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Abstract 
 

State-of-the art robotic hands can mimic many functions of the human hand. These devices 

are capable of actuating individual finger and multi-joint movements while providing adequate 

gripping force for daily activities. However, for patients with spinal cord injuries or amputations, 

there are few options to control these functions seamlessly or intuitively. A common barrier to 

restoring hand function to both populations is a lack of high-fidelity control signals. Non-invasive 

electrophysiological techniques record global summations of activity and lack the spatial or 

temporal resolution to extract or “decode” precise movement commands. The ability to decode 

finger movements from the motor system would allow patients to directly control hand functions 

and provide intuitive and scalable prosthetic solutions. This thesis investigates the capabilities of 

implantable devices to provide finger-specific commands for prosthetic hands. We adapt existing 

reasoning algorithms to two different sensing technologies.  

The first is intracortical electrode arrays implanted into primary motor cortex of two non-

human primates. Both subjects controlled a virtual hand with a regression algorithm that decoded 

brain activity into finger kinematics. Performance was evaluated with single degree of freedom 

target matching tasks. Bit rate is a throughput metric that accounts for task difficulty and movement 

precision. A state-of-the-art re-calibration approach improved throughputs by an average of 

33.1%. Notably, decoding performance was not dependent on subjects moving their intact hands. 

In future research, this approach can improve grasp precision for patients with spinal cord injuries.  

The second sensing technology is intramuscular electrodes implanted into residual muscles 

and Regenerative Peripheral Nerve Interfaces of two patients with transradial amputations. Both 
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participants used a high-speed pattern recognition system to switch between 10 individual finger 

and wrist postures in a virtual environment with an average completion rate of 96.3% and a 

movement delay of 0.26 seconds. When the set was reduced to five grasp postures, average metrics 

improved to 100% completion and a 0.14 second delay. These results are a significant 

improvement over previous studies which report average completion rates ranging from 53.9% to 

86.9% and delays of 0.45 to 0.86 seconds. Furthermore, grasp performance remained reliable 

across arm positions and both participants used this controller to complete a functional assessment 

with robotic prostheses.  

For a more dexterous solution, we combined the high-speed pattern recognition system 

with a regression algorithm that enabled simultaneous position control of both the index finger and 

middle-ring-small finger group. Both patients used this system to complete a virtual two degree of 

freedom target matching task with throughputs of 1.79 and 1.15 bits per second each. The 

controllers in this study used only four and five differentiated inputs, which can likely be processed 

with portable or implantable hardware. 

These results demonstrate that implantable sensors can provide patients with fluid and 

precise control of hand prostheses. However, clinically translatable implantable electronics need 

to be developed to realize the potential of these sensing and reasoning approaches. Further 

advancement of this technology will likely increase the utility and demand of robotic prostheses. 
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Chapter 1 Introduction 
 

The loss of hand function is a devastating injury that severely impacts a person's ability to 

interact with the world around them. Hands remain our primary mechanisms for tool use and are 

important components of social interaction. Advances in robotics have yielded electronic 

prostheses which can mimic anywhere from 5 to 30 degrees of freedom (DOF) of the human hand 

and provide adequate gripping force for functional tasks (Akhtar et al., 2016; Atzori & Müller, 

2015; Resnik et al., 2014). For patients with spinal cord injuries (SCI) that have lost hand function, 

there are few existing options to control these devices since one must interface directly with the 

brain. A lack of prosthetic solutions means that patients cannot independently perform many 

activities of daily living. For patients with amputations, the peripheral nervous system remains 

intact up until the point of injury. The clinical standard is for patients to use muscle activity to 

control their devices with surface electromyography (EMG). Standard dual-site control schemes 

are cumbersome and unintuitive, requiring a substituted pair of easily accessible agonist-antagonist 

muscles to trigger switches between hand and wrist movements and modulate single degrees of 

freedom (DOF). For some patients, state of the art pattern recognition systems have eliminated the 

need for triggers or movement substitutions and targeted muscle re-innervation (TMR) surgery 

can expand these benefits to more proximal cases (Kuiken et al., 2009, 2016). However, a limited 

number of movements can be activated (Cheesborough et al., 2015) and a failure to meet functional 

expectations remains a common reason for prostheses abandonment (Østlie et al., 2012). 

A common barrier to restoring hand function in both populations is a lack of high-fidelity 

control signals. The ability to extract or “decode” finger movements from the motor system would 
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allow patients to directly control hand functions and provide intuitive and scalable prosthetic 

solutions. Patients across both populations have a favorable view of surgical interventions that can 

restore hand function (Blabe et al., 2015; Engdahl et al., 2015; Lahr et al., 2015). This thesis will 

investigate the capabilities of implantable devices to provide finger-specific commands for 

prosthetic hands. We will adapt existing reasoning algorithms to two different sensing 

technologies: an intracortical electrode array applicable to SCI, and intramuscular electrodes 

implanted into residual muscles and Regenerative Peripheral Nerve Interfaces (RPNIs). In the 

latter, we will show that two patients can use this system to control existing robotic hands.  

 

1.1 Sensing 

1.1.1 Intracortical Recording 

For patients suffering neurodegenerative diseases or severe SCI, the peripheral nervous 

system can be an unusable or poor source of control signals. The brain is the origin of movement 

commands for arm and hand control, and its somatotopy is understood well enough to target these 

functions. Electroencephalography (EEG) records electrical brain activity from the surface of the 

scalp. However, the activity of a single neuron is too small to be picked up remotely through the 

skull so EEG reflects a summation of thousands or millions of pyramidal neurons (Nunez & 

Srinivasan, 2006). The low conductivity of bone and exponential decrease of voltage gradients 

with recorder distance reduce specificity and lower signal to noise ratios (Nunez, 1988). These 

properties make EEG ill-suited for prosthetic control applications, which require algorithms to 

confidently decode movement intentions in real-time. Over the past two decades, BMI researchers 

have capitalized on the availability and development of surgically invasive techniques for 

neuroprosthetic control.  



 3 

 For motor control applications, intracortical electrodes have yielded the best performance in 

both non-human primate (NHP) and clinical studies (Collinger et al., 2013; Gilja et al., 2012; 

Shanechi et al., 2017). The Utah Electrode Array (Blackrock Microsystems) is clinically available 

in multiple configurations with electrode shanks that penetrate the surface of the brain and allow 

for simultaneous recording. When implanted into motor cortex, individual shanks capture single 

or multiple neuron activity tuned to movement kinematics and dynamics (Kennedy & Schwartz, 

2019; Perel et al., 2013). Neural firing rates can be estimated by manually identifying individual 

wave-forms (Todorova et al., 2014), aggregating threshold crossings per channel (Christie et al., 

2015; Fraser et al., 2009), or measuring power in specific frequency bands (Irwin et al., 2016; 

Nason et al., 2020; Stark & Abeles, 2007).  Biological responses such as tissue scarring or cell 

death can reduce signal quality so the longevity of penetrating electrodes is under consideration 

(Chestek et al., 2011; Simeral et al., 2011; Suner et al., 2005). Novel electrode designs to mitigate 

these issues are an active area of research (Guido et al., 2020; Patel et al., 2016; Welle et al., 2020). 

Flexible electrode grids record Electrocorticography (ECoG) from the surface of the brain and 

alleviate concerns related to tissue scarring. However, less invasive recording techniques 

inherently lack temporal resolution. For example, gamma power bands from ECoG contain enough 

information to infer the occurrence of individual finger movements, but may not capture velocity 

changes in real time (Chestek et al., 2013; Volkova et al., 2019). 

1.1.2 Peripheral Nerve Interfaces 

For persons with amputations, peripheral motor activity can be monitored via surface EMG 

and used to command prostheses. However, this places limits on the functionality that myoelectric 

devices can provide. Intuitive grasp and fine motor control is of high interest to prostheses users 

(Engdahl et al., 2015), but is difficult to achieve with surface EMG since muscles responsible for 
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thumb and finger movements are either lost due to the level of amputation or obscured by more 

superficial muscles. TMR is a clinically practiced surgical innovation that creates motor control 

sites for lost muscles. TMR surgery transplants severed nerves to deinnervated muscles. The target 

muscles are superficial and signals can be recorded with surface electrodes (Zhou et al., 2007). 

These restored motor signals can be used to control lost elbow, wrist, and hand functions (Kuiken 

et al., 2009). Patients with TMR have been able to simultaneously control elbow flexion-extension 

and hand open-close to make coordinated multi-joint movements (Young et al., 2014). However, 

simultaneous control of individual fingers is difficult due to limitations on signal independence 

(Farina et al., 2017).  

To acquire movement specific signals from surface EMG, researchers are using high 

density electrode grids and software techniques to decompose global activity into specific neural 

drives (Farina et al., 2017). Alternatively, individual muscles can be directly monitored with 

implantable electrodes (Birdwell et al., 2015). Muscle tissue provides a durable implant site and 

clinical studies have recorded stable EMG for months and years (Dewald et al., 2019; Salminger 

et al., 2019; Vu et al., 2020). Intramuscular EMG is often pre-processed for input into control 

algorithms by band-pass filtering, rectification, and integration. Bandwidths and processing 

windows vary across studies, but are similar to parameters used to isolate nearby muscle activity 

in surface EMG (Davis et al., 2016; Dewald et al., 2019; Vu et al., 2020). In a bipolar configuration, 

the mean absolute value of each filtered channel reflects a localized summation of motor unit 

activity specific to the implanted muscle. However, in the absence of other surgical interventions, 

intramuscular recording is entirely dependent on the muscles a patient retains after amputation.  

In cases where intact muscles are lost due to the level of amputation, we have demonstrated 

Regenerative Peripheral Nerve Interfaces (RPNIs) can be paired with indwelling electrodes to 
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provide a stable neuromuscular interface. RPNIs are created by suturing autologous muscle grafts 

to the ends of severed nerves. The nerve reinnervates the muscle, which prevents the formation of 

neuroma and “bio-amplifies” efferent nerve signals into EMG (Frost et al., 2018; Santosa et al., 

2020). RPNIs can be created at the time of amputation or retroactively. Furthermore, nerves can 

be dissected during the surgery to create multiple RPNIs per nerve. Under ultrasound, we’ve 

shown this dissection creates individual RPNIs that contract for specific finger movements (Vu et 

al., 2020). Recording surface EMG from RPNIs has proven difficult. However, the nature of RPNI 

surgery makes specific signals from nerve branches easily accessible to implantable devices, 

compared to TMR which transplants a whole nerve to a deinnervated muscle. Due to the flexibility 

of the surgery and resolution of control signals, RPNI is a promising technique to deliver high 

fidelity grasp control to a broad range of people with amputations. 

 

1.2 Reasoning 

1.2.1 Regression Algorithms 

As described earlier, many patients have positive attitudes towards implantable devices if 

they provide high levels of performance (Blabe et al., 2015; Lahr et al., 2015). BMI can achieve 

dexterous reach and grasp performance with regression algorithms that model the intended 

position or velocity of individual DOF as continuous variables that are simultaneously predicted 

(Collinger et al., 2013; Gilja et al., 2012; Wu et al., 2004).  The Kalman filter (KF) was first applied 

to BMI in 2004 to recursively estimate kinematic states at each time-step by modeling channel 

activity as a linear combination of kinematics (Wu et al., 2004). Velocity estimates are typically 

output to the prostheses regardless of whether or not neural activity is assumed to be tuned to 

position (Gilja et al., 2012; Vaskov et al., 2018), and is suspected to produce a simple physical 
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system for real-time control in the presence of noisy inputs (Marathe & Taylor, 2011; Zhang & 

Chase, 2015).  Some neurons in motor cortex may be highly specific to individual movements 

(Aggarwal et al., 2008), although observing enough broadly tuned channels is often sufficient 

(Wodlinger et al., 2015). Following its use in BMI, the same algorithms have been applied to 

dexterously control multi-DOF hands using intramuscular EMG as an input. Patients have used 

this framework to simultaneously control three to six wrist and hand DOF using research hands or 

virtual reality environments (George et al., 2018; Vu et al., 2020).  

In a clinical setting, BMI are calibrated similar to commercial pattern recognition systems. 

The patient mimics a computer animation or robotic hand to capture neural activity reflective of 

an intended movement. However, brain activity can change between observed, imagined, and 

attempted movements (Rastogi et al., 2020). Patients that lack peripheral motor abilities may have 

a difficult time consciously distinguishing between these brain states or precisely following 

movement cues in part due to broken feedback links. This can severely limit the quality of training 

data for fine finger and grasping movements (George et al., 2020). In able-bodied animal studies, 

finger kinematics can be directly measured to estimate decoding parameters. However, rich 

calibration data does not guarantee good decoding performance. Electrode arrays under-sample 

neurons in the motor cortex and some recorded units may not be tuned to the controlled 

movements. Adaptive calibration techniques can improve performance by reducing the effects of 

motor system noise during parameter estimation or rejecting interfering circuits (Fan et al., 2014; 

Shenoy & Carmena, 2014). They can also ease adoption by placing the learning burden on the 

algorithm, instead of relying solely on the patient to adjust their behavior (Dangi et al., 2013). State 

of the art techniques use supervised re-calibration sessions where online kinematic data is cleaned 

by adjusting the velocity vector to assume the user always intends to move towards a target 
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(Collinger et al., 2013; Gilja et al., 2012; Shanechi et al., 2017). These techniques have been shown 

to effectively double performance of BMI that decode arm reaches, however the extent to which 

they can improve grasp precision has not been investigated. 

1.2.2  Real-Time Pattern Recognition 

Pattern recognition allow persons with amputations to control their devices with intended 

movement commands and can reduce fatigue and mental effort compared to dual-site controllers 

(Deeny et al., 2014; Wurth & Hargrove, 2014). These systems use classifiers that detect movement 

states in real-time. Reducing the movement prediction problem to discrete states can be 

particularly useful in systems with fewer input channels (Li et al., 2010). For most patients, 

classifiers are capable of distinguishing wrist movements and a single DOF open-close hand signal 

from surface EMG. Commercial and research systems are beginning to offer grasp selection 

capabilities with multi-articulating robotic hands (Kanitz et al., 2018; Krasoulis et al., 2020; 

Kuiken et al., 2016). However performance may degrade across different physical contexts such 

as limb position changes (Betthauser et al., 2018). More robust classifiers, the addition of inertial 

measurements, enhanced calibration methods, or intramuscular recording electrodes have all been 

proposed to improve reliability (Betthauser et al., 2018; Krasoulis et al., 2020; Teh & Hargrove, 

2020; Weir et al., 2009). Pattern recognition systems may also distinguish more hand movements 

when combined with surgical interventions. TMR re-routes the nerves that control hand 

movements to multiple control sites that can be read by surface electrodes. In similar virtual 

experiments, a multi-grasp pattern recognition system was more accurate in patients with proximal 

amputations and TMR than in transradial patients who retained extrinsic hand muscles (Kuiken et 

al., 2009; Li et al., 2010). Accessing finger specific signals with intramuscular electrodes can also 

increase the capabilities of pattern recognition algorithms. The previous studies with surface EMG 
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or other external sensors accurately distinguished anywhere between two and four grasp patterns. 

In one study, able-bodied subjects with intramuscular electrodes achieved accurate control of six 

grasps in a virtual environment (Birdwell et al., 2015).  

In BMI, classifiers have used to detect multiple grasps for FES control (Colachis et al., 

2018). In other implementations, classifiers have been used to improve the performance of 

continuous controllers by initiating stop or click states for virtual cursors (Kao et al., 2017; 

Pandarinath et al., 2017) or allowing controllers switch between regression models specifically 

tuned to different movements (Sachs et al., 2015; Wu et al., 2004; Yu et al., 2007). The Hidden 

Markov Model (HMM) is commonly applied to model transitions between movement states 

(Kemere et al., 2008). This framework allows a classifier to operate on rapid timescales without 

sacrificing stability. This is important because integration delays reduce controller responsiveness 

and decrease the user’s ability to make fine adjustments. The HMM can also model the progression 

of several latent states per movement (Kemere et al., 2008). When paired with high resolution 

inputs, the HMM can capture activation patterns throughout grasp phases, whereas single-state 

classifiers require users to match a specific contraction for each movement. 

 

1.3 Summary of Thesis 

This thesis investigates the ability of implantable sensors to provide high fidelity grasp 

control for neuroprostheses.  

Chapter 2 investigates the use of state-of-the-art BMI control algorithms for dexterous 

grasp control. Two primates were trained to move their index finger independently from their 

middle-ring-small (MRS) finger group. Utah electrode arrays were implanted into primary motor 

cortex and we were able to distinguish figer movements from neural activity. Precise single DOF 
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control of each finger group was achieved in a virtual environment using a ReFIT Kalman filter 

(Gilja et al., 2012). These results demonstrate that adaptive calibration techniques, previously used 

for endpoint control alone, can improve grasp precision.  

In Chapter 3 we briefly show that Regenerative Peripheral Nerve Interfaces (RPNIs) can 

be used as motor control sites in patients with amputations. Two patients with transradial 

amputations had electrodes surgically implanted into RPNIs and residual muscles. We 

implemented a pattern recognition algorithm that allowed each patient to control a virtual 

prostheses with their RPNIs.  

In Chapter 4, the same two patients use a combination of implanted RPNIs and residual 

muscles to control virtual and physical prostheses with a high speed pattern recognition system. 

We adapt a Hidden Markov Model to estimate movement states with low latency and high 

accuracy (Kemere et al., 2008). Classification performance remained robust to changes in arm 

position and both participants completed a functional assessment with robotic prostheses. These 

results indicate that indwelling electrodes provide stable input signals for accurate and reliable 

grasp control.  

 In Chapter 5, we build on the results of Chapter 4 to show that the same pattern recognition 

framework can be combined with a linear Kalman filter to provide simultaneous position control 

of a two-DOF grasp. These results demonstrate that an implantable device could use peripheral 

nerve interfaces to provide dexterous hand control of myoelectric prostheses. 

   Lastly, Chapter 6 will discuss the results of each study and future research directions while 

considering the clinical translation of implantable technologies.  



 10 

Chapter 2 Decoding Individual Finger Movements from Intracortical Electrode Arrays 
 
A version of this chapter “Cortical Decoding of Individual Finger Group Motions Using ReFIT 

Kalman Filter” was published in Frontiers in Neuroscience in 2018 (Vaskov et al., 2018). 

