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ABSTRACT

Modern diesel engines are equipped with aftertreatment systems which are effective at
reducing tailpipe hydrocarbon and oxides of nitrogen (NOX) emissions when the system’s
catalysts are lit-off, meaning they are warmed-up to temperatures near 200◦C. During
engine cold-starts, combustion phasing retard is typically used to provide additional heat to
the aftertreatment system to achieve faster light-off. Analysis of emissions cycle data has
shown that improved heating during cold-starts could achieve further emission reductions,
however combustion phasing retard heating strategies can be limited by combustion
variability issues. Aftertreatment temperature issues can also occur after the engine is
warmed-up, as real-world driving behaviors like extended idling and low-load operation
can result in exhaust temperatures that are insufficient for maintaining catalyst light-off,
resulting in emission increases. This thesis presents novel control solutions to achieve
emissions reductions during cold-starts and real-world driving.

For cold-start emissions, the concept of closed-loop variance control was analyzed
and applied to combustion control, which enables more aggressive combustion phasing
retard exhaust heating to achieve faster aftertreatment light-off while avoiding excessive
combustion variability issues. Diesel combustion variability was characterized experimen-
tally, and the data was used to identify feedback metrics. Conventional linear controls
analysis and statistical theory were used to develop a better understanding of variance
feedback control, and the understanding was applied to the engine problem. Closed-
loop combustion variability control was performed during both steady-state and transient
operation and enabled higher exhaust temperatures while avoiding excessive degradation
of engine combustion.

For real-world driving emissions, a model predictive control (MPC) framework was
developed that uses long horizon engine speed and load preview along with onboard
NOX measurements to control the engine for good fuel economy subject to emission
constraints. To reduce computational complexity, the controller output is a decision
variable selecting between two engine calibrations, one with low brake-specific fuel
consumption (BSFC) but high brake-specific NOX (BSNOX), and one with high BSFC,
low BSNOX, and increased exhaust heat to aid aftertreatment conversion efficiencies. The
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onboard NOX measurements are used to inform the optimization problem formulations,
which include constraining NOX based on windowed limits. Software-in-the-Loop (SIL)
experimental results show that the controller has the ability to track a windowed emissions
target, and appropriately responds to noise factors such as aftertreatment temperatures and
emission rate errors.
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CHAPTER 1

Introduction

1.1 Diesel Engine Emission Challenges

Diesel (compression ignition) engines are widely used in medium/heavy-duty vehicles, as
well as off-road construction and farming equipment, due to their ability to produce high
torque at lower engine speeds, higher fuel efficiency (lower carbon dioxide emissions), and
increased reliability relative to gasoline (spark-ignited) engines. The biggest challenge
associated with diesel engines is dealing with the harmful emissions generated during
the combustion process. The primary regulated emissions for diesel powertrains include
carbon dioxide (CO2), hydrocarbons (HCs), nitrogen oxides (NO and NO2, also known as
NOX), and particulate matter (PM, also known as soot). Carbon dioxide is an inevitable
consequence from combusting a hydrocarbon fuel and is a known greenhouse gas (GHG)
linked to climate change. NOX contributes to the formation of acid rain, and when
combined with HCs and other volatile organic compounds (VOCs) in the atmosphere can
lead to the formation of smog. PM emissions can be inhaled and deposited into the lungs
leading to long-term respiratory damage and other health consequences.

Due to those concerns, modern diesel powertrain systems are equipped with an
aftertreatment system, or a collection of catalysts and other supporting hardware, that either
capture harmful exhaust species or convert them to something less harmful. Reductions in
engine out emissions are possible, but typically incur power and/or fuel economy (CO2)
penalties that are disadvantageous for consumers – use of a proper aftertreatment system
enables improved fuel economy and power while averting excessive tailpipe emissions.
A modern medium- or heavy-duty diesel aftertreatment system is typically comprised of
three devices: a diesel oxidation catalyst (DOC), used to oxidize hydrocarbons; a diesel
particulate filter (DPF), used to capture particulate matter for later oxidation; and a selective
catalytic reduction (SCR) system to reduce NOX to harmless nitrogen and water. The
SCR system reduces NOX using ammonia, often created by injecting diesel exhaust fluid
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(DEF, liquid solution containing urea) upstream of the SCR. This combination of devices
is extremely effective at reducing tailpipe HC and NOX emissions upon warming up to
temperatures near 200◦C, however at lower or higher temperatures they suffer from poor
conversion efficiencies, resulting in higher tailpipe emissions [2].

1.1.1 Challenge 1: Cold-Start Diesel Emissions

Analysis of cycle emissions data (example: EPA FTP-75) from current engines show that
a majority of the total cycle emissions are made at the beginning of the cycle during
the cold-start phase, prior to aftertreatment light-off (aftertreatment temperatures reaching
≈ 200◦C). This data suggests that a reduction in cold-start feedgas emissions and/or earlier
operation of the aftertreatment system is critical for continued regulation compliance [3].
Modifying current catalyst structures and operating principles could reduce activation
temperatures (and therefore light-off times), but some form of exhaust heating will likely
still be necessary. Moving the physical location of the catalyst closer to the engine can
reduce the heat losses and the thermal inertia associated with heating the exhaust system,
but may be infeasible with vehicle packaging constraints. Again, this would just reduce the
amount of heating required, not eliminate it.

1.1.1.1 Exhaust Heating Strategies

There are several opportunities available to improve exhaust heating of aftertreatment
systems [3]. Potential exhaust system modifications include adding a burner or electric
heater directly upstream of the catalyst for more efficient heating (avoid heating exhaust
plumbing between engine and catalysts) [3, 4]. More complex valvetrain systems can
enable cylinder deactivation, negative valve overlap, and early exhaust valve opening
strategies to increase engine exhaust temperatures [5, 6]. Modern diesel engines typically
have an exhaust gas re-circulation (EGR) system, a variable geometry turbocharger (VGT),
and fuel injectors capable of multiple injections per cycle, whose usage could be modified
during cold-starts to alter combustion behavior to increase engine exhaust temperatures [2,
3, 7, 8]. Leveraging techniques like negative valve overlap, increased exhaust gas re-
circulation, and later injection timings achieve higher exhaust temperatures by phasing
combustion later into the expansion stroke (“retarding combustion phasing”) [7].

Combustion phasing retard is an effective technique for increasing exhaust gas tem-
peratures, but there are practical limits on the amount of phasing retard that can be used,
as it can increase combustion variability which can cause noise, vibration, and harshness
(NVH) and emission issues. It is typically evaluated using data from an in-cylinder pressure
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sensor, which allow for the measurement of cylinder pressure as a function of crankshaft
position. When coupled with knowledge of engine geometry, thermodynamics, and heat
transfer, the measurements can be used to estimate fuel combustion rates and torque
production (characterized by Indicated Mean Effective Pressure, IMEP) by individual
cylinders, cycle-to-cycle. Figure 1.1 illustrates the trade-off between combustion phasing
retard exhaust heating and combustion variability, using the calculated IMEP values from
cylinder pressure feedback. As combustion phasing is retarded via injection timing retard,
the variability in IMEP increases in magnitude, which can be observed both from the
population statistics of IMEP (standard deviation) and the sequence behavior shown in
the bottom subplot. Note the increasing slope of the σ (IMEP) response versus injection
timing retard - combustion variability is also sensitive to many parameters (ambient
temperatures, fuel quality, engine aging, etc.), and so uncertainties in other variables that
impact combustion variability could dramatically destabilize combustion to unacceptable
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Figure 1.1: Impact of injection timing retard on exhaust temperatures (Turbo Inlet Temp)
and combustion torque (IMEP). Note that retarding injection timing can increase exhaust
temperatures at the cost of increased combustion variability (Chapter 2) [1].
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levels. This suggests that without a technique for monitoring combustion variability,
combustion phasing retard exhaust heating strategies must be inherently conservative to
avoid unacceptable performance issues due to noise factors [2, 7].

1.1.1.2 Cylinder Pressure Feedback Opportunities

Closed-loop combustion control using feedback from in-cylinder pressure sensors has been
discussed and explored on gasoline and diesel engines since the 1950s [9]. Early control
architectures mostly focused on achieving max brake torque, including controlling peak
combustion pressure position, the apparent combustion phasing (CA50), and control of
combustion phasing while avoiding engine knocking issues. Recent work for a diesel
application has demonstrated the ability to achieve real-time simultaneous control of IMEP,
CA50, and max rate of heat release (ROHR), which allows for reductions in cylinder-to-
cylinder variability, as well as reductions in NOX and particulate matter emissions [10–12].
Although laboratory experiments demonstrated promising results, issues with sensor cost,
reliability, and physical placement restricted their typical usage to lab settings.

Increasingly stringent emission requirements, coupled with advances in sensor technol-
ogy and packaging, have led to OEMs implementing cylinder pressure sensors in consumer
engines. One example is Volkswagen’s implementation of pressure sensing glow plugs
(PSG) on their 1.4, 1.6, and 2.0-liter diesel engines [13]. Mazda’s Skyactive-X engine
is leveraging cylinder pressure sensors to enable advanced combustion modes (Spark-
Assist Compression Ignition, or SACI) to improve fuel economy [14]. Besides offering
the opportunity to directly control parameters like cylinder torque and combustion phasing,
production cylinder pressure sensors allow for the implementation of more sophisticated
models to enhance operation. Real-time monitoring of combustion can be used to estimate
fuel quality/properties so that calibration maps can be properly adjusted to ensure drive
quality. Cylinder pressure measurements can be used with appropriate models to estimate
cyclic NOX emissions, allowing for better control of the aftertreatment system with respect
to a system only using downstream NOX sensors [15]. Further improvements in sensor
cost/reliability, stricter emission regulations, advanced combustion modes, and growing
capabilities of cylinder pressure based modeling will likely lead to increased adoption of
cylinder pressure sensors for consumer engines.

1.1.2 Challenge 2: Real-world Driving Diesel Emissions

Emission standards are constantly evolving, and some emission regulatory bodies are
making a push towards Real-world Driving Emissions (RDE) tests for more vehicle
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classifications. A majority of light-duty emission certification tests are conducted in
climate-controlled vehicle dynamometer test cells, against known test cycles published
by the regulators (ex: FTP-75, LA4, HWFET). This framework led to the infamous
Volkswagen “Dieselgate” scandal, where special software was used to detect if the
vehicle was on an emission certification test and control the engine and aftertreatment
systems accordingly [16]. RDE testing is conducted using Portable Emission Measuring
Systems (PEMS) that are able to record tailpipe emission data while driving on public
roads. The nature of the tests means that there is more test variability due to ambient
conditions, traffic, and other factors that are normally excluded using laboratory test cells.
Vehicle manufacturers will be responsible for developing a vehicle that is robust to these
uncertainties [17].

In the USA, heavy-duty diesel vehicles are already subject to RDE constraints in the
form of Not-To-Exceed (NTE) emission regulations (CFR 40 Part 86 Subpart N) [18]. As
of 2021, the heavy-duty NTE constraints are unique in that they only apply when a heavy
duty engine has operated for a minimum of 30 seconds in the NTE zone (portion of speed-
load range where enforcement is desired) subject to certain exclusions (ex: low ambient
temperature, low coolant temperature). When the NTE conditions are met, a time average
of the emissions is compared to the standard to check compliance. Rule changes proposed
by the US Environmental Protection Agency (USEPA) and California Air Resources Board
(CARB) for 2024-2026 include transitioning to a windowed emission compliance standard,
similar to the EUROVI standard. These changes would include elimination of the NTE
zone residence time, and instead adopt a minimum window power limit, increasing the
amount of time vehicles must be compliant during real-world scenarios [19, 20]. One real-
world scenario that is particularly challenging for diesel vehicles is extended idle or low-
load operation, as the exhaust heat coming from the engine can be insufficient to keep the
aftertreatment temperature at a functional temperature, resulting in an increase in tailpipe
emissions [21].

1.1.2.1 Vehicle Connectivity Opportunities

One avenue for reducing real-world driving emissions includes leveraging traffic and other
forms of preview for powertrain and vehicle control. Researchers have leveraged dynamic
programming and model predictive control techniques to achieve better fuel/energy
economy while reducing emissions by modifying vehicle velocity profiles, modifying
engine actuator setpoints, and in the case of hybrid electric vehicles (HEVs), optimizing the
interaction between the internal combustion engine and electric motor [22,23]. Some of the
approaches leverage full engine airpath and aftertreatment models with nonlinear dynamics
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and seek to use the predicted emissions and fuel consumption to achieve improved
compliance. In the case of altering vehicle velocity profiles, these optimization routines
can lead to undesirable driving behaviors (from an occupant perspective) unless constraints
and cost functions are properly structured. Approaches leveraging full airpath models tend
to be computationally expensive, and if leveraging multiple actuators (like injection timing,
boost setpoints, exhaust gas recirculation), the optimization problem grows quickly with
control steps and preview duration [24–26]. Furthermore, the model predictive control
architectures will attempt to optimize fuel and emissions over the preview horizon, but
do not include historical emissions feedback data when initializing the model. Ignoring
historical emission data in the optimization can yield non-compliant trajectories, as noise-
factors impacting the actual emission rates could go unobserved by the controller.

1.1.3 Dissertation Contributions

This thesis presents techniques to address the challenges outlined above by augmenting
existing control systems with additional feedback and other information to help improve
system performance.

1.1.3.1 Contribution 1: Combustion Variability Feedback Controller

The first challenge, cold-start diesel engine emissions, was approached from the perspective
of trying to improve existing engine-based exhaust heating methods. The magnitude at
which these methods can be used are restricted by their potential impacts on combustion
variability (NVH consequences). The potential for increased cylinder pressure sensor
adoption on consumer engines motivated an investigation into techniques to generate and
use online combustion variability estimates for feedback control purposes. Specifically,
this dissertation explores the premise of using online combustion variability estimates
in a feedback control structure to retard combustion phasing until a target combustion
variability setpoint is reached. By retarding combustion phasing as late as possible while
respecting variability constraints, phasing-based exhaust heating can be maximized while
avoiding concerns associated with combustion variability noise factors.

1.1.3.2 Contribution 2: Preview-Based MPC Controller With Windowed Emissions
Feedback

The proposed solution for the second challenge, real-world driving emissions, includes
combining route preview information from a vehicle’s navigation system with feedback
from an onboard NOX sensor to design a novel MPC (Model Predictive Control) control
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architecture that optimizes fuel economy subject to emission constraints motivated by the
proposed windowed emission regulations (2024-2026 EPA/CARB). This architecture is
unique due to its use of historical onboard NOX measurements to inform the optimization
constraints, something not observed in existing literature or patents. The approach uses
simplified engine and aftertreatment models to form a simpler computational problem
which enables longer horizon preview (>10 minutes), critical for managing aftertreatment
thermal dynamics, while leveraging feedback to correct issues posed by model and preview
errors. The output of the controller is a decision variable, choosing from one of the
following engine calibrations with the following characteristics:

• Low feedgas emissions and higher exhaust heating at the expense of fuel economy
- useful when the aftertreatment system is not functional or lower tailpipe emissions
are required

• High feedgas emissions and lower exhaust heating at the benefit of improved fuel
economy - useful when the aftertreatment is functional, or higher quantities of
tailpipe emissions can be tolerated

The controller uses preview of engine speed and load (assumed to be known, but in real life
would be synthesized using a vehicle longitudinal model and traffic data) to identify which
calibration to use at each control interval to maximize fuel economy while remaining in the
aforementioned emission constraints.

1.2 Dissertation Organization

Chapter 2 presents experimental observations regarding diesel engine combustion behavior
at a variety of speeds and loads at low coolant temperatures (20-50◦C). Observed trends
for combustion torque and fast heat release parameters were analyzed from a controls
perspective. A potential hydrocarbon emission indicator using cylinder pressure sensor
and fuel flow feedback is also shown. Based on the observed behavior, a closed-loop
combustion variability controller is proposed, and the experimental data is used to develop
a control-oriented combustion variability model based on actuators of interest (injection
phasing offset, main fuel quantity offset). The work in this chapter was presented and
published in the American Society of Mechanical Engineers Internal Combustion Engine
Fall Conference (ASME ICEF) in 2018 [1], and published in the International Journal of
Powertrains (IJPT) [27].

The theoretical aspects of variance estimation and control are explored in Chapter 3.
Expectation analysis of the windowed variance operator was used to calculate the expected
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value and variance of windowed estimator (for zero-mean, varying-mean, and detrended
sequences). The analysis was then used to study the windowed variance estimator as a
“virtual sensor”, looking at distribution and other behaviors to understand the implications
on feedback control. The expectation analysis was combined with linear control design
principles to design linear time-invariant (LTI) controllers; the ensemble average of the
stochastic realizations agreed with LTI predicted behavior when non-linearities were
not present. For applications with limited computational resources, a simpler variance
estimation strategy using exponential weighted moving averages is presented and compared
to the windowed variance estimator. The work in this chapter was published in the
International Journal of Powertrains [27], presented and published in the American
Automatic Control Council American Control Conference (A2C2 ACC) in 2020 [28],
and submitted to Institute of Electrical and Electronics Engineers Transactions on Control
Systems Technology (IEEE TCST) [29].

Chapter 4 presents the design and impact of the combustion variability controller
proposed in Chapter 2. The content of Chapters 2 and 3 were combined to identify
steady-state and transient combustion variability metrics that exhibited desirable responses
to the chosen actuator (injection phasing) and a noise factor (coolant temperature). The
combustion variability model was then used to design and evaluate a combustion variability
controller. Following successful simulation results, the controller was implemented on
an engine dynamometer and in multiple test vehicles, and demonstrated that closed-
loop combustion variability control is feasible during steady-state and transient operation.
The controller achieved the desired exhaust temperature benefit while avoiding excessive
degradation of combustion quality. The various tests conducted highlighted the value
of closed-loop control in the presence of noise factors (different ambient conditions,
different fuels). The work in this chapter was presented and published in the International
Federation of Automatic Control Advances in Automotive Control Conference (IFAC
AAC) in 2019 [30], and submitted to the Institute of Electrical and Electronics Engineers
Transactions on Control Systems Technology [29].

Chapter 5 presents a novel preview-based model predictive engine controller focused
on emissions compliance. The optimization objective was to minimize fuel consumption
while observing windowed emission constraints. To enable long preview horizons, a
simple model and actuator structure was used. The original optimization problem was
a computationally expensive nonlinear mixed-integer problem, and so techniques were
presented and evaluated to instead solve a continuous problem and discretize the solution
using simple conversion policies. Feedback from an onboard NOX sensor was used to
correct for errors due to modeling, noise factors, and preview uncertainty. Simulation-
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in-loop testing shows the feedback structure averts issues poised by model uncertainty,
actuator discretization scheme, and noise factors. An invention disclosure based on this
idea has been submitted to the US Patent and Trademark Office for review [31]. This work
has also been submitted for presentation/publication in the American Automatic Control
Council Modeling, Estimation and Control Conference in 2021(A2C2 MECC2021).

Conclusions and opportunities for future work are highlighted in Chapter 6. Both
control architectures would benefit from further experiments, exploring additional engine
actuators, and integrating the control schemes into the rest of the engine control structure
for improved synergy.
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CHAPTER 2

Characterization of Retarded Combustion
Behavior

2.1 Introduction

Modern diesel vehicles are equipped with aftertreatment systems effective at reducing
tailpipe hydrocarbon, oxides of nitrogen, and particulate matter emissions upon warming-
up to temperatures near 200◦C [2]. Due to catalyst ineffectiveness at low temperatures,
production engines increase exhaust gas enthalpy during cold-starts, allowing for quicker
heating of the aftertreatment system to operational temperatures as early as possible.
Upcoming emission regulations will require either a reduction in engine out emissions or
better usage of the aftertreatment system to meet targets. Analysis of emissions data from
current engines show that a majority of the emissions are released at the beginning of the
cycle, prior to aftertreatment light-off, suggesting that earlier operation of the aftertreatment
system would allow for regulation compliance [32].

Quicker aftertreatment operation during cold-starts could be achieved by modifying
current catalyst structures and operating principles to extend conversion efficiencies at
lower temperatures and/or increasing the amount of exhaust heating during the warm-up
phase. Note that even with improved catalysts, supplemental heating will likely still be
required to maximize the operating time. Therefore, this chapter will focus on techniques
available for improving exhaust heating during engine cold-starts to hasten aftertreatment
operation.

