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Abstract 
 

Completely condensed polyhedral silsesquioxanes (SQs), [RSiO1.5]8,10,12, appended with or-

ganic conjugated chromophores can offer high symmetry, high thermal stability, highly red-shifted 

emissions and charge separation compared with the free chromophores, indicating unconventional 

conjugation in the excited state and involving the SQ cages. This dissertation presents the synthesis 

and characterization of unsymmetrical and incomplete SQ cages with organic chromophores as 

well as the SQ-based organic-inorganic hybrid polymers/oligomers with emphasis on the mapping 

structure-property relationships and understanding their unique photophysical properties for po-

tential uses in optoelectrical devices. 

First, this dissertation describes the synthesis of corner-modified, corner-missing, double 

decker closed and open SQs via silylation of the respective silanol phenyl-SQ precursors. Subse-

quent iodination/bromination of the phenyl groups on the cages and then Heck coupling of the 

halogenated derivatives provides stilbene-functionalized SQs where stilbene is a model for conju-

gated chromophore.  

Open SQ cages with ~7 stilbene groups display essentially the same fluoresce behavior as 

found for symmetric closed octa-stilbene functionalized SQs, with absorption ~300 nm and emis-

sion ~410 nm. The red-shifts of ~60 nm in emission relative to the free chromophores demonstrate 

excited-state electronic communication between the 𝜋∗ orbitals of the stilbenes and through the 

cages, which indicates removing a corner or breaking two opposing bridges has little effect on 

LUMO formation. Interestingly, when the cages have only 2 stilbenes attached, they show similar 

absorption and emission to stilbene itself; however, with quite high luminescence quantum yields 

(≥0.7 vs. ≈ 0.07) proving that there is a threshold for the excited state conjugation to occur but also 

demonstrating that the cage does affect photophysical properties nonetheless. 

Organic-inorganic hybrid polymers with SQs in the main chain are prepared via Heck cross 

coupling of di-vinyl functionalized double decker vinylMeSiO[PhSiO1.5]8OSiMevinyl and ladder 

vinylMeSiO[PhSiO1.5]4OSiMevinyl SQs with dibromo-aromatic tethers. Double decker SQ-based 

polymers/oligomers show red-shifted emission from model bis-dimethoxysilyldivinyl-aryl 
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analogs in the range of 50-120 nm, again supporting the electronic communication along the pol-

ymer chain through the SQ cage in the excited state, even with two -(O)2Si siloxane bridges.  

Coincidentally, the non-cage ladder SQs derived polymers/oligomers exhibit even further red-

shifted emission beyond analogous double decker polymers in the range of 20-50 nm, even with 

shorter chain lengths, suggesting more efficient electronic interaction in ladders. In both systems, 

copolymers with biphenyl, terphenyl and stilbene display high photoluminescent quantum yields 

up to 0.8, suggesting potential emitting components in optoelectronic devices.  

Double decker derived terpolymers are synthesized with alternating biphenyl and thiophene 

linkers via stepwise Heck cross-coupling with the goal of shifting emission wavelengths to towards 

the visible coincident with high quantum yields. The resulting terpolymers display emissions at 

430 nm, intermediate between those of the respective copolymers rather than emission from both 

units as would be expected from physical mixtures. This again provides further evidence for ex-

cited-state conjugation along polymer chains and through cages via disiloxane conjugated linkers.  

In addition, the quantum yields of the terpolymers DD-thiophene-DD terphenyl and DD-thio-

phene-DD-stilbene improve from 0.09 for the DD-co-thiophene copolymer to 0.20 and 0.24 re-

spectively, providing successful examples of novel combination of improved quantum yields as 

well as longer-wavelength emission around 480 nm and new opportunities to tailor photophysical 

properties by modifying structures. Lastly, ‘hairy polymers’ are prepared via further functionali-

zation of halogenated phenyl groups to stilbenes on the SQ cages in the main chain of hybrid 

polymers to explore possible 3-dimentional conjugation.



 1 

 Chapter 1. Introduction 
1.1 Project goals and objectives 

Polyhedral oligosilsesquioxanes offer multiple unique properties and have gained increasing 

attention over the past 30 years.1–10 These compounds can be viewed as the hybrid organic-inor-

ganic materials with silicon and oxygen atoms as inorganic cage-like frameworks decorated with 

organic substituents in three dimensional arrangements. These hybrid materials display novel 

properties arising from the combination of these two components, including a robust nature from 

the inorganic frameworks and multiply and selective functionalization of the organic groups at 1-

3 nm length scales. 

Recently, it was found that completely condensed silsesquioxanes decorated with chromo-

phores can interact electronically with conjugated organic substituents in the excited state as evi-

denced by red-shifted emissions with respect to the individual chromophores. Detailed experi-

mental and computational studies of the mechanisms behind such unconventional conjugation sug-

gest cage-centered LUMOs. The objectives of the work described in this dissertation are to explore 

the formation of possible LUMOs in various cage architectures to map structure-property relation-

ships and develop facile and effective routes to tailor their properties by simple modifications for 

different applications. 

1.2 Definitions, structures and nomenclatures of silsesquioxanes 

The term “silsesquioxane (SQ)” refers to a class of Si-O based material with the empirical 

chemical formula, [(RSiO1.5)n], where R can be hydrogen, halogens, or various organic groups 

such as alkyl, alkylene, aryl, arylene, or siloxy groups.7 The term can be broken up into four parts: 

sil- (silicon), -sesqui- (one and a half), -ox- (oxygen), and -ane (hydrocarbon R group), which self-

indicates the 1.5 ratio of the silicon to oxygen atoms. As a result of their unique structures, 

silsesquioxanes have been found to offer novel properties, including high thermal stabilities, oxi-

dation resistance, non-flammability and hydrophobicity, etc.  

Silsesquioxane based materials have been used in various applications such as components in 

polymer nanocomposites, catalysts, models for silica surfaces and heterogeneous catalysts, low-k 
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dielectrics, antimicrobial agents, emissive layers in organic light-emitting diodes (OLEDs) and 

coatings.1,8–24  

In general, silsesquioxanes can be prepared via acid or base-catalyzed hydrolysis and conden-

sation of trifunctional organosilanes, where the functional group X = -Cl, -OH, -OCH3 or -

OCH2CH3 as shown in Scheme 1.1. The synthetic process is easily influenced by multiple exper-

imental factors, such as the nature of R group, X group, the pH, solvent, concentration of starting 

organosilanes, addition rate and quantity of H2O, reaction time, solubility of the product, etc.25 So 

far, a suitable kinetic mechanism has yet to be developed for the complex synthetic process, hence 

no universal protocols have been established. However, the reaction conditions can be tailored to 

favor the formation of specific silsesquioxanes, which results in many published papers and patents 

in recent years.1,3,4,7,26,27  

It is generally found that formation of discrete molecular species is favored at lower concen-

trations, due to lower rates of hydrolysis and hence higher possibilities for intramolecular reactions, 

while polymeric structures form more readily at higher concentrations. Most of the commercial 

activity concerning silsesquioxanes, based on the number of patents, has occurred in three coun-

tries, Japan, United States and Russia. The structures of the final products are interdependent on 

the abovementioned reaction conditions and Figure 1.1 below, which shows the structures of 

silsesquioxanes known in literature.7,25 

 
Scheme 1.1. Acid or base-catalyzed hydrolysis and condensation of trifunctional silane. 

Random structured silsesquioxanes are polymeric and without long-range order28 and are pri-

marily used as coatings or encapsulants in many applications. In contrast, ladder structures, an 

oligomeric form of silsesquioxanes, display regular and recurring structural fragments.7  

The name ladder is self-explanatory, indicating the construction of double-stranded polymers, 

where the two lateral Si-O-Si chains were connected by the O ‘rung’.29 The synthesis of the first 

tricyclic ladder silsesquioxanes was reported by Brown in 196530 and the synthesis of the first 

bicyclic ladder was reported by Shklover in 1980.31 Since then, many groups have attempted to  
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develop synthetic routes as well as the characterization methods for pentacyclic, heptacyclic and 

even nonacyclic ladder silsesquioxanes.32 Due to steric repulsion of the substituents and the flexi-

ble nature of Si-O-Si framework, ladder silsesquioxanes all display intriguing helical structures.32  

 
Figure 1.1. Representative structures of silsesquioxanes. 

Figure 1.2 illustrates the torsion angles of all-isopropyl ladders SQs.33 In general, larger angles  

suggest tighter helical structures and angles of 0o indicate the absence of helicity. The torsion an-

gles of anti-ladder SQs depicted in Figure 1.2 increase up to tricyclic structures while no helicity 

is shown in the pentacyclic ladder SQs due to the center of symmetry. In the case of all-anti ladder 

polysiloxanes, helical structures were also observed in the crystal structures.32,33  

 
Figure 1.2. Torsion angles of all-isopropyl ladder silsesquioxanes. 

Cage silsesquioxanes are completely condensed, closed molecules with an even number n in 

the empirical chemical formula [(RSiO1.5)n]. The smallest existing frame of a cage silsesquioxane 
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is when n = 4 in Figure 1.1, while an example of one of the largest cages with n = 18, was obtained 

by the Calzaferri group in 1990.34  

These compounds are often called polyhedral oligomeric silsesquioxanes or “POSS” trade-

marked by Hybrid Plastics, Inc. They possess well-defined, 3-dimensional nano-structures with 

high degrees of symmetry, robust natures as well as many other interesting properties, as discussed 

further in this chapter.7  

Partial cage structures are defined as incompletely condensed cages containing one or more 

free Si-OH silanol groups. They can serve as important precursors for preparing more complicated 

silsesquioxane systems via condensation reactions. One interesting group of partial cage silsesqui-

oxanes is the double-decker silsesquioxane, a new efficient synthesis of which was discovered by 

the Yoshida group just over a decade ago as shown in Scheme 1.2.35 Other synthetic methods, 

current chemistries and applications of this structure are discussed further just below. 

 
Scheme 1.2. The structure and synthetic route to the tetrasilanol double decker 

phenylsilsesquioxanes. 

Nomenclature conventions for silsesquioxanes are as follows. The IPUAC naming rules are 

complicated and thus not commonly used. Sometimes silsesquioxanes are called spherosiloxanes 

since these cage structures can be considered to be topologically equivalent to spheres.2 Silsesqui-

oxanes are more commonly named using a systematic nomenclature similar to polymer repeat 

units, indicating the substituents on the silicon atoms and the number of silsesquioxane units 

(SiO1.5) in the molecule. As an example, [PhSiO1.5]8 or octaphenylsilsesquioxane, suggests phenyl 

groups attached to the silicon atoms sitting at the corners of an octameric cage.  

Shorthand notations have also been developed and are used commonly in siloxane chemistry,7 

see Figure 1.3. Letters are used to demote the types of silicon and numerical subscripts are used to 

denote the number of these silicon. Optional subscripts can be used to the type of functional groups 
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attached. An “M” unit is referred to a silicon bonded to one oxygen atom, a “D” unit consists of a 

silicon atom bound to two oxygens, a “T” unit silicon is bonded to three oxygen atoms and a ‘Q’ 

unit has a silicon atom bound to four oxygens. Thus, the example earlier, octaphenylsislsesquiox-

ane would be denoted as Ph8T8, with the substituent R group before the description letter. 

 
Figure 1.3. Silsesquioxane nomenclature. 

1.3 Completely condensed silsesquioxanes 

1.3.1 Octa-, deca- and dodeca- polyhedral oligomeric silsesquioxanes 

Among all cage silsesquioxanes, the cubic T8 structure has been studied extensively due to its 

ease of synthesis, cubic symmetry (Oh), a well-defined 3-dimensonal nanostructure to which func-

tional groups can be attached such that they occupy each octant in Cartesian space. Synthetic routes 

providing high yields at reasonable quantities have been described.36–38 Efficient synthetic strate-

gies for T10 and T12 have been discovered recently, such as the fluoride ion catalyzed rearrange-

ment of T8 cages, “T”-resins, or directly from RSi(OEt)3 in THF (tetrahydrofuran), which can 

provide essentially quantitative conversion to mixtures of T10 and T12 with a statistically controlled 

distribution of functionalities.39-41 This synthetic method is attractive because the random-struc-

tured precursors can be used for fluoride-mediated rearrangement reactions, which can be signifi-

cant byproducts of syntheses of the related T8 octamers.39-41 

The T10 is comprised of two distorted-pentagonal cyclosiloxane rings stacked on top of one 

another and connected by oxygen atoms, offering D5h symmetry. The T12 contains four distorted-

pentagonal faces and four distorted square-triangular faces and can have multiple possible sym-

metries, D2d and D6h, with D2d being the most common as indicated by crystallographic analysis.39–

41 These two cage structures allow larger numbers of functional groups than T8 in the same na-

nometer scale. In addition, T10 and T12 may offer improved solubility and processability.39–41 All 

complete cage structures are shown in Figure 1.4. 
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Figure 1.4. Structures of T8,10,12 condensed cage silsesquioxanes. 

The properties required for candidates for nanobuilding blocks are as follows: nanometer di-

mensions, high degrees of symmetry and the potential to add multiple functionalities. Nanosized 

building blocks can be expected to allow assembly of materials at the finest length scales. The high 

degree of symmetry can help decrease the introduction of defects during assembly since lower 

energy will be required for realignment of misaligned components with high symmetry.  

It is also important to be able to append multiple functionalities since it these can be essential 

in bonding with adjacent components to anchor them permanently providing easy access to assem-

bling new materials nm by nm. In addition, the functionalities should also be tunable and easily 

tailored for different purposes. Due to the abovementioned properties, completely condensed 

silsesquioxanes, T8,10,12 can be outstanding candidates as nanobuilding blocks especially T8 cages 

offering cubic symmetry and consisting of orthogonal functional groups localized in separate oc-

tants in Cartesian space as shown in Figure 1.5. Furthermore, the rigid core can be considered as 

a single silica crystal. Consequently, inorganic-organic hybrid cage silsesquioxanes have a much 

more robust nature compared to organic-only materials, with high thermal stabilities, oxidation 

resistance and low flammability.3–5,42,43 

 

 
Figure 1.5. Typical sizes and volume of a T8 silsesquioxane molecule. 
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1.3.2 Octaphenylsilsesquioxane 

Octaphenylsilsesquioxane (OPS) was first synthesized by Olsson in 1958, by hydrolysis of 

phenylchlorosilane (PhSiCl3) in refluxing methanol catalyzed by aqueous HCl. However, the yield 

was only 9%. A number of groups have spent considerable time optimizing OPS reaction synthesis 

conditions ever since.27,44,45 Our group was able to improve yields to > 90%46 by modifying 

Brown’s synthetic method.47 The two-step synthesis involves first ethanolysis of commercially 

available PhSiCl3, followed by hydrolysis and condensation in toluene [either PhSi(OEt)3 or oli-

gomers based on the reaction conditions], using catalytic amounts of KOH using H2O starved 

conditions. 

OPS is obtained as a microcrystalline, white powder with very high thermal stability (up 500 
oC in air).6 However, its utility in the synthesis of nanocomposites is limited due to the fact that it 

decomposes before melting and is poorly soluble in common organic solvents. The solubility and 

reactivity can be improved thereby improving the utility of OPS by functionalizing the phenyl 

rings. 

 
Scheme 1.3. Functionalization of octaphenylsilsesquioxane OPS: (a) iodination, (b) bromina-

tion, (c) Buchwald-Hartwig, (d and i) Sonogashira, (f and j) Suzuki, (g and h) Heck cross-cou-

pling reaction. 

Multiple publications have reported examples of reactions functionalize phenyl groups, espe-

cially electrophilic aromatic substitution.37,48–51 Halogenation followed by catalytic cross-coupling 

using Suzuki, Sonagashira and Heck methods,3,52–55 has become a primary route, see Scheme 1.3. 

For instance, iodination of OPS is easily affected using iodine monochloride (ICl) in 
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dichloromethane at -40 oC in dry-ice bath.36 The para-substituted iodinated OPS preserves the cu-

bic symmetry of the parent OPS material and is highly soluble in common solvents.36,50 

1.3.3 Iodination and bromination of phenylsilsesquioxanes 

A paper by Feher and Budzichowski reports finding silsesquioxane cages offer strong electron-

withdrawing characteristics equivalent to a trifluoromethyl (-CF3) group according to the 13C NMR 

chemical shift data,26 which should lead to electrophilic substitution at the meta position of the 

phenyl rings attached at the cage corners.  

Surprisingly, our group found that iodination and bromination of phenyl silsesquioxanes with-

out catalyst favor para and ortho substituted products respectively.36,56 Even though we have yet 

to identify the mechanism behind para-iodination, the modeling of ortho-bromination done by the 

Kieffer group using first-principles calculations identified the formation of cage centered LUMOs 

that extend out of the cage faces as shown in Figure 1.6,56 and can interact with the incoming Br2 

via hydrogen bonding to the phenyl ortho-hydrogen.  

 
Figure 1.6. Atomic structures and electron density isocontours of T8,10,12 silsesquioxanes.  

Since our original work in this area, it appears that the cage-centered LUMOs seem to form 

often in SQ cages, they have also been found in germasesquioxane cages.57 The generality of cage-

localized LUMOs is a focus of this dissertation.  
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The iodination of phenyl T8,10,12 cages is exclusively > 90% para.36 However, without a catalyst, 

they brominate selectively at the ortho position. The ortho selectivity of phenyl T8,10,12 is 85%, 70% 

and 60% due to the fact that the angle/separation between adjacent phenyls on the cage decreases 

from 90°, 72° and 60° as the cage size increases; thus, reducing Br2 access to the cage face and 

coincidentally the ortho hydrogens.56 Furthermore, the fact that the bromination of OPS occurs in 

dilute dichloromethane without catalyst was also surprising since uncatalyzed bromination of phe-

nyl groups has only been reported to occur with active aromatic systems such as anisoles and 

phenols.58 Finally, if an iron catalyst is used, bromination occurs para.48 

One of the special properties arising from functionalization of halogenated cages via catalytic 

crosscoupling reactions and the presence of cage centered LUMOs is the apparent 3-D conjugation 

with the appended conjugated organics. 

On adding conjugated chromophores to silsesquioxane cages, we find unexpected photophys-

ical properties, Our initial studies used stilbene derivatives as model compounds for these stud-

ies.52,53 Red-shifted emissions of 60-100 nm were observed in various stilbene-functionalized T8 

cages with respect to free stilbene, which can be considered as an indication of semiconducting 

behavior. Modeling also supports electronic communication between stilbene 𝜋∗  orbitals and 

cage-centered LUMOs in the exited state.52,53 Since rigid silsesquioxanes can be decorated with 

organic chromophores in all dimensions and exhibit the rare observation of 3-D conjugation and 

semiconducting properties, they point to new opportunities as tunable highly absorbing/emitting, 

light harvesting materials.  

The synthetic methods outline above can also be used to prepare stilbene functionalized 

silsesquioxanes with partial and open cage structures as discussed in Chapter 3 and 4. 

1.4 Incompletely Condensed Silsesquioxanes 

Incompletely condensed silsesquioxanes possess one or more free Si-OH groups and are very 

useful as building blocks for silsesquioxane-based network solids,59,60 precursors to silsesquiox-

ane-containing polymers,61,62 and silica-supported catalyst,59 etc. In 1997, Feher and co-workers 

developed practical procedures for preparing incomplete condensed frameworks via the controlled 

cleavage of completely condensed polyhedral silsesquioxane frameworks under both acidic and 

basic conditions.59 Motived by this result, various groups have devised facile syntheses of different 

incompletely condensed silsesquioxanes from completely condensed structures. Examples are 

shown in Scheme 1.4. 
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Scheme 1.4 Synthesis of incompletely condensed silsesquioxane derivatives via the hydroly-

sis of completely condensed silsesquioxanes. 

1.4.1 Double decker silsesquioxanes 

The facile synthetic method and the common name for this double deckers (DDs) structure 

was reported by Yoshida’s group.63 The double decker structure is different from T8 with cubic 

symmetry. This open cage consists of two stacked phenylcyclosiloxane ring “decks”. These rings 

are joined by two oxygen bridges. The intermediate tetrasilanol double decker silsesquioxanes can 

be modified easily by reaction with mono- or dichlorosilanes, giving access to di- or tetra-func-

tional DDs as illustrated in Scheme 1.5.62,64 The di- and tetra-functional double decker SQs can be 

obtained in high yield and can serve as precursors for further modification.28 

Before the advent of DD silsesquioxanes, the majority of cage silsesquioxanes did not offer 

cis- and trans-isomeric structures.5,65,66 However, a few earlier studies characterized unexpected 

formation of geometrical cis- and trans-isomers resulting from different orientations of R and R’ 

groups with respect to the Si-O cage core in Scheme 1.5.  
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Scheme 1.5. Reaction routes to di- and tetra-functional double decker silsesquioxanes. 

The two DD isomers are very similar in many respects best distinguished by 29Si NMR spec-

tra.67,68 Lee’s group has reported several examples of successful separation of cis- and trans-iso-

mers derived from DD silsesquioxanes via skillful selection of solvents depending on solubility 

differences between these isomers and fractional crystallization.69,70 

1.4.2 Silsesquioxane-based polymers 

A number of groups have investigated the synthesis and characterization of silsesquioxane-

based polymers as a  method of modifying existing polymeric materials.71–80 Silsesquioxanes are 

found to improve the properties of polymers in many useful ways, such as improved thermal sta-

bility, lower dielectric constants and low flammability.2,4,28 General ways to incorporate silsesqui-

oxanes into polymers to form hybrid materials and nanocomposites are as follows: 

1. Copolymerization of silsesquioxanes and organic monomers with the same or similar func-

tional groups. Silsesquioxanes can be incorporated as pendant groups, terminal groups or 

cross-linkers based on the number of reactive functional groups. 

2. Polymerization of organic monomers in the presence of inert silsesquioxanes, such as alkyl 

decorated silsesquioxanes. In this way silsesquioxanes can be blended in the polymeric 

matrix providing they show some degree of miscibility. 

3. Direct cross-linking between silsesquioxane functional groups without co-polymerization 

to form a 3-dimensional network structure.28 
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Depending on the reaction conditions, silsesquioxanes can form either well-dispersed or ag-

gregated phases in the hybrid polymers and nanocomposites, which in turn affects many physico-

chemical properties of the final materials. Di-functional DD silsesquioxanes give easy access to 

copolymers with silsesquioxanes embedded in the main chain and tetra-functionalized DD 

silsesquioxanes will form cross-linked networks as shown in Scheme 1.6.  

In either case, DD silsesquioxanes are dispersed at a molecular level and can be considered as 

building blocks of hybrid polymers, which predominantly affect the physicochemical characteris-

tics of the resulting materials.28 

 
Scheme 1.6. Di- and tetra-functional double decker silsesquioxanes derived copolymers. 

1.5 Ladder silsesquioxanes 

Ladder silsesquioxanes, also called ladder siloxanes, are comprised of highly ordered, double-

chain structures and can be considered as intermediate between polyhedral silsesquioxanes and 

single-chain linear siloxanes. They have attracted increasing research attention due to their excel-

lent physiochemical properties such as high thermal stability, low dielectric constant, hydrophobi-

city,81 and good film-forming properties.81,82,83 

The regularity of the backbone of ladder-type silsesquioxanes depends greatly on the reaction 

conditions as well as the nature of the substituent at the Si atom.84 Generally the number of struc-

tural defects increases with increasing molecular weight until random structures form.85 A few 

synthetic protocols have been developed recently to ensure the backbone consists of double strands 

of Si and O atoms.86,87 Thus, precursors with weak supramolecular interactions (H-bonding, 𝜋 −

𝜋 stacking, etc.) between silanol and/or template molecules favor the synthesis of well-defined 

ladder silsesquioxanes via stepwise coupling and polycondesation.86  

di-functionalized DD

tetra-functionalized DD

functionalized organic moiety
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In this way, soluble ladder phenyl-silsesquioxanes with triple and even quadruple rings have 

been successfully prepared. 86,88–90 Another method of synthesizing linear ladder silsesquioxanes 

is via condensation of di-siloxanes [RSiX2]2O and cyclotetrasiloxanes [RXSiO]4, where R = Me, 

Ph and X = H, OEt, NCO.91 Condensation polymerization of cis-trans-cis or all-cis of cyclic iso-

cyanates with disilanols92 or polymerization of tetrasilanols93 can yield linear polymers with de-

fined tacticity and high regularity. A series of ladder silsesquioxanes was reported by the Unno 

group using stepwise stereo-controlled condensation of cyclosilanols with chlorosilanes, including 

bi-, tri-, tetra- and pentacyclic ladder silsesquioxanes with an all-anti conformation, nonacyclic 

and heptacyclic ladder silsesquixoane.33,94 

Silsesquioxanes prepared from [RSi(OH)O]4 bear only simple Me or Ph side groups, which 

can be used as pure materials, but offer more utility if functionalized or incorporated with other 

components or polymers via various chemical reactions. Reactive groups such as vinyl, chloropro-

pyl or Si-H can be introduced to ladder silsesquioxanes.87,93 The di-vinyl functionalized ladder 

silsesquioxane used to prepare hybrid polymers was further discussed in the Chapter 6, displaying 

novel semiconducting properties. 

1.6 Photophysical properties of silsesquioxanes 

In general, steady-state Uv-vis and photoluminescence measurements can be applied to char-

acterize the electronic structures and transitions, HOMO-LUMO gaps between ground and excited 

states, intermolecular interactions and dynamic properties of silsesquioxanes on the molecular 

scale.95 Non-linear optical characterization techniques such as two photo absorption and fluores-

cence up-conversion can give additional information about polarizability, transition dipole mo-

ments, energy transfer in the excited state, and fluorescence lifetimes as discussed in more detail 

below. The abovementioned characterization techniques have been used extensively to analyze 

functionalized silsesquioxanes for applications in the field of electronic devices such as photovol-

taics, photonics and light-emitting diodes.96 

The Ossadnik97 and Azinovic95 groups reported the absorption and emission behavior of sev-

eral silsesquioxane cores (RT)8,10,12 [(RSiO1.5)8,10,12] where R=H or alkyl in Figure 1.7a,97 finding 

that the HOMO-LUMO gap of H8T8 is 4.4 eV. This result is unexpected since the hexagonal boron 

nitride, which is considered as a wide bandgap semiconductor, exhibits a bandgap of ~6.0 eV.128 

In addition, absorption and emission in the blue spectral region was observed for all R groups and 

the intensity of fluorescence depends on the ligand electronegativity and cage size, with more 
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electron-rich ligands and larger cage sizes displaying higher fluorescence efficiencies. Figure 

1.7b97 compares the absorption and emission of [ClCH2(CH2)2-SiO1.5]8,10,12 at ~260 nm (4.8 eV) 

and ~387 nm (3.2 eV) respectively. This does not capture the most important discovery of low 

lying LUMO. 

a  b  

Figure 1.7. a. Photoluminescence and absorption of T8 and b. [ClCH2(CH2)2-T]8,10,12 in THF ex-

cited by laser at 325 nm. 

1.6.1 Electron delocalization involving the silsesquioxane core 

Silsesquioxanes with conjugated organic moieties attached might be expected to have smaller 

HOMO-LUMO gaps since their conjugation lengths will be extended allowing their electronic 

interaction with the silsesquioxane core. While an alternate theory is that the silsesquioxane core 

simply acts as an anchor for the organic groups, suggesting that all electronic transitions would be 

localized on the organic groups. 

If this were the case, the photophysical behavior of these materials should be expected to be 

nearly identical to the free chromophores unbound to the core. Considering silsesquioxane cores 

offer electron-withdrawing characteristics comparable to a -CF3 group,26 blue-shifted absorption 

and emission spectra should be observed for conjugated organics attached to the core due to the 

decreased electron density. Indeed, a large number of studies have targeted organic substituents 

conjugated and anchored to the silsesquioxane core with respect to their utility in applications such 

as OLEDs,98 in that the silsesquioxane cores distribute the chromophores in 3D and thus prevent 

𝜋 − 𝜋 stacking that causes quenching of the luminescence to improve the quantum yields.99,100 
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However, numerous papers published recently by several groups show that silsesquioxane 

cores can act as more than just insulating anchors for organic chromophores, especially smaller 

conjugated organic moieties, such as stilbene and biphenyl.52, 101-103 The absorption spectra of these 

molecules are similar to the free unbound molecules due to the absence of the HOMO interactions 

in the ground state, while the emission spectra show significant red-shifts relative to the small 

molecules resembling spectra from more conjugated molecules.52, 101-103 

André et al. reported the photophysical behavior of a series of 4-vinylbiphenyl octa-function-

alized T8 silsesquioxanes in Figure 1.8.101 These molecules exhibit only slightly red-shifted ab-

sorption and emission compared to small model analogs in CH2Cl2, ~10 and ~15 nm respectively. 

Theoretical studies suggest that these slight red-shifts in the photophysical spectra are caused by 

formation of partial electron delocalization from the organic tethers to the silsesquioxane core 

possibly via intramolecular charge-transfer. 

 
Figure 1.8. Vinyl-biphenyl functionalized silsesquioxane cores and their normalized absorption 

(black) and photoluminescence (blue) spectra.  

Another study from the same group on 4’-vinylbiphenyl-3,5-dimethylalcohol substituted T8, 

observes a red-shifted emission of 60 nm from the free model analog in Figure 1.9,102 while only 

a ~7 nm red-shift was observed in absorption.102 The red-shift of 60 nm in the photoluminescence 

of diol compound compared to the small model molecule suggests chromophores on the cage offer 

“longer” conjugation lengths than free individual chromophores. Indeed, Andre et al. attributed 
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this large red-shift to electron-delocalization involving the silsesquioxane core based on their the-

oretical studies. 

 
Figure 1.9. Normalized absorption (empty symbols) and photoluminescence (closed symbols) of 

4’-vinylbiphenyl-3,5-dimethylalcohol functionalized silsesquioxane (blue) and 4’-vinylbiphenyl-

3,5-dimethylalcohol (red).  

Zhen and coworkers used frontier orbital theory to characterize a series of cubic silsesquiox-

anes functionalized with one electron-donating (4-carbazolephenyl) and/or one electron-withdraw-

ing (4-cyanophenyl) group as shown in Figure 1.10.103 Their calculations found that the HOMO-

LUMO gap is reduced to 3.70 eV, close to Ossadnik’s result of 4.4 eV and corresponding to the 

energy of near violet light, with both electron-donating and electron-withdrawing groups attached 

to the silsesquioxane core.  

 
Figure 1.10. Silsesquioxane molecule with electron-donating 4-carbazolephenyl group (blue) 

and electron-withdrawing 4-cyanophenyl group (red).103 
The authors offer a similar conclusion, that the silsesquioxane core cannot be considered 

simply as a non-conjugated moiety. They suggest electron delocalization occurs involving the 

Si O

O

Si SiO

Si O Si

O

Si SiO

O
O

OO

H

H

H

H

H

H

Si

O

O

CN

N



 17 

organic groups and the silsesquioxane core with the silsesquioxane core acting as an electron ac-

ceptor. This concept was also explored by our group using a new set of stilbene-substituted 

silsesquioxanes derivatives and is discussed further below. 

The first studies done by our group on the photophysical behavior of silsesquioxanes explored 

stilbene derivatives synthesized both from [o-BrxPhSiO1.5]8 and [p-IPhSiO1.5]8.52 Compared to the 

molecular stilbenes, both ortho and para octa-stilbene substituted T8 exhibit slight red-shifts of ~5 

nm in absorption despite the CF3-characteristic electronic-withdrawing nature of the SQ cage 

while emission was red-shifted by ~60 nm, indicating electron delocalization between stilbene 

tethers and the cage core, similar to what was observed by other groups as discussed above.  

Particularly, stilbene-functionalized silsesquioxanes are of great interest due to their robust 

nature, ease of synthesis, but especially because they serve as models of phenylene-vinylene pol-

ymers known to be excellent blue emitters, but suffering from very poor solubility.5 By creating 

3-D analogs, we hoped to make soluble analogs. 

Figure 1.1152 compares the absorption and photoluminescence spectra of the [o-BrxPhSiO1.5]8 

and [p-IPhSiO1.5]8 derived o- and p-methylstilbene silsesquioxanes to that of p-methylstilbene. 

 
Figure 1.11. Absorption and photoluminescence comparison of ortho and para (o/p)-MeStilbene 

functionalized silsesquioxanes to p-MeStilbene in THF.  

Collaboration with the Ugo group provided access to a set of model compounds including 

dimethylaminostilbene-functionalized siloxane and cyclosiloxane molecules that are equivalent to 
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corner units and halves of the cubic silsesquioxane molecules as shown in Figure 1.12,52 respec-

tively.52 By comparing the photophysical behavior of these molecules along with the octa- substi-

tuted silsesquioxane analog allowed us to assess the degree of conjugation between the organic 

moieties and different numbers of silsesquioxane units. 

 
Figure 1.12. (a) Me2NStilbene-corner, (b) Me2NStilbene-half, and (c) Me2NStilbene-full.  

The absorption and emission spectra of the “corner” and “half’ molecules in THF and CH2Cl2 

are basically the same, while those of the full cage molecules are slightly red-shifted by ~5 and 10 

nm for absorption and emission respectively. These molecules all show low photoluminescence 

quantum yields and structureless emission spectra, indicating charge-transfer (CT) processes. This 

conclusion was supported by solvent studies showing 15-25 nm red-shifted absorption and emis-

sions in the more polar solvent mixture of 20% THF/80% CH3CN which stabilizes the CT excited 

state. 

Table 1.1.Photoluminescence quantum yields and two-photon absorption properties of silsesqui-
oxane derivatives. 

 TPA-δ (GM) δ/moiety 
(GM) 

ΦF(-) 

MeStil8T8 11 1.2 0.06 
Me2NStil-corner 12 12 0.08 

Me2NStil-half 30 7.5 0.09 
Me2NStil8T8 211 26 0.03 
Stilvinyl8T8 25 3 0.36 

MeOStilvinyl8T8 110 14 0.12 
NH2Stilvinyl8T8 810 101 0.05 

The photoluminescence quantum yields (ΦF) are 6% for the “corner” molecule, 8% for the 

“half’, and 3% for the “full cage”. Two-photon absorption (TPA) studies found that the TPA cross-

sections with the “corner” molecule ≈ 12 GM/moiety, the “half” ≈ 8 GM/moiety, while the “full 

cage” ≈ 26 GM/moiety, as shown in Table 1.1.52 If these molecules were to display identical CT 

characteristics, they should also exhibit identical TPA cross-sections/moiety. Considering that the 
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“full cage” has the lowest photoluminescence quantum yield and the highest TPA cross-sec-

tion/moiety can be explained by the fact that the “full cage” has the greatest CT characteristics 

among the three. The influence of the silsesquioxane cage core as a whole on the photophysical 

behavior of the molecule is more than the sum of the eight SiO1.5 fragments. 

1.6.2 Electron delocalization in beads-on-a-chain polymers 

Our group has also developed synthetic routes to silsesquioxane-based “beads on a chain” 

(BoC) polymers/oligomers with 1,4-divinylbenzene linkers between deca- and dodecameric 

silsesquioxane cages as shown in Figure 1.13.104 A model compound was also prepared with -

Si(OEt)3 end-caps to simulate the cage corners of the BoC oligomers. Figure 1.13 compares ab-

sorption and photoluminescence of BoC and the model compound. Both show similar absorption 

maxima at ~260 nm while the emission maximum for the BoC oligomers is red-shifted to 386 nm 

from that of the model compound at 326 nm. These results imply that the extension of conjugation 

length in BoC by connecting the silsesquioxane cages with conjugated bridges and electron delo-

calization in the silsesquioxane cages in the excited state. This also indicates T10,12 offer similar 

semi-conducting behavior equivalent to T8. 

 
Figure 1.13. Absorption and emission of T10,12-based BoC oligomer and -Si(OEt)3 end-capped 

model compounds.  

Coughlin et al. coincidentally have reported similar effects for ortho-linked carborane-polyflu-

orene copolymers with significantly red-shifted photoluminescence from a fluorene dimer, how-

ever these shifts are not observed in para-carborane copolymers,105–107 which implies that potential 
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CT interactions occur on the carborane cage face as discussed above for SQs. This unique photo-

physical behavior of silsesquioxanes has opened up a whole new class of materials, discussed 

further in this dissertation. 

1.6.3 Theoretical studies 

The modeling work in Chapter 3 and 4 was done by Jungsuttiwong group and the modeling in 

Chapter 5 and 6 were done in both Jungsuttiwong and the Kieffer’s groups in aid to the work 

presented. Previous modeling studies of stilbene-functionalized silsesquioxanes reveal that the 

HOMO of p-stilbene8T8 lies on the 𝜋-state of stilbene moieties and the LUMO is comprised of 

interactions between Si atoms and the 𝜋*-state of the stilbene moieties. The HOMO-LUMO en-

ergy gap of p-stilbene8T8 is 2.6 eV, while the gap between the HOMO and the molecular orbital 

inside the silsesquioxane core (“core MO”) is 4.2 eV. However, if we consider the 1.6 eV differ-

ence found for H8T8 silsesquioxane between calculation and experiment (4.4 eV and 6.0 eV re-

spectively),95,97,108–110 the energy gap between HOMO and core MO could be reduced to 2.6 eV, 

approximately the same as the stilbene-based bandgap and thus allowing for the possibility of 

stilbene-cage interactions. This offers further evidence for electron delocalization involving the 

silsesquioxane core to the extent that there is a possibility of 3-D conjugation through the core.  

Table 1.2. Density functional theoretical (DFT) HOMO-LUMO calculations for selected 
silsesquioxane molecules.  

(eV) H8T8 Ph8T8 StilSi(OSiMe3)3a Stil1T8b Stil8T8 
HOMO -7.519 -5.529 -5.165 -5.466 -4.519 

Core-MO -0.541 -0.035 -0.213 -0.406 -0.293 
Organic-MO  -0.865 -2.461 -2.767 -1.906 

Core-gap 6.978 5.564 4.95 5.056 4.227 
Organic-gap  4.664 2.70 2.695 2.613 

a Stilbene-functionalized “corner” molecule. b Silsesquioxane T8 cage with 1 stilbene group and 7 H atoms. 

