procedure contexts introduce additional processing that will add to it. I call the effects of
this processing problem-space latency. I define problem-space latency as the total time required
for a Soar agent to transition between problems spaces.

Entering a problem space requires the agent to create a subgoal and retrieve a procedure context
into WM. These both require decision cycles. A PROP3 agent will need more decision cycles
for tasks with deeper problem space hierarchies because it will have to enter more subgoals and
retrieve more procedure contexts. Similarly, the agent will require fewer decision cycles for tasks
with shallow problem space hierarchies, where most of the instructions are contained within only
one or two layers of procedure contexts. PROP3 contrasts with Actransfer in that the simulated
time depends as much on the hierarchical task structure as on the number of primitive operations.

I formally define problem-space latency with the following function:

Tps = Fg ×G+ Fc × C (9.1)

G is the number of times an agent enters a subgoal, Fg is a parameter for the time required
to enter a subgoal (50 msec by default), C is the number of times the agent retrieves a procedure

120

context, and Fc is a parameter for the total time required for each procedure context retrieval (100
msec in Soar). G and C increase or decrease based on how many branches the agent traverses from
its procedure context hierarchy. Fg and Fc are constant across tasks. The entire function simply
describes a fixed amount of time per subgoal and per procedure context retrieval.

In the earlier “Transcribe Text” example of Figure 9.2, the agent started from the “Transcribe
Text” goal and retrieved the “Transcribe Text” procedure context for that problem space. Then it
proposed and selected the “get-text” operator, proceeded to the “get-text” subgoal, and retrieved
the “get-text” procedure context. Then it proposed and selected the “read-prompt” operator, pro-
ceeded to the “read-prompt” subgoal, and retrieved the “read-prompt” procedure context. Finally,
it applied the “read-prompt” task operation with the “COPY-input-to-slot1” operator. In this se-
quence, the agent selected 3 operators, “get-text,” “read-prompt,” and “COPY-input-to-slot1,” for
3 decision cycles. The agent entered 2 new subgoals, “get-text” and “read-prompt,” for 2 more
decision cycles. And the agent needed to retrieve three procedure contexts for “Transcribe Text,”
“get-text,” and “read-prompt,” for 6 decision cycles. Thus, this whole sequence requires 11 deci-
sion cycles in Soar. Using 50 msec per cycle, this sequence of cognitive operations takes the agent
0.55 sec. Of the 11 cycles, 8 are from entering a subgoal or retrieving a procedure context. Thus,
0.4 sec of the 0.55 sec is from problem-space latency.

Chunking affects PROP3 timing by reducing and eventually eliminating the need for the agent
to use apply contexts for action lines. After chunking the “COPY-input-to-slot1” application of
“read-prompt” as in Figure 9.2, the agent can apply the “read-prompt” operator straight from “Goal
2.” This reduces the agent’s total sequence to 7 decision cycles, or 0.35 sec. But chunking in
PROP3 does not replace the need for the agent to use elaboration contexts across subgoals, such
as the “Transcribe Text” or “get-text” contexts, since these give structure to the sequence of agent
operations and cannot be summarized together. (Even an expert typist never loses the need to
visually find text before transcribing it.)

In Equation 9.1, G and C are equal for any task in PROP3. I keep these as separate terms,
however, because technically by Soar theory it would be possible to retrieve multiple procedure
context structures for a single subgoal over time, and this would make C greater than G. This is
not how PROP3 functions for my model of PRIMs theory, but might be relevant for future research
that builds on the PROPs system.

While the PROP3 process of entering a subgoal might be compared to the Actransfer process of
changing the goal name kept in its WM goal slot, Actransfer does not allocate separate processing
or timing for goal changes. As with the modern ACT-R approach, an Actransfer agent modifies its
goal by changing the WM value the way it would change any other WM value. Goal changes are
instructed with action lines and therefore compiled to be executed in parallel with other actions.
For example, an Actransfer agent might have an instruction with two action lines, “(input ->

121

output AND const1 -> goal),” and these could both be compiled together. In PROP3,
these two operations are always done serially.

If treating procedure contexts as a model of task sets, Tps serves as a simple, task-independent
model of task set switching costs. The way in which Tps must be serial with instructed rule actions
aligns with task set theory. A new task set cannot replace another task set in WM until the other
task set is no longer being used to drive behavior.

9.3 Three-Phase Parameters

As discussed in section 8.5, evaluation with PROP2 revealed the importance of considering the
cognitive phase during experimental design. A theoretical conclusion from that work was that, as a
cognitive phase process, the process of learning P2 must be inherently declarative in nature. For the
agent to learn how to retrieve declarative task instructions, it must in some form learn declarative
associations. This means I ought not model it primarily with procedural learning. Because PRIMs
theory and the PROPs system are meant to be models of procedural learning, I therefore do not
attempt to include cognitive phase (Learned) learning in the PROP3 design.

It is worth noting that the way PROP3 intimately connects P2 with P3 and the hierarchical
PSCM structure of a task would make cognitive phase learning in PROP3 even more purely declar-
ative in nature than it was in PROP2. For the PROP3 agent to learn P2, it would need to learn the
procedure contexts structures themselves. It would need to learn the hierarchical connections be-
tween them as well as even the declarative condition lines that allow an agent to progress from one
to another. It is far beyond the scope of my thesis to model how an agent might create or modify
its declarative understanding of task structure in this manner.

Though PROP3 does not implement cognitive phase learning, this does not negate the contri-
butions of the PROP2 model. PROP2 modeled the cognitive phase in the context of Actransfer’s
approach for P2 and Taatgen’s hypothesis for a more comprehensive implementation of P2. Rather,
PROP3 shows how a model of PRIMs that is fully consistent with Soar in its implementation does
not easily support that kind of learning at the present time. PROP2 was better able to model the
cognitive phase due to the ways it still differed from Soar theory in its design for P2 and P3.

Experimentation with PROP1 and PROP2 showed that Auto learning is not usually a good
parameter for modeling the kinds of tasks explored in this thesis. As previously discussed, later
experimental revisions of Actransfer disabled this learning behavior for computational reasons.
The theoretical connection with three-phase theory introduced during work with PROP2 also shows
that Auto learning would make sense more with primarily motor tasks that humans can learn to
do without cognitive effort, and not with the sort of cognitive tasks that are studied here, such as
arithmetic or text editing. Some measure of cognitive effort always ought to be necessary for these

122

tasks in humans.
Auto learning is also not easily supported by PROP3 due to the nature of procedure contexts.

To chunk Auto rules, the agent would have to chunk the processing of elaboration contexts, such
that the agent would then no longer need the elaboration context instructions. A PROPs agent
could not be based upon the Soar PSCM without something along the lines of elaboration contexts.
It would take a remarkably different programming and architectural paradigm to support Auto
learning in Soar at this time. The exception might be the case where task instructions truly required
only a single layer of elaboration context. In that instance, a hierarchy of elaboration contexts is
redundant, and a PROP3 agent could learn to use Auto chunks without the need for any procedure
contexts. As it stands, and for the reasons given above, PROP3 does not attempt to support Auto
learning.

9.4 Evaluation

PROP3’s solutions for both P2/P3 and P6 come from the addition of procedure contexts. Because
procedure contexts represent a single computational change between PROP2 and PROP3, I must
evaluate these solutions together.

I test PROP3 by applying it in a task-independent manner across the whole Actransfer exper-
iment suite, adding the WM/Stroop task and the task-switching task alongside the arithmetic and
editors tasks. I divide the suite of four experiments into two main evaluation blocks, as published
by Stearns and Laird (2020), due to the different characteristics of the tasks.

The first evaluation replicates the arithmetic and editors tasks as I did when evaluating PROP2.
These tasks test procedural learning curves as subjects get faster at their tasks with practice. They
also each represent different time scales for task processing, where human subjects in the arithmetic
task took 2 to 12 seconds to complete a set of calculations while humans in the editors task took 20
to 120+ seconds for each assigned operation. I want to evaluate whether PROP3’s task-independent
implementation can model both time scales as a single system.

The second evaluation replicates the remaining two experiments from the Actransfer suite, the
WM/Stroop experiment and the task-switching experiment. These experiments do not directly
test procedural learning curves or transfer like the first two, but rather test transfer in decision
making, task-switching latency, and WM interference. These two experiments allow me to test the
robustness of using PROP3 procedure contexts as a model of task sets in the manner I described at
the end of section 9.1.2.

In this chapter I use “evaluation” to refer to one of these two blocks, “experiment” to refer to
one of the four human studies replicated in the Actransfer suite, and “task” to refer to one of the
specific tasks within one of these experiments. The WM/Stoop and task-switching experiments

123

both involve multiple tasks.
Because PROP3 is a model that does not incorporate any kind of Tretrieve, I compare my model

behavior with Actransfer when Actransfer Tretrieve time is omitted in addition to the original Ac-
transfer model. Anywhere that PROP3 comes short in replicating the trends of human performance
implies that the trends come from declarative learning or some other process besides the procedural
learning of PRIMs processing.

It is difficult to make predictions about PROP3 performance. The way PROP3 evaluates con-
dition lines in parallel should make it faster compared to PROP2 or Actransfer, because P3 will
only ever require a single decision cycle. The exact gains from this will depend on the instructions
for each task. If the instructions from Actransfer use many conditions, the gains for processing
conditions in parallel in PROP3 will be greater. The nature of Tps could make PROP3 take longer,
however, if the hierarchical goals in the instructions have a significant depth. The greater the
depth of the procedure context hierarchy, the more time required to retrieve the deeper procedure
contexts.

I once again use the same agent instructions used for Actransfer. However, since Actransfer
instructions are not explicitly hierarchical, I modify them slightly to convert them to a procedure
context hierarchy. I group all Actransfer instructions that test the same goal name into a single
procedure context, and replace each goal name change with a procedure context switch (either into
a new subgoal or returning to a parent goal). Otherwise, the instructions are unchanged except
where noted.

9.4.1 Evaluation 1: Hierarchical Procedure Composition

For the arithmetic and editors tasks, I use the same environment setup and agent parameters as for
PROP2. I again used θp = 10 for the arithmetic task, and θp = 48 for the editors task.

The arithmetic problem space hierarchy is a fairly simple one. The starting problem space
instructs proposals for each main step in the memorized sequence of mathematical operations,
such as “subtract-a-from-c” or “multiply-b-and-3.” Each mathematical operation is then carried
out only one subgoal deep in the hierarchy.2 The shallow hierarchy implies a low Tps.

The editors task instructions written for Actransfer are more complex. They use many goals
and subgoals to define task reasoning, such as “find-edit-line,” “move-cursor,” “type-word,” and
so on, for a problem space depth of up to six subgoals when translated into PROP3 procedure
contexts. This implies a higher Tps.

2Arithmetic operations such as subtract-a-from-c could conceivably be broken further into subgoal actions if the
math operations were computed manually, but this agent design assumes that adults have elementary math problem
answers memorized and do not need to compute them manually.

124

9.4.1.1 Arithmetic Experiment

Figure 9.4 shows arithmetic task performance by humans and by the Actransfer, PROP2, and
PROP3 models. PROPs models are on the top, Actransfer on the bottom. Actransfer results
that omit time from Tretrieve are labeled (no RT). Component step results are on the left and
integrative step results on the right.

(a) Component steps (b) Integrative steps

(c) Component steps (d) Integrative steps

Figure 9.4: Human, Actransfer, PROP2, and PROP3 performance for the arithmetic task.

First, observe that PROP3 shows slightly faster overall timing than PROP2 in the top two fig-

125

Component Steps Integrative Steps
Model r2 MAE MAPE r2 MAE MAPE

Actransfer 0.808 0.84 15.7 0.758 0.58 14.2
Actransfer (No Retrievals) 0.844 1.01 13.6 0.777 1.28 34.5

PROP1 (Deliberate, Known) 0.994 2.71 61.3 0.969 2.05 72.2
PROP2 (Deliberate, Known) 0.995 1.04 20.2 0.991 0.88 28.6
PROP3 (Deliberate, Known) 0.992 0.27 7.12 0.997 0.65 26.9

Table 9.1: PROP3 goodness-of-fit measures for the arithmetic task. MAE is Mean Absolute Error.
MAPE is Mean Absolute Percentage Error.

ures, which brings the model closer to human performance, particularly for component steps. As
described earlier, this speedup comes from PROP3’s ability to evaluate condition lines in parallel
without using more than one decision cycle at a time for P3.

Second, notice that PROP3 exhibits more transfer than humans, as seen in the faster perfor-
mance at the start of the various transfer conditions for trials 51-100. To better understand this,
compare PROP3 performance with that of Actransfer in the lower two figures when Actransfer
also omits Tretrieve. Notice that the shape of the transfer data for PROP3 is fairly identical. A sig-
nificant portion of Actransfer’s early latency in the transfer trials (51-100) was from Tretrieve due
to the lower initial declarative activation in the instructions used for those trials. The fast perfor-
mance when omitting Tretrieve at the start of the transfer conditions indicates a very high amount
of procedural transfer. Inspection of the processing shows that this is due to how the Actransfer
model design treats identical calculations as identical subgoals, which can be transferred fairly
completely. For instance, the goal subtract-a-from-c is carried out with the same instructions for
any use of that operation in any mathematical routines. Slower human performance in the trans-
fer conditions (less transfer) might indicate that humans require significant declarative learning
time when switching to the transfer conditions, in the manner modeled by Actransfer, or it might
indicate that humans do not mentally represent operations in quite so modular a fashion as the
Actransfer and PROP3 instructions do. This latter interpretation is consistent with Elio’s (1986)
findings. In that study, changes to the integrative structure and order of the algorithm reduced
component step transfer, implying that the subjects’ skill representations for the individual math
operations were not modular but depended on the structure of the entire algorithm.

Table 9.1 shows the goodness-of-fit measures for the arithmetic training curves for PROP3 and
the other models. PROP3 shows significantly lower error across the board than the other models
for component steps, and is second only to Actransfer for integrative steps, since it levels off slow
compared to humans for those steps. Its component step rs is 0.003 behind PROP2, but this is a
negligible difference. Its r2 for both component and integrative steps is very high, > 0.99.

Table 9.2 and Table 9.3 show the transfer scores for PROP3 next to the other models. As before,

126

Component Step Transfer
Model Control Integrative Component

Difference from Control
Human 0.48 1.01

Actransfer -0.11 1.81
Actransfer (No RT) -0.03 0.60

PROP1 (Deliberate, Known) -0.04 2.88
PROP2 (Deliberate, Known) -0.06 2.12
PROP3 (Deliberate, Known) 0.001 0.31

Percent Transfer
Human 11.75% 27.38% 44.63%

Actransfer 38.09% (+26.34) 34.51% (+7.13) 95.23% (+50.60)
Actransfer (No RT) 53.12% (+41.38) 50.85% (+23.48) 100.81% (+56.18)

PROP1 (Deliberate, Known) 13.50% (+1.75) 12.55% (-14.82) 88.72% (+44.08)
PROP2 (Deliberate, Known) 38.36% (+26.62) 36.96% (+9.58) 92.50% (+47.86)
PROP3 (Deliberate, Known) 58.25% (+46.50) 58.28% (+30.90) 67.26% (+22.62)

Table 9.2: PROP3 transfer for arithmetic component and integrative steps.

there is no clear pattern for component steps. Actransfer has the closest transfer for integrative
steps, however. The fact that PROP3 has the same flatter and faster performance for trials 51-100
as Actransfer (No RT) combined with much higher initial latency in the training due to PRIM
resolution means that the relative transfer from the start of training to the start of the transfer
conditions is much higher for PROP3, especially for integrative steps as shown in Table 9.3.

Overall, though its transfer is not as close as that generated by Actransfer, the PROP3 agent’s fit
to the human training curve is arguably the best in terms of both shape and error of all the models.
Again, this is achieved by using the Actransfer task instructions in procedure context form and by
treating Actransfer goal name changes as procedure context retrievals with their own time cost.

127

Integrative Step Transfer
Model Control Integrative Component

Difference from Control
Human 1.63 0.47

Actransfer 1.03 0.04

Actransfer (No RT) 0.33 -0.02

PROP1 (Deliberate, Known) 0.82 0.06

PROP2 (Deliberate, Known) 0.32 0.04

PROP3 (Deliberate, Known) 0.53 0.20

Percent Transfer
Human -1.62% 71.84% 19.56%

Actransfer 36.89% (+38.51) 89.07% (+17.23) 39.14% (+19.57)
Actransfer (No RT) 53.71% (+55.33) 95.85% (+24.01) 50.65% (+31.08)

PROP1 (Deliberate, Known) 65.34% (+66.96) 89.95% (+18.11) 67.10% (+47.54)

PROP2 (Deliberate, Known) 83.25% (+84.87) 94.21% (+22.37) 84.50% (+64.94)

PROP3 (Deliberate, Known) 138.52% (+140.14) 165.24% (+93.40) 148.68% (+129.12)

Table 9.3: PROP3 transfer for arithmetic integrative steps

9.4.1.2 Editors Experiment

(a) (b)

Figure 9.5: Human, Actransfer, and PROP3 performance for the editors task.

Figure 9.5 shows human, Actransfer, PROP2, and PROP3 results for the editors task.
One can immediately notice that the PROP3 model replicates the same scale of performance as

128

the Actransfer agent that is missing Tretrieve. It is, in fact, slightly faster even than this Actransfer
model. The higher Tps needed for the editors task due to its deeper goal hierarchy adds time that
the Actransfer agent does not represent, but this is outweighed by the speed gained from evaluating
conditions in parallel.

Due to a fault in the experiment code, Stearns and Laird (2020) reported in error that the PROP3

editors model replicated the higher time scale of the original Actransfer results. They attributed this
to the higher Tps and failed to account for the time gained from evaluating conditions in parallel.