 

2.1 Introduction 

Recent clinical trials have demonstrated the use of neural prostheses to restore motor 

activity in individuals with severe paralysis (Willett et al., 2017; Wodlinger et al., 2015). Brain 

machine interfaces (BMIs) provide intuitive control signals that are particularly useful for focused 

upper-limb movements such as reaching tasks and tool use. These signals can last for years 

(Collinger et al., 2013; Gilja et al., 2012; Hochberg et al., 2012; Simeral et al., 2011) enabling, at 

minimum, long term feasibility studies. They are a natural choice for improving the control of 

functional electrical stimulation (FES) systems, which apply small electric pulses to muscles to 

produce movement. Indeed, restoring natural movement of the arm is more desirable to people 

with cervical level SCI than controlling a robotic prosthesis (Blabe et al., 2015). With existing FES 

systems, certain patients with spinal cord injuries can regain partial use of their paretic hands 

controlled via residual muscle signals (Kilgore et al., 2008). More recently, this has been 

demonstrated using BMIs, restoring a small number of functional movements during activities of 

daily living (Ajiboye et al., 2017; Bouton et al., 2016). These work demonstrate the immense 

progress that has been made in the field. However, performance limitations still persist, including 

the inability to activate joints simultaneously or command complex grasps. 
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Early studies demonstrated neural decoders, which translate neural signals from the motor 

cortex into motion commands, successfully gave NHPs online control of a robotic arm capable of 

whole arm movements and a basic grasp (Carmena et al., 2003; Lebedev, 2005; Serruya et al., 

2003; Taylor et al., 2002; Velliste et al., 2008). While these studies represented major advances, 

they involved relatively rudimentary movements. Since these work, advances in experimental 

setups, implantation hardware and techniques, signal processing and control algorithm 

development have positioned the community to investigate whether decoders can account for more 

complex multi-joint movements. More recent clinical studies have demonstrated online control of 

a robotic prostheses in human patients with tetraplegia (Hochberg et al., 2012), with increasing 

degrees of freedom (DOF) (Collinger et al., 2013), and the ability to activate different grasp 

patterns (Wodlinger et al., 2015). The selection of multiple grasps has also been demonstrated in 

recent FES systems (Colachis et al., 2018). Although these studies are impressive demonstrations 

in a practical setting, grasps were limited to a simple open-close, a few gross motions, or discrete 

selections. In general, precision typically decreases as subjects are given control of more DOF. 

Neural prostheses will ultimately need to provide more dexterous hand functionality to allow users 

to fully interact with the world around them to gain broad acceptance. Newer upper-limb decoders 

continue to promise increased levels of performance and reliability (Shanechi et al., 2017; Sussillo 

et al., 2016). However, their application has been limited to decoding arm reaches and have yet to 

demonstrate improvements in grasp performance. Some studies have proposed using semi-

autonomous control of a robotic arm to achieve more complex grasps (Downey et al., 2016; Hotson 

et al., 2016). While this may be a well-received solution for some users, it hands off a majority of 

fine motor control to an autonomous system, thereby limiting grasping capabilities to what the 

chosen algorithm can learn and execute. Here we will focus on direct control strategies, specifically 
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the challenge of decoding control signals for precise hand motions for eventual use in an FES 

system. 

The human upper-limb is a high dimensional system: arm and wrist joints provide 7 DOF 

while the hand is a complex 23 DOF end-effector. Previous NHP studies have shown neural signals 

can be used to reconstruct 18 (Aggarwal et al., 2013), 25 (Vargas-Irwin et al., 2010), and even 27 

(Menz et al., 2015) DOF offline during reach and grasp movements. However, these studies only 

demonstrate that DOF of the hand are well correlated with primary motor cortex (M1) activity 

during highly coordinated grasping movements. They do not demonstrate that motion in these 

DOF can be approximated or controlled individually. Principal component analysis or other forms 

of dimensionality reduction can be used to characterize the majority of hand motions in fewer well-

separated DOF which have been shown to dramatically improve the performance of discrete 

offline classifiers (Schaffelhofer et al., 2015). Even though it is unclear if the principal dimensions 

are actually represented in the motor cortex (Mollazadeh et al., 2014), using them for decoding 

can theoretically provide more precise control over a large amount of hand configurations (Rouse 

& Schieber, 2015). Recent algorithms have successfully given NHPs the ability to actively select 

and continuously modulate 4 principal movement dimensions of a virtual hand (Rouse, 2016). 

Although such techniques have proven to be a promising and efficient way to process information, 

control is achieved through long periods of reward-based training and is not a reproduction of 

biomimetic motions. Furthermore, studies have yet to demonstrate precise control along these 

dimensions. 

The body of previous work has successfully demonstrated that information relating to fine 

motions is well represented in M1. This begs the question if it is possible to use BMIs to control 

continuous motion at the level of individual fingers. Earlier NHP studies have established that M1 
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may contain enough information to distinguish between individual finger movements (Aggarwal 

et al., 2008; Hamed et al., 2007). In our previous NHP work, we characterized the flex-extend 

motion of all four fingers together as a single DOF, and used signals from M1 to provide subjects 

with online continuous control of a virtual hand (Irwin et al., 2017). Here we have developed a 

novel manipulandum to track and control movement of two separate finger groups. Furthermore, 

we seek to improve decoder performance with the use of the ReFIT (Recalibrated Feedback 

Intention-Trained) Kalman filter which has proven successful in reach tasks (Gilja et al., 2012). 

We use the manipulandum in combination with the ReFIT Kalman filter to provide our NHP 

subjects with continuous control of each finger group in a separate fashion. To our knowledge, this 

is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP 

as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise 

finger decoding. 

 

2.2 Materials and Methods 

2.2.1 Novel Manipulandum 

All experimental tasks were performed in compliance with NIH guidelines as well as the 

University of Michigan's Institutional Animal Care & Use Committee and Unit for Laboratory 

Animal Medicine. We trained two male rhesus macaques, Monkey W and Monkey N, to use a 

novel manipulandum, designed to isolate finger movements (Figure 2.1B), in order to match 

fingertip position targets in the same virtual environment described in previous work (Irwin et al., 

2017). The manipulandum consists of two "doors" with dividers to isolate index finger movements 

from MRP movements. The doors can be locked separately or together in different positions to 
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create a wide range of movement conditions. Here we used three configurations, each resulting in 

1 DOF control: 

• Index: MRP door locked to full extension, index finger allowed to move 

• MRP: index door locked to full extension, MRP fingers allowed to move 

• All: index and MRP doors are locked together to encourage simultaneous movement of all 

fingers 

Switching between configurations can be done in a short period of time, allowing us to 

alternate between finger groups in a single session. Resistive flex sensors (FS-L-0073-103-ST, 

Spectra Symbol, Salt Lake City, UT) were attached to each door of the manipulandum and values 

were read from a 10 bit analog-to-digital converter (ADC) on a custom circuit board. At the 

beginning of each experiment day, ADC values corresponding to full flexion and extension of the 

active DOF were noted. The amount of flexion at any given time was then determined by centering 

and scaling the current ADC value such that a position of 0 corresponded to the recorded value for 

full extension and 1 corresponded to the value for full flexion. Each door also contained a torsional 

spring which was tuned to apply as little resistance as possible during flexion, but still allowed the 

door to follow the subject's fingers during extension. 
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2.2.2 Behavioral Task 

Both subjects performed a target matching task in an electrically shielded room with their 

right forearm flexed 90 degrees, comfortably restrained inside of an acrylic tube. Their hand rested 

on a table and inserted into the manipulandum. Position data and neural data were acquired in real-

time using xPC Target (Mathworks, Natick, MA, United States). The xPC received UDP packets 

with neural data marking threshold crossings on array channels. The specific thresholding scheme 

is described below in Signal Processing and Feature Selection. The real-time execution of the xPC 

ensured that neural and behavioral data were synchronized with millisecond precision. The 

Figure 2.1 BMI Experiment setup and methods. (A) Subjects performed a target acquisition task using a virtual hand controlled 
either by flex sensors or neural decoder output. (B) A novel manipulandum was used to separate finger movements into three active 
configurations: index only; middle, ring, and pinky (MRP); or all fingers moving together. An unrestrictive stanchion (not pictured) 
that does not restrict finger movements was also used for sensory context experiments. (C,D) Array implants for Monkeys W and 
N. Only signals from the motor arrays were used in this study. *Monkey N was implanted with a split array, however 64 channels 
(darkened) were inactive for the study period. 
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subjects viewed a virtual hand (MusculoSkeletal Modeling Software; (Davoodi et al., 2007)), with 

finger group animations controlled by the xPC to either measured flex sensor data or decoded 

finger position. The virtual hand was controlled via either the flex sensors for decoder calibration 

and offline analysis or the predictions from a decoding algorithm for online BMI control (Figure 

2.1A). The experiments for this study only involved control of 1 DOF at any point in time. For 

future studies, the system is capable of animating trajectories for simultaneous control of multiple 

DOF. 

At the start of each trial, a spherical target is placed along. the flex-extend arc and the 

subject must move the virtual fingertip inside and remain in the target for a given hold period. The 

range for a successful hold was considered to be within the visible edges of the spherical target 

and the required hold period varied between 500 and 750 ms depending on the subject and 

experiment. Successful trials were rewarded with apple juice. Figure 2.2 shows an example target 

sequence for each finger configuration. To encourage separation of finger movements, behavioral 

training was almost always done using either the index or MRP group to acquire center-out targets. 

Here, “center-out” means that targets appear in 1 of 7 positions along the flex-extend arc with 

every other target appearing at “center” (50% flexion). At the time of this study, Monkey W was 

an experienced BMI user, previously trained to move all four fingers together with his hand 

positioned in a stanchion that did not impede or restrict finger movement in any way. Monkey N 

was a new user who had only been trained with the manipulandum restricted to index or MRP 

movements. The first time Monkey N performed the task with the unrestrictive stanchion was 

during the sensory context experiments described later. 



 17 

2.2.3 Surgical Procedure 

The surgical procedure was performed in compliance with NIH guidelines as well as the 

University of Michigan's Institutional Animal Care & Use Committee and Unit for Laboratory 

Animal Medicine. We implanted each monkey with intracortical electrode arrays targeting the 

hand area of left primary motor cortex (M1), as identified by surface landmarks (Figures 2.1C,D). 

After the craniotomy, the genu of the arcuate sulcus was identified and a line was traced posteriorly 

to central sulcus. Arrays were then implanted along this line just anterior to central sulcus, as 

allowed by vasculature. Both subjects were implanted with Utah arrays (Blackrock Microsystems, 

Salt Lake City, UT, United States) targeting M1 as well as the left primary sensory cortex (S1). 

The arrays implanted in both subjects had 1.5 mm long electrodes spaced with 400 μm pitch. 

Monkey W received 96-channel arrays in both M1 and S1, while Monkey N received a 96 channel 

Figure 2.2 Single DOF target tasks. Each row shows a target sequence for a different finger configuration. For Index and MRP 
configurations, both the display and manipulandum of the inactive group were fixed to extend. A single trial consists of a target 
being presented (first column) and the subject moving his active finger group to the target (second column). After the subjects 
satisfies the required hold time or the trial times out, a new target is presented immediately to begin the next trial (third column). 
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array in S1 and a 128 channel split array covering M1 with one array potentially overlapping with 

pre-motor cortex (PMd). Note that only the motor arrays were used for analysis and decoding in 

this study. Due to wiring damage, Monkey N only had 64 channels of neural input available for 

this study (Figure 2.1D). The active array was the one implanted on the rostral edge of the M1 

area, so it is possible that units recorded from his array are located in PMd. Similar studies for arm 

reaches have used signals from both M1 and PMd for continuous decoding (Gilja, Nuyujukian, 

Chestek, Cunningham, Yu, Fan, Ryu, et al., 2012). 

2.2.4 Signal Processing and Feature Selection 

During experiment sessions, neural data was recorded and processed via a Cerebus neural 

signal processor (Blackrock Microsystems, Salt Lake City, UT, United States). Neural spikes were 

detected online by a threshold of –4.5 times the RMS voltage on each channel, after applying a 

250 Hz high-pass filter to the broadband signal. The signals used here were the voltage difference 

between each channel and a common ground. Software referencing techniques such Common 

Average Referencing (Ludwig et al., 2009) were not used in this study but could be explored in 

future work to provide cleaner signals. Broadband data was sampled and recorded at 30 kHz, while 

the thresholded spikes were also recorded for offline analysis and sent to the xPC for real-time 

decoding. On each experiment day, channel selection for analysis and decoding was done simply 

by retaining all channels with an average firing rate >1 spike/s determined by threshold crossings 

during a training run. Some high-impedance (> 1 MOhm) channels repeatedly showed threshold 

crossings of large disturbances not reflective of neural activity. Therefore, an additional 13 

channels for Monkey N and 3 for Monkey W with no visible information content were excluded 

regardless of whether or not they met the activity cutoff on experiment days. The cutoff threshold 

was chosen empirically by visually comparing waveforms to impedances. Although daily 
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impedance measurements were taken, the excluded channel list was determined at the start of the 

study and not updated. While electrode impedances may vary in-vivo, the excluded channels 

almost always remained above the 1 MOhm threshold, ranging from 19.03 to 23.16 MOhm for 

Monkey W and 0.98 − 23.19 MOhm for Monkey N. 

For offline analysis and online decoding, we compared the summed threshold crossings in 

50 ms time bins to the averaged kinematic data recorded from the flex sensor. Previous work 

demonstrated processing bin widths in the 50 − 100 ms range produces an accurate decoder that is 

sufficiently responsive for online control (Kim et al., 2008). We selected a 50 ms bin width 

empirically in both subjects while they were being familiarized with BMI control, using a standard 

Kalman filter. In both subjects, we first tested a 100 ms bin width and observed online performance 

as we decreased the bin width. Anecdotally, we found that 50 ms produced a more responsive 

online decoder without a noticeable trade-off in stability and smaller widths performed 

inconsistently. For offline analysis and parameter estimation, the raw 1 kHz flex sensor data was 

passed through a moving average filter with a 50 ms span before being averaged into time bins. 

Velocity measurements were then computed by taking the difference between successive position 

bins and scaling according to bin width. 

2.2.5 Decoding Algorithm 

A linear Kalman filter was used to predict kinematics of the selected finger group during 

each session. For this study, we predicted the motion of a single DOF at a time. At the beginning 

of each experiment day, all parameters for the initial Kalman filter were estimated from a training 

run of approximately 300 center-out trials with a hold time of 750 ms scaled to take up 15% of the 

flex-extend arc. To reduce the effects of sensor noise during parameter fitting, velocities with 

magnitude below an empirically chosen threshold (0.2%flex/s) were set to 0. 



 20 

𝑋𝑋𝑡𝑡 = [𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣 1]𝑇𝑇 (1) 

𝑌𝑌𝑡𝑡 = [𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦𝑛𝑛]𝑇𝑇 (2) 

Equation 1 details the state vector for the Kalman filter. It describes the estimated kinematics of 

the active DOF and contains an additional offset term to account for baseline firing rate of each of 

the n active channels shown in Equation 2. 

𝑋𝑋𝑡𝑡 = 𝐴𝐴𝑋𝑋𝑡𝑡−1 + 𝑤𝑤 (3) 

𝐴𝐴 = �
1 𝑑𝑑𝑑𝑑 0
0 𝑎𝑎𝑣𝑣,𝑣𝑣 0
0 0 1

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊 =  �
0 0 0
0 𝜎𝜎𝑣𝑣2 0
0 0 0

�  (4) 

Equation 3 is the physical model of a linear Kalman filter. The evolution of the kinematic 

states over time is modelled by the A matrix and estimation errors are assumed to have gaussian 

noise, w. Equation 4 describes our implementation. The active finger group's position is explained 

perfectly by velocity integration, which matches the decoder output to the virtual environment. 

Velocity estimates are assumed to be contaminated by zero mean Gaussian noise with the 

covariance matrix, W. The velocity damping coefficient av,v and variance σ2
v were determined each 

day via maximum likelihood estimation using measured hand kinematics from the training run. 

On average, the estimation yielded av,v = 0.855 ± 0.01 for index sessions and av,v = 0.869 ± 0.04 

(mean ± s.t.d) for MRP sessions. Here dt is equal to the 50 ms bin width selected for use. 

𝑌𝑌𝑡𝑡−𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑋𝑋𝑡𝑡 + 𝑞𝑞    (5) 

𝐶𝐶 = �

𝑐𝑐1,𝑝𝑝 𝑐𝑐1,𝑣𝑣 𝑐𝑐1,𝑜𝑜
𝑐𝑐2,𝑝𝑝 𝑐𝑐2,𝑣𝑣 𝑐𝑐2,𝑜𝑜
⋮ ⋮ ⋮
𝑐𝑐𝑛𝑛,𝑝𝑝 𝑐𝑐𝑛𝑛,𝑣𝑣 𝑐𝑐𝑛𝑛,𝑜𝑜

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑄𝑄 = �
𝜎𝜎12 … 𝜎𝜎1,𝑛𝑛

2
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𝜎𝜎1,𝑛𝑛
2 … 𝜎𝜎𝑛𝑛2

�     (6) 

Equation 5 is the measurement model for a linear Kalman filter. It assumes the firing rate 

of each active channel is a linear combination of each of the kinematic state variables. Equation 6 

describes our implementation, where ci,p, ci,v, and ci,o, are the respective coefficients for finger 
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position, velocity, and a baseline firing rate for channel i. The additive noise q is drawn from a 

multivariate gaussian distribution with covariance matrix Q. Parameters for C and Q were chosen 

daily via maximum likelihood estimation. Similar to previous work (Irwin et al., 2017), an optimal 

time lag parameter (0, 1, 2, or 3 bins) was also chosen from the same training dataset (Figure 2.3A). 

The time lag is an offset to temporally align bins of neural data with the ideal kinematic 

measurement.  

𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡|𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡−1|𝑡𝑡−1 + 𝑣𝑣𝑣𝑣𝑙𝑙𝑡𝑡|𝑡𝑡 × 𝑑𝑑𝑡𝑡  (7) 

Drawing from previous work (Gilja et al., 2012), we used integrated velocity for the virtual 

fingertip position control signal instead of the predicted position at each time step. We assume the 

subject modulate their neural activity in response to both the position and velocity of the virtual 

fingertip. During online control, the position after each time step is set to match the controller 

output in preparation for the next decode, shown in Equation 7. 
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2.2.6 Measurement Model Selection 

Many algorithm implementations have successfully relied on models that only relate neural 

activity to velocity states (Collinger et al., 2013; Kim et al., 2008; Shanechi et al., 2017). However, 

neural activity has been observed to also vary with position changes during arm movements, 

possibly due to differing muscle activation required to maintain postures (Scott & Kalaska, 1997). 

Previous ReFIT implementations on reach tasks (Gilja et al., 2012) as well as our earlier Kalman 

filter implementation for finger motions (Irwin et al., 2017) used a measurement model that 

included both position and velocity states.  

𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑖𝑖,𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑖𝑖,𝑜𝑜 (8) 

𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑖𝑖,𝑣𝑣 × 𝑣𝑣𝑣𝑣𝑣𝑣+ 𝑐𝑐𝑖𝑖,𝑜𝑜 (9) 

𝑦𝑦𝑖𝑖 = 𝑐𝑐𝑖𝑖,𝑝𝑝 ×𝑝𝑝𝑝𝑝𝑝𝑝+ 𝑐𝑐𝑖𝑖,𝑣𝑣 × 𝑣𝑣𝑣𝑣𝑣𝑣+ 𝑐𝑐𝑖𝑖,𝑜𝑜 (10) 

After implantation we performed initial testing with, three measurement models: position 

only, velocity only, and position + velocity. These are shown in Equations 8-10 where yi is the 

expected number of threshold crossings in a 50 ms time bin for channel i. For finger motions, the 

position-only and velocity-only models did not provide satisfactory online control, so we opted to 

Figure 2.3 Decoding methods. (A) The initial Kalman filter estimates fingertip kinematics based on summed threshold crossings 
from either the current 50 ms time bin or an optimally chosen time lag (dashed lines show 50 ms lag). (B) Finger motion was 
characterized in 1 DOF per finger group such that a position of 0 corresponds full extension and 100 corresponds full flexion. 
Intention estimation was applied to the online kinematics of the initial Kalman filter by taking incorrect decoder velocities (blue 
arrow) and flipping them (green arrow) to point toward the desired target (red circle), on-target velocities are set to zero. Intention 
estimation is only applied to estimate parameters for the ReFIT decoder, no knowledge of target locations is used during online 
control. 
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continue experiments only with the position + velocity model (Equations 6,10). We conducted a 

post-hoc analysis to determine the amount of active channels (average firing rate > 1spike/s) that 

were “well tuned” to finger activity and showed decent encoding performance with the 

position+velocity model (cross-validated Pearson's correlation coefficient between predicted and 

actual firing rate of ρ > 0.05). We also compared the offline decoding performance of the Kalman 

filters used for decoding days (cross-validated ρ between predicted and actual kinematics) to 

examine how indicative reconstructions were of our online results. 

2.2.7 ReFIT Process 

The ReFIT Kalman filter was implemented at the beginning of each experiment day using 

the same two stage process described in previous studies (Gilja et al., 2012). After performing the 

task with online brain control with an initial Kalman filter for approximately 200 center-out trials, 

new measurement model coefficients were determined by regressing recorded neural activity 

against the intention-estimated online kinematics of the initial decoder (Figure 2.3B). Intention-

estimation alters the training data used for parameter re-estimation by flipping the direction of the 

predicted velocities to always point toward the target (and setting velocities to zero when the 

predicted position was inside the target). This process “corrects" velocities with the assumption 

that the subject always intends to move the virtual hand toward the target, regardless of the 

direction that was predicted by the initial decoder. The online trials used for retraining were 

performed with the most challenging center-out targets the subject was able to acquire with the 

initial Kalman filter. For Monkey W, this was typically smaller targets (15.75% of the flex-extend 

arc) with longer hold times (750 ms), whereas Monkey N required a mixture of reduced hold times 

(500 ms) or larger targets (16.5% of the flex-extend arc). Note that intention estimation was only 
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used during the parameter re-estimation; no knowledge of the target locations was used during 

online control. 

𝑃𝑃𝑡𝑡|𝑡𝑡−1 = �
0 0 0
0 1 0
0 0 0

� �𝐴𝐴𝑃𝑃𝑡𝑡−1|𝑡𝑡−1𝐴𝐴𝑇𝑇 + 𝑊𝑊� �
0 0 0
0 1 0
0 0 0

� (11) 

Finally, during online processing for the ReFIT filter, we assumed the subjects perfectly internalize 

the position of the virtual fingertips and adjust their neural activity accordingly. Therefore, in 

Equation 11, we implement our assumption of zero a priori position uncertainty before calculating 

the Kalman gain. 

2.2.8 Individuated Finger Analysis 

Each subject performed one day of experiments to collect offline data to assess the viability 

of a 2 DOF decoder. On these days, the subject performed the center-out target task (1 s hold time, 

targets take up 16.5% of the flex-extend arc) with hand control of the index or MRP fingers in 

alternating blocks of approximately 200 trials for 2 sets (approximately 400 total trials per finger 

group). To determine whether information regarding individuated finger motions was present in 

M1, we attempted to distinguish between index and MRP movement onset, defined as the 100 ms 

surrounding the time the subject's finger(s) began to flex. Similar to earlier studies that classify 

individual finger movements (Aggarwal et al., 2008), we used a sliding window which updated 

every 20 ms with the summed threshold crossings of the last 160 ms as our neural feature. A 

support-vector machine with a Gaussian kernel function and L1 regularization was chosen as the 

classifier and tested using 10-fold cross validation. 

𝑋𝑋 = [𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 1]𝑇𝑇(12) 
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𝐴𝐴 =  
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1 0 𝑑𝑑𝑡𝑡 0 0
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 (13) 

𝑦𝑦𝑦𝑦 = 𝑐𝑐𝑖𝑖,𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖,𝑝𝑝𝑝𝑝  × 𝑝𝑝𝑝𝑝𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑖𝑖,𝑣𝑣𝑣𝑣 × 𝑣𝑣𝑣𝑣𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑖𝑖,𝑣𝑣𝑣𝑣 × 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑐𝑐𝑖𝑖,𝑜𝑜 (14) 

A 2 DOF linear Kalman filter was also trained and tested offline across all trials using the same 

training protocol described earlier. To discourage co-contractions in the predicted output, the 

physical model described in Equation 13 was constrained to keep each finger group completely 

independent. The measurement model shown in Equation 14 was approximated in a similar 

manner as the single DOF case. 

2.2.9 Online Experiments 

The first group of online experiments was designed to test performance across a variety of 

target styles and hand configurations. For these, a total of 12 experiments were conducted over 10 

days for Monkey W while 8 experiments were conducted over 5 days for Monkey N (Table 2.1). 

On each day, subjects were given 1 DOF control over a specific group of fingers (index or MRP). 

After the ReFIT algorithm was fully trained using center-out targets, the subjects performed the 

task using online brain control and one of three target styles: 

• Center-out (C-O): same as training, targets appear in one of 7 positions along the flex-

extend arc with every other target occurring halfway (50% flexion) 

• Random (Rand): targets appear in random positions along the flex-extend arc 

• Flex-Extend (F-E): targets alternate between flexed (95% flexion) and extended (5% 

flexion) 

https://www.frontiersin.org/articles/10.3389/fnins.2018.00751/full#T1
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The alternate target styles were chosen to test decoder controllability. The random style is not 

predictable and requires the decoder navigate untrained trajectories. On the other hand, the flex-

extend style is entirely predictable, but exclusively contains difficult targets. 

Monkey 
Finger Group Target Style 

Index MRP ALL C-O Rand. F-E 

W 6 6 2 6 4 4 

N 4 4 2 6 4 - 

 
No limits were placed on decoder output so predictions were capable of hyper-extending 

or over-flexing during online control. To maintain usable feedback during such adverse events a 

visual limit of −50% to 150% flexion was placed on the virtual fingertips. Otherwise, a disturbance 

or series of particularly poor predictions could place the virtual hand in state that the subject cannot 

interpret and correct. The subjects performed the novel task with both the ReFIT and initial Kalman 

filter in alternating blocks of approximately 50 trials for 3 sets (approximately 150 total trials per 

decoder). Including the full ReFIT training process and block testing, subjects completed between 

826 and 1,252 trials on these experiment days, depending on whether or not multiple target styles 

were tested. Experiments usually lasted 2–4 h including time for rig setup and decoder calibration. 

Monkey W performed two sessions for each of the three target styles with a 750 ms hold time and 

the targets taking up 15.75% of the flex-extend arc. Monkey N performed two sessions of center-

out and random target styles with a 500 ms hold time and the targets taking up 16.5% of the flex-

extend arc. 

Table 2.1 Number of online BMI sessions performed. Sessions are grouped by either finger group or target style. Monkey W 
performed a total of 14 online experiments while Monkey N performed 10. Subjects performed sensory context experiments with 
“All” four fingers, while target acquisition sessions were performed with either “Index” and “MRP” finger groups. 
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2.2.10 Sensory Context 

Previous work has shown that sensory signals from fingertip stimulation are well 

represented in motor cortex (Schroeder et al., 2017). Although the springs on each door of the 

manipulandum were selected to provide minimal resistance, the subjects still had the tactile 

sensation of their fingers pushing on the door. To make sure most of the neural information used 

by our decoder is primarily a product of motor activity and not a sensory reaction, which may not 

be a reliable input for SCI patients, subjects performed 2 daily sessions each in which the sensory 

cue of touching the manipulandum doors was removed. In these sessions, subjects performed these 

experiments with the manipulandum doors locked together (encouraged to move all fingers 

together). A ReFIT filter trained with the manipulandum was then used to acquire center-out 

targets after the manipulandum was replaced with a stanchion that did not interfere with or restrict 

finger movements, and therefore introduced no additional sensory feedback during movements. 

Including the initial training period, subjects completed a total of 905–1,063 trials during these 

experiment days. Performance was compared across decoders and sensory contexts using center-

out targets that took up 16.5% of the flex-extend arc and a 500 ms hold time. 

2.2.11 Online Performance Metrics 

In an attempt to ignore initial adjustments to the decoder, the first 5 BMI trials from each 

trial block were excluded from performance analysis. To compare performance across experiment 

sessions while accounting for variations in target difficulties, we used bit rate as our primary 

performance metric (Thompson et al., 2014). Random trials that required minimal movement to 

complete (target center appearing within 10% flexion of fingertips) were excluded from this 

analysis. We did not attempt to draw direct comparisons between the subjects as Monkey W had 

more experience at the time of these experiments. Furthermore, targets with longer hold times are 
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considerably more difficult to acquire in BMI mode due to orbiting, a phenomena in which the 

controller oscillates around the desired position and is unable to stop. This increase in difficulty is 

not fully captured in the metric, despite the hold time itself being excluded from the calculation. 

We compared the average acquisition time and average orbiting time for each decoder over 

all of the center-out decoding sessions. Acquisition time was defined as the time taken to complete 

a trial from the start to the beginning of a successful hold time. Orbiting time was defined as the 

time between first target contact and successful acquisition, again excluding the target hold time. 

Unsuccessful trials are counted as the time between first target contact and the end of the timeout 

period. Since these metrics can count close to the entire timeout period for unsuccessful trials, they 

penalize failure more heavily than bit rate. The center-out task was the most conducive for this 

analysis as it was performed by both subjects and consistently produced targets that were far 

enough apart to induce orbiting. 

 

2.3 Results 

2.3.1 Neural Tuning and Finger Separation 

We first evaluated whether finger kinematics were well represented in the neural units we 

recorded. Excluding channels due to low firing rate, artifact activity, or low correlation with finger 

kinematics as described in the Methods, an average of 48 ± 9 channels from Monkey W and 10 ± 

2 channels from Monkey N (mean ± s.t.d) were “well tuned" to finger activity on a given day. 

Offline Kalman filters from active channels across all training days yielded an average correlation 

coefficient between predicted and actual position of 0.807 ± 0.074 for Monkey W and 0.655 ± 

0.035 for Monkey N (mean ± s.t.d). Example offline decodes are shown in Figure 2.4A. The 

average correlation between predicted and actual velocity was 0.618 ± 0.093 for Monkey W and 
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0.421 ± 0.050 for Monkey N (mean ± s.t.d). Between the two subjects, Monkey W had better 

offline results and was able to achieve better online performance metrics (see Online Decoding 

below) while performing a significantly more difficult task (longer hold times, smaller targets) 

than Monkey N. We suspect that higher quality neural signals, potentially due to a better array 

location, contributed to Monkey W's better performance. In both subjects, the encoding 

performance of an active channel was positively (ρ = 0.594 Monkey W and ρ = 0.849 Monkey N) 

and significantly correlated with its value to the offline decode (Monkey W, p < 1 × 10−9, n = 92 

channels; Monkey N, p < 1 × 10−14, n = 52 channels; Student's t-test). The value of a specific 

channel was determined each day by comparing the initial Kalman filter's ability to predict velocity 

to an offline decoder without that channel (Wahnoun et al., 2006). Across days, we noticed positive 

but statistically insignificant correlations between offline predictive power and online bit rate, 

consistent with other studies which note that one is not necessarily indicative of the other 

(Cunningham et al., 2011; Ganguly & Carmena, 2010; Kim et al., 2008). We also did not uncover 

any significant correlations between either the quantity of active channels or the number of “well 

tuned" channels and daily online performance, so we cannot rule out subject motivation and 

experience as additional performance factors. 
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 To determine if the separate DOFs in our task are well represented in our neural units, we 

had each subject run an additional offline session in which they alternated between trial blocks of 

index and MRP target acquisition. Similar to techniques used in (Hamed et al., 2007) and 

(Aggarwal et al., 2008), we restricted our analysis to the onset of flex movements from the center 

position and used a sliding window that was updated every 20 ms to including summed threshold 

Figure 2.4 Offline decoding performance. (A) Single DOF reconstructions representative of average error on separate training runs 
for each DOF and subject. Correlations across the entirety of each training run using 5-fold cross validation are shown. (B) Cross 
validated classification of finger group during onset of flex movements using a support-vector machine. Threshold crossings were 
binned in a sliding window that was updated every 20 ms. The feature vector was formed from multiple time bins for all available 
channels. 
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crossing over the preceding 160 ms. The feature vector used for classification contained all time 

bins during the movement onset period for every available channel. A support-vector machine, 

tested with 10-fold cross validation, was able to distinguish between index and MRP flexion with 

85.29% accuracy for Monkey W and 78.03% accuracy for Monkey N (Figure 2.4B). Classification 

performance suffered when using non-overlapping 20 ms bins (71.01% Monkey W and 68.20% 

Monkey N) or a larger 100 ms bin (65.97% Monkey W and 61.98% Monkey N). The poor 

classification performance with the single 100 ms bin suggests that the majority of neurons we 

recorded were broadly tuned. However supplying the classifier with temporal history at a high 

resolution appeared to alleviate this issue. Therefore, consistent with previous work (Aggarwal et 

al., 2008; Hamed et al., 2007), these two finger movements could be distinguished from motor 

cortex activity. 

2.3.2 Online Decoding 

Both subjects were able to achieve some level of online control of the virtual hand with the 

initial Kalman filter as shown in Figures 2.5A, 2.6A for index finger and MRP fingers, 

respectively. Across all sessions, Monkey W achieved an average bit rate with the initial Kalman 

filter of 1.32 ± 0.29 bps, while Monkey N achieved a bit rate of 1.07 ± 0.16 bps (bits-per-second; 

mean ± s.t.d.). The Kalman filter was generally responsive to each subject's input. However, 

similar to center out literature, sometimes the decoder was unable to stop on-target for the required 

hold time. Examples of longer trial times, often due to orbiting, are highlighted in orange in Figures 

2.5A, 2.6A. In some cases, particularly with the initial Kalman filter, orbiting was so severe that 

the subjects were unable to acquire targets within the timeout period. While using the ReFIT filter, 

orbiting was generally less frequent and less severe for both index and MRP decoding, resulting 

in improved performance metrics (example sessions shown in Figures 2.5B, 2.6B). 
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Figure 2.5 Online index finger decoding performance. (A) Traces of the center-out trials closest to session average (session shaded 
in green below), orange shading indicates trials with > 3 s acquisition time. (B) Acquisition times from the same center-out session 
binned in 1s intervals shown along with average orbiting times (mean ± s.e.m.). (C) Decoding performance across trial blocks for 
each target style (mean ± s.e.m.). Dashed lines indicate separate experiment sessions, with a center-out training session shown for 
a comparison to hand performance. Within each session, the initial Kalman filter trials used to train the ReFIT filter are not shown. 
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Figure 2.6 Online MRP finger decoding performance. (A) Traces of the center-out trials closest to session average (session shaded 
in green below), orange shading indicates trials with > 3 s acquisition time. (B) Acquisition times from the same center-out session 
binned in 1s intervals shown along with average orbiting times (mean ± s.e.m.). (C) Decoding performance across trial blocks for 
each target style (mean ± s.e.m.). Dashed lines indicate separate experiment sessions, with a center-out training session shown for 
a comparison to hand performance. Within each session, the initial Kalman filter trials used to train the ReFIT filter are not shown. 

Consistent with previous studies (Fan et al., 2014; Gilja et al., 2012), subjects were able to 

achieve their best online performance with the ReFIT algorithm, which always outperformed the 

initial Kalman filter throughout the day (Monkey W, p < 1 × 10−7, n = 38 trial blocks; Monkey N, 
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p < 1 × 10−5, n = 26 trial blocks; one-sided Wilcoxon sign-rank test). Example target acquisition 

sessions for both subjects are shown in Figures 2.5C, 2.6C. Figure 2.7 shows the online success 

rate averaged across trial blocks for the tasks performed by each subject. Overall, the ReFIT 

decoder improved success rate by 4.33 ± 7.19% for Monkey W (mean ± s.t.d; p < 1 × 10−4, n = 38 

trial blocks; one-sided Wilcoxon sign-rank test) and 5.78 ± 7.35% for Monkey N (mean ± s.t.d; p 

< 1 × 10−5, n = 26 trial blocks; one-sided Wilcoxon sign-rank test). Across all experiment sessions, 

the ReFIT algorithm improved the average bit rate by 31.04 ± 2.78% for Monkey W (mean ± 

s.e.m; p < 1 × 10−36, n = 2114 KF trials and 2010 RF trials; one-sided two sample t-test) and 35.17 

± 4.44% for Monkey N (mean ± s.e.m; p < 1 × 10−20, n = 1558 KF trials and 1607 RF trials; one-

sided two sample t-test). See Supplementary Material for individual session statistics. 

Furthermore, improvements in bit rate when using the ReFIT decoder were not limited to a 

particular finger group (Table 2.2) or target style (Table 2.3). Overall, while the improvement was 

robust and reliably present, the increase was not as large as was previously observed in upper limb 

center out studies (Gilja et al., 2012). 
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Monkey 
Finger Group (% Improvement) 

Index MRP All 

W 38.21±5.04**** 28.97±3.56**** 18.38±6.76* 

N 55.60±10.43**** 33.97±6.07**** 17.08±7.04* 

Figure 2.7 Online success rates across two sessions. Average success rate of trial blocks for each subject (mean ± std). Overall, the 
ReFIT decoder improved success rate by 4.33 ± 7.19% for Monkey W (p < 1 × 10−5, n = 38 trial blocks; one-sided Wilcoxon sign-
rank test) and 5.78 ± 7.35% for Monkey N (p < 1 × 10−4, n = 26 trial blocks; one-sided Wilcoxon sign-rank test). 

Table 2.2 ReFIT performance improvements across finger groups. Finger groups are listed such that “Index” is the improvement 
to average bit rate (% mean ± s.e.m) across all sessions and target styles performed with the Index finger active. Total number of 
sessions for each group is shown in Table 2.1. Starts indicate a significant improvement of ReFIT over the initial Kalman filter 
(one-sided two sample t-test with *p < 0.05 and ****p < 1 × 10-6) 
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Monkey 
Target Style (% Improvement) 

C-O Rand F-E 

W 35.28±4.33**** 30.20±6.04**** 24.92±4.18**** 

N 31.61±4.95**** 43.74±9.43**** - 

 
Figure 2.8 shows the average acquisition time performing the center-out target task along 

with the average fraction of each trial spent orbiting. Metrics between both subjects were similar 

when viewed as percentages. Across all finger groups, using the initial Kalman filter, subjects 

spent an average of 45.95 ± 0.81% (mean ± s.e.m.) of each trial orbiting the target. Using the 

ReFIT filter, the average fraction of trial time spent orbiting dropped by 28.21 ± 2.12% (mean ± 

s.e.m; p < 1 × 10−37, n = 1994 KF trials and 1929 RF trials; one-sided two sample t-test). The 

reduction in orbiting time helped improve average center-out acquisition time by 33.43 ± 2.02% 

(mean ± s.e.m; p < 1 × 10−37, n = 1994 KF trials and 1929 RF trials; one-sided two sample t-test). 