Calzaferri’s group also reported similar interactions in theoretical studies of octavinyl-

silsesquioxanes (vinyl8T8) with naphthyl and biphenyl groups attached, displaying behavior rang-

ing from insulating to conducting.110–112 This result implied that the conjugation could be “3-D” 

along the edges of the cage rather than through the cage, offering an argument for charge delocal-

ization throughout the cage system and a possible explanation for the red-shifts observed in emis-

sion. 
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1.6.4 Photoluminescence quantum yields 

The photoluminescence quantum yields (Φ) are simply the total number of emitted photons 

which escape a bulk sample divided by the total number of absorbed photons.113 It is an essential 

parameter that allows assessment of the sensitivity of a proposed fluorimetric determination of 

materials.114 Maximizing the external quantum efficiency is usually the motivation driving re-

search in electro-luminescent devices, such as organic,115 perovskite,116 or quantum dot LEDs.117 

Quantum yields up to 2 are theoretically possible in this specific case.118 Compounds with the 

highest quantum yields, such as rhodamines (Φ of rhodamine 6 G in ethanol = 0.94),119 exhibit the 

brightest emissions. However, substances with quantum yields of 0.10 can still be considered to 

be quite fluorescent.120 Several of our silsesquioxane-based compounds exhibit quantum yields in 

the range of 0.40 to 0.85, as further discussed in Chapters 5 and 6. 

Various ways have been used to determine the quantum yield. One method that is frequently 

used for solutions is by comparing the luminescence of the molecule of investigation to the one of 

a known standard.121,122 However, there are many experimental limitations to the method, includ-

ing the small number of standards available, the accuracy of the standard yield value, differences 

in refractive index, polarization effects, differences in wavelength response of monochromators 

and detectors and inner-filter effects.119  

An alternate method directly measures the number of absorbed photons and the number of 

emitted photons without comparing to a second material. This method was introduced by de Mello 

et al. in 1997,123 with the basic principle published two years earlier from the same group.124 This 

technique is widely used currently and also tested for solutions.125 In contrast to the comparative 

method, the direct determination of the quantum yield is fast and does not rely on a known standard. 

In this approach, the quantum is given by  

Φ = "!"($)&('&()"#$%($)
)&'(%)($)(

 Equation 1.1 

with 

𝛼 = )#$%($)&)!"($)
)#$%($)

  Equation 1.2 

𝑋*+,-.(𝜆) is the integrated excitation profile with an empty integrating sphere. α is the ab-

sorptance, the fraction of light absorbed, equal to one minus the transmittance by IUPAC definition. 

α is measured by the integrated excitation bands, i.e. the emission signal measured across the ex-

citation wavelength (±5 nm), for two positions of the sample as follows: 𝑋/0(𝜆) is the integrated 
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excitation when the sample lies directly in the excitation path and 𝑋12-(𝜆) is the integrated exci-

tation when the excitation light first hits the sphere wall.125 𝐸/0(𝜆) and 𝐸12-(𝜆) are the integrated 

emission(s) as a result of direct excitation of the sample (sample IN) and secondary excitation 

(sample OUT) respectively. The secondary emission comes from the sample excited by the exci-

tation light reflected from the integrating sphere walls. 

The experimental setup is shown in Figure 1.14,125 consisting of an excitation source, which 

can be a LED or laser.125 The light hits the luminescent sample located within an integrating sphere. 

The integrating sphere is a hollow sphere coated with a diffusely reflecting material on the inside. 

The flux received at the exit port or an aperture in the sphere is proportional to the total number of 

light produced within the sphere, independent of its angular distribution.126 All the reflected, trans-

mitted, or emitted light will be collected and then detected within the sphere.127 

 
Figure 1.14. Experimental setup for integrating sphere measurements.  

1.7 Overview of subsequent chapters 

The following chapters are organized as follows. 

Chapter 2 describes synthetic and experimental techniques used in this dissertation. Synthesis 

procedures include chlorosilane-capping, halogenation and Heck cross-coupling; various charac-

terization tools including: 1H, 13C and 29Si NMR (nuclear magnetic resonance spectroscopy), 

MALDI-TOF (matrix assisted laser desorption ionization time of flight mass spectrometry), TGA 

(thermal gravimetric analysis), GPC (gel permeation chromatography), FTIR (Fourier-transform 

infrared spectroscopy) etc. In addition, photophysical property analysis techniques are described 

using steady-state UV-Vis and photoluminescence spectroscopy, and integrating sphere quantum 

yield measurements. 

Chapter 3 describes the functionalization and characterization of incompletely condensed trisi-

lanol phenylsilsesquioxanes after capping with trichlorosilanes and  chlorotrimethylsilane. Di- and 
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hepta-halogenated T7 are prepared, followed by their conversion to stilbene functionalization. 

Their photophysical properties are studied to explore the effect of cage geometry and number of 

functional groups on the cage-centered LUMOs. Besides, the comparative sphericity of LUMOs 

is characterized using magnetic scattering for the first time along with computational analyses. 

Chapter 4 describes the synthesis, and photophysical properties of another incompletely con-

densed phenylsilsesquioxanes, tetrasilanol double decker silsesquioxanes DD. The capping reac-

tion of tetrasilanol DD with dichlorodimethylsilane and chlorotrimethylsilane is followed by hal-

ogenation and then Heck cross-coupling. Finally the photophysical behavior stilbene-functional-

ized DD is also discussed as to map out the structure-photophysical property relationships of single 

SQ cages. 

Chapter 5 describes the synthesis of DD SQ derived copolymers via Heck cross-coupling of 

di-vinyl functionalized DD SQs with a series of dibromo aromatic compounds. This is followed 

by a discussion of the characterization and finally photophysical properties of these systems to 

explore possible through-chain conjugation even with the siloxane units in the SQ cages. Doping 

with electron acceptor F4TCNQ gives insight into the integer charge transfer process involved in 

hybrid SQ polymers and p-type dopant. 

Chapter 6 describes the preparation of similar SQ derived copolymers but with ladder SQs in 

the main chain that can be considered as half of the DD SQ cage and also detailed photophysical 

properties analysis. Conjugation breaking and restoring via bromination and debromination of the 

vinyl groups in the polymer chains gives another evidence of the unconventional conjugation in 

the excited state involving SQs and organic tethers. 

Chapter 7 describes the preparation of DD derived alternating terpolymers via stepwise Heck 

reaction, with the goal of incorporation of long-wavelength emission and high quantum yields, 

which are important for displaying components in applications such as OLEDs. 

Chapter 8 gives the overall summary and conclusions of this work followed by a discussion of 

future work. 
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Chapter 2. Experimental Methods 
2.1 Materials 

Tetrahydrofuran (THF), hexane, and toluene were purchased from Fisher and distilled from 

Na/benzophenone prior to use. Dichloromethane (CH2Cl2) and acetonitrile (CH3CN) were pur-

chased from Fisher and distilled from CaH2 under N2 prior to use. Methanol (CH3OH) and anhy-

drous diethyl ether was purchased from Fisher and used as received. Tris(dibenzylideneacetone)di-

palladium(0) (Pd2(dba)3), bis-(tri-tert-butylphosphine)palladium(0) (Pd(t-Bu3P)2), Grubbs 1st 

[RuCl2(=CHPh)(PCy3)2] and 2nd generation catalyst [RuCl2(=CHPh)(NHC)(PCy3)] were pur-

chased from Sigma-Aldrich and used as received.  

Trisilanol phenylsilsesquioxane (PhSiO1.5)7(O0.5H)3 and tetrasilanol phenylsilsesquioxane 

(PhSiO1.5)8(O0.5H)4 were purchased from Hybrid Plastics Inc. Ladder phenylsilsesquixoanes vi-

nyl(Me/Ph)Si(O0.5)2(PhSiO1.5)4(O0.5)2Si(Me/Ph)vinyl were a gift from Professor Masafumi 

Unno’s group from Gunma University in Japan. 

Methyltrichlorosilane (CH3SiCl3), n-propyltrichlorosilane (nC3H7SiCl3), trime-

thylchlorosilane [(CH3)3SiCl] and dimethyldichlorosilane [(CH3)2SiCl2] were purchased from 

Sigma-Aldrich and used as received. 4-methylstyrene, 4-cyanostyrene, 1,4-dibromobenzene, 1,4-

diiodobenzene, 4,4′-dibromo-1,1′-biphenyl, 4,4″-dibromo-p-terphenyl, 4,4′-dibromo-trans-stil-

bene, 2,5-dibromothiophene, 5,5′-dibromo-2,2′-bithiophene, 2,5-dibromothieno[3,2-b]thiophene, 

2,7-dibromo-9,9-dimethylfluorene, 4,7-dibromobenzothiadiazole, 3,6-dibromocarbazole, bromo-

benzene, 2-bromothiophene, 2-bromo-9,9-dimethylfluorene, 4-bromo-1,2,3-benzothiaidaozle, and 

3-bromocarbazole., 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane F4TCNQ and all other 

chemicals were purchased from Fisher or Sigma-Aldrich and used as received. 

2.2 Syntheses 

2.2.1 Corner missing silsesquioxanes (PhSiO1.5)7(O0.5H)3 

Synthesis of close cage Ph7T8R (R=Me or nPr).1 To a dry 250 mL Schlenk flask under N2 were 

added (PhSiO1.5)7(O0.5H)3 (10.0 g, 10.75 mmol), 75 mL of THF, and RSiCl3 (11.83 mmol). Fol-

lowing the addition, a 25 mL of THF solution of Et3N (4.4 g, 43.0 mmol) was added over a 10 min 
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period. The reaction was stirred magnetically under N2 for 24 h and then transferred to a separatory 

funnel. It was washed with brine (50 mL), 1 M HCl (10 mL), and brine (50 mL), and diethyl ether 

was added to extract the organic layer. Thereafter, the organic layer was dried over MgSO4, and 

most solvent was removed by rotary evaporation. The resulting thick slurry was slowly poured 

into cold, well-stirred methanol (100 mL) to fully precipitate the product, which was recovered by 

filtration and dried under vacuum to give a 75% yield of white product. Ph7T8Me: MALDI-TOF 

(Ag+) m/z=1079, Calculated=1078; GPC Mn=715, Mw=725, PDI=1.01; 1H NMR (400 MHz, 

CDCl3) 7.74 (m, 14H, Ph); 7.36 (m, 21H, Ph); 0.31 ppm (s, 3H, Me). Ph7T8Pr: MALDI-TOF (Ag+) 

m/z=1107, Calculated=1106; GPC Mn=757, Mw=770, PDI=1.02; 1H NMR (400 MHz, CDCl3) 

7.73 (m, 14H, Ph); 7.36 (m, 21H, Ph); 1.53 (m, 2H, nPr); 0.98 (t, 3H, nPr); 0.85 ppm (t, 2H, nPr) 

Synthesis of corner-missing cage Ph7T7(O0.5SiMe3)3. To a dry 250 mL Schlenk flask under N2 

were added (PhSiO1.5)7(O0.5H)3 (10.0 g, 10.75 mmol), 100 mL of THF, Et3N (6.5 g, 64.5 mmol), 

and Me3SiCl (7.0 g, 64.5 mmol). The reaction was stirred magnetically under N2 for 24 h and then 

transferred to a separatory funnel. It was washed with brine (50 mL), 1 M HCl (10 mL), and brine 

(50 mL), and diethyl ether was added to extract the organic layer. Thereafter, the organic layer was 

dried over MgSO4, and most solvent was removed by rotary evaporation. The resulting thick slurry 

was slowly poured into cold, well-stirred methanol (100 mL) to fully precipitate the product, which 

was recovered by filtration and dried under vacuum to give a 70% yield of white product. 

Ph7T7(O0.5SiMe3)3: MALDI-TOF (Ag+) m/z=1255, Calculated=1254; GPC Mn=766, Mw=779, 

PDI=1.02; 1H NMR (400 MHz, CDCl3) 7.43 (m, 7H, Ph); 7.31 (m, 14H, Ph); 7.12 (m, 14H, Ph); 

0.25 ppm (s, 27H, Me). 

General bromination of Ph7T8R and Ph7T7(O0.5SiMe3)3.2 To a dry 100 mL Schlenk flask under 

N2 were added Ph7T8R and Ph7T7(O0.5SiMe3)3 (5.0 mmol, phenyl: 35.0 mmol) and 25 mL of 

CH2Cl2. A condenser was then attached, and the flask was heated to 45 °C in an oil bath. Thereafter, 

Br2 (3.0 mL, 57.8 mmol) was added dropwise to the solution, and an additional 3 mL of CH2Cl2 

was added to wash the condenser. After that, a vent to a bubbler containing aqueous base was 

added, and the solution was stirred magnetically under reflux at 45 °C for 5.5 h. At this point, 20 

g of Na2S2O5 and 10 g of Na2CO3 were dissolved in 40 mL of water and then added to the solution 

with vigorous stirring until the Br2 color disappeared. The mixture was then transferred to a sepa-

ratory funnel, and the organic layer was extracted and washed sequentially with brine (20 mL). 

Thereafter, the organic layer was dried over MgSO4. Then charcoal and Celite were added and 
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stirred for 10 min. The black mixture was filtered to give a clear, colorless liquid. Most solvent 

was removed by rotary evaporation, and the resulting solid was redissolved in a minimal amount 

of THF and slowly poured into cold, well-stirred methanol (100 mL) to fully precipitate the prod-

uct, which was recovered from filtration and dried under vacuum to give a 60% yield of white 

product. o-Br6Ph7T8Me: MALDI-TOF (Ag+) m/z=1546; GPC Mn=531, Mw=540, PDI=1.02; 1H 

NMR (400 MHz, CDCl3) 7.73 (m, 7H, Ph); 7.54 (m, 7H, Ph); 7.37 (m, 7H, Ph); 7.26 (d, 7H, Ph); 

0.42 (s, 3H, Me); TGA (air, 10 oC/min 1000 oC): found 30%, calc 32%, Td5%: 436 oC. o-Br7Ph7T8Pr: 

MALDI-TOF m/z=1540; GPC Mn=546, Mw=556, PDI=1.02; 1H NMR (400 MHz, CDCl3) 7.74 

(m, 7H, Ph); 7.54 (m, 7H, Ph); 7.37 (m, 7H, Ph); 7.26 (d, 7H, Ph); 1.53 (m, 2H, nPr); 0.96 (t, 3H, 

nPr); 0.85 (t, 2H, nPr); TGA (air, 10 oC/min 1000 oC): found 31%, calc 31%, Td5%: 435 oC. 

General iodination of Ph7T8R and Ph7T7(O0.5SiMe3)3.3 To a dry 250 mL Schlenk flask un-

der N2 was added 70 mL of a 1 M solution ICl in CH2Cl2. The flask was then cooled to −40 °C 

with a cold bath (50% v/v of ethylene glycol in ethanol). Ph7T8R and Ph7T7(O0.5SiMe3)3 (5.0 mmol) 

was added slowly to the reaction mixture. After that, a vent to a bubbler containing aqueous base 

was added, and the solution was stirred magnetically at −40 °C for 6.0 h. At this point, 20 g of 

Na2S2O5 and 10 g of Na2CO3 were dissolved in 40 mL of water and then added to the solution with 

vigorous stirring until the ICl color disappeared. The mixture was then transferred to a separatory 

funnel, and the organic layer was extracted and washed sequentially with brine (20 mL). Thereafter, 

the organic layer was dried over MgSO4, and charcoal and Celite were added and stirred for 10 

min. The black mixture was filtered to give a clear, colorless liquid. Most solvent was removed by 

rotary evaporation. The resulting was solid redissolved in minimal THF and slowly poured into 

cold, well-stirred methanol (100 mL) to fully precipitate the product. The product was recovered 

by filtration and dried under vacuum to give a 80% yield of white product. p-I7Ph7T8Me: MALDI-

TOF (Ag+) m/z=1962; GPC Mn=428, Mw=496, PDI=1.16; 1H NMR (400 MHz, CDCl3) 7.72 (d, 

14H, Ph); 7.37 (d, 14H, Ph); 0.34 (s, 3H, Me); TGA (air, 10 oC/min 1000 oC): found 26%, calc 

26%, Td5%: 406 oC. p-I7Ph7T8Pr: MALDI-TOF (Ag+) m/z=1990; GPC Mn=412, Mw=498, 

PDI=1.20; 1H NMR (400 MHz, CDCl3) 7.72 (d, 14H, Ph); 7.37 (d, 14H, Ph); 1.52 (m, 2H, nPr); 

0.93 (t, 3H, nPr); 0.81 (t, 2H, nPr);  TGA (air, 10 oC/min 1000 oC): found 26%, calc 26%, Td5%: 

396 oC. 

General Heck reaction of brominated and iodinated Ph7T8R and Ph7T7(O0.5SiMe3)3.2 To a dry 

100 mL Schlenk flask under N2 were added brominated or iodinated Ph7T8R and 
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Ph7T7(O0.5SiMe3)3 (1.0 mmol), Pd[P(t-Bu3)]2 (38.7 mg, 0.08 mmol), and Pd2(dba)3 (34.6 mg, 0.04 

mmol), followed by 30 mL of THF, NCy2Me (2.8 g, 14.0 mmol), and 4-methyl/cyano-styrene 

(14.0 mmol). The mixture was stirred magnetically at 70 °C for 24 h and then quenched by filtering 

through 1 cm Celite, which was washed with THF (5 mL). The solution was then concentrated and 

precipitated into cold, well-stirred methanol (100 mL) and filtered, and the yellowish solid was 

redissolved in THF (10 mL). The solution was then filtered again through a 1 cm Celite column to 

remove remaining Pd particles, concentrated, and reprecipitated into cold methanol (50 mL) to 

give a crude yellow product. o-MeStil6T8Me: MALDI-TOF m/z=1659; GPC Mn=846, Mw=877, 

PDI=1.04; TGA (air, 10 oC/min 1000 oC): found 30%, calc 29%, Td5%: 444 oC. o-CNStil6T8Me: 

MALDI-TOF (Ag+) m/z=1843; GPC Mn=1286, Mw=1386, PDI=1.09; TGA (air, 10 oC/min 1000 
oC): found 28%, calc 28%, Td5%: 439 oC. p-MeStil7T8Me: MALDI-TOF (Ag+) m/z=1894; GPC 

Mn=897, Mw=1196, PDI=1.33; TGA (air, 10 oC/min 1000 oC): found 28%, calc 27%, Td5%: 448 
oC. p-CNStil7T8Me: MALDI-TOF (Ag+) m/z=1971; GPC Mn=1007, Mw=1151, PDI=1.14; TGA 

(air, 10 oC/min 1000 oC): found 26%, calc 26%, Td5%: 443 oC. o-MeStil7T7(TMS)3: MALDI-TOF 

(Ag+) m/z=2080; GPC Mn=1322, Mw=1434, PDI=1.08; TGA (air, 10 oC/min 1000 oC): found 30%, 

calc 31%, Td5%: 4415 oC. o-CNStil7T7(TMS)3: MALDI-TOF (Ag+) m/z=2137; GPC Mn=2193, 

Mw=2519, PDI=1.15; TGA (air, 10 oC/min 1000 oC): found 28%, calc 28%, Td5%: 402 oC. p-MeS-

til2Ph5T7(TMS)3: MALDI-TOF (Ag+) m/z=1415; GPC Mn=1700, Mw=1987, PDI=1.17. 

Removal of Pd catalyst.4 To a dry 50 mL Schlenk flask under N2 were added the above product 

dissolved in toluene (10 mL) and N-acetyl-L-cysteine (0.1 g) dissolved in THF (1 mL). The solu-

tion was stirred magnetically overnight at room temperature and then filtered through 1 cm Celite 

to remove the insoluble Pd−cysteine complex. Most solvent was removed by rotary evaporation, 

and the resulting solid was redissolved in a minimal amount of THF and slowly poured into cold, 

well-stirred methanol (50 mL) to fully precipitate the product. The product was then recovered by 

filtration and dried under vacuum to give a 70% yield of yellowish product. 

2.2.2 Double decker silsesquioxanes (PhSiO1.5)8(O0.5H)4 

Synthesis of close cage DDMe4. To a dry 500 mL Schlenk flask under N2 were added 

(PhSiO1.5)8(O0.5H)4 (10.0 g, 9.4 mmol), 200 mL of THF, and Me2SiCl2 (2.8 g, 21.5 mmol). Fol-

lowing the addition, a 10 mL THF solution of Et3N (5.0 g, 49.5 mmol) was added over a 10 min 

period. The reaction was stirred magnetically under N2 for 24 h and then transferred to a separatory 
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funnel. It was washed with brine (50 mL), 1 M HCl (10 mL) and brine (50 mL) and diethyl ether 

was added to extract the organic layer. Thereafter, the organic layer was dried over MgSO4, and 

most of the solvent was removed by rotary evaporation. The resulting thick slurry was slowly 

poured into cold, well-stirred methanol (100 mL) to fully precipitate the product, which was re-

covered by filtration and dried under vacuum to give a 72% yield of a white product. DDMe4: 

MALDI-TOF (Ag+) m/z=1290, Calculated=1289; GPC Mn=756, Mw=807, PDI=1.07; 1H NMR 

(400 MHz, CDCl3) 7.53 (t, 8H, Ph); 7.39 (m, 16H, Ph); 7.17 (d, 16H, Ph); 0.31 (s, 12H, Me). 

Synthesis of doubly-open cage DD(O0.5SiMe3)4. To a dry 500 mL Schlenk flask under N2 

were added (PhSiO1.5)8(O0.5H)4 (16.0 g, 15.0 mmol), 300 mL of THF, Et3N (12.1 g, 120.0 mmol), 

and Me3SiCl (13.0 g 120.0 mmol). The reaction was stirred magnetically under N2 for 24 h and 

then transferred to a separatory funnel. It was washed with brine (50 mL), 1 M HCl (10 mL) and 

brine (50 mL) and diethyl ether was added to extract the organic layer. Thereafter, the organic 

layer was dried over MgSO4 and most of the solvent was removed by rotary evaporation. The 

resulting thick slurry was slowly poured into cold, well-stirred methanol (100 mL) to fully precip-

itate the product, which was recovered by filtration and dried under vacuum to give a 74% yield 

of a white product. DD(OTMS)4: MALDI-TOF (Ag+) m/z=1466, Calculated=1465; GPC 

Mn=1026, Mw=1100, PDI=1.07; 1H NMR (400 MHz, CDCl3) 7.52 (m, 8H, Ph); 7.36 (m, 16H, Ph); 

7.27 (m, 8H, Ph); 7.16 (t, 8H, Ph); 0.10 (s, 36H, Me). 

General methods of halogenation, Heck coupling, purification, and photophysical analyses are 

identical to methods used in Chapter 2.2.1 above. 

2.2.3 Double decker silsesquioxanes derived copolymers 

Synthesis of vinyl(Me)DD(Me)vinyl or vinylDDvinyl. To an oven-dried 500 mL Schlenk 

flask under N2 were added (PhSiO1.5)8(O0.5H)4 (10.0 g, 9.4 mmol), 200 mL of THF, and vinyl-

MeSiCl2 (3.0 g, 21.5 mmol). Thereafter, 10 mL of THF solution of Et3N (5.0 g, 49.5 mmol) was 

added dropwise via a pipet over a 10 min period. The reaction mixture was stirred magnetically 

under N2 for 24 h at room temperature and then transferred to a 1000 mL separatory funnel. The 

organic layer was separated out by adding brine (50 mL) and then washed with 1 M HCl (10 mL) 

and brine (50 mL) sequentially to neutral. Diethyl ether can be added to help extract the organic 

layer from water solution. After that, the organic layer was separated out and dried over MgSO4. 

The clear solution was then concentrated by rotary evaporation. The resulting thick slurry was 
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slowly added dropwise into cold, well-stirred methanol (200 mL) to fully precipitate the product, 

which was collected by filtration and dried in a vacuum oven overnight to give a 80% yield of 

white product. VinylDDvinyl: MALDI-TOF (Ag+) m/z=1315, Calculated=1314; GPC Mn=1010, 

Mw=1080, PDI=1.07; 29Si NMR (700 MHz, CDCl3) -31.4, -78.4, -78.8, -79.5 ppm; TGA (air, 10 
oC/min 1000 oC): found 49%, calc 50%, Td5%: 540 oC. 

Fractional crystallization of vinylDDvinyl.5 To an Erlenmeyer flask was added mixed iso-

mers of vinylDDvinyl (1.20 g, 1.0 mmol). Minimal warm THF (8 mL) was added until the solid 

completely dissolved. Warm hexane (25 mL) was added dropwise until a white suspension per-

sisted. The mixture was slowly cooled to room temperature and allowed to sit over 2 day. The 

precipitate was collected by filtration and dried in a vacuum oven overnight to give 69% yield of 

pure trans. 1H NMR (400 MHz, CDCl3) 7.62-7.33 (40H, Ph); 6.22 (d, 2H, -CH=CH2); 6.05 (m, 

4H, -CH=CH2); 0.44 (s, 6H, Me); 29Si NMR (700 MHz, CDCl3) -31.4, -78.3, -79.5 ppm. 

General Heck polymerization of vinylDDvinyl with X-Ar-X (X=Br, I, Ar=aromatic, ben-

zene/phenyl, biphenyl, terphenyl, stilbene, 9,9-dimethylfluorene, thiophene, bithiophene, theino-

thiophene).6 Previous work on synthesis of a series of functionalized SQs indicates efficient Heck 

cross-coupling catalyzed by Pd[P(t-Bu)3]2 and Pd2(dba)3 with molar ratio of 2:1. Such conditions 

were used to prepare model compounds in general Heck reaction of vinylMeSi(OMe)2 with X-Ar-

X and reaction of vinylDDvinyl with Br-Ar, as shown below. In Heck polymerization of vi-

nylDDvinyl with X-Ar-X, different reaction conditions were tested and optimized to achieve pol-

ymers of high Mn. It was found that Pd[P(t-Bu)3]2 alone with a Pd:P of 1:2 better promotes 

polymerization and providing higher degrees of polymerization. 

To an oven-dried 100 mL Schlenk flask under N2 were added vinylDDvinyl (1.20 g, 1.0 

mmol), NCy2Me (0.81 g, 4.0 mmol), X-Ar-X (1.0 mmol), followed by 30 mL of THF and Pd[P(t-

Bu)3]2 (38.7 mg, 0.08 mmol). The mixture was stirred magnetically at 100 °C and tracked by GPC. 

The reaction was filtered through 1 cm Celite which was washed with THF (5 mL). The resulting 

filtrate was concentrated by rotary evaporation, and the resulting concentrated solution was then 

precipitated into cold, well-stirred methanol (150 mL), filtered, and the colored solid redissolved 

in THF (10 mL). The solution was then filtered again through a 1 cm Celite column to further 

remove residual Pd particles, and concentrated, reprecipitated into cold, stirred methanol (100 mL) 

to give crude colored product. DD-co-phenyl: MALDI-TOF (monomer) m/z=1280, Calcu-

lated=1280; GPC Mn=19550, Mw=49410, PDI=2.53; 13C NMR (700 MHz, CDCl3) 146.2, 137.7, 
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134.0, 132.0, 131.1, 130.8, 130.4, 127.9, 127.7, 127.6, 127.0, 124.3, -0.7; 29Si NMR (700 MHz, 

CDCl3) -30.2, -78.2, -79.2, -79.4, -79.7; TGA (air, 10 oC/min 1000 oC): found 46%, calc 47%, 

Td5%: 460 oC. DD-co-biphenyl: MALDI-TOF (monomer) m/z=12355, Calculated=1356; GPC 

Mn=11690, Mw=24480, PDI=2.09; TGA (air, 10 oC/min 1000 oC): found 43%, calc 44%, Td5%: 

400 oC. DD-co-thiophene: MALDI-TOF (monomer) m/z=1290, Calculated=1286; GPC 

Mn=22540, Mw=43250, PDI=1.92; TGA (air, 10 oC/min 1000 oC): found 47%, calc 47%, Td5%: 

540 oC. DD-co-bithiophene: MALDI-TOF (monomer) m/z=1370, Calculated=1368; GPC 

Mn=3580, Mw=7200, PDI=2.01; TGA (air, 10 oC/min 1000 oC): found 42%, calc 44%, Td5%: 520 
oC. 

General Heck reaction of vinylMeSi(OMe)2 with X-Ar-X. To an oven-dried 100 mL 

Schlenk flask under N2 were added vinylMeSi(OMe)2 (0.69 g, 5 mmol), NCy2Me (0.41 g, 2.0 

mmol), X-Ar-X (1.0 mmol). Following the addition 10 mL of THF, Pd[P(t-Bu)3]2 (19.4 mg, 0.04 

mmol), and Pd2(dba)3 (17.3 mg, 0.02 mmol) were added. The mixture was stirred magnetically 

under N2 at 70 °C and tracked by GPC. The reaction mixture was filtered through Celite to remove 

Pd catalyst, and the excess vinylMeSi(OMe)2 was further removed by fractional distillation of the 

filtrate. 1,4-[(MeO)2Sivinyl]2benzene: 1H NMR (400 MHz, CDCl3) 7.39 (d, 4H, Ph); 7.17 (d, 2H, 

vinyl); 6.31 (d, 2H, vinyl); 3.62 (s, 12H, MeO); 0.30 (s, 6H, Me); 4,4’-[(MeO)2Sivinyl]2biphenyl: 
1H NMR (400 MHz, CDCl3) 7.64 (d, 4H, Ph); 7.41 (d, 4H, Ph); 7.09 (d, 2H, vinyl); 6.22 (d, 2H, 

vinyl); 3.60 (s, 12H, MeO); 0.27 (s, 6H, Me); 2,5-[(MeO)2Sivinyl]2thiophene: 1H NMR (400 MHz, 

CDCl3) 7.22 (d, 2H, thiophene); 7.21 (d, 2H, vinyl); 6.40 (d, 2H, vinyl); 3.70 (s, 12H, MeO); 0.30 

(s, 6H, Me); 5,5’-[(MeO)2Sivinyl]2bithiophene: 1H NMR (400 MHz, CDCl3) 7.61 (m, 2H, thio-

phene); 7.22 (m, 2H, thiophene); 7.11 (d, 2H, vinyl); 6.23 (d, 2H, vinyl); 3.61 (s, 12H, MeO); 0.29 

(s, 6H, Me). 

General Heck Reaction of vinylDDvinyl with Br-Ar. To an oven-dried 100 mL Schlenk 

flask under N2 were added vinylDDvinyl (1.20 g, 1.0 mmol), Pd[P(t-Bu)3]2 (38.7 mg, 0.08 mmol), 

and Pd2(dba)3 (34.6 mg, 0.04 mmol). Following the addition 30 mL of THF, NCy2Me (0.81 g, 4.0 

mmol), and Br-Ar (2.2 mmol) were added. The mixture was stirred magnetically at 70 °C for 24 h 

and then filtered through 1 cm Celite which was washed with THF (5 mL). The resulting filtrate 

was concentrated by rotary evaporation and precipitated into cold, well-stirred methanol (150 mL), 

filtered, and the lightly colored solid redissolved in THF (10 mL). The solution was then filtered 

again through a 1 cm Celite column to further remove residual Pd particles and concentrated and 
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reprecipitated into cold, stirred methanol (100 mL) to give crude product. (Styryl)2DD: MALDI-

TOF (Ag+) m/z=1467, Calculated=1466; GPC Mn=1121, Mw=1129, PDI=1.01; TGA (air, 10 
oC/min 1000 oC): found 43%, calc 44%, Td5%: 431 oC. (Styryl)3DD: MALDI-TOF (Ag+) m/z=1543, 

Calculated=1542; GPC Mn=1126, Mw=1149, PDI=1.02; TGA (air, 10 oC/min 1000 oC): found 

42%, calc 42%, Td5%: 435 oC. (Thiophenevinyl)2DD: MALDI-TOF (Ag+) m/z=1480, Calcu-

lated=1478; GPC Mn=1149, Mw=1161, PDI=1.01; TGA (air, 10 oC/min 1000 oC): found 43%, calc 

44%, Td5%: 445 oC. (Dimethylfluorenevinyl)2DD: MALDI-TOF (Ag+) m/z=1697, Calcu-

lated=1698; GPC Mn=1545, Mw=1663, PDI=1.07; TGA (air, 10 oC/min 1000 oC): found 36%, calc 

38%, Td5%: 358 oC. (Dimethylfluorenevinyl)4DD: MALDI-TOF m/z=1977, Calculated=1976; 

GPC Mn=1715, Mw=1828, PDI=1.07; TGA (air, 10 oC/min 1000 oC): found 30%, calc 30%, Td5%: 

400 oC. 

2.2.4 Ladder silsesquioxane derived copolymers 

General Heck polymerization of  vinyl-LL(Me/Ph)-vinyl [vi-

nyl(Me/Ph)Si(O0.5)2(PhSiO1.5)4(O0.5)2Si(Me/Ph)vinyl] with Br-Ar-Br.7 To a dry 50 ml Schlenk 

flask under N2 were added vinyl-LL-vinyl (0.8 mmol), NCy2Me (0.4 g, 2.0 mmol), Br-Ar-Br (0.8 

mmol), followed by 30 mL of distilled THF and Pd[P(t-Bu3)]2 (38.7 mg, 0.08 mmol). The mixture 

was stirred magnetically at 70 °C and tracked by GPC. The reaction was quenched by filtering 

through 1 cm celite which was washed with THF (5 mL). The solution was then concentrated and 

precipitated into 100 ml cold, well-stirred methanol (yield: 70%). The precipitated product was 

further purified by column chromatography (silica, 1:1 CH2Cl2:hexane). LL(Me)-co-phenyl: 

MALDI-TOF (Monomer) m/z=764, Calculated=765; GPC Mn=5420, Mw=15190, PDI=2.80; 1H 

NMR (400 MHz, CDCl3) 7.7-7.2 (m, 20H, cage-Ph); 7.2-7.0 (m, 4H, co-Ph); 6.9 (d, 2H, vinyl); 

6.5 (d, 2H, vinyl); 0.5 (m, 6H, Me); 13C NMR(700 MHz, CDCl3) 146.1; 137.8; 134.0; 132.0; 131.1; 

127.7; 127.0; 124.2; -0.6; TGA (air, 10 oC/min 1000 oC): found 46%, calc 46%, Td5%: 430 oC. 

LL(Me)-co-biphenyl: MALDI-TOF (Monomer) m/z=839, Calculated=841; GPC Mn=11700, 

Mw=44000, PDI=3.78; 1H NMR (400 MHz, CDCl3) 7.6-7.2 (m, 20H, Ph); 7.2-7.0 (m, 8H, Ph); 6.9 

(d, 2H, vinyl); 6.5 (d, 2H, vinyl); 0.4 (m, 6H, Me); 13C NMR(700 MHz, CDCl3) 146.1; 140.6; 

136.7; 134.2; 132.0; 130.8 127.8; 126.9; 124.3; -0.7; TGA (air, 10 oC/min 1000 oC): found 42%, 

calc 42%, Td5%: 410 oC. LL(Me)-co-thiophene: MALDI-TOF (Monomer) m/z=772, Calcu-

lated=771; GPC Mn=3170, Mw=6190, PDI=1.95; 1H NMR (400 MHz, CDCl3) 7.6-7.1 (m, 22H); 
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6.9 (d, 2H, vinyl); 6.4 (d, 2H, vinyl); 6.2 (t, 2H, vinyl); 6.0 (q, 1H, vinyl); 0.5 (m, 6H, Me); 13C 

NMR(700 MHz, CDCl3) 144.2; 139.1; 134.4; 134.0; 131.9; 130.4; 127.8; 127.5; 124.0; -0.7; TGA 

(air, 10 oC/min 1000 oC): found 42%, calc 42%, Td5%: 410 oC. LL(Me)-co-bithiophene: MALDI-

TOF (Monomer) m/z=853, Calculated=853; GPC Mn=5540, Mw=11330, PDI=2.05; 1H NMR (400 

MHz, CDCl3) 7.7-7.2 (m, 24H); 6.9 (d, 2H, vinyl); 6.5 (d, 2H, vinyl); 6.2 (t, 2H, vinyl); 5.9 (q, 1H, 

vinyl); 0.5 (m, 6H, Me); 13C NMR(700 MHz, CDCl3) 144.2; 139.1; 138.1; 134.1; 134.0; 132.5; 

131.8; 130.4; 127.7; 127.5; 124.0; -0.7; TGA (air, 10 oC/min 1000 oC): found 40%, calc 42%, Td5%: 

440 oC. 

General bromination of DD-co-phenyl and LL(Me)-co-phenyl. To a dry 100 mL Schlenk 

flask under N2 were added DD-co-phenyl or LL-co-phenyl (DD/LL SQ: 1.0 mmol), 20 mL of 

CH2Cl2 and NCy2Me (4.0 mmol). After completely dissolving, Br2 (4.0 mmol) was added drop-

wise, and an additional 5 ml of CH2Cl2 was added to wash. Thereafter, a vent to a bubbler con-

taining aqueous base was added, and the solution was stirred magnetically at room temperature for 

1 d. At this point, 10 g of Na2S2O5 and 5 g of Na2CO3 were dissolved in 40 ml of water and then 

added to the solution with vigorous stirring until the Br2 color disappeared. The mixture was then 

transferred to a separatory funnel, and the organic layer was extracted and washed sequentially 

with 20 ml brine. Thereafter, the organic layer was dried over MgSO4. Then celite was added and 

stirred for 10 min. The mixture was filtered to give a clear, colorless liquid. Most solvent was 

removed by rotary evaporation, and the resulting solid was redissolved in a minimal amount of 

THF and slowly poured into 150 ml cold, well-stirred methanol to fully precipitate the white prod-

uct (yield: 80%). Brominated DD-co-phenyl: 13C NMR (700 MHz, CDCl3) 139.8, 134.0, 130.9, 

130.7, 130.4, 127.9, 127.8, -0.7; 29Si NMR (700 MHz, CDCl3) -32.6, -78.2, -79.0, -79.2. 