The inability of PROP3 to replicate human time scales for this task indicates one of two things.
One possibility is that the majority of human processing in this task is not the kind of procedural
learning processing shown by humans in the arithmetic task. Actransfer’s computation attributed
most of it to Tretrieve, and thus to declarative retrievals. Retrieval times of 0.9 sec for a single
PRIMs instruction seems unusual, however. It could be that there are other cognitive processes at
work that are not captured by either PRIMs procedural learning or Tretrieve declarative learning,
however, such as extended deliberation over motor control when using the unfamiliar computer
keyboard shortcuts. Another possibility is that the instructions from Actransfer represent the cor-
rect types of processing but are too simplistic in the number or structure of operations compared to
actual human processing. In PROP3, for instance, one might model higher time scales of behavior
using an even deeper procedure context hierarchy. That kind of model would assert that humans
require time on the order of 60 sec rather than 20 sec because they engage in a substantial amount
of processing that does not directly contribute to performing the task. For example, the slower per-
formance of humans learners might be because they double-check their keyboard actions against
the prompt directions multiple times before committing to task actions. In PROP3, this would
be modeled with additional procedure contexts for the cognitive operations of double-checking as
well as additional time for the motor/vision actions of looking back and forth between screen and
directions. However, one would expect human learners to gain confidence with practice and not
need to double-check their answers as often over time. This would require the PROP3 agent to
restructure its procedure contexts on-line over time, a type of declarative learning.

Figure 9.6 shows what PROP3 performance looks like in this task when the Tretrieve from
Actransfer is added to its performance, labeled (+RT). Overall timing and transfer trends are
similar to the Actransfer model. As with the (no RT) models, PROP3 is slightly slower. This
again follows from the ability of PROP3 to process conditions in parallel.

Table 9.4 shows the goodness-of-fit measures for Actransfer and PROPs models of the editors
task. PROP2 remains the best model of humans quantitatively by these measures. PROP3 measures
with or without added retrieval time are overall comparable to those of Actransfer under the same
conditions. PROP3 has slightly worse error due to being slightly faster than Actransfer.

Table 9.5 shows the transfer measures for PROP3 and the other models. A model’s transfer is

129

Figure 9.6: Human and model performance for the editors task when Tretrieve is added to PROP3.

ED-EDT-EMACS EDT-EDT-EMACS
Model r2 MAE MAPE r2 MAE MAPE

Actransfer 0.965 10.27 13.4 0.958 31.13 26.7
Actransfer (No RT) 0.299 34.30 52.4 0.534 55.56 57.3

PROP2 (Deliberate, Known) 0.977 5.86 10.8 0.991 24.83 21.6
PROP3 (Deliberate, Known) 0.919 38.79 62.2 0.942 61.04 67.0

PROP3 (Deliberate, Known, +RT) 0.967 15.01 22.5 0.982 36.06 32.0

Table 9.4: PROP3 goodness-of-fit measures for the editors task. MAE is Mean Absolute Error.
MAPE is Mean Absolute Percentage Error.

calculated relative to its own performance in various task conditions, so PROP3’s transfer perfor-
mance as shown is still a useful metric when examining its procedural learning. Actransfer, PROP2,
and PROP3 each are closest to human transfer for three of the transfer conditions. PROP3 comes
in second behind PROP2 for many transfer scores, however, superior to the transfer of Actrans-
fer (no RT) in most cases except for when transferring to EMACS. This indicates that while the
scale of the PROP3 agent’s performance is off, and other timing factors must be at work in humans,
its procedural learning properties are still comparable to those of the original Actransfer model.

These experiments demonstrate both the strengths and limits of PRIM theory as modeled in
both Actransfer and Soar. The procedure context approach for implementing PRIMs theory in
Soar is especially able to capture power-law learning at the same time scale as humans in the
arithmetic task. Current models are not, however, able to capture human performance in the editors
task as a result of PRIMs procedural learning while also satisfying my desiderata. Actransfer
replicated editors performance by adding a substantial task-specific Tretrieve, which violates D3 for
task-independence. PROP2 used a hybrid of ACT-R and Soar architectural principles which were

130

Model Global Planning Move to Line Planning Edit Text
ED to EDT Editors Transfer

Human 94.97% 87.50% 104.62%
Actransfer 83.54% (-11.42) 82.03% (-5.47) 88.35% (-16.27)

Actransfer (No RT) 79.33% (-15.64) 81.02% (-6.48) 79.58% (-25.04)
PROP2 (Deliberate, Known) 86.95% (-8.02) 85.88% (-1.62) 88.47% (-16.15)
PROP3 (Deliberate, Known) 98.04% (+3.07) 100.04% (+12.55) 97.63% (-6.99)

PROP3 (Deliberate, Known, +RT) 91.61% (-3.36) 95.14% (+7.64) 98.11% (-6.51)
EDT to ED Editors Transfer

Human 97.18% 91.84% 99.09%
Actransfer 90.85% (-6.33) 89.93% (-1.91) 91.80% (-7.29)

Actransfer (No RT) 85.47% (-11.72) 87.10% (-4.74) 83.79% (-15.30)
PROP2 (Deliberate, Known) 96.22% (-0.96) 92.65% (+0.81) 102.23% (+3.14)
PROP3 (Deliberate, Known) 100.62% (+3.43) 99.97% (+8.13) 99.39% (+0.30)

PROP3 (Deliberate, Known, +RT) 94.47% (-2.71) 93.78% (+1.94) 99.94% (+0.85)
EDT/ED to EMACS Editors Transfer

Human 64.81% 61.03% 62.29%
Actransfer 63.41% (-1.40) 66.70% (+5.66) 57.26% (-5.03)

Actransfer (No RT) 42.24% (-22.57) 42.66% (-18.37) 36.28% (-26.01)
PROP2 (Deliberate, Known) 84.07% (+19.25) 91.04% (+30.01) 126.92% (+64.63)
PROP3 (Deliberate, Known) 99.55% (+34.74) 100.07% (+39.04) 98.62% (+36.33)

PROP3 (Deliberate, Known, +RT) 88.72% (+29.91) 100.05% (+39.02) 98.62% (+36.33)

Table 9.5: PROP3 transfer in the editors task, along with differences compared to humans.

inconsistent with either architecture alone, which violates D4 for a consistent architectural model.
PROP2 also did not yet address the implementation gaps for P3 and P6, such that it did not satisfy
D1 for a comprehensive model.

Thus, while I can generate human performance with PROP2 and even get a better fit compared
to Actransfer, consistency with the architectural theory and task-independence suggests this is not
quite right. PROP3 is what a consistent, comprehensive model looks like, and it shows there are
limitations if we stay honest in the details. But as I demonstrate with evaluation 2, exploring these
details also reveals connections with other ideas like task sets that were not part of the original
theory and which do provide new insights and modeling capabilities.

9.4.2 Evaluation 2: Rapid Decision Making

The WM/Stroop and task-switching experiments in evaluation 2 test rapid decision making, task
switching, and WM interference effects. These are behaviors associated with task sets. I use
PROP3 procedure contexts as a model of task sets when replicating these experiments.

As I described in chapter 5, Taatgen (2013) used declarative activation in Actransfer to model
decision making transfer and Tretrieve to represent WM interference. PROP3 does not use Tretrieve,

131

nor does it use activation in P2 for decision making as Actransfer does, and so it is not be able
to model either of these original experiments in this same way. However, the link between pro-
cedure contexts and task sets does imply a potential model of decision making transfer and WM
interference in PROP3.

I model this same WM interference using Tps in PROP3, and model this same decision making
learning and transfer through the process of learning to select procedure contexts using RL accord-
ing to the manner I described in section 9.1.3. In contrast to P2, RL in psychology research has
long been viewed as a mechanic for decision making, and it is provided as such in both the ACT-R
and Soar architectures. I modify the Actransfer task instructions for these experiments slightly in
order to provide a model that satisfies D4 as consistent with decision making and task set theory
as well as Soar theory.

Where Actransfer models learned decision making through learned P2, I model this same be-
havior using learned P3 via RL. Where Actransfer models interference from Tretrieve using lower
activation, I model the same behavior from Tps. The net effect of these modifications is that in
some places I divide Actransfer instructions across multiple subgoals with some hierarchical depth
that was not originally present. Otherwise, the PROP3 task instructions are equivalent to those of
Actransfer. I describe the differences in goal hierarchy for each experiment in the coming sections.

While I consider using P2 to model human decision making to be inconsistent with prevail-
ing theory, I make no objection to using Tretrieve to model WM interference. However, the fact
that Tretrieve adds time that is not otherwise reflected by agent processing cycles means that this
approach has relatively little explanatory power, though it does attribute interference effects to
declarative activation and learning. An internally-consistent PROP3 model that satisfies D4 im-
plies a different model for interference.

For these experiments, I set Soar’s RL parameters to use softmax selection, a learning rate
of 0.02, and a discount factor of 0.775, based on a brief sweep of the Soar parameters for the
WM/Stroop experiment. I use the same parameters for all tasks in these experiments.3 I repeated
the parameter sweep for the task-switching experiment and found that the same parameters were
desirable in those tasks as well.

The tasks in these experiments are different from those of the first evaluation in that they are
timed rapid-response tasks, where a cue is shown on a prompt and the agent must immediately
respond with a single answer. For example, one task in the second experiment is a flashcard-style
task in which the agent must respond whether there are one or two items shown on the prompt.
In the Actransfer models for these tasks, the agents must initially take a long time to respond
to each such prompt until they learn rules that can perform task responses. In the Stroop task

3The Actransfer agents in the test suite also rely on specific RL and LTDM parameters for each task. These differ
for each task in each of the original experiments.

132

of the second task-switching experiment, humans took around 1 sec to respond to task prompts,
while the Actransfer agent initially required around 2 sec and eventually learned to respond to
prompts in 1 sec. (This difference does not manifest in the evaluations because these experiments
measure differences, such as the difference between responding to congruent or incongruent Stroop
prompts.) Human subjects on average do not significantly speed up in the Stroop task more than
about 0.1 sec within a session of practice, however (Martin et al., 2016), and most studies such as
those of Chein and Morrison (2010) and Karbach and Kray (2009) for this evaluation do not bother
to report improvements in Stroop performance over time for single task conditions. The relatively
steady rapid-response behavior of human subjects implies that humans already possessed the skills
needed for rapid responses. I therefore set θp to 1 for the tasks in this evaluation. This means that
the PROP3 agent will fully learn its task rules within its first few trial prompts. Like humans, it
can start its Stroop task performance around 1 sec and will not speed up much more than about 0.1
sec when practicing a single task condition. Effectively all model learning in these experiments
comes from the agent modifying its decision making routine rather than from performing the same
routine more quickly.

9.4.2.1 WM and Stroop Experiment

Recall that in the original human experiment, subjects demonstrated reduced WM interference
in the Stroop task after a long period of training in a WM span task. Stroop interference in this
experiment was measured as the difference in response time between congruent and incongruent
stimuli in the Stroop task. After WM training, subjects were able to respond to incongruent stimuli
more quickly, closer to their speed for congruent stimuli.

As described in section 5.3, the Actransfer model for this experiment uses Tretrieve to explain
interference. If the agent is shown incongruent stimuli, it still always retrieves the correct answer
from LTDM, but the activation for the correct answer is not as high as when stimuli are congruent.
Tretrieve models longer retrieval time when the retrieved memory has lower activation, and thus the
agent is faster when given congruent stimuli.

The Actransfer agent improves its performance by choosing a “prepare” operation in between
task prompts. The “prepare” actions send a command to the architecture’s output system so that
the agent does not receive the text word as input when the next prompt appears. In theory, this is
the agent focusing on just the color concept so that it does perceive the text details. The Actransfer
agent can also instead choose to wait idly until the next prompt appeared instead of preparing, in
which case its input gives both color and text stimuli to WM.

The WM span training task includes a mandatory “prepare” operation. Recall that in this train-
ing the agent is supposed to remember a sequence of items shown in brief prompts. In between
prompts, the agent always chooses to prepare by rehearsing the sequence of currently-known items.

133

The instruction name for the prepare operation was different, but the primitive condition and action
lines were mostly the same as for the optional “prepare” operation in the Stroop task. Thus, when
the agent practices “prepare” in the WM training task it increases the activation of those condition
and action lines, and by spreading, it thereby also increases the activation of the “prepare” instruc-
tion in the Stroop task. Thus, the agent is more likely to prepare in the Stroop task after training,
and thus demonstrate reduced interference.

PROP3 instead models interference via Tps. The agent has two choices of answer for each
color/word prompt. It can answer the text word, or it can answer the font color. Each of these
responses is instructed in a different procedure context. The procedure context for answering the
text word is only one subgoal away from the starting goal, whereas the context for answering the
font color is two subgoals away, and thus not as readily accessed. It therefore takes longer for the
agent to access the procedures that would let it answer with the font color than to answer with
the text word. This aligns with a model of task sets in which the subject must go through more
processing steps to switch to the task set it needs for a particular response.

idle

prepare

Stroop

prepare

idle

say-answer

answer-color retrieve-color-answer

focus-on-color

retrieve-word-answer

ready-retrieval

Figure 9.7: The hierarchical goal design of the PROP3 model for the Stroop task.

Figure 9.7 depicts the subgoal/procedure context structure I used, in problem space notation.
We replaced the “prepare” action of the Actransfer agent with a “prepare” procedure context that is
also available to the agent from the starting context. In between task prompts, the agent can choose
either the prepare or the idle operators, which each lead to their own subgoal and procedure
context retrieval. From the “prepare” subgoal, the agent prepares by immediately selecting and
entering the “answer-color” subgoal and retrieving that procedure context. The “answer-color”
context instructs the agent to answer the prompt font color once text appears. Retrieving the
procedure context ahead of time saves time once the agent actually sees the prompt, for a faster
response. Alternatively, the agent can select the idle context. From that context, the agent can
immediately select the retrieve-word-answer operator as soon as a prompt appears in or-
der to answer the text word, assuming the prompt text and color are congruent. But if the prompt
text and color are incongruent, the agent must instead select focus-on-color to retrieve the

134

procedure context that will let it answer the prompt color. If the prompt text and color are con-
gruent, idle is optimal for the agent, because it lets the agent answer immediately without the
additional cognitive effort of entering the deeper “answer-color” subgoal. But if the prompt text
and color are incongruent, idle makes the agent take longer, because it does not benefit from
proactively retrieving the “answer-color” procedure context. As soon as the agent has used either
the retrieve-word-answer or the retrieve-color-answer operators to retrieve an
answer, the say-answer operator in the main task context lets the agent report that answer.

Conceptually, the PROP3 agent learns to prepare in the same way as the Actransfer agent, but
the effect of training is not to increase the activation of the “prepare” procedure context but to
increase the utility assigned to the “prepare” operator. As I described in section 9.1.3, the PROP3

agent uses conditions and actions of an elaboration context as value function features. The agent
gets a small amount of reinforcement for operators that it practices frequently. As the PROP3

agent practices the WM training task, it learns to assign a higher utility to operators that rely on
the condition lines of the practiced “prepare” instruction and to operators that propose the same
“prepare” action. This then transfers to the Stroop task. As in the original Actransfer model, it
also get a larger amount of reward for correct task answers. The temporal-difference learning of
RL means that the agent will also increase the utility for practiced operators more if they lead it to
a correct answer more quickly.

Note that in this design, for both Actransfer and PROP3, WM training is more effective at
teaching the “prepare” choice than practicing the Stroop task alone would be. This is because the
agent is able to still get correct answers on the Stroop task when it does not prepare, and when this
happens this increases the probability of repeating the choice to not prepare in the future, even if
this increase is not as great as that for the “prepare” choice when “prepare” is practiced.

The Actransfer model added 0.2 sec for each action of reporting an answer as well as for
each cognitive action of focusing on the correct answer. The PROP3 model also adds 0.2 sec for
reporting each answer but does not add extra time for focusing on the correct answer. In PROP3

this time comes through Tps.
Figure 9.8 shows the PROP3 model results for the experiment alongside human and Actransfer

model performance. PROP3 is similar to the original Actransfer model, despite not using Tretrieve.
Both models are able to improve more in interference when given training than when not given
training. Both models show about the same relative improvement when without training, when
taking error bars into consideration. However, the PROP3 agent starts with less interference than
Actransfer before training, and its interference after training is closer to human performance.

Table 9.6 shows goodness-of-fit measures for the models. The usefulness of these scores is
mixed, given that there are only two data points to define each score. PROP3 and Actransfer errors
are very close. This is highlighted by the fact that Actransfer gets a lower MAE for the training

135

Figure 9.8: PROP3 model interference in the WM/Stroop experiment. Error bars show standard
error.

case while PROP3 gets a lower MAPE.
My overall observation from this experiment is that, when I use Tps to model latency for task

switching in the manner that would be expected of task sets, I am able to produce the same sort of
WM interference effects as Actransfer achieves via Tretrieve.

No Training WM Training
Model MAE MAPE MAE MAPE

Actransfer 24.63 25.4 18.35 30.1

Actransfer (No RT) 140.96 133.4 120.89 136.0

PROP3 15.45 13.8 20.23 18.8

Table 9.6: PROP3 goodness-of-fit measures for the WM/Stroop experiment. MAE is Mean Abso-
lute Error. MAPE is Mean Absolute Percentage Error.

136

9.4.2.2 Task-switching Experiment

The task-switching experiment from Karbach and Kray (2009) was described in section 5.4 on page
49, but I will review it again here. The experiment is conceptually very similar to the WM/Stroop
experiment. Subjects are given a battery of tests before and after a training activity. In this case, the
training activity is a task-switching task, and the battery of tests includes a different task-switching
task as well as the Stroop task.

In the training task, subjects are iteratively shown different images containing either one or two
planes or cars. Subjects have to switch between two different response tasks, given the same types
of images. The first task is to report whether the image shows planes or cars. The second is to
report whether there are one or two items shown in the image. Subjects train in blocks of just one
of these two tasks and in blocks of switching between these two tasks every second trial. Training
takes place over the course of four days, each of which involves 8 single-task and 12 task switching
blocks. Control subjects, however, train only in single-task blocks.

In the alternate task-switching task that is used as a test before and after training, pictures are
of vegetables and fruit rather than cars and planes, and subjects report whether these are small or
large instead of whether there are one or two. The Stroop task used as another test is much the
same as that used for the WM training experiment described earlier, except neutral trials are used
in place of congruent trials (non-color text is used with each font color).