Consistent with its application in decoding center-out arm reaches (Gilja et al., 2012), ReFIT 

significantly increased target acquisition rate primarily due to improved stopping behavior. 

Table 2.3 ReFIT performance improvements across target styles. Target styles are grouped such that “C-O” is improvement to 
average bit rate (% mean ± s.e.m) across all sessions and finger groups acquiring center-out targets. Total number of sessions of 
each type is shown in Table 2.1. Stars indicate a significant improvement of ReFIT over the initial Kalman filter (one-sided two 
sample t-test with ****p < 1 × 10-6) 
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2.3.3 Modulation Analysis 

Most of the improvement of ReFIT for upper-limb movements has been attributed to the 

sharpening of directional velocity tuning by intention estimation (Fan et al., 2014). Since we 

Figure 2.8 Acquistion and orbiting time metrics of center-out target task. Bar graphs indicate average acquisition time (mean ± 
s.e.m.), with the darkened region scaled to represent the average fraction of each trial spent orbiting (mean ± s.e.m.) across two 
sessions for each subject. Stars indicate a significant improvement in the orbiting behavior of ReFIT over the initial Kalman filter 
(one-sided two sample t-test, n ≈ 300 trials; with **p < 0.001, ***p < 1 × 10−4, and ****p < 1 × 10−6). 
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characterize finger motions in 1 dimension, velocity tuning is simply represented as the difference 

in firing rate between flexion and extension. The absolute value of this difference is referred to as 

modulation. We looked at the change in modulation when intention estimation is applied to the 

native center-out training data across each monkey's experiment days. Many channels are not well 

tuned, and therefore are neither expected to benefit or worsen from intention estimation. Therefore, 

we limited this analysis to “high quality” examples defined as channels on any day that were 

velocity modulated before applying intention estimation (Mod. >1 spike/s), had good encoding 

performance (ρ > 0.1 Monkey W, ρ > 0.05 Monkey N), and were valuable to the decoder. 

Specifically, the value of a specific channel was determined as described in the Neural Tuning and 

Finger Separation section above. Here, a negative result indicates the channel is valuable since 

performance is worse when it is removed. In both subjects, the majority of the high quality channel 

examples (33 out of 37 channels Monkey W, 12 out of 16 channels Monkey N) chosen for analysis 

benefited from intention estimation, meaning they showed a raw increase in modulation after 

intention estimation was applied (Figure 2.9). Monkey W had an average raw improvement of 3.34 

± 0.51 spikes/s (mean ± s.e.m.; p < 1 × 10−5, one-sided Wilcoxon sign-rank test). Monkey N had 

an average raw improvement of 1.54 ± 0.54 spikes/s (mean ± s.e.m.; p < 0.01, one-sided Wilcoxon 

sign-rank test). Monkey W had more significant results overall, likely due to the fact that he had 

more high quality channels available at the time of the study. The positive response to intention 

estimation suggests that ReFIT may improve performance for finger motions via similar 

mechanisms observed in upper-limb studies. 
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2.3.4 Sensory Context Results 

Each subject also performed two days of sensory context experiments. In these sessions, 

online performance with the manipulandum moving all fingers was compared to performance after 

the manipulandum was removed in favor of a stanchion that provided no restrictions on finger 

movement or tactile finger sensations. To compare performance across subjects, data was 

normalized across animals by centering around initial Kalman filter performance at 1 bps. Across 

both subjects and sessions, the ReFIT Kalman filter improved performance over the initial Kalman 

filter (p < 1 × 10−4, n = 747 RF trials and 781 KF trials; one-sided two sample t-test). However, 

there was no statistically significant change using the ReFIT filter across sensory contexts (p > 

0.9, n = 747 manipulandum trials and 780 stanchion trials; two sample t-test; Figure 2.10A). At 

the minimum, this suggests that the neural information used by the decoders is largely a product 

of motor activity and subjects are able to adjust to sensory context shifts. Furthermore, we noticed 

that sometimes subjects will stop moving their active fingers while performing the task in online 

Figure 2.9 Effects of intention estimation on velocity modulation. Analysis was restricted to channels that were originally velocity 
modulated, had a well correlated linear model, and were valuable to offline decoder performance (n = 37 channels over 12 days, 
Monkey W; n = 16 channels over 7 days, Monkey N). The raw change in modulation after intention estimation is applied to the 
original velocities is shown binned in 2 spike/s intervals. In both subjects intention estimation improved modulation compared to 
a randomized bootstrap analysis (p < 1 × 10−7 Monkey W, p < 0.01 Monkey N; one-sided two sample t-test). 
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BMI mode. An example of Monkey W voluntarily holding his MRP fingers still during an online 

center-target acquisition session is shown in Figure 2.10B. The subject is still able to control the 

virtual hand to acquire MRP targets even after electing to hold his MRP fingers still. This indicates 

that decoding performance is not purely dependent on proprioceptive feedback. 

2.3.5 Multiple DOF Analysis 

As an initial test of decoding multiple fingers simultaneously, the animals both performed 

a four block set of alternating datasets (A-B-A-B) for index and MRP fingers. This was decoded 

offline with cross validation using a Kalman filter state vector that simply included position and 

velocity for both fingers. As shown in Figure 2.11, the moving finger had similar decodes to those 

shown above, however, the motionless finger was usually incorrectly decoded as moving as much 

or more as the active finger, as shown with example traces in Figure 2.11. As the physical model 

(i.e., the A matrix) explicitly decouples the fingers, this correlation apparently results from the 

neural observation model. This is consistent with the modulation depths listed above, in which 

almost all of the modulated neurons had significant correlations with both index and MRP motion. 

Figure 2.10 Online decoding under various sensory contexts. (A) A ReFIT decoder was trained with the manipulandum to control 
flexion of all 4 digits. At the dashed line, the manipulandum was removed and subjects continued online control with the same 
ReFIT decoder (Unr.). Bars represent average bit rate (mean ± s.e.m.) across all sessions for both subjects. For each day and subject, 
data was normalized by centering such that the average bit rate for the initial Kalman filter was 1 bps. Stars indicate a significant 
improvement of ReFIT over the intial Kalman filter (p < 1 × 10−4, n = 747 ReFIT trials and 781 Kalman filter trials; one-sided two 
sample t-test). (B) Target trace of Money W performing center-out target acquisition in BMI mode while voluntarily holding his 
active MRP fingers still. Green rectangles represent the displayed target ranges the subject successfully acquired. 
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2.4 Discussion 

Here we showed that NHPs are able to use a ReFIT Kalman filter to acquire fingertip 

targets using multiple finger groups. The decoder appears controllable in a variety of target 

configurations and responsive to the subject's intent, as judged by their ability to maneuver to 

random and unpredictable positions along the finger arcs. Consistent with previous studies, the 

ReFIT process improved performance over the standard Kalman filter with a substantial 

improvement in stopping behavior. This was not a given, since the mechanism of improvement is 

not fully understood, and there is no obvious cosine tuning model (Georgopoulos et al., 1986) for 

finger movements. However, the performance improvements observed for finger motions are less 

dramatic than those observed in upper-limb studies (Gilja et al., 2012). If we consider a purely 

biomimetic perspective, the increase in modulation via intention estimation shown here and in 

previous work may result from a reduction in motor noise (Fan et al., 2014). Since fingers are 

Figure 2.11 Offline traces of two DOF decoding. Dashed lines are the Kalman filter prediction, while solid lines are the actual 
finger group position. Training data for this decoder was created by combining multiple training runs, each with a single active 
DOF. For each subject, intervals where each DOF is active and the other is restricted are shown. 
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smaller lever arms with actuators designed for precise movements, it stands to reason that there 

may be less motor noise to eliminate in an able-bodied subject. Secondly, this study and previous 

work have observed a significant positional tuning element to finger movements. However, our 

implementation only assumes and corrects noise from velocity measurements. If we look at 

performance discrepancy from a perspective of decoder adaptation, the task complexity may affect 

the intention estimation process. The subjects in this study were only given control of 1 DOF at a 

time: a simple task where a naive decoder has a relatively high chance level of choosing the correct 

direction at any timepoint. In other words, the chance of false positives with the initial decoder is 

higher in our 1 DOF task. It is possible that intention estimation techniques may be more impactful 

when attempting to control multiple degrees of freedom simultaneously, as in a 2 DOF center out 

task. 

In earlier studies, intention estimation was noted as the primary mechanism by which the 

ReFIT Kalman filter improved performance (Gilja et al., 2012). The second training stage serves 

as a closed-loop adaptation period during which the user is presented with visual feedback from 

the initial Kalman filter and is able to issue corrections in real time which are later processed via 

intention estimation. Initial decoder parameters may be suboptimal due to poor training data, a 

shift from physical control to BMI control, or both. Poor training data may be the result of noise 

in the motor system - discussed earlier, or inconsistent physical behavior. In this context, signal 

availability and noise from the electrode array is associated with the shift from physical to BMI 

control. An optimal adaptation to BMI control could be a synergy in which the brain is able to 

learn a particular decoder and the decoder adapts to better execute commands (Shenoy & Carmena, 

2014). Indeed, the brain may identify neurons critical BMI performance and modulate them 

accordingly (Orsborn et al., 2014a). In this view, ReFIT then improves performance by 
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highlighting and better executing commands from these important neurons. In this study and 

earlier work (Gilja et al., 2012), a separate re-training step was used, although online learning 

techniques can potentially update decoder parameters recursively on a shorter timescale (Dangi et 

al., 2013; Orsborn et al., 2012). Newer adaptive decoders have leveraged more accurate encoding 

models, improved intention estimation transformations, and assistive training to further optimize 

parameter convergence (Shanechi et al., 2017). Assistive training strategies combine the output of 

an initial decoder with an optimal trajectory or enforce constraints along an ideal path during the 

adaptation phase, typically with decreasing levels of assistance as performance improves. Such 

techniques incorporate a similar assumption of intention estimation with the addition of online 

visual feedback of the ideal decoder in a graded fashion. Assistive strategies have successfully 

provided a paralyzed human subject with high DOF control of a prosthetic arm and hand (Collinger 

et al., 2013; Wodlinger et al., 2015), and may prove useful as we increase task complexity beyond 

1 DOF. 

For individual finger control to ultimately be available using neuroprostheses, we must 

provide control of multiple finger groups simultaneously in an online setting. Decoders that 

leverage a linear encoding model have been shown to simultaneously control four distinct hand 

motions in a human subject (Wodlinger et al., 2015). This study is remarkable because it 

demonstrates that the combination of a well-chosen basis and simple decoder can provide BMI 

users with modulated control of different grasps in a clinical setting. In the future we aim to provide 

our NHP subjects with precise online control in a 2 DOF target matching task with the index and 

MRP finger groups. However, the offline results in this study suggest that linear decoders may not 

be able to achieve high precision for heavily interdependent finger motions, potentially due to co-

contraction. It would be interesting to examine a linear decoder's performance on a subset of the 
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full range of motion we tested. Not only is a reduced range more likely to remain in an area of 

linearization, but a well chosen range where the subjects can comfortably modulate each DOF with 

limited natural co-contraction may produce better initial results. It would then be interesting to see 

if ReFIT or other training techniques allow subjects to generalize to the full range of motion. If the 

combination of various online linear decoders and intention estimation or adaptation techniques 

does indeed prove insufficient, there are multiple design directions which may be fruitful. One 

could develop a more accurate classification scheme to account for and suppress unwanted finger 

movements, similar to work in reach tasks (Aggarwal et al., 2013; Sachs et al., 2015) and cursor 

control (Kao et al., 2017). Another study effectively reduced the numbers of DOF of the hand 

using dimensionality reduction (Rouse, 2016). However, ultimately we need to control multiple 

fingers at the same time for a hand to be truly useful. We could also seek a more accurate model 

of the natural muscle synergies that may enable more generalization to multi-finger movements 

(Ethier et al., 2016; Nazarpour et al., 2012; Oby et al., 2013). These can be incorporated into more 

general non-linear machine learning approaches, for example including neural networks (Gao et 

al., 2016; Sussillo et al., 2012). Finally, we could explore contributions from additional 

information sources (Aflalo et al., 2015) to augment these approaches. 

In this study we demonstrated that online finger decoders can be robust to changes in 

sensory context and proprioception in able-bodied subjects. We hypothesize that had we 

introduced a context change via increasing spring tension during training, the subjects would be 

able to compensate with the ReFIT decoder much like they did to other sensorimotor input shifts. 

As described earlier, the online adaptation of ReFIT may be creating a decoder that is optimal for 

BMI control of the virtual hand irrespective of existing forward motor path. However, BMIs that 

promise complex grasps will have to perform under dynamic conditions and disturbances during 
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object manipulation. So while we believe that subjects can compensate for global changes, the rate 

of environmental adaption may not be sufficient for many realistic conditions. In the future, non-

visual feedback mechanisms for BMIs may become available (Flesher et al., 2016), which can 

greatly improve motor performance provided they are well integrated into the sensorimotor 

system. Other studies that have examined finger control in able-bodied subjects have observed that 

the precision of finger control in response to physical disturbances can vary with naturally 

occurring or induced input noise (Mendez-Balbuena et al., 2012). The authors of that study found 

that for different individuals introducing a mechanical stochastic noise at different levels produced 

optimal performance. BMI systems are novel sensorimotor systems where select neurons in the 

brain interface with either the natural periphery or robotic devices through decoders and encoders. 

Studying the effects of different types of input noise may be a step toward characterizing and 

optimizing fine motor control of BMI-FES systems with different feedback modes. 

In clinical settings, recent FES systems have provided human patients with the ability to 

modulate previously paralyzed joints (Ajiboye et al., 2017; Bouton et al., 2016). These 

implementations show immense potential and represent an amazing convergence of technology 

and knowledge of the human motor system. As this technology becomes more advanced and 

transitions further into clinical and ultimately commercial use, further systems level experiments 

will be required to achieve higher levels of performance in terms of activities of daily living. The 

everyday functionality of such systems will be limited by both our ability to extract meaningful 

control signals as well as our ability to actuate multiple joints. It has recently been shown in human 

subjects that commanding many degrees of freedom simultaneously introduces more error 

(Ajiboye et al., 2017). In that study, grasp failures with the muscle controller often occurred when 

the BMI command was generally correct, but small oscillations triggered large swings in other 
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joint movements. While the FES efficacy could be improved with better implantable devices and 

physical therapy, some of the problem with multiple degrees of freedom will likely require 

different algorithms. The able-bodied NHP model enables the development of these algorithms 

with simultaneous knowledge of the complex plant that these neural signals are driving, including 

significant co-contraction of the muscles. It is not immediately obvious whether the most effective 

system for individuated finger control will involve directly extracting muscle activation commands 

from motor cortex or a more agnostic machine learning approach. In a practical setting, the amount 

of training data required impacts this decision as well, and may favor muscle based decoders. 

Ultimately, further systems level brain-controlled FES experiments could focus on dynamic 

motions to answer these equations and continue advancing the state of the art for neuroprostheses. 
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Chapter 3 Clinical Validation of the Regenerative Peripheral Nerve Interface 
 

This chapter briefly explains my key contribution as second author on the manuscript “A 
regenerative peripheral nerve interface allows real-time control of an artificial hand in upper 
limb amputees”, published in Science Translational Medicine in 2020 (Vu et al., 2020). The 

same two patients participated in this study and Chapters 4 and 5. This work focused specifically 
on RPNIs. The pattern recognition system used only RPNI signals as inputs to demonstrate their 
control capabilities. In later chapters, we use mixtures of RPNIs and residual muscles depending 

on the functional goals of those experiments. The figure shown here is from the above 
manuscript, while the text summarizes the results as they relate to this thesis. 

 

3.1 Introduction 

Commercial myoelectric control systems using surface electromyography are unable to 

obtain consistent control signals for finger-specific motions because the desired signals are either 

obscured by more superficial muscles or non-existent due to the level of amputation. Intramuscular 

recording techniques and Regenerative Peripheral Nerve Interfaces (RPNIs) can potentially 

resolve these issues. RPNIs consist of free autologous muscle graft that are sutured to the end of 

severed nerves. The host nerves reinnervate the grafts which prevents the formation of neuroma 

(Kubiak et al., 2019; Woo et al., 2016) and creates a stable biological interface to extract movement 

commands for prosthetic devices. Implanted electrodes can safely record large amplitude and 

highly specific EMG from RPNIs (Frost et al., 2018; Vu et al., 2018, 2020). In this clinical study, 

we demonstrated the capability of RPNI signals for real-time prosthetic control. 
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3.2 Results 

Two patients with transradial amputations, P1 and P2 (listed as P3 and P4 in the published 

manuscript), had RPNIs created on the Ulnar, Median and Radial nerves. Eight pairs of bipolar 

recording electrodes (Synapse Biomedical, Oberlin, Oh) were implanted into the Ulnar and 

Figure 3.1 Real-time classification of finger movements with RPNI. (A and B) P3 and P4’s discrete control of thumb MCP joint 
(opposition), thumb IP joint (flexion), small finger, adduction, and rest for P3, and ring finger, thumb IP joint, small finger, 
abduction, and rest for P4. The fastest motion selection times are shown for each posture. (C and D) Offline confusion matrix of 
the postures used in (A) and (B), respectively. The y axis represents the true posture, whereas the x axis represents the predicted 
posture. The color map indicates the accuracy (%) of the classifier’s prediction. (Vu et al., 2020) 
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Median RPNIs as well as residual muscles. In this study, signals from the RPNIs were used to 

control virtual prostheses (Kumar & Todorov, 2015) with a Naïve Bayes classifier. The experiment 

setup was similar to the posture switching task detailed in Chapter 4. P1 used the two electrode 

pairs in his Ulnar and Median RPNIs to distinguish the five postures in Figure 3.1A. P2’s Ulnar 

nerve was dissected to create two RPNIs which she used along with her Median RPNI to 

distinguish the five postures in Figure 3.1B. These movements are anatomically consistent with 

Median and Ulnar nerve motor functions past the level of amputation. Offline results in Figures 

3.1C and 3.1D indicate that the movements could be distinguished with high accuracy. Both 

participants were able to control the virtual hand in real-time with low latency indicated by the 

fastest movement times in Figure 3.1A and 3.1B. 

 

3.3 Discussion 

This study demonstrated that RPNIs can be used to control hand prostheses. A pattern 

recognition algorithm was used to reliably distinguish five movement states using two and three 

RPNI control signals in P1 and P2, respectively. In practice, some movements such as finger 

adduction may not be actuated depending on the robotic prostheses. Most multi-articulating hands 

have a single motor to flex each finger and a sixth motor to control thumb opposition. For patients 

with wrist disarticulations, RPNIs can be thought of as augmenting prosthetic control. Notably, 

they provide valuable control signals for intrinsic thumb movements (Vu et al., 2020). RPNIs also 

serve as additional inputs for movements such as small finger flexion which are also controlled by 

extrinsic muscles. Patients with more proximal amputations may be missing some or all of their 

muscles that control finger movements. In these cases, RPNIs will be critical to restoring hand 

function with robotic prostheses. 
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Chapter 4 High Speed Pattern Recognition with Peripheral Interfaces 
 

A version of this chapter has been submitted to IEEE Transactions on Robotics and was posted 
as “Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition 

for Prosthetic Hands” in pre-print on MedRxiv in 2020 (Vaskov et al., 2020) 
 

4.1 Introduction 

Hands are incredibly important to people because they provide the opportunity to handle 

tools, operate machines, and are essential components of social interaction and communication. 