Existing and novel actuators in literature were studied to understand their inherent
advantages and disadvantages. An existing actuator, injection control (timing and quantity)
was selected for detailed experimental study for use in more aggressive exhaust heating.
Engine experiments revealed predictable shortcomings relating to combustion (torque)
variability when using injection control, and so a feedback control architecture using an
in-cylinder pressure sensor was proposed to address those shortcomings. Based on the
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proposed architecture, engine experiments were performed to generate a control-oriented
stochastic model and to understand impacts of the actuator on other engine attributes.

2.2 Background

Background on diesel engine combustion control, indicated combustion analysis, and
exhaust heating mechanisms are provided to inform later sections of the Chapter.

2.2.1 Diesel Engine Control and Behavior

Modern diesel engines are controlled by engine control units (ECUs) that are able to
leverage sensor feedback and state observers to control actuators in a way that satisfies
power, NVH, durability, and emission requirements. Based on a speed/torque (power)
request to the engine, values like boost pressure, EGR (Exhaust Gas Recirculation) rate,
and injection timing/quantities are controlled using the various actuators available [7].

Unlike spark-ignited (SI) engines (typically gasoline engines), which rely on a plasma
ignition source (spark plug) to ignite the air-fuel mixture, diesel engines rely on elevated
pressures and temperatures to cause a portion of the injected fuel to autoignite (premixed
burn phase) and the rest to burn as it mixes with remaining air in the cylinder (diffusion
burn). Note that since modern diesel engines typically use direct-injection, they can inject
fuel in the cylinder at any point during the cycle, and often inject at different points in the
cycle based on the scenario to achieve different combustion profiles. Combustion profiles
have a strong bearing on engine efficiency, emissions, and NVH, so it is critical to identify
engine parameter configurations that achieve profiles that meet criteria. When designing
and calibrating engines, combustion profiles are often experimentally observed using in-
cylinder pressure sensors, described in the following subsection [7].

2.2.2 In-Cylinder Pressure Sensors and Indicated Combustion Anal-
ysis

In-cylinder pressure sensors allow for direct measurement of cylinder pressure, pcyl , as
a function of crankshaft position, θcrank. In traditional internal combustion engines, the
crankshaft and piston are connected using a crank-slider mechanism, and so knowledge
of the physical geometry can be used to translate the crankshaft position into the volume
of the cylinder, Vcyl . Combined with thermodynamic relations, the cylinder pressure and
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volume information can be used to calculate and model a variety of parameters useful for
characterizing the combustion profile and measuring engine efficiency [7].

Integrating the cylinder pressure and change in volume over the cycle can be used
to calculate the Indicated Mean Effective Pressure (IMEP), a measure of the amount of
torque a particular combustion event produced normalized by the displacement volume.
Shown in (2.1), the two values are integrated as a function of crank angle (θcrank). For
a 4-stroke engine (two crankshaft revolutions per power stroke), the integration bounds
are from −360◦, defined as the start of intake stroke (air entering the cylinder), to 360◦,
defined as the end of the exhaust stroke (exhaust exiting the cylinder), which encompasses
the complete cycle [7].

IMEP =
∫ 360◦

−360◦
pcyl (θcrank)dV (θcrank) (2.1)

In multi-cylinder engines, IMEP can be used to identify cylinder-to-cylinder variability
issues that may be hard to identify if only using a single crankshaft brake torque
measurement, or Brake Mean Effective Pressure (BMEP) [7].

Analyzing the cylinder pressure-volume (P-V) trace at the crank angle level can be
used to estimate how the injected fuel combusted in the cylinder. Mass Fraction Burned
(MFB) traces vary from 0 to 1, where 0 indicates 0% of the fuel has burned, and 1 indicates
100% of the fuel has burned. A common technique for estimating the MFB trace is the
method developed by Rassweiler and Withrow, where the measured pressure in the cylinder
is compared to the expected pressure due to compression/expansion, which can be used to
estimate the energy released due to combustion as a function of crank angle. The estimation
developed by Rassweiler and Withrow is shown in (2.2), where xb is the mass fraction
burned as a function of crank angle θcrank, pcyl,0 and V0 are the cylinder pressure and
volume at the start of combustion, pcyl, f and Vf are the cylinder pressure and volume at
the end of combustion, pcyl and V are the cylinder pressure and volume at the current
crankshaft position, while n is the polytropic coefficient [7].

xb (θcrank) =
pcyl (θcrank)

1
n V (θcrank)− p

1
n
cyl,0V0

p
1
n
cyl, fVf − p

1
n
cyl,0V0

(2.2)

Although the presented model is simple, it can be augmented with additional models for
heat transfer, vaporization of fuel, and flows during the combustion process to obtain a more
accurate result. In diesel combustion, mass fraction burned traces can be used to identify
the ignition delay (τign, time between start of fuel injection and start of autoignition),
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the ratio of autoignition combustion to diffusion combustion, and the overall combustion
phasing (when combustion is occuring in the cycle). Combustion phasing is sensitive to
many parameters, including parameters that can be directly controlled (boost pressure,
EGR rate, injection timing/quantities), environmental parameters (ambient air temperature
and relative humidity), engine specific parameters (engine aging, injector drift), and fuel
properties (cetane rating, chemistry) [7].

A common metric to characterize combustion phasing is the value CA50, the crank
angle at which 50% of the fuel in a cycle has burned (xb (θcrank)= 0.5). Engine experiments
and modeling show that a CA50 value of about 10◦ after top dead center (aTDC) is desirable
from a fuel efficiency perspective. Phasing combusion earlier causes the cylinder pressures
during the compression stroke to increase which increases the work required to finish
compressing the gas, and also causes an increase in the peak cylinder temperatures leading
to increased heat transfer losses, both of which lead to a reduction in net work. Phasing
combustion later reduces the cylinder pressure during the expansion stroke, reducing the
amount of work extracted which leads to a reduction in net work and higher exhaust gas
enthalpies at exhaust valve opening (EVO) [7].

Figure 2.1 shows experimental engine data where the combustion phasing was retarded
from the nominal value by retarding the injection timing (by injecting fuel later in the cycle,
combustion is delayed later into the cycle) while holding indicated torque (IMEP) constant
by injecting more fuel when the phasing was retarded. The Pressure-Crank Angle (P-θ )
and Pressure-Volume (P-V) diagrams (subplots a and b) illustrate the combustion phasing
effects, where the later combustion phasing causes a reduction in peak cylinder pressures
but higher cylinder pressures during the expansion stroke, necessary to extract the same
amount of work as the nominal phasing trace. The exhaust gas enthalpy benefit is visible
from the higher pressure at the end of the expansion stroke, just prior to exhaust valve
opening. The cumulative net heat release (HR) trace (subplot c) illustrates how combustion
occurs later in the cycle. Note that this data was estimated without considering heat transfer
effects, and so the values are slightly negative prior to start of combustion due to heat
transfer losses. The efficiency impact of the retarded combustion phasing is also visible in
this plot; more heat must be released (more fuel injected, combusted) to maintain the same
indicated torque (IMEP).

In addition to increasing exhaust gas enthalpy, retarded combustion phasing can also
increase the probability of partial burns (only a portion of fuel injected combusts) and
misfires (fuel does not combust) that can result in large variability of the torque being
produced by each cylinder in the engine. Excessive cylinder torque variability can lead to
NVH and emission issues that need to be avoided [7]. Referring back to Figure 2.1, subplots
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d and e show the increase in the variability of the cylinder torque when combustion phasing
is retarded. Combustion variability is often measured using the Coefficient of Variation of
IMEP (COVIMEP), the ratio of the standard deviation of IMEP over the mean of IMEP
(COVIMEP = σ

µ
). This ratio is preferable over absolute standard deviation as it provides a

measure of relative variability at a given operating condition. It has been shown that vehicle
driveability problems appear when cylinder COVIMEP values rise above 2-5 %, depending
on the engine operating point [7].

Figure 2.1: Plots of nominal vs. retarded combustion phasing behavior at constant mean
IMEP. (a) Normalized P-θ diagram. (b) Normalized P-V diagram. (c) Normalized
cumulative heat-release diagram. (d) Normalized IMEP timeseries and (e) histogram
plots highlighting cyclic variability. For subplots (a)-(c), the value is normalized by the
maximum nominal value (0◦ inj. ret). For (d) and (e), the values are normalized by the
average nominal value.

The combustion features that can be calculated using cylinder pressure sensors can
also be used for control. Closed-loop combustion control using in-cylinder pressure
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sensor feedback has been explored on gasoline and diesel engine applications since the
1950’s [9]. Early research demonstrated the ability to achieve efficiency benefits by
controlling cylinder pressure features and combustion phasing to theoretical optimal values
[10, 11]. Recent work has demonstrated the ability to perform real-time simultaneous
control of cylinder torque (IMEP), combustion phasing (CA50), and max rate of heat
release (ROHR, found by differentiating mass fraction burned data) on a multi-cylinder
diesel engine, resulting in reductions of cylinder-to-cylinder variability (NVH benefit),
NOx emissions, and particular matter emissions [12]. Cyclic NOx emission estimation
using cylinder pressure and other engine measurements has been demonstrated in a research
setting, paving the way for potential improvements in aftertreatment control relative to a
system that only uses downstream NOx sensors [15].

Although research using cylinder pressure sensors for engine control has demonstrated
promising results, issues with sensor cost, reliability, and physical placement in the engine
has restricted their traditional usage to research and calibration applications. Recent
emission standards, advances in sensor technology and packaging, and extended sensor
applications (combustion control, emission modeling) have led to limited OEM adoption of
in-cylinder pressure sensors in consumer engines [13]. Stricter requirements and improved
sensor value (decreased cost, increased reliability, and novel applications) will likely lead
to widespread adoption of the sensors.

2.2.3 Exhaust Heating Mechanisms

There are several techniques available for improving exhaust heating of aftertreatment
systems. They can be sorted into two categories - techniques which use engine actuators
to increase exhaust temperatures, and techniques which directly add heat to the exhaust
upstream of the aftertreatment system. The presented techniques are summarized in the
pugh chart shown in Figure 2.2.

Engine-based exhaust heating techniques focus on increasing the enthalpy of the
exhaust gas exiting the cylinder. Novel engine actuators include variable valve timing
(traditionally not found on diesel engines) to increase exhaust gas enthalpy by reducing
the amount of expansion work (using early exhaust valve opening, EEVO) and/or retarding
combustion phasing (internal EGR via negative valve overlap, NVO) [6, 7]. Although both
of these ideas show promise in lab testing, the additional actuators and sensors increase
system cost and calibration complexity. Modern diesel engines are typically equipped with
piezo-electric injectors capable of multiple injections per cycle, an exhaust gas recirculation
(EGR) system, and a variable geometry or wastegated turbocharger (VGT, WGT). As
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Figure 2.2: Summary of reviewed exhaust heating methods.

noted in the previous subsection, retarding injection timing can cause combustion to
occur later in the cycle, increasing the enthalpy of the exhaust gas. Additional injections
placed later in the expansion stroke, commonly referred to as “early late-injections” or
“post-injections”, can be used to further raise exhaust temperatures in a more efficient
manner (avoid generating unwanted torque and high peak temperatures which contribute
to heat transfer losses) [8, 33]. Increasing the amount of EGR can also phase combustion
later, yielding similar exhaust enthalpy increases. Reducing the amount of work extracted
across the turbocharger turbine (by opening wastegate or VGT actuator) can increase the
enthalpy of exhaust gas reaching the aftertreatment system [7]. Besides decreasing exhaust
gas enthalpy due to work extraction, there is also a reduction of exhaust gas enthalpy
across turbochargers due to heat transfer to the turbine housing, which can have a large
thermal capacity. As a result, there have also been studies involving turbocharger turbine
bypass systems, which redirects some or all of the exhaust flow around the turbine to avoid
these losses [3]. Some engine architectures are also equipped with intake throttles for
EGR control, which have been investigated to increase exhaust gas enthalpy by reducing
total airflow through the engine (due to the excess air acting as a thermal dilluent) [8].
Note that while all of these actuators can be used to increase exhaust gas heating, the
heating will come at the expense of fuel consumption and varying impacts on emissions and
combustion variability [7,34,35]. Combustion variability is of particular concern due to the
previously mentioned vibration and harshness issues that could upset the vehicle occupants.
Production control strategies traditionally use special calibrations during cold-start to
leverage the mentioned actuators (injection strategy, EGR, VGT/WGT) to increase exhaust
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heating while avoiding excessive degradation of other attributes, but the calibration is
typically conservative to account for the impacts of the numerous noise factors present
in real world driving scenarios.

Direct catalyst heating methods include a fuel burner or electric heater upstream of
the catalysts, which allow for direct heating of the catalyst and have the added benefit of
avoiding the need to heat the rest of the metal exhaust system (between the engine/turbo
and aftertreatment system) [3, 4, 32]. General Motors investigated a combination hardware
configuration which used an electrically heated catalyst (EHC) in front of the diesel
oxidation catalyst (DOC) with an upstream hydrocarbon (HC) injector and mixer. The EHC
enables faster light-off of the DOC, while the upstream HC injector allows for direct HC
dosing of the DOC for exotherm generation to heat the components after the DOC (SCR,
DPF). Although HC’s for DOC exotherm can be generated by the engine (using very late
injections), supplying the HC’s directly upstream of the catalyst avoids HC condensation
issues that can adversely impact engine actuators (EGR valve) [33, 36].

The goal of this work was to develop a more aggressive exhaust heating strategy;
to create a containable scope of work, it was decided to focus on a limited number of
actuators. Injection timing and quantity modification were an attractive option for further
study because they are existing actuators, they have direct impact on combustion phasing
(impacts on auto-ignition process), and the engine control software supported changes to
the values. Based on the literature review, the two big concerns associated with altering
injection parameters include combustion variability and emissions, which were studied
experimentally at conditions of interest using the experimental setup presented in the next
section.

2.3 Experimental Hadware Configuration

A Ford 6.7L V8 Powerstroke diesel engine was characterized in a dynamometer lab for
this study. Information about the engine can be found in Table 2.1. Prototype engine
control unit (ECU) software was used which allowed for injection timing and quantity
offset modifications (from base values).

Each cylinder in the engine was instrumented with an AVL GH14P direct-mount in-
cylinder pressure transducer, capable of measuring cylinder pressures up to 250 bar at
average accuracy of±0.0649 bar (max individual cylinder error was±0.13 bar). A 50 kHz
low-pass filter was applied to remove the pressure noise typical of diesel combustion. The
transducers were sampled at a crank angle resolution of one-tenth of a degree using an
AVL IndiCom system. Air, exhaust, fuel, and coolant temperatures and pressures were
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Table 2.1: Diesel engine specifications.

Manufacturer Ford Motor Company
Production Year 2015

Engine Family Powerstroke diesel
Cylinders 8

Layout “Hot” V
Displacement [L] 6.7

Rated power [kW] 328 kW @ 2800 RPM
Rated torque [Nm] 1166 Nm @ 1600 RPM

Bore [mm] 99
Stroke [mm] 108

Connecting rod length [mm] 177
Wrist pin offset [mm] 0.5

Compression ratio 16.2
Aspiration Turbocharged (Garrett GT37 VGT)

Piston geometry Bowl-in-piston
Fuel injection system Bosch high pressure common rail

Injector location Centrally located
Injector holes 8 nozzles
EGR system Cooled high-pressure EGR

Cooler-bypass
Intake throttle valve

Aftertreatment Configuration DOC
Urea SCR

DPF

measured throughout the engine. Air flow was measured using a laminar flow element, and
coolant and fuel flow were measured using Coriolis mass flow meters. The engine coolant
was routed through a coolant conditioning system that allowed for sustained operation at
coolant conditions as low as 20◦C to allow for characterization of coolant temperature
effects. The engine oil is cooled using the engine coolant via an onboard heat exchanger.

Since the focus of this work is exhaust heating via injection retard, only retarded
injection timings were considered and because injection retards will only require positive
fuel offsets to maintain brake torque, only positive fuel offsets were considered. Unless
otherwise noted, one thousand cycles of combustion data were recorded at each character-
ization point.
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2.4 Combustion Characterization

Injection retard characterization experiments were conducted at a variety of speed, load,
and coolant temperature conditions to understand impacts on cylinder torque, heat release,
and emissions. Observations from the IMEP characterization motivated the development of
a closed-loop variability control architecture to maximize heating while avoiding excessive
variability. Data from a fixed coolant temperature, speed, and load sweep was used to build
a control-oriented model to enable controller design and offline testing for the proposed
closed-loop controller.

2.4.1 Challenges of Combustion Variability Characterization

When performing characterization experiments at lower coolant temperatures (< 60◦C) ,
repeatability/hysteresis issues were observed that did not present during nominal engine
operation (coolant temperature near 90◦C). In an attempt to understand these issues, a long
duration characterization test was conducted at 1200 RPM / 1.5 bar BMEP / 50◦C coolant
temperature. The test began with ≈ 2000 seconds of steady-state data at the nominal
injection timing, followed by ≈ 6800 seconds of steady-state data at an injection retard
of 17.5◦. A main injection fuel offset was added to restore the brake torque to 1.5 bar
BMEP following the injection retard; this fuel offset was kept constant for the duration
of the experiment. Cylinder pressure data was collected every ≈ 140 seconds (limitation
of data acquisition system). During the experiment, coolant temperature was controlled to
50±0.25◦C and the oil sump temperature was maintained at 62.2±0.25◦C. Brake torque,
cylinder torque, and exhaust temperature data are shown in Figure 2.3.

The first plot shows the brake torque, which is very stable at the nominal condition,
but noisy with retarded injection timing. The green line shows a moving average of the
brake torque, showing the mean value gradually increasing as time passes. The second
and third plots show the statistics of IMEP - note the slight increase in the mean IMEP
value, µ(IMEP), and reduction in combustion variability, σ (IMEP), that occurs over the
7000 second experiment (2 hours). The gradual decrease in IMEP variability / increase
in mean value explains the gradual increase in BMEP as the test progresses. The final
plot shows exhaust temperatures during the test - the retarded injection timing is able to
achieve a > 100◦C improvement in exhaust temperature, but at the expense of dramatic
crankshaft torque variability. The reduction in combustion variability can also be observed
by the gradual exhaust temperature increase during the test. Overall, the data presented in
Figure 2.3 shows that when characterizing retarded combustion, long time-scale dynamics
can be present that can take hours to properly resolve. Note that the coolant, oil, and
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Figure 2.3: Data from long duration characterization test at 1200 RPM / 1.5 bar BMEP /
50◦C coolant temperature. First plot shows BMEP; the blue line is at nominal injection
timing, red line at retarded injection timing, black line showing the nominal mean value,
and the green line is a moving average of the retarded injection timing data. The second and
third plots show statistics of IMEP. The fourth plot shows the average exhaust temperature
(note Y-axis break).

intake air conditions were closed-loop controlled - based on this, thermal dynamics in
the engine block / cylinder bore liner may be responsible for the observed behavior.
Regardless, to avoid these issues, experiments were conducted as rapidly as possible (while
ensuring proper coolant temperature, speed, load, and injection control) to avoid long-term
variability reduction/stabilization behavior, as we are interested in the “worst” variability
behavior.

2.4.2 Indicated Mean Effective Pressure

Statistics of IMEP were explored due to the direct impact of cylinder torque on crankshaft
torque (BMEP = IMEP− FMEP, where FMEP quantifies friction losses). IMEP is
computationally simple to calculate, as it is just the integral of the cylinder pressure over
the cycle as shown in (2.1). Aggressive phasing retard strategies can be limited by potential
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NVH issues due to unintentional crankshaft torque oscillations; direct monitoring of IMEP
using cylinder pressure feedback could allow for detection and mitigation of these issues.