General zinc debromination of brominated DD-co-phenyl and LL(Me)-co-phenyl.8 To a dry 

100 mL Schlenk flask under N2 were added above brominated DD-co-phenyl or LL-co-phenyl 

(DD/LL SQ: 0.8 mmol), 20 mL of diethyl ether, followed by 3 drops of glacial acetic acid and Zn 

dust (2.0 mmol). The mixture was stirred vigorously under N2 at room temperature. After the grey 

Zn dust turned into white ZnBr2 powder, the reaction mixture was then filtered. The resulting 

filtrate was concentrated and precipitated into 100 ml cold, well-stirred methanol to give the yel-

lowish product (yield 65%).  
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2.2.5 Double decker silsesquioxane derived terpolymers 

General Heck cross-coupling of vinylDDvinyl with Br-Ar1-Br (3:1 molar ratio, Ar1=thio-

phene, bithiophene, thienothiophene). To a dry 200 ml Schlenk flask under N2 were added 3.62 g 

(3.0 mmol) vinylDDvinyl, 38.7 mg (0.08 mmol) Pd[P(t-Bu)3]2, followed by 45 ml distilled THF, 

0.80 g (4.0 mmol) NCy2Me and Br-Ar1-Br (1.0 mmol). The mixture was stirred magnetically 70 
oC and tracked by GPC. The reaction was quenched after 2 d by filtering through 1 cm celite which 

was washed with THF (5 mL). The resulting filtrate was concentrated by rotary evaporation and 

the resulting concentrated solution was then precipitated into 150 ml cold, well-stirred methanol, 

filtered, and the colored solid re-dissolved in 10 ml THF. The solution was then filtered again 

through a 1 cm celite column to further remove residual Pd particles, and concentrated, re-precip-

itated into 100 ml cold, stirred methanol to give a ~85% yield of crude colored product for  most 

reactions studied. The two-cage product (vinylDD-Ar1-DDvinyl) was then isolated using column 

chromatography (CH2Cl2:hexane 1:2 volume ratio, silica gel). DD-thiophene-DD: MALDI-TOF 

(Ag+) m/z=2600, Calculated=2600; GPC Mn=1690, Mw=1770, PDI=1.05; 1H NMR (400 MHz, 

CDCl3) 7.80 (d, 2H, -C4H2S-); 7.77-7.06 (m, 80H, -C6H5); 6.94 (d, 2H, -CH=CH-); 6.45 (d, 2H, 

-CH=CH-); 6.20-6.14 (m, 2H, -CH=CH2); 6.05-5.99 (m, 4H,-CH=CH2); 0.42 (s, 6H, -CH3); 0.37 

(s, 6H, -CH3); 13C NMR(700 MHz, CDCl3) 144.3, 139.1,137.4, 135.2, 134.5, 134.2, 134.1, 134.0, 

132.0, 131.9, 131.1, 131.0, 130.7, 130.6, 130.4, 130.3, 127.9, 127.8, 127.7, 127.6, 124.1, -0.66, -

1.13; TGA (air, 10 oC/min 1000 oC): found 48%, calc 48%, Td5%: 545 oC. DD-bithiophene-DD: 

MALDI-TOF (Ag+) m/z=2682, Calculated=2682; GPC Mn=1780, Mw=1890, PDI=1.06; 1H NMR 

(400 MHz, CDCl3) 7.77 (d, 2H, -C8H4S2-); 7.73 (d, 2H,-C8H4S2-); 7.64-7.06 (m, 80H, -C6H5); 

6.89 (d, 2H, -CH=CH-); 6.53 (d, 2H, -CH=CH-); 6.20-6.12 (m, 2H, -CH=CH2); 6.06-5.96 (m, 

4H,-CH=CH2); 0.43 (s, 6H, -CH3); 0.38 (s, 6H, -CH3); 13C NMR(700 MHz, CDCl3) 144.2, 138.8, 

137.4, 135.2, 134.4, 134.1, 134.0, 131.9, 130.4, 127.8, 127.8, 127.6, 127.5, 124.5, 124.2, 123.8, -

0.70, -1.17; TGA (air, 10 oC/min 1000 oC): found 46%, calc 47%, Td5%: 530 oC. DD-thienothio-

phene-DD: MALDI-TOF (Ag+) m/z=2655, Calculated=2655; GPC Mn=1720, Mw=1790, 

PDI=1.04; 1H NMR (400 MHz, CDCl3) 7.81 (d, 2H, -C6H2S2-); 7.77-7.07 (m, 80H, -C6H5); 6.98 

(d, 2H, -CH=CH-); 6.46 (d, 2H, -CH=CH-); 6.22-6.14 (m, 2H, -CH=CH2); 6.06-5.96 (m, 4H,-

CH=CH2); 0.46 (s, 6H, -CH3); 0.42 (s, 6H, -CH3); 13C NMR(700 MHz, CDCl3) 146.9, 139.7, 

138.8, 135.2, 134.5, 134.2, 134.1, 134.0, 132.0, 131.9, 131.1, 131.0, 130.8, 130.5, 130.4, 130.3, 



 

 

43 

127.9, 127.8, 127.7, 127.6, 123.7, 112.0, -0.53, -1.13; TGA (air, 10 oC/min 1000 oC): found 46%, 

calc 47%, Td5%: 530 oC. 

General Heck polymerization of vinylDD-Ar1-DDvinyl with Br-Ar2-Br (Ar2=biphenyl, ter-

phenyl, stilbene). To a dry 50 ml Schlenk flask under N2 were added above vinylDD-Ar1-DDvinyl 

(0.04 mmol),  4.0 mg (0.008 mmol) Pd[P(t-Bu)3]2, followed by 20 ml distilled THF, 64 mg (0.32 

mmol) NCy2Me and Br-Ar2-Br (0.04 mmol). The mixture was stirred magnetically 70 oC and 

tracked by GPC. The reaction was quenched after 14 d by filtering through 1 cm celite which was 

washed with THF (5 mL). The resulting filtrate was concentrated by rotary evaporation and the 

resulting concentrated solution was then precipitated into 100 ml cold, well-stirred methanol to 

give a yield of 75% colored product. DD-thiophene-DD-biphenyl: MALDI-TOF (monomer) 

m/z=2752, Calculated=2752; GPC Mn=7000, Mw=11900, PDI=1.70; 1H NMR (400 MHz, CDCl3) 

7.77-7.07 (m, 90H, -C6H5, -C4H2S-); 7.00-6.95 (m, 4H, -CH=CH-); 6.53-6.49 (m, 4H, -CH=CH-); 

6.13-6.11 (m, -CH=CH2); 0.49 (s, 6H, -CH3); 0.44 (s, 6H, -CH3); 13C NMR(700 MHz, CDCl3) 

146.1, 140.6, 136.8, 134.2, 134.1, 134.0, 132.0, 131.9, 130.8, 130.4, 127.9, 127.8, 127.7, 127.6, 

127.3, 126.9, 124.1, 1.05, -0.72; TGA (air, 10 oC/min 1000 oC): found 44%, calc 45%, Td5%: 500 
oC. DD-thiophene-DD-terphenyl: MALDI-TOF (Ag+) m/z=2823, Calculated=2823; GPC 

Mn=4500, Mw=7400, PDI=165; 1H NMR (400 MHz, CDCl3) 7.90-7.04 (m, -C6H5, -C4H2S-); 

6.99-6.90 (m, 4H, -CH=CH-); 6.53-6.46 (m, 2H, -CH=CH-); 0.47 (s, 6H, -CH3); 0.41 (s, 6H, -

CH3); 13C NMR(700 MHz, CDCl3) 146.1, 140.5, 139.7, 139.0, 136.8, 134.5, 134.2, 134.1, 134.0, 

134.0, 131.9, 130.6, 130.4, 127.9, 127.8, 127.7, 127.6, 127.4, 127.0, 124.1, 1.05, -0.71; TGA (air, 

10 oC/min 1000 oC): found 45%, calc 44%, Td5%: 520 oC. 

2.3 Characterization 

2.3.1 Analytical characterization 

Matrix-assisted laser desorption/ionization time-of-flight spectrometry. MALDI-TOF was 

done on a Micromass TOF Spec-2E equipped with a 337 nm nitrogen laser in positive-ion reflec-

tron mode using poly(ethylene glycol) as calibration standard, dithranol as matrix, and AgNO3 as 

ion source. Samples were prepared by mixing solutions of 5 parts matrix (10 mg/mL in THF), 5 

parts sample (1 mg/mL in THF), and 1 part AgNO3 (2.5 mg/mL in THF) and blotting the mixture 

on target plate. 
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Nuclear magnetic resonance. All 1H NMR spectra were collected from samples dissolved in 

CDCl3 and recorded on a Varian INOVA 400 MHz spectrometer. All 13C and 29Si spectra were 

collected from samples dissolved in CDCl3 and recorded on an Ytterbium 700 MHz spectrometer. 
1H NMR spectra were collected at 400 MHz using a spectral width of 6000 Hz, a relaxation delay 

of 0.5 s, 30k data points, a pulse width of 38°, and CHCl3 (7.24 ppm) as the internal reference. 13C 

NMR spectra were collected at 100 MHz using a 25000 Hz spectral width, a relaxation delay of 

1.5 s, 75k data points, a pulse width of 40°. 29Si NMR spectra were collected at 100 MHz using a 

14000 Hz spectral width, a relaxation delay of 20 s, 65k data points, a pulse width of 7°. 

Gel permeation chromatography. GPC analyses were done on a Waters 440 system equipped 

with Waters Styragel columns (7.8300, HT 0.5, 2, 3, 4) with RI detection using Waters refractom-

eter and THF as solvent. The system was calibrated using polystyrene. 

Thermogravimetric analyses. TGAs were run on a SDT Q600 Simultaneous Differential DTA-

TGA Instrument (TA Instruments, Inc., New Castle, DE). Samples (15-20 mg) were loaded in 

alumina pans and ramped at 10 °C/min to 1000 °C under dry air with a flow rate of 60 mL/min. 

Fourier-transform infrared spectroscopy. Diffuse reflectance Fourier transform (DRIFT) spec-

tra were recorded on a Nicolet 6700 Series FTIR spectrometer (Thermo Fisher Scientific, Inc., 

Madison, WI). Optical grade, random cuttings of KBr (International Crystal Laboratories, Garfield, 

NJ) were ground by hand in an alumina mortar pestle, with 1.0 wt % of the sample to be analyzed. 

For DRIFT analyses, samples were packed firmly and leveled off at the upper edge to provide a 

smooth surface. The FTIR sample chamber was flushed continuously with N2 prior to data acqui-

sition in the range 4000−400 cm−1 with a precision of ±4 cm−1. 

2.3.2 Photophysical characterization 

UV−Vis spectrometry. UV−vis measurements were recorded on a Shimadzu UV-1601 UV−vis 

transmission spectrometer. Samples were dissolved in CH2Cl2 and diluted to a concentration 

(10−3−10−4 M) where the absorption maximum was <10% for a 1 cm path length. 

Photoluminescence spectrometry. Photoluminescent spectra were recorded on a Fluoromax-2 

fluorometer in the required solvent using 300 nm excitation. Samples from UV-vis spectroscopy 

were diluted (10−5-10−6 M) to avoid excimer formation and fluorometer detector saturation. 

Quantum yield measurements. All compounds were dissolved in CH2Cl2 (Sigma-Aldrich, 

spectrophotometric grade) for carrying out the optical measurements. The absorption spectra of 
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the molecules were measured using an Agilent (Model No. 8341) spectrophotometer. To measure 

the molar extinction coefficients, the original stock solutions were diluted to 10-6 M. The fluores-

cence spectra were acquired using a Spexfluorolog spectrofluorometer. The quantum yields of the 

molecules were measured using a known procedure.9 Bis-MSB [p-bis(omethylstyryl)benzene] has 

been used as the standard. The absorbance was limited to less than 0.03. The solutions were purged 

with argon for 3 min prior to measuring their emission spectra. Then, the following relation was 

used to measure the quantum yield: 

𝜙3 = (𝜙3)4
∫ 6(78)	:78
∫ 6*(78)	:78

	(6+)*
6+
	0

,

0*
,  

where (𝜙3)S is the quantum yield of the standard, ∫ J(v̅) dv̅ the area under the fluorescence 

emission curve for the sample, ∫ JS(v̅) dv̅ the area under the fluorescence emission curve for the 

standard (Ja)S the absorbance of the standard, Ja the absorbance of the sample, n2 the refractive 

index of the solvent used for the sample, and nS2 the refractive index of the solvent used for the 

standard. 

Two-Photon excited fluorescence measurements. To measure the two-photon absorption cross 

sections, we followed the two-photon excited fluorescence (TPEF) method.10 A 10-4 M Coumarin 

307 (7-ethylamino-6-methyl-4-trifluoromethylcoumarin) solution in methanol was used as the ref-

erence for measuring TPA cross sections at different wavelengths. The laser used for the study 

was a Mai Tai Diode-pumped mode-locked Ti:sapphire laser, which is tunable from 700 to 1000 

nm. The beam was directed on to the sample cell (quartz cuvette, 0.5 cm path length), and the 

resultant fluorescence was collected in a direction perpendicular to the incident beam. A 1 in. focal 

length plano-convex lens was used to direct the collected fluorescence into a monochromator. The 

output from the monochromator was coupled to a PMT. The photons were converted into counts 

by a photon counting unit. A logarithmic plot between collected fluorescence photons and input 

intensity gave a slope of 2, ensuring a quadratic dependence. The intercept enabled us to calculate 

the two-photon absorption cross sections at different wavelengths. 

Magnetic scattering studies.11–13 Polarization-selective light scattering was investigated in 

samples excited with 100 fs pulses from an amplified Ti:sapphire laser system operating at 10 kHz 

repetition rate (amplitude/continuum). Samples were prepared as 0.1 mM solutions in CH2Cl2 and 

placed in standard quartz cuvettes to measure light scattering caused by the (nonlinear) magneto-

electric interaction that occurs at the molecular level for intensities in the range 108−1010 W/cm2. 
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Complete radiation patterns were recorded for induced electric and magnetic dipole moment 

strengths in this intensity range by analyzing scattered light to distinguish co-polarized and cross-

polarized signal components. By fitting each radiation pattern with a combination of unpolarized 

and dipolar components versus polar angle, it was possible to compare the librational response 

determined by the azimuthal potential surface in different samples. 
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Chapter 3. Partially Functionalized Phenylsilsesquioxane: [RSiO1.5]7[Me/nPrSiO1.5] and 
[RSiO1.5]7[O0.5SiMe3]3 (R = 4‑Me/4-CN-Stilbene) 
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With contributions from Professors Theodore Goodson III, Stephen C. Rand and Siriporn 

Jungsuttiwong. 

Abstract 

Macromonomers [RPhSiO1.5]8,10,12 and [RCH=CHSiO1.5]8,10,12, where R = conjugated group 

have previously been shown to offer photophysical properties wherein excitation promotes an 

electron from the HOMO to an excited state LUMO that sits in the center of the cage and allows 

communication between all conjugated groups suggesting 3-D delocalization. In the current work, 

we explore replacing one conjugated group in [RPhSiO1.5]8 either with Me or nPr or simply re-

moving one corner from the cage, [RPhSiO1.5]7(O0.5SiMe3)3 and examine its effect on any potential 

LUMO that might form. We report here that such changes seem to have no effect on the existence 

of a 3-D LUMO derived delocalization as witnessed by emission red-shifts from the R = 4-Me-/4-

CN-stilbene moieties essentially identical to those for the original [RPhSiO1.5]8 macromonomers. 

Of particular importance is the fact that removing one corner from the cage also has little effect on 

the photophysics, indeed significantly improving fluorescence emission quantum efficiencies. 

However, removing most of the conjugated groups on the corner missing cage (from 7 to 2), e. g 

[MeStilSiO1.5]2[PhSiO1.5]5(O0.5SiMe3)3  eliminates the red shift implying the absence of a LUMO 

inside the cage. This suggests a minimum number of groups are needed to form such a LUMO. 

Also, for the first time, the radiation patterns for nonlinear, optically-induced magnetic scattering 

at elevated light intensities are reported for these compounds and shown to support the same con-

clusion, a spherical LUMO exists inside the cage.  

3.1 Introduction 

Research on silsesquioxane macromonomers has grown over the past 30 years such that the 

field has become a major area of chemical exploration with approximately 17 reviews and one 

book written in this period.1-18 As part of our exploration of the chemistries of T8, T10 and T12 cage 
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macromonomers, we have been particularly interested in the chemistries and photophysical prop-

erties of the vinyl and phenyl derivatives. This comes from our discovery that they offer properties 

quite different from what was anticipated to be organic decorated silica. In a series of papers, we 

determined that these 3-D macromonomers exhibit behavior that reflects the existence of a LUMO 

within the center of the cage that greatly affects both cage chemistries and photophysical proper-

ties.19-21 They also exhibit unexpected two photon absorption (TPA) behavior that suggests con-

siderable polarization in the excited state. 

In particular, although the cages are recognized to offer electron withdrawing properties simi-

lar to CF3,22 the phenyl cages exhibit very different reactivities during electrophilic substitution. 

For example, traditional Friedel Crafts acylation, sulfonylation and nitration do indeed favor for-

mation of meta substituted products17 as might be expected. However, bromination and iodination 

selectivities are quite disparate. For example, the PhT8,10,12 cages all iodinate almost exclusively (> 

90 % selectivity) in the para position. In contrast, bromination occurs selectively in the ortho po-

sition (85 % PhT8, 70 % PhT10, and 60 % PhT12). This selectivity is likely defined by the separation 

between phenyl groups on neighboring positions on the cages. The phenyl groups are 90 °, 72 ° 

and 60 ° apart as the cage size increases limiting access of Br2 to ortho hydrogens. 

Although we have yet to identify a mechanistic pathway whereby iodination occurs selectively 

in the para position, we have carefully modeled the bromination process. We find that the cage 

centered LUMO engages an incoming Br2 and together with hydrogen bonding to ortho hydrogens 

leads to formation of an energetically favored transition state akin to a Venus flytrap that selec-

tively drives ortho bromination, Figure 3.1.23 

 
Figure 3.1. Venus flytrap mechanism for ortho bromination. 
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More recently, we reported that the first bromine on the cage promotes bromination on the 

same face of the cage as illustrated in Figures 3.2 and 3.3.24 The crystal structure in Figure 3.3 

shows that careful bromination allows the synthesis and isolation of a Janus brominated cage.25 

 
Figure 3.2. Asymmetric bromination. 

 

Figure 3.3. Janus bromination of octaphenylsilsesquioxanes. 

Several other research groups have now isolated related cage macromonomers with cage cen-

tered LUMOs that also lead to unusual properties including a germanium analog as shown in Fig-

ure 3.4.26 

 
Figure 3.4. Polyhedral germsesquioxane cage with LUMO centered within cage. 
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Scheme 3.1. Synthesis of stilbene-SQs. 
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These recent results suggest that the presence of LUMOs inside such cage macromonomers 

might be more common than our early results suggested. To this end, we decided to systematically 

study the effects of replacing one phenyl on the cage with a simple alkyl; methyl or n-propyl or 

simply making a cage missing a corner and exploring the synthesis of model stilbene compounds 

to test the potential for LUMO formation in the unsymmetrical cages: MePh7[SiO1.5]8, 

PrPh7[SiO1.5]8, [PhSiO1.5]7(O0.5SiMe3)3. We report here the bromination and iodination of these 

model cages, their conversion to 4-methylstilbene and 4-cyanostilbene derivatives, spectroscopic 

characterization of the formed products and their photophysical properties. We find that indeed 

even with a missing corner, a LUMO forms in the cages and yields a form of excited state delo-

calization results as reported for the octaphenylsilsesquioxane analogs, except in the case of [MeS-

tilSiO1.5]2[PhSiO1.5]5(O0.5SiMe3)3.19-21 We also report for the first time, magneto-optic properties 

which support the existence of spherical LUMOs inside these cages. 

3.2 Experimental  

The synthetic methods and characterization techniques are described in Chapter 2. 

3.3 Results and discussion 

In previous studies, a set of stilbene-functionalized T8 compounds was synthesized from [p-

IPhSiO1.5]8 was well as [o-BrPhSiO1.5]8 using Heck coupling.19-21 These fully-functionalized cages 

all show UV-vis absorption spectra identical to the spectrum of trans-stilbene, while the emission 

spectra of the full cages show red-shifts of 60-100 nm.19-21 These large red-shifts are proposed to 

result from interactions of the stilbene π⁎ orbitals with a LUMO centered within the cage that has 

3-D orbital symmetry, indicating all stilbene moieties interact in the excited state.19 Such photo-

physical behavior has been reported before as indicative of semiconducting-like behavior.19-21  

Here we demonstrate similar behavior where only monoalkylheptaphenyl or corner missing 

partial cages are used. In the following section, we first characterize the individual macromono-

mers synthesized per the experimental section, thereafter we present the photophysical data and 

then the theoretical modeling results as a prelude to discussions about the interpretation of this 

photophysical data.  

3.3.1 Synthesis and characterization of RStilxT8R’ and RStilxT7-trisiloxy.  

In previous studies, we discovered a synthetic route to o-Br8OPS with ≥ 85% ortho-substitu-

tion27 and p-I8OPS with > 99% mono-iodination and > 95% para-substitution29 and a series of o-
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BrxOPS and p-IxOPS were synthesized, which were used as the starting material for the synthesis, 

via Heck coupling, of a series of stilbene derivatives.19-21  

Here, we extend our efforts synthesizing a series of alkylphenyl and corner missing stilbene 

derivatives from the corresponding brominated and iodinated cages. The first step was to cap the 

trisilanol corner-missing phenylsilsesquioxane Ph7T7-triol with methyl/propyl-trichlorosilane and 

trimethylchlorosilane, which give the title closed and corner-missing open cage macromonomers 

respectively as characterized by MALDI-TOF, GPC and 1H NMR as listed in Table A.1 (Appen-

dix). These derivatives were characterized by MALDI-TOF (A.1-A.12), TGA (A.13-A.16), GPC 

and 1H NMR as listed in Tables A.2-A.3. 
1H NMR of BrxPh7T8R in Table A.2 show four signals in the aromatic region. Those of 

IxPh7T8R show only two signals, indicating ortho bromination and para iodination a seen previ-

ously. 

The MALDI-TOF of brominated cages presented in Figures A.1 and A.4 reveal only traces of 

dibrominated phenyls. Their TGA ceramic yields (to SiO2) are close to theory, while MALDI-TOF 

of iodinated cages presented in Figures A.7 and A.10 do not show any peaks for diiodophenyl 

products. The MALDI-TOF data in Table A.3 indicate that the substitution patterns of the Heck 

products are identical to those found for both the brominated and iodinated starting cages without 

cage breakdown during Heck coupling. Likewise, the TGA ceramic yields of the stilbene deriva-

tives in Table A.3 are also close to theory, strongly suggesting quantitative conversion. Decompo-

sition onset temperatures (Td5%/TGA/air) for most Heck products are > 400 °C, suggesting high 

thermal stability arising from the silica-like core. GPC suggests cage sizes grow slightly with Heck 

coupling by comparing the retention times of the Heck products with starting brominated or io-

dinated cages. The molecular masses indicated by GPC are not accurate due to the spherical struc-

ture of cages and the retention times for all cage compounds are around 32 min. 

We also purposely synthesized the 4-methylstilbene derivative from p-I8OPS for comparison 

for reasons discussed in the section on photophysical properties. 

3.3.1 Photophysical properties. 

UV-Vis studies for o-RStilxT8R’. Figure 3.5 provides steady-state spectra (CH2Cl2) for p-Mes-

til8OPS synthesized from I8OPS and o-RStilxT8R’. The spectra for o-MestilxT8R’ are very similar 

to those for p-Mestil8OPS. As indicated by previous studies as well as results shown here, their 
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UV-vis spectra are all red-shifted 5-10 nm from those of p-methylstilbene and the model com-

pound MeStilSi(OEt)3. Normally, it would be reasonable to argue that the effect of the cage on the 

UV-vis spectra of the attached stilbenes is small. However, it has been suggested in the literature 

that the -Si(O)3 unit exhibits the inductive characteristics of a -CF3 group.22 Thus, a blue-shift 

would be a more reasonable expectation. In contrast to the mundane UV-vis absorption behavior, 

the emissive behavior is quite striking. As seen in Figure 3.5, the emission spectra (normalized) 

show a red-shift of 50-70 nm for all compounds relative to those of p-methylstilbene itself, indi-

cating 3-D conjugation in the excited state.21  

 
Figure 3.5. Normalized steady-state absorption (solid) and emission (dashed) spectra for 

Ph7T8R’, p-MeStil8OPS and o-RStilxT8R’. 

The pair of compounds having structural differences only as a result of a methyl/propyl group 

show the same spectra suggesting their optical properties are independent of the non-conjugated 

side group. The o-CNStilxT8R’ compounds display spectra similar to o-MeStilxT8R’ but slightly 

red-shifted ascribed to increased conjugation to the cyano group. The high-degree of similarity for 

the p-MeStil8OPS and o-MeStilxT8R’ spectra suggest formation of 3-D conjugation even with 

functionalized heptaphenyl cages. 

The TPA data (Table 3.1) indicate that despite the introduction of an unfunctionalized corner, 

there are no gross changes in the values recorded indicating only modest polarization of the 
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individual stilbene groups as expected since the model stilbenes are not capable of charge transfer 

like behavior as seen previously.19-21  

Table 3.1. Photophysical data for p-MeStil8OPS, RStilxT8R’ and RStilxT7-trisiloxy. 
 Abs. λmax 

(nm) 
Em. λmax 

(nm) 
Estoke’s 
(cm-1) 

ΦF(-) TPA-δ 
(GM) 

p-MeStilbene9 298, 311 355    
MeStilSi(OEt)36 298 352    

[p-NH2StilvinylSiO1.5]819 361 481 6911 0.06 110 
[p-NH2StilSiO1.5]820 356 459 6303 0.07 26 

p-MeStil8OPS10 305, 320 400, 422 9142 0.57 0.17 
o-MeStil6T8Me 304, 320 402, 426 9530 0.16 1.2 
o-MeStil7T8Pr 306, 320 402, 426 9420 0.13 0.9 
o-CNStil6T8Me 315, 325 419, 441 8185 0.15 2.0 
o-CNStil7T8Pr 315, 325 419, 441 8185 0.19 1.4 
p-MeStil7T8Me 305, 317 398, 420 7661 0.17 0.1 
p-MeStil7T8Pr 305, 317 398, 421 7661 0.20 0.1 
p-CNStil7T8Me 317, 326 415, 442 6578 0.09 2.3 
p-CNStil7T8Pr 314, 326 412, 440 6403 0.06 2.8 

o-MeStil7T7-trisiloxy  304, 317 406, 418  7793 0.66 0.88 
o-CNStil7T7-trisiloxy 314, 326 422, 438 8101 0.42 5.54 

p-MeStil2Ph5T7-trisiloxy 299, 311 354 5196 0.73 0.05 
a λmax ±	1	nm 

We have included the TPA data for the highest reported values for cage macromonomers or 

SQs in our previous studies. These compounds have a strong charge transfer component such that 

in the excited state a large charge transfer (CT) transition is observed reflecting extensive molec-

ular polarization leading to the very large TPA values per group. Coincidentally the ΦF for these 

compounds are quite low (0.06/0.07) as expected for CT states.  

UV-Vis data for o/p-RStilxT7-trisiloxy . Figure 3.6 provides UV-vis absorption and emission 

spectra for p-MeStil8OPS and o-RStilxT7-trisiloxy . Ignoring for the moment, the data from p-

MeStil2Ph5T7-trisiloxy , Their spectra are very similar and all are 5-10 nm red-shifted in absorption 

and 50-70 nm in emission from p-methylstilbene and the model compound MeStilSi(OEt)3, also 

indicating the existence of 3-D conjugation even when a corner is missing. O-RStilxT7-trisiloxy 

shows longer wavelength absorption up to 400 nm, which may arise from the presence of small 

amounts of dibromophenyl functionality, leading to small amounts of distyrenylbenzene in these 

SQs. Such longer wavelength absorption was absent in spectra of p-MeStil8OPS due to absence of 

diiodophenyl functionality and p-MeStil2Ph5T7-trisiloxy.  
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Figure 3.6. Normalized steady-state absorption (solid) and emission (dashed) spectra for p-MeS-

til8OPS and o/p-RStilxT7-trisiloxy. 

TPA-δ of o-MeStil7T7-trisiloxy is only slightly different from other functionalized cage com-

pounds while the TPA-δ of o-CNStil7T7-trisiloxy is larger due to the presence of a small amount 

of dibromophenyl functionality as well as increased conjugation of the cyano group compared to 

the methyl group.  

These values contrast greatly with the surprising ΦF values for the corner missing cage which 

are higher to much higher than for complete cages. The reason for this is not clear but perhaps the 

bulky trimethylsiloxy (TMS) groups prevent radiationless decay by shielding the cage centered 

excited state from solvent collisions that might serve to promote thermal emission from the excited 

state-hence radiationless decay. 

Most telling of all the Table 3.1 photophysics data reported, is that for p-MeStil2Ph5T7 -

trisiloxy. For the first time, we find a stilbene cage that does not show a red shift in emission. 

Instead, the absorption and emission are identical to p-methylstilbene. Indeed, there is not even a 

blue shift in absorption as might be anticipated based on arguments presented above. This molecule 

does not have a cage centered LUMO. This is extremely important because it means that these 

LUMOs can only form at certain degrees of conjugation. That is, there is a point where sufficient 
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numbers of conjugated groups must be attached for the LUMO to form inside the cage otherwise 

it is likely phenyl or stilbene centered.   

The interpretation is that there are clearly structure-property relationships that must be satisfied 

for 3-D delocalization to occur. This is a valuable discovery because it suggests that there are 

opportunities to both probe, tailor and optimize properties for applications ranging from high effi-

ciency luminescent components for OLED and white light applications and/or for hybrid photo-

voltaics, especially if the HOMO LUMO gap can be manipulated. We will in fact demonstrate 

some ability to do this in a later paper. 

3.3.3 Optical magnetization properties 

Recently, high frequency magnetization has been induced by intense laser light in a wide va-

riety of materials including simple chemical compounds.39-42 Nonlinear scattering experiments can 

characterize 3-D silsesquioxane structures in a novel way that exploits their susceptibility to the 

joint forces of magnetic and electric optical fields. Magneto-electric scattering at the molecular 

level is sensitive to the potential energy surface V within each molecule.  

This follows from the fact that the slope of the potential determines the azimuthal restoring 

force of electrons set in motion by the 2-photon interaction32. This restoring force determines the 

natural frequency 𝜔∅ of oscillations in a torsion pendulum model of the motion33, as well as the 

intensity of nonlinear scattering by components of various polarizations. Using a linearized ap-

proximation to the slope in a direction perpendicular to the radius of the molecule near the equi-

librium point, the natural frequency is expressible as  

𝜔∅ ≅
𝑏
√𝐼
(𝑑𝑉/(𝑑∅))<=* 

Here b is a constant that depends on incident light intensity and detuning. I is the molecular 

moment of inertia. Small values of 𝜔∅ correspond to a nearly flat potential. Large values indicate 

a steep local potential. It is important to note that 𝜔∅ also equals the 2-photon detuning denomi-

nator for the nonlinear scattering process observed in our experiments. It is for this reason that 𝜔∅ 

is the chief factor determining the relative intensities of polarized or unpolarized scattering chan-

nels in the optical interaction32.  

By analyzing ratios of polarized to unpolarized magneto-electric scattering in different mole-

cules under constant experimental conditions, the libration frequencies and relative sphericity of 
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their orbitals can therefore be compared. To this end, co- and cross-polarized scattered light inten-

sities were recorded and analyzed to distinguish signals of electric and magnetic origin. Then, the 

comparative sphericity of the excited electron orbitals was determined from the ratio of unpolar-

ized to polarized magnetic signal intensity. 

For this portion of the characterization, a separate set of absorption and emission spectra were 

obtained, as shown in Figure 3.7. The laser wavelength was fixed at 800 nm, so multiphoton ab-

sorption was required to cause excitation of fluorescence. Both two-photon and three-photon ab  

sorption processes overlap the electronic transition centered on 320 nm in Figure 3.7a (at 400 nm 

and 267 nm respectively). Two-photon absorption dominated the excitation however, in view of 

the close fit of quadratic intensity dependence to the observed fluorescence intensity in all three 

SQ samples (Figure 3.8).  

 
(a)                                (b) 

Figure 3.7. Normalized steady-state one-(a) and (b) two-photon fluorescence spectra (lex=800 

nm laser light) for o-RStil7T8R’ and o-RStil7T7-trisiloxy. 

Impurities can also participate in 2-photon absorption at 400 nm, since this wavelength is rel-

atively far off resonance with the transition to the excited state of the SQ. This was presumed to 

account for the spectral features of the emission spectrum in the range 475-600 nm that are absent 

from the one-photon-excited spectrum (Figures 3.7a,b). 

 



 

 

59 

 
Figure 3.8. Dependence of 2-photon-induced fluorescence emission intensity on input power at 

lex=800 nm in three different SQ samples: (a) Methyl, (b) Propyl, and (c) TMS. 

To perform magnetic characterization of SQ samples, we measured the co- and cross-polarized 

scattered light intensity at 90 degrees to an input beam consisting of 100 fs pulses of various in-

tensities at a wavelength of 800 nm. This type of experiment reveals the relative strength of in-

duced magnetic dipole (MD) scattering in our samples, which is sensitive to azimuthal variations 

of the electron potential rather than radial variations.  

To identify and interpret the theoretical contributions to measured light scattering, we mapped 

out complete radiation patterns for all samples at fixed input intensity (Figures 3.9-3.11). To ac-

complish this, the analyzer in the detection arm was held in a fixed orientation that either trans-

mitted (red curve) or blocked (blue curve) Rayleigh scattering while the input polarization was 

rotated through 360 degrees. In Figures 3.9-3.12, the component in red is therefore linear electric 

dipole scattering. The component in blue is nonlinear, cross-polarized scattering of magneto-elec-

tric origin. Note that the (red) electric dipole scattering and the (blue) magnetic dipole scattering 

share a common unpolarized background, circular in the polar plot, which is also due to magneto-  

electric scattering.32 When analyzed in detail, two separate components are found to be present in 

each and every recorded polar radiation patterns. One has a purely dipolar (𝑐𝑜𝑠>𝜃) variation with  

angle and is therefore polarized. The other has no dependence on angle, and yields an unpolarized, 

constant background. In the case of cross-polarized scattered light, both components are of 
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magnetic origin.32 The polarized component in MD scattering is a little bigger in TMS than in the 

methyl or propyl variants (Figures 3.11-3.12). An increase of polarized MD intensity in TMS over 

that observed in the other samples, measured by the ratio of the angular excursion of scattering 

intensity over the constant background level in the data, can be interpreted as the result of a defor-

mation in the potential well of the caged electron density. This is discussed next. 

 
Figure 3.9. (a) Raw data on co- (red) and cross-polarized (blue) scattered light intensity vs. inci-

dent polarization angle in o-MeStil7T8Me at fixed input intensity (lex= = 800 nm). (b) Radiation 

pattern (polar plot) of the raw data in part (a) after subtraction of the constant background com-

ponent, showing that purely dipolar electric and magnetic dipole components are induced in the 

scattered light at the intensity of our experiments. 

 
Figure 3.10. (a) Raw data on co- (red) and cross-polarized (blue) scattered light intensity vs. in-

cident polarization angle in o-MeStil7T8Pr at fixed input intensity (lex= = 800 nm). (b) Radiation 

pattern (polar plot) of the raw data in part (a) after subtraction of the constant background com-

ponent, showing that purely dipolar electric and magnetic dipole components are induced in the 

scattered light at the intensity of our experiments. 
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In Figures 3.9-3.12 the observed scattered light intensities in part (a) of each figure indicate 

that the magnetic scattering component (blue) has a magnitude that is only 3-5 times smaller than 

the Rayleigh component (red). Such an intense magnetic component is not observed in linear scat-

tering but arises here due to nonlinear scattering of magneto-electric origin at the molecular level. 

What is most significant is the observation that the magnetic component is almost completely un-

polarized. For the relatively long duration and small bandwidth of the pulses used in the present 

experiments, this can only take place if the natural frequency of librations initiated by the magnetic 

field is extremely low. 

 
Figure 3.11. (a) Raw data on co- (red) and cross-polarized (blue) scattered light intensity vs. in-

cident polarization angle in o-MeStil7T7-trisiloxy at fixed input intensity (lex= = 800 nm). (b) Ra-

diation pattern (polar plot) of the raw data in part (a) after subtraction of the constant background 

component, showing that purely dipolar electric and magnetic dipole components are induced in 

the scattered light at the intensity of our experiments. 

The theoretical importance of libration frequency in MD scattering has been discussed previ-

ously32,33. Unpolarized (blue) MD scattering arises from electrons that are excited by the magnetic 

force of incident light to undergo azimuthal librations in the local potential well. Their response is 

governed by the detuning of the optical interaction, which has been shown to equal the resonant 

libration frequency. If electrons occupy a spherically-symmetric orbital whose azimuthal slope is 

near zero, there is little restoring force. The corresponding libration frequency is therefore low, 

leading to enhancement of magnetic scattering generally, and of unpolarized scattering in particu-

lar. On the other hand, if the orbital becomes less spherical through deformation, the libration 

frequency increases and the unpolarized magnetic scattering intensity is predicted to drop for a 

fixed pulse duration. 

a b
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Hence the comparative sphericity of the excited state orbital can be assessed from the ratio of 

polarized to unpolarized MD scattering intensities. The lowest ratio corresponds to the most spher-

ically-symmetric orbital. If MD scattering is almost completely unpolarized, one can conclude that 

the excited orbital occupied by the electrons is spherically symmetric with a near-zero azimuthal 

slope. Increasing ratios are indicative of a progressive loss of spherical symmetry. In order to draw 

conclusions from experimental data however it is important that the electric and magnetic scatter-

ing components can be accurately distinguished and that no unexpected components are present 

from processes that are not magneto-electric in origin. The accuracy of the separation of compo-

nents was therefore checked in parts (b) of Figures 3.9-3.12. These figures plot the measured ra-

diation patterns for co-polarized ED scattering after subtraction of the unpolarized magnetic back-

ground. It is readily apparent that the resultant patterns are purely dipolar in character. Because the 

residuals are low, one may conclude that only Rayleigh scattering and magneto-electric scattering 

contribute significantly to the observed radiation patterns. 