Recall that in the original experiment, humans exhibited transfer to both test tasks when they
trained in task-switching blocks. Additionally, while the Stroop interference was better after train-
ing in task-switching blocks, it was worse after training in only single-task blocks.

Recall also that the Actransfer model design is essentially the same as for the WM training
experiment. During training, the agent always practices the “prepare” operation between trials,
while during testing it has the choice to either prepare or be idle. Practicing the prepare operation
biases the agent to prepare during testing. Training the single-task case in the control setting, by
contrast, forces the agent to practice not preparing, which biases the agent to not prepare during
subsequent Stroop testing.

I designed the PROP3 model to also function in the same manner as I did for the WM training
experiment. The procedure context hierarchy for this Stroop task is the same as that shown in
Figure 9.7. Figure 9.9 shows the procedure context hierarchy for the task-switching tasks. The only
difference between the hierarchy for the task-switching training and test is that the test includes
instructions for “food-task” and “size-task”, which get the food type and size from the prompt,
rather than instructions that would get the vehicle type or quantity.

As shown in the figure, the agent has the choice of either prepare or idle when in between
prompts. These determine whether the agent checks which of the two tasks it needs to do next
before the next prompt appears or whether it waits to determine this until after the prompt ap-

137

idle

prepare

Task-Switch

prepare

idle

size-task

choose-task

choose-task

pre-choose-task

food-task

food-task

get-food-type

retrieve-keypress

press-key

size-task

get-food-size

retrieve-keypress

press-key

repeat-same-task

retrieve-other-task

set-chosen-task

Figure 9.9: The hierarchical goal design of the PROP3 model for the task-switching test task.

pears. The agent is supposed to switch tasks every second trial. If it selects prepare in between
prompts, it will immediately then select pre-choose-task to retrieve the “choose-task” pro-
cedure context. These let the agent reason over whether it needs to either repeat the previous task
again or switch to the other task. Once a prompt appears, it can then immediately begin the chosen
task, in this case either food-task or size-task. However, if the agent instead selects idle,
it will not select choose-task until a prompt appears. Only then will it check which task it
needs to perform, and then select either food-task or size-task. This increases the delay
between when the prompt appears and when the agent is able to respond.

The procedure contexts for the single-task blocks are the same, except that the agent always
invokes the idle operator. This is because it does not need to reason over whether it needs to
switch tasks.

The Actransfer model for the task-switching tasks adds 0.2 sec for each motor action of press-
ing a key to answer a prompt, and also adds 0.13 sec for each cognitive action of focusing on the
correct answer. The motor/visual times for this Stroop task are the same as for the Stroop task in
the previous experiment. Again, PROP3 uses the same times for motor actions but does not add
additional time for finding the correct answer.

Figure 9.10a shows the PROP3 model results for the task-switching test task before and after
training, alongside both Actransfer and human data. Figure 9.10b similarly shows the PROP3

model results for the Stroop test task before and after training.
In Figure 9.10a, there are a few particularly notable results. First is that the PROP3 model

138

(a) (b)

Figure 9.10: Human, Actransfer, and PROP3 model results for the task-switching experiment.

switching costs are remarkably close to those of humans compared to the Actransfer agent. Sec-
ond, however, is that, similar to the WM/Stroop experiment, the PROP3 agent does not show any
improvement in the control case after single-task training, where humans do show slight improve-
ment. This is because the PROP3 agent gets little benefit from decision making practice when
the agent only has the decision making choice of idle. One can also notice that the difference
between Actransfer and Actransfer (no RT) results is about the same as the difference between
Actransfer (no RT) and PROP3 results. This indicates that adding the same Tretrieve time from
Actransfer to PROP3 would result in behavior very close to that of Actransfer (no RT).

In Figure 9.10b for the Stroop test, there are also two notable results. First, the PROP3 agent
shows a more extreme reduction in interference than either humans or Actransfer in the test case,
though its final interference is close to Actransfer’s in the control case. Second, the PROP3 agent
shows the same crossover behavior as humans, in which the test subjects begin with more inter-
ference than control subjects but end with less. This is difficult to explain as anything other than a
random perturbation of the learning algorithm, because the conditions for the agents are identical
before training, and the test conditions are also identical. The same can be said of the human data.

139

Table 9.7 and Table 9.8 show the goodness-of-fit measures for the two test tasks in the task-
switching experiment. The PROP3 has the lowest error for the task-switching task, but Actransfer
is closer to human performance in the Stroop task. This matches the qualitative behavior of the
figures above as discussed.

Switch No Training WM Training
Model MAE MAPE MAE MAPE

Actransfer 86.55 28.4 89.69 34.6
Actransfer (No RT) 47.69 16.6 54.70 24.4

PROP3 36.17 12.0 25.59 13.0

Table 9.7: PROP3 goodness-of-fit measures for the task-switching task. MAE is Mean Absolute
Error. MAPE is Mean Absolute Percentage Error.

Stroop No Training WM Training
Model MAE MAPE MAE MAPE

Actransfer 8.82 13.9 21.39 47.1
Actransfer (No RT) 77.74 133.9 60.33 128.9

PROP3 15.13 26.4 29.62 71.4

Table 9.8: PROP3 goodness-of-fit measures for the Stroop task in the task-switching experiment.
MAE is Mean Absolute Error. MAPE is Mean Absolute Percentage Error.

These experiments demonstrate that PRIMs theory combines with Soar theory to produce a
novel cognitive architecture model of human task sets that can reproduce task switching, decision
making transfer, and WM interference behaviors for these tasks. PROP3 does not use Tretrieve, and
instead models task switching through the time required to change goals in serial with other task
operations.

9.5 Discussion

I introduced the PROP3 model as a unification of PRIMs theory and Soar theory that is consistent
with both theories and satisfies my desiderata for this thesis, as depicted in Figure 9.11. PROP3

addresses the implementation of P3 and P6, the final gaps I identified in chapter 4. I discovered
that the resulting procedure contexts model aligns with task set theory. When I used the Tps latency
of accessing procedure contexts to model WM interference and task-switching costs in a manner
consistent with task set theory, I were able to replicate Actransfer and human performance trends
in the final two experiments from the Actransfer suite in a task-independent manner.

Though PROP3 satisfies my desiderata as a comprehensive, runnable, task-independent, and
consistent model of PRIMs procedural learning, it is more limited than PROP2 or Actransfer in

140

Legend

Procedures Unknown Retrieve instruction
to WM

Select/Reject
instruction

Execute using known
procedures

Gradually available

Learn procedures
as pairwise

combinations of
practiced procedures

Initializes
Defines

instruction
language

Declarative
Memory

Procedural
Memory

Primitive
Procedures

Calculate latency from # retrievals

1

2 3 4

6

5
Lo

ng
-te

rm
m

em
or

y

Complete:
Not Complete:

Inconsistent:

Select

Reject

Figure 9.11: The PROP3 flow diagram and completeness for my desiderata.

its ability to replicate some human behaviors, particularly in the editors task. The PROP2 model
was able to use the same Tretrieve timing as Actransfer with a novel algorithm for cognitive phase
learning to achieve a closer fit to human performance in the editors task, but the computation of
this model was not consistent with the architectural theory of Soar, nor did it easily allow a solution
for P2/P3 problem in which P2 only ever selects a single instruction for P3. This implies that the
high-level approach of PROP2 for cognitive phase learning has merit, but that its implementation
needs further work.

Is it possible for P2 to select multiple instruction choices for P3 at once while also using the
spreading activation approach of PROP2? This would still require retrieving multiple instructions
at once, and for Soar this would still necessitate the procedure context structure or something very
similar that is based on Soar problem spaces. In order for P2 retrievals to still be primarily based on
spreading activation, P3 decisions could only lead to an increased bias for retrieving the selected
problem space instructions, and still leave the actual procedure context retrieval up to activation.
It makes sense that there should be some manner of spreading activation for retrieving procedure
contexts. When an unexpected task prompt appears, unconnected with any structures currently in
WM, the agent would need a spontaneous or spreading-based retrieval in order to adapt to that new
prompt. For tasks such as those used in the Actransfer experiment suite, this kind of unexpected
stimulus behavior is not relevant. I discuss this question further in appendix sections C.2.2-C.2.3.

My evaluation of the completed PROP3 model shows that keeping the constraints of my desider-
ata limits what one can model with PRIMs processing in a cognitive architecture like Soar. It also
shows that keeping these constraints can lead to new insights such as the connection between
PRIMs theory and task set theory as well as the novel model of task-independent value function
features for RL.

In the first evaluation, the PROP3 models provided a nearly exact fit to human performance in
the arithmetic task training, but otherwise performed comparably to the Actransfer (No RT) agent.
In the second evaluation, the PROP3 model replicated the same human learning behaviors as Ac-

141

transfer without relying on Tretrieve. PROP3 performance in WM interference and switching costs
was slightly low overall compared to human performance. A process of speeding up declarative
retrievals with increased activation could potentially account for this deficit. However, since these
experiments measure performance differences, any additional sources of latency would need to af-
fect agent processing unequally across the difference components in order to affect model results.
As it stands, the PROP3 model as a comprehensive model of PRIMs theory provides comparable
fits to human data as Actransfer while supplying more computational detail.

More detailed experimentation is desired to determine the practical effects of RL parameters
in PROP3 for any task. However, the purpose of experimentation for this thesis is to evaluate
the theoretical and computational changes introduced with PROP3, not to analyze the parameters
of reinforcement learning systems. The PROP3 system does not attempt to constrain how RL
parameters are used in Soar any more than Soar itself does.

It should be acknowledged that the model behavior for the second evaluation, whether using
Actransfer or PROP3, is highly sensitive to changes in the model parameters and to the particulars
of the agent reasoning, particularly for the task-switching experiment Stroop task. It is possible
to get very different model behaviors by changing the environment reward or by changing how
much rule knowledge the agent already knows at the start of its tasks. For the purposes of this
thesis, results with PROP3 merely demonstrate that the procedure context approach is capable of
reproducing equivalent behaviors as published for Actransfer for these experiments.

Tps includes the decision cycles used to retrieve a procedure context. Procedure contexts are
not meant to model generic declarative facts, and a different approach for timing classic declarative
fact retrievals would be desirable. Rather, procedure contexts are merely meant to correspond with
the specific kind of WM knowledge described by task set theory, sometimes called procedural
WM (Oberauer, 2010). It is likely that Soar would need to be modified to simulate activation-
based retrieval latency to model declarative learning to the extent that ACT-R does. However, as
Oberauer discusses, it seems that the human mechanic for declarative memory access is similar,
though distinct, to the task set mechanic for procedural memory access. If procedure contexts
have merit as a model of task sets, it is possible that a similar computational approach could be
used to explain declarative memory access in a more detailed manner than Tretrieve does. Unless
further research should show otherwise, however, Tps should not be considered a replacement for
activation-based declarative retrieval latency such as ACT-R’s Tretrieve. Rather, problem-space
latency should be considered an additional factor that has been previously overlooked in cognitive
modeling.

An important aspect of Tps is that it does not predict faster performance the more a memory
is accessed the way that activation-based latency does. A PROP3 agent could only reduce Tps by
reducing the number of cycles that it must use to access a memory. One way to do this would be by

142

rearranging procedure context links into more compact hierarchy. Another way might be through
some sort of short-term caching of recently-used memories. Still another way is spontaneous
retrieval of relevant memories in the manner discussed in appendix section C.2.2.

Procedure contexts are theoretically applicable in other architectures wherever declarative in-
structions can be clustered by task contexts or goals. Yet their use would be cumbersome without
the ability to evaluate condition lines in parallel as I do using Soar elaboration rules. Thus, while
ACT-R has used goal stacks in the past, ACT-R lacks the ability to fire multiple rules per decision
cycle, and this would make it very difficult if not impossible to use procedure contexts in ACT-R.

9.6 Soar Agent Design

The PROPs system agent code, completed with PROP3, represents a task-independent basis for
future cognitive modeling in Soar. I stated in chapter 1 that this represents a secondary contribution
of this thesis.

As discussed in relation to my methodology in chapter 3, PROPs was built as an agent rather
than an architectural modification in order to both simplify and constrain its iterative development.
However, this also has the benefit of making PROPs easy to use by other researchers. Because the
agent code is task-independent, a researcher can load it as a library within their own agent design
while using the same publicly available version of Soar.

My modifications to the Soar architecture that make chunking gradual for PROP2 and PROP3

are not, however, a part of the main distribution of Soar 9.6.4 The PROPs system code will not
generate the same gradual learning behavior as my experiments did here without this architectural
modification. The code will function, but it will chunk rules in a one-shot manner, as Soar normally
does. This will not impair the PROP3 agent capabilities in any way other than to prevent it from
taking more time, since a Soar model of PRIMs theory such as PROP3 is not able to increase its
transfer due to gradual chunking.

Though PROPs was built as a cognitive model, in its final form it is fairly fast compared to
many models. Even when using gradual chunking, it is able to operate at about 30-40 times real
time for the human experiments described in this thesis, depending on the environment. Any agents
developed using the PROPs system will have the advantage of the efficiency of Soar as an artificial
intelligence platform with less development effort due to the generality with which PROPs defines
how Soar mechanisms interact. Combined with the fact that programming a PROPs agent requires
less effort compared to a Soar agent, since the PROPs system code provides infrastructure for man-
aging goals and memory systems, PROPs could potentially be useful as an artificial intelligence

4The architecture modification is publicly available, however, within the open-source Soar repository. It can be
found at: https://github.com/SoarGroup/Soar/tree/cbc-experimental

143

tool as well.

144

CHAPTER 10

Discussion and Related Work

In this chapter, I discuss some of overall theory related to PRIMs and the PROPs system as well as
some related work that appears to be connected with the results I described above.

I revisit the identifiability problems mentioned at the beginning of this thesis. I then discuss
the question of researching primitive learning using adult learners, followed by an exploration of
the questions of cognitive phase learning for PRIMs and of goal stacks in cognitive architecture
theory. I conclude with a discussion of related work in rapid task learning and task switching.

Appendix C contains further discussion on the various implications that follow from the tech-
nical details of the completed PROPs system. See section C.5.2 in particular for discussion of
how neither Soar nor ACT-R currently supports all the computation that this research implies for
PRIMs theory.

10.1 Identifiability Problems

In chapter 2, I discussed the identifiability problems in cognitive modeling, in which models that
function differently can still equally capture human task behaviors. This makes it difficult to de-
termine when a model is truly an accurate model of human cognition.

The PROPs system and model that I introduce in this thesis provided several novel insights and
approaches for cognitive modeling, such as PRIM resolution, learned P2 in PROP2, and proce-
dure contexts in PROP3. Taken individually, these are still ways of producing similar behavior as
Actransfer by different means, and there are still identifiability issues. However, this work shows
how progress can be made with identifiability when a single modeling system is constrained by the
four desiderata I use for the PROPs system. When I demand with D3 that the model is reusable
across several different tasks and domains, each additional task modeled reduces the search space
of possible models. For instance, when I require the same P6 for both the arithmetic and editors
tasks, I reveal where PRIMs processing comes short in modeling human learning in the editors
task. Any future work that attempts to model the editors task with PRIMs can leverage this result

145

in an attempt to identify the missing timing factors for that task. And when I require with D4 that
the model be consistent as a single architectural system and model of human cognition, I identify
how different model approaches come up short in their support for each other. Further, when I
constrain one process to be consistent with another, this cuts down the search space for possible
models and presents a single solution for testing. For instance, when I require that the approach
of P2 support Soar’s decision making theory for P3, this not only shows how PROP2’s solution for
P2 comes up short but also directly leads to the procedure context model as a solution.

Thus, I show that the constraints of my desiderata are powerful tools for cognitive modeling.
Testing a modeling approach according with these constraints does require an expansive single
system, such as the PROPs system described in this thesis. For instance, I would not have been
able to easily constrain the consistency of my approach for P2 without the broader setting of P1-P6
or the architectural basis of Soar. This requires a greater long-term effort and commitment when
developing a novel cognitive model. However, a takeaway of this thesis is that this approach can
yield true progress in combating the identifiability problems.

10.2 Adult Learning with Primitives

One potential question is whether it makes sense to model adult human learning by composing
computational primitives in the manner described by PRIMs theory and as Taatgen (2013) did with
the Actransfer experiments. Should not the adult participants in the original human studies have
already composed their task-independent primitives into more complex procedures before they
began those tasks? Would adults still be directly invoking primitive procedures at all? These are
very important questions when using PRIMs theory and when evaluating its experimental results.

Before considering an answer, the fact remains that the more primitive, task-independent layer
of procedure introduced by PRIMs theory does allow the Actransfer and PROPs agents a greater
level of transfer, which appears similar to that displayed by humans. The real theoretical question,
however, is what exactly would these deeper primitive elements correspond with in human learn-
ing? If PRIM theory really does represent an accurate model of adult human learning, there are
three possible answers that are consistent with PRIMs computation.

One answer is that the PRIM operation types might provide an accurate human model but that
the number of ways of resolving these operations to specific WM elements in humans is so vast
that even an adult human would not meaningfully transfer prior life experience to these tasks. In
other words, the PRIM operations would be specific to each task. This seems unlikely at a surface
level, given that the kinds of operations performed in these tasks are not so unusual that one would
expect humans to have never attempted anything similar before. And part of the point of PRIMs is
that they are highly transferable.

146

However, if mental representations for tasks can drift over longer periods of time, then pro-
cedural learning for tasks from earlier in life might not be as transferable a long time later, even
if the procedures were fairly permanent knowledge. A subject might have similar representations
between a task learned today and a task learned yesterday, but have a dissimilar representation for
a task learned over a year ago, even if that older task was externally very similar to a task from to-
day. This would imply more transfer of recent procedural knowledge and less of older knowledge.
This assumes that mental representations for tasks are not particularly constrained, which is true
in Soar.