Figure 2.4 shows data from injection retard sweeps at 1200 RPM, 2.5 bar BMEP, and
20◦C coolant temperature. The sweep in red was conducted at constant torque, where
additional fuel was added to keep BMEP constant (“BMEP*”); the sweep in black was
conducted at constant fueling (“Fuel*”). As expected, retarding the injection timing results
in combustion occuring later in the cycle, reflected by the increase in CA50 values. The
higher CA50 values during the constant BMEP sweep are due to the increased amounts
of fuel, as it takes longer for the additional fuel to burn. When additional fuel is added
to maintain brake torque, the retarded combustion yields hotter exhaust temperatures,
but when fuel is held constant the exhaust temperatures aren’t significantly impacted by
the phasing retard. The percent increase in fuel required to maintain constant BMEP
and the percent decrease in BMEP when fuel is held constant show similar trends.
The data also highlights an important aspect of the heating strategy, the fact that larger
increases in exhaust temperature require more fuel, and this interaction must be managed
to avoid excessive degradation of fuel economy. The σ(IMEP) and CoVIMEP plots show
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Figure 2.4: Mean value data from injection retard sweep at 1200 RPM, 2.5 bar BMEP,
20◦C coolant temperature.

21



0 2 4 6 8 10 12

0

10

20

30

Figure 2.5: Individual cylinder CoVIMEP data from constant BMEP sweep at 1200 RPM,
2.5 bar BMEP, 20◦C coolant temperature.

the average cylinder behavior. Note that the variability trends for IMEP and BMEP
directionally agree with each other, sensible due to their physical connection.

Also of interest is the exponential-like CoVIMEP response to injection retard near 8
CA degrees, revealing one of the major shortcomings of an open-loop control strategy;
it must be inherently conservative and operate away from that regime. Figure 2.5 shows
the cylinder-to-cylinder variability present in the same engine at the same operating point.
Looking at the data for cylinders #1 and #8, their CoVIMEP values are nearly an order of
magnitude apart, likely due to cylinder-to-cylinder air/EGR distribution mechanisms in the
engine. This is an example of just one known noise factor; others include fuel properties
(cetane number, heating value, viscosity, temperature), ambient/coolant temperature, and
engine/injector aging. Even a calibration with plenty of noise factor maps must still leave
margin for unknown phenomena.

Figure 2.4 plots σ(IMEP) and CoVIMEP (σ

µ
), where the standard deviation operator best

describes normally-distributed data. The IMEP data was further analyzed to determine if
IMEP behaves as a Normal distributed random variable. Figure 2.6 plots the statistical
behavior of IMEP at three injection timing retard values. The first column of plots shows
the timeseries data; the axis are uniform to highlight the increase in variability. The
second column of plots show histogram data in grey, with a normal fit in black. Note
that at low levels of combustion variability, the experimental data resembles a normal
distribution; at higher levels, a heavier left (“bottom”) tail develops in addition to the
appearance of high IMEP events. The heavier left tail is due to the poor combustion,
while the high IMEP events are made possible by additional fueling while trying to
compensate for the combustion variability impact on the mean torque value. The third
column of plots are return maps, which assist in visualizing the interaction between
consecutive combustion cycles to identify potential deterministic behavior, which would
have large control implications. The skewed distribution shown in the histogram appears
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Figure 2.6: Detailed statistical data from constant BMEP sweep at 1200 RPM, 2.5 bar
BMEP, 20◦C coolant temperature.

as “legs” growing in the return map, but otherwise the plots indicate that there is little-to-
no interaction between consecutive cycles. To further ensure deterministic trends are not
present, the fourth column of plots show the Sample Autocorrelation Function (ACF). For
the nominal and 8◦ retard points, the ACF values do exceed the 95% confidence bounds;
from analyzing the timeseries data, a small change in the mean value over the duration
of the test can be observed from start to finish. This was observed over several points,
consistent with the observations from 2.4.1.

Overall, the more detailed statistical analysis indicates that in the region of interest
(CoVIMEP < 2.5%), the IMEP sequence can be described as an independent Gaussian
random variable sequence. This understanding is helpful from both a modeling and controls
analysis perspective. Although interesting distribution behavior begins to develop at higher
levels of variability, the risk of NVH-related consumer complaints from operating in that
regime means it should be avoided.
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Figure 2.7: Fast heat release behavior at 1200 RPM, 2.5 bar BMEP, 20◦C coolant
temperature for different injection settings.

2.4.3 Net Heat Release

Fast heat release behavior was also studied, using Equation (2.2). The analysis was
limited to the Rassweiler and Withrow method due to its computational simplicity, which
is advantageous if trying to implement a real-time cyclic controller. Figure 2.7 shows the
statistical response of mass fraction burn (MFB) values due to an additional pilot injection
and injection phasing changes at 1200 RPM, 2.5 bar BMEP, 20◦C coolant temperature. An
interesting result generated by the heat release analysis was the variability in crank angle
% burn values (MFBxx, crank angle where xx% of fuel has combusted) due to injection
strategy and coolant temperature. The results indicate that since fast heat release does not
account for fuel evaporation or heat transfer to the cylinder walls, one should use MFBxx
values away from the boundaries (between 20%-80%) as they can be strongly impacted by
the presence of pilot injections, changes in injection phasing, and other phenomena.

Designing a feedback controller using MFBxx values outside of this window (for
example, MFB10) would require tuning the sensitivity transfer function to reject the
noise. Maximizing controller performance would likely involve using techniques like gain-
scheduling based on the anticipated impacts of injections on the parameter calculation, but
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Figure 2.8: CA50 variability response to injection retard, and compared to the variability
of IMEP, at 1200 RPM, 2.5 bar BMEP, 20◦C coolant temperature.

would also need to account for other noise factors, comparable to the open-loop injection
retard problem.

One might consider designing a controller around the variability of MFB50, which
exhibit comparable trends to the variability of IMEP, as shown in Figure 2.8. Some data
showing the mean-value changes in MFB50 for a variety of speed and load points is shown
in Figure 2.9. One issue with such an approach is that retarding injection timing changes
the mean value of MFB50, and so if those deterministic changes cannot be predicted, they
can excite the variance estimate. The plot suggests that if a combustion metric control
strategy were to be implemented, building something around the statistics of IMEP may be
preferable compared to MFB50. This is due to the fact that in an ideal scenario, fueling
would be compensated so that the engine load tracks the nominal value to avoid drivers
observing a loss of engine power as injection timing is retarded. Note that even without
fuel compensation, the driver could act as the torque control loop by pressing harder on
the accelerator pedal. Another shortcoming stems from the fact that MFB50 is trying to
capture the combustion behavior inside the cylinder, whereas IMEP is an actual measure of
the torque being produced by the cylinder, potentially more useful when trying to contain
torque-related NVH issues.

2.4.4 Hydrocarbon Emission

As noted in Figure 2.2, retarded injection timing can cause an increase in hydrocarbon
(total HC, THC), carbon monoxide, and particulate matter (smoke) emissions. As of 2021
in the United States, carbon monoxide is not heavily regulated, and the widespread industry
of adoption of diesel particulate filters (DPF) mean feedgas particulate matter emissions
are less of a concern. The primary concern is hydrocarbon emissions as these will be
created during the cold-start phase when the diesel oxidation catalyst is not functional. A
reduction in catalyst light-off times at the expense of dramatic HC emission increases could
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Figure 2.9: Injection retard sweeps conducted at multiple engine speed and loads at 30◦C
coolant temperature. Note that CA50 responds to speed, load, and injection retard, and
these behaviors would need to be understood for feedback controller development.

potentially hurt regulatory compliance.
During the combustion characterization experiments, it was observed that each cylinder

can have unique response behaviors (as seen in Figure 2.5), and so it would stand to reason
that they would also have different levels of hydrocarbon emissions. To better understand
HC emission behavior, mapping experiments were conducted using a Cambustion HFR500
(Fast FID, 1000 Hz response) and AVL SESAM FID (5 Hz response) for fast / slow HC
emission measurements. The HFR500 was installed in the exhaust manifold downpipe
shown in Figure 2.10, upstream of the turbocharger. Windowing of the fast HC data
based on timing of exhaust valve events and exhaust transport delays through the exhaust
manifold allow for isolating cylinder-to-cylinder HC emissions. Figure 2.11 shows crank
angle resolved cylinder pressure and hydrocarbon emission data at 1000RPM, 4.6 bar
BMEP, 5.7 bar IMEP, 30◦C coolant temperature. The Air-Fuel Ratio (AFR) during the
sweep remained above 20:1, above the 14.5:1 stoichiometric diesel ratio. For the plot on the
left, the engine is operating at nominal injection timing, and the engine is emitting minimal
HC. In the right plot, cylinder #6’s injection timing is shifted 21 crank angle degrees later,
causing extremely late phased combustion. While the hydrocarbons emitted by cylinder #6
reach levels exceeding 800 ppm, the CoVIMEP of cylinder #6 was about 0.91%, suggesting
that combustion torque variability can not be used as a hydrocarbon emission indicator.

An injection timing sweep on cylinder #6 was conducted at the 1000RPM/4.6 bar
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Figure 2.10: HFR500 probe install location. White-dashed line shows the turbo inlet pipe
from right bank (cyl 5,6,7,8), blue-dashed line shows turbo inlet pipe from left bank (cyl
1,2,3,4), and red-dashed line shows the turbo downpipe. The probe tip was centered in the
exhaust passage.

BMEP point while recording test cell fueling. Analysis of the heat release data revealed
that increases in HC emissions sensibly correlate with decreases in apparent combustion
efficiency (no heat transfer / fuel evaporation corrections), defined as:

ηcomb,apparent =
Qtot,apparent

Vf uelρ f uelQLHV
(2.3)

where Qtot,apparent is the total apparent heat released, Vf uel is the volume of fuel injected
for a particular cycle, ρ f uel is the density of the fuel, and QLHV is the lower heating value
of the fuel. Cycle-specific hydrocarbon emissions are plotted against the cycles apparent
combustion efficiency in Figure 2.12.

This preliminary result suggests that online estimates of combustion efficiency could
possibly be used to estimate HC emission formation to constrain an injection retard
strategy, rather than an empirically identified MFB50 / injection offset limit map. To
properly use this strategy, the fuel quantity estimation must be accurate – during dyno
experiments, the ECU fuel flowrate estimation was found to be inaccurate at lower fueling

27



Figure 2.11: Crank-angle resolved hydrocarbon emission data at 1000RPM, 4.6 bar BMEP,
5.7 bar IMEP, 30◦C coolant temperature at two injection phasing conditions for cylinder
#6. In both cases, no combustion variability issues were present.
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Figure 2.12: Cyclic hydrocarbon emissions plotted against cyclic apparent combustion
efficiency. Note that the increase in cyclic hydrocarbons appears correlated with the
decrease in apparent combustion efficiency.

rates. It would also be sensitive to variation in the fuel’s lower heating value, which could
be addressed by online estimation techniques. Another potential issue may be cylinders
having unique HC vs. combustion efficiency responses, as well as sensitivity to other
noise factors. This may be addressable by trying to empirically identify a cylinder which
consistently emits the most HC and model constraints off that cylinder. Further work on
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this topic is required to generate an implementable solution.
Engine average hydrocarbon emission data was collected at a variety of speed/load

points at 30◦ C coolant temperature using the previously mentioned AVL SESAM bench.
In these experiments, injection timings were offset for all cylinders. Figure 2.13 shows
a variety of trends from the experiments. Excessive increases in hydrocarbon emissions
were observed when injection timing was retarded more than 10 degrees. For lower
loads (when torque model is less than 2 bar), increases in hydrocarbons correlate with
increases in CoVIMEP, desirable if one is only able to observe IMEP statistics. But
for higher loads, as previously shown, large increases in THC emissions can occur
without any significant increase in CoVIMEP. Plotting the turbocharger inlet temperatures
against the hydrocarbon emissions reveals that the best opportunities for increasing
exhaust temperatures while avoiding hydrocarbons occur at higher engine loads, where
the turbocharger inlet temperature versus THC slope is nearly vertical. Looking at the
hydrocarbon emission trends versus combustion phasing, at higher loads the large increases
in hydrocarbons tend to occur when CA50 is > 37.5◦ aTDC. The last plot shows additional
hydrocarbon emission data versus apparent combustion efficiency calculated using coriolis
fuel flow measurements. The trends look encouraging, but more work is required to
generate a functional solution.

Based on the empirical observations shown above, for the given engine architecture
and calibration, it makes sense to constrain an injection retard strategy to avoid values
exceeding 12 degrees, and CA50 values exceeding ≈ 37.5◦ aTDC. These conclusions are
only applicable to this engine; changes in combustion chamber geometry (piston bowl),
rail pressures, and other parameters could yield different combustion and emission trends,
and so the development of a control strategy for a different engine would require similar
characterization experiments.

2.5 Proposed Closed-Loop IMEP Statistical Controller

Based on the behaviors observed in Figures 2.3-2.13, pushing the limits of injection phasing
retard exhaust heating would require an intense calibration effort, and would still need to
be inherently conservative due to unknown phenomena as shown in Figure 2.14. It is
instead proposed that an in-cylinder pressure sensor be used to provide IMEP variability
feedback, and a controller is used to maintain the variability at the acceptable limit to allow
for aggressive exhaust heating while preventing consequences of excessive variability, as
shown in Figure 2.15. In addition, a fuel control loop would be implemented to reject the
decreases in net indicated work due to the combustion phasing retard and ensure the desired
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Figure 2.13: Hydrocarbon emission behaviors plotted against various experimental values.

exhaust temperature increase. Limits on MFB50 and/or maximum injection retard would
limit excessive HC emissions. The large number of factors and individual cylinder behavior
would be rejected by the feedback, significantly decreasing the calibration complexity, and
unique cylinder behavior could be managed by controlling each cylinder independently.

Although cylinder pressure transducer prices have reduced to a level where production
implementation is feasible, instrumenting each cylinder in a V8 engine is not attractive
from a financial perspective. In Chapter 4, techniques for reducing the number of indicated
cylinders are presented, with the evaluated vehicle implementation only using one cylinder
pressure sensor.
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Figure 2.14: Diagram highlighting the challenges of an aggressive open-loop control
injection phasing retard strategy.

Figure 2.15: Proposed closed-loop structure.

2.6 Control-Oriented Combustion Variability Model

In order to develop a feedback control strategy, a control-oriented stochastic combustion
model was created that captures the impacts of injection timing (ϕ) and fuel quantity
(mfuel) on combustion variability. The proposed model focuses on perturbations from an
engine’s nominal operating condition at a single speed and load point of interest (1200
RPM/2.5 bar BMEP/20◦C coolant temperature) for an initial exploration of the feasibility
of model-based variability controller design. Empirical engine data from injection timing
and fuel quantity offset experiments were used to populate maps for the mean and standard
deviation values of IMEP as a function of injection timing retard (∆ϕ) and fuel quantity
offset (∆m f uel), shown in equation form as (2.4)-(2.6).

µ
IMEP
k = fµ(∆ϕk,∆mfuel

k ) (2.4)

σ
IMEP
k = fσ (∆ϕk,∆mfuel

k ) (2.5)

IMEPk = µ
IMEP
k +σ

IMEP
k wk, wk

iid∼N (0,1) (2.6)
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Table 2.2: Normalized coefficients for empirical fµ and fσ models shown in
Equations (2.7) and (2.8).

c0 c1 d0 d1 d2
−1.08×10−2 4.51×10−2 9.09×10−4 8.14×10−3 8.63×10−1

d3 d4 d5 d6
8.06×10−3 5.40×10−5 9.21×10−1 6.52×10−2
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Figure 2.16: IMEP statistical model correlation to experimental data.

Note that wk represents a sequence of independent identically distributed (iid) Gaussian
normal random variables; this assumption is supported by the statistical behavior seen in
Figure 2.6. A normalized version of the fµ , fσ relations is shown in Equations (2.7) and
(2.8) below, with the normalized coefficients listed in Table 2.2. Note that fσ (·) in (2.8)
was fitted by a piecewise function due to the relatively linear response of σ IMEP

k at small
injection timings and its nonlinear response at more retarded conditions.

µ
IMEP
k = 1+ c0∆ϕk + c1∆mfuel

k (2.7)

σ
IMEP
k =

(1+d0∆ϕk)
(
1+∆mfuel

k ∆ϕkd1
)

if 0≤ ∆ϕ < 8

(d2 exp(d3∆ϕk)+d4 exp(d5∆ϕk))
(
1+d6∆mfuel

k

)
if ∆ϕ ≥ 8

(2.8)

Figure 2.16 compares the experimental data to the model output, indicating the proposed
equation structure does an adequate job at capturing the statistical trends. The regressions
and accompanying model structure were implemented in MATLAB/Simulink for controls
simulations, shown in Figure 2.17. “Random Noise” blocks in Simulink were used to
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generate the wk sequence, which can be parameterized with a random number generation
seed value for consistent stochastic sequences. The “FIR/IIR Filtering Strategy” block
refers to techniques for generating online variability estimates that are discussed in detail
in Chapter 3, where FIR stands for Finite Impulse Response (windowed estimates) and
IIR stands for Infinite Impulse Response (recursive estimate). The estimates are generated
using values from the IMEPk sequence.

An example of such an estimator would be the windowed CoVIMEP estimate, ˆCoVIMEP,
which can be represented as (2.9)-(2.11), where N is the window size (number of IMEP
values used to calculate statistics).

µ̂
IMEP
k =

1
N

N−1

∑
i=0

IMEPk−i (2.9)

σ̂
IMEP
k =

√√√√ 1
N

N−1

∑
i=0

(
IMEPk−i− µ̂ IMEP

k

)2 (2.10)

ˆCoVIMEP =
σ̂ IMEP

k

µ̂ IMEP
k

·100 (2.11)

Figure 2.18 compares the model performance with respect to comparable engine exper-
iments. Two conditions have been chosen for comparison: 1) stock injection strategy
(red color) and 2) 8◦ injection retard from stock calibration (blue color). The top-left
plots show the probability density function for the modeled and experimental IMEP. Note
that the assumption of introducing Gaussian-distributed perturbation matches well with
the experimental observations. The bottom-left plots show the return maps of IMEP
for both injection timing. The “shotgun” pattern observed suggests a lack of cycle-to-
cycle correlation in the IMEP time series. This aligns well with the assumption that the
perturbation sequence {wk}k∈Z in the model is iid. The top-right plot shows the comparison
of the IMEP time series and the bottom-right plot shows the comparison between the

Figure 2.17: Proposed combustion variability model architecture for controller design and
simulation.
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estimated CoVIMEP, ˆCoVIMEP, when N = 10. Note the variability in ˆCoVIMEP - this is
due to the fact that ˆCoVIMEP is a function of random variables, and so it is also a random
variable, which will be further explored in Chapter 3. Overall, Figure 2.18 demonstrates
the close agreement between experiments and simulations for the IMEP statistics.

Figure 2.18: Staistical behavior of model versus experiments for two injection timing retard
conditions. ˆCoVIMEP estimated using 10 point window (N = 10).

2.7 Summary and Conclusions

Analysis of upcoming emission regulations indicates the necessity for faster aftertreatment
operation and/or a reduction feedgas engine emissions - achieving faster aftertreatment
light-off allows for a faster transition to more efficient engine operation (lower fuel
consumption at cost of increased NOX emissions). Background on diesel engine controls,
indicated combustion analysis, and exhaust heating mechanisms were presented. Com-
bustion phasing retard via injection timing retard was evaluated using engine dynamometer
experiments to identify how it could be used to improve exhaust heating. Impacts on IMEP,
heat release, and hydrocarbon emissions were studied at a variety of speed and load points.
The experiments showed that more aggressive combustion phasing retard could achieve
better aftertreatment heating at the cost of combustion variability, which could cause poor
drivability.

It was proposed that combustion variability be controlled to an acceptable level to
achieve high exhaust heating while avoiding issues associated with excessive variability.
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Experiments and literature suggested that open-loop combustion variability control was
calibration prohibitive, and so a novel controller using combustion variability feedback
from an in-cylinder pressure sensor was proposed. To aid in controller design, a stochastic
combustion variability model was designed, populated with engine experiments, and
validated against experimental data. The model is combined with the content presented
in Chapter 4 to design and simulate controllers presented in Chapter 4.
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CHAPTER 3

Variance Estimation and Control

3.1 Introduction

This Chapter uses statistical and control theory to explore online variance estimation
and control using windowed variance estimators to form controller principles for the
structure presented in Section 2.5. The stochastic nature of the windowed variance
feedback means that root locus and other classical control design techniques cannot be
immediately used. Expected value analysis is used to generate transfer functions for the
average response of such systems under various assumptions, including when deterministic
signal mean changes are occurring in the process to be estimated. This is critical when
trying to estimate engine combustion variance, where deterministic changes in the torque
occur as the engine torque demand changes. The results are used to design controllers,
and stochastic simulations are presented to verify the analytical results and make other
observations concerning closed-loop variance control. The windowed variance estimator
requires maintaining a data buffer for calculating statistics - an exponentially-weighted
moving average (EWMA) variance estimation technique that only requires two states is
also studied to understand the advantages and disadvantages of such a technique.