 
Figure 3.12. Polar plots of raw light scattering data in methyl, propyl and TMS monomers after 

solvent subtraction. The solid curves are least squares fits to dipole radiation patterns together 

with a fitted constant background signal. 
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Some basic trends from these studies can be identified. For example, the two-photon fluores-

cence intensity (two-photon fluorescence quantum yield) is maximum for TMS and minimum for 

Propyl at the same concentrations and conditions in DCM solvent, with Methyl being in between 

the two limits.  

The MD unpolarized component decreases in the order: 

Methylunpol,MD > Propylunpol,MD > TMSunpol,MD. 

The MD polarized component decreases in the order:  

TMSpol,MD > Propylpol,MD > Methylpol,MD 

The ED polarized component follows the trend as: 

TMSpol,ED > Methylpol,ED > Propylpol,ED 

These trends may be interpreted with the help of quantum theory of magneto-electric interac-

tions on the atomic scale.32 First, it may be noted that the progression of unpolarized MD intensity 

is opposite that of the polarized intensities. Theoretically the proportion of these two components 

is determined by the magnitude of the librational resonance frequency wf of electrons responding 

to incident light. This is due to the fact that the two-photon detuning of the optical excitation equals 

wf when the bandwidth Dn of the incident light is small (Dn<wf). Presuming the active electron 

density occupies the orbital centered in the cage, the trend is consistent with resonance frequencies 

in the order 

wf(TMS)> wf(Propyl)> wf(Methyl) 

This ordering is justified by the conclusion that the unpolarized scattering channel experiences 

resonant enhancement as the librational resonance frequency wf decreases. The intensity of mag-

netic scattering should also be proportional to the polarized Rayleigh or ED component, provided 

the character of the orbital does not change appreciably from one compound to another. This trend 

is upheld in a comparison of the data for Methyl and Propyl which differ only in the substituent 

outside the cage. However, the MD component in the TMS data is reduced in intensity despite a 

sizeable increase in its Rayleigh component, as compared to the other two compounds. This is 

most obvious in Figure 3.12 where TMS clearly exhibits the largest polarized ED and the smallest 

unpolarized MD signal components. 

As discussed earlier, it is the slope of the orbital potential function that determines the libra-

tional resonance frequency. A spherical or nearly spherical potential has a slope close to zero, and 

consequently a low libration frequency which promotes unpolarized MD scattering. Hence one 
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interpretation of the trends in the data is that they are consistent with the idea that removing a 

corner of the cage in the TMS compound distorts the sphericity of the electron orbital in the cage. 

It is quite reasonable to expect that the electron potential develops an axis passing through the 

corner from the cage center. The introduction of this axis could be argued to lead to an increase in 

the ED transition moment accompanied by an anisotropy of the potential which raises the libra-

tional frequency and diminishes the magnetic scattering intensity, consistent with the data. Thus 

the magnetic scattering suggests there is a reduction in the sphericity of the LUMO in the cage 

when a corner is opened, but that the effect is relatively subtle. 

3.3.4 Modeling studies 

Many recent theoretical studies describe HOMO–LUMO interactions in a wide variety of SQ 

macromonomers.43-52 As a prelude to understanding the behavior of the corner missing cage, we 

first did calculations for the permethyl cage as shown in Figure 3.13. The presence of a spherical 

LUMO that matches very closely those we have reported before supports the existence of a similar 

LUMO in the Ph7T8R’ cages described above. 

To understand the electronic properties of the StilxT7-trisiloxy compounds, we calculated the 

HOMO-LUMO structures of the simplified Me7T7-trisiloxy analog per Figure 3.14. From our re-

sults for Me7T7-trisiloxy molecule, the HOMO and LUMO energies are -7.37 eV and 0.91 eV, 

respectively; a gap of 8.34 eV similar to the theoretical model obtained by Shen et al.51 

 
Figure 3.13. HOMO and LUMO modeling of the Me8T8 silsesquioxane. 
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Figure 3.14. HOMO and LUMO models for the permethylated corner missing cage. 

The LUMOs are again localized predominantly in the cage center. However, the LUMO ap-

pears to be asymmetric within the cage in keeping with the photomagnetic studies described above.  

3.4 Conclusions 

The above results offer a new perspective on the ease of formation of LUMOs in non-symmet-

rical and even incomplete phenyl SQs. They point to the idea that their formation may be of a more 

general nature than originally suspected. However, the absence of a red shift for the disubstituted 

corner missing SQ with only two methylstilbene moieties indicates there is a threshold for for-

mation of a LUMO inside the cage. This means there are some mitigating electronic effects that 

control energy levels in and on the cage pointing to the potential for systems where this effect may 

be tuned through some outside stimulus. These results also set the stage for our efforts to look at 

double decker cages wherein for example two edges are open yet we still see LUMOs form inside 

the cage as further discussed in the next chapter. 

Furthermore, we also find that probing magneto-electric properties using intense laser light 

provides a new method of confirming not only HOMO-LUMO gap energies but also LUMO struc-

tures and symmetries. We expect to develop this approach to characterization in future papers. 

The continuing important point to make is that the existence of 3-D conjugation in the excited 

state points to electronic communication in three dimensions between conjugated moieties that 

potentially offers access to a wide variety of semiconducting compounds.  
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Abstract 

Bromination and iodination of title double decker (DD) phenylsilsesquioxane macromonomers 

occurs at ortho and para positions respectively as in PhT8,10,12 cages. Heck cross-coupling with 4-

Me/CNstyrene gives the corresponding 4-Me/CNstilbene substituted cages. All compounds were 

characterized by FTIR, MALDI-TOF, TGA, NMR, and GPC. These compounds show UV-vis 

absorptions very similar to individual stilbene analogs. However, emission for all macromonomers, 

except p-MeStil2Ph6DD(OTMS)4 is red shifted 50-70 nm as seen before in full and partial cages 

indicating formation of cage centered LUMOs conjugated to all the stilbene moieties indicative of 

suggesting semiconducting behavior. Cage centered LUMO formation even occurs in a cage where 

two of four Si-O-Si bridges are broken suggesting that LUMO formation is an extremely common 

phenomenon. These results are supported by both modeling studies and the use of high intensity 

laser light to generate magnetic fields that form in the cage centers. The exception behaves like p-

methylstilbene in both absorption and emission indicating onset of semiconducting behavior re-

quires a minimum number of substituents and points to the potential to tailor HOMO-LUMO gaps 

and therefore multiple photophysical properties.  

4.1 Introduction 

Over the last decade, we have explored the photophysics of elaborated phenyl [(Rphen-

ylSiO1.5)8,10,12] and vinyl [(RvinylSiO1.5)8,10,12], silsesquioxane (SQ) macromonomers.1-10 We find 

that appended moieties conjugated through phenyl or vinyl exhibit UV-vis absorption spectra un-

changed from the free moieties but with exceptional red-shifts (40-100 nm) in emission. These 

red-shifts reflect the formation of a cage centered LUMO that allows excited state communication 

between all the appended moieties leading to 3-D conjugation suggesting semiconducting behavior. 
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We recently reported that such LUMOs also form in SQs where one phenyl is replaced with 

Me/nPr or is completely removed (corner missing SQ).40 These results suggest that 3-D LUMOs 

may form inside multiple types of SQ cage macromonomers, as recently also seen in germanium 

analogs.11 

There is now extensive literature on the chemistries and properties of SQs.12-29 Most recently, 

multiple reports have appeared on double decker (DD) SQ macromonmers wherein OSiR1R2 

groups (R1, R2 = same or different, cis and trans) are inserted into opposing cage edges.30-39  

 Here, we extend the concept of SQ centered LUMOs further by exploring phenyl based DD 

SQs, wherein opposing oxygen edge bridges are replaced either by MeRSi(O-)2 (R = Me or vinyl) 

edge bridges, [PhSiO1.5]8[Me2SiO]2 or [PhSiO1.5]8[MevinylSiO]2 or without any bridges 

[PhSiO1.5]8[O0.5SiMe3]4 again finding LUMOs and delocalization in excited states of 4-

Me/CNStilbene analogs even when the cage is doubly open with the exception of p-MeS-

til2Ph6DD(OTMS)4 which behaves like simple p-methylstilbene.  

4.2 Experimental 

The synthetic methods and characterization techniques are described in Chapter 2. 

4.3 Results and discussion 

In the preceding paper, we followed the identical synthetic protocol as in our previous papers 

synthesizing stilbene-functionalized PhT8 and corner missing T7(OTMS)3 SQ macromonomers 

from [o-bromophenylSiO1.5]8, [p-iodophenylSiO1.5]8, [o-bromophenylSiO1.5]7[O0.5SiMe3]3 and [p-

iodophenylSiO1.5]7[O0.5SiMe3]3 using traditional Heck coupling procedures.1-5,40 This series all 

present UV-vis absorption spectra identical to trans-stilbene. In contrast, emission spectra show 

red-shifts of 60-100 nm.1-10,40 Such red-shifts arise from stilbene π⁎ orbital interactions with a 

spherical SQ centered LUMO. The most important finding was that such a LUMO also forms and 

interacts in the excited state with stilbene moieties even when one PhSiO1.5 corner is missing.40 

Such photophysical phenomena suggest semiconducting behavior.1-10 The current effort describes 

the syntheses of stilbene functionalized DD open and closed SQ macromonomers per Scheme 4.1, 

see experimental section below and in Appendix B.  

As in our previous paper,40 our approach is to carefully characterize the synthesized macro-

monomers followed by an assessment of their photophysical behavior, theoretical modeling of the 

macromonomers leading to a discussion of this photophysical data. 
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Scheme 4.1. Synthetic scheme for DD stilbene-SQs. 
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Table 4.1. MALDI-TOF and GPC data for DDMe4 and DD(OTMS)4. 
 MALDI-TOFa (m/z) GPC 

massb calcd Mn Mw PDI 
DDMe4 1290 1289 756 807 1.07 

DD(OTMS)4 1466 1465 1026 1100 1.07 
aAs Ag+ adduct. bAs H+ adduct. 

Table 4.2. MALDI-TOF, TGA and GPC data for o-BrxDDMe4, o-RStilxDDMe4, p-IxDDMe4, p-
RStilxDDMe4, o-BrxDD(OTMS)4, o-RStilxDD(OTMS)4, p-IxDD(OTMS)4 and p-

RStilxDD(OTMS)4. 
 MALDI-TOF 

(m/z) 
Ceramic yield in TGA (%) GPC 

mass actual calc. Td5% 
(°C) 

Mn Mw PDI 

o-Br7DDMe4 1844a 34 34 436 470 485 1.03 
o-MeStil7DDMe4 2112a 31 30 435 683 799 1.17 
o-CNStil7DDMe4 2309a 27 27 427 1164 1367 1.17 
p-MeStil7DDMe4 2112a 31 29 355 1910 1918 1.00 
o-Br7DD(OTMS)4 1902    957 996 1.04 

o-MeStil7DD(OTMS)4 2129 33 33 408 1300 1514 1.16 
o-CNStil7DD(OTMS)4 2364a 29 30 382 1514 1857 1.23 

p-MeStil2Ph6DD(OTMS)4 1636a 45 45 359 1360 1372 1.01 
aAs Ag+ adduct. 

4.3.1 Synthesis and characterization of RStilxDDMe4 and RStilxDD(OTMS)4. 

In previous papers, we carefully delineated a synthesis route to o-Br8OPS (≥ 85% ortho4) and 

p-I8OPS (>95% para1-5). From them, we synthesized and characterized a series of stilbene deriv-

atives.1-8 We also made analogs with PhT10,12 cages.41 

In the current work, we use the same synthesis methods to prepare open and closed stilbene 

DD SQs from the halogenated DD SQs, per Scheme 4.1. The starting DD SQs were prepared by 

silylation of tetrasilanol DD(OH)4, forming open and closed SQs DD(OTMS)4 and DDMe4 respec-

tively. These were characterized by MALDI-TOF, GPC, NMR and FTIR, Table 4.1 and Table B.1. 

Br/I7DDMe4 and Br/I7DD(OTMS)4 are synthesized with less than stoichiometric amounts of hal-

ogen to purposely avoid Br2Ph and I2Ph moieties eliminating the chance to accidentally produce 

distyrenylbenzene moieties. An occasional unfunctionalized phenyl is possible and likely the one 

closest to the large Me3Si- groups in open DD SQs due to steric hindrance for addition of Br or I 

atoms. The iodination to I2DD(OTMS)4 was tracked by MALDI-TOF and then quenched such that 

the primary product was the doubly iodinated. We believe that iodination likely occurs on the 
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phenyls most distant from the Me3Si- groups. The halogenated and Heck functionalized DD SQs 

were characterized by MALDI-TOF, TGA, GPC and FTIR, see Table 4.2 and Figures B.1-B.8. 

MALDI-TOF data found in Table 4.2 present Heck substitution patterns identical to those for 

the brominated and iodinated starting DD SQs. TGA ceramic yields are nearly identical to theory, 

suggesting quantitative conversion. 

Td5%/TGA/air for all Heck products are > 350 °C arising as noted previously because of the 

advantageous heat capacity of the silica-like cages. GPC chromatographs show slightly larger cage 

sizes with Heck functionalization as revealed by comparing retention times with starting bromin-

ated or iodinated DDs. We use [p-MeStilSiO1.5]8 (p-Mestil8OPS) as a standard for comparison. 

4.3.2 Photophysics of o-RStil7DDMe4 and o-RStil7DD(OTMS)4. 

UV-Vis studies. Figure 4.1 presents spectra (CH2Cl2) for p-Mestil8OPS, o-RStil7DDMe4 and 

o-RStil7DD(OTMS)4. The spectra are essential the same as found for p-Mestil8OPS. As earlier, 

coupled with the results shown here, UV-vis absorption spectra red-shift 5-10 nm from p-methyl-

stilbene and the model MeStilSi(OEt)3, which represents a corner of the methylstilbene substituted 

DD SQ cages.  

Corner -Si(O)3 species are reported to behave like a -CF3 group42 suggesting a blue-shift might 

be anticipated. However, Figure 4.1 presents 50-70 nm red-shifted emission spectra for all DD 

SQs vs p-methylstilbene, indicating 3-D conjugation in the excited state.1-10,40 The similarity be-

tween p-MeStil8OPS and o-MeStil7DDMe4 is anticipated given the small differences in their struc-

tures. The extra two SiMe2 groups in the DD structure are inserted in a regular cage structure and 

might not be expected to cause significant changes in the LUMO, compared to OPS. However, for 

the open o-MeStil7DD(OTMS)4, the found spectra also show 3-D conjugation. This result is sur-

prising since we have two SQ cyclomers joined by just two bridging oxygens. We believe this is 

an extremely unexpected result. 
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Figure 4.1. Steady-state absorption (solid) and emission (dashed) spectra for p-MeStil8OPS and 

o-RStil7DDMe4 and o-RStil7DD(OTMS)4. 

O-CNStil7DDMe4 and o-CNStil7DD(OTMS)4 compounds present spectra similar to o-MeS-

til7DDMe4 and o-MeStil7DD(OTMS)4 but slightly red-shifted likely due to increased conjugation 

from the -CN group. 

Table 4.3 data permit several interesting observations. The fluorescence quantum yields (ΦF) 

for the methylstilbene analogs, o- MeStil7DDMe4 and o-MeStil7DD(OTMS)4, are greater than 

found for the octa-substituted compound, p-MeStil8OPS reported previously10 but in keeping with 

the higher ΦF for the corner missing SQ analog also presented in Table 4.3. One explanation is that 

the large TMS groups sterically limit solvent aided radiationless decay.   

Table 4.3. Photophysical data for p-MeStil8OPS, RStilxDDMe4 and RStilxDD(OTMS)4. 
 Abs. λmax 

(nm) 
Em. λmax 

(nm) 
Estoke’s 
(cm-1) 

ΦF(-) TPA-δ 
(GM) 

p-MeStilbene9 298, 311 355    
MeStilSi(OEt)36 298 352    
p-MeStil8OPS10 305, 320 400, 422 9090 0.57 1.4 

o-MeStil7T7(OTMS)3 304, 317 406, 418 7622 0.81 0.7 
o-MeStil7DDMe4 305, 316 403, 426 8171 0.69 2.9 
o-CNStil7DDMe4 317, 325 420, 442 8145 0.36 17 
p-MeStil7DDMe4 321 427 7733 0.28 6.3 

o-MeStil7DD(OTMS)4 305, 317 401, 421 7793 0.75 2.5 
o-CNStil7DD(OTMS)4 314, 326 420, 442 8050 0.48 37 

p-MeStil2Ph6DD(OTMS)4 301, 312 355 5054 0.10 2.7 
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Figure 4.2. Steady-state (solid) and emission (dashed) spectra for p-MeStil8OPS, p-MeS-

til7DDMe4 and p-MeStil2Ph6DD(OTMS)4. 

4.3.3 Photophysics of p-MeStil7DDMe4 and p-MeStil2Ph6DD(OTMS)4. 

In our previous paper,40 we reported for the first time a stilbene substituted cage p-MeS-

til2Ph5T7(OTMS)3 that does not show an emission red shift. Its photophysical behavior is identical 

to p-methylstilbene indicating the absence of a cage centered LUMO. This implies that LUMOs 

form only above certain degrees of conjugation. Here we report another example, p-MeS-

til2Ph6DD(OTMS)4 revealing similar structure-property relationships and further demonstrating 

that a threshold exists for formation of a LUMO inside cage. 

4.3.4 Fluorescence and two-photon absorption (TPA) data 

The fluorescence quantum yields (ΦF) and two-photon absorption (TPA-δ) for all macromon-

omers are given in Table 4.3. The methylstilbene SQs gave a higher ΦF compared to the cyanostil-

bene SQs indicating lower efficiencies likely associated with charge transfer component (see be-

low) in the excited state. The TMS open SQs also show slightly higher ΦF relative to the closed 

cages. The relatively high TPA/moiety data for o-CNStil7DDMe4 and especially for o-

CNStil7DD(OTMS)4 can be ascribed to relatively high polarization in the excited state perhaps 

associated with some CT component in the excited state; however, it is important to note that 
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changing solvents from CH2Cl2 to CH3CN did not result in any shift in emission lmax, which would 

signify a large CT contribution to the excited state as seen in aminated stilbene and stilbene vinyl 

SQs.1,5 

4.3.5 Optical magnetization properties 

As discussed in our previous paper,40 intense laser light can induce high frequency magnetiza-

tion in multiple materials and chemical compounds.44,48 Such methods provide a separate mecha-

nism to probe the 3-D behavior of SQ excited states, relying on nonlinear scattering to explois 

their susceptibility combined magnetic and electric optical fields. Non-linear magneto-electric 

scattering strongly reflects the molecular level potential energy surface V, which is a consequence 

of the slope potential determining the azimuthal restoring force of electron motion caused by 2-

photon, magneto-electric interactions. The restoring force defines the frequency 𝜔∅ of oscillations 

in a torsion pendulum model,40,47,48 coincident with intensity of nonlinear scattering by components 

of various polarizations. The natural frequency can be expressed using a linear approximation to 

the slope perpendicular to the molecular radius near equilibrium:	

𝜔∅ ≅
𝑏
√𝐼
(𝑑𝑉/(𝑑∅))<=* 

The incident light intensity and detuning can be used to define the constant b. I is then defined 

as the molecular moment of inertia. Small values of the libration frequency 𝜔∅ correspond to an 

approximately flat potential whereas large values point to a steep local potential. 𝜔∅ equates to the 

2-photon detuning denominator for the nonlinear scattering observed in magneto-electric scatter-

ing experiments. Thus, 𝜔∅ is the primary factor determining relative intensities of polarized or 

unpolarized scattering channels in optical interactions.46,48 Thus, from the ratios of molecular po-

larized to unpolarized magneto-electric scattering under constant conditions, the libration frequen-

cies and relative orbital sphericity can be compared. Our efforts were therefore directed to meas-

uring and analyzing co- and cross-polarized scattered light intensities to distinguish the individual 

electric and magnetic signals. From this data it becomes possible to characterize the sphericity of 

the excited electron orbitals by determining the ratio of unpolarized to polarized magnetic signal 

intensity. 

Consequently, we obtained the Figure 4.3 absorption and emission spectra using a laser wave-

length of 800 nm as done previously.40 At 800 nm, multiphoton absorption must occur to observe 
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fluorescence excitation. The double-decker exhibit fluorescence intensities with a quadratic de-

pendence on input intensity (Figure 4.4).  

 
Figure 4.3. Normalized steady-state one- (a) and (b), (c) two-photon fluorescence spectra of 

DD(OTMS)4 and DDMe4 (lex=800 nm laser light). 

 

Figure 4.4. Dependence of 2-photon-induced fluorescence emission intensity on input power at 

lex=800 nm in double-decker compounds (a) DD(OTMS)4 and (b) DDMe4. 
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Magnetic characterization entailed measuring the co- and cross-polarized scattered light inten-

sities at 90 degrees vs. a 800 nm, 100 fs pulse input beam. This type of probe allows quantifying 

the relative strength of induced magnetic dipole (MD) scattering, which are sensitive to azimuthal 

rather than radial variations of the electron potential.  

Thereafter, we constructed complete radiation patterns for all samples at fixed input intensity 

to identify and interpret the theoretical contributions to measured light scattering, (Figures 4.5 and 

4.6). Our approach was to position the analyzer in the detection arm in a fixed orientation that 

either transmits (red curve) or blocks (blue curve) Rayleigh scattering while the input polarization 

was rotated through 360 degrees.  

Figures 4.5 and 4.6, red is the linear electric dipole (ED) scattering and blue is nonlinear, and 

magneto-electric in origin. The polarized component of cross-polarized scattering is orthogonal to 

the ED component and therefore has magnetic dipole (MD) character. ED (red) and MD (blue) 

scattering share a common unpolarized background; also due to magneto-electric scattering.46 In 

analysis, two separate components are seen in each recorded polar radiation pattern. One, with a 

purely dipolar (𝑐𝑜𝑠>𝜃) variation with angle, is polarized. The other has no angular dependence 

giving an unpolarized, constant background.  

 
Figure 4.5. (a) Raw data for co- (red) and cross-polarized (blue) scattered light intensity vs. inci-

dent polarization angle in 0.1 mM DD(OTMS)4 in DCM at fixed input intensity (lex= 800 nm). 

(b) Radiation pattern (polar plot) of the raw data in part (a) after subtraction of the constant back-

ground component, showing purely dipolar electric and magnetic dipole components are induced 

in the scattered light at the intensity of our experiments. 

For cross-polarized scattered light, both components are magnetic.46 The polarized 
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component in MD scattering is slightly bigger in DD(OTMS)4 than DDMe4 (Figures 4.5 and 4.6). 

The increase in polarized MD intensity in DD(OTMS)4 vs. DDMe4 as measured by the ratio of the 

angle-dependent variations of scattering intensity over the constant background level, can be in-

terpreted as the result of a deformation in the potential well of the caged electron density. This is 

discussed next. 

 
Figure 4.6. (a) Raw data from co- (red) and cross-polarized (blue) scattered light intensity vs. 

incident polarization angle in DDMe4 at fixed input intensity (lex= = 800 nm). (b) Radiation pat-

tern (polar plot) of the raw data in (a) after subtracting background component, showing that 

purely dipolar electric and magnetic dipole components are induced in the scattered light at the 

intensity of our experiments. 

In Figures 4.5 and 4.6, the magnetic component (blue) is mostly independent of rotation angle, 

which can be interpreted to be nearly completely unpolarized. The relatively long duration and 

small bandwidth of the pulses used here reflects an extremely low natural frequency of libration 

driven by the optical magnetic field.46 The role of libration frequency in MD scattering is discussed 

elsewhere.45-47 Recent direct evidence supports this.48  

Unpolarized (blue) MD scattering arises from electrons driven by the magnetic force of inci-

dent light to undergo azimuthal librations in the local (intramolecular) potential well. Their re-

sponse is governed by the detuning of the optical interaction, which is equal the resonant libration 

frequency. If electrons occupy a spherically-symmetric orbital whose azimuthal slope is near zero, 

there is little restoring force. The corresponding libration frequency is therefore low, enhancing 

magnetic scattering, and unpolarized scattering in particular. In contrast, less spherical orbitals, 

e.g. as a result of deformation, increases libration frequency and unpolarized magnetic scattering 

intensity should drop for a fixed pulse duration.   
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The sphericity of a given excited state orbital can be determined from the ratio of polarized to 

unpolarized MD scattering intensities. The lower the ratio the more spherically-symmetric the or-

bital. If MD scattering is mostly unpolarized, the implication is that the excited orbital occupied 

by the electrons is spherically symmetric with a near-zero azimuthal slope. Increasing ratios indi-

cate progressive loss of spheric symmetry.  

Basic trends can be summed as follows. The two-photon fluorescence quantum yield is much 

greater in DD(OTMS)4 than in DDMe4 at identical concentrations in DCM. Relative intensities 

are ordered: 

The MD unpolarized component decreases as: 

DD(OTMS)4,unpol,MD > DDMe4,unpol,MD 

The MD polarized component decreases in the order:  

DD(OTMS)4,pol,MD > DDMe4,pol,MD  

The ED polarized component trends: 

DDMe4pol,ED > DD (OTMS)4pol,ED 

The ED unpolarized components are similar in magnitude due to limited signal-to-noise ratios 

in the experiment: 

DD(OTMS)4unpol,ED ~ DDMe4unpol,ED 

Quantum theory for magneto-electric interactions on the atomic scale can be used to establish 

relationships between various scattering components.46 Theoretically, the ratio of unpolarized to 

polarized components is determined by the magnitude of the librational resonance frequency wf 

of electrons responding to incident light. The two-photon detuning of the optical excitation equals 

wf when the bandwidth Dn of the incident light is small (i.e. Dn<wf). Presuming the active electron 

density occupies the orbital centered in the cage, the qualitative results DD(OTMS)4,unpol,MD > 

DDMe4,unpol,MD together with DD(OTMS)4,pol,MD > DDMe4,pol,MD indicate that the libration fre-

quencies of the two compounds are both small but are ordered according to 

wf( DD(OTMS)4)> wf( DDMe4) 

This ordering reflects strengthening of unpolarized scattering as the librational resonance fre-

quency wf decreases, the direct result of quantum mechanical detuning dependence of M-E scat-

tering intensity.46 As discussed previously, the librational resonance frequency is proportional to 

the average azimuthal slope of the orbital potential. A spherical or nearly spherical potential has a 

slope close to zero, and consequently a low libration frequency which promotes unpolarized MD 
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scattering. The data are consistent with the idea that opening the cage in the DD(OTMS)4 com-

pound distorts the sphericity of the electron orbital in the cage. It is quite reasonable to expect that 

the electron potential develops an axis or plane passing through the cage center. Such an axis or 

plane of symmetry renders the intramolecular potential anisotropic, raising the librational fre-

quency and diminishing magnetic scattering intensity, consistent with the data. Thus the magnetic 

scattering data suggest that there is a reduction in the spherical symmetry of the LUMO in the cage 

when both sides are opened, but that the effect is small. 

4.3.6 Theoretical studies 

Previous modeling studies of cage compounds focused on the addition of simple substituents 

to the cage including H, OH, F. The first studies with H substitution found cage centered LUMOs.2 

In modeling studies in the previous paper,40 we introduced methyl groups again finding cage cen-

tered LUMOs. Multiple previous attempts to model stilbene functionalized cages were unsuccess-

ful finding stilbene localized HOMOs and LUMOs.2,10,43 In the current studies, modeling of stil-

bene substituted DD(OTMS)4 and DDMe4 compounds using B3LYP/6–31G(d,p) optimized geom-

etries also resulted in stilbene localized HOMOs and LUMOs as illustrated in Figure 4.3. To date, 

no one has solved this modeling problem including us; although we continue to try. 

 

Figure 4.7. Optimized DD(OTMS)4 and DDMe4 structures with HOMO and LUMO at 

B3LYP/6-31G(d,p) level of theory. 
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The Figure 4.7 results are in keeping with previous calculations done on these systems, which 

find that the HOMO and LUMO are associated with external stilbenes rather with a cage centered 

LUMO. These results lead to a calculated band gap of 3.7 eV which is associated solely with these 

external stilbenes. Clearly the UV-Vis/Emission results indicate that the LUMO is in the center of 

the cage. There is a need for a further refinement of the modeling approach. 

The excitation energies of the DD(OTMS)4 and DDMe4 molecules were calculated by using 

TDDFT at the B3LYP, CAM-B3LYP and M06-2X/6-31G(d,p) level. The calculated lmax UV–Vis 

absorption wavelengths indicate that CAM-B3LYP and M06-2X are suitable for predicting 

DD(OTMS)4 and DDMe4 spectra. Table 4.4 lists found and calculated lmax values. The simulated 

adsorption spectra and an illustration of the main electronic transition of the DD(OTMS)4 and 

DDMe4 molecules at the M06-2X/6-31G(d,p) level are shown in Figure 4.8 which corresponding  

to stilbene π-π* transitions. Our results provide both experimental and calculated absorption spec-

tra for Stilbene substituted DD(OTMS)4 and DDMe4. The calculated results correlate well with 

experimental data suggesting the suitability of this method for determining selected electronic 

properties. 

 
Figure 4.8. Absorption spectra for DD(OTMS)4 and DDMe4, calculated at the TD-M06-2X/6–

31G (d) level of theory. 
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Table 4.4. lmax in nm of DD(OTMS)4 and DDMe4 structures using TD-DFT calculations. 
Functional B3LYP CAM-B3LYP M06-2X Expt. 

DD(OTMS)4 361.29 295.05 295.53 ~ 300 
DDMe4 362.66 291.89 290.86 ~ 300 

As done in the previous paper,40 we simplified using methyl substituents (-Me) at the same 

level of theory, Figure 4.9, the HOMO and LUMO energy levels of DD-open molecule are -7.39 

eV and 0.96 eV, respectively.49-53 For the DD-close molecule, the HOMO and LUMO energy lev-

els are -7.50 eV and 0.93 eV, respectively. In this instance, a cage centered LUMO presents 

whereas in the open cage it is not evident despite the red shifted emissions noted just above. This 

again points to the need for refinements to our modeling approach. The energy gap between 

HOMO and LUMO of DD-open and DD-close molecules are 8.35 eV and 8.43 eV, respectively. 

From these results, the large HOMO-LUMO gaps of methyl substituent differ significantly from 

the methylstilbene substituted compounds as evidenced by the emission red shifted emissions.  

 
Figure 4.9. Optimized DD-open and DD-close structures with HOMO and LUMO at 

B3LYP/6-31G(d,p) level of theory. 

4.4 Conclusions 

The work reported here provides continuing evidence supporting the formation of SQ cage 

centered LUMOs in a wide variety of cages but most importantly, in the double edge opened cage 

where two silsesquioxane rings are joined by just two siloxane bridges. We believe this face to 

face structure is likely the minimum structure possible that leads to a cage centered LUMO. Given 

that the compound p-MeStil2Ph6DD(OTMS)4 does not show evidence of a cage centered 



 

 

84 

LUMO,2,40 there are clearly some electronic and/or structural features that are mandatory for a 

cage centered LUMO to appear.  

In the next chapter we will describe polymers made from the vinylMeDDMevinyl. Figure 4.10 

presents one example where introduction of two or three phenyl groups to vinylMeDDMevinyl 

shows no obvious conjugation but copolymerization with phenyl red shifts emission >80 nm. It 

also appears that the absorption is red shifted 40 nm as will be discussed at a later date.54 Taken in 

toto an original concept of these cages being simply organic decorated silica is put to rest, they 

offer photophysical properties completely at odds with this idea.  

 
Figure 4.10. Comparison of absorption and emission of di- and tristyrylDD with DD-co-Phenyl 

(10 k Da Mw). 
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ducting Properties in Double Decker Copolymers  
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With contributions from the groups of Professors Aleksander Rebane, Joseph 

Furgal, Siriporn Jungsuttiwong and John Kieffer. 

Abstract 

A number of groups have invested considerable time synthesizing double-decker 

silsesquioxane (DD SQ) copolymers, however, to our knowledge, no one has sought to 

explore through-chain electronic communication between DD SQs via “conjugated” 

co-monomers. We recently demonstrated that stilbene derivatives of simple DD cages 

exhibit properties commensurate with formation of cage centered lowest unoccupied 

molecular orbitals (LUMOs), equivalent to LUMOs found in complete/incomplete SQ 

cages, [RStilbeneSiO1.5]8,10,12, [RStilbeneSiO1.5]7[O1.5SiMe/nPr], [RStil-

beneSiO1.5]7[O0.5SiMe3]3, [RStilbeneSiO1.5]8[O0.5-SiMe3]4 and [RStil-

beneSiO1.5]8[OSiMe2]2. Such LUMOs support the existence of 3-D excited state conju-

gation in these cages. We describe here Heck catalyzed co-polymerization of vi-

nyl(Me)SiO(PhSiO1.5)8OSi(Me)vinyl (vinylDDvinyl) with X-Ar-X where X = Br or I 

and X-Ar-X = 1,4-dihalobenzene, 4,4’-dibromo-1,1’-biphenyl, 4,4’’-dibromo-p-ter-

phenyl, 4,4’-dibromo-trans-stilbene, 2,5-dibromothiophene, 5,5’-dibromo-2,2’-bi-thi-

ophene, 2,5-dibromothieno[3,2-b]thiophene and 2,7-dibromo-9,9-dimethylfluorene. 

Coincidentally model analogs were synthesized from vinylMeSi(OMe)2. All com-

pounds were characterized in detail by gel permeation chromatography (GPC), matrix-

assisted laser desorption/ionization-time of flight (MALDI-TOF), thermogravimetric 

analysis (TGA), nuclear magnetic resonance (NMR), Fourier transfer infrared 
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spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence 

spectrometry and two photon absorption (2PA) spectroscopy. Modeling of HOMO 

LUMO energy levels of related compounds with R = Me rather than Ph was also ex-

plored. In the current systems, we again see apparent conjugation in excited states, as 

previously observed, as indicated by 50-120 nm red-shifts in emission from the corre-

sponding model silane compounds. These results suggest unexpected semiconducting 

behavior via vinylMeSi(O-)2 (siloxane) bridges between DD cages in polymers. The 

thiophene, bithiophene and thienothiophene copolymers display integer charge transfer 

(ICT) behavior on doping with 10 mol% F4TCNQ supporting excited-state conjugation; 

suggesting potential as p-type, doped organic/inorganic semiconductors. 

5.1 Introduction 

Polysilsesquioxanes, [RSiO1.5]n, have received extensive attention because of their 

high thermal stability coupled with facile chemical modification that offers potential 

utility in multiple applications ranging from low-k interlayer dielectrics, to nanoimprint 

lithography, to mechanically hard, thermally stable, scratch resistant transparent coat-

ings.1-24 The majority of these applications rely on 3-D networks often generated by 

hydrolysis of mixtures of RSi(OEt)3/R’Si(OEt)3, for example, wherein the intermedi-

ates are coated or cast onto substrates and then heated to promote crosslinking through 

condensation coincident with elimination of water.1-3 Alternately, one can functionalize 

[RSiO1.5]8,10,12 cages with reactive groups and copolymerize them by reaction with di-, 

tri-, etc. functional organic groups to produce 3D structures that often offer gel-like 

properties.3,8,11 

We recently reported that it is also possible to cast [RSiO1.5]n/[R’SiO1.5]m compo-

sites using nBu4NF, an F- catalyst source, that promotes formation of individual SQ 

cages n,m = 8,10,12 in THF solution but also drives polymerization when coated on a 

substrate and heated.25,26 These systems can also be recycled using the same catalyst.27 

Linear format polysilsesquioxanes can also be synthesized. The most common 

forms consist of traditional polymer backbones wherein the SQ is a pendant group.1,6,11 

A much rarer form begins with SQ’s functionalized ≥ 2 times such that the functional 
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groups can be copolymerized with difunctional organic monomers.19, 25-29 Recently, the 

discovery of a way to make difunctional phenylsilsesquioxanes, often called double 

decker (DD) cages, has led to a significant number of papers wherein the SQ cage is 

part of the polymer backbone and to materials with many of the above-mentioned prop-

erties but that are now relatively easily processed, see Scheme 5.1.22, 30-43 

We recently reported that the parent phenyl DD cages can be functionalized using 

standard electrophilic substitution reactions.44,45 As with simple [PhSiO1.5]8,10,12 SQs, 

the octaphenyl DD compounds including Ph8DD(OSiMe2)2 and the open cage analog 

Ph8DD(OSiMe3)4 self-brominate primarily ortho and iodinate para.46-51 The fact that 

they self-brominate ortho suggests that like the simple PhenylT8,10,12 analogs, a low 

lying LUMO exists “directing” bromination ortho as supported by modeling studies.51  

This behavior is also supported by 50-60 nm emission red-shifts observed in the 4-

Me- and 4-CN-Stilbene functionalized cages even for the doubly open cages: 4-RStil-

bene8DD(OSiMe3)4 (R = Me, CN) as found for the closed cage T8 analogs.44,45 Addi-

tional support comes from studies wherein exposure to intense laser light generates 

magnetic fields with spherical character expected from cage centered LUMOs. 44,45 

The facile synthesis of vinylDDvinyl compounds (Scheme 5.1) coupled with the appar-

ent existence of a low lying LUMO and because previous SQ systems linked by conju-

gated tethers show through cage conjugation in polymeric analogs,25,28,29 prompted us 

to synthesize DD equivalents per Scheme 5.1. We anticipated that the existence of two 

vinylMeSi(O-)2 linkages, siloxane units, would result in polysiloxane-like polymers 

without conjugation given that there are no examples, to our knowledge, of conjugation 

through such linkages. 
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Scheme 5.1. Heck catalytic cross coupling polymerization reactions of vi-

nylDDvinyl and related model compounds. 
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As a first step, a series of reference model compounds was synthesized for compar-

ison with the corresponding copolymers. Note that as synthesized vinylDDvinyl con-

sists of mixtures with cis and trans vinyl groups. Pure trans isomer can be separated 

via fractional crystallization using a published method.52 

We report here the Heck catalytic cross-coupling syntheses of a series of polymers 

from both mixed and pure trans vinylDDvinyl isomers and a detailed evaluation of their 

photophysical properties. Much to our surprise, the photophysical properties of the ol-

igomers/polymers synthesized here differ very little from previous cage systems found 

to exhibit cage centered LUMOs and emission redshifts. These results seem to suggest 

conjugation and semiconducting behavior, as seen previously,25,28,29 despite the pres-

ence of two vinylMeSi(O-)2 per cage.  