Another possibility is that the kind of compositional learning done with PRIMs does not ac-
tually result in permanent procedural knowledge, but knowledge that endures at a shorter scale,
perhaps for only a few months. However, true human procedural knowledge is still considered a
fairly permanent memory store (Radvansky & Tamplin, 2012), so this seems less likely. However,
some mental skills are known to only last on the order of months, or to get replaced when trained
in incompatible skills, such as was shown in the task-switching experiment when subjects had neg-
ative transfer from single-task practice to the Stroop task (Karbach & Kray, 2009). It could be that
the hierarchy of PRIMs compositions represents human knowledge that can similarly be altered
over time for either positive or negative transfer, depending on where it is applied.

A final possibility, though, is that, while the main principles of PRIM modeling might be ac-
curate, the complexity of the cognitive operations needed for these tasks is much greater than
is reflected in the task instructions of the Actransfer models. The Actransfer model instructions
used no more than two or three condition and action lines per instruction, on average. It is quite
conceivable that adult humans would actually perform a vastly greater number of condition evalu-
ations and action operations per decision cycle. In practice the model might capture this behavior
as only a small handful of condition and action lines because adult humans are able to abstract a
great number of their operations into a relatively small handful of grouped condition and action
line steps, due to prior learning that they have built up by the time they are adults. This would
imply that while the PRIM operation types might be accurate, the WM space in which they can be
applied is much more complex and requires a much deeper composition hierarchy than would be
apparent from the models I discussed in this work.

10.3 Procedure Comprehension

As stated in chapter 2, Bovair and Kieras (1991) observed a distinction in procedural learning
between procedure comprehension and procedure interpretation. Procedure comprehension corre-
sponds with cognitive phase learning and what in PRIMs theory would be the process of building
task instructions based on environment interaction. Procedure interpretation uses those instructions

147

to perform task skills.
PRIMs theory does not address where task instructions come from and assumes that some

prior procedure comprehension process or cognitive phase learning has created these in LTDM.
Research in procedure comprehension can to some degree illuminate some of the properties of
task instructions that PRIMs processing would have to use.

Bovair (1992) discusses several lines of research that imply that human instruction representa-
tions are hierarchical internally, and that it is helpful for human learners when task directions are
given in the form of explicit, hierarchical goals. This supports the PROPs procedure context model
that represents task instructions with a hierarchical structure that also corresponds with a hierarchy
of subgoals.

Beydoun and Hoffmann (2001) extends this study and argues for a model of skill knowledge
representation called the Nested Ripple Down Rules (NRDR) framework. This framework ar-
ranges rule knowledge hierarchically in a branching tree of conditions very similar to my model of
elaboration contexts, but with a different approach that nests more constrained and discriminatory
rule representations under more general rules. PROPs, by contrast, nests elaboration contexts if
they are component processes of parent contexts rather than if their rules have similar structure.
Future work with PRIMs theory might explore using this framework for representing hierarchical
task instructions and test it in the context of Soar or other cognitive architectures.

10.4 Theory of Goal-Stacks

The procedure context is closely connected with Soar’s PSCM theory and its notion that the ar-
chitecture automatically manages a stack of goals. I use the Soar goal stack as the foundation for
my representation of active task sets. One potential question is whether goal stacks are plausible
in human modeling. While architecturally-supported goal stacks were widely supported in cogni-
tive modeling in both Soar and ACT-R, researchers using ACT-R in the early 2000s determined
that goals were the same as generic declarative facts in human cognition, and that the architecture
should therefore not treat goals differently (Anderson & Douglass, 2001). The goal stack as an
architecturally-maintained construct was removed from ACT-R shortly thereafter. However, I ob-
serve a distinction between the concept of “goal” that Anderson and Douglass measured and the
concept of goal as used in a goal stack such as Soar’s.

In their experimentation, Anderson and Douglass modeled a “goal” as an image of a desired

task action. They experimented using the classic Towers of Hanoi puzzle, in which subjects move
disks around various pegs to transition from a starting disk configuration to a desired end con-
figuration. Subjects would, theoretically, imagine a “goal” of moving a disk from one location
to another. If that movement was blocked by another disk currently in the destination location,

148

subjects could push onto their goal-stack a new “goal” of removing the blocking disk from the des-
tination. Thus, the goal-stack represented a stack of temporally-sequenced planned actions. They
measured that, with humans, the time it took to retrieve knowledge of the next action in the plan
improved with practice in the same manner that normal declarative retrievals could get faster with
practice. Thus, they influentially concluded,

“ACT–R and Soar are wrong in their assumption of a special goal stack. Goals appear
to behave like any other memory objects. Goals set in the process of subgoaling are
probably no different than other sorts of intentions that people set.”

I argue that their results do not, in fact, oppose the PROP3 model and use of modern Soar’s
“goal stack”. While a Soar (or formerly ACT-R) goal stack can be used as an action-plan stack,
it does not have to be used that way. Fundamentally, Soar’s stack is a stack of WM states, which
each correspond with a goal and problem space. PROP3 demonstrates that this stack makes sense
in cognitive modeling when the states in the stack correspond with problem spaces rather than
planned actions. A stack of strategically-planned actions is an explicit form of declarative knowl-
edge, comparable to a stack of memorized numbers. One would expect a stack of planned actions
to have the appearance of a normal declarative memory structure. But the Soar state stack is ex-
plicitly designed to support problem-spaces, based on Soar’s PSCM theory. A problem space in
Soar is not an explicit plan, but rather it is an implicit group of operators that might be applied
toward a goal in a state’s context.

10.5 Rapid Task Switching

Somewhat related to the question of goal representation in the PROPs system is the question of
whether and how an agent might autonomously pursue multiple fairly unrelated goals at once. For
example, consider a chef who must simultaneously attend a boiling pot of pasta on a stove, mix
cake batter, and cook fish in an oven. It is up to the chef to determine when to switch among
managing each of the stove, mixer, and oven in such a way that uses available time and resources
efficiently. Salvucci and Taatgen (2008) have proposed a model of rapid task switching in which a
cognitive architecture lets an agent pursue multiple goals each with a separate “thread” of cognitive
processing. (See discussion by Lui and Wong (2020) for how this and related theories of multi-
tasking relate to recent research on task sets.) In this model, each thread independently competes
for limited cognitive resources such as declarative memory, procedural memory, vision, or motor
processing in pursuit of that thread’s associated goal, and when a thread completes a segment of
work with a resource it releases that resource for other threads to use. Salvucci and Taatgen imple-
ment their model with a modification of the ACT-R architecture that allows multiple goals in the

149

goal buffer. With each decision cycle the agent can fire a rule that matches any one of the goals in
the goal buffer so long as the architecture modules required by that rule are available. A functional
benefit of this approach is that the agent can compose multiple competing tasks arbitrarily on-line
and does not require an explicit hierarchy of tasks in LTDM.

As described in chapter 9 for the WM/Stroop and task-switching experiments, a PROPs agent
supports deliberate task-switching via a top-level elaboration context in WM that references each
of the different tasks the agent can switch among. The agent uses this top-level context to propose
an operator for each possible competing task or goal. The agent can select different subtasks either
in response to direct task prompts or based on preference rules in some other conditioned manner.
But when would the agent assemble the top-level elaboration context that would allow competing
goals? PROPs does not attempt to explain the formation of procedure context hierarchies in LTDM,
but the question of goal representation is still important. Assuming the PROPs agent does not have
a memorized tree of procedure contexts already in LTDM for each collection of specific tasks it
must switch among, which in the chef example for instance seems unlikely, then we can assert that
somehow the PROPs agent would have to be able to create this elaboration context on-line in WM.

Future work with PROPs might explore adding the ability for the agent to iteratively retrieve
multiple different procedure contexts from LTDM and rearrange these into a single short-term
procedure context in its WM. In this design, an agent would be able to perform a procedure context
retrieval in a WM substate even when it already has a procedure context loaded in that substate. It
would then need to either merge the additional retrieved context into its existing context or ignore
it. Note that this would also affect Tps, because the agent would not need to spend a cycle to create
a substate before retrieving an additional context. In this case, incorporating additional procedures
into an already-active context would require only 100 msec by my current modeling approach, for
the two cycles needed to retrieve a context, rather than 150 msec.

If a PROPs agent were able to compile an elaboration context on-line that would mediate its
multitasking, it could benefit in future attempts at multitasking if it were additionally able to store
that elaboration context in its LTDM. Alternately, an agent might learn to reduce the different
operator instructions from multiple elaboration contexts into a single large context. In this case,
the agent would not even need to enter a substate to access different actions for subtasks, but
would effectively represent the collection of subtasks as a single task. If an agent were able to
compile multiple task instructions together into a single procedure context in this manner, this
would remove task switch costs. Internally, the agent would represent the multiple subtasks as if
they were a single task, and so no switching would be required.

150

10.6 Rapid Instruction Task Learning

If future work should attempt to extend the PROPs system with the ability to create or modify
procedure contexts on-line, to include a model of cognitive phase learning, it could draw heavily
from existing research in Rapid Instructed Task Learning (RITL) (Cole et al., 2013). RITL is
learning a new rule or task rapidly from given instructions, often as quickly as one-shot learning.
It stands in contrast to the kind of gradual learning often seen in RL or sustained human practice,
where successfully completing a task can require tens, hundreds, or thousands of repeated practice
attempts.

Cole and colleagues discuss extensive work in neuroscience and modeling that attempts to un-
derstand the human ability to parse task instructions into a task set form that lets one immediately
perform the instructed behaviors. There are many similarities between their RITL view of task
instructions and task sets and the implications of the completed PROPs model, from the combi-
natoric nature of composing rule primitives, hierarchical transfer, variable binding for groups of
neurons, hierarchical growth from procedural primitives, and the need for declarative reasoning
to control task set formation. There is also work observing that RITL serves as the first of three
phases of learning, (1) RITL, (2) controlled, and (3) automatic, very similar to the three phases of
Fitts and Posner (Chein & Schneider, 2012).

As mentioned in section 7.5, by looking at the neural mechanisms of RITL, Cole and colleagues
also predict that gradual learning might be useful for building more transferable hierarchical repre-
sentations for tasks. In the context of PROP3, RITL is likely be the process of learning elaboration
contexts rather than apply contexts. Apply contexts in the PROPs model represent the hierarchy
of gradually-learned procedural skill that are composed largely in the associative phase, not the
cognitive/RITL phase. Future work could investigate potential neural correlates of apply contexts
further and whether these too might align with theory for task sets or whether these might map
more accurately to structures in other regions of the brain, such as perhaps the pre-motor or motor
cortex.

151

CHAPTER 11

Conclusion

This thesis presented a comprehensive computational model of PRIMs theory for task-independent
human procedural learning. The PROPs system satisfies my four desiderata outlined in chapter 1.

D1. The model is comprehensive. That is, it specifies and constrains the cognitive processing
details that are necessary to execute each of the six phases of PRIMs theory.

D2. The model is able to perform its tasks. That is, it is implemented within the Soar cogni-
tive architecture’s input/output environment and has thereby been demonstrated to replicate
human learning behavior in practice.

D3. The model is task-independent. That is, it is implemented as a single system that is the
same for all experimental tasks, with variation in the form of different task instructions given
to the system.

D4. The model is a model of human information processing. That is, the model’s computa-
tion is informed by and consistent with the current understanding of the human cognitive
architecture and various lines of human research, particularly three-phase theory and task set
theory.

In the process of satisfying these desiderata, I introduced four main theoretical contributions to
the field of cognitive architecture research for task-independent procedural learning.

z I introduced PRIM resolution as a deeper layer of primitive procedural memory pro-
cessing to the production system architecture model of procedural learning. I showed in
section 7.7 that this can provide a more human-like power-law learning and transfer profile
absent from Actransfer results.

z I introduced a new approach by which a cognitive model can learn to use the state of
working memory to guide long-term declarative memory retrievals. I showed in section

152

8.4 that this learning process replicates cognitive phase learning in ways that previous PRIMs
models could not.

z I extended the Soar cognitive architecture to support gradual procedural learning in a
manner identified to be consistent with existing architecture theory. I showed in sections
8.4 and 9.4 that this can be used to replicate the gradual human learning desired in PRIMs
theory.

z I introduced a novel cognitive architecture model of human task sets in the form of
procedure contexts. I showed in section 9.4 how this can be used to model human choice-
based decision making, task switching, and working memory interference effects.

In addition to these, the PROPs agent code provides a task-independent software basis that
could be used for rapidly developing future cognitive models with Soar. The methodology I
demonstrated with this thesis can also be applied in the future to compare other architectures and
cognitive processing theories and to develop new and greater advances within the field of cognitive
architecture.

Future work can branch out in several directions from this thesis. One might explore further
developments to either the Soar or ACT-R cognitive architectures to better incorporate the kinds
of automatic processing supported by this research. Actransfer or its experimental descendant
architectures might incorporate some form of PRIM resolution. Soar might be modified to create a
time-based trace of behavior that includes time for each declarative retrieval. In general, one might
also explore what kinds of modifications would be necessary for Soar to support the processing of
PROP2 in a manner that satisfies my desiderata.

Another direction for future research is that of expanding the PROPs model to tackle the
problem of declarative reasoning and cognitive phase learning. A truly comprehensive and task-
independent model of human reasoning that satisfies all my desiderata would be a difficult accom-
plishment. A more tangible goal that works in this direction is to expand the PROP3 model so that
the agent can modify its procedure context structures on-line to produce cognitive phase learning
behavior in a manner consistent with the findings from PROP2. Such work might draw inspiration
from Bovair (1992)’s model of procedure comprehension processing.

Finally, the findings from my work with PROP3 imply connections with neuroscience theory
related to task sets and RITL. Future work should investigate whether those lines of research
imply additional ways to extend the PROPs model. Such an investigation might also incorporate
Oberauer (2010)’s theory of procedural and declarative WM to extend PROP3 procedure contexts
as task sets into similar computation for declarative memory sets.

153

Bibliography

Anderson, J. R., Betts, S., Bothell, D., Hope, R., & Lebiere, C. (2019). Learning rapid and precise
skills. Psychological Review, 126(5), 727–760.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–406.
Anderson, J. R. (1987). Language, memory, and thought. Lawrence Erlbaum.
Anderson, J. R. (1993). Rules of the mind. L. Erlbaum Associates.
Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford Univer-

sity Press.
Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi: Evidence for the cost of goal retrieval.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(6), 1331–
1346.

Arslan, B., Verbrugge, R., & Taatgen, N. (2017). Cognitive control explains the mutual trans-
fer between dimensional change card sorting and first-order false belief understanding: A
computational modeling study on transfer of skills. Biologically Inspired Cognitive Archi-

tectures, 20, 10–20.
Beck, J. E., & Chang, K.-m. (2007). Identifiability: A fundamental problem of student modeling. In

C. Conati, K. McCoy, & G. Paliouras (Eds.), User modeling 2007 (pp. 137–146). Springer
Berlin Heidelberg.

Beydoun, G., & Hoffmann, A. (2001). Theoretical basis for hierarchical incremental knowledge
acquisition. International Journal of Human-Computer Studies, 54(3), 407–452. https: / /
doi.org/https://doi.org/10.1006/ijhc.2000.0445

Bovair, S. (1992). A model of procedure acquisition from written instructions. University of Michi-
gan. https://deepblue.lib.umich.edu/handle/2027.42/105854

Bovair, S., & Kieras, D. E. (1986). The acquisition of procedures from text: A production-system
analysis of transfer of training. Journal of Memory and Language, 25(5), 507–524. https:
//doi.org/10.1016/0749-596X(86)90008-2

Bovair, S., & Kieras, D. E. (1991). Toward a model of acquiring procedures from text. Handbook

of reading research, 2, 206–229.

154

https://doi.org/https://doi.org/10.1006/ijhc.2000.0445
https://doi.org/https://doi.org/10.1006/ijhc.2000.0445
https://deepblue.lib.umich.edu/handle/2027.42/105854
https://doi.org/10.1016/0749-596X(86)90008-2
https://doi.org/10.1016/0749-596X(86)90008-2

Brasoveanu, A. (2015). Intro to the ACT-R subsymbolic level for declarative memory. https : / /
people.ucsc.edu/∼abrsvn/ACT-R subsymbolic 3.pdf

Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer
effects with a complex working memory span task. Psychonomic Bulletin & Review, 17(2),
193–199.

Chein, J. M., & Schneider, W. (2012). The brain’s learning and control architecture. Current Direc-

tions in Psychological Science, 21(2), 78–84. https://doi.org/10.1177/0963721411434977
Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task learning: A new window into

the human brain’s unique capacity for flexible cognitive control. Cognitive, Affective, and

Behavioral Neuroscience, 13, 1–22. https://doi.org/10.3758/s13415-012-0125-7
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental

storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https : / / doi . org /https :
//doi.org/10.1017/S0140525X01003922

Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why?
Current directions in psychological science, 19(1), 51–57. https://doi.org/https://doi.org/
10.1177/0963721409359277

Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bul-

letin & Review, 24(4), 1158–1170.
Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C.,

Burgund, E. D., Grimes, A. L., Schlaggar, B. L., & Petersen, S. E. (2006). A core system
for the implementation of task sets. Neuron, 50(5), 799–812.

Dreisbach, G., & Haider, H. (2008). That’s what task sets are for: Shielding against irrelevant
information. Psychological Research, 72(4), 355–361.

Elio, R. (1986). Representation of similar well-learned cognitive procedures. Cognitive Science,
10(1), 41–73.

Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive archi-
tecture of working memory. Neuron, 88(1), 33–46.

Faghihi, U., & Franklin, S. (2012). The LIDA model as a foundational architecture for AGI. In
P. Wang & B. Goertzel (Eds.), Theoretical foundations of artificial general intelligence

(pp. 103–121). Atlantis Press. https://doi.org/10.2991/978-94-91216-62-6 7
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the ampli-

tude of movement. Journal of Experimental Psychology, 47(6), 381–391. https://doi.org/
10.1037/h0055392

Fitts, P. M., & Posner, M. I. (1967). Human performance. Brooks/Cole Pub. Co.