This chapter is organized as follows: Section 3.2 provides background on variability-
motivated controller design techniques. Section 3.3 analyzes the windowed variance
operator using expectation analysis, and analyzes the open-loop behavior of windowed
variance with consideration to usage for closed-loop control. Section 3.4 uses classical
LTI design principles to design a feedback controller that achieves a target variance.
Section 3.5 presents simulation results of the closed-loop system and provides insight on
special considerations that must be made to achieve effective closed-loop variance control.
Section 3.6 presents analysis of an EWMA estimation strategy.
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3.2 Background

Typical control design methods are focused on minimizing the impact of process and
measurement noise on the state covariance of the closed-loop system. For stochastic linear
systems, there are a wide variety of techniques based on the properties of the system. Bode
loop shaping techniques are helpful when trying to reject sensor or disturbance noise at
frequencies of interest [37]. If the process and measurement state covariance is well-
understood, linear quadratic Gaussian (LQG) controller design techniques can be used
which also have advantages when dealing with Multiple-Input Multiple-Output (MIMO)
systems [37]. When controller performance objectives are stated in terms of output
state covariance, design techniques presented by Skelton and Hotz can be used to design
appropriate controllers by using the target state covariance matrix in the controller design
process [37, 38]. When concerned with the expected value and variance of a quadratic
cost function, minimal cost variance control design techniques presented by Sain can be
used. Unlike LQG, which has a sole focus on minimizing the quadratic cost, this approach
allows for designing controllers that limit the observed cost function variability based on
the stochastic properties of the target implementation [39, 40].

Although these techniques can constrain the impact of stochastic noise in control
systems, they lack a method for direct control of the variance to a target setpoint. If a
system’s statistical response to the desired inputs is well understood, open-loop control
could be used to achieve the desired behavior without exceeding covariance limits.
However, in situations where the statistical behavior is influenced by many factors, or
worse, unknown phenomena, open-loop control performance could be jeopardized. For
such scenarios it would be ideal to be able to use feedback control to track the variance
target while being able to reject noise factors that impact the statistical behavior.

3.3 Analysis of Windowed Variance

In this section, statistical analysis is used to identify the analytical behavior of the
windowed variance operator for three scenarios. The first scenario involves a process where
the mean value of the random variable is constant (constant mean sequence). The second
scenario involves a process where the mean value of the random variable is allowed to
change with the index variable (varying mean sequence). The third scenario presented
involves using predictions of the expected mean sequence behavior to detrend the output
and reduce the impact of mean sequence changes on the variance estimate. For all three
cases, {xk}k∈Z is a sequence of independent, normally distributed random variables with
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mean and variance sequences that are allowed to vary with index k, µk and σ2
k . In other

words, xk ∼N (µk,σ
2
k ) ∀k ∈ Z. In this work, online estimates of the output variance, σ̂2

k ,
are generated at each sequence index k using a windowed variance function with window
size N [38]:

Var{X}= ε{X2}− ε{X}2 (3.1)

σ̂2
k =

1
N

N−1

∑
i=0

x2
k−i−

(
1
N

N−1

∑
i=0

xk−i

)2

. (3.2)

3.3.1 Derivations for Constant Mean Sequence

In the case where the mean sequence is constant (µk = µ), the mean value can be subtracted
from the original sequence to generate a zero-mean sequence, zk (zk = xk−µ). With a zero-
mean sequence, the windowed variance operator can be simplified:

σ̂2
k =

1
N

N−1

∑
i=0

z2
k−i. (3.3)

Equation (3.3) shows that σ̂2
k is a function of the primitive random variables {zk,zk−1, . . . ,zN−1}

and therefore itself is a random variable. By leveraging the linearity of the expectation
operator and the fact that the {zk,z j} are independent when k 6= j, the expected value of σ̂2

k

can be calculated as follows [41]:

ε

{
σ̂2

k

}
=

1
N

N−1

∑
i=0

σ
2
k−i (3.4)

which shows that the expected value of the windowed variance operator is a low-pass
filtered version of the variance sequence σ2

k , where increasing the window size N increases
the amount of filtering (derivation shown in Lemma 1 in Section 3.8). Further usage of
expectation analysis can be used to calculate the central second moment of the variance
estimator, i.e. Var{σ̂2

k }, shown in (3.5):

Var
{

σ̂2
k

}
=

2
N2

N−1

∑
i=0

σ
4
k−i. (3.5)

Equation (3.5) shows that Var{σ̂2
k } increases with the square of the variance sequence

values, σ2
k , in the variance estimator buffer (derivation shown in Lemma 2 in Section 3.8).
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This result suggests that if attempting to estimate/control a state’s variance with a large
magnitude, the window size must be increased to avoid excessive feedback noise. The
result also allows us to calculate a Signal-to-Noise Ratio (SNR) for the windowed variance
estimator, which can be calculated as (3.6):

SNR =
ε{(σ̂2

k )
2}

Var{σ̂2
k }

. (3.6)

Figure 3.1 provides a visual representation of the variance of the windowed variance
estimator based on a constant variance sequence (σ2

k = σ2 ∀k). When the input variance
sequence is constant, the variance of the variance estimate increases by the square of the
variance sequence multiplied by a constant that is a function of the window size, α(N) = 2

N .
Increasing the window size decreases the variance of the variance estimate and therefore
increases the SNR, which grows increasingly important as the variance sequence increases
in magnitude, as shown in Figure 3.1.
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Figure 3.1: Plot illustrating the behavior of the variance of the windowed variance operator
for different window sizes, N, and constant variance sequence values, σ2

k .

To verify the analytical results, random number simulations were conducted to compare
the presented equations for the statistical moments to ensemble statistics of the simulation
trials. In doing so, convergence of the ensemble statistics to the analytical results presented
suggest a proper derivation of the moments. A trial consisted of generating a normally
distributed zero-mean number sequence, scaling the number sequence by an input variance
sequence, and then applying the windowed variance operator to the number sequence.
One thousand simulations were performed to ensure an adequate number of samples were
available for calculating ensemble statistics, with different random number seeds used to
generate unique trials. Figure 3.2 illustrates the random nature of the variance estimates
for each realization (window size N = 10) and how the ensemble statistics converge to
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the theoretical expected values shown in (3.4)-(3.5). Note that as the variance sequence
increases in magnitude, the estimate can at times exceed five times the true value, which
can be avoided by using a larger sampling window.

Figure 3.2: Ensemble statistical values of the numerical experiments agree with the derived
theoretical values (3.4)-(3.5). The low-pass behavior of the windowed variance operator
when trying to estimate an index-varying variance sequence is also visible.

The presented expectation analysis of windowed variance as a random variable was
based solely on the first and second moment of the estimation and not the underlying
distribution. Since the windowed variance is the weighted sum of squared normal random
variables, it is distributed as a chi-squared (χ2) random variable with N degrees of freedom.
If the variance sequence is a constant value, the probability density function for the
windowed variance has been shown to be a Pearson type III distribution parameterized
by the window size and variance magnitude [42]. Figure 3.3 plots the windowed variance
distribution when σ2 = 1 alongside a Gaussian distribution with the first moment equal
to σ2 and the second moment equal to Var[σ̂2] for varying window sizes N. As N

approaches ∞, the windowed variance distribution approaches a normal distribution with
the aforementioned first and second moments. Note that at smaller window sizes, the
distribution has a long right tail, explaining the behavior observed in Figure 3.2 where
the variance estimate occasionally reached five times the expected value.
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Figure 3.3: Windowed variance distributions plotted alongside Gaussian distributions with
equivalent first and second moments. As the window size is increased, the χ2 distribution
approaches an equivalent normal distribution. Note the large right tail at smaller window
sizes.

3.3.2 Derivations for Varying Mean Sequence

In the case where the mean sequence varies with index k, changes in the mean value of the
sequence excites the windowed variance estimator, increasing its magnitude relative to the
true value of the variance sequence. The expected value of the windowed variance for an
index-varying mean is shown in (3.7):

ε

{
σ̂2

x,k

}
=

N−1
N2

N−1

∑
i=0

[
σ

2
k−i +µ

2
k−i
]
−

2
N2

N−1

∑
i=0

N−1

∑
j>i

[
µk−i ·µk− j

]
.

(3.7)

Note that the estimator is biased by a factor of N−1
N even when the mean sequence is

constant - this is due to the fact that the definition of windowed variance shown in (3.2)
must be used due to the changing mean sequence.

3.3.3 Derivations for Detrended Sequence

As shown in 3.3.2, an index-varying mean sequence excites the variance estimator as the
estimator cannot distinguish changes in the random variable caused by stochastic noise
from deterministic changes caused by the varying mean sequence. However, in processes
where the expected system behavior can be modeled or the output value is tracking a
reference, detrending can be used to remove the deterministic trends from the signal,
leaving behind the stochastic noise. Let µ̂k be the predicted mean sequence (expected
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behavior) - define the detrended signal vk as the difference between the nominal sequence
and predicted mean,

vk = xk− µ̂k (3.8)

and define the mean error sequence ek as the difference between the true mean sequence
and predicted mean sequence,

ek = µk− µ̂k. (3.9)

Expectation analysis can be used to find the expected value of the windowed variance of
the detrended signal vk, shown in (3.10):

ε

{
σ̂2

v,k

}
=

N−1
N2

N−1

∑
i=0

[
σ

2
k−i + e2

k−i
]
−

2
N2

N−1

∑
i=0

N−1

∑
j>i

[
ek−i · ek− j

]
.

(3.10)

Note that (3.10) has a similar form as (3.7) due to the similarity of the problems - (3.7)
can be recovered by setting µk = 0 in (3.10), in which case ε

{
σ̂2

x,k

}
= ε

{
σ̂2

v,k

}
. However,

(3.10) can be used to determine how accurate the deterministic model µ̂k must be to achieve
variance estimation that is adequate for closed-loop control.

3.4 Controller Design for Windowed Variance

Using the first moment of the windowed variance for a constant mean sequence derived
in Section 3.3.1, a discrete transfer function relating the expected value of the windowed
variance estimator to the input variance sequence can be developed, shown in (3.11).

ε

{
σ̂2
}

σ2 =
1
N

N−1

∑
i=0

z−i (3.11)

Leveraging the result for feedback controller design requires knowledge of the system’s
variance response to the modeling parameters of interest, presented for the diesel combus-
tion variability example in Section 2.6. An additional modeling example can found in [43].
In this chapter, simple mathematical variance models will be leveraged to observe how
the closed-loop response behavior is influenced by the open-loop variance response and
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Figure 3.4: Block diagram of the proposed closed-loop variance control architecture.

controller tuning. For initial observations, consider the linear variance response presented
in (3.12).

σ
2 = c ·u+d (3.12)

Note that in (3.12), the resulting σ2 must be positive, therefore when implementing the
model for simulation the input u must be bounded (based on the model parameters c, d) or
the model must have saturation to avoid negative σ2 values. Referring back to Figures
3.1 and 3.3, the windowed variance estimate contains a lot of noise at lower window
sizes. Therefore, a simple discrete integral controller is used to avoid propagating the
feedback noise and enable set-point tracking. Figure 3.4 illustrates the proposed controller
architecture. For initial controller analysis a window size of N = 50 was used for feedback
generation, as it provides an excellent signal-to-noise ratio and feedback distribution that
resembles a Normal random variable. Equation (3.13) shows the linearized open-loop
transfer function for the system that was used to design the controller using root locus
techniques, with an example root locus plot shown in Figure 3.5 when N = 20 [37].

L(z) = Ki ·
z

z−1
· c · 1

N

N−1

∑
i=0

z−i (3.13)

3.5 Closed-Loop Windowed Variance Control Observa-
tions

The controllers designed using root locus technique were tested in numerical simulations
using MATLAB. Figure 3.6 shows how the proposed control structure was adapted for
numerical simulation. Note that the input u (and integrator state) was restricted to be
> 0 (input saturation). Various phenomena were observed and studied to understand the
principal causes, explained in the following subsections.
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Figure 3.5: Example root locus plot when N = 50; the resulting closed-loop system had an
effective damping ratio of ζ = 0.95.

Figure 3.6: Diagram illustrating how the closed-loop variance control architecture was
implemented in MATLAB to conduct numerical experiments.

3.5.1 Ensemble Analysis and Observed Linear Behavior

Recall that the transfer function presented in (3.13) is based on the expected behavior
of the windowed variance estimate, therefore any comparisons to a modeled linear
system response should be made against the ensemble average behavior of the system,
which requires running many simulations to ensure the ensemble statistical values are
representative of the system behavior. Unless noted otherwise, one thousand stochastic
simulations were used to analyze the ensemble time response and output distribution
behavior.

The first test case presented is based on a variance system with a slope c = 1
4 and

offset d = 0.01, with a N = 50 point estimator window and a controller tuned to be
slightly underdamped (ζ = 0.95). The variance setpoint σ2∗ was set to 1.5 to avoid
actuator non-linear behavior caused by actuator saturation. Figure 3.7 illustrates that not
only is closed-loop variance control feasible, but that in fact the ensemble behavior of
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the closed-loop numerical experiments agrees with the step response generated using the
closed-loop transfer function of the expected behavior. The figure also highlights why one
thousand simulations were used to generate ensemble statistics, as the stochastic nature of
the feedback variable results in plenty of variability in the closed-loop trials - simulating
less test cases may hide potential undesirable actuator saturation behavior, presented in a
later figure.

Figure 3.7: Controller simulations indicate that closed-loop variance control is feasible, as
the stochastic realizations (grey lines) and ensemble average of windowed variance (solid
black line) is driven to the target variance (dashed black line). Note that the LTI analysis
(dotted black line) agrees with the ensemble behavior.

In classical linear systems, increasing the gain of the controller decreases the damping
ratio of the closed-loop system, which results in overshoot and oscillations. This behavior is
also observable with the windowed variance control, shown in Figure 3.8 where the model
parameters were kept the same, but the controller was tuned to reduce damping (ζ = 0.55)
and excite oscillatory behavior. Not only is it possible to produce overshoot and oscillatory
behavior, but the step response of the expected closed-loop variance continues to agree with
the ensemble average of the closed-loop realizations. A few of the realizations had control
signals at the saturation limit (u� 0), but not enough to perturb the ensemble statistics.
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Figure 3.8: Tuning the controller to further decrease system damping causes oscillatory
realization and ensemble behavior that agrees with LTI analysis.

3.5.2 Nonlinear Impacts of Actuator Saturation

In traditional control systems, physical limits on actuators can limit the performance and
operating range of the system. When the desired actuator state deviates outside of these
limits, the feedback loop is broken and nonlinearities are introduced into the system. In
Figures 3.7 and 3.8, the plant, estimator, and controller were designed to ensure that the
actuator operated away from the low actuator saturation bound and ensure linear behavior.

To explore the impact of actuator saturation on closed-loop variance control, the plant
was updated such that d = 1.4 while using the slightly underdamped controller tuning (ζ =

0.95). Increasing the nominal variance, d, resulted in the controller requiring less actuator
effort to drive the system to the desired variability (σ2∗ = 1.50), as seen in Figure 3.9. To
better illustrate the actuator saturation behavior, an additional thin black line has been added
to show a single realization - note that noise in the estimator causes the actuator to saturate
at zero, breaking the feedback loop and introducing a nonlinearity. The consequences of the
nonlinearity can be seen in the ensemble actuator plot, where the nominal actuator usage
is higher than the theoretical amount required, and the ensemble variance plot, where now
the ensemble variance is higher than the desired value.

From an implementation perspective, this behavior must be avoided to ensure that the
system’s output variance is not overexcited, as it may cause system failure depending on
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Figure 3.9: Increasing the nominal variance causes actuator saturation at the lower bound
(u � 0). A single realization is plotted for clarity as a think black line. When actuator
saturation is present, the ensemble behavior no longer agrees with the predicted LTI
behavior, and the ensemble variance exceeds the desired target value.

the functional requirements. Note that since the linearized analysis does not include the
nominal variance, d, or the setpoint σ2∗, and that the saturation issue itself is due to the
variance estimator noise in the system, this behavior should be observed/accounted for
via stochastic simulations. Ideally, one should run many simulations to ensure that the
controller is properly designed for the infinite number of realizations possible.

3.5.3 Impact of Control on Output Distributions

The previous sections have highlighted that closed-loop variance control is possible, agrees
with linear system analysis when actuator saturation is not present, and that actuator
saturation can cause over-excitation of the system’s variance (Figure 3.9). To further
understand the impacts of closed-loop variance control, the first four statistical moments
(mean µ , variance σ2, skewness γ1, and kurtosis κ) were analyzed with respect to the
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integral gain used in the windowed variance controller. To clarify, one thousand simulations
were run using a particular integral gain, and the system was allowed to reach stationarity
in each simulation.

Statistics of the closed-loop stationary xk sequence were calculated, and then plotted
against the integral gain Ki shown in Figure 3.10. The mean value (µ(x)) of the xk sequence
remains 0 and the distribution of the realization means is consistent across controller gains,
which is a sensible outcome considering the mean of the random sequence was set to zero
for all simulations. The mean variance of the xk realizations remained at the 1.25 target until
a gain of about Ki = 0.3, which also correlates with when actuator saturation is found to be
present in the simulations, shown in the %u saturation plot. However, increasing the gain is
shown to reduce the variance of the realization population variance distribution (shown
using the error bars), indicating that higher control gains can be beneficial for tighter
variance control until actuator saturation is present. The skewness (γ1(x)) remains near
zero, indicating the closed-loop distribution remains near-symmetric, however the spread
of the realization skewness values grows larger as the control gain increases. Finally,
the kurtosis (κ(x)) grows in magnitude with increasing control gain, indicating that the

Figure 3.10: One thousand simulations were run at each gain, and the first through fourth
moments of the closed-loop stationary xk sequence are plotted against the controller integral
gain Ki. The plot lines indicate the mean of the observed moment values per gain Ki, where
the error bars indicate ±2σ of the observed moment values.
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stationary distribution is more concentrated at the mean value, which may be a desirable
property depending on the system being controlled.

3.6 IIR/EWMA-based Variance Estimation

A disadvantage of the finite impulse response (FIR) windowed variance estimator shown
in (3.2) is that storage and computational requirements of the algorithm scale linearly with
N. Although available processing power and memory in embedded devices continues to
improve, limited operating time of the control architecture using the estimator may make it
a target for complexity reduction. An alternative to the FIR based estimator is an an infinite
impulse response (IIR) based variance estimation strategy using exponentially weighed
moving averages.

Let {xk}k∈Z be a sequence of independent, identically distributed random normal
variables mean µ and variance σ2. Consider the exponentially weighted moving average
(EWMA):

µ̂IIR,k = αµ̂IIR,k−1 +(1−α)xk, 0 < α < 1, (3.14)

which can also be written as an infinite series:

µ̂IIR,k = (1−α)
∞

∑
i=0

α
ixk−i, 0 < α < 1. (3.15)

Note that increasing values of α implies more smoothing done by the IIR filter. Using
properties of expectation and variance we deduce the statistical properties:

(1−α)
∞

∑
i=0

α
i = (1−α)

1
1−α

= 1, 0 < α < 1 (3.16)

E[µ̂IIR,k] = (1−α)
∞

∑
i=0

α
iE[xk−i] = µ (3.17)

Var[µ̂IIR,k] = (1−α)2
∞

∑
i=0

(α2)iVar[xk−i] =
1−α

1+α
σ

2. (3.18)

Moreover, note that µ̂IIR,k is a linear combination of Gaussian random variables. Hence,

µ̂IIR,k ∼N

(
µ,

1−α

1+α
σ

2
)
. (3.19)

Define the random variable zk = xk− µ̂IIR,k. The sequence {zk}k∈Z corresponds to a zero-
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mean Gaussian random process with the following variance:

Var[zk] = Var[xk]+Var[µ̂IIR,k]−2Covar[xk, µ̂IIR,k]

=

(
1+

1−α

1+α
−2(1−α)

)
σ

2 =
2α2

1+α
σ

2. (3.20)

Second, define the variable wk =
(√

(1+α)/2α2
)

zk which scales zk to achieve the same

variance as xk. It immediately follows that wk ∼ N (0,σ2). Hence, E[w2
k ] = σ2 and

Var[w2
k ] = 2σ4. At this point, the variable w2

k suffices for the estimation of σ2. This
estimator follows a Chi-squared distribution with one degree of freedom: w2

k ∼ σ2χ2
1 .