The loss of an upper extremity can severely impact a person's ability to interact with the world 

around them. Unsurprisingly, some of the earliest documented examples of upper extremity 

prostheses produced in the sixteenth century mimicked the human hand. However, these devices 

were heavy, lacked active actuation, and were not practical for use in daily life (Romm, 1989). In 

the twentieth century, the development of the split hook body powered prosthesis provided a more 

functional solution that addressed many of these concerns (Belter et al., 2014). Body-powered 

hook prostheses are cable-driven devices that are controlled by exaggerated movements of residual 

joints. Unfortunately, they have very limited range of motion limiting their capacity to provide 

functional restoration (Chadwell et al., 2020; Hichert et al., 2018; Smit et al., 2012). Myoelectric 

prosthetic hooks can mitigate some of these issues but still lack dexterity and fine motor control. 

Advanced robotic prosthetic devices have been developed which can provide 5 to 30 degrees of 

freedom (DOF) of the human hand and provide adequate gripping force for functional tasks 

(Akhtar et al., 2016; Atzori & Müller, 2015; Resnik et al., 2014). Control of these devices is 

achieved by recording surface electromyography (EMG) signals from innervated muscles in the 
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residual limb, allowing users to leverage more natural motor pathways to control the device. 

However, current control schemes are either cumbersome, unintuitive, or unreliable, leading many 

users to abandon their devices (Biddiss & Chau, 2007). In spite of these issues, myoelectric hands 

are still an attractive approach for prosthetic rehabilitation following limb loss due to their high 

grip strength and potential for intuitive control (Biddiss et al., 2007; Engdahl et al., 2015). 

Commercial EMG control systems typically rely on a mode selection scheme, where the 

user first selects between different movements and then secondarily activates them. In systems 

with an active wrist, users typically toggle between wrist and hand control with a pre-defined 

muscle contraction. Grasp selection is often done sequentially with muscle co-contraction or 

gesture control (Franzke et al., 2019). A more fluid control strategy is pattern recognition in which 

the intended movement is classified from the users' recorded EMG signals and can be 

proportionally activated based on signal amplitude (Kuiken et al., 2016). Most pattern recognition 

systems can independently activate wrist rotation, wrist flexion, or a general hand open-close 

signal. Grasp distinction is not common, even amongst persons with transradial amputations where 

extrinsic flexors and extensors are still present in the residual limb (Li et al., 2010). Commercially 

available systems that are capable of activating a multiple grips have only recently become 

available. Classifiers require a rich set of distinct inputs to accurately interpret movement 

intentions. Existing systems, that use surface EMG, record a spatiotemporal summation of motor 

unit action potentials from a distant location which is complicated by cross-talk between channels 

(Farina et al., 2017) and reduced signal strength (OrtizCatalan et al., 2020). Furthermore, signals 

from deep finger flexors (i.e. flexor digitorum profundus to the index finger), are obscured by more 

superficial muscle activity in the forearm (i.e. flexor digitorum superficialis to the middle finger) 

or lost entirely in more proximal amputations. In addition to these factors, the reliability of 
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commercial surface electrodes is limited by impedance and position alterations due to sweating or 

contact shifting (Farina et al., 2014). Hence, distinguishing grasps is challenging for pattern 

recognition systems that use surface EMG because finger-specific signals are hard to capture and 

sensitive to environmental changes. 

Over the past decade, researchers have investigated software and sensing techniques to 

improve the reliability of pattern recognition systems and expand their capabilities to include grasp 

distinction. In earlier work, participants with transradial amputations used surface EMG and 

pattern recognition to select between 6 and 7 randomly cued hand postures with average movement 

completion rates of 53.9%  (Li et al., 2010) and 77% (Cipriani et al., 2011), respectively. Other 

groups have used alternate machine learning approaches to distinguish up to 10-12 hand and wrist 

postures with greater than 90% offline accuracy (Atzori et al., 2016; Khushaba et al., 2012). The 

classifiers in these studies accurately distinguished more movements by adding information in the 

form of multiple input features per channel, or increasing modeling capabilities with deep 

networks. However, offline simulations alone are not sufficient to characterize online performance 

as real-time control is heavily influenced by the quality of feedback and individual experience 

levels (Krasoulis et al., 2019). Pattern recognition algorithms can also struggle to generalize to 

new contexts. For example, classifiers often issue incorrect predictions while supporting the 

prosthesis weight in untrained arm positions (Teh & Hargrove, 2020). One study found that more 

robust classifiers can mitigate this issue (Betthauser et al., 2018). However, this study did not 

include multiple grasp distinctions. Another study modelled transitions to show that three grasps 

could be distinguished in a variety of static arm positions and used in a functional task (Kanitz et 

al., 2018).  Alternatively, another group used sensor fusion of EMG and inertial measurements to 

control four grasps and hand open. They found that it could improve performance across the 
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workspace (Krasoulis et al., 2020), but required context-specific training. In addition to software 

innovations, previous studies that quantified multiple grasp control improved signal consistency 

with adhesive research grade electrodes or captured more information with alternate sensing 

modalities. 

Surgical interventions can more directly access the peripheral nervous system and improve 

the quality and fidelity of motor control signals. For users with more proximal amputations (i.e. 

above elbow amputation), EMG-based systems are limited due to the fact that the muscles used to 

generate EMG signals for hand control are missing. In these cases, a pattern recognition system 

would rely on subtle co-activations of remaining musculature, which is inherently difficult. 

Targeted muscle reinnervation (TMR) is a surgical procedure in which transected peripheral 

nerves are used to reinnervate surgically denervated areas of muscle. The target muscles are 

typically superficial and after reinnervation produce functional control signals that can be recorded 

via surface EMG (Zhou et al., 2007). TMR patients with transhumeral amputations or shoulder 

disarticulations equipped with adhesive electrodes selected four hand postures in a virtual reality 

environment with an average completion rate of 86.9%. Some patients have been able to control 

multiple grasps of robotic prostheses in laboratory environments (Kuiken et al., 2009; Piazza et 

al., 2020) and home trials (Kuiken et al., 2016). In combination with TMR, decomposition 

algorithms can estimate independent nerve signals from global surface recordings (Farina et al., 

2017). This approach requires high-channel electrode grids and real-time control studies have 

focused on separation of wrist and gross hand movements to date (Kapelner et al., 2020). 

Implantable electrodes have also been proposed to record efferent motor commands directly from 

individual nerves. However, these electrodes are limited by low amplitude efferent motor action 

potentials (Davis et al., 2016) or lack of chronic stability. Conversely, electrodes implanted into 
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muscle tissue can record strong and stable EMG signals. In one study, indwelling electrodes 

eliminated the need to re-calibrate a regression controller in a virtual reality environment for 

months (Dewald et al., 2019). Intramuscular electrodes have also been shown to improve signal 

strength and control precision independent of changes to the mechanical interface or control 

strategy (OrtizCatalan et al., 2020). In another study, electrodes with multiple contacts were 

implanted into individual muscle bellies, enabling 6 degree of freedom (DOF) dexterous control 

including individual fingers of a robotic hand (Davis, et al., 2020). However, the ability for 

intramuscular electrodes to capture finger movements requires a sufficient amount of residual 

innervated musculature or other surgical interventions.   

At the University of Michigan, we have developed the Regenerative Peripheral Nerve 

Interface (RPNI) which consists of a free muscle graft sutured to the end of a divided peripheral 

nerve. The muscle graft regenerates and becomes reinnervated by the regenerating peripheral nerve 

axons. RPNIs have been shown to effectively prevent and treat neuroma pain and phantom pain 

(Kubiak et al., 2019; Woo et al., 2016). Most importantly, RPNIs serve as a stable biological 

amplifier for efferent motor signals, retaining anatomical consistency between the host nerve and 

RPNI functions (Frost et al., 2018; Santosa et al., 2020; Vu et al., 2018).  In a clinical trial, high 

resolution control signals recorded from electrodes implanted into RPNIs remained stable for up 

to 300 days (the duration of observation)(Vu et al., 2020). Vu et al. also used a pattern recognition 

algorithm in a virtual environment to validate RPNI control capabilities (Vu et al., 2020). Pattern 

recognition is the state of the art for intuitive device control and a natural match for most multi-

articulating hands that are designed to switch between grip patterns. Therefore, it is both an easily 

comparable and immediately applicable control paradigm for implantable technologies.  
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In this study, we continue experiments with two persons with transradial amputations and 

electrodes surgically implanted into RPNIs and residual innervated muscles. Vu et al. focused 

specifically on each participant’s RPNIs, here we investigate the signal quality and control 

capabilities of the full set of RPNIs and residual innervated muscles. We demonstrate that 

indwelling electrodes captured stable EMG control signals from both RPNIs and residual muscles 

with a highly favorable Signal-to-Noise ratio (SNR) in both participants. In addition to large 

amplitude recordings, the EMG was also highly specific for motor decoding. Real-time control 

with classifiers often presents a trade-off between responsiveness and stability when determining 

the length of the EMG processing window (Smith et al., 2011). Here we find a more optimal 

solution to this dilemma and utilize a Hidden Markov Model (HMM-NB) which learns transitions 

between latent states to make rapid predictions without sacrificing temporal stability (Kemere et 

al., 2008). We demonstrate online performance in a virtual posture switching task designed to 

reflect real-time finger and grasp control. To our knowledge, this is the fastest and most accurate 

signal acquisition and pattern recognition system that can switch directly between individual finger 

movements. We quantified performance for two posture sets: a 10 class set including extrinsic and 

intrinsic individual finger and hand movements and wrist flexion, and a five class set of functional 

grasps. To demonstrate robustness across physical contexts, we quantified stability of a grasp 

classifier in one participant across novel static arm postures with a prosthesis donned. Finally, both 

participants completed a functional assessment where they used robotic prostheses to move 

differently shaped objects that required the use of multiple hand grasps. 
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4.2 Results 

4.2.1 Speed and Accuracy of Finger and Grasp Classifications 

Two persons with transradial amputations (P3 and P4 from Vu et al., labelled P1 and P2 

here), underwent surgery to have eight pairs of bipolar electrodes (Synapse Biomedical, Oberlin 

OH) implanted into RPNIs and residual innervated muscles. Differentiated signals from each 

electrode pair were filtered and the mean absolute value (MAV) was extracted with a sliding 

window. A Hidden Markov Model (HMM-NB) was trained by instructing participants to mimic 

5-7 repetitions of each posture with their phantom limb. In offline simulations, the HMM-NB 

distinguished the same individual finger and wrist movements, known as the "1 of 10" posture set 

in P1 and P2 with 95.4% and 94.1% accuracy (Fig. 4.1A,D). Additionally, both participants 

controlled a virtual hand in real-time with the HMM-NB to complete a fast-paced posture 

switching task between each of the 10 postures. In one experiment session, P1 successfully 

maintained a one second hold within the 10 second timeout period on 100% of his trials. Online 

classifier accuracy measured real-time control errors during the first second of transition to the 

cued postures. P1 achieved an online accuracy of 93.0% in his experiment session (Fig. 4.1B). As 

shown in Fig. 4.1C, P1 used the HMM-NB to rapidly switch between postures with an online 

latency of 159±237 ms (median±i.q.r.). P2 performed the same calibration and decoding routine 

for three single day experiment sessions for the 1 of 10 posture set. Across all sessions, she 

achieved an online accuracy of 80.0% with a latency of 344±924 ms (Fig. 4.1D,F). P2 was able to 

make corrections and maintain successful holds on 89.3% of her trials. She had the most difficulty 

performing finger adduction, thumb opposition, and relaxing to rest with the virtual hand. 

Unsurprisingly, online performance improved with a reduced number of postures (Fig. 

4.2). Both P1 and P2 completed the same set of experiments using the HMM-NB to rapidly switch 
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between five postures: three functional grasps, finger abduction, and rest. Offline accuracy was 

relatively low for P2, notably the HMM-NB issued incorrect predictions of rest during simulated 

holds. However, when controlling the virtual hand in real-time, P1 and P2 achieved online 

accuracies of 99.5% and 96.3% across one and three experiment sessions respectively. Both 

participants were able to recover from errors and maintain successful holds on 100% of their trials. 

The HMM-NB was also able to distinguish the grasps posture set with even lower median latencies 

of 96±30 ms and 173±151 ms (median±i.q.r.) for P1 and P2 respectively. To compare to previous 

studies that classified finger and hand postures, movement completion metrics were calculated 

ignoring wrist flexion and rest trials (Table A.2.1). 



 60 

 

Figure 4.1 Online metrics of individual finger and wrist posture decoding. Participants controlled a virtual hand with the Hidden 
Markov Model (HMM-NB) to match 10 postures: flexion of all five fingers (T,I,M,R,S), wrist flexion (WF), finger abduction (Ab), 
finger adduction (Ad), thumb opposition (TO), and rest (Re). (A) Simulated offline performance of the HMM-NB during rest and 
hold periods for P1's training data (5-fold cross validation, 5-6 repetitions per movement). (B) An online confusion matrix captures 
transition errors to cued postures while P1 controlled the virtual hand in real-time. (C) Decoder latency was measured as the time 
difference between the onset of new EMG activity and a successful posture. The median (dashed line) and middle 50% (shading) 
is overlaid on histograms binned in 50 ms increments (n = 30 trials). Trials with latency greater than a second (>1) are aggregated 
in the orange rectangle. (D) Offline confusion matrix for P2 using training data from one experiment session. (E-F) Same as above 
for P2 across three single day experiment sessions (n = 181 trials). Trials where a one second continuous hold could not be 
maintained are marked as failures (F) and aggregated in the red rectangle 
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Figure 4.2 Online metrics of grasp decoding. A fewer number of functional grasps could be predicted in real-time with higher 
online accuracy and lower latency. (A) Simulated offline performance of the HMM-NB output distinguishing fist (F), pinch (Pi), 
point (Po), finger abduction (Ab), and rest (Re) for P1 (5-fold cross validation, seven repetitions per movement). (B-C) Online 
accuracy and decoding latency for P1 measured as in Fig. 4.1 (n = 26 trials). (D) Offline confusion matrix for P2 using training 
data from one experiment session (5-fold cross validation, five trials per movement). (E-F) Same as above for P2 across three 
single day experiment sessions (n = 79 trials). Trials with latency greater than a second (>1) are aggregated in the orange rectangle. 

4.2.2 Robustness Across Arm Positions 

In order to be of practical use for patients with upper limb amputations, decoders must be 

reliable to different physical contexts. P2 donned an i-Limb Quantum™ XS (Ossur, Reykjavik, 

Iceland) and was able to switch between functional grasps in eight different arm orientations. P2 

had limited elbow range of motion, described in Supplementary Materials and Methods, and was 

asked to match arm postures to the best of her ability. The virtual reality environment was again 

used for cues and visual feedback to quantify decoding performance across 20-22 trials per arm 

position (Fig. 4.3A). The HMM-NB used for this exercise was trained with her arm and prosthesis 

resting on the table. Classifier performance remained robust across the majority of the arm 
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positions where transition errors were infrequent and quickly corrected (Fig. 4.3B,C). In six of the 

eight arm positions, P2 was able to control the virtual hand with online accuracy never dropping 

below 96% and a decoding latency of 173±113 ms (median±i.q.r). In two arm positions, arm raised 

and behind the back, there was a noticeable increase in transition errors to the cued posture, which 

occurred 7 and 6 times respectively. These positions at the superior and posterior extremes of her 

workspace had lower classification accuracy and a higher decoding latency of 301±299 ms. Even 

though there were more frequent errors in these two positions, the classifier did not completely fail 

and P2 was able to recover and achieve a successful one second hold within the timeout period on 

100% of trials. In the same session. P2 used the same decoder to activate grips with her robotic 

prostheses following verbal instruction in five of the arm positions. During preliminary testing and 

demonstrations, P1 was able to activate the same set of postures using the LUKE arm (Mobius 

Bionics, Manchester NH) in three arm positions. P2 also activated individual flexion of fingers on 

the i-Limb in three arm positions, correctly executing 14 out of 15 flexion attempts. 
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4.2.3 Functional Prostheses Use 

Both participants used the functional posture set to complete five trials of a Southampton 

Hand Assessment Procedure (SHAP)-inspired task (Fig. 4.4). Each trial consisted of five object 

interactions and required the activation of three different grasps. Participants were instructed to 

use specific grasps for the timer and each SHAP object. P1 used the LUKE arm to move SHAP 

heavy objects and completed the task with an average time of 18.75±3.42s (mean±s.t.d.). P2 used 

the i-Limb Quantum™ to move SHAP light objects and completed the task in 36.60±7.66s on 

average. P2 completed the objects in the reverse order. This made it easier for experimenters to 

assist with manual wrist adjustment for the power object. Both participants were largely successful, 

Figure 4.3 Decoder performance across eight different arm positions. P2 performed control experiments in the virtual reality 
environment to quantify decoder performance across eight different arm positions. (A) P2 donned her prostheses, but used the 
virtual reality environment to switch between fist (F), pinch (Pi), point (Po) and rest (Re). (B) P2 calibrated the HMM-NB with her 
arm resting on a table. Latency histograms binned in 50 ms increments for the majority of positions aggregated (blue, n = 116 
trials), as well as the two positions with more frequent and longer transition errors (red, n = 37 trials). (C) In addition to online 
accuracy, the number of transition errors was also reported for each of the 8 positions. 
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performing 23 out of 25 interactions without dropping an object or failing to press the button. 

Additionally, P1 and P2 performed the instructed grasp during their first EMG activation attempt 

on 20 and 19 out of 25 interactions. The main issue P1 encountered was an inability to use point 

for timer stop. Interestingly, this error never occurred at trial start indicating the point could be 

activated under the right conditions. Both participants had instances where they led with a pinch 

to pick up the sphere. P1 seamlessly corrected and engaged the instructed fist grasp in all but 1 

trial, while P2 needed to perform additional EMG activations for correction. The i-Limb took 

longer to switch between grips, so a state machine was coded that required P2 to issue a rest 

command before activating a grasp. This and the need for manual wrist adjustment contributed to 

the variation in completion times between participants. 