155

https://people.ucsc.edu/~abrsvn/ACT-R_subsymbolic_3.pdf
https://people.ucsc.edu/~abrsvn/ACT-R_subsymbolic_3.pdf
https://doi.org/10.1177/0963721411434977
https://doi.org/10.3758/s13415-012-0125-7
https://doi.org/https://doi.org/10.1017/S0140525X01003922
https://doi.org/https://doi.org/10.1017/S0140525X01003922
https://doi.org/https://doi.org/10.1177/0963721409359277
https://doi.org/https://doi.org/10.1177/0963721409359277
https://doi.org/10.2991/978-94-91216-62-6_7
https://doi.org/10.1037/h0055392
https://doi.org/10.1037/h0055392

Gray, W. D., & Lindstedt, J. K. (2017). Plateaus, dips, and leaps: Where to look for inventions
and discoveries during skilled performance. Cognitive Science, 41(7), 1838–1870. https:
//doi.org/10.1111/cogs.12412

Huijser, S., van Vugt, M. K., & Taatgen, N. A. (2018). The wandering self: Tracking distracting
self-generated thought in a cognitively demanding context. Consciousness and Cognition,
58, 170–185.

Jain, A., Bansal, R., Kumar, A., & Singh, K. (2015). A comparative study of visual and audi-
tory reaction times on the basis of gender and physical activity levels of medical first year
students. Int J App Basic Med Res, 5(2), 124–127.

Johansson, C., & Lansner, A. (2007). Towards cortex sized artificial neural systems. Neural Net-

works, 20(1), 48–61. https://doi.org/https://doi.org/10.1016/j.neunet.2006.05.029
Johnson, T. R. (1997). Control in ACT-R and Soar. Proceedings of the Nineteenth Annual Confer-

ence of the Cognitive Science Society, 343–348.
Jones, R. M., Lebiere, C., & Crossman, J. A. (2007). Comparing modeling idioms in ACT-R and

Soar. Eighth International Conference on Cognitive Modeling, 49–54.
Jones, S. J. M., Wandzel, A. R., & Laird, J. E. (2016). Efficient computation of spreading activation

using lazy evaluation. International Conference on Cognitive Modeling.
Karbach, J., & Kray, J. (2009). How useful is executive control training? age differences in near

and far transfer of task-switching training. Developmental Science, 12(6), 978–990. https:
//doi.org/10.1111/j.1467-7687.2009.00846.x

Kennedy, W. G., & Trafton, J. G. (2007). Long-term symbolic learning in Soar and ACT-R (tech.
rep.). Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelli-
gence. 4555 Overlook Avenue SW,Washington,DC,20385.

Kieras, D. E. (2016). A summary of the EPIC cognitive architecture. Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780199842193.013.003

Kim, J. W., & Ritter, F. E. (2015). Learning, forgetting, and relearning for keystroke- and mouse-
driven tasks: Relearning is important. Human-Computer Interaction, 30, 1–33. https://doi.
org/10.1080/07370024.2013.828564

Kim, J. W., Ritter, F. E., & Koubek, R. (2013). An integrated theory for improved skill acquisition
and retention in the three stages of learning. Theoretical Issues in Ergonomics Science,
14(1), 22–37. https://doi.org/10.1080/1464536X.2011.573008

Kirk, J. (2019). Learning hierarchical compositional task definitions through online situated in-

teractive language instruction. (Doctoral dissertation). University of Michigan. http://hdl.
handle.net/2027.42/153434

156

https://doi.org/10.1111/cogs.12412
https://doi.org/10.1111/cogs.12412
https://doi.org/https://doi.org/10.1016/j.neunet.2006.05.029
https://doi.org/10.1111/j.1467-7687.2009.00846.x
https://doi.org/10.1111/j.1467-7687.2009.00846.x
https://doi.org/10.1093/oxfordhb/9780199842193.013.003
https://doi.org/10.1080/07370024.2013.828564
https://doi.org/10.1080/07370024.2013.828564
https://doi.org/10.1080/1464536X.2011.573008
http://hdl.handle.net/2027.42/153434
http://hdl.handle.net/2027.42/153434

Kirk, J., & Laird, J. E. (2019). Learning hierarchical symbolic representations to support interactive
task learning and knowledge transfer. Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence, 6095–6102.
Kotseruba, I., & Tsotsos, J. K. (2018). 40 years of cognitive architectures: Core cognitive abilities

and practical applications. Artificial Intelligence Review. https://doi.org/10.1007/s10462-
018-9646-y

Kump, B., Moskaliuk, J., Cress, U., & Kimmerle, J. (2015). Cognitive foundations of organi-
zational learning: Re-introducing the distinction between declarative and non-declarative
knowledge. Frontiers in Psychology, 6(1489), 1–12. https://doi.org/10.3389/fpsyg.2015.
01489

Laird, J. E. (2012). The Soar cognitive architecture. MIT Press.
Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere, C., Salvucci, D.,

Scheutz, M., Thomaz, A., Trafton, G., Wray, R. E., Mohan, S., & Kirk, J. R. (2017). Inter-
active task learning. IEEE Intelligent Systems, 32(4), 6–21.

Laird, J. E., Lebiere, C., & Rosenbloom, P. S. (2017). A standard model of the mind: Toward a
common computational framework across artificial intelligence, cognitive science, neuro-
science, and robotics. AI Magazine, 38(4), 13–26.

Li, N. H. (2016). The goal re-activation problem in cognitive architectures (Doctoral dissertation).
University of Michigan.

Lui, K. F. H., & Wong, A. C.-N. (2020). Multiple processing limitations underlie multitasking
costs. Psychological Research, 84(7), 1946–1964. https://doi.org/10.1007/s00426-019-
01196-0

Martin, K., Staiano, W., Menaspà, P., Hennessey, T., Marcora, S., Keegan, R., Thompson, K.,
Martin, D., Halson, S., & Rattray, B. (2016). Superior inhibitory control and resistance to
mental fatigue in professional road cyclists. PloS one, 11, e0159907. https://doi.org/10.
1371/journal.pone.0159907

Muller, T. J., Heuvelink, A., & Both, F. (2008). Implementing a cognitive model in Soar and ACT-
R: A comparison. Proceedings of the Sixth International Workshop: From Agent Theory to

Agent Implementation.
National Research Council. (1994). Transfer: Training for performance. In D. Druckman & R. A.

Bjork (Eds.), Learning, remembering, believing: Enhancing human performance (pp. 25–
56). The National Academies Press. https://doi.org/10.17226/2303

Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the
papers of this symposium. Visual information processing (pp. 283–308). Elsevier Inc.

Newell, A. (1990). Unified theories of cognition. Harvard University Press.
Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice Hall.

157

https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.3389/fpsyg.2015.01489
https://doi.org/10.3389/fpsyg.2015.01489
https://doi.org/10.1007/s00426-019-01196-0
https://doi.org/10.1007/s00426-019-01196-0
https://doi.org/10.1371/journal.pone.0159907
https://doi.org/10.1371/journal.pone.0159907
https://doi.org/10.17226/2303

Oberauer, K. (2010). Declarative and procedural working memory: Common principles, common
capacity limits? Psychologica Belgica, 50(3-4), 277–308.

Perez, R., Gray, W. D., Posner, M., Vinogradov, S., & Chi, M. (2018). Learning-to-learn from
novice to expertise: New challenges and approaches for one of the oldest topics of cognitive
science. Cognitive Science.

Radvansky, G. A., & Tamplin, A. K. (2012). Memory. In V. S. Ramachandran (Ed.), Encyclopedia

of human behavior (second edition) (Second Edition, pp. 585–592). Academic Press. https:
//doi.org/https://doi.org/10.1016/B978-0-12-375000-6.00229-9

Rangelov, D., Töllner, T., Mueller, H., & Zehetleitner, M. (2013). What are task-sets: A single,
integrated representation or a collection of multiple control representations? Frontiers in

Human Neuroscience, 7(524), 1–11. https://doi.org/10.3389/fnhum.2013.00524
Rice, P., & Stocco, A. (2018). Mechanisms of rule resolution in premotor cortex: A combined

TMS/computational modeling study. 16th International Conference on Cognitive Mod-

elling, 108–113.
Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling

cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488.
Ritter, F. E., & Wallach, D. P. (1998). Models of two-person games in ACT-R and SOAR. Second

European Conference on Cognitive Modelling, 202–203.
Sabah, K., Dolk, T., Meiran, N., & Dreisbach, G. (2019). When less is more: Costs and benefits of

varied vs. fixed content and structure in short-term task switching training. Psychological

Research, 83, 1532–1542. https://doi.org/10.1007/s00426-018-1006-7
Sakai, K. (2008). Task set and prefrontal cortex [PMID: 18558854]. Annual Review of Neuro-

science, 31(1), 219–245. https://doi.org/10.1146/annurev.neuro.31.060407.125642
Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concurrent

multitasking. Psychological Review, 115(1), 101–130. https : / / doi . org / 10 . 1037 / 0033 -
295X.115.1.101

Sawers, A., & Hahn, M. E. (2013). Gradual training reduces practice difficulty while preserv-
ing motor learning of a novel locomotor task. Human Movement Science, 32(4), 605–617.
https://doi.org/https://doi.org/10.1016/j.humov.2013.02.004

Shahar, N., & Meiran, N. (2015). Learning to control actions: Transfer effects following a proce-
dural cognitive control computerized training. PLOS ONE, 10, 1–22. https://doi.org/10.
1371/journal.pone.0119992

Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill. International Journal

of Man-Machine Studies, 22(4), 403–423.
Singley, M. K., & Anderson, J. R. (1987). A keystroke analysis of learning and transfer in text

editing. Human-Computer Interacttion, 3(3), 223–274.

158

https://doi.org/https://doi.org/10.1016/B978-0-12-375000-6.00229-9
https://doi.org/https://doi.org/10.1016/B978-0-12-375000-6.00229-9
https://doi.org/10.3389/fnhum.2013.00524
https://doi.org/10.1007/s00426-018-1006-7
https://doi.org/10.1146/annurev.neuro.31.060407.125642
https://doi.org/10.1037/0033-295X.115.1.101
https://doi.org/10.1037/0033-295X.115.1.101
https://doi.org/https://doi.org/10.1016/j.humov.2013.02.004
https://doi.org/10.1371/journal.pone.0119992
https://doi.org/10.1371/journal.pone.0119992

Squire, L. R. (1986). Mechanisms of memory. Science, 232(4758), 1612–1619. https://doi.org/
https://doi.org/10.1126/science.3086978

Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neuro-

biology of Learning and Memory, 82(3), 171–177. https://doi.org/https://doi.org/10.1016/
j.nlm.2004.06.005.

Stearns, B., Assanie, M., & Laird, J. E. (2017). Applying primitive elements theory for procedural
transfer in Soar. International Conference on Cognitive Modeling.

Stearns, B., & Laird, J. E. (2018). Modeling instruction fetch in procedural learning. International

Conference on Cognitive Modeling.
Stearns, B., & Laird, J. E. (2020). Toward unifying cognitive architecture and neural task set theo-

ries. Proceedings of the Forty-second Annual Conference of the Cognitive Science Society.
Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic behaviour of a spiking model of action

selection in the basal ganglia. International Conference on Cognitive Modeling, 235–40.
Stewart, T. C., & Eliasmith, C. (2009). Spiking neurons and central executive control: The origin of

the 50-millisecond cognitive cycle. 9th International Conference on Cognitive Modelling,
122(127), 130–131.

Sun, S., Councill, I., Fan, X., Ritter, F. E., & Yen, J. (2004). Comparing teamwork modeling in an
empirical approach. Sixth International Conference on Cognitive Modeling, 388–389.

Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120(3),
439–471.

Taatgen, N. A. (2019). A spiking neural architecture that learns tasks. International Conference on

Cognitive Modeling.
Thorndike, E. L. (1922). The effect of changed data upon reasoning. Journal of Experimental

Psychology, 5(1), 33.
West, R. L. (2020). Introduction to volume 1(2). Common Model of Cognition Bulletin, 1(2). https:

//ojs.library.carleton.ca/index.php/cmcb/article/view/2703
Wharton, C., & Lewis, C. (1990). Soar and the construction-integration model: Pressing a button

in two cognitive architectures ; cu-cs-466-90 (tech. rep. CU-CS-466-90). Department of
Computer Science, University of Colorado. Boulder, CO.

159

https://doi.org/https://doi.org/10.1126/science.3086978
https://doi.org/https://doi.org/10.1126/science.3086978
https://doi.org/https://doi.org/10.1016/j.nlm.2004.06.005.
https://doi.org/https://doi.org/10.1016/j.nlm.2004.06.005.
https://ojs.library.carleton.ca/index.php/cmcb/article/view/2703
https://ojs.library.carleton.ca/index.php/cmcb/article/view/2703

APPENDIX A

Soar Memory Systems

Figure A.1: The Soar cognitive architecture.

Soar is a cognitive architecture that defines many automatic mechanisms theorized to support
cognition, as depicted in Figure A.1. Their theory and function is summarized as follows:

• Working memory (WM): A short-term store of information for active reasoning and prob-
lem solving, represented in Soar as a directed cyclic graph

• Long-term procedural memory: In Soar, procedural knowledge is represented with if-

then production rules, which condition on WM and modify WM immediately in parallel
whenever they match. New rules can be learned through chunking, an automatic process
that summarizes practiced problem solving. Once learned, production rules are permanent
in long-term memory and cannot be unlearned except by programmer intervention.

160

• Long-term declarative memory (LTDM): Explicit factual knowledge about the world, usu-
ally able to be verbalized (declarable) and manipulable by deliberate reasoning.

– Semantic memory (SMEM): A store of discrete symbolic facts. In Soar, these are
added and retrieved deliberately through decision making. These can be retrieved either
by explicit reference or by query best-match. If by query, activation can be used to
break ties between retrieval candidates that match the query equally well.

– Episodic memory (EPMEM): A store of episodes experienced over time. In Soar,
these are snapshots of WM stored automatically over time, but retrieved deliberately.

• Decision making: The process by which an operator is proposed, selected, and applied,
defining a decision cycle. Procedural rules provide the proposals, selection preferences,
and applications. The architecture performs the actual decision selection among proposed
operators for each cycle, based on given preferences.

• Subgoals The theory of how WM interacts with decision making and procedural memory to
organize executive function and goals. In Soar, this is represented through architecturally-
created substate divisions in WM, rather than a separate component in the figure.

• Perception: The collection of raw stimuli from the environment and the processes that distill
them into usable information provided to WM, implemented in Soar either with the Spatial
Visual System (SVS) or direct input to WM. If perception comes through direct input, it is up
to the modeler to ensure that environment input is in a form that is useful to the agent. Soar
design focuses on cognitive processing, and generally assumes that perceptual processing is
provided externally.

While Soar supports declarative knowledge representations and reasoning, it does not define
an approach for how deliberate reasoning should take place, nor for how declarative knowledge
should be acquired, structured, or manipulated in WM or LTDM. As a cognitive architecture,
Soar is instead concerned with defining the automatic, fixed processes of cognition. It is up to
a Soar programmer to design an “agent” that runs on top of the architecture and defines both
the declarative reasoning process and any further automatic processes that structure the use of
architectural mechanisms such as decision making or chunking. Soar’s mechanisms for perception
and LTDM in particular are only loosely driven by the architecture, and their function depends
highly on agent design and commands written by the agent programmer within agent rules.

PROPs is built as a Soar agent with rules that both drive these architectural mechanisms and
pass knowledge between them for task processing in a task-general way.

161

APPENDIX B

WM Theory and PRIMs

The original description of PRIMs theory defined WM to have a constrained small set of slots
in order to support the existence of PRIM operations among them. Each unique PRIM rule in
Actransfer is defined in terms of the WM slots that it operates upon. To make PRIMs theory work
in Soar, I altered this aspect of the theory so that primitive rules did not depend on pre-defined
knowledge of every possible WM element location, as I described in this chapter. In section 7.2,
I defined a PRIM in the PROPs system as a primitive, innate, rule for a broad type of operation,
which can apply to any WM content after PRIM resolution binds it to the desired content location.

One can argue that this changes the computational definition of a PRIM. If a PRIM is fun-
damentally defined as the most primitive level of rule, then PRIMs in Actransfer and PRIMs in
PROPs are equivalent. But if a PRIM is defined as a primitive memory operation on specific mem-
ory elements, then a PRIM in the PROPs system is a very different thing. In the PROPs system,
it is more accurate to say that the PROP, and not the single PRIM rule, is what actually operates
on specific memory elements. (Though a PROP is of course defined using resolved PRIM rules.)
The distinction between primitive rule and primitive memory operation on specific WM elements
is undefined in original PRIMs theory, and thus I do not believe there can be a satisfactory answer
as to which definition best matches the original intent at this time. I introduced the distinction out
of computational necessity with Soar. Thus, my work represents a refinement of PRIMs theory.
Using this new distinction, one can simply say that a primitive rule in Actransfer serves the role of
both a PRIM and a PROP bound into one.

Is it reasonable to define the PROPs agent to support the full span of possible WM locations
in Soar’s unbounded WM graph? One can ask if perhaps WM has only a small number of slot
addresses, perhaps four, the rough WM capacity limit suggested by Cowan (2001). Studies have
shown that humans tend to have such a limit in how many distinct concepts we can hold in mind
at once, and that while this can vary across individuals, it tends to be fairly constant for an adult
across their lifetime (Cowan, 2010). Though the number four is close to the number of buffers in
the ACT-R model, one might point out that it approximately corresponds to the number of slots
typically used per buffer in Actransfer as well, and computationally, combinatorics would not be

162

a significant issue if WM was limited to a very small number of usable locations. However, it
is important to remember that human WM capacity could be very different from the number of
human WM addresses.