However, unlike the windowed variance estimate which is a distributed as a χ2
N , the mode

is located at 0. As a consequence, although on average w2
k stays at σ2, most of the time the

realization of w2
k will produce near-zero values. To avoid this and locate the mode closer to

the mean, a second filtering stage can be used. Consider a second EWMA filter for variance
estimation:

σ̂2
IIR,k = βσ̂2

IIR,k−1 +(1−β )w2
k 0 < β < 1. (3.21)

Similar to α , increasing β increases the amount of smoothing performed. Under
stationarity conditions E[σ̂2

IIR,k] = σ2, showing that the variance estimator is unbiased
for any feasible pair (α,β ).

If the IIR estimation strategy is to be used to replace an existing FIR strategy, one
method technique for tuning the (α,β ) is to select values which cause the IIR filters to
have the same variance as the FIR filters. The parameter α should be set to match the
variance of the FIR and IIR mean estimates.

Var[µ̂k] = Var[σ̂2
IIR,k] (3.22)

σ2

N
=

1−α

1+α
σ

2 (3.23)

α =
N−1
N +1

(3.24)

The parameter β should be set to match the variance of the FIR and IIR variance estimates.
The variance of the FIR variance estimate, after correcting for the N−1

N estimation bias, can
be computed as:

Var[σ̂2
FIR,k] =

1
N−1

2σ
4, (3.25)
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and the variance of the IIR variance estimate (after the second EWMA filter) can be
computed as:

Var[σ̂2
IIR,k] =

1−β

1+β

(
1+

β (1−α)2

2(1−α2β )

)
2σ

4. (3.26)

Tedious algebraic manipulations can be used to show that the β ∈ (0,1) value satisfies the
following equation:

aNβ
2 +bNβ + cN = 0 (3.27)

where,
aN = (N +1)(N−1)(N−2)
bN = −N

[
(N +1)2 +(N−1)(N−3)

]
cN = (N +1)2(N−2)

As N → ∞, the variance matching (α,β ) approaches 1. This is a sensible conclusion,
as the variability in the mean and variance estimates decreases with window size, and so a
high level of filtering through the EWMAs is required to achieve the same variance.

Table 3.1 compares the computational requirements of the FIR and IIR based estimation
strategies. Note that for the FIR strategy, storage and computation requirements scale
linearly with N. The IIR strategy only requires storage of two states (for each EWMA)
and 9 calculations to complete the algorithm.

Table 3.1: Calculation requirements of FIR vs IIR windowed variance estimator.

Add/Subtract Multiply/Divide Total
Calculate Second Moment N-1 N+1 2N

Calculate First Moment Squared N-1 2 N+1
Second Moment - First Moment Squared 1 0 1

Estimate Variance - FIR 2N-1 N+3 3N+2
Estimate Mean (EWMA1) - µ̂k 1 2 3

Generate Zero-Mean Sequence - zk 1 0 1
Rescale zk - wk 0 1 1

Estimate Variance (EWMA2) - σ̂2
IIR,k 1 3 4

Estimate Variance - IIR 3 6 9
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3.7 Summary and Conclusions

To understand and enable closed-loop variance controller design, the windowed variance
operator was presented as a potential source of online process variance estimation,
and a combination of statistical and classical controls analysis was leveraged to design
controllers. The designed controllers were tested using numerical experiments, and the
closed-loop behavior was examined from an ensemble and distribution perspective. The
results showed that closed-loop covariance control was feasible, that the ensemble behavior
agreed with the predicted linear response results (when nonlinearities such as actuator
saturation were not present), and that care must be taken to properly tune the controller
based on window size, the system response, and the controller setpoint.

3.8 Derivations

Lemma 1 Let {zk}k∈Z be a sequence of zero-mean, independent, random variables with

a variance sequence that is allowed to change with index k, σ2
k . Define the windowed

variance operator as in Eqn. (3.3), then:
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Lemma 2 Let {zk}k∈Z be a sequence of zero-mean, independent, random variables with

a variance sequence that is allowed to change with index k, σ2
k . Define the windowed

52



variance operator as in Eqn. (3.3), then:
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CHAPTER 4

Control of Engine Combustion Variance

4.1 Introduction

The experimental combustion variability observations and model from Chapter 2 were
combined with the theoretical windowed variance control theory from Chapter 3 to design
combustion variance controllers. Transient combustion data from FTP-75 traces were
analyzed to generate a transient-capable variability metric. Initial controller design and
testing was focused on steady-state operation of the dyno engine. After experimental
validation of the concept at steady-state, the transient metric was implemented in the
controller, and was tested on dyno against the cold-start phase of the FTP-75, generating
the desirable exhaust temperature increase without excessive degradation of combustion.

The indicated analysis equipment (cylinder pressure sensors and data acquisition
hardware) used during the dyno testing is sophisticated and expensive, intended for engine
development in lab settings. To ensure the proposed technique would function in the
real-world, the controller was adapted to a production vehicle using production-intent
pressure-sensing glow plugs. Implementing the controller in the vehicle also permitted
studying the controller impacts on occupants during real-world driving scenarios. After
addressing vehicle-specific engine behaviors not present during dyno testing, the controller
was repeatedly tested against a synthesized drive cycle consisting of low-load driving. The
impact of different fuel types were investigated during this testing to observe the noise
factor response. Following validation of the controller on the synthesized drive-cycle, the
controller was evaluated against the FTP-75 emission certification cycle in an emissions
lab to observe impacts on aftertreatment heating, fuel economy, and emissions.
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4.2 Application of Windowed Variance Control Theory

To design combustion variance controllers, the theory developed in 3.4 is combined with
the model and experimental observations from Chapter 2. Challenges and solutions
associated with instrumentation strategies (every cylinder vs. limited number of cylinders)
are also presented.

4.2.1 Model-Based Controller Design

Linear control design techniques were used to design the combustion variability controller
framework. The stochastic combustion model presented in (2.4)-(2.6) was linearized
about an actuator pairing that resulted in a CoVIMEP of 2% at the nominal IMEP value
prior to retarding combustion; the actuator values at this point were ∆ϕ0 = 9.5 CA◦

and ∆mfuel
0 = 2.5 mg/str. The 2% CoVIMEP value was selected as an acceptable level

of combustion variability based on literature and vehicle testing observations [33]. The
linearized form of the model is shown in (4.1), where ∆∗ϕ and ∆∗mfuel represent injection
parameter deviations from the linearization point.

[
∆σ IMEP

k

∆µ IMEP
k

]
=

∂σ IMEP

∆ϕ |
∆ϕ0,∆mfuel

0

∂σ IMEP

∆mfuel |∆ϕ0,∆mfuel
0

∂ µ IMEP

∆ϕ |
∆ϕ0,∆mfuel

0

∂ µ IMEP

∆mfuel |∆ϕ0,∆mfuel
0

[ ∆∗ϕk

∆∗mfuel
k

]
(4.1)

[
∆σ IMEP

k

∆µ IMEP
k

]
=

[
0.019 0.004
−0.040 0.168

][
∆∗ϕk

∆∗mfuel
k

]
(4.2)

The DC gain matrix values in (4.2) show that perturbations in injection timing and
quantity impact both the mean value and variability of IMEP, resulting in a coupled
two-input two-output system. Note that retarding injection timing to control combustion
variability will result in a torque decrease - with a driver in the loop they could simply
increase the accelerator pedal position to compensate for the torque reduction, but the
driver may perceive this behavior as the engine losing power. To avoid this issue, it
is instead proposed to also control the mean value of IMEP. Although the inputs and
outputs of the system are coupled, which suggest usage of a MIMO control structure,
observing the relative magnitudes of the actuator impacts on each value suggest that a
decoupled two-input two-output controller should be suitable for control. This observation
is reaffirmed by relative gain array (RGA) analysis, where the diagonal entries of the
RGA matrix were approximately 1 (λ = 0.999), indicating that injection timing offset
∆ϕ should be used to control ∆σ IMEP and fuel quantity offset ∆mfuel should be used to
control ∆µ IMEP [44]. Use of a simpler decoupled control structure yields both analysis and
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experimental implementation benefits.
Based on experimental observations of IMEP and windowed variance feedback, two

pure integral controllers were used to control the statistics of IMEP to avoid propagating
feedback noise and to enable set-point tracking. Note that in (4.1), the output is ∆σ IMEP

k , the
linearized version of the population standard deviation sequence. There are two adapations
that must be made. First, the linear controller design analysis presented in Section 3.4
is based on windowed variance feedback, and so the standard deviation equation needs
to be converted to variance by squaring the standard deviation sequence terms. Second,
feedback control will instead be performed using the windowed variance estimate; for the
linearized system presented, the expected value of the estimator is shown in (4.3), where N

is the estimation window size and σ0 is the nominal combustion variability at the linearized
point.

ε

{
σ̂2

k

}
=

1
N

N−1

∑
i=0

(
0.0191 ·∆∗ϕk−i +∆

∗mfuel
k−i ·0.004+σ0

)2
(4.3)

Sequential loop closing techniques were used to design the two Single-Input Single-
Output (SISO) integral controllers [45]. A block diagram of the open-loop system can
be seen in Figure 4.1. The ∆µ IMEP loop was closed first due to its faster response time,
versus the slower response time of the variance estimation due to the sliding window.
The simple nature of the IMEP loop, a pure gain augmented with an integrator, results
in the max stable gain being a function of the sensitivity of IMEP to a fuel quantity offset.
Equation (4.3) was used to generate the transfer functions g21 and g22, which represent
the variance estimators sensitivity to the deviation in injection parameters and contain the
window estimation dynamics. The transfer function from ∆ϕk to ∆ε

{
σ̂2

k

}
with the fuel

controller (c1) in place was calculated to consider the interactions between the two loops
when designing the variance controller.

∆ε

{
σ̂2

k

}
∆∗ϕ

= g21(z)−
g22(z) · c1(z) ·g11(z)

1+g12(z) · c1(z)
(4.4)

This analysis shows that the variance controller stability, from a theoretical perspective, is
only impacted by window size, the derivatives of the statistical responses at the variance
setpoint, the fuel controller gain, and the variance controller gain. Note that the data
presented in Chapter 2 showed that statistical response behavior can vary as a function
of speed and load. Therefore, one approach for controller tuning could include extensive
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Figure 4.1: Open-loop linearized block diagram used for controller design.

mapping of the statistical response behavior across speeds, loads, and various noise factors,
and using that data to implement gain-scheduling to maximize controller performance at
the various operating conditions. A short-coming of this approach would include the large
amount of experimental testing required to populate the map, including noise factor testing
critical for ensuring proper operation in consumer environments. Another approach would
be to map the statistical behavior of the engine where combustion stability is known to be
problematic (typically low speeds, loads), and tune the controller based on the least stable
point, including adequate gain margin to ensure robustness against noise factors. Although
there may be some loss of performance, it reduces the amount of experiments needed for
controller design and reduces the controller complexity, which can be critical when dealing
with resource (computational, storage space) shortages in controls hardware.

4.2.2 Fully-Instrumented Control Approach

A fully-instrumented control approach refers to using feedback from in-cylinder pressure
sensors in every cylinder in the engine (”fully-instrumented”). The primary advantages of
such an approach include superior noise-factor rejection, as cylinder-to-cylinder variability
differences as seen in Figure 2.5 can be directly monitored and controlled. Although
variability controllers could be wrapped around each individual cylinder, the increased
frequency of unique combustion data (for the V8, 8 times faster vs. a single cylinder)
suggests instead building feedback windows that leverage data from all cylinders, so that
the variability feedback updates 8 times faster. When using a window size of 8 (one event
from each cylinder), this will be referred to as ”segment statistics”, where ”segment” is
used to refer to the last 720 CA◦ of combustion events (for the 8-cylinder engine used in
this work, 8 unique cylinder combustion events). This does not yield any controller gain
tuning benefits, where stable gains will still be limited by the number of points in this
statistical window, but it does increase the sampling time of the discrete system, yielding
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temporal performance benefits. A potential shortcoming of such an approach is that based
on the variance estimation theory, controlling the segment variance to a target value means
the average variance across the cylinders should reach the target, meaning some cylinders’
variability could exceed the setpoint, potentially in a debilitating way. This could be
addressed by applying a safety factor to the setpoint or performing control intervention
based on monitored statistics from individual cylinders.

Another issue with using a statistical window with feedback from multiple cylinders
is the impact of mean cylinder torque biases on the calculated statistics. The impact
can be quantified by using the result shown in (3.10), where the error sequence ek is
instead each cylinder’s mean torque bias from the overall segment average. Ideally these
imbalances would be corrected via a cylinder load balancing strategy, but the experimental
configuration lacked this feature. The effect of the biases on statistics can be addressed
at steady-state conditions by averaging the combustion events for each cylinder and
comparing them to the overall average of the eight cylinders. When attempting closed-
loop control, the injection retard and fuel quantity offset can induce time-varying mean
behavior and the cylinders can have unique reactions to the offsets, causing inflation of the
statistics not reflective of actual combustion variability issues.

To address this issue, a real-time bias estimation algorithm was constructed using
multiple moving average filters to unbias the statistics without masking the underlying
combustion variability. To estimate the cylinder bias, an IMEP buffer is maintained for
each cylinder. A visual representation of the buffer is shown in Figure 4.2. Maintaining
a buffer for each cylinder allows for the calculation of running averages of each cylinder
torque, as well as the running average of the segment. Comparing the running average
of the cylinder torque to the running average of the segment allows for estimation of the

Figure 4.2: Visual representation of segment vs. cylinder statistics and bias estimation
buffer.
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cylinder bias from the mean. The use of moving averages helps to smooth the stochastic
engine behavior and prevent the bias estimator from hiding exceptionally bad combustion
events by learning them out as a bias. The algorithm is expressed mathematically in (4.5)-
(4.10), where IMEP[i,k] is used to denote the k-th IMEP event from cylinder i, RA stands
for “running average”, b[i,k] is used to denote the k-th bias estimate for cylinder i, kb is the
estimator gain, and N describes the length of the buffer.

µseg[k] =
1
8

7

∑
i=0

IMEP[i,k] (4.5)

µRA−seg[k] =
1
N

k

∑
j=k−n+1

µseg[ j] (4.6)

µRA−cyl[i,k] =
1
N

k

∑
j=k−n+1

IMEP[i, j] (4.7)

eb =
((

µRA−cyl[i,k]−b[i,k]
)
−µRA−seg[k]

)
(4.8)

b[i,k+1] = b[i,k]+ kbeb (4.9)

IMEPUB[i,k] = IMEP[i,k]−b[i,k] (4.10)

In Figure 4.3, the statistical consequences of the cylinder mean biases can be seen in the
left set of plots, and the advantages of removing them can be seen in the right set of plots.
The dashed lines indicate the population statistics for three different cylinders, whereas the
black line indicates the segment statistics. Looking at the left set of plots, note that although
the cylinder population CoVIMEP values vary from 0.75-1.5%, the segment CoVIMEP value
hovers about 2.5%, which is slightly higher than the target value chosen in the previous
section and could be perceived as excessive variability. The right set of plots show that the
online estimation algorithm hovers about the population-based bias values, and applying
the bias corrections collapses the segment statistics to values that hover about the original
population values of the individual cylinders in agreement with theoretical results.

The algorithm was also applied to transient combustion data collected from FTP-75
cycles to verify functionality at two initial coolant temperatures and three injection phasing
conditions to understand impacts on the online variability estimate behaviors. A snippet of
the test data is plotted in Figure 4.4, where each line labeled τcyl,X represents combustion
data from a trial with a constant X◦ timing offset applied during the entire test. The
ECU torque model, τmodel , an estimate of the torque being generated by the engine, is
also shown to help identify commanded changes in torque versus combustion variability.
Control limitations prevented compensating for the torque reduction as the timing offset
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Figure 4.3: Plots illustrating impact of mean biases on segment statistics, and behavior and
statistical impacts of online bias estimation.

was increased. The left set of plots show data from a ”Cold Start”, where the engine
coolant was at ambient temperature at the start of the test, and the right set of plots show
data from a ”Warm Start”, where the engine coolant temperature was at 90◦C at the start
of the test. The top row of plots show the uncorrected torque data (τ) from all cylinders
at the various conditions. Note that at nominal phasing (τcyl,0), there is a visible spread of
cylinder torque traces, but they are otherwise stable and lack cycle-to-cycle variability.
However, looking at the second row of plots plotting the segment standard deviation,
even at the steady-state operation occuring between 190-200 seconds, the magnitude of
the standard deviation estimate and mean torque corresponds to a CoVIMEP of 2.9%,
indicative of bad combustion that clearly isn’t present at nominal timing. By applying
bias estimation, the individual cylinder offset behaviors can be removed, as seen in the
third row of plots (UB τ) where the traces have collapsed to the overall mean behavior.
Performing statistics on these unbiased traces yields the bottom plots, where the magnitude
of the standard deviation estimate corresponds to a CoVIMEP of 0.9%, more in line with
what’s considered acceptable and also what is being observed in the cyclic torque behavior
at nominal timing. Looking at the offset injection timing cases, it is easy to see through
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both the biased and unbiased torque values that combustion variability was increased by
the injection timing retard for the cold start due to the increased width of lines; and by
looking at the unbiased segment statistics, there is a clear trend that as the injection offset
was increased, the observed segment standard deviation exhibited a consistent increase.
Running the same tests when the engine is warmed-up (”Warm Start”) generates cylinder
torque traces that lack the variability seen during the ”Cold-Start”, which is reflected in both
segment standard deviation plots. These experimental results are positive from a controls
perspective, because they show that proper processing of combustion feedback can yield
online estimation results that agree with existing variability guidelines (< 2%CoVIMEP),
respond to available actuators like injection timing, and also to noise factors present during

Figure 4.4: Torque and segment statistic data from FTP-75 data collected at two initial
coolant temperature conditions (”Cold Start”,”Warm Start”) and three injection offset
phasings.
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cold-starts like coolant temperature.

4.2.3 Single-Cylinder Approach

Although production-intent cylinder pressure sensors have reduced in price enough to
be viable for production implementation (Volkswagen TDI’s, Mazda Skyactive-X), they
are still quite expensive, and so it may be economically infeasible to instrument every
cylinder. Referring back to Figure 2.5, each cylinder in an engine may have a unique
variability response to an injection phasing retard, and so it is critical to design the feedback
structure in such a way that avoids causing excessive non-observable variability. These
unique variability responses can be due to physical attributes of the engine design (block
temperature distribution, individual cylinder breathing characteristics, EGR distribution),
and therefore extensive testing on multiple engines (of the same architecture) could be
performed to see if certain cylinders tend to be more variable than others to select which
cylinder is used for feedback control, and/or to investigate if cylinder variability patterns
exist that could be used to model/bound the other cylinders’ variability based on the

Figure 4.5: Histogram plots highlighting cylinder variability trends at a variety of engine
speed and load points.
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instrumented cylinder.
Experimental data presented in Chapter 2 was further analyzed based on this premise,

with the results shown in Figure 4.5. The top plots show the frequency at which a particular
cylinder had the highest σIMEP, with the left column considering data points where the
maximum CoVIMEP was 3% and the right column considering data points where the
maximum CoVIMEP was 5%. This down-sampling was performed to see the impact of
increasing variability on the distribution. Note that if we assumed each cylinder had an
equal probability of being the most variable cylinder, the expected frequency for each
cylinder would be 9.5 when CoVIMEP is bounded by 3% and 12.6 when CoVIMEP is
bounded by 5%. Instead, cylinder #3 was found to be the most variable cylinder 18 times
when CoVIMEP was bounded by 3% and 29 times when CoVIMEP was bounded by 5%.
At the points where cylinder #3 was not the most variable, it’s standard deviation was still
within 60% of the maximum cylinder’s standard deviation, but more often within 0−10%
of the maximum cylinder’s standard deviation for both CoVIMEP bounds (N=31, N=36).
Based on these observations, cylinder #3 was chosen as the sole cylinder for variance
feedback control when using a single-cylinder architecture.