5.2 Experimental 

The synthetic methods and characterization techniques are described in Chapter 2. 

5.3 Results and discussion 

A number of groups have invested considerable time in the synthesis of DD co-

polymers;22,30-43 however, to our knowledge, as noted above, no one has sought to in-

troduce organic co-monomers offering potential as conjugated links. 

In the following sections, we first detail the syntheses of a set of model silane com-

pounds via Heck catalytic cross coupling followed by characterization of their respec-

tive photophysics. Thereafter, we provide details of studies on conjugated oligo-

mers/polymers derived from mixed isomers of vinylDDvinyl as well as pure trans. It 

turns out, mixed isomers or pure trans derived polymers share essentially identical pho-

tophysical behavior suggesting “semiconducting” properties. We also synthesized and 

characterized doubly substituted vinyl model cage compounds to explore effects on 

photophysical properties, to ensure “conjugation” was not simply a consequence of 

double addition to the vinyl groups. 
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5.3.1 Model silane compound synthesis and analytical characterization 

Model silane compounds were synthesized using the same conjugated monomers 

as used to generate the corresponding polymers, see Scheme 5.1. 

All disubstituted model silanes were carefully characterized by 1H NMR, GPC and 

FTIR and as recorded in Tables C.1-C.2 (Appendix C) and Figures C.1-C.3. 1H NMR 

of all model silanes are recorded in Table C.1 and all display quite similar chemical 

shifts for methyl, methoxy and vinyl groups from vinylMeSi(OMe)2 around 0.3, 3.6 

and 7.0 ppm respectively, as well as corresponding aromatic groups around 7.5 ppm, 

as illustrated by Figure C.1.  

GPC traces in Figure C.2 show di-substitution of vinylMeSi(OMe)2 on aromatic 

groups by comparison to GPCs of the corresponding starting dibromo-aromatic com-

pounds. Model silanes Mws appear earlier in GPC traces than respective dibromo-aro-

matics due to increased size. FTIR spectra in Figure C.3 consist of the expected peaks. 

FTIR spectra of the model silanes present peaks for νC-H around 3000 cm-1 and νC=C 

around 1600 cm-1 arising from addition of aromatic moieties to vinylMeSi(OMe)2 with 

the strongest peak for νSi-O ≈ 1100 cm-1. Assignments for the FTIR peaks are given in 

Table C.2. Due to the similar structures of model silane compounds, analytical charac-

terization finds quite similar behavior, as expected, thus not all are presented. 

5.3.2 Polymer synthesis and analytical characterization. 

The general synthetic scheme for DD derived polymers is presented in Scheme 5.1 

above. VinylDDvinyl and derived copolymers were characterized in detail using 

MALDI-TOF, GPC, TGA and FTIR as presented in Table C.3 and Figures C.4-C.29. 

Trans-isomers of vinylDDvinyl were separated by fractional crystallization using pub-

lished method52 but to date, it is still difficult to isolate pure cis-isomers.52 1H NMR of 

trans-vinylDDvinyl displays chemical shifts for methyl groups around 0.4 ppm, vinyl 

groups around 6.3 and 6.0 ppm and phenyl groups around 7.4 ppm as illustrated by 

Figure C.4. 29Si NMR was used to characterize pure trans-vinylDDvinyl and mixed 

isomers as shown in Figures C.5 and C.6 respectively. In Figure C.5, the chemical shift 
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at -31.4 ppm is assignable to the Si nucleus at the bridge of DD SQs [vinylMeSi(O-)2 

unit], whereas those at -78.4 and -79.5 ppm are assignable to Si nuclei at the corners of 

the SQ cages [PhSi(O-)3 units]. The peak at -78.4 ppm in the 29Si NMR of pure trans-

vinylDDvinyl shifts to -78.9 ppm for cis-isomers due to different environments result-

ing from cis-configuration as shown in Figure C.6. MALDI-TOF analysis of each pol-

ymer always shows peaks separated by m/z of the co-monomer unit: vinylDDvinyl-Ar, 

indicating successful copolymerization and without di-substitution on the vinyl groups. 

The GPC determined chain lengths and dispersities of all the polymers reveal for-

mation of oligomers of 3 to 18 co-monomer units. As presented in Table C.3 and Fig-

ures C.7-C.17, DD-co-bithiophene and -thienothiophene syntheses generate short oli-

gomers with degrees of polymerization (DP) ~3. DD-co-stilbene and BTH products 

consist of oligomers with DP ~8 while others are polymers offer DP of 10-18. The 

dispersity (Ð) for all oligomers/polymers is ~2, as expected for step-growth polymeri-

zation. Figures C.18-C.22 display representative FTIR spectra. The strongest peak in 

all FTIRs appears at 1100 cm-1 for νSi-O from the SQ cores, per Table C.2. All TGA 

results are recorded in Figures C.23-C.29. Theoretical TGA ceramic yields were cal-

culated from formula weights for each co-monomer unit. The found ceramic yields are 

slightly smaller due to end group halogens but still do not indicate di-substituted vinyls. 

Td5%/air for DD-co-phenyl, -biphenyl, -terphenyl and -stilbene are >400 °C, while other 

polymers all exhibit higher Td5% >500 oC, indicating high thermal stability arising from 

the silica particle-like backbones.  

5.3.3 Model cage compound syntheses and analytical characterization. 

Model cage compounds with di-, tri- and tetra-substitution were synthesized as il-

lustrated in Scheme 5.1. The vinylDDvinyl derived model cage compounds were syn-

thesized to confirm that the co-polymer systems were also red-shifted from correspond-

ing model compounds. Although MALDI-TOF and TGA of the polymers confirm the 

absence of double addition of aromatic moieties to one vinyl group, it is still important 
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to study the effects of di-substituted vinyls on photophysical properties. Thus, such 

model cage compounds were also synthesized. 

All model DD compounds were characterized via MALDI-TOF, GPC and TGA as 

recorded in Table C.4 and Figures C.24, C.26, C.28 and FTIR in Figures C.19-C.22. 

MALDI-TOF reveals the number of substituted groups on each cage. GPC does not 

give the actual molecular masses of DD compounds because they are roughly spherical 

in nature but suggests single cages are formed for each model compound without de-

composition or polymerization as Ðs ~1.0 and retention times were typically 31 min, 

which are a bit earlier than found for vinylDDvinyl, 32 min, arising from slightly in-

creased cage size.  

FTIR spectra of the DD polymers and respective model cage compounds in Table 

C.4 and Figures C.19-C.22 are essentially identical as expected due to their similarity 

in monomer units and structures. The number of substituents was further verified using 

TGA ceramic yields as presented in Table C.4 and Figures C.24, C.26 and C.28. The 

Td5%/air for all model compounds runs ~400 °C, suggesting high thermal stability, again 

as consequent of the “silica”-cage cores. 

5.3.4 Steady-state photophysical studies 

All polymers studied were synthesized at least three times and purified by crystal-

lization and purities determined by GPC, MALDI-TOF and thin layer chromatography 

to ensure that no impurities were present that might contribute to the photophysical 

phenomena observed. Furthermore, DD-co-phenyl was synthesized via Heck coupling 

vinylDDvinyl with either 1,4-diiodobenzene or 1,4-dibromobenzene and their spectra 

are essentially the same as expected, since the final structures are the same except dif-

ferent terminal halogens. UV-Vis and photoluminescence were recorded for all com-

pounds in Table 5.1. 

As shown in Table 5.1, the (Styryl)2DD model cage compound absorbs at 260 nm 

and emits at 310 nm in CH2Cl2, typical photophysical behavior for phenyl groups. 

(Styryl)2,3DD share nearly identical spectra even though (Styryl)3DD has one di-
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substituted vinyl per cage, which suggests that vinyl di-substitution has only mundane 

or even no effect on the photophysical properties of these compounds. This was further 

confirmed from the nearly identical spectra of (9.9-dimethylfluorenevinyl)2,4DDwhere 

both cage vinyl groups were disubstituted with 9.9-dimethylfluorene moieties. Thus, 

spectra for (9,9-dimethyfluorenevinyl)4DD are not presented in Figure C.30. 

Figure 5.1a presents the synthesis of a model silane-end-capped DD with a longer 

conjugation length than (Styryl)2DD and 1,4-[(MeO)2Sivinyl]2benzene. Figure 5.1b 

records its steady-state spectra along with 1,4-[(MeO)2Sivinyl]2benzene and DD-co-

phenyl. All three compounds absorb with lmax ≈ 298 nm. Their emission spectra (298 

nm excitation, CH2Cl2) differ considerably. Thus, 1,4-[(MeO)2Sivinyl]2benzene alone, 

emits primarily at lmax ≈ 332 nm with two much smaller peaks around 390 and 412 nm. 

The corresponding silane-end-capped DD cage emits primarily at lmax ≈ 342 nm along 

with peaks at 390 and 412 nm, which are now qualitatively somewhat larger suggesting 

partial extended conjugation.  

On linking two or more cages via divinylbenzene, the emission λmax are 50 nm red-

shifted to ≈ 390 nm from the silane-end-capped DD monomer, suggesting conjugation 

through the divinylbenzene linkers in the polymer. It also strongly suggests conjugation 

through two vinylMeSi(O-)2 siloxane units on either side of each cage, which is highly 

contrary to what is currently known about siloxane links. 
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a  

b  

Figure 5.1. (a) Synthese of silane-end-capped DD; (b) normalized steady-state spectra 

of 1,4-[(MeO)2Sivinyl]2benzene, DD-co-phenyl and silane-end-capped DD. 

The Figure 5.2 data comes from a previous publication25 wherein it was found that 

divinylbenzene linked SQ cages (beads-on-a-chain, BoC) offered semiconducting be-

havior arising from a cage centered LUMO that affords delocalization by coupling with 

divinylbenzene linkers. 
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Figure 5.2. Absorption and emission of model compounds and BoC oligomers of 

T10,12.  

Figure 5.2 25  compares the normalized UV-Vis spectra of the triethoxysilane-end-

capped model compounds of the PhT10,12 cages with divinylbenzene linked (tethered) 

T10 and T12 oligomers. Absorption and emission spectra of the model compounds give 

λmax = 255 and 325 nm respectively, whereas the corresponding oligomer offers absorp-

tion and emission λmax = 255 and 385 nm respectively. This original work was followed 

by a series of papers that explored “beads-on-a-chain (BoC)” SQ cage polymers,28,29 

wherein multiple examples of PhT8,10,12 cages linked via aromatic tethers exhibited red-

shifted emissions leading to the conclusion that these compounds exhibit LUMOs de-

localized along the polymer chain, or semiconducting properties. 

Here we find similar photophysical behavior for DD-co-biphenyl, -terphenyl and -

stilbene where the emission peaks or shoulders at longer wavelength become more sig-

nificant compared to their corresponding model silanes. Most significant of the copol-

ymers studies are those with thiophenes and 9,9-dimethylfluorene, which exhibit ex-

ceptional redshifted visible light emissions compared to the phenyl systems per Table 

5.1 and Figure 5.3. The λmax shifts in emission compared to model silanes range from 
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50 to 120 nm despite DD-co-bithiophene and-thienothiophene being short oligomers 

with DP ~3. 

 

Figure 5.3. Normalized steady-state spectra of 2,5-[(MeO)2Sivinyl]2thiophene, DD-

co-thiophene and (Thiophenevinyl)2DD. 

Although we present eight examples of conjugated DD polymers, benzothiadiazole 

(BTH) and carbazole exhibit basically the same absorption and emission spectra as their 

model silanes. One possible reason is that the bandgap energy of phenyl, thiophene and 

9,9-dimethylfluorene systems are close to those of the DD cage with absorption λmax 

around 250 nm thus giving better conjugation, while BTH and carbazole have smaller 

HOMO-LUMO gaps with absorption λmax around 300 nm. Another explanation is that 

their emissions arise from n to π* transitions localized on the nitrogen containing units 

that do not have the correct symmetry to conjugate with chain tethers. More studies 

need to be done to refine our understanding of this behavior, but see below.  

Polymers DD-co-biphenyl, -terphenyl and -stilbene exhibit quite high ΦF values up 

to 0.6-0.9 and DD-co-dimethylfluorene and -carbazole with ΦF around 0.4. Both DD-

co-stilbene and -dimethylfluoreneare potential blue emitters exhibiting blue 
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luminescence under room light in solution due to their relatively long emission wave-

lengths around 440 nm among DD polymers combined with high ΦF. 
Table 5.1. Steady-state data for vinylMeSi(OMe)2 derived model silane compounds 

(blue), vinylDDvinyl derived polymers (red) and model cage compounds (green). 
Model silanes Abs. λmax (nm) Em. λmax (nm) Estoke’s (cm-1) ΦF 

Benzene 297 332, 387, 409 3550 0.01±0.001 
Biphenyl 313 355, 370 4922 0.38±0.03 

Terphenyl 319 373, 388 4538 0.48±0.03 
Stilbene 355 391, 409 3719 0.36±0.02 

Thiophene 340 430, 452 6156 0.01±0.001 
Bithiophene 388 433, 457 3891 0.02±0.005 

Thienothiophene 354 406, 454, 479 3618 0.02±0.001 
Dimethylfluorene 336 382 3584 0.30±0.01 

BTH 381 483 5543 0.02±0.005 
Carbazole 298 384 7515 0.10±0.01 
Polymers     

VinylDDvinyl 264 281, 315 2292  
Co-phenyl 298 390, 412 7916 0.08±0.001 

Co-biphenyl 314 357, 373 5037 0.66±0.05 
Co-terphenyl 321 374, 392 5642 0.87±0.04 
Co-stilbene 357 393, 412, 436 3739 0.61±0.04 

Co-thiophene 340 478, 505 9610 0.09±0.001 
Co-bithiophene 391 505, 538 6988 0.17±0.02 

Co-thienothiophene 358 496, 526 8922 0.13±0.01 
Co-dimethylfluorene 339, 353 424, 448 7177 0.34±0.003 

Co-BTH 392 481 4720 0.22±0.003 
Co-carbazole 301 373, 392 7712 0.41±0.02 

Model cage compounds     
(Styryl)2,3DD 259 309 6248 Too smalla 

Silane-end-capped DD 298 342, 388, 409 4317 0.01±0.002 
(Thiophenevinyl)2DD 290 388 5697 Too smalla 
(Dimethylfluorene-

vinyl)2,4DD 
317 397,419 6357 0.10±0.001a 

a Measured for di-substituted DD, b λmax ±	1	nm 

The protonation of DD-co-carbazole was carried out using methane sulfonic acid 

(MSA) as shown in Figure 5.4. At 1.0 M concentration, the absorption peak at 301 nm 

decreases to a shoulder and no emission is detected in from 270 to 500 nm. Protonation 

of the nitrogen centers should result in a blue shift due to elimination of the donor-

component. This provides support for the argument just above of n to π* transitions 

dominating photophysical behavior. 

To study the potential for charge transfer (CT) behavior in DD-co-BTH and -car-

bazole, as observed in simple aminostilbenevinyl SQ compounds,28,46,47,61 solvent po-

larity effects on emission of DD-co-BTH and -carbazole were explored. Since both 

polymers are insoluble in polar acetonitrile, a mixture of CH2Cl2:acetonitrile (1:1 
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volume ratio) was used. However, no red-shifted emissions indicative of CT behavior 

were observed in the more polar solvent possibly due to the poor electron-donating 

nature of BTH and carbazole, or limited changes in polarity for this solvent system. 

 

Figure 5.4. Normalized steady-state spectra of 3,6-[(MeO)2Sivinyl]2carbazole and 

DD-co-carbazole and after protonation by 1.0 M MSA. 

5.3.5 Two-photon photophysical studies 

For comparison with our previous studies, we also assessed two photon absorption 

behavior (2PA). The 2PA cross section data in Table C.5 were measured for five poly-

mers, DD-co-phenyl, -thiophene, -dimethylfluorene, -BTH and -carbazole, along with 

one model cage compound (Styryl)2DD. 

For comparison with our previous studies, we also assessed two photon absorption 

behavior (2PA). The 2PA cross section data in Table C.5 were measured for five poly-

mers, DD-co-phenyl, -thiophene, -dimethylfluorene, -BTH and -carbazole, along with 

one model cage compound (Styryl)2DD, as shown below 
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All polymers and the model cage compounds show similar general behavior, where 

the 2PA cross section values increase rapidly towards the higher transition energies 

(shorter wavelengths), reaching maximum values at ~550 nm of 4-5 GM for DD-co-

phenyl and (Styryl)2DD, 20-40 GM for DD-co-thiophene, -BTH and -carbazole, and as 

high as 300 GM for DD-co-dimethyfluorene. At the same time, in the lower energy 

range (longer wavelengths), the cross sections decrease by two or more orders of 

magnitude compared to the maximum values, and drop below the detection limit when 

the transition energy reaches the red edge of corresponding linear absorption. 

 

Figure 5.5. 2PA cross section spectra (red empty circles) and values (red solid 

circles) of DD polymers DD-co-phenyl, -thiophene, -dimethylfluorene, -BTH, -

carbazole and the model cage compound (Styryl)2DD. Corresponding molar 

extinction spectra (blue line) shown for comparison. 
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In case of the polymers, the 2PA spectra display a distinct shoulder at intermediate 

wavelengths that appears to follow the varying transition energy of a prominent 

absorption band in the linear spectrum. In addition, DD-co-thiophene shows a discrete 

band with a peak value of s2PA ~ 35 GM at 610 nm, which does not seem to immediately 

match any distinct transitions in the 1PA spectrum. 

Perhaps the first thing to notice is that both the 1PA and 2PA polymer spectra are 

most likely caused by interaction between the DD core structure and the linker 

chromophores, rather than due to the eight peripheral phenyls. One way to observe this 

would be by comparing the linear absorption features observed in the short-wavelength 

portion 240-270 nm of the 1PA shown in Figure 5.5, to known as linear absorption 

spectra of phenyl-related structures. For example, both toluene and benzene show a 

characteristic vibronic progression in the 240-270 nm range, which correlates (even 

though not identical) to the features displayed in DD-co-thiophene and -BTH.  

It is notable that the average extinction coefficient values of benzene and toluene 

(S0-S1 transition is symmetry-forbidden in benzene), if multiplied by eight, roughly 

match those of the progressions observed in DD-co-thiophene and -BTH. In other 

polymers, where the overlap with main absorption is larger, a similar progression-like 

feature may still be observed, even though with less contrast. From this, we may 

conclude that, at least in the current polymers, the cage phenyls are most likely 

contributing only in an additive manner, especially since their corresponding 1PA and 

2PA are blue-shifted and rather weak. This, together with the fact that the measured 

2PA cross sections are significantly and systematically larger that the combined values 

of all constitutents taken separately (so-called cooperative enhancement effect), 

indicates that active conjugation most likely exists between the linker and the DD core, 

and perhaps even reaching the linked chromophores at the opposing capped ends all 

way through the core. 
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5.3.6 Further evidence suggesting unconventional conjugation 

Based on previous studies and data presented above, the evidence for conjugation 

comes from exceptional red-shifts in emission and 2PA behavior that can only be ex-

plained if the systems are conjugated. Given that the above evidence points to uncon-

ventional conjugation through vinylMeSi(O-)2 links, it is absolutely necessary to bring 

as many analytical tools to bear on this new phenomenon as possible. To this end, we 

sought additional evidence in support of our contentions. These include modeling, cy-

clic voltammetry, determining optical HOMO-LUMO gaps and comparing with gaps 

measured previously by CV, and doping with electron deficient molecules searching 

for charge transfer properties. The results of these efforts are as follows beginning with 

a brief summary of all that is presented above. 

Photophysics (photoluminecent red-shifts). The most substantial proof to date 

comes from UV-Vis absorption and emission studies. In particular, we have now re-

ported multiple cases of large red-shifts associated with emission lmax in SQ cage con-

jugated moieties.25,28,29 Homopolymeric versions of T8, T10 and T12 joined by conju-

gated tethers all show red-shifts in emission lmax not found in respective model com-

pounds, with one example shown in Figure 5.2 above.25,28 Additionally, by copolymer-

izing two different functionalized cages: (4-NH2Stilbene)6(IPh)2T8 and (4-MeOStil-

bene)6(IPh)2T8 with 1,4-diethynylbenzene, we find redshifted emission lmax between 

the lmax of the individual respective homopolymers, rather than physical mixtures of 

independent emissions from both units, indicating through cage and through tether 

conjugation.28 

Photophysics (optical magnetic field generation). Our first two papers on corner 

missing T8 SQs, and open and closed DD monomer systems find that magnetic fields 

generated during high fluence irradiation of cages leads to formation of spherical fields 

that are best explained by formation of cage centered LUMOs.44,45 

Modeling efforts. In previous papers, we and others modeled the HOMO LUMO 

structures of both alkyl and aryl substituted T8 cages finding that cage centered LUMO 
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formation is quite common.50 We have recently extended this family to include both 

corner missing cages and double decker compounds44,45 What has been uniformly in-

feasible, as pointed out previously, is that modeling of (RPh)8T8 cages with conjugated 

moieties, R (appended either para or ortho) does not indicate formation of cage centered 

LUMOs.44,45 In essentially all efforts, modeling finds HOMO LUMO orbitals on the 

conjugated moieties. That is because the conjugated moieties have low energy unoccu-

pied molecular orbitals and high energy occupied ones. Both modeling teams also at-

tempted to model the DD polymers,46 again finding HOMO LUMO structures on con-

jugated moieties with RPh systems including the co-monomers or finding cage centered 

LUMOs if Ph is replaced by Me. Examples of our colleagues’ extensive efforts are 

presented in Figures C.31-3.33 and Table C.6 in Appendix C. 

In another effort to model the DD polymers, we replaced Ph on cage corners by Me 

in vinylDDvinyl and plotted the HOMO-2 to LUMO+5, see Figure C.34. The conju-

gated vinyl groups have low energy LUMOs and of course high energy HOMOs, thus 

in modeling of vinylDDvinyl, LUMO, +1, +2 are mainly the π* orbitals of vinyls. How-

ever, LUMO+4 and LUMO+5 are from SQ core and cage centered. Furthermore more, 

the energy difference is only ~0.6 eV between the cage centered LUMOs and vinyl π*, 

which suggests interactions between cage centered LUMOs and vinyl π* are possible. 

Modeling of a similar structure where two Si(O-)2 units are inserted into the each op-

posing edge is presented in Figure C.35. With all methyl substituents, the structure 

again exhibits cage centered LUMO and LUMO+1. 

One might choose to argue that current modeling methods are unable to successfully 

address the interaction of SQ cage centered LUMOs with conjugated moieties. Hence 

efforts to model the unique structures developed with the DD polymers wherein cage 

centered LUMOs must interact with co-monomer LUMOs through vinylMeSi(O-)2 

bridges (assuming our arguments are valid) must search for new modeling approaches. 

Cyclic voltammetry. We have previously demonstrated that cyclic voltammetry 

(CV) can be used to measure HOMO LUMO energies in (RvinylT)10/12 cages with con-

jugated moieties.61 In these previous studies, we learned to manipulate HOMO LUMO 
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energies by designing (RvinylT)10/12 cages with different strongly electron donating/ac-

cepting moieties (R). The results of this study again support the existence of cage cen-

tered LUMOs and 3-D conjugation; otherwise, one would not anticipate the found en-

ergy levels based on those of the individual moieties. Table 5.2 below compares the 

optical gaps calculated from absorption λmax for (R’StilbenevinylT)10/12 and those from 

HOMO-LUMO levels determined by CV. 

As shown in the Table 5.2, the gaps obtained from HOMO-LUMO energies are 

always ~0.6 eV smaller than those calculated from absorption peaks. One can interpret 

this to mean that the optical gap is always somewhat larger than measured as might be 

expected. It is known that typically the HOMO energies of organic polymers can be 

affected greatly by π-π interactions in the ground state. While no ground-state conjuga-

tion is observed here for either the oligomers or polymers, these compounds shouldn’t 

be compared with typical organic polymers. The discrepancy among these systems sug-

gests that the optical gaps recorded for DD polymers in Table 5.2 are also likely some-

what larger than actual gaps. Thus, a corrected gap based on the CV data was added.	
Table 5.2. Optical band gaps calculated from UV-Vis absorption λmax, band gaps 
from CV of (R’StilbenevinylT)10/1261 and corrected band gaps of T10/1229 and vi-

nylDDvinyl derived polymers. 
Compound Abs. λmax 

(nm) 
Em. λmax 

(nm) 
Optical band 

gap (eV)a 
Band gap 

(eV) 
(HStilbenevinylT)10/1261 333 387 3.7 3.1b 

(MeStilbenevinylT)10/1261 333 393 3.7 3.0b 
(MeOStilbenevinylT)10/1261 343 418 3.6 3.0b 
(NH2StilbenevinylT)10/1261 363 483 3.4 2.7b 
(C6F5StilbenevinylT)10/1261 316 445 3.9 3.6b 
T10/12-co-9,9-dimethylfluo-

rene29 
371, 389, 

410 
422, 448 3.19 3.2 

DD-co-phenyl 298 390, 412 4.16 3.6c 
DD-co-biphenyl 314 357, 373 3.95 3.4c 
DD-co-terphenyl 321 374, 392 3.86 3.3c 
DD-co-stilbene 357 393, 412, 

436 
3.47 2.9c 

DD-co-thiophene 340 478, 505 3.65 3.1c 
DD-co-bithiophene 391 505, 538 3.17 2.6c 

DD-co-thienothiophene 358 496, 526 3.46 2.9c 
DD-co-9,9-dimethylfluroene 339, 353 424, 448 3.66 3.1c 

a Calculated from UV-Vis absorption λmax. b Calculated from CV. c Corrected band 
gap ~0.6 eV smaller than optical band gap. 
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In the current studies, we were unable to identify (easily accessible) redox behavior 

either in solution CV or in the solid state for the thiophene copolymers which we believe 

would be most likely to be easily accessible as they show the greatest red-shifts. More 

work needs to be done here. However, the Table 5.2 optical band gap values support 

the idea that through cage and through co-monomer conjugation obtains. 

Note that in Table 5.2, (NH2StilbenevinylT)10/12 has emission λmax very similar to 

DD-co-thiophene and a very similar optical band gap. The data may suggest even 

smaller HOMO-LUMO gaps for the systems presented here. Table 5.2 also incorpo-

rates spectral data for T10/12-co-9,9-dimethylfluorene analogues. This polymer has an 

absorption λmax near 389 nm29 where DD-co-9,9-dimethylfluorene also shows absorp-

tion shoulders in Figure C.30 (only absorption λmax values presented in Table 5.2). Such 

long wavelength absorptions give an optical band gap of 3.19 eV, very close to the 

corrected band gap of 3.1 eV of DD-co-9,9-dimethylfluorene, which again supports the 

validity of these corrections. 

In the above Figures 5.1, 5.3 and C.30, we observe long-wavelength absorption 

edges which are found reproducibly after purification and multiple syntheses. It is pos-

sible that optical band gaps should be calculated from these results, which would reduce 

the observed optical band gaps. We find that many of these polymers show multiple 

emissions with different lifetimes that suggest their photophysics is more complicated 

and plan to present such studies at a later date. 

One conundrum of our continuing work with SQ systems of all types is that while 

there are often exceptional emission λmax red shifts compared to model compounds, the 

corresponding absorption λmax do not exhibit red-shifts almost ever.29 In traditional con-

jugated organic systems, both absorption and emission λmax witness red-shifts associ-

ated with the degree of conjugation. One possible explanation is that these systems have 

indirect bandgaps and as such, the absorptions do not reflect conjugation in the excited 

state. 
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Fortunately, we have evidence from charge transfer (CT) between F4TCNQ and 

several of the DD co-polymers that provides a more direct measure of the HOMO-

LUMO gap and seems to be a better method of determining acceptable band gaps. 

Charge-transfer studies. The advent of flat panel displays and semiconducting, mo-

lecularly doped organic semiconductors (OSCs); that is, conjugated molecules and con-

jugated polymers, has prompted extensive efforts to explore charge transfer in these 

materials.62-65 Two different electronic interaction mechanisms have been observed in 

doped (p- or n-type) organic semiconductors: (1) integer charge transfer (ICT) that oc-

curs with complete transfer of electrons from the OSC to dopant forming ion pairs; and 

(2) fractional charge transfer to form low-energy charge transfer complexes (CTC) via 

hybridization of the frontier orbitals of the two molecules.65,66  

Early studies assumed all OSC:dopant systems displayed either integer or fractional 

charge transfer.66,67,68 However, prediction of which mechanism dominates is difficult 

and structurally similar OSCs sometimes dope by different mechanisms. For example, 

poly(3-hexyl)thiophene (P3HT) blended with 2,3,5,6-tetrafluorene-7,7,8,8-tetracyano-

quinodimethane (F4TCNQ) results in ICT while shorter thiophene oligomers such as 

quarterthiophene (4T) and sexithiophene (6T) doped with F4TCNQ form CTCs.68 CTCs 

have also been observed in TCNQ doped 4T. TCNQ has no fluorine and hence a higher 

energy LUMO. Mechanistic understanding of doped OSCs is still poor but FTIR and 

UV-Vis are often used to measure the degree of charge transfer (δ) to F4TCNQ.65 

To better understand the “conjugation” occurring in vinylDDvinyl derived poly-

mers, a series of mixtures of DD copolymers and model cage compounds with F4TCNQ 

were prepared using the mixed-solution method.65,66 A yellow-orange CH2Cl2 solution 

of F4TCNQ was added to solutions of DD-co-thiophene, -bithiophene or -thienothio-

phene with bright orange to red colors, whereupon the solution colors change to dark 

green, or black, depending on the mole percent acceptor added. FTIR nC≡N band shifts 

reflecting these CT induced color-changes are presented in Figure 5.6a. 
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a  

b  

Figure 5.6. (a) The characteristic region of νC≡N in FTIR spectra for DD-co-thio-

phene, -bithiophene, -thienothiophene mixing with 10 mol% F4TCNQ and pristine 

F4TCNQ. (b) normalized steady-state absorption of DD-co-bithiophene:F4TCNQ 10 

mol%, undoped DD-co-bithiophene, F4TCNQ•‒ and F4TCNQ in CH2Cl2. 

The frequencies of the strongest nC≡N bands of the neutral and anionic forms of 

F4TCNQ are known to be 2227 and 2194 cm-1, respectively.65 Shifts of characteristic 

nC≡N bands from 2225 to 2193 cm-1 are observed in the FTIR for DD-co-thiophene, -

bithiophene and -thienothiophene solution mixtures with 10 mol% F4CTNQ as shown 

in Figure 5.6a. The observed shifts in nC≡N are reported to be an indicator of integer 

charge transfer (ICT) for P3HT:F4TCNQ.65,66 As the mole percent of acceptor F4TCNQ 

increases to 50 mol%, FTIR results are essentially consistent, showing peaks for anionic 

F4TCNQ as well as excess, therefore charge-neutral, F4TCNQ for DD-co-thiophene, -

bithiophene and -thienothiophene.  
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UV-Vis absorption spectra are presented in Figure 5.6b to further characterize the 

ICT between DD-co-bithiophene and F4TCNQ. Figure 5.6b presents UV-Vis absorp-

tion spectra for: undoped DD-co-bithiophene, neutral F4TCNQ and anionic F4TCNQ•‒ 

for reference. Absorption maxima for neutral F4TCNQ is centered at 393 nm which 

correspond to the S0→S1 transition. The electronic structure of F4TCNQ anion contains 

doublet states because of the presence of an unpaired single electron.69 The UV-Vis 

spectrum of F4TCNQ•‒ contains two main absorption peaks around 400 and 800 nm. 

D0→D1 transition corresponds to the absorption band around 600-900 nm with local 

maxima at 754 and 856 nm while D0→D2 transition gives absorption band at 410 nm.69 

The absorption spectrum of DD-co-bithiophene:F4TCNQ clearly shows spectral signa-

tures from F4TCNQ•‒ at 600-900 nm and DD-co-bithiophene at 250-500 nm, strongly 

suggesting ICT, which is consistent with the FTIRs. 

From previous studies, we can use the above CT data to estimate the band gap for 

the polymers that do interact with F4TCNQ. When the HOMO of OSC is higher in 

energy than the dopant’s LUMO, formation of CTCs by hybridization of frontier orbital 

also can occur. Additionally, ICT is also reported in complexes in which the OSC 

HOMO is only close to but still lower in energy than the dopant LUMO.66,67,68 Specif-

ically, numeric simulations were employed to reveal the (Gaussian) HOMO- and 

LUMO-level distributions of the pristine OSC and a “strong” as well as a “weak”, p-

dopant for the ICT case.62 Numerical modeling defines a generic ‘‘strong’’ p-dopant 

with an electron affinity (EA, high energy onset of LUMO level) 0.2 eV higher than 

the ionization energy (IE, low energy onset of HOMO level) of OSC. In the case of the 

“weak” dopant, it shows an EA lower than the IE of the OSC by 0.2 eV.68  

Since all DD-co-thiophene, -bithiophene and thienothiophene polymers exhibit ICT 

behavior with F4TCNQ, with a reported LUMO of -5.2 eV, it is reasonable to say that 

the upper energy limit for these polymers’ HOMOs should be around -5.0 eV. Since all 

three DD polymers appear yellow to orange, one can predict the light absorbed should 

range 400-600 nm, which gives a HOMO-LUMO gap no larger than 3.1 eV.  
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Finally, as we will describe in greater detail in the next chapter, we have now syn-

thesized selected ladder silsesquioxane70 copolymers analogous to the DD copolymers 

as suggested in Figure 5.7. These compounds were chosen because while they are 

silsesquioxanes, they do not have cage structures. It was anticipated that they would not 

exhibit the kinds of conjugation seen here. Much to our great surprise, they not only 

show conjugation but often give red-shifts greater than those found for the DD copol-

ymers as seen in Figure 5.7 again suggesting conjugation through vinylMeSi(O-)2 me-

diating moieties. 

 

Figure 5.7. Normalized steady-state absorption and emission spectra of 2,5-

[(MeO)2Sivinyl]2thiophene, DD-co-thiophene, Ladder-co-thiophene in CH2Cl2.70 

5.4 Conclusions 

This work reports the detailed synthesis and characterization of sets of copolymers 

of vinylDDvinyl SQs with phenyl, biphenyl, terphenyl, stilbene, thiophene, bithiophene, 

thienothiophene, 9,9-dimethylfluorene, benzothiadiazole and carbazole as components 

in the polymer backbones. Model compounds were also synthesized to explore the pho-

tophysical properties of corresponding DD copolymers. The DD-co-BTH and DD-co-
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carbazole show no or very little conjugation likely because of n to π* transitions local-

ized on the nitrogen or  HOMO-LUMO gap energy of the aromatics far off from DD. 

The other eight polymers exhibit significantly redshifted emissions of 50-120 nm from 

respective model compounds, suggesting electron delocalization in the excited state 

through the conjugated DD cages via vinylMeSi(O-)2 siloxane bridges. Such unex-

pected and unconventional conjugation was extensively assessed using a variety of an-

alytical methods including cooperative enhanced 2PA cross sections of polymers and 

integer charge transfer with the electron acceptor F4TCNQ. The unique photophysical 

properties found for DD polymers wherein there is apparent conjugation between dou-

ble siloxane bridge positions offer potential access to new families of organic/inorganic 

hybrid semiconducting polymers. Given the importance of semiconducting materials in 

today’s displays may provide significant impetus to expand exploration of these sys-

tems as well as the apparent existence of conjugation in complementary ladder 

silsesquioxane copolymers analogs. 
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Abstract 

Multiple studies have explored using cage silsesquioxanes (SQs) as backbone elements in hy-

brid polymers motivated by their well-defined structures, physical and mechanical properties. As 

part of this general exploration, we reported unexpected photophysical properties of copolymers 

derived from divinyl double decker (DD) SQs, [vinyl(Me)Si(O0.5)2][PhSiO1.5]8[(O0.5)2Si(Me)vinyl] 

(vinylDDvinyl). These copolymers exhibit strong emission red-shifts from model compounds and 

implying unconventional conjugation, despite vinyl(Me)Si(O-)2 siloxane bridges.  

In an effort to identify minimum SQ structures that do/do not offer extended conjugation; we 

explored Heck catalyzed co-polymerization of vinyl-ladder(LL)-vinyl compounds, vi-

nyl(Me/Ph)Si(O0.5)2[PhSiO1.5]4(O0.5)2Si(Me/Ph)vinyl, with Br-Ar-Br where Br-Ar-Br = 1,4-dibro-

mobenzene, 4,4’-dibromo-1,1’-biphenyl, 4,4’’-dibromo-p-terphenyl, 4,4’-dibromo-trans-stilbene, 

2,7-dibromo-9,9-dimethyl-9H-fluorene, 2,5-dibromothiophene, 5,5’-dibromo-2,2’-bithiophene 

and 2,5-dibromo-thieno[3,2-b]thiophene. Most surprising, the resulting oligomers show 30-60 nm 

emission red-shifts beyond those seen with vinylDDvinyl analogs despite lacking a true cage. 