The general definition of human WM favored by Cowan (2017) is that it is the set of mental
resources that are in a heightened state of availability for active processing, and Eriksson et al.
(2015) point out that WM capacity is different from WM content representation. Human WM
content is often considered to be the activated neurons and pathways that exist across the brain,
particularly in the perceptual cortices, while WM capacity is thought to be an ability of the PFC
and parietal cortex to maintain a specific activation pattern across those perceptual cortices (in
spite of changing stimuli). The capacity for how many discrete, verbalizable concepts the brain
can keep active at once in this manner seems to be a small number around four, but the number
of possible WM content locations could be at least as vast as the full set of ways that the brain
might represent perceptual input and its features and abstractions and then make these available
for cognitive processing. Considering there are at least 200,000,000 cortical minicolumns in the
human brain (Johansson & Lansner, 2007), the number of memory elements that could be activated
must be vastly higher than three or four. While there is as yet no consensus regarding the exact
role of the PFC and the surrounding regions in mediating WM activation (Eriksson et al., 2015), it
is clear that WM in the human brain is not simply a copy of files moved from long-term storage to
a short-term cache as in a classic digital computer. This means that WM in Actransfer represents
something different than the human WM described by Cowan.

How would ACT-R and Soar definitions of WM map to this description of human WM? ACT-
R and Actransfer limit the capacity of WM through a limited number of WM buffers and slots per
buffer. In this model then, each WM element would seem to correspond with an activation pattern

across the span of possible WM elements, and the limited number of slots represents the limited
number of activation patterns that can be maintained at once. Soar, by contrast, models WM with
an unbounded graph. Each graph element exists and is sustained in WM due to its connection with
other elements. If any node in the Soar WM graph loses its connection to the main graph, then it
is dropped from WM. In this model, the WM graph would seem to correspond with the broader
network of actual memory elements that are activated across the human brain when they become
activated for working use. The root of Soar’s WM graph might then correspond with the PFC to
the extent that it performs the role of maintaining content in WM.

What does this distinction imply for PRIMs theory? This would imply that an ACT-R deci-

sion (selected rule) represents an operation that modifies the top-level activation pattern in WM,
whereas a Soar decision (selected operator) modifies the specific details of the network of activated
WM elements. PRIM resolution follows from the deeper detail of the network, and corresponds
with the work of propagating a decision for a top-level WM change down to the specific details of

163

the WM network.
Thus, these two paradigms might not be incompatible as models of human cognition, but rather

they each focus on different parts of the same bigger computational picture. The ACT-R model of
WM could even be simulated in Soar with a WM graph that is only ever one or two layers deep.
And while Soar might support a deeper network of active WM elements, it is less constrained than
ACT-R. ACT-R explicitly maps different WM buffers to different brain regions. Soar does not
define whether or how different branches of its WM graph might correspond to different elements
of the human brain. Indeed, at the time of this writing, there is no standard in Soar modeling that
would promote any one particular structure of graph at all.

164

APPENDIX C

Implications of Procedure Contexts

Introducing procedure contexts to PROP3 led to many subtle computational and theoretical changes
in the model. I here walk through the implications of procedure contexts in greater detail than I
did in the main body of the thesis, following the outline of P1-P6. For each phase, I describe
how procedure contexts affect the processing and theory of that phase. I begin each section with a
restatement of the challenge posed by that phase of PRIMs theory.

C.1 P1: Types of Procedure Context

What initial set of primitive procedures supports truly task-independent

behavior?

The challenge of P1 is to define primitives for the agent in such a way that the agent is capable
of task-independent procedural learning with human-like efficiency. The set of primitives must be
task-independent for the scope of an agent’s potential learning to also be task-independent. Further,
the format of the primitives must define the rest of the agent processing, because it provides the
fundamental structure for representing task knowledge in both declarative and procedural memory.
The dilemma with Actransfer was that its implementation of P1 constrained the definition of WM
to hold a fixed number of slots, which deviates from ACT-R and is also incompatible with Soar.
In PROP3, I use procedure contexts to define the computational primitives of procedural practice
and learning, as I just illustrated with Figure 9.2. Procedure contexts can be used to represent
the transcribe-text task as easily as any other task that could be performed with Soar, and are as
task-independent as Actransfer instructions. But they also led to the following specific extensions
to PRIMs theory related to P1:

1. I introduce a distinction for PRIMs theory between the representations of primitive condi-
tions and actions, respectively.

165

2. I introduce a theoretical distinction that condition lines should be evaluated in parallel rather
than through sequential decision making to support choice-based decision making. We go
on to show that this can improve the scale of latency in human modeling.

I now describe these in detail.

C.1.1 Instructing Conditions vs Actions

In Actransfer’s design, conditions lines and action lines trigger matching primitive condition and
action rules, and in ACT-R theory a primitive rule corresponds with a primitive decision. This
meant that the Actransfer agent used sequential decision making in order to evaluate each of the
condition lines of each retrieved instruction. As I discussed when describing PROP2, spending a
decision for each condition line leads to significant latency overhead, especially when the agent
retrieves an instruction with non-matching conditions.

The problem is that, in Soar, a primitive rule does not represent a primitive decision. Soar deci-
sions are operators. Soar uses elaboration rules to propose operators and make relative preferences
among them, and then uses apply rules to carry out selected operators. But PRIM condition and
action lines must correspond to primitive rules, since they represent primitive memory operations
for rule-based architectures. Therefore, PRIM condition and action lines in Soar cannot correspond
directly to primitive decisions in Soar.

I introduce this distinction between the computational representation of condition lines and
action lines for PROP3, that condition lines instruct primitive elaboration rules and action lines
instruct primitive apply rules. The agent then generates operators as decision choices on-line by
using its PRIM elaboration and apply rules in its active state of WM.

PRIM condition and action lines thus represent different kinds of operations. Conditions as
elaborations represent temporary changes to WM in a way that merely elaborates on other WM
structures. Actions as applications perform lasting changes to WM in response to decisions. This
leads to my distinction between elaboration contexts and apply contexts, which I described in the
previous section. Each type of context instructs a different kind of memory operation for a different
kind of WM state and goal.

Procedure contexts in PROP3 are declarative graph structures, and each type of procedure con-
text is a distinct kind of graph structure. Figure C.1 shows the “get-text” elaboration context and
the “read-prompt” apply context from the transcribe-text task example. On the left in gray is
the condition/action instruction logic for the “read-prompt” operator that is split across these two
structures.

The “get-text” context P2 includes instructions for two operator proposals, L4 and L5. Each
instructed proposal is defined in terms of the proposal conditions and the name of the operator to

166

L4

L5

P2

"find-prompt"
^name

"read-prompt"
^name^context

"get-text"

^op

^op
C5

input^arg1
"not-exists"^type^condition

C6

input^arg1
"exists"^type^condition

L6P3^context

"read-prompt"
^op

A1

input^arg1
"copy"^type

^arg2 slot1

^action

^name
"COPY-input-to-slot1"read-prompt

IF
 (input != nil)
THEN
 (slot1 := input)

Figure C.1: The procedure context structures for “read-prompt” in the transcribe-text task.

be proposed. The “read-prompt” apply context, by contrast, instructs an operator application with
L6. This instruction is defined in terms of an operator action. The “read-prompt” apply context
includes no conditions, because these are instructed under “get-text.” The agent will propose the
operator named “COPY-input-to-slot1” as soon as it retrieves the “read-prompt” context into WM.

In this case, the “get-text” elaboration context includes two instructed proposals L4 and L5,
which each only have one condition, but in general any number of proposals could be instructed
under P2, and any number of conditions could be included for any operator proposal. Similarly,
P3 in the “read-prompt” context points to only L6, but could point to any number of action lines.1

As I will describe in section C.1.2, the agent uses PRIM elaboration rules to evaluate all in-
structed condition lines in an elaboration context in parallel. If all conditions are satisfied for an
instructed operator, a PRIM proposal rule proposes that operator as a choice for decision making.
Once an operator is selected by decision making, the agent can then retrieve an apply context in a
substate to get the action lines for the selected operator. In that substate, the agent uses further oper-
ators to apply each instructed action line. If the agent retrieves an apply context that instructs only
a single action line, that action can be applied by a single PRIM apply rule, and the corresponding
proposed operator is a primitive operator (PROP).

C.1.2 Evaluating Conditions in Parallel

One of the reasons classic production systems have long been desirable for modeling rapid choice-
based human decision making is their ability to match production rule conditions in parallel. The
production system has been very well established as a basis for modeling human reasoning ever
since Newell introduced them to psychology (Newell & Simon, 1972). It is also a well established
modeling approach with production system cognitive architectures to learn new procedural rules
based on declarative task knowledge, following the declarative/procedural order of the three-phase
theory of skill composition (Anderson, 1982). But more recently, as cognitive architecture models
have grown to use increasingly general procedural rules, so also has the amount of condition/action

1In technical detail, L6 in the figure represents an instruction to propose a primitive operator that will execute the
attached action line. L6 can only point to one action, but P3 can point to any number of operator proposal instructions.

167

rule behavior that is instructed through declarative WM content grown, as demonstrated by PRIMs
theory as well as less-general models in ACT-R and Soar Anderson et al. (2019) and Kirk and Laird
(2019). The question of how one should properly process such declarative instruction knowledge
is becoming increasingly important.

In PRIMs theory, if a PRIMs agent uses decision making to evaluate each condition line in
sequence, it will be next to impossible for the agent to retrieve and test multiple competing instruc-
tions quickly enough to react to the kinds of rapid tasks humans face every day. Even if the agent
retrieves the whole set of competing instructions together as I have PROP3 do, even five condi-
tions for a single instruction would require 0.25 sec to evaluate at 50 msec each with sequential
decisions, not including the extra time that would be needed to first retrieve the set of instructions.
The agent might be able to eventually learn to evaluate all condition lines for a single instruction
together. This is what Actransfer does, so that eventually it only takes a single decision cycle to
evaluate the conditions of any single retrieved instruction. But when the agent must compare mul-
tiple instructions and their condition lines together at once, even rule compilation cannot easily
make decision making practical. And this approach still requires the Actransfer agent to have pro-
hibitively slow performance when beginning a task that it has not yet learned. If the agent began
a new task in which it had to choose from among four competing operations, each with only three
conditions, the agent would potentially spend 0.6 sec over twelve decision cycles just to choose a
single cognitive operation for the task. Humans by contrast show reaction times on the order of
0.25 sec for tasks once they understand their task instructions Jain et al., 2015.

I observe that this demonstrates a problem that can arise any time declarative WM content is
used to instruct rule behavior for a production system. Production systems are able to evaluate
rule conditions in parallel, but when an agent must use rules to interpret declarative condition lines
in WM it might no longer be able to apply this parallel condition-matching ability toward task
decision making.

My work developing PROP3 therefore introduces a theoretical distinction between how cogni-
tive models should process condition lines and action lines in WM, which should be applicable to
any model of choice-based decision making that uses declarative instructions as a basis for rule-
based decision making. For a cognitive model agent to be able to select among multiple valid
rule behaviors with a speed classically expected from a production system’s parallel rule-matching
capabilities, the agent must be able to evaluate the instruction conditions with the same speed that
a production system can match rule conditions. Therefore, the agent should not be constrained by
the decision cycle bottleneck in order This distinction is a minor contribution of this thesis.

In Soar, elaboration rules that propose and give preference to operator choices fire in parallel
and do not require their own decision cycles. Thus, in PROP3 PRIM elaboration rules evaluate
all condition lines continuously in parallel whenever they are in WM in an elaboration context.

168

This makes rapid task responses tenable even when the agent is first exposed to a task and has
not yet practiced it. In PROP3, at any time if any one condition line for any operation included in
the elaboration context becomes newly satisfied or no longer satisfied, the PRIM elaboration rules
that evaluate those conditions immediately fire or retract accordingly to mark a condition line as
satisfied or not. Action lines must still be applied through serial decisions and apply rules, not
through parallel elaborations, as I will discuss in section C.4. The simple reason in terms of Soar
theory is that these must make long-term changes to WM.

Though consistent with the overall PRIMs processing flow, evaluating conditions in parallel is
a modification from the published description of PRIMs. However, recent independent work by
Taatgen (2019) that attempted a neural basal ganglia model of PRIMs implied a similar distinction
between condition and action lines, namely that conditions had to be processed with different
mechanisms from action lines and in parallel. All together, this distinction between condition and
action lines might imply that elaboration contexts and apply contexts correspond with different
processing regions in the human brain. Elaboration contexts might correspond better with task
sets in the PFC while apply contexts more with pre-motor, motor, or basal ganglia representations.
Future work should investigate this question further.

Recall from section 4.2 that PRIMs conditions and actions are task-independent because, like
computer assembly operations, they are defined based on the WM locations that they use, not the
task-specific contents in those locations. Recall that PRIMs theory therefore separates condition
and action lines from the task-specific values that can be loaded into them, for example by treating
a condition such as (IF input == "eol") as requiring two separate primitive operations, first
a primitive that loads the task-specific value "eol" into a reserved general slot2(call it const1),
and then a task-independent condition primitive that tests (IF input == const1). This latter
condition primitive is then able to transfer across any instructions that reference the const1 slot,
regardless of the contents of that slot. In the same way that Soar’s distinction between elaboration
and apply rules lets PROP3 evaluate conditions in parallel, it also lets the agent retrieve task-
specific, or rather, context-specific values in parallel along with the elaboration context content, as
described in section 9.1.1.

C.2 P2: Retrieving Procedure Contexts

How does the agent select a specific instruction when retrieving from LTDM?

I describe the following four contributions of my work with PROP3 and procedure contexts as

2Refer back to the red PRIM in Figure 4.4 on page 30, which illustrates the primitive that loads task-specific values
in the original formulation of PRIMs theory.

169

related to P2:

1. I show how task context can remove the need for the PRIMs agent to search through its
LTDM for a relevant task instruction.

2. I introduce a theoretical distinction between when spreading activation is or is not appropri-
ate as a basis for making choices available to executive decision making.

3. I identify cognitive phase learning with PRIMs in Soar as the process of arranging a declar-
ative hierarchy of task instructions in SMEM.

4. I propose the more general theory that cognitive phase learning is the process of arranging a
task set hierarchy of condition/action instructions.

C.2.1 Searchless Retrievals

I discussed the P2 retrieval selection problem in detail in the previous chapter about PROP2. As
stated earlier, I saw two approaches to implementing the P2 process in Soar. According to step 3.b.2
of my methodology, I implemented and evaluated each. The first spreading activation approach I
tested with PROP2, and the second Soar decision making approach I applied with PROP3.

The PROP2 agent selected satisfied instructions via spreading activation, and used a network
of memory associations that was independent from decision making to determine instruction ac-
tivation. In other words, as far as executive control was concerned, there was no explicit WM
knowledge about or executive control over what instructions the agent might retrieve and practice
next. However, using procedure contexts in PROP3, the agent uses decision making to deliberately
follow the links among its procedure contexts and access instructions for different task operations.
This eliminates the need for blind searches through LTDM.

I already described the hierarchical retrieval and decision making process in PROP3 in section
9.1.1 with the example of Figure 9.2. Assuming an overall task is first given to an agent, a proce-
dure context specific to that task can be explicitly retrieved for the starting goal. This must be an
elaboration context, since instructed rule behaviors must begin with condition lines. If the agent is
in a domain that involves task-switching, if the agent is given knowledge ahead of time that there
are multiple tasks it will need to switch among, then the starting elaboration context can itself point
to other elaboration contexts specific to each of the different tasks. Each task can thus be applied
as its own operator within the main task-switching task.

170

C.2.2 Distinguishing Types of Retrieval Selections

In a real-world environment, there must be times when the agent’s active procedure context is not
sufficient to let it retrieve the instruction it needs. For example, what if the PROP3 agent was
working on the editors task but suddenly the computer screen started showing it the arithmetic task
prompts? The tree of editors task procedure contexts does not link to the arithmetic task procedure
contexts, and the agent would not be able to deliberately retrieve the instruction that it needed in
order to respond. Or in a more extreme case, what if the agent was working on the editors task and
suddenly a bear walked into the room? How would the agent switch from processing the expected
editors task stimuli to processing the unexpected stimuli of the bear? Decision-based access to
instructions in LTDM might let the agent perform more quickly and avoid distractor instructions,
but this cannot work when the agent has no connections from WM to the instructions it needs.
Clearly there must be a difference between how PRIMs instructions can be accessed for expected
and unexpected stimuli.

I introduce this distinction to PRIMs theory for P2 between accessing instructions for expected

and unexpected stimuli within an agent’s context. In this case, “expected” means that the PROP3

agent has WM knowledge that would let it directly retrieve a procedure context in response to
stimuli or a task prompt. For expected stimuli, the agent has instructions in WM that have condition
lines that match the given stimuli and let the agent pursue connections through LTDM to various
possible responses and strategies. But for unexpected stimuli, the instructions that the agent has in
WM are irrelevant to the current stimuli, and do not provide meaningful operator proposals. The
agent cannot use decision making to select a specific instruction from LTDM and must rely on a
different, non-deliberate process for P2.

Whenever the agent is presented with unexpected stimuli, and must therefore switch procedure
contexts without the benefits of following direct links in WM, this is when it would make sense, and
even be necessary within this computational formulation, for the agent to use architecture-driven,
activation-based retrievals. For each case, a different type of P2 process is computationally more
advantageous. For expected stimuli, the learner can perform its tasks more quickly by deliberately
following links in WM. For unexpected stimuli, the agent must rely on the architecture’s ability to
use LTDM associations from the stimuli to activate relevant instructions.

The distinction between expected and unexpected stimuli leads to a distinction between delib-

erate and non-deliberate P2 processing. This distinction is specifically in whether the P2 process
of selecting an instruction from LTDM depends on the agent’s deliberate decision making or not.
This does not assert whether the agent initiates a retrieval deliberately or spontaneously. In the case
where P2 is non-deliberate, the agent could hypothetically have used deliberate decision making
to initiate P2 to retrieve something based on activation. But when P2 is deliberate, the agent knows
exactly which instruction bundle it is trying to retrieve into WM and can thus avoid the latencies

171

or uncertainties that can come with a spreading-activation approach.
Given this distinction, a process for responding to unexpected stimuli would clearly not be

relevant within a model of learning to perform procedures through practice, where procedures are
instructed before the learner begins its tasks. My thesis is specifically concerned with the process
of procedural learning and practice given that the agent already has task instructions that it can
practice and learn. The above distinction shows that non-deliberate retrievals can be necessary for
beginning a task’s procedures and accessing the starting WM context for the task, but they are not
necessary for learning to execute those task procedures, and thus are, in fact, outside the scope of
my work.