4.2.4 Transient Metric Validation

When using a single cylinder for variability feedback, the deterministic (requested) changes
in torque can have a huge impact on windowed statistics as cylinder torque feedback is
collected 8 times slower versus the fully-indicated approach. For example, to maintain
a window size of N = 8, the combustion data in the buffer is now collected over 16
engine revolutions, which at 1000 rpm corresponds to just under a second temporally.
To address the issues posed by deterministic torque changes, the detrended variance
estimation analysis presented in 3.3.2 was applied to enable transient variance estimation
using feedback from a single cylinder. Note that the analysis requires a predicted mean
sequence, µ̂k; for this work a pre-existing engine torque model value, τmodel , in the ECU
was used as the predicted mean sequence for generating the detrended torque sequence,
τdetrended . It’s underlying structure is unavailable (proprietary), but is used for a variety of
control purposes in the ECU. If such a model was unavailable, there are many examples
of non-proprietary engine models capable of predicting torque, typically leveraging a
combination of physics-based dynamical models and maps that are tuned/fitted with
experimental data [46, 47]. An example of a engine model developed for a real-time
embedded implementation can be found in [26].

The FTP-75 data described in 4.2.2 and shown in Figure 4.4 was further analyzed
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with respect to the proposed single-cylinder detrended variability metric, with a snippet
of the test data plotted in Figure 4.6. Similar to the previous plot, each line labeled τcyl,X

represents combustion data from a trial with a constant X◦ timing offset applied during the
entire test, and the columns represent data from different initial coolant temperatures. The
manner in which injection timings were altered in the ECU software meant that the ECU
torque model, τmodel , was unaffected by the change, and so it is the same for all three timing
offsets. The top row of plots highlight how the torque model does a good job at predicting
deterministic changes in engine torque - although the model doesn’t perfectly capture the
measured torque, it does a sufficiently good job capturing the deterministic trends, and note
that as long as the model error is a constant offset it will not impact the variability estimate.

The second row of plots show the windowed standard deviation of τcyl for a window size
N = 8 - note the sharp peaks in the standard deviation estimate when aggressive transients
occur, mathematically explained by the mean sequence term µk in (3.7). The bottom row
of subplots highlight the impact of performing statistics on the detrended signal, τdetrended
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Figure 4.6: Cylinder torque, windowed standard deviation of cylinder torque, and
windowed standard deviation of detrended cylinder torque data from FTP-75’s collected at
two initial coolant temperature conditions (”Cold Start”,”Warm Start”) and three injection
offset phasings.
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- the magnitude of the estimator peaks are dramatically decreased during transients. By
reducing the estimator sensitivity to transients, it is easier to observe actual combustion
variability in the engine torque signal τcyl when the engine is cold and injection timing is
highly retarted (”Cold Start”, ∆ϕ = 15, red line). Note the visible increase in the magnitude
of the detrended variability estimate relative to the other two trials.

4.2.5 Proposed Control Architecture

The model-based control design work was combined with the transient metric validation to
form the control architecture shown in Figure 4.7. Starting from the right, cylinder pressure
data is analyzed to calculate the IMEP, τcyl , a measure of the torque an individual cylinder
is producing. This torque is detrended by subtracting off the predicted/modeled value
from the ECU, τmodel , to generate the detrended torque value, τdetrended . The detrended
torque is used to generate an online estimate of the combustion variance, σ̂2, which is
subtracted from a target/reference variance, σ2∗, and fed into the variability controller. To
retard combustion phasing for higher exhaust gas enthalpy and combustion variability, the
injection timing of the engine is offset by the controller output ∆ϕ . Retarded combustion
phasing reduces the efficiency of the combustion cycle, as energy that would normally be
converted to shaft work instead raises the enthalpy of the exhaust gas leaving the cylinder.
To compensate for the torque loss that will occur from the less efficient combustion cycle,
additional fuel is added via two mechanisms. The first is a feed-forward fuel offset,
∆m f uel,FF , that is added to maintain torque based on the injection timing offset applied.
The command is a function of engine speed, load, and injection timing offset, and was
calibrated using experimental engine data. The second fuel command, ∆m f uel,cont , is the
output of a pure integral controller that is trying to minimize the difference between τcyl

Figure 4.7: Diagram showing the cylinder torque variance controller implemented on test
engine setup. The Variability and Fuel controller are simple integral controllers to avoid
excessive actuator variability due to random cyclic combustion behavior. The actuator
commands are applied uniformly to all cylinders in the engine, while only one cylinder is
used for variability feedback.
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and τmodel . The presence of the feed-forward command avoids torque dips due to injection
retard that would need to be observed by the fuel controller before corrective action could
be applied.

4.3 Experimental Setups

The engine dyno setup used for the characterization experiments presented in Chapter 2 was
upgraded to support cyclic closed-loop combustion control, which can be seen in the test
setup diagram presented in Figure 4.8(a). The AVL IndiCom system associated with the
dyno cell lacked real-time communication support, which motivated the implementation of
”MABx1, Combustion Feature Analysis”, a dSPACE MicroAutoBox system responsible
for combustion feature analysis that could transmit calculated features via CAN in real-
time. The system sampled manifold pressure, crank position, cam position, and cylinder
pressure sensor output to apply the analysis described in Section 2.2.2. The output
from ”MABx1” was validated against output from the AVL IndiCom system during
the characterization experiments to ensure proper functionality. Combustion features of
interest were sent over CAN to ”MABx2, Combustion Variability Controller”, which ran
the combustion variability controller and sent injection timing and quantity offsets to the
ECU via CAN. A computer running dSPACE ControlDesk was used to control and tune
MABx2. The ECU used for experiments ran rapid prototyping software that applied the
offsets received via CAN to the injection strategy and was controlled using ETAS INCA
software.

Experimental testing was also conducted using two production medium-duty vehicles
equipped with the same Ford Powerstroke diesel engine tested in the dyno lab. A
diagram of the vehicle test configuration can be seen in Figure 4.8(b). The primary
difference versus the dyno test setup is the absence of development-grade indicating
analysis equipment (AVL IndiCom, piezoelectric presusre sensors) that aren’t well-suited
for real-world testing environments. The piezoelectric pressure sensors were replaced with
production-intent ratiometric pressure-sensing glow plugs. The sensors were connected
using an instrumentation box which provided a voltage reference and ground, and routed
the sensors signals back to MABx1 for combustion analysis.
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(a) Dyno Configuration

(b) Vehicle Configuration

Figure 4.8: Experimental test configurations. In-cylinder pressure sensor (ICPS), manifold
absolute pressure (MAP), camshaft position (CAM), and crankshaft position (CKP) sensors
were connected to MicroAutoBox 1 (MABx1) using a breakout box (BoB) to enable
cylinder pressure analysis. The ICPS signals were also read in by an AVL IndiCom system.
CAN was used to interface the MABx’s and ECU to transmit data and controller actuator
values.
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4.4 Steady-State Control

Steady-state control experiments were conducted at the modeled speed/load point (1200
rpm/2.5 bar BMEP) to verify concept feasibility, enable comparison to the stochastic
engine model, and observe controller impacts on system statistics. These experiments were
conducted using the dyno test configuration shown in Figure 4.8(a).

4.4.1 Control Simulations and Experiments

A variety of controllers were tuned with the engine model using window sizes that varied
from N = 4 to N = 24, with intended damping ratios (ζ ) based on a pure N point feedback
delay due to the windowed statistics. The theoretical variance estimation and controls
analysis revealed this to be a conservative estimate, as it shows the windowed statistics
instead behave like a moving average, and so it is instead noted in quotation marks (“ζ ”).
The variance target σ2∗ for all trials was (0.075)2 bar, which would achieve a 2% CoVIMEP.

Experimental data for the window and tuning configurations can be found in Table 4.1.
Four experimental trials were run for each window/gain configuration, and one thousand
cycles of closed-loop steady-state combustion/actuator data were used for calculating
statistics. The experimental data confirms that simultaneous control of both the feedback
variance and mean value of IMEP for a single cylinder is feasible using the proposed
feedback structure. Initial review of the closed-loop statistics showed that the fuel
controller did an excellent job regulating µIMEP to the nominal torque of 3.75 bar, but the

Table 4.1: Steady-state closed-loop control statistics for various window and gain
configurations. One thousand cycles of data were used to calculate statistics.

N “ζ ” Ki
Ki,0

µIMEP σIMEP σ∗corr µ(∆ϕ) σ(∆ϕ)

[-] [-] [-] [bar] [bar] [bar] [CA deg] [CA deg]
4 1 11.76 3.75±0.001 0.117±0.004 0.100 11.7±0.3 1.7±0.2
4 0 23.42 3.75±0.001 0.151±0.009 0.100 8.9±0.2 3.6±0.3
8 1 2.65 3.75±0.000 0.082±0.002 0.086 12.7±0.3 0.7±0.1
8 0.707 4.01 3.75±0.001 0.084±0.002 0.086 12.5±0.3 0.8±0.2
8 0 12.41 3.75±0.001 0.112±0.004 0.086 9.9±0.4 3.0±0.2

16 1 1.47 3.75±0.000 0.075±0.000 0.080 12.5±0.4 0.5±0.1
16 0.707 2.05 3.75±0.001 0.079±0.001 0.080 13.0±0.2 0.6±0.1
16 0 6.37 3.75±0.002 0.095±0.005 0.080 12.1±0.2 1.8±0.2
24 1 Ki,0 3.75±0.001 0.077±0.001 0.078 13.0±0.3 0.5±0.1
24 0.707 1.38 3.75±0.001 0.077±0.001 0.078 13.6±0.2 0.5±0.0
24 0 4.29 3.75±0.001 0.085±0.004 0.078 13.0±0.3 1.6±0.9

68



variance control resulted in population σIMEP values exceeding the 0.075 bar target, even
when the average variance estimate σ̂2 was equal to the setpoint. The discrepancy can be
explained by the varying-mean sequence derivations in 3.3.2, where equation (3.7) shows
that the expected value of the variance estimator is biased by a factor of N−1

N . The controller
was amended to avoid this issue in subsequent testing, but for this data set the bias factor
was used to calculate σ∗corr, the population standard deviation target after accounting for
this estimation bias. With this correction in place, the closed-loop statistics when “ζ = 1”
show good agreement with the setpoints. Increasing the gain in nearly all cases causes the
average injection retard to decrease, the variability in injection retard to increase, and the
closed-loop σIMEP to increase as well - this behavior can be seen temporally in Figure 4.9.
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Figure 4.9: Steady-state experimental data
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Figure 4.9 shows experimental and model data for feedback controllers designed using
an 8-point statistical window for “ζ ” values of 1 and 0. Comparing the experimental and
model results demonstrates the value of using feedback - if an open-loop injection retard
strategy was designed using the model, it would only retard injection timing by about 10
CA◦. By using a feedback controller that is directly controlling variability, Figure 4.9(a)
shows it is possible to get another ≈ 2.5 CA◦ of injection retard while avoiding excessive
degradation of combustion. Figure 4.9(b) shows the consequences of aggressive controller
tuning, which can result in hunting behavior - not only does it cause large variability in
IMEP, but it does so while generating a lower exhaust temperature increase with respect to
the “ζ = 1” case. This highlights a fundamental tuning trade-off between response-time
and steady-state performance when using a fixed controller gain; however, gain scheduling
and/or a controller deadband could be used to simultaneously improve both aspects of the
closed-loop behavior.

One thousand points of the steady-state closed-loop IMEP and windowed variance
estimate σ̂2 data at the various gains for N = 8 were used to generate the histograms along
with the sample autocorrelation function (ACF) of IMEP plots shown in 4.10. The red lines
in the IMEP histograms show the normal distributions using the sample mean and standard
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Figure 4.10: Closed-loop IMEP distribution behavior when N = 8.
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deviation, and the red lines in the σ̂2 histograms show the theoretical windowed variance
estimate distribution (χ2) assuming independent, identically-distributed events. At lower
gains, the closed-loop statistical distributions show rough agreement with theoretical
distributions. However as the gain is increased, IMEP events tend to be more concentrated
around the mean, indicating an increase in the kurtosis of the distribution, which was also
observed in the numerical experiments presented in Figure 3.10. For the largest gain test,
the increase in the standard deviation of IMEP causes the theoretical σ̂2 to grow wider,
whereas the observed closed-loop distribution behavior still resembles what was seen at
lower gains. This disagreement is sensible, as the theoretical distribution is based on a iid
normally distributed sampling pool; the IMEP outliers at the higher control gain result in an
inflated σIMEP that causes a wider theoretical σ̂2 distribution, and the sample ACF function
shows that consecutive events are now highly correlated.

4.4.2 Long Duration Steady-State Setpoint Sweep

Based on the long-term thermal dynamics observed in 2.4.1, a long-duration setpoint
sweep experiment was conducted at the modeling point of 1200 rpm / 2.5 bar BMEP.
A fully-indicated control approach using segment statistics was used for the experiment.
The gain from the N = 8, “ζ = 0.707” test case in Table 4.1 was used in the controller.
NOX and total hydrocarbon (THC) emissions were sampled using the AVL SESAM i60
emissions bench. Figure 4.11 shows the results of the sweep, where the black lines show
experimental data, the red-dashed lines indicate the segment IMEP and segment CoVIMEP

setpoints (controller variance setpoint calculated using CoVIMEP target), and the vertical
blue-dashed lines separate the different setpoint regions. The CoVIMEP target of 1% yields
little controller activity, however adjusting the setpoint to 1.25% causes about a 10 CA◦

injection retard. The initial behavior at the onset of the step at about 1250 seconds is
particularly interesting due to the rapid retard, advance, followed by retard of injection
timing. The fact that the controller returns and remains stable at the injection retard value
reached prior to the event suggests that the initial retard maneuver occurs faster then the
previously hypothesized variability stabilization dynamics could occur. The controller
observes the excessive variability, advances injection timing, but then re-approaches the
previously commanded value, where now the dynamics have resolved and the timing can
be tolerated at the CoVIMEP of interest.

As the CoVIMEP target was further increased, injection timing, exhaust temperatures,
and THC emissions continued to increase, and NOX continued to decrease, as expected.
Note that the increases in THC outpaced reductions in NOX, unfavorable when being
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evaluated against combined THC+NOX standards. There was also an observable increase
in the variability of those signals, with the exhaust temperature and THC emissions
variability likely being due to some combination of the combustion variability, as well as
the injection retard actuator variability Note the long timescale changes in injection retard,
turbocharger inlet temperature, and emissions as the residence time at CoVIMEP setpoints
> 1.5% increases, again indicating the presence of long timescale combustion variability
dynamics originally discussed in 2.4.1.
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Figure 4.11: Experimental data from long-duration fully-indicated segment variability
setpoint sweep.

4.5 Transient Control

After validating both the variance control theory and experimental dyno test set-up at
steady-state operation, the controller was enabled during transient FTP-75 cycles on dyno.
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Positive transient control results in the engine dyno cell led to controller implementation
on the first test vehicle, which was evaluated against low-load real-world driving behaviors.
The controller was then adapted to another test vehicle, which was tested in an emissions-
equipped chassis dyno cell against the FTP-75 emissions certification cycle to understand
contoroller impacts on fuel economy and emissions.

4.5.1 Transient Control, Engine Dyno

Transient control experiments on dyno were conducted over the first 505 seconds of the
FTP-75 cycle. For this testing, the fuel controller was disabled and only a feed-forward fuel
command was used due to the accuracy of the feed-forward fuel command. The variance
target, σ2∗, was calculated based on a CoVIMEP target of 2% using the current average
torque. Experimental data showing the impacts of the controller can be seen in Figure 4.12.
“Nominal” refers to a test without any external intervention (nominal cold-start exhaust
temperature behavior) while “CVC” is a plot with the Combustion Variability Controller
active. Note how the controller is able to retard injection timing (third plot) to achieve
hotter exhaust temperatures (fourth plot) and maintain a similar cylinder torque trajectory
(first plot) to the nominal test case. Similar to the other figures showing online variance
estimation feedback, the variability feedback hovers about the setpoint, due to the noise
present in the variance estimate. Analyzing the variability data over the cycle shows that the
average windowed standard deviation of the detrended torque was increased 0.015 bar (0.79
Nm) by the controller, relative to the average commanded increase of 0.017 bar (0.91 Nm).
The DOC light-off time (outlet temperature > 200◦C) was reduced by 14 seconds, while
SCR light-off time was reduced by 74 seconds. The dramatic SCR light-off time reduction
was made feasible by the aggressive injection retard during the second hill of the FTP test
(150-300s). Emissions data was unavailable for this testing, but based on observations
from the characterization experiments, the controller activity during the second hill of the
FTP (≈160-300 seconds) likely generated large amounts of hydrocarbons due to the large
injection retard (> 15CA◦) at higher loads.

4.5.2 Transient Control, Vehicle Low Load Driving, Fuels

The first batch of vehicle test data was focused on evaluating controller performance against
low-load real-world driving behaviors, fuel controller configurations, and sensitivity
to different fuels. The test vehicle was a medium-duty pickup truck with a Ford
6.7L Powerstroke engine with the experimental configuration shown in Figure 4.8(b).
Limitations of the engine control software at the time of testing restricted engine operation
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Figure 4.12: Plots highlighting the functionality of the Combustion Variance Controller
(CVC) during engine transients. The highlighted portions indicate sections of the transient
test where the engine was not injecting fuel, so the controller was reset to zero.

to the nominal calibration, where fuel economy is a large priority, versus aftertreatment
heating in the cold-start warm-up calibration. Data collection was performed while the
vehicle was warmed-up, necessary to generate a sufficiently large sample pool with the
limited amount of test time available. Although the data is not directly relevant to the
cold-start issue trying to be addressed, it provides valuable insight into the controllers
response to noise factors, as well as the impact of the feed-forward fuel command. Statistics
were calculated for values of interest (injection retard, turbo inlet temperatures, combustion
phasing) to observe the impact of the different parameters.

Three controller configurations were evaluated during this testing; “No Control”, where
no feedback control was used during the tests; “Var”, where only the variance controller
was used during the tests; and “Var & FF-Fuel”, where the variance controller and a feed-
forward fuel controller were used during the tests. Three fuels were also tested; “ULSD”
(Ultra-Low Sulfur Diesel), conforming to the ASTM D975 D2 specification (thought to
be around 42 cetane); “B15”, which was ASTM D975 mixed with 15% biodiesel meeting
the ASTM specification; and “EURO”, which was European diesel fuel conforming to
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the EN590 specification (thought to be around 52 cetane). Twenty trials of each fuel
and controller configuration were collected, for a total of 180 samples. Low load drive
cycle timeseries data while testing with ULSD can be seen in Figure 4.13. The vehicle
speed profile consists of an acceleration to 20 MPH, followed by a short cruise, followed
by an acceleration to 35 MPH, followed by a long cruise; note the data was collected
on a real road (not lab environment), and so trials were not perfectly repeatable. Note
that when the feed-forward fuel command was disabled (blue line), the pedal position,
which correlates to an engine torque request, required to maintain the vehicle trajectory
increased, showing the impact of injection timing retard on torque without any open-
loop or closed-loop fuel control. It also demonstrates how a human driver-in-the-loop
can act as a controller to maintain the desired torque, although the driver will likely be
able to perceive the controller’s impact on the vehicle’s driving characteristics due to the
increased pedal required. The normalized torque traces, τcyl , highlight the low load nature
of the cycle (using less than 1/3 of the total torque of the engine), and how the torque
traces were consistent between the trials, sensible due to the goal of maintaining similar
velocity profiles for each trial. Injection offsets for both control cases trended towards
20 CA◦, more than observed in steady-state dyno experiments. This can be attributed to
the warmed-up coolant and also operating in the nominal calibration, where the nominal
combustion phasing is earlier in the cycle and so more combustion phasing retard can
be tolerated prior to variability issues. The exhaust temperature profiles demonstrate that
large increases in exhaust temperatures can be achieved even during low-load driving, with
100◦C temperature benefits visible throughout the cycle.