Figure 4.4 SHAP inspired grip switching task. Both participants used their prostheses with the functional posture set to perform a 
task in which they were instructed to use specific grasps to interact with three objects and a timer. Sub-tasks were counted as 
complete if the participant succeeded on their first attempt, and correct grasps were counted when the instructed grasp was achieved 
on the first EMG activation attempt. (A) P1 used the LUKE arm and was instructed to use point to start the timer, fist for sphere, 
fist for power, and pinch for extension objects, before using point to stop the timer. (B) P2 used an i-Limb Quantum XS and 
completed the object trio in the reverse order. Completion time (mean±s.t.d, n = 5 trials) included manual wrist adjustments for P2. 
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4.2.4 Signal Strength and Specificity 

The bipolar intramuscular electrodes recorded specific and spatially segregated EMG 

activity particular to individual finger movements. To visualize posture segregation, we used linear 

discriminant analysis (LDA) to define the top two discriminating dimensions for the 1 of 10 

posture set (Fig 4.5). For this analysis, MAV from the 8 bipolar electrode pairs were processed 

with time history parameters that were input to a standard Naive Bayes classifier for successful 

real-time control (Table A.2.3). Rest data was excluded to maintain focus on movement 

distinctions. Overall, posture holds were well separated in the low dimensional space on both real-

time and trial-averaged timescales. For P1, thumb movements were the most distinguished from 

other postures and separated along the first discriminant axis. For P2, wrist flexion was the best 

separated posture, along with flexion of the thumb or index finger in the first two discriminant 

dimensions. These movements were amongst those explicitly targeted by electrode implantation 

and were well represented by individual channels (Fig. A.2.3 and Fig. A.2.4). Additional 

discriminating dimensions would further separate movements, with 4-D embedding capturing 

approximately 90% of the variance in training data.  

In addition to high specificity, the implanted electrodes also recorded large amplitude 

responses with a low noise floor (Fig. 4.6). For P2, we compared the SNR of five intramuscular 

channels to simultaneously recorded surface signals. Bipolar surface recordings were acquired 

using adhesive gelled electrodes (Biopac, Goleta, CA) connected to the same signal processing 

equipment. Across the compared channels, the average SNR for implanted electrodes was 

105.4±82.6 and 152.5±138.6 (mean±s.t.d) gain for P1 and P2. P1 did not participate in a surface 

session, while P2's surface signals averaged an SNR of 8.5±6.6. A high surface SNR of 19.6 was 

observed during finger abduction which prompted a full splay of the hand. We recorded this 
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movement with surface electrodes targeting extensor pollicis longus (EPL) as described in 

Supplementary Materials and Methods. However, it is possible we also recorded activity from 

extensor digitorum communis (EDC) or other nearby muscles. Deep muscles that control 

individual finger movements were more difficult to capture from the surface. Gelled electrodes 

targeting flexor digitorum profundus of the index finger (FDPI) recorded signals with an SNR of 

2.26 during index finger flexion. The SNR for simultaneously recorded implanted electrodes was 

244 for EPL and 66 for FDPI. We also measured SNR for electrodes implanted into RPNIs, 

however attempts to accurately target and record matching surface EMG were unsuccessful. By 

nature, RPNIs also do not have a direct functional correspondent, so residual muscles that control 

related movements were selected for comparison. Across all the comparisons conducted with P2, 

implanted electrodes provided a 6 to 30-fold SNR improvement. 

Figure 4.5 Dimensionality reduction to view posture separation. MAV from eight channels reduced to two discriminant dimensions 
found using LDA. Large outlined points indicate trial averages, while small dots represent individual timesteps during posture 
holds. Dashed boxes magnify separation of relatively close movements. (A) MAV for P1 was processed in non-overlapping 50 ms 
time bins. (B) MAV for P2 was processed in a sliding 200 ms window updated every 50ms. (C) Cumulative variance explained by 
additional dimensions. 
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Figure 4.6 SNR of intramuscular and surface EMG for finger movements. Signal-to-Noise Ratios (SNR) from implanted (IM) 
electrodes from both subjects and simultaneous surface recordings from P2. (A) Example SNRs from individual movement trials 
with simultaneously recorded surface and implanted electrodes from P2. For both movements, the trial with the highest surface 
SNR was chosen. (B) SNRs were calculated for implanted channels by averaging the active and rest RMS voltages across 5 trials 
of the individual finger movement most relevant to the targeted muscle. For P2, simultaneous surface recordings were obtained by 
individually targeting implanted residual muscles. For RPNI comparisons (purple), appropriate residual muscles were selected 
based on the cued movement. 

4.2.5 Alternate Classifier Simulations 

The HMM-NB models underlying state transitions to rapidly issue accurate predictions. 

Classification stability and accuracy can also be improved by adding time history and additional 

informative features. Fig. 4.7 demonstrates the offline ability of the HMM-NB and a standard 

Naïve Bayes (NB) classifier as well as three alternate classifiers distinguishing the 1 of 10 posture 

set. The alternate classifiers used 5-time domain features and 6th order auto-regressive coefficients 

to characterize EMG from each channel. Increasing window length did not create multiple time 
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points for input, preventing alternate classifiers from modelling EMG patterns over time. P1's 

alternate classifiers yielded improvements in combination with larger processing windows, 

however this difference was not robust for P2 across four training sessions. Overall, the 

performance difference between NB using only MAV and each alternate classifier was not 

significant for implanted electrodes (p > 0.2, paired t-test, n = 35 window lengths across 5 

datasets). However, additional features proved beneficial when applied to P2's surface EMG, 

which NB could not well distinguish from only MAV. Adding features increased P2’s surface 

performance by 17.8±10% (mean±s.t.d.) across all window lengths without changing the 

classification model. By comparison, additional features did not significantly impact NB 

performance with the implanted electrodes (p > 0.5, paired t-test, n = 35 window lengths across 5 

datasets). The HMM-NB consistently improved simulated performance over NB, and overall 

outperformed each alternate classifier (p < 0.01, paired t-test, n = 42 window lengths across 6 

datasets). The HMM-NB most noticeably improved performance for smaller processing windows. 

These results indicate that algorithms modelling state transitions or EMG dynamics can improve 

accuracy and remain robust to smaller processing windows. This potentially benefits real-time 

control applications by reducing a trade-off between responsiveness and stability. An online 

comparison between the NB classifier and the HMM-NB is detailed in Supplementary Materials 

and Methods. Both participants used the NB classifier to complete the 1 of 10 posture switching 

task with average online accuracy of 85.8% and latency of 328 ms. These results are promising for 

situations that demand simplicity or are highly sensitive to computational workload. 
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4.3 Discussion 

In this study, we have demonstrated that implanted electrodes record high-quality EMG 

signals from RPNIs and residual innervated forearm muscles in two persons with transradial 

amputations. Both participants were implanted with electrodes targeting the same individual finger 

movements and were able to control a virtual hand to distinguish the same posture sets which 

included individual finger, intrinsic, and compound hand movements. The posture switching task 

tested real-time control capabilities of the high speed pattern recognition system, allowing users 

to directly switch between postures and rest. The speed and accuracy of our pattern recognition 

system with implanted electrodes, to distinguish finger movements, exceeds earlier work which 

quantified real-time performance in virtual environments (Table A.2.1). In a controlled 

environment, the HMM-NB also distinguished a smaller set of functional postures in novel static 

Figure 4.7 Offline alternate classifier simulations. Offline performance of different algorithms evaluated across 7 increasing 
window lengths on the 1 of 10 posture set for P1 and P2. The Hidden Markov Model (HMM-NB) and a standard Naïve Bayes 
classifier (NB), used only mean absolute value (MAV) as an input feature. An alternate NB implementation, linear discriminant 
analysis (LDA), and a support vector machine (SVM) used five time domain features and 6th order auto-regressive coefficients 
per channel. Classifiers were evaluated across individual timesteps during hold and rest periods using 5-fold cross validation. 
Dashed lines for P2 represent performance using EMG recorded from eight bipolar gelled adhesive surface electrodes. Performance 
with P2's implanted electrodes (mean±s.e.m) was evaluated for simultaneously recorded intramuscular EMG and three calibration 
sessions used for real-time control experiments. 
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arm positions. P2’s performance was consistent across the majority of the workspace, which we 

attribute to the stability of signals from the implanted electrodes. Finally, we demonstrated that 

participants could use the high speed pattern recognition system to control advanced robotic 

prostheses, eliminating the need for time consuming grip triggers or selection schemes. The LUKE 

arm came equipped with real-time research software that allowed P1 to achieve functional control 

similar to the virtual environment. He was able to activate grasps without a perceived delay and 

seamlessly switch between postures. P1 leveraged this capability to use the pinch and fist grasps 

to manipulate the SHAP sphere. For P2, our pattern recognition system was adapted to work with 

commercially available grip selection software, similar to previous work (Kanitz et al., 2018; 

Krasoulis et al., 2020; Kuiken et al., 2009). Enforcing a grip entry/exit structure can improve 

stability, however it increases the effort required to correct erroneous outputs. Furthermore, the 

ability to move directly between hand postures has been shown to improve functional performance 

(Piazza et al., 2020). Regardless of the hand interface, implementing proportional control will be 

beneficial for more precise tasks. The specificity of the indwelling electrodes offers the ability to 

directly map muscle activations to individual fingers. Different mappings can be explored to either 

improve precision within i-Limb grips or increase dexterity of the LUKE arm during object 

manipulations. 

Pattern recognition is just one approach being considered for intuitive grasp control, 

although it may be the most practical and immediately applicable technique, because it pairs well 

with commercially available hand software. Furthermore, classifiers can be computationally 

inexpensive and remain accurate when increasing the number of predicted movements relative to 

the number of input channels (Kanitz et al., 2018; Krasoulis et al., 2020; Li et al., 2010). For 

example, in Vu et al., P1 was able to activate rest and four finger postures using only two EMG 
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channels (Vu et al., 2020). However, it can be challenging for classifiers to generalize to new 

contexts. In both participants, arm movements occasionally produced unintentional extensor 

activity. Ignoring unreliable channels was a quick and effective solution for this study, but could 

limit the number of predictable grasps compared to more robust classifiers (Betthauser et al., 

2018). Changing EMG patterns during object interactions also led to some misclassifications when 

P1 pressed the timer button with the point grasp. Similar phenomena have been noted in other 

research applications (de Luca, 1979; Hudgins et al., 1993) and could be a natural product of the 

motor system (Alaerts et al., 2012; Downey et al., 2018; Krasoulis et al., 2019). Regression 

algorithms are being explored in combination with implantable electrodes for multiple DOF hand 

control (Dewald et al., 2019; Davis, et al., 2020; Vu et al., 2020). In addition to increased dexterity, 

regressors may be more robust to changing contexts (Hahne et al., 2018). However, there are 

limitations on the number of DOF that can be simultaneously and independently activated. 

Biomechanical control strategies are also being developed that use a principled musculoskeletal 

model to provide robust estimates of intended joint kinematics and torques (Kapelner et al., 2020; 

Sartori et al., 2018). In order to be effective, regression and biomechanical techniques require the 

prosthetic hand to allow precise and simultaneous control of individual fingers. The ability to 

incorporate an active wrist is also an important consideration for algorithm development, as it 

allows for more natural body movements (Gates et al., 2016). Ultimately, the signal quality and 

strength of implanted electrodes is relevant to any EMG control paradigm. Our signal processing 

and feature extraction provide a stable proxy for local motor unit activity for residual muscles or 

the peripheral nervous system via RPNIs (Vu et al., 2018, 2020). Signals from implanted 

electrodes can be stable for months to years (Dewald et al., 2019; Vu et al., 2020), which is 
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advantageous for pattern recognition and regression algorithms as large calibration datasets can 

readily be assembled. 

Our experimental system used indwelling electrodes that exited the skin and were 

connected to a computer. While we have found these signals stable over years, this is not a viable 

long-term solution for most users. The signal processing chain can readily be adapted to a low-

power architecture (Irwin et al., 2016), however many other system features need to be considered. 

Multi-channel percutaneous electrical connectors have been developed (Mooney et al., 1974), but 

risks of complication and infection have limited their use to temporary or life-saving medical 

devices (Koch et al., 2019). Osseointegration is a hardware innovation that improves the 

mechanical linkage between user and prosthesis. In our study, we observed unintentional muscle 

activations during some arm movements and reduced performance at the extremes of P2’s range 

of motion. For some patients, osseointegration may mitigate these issues and improve controller 

reliability by reducing the effects of prosthesis weight. It also has the benefit of creating a direct  

physical feed-through for intramuscular electrodes (Boni et al., 2018; OrtizCatalan et al., 2020). 

However, it is limited to patients that meet anatomical criteria such as residual limb length. Fully 

implantable wireless devices have gained traction for neuromodulation therapies (Coffey, 2009; 

Verrills et al., 2016). By modifying these approved neuromodulation systems, development and 

certification costs can be reduced by utilizing shared platforms across the industry (B. Smith et al., 

2005). 

This study focused on expanding the capabilities of pattern recognition algorithms to 

extract hand motor commands reflective of user intent. However, a lack of sensory feedback and 

proprioception can limit the benefits of myoelectric devices. For example, even though thumb 

opposition and finger abduction were accurately predicted offline, P2 had difficulty activating 
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these postures during real-time control. P2 reported limitations on proprioceptive feedback in her 

phantom limb, notably including her thumb metacarpal phalangeal joint. Additional practice 

(Krasoulis et al., 2019) or enhanced training strategies (Nam et al., 2017) could potentially resolve 

this issue. However, improved feedback mechanisms (D’Anna et al., 2019; George et al., 2019; 

Srinivasan et al., 2017; Tan et al., 2014) may be necessary for some patients to realize the full 

potential of improved motor control. Increasing the responsiveness, precision, and sensory 

feedback can provide additional benefits for prosthetic users such as increased trust (OrtizCatalan 

et al., 2020), increased embodiment or reduced phantom limb pain in some users (Page et al., 

2018). Regardless of the specific algorithm or control strategy, the stable and highly specific EMG 

afforded by indwelling electrodes can play a significant role in improving prosthetic control and 

user satisfaction in the coming years. 

 

4.4 Materials and Methods 

4.4.1 Signal Processing and Experiment Set-Up 

The two participants with RPNIs and indwelling electrodes labelled P1 and P2 for this 

study, were respectively labelled P3 and P4 in Vu et al. (Vu et al., 2020). Detailed anatomical 

information is also present in Supplementary Materials and Methods. Briefly, both participants 

had bipolar electrode pairs (Synapse Biomedical, Oberlin, OH) chronically implanted into their 

ulnar and median RPNIs along with the following residual muscles targeting finger and wrist 

functions: Flexor Pollicis Longus (FPL), Flexor Digitorum Profundus - Index Finger (FDPI), 

Extensor Pollicis Longus (EPL), Extensor Digitorum Communis (EDC), and Flexor Carpi Radialis 

(FCR). P1 also had an electrode pair implanted in Flexor Digitorum Profundus - Small Finger 

(FDPS). EMG from the implanted electrode contacts was amplified, sampled at 30kSps, and 
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referenced with a Cerebus Neural Signal Processor (Blackrock Microsystems, Salt Lake City, UT). 

The Cerebus simultaneously recorded and sent referenced EMG to a Matlab xPC (Mathworks, 

Natick, MA) for real-time processing. Fig. 4.8D shows the signal processing chain on the xPC for 

online decoding. The xPC applied the 100-500Hz band-pass filter and down-sampled EMG to 1 

kSps, from which mean absolute value (MAV) was the only feature extracted for online decoding. 

The xPC sent UDP packets to manipulate two virtual hands (Kumar & Todorov, 2015) which were 

presented to the subject on an external laptop. A lead hand to cue postures was positioned in the 

foreground, while a secondary hand which the subjects could control was positioned in the 

background. The xPC's real-time guarantee ensured that EMG was processed and time-synced 

with behavioral data and decoders executed within one millisecond. 
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Figure 4.8 Details of posture switching task and HMM architecture. (A) The HMM-NB contained three interconnected states for 
rest and posture holds with one transition state to and from rest. Point highlighted for example. The probability of a posture was 
determined by summing the probabilities of the rest and hold states. (B) An expectation-maximization unsupervised learner was 
carefully initialized by placing rest and hold states sequentially along active hold periods with transition states in between. Mean 
absolute value (MAV) was the EMG feature used for online decoding. (C) P2’s online activity during a switch to point posture. 
(D) Participants controlled a secondary hand (background) with visual feedback to match posture cues (foreground). (E) Optimized 
latent states of the online decoder capture EMG dynamics in C. One state (red) reflects a sharp increase in EDC activity while two 
states (green and purple) capture continued hold of the Ulnar RPNIs. (F) Participants were required to hold the cued posture for 
one second continuously before the next cue was presented. Decoder latency measured classifier responsiveness as the time 
difference between new EMG activity and a successful hold. Online accuracy was evaluated across individual timesteps for the 
first second of transition to the cued posture. 1 of 10 posture set with errors shown for example. 
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4.4.2 Hidden Markov Model for Real-Time Control 

Many EMG classification algorithms are error prone when users move between postures 

or during extended holds. This is because they characterize postures as an average point in feature 

space and have no knowledge of the prior state or capability to model transitions. Common 

methods to improve performance are to increase the length of the processing window for stability 

or add additional output filters to reduce transition errors. These methods are effective, but they 

automatically introduce a compromise between classifier stability and responsiveness (Smith et 

al., 2011). Here, we explore a more principled solution. The Hidden Markov Model (HMM-NB) 

models transitions between latent states and closely resembled previous work (Kemere et al., 

2008). The probability of a latent state occurring is determined both by the observed EMG inputs 

as well as the occurrence of previous states. A linear transition matrix determined the likelihood 

of moving from one latent state to another and optimally smoothed transitions. A Naive Bayes 

model represented three interconnected "hold" states per posture which can capture dynamic EMG 

patterns. The model also contained "transition" states going to and from rest as shown in Fig. 4.8A. 

State models were carefully initialized by splitting the active period or rest periods of the training 

data into thirds Fig. 4.8B. Active periods were automatically marked in training data per trial by 

retroactively finding active channels and selecting the starting point of when their MAV exceeded 

4 times the standard deviation of the trial's rest data for at least 200ms. The transition matrix for 

“hold” and “rest” states was initialized with an equal probability of remaining in or moving to 

another connected state. “Transition” states were initialized with a 0.9 probability of remaining in 

the state. We limited the expectation-maximization algorithm (Rabiner, 1989) to five iterations 

and selected parameters from the iteration with the highest likelihood on held out test data. During 

online decoding, the probability of a given posture or rest was taken as the sum of the three “hold” 
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or “rest” state probabilities as shown in Fig. 4.8E. The “transition” states were not selected for 

output because they represented the beginning of activations from rest, while participants could 

directly switch between grasps during real-time control. Fig. 4.8C shows an example of P2 

initiating a point during online control. The solution found by the HMM-NB captures her changing 

EMG patterns, as shown in Fig 4.8E. The inclusion of multiple latent states per posture increases 

modeling capabilities and the ability to model transitions allow the HMM-NB to operate with less 

time history than steady-state classifiers. Performance comparison to a standard NB classifier and 

analysis are included in Supplementary Materials and Methods. 

4.4.3 Virtual Posture Switching Task 

Table A.2.2 shows the posture sets explored in this study. MAV from all eight channels 

and calculated with 50 ms of time history, was used to control the virtual hand for both the 1 of 10 

and grasps posture sets. P1 had significant time constraints during the course of the study. He 

performed one session of the virtual posture switching task for both the 1 of 10 and grasps posture 

sets. P2 completed three sessions for both posture sets. To calibrate the HMM-NB, participants 

matched the virtual cue hand with their phantom hand to the best of their ability. Participants faced 

the external laptop while resting their arm on the table in a neutral and comfortable position. 