Further evidence for unconventional conjugation includes apparent integer charge transfer (ICT) 

between LL-co-thiophene, bithiophene and thienothiophene with 10 mol% F4TCNQ, suggesting 

potential as p-type doped organic/inorganic semiconductors. Brominating DD/LL-co-phenyl pol-

ymer vinyl groups eliminates emission red-shifts. Zn debromination thereafter restores vinyl 

groups and emission red-shifts but brominated phenyls remain providing potential access to fam-

ilies of “hairy” conjugated SQ polymers. 
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6.1 Introduction 

There is growing impetus to explore silsesquioxanes (SQs) due to their ease of synthesis and 

purification, well-defined 3-D nanostructures, robust nature as well as high compatibility with 

multiple types of organics leading to large families of hybrid materials. The major story still cen-

ters on properties that can be typified as organic decorated silica moieties. In contrast, we find that 

cage SQs {[RSiO1.5]8,10,12 (R=R’phenyl, R’vinyl, R=conjugated moiety, R’=H, Me, MeO, NH2, 

CN, etc)} offer photophysical properties not at all reflective of organic decorated silicas but com-

mensurate with cage centered LUMOs.1–5 We recently extended this concept of excited-state 3-D 

conjugation to sets of incomplete and modified cages including corner-missing T8, [R’Stil-

beneSiO1.5]7[O1.5SiMe/nPr], [R’StilbeneSiO1.5]7[O0.5SiMe3]3,6 and newly developed double 

decker (DD) [R’StilbeneSiO1.5]8[OSiMe2]2 and [R’StilbeneSiO1.5]8[O0.5SiMe3]4.7 Recent efforts 

on double decker SQs follow two parallel paths in their development exploring either molecular 

or macromolecular hybrid materials.8 In the latter area, we recently synthesized a series of DD SQ 

based oligomers and polymers {vinyl(Me)Si(O0.5)2[PhSiO1.5]8(O0.5)2Si(Me)vinyl-Ar, vi-

nylDDvinyl-Ar} that unexpectedly exhibit conjugation that appears to involve two vi-

nyl(Me)Si(O-)2 bridges evidenced by significant emission red-shifts from corresponding model 

compounds.9 Schemes 6.1a,b provide general synthetic routes and structures. In all systems, con-

jugation presents in the form of emission red-shifts of 50-120 nm from model compounds without 

cage components. Such novel combinations of structural, thermal, mechanical and photophysical 

properties, such as tunable broad-band UV-Vis fluorescence, may be important for applications as 

emissive layers in OLEDs,10 multi-functional nano-drugs, in photothermal and photodynamic ther-

apies for cancer, etc. 11–13  
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Scheme 6.1. Heck cross coupling of (a) model compounds, (b) vinylDDvinyl derived copol-

ymers and (c) vinyl-LL-vinyl derived copolymers. 

With the recent discovery of routes to ladder SQs (vinyl-LL-vinyl),14 we can now explore vi-

nyl-LL-vinyl equivalent systems of the type suggested in Scheme 6.1c. The motivation is to ascer-

tain the nature of LUMO formation in ladder SQs where the structure appears to be approximately 

one-half that of relatively complete double-deckers. Our initial presumption was that these com-

pounds should represent the limiting case where not only is there no 3-D cage, but there are also 

two vinyl(Me/Ph)Si(O-)2 bridges per cage in any oligomers/polymers we might synthesize. 

Contrary to our original thoughts, the resulting compounds actually offer emission further red-

shifted than any analogous compounds previously studied,1–7,9 seeming to imply conjugation and 

semiconducting behavior where there should be none. In the following sections, we begin by char-

acterizing a set of ladder copolymers and thereafter assess their photophysical properties. 

6.2 Experimental 

The synthetic methods and characterization techniques are described in Chapter 2. 

6.3 Results and discussion 

Two structurally similar ladder SQs [vinyl-(Me)LL(Me)-vinyl and vinyl-(Ph)LL(Ph)-vinyl] 

were explored, with only the end groups differing. Analytical characterization and photophysical 

behavior are essentially identical as expected, thus only data for vinyl-LL(Me)-vinyl co-polymers 
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are presented. Spectra for vinyl-LL(Ph)-vinyl derived copolymers are shown in Figures D.9-D.14. 

Both co-polymers were characterized by MALDI-TOF, GPC, FTIR, 1H and 13C NMR, and the 

starting ladder SQs were also characterized by 29Si NMR as recorded in Tables D.1-D.3 and Fig-

ures D.1-D.8. MALDI-TOF shows the expected m/z, consistent with GPC determined molar 

masses of the ladder SQs. The GPC retention time for vinyl-LL(Ph)-vinyl is ~0.3 min earlier than 

that for vinyl-LL(Me)-vinyl due to the slightly bulkier phenyl groups. Table 6.1 GPC data for the 

ladder copolymers indicates degrees of polymerization (DPs) of 3-18 units. MALDI-TOF analyses 

always show peaks every m/z for the co-monomer unit vinyl-LL-vinyl-Ar, suggesting no di-sub-

stitution of aromatic groups on any given vinyl and successful copolymerization. 

The steady-state absorption and emission behavior of ladder polymers are shown in Table 6.1 

and Figures 6.1 and 6.2, compared with data for vinylDDvinyl derived polymers from our previous 

Table 6.1. GPC and steady-state photophysical data for vinylDDvinyl derived polymers9 and vi-
nyl-LL(Me)-vinyl derived polymers. 

 DP[a] Abs. λmax (nm) Em. λmax (nm)[b] ΦF 
Vinyl(Me)DD(Me)vinyl 1 264 281  

DD-co-phenyl 15 298 390, 412 0.08±0.001 
DD-co-biphenyl 10 314 357, 373 0.66±0.05 
DD-co-terphenyl 11 321 374, 392 0.87±0.04 
DD-co-stilbene 7 357 412, 436 0.61±0.04 

Co-dimethylfluorene 15 339, 353 424, 448 0.34±0.003 
DD-co-thiophene 20 340 478, 505 0.09±0.001 

DD-co-bithiophene 3 391 505, 538 0.17±0.02 
Co-thienothiophene 4 358 496, 526 0.13±0.01 

Vinyl-LL(Me/Ph)-vinyl 1 264 283  
LL-co-phenyl 8 298 392, 415 0.16±0.02 

LL-co-biphenyl 6 312 412, 430 0.46±0.04 
LL-co-terphenyl 18 321 418, 437 0.61±0.02 
LL-co-stilbene 8 356 448, 472 0.35±0.03 

Co-dimethylfluorene 7 337, 353 426, 451 0.68±0.02 
LL-co-thiophene 7 343 540 0.07±0.01 

LL-co-bithiophene 6 392 550 0.07±0.01 
Co-thienothiophene 6 356, 371 530 0.09±0.01 

[a] Degree of polymerization. [b] Excitation wavelength at Abs. lmax 

study.9 All emission spectra were measured with excitation wavelength at corresponding absorp-

tion λmax. The Table 6.1 data for vinyl(Me)DD(Me)vinyl and vinyl-LL(Me)-vinyl indicates that all 

exhibit absorption λmax ≈ 265 nm and emission λmax ≈ 280 nm, typical for phenyl rings. Vinyl-

LL(Ph)-vinyl is slightly red-shifted with phenyls at two ends. Polymers were synthesized from 

both vinyl-LL-vinyl compounds. No essential spectral differences were observed as expected. 
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Divinylbenzene is the simplest organic linker tested. The steady-state data in Table 6.1 for LL-

co-phenyl are essentially identical to those of DD-co-phenyl. The red shift of 70 nm in emission 

compared to 1,4-[(MeO)2Sivinyl]2benzene suggests formation of a LUMO even with a half cage 

and conjugation to co-phenyl in the excited state. Based on all our previous work, it appears that a 

LUMO does form and these results greatly extend the families of SQs that appear to offer extended 

conjugation. Even though the shifts are not significant in the absorption and emission λmax of LL-

co-phenyl from its DD analogue, there are significant changes in the shape of steady-state spectra 

as seen in Figure 6.1. First, LL-co-phenyl with a DP of 8 displays distinct absorption shoulders 

around 355 nm compared to model compound and DD-co-phenyl with a DP of 15. Additionally, 

its emission is slightly red-shifted beyond DD-co-phenyl, along with the disappearance of the 

emission peak near 340 nm and a significant shoulder at ≈ 450 nm.  

 
Figure 6.1. Normalized steady-state absorption and emission spectra of 1,4-[(MeO)2Sivi-

nyl]2benzene, DD-co-phenyl and LL-co-phenyl in CH2Cl2. 

Such changes in steady-state behavior are more apparent in LL-co-biphenyl, terphenyl, stilbene 

and thiophene as witnessed by 30~60 nm red-shifts beyond their DD analogues even with shorter 

chains, again suggesting LUMO formation even in ladder structures but also more efficient com-

munication between the ladder SQ and the conjugated organic moieties in the excited state as 

compared to full and double-decker SQs. This finding is quite important in that it completely 

changes our assumptions about ladder SQs. To further probe such structure-property relationships, 

a shorter fraction of LL-co-thiophene was separated via TLC (silica, 1:1 DCM:hexane) and char-

acterized by GPC and MALDI-TOF in Figure D.15 and Table 6.2. 
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Table 6.2. MALDI-TOF and GPC data for DD-co-thiophene, short LL-co-thiophene isolated by 
TLC and long LL-co-thiophene. 

 GPC MALDI-TOF 
Mn Mw Ð [a] Oligomers[b] M/z 

LL-co-thiophene 
DP~3 

2540 3630 1.12 Dimer 1896[c] 

LL-co-thiophene 
DP~7 

5600 8000 1.42 Trimer 2797[c] 

DD-co-thiophene 
DP~20 

22540 43250 1.92 Decamer 13010[c] 

[a] Polydispersity.  [b] Largest oligomers identifiable. [c] As Ag+ adduct. 

The GPC of the starting vinyl-LL-vinyl, short LL-co-thiophene separated by TLC (DP~3) and 

long LL-co-thiophene (DP~7) are shown in Figure D.15. The GPC trace of the LL-co-thiophene 

with DP ~7 shows a broad peak around 27.5 min with a Ð of 1.43 for relatively long oligomers as 

well as a quite narrow peak at 33.2 min overlapping with vinyl-LL-vinyl with polydispersity (Ð) 

of 1.02, suggesting presence of unreacted starting material during copolymerization. The short LL-

co-thiophene with DP~3 comes at 31.5 min with a small Ð of 1.12, dominated by dimers and 

trimers following removal of longer oligomers via TLC. The GPC and MALDI-TOF data are 

shown in Table 6.2. The largest oligomers identifiable by MALDI-TOF with corresponding 

masses are presented. It is known that the peak intensities in MALDI corresponds to the ionization 

efficiencies of the species and are not necessarily representative of the quantity of each component. 

High Mw oligomers are not as readily ionizable as monomers thus even though the GPC shows 

even higher Mw oligomers, they are not necessarily “seen” in MALDI. Data for DD-co-thiophene 

with DP ~20 are also presented here. Since LL-co-thiophene is shorter than its DD analogue, it is 

safe to say that its red-shifted emission comes from more efficient electronic communication be-

tween LL SQs in the excited state rather than longer chains with extended conjugation lengths. 

extend the families of SQs that appear to offer extended conjugation. 

Figure 6.2 presents the normalized steady-state emission spectra for 2,5-[(MeO)2Sivinyl]2thi-

ophene, DD-co-thiophene, LL-co-thiophene with DPs of 3 and 7 respectively. The absorption λmax 

is always around 340 nm and not shown here. The progressively red-shifted emission λmax. of short 

and long LL-co-thiophenes are 484 and 539 nm respectively, suggesting extended conjugation 

with further extensions in chain length and smaller HOMO-LUMO gaps. Short LL-co-thiophene, 

consisting mostly of dimers and trimers, still shows λmax emission. similar to long DD-co-thiophene, 

which is ~50 nm red-shifted from 2,5-[(MeO)2Sivinyl]2thiophene.  
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Figure 6.2. Normalized progressive emission spectra of 2,5-[(MeO)2Sivinyl]2thiophene, DD-co-

thiophene, short (DP~3) and long (DP~7) LL-co-thiophene in CH2Cl2. 

It has been reported that T8 SQ cages exhibit electron-withdrawing capacities approximately 

equivalent to -CF3.15 One can extend this idea to DD SQs given similar structures and presumably 

LL systems. It then becomes possible to argue that DD-co-thiophene oligomers and even dimers 

and trimers of LL-co-thiophene should offer similar properties. This further confirms the efficient 

semiconducting behavior of such ladder SQs polymers. Similar study has also done on LL-co-

biphenyl as an example from the phenyl system of LL copolymers and the GPC and steady-state 

emission spectra are shown in Figures D.16, D.17. The progressive red-shifts in the emission of 

LL-co-biphenyl as a function of DPs have also been observed. 

Further evidence of unconventional conjugation includes the charge-transfer studies of thio-

phene systems of LL SQ copolymers. Integer charge transfer (ICT) is observed between electron-

acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodi-methane (F4TCNQ) and DD-co-thiophene, 

bithiophene and thienothiophene as reported in our previous paper.9 Similar ICT also occurred in 

10 mol%F4TCNQ doped LL-co-thiophene, bithiophene and thienothiophene using the mixed-so-

lution method. The original orange-red color becomes dark green immediately on mixing.  

The literature reports that poly(3-hexyl-thiophene-2,5-diyl) regioregular (P3HT) exhibits inte-

ger charge transfer interactions with F4TCNQ and coincident nitrile-stretching mode shifts from a 

neutral value ν0 = 2227 cm-1 to ν1 = 2194 cm-1 on doping.16,17 In marked contrast, however, qua-

terthiophene (4T) forms partial charge transfer with F4TCNQ and thus shows only a small shift.18 

Shifts of characteristic cyano-vibrational bands from the neutral value to the anion value are ob-

served in the FTIR for LL-co-bithiophene mixing with F4TCNQ as shown in Figure 6.3 indicating 

integer charge transfer (ICT). 
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Figure 6.3. FTIR of nCN region for pristine F4TCNQ and mixture of LL-co-bithio-

phene:F4TCNQ 10 mol%. 

The literature also reports that the electronic structure of F4TCNQ anion includes doublet states 

because of the presence of an unpaired single electron.19 The UV-Vis spectrum of F4TCNQ•‒ con-

tains two main absorption peaks around 400 and 800 nm. D0→D1 transition corresponds to the 

absorption band around 600-900 nm with local maxima at 754 and 856 nm while D0→D2 transition 

gives absorption band at 410 nm. The absorption spectrum of LL(Ph)-co-bithiophene:F4TCNQ in 

Figure 6.4 clearly shows spectral signatures from F4TCNQ•‒ at 600-900 nm and LL-co-bithio-

phene at 350-500 nm, strongly suggesting ICT, consistent with the FTIR data. 

 
Figure 6.4. Absorption spectra of undoped LL-co-bithiophene and LL-co-bithiophene: F4TCNQ 

10 mol%, F4TCNQ and F4TCNQ•- shown for reference. 

 

Further evidence of unconventional conjugation comes from the breaking and restoring conju-

gation by brominating/de-brominating vinyls. Our original objective in brominating phenyl groups 

in DD/LL-co-phenyl polymers was to further functionalize the phenyl groups peripherally to 
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prepare ‘hairy polymers’ and explore possible 3-D conjugation. As expected, vinyl groups bro-

minate first on as evidenced by Figures D.16-D.19. 13C and 29Si NMR coincident with elimination 

of conjugation and partial cage cleavage as tracked by GPC. As shown in Figure 6.5b, brominated 

polymers display only characteristic phenyl absorption around 250 nm. The emission spectra are 

diminished and only show CH2Cl2 solvent background. The photophysical behavior of both 

DD/LL-co-phenyl reappear after zinc debromination,20 with absorption λmax around 300 nm and 

red-shifted emission λmax around 400 nm with respect to the emission of 1,4-[(MeO)2Sivinyl]2ben-

zene at 332 nm. This finding further proves the presence and reproducibility of the excited-state 

conjugation in the DD/LL SQ derived polymers via vinylSi(O-)2 siloxane unit. 

 

a  

b  

Figure 6.5. (a) Bromination and debromination of LL-co-phenyl. (b) Steady-state spectra in 

CH2Cl2. 

Two modeling groups attempted to model the vinyl-LL-vinyl SQ structure. Professor Jung-

suttiwong’s group at Ubon Ratchathani University, Thailand, and Professor Kieffer’s group at the 

University of Michigan, found both HOMOs and LUMOs reside on the peripheral phenyl groups 
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of vinyl-LL(Me/Ph)-vinyl, with an energy HOMO-LUMO gap of ~8.9 eV. The calculated absorp-

tion λmax is always ~60 nm blue-shifted compared to the experimental data, as shown in Table D.4. 

In another effort from Professor Kieffer’s group the peripheral phenyl groups are replaced by me-

thyl for modeling purposes, LUMO+2 at 8.47 eV is from LL SQ core and extends out of the ladder 

frame, suggesting possible interaction between an SQ-centered LUMO and vinyl π*. Orbitals. 

When phenyls are retained, the LUMO+10 also resides in the center of LL SQ and extends out to 

vinyl π* with a lower energy level at 7.86 eV. These modeling results are presented in Figures 

D.26-D.28. At this time, modeling is still not as precise as we would like but these systems are 

quite unique as our results demonstrate. 

6.4 Conclusions 

In summary, a series of ladder (LL) SQ copolymers were synthesized via Heck catalytic cross-

coupling of vinyl-LL-vinyl with various dibromo-aromatic compounds. Compared to model silane 

compounds and analogs of double-decker (DD) SQ copolymers, LL derived polymers display sim-

ilar absorption peaks but with significant shoulders at longer wavelength. Furthermore, LL SQs 

linked with longer or more complex aromatic bridges, LL-co-biphenyl, terphenyl, stilbene and 

thiophene, show 30-60 nm emission red-shifts beyond those seen with the DD analogs and pro-

gressively red-shifted emissions with respect to longer chains were also observed. Integral charge 

transfer occurs in 10 mol% F4TCNQ-doped LL-co-thiophene, bithiophene, thienothiophene, 

which also occur on mixing F4TCNQ with DD analogous polymers. These results suggest not only 

a new perspective on the ease of formation of LUMOs in even LL SQs, but also more efficient 

communication of the LL SQ with conjugated organic moieties in the excited state as compared to 

full and double-decker SQs that potentially offer access to a wide variety of semiconducting pol-

ymers. In addition, brominating vinyl as well as phenyl groups in DD/LL derived copolymers and 

then debrominating vinyls not only restores through chain conjugation but also provides the po-

tential to further peripherally functionalize these systems via a variety of catalytic cross-coupling 

reactions to explore 3-D conjugation in “hairy SQ polymers”.  
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Chapter 7.  Double Decker Silsesquioxane Derived Alternating Terpolymers Give Excited-state 
Conjugation Averaging that of the Corresponding Co-polymers. 

Manuscript in preparation, 2021. 

Abstract 

In this work we continue efforts to expand the family of silsesquioxane (SQ)-based oligomers 

and polymers that exhibit through-cage conjugation in the excited state and to map structure-prop-

erty relationship for practical applications. We recently reported series of double decker (DD) and 

ladder (LL) SQ derived copolymers prepared via Heck cross-coupling that exhibit unconventional 

conjugation as evidenced by exceptional red-shifted emissions relative to model compounds. 

When copolymerized with biphenyl, terphenyl and stilbene, the SQ polymers typically emit ca. 

400 nm with quantum yields ≥ 0.6. Copolymerization with thiophene, bithiophene and thienothi-

ophene provides oligomers with emission ≈ 530 nm but with relatively low quantum yields. 

Here we first report the successful synthesis of DD SQ derived terpolymers with alternating 

biphenyl and thiophene linkers characterization by 1H, 13C NMR, GPC, MALDI-TOF, TGA and 

FTIR with the goal of possible incorporation of long-wavelength emission and high quantum 

yields. Study of the UV−vis absorption and emission properties of these terpolymers indicates 

emission intermediate between those of the respective copolymers rather than emission from both 

units as would be expected from physical mixtures, again supporting electronic communication 

along the polymer chains and through the cages via disiloxane conjugated linkers. In addition, we 

have found two successful examples of terpolymers showing improved quantum yields from the 

DD-co-thiophene copolymer and red-shifted emission from the respective terphenyl/stilbene co-

polymers. 

7.1 Introduction 

Studies of silsesquioxanes (SQs) compounds, oligomers and polymers have generated rapidly 

increasing attention arising from their well-defined nanostructures with high degrees of symmetry, 

rigidity and thermal stability coincident with the potential for appending multiple organic func-

tional groups. These functional groups permit formulation of multiple hybrid materials.1–7 The 

ability to manipulate properties at nanometer scales in 3-D offer unique properties that provide 
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considerable motivation to incorporate SQs into polymers via copolymerization, grafting or blend-

ing for proper-ties modifications e.g. by improving thermal stabilities, mechanical properties, ox-

idation resistance, surfacing hardening, porosity for low density applications and/or to trap pollu-

tants, as well as re-duce flammability.2,4,8–12  

Previously, we reported formation of cage-centered LUMOs that interact with appended 4-

methyl/cyanostilbene groups that exhibit excited state conjugation resulting in strong emission 

red-shifts of ~70 nm vs the corresponding free stilbenes.13–16 We also observed red-shifted emis-

sions in the copolymers of Phenyl T10/12 cages with divinyl benzene of 50 nm vs divinylbenzene17 

and an additional 20 nm with divinyl stilbene of vs divinylstilbene.18 Most recently, we extended 

this type of copolymer to phenyl double decker (DD) SQs [vinylMeSi(O2)(PhSiO1.5)8O2SiMevinyl] 

with multiple aromatic linkers all indicating red-shifted emissions of 50-80 nm from respective 

model compounds, implying through-chain conjugation involving both DD cages and organic link-

ers despite two vinylSi(O-)2 siloxane units comprising an essential part of the bridges.19  

Most surprising was the finding that eliminating the cage through use of ladder SQs but still 

with vinylSi(O-)2 bridges using the same aromatic linked copolymers gave max emission red-shifts 

30-60 nm beyond the DD analogues even with shorter chain lengths.20 In both systems, bi-phenyl, 

terphenyl and stilbene linked SQ copolymers all exhibit high fluorescence quantum yields (Φ3) 

up to ~80%, while thiophene, bithiophene and thieno-thiophene linked copolymers display long-

wavelength emission around 530 nm and with Φ3 ~10%. 

The easy syntheses and excited-state conjugation of sets of SQ-based polymers may offer po-

tentially new hybrid organic-inorganic semiconducting materials in OLED and photovoltaic appli-

cations. For example, Jabbour’s group explored the use of multifunctional SQ emitter based OLED 

components. Likewise, Sellinger’s group reported Heck coupling of haloaromatics with oc-

tavinylSQ as a route to hybrid components for electroluminescent devices.21–23 Thus one particular 

motivation of the current work targets mapping their structure-property relationships, especially 

exploring novel combinations of robust nature, long-wavelength emission and high Φ3, of poten-

tial value in flat panel display applications.3,24,25 

In this paper, we used Heck cross-coupling to access a variety of DD SQ derived alternating 

terpolymers as a means to expand our knowledge of this unusual form of conjugation while also 

exploring the potential to learn to control both emission wavelengths and Φ3 to probe the general 

nature of these unusual systems. The synthetic route is shown in Scheme 7.1. 
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Scheme 7.1. Syntheses of DD derived alternating terpolymers. 

7.2 Experimental 

The synthetic methods and characterization techniques are described in Chapter 2. 

7.3 Results and discussion 

Occam’s razor suggests the simplest approach should be tried first. Thus, the direct co-

polymerization of vinylDDvinyl with 2:1:1 molar ratio of dibromo-biphenyl and dibromo-thio-

phene was explored. However, divinylDD reacts with biphenyl much faster than with thiophene 

such that that no terpolymer forms. Instead, it appears that block co-polymers form with large 

segments of DD-co-biphenyl. One possible explanation is that the thiophene sulfur binds reversi-

bly to Pd such that catalytic efficiency is decreased.26–29 This is the likely reason both DD/LL SQs 

derived co-polymers with phenyl systems always results in much longer chains (DP~15) than thi-

ophene sys-tems (DP~5).19,20 

Thus, we turned to the more tedious approach to alternating terpolymers using step-by-step 

syntheses per Scheme 7.1. We first coupled thiophene groups with DD SQs on both ends via Heck 

cross-coupling and with a 3:1 DD:thiophene molar ratio. The expected vinylDD-thiophene-

DDvinyl was isolated via column chromatography (CH2Cl2: hexane 2:1 volume ratio). The reason 

for choosing thiophene systems in the first step is again that the polymerization of vinylDD-bi-

phenyl-DDvinyl with thiophene will be even more difficult so to obtain longer terpolymers, vi-

nylDD-thiophene-DDvinyl was synthesized first. All the products were characterized using stand-

ard methods as shown in Tables 7.1, E.1 and E.2. 
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a  b  

Figure 7.1. (a) GPC of the product mixture of DD with thiophene (3:1 molar ratio), isolated DD-

thiophene-DD via column chromatography and terpolymer of DD-thiophene-DD with biphenyl. 

(b) TGA of DD-thiophene-DD, terpolymer DD-thiophene-biphenyl, and copolymers of DD-co-

biphenyl and DD-co-thiophene. 

Figure 7.1a and Table 7.1 give GPC data for these compounds. After Heck cross-coupling of 

divinyl-DD with a 3:1 molar ratio dibromo-Ar1, the product is a mixture of single-cage, two-cage 

and three-cage products as expected and evidenced by three narrow peaks (PDI ~1.04) at retention 

times of 32.9, 30.5 and 29.3 min respectively, due to the difference in hydrodynamic volumes re-

solved from intact SQ cores. The yield of the desired DD-Ar1-DD product peak is evident in the 

GPC trace and can be isolated via column chromatography.  

MALDI in Figures E.1- E.3 and TGA in Figure 7.1b and Table 7.1 were used to characterize 

the end groups of isolated two-cage product, which indicates the end-capping of Ar1 with DD 

cages ac-cording to the expected m/z in MALDI and ceramic yields close to or the same as the 

theoretical value calculated from the chemical formula of DD-Ar1-DD. Note that the molecular 

weight suggested by GPC is always smaller than MALDI due to the sphere-like hydrodynamic 

volume of the DD cores.  

The successful isolation of DD-Ar1-DD is also supported by 1H and 13C NMR in Figure E.5 

and Table E.1. The 1H NMR of DD-thiophene-DD exhibits new signals for ethene groups bonded 

to thiophene at 6.9 and 6.4 ppm; distinct from peaks for unreacted vinyl groups at 6.20 and 6.05 

ppm. The theoretical ratio of reacted to unreacted vinyl protons is 2:3, which matches the actual 

in-tegration ratio of 2.1 : 3.1. Additionally, there are two methyl peaks, likely indicating protons 

in two magnetically different environments originating from reacted and unreacted vinyls.  
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The 13C NMR shows peaks for phenyl groups on the DD cage from 134 to 127 ppm.  Reacted 

and unreacted vinyl groups also display distinct chemical shifts at 144.3, 139.1 ppm and 135.2, 

134.5 ppm respectively. Thiophene carbon peaks appear at around 137 and 124 ppm.  

Peaks are assigned by comparison with the NMR of starting di-vinyl DD. The isolated prod-

ucts are also characterized by FTIR  as shown in Figure E.7 and peak assignment in Table E.2, 

with the highest peak at 1132 cm-1 from the Si-O-Si framework. Peaks from νC=C and νC-H are 

also observed around 1400 and 3000 cm-1 respectively, characteristic of phenyl, vinyl and thio-

phene groups. 

After Heck cross-coupling of DD-Ar1-DD with dibromo-Ar2, the alternating terpolymers DD-

Ar1-Ar2 appear in the GPC with retention times of 25-28 min, with Ð of ~1.7 expected for step-

growth type polymerization with average DPs of 4-8. The presence of oligomers is also confirmed 

by MALDI, which shows peaks every DD-Ar1-DD-Ar2 repeat unit. 

In general, SQ monomers are readily ionizable; however, as the Mw of SQ-based oligomers 

in-creases, the ionization efficiency decreases resulting in smaller peaks. Thus the peak heights in 

MALDI cannot be considered as a quantitative measure of the amount of each species in the oli-

gomeric mixture. From the TGA analyses, the Td5% of the resulting terpolymers are all >400 oC, 

indicating high thermal stabilities in air and the ceramic yields are close to the theorical value and 

in between of the corresponding copolymers DD-co Ar1/Ar2. 1H NMR in Table E.1 and Figure 

E.6 suggests only trace amounts of end vinyl groups around 6.10 ppm and greater amounts of 

ethene bridges between DD cage and organic tethers Ar1 and Ar2 around 7.0 and 6.5 ppm, indi-

cating successful polymerization. Finally, there are broad peaks in aromatic proton region around 

7.8-7.1 ppm that are typical for these compounds and peaks in methyl proton region around 0.45 

ppm. There are essentially no significant changes in FTIR as expected. 

Table 7.1. MALDI-TOF, GPC and TGA data for terpolymers. 
Compound MALDI-TOF 

m/za 
GPC TGA 

Mn Mw Ð Ceramic 
yield % 

Theor 
yield % 

Td5%/air °C 

DD-Thio-DD 2600 1690 1770 1.05 48 48 545 
-Biph 2752c 7000 11900 1.70 44 45 500 

-Terph 2823c 4500 7400 1.65 45 44 520 
-Stil 2778c 4400 7400 1.68 44 45 410 

DD-Bithio-DD 2574b, 2682 1780 1890 1.06 46 47 500 
DD-Ththio-DD 2655 1720 1790 1.04 46 47 530 

a As Ag+ adduct. b As H+ adduct. c M/z of the repeating unit of terpolymers. 
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We previously reported the successful preparation of a series of DD copolymers/oligomers and 

the discovery of through-chain conjugation in the excited state even through the -Si(O)2 siloxane 

units as evidenced by the exceptional red-shifted emission from the respective model com-

pounds.19 Figure 7.2a compares the UV-vis absorption and emission of DD-thiophene-DD, short 

oligomers and long DD-co-thiophene synthesized using the ratio of DD:thiophene of 3:1 and 1:1 

respectively. It is noteworthy that the emission maxima show progressive red-shifts from 390, to 

465 to 505 nm as the function of chain length. In addition, even though the Abs. λmax at 340 nm 

does not change, the absorption shoulder around 400 nm grows with extensions in chain length as 

well, which all indicate through-chain conjugation involving the SQ cages via siloxane units. Spec-

tra of DD-bithiophene-DD and DD-thienothiophene-DD are displayed in Figures E.11 and E.12, 

which also show simi-lar progressively red-shifted emissions with increasing chain lengths. 

Figure 7.2b provides absorption and emission data for the terpolymer DD-Thio-DD-Biph and 

the corresponding DD-co-biphenyl and DD-co-thiophene, as summarized in Table 7.2. The ab-

sorp-tion spectrum of the alternating terpolymer shows a peak at 315 nm around the Abs. λmax of 

DD-co-biphenyl and an increased shoulder around 400 nm, similar to DD-co-thiophene, which 

sug-gests successful Heck polymerization and no ground-state HOMO interaction. The Em. λmax 

of the terpolymer is 430 nm, in between of DD-co-biphenyl (375 nm) and DD-co-thiophene (505 

nm), which again points to the excited-state conjugation involving SQ cages and two different con-

jugated linkers and the opportunities to tune the emission of DD derived polymers. Compared to 

the starting DD-thiophene-DD, the Em. λmax of terpolymer is red-shifted by 40 nm, indicating ex-

tended conjugation after biphenyl linking DD-thiophene-DD together to form a longer terpolymer 

chain.  

When excited around the Abs. λmax of DD-co-biphenyl (315 nm) and DD-co-thiophene (340 

nm), the Em. λmax remains 430 nm while the intensity is much higher using 345 nm as the excitation 

wave-length as shown in Figure E.8. As indicated in Table 7.2 and Figures E.9 E10 and E.13, 

other terpolymers also show emission maxima between that of the two copolymers, all suggesting 

that the polymer LUMOs communicate between SQs through each type of conjugated unit. 
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a b  

Figure 7.2. (a) Normalized absorption and emission of DD-thiophene-DD, mixture of DD:thio-

phene 3:1 and longer DD-co-thiophene (1:1). (b) Absorption and emission of terpolymer DD-

Thio-DD-Biph and corresponding copolymers, DD-co-biphenyl and DD-co-thiophene. 

Photoluminescence quantum yields were measured using a K-sphere integrating sphere in 

CH2Cl2 with the excitation wavelengths at Abs. λmax of DD-co-Ar1 to explore the effect of incor-

poration of Ar2 into the system since DD-co-Ar2 displays a quite high ΦF (90 %). Table 7.2 shows 

that the incorporation of biphenyl has little effect on the improvement of the Φf since the terpoly-

mers display essentially the same ΦF as those of the corresponding terpolymers.  

Table 7.2. UV-vis, photoluminescent data and quantum yields for DD derived copolymers19 and 
terpolymers. 

Polymers DP Abs. λmax (nm) Em. λmax (nm) ΦF  
DD-co-thiophene 7 340 478, 505 0.09±0.001 

DD-co-bithiophene 4 391 505, 538 0.17±0.02 
DD-co-thienothiophene 5 358 496, 526 0.13±0.01 

DD-co-biphenyl 11 314 357, 373 0.66±0.05 
DD-co-terphenyl 11 321 374, 392 0.87±0.04 
DD-co-stilbene 9 357 393, 412, 436 0.61±0.04 

DD-Thio-DD-Biph 6 317 409, 432 0.07±0.004 
DD-Thio-DD-Terph 4 324 415, 427 0.20±0.03 

DD-Thio-DD-Stil 4 343,355 415, 446, 469 0.24±0.06 
DD-Bithio-DD-Biph 6 312,378 437, 464, 495 0.14±0.004 

DD-Bithio-DD-Terph 4 316,390 435, 460, 495 0.12±0.01 
DD-Ththio-DD-Biph 5 316 411, 433 451 0.14±0.02 

Terpolymers of DD-Thio-DD-Terph and DD-Thio-DD-Stil exhibit improved ΦF from 0.09 to 

0.20 and 0.24 respectively. Both DD-Thio-DD-Biph and DD-Thio-DD-Stil show red-shifted emis-

sion by ~35 nm from corresponding DD-co-biphenyl and DD-co-stilbene, which are two success-

ful examples of combination of longer-wavelength emission and high quantum yields. While as 

for bithiophene and thienothiophene derived terpolymers, no significant increase was observed in 

their quantum yields, which is similar to those of DD-co-bithiophene and DD-co-thienothiophene 
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of ~0.15. More studies need to be done to explore the suitable combination of organic tethers so 

that they can display novel photophysical properties important for displaying devices. In addition, 

we recently have also prepared ladder (LL) silsesquioxane derived copolymers analogous to the 

DD copolymers, and among them LL-co-biphenyl, terphenyl and stilbene offer high quantum 

yields of 0.6 but further red-shifted emission beyond their DD analogues.20 Studies of LL derived 

terpolymers can be more exciting since they exhibit superior photophysical properties while still 

maintain robust nature. 

7.4 Conclusions 

This report details the synthesis and characterization of sets of conjugated terpoly-mers/oligo-

mers derived from double decker silsesquioxanes. Two different synthetic routes are explored: the 

direct polymerization of DD with 2:1:1 molar ratio of biphenyl and thiophene and polymerization 

step by step. Due to the different reaction rate between thiophene and biphenyl, polymerization 

step by step is a better method to yield alternating terpolymers. TGA indicates high thermal sta-

bilities in air inherent from the DD SQ cages and photophysical studies of DD alternating terpol-

ymers suggest that the absorption spectra display spectral characteristics from respective DD co-

polymers while the emission spectra are an average of both copolymers.  

These results indicate no ground-state electronic communication along the chain but provide 

another strong evidence of unconventional conjugation in the excite-state involving two different 

organic tethers and all the way through DD cages even with siloxane units.  Moreover, by incor-

porating terphenyl/stilbene to form terpolymers with DD and thiophene, the quantum yields are 

increased significantly with respect to the copolymer of DD and thiophene, pointing to new op-

portunities to tailor the photophysical properties that are important in applications such as display-

ing panels. 

References 

(1) Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. 22. 
(2) Yoshida, K.; Hattori, T.; Ootake, N.; Tanaka, R.; Matsumoto, H. Silsesquioxane-Based Pol-

ymers: Synthesis of Phenylsilsesquioxanes with Double-Decker Structure and Their Poly-
mers. In Silicon Based Polymers; Ganachaud, F., Boileau, S., Boury, B., Eds.; Springer 
Netherlands: Dordrecht, 2008; pp 205–211.  

(3)  Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent Developments in the Chemistry of Cubic 
Polyhedral Oligosilsesquioxanes. Chem. Rev. 2010, 110 (4), 2081–2173.  

(4)  Li, G.; Wang, L.; Ni, H.; Jr, C. U. P. Polyhedral Oligomeric Silsesquioxane (POSS) Poly-
mers and Copolymers: A Review. 32. 



 

 

138 

(5)  Lee, D. W.; Kawakami, Y. Incompletely Condensed Silsesquioxanes: Formation and Reac-
tivity. Polym J 2007, 39 (3), 230–238.  

(6)  Laine, R. M. Nanobuilding Blocks Based on the [OSiO1.5]x (X= 6, 8, 10) Octasilsesquiox-
anes. J. Mater. Chem. 2005, 15 (35–36), 3725.  

(7)  Applications of Polyhedral Oligomeric Silsesquioxanes; Hartmann-Thompson, C., Ed.; Ad-
vances in Silicon Science; Springer Netherlands: Dordrecht, 2011; Vol. 3.  

(8)  Dudziec, B.; Marciniec, B. Double-Decker Silsesquioxanes: Current Chemistry and Appli-
cations. COC 2018, 21 (28).  

(9)  Du, Y.; Unno, M.; Liu, H. Hybrid Nanoporous Materials Derived from Ladder- and Cage-
Type Silsesquioxanes for Water Treatment. ACS Appl. Nano Mater. 2020, 3 (2), 1535–1541. 

(10)  Shen, R.; Liu, Y.; Yang, W.; Hou, Y.; Zhao, X.; Liu, H. Triphenylamine-Functionalized 
Silsesquioxane-Based Hybrid Porous Polymers: Tunable Porosity and Luminescence for 
Multianalyte Detection. Chemistry – A European Journal 2017, 23 (54), 13465–13473.  

(11)  Wang, D.; Feng, S.; Liu, H. Fluorescence-Tuned Polyhedral Oligomeric Silsesquioxane-
Based Porous Polymers. Chemistry – A European Journal 2016, 22 (40), 14319–14327.  

(12)  Yang, X.; Liu, H. Ferrocene-Functionalized Silsesquioxane-Based Porous Polymer for Effi-
cient Removal of Dyes and Heavy Metal Ions. Chemistry – A European Journal 2018, 24 
(51), 13504–13511.  