Statistics of values of interest which included injection retard, turbocharger inlet
temperatures, combustion phasing, and combustion variability were calculated and plotted
using histograms to study the impacts of different fuels and controller configurations and
are shown in Figure 4.14. Over the cycle, the controller was able to retard the nominal
injection timing about 15-20 CA◦ past its nominal value. Note that the controller was
able to retard injection timing ≈ 2.5 CA◦ more when the engine was running on the
European diesel, while maintaining a similar if not lower level of combustion variability
- this is hypothesized to be due to the increased cetane rating of the fuel, as observed in
literature [2]. The injection retard drove average MFB50 values past 30 deg aTDC without
misfires or other negative vehicle behaviors - the higher average injection retard values for
the European diesel are reflected in the later MFB50 values as well. Average turbocharger
inlet temperature benefits approaching 100◦C were observed for the ULSD and European
diesel tests. The B15 fuel tests show the lowest net temperature increase, but with similar
injection retard and MFB50 values as ULSD - this may be due to lower fuel energy content
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Figure 4.13: Selection of low-load drive cycle traces when using ULSD fuel.

of B15 fuel.

4.5.3 Transient Control, Vehicle Low Load Driving, Injection Strat-
egy

Additional controller testing opportunities using the same vehicle and hardware as
discussed in 4.5.2 became available the following year. The engine control software issues
were addressed, permitting operation in the aftertreatment heating (“AT Heating”) mode
that the vehicle operates in during cold-starts, rather than the nominal (“Nominal”) mode
that the vehicle operates in once warmed-up. To enable comparisons to the previous
data, the same low-load drive cycle was used and was tested using four configurations;
“ULSD/Nominal/No Control”, using ULSD fuel in the nominal calibration without
variance control; “ULSD/AT Heating/No Control”, using ULSD fuel in the aftertreatment

76



0 5 10 15 20

Avg Inj Ret [CA deg]

0

10

20

F
re

q

EURO

0

10

20

F
re

q

B15

0

10

20

F
re

q

ULSD

0

10

20
ULSD

No Control Var

Var & FF-Fuel Target

0

10

20
B15

No Control Var

Var & FF-Fuel Target

2 3 4 5 6

Avg Std [N*m]

0

10

20
EURO

No Control Var

Var & FF-Fuel Target

0

10

20
ULSD

0

10

20
B15

240 260 280 300 320 340 360

Avg T3 [deg C]

0

10

20
EURO

10 15 20 25 30 35

Avg MFB50 [deg ATDC]

0

10

20

F
re

q

EURO

No Control Var

Var & FF-Fuel

0

10

20

F
re

q

B15

No Control Var

Var & FF-Fuel

0

10

20

F
re

q

ULSD

No Control Var

Var & FF-Fuel

Figure 4.14: Low-load drive cycle statistics, including impacts of different fuels and fuel
control strategies.
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Figure 4.15: Additional low-load drive cycle statistics, comparing impacts of active engine
calibration and injection offset scheme.
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heating calibration without variance control; “ULSD/AT Heating/Closed-Loop”, using
ULSD fuel in the aftertreatment heating calibration with variance control retarding all
injections (pilots, main, post); and “ULSD/AT Heating/Closed-Loop 2”, using ULSD fuel
in the aftertreatment heating calibration with variance control retarding only the pilot and
main injections (post-injection timings left undisturbed). Ten trials of each configuration
were tested.

Statistics for the trials can be found in Figure 4.15. Ten datapoints from the previous
batch of testing (“Yr 1/ULSD/Nominal/No Control” and “Yr 1/ULSD/Nominal/Closed-
Loop”) were included for comparison. The “Nominal/No Control” trials for both years
show good agreement, indicating that there were no dramatic changes in the vehicle
or engine during the pause in testing. Enabling the aftertreatment heating calibration
yields a ≈1 Nm increase in average variability, an average MFB50 retard of ≈ 5◦, and
an average exhaust temperature increase of ≈ 30◦C. Enabling the controller while in the
aftertreatment heating mode results in a lower average injection offset, but comparable
average MFB50s compared to the nominal operating mode. Exhaust temperature benefits
up to 100◦C are still observable (with respect to the nominal values in each calibration)
Note that decoupling the post-injections from the controller (“ULSD/AT Heating/Closed-
Loop 2”) allows the controller to retard a few additional degrees, reflected in both the
average MFB50 and average exhaust temperature statistics. Achieving similar to hotter
exhaust temperatures while not disturbing the post-injection timings likely resulted in
lower feedgas hydrocarbons (on-road data, so THC emissions unavailable), which would be
critical during cold-starts when the diesel oxidation catalyst is not converting hydrocarbons.

4.5.4 Transient Control, Vehicle Dyno FTP

Observations from both the characterization and closed-loop control experiments were
used to further refine the single-cylinder combustion variability controller. The changes
included limitations on the maximum injection retard value to avoid excessive hydrocarbon
emissions, unbiasing the variability setpoint to achieve the correct population statistics,
disabling the controller at a target aftertreatment temperature to avoid overheating, and
decoupling the post injections from the controller to avoid retarding already late injections
in the cycle.

The refined controller was implemented on another medium-duty pickup truck with
a Ford 6.7L Powerstroke engine, and was evaluated against the FTP-75 cycle in an
chassis dynamometer cell equipped with a constant volume sampling (CVS) emissions
system for measurement of true bag emissions. The controller was configured to turn
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off when the diesel oxidation catalyst (DOC) outlet temperature reached 200◦C, when
it is approximately lit-off. The transition from the aftertreatment heating calibration
to the nominal operating calibration was manually controlled based on a threshold
DOC outlet temperature of either 250 or 275◦C - manual control was necessary due to
software constraints, with the temperature being changed to observe the impacts on cycle
behavior. The emissions and temperature data was post-processed to evaluate the change
in parameters of interest. Unfortunately, initial analysis of the results revealed the SCR
catalyst was no longer functional (severely degraded), and so the measured NOX emissions
were effectively engine-out. To project the impacts of the controller in an application with a
functional SCR system, a simple temperature-based SCR conversion efficiency model was
combined with the SCR catalyst temperature data to estimate the average SCR conversion
efficiency from the start of the cycle to SCR light-off (at ≈ 200◦C) [48].

Table 4.2 summarizes the impact of the controller on the Bag 1 (cold-start phase)
FTP-75 data. The unexpected result during the testing was the decrease in hydrocarbon
(HC) emissions coupled with the increase in feedgas NOX - as retarding combustion
phasing typically induces the opposite behavior, a reduction in NOX but increase in HC.
The reduction in HC emissions is likely due to the improved heating of the DOC and
the restricted authority of the controller - note that DOC conversion efficiency functions
typically resemble sigmoid functions with the transition occuring between 100-200◦C, and
so any improvement in temperature can yield significant increases in conversion efficiency,
and controller operation was restricted to avoid the excessive HC increases observed during
the characterization experiments [49].

The large NOx increase for the 250◦C calibration switch test can be explained by the
switch point - the improved heating during the closed-loop trial caused the calibration
transition to occur during the idle portion between hills 1 and 2, whereas during the baseline
trial the transition occurred ≈ 30 seconds into hill 2. The beginning of the second hill
includes a large load transient, which yields a large amount of NOX when operating in
the nominal operating mode. Normally this NOX would be converted by the SCR, but as
mentioned, the SCR was non-functional during testing. Changing the transition point to
275◦C delayed the calibration switch into a more mild portion of the second hill, causing a
reduction in the NOX disparity.

In both cases, the controller contributed to a reduction in fuel economy, expected due to
the efficiency impacts of retarding combustion phasing. It was able to improve catalyst
light-off times (defined as time to 200◦C) by 12-14 seconds for the DOC, and by 1-5
seconds for the SCR. Although SCR light-off time improvement was minimal, note that
the estimated average SCR conversion efficiency (ηSCR) improvement ranged from 3-5%,
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critical as NOX standards continue to get stricter.

Table 4.2: Bag 1 FTP-75 controller impacts. Positive numbers indicate an improvement
due to the controller.

Calibration Transition Temperature (DOC Out) [◦C] 250 275
% Reduction HC [%] 12.3 10.3

% Reduction NOX [Feedgas] [%] -35.2 -22.2
% Reduction Fuel Economy [%] -20.3 -18.4

∆ DOC light-off [s] 14 12
∆ SCR light-off [s] 5 1

∆µ(ηSCR) (Estimated) [%] 5.50 3.09

4.6 Summary and Conclusions

Control theory, statistical theory, and engine experimental observations were combined to
design combustion variance controllers, and illustrate feedback generation techniques using
one or multiple cylinder pressure transducers. Initial steady-state dyno experiments verified
controller functionality and investigated the impact of window size, controller gains, and
variance setpoints. Transient dyno experiments were then conducted over the FTP-75
cycle and demonstrated a DOC light-off time (outlet temperature > 200◦C) reduction of 14
seconds and a SCR light-off time reduction of 74 seconds when not considering emission
impacts.

The controller was adapted from the ideal conditions of the laboratory environment
and implemented in a test vehicle using production-intent sensors. The test vehicle was
used to evaluate the controller against real-world driving conditions and noise factors
including fuel properties, where it continued to function properly and showed the ability to
adapt to different fuel properties. The controller was implemented in another test vehicle,
where it was evaluated against the FTP-75 emissions cycle. The desirable aftertreatment
heating benefit was observed, although the fuel economy, HC, and NOX trade-off data was
unavailable due to testing issues.
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CHAPTER 5

Preview-Based Model Predictive Engine Control
for Emissions Compliance

5.1 Introduction

Modern diesel engines are equipped with aftertreatment systems, a sequence of catalysts
and supporting hardware, which are effective at reducing tailpipe hydrocarbon and oxides
of nitrogen (NOX) emissions when the catalysts are warmed-up to temperatures near
200◦ Celsius [2, 3]. Aftertreatment systems have been critical for enabling efficient
diesel engine combustion while averting the harmful pollution impacts. This is because
diesel combustion profiles that achieve high fuel efficiency, or low Brake Specific Fuel
Consumption (BSFC), do so at the expense of increased feedgas, or pre-aftertreatment
system, NOX emissions due to the in-cylinder dynamics that govern NOX formation [7].
When the NOX catalysts are up to temperature, conversion efficiencies exceeding 90% can
be achieved, resulting in both low CO2 and NOX emissions at the tailpipe. While oxidation
catalysts for oxidizing hydrocarbons tend to have monotonic conversion efficiency curves
with respect to temperature, some NOX catalysts (ex: Cu/Zeolite) suffer from reduced
conversion efficiency at both lower and higher temperatures, indicating that proper thermal
conditioning of the catalyst is critical for minimizing CO2 and NOX tailpipe emissions
[48, 50].

5.1.1 Emission Regulations

In the US, medium- and heavy-duty diesel engines are typically certified on engine
dynamometers against the HDFTP (heavy duty federal test procedure) cycle, supplemental
emission test (SET, steady-state 13-mode test), and In-Unit Testing (IUT), also known as
Not-to-Exceed (NTE) testing [18]. NTE testing requirements were added to identify defeat-
devices after the 1998 United States Environmental Protection Agency (USEPA) and diesel
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Figure 5.1: Diagram of medium-duty diesel engine with exhaust aftertreatment system.
Blue text highlights potential actuators that would be affected by a calibration change.

manufacturers consent decree [51]. The testing involves using portable emission analyzer
equipment to measure emissions during real-world driving scenarios. Emission data is only
considered when the truck/engine operates in the “NTE Zone” (portion of the speed/load
map used for normal vehicle operation) for a minimum of 30 seconds, and the valid data
is compared to the emission standard adjusted by a conformity factor. The 2021 NTE zone
(as of 2021) excludes the portion of the speed-load map where the engine power is less
than 30% of the rated power of the engine. Diesel engines are intended to be run lean;
at idle and low-load (power) the abundance of excess air can cause exhaust temperatures
to dip below 200◦ Celsius, meaning that without external intervention the aftertreatment
system can be cooled below its ideal operating temperature, resulting in poor conversion
efficiencies and therefore higher observed emissions [21]. Due to the 30% minimum power
exclusion for the current NTE zone, insufficient exhaust temperature for aftertreatment
thermal conditioning is less of a concern.

As environmental concerns continue to drive more stringent emission standards
(CO2, HC, NOX), there is greater emphasis on emissions generated by real-world
driving behaviors [17]. In Europe, the EUROVI In-Service Conformity (ISC) testing
(Europe “equivalent” of USEPA NTE) leverages a Moving Average Window (MAW)
technique [20]. The length of the moving window is a function of either the reference work
or CO2 from a transient certification cycle (WHTC). For EUROVI steps A-C, windows
with an average power less than 20% of the rated power or coolant temperature less than
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70◦ Celsius were excluded. The current EUROVI-D standard reduces the minimum power
to 10%, and the minimum coolant temperature to 30◦ Celsius, dramatically expanding the
operating range at which vehicles need to be in-service compliant. When comparing in-use
emission data from Europe and the US, it was found that US heavy-duty engines emit 3
times more NOX than their European counterparts at speeds less than 50 mph - likely due
to the fact that with the 30% minimum power exclusion and the minimum 30 second zone
residence requirement, US heavy-duty engines undergoing NTE testing have only been
subject to the regulation 17% of the time [19, 52].

Increased pressure to reduce real-world emissions have led the USEPA and California
Air Resources Board (CARB) to develop a new IUT method based on the EUROVI MAW
technique. The proposed regulations for MY 2024-2026 include a window size based on
the work or CO2 equivalent on a FTP cycle and a window minimum power threshold
of 10%. Unlike the EUROVI-D requirements, there will still be a cold-start engine
coolant temperature exclusion [19]. The increased operating range (both temporally and
in the engine map) at which engines must comply with regulations will require improved
management of both the engine and the aftertreatment system. Based on historical
regulation trends, minimum power and coolant temperature exclusions could disappear
entirely in the next decade.

5.1.2 Advanced Control Opportunities

Improvements in computational power, theoretical controls understanding, and vehicle
connectivity has created opportunities for many advanced engine and vehicle control
opportunities. The concept of using traffic and other forms of preview for powertrain
and vehicle control has been approached in a variety of ways. With respect to emissions,
researchers have investigated using dynamic programming and model predictive control
techniques to achieve better fuel/energy economy while reducing emissions by modifying
vehicle velocity profiles, altering engine actuator or electric motor setpoints, and in the
case of hybrid electric vehicles (HEVs), optimizing the interaction between the internal
combustion engine and electric motor / battery system [22, 23]. Some of the approaches
leverage full engine airpath and aftertreatment models with nonlinear dynamics and seek to
use the predicted emissions and fuel consumption to achieve improved compliance [24–26].
In the case of modifying vehicle velocity profiles, these optimization routines can lead to
undesirable driving behaviors (from an occupant perspective) unless constraints and cost
functions are properly structured. Approaches leveraging full airpath models tend to be
computationally expensive to execute, and if trying to leverage multiple actuators (like
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Figure 5.2: Proposed feedback-based model predictive control architecture. The goal of
using the historical NOX and work data in the controller is to avert errors caused by model
and preview uncertainty.

injection timing, boost setpoints, exhaust gas recirculation) the optimization problem grows
quickly with control steps and preview duration. Relying on modeled values for constraints
requires formulations need to be inherently conservative to avoid noise factor issues.

To address the challenges posed by stricter transient testing, this work presents a
novel MPC framework that uses engine speed and load preview along with onboard NOX

measurements to control the engine for best fuel economy subject to emission constraints.
To reduce simulation computational complexity, the controller output is a decision variable
selecting between two engine calibrations (which set injection, EGR, boost, etc. setpoints),
one which prioritizes reduced fuel consumption at the expense of increased NOX emissions,
and one which prioritizes reduced NOX emissions and increased exhaust heating at the
expense of increased fuel consumption. Steady-state mapping data from each calibration is
used to build empirical models to simulate the aftertreatment system to estimate NOX and
fuel consumption. The reduced model complexity enables long preview horizons, which
is helpful when trying to optimize aftertreatment thermal dynamics that have long time
constants. The emission constraints are enforced using a time-based moving window, and
the use of historical NOX sensor feedback and engine power values to set optimization
problem states averts issues caused by modeling error and unmodeled phenomena. The
proposed structure is shown in Figure 5.2.
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5.2 Model Structure

A model for a MY2017 Ford F-250 Super Duty truck with a 6.7L V8 PowerStroke Diesel
engine was developed that uses the engine speed and load to estimate fuel consumption
and tailpipe NOX emissions over driving maneuvers of interest. The model consists of
steady-state engine data maps for the two calibrations, an SCR NOX conversion efficiency
model, and an aftertreatment thermal model. In this work, it is assumed that GPS route
preview data (from an onboard GPS unit, or fleet logistics software) for a vehicle is used
to estimate a future speed and road grade trajectory. That trajectory would be passed to
a vehicle longitudinal model to estimate the required engine speed and load to follow the
estimated trajectory. Examples of vehicle longitudinal modeling can be found in [53, 54].
For this work, it is assumed that the speed and load preview trajectory is directly available.

5.2.1 Regression-based Models

Fuel mass flowrate, ṁ f uel , exhaust mass flowrate, ṁexh, turbocharger outlet temperature, T4,
and feedgas NOX mass flowrate, ṁNOx were calculated using look-up tables as a function
of engine speed, N, engine load, τ , and the desired calibration, u. The look-up tables were
generated using steady-state engine mapping data. Let u = 0 denote when the engine is
running the low BSFC (fuel efficient) but high BSNOX calibration, and u = 1 denote when
the engine is running the high BSFC, low BSNOX, increased exhaust heating calibration.

[
ṁ f uel, ṁexh,T4, ṁNOx

]
= f (N,τ,u) (5.1)

Figure 5.3 shows the steady-state benefits of running in the low BSNOX calibration for
exhaust temperature, fuel consumption, and NOX emission rate as a function of normalized
engine speed and torque. Note the 20% increase in turbocharger outlet temperature and
100% reduction in NOX emissions in the middle of the speed-load map. These calibration
maps were based on existing controls strategies, and so they do not perfectly adhere to the
ideal calibration difference guidelines. A production implementation would likely include
investing more time designing calibrations around the proposed optimization structure.

The SCR NOX conversion efficiency, ηSCR, is calculated using the SCR brick temper-
ature, Tbrick,SCR [48]. The function is plotted as a function of normalized temperature in
Figure 5.4. T0 corresponds to the temperature at which ηTSCR is maximized, and is used for
normalizing the other temperature traces in this paper. The conversion efficiency is used to
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calculate the mass flowrate of NOX exiting the tailpipe, ṁNOx,T P.

ṁNOx,T P =
(
1−ηSCR

(
Tbrick,SCR

))
· ṁNOx (5.2)

Figure 5.3: Surface plot highlighting exhaust temperature, fuel economy, and NOX
differences between calibrations (normalized, xu=1−xu=0

xu=0
). Blue indicates improvement.
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Figure 5.4: SCR NOX conversion efficiency as a function of temperature. At sufficiently
high temperatures efficiency degrades, forming an optimal operating range.
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5.2.2 Aftertreatment thermal dynamics

The SCR conversion efficiency is estimated using a thermal model of the aftertreatment
system and the relationship shown in Figure 5.4. The model consists of transport delay
and lumped thermal mass sub-models for the exhaust downpipe (pipe from turbocharger to
DOC), DOC catalyst, and SCR catalyst. The model structure assumes the aftertreatment
configuration presented in Figure 5.1, commonly used on medium-duty diesel vehicles -
DOC, followed by SCR, followed by the DPF. The thermal dynamics of the DPF are not
modeled as they do not impact SCR NOX conversion.

Based on literature and experimental data, temperature transport delay models were
used to account for the time it can take for exhaust gas and heat to flow through the
aftertreatment system components, shown in Equations (5.3) and (5.4) [55]. The subscript
i represents the component of interest (downpipe, DOC, SCR), Tgas,delayed-in,i is a time-
delayed version of the original temperature trace, Tgas,in,i is the unshifted temperature trace,
∆τdelay,i is the delay time, ṁexh is the mass flowrate of exhaust, and Li is the component
delay constant that captures the component length/size impact on thermal delays.