Calibration runs involved participants holding each of the desired postures 5-7 times for 2.5-3 

seconds with an equal length rest period in between each hold.  Where possible, calibration runs 

were completed on the same day before online control runs. Even though the total routine was 

relatively quick (approximately five minutes or less), older calibrations – 18 days for P1’s 1of 10 

posture switching task and 16 days for P2’s arm position test – were used twice to save time and 

effort. During online real-time control, participants actively controlled the secondary hand and 

attempted to match the cue hand. Participants used a free running classifier, meaning the decoder 
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output was never automatically reset to rest or a particular posture. The secondary hand turned 

green when the decoder output matched the cued posture as an additional success indicator. 

Participants were required to match the cued posture for one second without interruption. If the 

participants failed to achieve a one second hold within 10 seconds, the trail was considered a 

failure. A five second timeout was used for P2’s arm position test. After a successful hold or 

failure, a new posture was immediately cued in a pseudo-random order. This task encourages 

participants to directly switch between postures at a faster pace than the training procedure. The 

requirement of a continuous hold ensures that successful algorithms must be both stable and 

responsive. In summary, the posture switching task was designed to be indicative of a classifier's 

capability to actively control prostheses in real-time.  

Fig. 4.8F highlights two of P2's real-time control trials with errors to demonstrate the 

analysis metrics for the posture switching task. Online classification accuracy was evaluated across 

individual timesteps for the first second of transitions to the cued posture. Perfect accuracy 

required the classifier to switch and maintain a one second successful hold without any error. The 

one second hold length was chosen to be similar to the selection period in previous work (Kuiken 

et al., 2009; Li et al., 2010). Sometimes, participants would pause before attempting the cued 

posture, possibly due to physical or mental fatigue. Rest outputs under those circumstances were 

ignored, however moving from the cue to rest was penalized. Decoder latency measured classifier 

responsiveness and controllability. Latency was calculated as the time difference between the onset 

of new muscle activity and the beginning of a successful hold. EMG onset was determined visually 

by viewing the filtered and rectified EMG for each trial and marking the beginning of a new EMG 

pattern. EMG onset approximates reaction time and averaged 604.9±268.8 ms for P1 and 

517.8±281.6 ms for P2 (mean±s.t.d.). Latency was not calculated for trials without a distinct EMG 
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change or when the pseudo-random order produced a duplicate. These were rare occurrences, 

accounting for 3.5% of all trials. Failed trials were marked with a 10 second latency to reflect task 

timeout. Median and i.q.r. were used to characterize latency since the distributions did not have a 

normal shape. 

4.4.4 Functional Testing 

The functional posture set was used to test decoder stability across arm positions and to 

complete the SHAP inspired task. P2 completed one arm position session quantified with virtual 

posture switching task described above. Both participants performed the SHAP-inspired task in 

one session. The functional posture set matched the direct control strategy for robotic prostheses 

which used rest to open the hand. We did not employ a distinct hand open state because the robotic 

hand interface was sensitive to instabilities. We observed instances of unintentional extensor 

activity during arm movements, which could erroneously trigger finger abduction predictions. 

Incorporating an active hand open signal for proportional control is a consideration for future 

studies. P2's functional decoder used MAV from her RPNIs, FPL, FDPI, and EDC. EPL was 

observed to activate unintentionally during arm movements and held out. FCR was not observed 

to cause any issues but was removed as a precaution since it was not necessary to distinguish 

grasps. P1 used a decoder that received MAV only from his RPNIs, FPL, FDPI, and FDPS 

electrodes. Alternate channel combinations were not explored due to time constraints. 

Both participants donned myoelectric prostheses to perform the SHAP-inspired tasks. 

Participants relied solely on their robotic prostheses for visual feedback of the pattern recognition 

system. Durplex sockets were fabricated for each participant's residual limb at the University of 

Michigan Orthotics and Prosthetics center by a certified prosthetist. To control physical prostheses, 

the xPC sent commands via serial connection to a custom circuit board which issued the 
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appropriate CAN messages for each hand. The software interface controlled robotic prostheses by 

directly translating predicted postures to closed grasps while rest commands opened the hand. For 

P1, the internal controller on the LUKE arm operated in position control mode. Finger positions 

corresponding to the endpoints of the current predicted posture were sent to the LUKE arm, which 

processed updates every 10ms. For P2, a state machine was coded to interface between the xPC 

and i-Limb which closed and opened selected grips. The i-Limb interface introduced a hardware 

delay due to the time to process a grip change. However, the compact form factor of the extra small 

i-Limb Quantum was greatly preferred for P2, who could not lift the LUKE arm. The SHAP-

inspired task was evaluated by trial time and two qualitative metrics. A sub-task was counted as 

complete if it was performed in a single attempt. It was possible to complete tasks without using 

the instructed grasp. The number of sub-tasks where the correct grasp was achieved without 

multiple activation attempts was also counted. 
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Chapter 5 Dexterous Hand Control with Peripheral Interfaces 
 

These results were submitted as an abstract to the Myoelectric Controls Symposium 2020. 
However, the conference was postponed due to COVID-19. This thesis expands on those results 

with additional details, analysis, and discussion. 
 

5.1 Introduction 

Pattern recognition systems can allow prostheses users to intuitively activate different grips 

of multiarticulating hands. In Chapter 4, we demonstrated that intramuscular electrodes and a high-

speed pattern recognition system can may increase the number of movements that can reliably be 

activated. However, other challenges associated with grasp control remain unresolved by 

commercial technologies. First, since individual flexor activity cannot reliably be measured via 

surface EMG, a global proportional control signal is often applied across all grips. Specifically, 

rectified EMG is integrated over time, averaged across all input channels, and then thresholds and 

gains are tuned per user preference (Kuiken et al., 2016). This requires users to learn how to 

modulate grips with a uniform contraction instead of directly controlling active fingers. Second, 

most multi-articulating hands require a return to a fully open position before activating a new grip. 

This prevents users from being able to manipulate or handle objects, which may limit the practical 

benefits of grasp distinction (Piazza et al., 2020). 

At a minimum, multi-articulating hands have two motors to support actuation of power and 

precision functions. Most commercial devices have a single motor per finger and an additional 

motor for thumb opposition. Independent control of these motors is technically feasible but rarely 

used due to a lack of independent control signals. RPNIs and other intramuscular recording 
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electrodes now provide more movement-specific signals (Vu et al., 2020). As a result, hand 

manufacturers will likely support individual finger control as these technologies move closer to 

clinical practice. In addition to specificity, intramuscular electrodes have also been shown to 

improve the precision of proportional control (OrtizCatalan et al., 2020). Previous work with 

RPNIs in able-bodied primates has shown accurate position tracking of digits with a linear Kalman 

Filter (KF) (Vu et al., 2018). In this study, we combine our high-speed movement classifier, the 

Hidden Markov Model (HMM), to predict movements in combination the linear KF. Both of our 

participants with transradial amputations and indwelling electrodes used this system to control 2 

DOF simultaneously. Performance was measured using a virtual target task that required 

participants to match positions of the index and middle-ring-small (MRS) fingers. 

 

5.2 Results 

For each patient, Kalman Filters were trained to model individual and combined flexion of 

the index and MRS fingers, rest, and a combined finger extension. A Hidden Markov Model 

(HMM) switched between the five movement states and loaded control parameters specific to 

individual and combined finger movements (Wu et al., 2004; Yu et al., 2007). The switching 

architecture prevented unintended coactivations by freezing inactive fingers. Decoder parameters 

were trained by cueing each patient to follow a virtual hand as it fully flexed or extended different 

movements. The online target task required patients to simultaneously move both fingers to full 

and partial position targets within a tolerance. To approximate task difficulty, an able-bodied 

subject also completed the task with a data glove as shown in Table 5.1. P1 successfully navigated 

to 99% of the presented targets. He was able to approach performance of the able-bodied subject, 

but with reduced path efficiency and increased orbiting time. This indicates minor issues 
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stabilizing finger positions and a few unintentional state activations. P2 was still able to 

successfully reach 91% percent of the targets within the timeout period. However, she had more 

difficulty stabilizing around the targets and activating the correct fingers. Eliminating extension 

movements from the kinematic space greatly improved her performance. 

 Trials 
(n) 

Success 
Rate (%) 

Acquisition 
Time (ms) 

Orbiting 
Time (ms) 

Bit Rate 
(bps) 

Path 
Efficiency (%) 

P1 101 99 872±77 191±72 1.79±0.08 73.8±2.5 

P2 64 91 1772±233 510±156 1.15±0.10 53.7±4.2 

P2 (flex only) 109 99 1026±82 141±51 1.52±0.10 61.8±2.5 

AB (glove) 109 100 721±31 50±21 1.80±0.06 86.8±1.5 
Table 5.1 Performance metrics for the 2-DOF target task with peripheral interfaces. The task was performed by P1, P2, and an 
able-bodied (AB) subject. P1 and P2 controlled the virtual hand with their EMG using switching Kalman filter (SKF), while the 
able-bodied subject used a data glove that tracked his finger positions in real-time. P2 also completed one session where the decoder 
was only required to move to flexion targets from rest. 

The differences in classifier performance between P1 and P2 was reflective of their overall 

task performance as shown in Figure 5.1. This task required distinction between a similar number 

of movements as Chapter 4. However, from the perspective of both the user and decoder, it was 

more difficult because it spanned several movement conditions including full activations, subtle 

movements, and fine adjustments of two continuous DOF. The HMM accurately tracked P1’s 

movements to both full and intermediate targets. Across both subjects, we did not observe large 

differences in classifier accuracy between partial and full movements during real-time control, 

even though the decoders were only trained on full target distances. For P2, the HMM did not 

perform as well, often confusing rest with extension and all finger flexion with index only flexion. 

The latter was still noticed when extension movements were removed, although overall 

performance improved. Figure 5.2 shows that P1’s online behavior was consistent, and his decoder 

robust to differences between his calibration. P2’s behavior was less consistent and shows 

remaining extensor activity from previous trials, possibly from effort to stabilize her decoder. 
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Figure 5.1 : Classifier accuracy during online continuous control. a) P1 classifier accuracy for rest targets (Re) and partial and full 
movement targets for index flexion (IF), MRS flexion (SF), flexion of all four fingers (BF), and extension of all four fingers (BE). 
b) same for P2. c) P2’s classifier accuracy improved when only flexion movements were considered. 

 

 
Figure 5.2 EMG envelopes during calibration and online control. a) Smoothed EMG envelopes (mean±s.e.m.) for training cues 
where P1 fully flexed both his MRS and index fingers. b) activation envelopes of the same channels for similar targets during real-
time control. Trials were time aligned such that time = 0s is the onset of EMG activity. c,d) same for P2. 

 



 86 

5.3 Discussion 

In this study, both participants were able to use a 2 DOF grasp controller to simultaneously 

match finger position targets at intermediate and end points of the range of motion. These results 

demonstrate that RPNIs and indwelling electrodes can restore some dexterous grasping functions 

in persons with amputations. An HMM was chosen to distinguish active finger movements for the 

SKF. This classifier was chosen based on the results of Chapter 4 and could track subtle as well as 

full finger movements. P1’s performance with the SKF was almost as good as the able-bodied 

subject, although he did require more time to stabilize the decoder around targets. In addition to 

independence, this system may also improve movement precision compared to proportional 

controllers that use surface EMG as an input.   

P1 and P2 completed the task with varying degrees of success. The example calibration 

data in Figure 5.2 suggests similar consistency during training for each participant. P2’s 

inconsistencies during online control could be due to changes in control policy or individual skill 

level  (Krasoulis et al., 2019). Alternatively, they could be in response to decoder errors, which 

were reduced by removing active extension from the task. Her SKF implementation output new 

state and position estimates every 100ms compared to 50ms processing bins for P1. The lengthier 

integration window may have reduced her ability to make fine adjustments (Cunningham et al., 

2011). In Chapter 4, P2 was highly successful using a HMM with the same structure to perform 

discrete movements. A different model may have improved performance for graded movements, 

and trajectory smoothing may have made it easier for her to correct errors (Yu et al., 2007). 

The SKF can be adapted to commercial multi-articulating hands by using the classifier to 

switch between pre-programmed grips. Most grip selection software is not designed to frequently 

switch between movement states. Therefore, a single-state classifier such as linear discriminant 
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analysis (LDA) could reduce computational overhead and may not noticeably impact performance. 

The regressor in the SKF would then improve modulation within grips compared to proportional 

controllers that do not specify a relationship between channels and individual DOF. Future 

wearable or implantable systems may have strict limits on channel counts. P1 and P2’s SKF 

implementations used only four and five differentiated channels, respectively. Dexterous grasp 

control may then be achievable even when a portion of channels is reserved for wrist or arm 

functions. Including additional control signals could increase the number of DOF. Although the 

HMM predicted 11 discrete movements in Chapter 4, it may be difficult to scale to an increasing 

number of movement combinations for the SKF. The two DOF controller in this study would be 

sufficient to control precision and power synergies of the SoftHand Pro 2 (Piazza et al., 2020). 

Alternatively, multi-articulating hands can have grasp synergies programmed in software. Based 

on the results in Chapter 4, we expect performance to remain robust across different arm positions. 

However, it is unknown if participants will be able to use the SKF to handle and manipulate 

objects. Future work should explore the functional utility of dexterous hand control compared to 

grip-switching.   

 

5.4 Methods 

5.4.1 Target Matching Task 

The virtual target matching task is shown in Figure 5.3a,b. In each trial the inner hand 

moved its fingers to a target position and subjects simultaneously moved the two finger groups on 

the outer hand to match. Trials were considered successful if the subject was able to remain within 

±11% along each dimension for a continuous 1s hold time. To aid visualization of the task, the 

inner hand turned green when subjects were within the movement tolerance. Targets were 
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presented in a center-out order where every other target was a return to rest. Individual extension 

movements were not considered in this study. Future studies should include more and smaller 

targets to evaluate kinematic boundaries and precision.  

 
Figure 5.3 Details of the target matching task and SKF architecture. a) Target matching task showing an index flexion trial where 
P2 controlled the outer (grey) hand and was asked to match the position of the inner (blue) hand. b) Targets shown in a two 
dimensional plane. Decoders were trained on rest (green) and targets at the end of range of motion (orange). Intermediate (light) 
targets were only presented during real-time control. Trials where the decoder began in an overlapping region were ignored for 
analysis. c) A Switching Kalman Filter (SKF) decoded EMG into finger positions. Mean absolute value (MAV) was input into the 
SKF which used a Hidden-Markov Model (HMM) to select and recursively update only active finger kinematics. For example, 
index finger flexion shown in red. The “1” in the kinematic vector is a dummy variable used to model baseline EMG activity. 

Success rate was defined as the number of trials with successful hold periods out of valid 

online trials. If the subject began a trial to an intermediate or rest target in the overlapping tolerance 

region, the trial was marked as invalid and discarded. Additional performance metrics were 

evaluated on successful trials and calculated similar to previous work (Vaskov et al., 2018). 

Acquisition time and orbiting time measured the total time required to begin a successful hold and 

time spent stabilizing around the target, respectively. Bit rate was calculated by considering the 
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underlying task as acquiring a single target in a two dimensional space (Thompson et al., 2014). 

Path efficiency measured movement quality and was sensitive to incorrect activations at the start 

of a trial. An ideal path was calculated per trial by projecting the point of first target contact onto 

a straight line between the start and end points of the trajectory. Efficiency was then calculated as 

the distance of the ideal path divided by actual distance taken to contact the target. 

5.4.2 Switching Kalman Filter 

P1 and P2 participated in this study while completing experiments for Chapter 4 which 

details the signal processing setup.  For P1, mean absolute value (MAV) of Flexor Digitorum 

Profundus, index section (FDPI), Flexor Digitorum Profundus, small section (FDPS), Extensor 

Digitorum Communis (EDC), and his Ulnar RPNI were calculated in 50ms bins and input to the 

SKF. P2’s decoder used MAV calculated in 100ms bins from her FDPI and EDC electrode pairs 

as well as Extensor Pollicis Longus (EPL), and both of her Ulnar RPNIs. Decoders were calibrated 

by asking patients to mimic the virtual hand with their phantom limb as it moved between rest and 

out targets. Intermediate targets (light orange in Figure 5.3b) were not included in the calibration 

routine but were presented during the online matching task. Each calibration trial began with a 

300ms delay accounting for reaction time, followed by 750ms movement to and a 2s hold at each 

target. This procedure meant that kinematic relationships were determined around single 

movement speed. Although not ideal, this method is practical and has been successfully used in 

previous experiments with linear decoders (Vu et al., 2020).  

In preliminary experiments, P1 was unable to complete this task with a two DOF Kalman 

filter and no switching architecture. Figure 5.3c details the structure of the SKF. A HMM that 

distinguished between rest, index flexion, MRS flexion, combined flexion, and combined 

extension was trained with the same iterative algorithm and latent state structure presented in 
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Chapter 4 (Vaskov et al., 2020). Two separate single DOF KFs were trained for each individual 

movement using procedures from previous work (Vaskov et al., 2018; Vu et al., 2018, 2020). The 

index only filter used MAV from extensors and FDPI as inputs and coefficients were determined 

from extension and index flexion trials. The MRS only filter used MAV from extensors, Ulnar 

RPNIs, and/or FDPS as inputs and coefficients were determined from extension and MRS flexion 

trials. An additional two DOF Kalman filter was trained using all decoder channels and all 

movement trials. Like Chapter 4, the HMM selected a new movement if it occurred with 

probability greater than 0.8. Since the KF is a recursive algorithm, the selected filter simply 

continued to update active finger states in the combined kinematic vector while the velocity of 

inactive fingers was set to 0 and the position unchanged. Trajectory blending schemes to smooth 

transitions could also be considered in future work (Yu et al., 2007). 
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Chapter 6 Discussion 
 

6.1 Brain-Machine Interfaces 

The results of the non-human primate study discussed in Chapter 2 are clinically applicable 

to patients suffering from SCI or other motor degenerative conditions. In these populations, sensors 

that directly interface with the brain can be used to control prostheses that restore hand and arm 

functions. Clinical surveys suggest that many patients would be willing to adopt this technology 

provided the performance benefits outweigh surgical risks (Blabe et al., 2015; Lahr et al., 2015). 

Although a few laboratory systems have been cleared by the FDA for clinical research, animal 

models remain key to the development of novel recording electrodes and implantable electronics.   

In Chapter 2 we demonstrated that individual finger movements can be distinguished based 

on motor cortex activity in two primates. Precise real-time control of each finger group was 

achieved using a state-of-the-art linear decoder (Gilja et al., 2012). In clinical studies, patients have 

used BMI to fully open or close grasps with a prostheses (Ajiboye et al., 2017; Bouton et al., 2016; 

Collinger et al., 2013). Chapter 2 demonstrates that re-calibration with a velocity-based intention 

estimation model could improve grasp precision across the complete range of finger motion. 