(13)  Furgal, J. C.; Jung, J. H.; Goodson, T.; Laine, R. M. Analyzing Structure–Photophysical 
Property Relationships for Isolated T 8 , T 10 , and T 12 Stilbenevinylsilsesquioxanes. J. Am. 
Chem. Soc. 2013, 135 (33), 12259–12269.  

(14)  Laine, R. M.; Sulaiman, S.; Brick, C.; Roll, M.; Tamaki, R.; Asuncion, M. Z.; Neurock, M.; 
Filhol, J.-S.; Lee, C.-Y.; Zhang, J.; Goodson, T.; Ronchi, M.; Pizzotti, M.; Rand, S. C.; Li, 
Y. Synthesis and Photophysical Properties of Stilbeneoctasilsesquioxanes. Emission Behav-
ior Coupled with Theoretical Modeling Studies Suggest a 3-D Excited State Involving the 
Silica Core. J. Am. Chem. Soc. 2010, 132 (11), 3708–3722.  

(15)  Guan, J.; Tomobe, K.; Madu, I.; Goodson, T.; Makhal, K.; Trinh, M. T.; Rand, S. C.; Yodsin, 
N.; Jungsuttiwong, S.; Laine, R. M. Photophysical Properties of Partially Functionalized 
Phenylsilsesquioxane: [RSiO 1.5 ] 7 [Me/NPrSiO 1.5 ] and [RSiO 1.5 ] 7 [O 0.5 SiMe 3 ] 3 (R = 
4-Me/4-CN-Stilbene). Cage-Centered Magnetic Fields Form under Intense Laser Light. 
Macromolecules 2019, 52 (11), 4008–4019.  

(16)  Guan, J.; Tomobe, K.; Madu, I.; Goodson, T.; Makhal, K.; Trinh, M. T.; Rand, S. C.; Yodsin, 
N.; Jungsuttiwong, S.; Laine, R. M. Photophysical Properties of Functionalized Double 
Decker Phenylsilsesquioxane Macromonomers: [PhSiO 1.5 ] 8 [OSiMe 2 ] 2 and [PhSiO 1.5 ] 
8 [O 0.5 SiMe 3 ] 4 . Cage-Centered Lowest Unoccupied Molecular Orbitals Form Even When 
Two Cage Edge Bridges Are Removed, Verified by Modeling and Ultrafast Magnetic Light 
Scattering Experiments. Macromolecules 2019, 52 (19), 7413–7422.  

(17)  Asuncion, M. Z.; Laine, R. M. Fluoride Rearrangement Reactions of Polyphenyl- and Poly-
vinylsilsesquioxanes as a Facile Route to Mixed Functional Phenyl, Vinyl T 10 and T 12 
Silsesquioxanes. J. Am. Chem. Soc. 2010, 132 (11), 3723–3736.  

(18)  Furgal, J. C.; Jung, J. H.; Clark, S.; Goodson, T.; Laine, R. M. Beads on a Chain (BoC) 
Phenylsilsesquioxane (SQ) Polymers via F – Catalyzed Rearrangements and ADMET or Re-
verse Heck Cross-Coupling Reactions: Through Chain, Extended Conjugation in 3-D with 
Potential for Dendronization. Macromolecules 2013, 46 (19), 7591–7604.  

(19)  Guan, J.; Arias, J. J. R.; Tomobe, K.; Ansari, R.; Marques, M. de F. V.; Rebane, A.; Mahbub, 
S.; Furgal, J. C.; Yodsin, N.; Jungsuttiwong, S.; Hashemi, D.; Kieffer, J.; Laine, R. M. 



 

 

139 

Unconventional Conjugation via VinylMeSi(O−) 2 Siloxane Bridges May Imbue Semicon-
ducting Properties in [Vinyl(Me)SiO(PhSiO 1.5 ) 8 OSi(Me)Vinyl-Ar] Double-Decker Co-
polymers. ACS Appl. Polym. Mater. 2020, 2 (9), 3894–3907.  

(20)  Guan, J.; Sun, Z.; Ansari, R.; Liu, Y.; Endo, A.; Unno, M.; Ouali, A.; Mahbub, S.; Furgal, J. 
C.; Yodsin, N.; Jungsuttiwong, S.; Hashemi, D.; Kieffer, J.; Laine, R. M. Conjugated Co-
polymers That Shouldn’t Be. Angewandte Chemie International Edition 2021, 60 (20), 
11115–11119. 

(21)  Chan, K. L.; Sonar, P.; Sellinger, A. Cubic Silsesquioxanes for Use in Solution Processable 
Organic Light Emitting Diodes (OLED). J. Mater. Chem. 2009, 19 (48), 9103.  

(22)  Froehlich, J. D.; Young, R.; Nakamura, T.; Ohmori, Y.; Li, S.; Mochizuki, A.; Lauters, M.; 
Jabbour, G. E. Synthesis of Multi-Functional POSS Emitters for OLED Applications. Chem. 
Mater. 2007, 19 (20), 4991–4997.  

(23)  Sellinger, A.; TamakiPresent address: General Elec, R.; Laine, R. M.; Ueno, K.; Tanabe, H.; 
Williams, E.; Jabbour, G. E. Heck Coupling of Haloaromatics with Octavinylsilsesquioxane: 
Solution Processable Nanocomposites for Application in Electroluminescent Devices. Chem. 
Commun. 2005, No. 29, 3700.  

(24)  Burrows, P. E.; Gu, G.; Bulovic, V.; Shen, Z.; Forrest, S. R.; Thompson, M. E. Achieving 
Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays. IEEE 
Trans. Electron Devices 1997, 44 (8), 1188–1203. https://doi.org/10.1109/16.605453. 

(25)  Salzmann, I.; Heimel, G.; Oehzelt, M.; Winkler, S.; Koch, N. Molecular Electrical Doping 
of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. 
Acc. Chem. Res. 2016, 49 (3), 370–378.  

(26)  Ma, L.; Yuan, S.; Jiang, T.; Zhu, X.; Lu, C.; Li, X. Pd4S/SiO2: A Sulfur-Tolerant Palladium 
Catalyst for Catalytic Complete Oxidation of Methane. Catalysts 2019, 9 (5), 410.  

(27)  Monai, M.; Montini, T.; Melchionna, M.; Duchoň, T.; Kúš, P.; Chen, C.; Tsud, N.; Nasi, L.; 
Prince, K. C.; Veltruská, K.; Matolín, V.; Khader, M. M.; Gorte, R. J.; Fornasiero, P. The 
Effect of Sulfur Dioxide on the Activity of Hierarchical Pd-Based Catalysts in Methane 
Combustion. Applied Catalysis B: Environmental 2017, 202, 72–83.  

(28)  Tiancun, X.; Lidun, A.; Weimin, Z.; Shishan, S.; Guoxin, X. Mechanism of Sulfur Poisoning 
on Supported Noble Metal Catalyst ? The Adsorption and Transformation of Sulfur on Pal-
ladium Catalysts with Different Supports. Catal Lett 1992, 12 (1–3), 287–296. 

(29)  Wilburn, M. S.; Epling, W. S. Sulfur Deactivation and Regeneration of Mono- and Bimetal-
lic Pd-Pt Methane Oxidation Catalysts. Applied Catalysis B: Environmental 2017, 206, 589–
598.  

 



 

 

140 

Chapter 8. Future Work 

8.1 Summaries 

In this dissertation, we have demonstrated new routes to functionalize partially condensed pol-

yhedral oligomeric silsesquioxanes and their derived organic-inorganic hybrid polymers and stud-

ied their properties especially photophysical behavior. Chapter 3 details work on the functionali-

zation of trisilanol phenylsilsesquioxanes (T7) via silylation followed by halogenation and Heck 

cross-coupling reactions, which produce corner-missing silsesquioxane cages with modified num-

bers of stilbene groups. These products exhibit excellent thermal properties with Td5%/air above 400 
oC and different photophysical properties depending on the number of functional groups.  

With more than two stilbene groups per cage, these partial cages display electronic interactions 

between silsesquioxane cages and organic tethers in the excited state, similar to completely con-

densed silsesquioxanes in that a cage centered LUMO appears to form. While if there are only two 

stilbene groups, no interaction is observed, indicating a unique structure-property relationship. In 

Chapter 4, we investigated another partially condensed tetrasilanol phenylsilsesquioxanes (DD) 

and the influence of the number of organic tethers per cage on the photophysical properties. In 

conclusion, similar results are observed, which points to new opportunities to tailor the properties 

of these silsesquioxanes by modifying their structures.  

Chapter 5 describes our development of conjugated organic linked DD SQ copolymers. When 

copolymerized with thiophene, bithiophene and thienothiophene, these polymers with DD SQ in 

the main chains display large red-shifts in emission with respect to the model compounds that lack 

SQ cages, revealing electronic communication through the cage and even the two siloxane bridges 

per cage and along the polymer chains. In addition, those polymers with thiophene tethers easily 

form integer charge transfer complexes with electron-withdrawing F4TCNQ, providing further 

evidence of unconventional conjugation and possibilities in applications such as photonic devices.  

In Chapter 6 we looked further into ladder silsesquioxane derived copolymers to explore the 

changes in photophysical properties as a result of changes in silsesquioxane polymer structures in. 

Copolymerization of ladder silsesquioxanes with phenyl linkers finds even further red-shifted 
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emissions compared to DD analog copolymers and still high photoluminescent quantum yields, 

revealing superior excited-state conjugation. Bromination of both DD and ladder silsesquioxane 

copolymers can occur not only on phenyl groups but also vinyl groups and thus break the conju-

gation. The vinyl groups can easily be restored via zinc debromination while the brominated phe-

nyl groups can be the branching points for the formation of further functionalization to form ‘hairy’ 

polymers.  

In expanding our work done in Chapters 5 and 6, our group conducted preliminary studies 

preparing DD SQ derived terpolymers as shown in Chapter 7, with the goal of possible combining 

visible light emission with high quantum efficiencies. 

With these potentials in mind, it is of great significance to: (1) expand the number of architec-

tures wherein cage centered LUMOs form; (2) develop a basic and detailed understanding of what 

factors control LUMO formation onset; and (3) assess the true character of the “semiconducting 

behavior” that appears to occur through vinylMeSi(O-)2 siloxane links using multiple photonic 

and electrochemical probes, and via theoretical modeling. The following sections discuss our near-

future research objectives on the syntheses and characterization of silsesquioxane derived materi-

als to further expand the family of SQs that can offer novel photophysical properties and be po-

tential candidates for components in photovoltaic and display devices.1–3 

8.2 Hairy polymers 

As discussed in Chapters 3 and 4, stilbene-functionalized T7 and DD cage emit around 440 nm 

while free stilbene emits around 360 nm.4,5 Such red-shifts suggest 3-D electronic communication 

involving all stilbene chromophores and through the SQ cage and since we have also observed 

through-chain conjugation in the excited-state in DD and LL derived polymers in Chapter 5, 6, 

and 7,6,7 we can explore possible 3-dimentional conjugation by incorporation stilbene-functional-

ized cage with copolymers to form hairy polymers (Scheme 8.1). 

 
Scheme 8.1. Syntheses of hairy polymers. 

 

Abs. λmax
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Two different synthetic routes to silsesquioxane derived hairy polymers are presented in 

Schemes 8.2 a and b (experimental in Appendix F). By brominating DD copolymers without cat-

alyst at 45 oC, severe chain cleavage was observed within 2 h, as tracked by GPC, as shown in 

Figures F.1 and F.2, likely due to the dissolved acidic byproduct HBr even with fast N2 flow during 

the reaction.  

One possible solution is to brominate at room temperature in the presence of an Fe catalyst. In 

addition, bromination also occurrs on cage-vinyls and co-aromatic groups as proved by compari-

son of FTIR of cyano-stilbene DD-co-biphenyl synthesized using both synthetic methods in Figure 

8.1 and will be further discussed below. Successful restoring of brominated vinyl groups is evi-

denced by TGA as shown in Figure F.6 and Table F.1, which displays a higher ceramic yield after 

the debromination (Br5DD-co-biphenyl) compared to brominated DD-co-biphenyl (Br9DD-co-bi-

phenyl). In addition, the absorption and emission spectra of debrominated Br5DD-co-biphenyl in 

Figure F.7 are essentially the same as those of DD-co-biphenyl, indicating the successful recovery 

of through-chain conjugation by recovering the conjugated vinyl groups. 

 

 
Scheme 8.2. (a) Syntheses by bromination of DD copolymers. (b) Syntheses by bromination 

of DD cage. 

The characterization of products synthesized in Scheme 8.2b are shown in Table F.2 and Fig-

ures F8-14. Brominated vinylDDvinyl (Br12DD) shows similar GPC to the starting vinylDDvinyl 

as expected for their similar hydrodynamic volumes (Figures F.8, 9). GPC indicates slightly in-

creased molecular size after the Heck cross-coupling with 4-cyanostyrene. The brominated vinyl 

groups survived Heck cross-coupling of brominated phenyls with 4-cyanostyrene as evidenced by 

the increased ceramic yield after debromination, which are also close to the theoretical values. The 

formation of polymers/oligomers is also confirmed by the broad peak in the GPC in Figure F.12. 
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Figure F.14 compares the absorption and emission of CNStil8Br4DD, CNStil8vinylDDvinyl and 

CNStil8DDMe4 and the three compounds essentially exhibit the same spectra, since the only struc-

tural difference comes from the pendant groups on the siloxane units (alkyl bromides vs vinyl vs 

methyl group), which would not influence the electronic interaction between the cyano-stilbene 

moieties and the DD cage. 

Figure 8.1 compares the cyano-region in the FTIR of hairy polymers synthesized via two syn-

thetic routes. By brominating DD cage and then polymerizing with dibromo-biphenyl, cyano-stil-

bene groups are only attached to the SQ cage corner and FTIR shows single 𝜈𝐶 ≡ 𝑁 peak at 2225 

cm-1 while for a similar hairy polymers synthesized by brominating DD-co-biphenyl first, there is 

another small peak at 2160 cm-1, reaving the bromination of co-biphenyl as well. 

 
Figure 8.1. Cyano-region in the FTIR of cyano-stilbene DD-co-biphenyl. 

Figure 8.2 compares with absorption and emission of cyano-stilbene DD-co-biphenyl synthe-

sized by brominating DD cage (red) and brominating DD-co-biphenyl (green). Both hairy poly-

mers display similar spectra to those of CNStil8DD cage, while the quantum yields are both ~0.02, 

indicating the LUMOs are localized on the stilbene functionalized cages only and no interaction 

between cages via the biphenyl linkers is observed.  

Hairy polymers prepared by brominating DD-co-biphenyl show an increased absorption shoul-

der around 375 nm and a slightly red-shifted emission, likely due to the conjugated stilbenes de-

rived from brominated biphenyl. Considering the electron-withdrawing nature of SQ cages, red-

shifted absorption and emission with high quantum yields may finally be achieved by exploring 

hairy polymers with electron-donating groups such as methoxy groups  as well as different organic 

linkers. 
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Figure 8.2. Normalized absorption and emission of cyano-stilbene hairy polymers synthesized 

by brominating DD-co-biphenyl (Scheme 8.2a) and vinylDDvinyl (Scheme 8.2b).  

8.2 Bromination patterns in various SQ architectures 

Cage architecture studies currently planned will expand the number of cage structures that may 

offer internal LUMOs and one simple way to do it is to study their bromination patterns. To this 

end, we have initiated collaborative efforts with the Gunma University team. Their work focuses 

on the synthesis of novel cage compounds as suggested by Figure 8.3.8,9  

These cages will allow us to test the limits to LUMO formation by further reducing the cage 

size (T4 in Figure 8.3) as well as introducing ever greater bridges between SQ rings (T8D2,4,6 in 

Figure 8.3), and the chance to introduce alkyne groups and their influence on the LUMO formation. 

It is also possible that the expanded siloxane units will sterically block the interaction between the 

cage LUMOs and incoming Br2, likely resulting reduced ortho-selectivity of the self-bromination 

without catalyst. After peroxide oxidation of the brominated SQs, the phenolic products are char-

acterized in detail using GC-MS and 1H, 13C NMR.  
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Figure 8.3. Novel SQ structures as probes for expanding structures wherein cage centered LU-

MOs form. 

8.3 Donor-acceptor system 

To further develop SQs as energy harvesting candidates, efforts should focus on making ma-

terials with higher absorption potential, ideal band gaps that will absorb photons at wavelengths in 

the range of 350-700 nm, and efficient charge transfer through exciton diffusion.10 Incorporation 

of donor and acceptor units within a polymer backbone is one of the ways that researchers have 

used to improve energy harvesting polymers.10 Through this method, the absorption spectrum can 

be broadened since each subunit could be introduced to absorb in different regions, which could 

also be achieved by the SQ derived terpolymers, even with block units. 

Compounds and materials targeted would have to exhibit very efficient charge transfer due to 

stronger intrinsic dipoles, and also better interfacial interactions in multi-component systems. One 

could imagine that SQs could also be functionalized to offer donor-acceptor properties. For exam-

ple, incorporating a donor (p-type) chromophore at one or more side/corners on the SQ cage, and 

an acceptors (n-type) chromophores on the remaining side/corners. This can be easily achieved by 
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functionalizing di-vinyl DD of donor and acceptor (Scheme 8.3), leading to donor-acceptor system 

all the way through the SQ DD cages. 

 
Scheme 8.3. Structure of donor-acceptor DD. 

To study unsymmetrical push-pull functionalized DD compounds, our group first synthesized 

symmetrically functionalized derivatives as shown below for comparison purposes, including the 

styryl (generation 1, Scheme 8.4), stilbenevinyl (generation 2, in Scheme 8.5) derivatives. UV-vis 

absorption and emission data for all RStyrenes and corresponding mono-/di-/tri-functionalized 

RStyryl-DD SQs in dichloromethane (DCM) or acetonitrile (ACN) are presented in Table 8.1 in 

order of decreasing of electron-donating or increasing withdrawing characteristics. 

 

 
Scheme 8.4. Synthesis of di-styryl functionalized DD (Gen 1), and di-stilbenevinyl function-

alized DD (Gen 2). 
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(BrStyryl)2DD and (MeOStyryl)2DD as marked in red. The reason these two di-functionalized 

styryl-DDs show red-shifted emissions is still unclear.  

The emission λmax of (BrStyryl)2DD is 40 nm red-shifted from 4-BrStyrene, which is an indi-

cator of electronic communication between organic moieties and DD SQ in the excited state. The 

emission λmax of (MeOStyryl)2DD is 50 nm red-shifted from 4-MeOStyrene as well as (Me-

OStyryl)DDvinyl, suggesting the minimal number of conjugated groups required to form a LUMO 

inside a DD SQ cage. However, the emission λmax of octa-functionalized (MeOStyryl)8T8 in Table 

8.1 is essentially same as that of 4-MeOStyrene. All these results support the fact that DD struc-

tured compounds show unexpected photonic characteristics.  

Solvent studies indicate only 4-NH2Styrene and the corresponding DD SQs show CT behavior 

as marked in green. The emission λmax of 4-NH2Styrene and (NH2Styryl) DDvinyl are 7 nm red-

shifted in polar ACN while the red-shift for (NH2Styryl)2DD is almost twice of that (Figure 8.4). 

Table 8.1. Steady-state spectra data of RStyrene and RStyryl-functionalized in DCM or ACN. 
 Solvent Abs. λmax (nm) Em. λmax (nm) 

(MeOStyryl)8T811 DCM 275 326 
4-NH2Styrene DCM 278 351 

ACN 280 358 
4-MeOStyrene DCM 261 324 

ACN 259 324 
4-MeStyrene DCM 254 311 

Styrene DCM 250 306 

4-BrStyrene DCM 258 313 
ACN 254 314 

4-CNStyrene DCM 266 312 
ACN 264 312 

(NH2Styryl)DDvinyl DCM 292 364 
ACN 295 371 

(NH2Styryl)2DD DCM 292 363 
ACN 295 376 

(MeOStyryl)DDvinyl DCM 271 327 
(MeOStyryl)2DD DCM 272 378 

ACN 271 374 
(MeStyryl)2DD DCM 264 318 

(Styryl)2DD DCM 259 309 
(Styryl)3DD DCM 259 309 

(BrStyryl)2DD DCM 266 354, 364 
ACN 264 343, 358 

(CNStyryl)DDvinyl DCM 271 318 
(CNStyryl)2DD DCM 274 318 

ACN 271 317 
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Figure 8.4. Absorption and emission of 4-NH2Styrene (blue), (4-NH2Styryl)DDvinyl (red) and 

(4-NH2Styryl)2DD. 

Compared to the Gen 1 compound Styryl2DD, Gen 2 (HStilV)2DD exhibits a 0-0 transition as 

evidenced by 75 nm red-shifts in both absorption and emission, which can be ascribed solely to 

the extended conjugation length from styrene to stilbene-vinyl.11 Indication of CT behavior is seen 

in all Stilbenevinyl-DD compounds except (HStilV)2DD, as suggested by solvent studies. The 

emission λmax are 25 and 15 nm red-shifted for (4-NH2StilV)2Me2DD and (4-MeOStilV)2Me2DD 

respectively in ACN. It is notable that the degree of such red shifts is comparable to corresponding 

(4-MeO/NH2StilV)8T8 despite having only two organic groups attached, likely suggesting that the 

conjugated stilbenes overlap better with the LUMO despite two siloxane linkages. 

Table 8.2. Steady-state spectra data of Stilbene-compounds. 
 Solvent Abs. λmax 

(nm) 
Em. λmax 

(nm) 
4-VinylStilbene DCM 329 374 

ACN 325 369 
(4-NH2StilV)8T8 DCM 358 482 

ACN 361 507 
(4-MeOStilV)8T8 DCM 345 418 

ACN 343 431 
(4-NH2StilV)2DD DCM 357 484 

ACN 360 510 
(4-MeOStilV)2DD DCM 346 433 

ACN 343 446 
(HStilV)2DD DCM 335 385 

ACN 334 386 
(4-CNStilV)2Me2DD DCM 346 442 

ACN 343 460 
(4-MeOStilV)MeDDMe(4-CNStilV) DCM 346 430 

ACN 343 441 
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Scheme 8.5. Synthesis of symmetrical and unsymmetrical molecular DD compounds (Gen 

1.5). 

In addition to the above Gen1 and 2 compounds, we also synthesized Gen 1.5 (Scheme 8.5) 

with styryl functionalization on one side and stilbenevinyl on the other. One example is shown in 

Figure 8.5, which displays a broad absorption spectrum with two separate peaks and an emission 

that is the average of the corresponding Gen 1 and 2. Future work could explore donor-acceptor 

systems ranging from strongly electron withdrawing (e.g. CF3) to electron donating (e.g. NH2) to 

probe photo-physical properties as above. 

a  b  

Figure 8.5. (a) Structure of unsymmetrical DD compounds; (b) Uv-Vis for set of model com-

pounds with moieties of different degrees of conjugation. 
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Appendix A. Characterization of Partially Functionalized Phenylsilsesquioxane: [RSiO1.5]7[Me/nPr-
SiO1.5] and [RSiO1.5]7[O0.5SiMe3]3 (R = 4‑Me/4-CN-Stilbene) 

 
Table A.1. MALDI-TOF, GPC and 1H-NMR data for Ph7T8R’ and Ph7T7(TMS)3. 

 
MALDI-TOFa (m/z) GPC 1H-NMR peaks (ppm) 
massb calcd Mn Mw PDI 

Ph7T8Me 1079 1078 715 725 1.01 7.74 (m, 14H, Ph); 7.36 (m, 21H, Ph); 
0.31 (s, 3H, Me) 

Ph7T8Pr 1107 1106 757 770 1.02 
7.73 (m, 14H, Ph); 7.36 (m, 21H, Ph); 

1.53 (m, 2H, nPr); 0.98 (t, 3H, nPr); 0.85 
(t, 2H, nPr) 

Ph7T7(TMS)3 1255 1254 766 779 1.02 7.43 (m, 7H, Ph); 7.31 (m, 14H, Ph); 7.12 
(m, 14H, Ph); 0.25 (s, 27H, Me) 

a As Ag+ adduct. b As H+ adduct. 

Table A.2. 1H-NMR peaks of o-BrxPh7T8R’ and p-IxPh7T8R’. 
Compound 1H-NMR peaks (ppm) 

o-Br6Ph7T8Me 7.73 (m, 7H, Ph); 7.54 (m, 7H, Ph); 7.37 (m, 7H, Ph); 7.26 (d, 7H, Ph); 0.42 (s, 3H, 
Me) 

o-Br7Ph7T8Pr 7.74 (m, 7H, Ph); 7.54 (m, 7H, Ph); 7.37 (m, 7H, Ph); 7.26 (d, 7H, Ph); 1.53 (m, 
2H, nPr); 0.96 (t, 3H, nPr); 0.85 (t, 2H, nPr) 

p-I7Ph7T8Me 7.72 (d, 14H, Ph); 7.37 (d, 14H, Ph); 0.34 (s, 3H, Me) 

p-I7Ph7T8Pr 7.72 (d, 14H, Ph); 7.37 (d, 14H, Ph); 1.52 (m, 2H, nPr); 0.93 (t, 3H, nPr); 0.81 (t, 
2H, nPr) 

 

 
Figure A.1. MALDI-TOF of o-BrxPh7T8Me. 
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Table A.3. MALDI-TOF (a As Ag+ adduct), TGA and GPC data for o-BrxPh7T8R’, o-RStilxT8R’, 

p-IxPh7T8R’, p-RStilxT8R’, o-BrxPh7T7(TMS)3, o-RStilxT7(TMS)3, p-IxPh7T7(TMS)3 and p-
RStilxT7(TMS)3. 

 MALDI-TOF (m/z) TGA (ceramic yield, %) GPC 
mass actual calcd Td5% (°C) Mn Mw PDI 

o-Br6Ph7T8Me 1546a 30 32 436 531 540 1.02 
o-MeStil6T8Me 1659 30 29 444 846 877 1.04 
o-CNStil6T8Me 1843a 28 28 439 1286 1386 1.08 
o-Br7Ph7T8Pr 1540 31 31 435 546 556 1.02 
o-MeStil7T8Pr 1812 28 27 414 1456 1550 1.03 
o-CNStil6T8Pr 1871a 27 27 417 1322 1428 1.08 
p-I7Ph7T8Me 1962a 26 26 406 428 496 1.16 

p-MeStil7T8Me 1894a 28 27 448 897 1196 1.33 
p-CNStil7T8Me 1971a 26 26 443 1007 1151 1.14 

p-I7Ph7T8Pr 1990a 26 26 396 412 498 1.20 
p-MeStil7T8Pr 1921a 27 27 454 765 848 1.11 
p-CNStil7T8Pr 1999a 25 25 435 998 1231 1.23 

o-Br7Ph7T7(TMS)3 1699    858 897 1.05 
o-MeStil7T7(TMS)3 2080a 30 31 415 1322 1434 1.08 
o-CNStil7T7(TMS)3 2137a 28 28 402 2193 2519 1.15 
p-I2Ph7T7(TMS)3 1506a    931 965 1.04 

p-MeStil2Ph5T7(TMS)3 1415a    1700 1987 1.17 
 

 

 
Figure A.2. MALDI-TOF of o-MeStilxT8Me. 
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Figure A.3. MALDI-TOF of o-CNStilxT8Me. 

 

 
Figure A.4. MALDI-TOF of o-BrxPh7T8Pr. 
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Figure A.5. MALDI-TOF of o-MeStilxT8Pr. 

 

 
Figure A.6. MALDI-TOF of o-CNStilxT8Pr. 
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Figure A.7. MALDI-TOF of p-IxPh7T8Me. 

 

 
Figure A.8. MALDI-TOF of p-MeStilxT8Me. 

 

1962.456

1836.426

1709.406

0

200

400

600

800

1000

1200

In
te

ns
. [

a.
u.

]

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
m/z

1894.634

1777.444

0

100

200

300

In
te

ns
. [

a.
u.

]

1200 1400 1600 1800 2000 2200 2400 2600 2800
m/z

p-I7T8Me/Ag+ 

p-I6T8Me/Ag+ 

p-MeStil6T8Me/Ag+ 



 

 

156 

 
Figure A.9. MALDI-TOF of p-CNStilxT8Me. 

 

 
Figure A.10. MALDI-TOF of p-Ix Ph7T8Pr. 
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Figure A.11. MALDI-TOF of p-MeStilxT8Pr. 

 

 
Figure A.12. MALDI-TOF of p-CNStilxT8Pr. 
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Figure A.13. TGA of Br6Ph7T8Me and o-RStil6T8Me. 

 

 
Figure A.14. TGA of Br7Ph7T8Pr and o-RStilxT8Pr. 
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Figure A.15. TGA of I7Ph7T8Me and p-RStil7T8Me. 

 

 
Figure A.16. TGA of I7Ph7T8Pr and p-RStil7T8Pr. 
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Figure A.17. MALDI of p-MeStil2Ph5T7(TMS)3. 
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Appendix B. Characterization of Partially Functionalized Double Decker Phenylsilsesquioxane Mac-
romonomers: [PhSiO1.5]8[O0.5SiMe2]2 and [PhSiO1.5]8[O0.5SiMe3]4 

 
Table B.1. 1H-NMR peaks for DDMe4 and DD(OTMS)4. 

 1H-NMR peaks (ppm) 
DDMe4 7.53 (t, 8H, Ph); 7.39 (m, 16H, Ph); 7.17 (d, 16H, Ph); 0.31 (s, 12H, Me) 

DD(OTMS)4 
7.52 (m, 8H, Ph); 7.36 (m, 16H, Ph); 7.27 (m, 8H, Ph); 7.16 (t, 8H, Ph); 0.10 (s, 36H, 

Me) 
 

 
Figure B.1. MALDI-TOF of o-Br7DDMe4. 
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Figure B.2. MALDI-TOF of o-MeStil7DDMe4. 

 
Figure B.3. MALDI-TOF of o-CNStil8DDMe4. 
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Figure B.4. MALDI-TOF of o-Br7DD(TMS)4. 

 

 
Figure B.5. MALDI-TOF of o-MeStil7DD(OTMS)4. 
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Figure B.6.  MALDI-TOF of p-MeStil2Ph6DD(OTMS)4. 

 

 
Figure B.7. TGA of o-Br7DDMe4 and o-RStil7DDMe4. 
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Figure B.8. TGA of o-RStil7DD(OTMS)4. 
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Appendix C. Unconventional Conjugation via Siloxane Bridges May Imbue Semiconducting Proper-
ties in Double Decker Copolymers  

 
Table C.1. 1H-NMR peaks of model silane compounds. 

Compound 1H-NMR peaks (ppm) 

1,4-[(MeO)2Sivinyl]2benzene 7.39 (d, 4H, Ph); 7.17 (d, 2H, vinyl); 6.31 (d, 2H, vinyl); 
3.62 (s, 12H, MeO); 0.30 (s, 6H, Me) 

4,4’-[(MeO)2Sivinyl]2biphenyl 7.64 (d, 4H, Ph); 7.41 (d, 4H, Ph); 7.09 (d, 2H, vinyl); 6.22 
(d, 2H, vinyl); 3.60 (s, 12H, MeO); 0.27 (s, 6H, Me) 

4,4’’-[(MeO)2Sivinyl]2terphenyl 
7.69 (d, 4H, Ph); 7.63 (d, 4H, Ph); 7.57 (d, 4H, Ph); 7.16 

(d, 2H, vinyl); 6.33 (d, 2H, vinyl); 3.60 (s, 12H, MeO); 0.30 
(s, 6H, Me) 

4,4’-[(MeO)2Sivinyl]2stilbene 7.52 (d, 4H, Ph); 7.44 (d, 4H, Ph); 7.20 (m, 4H, vinyl); 6.33 
(d, 2H, vinyl); 3.62 (s, 12H, MeO); 0.33 (s, 6H, Me) 

2,5-[(MeO)2Sivinyl]2thiophene 7.22 (d, 2H, thiophene); 7.21 (d, 2H, vinyl); 6.40 (d, 2H, vi-
nyl); 3.70 (s, 12H, MeO); 0.30 (s, 6H, Me) 

5,5’-[(MeO)2Sivinyl]2bithio-
phene 

7.61 (m, 2H, thiophene); 7.22 (m, 2H, thiophene); 7.11 (d, 
2H, vinyl); 6.23 (d, 2H, vinyl); 3.61 (s, 12H, MeO); 0.29 (s, 

6H, Me) 
2,5-[(MeO)2Sivinyl]2thienothio-

phene 
7.49 (s, 2H, thiophene); 7.21 (d, 2H, vinyl); 6.41 (d, 2H, vi-

nyl); 3.70 (s, 12H, MeO); 0.30 (s, 6H, Me) 

2,7-[(MeO)2Sivinyl]2dimethylflu-
orene 

7.98 (m, 2H, fluorene); 7.74 (m, 2H, fluorene); 7.52 (m, 
2H, fluorene); 7.23 (d, 2H, vinyl); 6.30 (d, 2H, vinyl); 3.63 

(s, 12H, MeO); 1.78 (s, 6H, Me); 0.32 (s, 6H, Me) 

4,7-[(MeO)2Sivinyl]2BTH 7.68 (m, 2H, BTH); 7.26 (d, 2H, vinyl); 7.08 (d, 2H, vinyl); 
3.62 (s, 12H, MeO); 0.34 (s, 6H, Me) 

3,6-[(MeO)2Sivinyl]2carbazole 
11.7 (s, 1H, carbazole); 8.41 (s, 2H, carbazole); 7.59 (m, 

4H, carbazole); 7.40 (m, 2H, vinyl); 6.38 (d, 2H, vinyl); 
3.63 (s, 12H, MeO); 0.32 (s, 6H, Me) 
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Figure C.1. 1H NMR of 4,4’’-[(MeO)2Sivinyl]2terphenyl. 

 

 
Figure C.2. GPC of 3,6-[(MeO)2Sivinyl]2carbazole, 3,6-dibromocarbazole and vinyl-

MeSi(OMe)2. 
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Figure C.3. FTIR of 5,5’-[(MeO)2Sivinyl]2bithiophene and vinylMeSi(OMe)2. 

Table C.1. Representative FTIR data of selected compounds. 
Compound ν Wavenumber 

(cm-1) 
Intensity 

VinylMeSi(OMe)2  
 
 

Si-O-Si 
C=C 
C=C 
C=C 
C-H 
C-H 

778 
816 
836 
1087 
1260 
1407 
1596 
2837 
2950 

Weak, sharp 
Medium, sharp 
Weak, sharp 
Strong, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, broad 

1,4-[(MeO)2Sivinyl]2ben-
zene 

 
 
 

Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C=C 
C-H 
C-H 

789 
835 
991 
1087 
1133 
1410 
1452 
1508 
1600 
2836 
2937 

Weak, sharp 
Medium, sharp 
Weak, sharp 
Strong, sharp 

Medium, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, broad 
Weak, broad 

VinylDDvinyl  
 

698 
731 

Weak, sharp 
Weak, sharp 
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Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 
C-H 

811 
1029 
1132 
1261 
1430 
1594 
2875 
2923 
3072 

Weak, sharp 
Weak, sharp 
Strong, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, broad 
Weak, broad 
Weak, broad 

DD-co-phenyl  
 
 

Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 
C-H 

697 
729 
814 
1029 
1132 
1262 
1430 
1594 
2875 
2923 
3072 

Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Strong, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, broad 
Weak, broad 
Weak, broad 

(Styryl)2DD  
 
 

Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 
C-H 

698 
734 
820 
1029 
1132 
1262 
1430 
1594 
2875 
2923 
3072 

Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Strong, sharp 
Weak, sharp 
Weak, sharp 
Weak, sharp 
Weak, broad 
Weak, broad 
Weak, broad 
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Figure C.4. 1H NMR of pure trans-vinylDDvinyl. 
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a  

b  

Figure C.5. (a) 29Si NMR of pure trans-vinylDDvinyl; (b) zoom-in. 



 

 

172 

a  

b  

Figure C.6. (a) 29Si NMR of mixed cis-, trans-vinylDDvinyl; (b) zoom-in. 

Table C.3. MALDI-TOF, GPC and TGA data for vinylDDvinyl and derived polymers. 
Compound MALDI-TOF m/z GPC TGA 

Monomer Theor Mn Mw Ð Ceramic 
yield % 

Theor 
yield % 

Td5% °C 
(air) 

VinylDDvinyl 1315a 1314a 1010 1080 1.07 49.3 49.7 540 
-phenyl 1280 1280 19550 49410 2.53 46.3 46.9 460 

-biphenyl 1355 1356 11690 24480 2.09 43.2 44.1 400 
-terphenyl 1430 1432 15780 34770 2.20 41.7 41.8 410 
-stilbene 1380 1382 9210 25390 2.76 42.8 43.3 400 

-thiophene 1290 1286 22540 43250 1.92 46.5 46.7 540 
-bithiophene 1370 1368 3580 7200 2.01 42.2 43.8 520 
-thienothio-

phene 
1340 1342 4480 10040 2.24 42.7 44.4 500 

dimethylfluo-
rene 

1400 1396 20790 46100 2.22 41.4 43.0 510 

-BTH 1335 1338 8390 17380 2.07 44.0 44.8 540 
-carbazole 1370 1369 13680 33850 2.47 42.8 43.8 540 

a As Ag+ adduct. 
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Figure C.7. GPC of vinylDDvinyl. 

 

 
Figure C.8. GPC of DD-co-benzene. 
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Figure C.9. GPC of DD-co-biphenyl. 

 

 
Figure C.10. GPC of DD-co-terphenyl. 
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Figure C.11. GPC of DD-co-stilbene. 

 

 
Figure C.12. GPC of DD-co-thiophene. 
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Figure C.13. GPC of DD-co-bithiophene. 

 

 
Figure C.14. GPC of DD-co-thienothiophene. 
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Figure C.15. GPC of DD-co-dimethylfluorene. 

 

 
Figure C.16. GPC of DD-co-BTH. 
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Figure C.17. GPC of DD-co-carbazole. 