Tgas,delayed-in,i (t) = Tgas,in,i
(
t−∆τdelay,i

)
(5.3)∫ t

t−∆τdelay,i

ṁexh ds = Li (5.4)

The equations for the generic lumped thermal mass models used are shown in Equa-
tions (5.5)-(5.6). Where Tgas,out,i is the gas outlet temperature of the component, Cp,g is
the specific heat of the exhaust gas, (A ·∆x)i represents the volume of the component (area
times length), (h1a1)i is a lumped term consisting of the convective heat transfer coefficient
and surface area for the interior of the component (heat transfer between brick and exhaust
gas), (h2a2)i is a lumped term consisting of the convective heat transfer coefficient and
component surface area for the exterior of the component (heat transfer between brick and
ambient air), Tbrick,i is the temperature of the brick, Tamb is the ambient temperature, and(
mbrick · cp,brick

)
i is the thermal capacity of the brick [26, 55, 56].

Tgas,out,i =

ṁexh·Cp,g
(A·∆x)i

·Tin,delayed−in,i +(h1a1)i ·Tbrick,i

(h1a1)i +
ṁexh·Cp,g
(A·∆x)i

(5.5)

dTbrick,i

dt
=

(h1a1)i
(
Tgas,out,i−Tbrick,i

)
− (h2a2)i

(
Tbrick,i−Tamb

)(
mbrick · cp,brick

)
i

(5.6)
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Figure 5.5: Thermal model validation using experimental low-speed, low-load vehicle data.
The thermal models were tuned using this experimental data shown in black. Plotted values
are normalized (speed / load by max values; temperatures by T0).

The model parameters were identified using a combination of component measurements,
literature values, and least-squares tuning using experimental data. The experimental
tuning data was collected using a warmed-up test vehicle conducting low-load driving
maneuvers with long idles that are interesting from a thermal management and emissions
standpoint. Figure 5.5 shows the thermal model for the low load maneuvers, showing
excellent agreement between the experimental results and model predictions.

To ensure model overfitting did not occur, it was also checked against experimental
FTP-72 cycle data where the engine and aftertreatment system are initially at ambient
temperature, shown in Figure 5.6. The model mismatch during the first 400 seconds of
the test is to be expected, as there are cold-start dynamics present that are not properly
addressed in the chosen modeling scheme. However, after about 400 seconds, the
model agrees well for all three aftertreatment components without any adjustment of the
parameters identified using the low-load vehicle data.
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Figure 5.6: Thermal model results over Federal Test Procedure 72 drive cycle (FTP-72).
The model tuned using data presented in Figure 5.5 was used directly, without retuning.

Figure 5.7: Model structure used in MPC and SIL implementations. Note that u denotes
the calibration selection variable.

5.3 Optimization Structure

The goal of the work is to use receding horizon model predictive control (MPC) with
historical measurement feedback to minimize fuel consumption subject to a tailpipe
emissions constraint by selecting one of two engine calibrations for the given control
interval. This requires forming an optimization problem, ideally one that can be solved
in real-time. Figure 5.2 shows the structure of the proposed MPC architecture, leveraging
the previously discussed regression and dynamic models. Table 5.1 contains details on both
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Table 5.1: MPC and SIL configuration summary.

MPC Model Integration Method RK4
MPC Model Time-step 1.0 s

Control Steps in Preview Horizon (Nc) 20
Preview Horizon Duration 600 s

BSNOX Window Length (NBSNOX) 10 Steps / 300 s
BSNOX History Window (NBSNOX,H) 4 Steps / 120 s

SIL Model Integration Method RKDP (ODE45)
SIL Model Time-step 0.1 s

the MPC and Software-in-the-Loop (SIL) settings. One modification to the models used in
the optimization function is that the thermal transport delay effects are ignored; instead, the
thermal models are re-tuned without the delay to reduce the complexity in the optimization.
Note that when performing the simulation experiments, the full model with delays is used
in the SIL simulations.

The states for the optimization model include the thermal states of the aftertreatment
system (Tbrick,DP,Tbrick,DOC,Tbrick,SCR), the fuel consumed (m f uel), the amount of tailpipe
NOX emitted (mT PNOx), and the work produced by the engine (W ).

x =
[
Tbrick,DP,Tbrick,DOC,Tbrick,SCR,m f uel,mT PNOx ,W

]T (5.7)

The cost function is the total fuel consumed (fuel consumed at end of horizon, m f uel(N)),
solved by finding the optimal calibration sequence, u(k):

J = Minimize
{u(k)∈{0,1}}N

k=0

m f uel(N) (5.8)

Table 5.2: Example of windowed constraint structure using parameters listed in Table 5.1.

Enforcement Range z a b
-120 seconds→ 180 seconds 1 -4 6
-90 seconds→ 210 seconds 2 -3 7

... ... ... ...
270 seconds→ 570 seconds 14 9 19
300 seconds→ 600 seconds 15 10 20
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subject to a sliding time-windowed emissions constraint with window length NBSNOX ,
sliding from the start of the history length, NBSNOX,hist , over the entire preview horizon,
Nc. Let mT PNOx,wind and Wwind denote the NOX and work over a constraint window, which
can be calculated by subtracting state values at discrete points in the horizon, as shown in
Equations (5.9)-(5.10).

mT PNOx,wind[z] = mT PNOx [a]−mT PNOx [b] (5.9)

Wwind[z] =W [a]−W [b] (5.10)

(5.11)

Note that z is an index for referring to individual windows, and a and b represent indices
for time in both the historical window and preview horizon; a,b = 0 represents the current
state, whereas a,b < 0 reference points in the NOX/work history window and a,b > 0
reference points in the preview horizon. If only reference points in the preview horizon are
used, model or preview uncertainties could result in excess emissions and non-compliance.
Including historical data allows the controller to adjust future actions due to historical
behavior. Example values for z, a, and b based on the MPC configuration presented in
Table 5.1 are shown in Table 5.2. With the windowed NOX and work data available, it is
possible to calculate the windowed BSNOX values for each window z:

BSNOx,wind[z] =
mT PNOx,wind[z]

Wwind[z]
(5.12)

and constrain them to be less than some target value times a safety factor (< 1) to provide
further insurance against issues poised by noise factors, model errors, or preview errors:

BSNOx,wind[z]≤ BSNOx,limit ·SFBSNOx

∀z ∈
[
1,NBSNOX +NBSNOX,H

]
∩Z. (5.13)

In practice, the safety factor used could be a function of the legislative conformity factor
applied to in-unit testing. Note that BSNOx,wind[z] is a nonlinear function of tailpipe NOX

and engine work due to the division operation.
The decision variable output and nonlinear constraint means the optimization problem

as presented is a Mixed-Integer Nonlinear Programming (MINLP) problem. The problem
was coded using CasADi, a modular optimization framework.
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5.3.1 Simplification of mixed-integer problem

Mixed-integer optimizations using branch-and-bound techniques are computationally ex-
pensive as they involve repeatedly solving relaxations of the original optimization problem
while trying to force variables declared discrete to integer values. Attempts to solve
the originally formed mixed-integer nonlinear programming problem for long preview
horizons using BONMIN, an open-source MINLP solver, yielded solution times in some
cases exceeding an hour for a single control step (30 seconds) [57].

To avoid long solution times that would render real-time control infeasible, the problem
was instead solved as a constrained continuous optimization problem using IPOPT, where
the input interpolates between the results of the two proposed calibrations. The reduction in
complexity resulted in solution times that could enable real-time control (< 5 seconds for
30 second control interval). The nonlinear and non-monotonic response behavior of diesel
engines to control inputs means that commanding interpolated actuator values between
the two calibrations could result in undesirable behavior. To avoid this, the continuous
solution (ucont) is converted back to a discrete decision variable (calibration choice) by
either rounding the value (to 0 when ucont < 0.5 or 1 when ucont ≥ 0.5) or converting it
to a PWM signal (with frequency proportional to control interval time, and duty cycle
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Figure 5.8: Simulation experiment exploring simplification techniques of MINLP. In this
figure, the BSNOX target was 0.150 g/kWh. Note the 2 presented simplification techniques
(rounding, PWM) create comparable BSNOX profiles.
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proportional to the continuous fractional command value).
These techniques were evaluated in simulation by performing a terminal BSNOX

trajectory optimization over a 600 second preview trajectory, and then applying the
resulting control sequence to the SIL model. In this instance, the optimization was only
performed once; in practice, the optimization would be conducted every 30 seconds in
a receding horizon fashion. Both techniques recovered similar results compared to the
continuous problem in simulation, as shown in Figure 5.8 and Table 5.3. Note that in some
instances the PWM and rounding solutions exceeded the BSNOX limit; when properly
integrated in the receding horizon feedback structure, the iterative updates with NOX/work
historical feedback should correct errors induced by the actuator conversion scheme and
model uncertainty. Although the PWM scheme results in emission values that are closer
to the continuous solution, from a pragmatic perspective it is less desirable because it can
command rapid changes in actuator setpoints that could cause other undesirable behaviors;
adjustments to the MPC problem formulation would be needed to make the PWM option
more attractive. The results in this paper were generated using the rounding scheme, where
ucont ≥ 0.5→ u = 1 and ucont < 0.5→ u = 0.

Table 5.3: MIP Conversion Results

Control Type BSNOX Limit [g/kWh]
0.150 0.175 0.200

Continuous 0.149 0.174 0.199
Rounding 0.151 0.181 0.202

PWM 0.147 0.173 0.200

5.4 Optimization Results

Experimental vehicle driving data was used to synthesize a drive-cycle for controller
evaluation. It consists of a repeated 300 second low-speed, low-load driving maneuver
interspersed with idle sequences of increasing length. Nominal simulations of the
trajectory, without control, were run and a BSNOX setpoint for the closed-loop controller
was selected based on an achievable target. Closed-loop SIL control simulations were
performed while adding noise factors to evaluate robustness. Table 5.4 summarizes the
simulation tests conducted.

Figure 5.9 presents the closed-loop SIL data for the described simulation experiments.
For the closed-loop control cases, the BSNOx,limit was set to 0.10 g/kWh and the safety
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Table 5.4: Numerical experiment description

Legend Name Description
Nominal No control

CL-Nominal
Closed-loop control

simulation; no noise factors

CL-FGNOx
+20%

Closed-loop control
simulation; FGNOx

increased 20%; model
unaware of increase

CL-TempOfset
Closed-loop control

simulation; Temperature
states offset +50◦ Celsius
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Figure 5.9: Software-in-the-loop MPC controller results for three test cases, which are
described in Table 5.4.

factor, SFBSNOx , was set to 1 to evaluate the tracking performance of the controller
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without the safety factor. Note that initially, the nominal trajectory (purple) is very close
to the prescribed limit, but grows in magnitude as the idle periods grow larger. This
can be observed in the closed-loop trial actuator profiles; the amount of time spent in
calibration 1 increases further along in the cycle. The yellow line, trial CL-FGNOx
+20%, demonstrates the benefits of the feedback architecture; even with a unmodeled
20% increase in FGNOX emissions, the historical NOX data informs the controller of
increased NOX emissions and it responds accordingly. Even with the safety factor set
to one, the controller does an excellent job regulating the windowed BSNOX to the target
value in the presence of temperature and emission noise factors. Note that in the presented
drive-cycle, aftertreatment temperatures are less of a concern; in fact, exhaust mass flow
differences between the calibrations during the idle phase cause the exhaust temperatures
for the nominal trajectory to be higher until the engine operates in the portion of the map
with the T4 benefit. Instead, the optimization exploits the dramatic reduction in FGNOX by
running in calibration 1.

5.5 Summary and Conclusions

A novel feedback-oriented model predictive control architecture for diesel engines is
presented to address compliance and fuel economy challenges poised by BSNOX emission
regulation changes. In contrast to existing solutions in literature, the MPC model is
computationally simpler by using regression maps, first order thermal models, and a
single discrete control input corresponding to the desired engine calibration, one which
has better fuel economy but increased NOX emissions, and another which has decreased
NOX emissions, increased fuel consumption, and increased exhaust temperatures.

To avoid a computationally expensive MINLP problem, techniques for converting
output from a simpler continuous NLP back to a discrete (”mixed-integer”) solution are
presented. The simplification adds more error to the system, however issues posed by
model error, preview uncertainty, and optimization problem conversion are addressed by
using historical BSNOX feedback as measured by the engine. Software-in-the-Loop (SIL)
results show that the controller has the ability to track a windowed emissions target even
when using the adapted actuator signal, and appropriately responds to noise factors such as
aftertreatment temperatures and emission rates.
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CHAPTER 6

Conclusions and Future Work

The work presented in this dissertation focused on using advanced control and feedback
strategies to address two challenges facing diesel engine emissions compliance: cold-start
emissions and real-world driving emissions.

6.1 Challenge 1: Cold-Start Diesel Emissions

The first challenge was cold-start diesel engine emissions and was approached from
the perspective of trying to improve existing engine-based exhaust heating methods that
are used to light-off aftertreatment systems. In Chapter 2, literature and experiments
highlighted that the magnitude at which these methods can be used are restricted by
their potential impacts on combustion variability (NVH consequences). To explore this
restriction, an actuator that can be used to increase engine-based exhaust heating, injection
timing, was swept at a variety of speed and load conditions to understand the impacts
on engine behaviors, including combustion variability, phasing, exhaust temperatures,
and emissions. Based on the experimental observations, a novel combustion variance
controller using feedback from an in-cylinder pressure sensor was proposed. By controlling
combustion variance to a target setpoint, the maximum amount of phasing retard based
exhaust heating can be generated for a given acceptable variability level. A portion of the
experimental data was used to build a stochastic control-oriented engine model to enable
controller design and offline simulation.

Literature was surveyed to identify previous applications of closed-loop variance
control to aid in controller design. No such literature was identified, and so detailed
controls and statistical analysis were used to develop a theoretical understanding presented
in Chapter 3. Windowed estimator analysis was performed under varying assumptions
observed during engine operation, including zero-mean processes (steady-state operation)
and varying-mean sequence processes (transient operation). Detrending was identified as a
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technique which could enable combustion variance estimation, even during intense engine
transients. From a controls perspective, the analysis revealed that linear controller design
and analysis principles could be used. Numerical experiments were used to verify the
theoretical observations and to also understand the implications of closed-loop variance
control.

The results from Chapter 2 and Chapter 3 were combined to design feedback combus-
tion variance controllers presented in Chapter 4. Techniques for generating online variance
estimates were shown for both a fully-indicated engine, as well as an engine limited to a
single cylinder pressure transducer, even during transient operation, critical for real-world
applicability. Initial testing focused on steady-state conditions, exploring the impact of
feedback window size and controller gain on closed-loop performance. Long-term steady-
state testing was also conducted, which demonstrated the controller’s ability to adapt to
long time-scale combustion variability dynamics. The controller was then tested at transient
conditions, where it continued to function and generated the desired exhaust temperature
benefit while limiting the variability around the target setpoint.

To ensure real-world functionality, the control setup was adapted to a production test
vehicle using production-intent in-cylinder pressure sensors. Vehicle testing demonstrated
the controller’s general ability to function during real-world driving conditions, as well as
the specific ability to adapt to noise factors like fuel type. Test equipment issues limited
the ability to get a comprehensive picture of the controller impacts on a FTP-75 emission
cycle, but post-processing of the available data showed that the controller could actually
reduce hydrocarbon emissions, decrease light-off times, and improve estimated average
SCR efficiency. An expected fuel economy penalty was observed, as well as an unexpected
feedgas NOX penalty that could be explained by the testing procedure.

6.1.1 Future Work

The presented work focused on a control architecture only using one actuator for variability
control, injection timing retard, where the injections that were adjusted were done so
uniformly. Referring back to Figure 2.2, there are many other actuators that could be
integrated into the control structure. EGR could be used to enable further feedgas NOX

reductions and potentially reduce pumping work to reduce the fuel economy impact at
the cost of a combustion variability increase. Running the controller alongside a cylinder
deactivation or early exhaust valve opening strategy could enable taking advantage of the
improved exhaust temperature increase opportunities when at higher cylinder loads shown
in Figure 2.13. Finally, independent injection control could lead to heat-release shaping,
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where the fuel combustion profile could be controlled to maximize efficient exhaust heating
while targeting an acceptable variability level.

There are also additional opportunities from a controller tuning/management perspec-
tive. A more aggressive controller could drive exhaust temperatures higher and enable
faster aftertreatment heating, but this would necessarily drive up heat transfer losses from
exhaust components to ambient, harmful from a fuel consumption perspective. A solution
may involve using an exhaust plumbing thermal observer, which adjusts the controller
usage to constrain exhaust plumbing surface temps to avoid excessive heat losses to
ambient air. The observed cycle performance could likely be further improved by properly
integrating the controller into the rest of the engine control structure and combining other
control techniques. For example, upon confirmation of DOC light-off, post-injections
timed to generate exhaust heat could instead be timed to generate feedgas hydrocarbons,
which could be oxidized across the DOC for heating of the SCR. By generating the heat
at the DOC instead of the engine, un-needed heating of the exhaust plumbing between the
turbo and aftertreatment system is avoided.

6.2 Challenge 2: Real-world Driving Diesel Emissions

The second challenge, real-world driving emissions, was approached from a vehicle
connectivity and optimization perspective. A review of current state-of-the-art diesel
emission MPC approaches revealed that they tend to leverage high-fidelity engine airpath
and emission formation models to properly enforce emission constraints. A disadvantage
of this approach is the computational complexity, which can limit the maximum preview
horizon, as well as relying on output from emission models that could be sensitive to a
variety of noise factors. These formulations also tend to focus on instantaneous NOX

emissions rates, rather than the accumulated amounts which are subject to emission
standards in the US (NTE) and EU (MAW).

Chapter 5 presented a novel feedback-oriented model predictive control architecture
for diesel engines to address compliance and fuel economy challenges poised by the
evolving BSNOX emission regulation changes involving moving emission windows. The
controller combines route preview information, which could be sourced from a vehicle’s
navigation system, with feedback from an onboard NOX sensor to optimize fuel economy
subject to windowed emission constraints. To enable longer preview times, critical when
managing aftertreatment thermal dynamics, the MPC model is computationally simpler
by using regression maps, first order thermal models, and a single discrete control input
corresponding to the desired engine calibration, one which has better fuel economy but
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increased NOX emissions, and another which has decreased NOX emissions, increased
fuel consumption, and increased exhaust temperatures. The use of feedback was intended
to correct errors created by the modeling simplifications. Software-in-the-Loop (SIL)
experimental results show that the controller has the ability to track a windowed emissions
target, and appropriately respond to noise factors such as aftertreatment temperatures and
emission rate errors.

6.2.1 Future Work

The presented work was limited to SIL testing - immediate future work should include
experimental testing, either using a hardware-in-the-loop setup or vehicle implementation.
Additional work using the current framework could include revisiting engine calibration
design guidelines to take best advantage of the optimization structure.

Changes to the optimization structure could include adding additional calibration
options; for example, a calibration that has a feedgas NOX reduction without an emphasis
on additional exhaust heat. Such a calibration would be useful when the aftertreatment
system is below ideal temperatures, but the preview trajectory includes higher speeds and
loads where exhaust temperature increases are easier to generate.

The simplicity of the presented MPC architecture lends itself to a cloud-based
implementation to avoid increases in onboard vehicle processing power that limit the
feasibility of other techniques. Figure 6.1 shows a proposed cloud-based implementation;
the vehicle would only need to send the vehicle states and destination to the cloud, and in
return receive the simple decision variable at the desired control interval times. Avoiding
the use of time-resolved actuator profiles or calibration setpoints reduces the bandwidth
needed between the vehicle and cloud, making production implementation more feasible
so preview and other forms of data can be used to further drive real-world emission

Figure 6.1: Potential real-world implementation to leverage cloud resources and minimize
onboard vehicle processing power.
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improvements. Such an implementation could also be used to enforce geo-specific BSNOX

restrictions (“Green Zones”), where the controller BSNOX limit is adjusted as the vehicle
travels between urban areas (where NOX reductions are critical due to high concentration
of vehicles) and more rural areas where it will diffuse into the environment with reduced
risk of smog formation.
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