The integration of deliberate P2 using procedure contexts with non-deliberate P2 using spreading-
activation presents an intriguing avenue for future work. Non-deliberate procedure context re-
trievals might conceivably be used to model the phenomena of surprise (when non-deliberately
retrieved procedure contexts have nothing in common with existing procedure contexts in WM),
creativity (when non-deliberately retrieved contexts unify with existing WM contexts in unex-
pected ways), or even mind-wandering (when non-deliberately retrieved contexts interfere with
using the existing procedure contexts in WM).

If one were to implement non-deliberate P2 in PROP3, one potentially straightforward solution
would be to treat a Soar state no-change impasse as a prompt for a spreading-activation based
procedure context retrieval. A state no-change impasse occurs in Soar whenever the agent has no
operator proposals for its task state. This is precisely what would occur if the agent’s active pro-
cedure context was irrelevant to the current stimuli. Then the agent would need only associations
between the stimuli and the elaboration contexts that conditioned on that stimuli, as I demonstrated
with PROP2. One difference with the PROP2 model in this case, however, is that the agent would
only need to select an elaboration context from among those that start a task. For instance, if the
agent was faced with prompts for the transcribe-text task, it would only need to consider associa-
tions between stimuli and the starting “Transcribe Text” elaboration context, not the “get-text” or
“write-text” elaboration contexts.

I believe the problem of unexpected stimuli is a manifestation of the goal re-activation problem
(Li, 2016), which is the problem of how an agent can remember to re-activate particular goal driven
behavior that it has suspended, cleared from its WM, and stored in its long-term memory for later.
Li, 2016 shows that spreading activation for spontaneous retrievals is a computationally superior
approach to this problem compared to preemptive retrieval strategies. The addition of a spon-
taneous retrieval mechanism into Soar is another possible solution to solving P2 for unexpected
stimuli.

172

C.2.3 Defining Cognitive Phase Learning in Soar

In the previous chapter, I discussed how PROP2 learned P2 instruction retrieval selection auto-
matically through practice, and how this corresponds well with the cognitive phase of three-phase
theory. It makes sense to model cognitive phase learning with a non-deliberate learning mecha-
nism when only dealing with unexpected stimuli, since this requires a non-deliberate P2. However,
when using deliberate P2 to deal with expected task stimuli, as I do with PROP3, cognitive phase
learning must represent something different. For the PROP3 agent to learn how to deliberately
access its procedure contexts, it must learn when to follow links between procedure contexts as
well as where those links should point.

Thus, for PROP3, cognitive phase learning of P2 would be a process in which the agent com-
poses or modifies the hierarchical instructions that it keeps in LTDM. This means learning the
correct condition lines for each operator as well as which known action lines to connect them with.
This must be a declarative learning and reasoning process.

More generally in Soar terms, one can assume that cognitive phase learning corresponds with
learning when to propose and select operators within particular problem spaces. This means learn-
ing both the proposal conditions and which particular operator actions go with a proposal. Asso-
ciative phase learning is then learning how to apply each operator. Autonomous phase learning is
learning to fire both proposal and apply rules to perform a task without the aid of declarative task
instructions in WM.

Assuming the PROP3 model is a decent model of human task sets, we can then even more
generally propose a unification between three-phase and task set theories, that the cognitive phase
involves the process of arranging task set structures for a task.

In the PROP3 framework, this would also imply that different subjects would form different
procedure context instruction hierarchies for the same task. This ought to be a significant if not
primary factor for defining individual differences in the PROPs system. Some learners might create
more efficient procedure context hierarchies than others, in which they can access task responses to
various stimuli with only one or two retrievals, while other learners might create more distributed
hierarchies of procedure contexts that require more retrievals to navigate, but which might also
present fewer distracting choices in WM at a time.

C.3 P3: Decision Choices from Procedure Contexts

How does the agent evaluate and choose to apply a retrieved instruction with

decision making?

There are two primary contributions of using procedure contexts with respect to P3. The first

173

fills the P2/P3 implementation gap by allowing the agent to employ decision making over choices.
The second incorporates Soar’s RL to allow task-independent decision making. These are already
described in chapter 9, but I discuss them here in greater detail.

C.3.1 Hierarchical Instructed Decision Making

Recall how Figure 9.2 depicted three procedure contexts together in WM across for three hierarchi-
cal goals in the transcribe-text task, “Transcribe Text,” “get-text,” and “read-prompt.” Figure C.2
shows this same arrangement with greater detail with respect to the Soar PSCM, mirroring Fig-
ure 6.3 on page 55. For each subgoal, Soar creates a distinct WM state as a partition of the total
WM graph, and the agent loads a single procedure context into each, and each procedure context
describes operators for the specific problem space associated with that subgoal. In the first WM
state, on the left in the figure, the procedure context (“Transcribe Text”) describes three operators,
each of which have their own conditions. In the example, assume that only “get-text” and “fin-
ish” have satisfied conditions, so the agent only proposes those two operators. Of these, the agent
selects “get-text”. The rest of the figure is as in Figure 6.3. The agent selects the “read-prompt”
operator in the next substate, and applies this with the “COPY-input-to-slot1” operator in the final
substate.

Task goal

WM state

"finish"

"get-text"

"write-text"
finish

get-text
WM substate

"find-prompt"

"read-prompt" read-prompt

Task subgoal

WM sub-substate

"COPY-input-to-slot1"

Task sub-subgoal

COPY-input-to-slot1

Transcribe Text get-text read-prompt

Figure C.2: Procedure contexts as PRIMs instructions in WM, according to the Soar PSCM.

The agent uses elaboration contexts such as “Transcribe Text” and “get-text” to structure its task
decision making and condition-based reasoning. Once the agent retrieves an apply context, such
as “COPY-input-to-slot1” as shown, the agent has chosen a specific task action. Apply contexts
include no condition lines; the existence of an apply context in WM marks that the agent has
already tested any relevant conditions and has chosen to execute the retrieved actions. From that
point on until the instructed actions are complete, the agent does not use decision cycles to choose

task actions but to execute them. The only reason the agent would stop performing the actions is if
the task environment changed unexpectedly to interrupt the agent from its goals before it finished.3

3This is a feature of Soar. If the task conditions change so that the subgoal becomes irrelevant, Soar will immedi-
ately remove the subgoal and any contents of the associated substate, and the agent will resume decision making in a
higher-level subgoal to respond to the task change.

174

Given that the agent has multiple instructed operators in an elaboration context that all have sat-
isfied conditions, and the agent proposes each of them, how does the agent know which proposed
operator to select? Recall that Soar normally uses preference rules to determine which proposed
operators to select. Also recall that there are two main kinds of preference in Soar, symbolic
logical preferences (If op1 and op2 are both proposed, prefer: op1 > op2) and utility-based
preferences that can be learned via RL (op1-utility = 0.54, op2-utility = 0.37).
PROP3 supports both. Logical preferences can be instructed in elaboration contexts just as any
other elaboration rule. There is little more to say regarding this kind of preference support, be-
cause this functionality comes for free with Soar without much extra effort needed in the PROP3

agent design. The second utility-based preference-learning approach, however, requires a bit more
explanation.

C.3.2 Considerations for PRIMs-based RL

In section 9.1.3 I described how I combined PRIMs theory with Soar for task-independent RL
value function features. I mentioned that the use of condition lines as value function features does
not inherently support the ability for the agent to be influenced by features that are not part of a
proposed operator’s conditions. For an environment feature to influence PROP3 decision making,
that feature must be included in the condition lines of the relevant operators in some form.

For example, assume an agent is in a maze task, and has an elaboration context that instructs
three operators when the agent is at a junction in the maze, one each for traveling either left,
straight, or right. The condition for each proposal is that that particular direction is not blocked.
But if the agent reaches a junction, call it junction X, and while there it can see that at the end of the
left path there is a trove of treasure! Since the condition lines for each proposal only test whether
the path is blocked or not, the agent would not be able to add utility based on the treasure trove.
In theory, in PROP3 one could give an agent designer the ability to program RL-specific condition
lines into an elaboration context, such that these would only affect operator utility and not whether
an operator was proposed. It is uncertain whether this is necessary or even desirable for modeling
human cognition, however. The above limitation results only from how the agent reasoning is
programmed. For instance, in the maze example, one does not have to represent the elaboration
context as I described above, with three proposals for the three directions and a single condition for
each. A more deliberate representation of maze reasoning might be to have an elaboration context
that instructs three operators for considering either the left, straight, or right paths if those paths
are not blocked, with each of these then leading to a substate in which the agent looks down each
path to see if one is better than another. In this case, the decision making is not determined by
non-deliberate utility or RL, but by deliberate reasoning, and this is arguably what most humans

175

would do when traveling an unfamiliar maze.
RL for learning utility is for learning automatic preference without the need for deliberate

investigation. What might this look like in the maze example for a human model? If the maze
agent practiced a particular maze often enough to know that the left path at junction X always
led to treasure, then a human-like agent might learn to travel left automatically at junction X
without the need to investigate each path first. Notice that this scenario changes the features that
the agent considers while traveling the maze. The agent no longer chooses the left path because
it sees treasure there but because it sees and remembers the specific junction. In a PROP3 agent,
this implies that the agent would learn a modified elaboration context that had the agent test the
junction rather than the sight of each path. For example, the agent might learn a new proposal
that it added to the three mentioned above, along the lines of “IF (at junction X) THEN (propose
routine go-left),” and the agent could learn a high utility for this operation after doing it successfully
many times. The fact that the agent reacts to different environment features after learning in this
example strongly implies that a significant part of this kind of learning is not merely from tuning
utility but also the rearranging the declarative understanding of the task. Thus, I hypothesize that
declarative learning needs to work in tandem with RL to create or modify proposals so that they use
relevant condition lines. For a further example, consider a human in the maze who had practiced
it often enough to have an automatic routine for charging around the left corner at junction X
without looking first. Assume that one time the human then found he or she charged right into a
monster that was right around the corner guarding the treasure. That person would likely not make
the same mistake next time. They would immediately change their routine so that they would
consider looking around the corner carefully before choosing it, even if expecting treasure to the
left, because they also expect the possibility of a monster. This kind of one-shot learning implies
the need for declarative learning to work in tandem with any RL system in order to make the
proposal instructions consistent with the relevant task features.

C.4 P4: Hierarchical Apply Contexts

How does the agent use known procedures to execute a selected instruction?

P4 is the PRIMs theory phase in which the agent uses known rules to execute the instruction
selected in P3. This was already well-defined in Actransfer, using ACT-R’s mechanic for decision
making and rule execution. This was also already defined in PROP1 and PROP2, using Soar’s
mechanic for operator selection and application. However, the PROP3 procedure context structure
extends the theory and computational detail of P4 in my model in two ways:

1. I integrate recursion into PRIMs theory to naturally support hierarchical task reasoning.

176

2. I refine the PRIMs theory distinction between task-independent instruction lines and task-
specific values to specifically a distinction between task-independent action lines and task-
specific action values.

C.4.1 Recursive PRIMs Processing

Because Soar problem spaces are hierarchically nested, procedure contexts introduce the notion of
recursion into PRIMs processing. Specifically, a PROP3 agent can implement P4 within the PRIMs
processing pipeline by invoking another PRIMs processing pipeline. Whenever the agent selects an
operator and the agent does not know a rule/chunk that can immediately apply it, the agent enters a
new Soar substate and restarts the PRIMs processing cycle by retrieving another procedure context.
When the agent does already know an apply rule(s) or chunk(s) that can immediately apply the
selected operator, and thus carry out P4, this is the terminating condition for the recursion. The
agent can use the apply rule directly without the need for further declarative instruction.

C.4.2 Value Contexts

In section C.1.2 I described how I include consts structures within elaboration contexts to hold
context-specific values for condition lines, such that the PROP3 agent does not need to perform
additional retrievals to access these values. This does not work for apply contexts.

The basic reason is that the apply rules that the agent learns must remain task-independent and
distinct from the context-specific values that they employ. Recall that chunking summarizes the
processing of particular substates, and in PROP3, specifically summarizes the processing instructed
by apply contexts. If the agent included context-specific values in the same substate as the apply
context action lines, then those context-specific values would be included in the chunked combina-
tions of those action lines. Thus, the chunks of action lines would no longer be task-independent.
So context-specific values cannot be in the same procedure context, or the same substate, as the
task-independent action lines.

Actransfer’s implementation retrieves task-specific contexts separately from condition or action
lines for similar reasons. Actransfer has to use a separate PRIM to access task-specific values so
that they do not become embedded within the learned rules that combine general condition and
action PRIMs.

There are two apparent ways that I could have the PROP3 agent access these values. The first
is that I include them in the elaboration context that immediately precedes an apply context, in
the same consts structure that is used for the condition lines. There are two downsides to this
approach: Foremost is that, as I will describe further in section C.5, this would prevent the agent
from being able to learn chunks that have context-specific values embedded within them, which is

177

prescribed by PRIMs theory in Taatgen, 2013. Additionally, most of the time these values will be
irrelevant to what the agent is processing in the elaboration context’s substate. Computationally this
means they would unnecessarily take up memory and processing resources. The second approach
is to observe that the context-specific values that are needed for apply rules represent their own
context in between the conditions and the general application memory operations, and to therefore
treat them as such. I believe this latter option is more theoretically sound, while also more efficient
with memory.

I therefore differentiate two types of apply context: action contexts and value contexts. Action
contexts encode the task-independent action lines for an instructed task operation. Value con-
texts encode the context-specific values for a group of action lines. Action lines in PROP3 are
always defined using a single value context as a header in a substate that precedes one or more

hierarchically-arranged actions contexts and their corresponding substates. A value context only
ever points to a single named action context that defines the top of the general action line hierar-
chy.4

L5P3

"answer-next"
^name

Retrieval.slot2

^condition

^context

"report-list"
^op

C6
^arg1

"exists"^type

C5

Retrieval.slot2^arg1
"not-equals"^type

^arg2 Goal.slot2

^condition L6P4^context

"answer-next"
^op

^name

"A2A3A4A5"

L13P8^context

"A2"
^op

A2 Query.slot1^arg1
"copy"^type

^arg2 Consts.slot1
^action

^name
"COPY-const1-to-query1"

L7

P5^context

"A2A3A4A5"
^op

^name
"A2A3"

X3
L8

^name
"A4A5"

^op

"sequence"
"Read: "^slot2

^slot1
^consts

L9

P6^context

"A2A3"
^op

^name
"A2"

L10

^name
"A3"

^op

L11

P7^context

"A4A5"
^op

^name
"A4"

L12

^name
"A5"

^op

L14P9^context

"A3"
^op

A3 Query.slot1^arg1
"copy"^type

^arg2 Retrieval.slot2
^action

^name
"COPY-retrieval2-to-query2"

L15P10^context

"A4"
^op

A4 Action.slot1^arg1
"copy"^type

^arg2 Consts.slot2
^action

^name
"COPY-const2-to-action1"

L16P11^context

"A5"
^op

A5 Action.slot2^arg1
"copy"^type

^arg2 Retrieval.slot2
^action

^name
"COPY-retrieval2-to-action2"

Elaboration Context Value Context Action Context Action Context Action Context

^consts

X2

Figure C.3: Procedure contexts for the “answer-next” instruction depicted in Figure 4.4.

Figure C.3 shows the hierarchical procedure context representation of the “answer-next” in-
struction from Figure 4.4 on page 30. The two conditions are in the elaboration context on the far
left, the context-specific constants for thee action lines are in the value context to its right, and the
four COPY operations are in the hierarchy of action contexts to the right of that. In the figure, each
layer of procedure contexts from left to right represents a deeper layer of Soar substate.

The figure above shows the four action lines arranged in a specific binary hierarchy across
three layers of substates. This hierarchy of substates and subgoals leads to the binary hierarchy of
learned rules as prescribed by PRIMs theory, as discussed in section 4 and depicted in Figure 4.4,
which allows general transfer of compositions. The PROP3 agent learns chunks for pairs of action
lines that are clustered together in the same action context.

4For simplicity, previous examples such as Figure C.1 show a “read-prompt” elaboration context leading directly
to a “COPY-input-to-slot1” apply context, without an intermediate value context. A real PROP3 agent would always
require a value context.

178

Apply contexts do not include their own condition lines. When the agent retrieves the “answer-
next” value context, it immediately proposes the “A2A3A4A5” operator, and then immediately
selects it. When the agent then retrieves the “A2A3A4A5” context, it immediately proposes both
of its described operators, “A2A3” and “A4A5.” PROP3 gives these two operators indifferent

preference in Soar, which means that the architecture will choose one at random to pursue first.
Order does not matter within action contexts. PROP3 will buffer their effects to be carried out in
parallel after the agent finishes interpreting all action lines.

In Figure C.3, if the agent selected “A4A5” after “A2A3A4A5,” it would then retrieve the
“A4A5” action context in another substate, and would then propose “A4” and “A5.” If it then
selected “A4” and retrieved that primitive action context, the PRIM apply rule for the COPY oper-
ation would then match and fire using the arguments given in the “A4” context using the values of
the “answer-next” value context. The agent would then proceed to “A5.” After similarly resolving
the “A5” PRIM, the agent would then proceed to “A2A3,” and so on in depth-first progression
through the action contexts.

C.5 P5: Gradually Learning Apply Contexts

How does the agent compose practiced procedures into new procedures?

The same procedure context structures in PROP3 that define declarative task instructions and
decision making also define the course of Soar chunking for gradual procedural learning. This
is because Soar chunking is based on summarizing problem space computation, and procedure
contexts define problem space computation. This resolves a significant problem that burdened the
implementations for PROP1 and PROP2, which was that those agents had to use deliberate agent
reasoning to trigger and control the chunking process.