 

Table C.4. MALDI-TOF, GPC and TGA data for vinylDDvinyl derived model cage compounds. 
 MALDI-TOF 

m/z 
GPC TGA (air) 

Actual Theor Mn Mw Ð Ce-
ramic 

yield % 

Theor 
yield % 

Td5% °C 

(Styryl)2DD 1467a 1466a 1121 1129 1.01 42.9 44.2 431 
(Styryl)3DD 1543a 1542a 1126 1149 1.02 41.8 41.8 435 

(Thiophenevinyl)2DD 1480a 1478a 1149 1161 1.01 43.2 43.8 445 
(Dimethylfluorenevinyl)2DD 1697a 1698a 1545 1663 1.07 36.2 37.7 358 
(Dimethylfluorenevinyl)4DD 1977b 1976b 1715 1828 1.07 30.3 30.3 400 
a As Ag+ adduct. b As H+ adduct. 
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Figure C.18. FTIR of vinylDDvinyl. 

 

 
Figure C.19. FTIR of DD-co-phenyl and (Styryl)2DD. 
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Figure C.20. FTIR of DD-co-thiophene and (Thiophenevinyl)2DD. 

 
Figure C.21. FTIR of DD-co-dimethylfluorene and (Dimethylfluorenevinyl)2DD. 
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Figure C.22. FTIR of Silane-end-capped DD. 

 

 
Figure C.23. TGA of vinylDDvinyl. 
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Figure C.24. TGA of DD-co-phenyl, (Styryl)2DD and (Styryl)3DD. 

 

 
Figure C.25. TGA of DD-co-biphenyl, DD-co-terphenyl and DD-co-stilbene. 
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Figure C.26. TGA of DD-co-thiophene and (Thiophenevinyl)2DD. 

 
Figure C.27. TGA of DD-co-bithiophene and DD-co-thienothiophene. 
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Figure C.28. TGA of DD-co-dimethylfluorene, (Dimethylfluorene)2DD and (Dimethylfluo-

rene)4DD. 

 
Figure C.29. TGA of DD-co-BTH and DD-co-carbazole. 
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Figure C.30. Normalized steady-state spectra of 2,7-[(MeO)2Sivinyl]2dimethylfluorene, DD-co-

dimethylfluorene and (Dimethylfluorene)2DD inserted with amplification of absorption shoul-

ders around 389 nm. 

Table C.5. Two photon absorption (2PA) cross section values of polymers DD-co-phenyl, -thio-
phene, -dimethylfluorene, -BTH and -carbazole and model cage compound (Styryl)2DD at dis-

crete excitation wavelength. 
 

λTPA (nm) 
2PA-δ (GM) 

550 600 650 700 
DD-co-phenyl  2.0 1.1 0.6 

DD-co-thiophene  31 24 12 
DD-co-dimethylfluorene  50 49 20 

DD-co-BTH 13 4.4 3.4 0.38 
DD-co-carbazole  10.2 2.5 2.4 

(Styryl)2DD 4.6 0.64 0.54 0.62 
 

Modeling studies. Previous modeling studies of SQ cage compounds focused on the addition 

of simple substituents to the T8,10,12 cage including H, OH, and F. The first studies with H substi-

tution found cage-centered LUMOs.1 In modeling studies in previous papers,2,3 we introduced me-

thyl groups to completely/incompletely-condensed cages including corner-missing and double-

decker compounds, again finding cage-centered LUMOs, which correlate well with experimental 

data. However, multiple previous attempts to model stilbene-functionalized cages were unsuccess-

ful,2,3 finding stilbene-localized HOMOs and LUMOs, which is inconsistent with experimental 
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absorption and emission results for both single and two photon experiments done in two separate 

laboratories. These studies were also inconsistent with magnetic field generation studies which 

also show formation of cage centered magnetic fields. Modeling studies done on vinylDDvinyl 

and its derived copolymers by Professor Jungsuttiwong’s group at Ubon Ratchathani University, 

Thailand are shown in Figure C.31. Modeling indicates that cage centered LUMOs occur inside 

the cage with methyl substituents on cage corners for both cis and trans configurations. With phe-

nyl substituents, LUMOs reside on phenyl groups, which is consistent with published modeling 

results. The trans structure is more stable than the cis according to their HOMO, LUMO levels, 

which may explain why in the synthesis of vinylDDvinyl themajority product is always trans. 
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Figure C.31. HOMO and LUMO modeling of vinylDDvinyl. 

However, the introduction of co-monomer units as shown in Figure C.32 below, again places 

the LUMO on the organic co-monomer. 
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Figure C.32. HOMO and LUMO modeling of trans-vinylDDvinyl derived polymers DD-co-

phenyl, -thiophene, -dimethylfluorene, -BTH and carbazole. 

Modeling indicates LUMOs of trans-vinylDDvinyl derived copolymers sit on the organic link-

ers only, without involving SQ cages. Calculated absorption spectra and date are presented below 

in Figure C.33 and Table C.6, and experimental data are shown for comparison. There is some 

similarity in the shape of experimental and calculated absorption spectra; as might be expected 

given the comments made above, but the calculated absorption λmax is always blue-shifted from 

experimental by 35–68 nm.  

One might choose to argue that current modeling methods are unable to successfully address 

the interaction of cage centered LUMOs with conjugated moieties. Hence efforts to model the 

unique structures developed with the DD polymers wherein cage centered LUMOs must interact 

with co-monomer LUMOs through vinylMeSi(O-)2 bridges (assuming our arguments are valid) 

must search for new modeling approaches. 
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Figure C.33. Experimental absorption and emission spectra (blue) and modeling absorption 

spectra (grey) for trans-vinylDDvinyl and its derived polymers DD-co-phenyl, -thiophene, -di-

methylfluorene, -BTH and -carbazole calculated at TD-CAM-B3LYP/6-31G(d) level of theory. 

 

Table C.6. Experimental and modeling data for trans- vinylDDvinyl and its derived polymers 
DD-co-phenyl, -thiophene, -dimethylfluorene, -BTH and -carbazole. 

 Experimental 
Abs. λmax 

(nm) 

Modeling 
Abs. λmax (nm) 

Transition HOMO 
(eV) 

LUMO 
(eV) 

Egap 
(eV) 

Trans- 
vinylDDvinyl 

264 228 H-10 to L+9 -8.32 1.16 9.48 

-phenyl 298 249 HOMO to LUMO -7.43 0.11 7.54 
-thiophene 340 281 HOMO to LUMO -6.94 -0.03 6.91 
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-dimethyl-
fluorene 

339, 353 295 HOMO to LUMO -6.72 -0.19 6.53 

-BTH 392 337 HOMO to LUMO -6.93 -0.87 6.06 
-carbazole 301 254 H-1 to L+1 -7.03 0.44 7.47 

Modeling studies were also explored on vinylDDvinyl with corner phenyls substituted by me-

thyls by Professor Kieffer and Dr. Hashemi’s group at University of Michigan. In these modeling 

studies, LUMO+4 and LUMO+5 are from SQ core and cage centered as shown in Figure C.34 

Furthermore, the energy difference is only ~0.6 eV between LUMO in cage and vinyl π*, which 

makes interaction between cage LUMO and vinyl π* possible. Modeling of a similar structure 

where two Si(O-)2 units are inserted into the each opposing edge is also investigated in Figure 

C.35. With all methyl substituents, the structure again exhibits cage centered LUMO and 

LUMO+1. 

 
Figure C.34. Energy diagram of the molecular orbitals of vinylDDvinyl showing cage centered 

LUMO+4 and LUMO+5, calculated using PBE potentials as implemented in VASP. 
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Figure C.35. Energy diagram of the molecular orbitals of methyl substituted DD with two 

Si(O-)2 unites per opposing edge showing cage centered LUMO and LUMO+1, calculated using 

PBE potentials as implemented in VASP. 

Cyclic voltammetry. We have previously demonstrated that cyclic voltammetry (CV) can be 

used to measure HOMO LUMO energies in (RvinylT)10/12 cages with conjugated moieties.4 Cyclic 

voltammograms were run on a CHI 600C electrochemical analyzer using a three-electrode setup. 

A glassy carbon working electrode was used in conjunction with a platinum wire counter electrode 

and a silver/silver nitrate reference electrode. All scans were taken in 0.1 M NBu4PF6 in acetoni-

trile at 0.1 V/s. Ferrocene was used for calibration. Samples were dropcast onto the working elec-

trode from THF for each scan polarity because reversible redox behavior was not observed. The 

LUMO-HOMO levels were inferred from the onset of reduction/oxidation (the intercept of the 

slope and baseline) for each sample.4 In these previous studies, we learned to manipulate HOMO 

LUMO energies by designing (RvinylT)10/12 cages with different strongly electron donating/ac-

cepting moieties (R). The results of this study again support the existence of cage centered LUMOs 

and 3-D conjugation; otherwise, one would not anticipate the found energy levels based on those 

of the individual moieties. In the current studies, we were unable to identify (easily accessible) 

redox behavior either in solution using the same setup above or in the solid state for the thiophene 
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copolymers which we believe would be most likely to be easily accessible as they show the greatest 

red-shifts. 
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Appendix D. Unconventional Conjugation Siloxane Bridges in Ladder Silsesquioxane Copolymers 
 

a  

b  
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c  

Figure D.1. (a) 1H NMR, (b) 13C NMR, (c) 29Si NMR of vinyl-LL(Me)-vinyl. 

a  
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b  

c  

Figure D.2. (a) 1H NMR, (b) 13C NMR, (c) 29Si NMR of vinyl-LL(Ph)-vinyl. 
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Figure D.3.  Left: (a) Raw MALDI-TOF of vinyl-LL(Me)-vinyl, (b) Modified MALDI-TOF of 

vinyl-LL(Me)-vinyl, (c) Modified MALDI-TOF of vinyl-LL(Ph)-vinyl. Right: (a) Raw MALDI-

TOF of LL(Me)-co-phenyl, (b) Modified MALDI-TOF of LL(Me)-co-phenyl, (c) Modified 

MALDI-TOF of LL(Ph)-co-phenyl. 
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a b  

Figure D.4. (a) TGA of vinyl-LL(Me)-vinyl and vinyl-LL(Ph)-vinyl, (b) TGA of LL(Me)-co-

terphenyl and LL(Ph)-co-phenyl. 

 

Table D.1. MALDI-TOF, GPC and TGA data for vinyl-LL-vinyl and derived polymers. 
Compound MALDI-TOF m/z GPC TGA 

Mer Theor Mn Mw Ð[b] Ceramic 
yield % 

Theor 
yield % 

Td5% °C 
(air) 

Vinyl-LL(Me)-vinyl 797a 797a 490 530 1.08 49 51 490 
Co-phenyl 764 765 5420 15190 2.80 46 46 430 

Co-biphenyl 839 841 11700 44000 3.78 42 42 410 
Co-terphenyl 921 917 15850 46580 2.95 37 39 390 
Co-stilbene 870 867 6280 19620 3.12 40 41 340 

Co-dimethylfluorene 881 881 5810 15780 2.72 39 40 400 
Co-thiophene 772 771 3170 6190 1.95 46 46 450 

Co-bithiophene 853 853 5540 11330 2.05 40 42 440 
Co-thienothiophene 831 827 7400 17100 2.31 41 43 390 
Vinyl-LL(Ph)-vinyl 922a 921a 540 620 1.15 43 43 490 

Co-phenyl 891 889 5690 15000 2.63 40 40 430 
Co-biphenyl 963 965 8180 28050 3.43 35 37 380 
Co-terphenyl 1041 1041 8390 22070 2.63 34 34 420 
Co-stilbene 988 991 6620 15990 2.42 35 36 390 

Co-dimethylfluorene 1006 1005 5950 17770 2.99 34 35 400 
Co-thiophene 895 895 4360 8060 1.85 38 40 400 

Co-bithiophene 979 977 4330 6710 1.55 36 36 460 
Co-thienothiophene 952 951 7470 19410 2.60 35 37 440 

[a] As Ag+ adduct. [b] Polydispersity. 
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Figure D.5. FTIR of vinyl-LL(Me)-vinyl and vinyl-LL(Ph)-vinyl. 

 
Figure D.6. FTIR of LL(Me)-co-phenyl and LL(Ph)-co-phenyl. 
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Table D.2. Representative FTIR data of selected compounds. 
Compound ν Wavenumber (cm-1) Intensity 

Vinyl-LL(Me)-vinyl Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C=C 
C-H 
C-H 

998 
1027 
1044 
1090 
1134 
1262 
1408 
1431 
1595 
2950 
3073 

Medium, sharp 
Strong, sharp 
Strong, sharp 
Strong, sharp 
Strong, sharp 

Medium, sharp 
Weak, sharp 

Medium, sharp 
Medium, sharp 
Weak, broad 
Weak, broad 

LL(Me)-co-phenyl Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 

998 
1026 
1041 
1086 
1135 
1262 
1430 
1595 
3070 

Medium, sharp 
Strong, sharp 
Strong, sharp 

Medium, sharp 
Medium, sharp 
Medium, sharp 
Medium, sharp 
Medium, sharp 
Weak, broad 

Vinyl-LL(Ph)-vinyl Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 

996 
1026 
1042 
1091 
1134 
1405 
1430 
1594 
2925 
3072 

Medium, sharp 
Strong, sharp 
Strong, sharp 

Medium, sharp 
Strong, sharp 
Weak, sharp 

Medium, sharp 
Medium, sharp 
Weak, broad 
Weak, broad 

LL(Ph)-co-phenyl Si-O-Si 
Si-O-Si 
Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 

996 
1022 
1037 
1133 
1429 
1490 
1594 
2925 
3049 

Strong, sharp 
Strong, sharp 
Strong, broad 
Strong, sharp 

Medium, sharp 
Medium, sharp 
Medium, sharp 
Weak, broad 
Weak, broad 
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a  

b  

Figure D.7.  (a) 1H NMR, (b) 13C NMR of LL(Me)-co-terphenyl. 
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a  

b  

Figure D.8. (a) 1H NMR, (b) 13C NMR of LL(Me)-co-thiophene. 
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Table D.3. 1H and 13NMR data of vinyl-LL(Me)-vinyl derived polymers. 
Compound 1H NMR peaks (ppm) 13C NMR peaks (ppm) 

LL-co-phenyl 7.7-7.2 (m, 20H, cage-Ph); 7.2-7.0 (m, 
4H, co-Ph); 6.9 (d, 2H, vinyl); 6.5 (d, 2H, 

vinyl); 0.5 (m, 6H, Me) 

146.1; 137.8; 134.0; 132.0; 131.1; 
127.7; 127.0; 124.2; -0.6 

LL-co-biphenyl 7.6-7.2 (m, 20H, Ph); 7.2-7.0 (m, 8H, Ph); 
6.9 (d, 2H, vinyl); 6.5 (d, 2H, vinyl); 0.4 

(m, 6H, Me) 

146.1; 140.6; 136.7; 134.2; 132.0; 130.8 
127.8; 126.9; 124.3; -0.7 

LL-co-ter-
phenyl 

7.7-7.3 (m, 20H, Ph); 7.3-7.0 (m, 12H, 
Ph); 7.0 (d, 2H, vinyl); 6.5 (d, 2H, vinyl); 

0.5 (m, 6H, Me) 

146.1; 140.5; 139.8; 136.8; 134.2; 
132.0; 130.7; 127.9; 127.0; 124.3; -0.7 

LL-co-stilbene 7.8-7.0 (m, 28H, Ph); 6.9 (m, 3H, vinyl); 
6.4 (m, 3H, vinyl); 0.5 (t, 6H, Me) 

146.2; 137.7; 137.5; 136.1 134.0; 132.0; 
131.1; 127.9; 127.0; 124.3; -0.6 

LL-co-dime-
thylfluorene 

8.0-7.2 (m, 26H); 7.0 (d, 2H, vinyl); 6.5 (d, 
2H, vinyl); 1.8 (s, 6H, Me); 0.4 (m, 6H, 

Me) 

147.8; 146.2; 141.0; 137.7; 134.0; 
131.9; 130.8; 129.6; 127.6; 126.7; 

123.2; 121.6; 45.5; 30.9; -0.6; 
LL-co-thio-

phene 
7.6-7.1 (m, 22H); 6.9 (d, 2H, vinyl); 6.4 (d, 
2H, vinyl); 6.2 (t, 2H, vinyl); 6.0 (q, 1H, vi-

nyl); 0.5 (m, 6H, Me) 

144.2; 139.1; 134.4; 134.0; 131.9; 
130.4; 127.8; 127.5; 124.0; -0.7 

LL-co-bithio-
phene 

7.7-7.2 (m, 24H); 6.9 (d, 2H, vinyl); 6.5 (d, 
2H, vinyl); 6.2 (t, 2H, vinyl); 5.9 (q, 1H, vi-

nyl); 0.5 (m, 6H, Me) 

144.2; 139.1; 138.1; 134.1; 134.0; 
132.5; 131.8; 130.4; 127.7; 127.5; 

124.0; -0.7 
LL-co-

thienothio-
phene 

7.6-7.2 (m, 22H); 6.9 (d, 2H, vinyl); 6.5 (d, 
2H, vinyl); 6.2 (t, 2H, vinyl); 5.9 (m, 1H, vi-

nyl); 0.5 (m, 6H, Me) 

144.1; 139.1; 134.4; 133.9; 131.8; 
130.3; 129.3; 127.7; 127.5; 124.0; -0.6 

 

 
Figure D.9. Normalized steady-state spectra of 4,4’-[(MeO)2Sivinyl]2biphenyl, DD-co-biphenyl 

and LL(Me/Ph)-co-biphenyl in CH2Cl2. 
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Figure D.10. Normalized steady-state spectra of 4,4’’-[(MeO)2Sivinyl]2terphenyl, DD-co-ter-

phenyl and LL(Me/Ph)-co-terphenyl in CH2Cl2. 
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Figure D.11. Normalized steady-state spectra of 4,4’-[(MeO)2Sivinyl]2stilbene, DD-co-stilbene 

and LL(Me/Ph)-co-stilbene in CH2Cl2. 



 

 

206 

 
Figure D.12. Normalized steady-state spectra of 2,7-[(MeO)2Sivinyl]2dimethylfluorene, DD-co-

dimethylfluorene and LL(Me/Ph)-co-dimethylfluorene in CH2Cl2. 
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Figure D.13. Normalized steady-state spectra of 5,5’-[(MeO)2Sivinyl]2bithiophene, DD-co-bithi-

ophene and LL(Me/Ph)-co-bithiophene in CH2Cl2. 
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Figure D.14.  Normalized steady-state spectra of 2,5-[(MeO)2Sivinyl]2thienothiophene, DD-co-

thienothiophene and LL(Me/Ph)-co-thienothiophene in CH2Cl2. 

 
Figure D.15. GPC of vinyl-LL-vinyl, short oligomers of LL-co-thiophene separate from TLC 

and long oligomers of LL-co-thiophene. 
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Figure D.16. GPC of vinyl-LL-vinyl, short oligomers of LL-co-biphenyl separate from TLC and 

long oligomers of LL-co-biphenyl. 

 
Figure D.17. Normalized progressive emission spectra of 4,4’-[(MeO)2Sivinyl]2biphenyl, DD-

co-biphenyl, short (DP~3) and long (DP~8) LL-co-biphenyl in CH2Cl2. 
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Figure D.18.  13C NMR of LL-co-phenyl (zoom-in). 

 
Figure D.19.  13C NMR of brominated LL-co-phenyl (zoom-in). 
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Figure D.20. Bromination and debromination of DD-co-phenyl. 

 
Figure D.21. 29Si NMR of DD-co-phenyl. 
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Figure D.22. 29Si NMR of brominated DD-co-phenyl. 

 

 
Figure D.23. 13C NMR of DD-co-phenyl (zoom-in). 



 

 

213 

 
Figure D.24. 13C NMR of brominated DD-co-phenyl (zoom-in). 

 
Figure D.25.  Steady-state spectra of DD-co-phenyl, brominated and debrominated DD-co-phe-

nyl in CH2Cl2. 
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Modeling of vinyl-LL(Me)-vinyl and vinyl-LL(Ph)-vinyl done by Professor Jungsuttiwong’s 

group at Ubon Ratchathani University, Thailand are shown in Table D.4. Modeling suggests LU-

MOs reside on phenyl groups and the calculated absorption λmax is always blue-shifted from ex-

perimental by ~60 nm. One might choose to argue that current modeling methods are unable to 

successfully address the interaction of LL SQ centered LUMOs with conjugated moieties. Hence 

efforts to model the unique structures developed with the LL polymers wherein centered LUMOs 

must interact with co-monomer LUMOs through vinylMeSi(O-)2 bridges (assuming our arguments 

are valid) must search for new modeling approaches. 

Table D.4. Experimental and modeling data for vinyl-LL(Me/Ph)-vinyl. 
 Experimental 

Abs. λmax (nm) 
Modeling 

Abs. λmax 
(nm) 

Transition HOMO 
(eV) 

LUMO 
(eV) 

Egap 
(eV) 

Vinyl-LL(Me)-
vinyl 

264 203 HOMO to L+1 
(40%) 

-8.07 0.81 8.88 

Vinyl-LL(Ph)-
viny 

265 201 H+9 to L+2 
(26%) 

-8.28 0.72 8.99 

203 H+6 to LUMO 
(18%) 

-8.32 0.80 9.13 

 
Modeling indicates studies done on vinyl-LL(Me)-vinyl by Professor Kieffer and Dr. Hash-

emi’s group at University of Michigan are shown in Figure A 4.26-4.28. In these modeling studies, 

both cis and trans isomers have about the same energy, which may explain why it is always a 

mixture of cis and trans. The energy of cis isomer is ~0.025 eV slightly lower than trans. Addi-

tionally, there are two different conformation, chair and boat conformation as shown in Figure A 

4.26, similar to cyclohexane. The chair conformation is more stable with the energy difference of 

~0.13 eV. What’s more important is that LUMO+2 at 8.47 eV is from LL SQ core and extends out 

of the ladder structure in Figure D.27, which makes interaction between SQ-centered LUMO and 

vinyl π* possible. Phenyl groups are replaced by methyl for modeling. When phenyl unreplaced, 

LUMO+10 is from LL SQ core with energy level at 7.86 eV as shown in Figure D.28, which has 

a lower energy level than LUMO+2 of methyl-replaced model. 
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a b  

Figure D.26. (a) boat conformation of trans-vinyl-LL(Me)-vinyl, (b) chair conformation, calcu-

lated at B3LYP/6-31G(d,p) level. 

 
Figure D.27. Energy diagram of the molecular orbitals of methyl substituted vinyl-LL(Me)-vi-

nyl. 
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Figure D.28. Energy diagram of the molecular orbitals of vinyl-LL(Me)-vinyl. 
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Appendix E. Double Decker Derived Alternating Terpolymers Give Excited-state Conjugation Aver-
aging that of the Corresponding Co-polymers. 

 

 
Figure E.1. MALDI of DD-thiophene-DD/Ag+. 
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Figure E.2. MALDI of DD-bithiophene-DD/H+ (2574 m/z) and DD-bithiophene-DD/Ag+(2682 

m/z). 

 
Figure E.3. MALDI of DD-thienothiophene-DD/Ag+. 
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Figure E.4. MALDI of terpolymer DD-thiophene-terphenyl/Ag+. 

 

Table E.1. 1H and 13C NMR peaks. 
Compound 1H NMR peaks (ppm) 13C NMR peaks (ppm) 

DD-thiophene-DD 

7.80 (d, 2H, -C4H2S-); 7.77-7.06 
(m, 80H, -C6H5); 6.94 (d, 2H, -

CH=CH-); 6.45 (d, 2H, -CH=CH-); 
6.20-6.14 (m, 2H, -CH=CH2); 6.05-

5.99 (m, 4H,-CH=CH2); 0.42 (s, 
6H, -CH3); 0.37 (s, 6H, -CH3) 

144.3, 139.1,137.4, 135.2, 
134.5, 134.2, 134.1, 134.0, 
132.0, 131.9, 131.1, 131.0, 
130.7, 130.6, 130.4, 130.3, 
127.9, 127.8, 127.7, 127.6, 

124.1, -0.66, -1.13. 

DD-bithiophene-DD 

7.77 (d, 2H, -C8H4S2-); 7.73 (d, 
2H,-C8H4S2-); 7.64-7.06 (m, 80H, 

-C6H5); 6.89 (d, 2H, -CH=CH-); 
6.53 (d, 2H, -CH=CH-); 6.20-6.12 
(m, 2H, -CH=CH2); 6.06-5.96 (m, 
4H,-CH=CH2); 0.43 (s, 6H, -CH3); 

0.38 (s, 6H, -CH3) 

144.2, 138.8, 137.4, 135.2, 
134.4, 134.1, 134.0, 131.9, 
130.4, 127.8, 127.8, 127.6, 

127.5, 124.5, 124.2, 123.8, -
0.70, -1.17. 

DD-thienothiophene-DD 

7.81 (d, 2H, -C6H2S2-); 7.77-7.07 
(m, 80H, -C6H5); 6.98 (d, 2H, -

CH=CH-); 6.46 (d, 2H, -CH=CH-); 
6.22-6.14 (m, 2H, -CH=CH2); 6.06-

5.96 (m, 4H,-CH=CH2); 0.46 (s, 
6H, -CH3); 0.42 (s, 6H, -CH3) 

146.9, 139.7, 138.8, 135.2, 
134.5, 134.2, 134.1, 134.0, 
132.0, 131.9, 131.1, 131.0, 
130.8, 130.5, 130.4, 130.3, 
127.9, 127.8, 127.7, 127.6, 
123.7, 112.0, -0.53, -1.13. 

DD-Thio-DD-Biph 

7.77-7.07 (m, 90H, -C6H5, -
C4H2S-); 7.00-6.95 (m, 4H, -
CH=CH-); 6.53-6.49 (m, 4H, -

CH=CH-); 6.13-6.11 (m, -
CH=CH2); 0.49 (s, 6H, -CH3); 0.44 

(s, 6H, -CH3) 

146.1, 140.6, 136.8, 134.2, 
134.1, 134.0, 132.0, 131.9, 
130.8, 130.4, 127.9, 127.8, 
127.7, 127.6, 127.3, 126.9, 

124.1, 1.05, -0.72. 

DD-Thio-DD-Terph 7.90-7.04 (m, -C6H5, -C4H2S-); 
6.99-6.90 (m, 4H, -CH=CH-); 6.53-

146.1, 140.5, 139.7, 139.0, 
136.8, 134.5, 134.2, 134.1, 

2822

5537

8255
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6.46 (m, 2H, -CH=CH-); 0.47 (s, 
6H, -CH3); 0.41 (s, 6H, -CH3) 

134.0, 134.0, 131.9, 130.6, 
130.4, 127.9, 127.8, 127.7, 
127.6, 127.4, 127.0, 124.1, 

1.05, -0.71. 

DD-Thio-DD-Stil 

7.72-7.04 (m, -C6H5, -C4H2S-); 
6.94-6.90 (m, 4H, -CH=CH-); 6.46-
6.42 (d, 4H, -CH=CH-);  6.10-6.07, 
(d, -CH=CH2); 0.45 (s, 6H, -CH3) 

146.0, 140.5, 139.7, 139.0, 
134.0, 130.4, 127.8, 127.6, 

1.01. 

DD-Ththio-DD-Biph 

7.74-7.04 (m, -C6H5, -C6H2S2-); 
7.00-6.95 (m, 4H, -CH=CH-); 6.50-
6.45 (m, 4H, -CH=CH-);  6.14-6.02 
(m, -CH=CH2); 0.45 (s, 6H, -CH3) 

146.9, 139.7, 138.8, 134.1, 
134.0, 131.9, 130.4, 127.8, 
127.7, 127.6, 127.3, 126.9, 

1.03, -0.74. 
 

Table E.2. Representative FTIR data of selected compounds. 
Compound ν Wavenumber 

(cm-1) 
Intensity 

DD-thiophene-DD  
 
 

Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 

495 
698 
730 
1029 
1132 
1262 
1430 
1594 
2837 
2950 

Medium, sharp 
Medium, sharp 
Weak, sharp 
Weak, sharp 
Strong, broad 
Weak, sharp 

Medium, sharp 
Medium, sharp 
Weak, sharp 
Weak, broad 

DD-Thio-DD-Biph  
 
 

Si-O-Si 
Si-O-Si 

C=C 
C=C 
C=C 
C-H 
C-H 

495 
697 
729 
1209 
1132 
1262 
1430 
1594 
2836 
2937 

Medium, sharp 
Medium, sharp 
Weak, sharp 
Weak, sharp 
Strong, broad 
Weak, sharp 

Medium, sharp 
Medium, sharp 
Weak, sharp 
Weak, broad 
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a  

b  

Figure E.5. (a)1H NMR of DD-thiophene-DD. (b) 13C NMR in CDCl3. 
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a  

b  

Figure E.6. (a) 1H NMR of DD-Thio-DD-Biph. (b) 13C NMR in CDCl3. 
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Figure E.7. FTIR of DD-thiophene-DD/H+ (red) and terpolymer DD-Thio-DD-Biph (green). 

 
Figure E.8. Emission of terpolymer DD-Thio-DD-Biph exited at 315 nm (Abs. 𝜆+<?. of DD-co-

biphenyl) and 345 nm (Abs. 𝜆+<?. of DD-co-thiophene). 
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Figure E.9. (a) Normalized absorption and emission of terpolymer DD-Thio-DD-Terph. (b) 

Emission excited at 325 and 340 nm. 
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Figure E.10. (a) Normalized absorption and emission of terpolymer DD-Thio-DD-Stil. (b) Emis-

sion excited at 340 and 360 nm. 
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Figure E.11. Normalized absorption and emission of DD-bithiophene-DD, mixture of DD:bithi-

ophene 3:1 and longer DD-co-bithiophene. 

 
Figure E.12. Normalized absorption and emission of DD-thienothiophene-DD, mixture of 

DD:thienothiophene 3:1 and longer DD-co-thienothiophene (DP~5). 
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Figure E.13. (a) Normalized absorption and emission of terpolymer DD-Ththio-DD-Biph. (b) 

Emission excited at 315 and 360 nm. 
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Appendix F. Double Decker Silsesquioxane Derived Hairy Polymers 
 

Table F.1. GPC and TGA data for DD-co-biphenyl and derived products as in Scheme 8.2a. 
Compound GPC TGA 

Mn Mw Ð Ceramic 
yield % 

Theor 
yield % 

Td5% °C 
(air) 

DD-co-biphenyl 11500 22600 1.97 43.1 43.9 400 
Br9DD-co-biphenyl (bro-

minated) 
3300 4700 1.42 28.8 28.8 215 

Br5DD-co-biphenyl 
(debrominated) 

3000 5100 1.71 34.9 34.0 255 

CNStil5DD-co-biphenyl 
(Heck cross-coupled) 

3600 5800 1.62 32.6 30.0 275 

 

 
Figure F.1. GPC of the starting DD-co-biphenyl. 
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Figure F.2. GPC of the self-bromination of DD-co-biphenyl after 2 h. 

 
Figure F.3. GPC of the brominated DD-co-biphenyl (Br9DD-co-biphenyl). 

 
Figure F.4. GPC of the zinc debrominated DD-co-biphenyl (Br5DD-co-biphenyl). 
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Figure F.5. GPC of CNStil5DD-co-biphenyl. 

 

 
Figure F.6. TGA of the starting DD-co-biphenyl, Br9DD-co-biphenyl, Br5DD-co-biphenyl and 

CNStil5DD-co-biphenyl. 
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Figure F.7. Normalized steady-state spectra of the starting DD-co-biphenyl, Br9DD-co-biphenyl, 

Br5DD-co-biphenyl and CNStil5DD-co-biphenyl. 

 

Table F.1. GPC and TGA data for brominated vinylDDvinyl and derived products as in Scheme 
8.2b. 

Compound GPC TGA 
Mn Mw Ð Ceramic 

yield % 
Theor 

yield % 
Td5% °C 

(air) 
Br12DD (brominated) 760 820 1.08 27.1 27.7 305 

CNStil8Br4DD 
(Heck cross-coupled) 

1300 1500 1.15 24.1 23.4 310 

CNStil8vinylDDvinyl 
(Debrominated) 

1300 1580 1.22 26.8 26.7 325 

CNStil8DD-co-biphenyl 
(Heck polymerization) 

7800 22300 2.89 25.2 24.9 300 
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Figure F.8. GPC of the starting vinylDDvinyl 

 

 
Figure F.9. GPC of the brominated DD (Br12DD). 

 
Figure F.10. GPC of the Heck cross-coupled DD (CNStil8Br4DD). 
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Figure F.11. GPC of the debrominated DD (CNStil8vinylDDvinyl). 

 

 
Figure F.12. GPC of CNStil8DD-co-biphenyl (Heck polymerization). 
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Figure F.13. TGA of Br12DD (brominated vinylDDvinyl), CNStil8Br4DD, CNStil8vinylDDvinyl 

and CNStil8DD-co-biphenyl. 

 

 
Figure F.14. Normalized steady-state spectra of CNStil8Br4DD, CNStil8vinylDDvinyl and 

CNStil8DDMe4 in CH2Cl2. 
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Experimental of Scheme 8.2a 

Zn debromination of Br9DD-co-biphenyl. To a dry 100 ml Schlenk flask under N2 were added 

1.13 g (0.55 mmol) Br9DD-co-biphenyl, 20 ml diethyl either and 5 ml THF, followed by 3 drops 

of glacial acetic acid and 100 mg (1.5 mmol) Zn dust. The mixture was stirred vigorously over the 

weekend and tracked by steady-state spectroscopy. Another 30 mg (0.5 mmol) Zn dust was added 

after 2 d. After the grey Zn dust turned white, the reaction mixture was quenched by filtration. The 

resulting filtrate was then concentrated and precipitated into 100 ml cold, well-stirred methanol to 

give 0.6 g yellowish product and then MeOH filtrate was also concentrated to give more product. 

Heck cross-coupling of Br5DD-co-biphenylwith 4-cyanostyrene. To a dry 50 ml Schlenk flask 

under N2 were added 0.66 g (0.38 mmol) debrominated Br5DD-co-biphenyl, 38.7 mg (0.08 mmol) 

Pd[P(t-Bu)3]2 and 34.6 mg (0.04 mmol) Pd2(dba)3, followed by 30 ml distilled THF, 1.01 g (5 

mmol) NCy2Me and 0.40 g (3 mmol) 4-cyanostyrene. The mixture was stirred magnetically under 

N2 at 70 °C and tracked by steady-state spectroscopy. Another 9.7 mg (0.02 mmol) Pd[P(t-Bu)3]2, 

8.7 mg (0.01 mmol) Pd2(dba)3 and 0.20 g (1.5 mmol) 4-cyanostyrene was added after 2 d. The 

reaction was quenched after 7 d by filtration. The resulting filtrate was then concentrated and pre-

cipitated into 100 ml cold, well-stirred methanol to give 0.4 g yellow product. 

Experimental of Scheme 8.2b 

Bromination of vinylDDvinyl. To a dry 100 ml Schlenk flask under N2 were added 6.03 g (5.0 

mmol) vinylDDvinyl and 30 ml of CH2Cl2. After completely dissolving, 3.61 ml (70.0 mmol) Br2 

was added dropwise and an additional 5 ml of CH2Cl2 was added. A condenser was then attached 

and a vent to a bubbler containing aqueous base was added. The solution was stirred magnetically 

under reflux at 40 °C for 1 d and tracked by MALDI. At this point, 20 g Na2S2O5 and 10 g Na2CO3 

were dissolved in 40 ml water and then added to the solution with vigorous stirring, until the Br2 

color disappeared. The mixture was then transferred to a separatory funnel and the organic layer 

was extracted and washed sequentially with 30 ml brine. Thereafter, the organic layer was dried 

over MgSO4. Then celite were added and stirred for 10 min. The mixture was filtered to give a 

clear, colorless liquid. Most solvent was removed by rotary evaporation and the resulting solid was 

redissolved in a minimal amount of THF and slowly poured into cold, well-stirred 150 ml methanol 

to fully precipitate 7.5 g (yield: 70%) white product, which was further purified by redissolving in 

a minimal amount of warm THF and reprecipitating into 150 ml methanol. 
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Heck cross-coupling of Br12DD with 4-cyanostyrene. To a dry 100 ml Schlenk flask under N2 

were added 2.154 g (1.0 mmol) above Br12DD, 38.7 mg (0.08 mmol) Pd[P(t-Bu)3]2 and 34.6 mg 

(0.04 mmol) Pd2(dba)3, followed by 30 ml distilled THF, 5.05 g (25 mmol) NCy2Me and 3.33 g 

(25 mmol) 4-cyanostyrene. The mixture was stirred magnetically under N2 at 70 °C and tracked 

by GPC. The reaction was quenched after 4 d by filtering through 1 cm celite, which was washed 

with 5 ml THF. The solution was then concentrated and precipitated into 150 ml cold, well-stirred 

methanol to give 1.0 g yellowish product. The cyano-stilbene derived product has some solubility 

in methanol and thus the MeOH filtrate was also concentrated to give more product. 

Zn debromination of CNStil8Br4DD and its characterization. To a dry 50 ml Schlenk flask 

under N2 were added 0.98 g (0.39 mmol) CNStil8Br4DD, 20 ml diethyl either and 5 ml THF, fol-

lowed by 3 drops of glacial acetic acid and 80 mg (1.20 mmol) Zn dust. The mixture was stirred 

vigorously and another 20 mg (0.3 mmol) Zn and 2 drops of acid were added after 1 d. The reaction 

was quenched after another 2 d by filtration. The resulting filtrate was then concentrated to give 

0.6 g yellow product. 

Heck polymerization of CNStil8vinylDDvinyl with 4,4’-dibromo-1,1’-biphenyl.To a dry 50 ml 

Schlenk flask under N2 were added 0.48 g (0.22 mmol) above CNStil8vinylDDvinyl, 19.4 mg (0.04 

mmol) Pd[P(t-Bu)3]2, followed by 25 ml distilled THF, 0.20 g (1.0 mmol) NCy2Me and 70 mg 

(0.22 mmol) 4,4’-dibromo-1,1’-biphenyl. The mixture was stirred magnetically under N2 at 70 °C 

overnight before another 19.4 mg (0.04 mmol) Pd[P(t-Bu)3]2 and 34.6 mg (0.04 mmol) Pd2(dba)3 

were added. The reaction was tracked by GPC and steady-state spectroscopy. The reaction was 

quenched after 6 d by filtration. The resulting filtrate was then concentrated and precipitated into 

100 ml cold, well-stirred methanol to give 0.31 g yellow product. 