I do not introduce any new changes to Soar for chunking in PROP3. I use the same gradual
learning extension that I introduced to the architecture with PROP2. I show how the procedure
context processing that I described earlier in this chapter leads to the following additions to the
overall model and theory:

1. I show how PRIMs theory can integrate naturally with Soar’s problem-space computational
model to allow automatic hierarchical chunking of PRIMs instruction lines.

2. I distinguish that a model of PRIMs theory for procedural learning should not inherently
include cognitive phase learning

3. I distinguish that a model of PRIMs theory for procedural learning should generally omit the
autonomous phase learning.

179

4. I identify shortcomings in both ACT-R and Soar cognitive architecture theory that currently
prevent either from fully supporting the model of gradual, hierarchical procedural learning
and execution implied by this research.

C.5.1 Unifying PRIMs and Chunking

As described in section 6, when decisions in a subgoal lead to changes to a parent goal’s WM
state, Soar’s chunking mechanism learns new rules, called chunks, that summarize those changes
and repeat them automatically in the future. The problem with implementing P5 for PROP1 and
PROP2 was that PRIMs learning was based on ACT-R’s sequential production compilation model,
where the architecture compiles procedures that are practiced back-to-back, and was not directly
compatible with Soar chunking.

ACT-R’s production compilation could be described as a type of bottom-up learning. In that
model, the agent learns to cluster primitive operations together after repeated practice. Soar’s
chunking, on the other hand, requires a certain degree of top-down structure. A Soar agent learns
rules based on the structure of impasses and goals that precede substate operator execution. A Soar
agent cannot create a subgoal, and thereby learn a new chunk, unless it first identifies a specific
impasse that gives the learning process, and any learned chunk, its structure.

Soar impasses and subgoals are supposed to be architecturally-managed processes that respond
to the nature of the task problems and goals, and should not generally be based on the agent de-
liberately controlling its own architectural learning. A proper model of human procedural learning
should be a model of tacit learning. But in order for PROP1 or PROP2 to learn chunks for pairs
of primitives based on practice, I had to have the agent use decision making to collect pairs of
practiced operators and deliberately create impasses and subgoals so that it could compile these
together through chunking.

In PROP3, the agent does not need to deliberately coerce its own impasses or chunking. The
hierarchical structure of procedure contexts in SMEM provides the structure that the Soar agent
needs to automatically respond to impasses and learn chunks for PRIMs processing. The PROP3

agent’s decision making focuses only on the problem space of the task, not the problem of creating
impasses. The Soar architecture then automatically recognizes the task impasses when the agent
lacks rules for proceeding in the task, creates subgoals for solving those impasses via declarative
instructions, and learns chunks for performing those task instructions.

For example, consider Figure C.4, which shows the chunks that the PROP3 agent would learn
after repeatedly practicing the apply contexts shown back in Figure C.3. The PROP3 agent will
learn chunks that summarize the effects of each of the depicted apply contexts, from right to left
with subsequent iterations of practice. At the lowest level, the PROP3 agent chunks primitive

180

IF ("A2" decision)
THEN (query1 := const2)

IF ("A3" decision)
THEN (query2 := retrieval2)

IF ("A4" decision)
THEN (action1 := const2)

IF ("A5" decision)
THEN (action2 := retrieval2)

IF ("A2A3" decision)
THEN (query1 := const2
 query2 := retrieval2)

IF ("A4A5" decision)
THEN (action1 := const2
 action2 := retrieval2)

IF ("A2A3A4A5" decision)
THEN (query1 := const2
 query2 := retrieval2
 action1 := const2
 action2 := retrieval2)

IF ("answer-next" decision)
THEN (query1 := "sequence"
 query2 := retrieval2
 action1 := "Read: "
 action2 := retrieval2)

Chunked Action ContextChunked Action ContextChunked Action ContextChunked Value Context

Figure C.4: Chunks learned for the “answer-next” apply contexts depicted in Figure C.3.

action context operations, such as “A2” through “A5” in the figure. This is when the agent learns
automatic PRIM resolution for the primitive actions that the agent actually uses in practice. These
chunks are the most transferable, because they can be applied for any instructions where the same
action line is used. Next, the agent chunks groups of actions that are paired together in higher-level
action contexts, such as “A2A3” and “A4A5” in the figure. These are transferable wherever the
same pair of action lines is used together. After learning a chunk for “A2A3” under the answer-next
“A2A3A4A5” action context, the agent might also use the “A2A3” chunk under another context
such as “A2A3A8A9.” Eventually the agent compiles a chunk that can apply the highest-level
task-independent action context in the hierarchy, which in Figure C.3 is the “A2A3A4A5” action
context. This chunk can transfer to apply any task instructions that use the same general memory
operations but any context-specific values. The final level of chunking a PROP3 agent can do is, as
prescribed by PRIMs theory, to compile the context-specific values into the task-independent rules
that apply the instruction. This happens when the agent chunks the level of value contexts. The
result of learning a value context chunk is that the agent is then able to apply the operator directly
from elaboration context state, without retrieving value contexts or action contexts. In this case,
after the agent learns the “answer-next” value context, it will then be able to instantly apply the
“answer-next” operator whenever that operator is proposed and selected in the future.

Actransfer as described by Taatgen (2013) compiles values after compiling both condition and
action lines together. If an Actransfer agent encountered a task instruction that used the same
action lines as another instruction it had already learned, with the same task-specific values, but
the instruction used different condition lines, that agent would not be able to transfer the prior
learning of compiling the same task-specific values together with those actions. It would have
to first compile the task-independent conditions and actions together, and then embed the values
into that compilation.5 However, because PROP3 separates condition and action lines into separate

5Compiling values into rules was disabled in a later revision of Actransfer. In that model, the agent would use this
final layer of learned rules in place of instruction, and this would often then prevent decision making flexibility. (N.
Taatgen, personal communication, July 11, 2017)

181

problem spaces, the chunk that applies “answer-next” in the above example could be used to apply
that operator no matter what the condition lines were that led the agent to propose it. The PROP3

agent could theoretically have any number of elaboration contexts that propose the “answer-next”
operator, each for different reasons, but the same chunk could apply the operator in all cases. This
is a level of transfer that Actransfer does not support.

The PROP3 agent cannot learn chunks that would summarize elaboration contexts or otherwise
prevent the need for it to retrieve them. Elaboration contexts give structure to task processing that
is temporally-extended, not parallel. Recall, for instance, the transcribe-text task example. In that
task, the agent must first read a text prompt before transcribing that text into a computer text editor,
and no amount of practice can change that sequential dependency. It would not make sense for the
agent to chunk the task knowledge of elaboration contexts any more than it would for an agent to
perform the entire transcribe-text task from start to finish with only a single cognitive cycle – the
task requires temporally-sequenced interactions with the environment. And, as I already described
in section C.1.2, the nature of elaboration rules in Soar means that the PROP3 agent can process
condition lines from elaboration contexts instantly in parallel anyway, such that there is no practical
benefit from chunking them.

C.5.2 A Shortcoming: Learning Transfer Structure

Notice that one substantial difference between PROP3 and prior versions of PROPs is that PROP3

does not learn the composition structure of the PRIMs hierarchy during practice. The hierarchy of
apply contexts is provided in SMEM before the agent practices any action lines. In PROP1, and
PROP2, this hierarchy was learned implicitly during practice. PROP3 makes this hierarchy explicit
before practice. This is computationally necessary for PROP3 because Soar substates need the
structure of goals and impasses before any substates can be created, and therefore this is necessary
to implement P2 and P3 for PRIMs in a manner consistent with the Soar PSCM.

This means that with PROP3 I am constrained to use a similar pre-processing approach as
Actransfer to make task instruction lines more transferable. That is, when I generate the declarative
instructions to put into the agent’s SMEM before running it on any task, I have a program scan all
sets of action lines and determine ahead of time which binary clusters appear most often across
all instructions. This lets the program generate instruction hierarchies that maximize transfer of
action line clusters. This is essentially the same pre-processing done by Actransfer, with the main
difference that Actransfer pre-arranged condition lines this way in addition to action lines.

As I described in section 7.5, a computational motive for gradual procedural learning in the
first place is so that the agent can learn how to hierarchically arrange instruction lines based on
experience. If this hierarchy is pre-arranged as done explicitly in PROP3 or implicitly in Actransfer,

182

then there is little apparent motive for gradual learning other than to generate the appearance of
human-like behavior. But the computational principles of ACT-R or Soar seem to require this kind
of pre-processing step, if requiring rigorous consistency with the overall theory of the architectures.

What would it take to have an Actransfer agent learn the instruction line hierarchy while also
being consistent with the surrounding architecture? In what ways would ACT-R theory have to
change? The ACT-R architecture’s production compilation mechanism provides a method that
could learn pairwise combinations of rules based on experience. This mechanism is what defined
the learning approach of PROP1 and PROP2. However, to actually use this in ACT-R or Actransfer,
the agent has to actually practice a pair of instruction lines together in order for the architectural
learning mechanism to register that pair as experienced. Because ACT-R equates each decision
with a single fired rule, this is impossible for ACT-R. The agent has to practice only a single ordered
sequence of instruction lines, and the architecture will only experience pairs that are found in that
sequence. It would take an impractical amount of practice for the agent to try all permutations of
ordered instruction lines so that the architecture could compile the most transferable pairs. Further,
the learning rate would almost certainly have to be set to be very slow to allow this extended
time of practice. Thus, in order for an Actransfer agent to learn the instruction line hierarchies
in a practical, gradual, on-line manner, the architecture would need to be able to register pairs
of instruction lines as “experienced” and eligible for combination even when the pair was not
practiced back-to-back through sequenced decisions.

How is Soar different? Soar allows instruction lines to be treated as sets rather than sequences.
Plus, Soar can fire many rules per decision cycle. PROP1 and PROP2 were able to take advantage
of this and have the agent fire many rules in parallel for each pair of instruction lines that occurred
together during a single round of practice, and thereby register each pair as “experienced” and
eligible for compilation. The problem was that Soar did not register this experience based directly
on the rules firing together. Soar chunking compiles the net processing of substates. In PROP1

and PROP2 I had the agent create different declarative structures from a single substate, each of
which corresponded to a different pair of practiced instruction lines, such that the architecture
would recognize each created declarative structure as a different substate result and therefore learn
a different chunk for each. This is a convoluted hack of a way to use the Soar architecture, and I do
not ask the reader to fully grasp that approach here. I mention it here to emphasize the point that
I was not actually having the Soar agent learn chunks for what it practiced for the task. The agent
rather learned chunks for declarative meta-structures about its own learning, separate from its task
practice. If I wanted Soar chunking to simply replicate the actions of the rules that performed the
task processing, then Soar would summarize those actions into a single rule, not a hierarchy of
pairs of rules. At the end of the day, just like ACT-R, Soar would only register the experience of
rules that were actually practiced together in a substate, not all the different ways of pairing them

183

together.
What would it take to have a PROP3 agent learn the instruction line hierarchy while also being

consistent with the surrounding architecture? In what ways would the Soar architecture have to
change? One hypothetical solution would be to add an additional rule learning mechanism to Soar
that acts similarly to the production compilation mechanic of ACT-R. But instead of compiling
rules from sequential rules the way ACT-R does, Soar might compile chunks learned from indif-

ferent operators. That is, compile operators that have indifferent preference with respect to each
other, such that it is known that they could be selected in any order. Compiling operators together
would mean compiling both proposal and apply rules together, because an operator is defined by
both. With gradual learning, this would mean that the agent could propose many different action
line operations, select them in random order, and still register each possible pair as experienced
together and as a candidate for compilation. This would allow a PROPs agent to represent action
lines as a flat set in declarative memory and still achieve the desired levels of transfer. Any operator
instruction would only lead to a single action context that contained all action lines together for the
instructed behavior. The agent would learn the action line hierarchy implicitly like Actransfer, only
by adding new procedural knowledge, not explicitly with a declarative hierarchy the way PROP3

does.
Right now, it would seem that neither ACT-R nor Soar are able to fully support gradual PRIMs

or PROPs learning in such a way that the agent learns the hierarchy for optimal transfer on its own.
Each architecture has its own strengths and weaknesses for defining different parts of the PRIMs
processing pipeline. Specifically, this work lets me conclude that:

• Soar supports P2-P3 in PRIMs theory through explicitly hierarchical instructions with par-
allel condition evaluation, which is not easily compatible with ACT-R’s approach to goals,
decision making, and WM.

• ACT-R supports P5 in PRIMs theory through implicitly hierarchical gradual, bottom-up
compilation of practiced actions, which is not directly compatible with Soar’s current ap-
proach to chunking and decision making.

Future work should investigate possible computational solutions in greater detail.

C.6 P6: Problem-Space Latency

How does the agent’s cognitive processing with PRIMs map to temporal costs in

task behavior to allow comparison with humans?

184

I described PROP3’s simple approach for P6 with Tps in section section 9.2. I here discuss this
approach further in the context of cognitive architecture research.

In many cognitive architectures, including ACT-R and Soar, it is standard to treat the number
of decision cycles required to carry out a task as a main factor of task behavior latency. The default
in ACT-R is to assign 50 msec per decision cycle. This has often matched well with human data
(Stewart & Eliasmith, 2009). ACT-R includes many more factors that can contribute to timing,
such as time to access each of the various buffer modules that the architecture defines. Soar does
not have a built-in function for mapping processing to timing, but researchers tend to follow the
same conventions as used with ACT-R. With either ACT-R or Soar, the agent can demonstrate
learning by requiring fewer and fewer decision cycles to perform a task, as a result of learning
more efficient production rules.

In the architectural design of Soar or ACT-R, all procedural knowledge has full access to match
on WM with no additional temporal cost. In PRIMs theory, however, unless Auto is enabled, rules
cannot carry out task reasoning unless a corresponding declarative instruction has been retrieved
from LTDM. This effectively implies additional time for procedural knowledge access. In PROP3,
the time required to load a procedure context in WM represents the latency for accessing the
associated procedures.

Currently, Soar lacks a concrete theory for the latency of LTDM retrievals, beyond the two
cycles required to query and retrieve a memory. A PROPs model is thus still incomplete when it
comes to simulating performance in declarative memory retrieval tasks. However, declarative fact
retrieval timing is not part of PRIMs theory as described in (Taatgen, 2013), and only retrievals
for PRIMs instructions are strictly within the scope of the flow diagram of Figure 4.1. Further, the
tasks examined in this research are dominantly procedural and WM tasks, and do not involve many
non-instruction retrievals.

Tps is separate from the time required to select and apply task operators as well as from the
time required for the architecture to retrieve any facts from LTDM that are not procedure contexts.

Task set theory also treats the time to load or switch task sets as a distinct latency factor. As
written in (Sakai, 2008): “To adopt a task set is to select, link, and configure the elements of cog-
nitive processes necessary to accomplish the task. Thus establishing a task set is time consuming
because it requires higher-order neural interactions between regions in the prefrontal and posterior
association cortices that represent the elements of the task.” “The time needed to establish task
sets may also be one of the components that produce switch costs, which reflect the difference in
performance between trials immediately after a task switch and trials that repeat the same task.”

It should also be noted that retrieving different declarative or episodic memories in the task set
literature is sometimes considered in terms of switching or loading task sets (Sakai, 2008). If this
is the case, and if procedure contexts are a decent model of task sets, then this implies that one

185

might be able to extend the procedure context model to include a model of more classic declarative
memory access. Something like a procedure context network in LTDM, call it a declarative context
network, could represent a subject’s semantic knowledge about the world, and the number of pro-
cessing cycles it takes for the subject to navigate the network to retrieve the desired memory would
model the same thing that Tretrieve models. In this way of modeling, a declarative memory would
be retrieved more quickly because it was more readily accessible through network links rather than
because of an activation value. But link-distance and activation might, in fact, be two aspects of
the same phenomenon. The retrieved memory might have a higher activation because of a smaller
link distance from the current WM context. And if a declarative context has multiple outgoing
links that the agent could select, it would make sense that the agent would prefer to follow the one
with the higher activation, and thus be more quick to access the contexts pointed to by that link.
These are open questions for further research.

186

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	Abstract
	Introduction
	Model Desiderata
	Research Approach
	Evaluation Approach
	Contributions
	Outline

	Background
	Cognitive Architecture
	Human Skill Learning
	Theory Evaluation

	Methodology
	PRIMs and Actransfer
	Overview
	PRIMs Phase Details and Challenges
	Actransfer's Completeness for Implementing PRIMs

	Actransfer Experimentation
	Mental Arithmetic Task
	Editors Task
	WM Training and Stroop Experiment
	Task-switching Experiment

	Soar
	Operators
	Working Memory
	Long-term Declarative Memory
	Problem-Space Computational Model
	Chunking

	PROPs Iteration 1: Defining Support for Working Memory Operations
	Introducing A New Primitive Operation
	Distinguishing Primitive Operators from PRIMs
	Supporting Ordered Retrievals
	Simulating Gradual Learning
	Computational Motivations for Gradual Learning
	Combining PRIMs as Sets
	Evaluation
	Discussion

	PROPs Iteration 2: Defining Declarative Retrievals
	Problem 1: Retrieval Selection
	Problem 2: Gradual Chunking
	Connecting Three-Phase Theory
	Evaluation
	Discussion

	PROPs Iteration 3: Defining Decision Making and Timing
	Problem 1: Choice-based Decision Making
	Problem 2: Task-Independent Timing
	Three-Phase Parameters
	Evaluation
	Discussion
	Soar Agent Design

	Discussion and Related Work
	Identifiability Problems
	Adult Learning with Primitives
	Procedure Comprehension
	Theory of Goal-Stacks
	Rapid Task Switching
	Rapid Instruction Task Learning

	Conclusion
	Bibliography
	Appendices
	Soar Memory Systems
	WM Theory and PRIMs
	Implications of Procedure Contexts
	P1: Types of Procedure Context
	P2: Retrieving Procedure Contexts
	P3: Decision Choices from Procedure Contexts
	P4: Hierarchical Apply Contexts
	P5: Gradually Learning Apply Contexts
	P6: Problem-Space Latency