Previous work has documented strong connections between motor and sensory cortices relating to 

hand functions (Schroeder et al., 2017).  Despite these connections, decoder performance remained 

consistent in the absence of physical hand movements and changes in tactile sensation. This could 

either be due to adaptation by the patient or the calibration process finding an ideal forward map 

(Orsborn et al., 2014b; Shenoy & Carmena, 2014).  
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In the future, the linear framework presented here and elsewhere may be expanded to 

accommodate simultaneous hand, wrist, and arm DOF. The selection of DOF will also be a 

function of prostheses availability. Kinematic decoders output predictions which can easily be sent 

as control inputs to robotic arms or exoskeletons, however these devices may be limited in their 

movement capabilities. Functional electrical stimulation can activate individual muscles or nerve 

synergies in a paralyzed limb, however precise control of these systems is still being researched 

(Ajiboye et al., 2017; Ciancibello et al., 2019). In both cases power management, either in terms 

of battery life or muscle fatigue, will need to be considered as portable platforms are developed 

for daily use.  In a clinical setting, patients may find it more difficult to independently control 

increasing DOF (Wodlinger et al., 2015). Due to the complexity of the interface, extensive 

coaching or relying on patient adaptation may be difficult or impossible in many cases. Supervised 

sessions using intention estimation and adaptive calibration share the learning burden with the 

algorithm and may ease adoption for a broad segment of the patient population.  

 

6.2 Peripheral Nerve Interfaces 

In other cases, such as amputations, the peripheral nervous system remains intact up until 

the point of injury. In a clinical trial, electrodes implanted into RPNIs and residual muscles 

extracted high resolution motor commands to control robotic hands (Vu et al., 2020). Similar to 

other populations, surveys of people with amputations indicate that surgically implanted systems 

are likely to be adopted provided they can improve grasp control (Engdahl et al., 2015). 

In Chapter 4 we presented a high-speed pattern recognition system that two patients used 

to activate up to 10 individual finger and wrist postures. In BMI studies, faster decoding rates have 
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been shown to improve online performance (Cunningham et al., 2011; Shanechi et al., 2017). This 

inspired us to implement a classifier that increased responsiveness without introducing 

instabilities. The “limb position effect” is a common problem with state-of-the-art pattern 

recognition systems (Betthauser et al., 2018; Teh & Hargrove, 2020). Surface EMG signals can be 

influenced by superficial muscle contractions, while bipolar indwelling electrodes captured muscle 

and RPNI activity specific to finger and thumb movements. Similar to other work, indwelling 

signals proved robust as decoding performance was not greatly affected by limb position (Dewald 

et al., 2019). In Chapter 5 we demonstrated that a regression algorithm could be used in 

combination with our pattern recognition framework to provide continuous position control of two 

grasp DOF. Dexterous grasp control may offer functional improvements by allowing patients to 

manipulate objects (Piazza et al., 2020). However, independent motor control is required for multi-

articulating hands to take advantage of this capability.  

We believe the implantation of RPNIs and indwelling electrodes can deliver improved 

motor control to a broad range of people with amputations. In Chapters 3 to 5, two individuals 

with transradial amputations had electrodes implanted to target the same hand and one wrist 

function. For future participants, additional wrist muscles may be implanted since simultaneous 

wrist control can improve functional performance (Sartori et al., 2018).  In more proximal cases, 

nerves can be subdivided into multiple RPNIs to provide motor signals for wrist and hand functions 

(Vu et al., 2020).  These otherwise lost control sites can improve grasp fidelity of systems with 

similar (Dantas et al., 2019; Dewald et al., 2019; Ortiz Catalan et al., 2020; Salminger et al., 2019) 

or even alternate sensing modalities (Dhawan et al., 2019). Fully implantable or portable systems 

may have limited channel counts (Salminger et al., 2019). The results in Chapter 5 were achieved 

using four and five input channels for P1 and P2. A first-generation system with eight bipolar EMG 
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channels could conceivably provide a patient with elbow flexion, wrist rotation, and a two DOF 

grasp. 

Advances in sensing platforms will allow patients to realize high fidelity motor control. 

Osseointegration is a surgical intervention that improves mechanical coupling over a traditional 

socket and has the immediate benefit of creating a percutaneous feedthrough for electrodes (Ortiz 

Catalan et al., 2020). Patients that cannot or do not wish to undergo osseointegration will still 

benefit from this technology as wireless implantable devices are developed. First-generation 

systems could modify current FDA approved devices, such as implantable pulse generators or 

cochlear implants. In other systems, an external device both powers and receives data from 

multiple miniaturized sensors (Seo et al., 2016; Weir et al., 2009). One example, the IMES has 

been clinically tested and revised over the past decade (Pasquina et al., 2015; Salminger et al., 

2019). These research systems may eventually reduce surgical complexity and make charging 

more convenient. The electrodes used in Chapters 3 to 5 only support one differentiated channel 

per RPNI, even though RPNIs can contain motor units intended for more than one muscle. Novel 

electrodes with multiple recording sites per RPNI combined with electronics that support high 

channel counts will be achieve better control of more DOF. Regression algorithms may then be 

used without a switching architecture, or biomechanical approaches may become common if 

torque control provides functional benefits over kinematic decoders.  

The continued advancement of robotic hands and study of sensory feedback mechanisms 

are critical to the long-term goal of meaningfully restoring grasping functions for people with 

amputations. Future prosthetic hands can be designed with the expectation of multiple-DOF grasp 

control. Initially, this may be software changes to access individual motors. However, this would 

also allow manufacturers to consider the roles of specific DOF and design individual fingers to 



 95 

support precision and power functions (Dalley et al., 2014). The studies in this thesis demonstrated 

a method to improve motor control of myoelectric prosthesis. However, a lack of sensory feedback 

is also a major issue to restoring grasp functions. Sensory feedback solutions can vary in resolution, 

type (electrical or mechanical) and location (evoked in the phantom limb or referred). Some recent 

studies have paired electrical nerve stimulation with intramuscular recording electrodes (George 

et al., 2019; OrtizCatalan et al., 2020). However, others are evaluated with low-resolution 

commercial controllers (D’Anna et al., 2019; Pena et al., 2019). Combined improvements to motor 

control and sensory feedback will provide more benefit than either can alone. As this technology 

progresses, outcomes-driven research is needed to evaluate different sensorimotor packages.  

 

6.3 Future Directions 

Based on the results of this thesis, I believe a clinical system using implantable electrodes 

and RPNIs is both presently viable and can deliver valuable functional improvements over state-

of-the-art solutions to patients with major upper extremity amputations. Such a system may also 

expand the population of patients that use myoelectric devices, particularly multiarticulating 

hands. The development of miniaturized wireless sensors could also create viable clinical solutions 

for patients with partial hand amputations. Further development of implantable electronics will 

also be beneficial for prosthetics that require interfacing with the brain. In this application, 

validating the long-term safety of intracortical electrode arrays and developing power efficient 

systems that support higher channel counts are needed for clinical translation. 

 This thesis focused on sensing and reasoning approaches; however acting methods are 

critical for patients to realize benefits from neuroprosthetics. If peripheral nerve interfaces allow 

more patients to fully utilize robotic hands, these devices may then require improvements to 
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durability, power efficiency, and additional features to support sensory feedback. Functional 

electrical stimulation systems may be used to actuate grasps in patients with paretic hands. 

However, the development of compact exoskeletons may be required to support control of whole 

arm movements or augment grip strength. The ability to decode control signals from the brain and 

nervous systems will ultimately increase the demand for robotic solutions to improve the lives of 

patients.  
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Appendix 
 

A.1 Supplementary Methods for Chapter 4 

A.1.1 Hidden Markov Model Performance Analysis 

The HMM-NB was compared to a standard Naïve Bayes (NB) classifier using the virtual 

task to switch between postures for the 1 of 10 and grasps sets (Table A.2.2). Parameters for each 

decoder are shown in Table A.2.3. For both participants, classifier parameters were selected by 

completing preliminary real-time control tests with larger window sizes and more conservative 

filtering and decreasing both parameters until instabilities prevented task completion. The output 

for the HMM-NB at each time step was updated if the sum of probabilities of hold or rest states 

exceeded 0.8. No additional output filters were applied to the HMM-NB, with the exception of 

P1's implementations with 10 ms updates. Both the NB and HMM used the same calibration data 

in each session. P1 completed one A-B session with the NB (A) and HMM-NB (B) classifiers for 

the 1 of 10 and Grasps posture sets. P2 completed three sessions for posture set: one A-B, one A-

B-A, and one B-A-B session for 1 of 10 and three A-B-A sessions for Grasps. Fig. A.2.1 and Fig. 

A.2.2 show the results of the NB classifier which can be compared to the HMM-NB from Fig. 4.1 

and Fig. 4.2. P1 completed the 1 of 10 posture set faster with the HMM-NB, achieving a latency 

of 159±237 ms compared to 258±313 ms (median±i.q.r.). However, the NB was more stable 

evidenced by a higher online accuracy, 95.9% compared to 93.0%, and fewer trials with a latency 

greater than one second. The HMM-NB outperformed NB in both online metrics for Grasps. NB 
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achieved a high offline Grasp accuracy for P1, but had a lower online accuracy of 83.7% compared 

to 99.5%. The increase in transition errors contributed to a higher median latency of 280±251 ms 

compared to 96±30 ms for the HMM-NB. For P2, the HMM improved performance of both posture 

sets. For 1 of 10, P2's NB classifier had a median latency of 398±1246 ms compared to 344±924 

ms with the HMM-NB. Transition errors were worse overall as she achieved an online accuracy 

of 75.7% with NB compared to 80.0% with the HMM-NB. However, the NB classifier was able 

to return to rest more efficiently than the HMM-NB. For the Grasps posture set, the NB classifier 

was far less responsive with a latency of 355±1184 ms compared to 173±151 ms. Transition errors 

were also much worse with an online accuracy of 81.5% compared to 96.3% with the HMM-NB.  

The HMM-NB particularly excelled in distinguishing the Grasp posture set. The ability to 

represent a posture as multiple states could be a greater advantage for predicting compound finger 

movements. The simplicity of the Naive Bayes assumption within the HMM-NB meant that latent 

states could not represent complex phenomena, but also meant the model was not as prone to over-

fitting as more powerful techniques (Domingos & Pazzani, 1997). The incomplete selection of 

latent states for output was problematic for P2's 1 of 10 decoders which sometimes got stuck in 

transition states while returning to rest. Supervised learning with alternate output mappings could 

be explored to mitigate this issue. Expectation-Maximization algorithms can settle into local 

minima. Here, the low amount of training data, 5-7 movement repetitions, meant the HMM-NB 

was especially sensitive to state structure and initialization. Therefore, we cannot say the specific 

implementation chosen here was the best model, rather one that worked well. The number and 

structure of latent states per posture was driven by the computational requirements of the real-time 

system, ease of initialization, and success in prior applications (Kao et al., 2017; Kemere et al., 

2008). Relaxing the state structure and initialization routine could allow the HMM-NB to converge 
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to more optimal solutions, although this would likely require more training data. As noted 

elsewhere, assembling large training data-sets is feasible due to the signal stability of implanted 

electrodes over time, which has been documented in other work (Dewald et al., 2019; Vu et al., 

2020). 

A.1.2 Offline Analysis and Signal Comparisons 

The 1 of 10 posture set was chosen for alternate classifier simulations because it required 

classifiers to distinguish between the most movements. It also requires distinction between 

individual fingers, some of which were well represented by electrode placement and some of which 

were not. The algorithms used for real-time control were compared offline to a Naive Bayes (NB), 

linear discriminant analysis (LDA), and a multi-class support vector machine (SVM) using five 

time domain features (mean absolute value, waveform length, variance, slope sign changes, and 

zero crossings) along with coefficients from a 6th order auto-regressive model. Alternate 

classifiers assumed equal prior probabilities for each posture and used default Matlab 2018 built-

ins for training and evaluation. LDA used a diagonal-regularized pooled covariance matrix. The 

multi-class SVM used a one-vs-one architecture with a linear kernel. Performance was evaluated 

on calibration data with different sized processing windows containing 10, 25, 50, 100, 150, 200, 

and 250ms of EMG history. P1's HMM-NB for comparison was updated in 10ms timesteps 

matching his online implementation (Table A.2.3). All other classifiers were updated every 50ms 

for lengthier processing windows.  

P2 completed additional sessions to compare the performance between implanted and 

surface EMG. For the classifier simulation, eight pairs of adhesive electrodes were placed on P2's 

residual limb. Surface muscles corresponding to implanted electrode functions were targeted by 

feeling P2's forearm while asking her to perform movements with her phantom limb. The size of 
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adhesive electrodes resulted in the majority of her medial forearm being covered. EMG from both 

the surface and implanted electrodes was simultaneously recorded while P2 performed a 

calibration run for the 1 of 10 posture set. In a separate session we also precisely targeted FCR, 

FDPS, FPL and EPL using established techniques (Buschbacher, 2007). For targeted sessions, 

recordings were done individually to avoid space constraints. Before each recording, P2's forearm 

was cleaned with alcohol wipes and allowed to dry before applying the gelled electrodes. Signals 

from the corresponding implanted electrode pair were also recorded for the simultaneous 

comparison. The same calibration routine was used to instruct movement cues that corresponded 

to the muscles' motor functions. SNR's were calculated by averaging the RMS voltage of active 

periods and dividing by the averaged RMS of rest periods. Rest periods sometimes began with 

EMG settling activity from the previous trial. This was particularly noticeable for some of P2's 

surface channels as well as her FDPI and EPL implanted electrodes. SNR comparisons were 

conducted for surface and implanted channels targeting FDPI, EPL, and FCR. The SNR of RPNI 

electrodes was roughly compared to surface by targeting FPL and FDPS, residual muscles with 

similar motor functions. SNR analysis was performed on both the targeted and classifier 

calibration datasets. Settling activity was manually removed for all SNR analysis, but not for 

classifier training because it is important to the characterization of a rest intention. For each 

movement and muscle pair, the session with the better surface SNR was chosen for presentation 

in Fig. 4.6. For FCR and FPDS, the targeted sessions yielded better results, while EPL, FDPI, and 

FPL comparisons were taken from the classifier calibration dataset. 

A.1.3 Participant Anatomy and Experiment Set-Up 

RPNIs are created by suturing a small muscle graft to the end of severed nerve. In addition 

to preventing neuroma growth, RPNIs serve as bioamplifier for afferent motor signals and have 
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been demonstrated to produce stable functionally selective EMG in animal and human studies 

(Frost et al., 2018; Vu et al., 2018, 2020). P1 is a 30 year old male who sustained a right wrist 

disarticulation as the result of a traumatic hand injury. In 2015 he underwent surgery to resect 

neuromas on the median, ulnar, and radial nerves. A single RPNI was created on each nerve using 

free skeletal muscle grafts from his ipsilateral vastus lateralis. P1 is not a body powered user due 

to a shoulder injury. In March of 2018, P1 underwent an additional surgery to have eight pairs of 

bipolar intramuscular electrodes (Synapse Biomedical, Oberlin, OH) chronically implanted into 

the median and ulnar RPNIs and residual muscle corresponding to hand and wrist functions. P1 

had the following residual muscles targeted for implantation: Flexor Pollicis Longus (FPL), Flexor 

Digitorum Profundus - Index Section (FDPI), Flexor Digitorum Profundus - Small Section 

(FDPS), Extensor Pollicis Longus (EPL), Extensor Digitorum Communis (EDC), and Flexor Carpi 

Radialis (FCR). P2 completed experiment sessions for this study between November 2018 and 

February 2019. The electrodes remained implanted for approximately one year and were partially 

explanted in March of 2019 by removing any exposed and subcutaneous wire lengths not 

embedded in muscle. In February 2020, P1 had his electrodes fully explanted from RPNIs and 

residual muscles. 

P2 is a 53 year old female who, during treatment for septic shock and acute renal failure, 

suffered an intravenous extravasation of calcium into her right hand and forearm, which led to 

tissue necrosis and required a partial hand amputation. Her hand became contracted with extremely 

limited function and she underwent a voluntary transradial amputation in October of 2017. Single 

RPNIs were created on each of the median and radial nerves while an intraneural dissection was 

performed on the ulnar nerve to create two RPNIs. All RPNIs were creating using free muscle 

grafts from the ipsilateral vastus lateralis. P2 currently uses a body powered prostheses outside of 
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the study, although she reports to seldom use the open-close functionality. In October of 2018, P2 

underwent chronic implantation of eight pairs of bipolar electrodes into the median and both ulnar 

RPNIs and five residual muscles. The same residual muscles were targeted for both patients with 

the exception of FDPS, which was only targeted for P1. P2 completed experiments for this study 

between and February 2019 and February 2020. At the time of writing, P2 remains implanted. P2’s 

right passive elbow range of motion was recorded in clinic November 2017 to be 20 – 120° of 

flexion. Clinicians also noted limited ability to supinate her forearm with maximal supination in 

neutral at 0°. In August 2020, experimenters measured her passive right shoulder range of motion 

to be 160° shoulder flexion and 90° external rotation. We measured shoulder external rotation with 

the participant lying on her back, arm abducted to 90°, shoulder flexed to 90°, and forearm prone. 

In October 2020, her elbow range of motion was again measured by experimenters to be 20 – 125° 

of flexion. 

The experiment set-up also differed slightly between subjects. P1 completed calibration 

runs with pseudo-randomly ordered cues and rest and hold periods of 2.5 seconds each. P2 

preferred a slower pace and performed the calibration run with rest and hold periods of 3 seconds 

each and consecutively ordered cues. For the grasps posture set, P1’s visual prompt showed 

finger extension instead of finger abduction. In preliminary calibration sessions, we found these 

two cues produced similar EMG responses. P1's prompt for point also resembled small finger 

flexion. This cue was consistent with other physical prostheses experiments P1 performed with 

the LUKE arm, which can only move its small finger in combination with the middle and ring 

fingers. A custom adapter was made to connect the LUKE arm to P1’s socket, which was 

secured to his forearm with an Otto Bock silicone liner (Ottobock, Duderstadt, Germany). His 

socket also featured a window to allow access to the percutaneous electrode connectors on his 
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medial forearm. For P2, the i-Limb was connected to her socket with a quick wrist disconnect 

(QWD) that allowed manual wrist rotation. The QWD was embedded in a PVC adapter that 

connected to her socket which was secured to her forearm with an Iceross Upper-X liner (Ossur, 

Reykjavik, Iceland). Her percutaneous leads exited on her lateral bicep and did not interfere with 

her socket. 

 

A.2 Supplementary Figures and Tables for Chapter 4 

 
Figure A.2.1 HMM and Naïve Bayes comparison on the 1 of 10 posture set. (A) Offline classifier accuracy simulated on individual 
time bins during hold periods using 5-fold cross validation on P1's training data. (B) An output filter of three consecutive decodes 
was used for real-time control and P1 was able to achieve an online accuracy of 95.9%. (C) Cumulative latency lines are drawn so 
the y-axis indicates the percentage of trials with latency less than values on the x-axis (n = 30 trials, 27 shown). Results compared 
to the HMM results from Fig. 4.1 (D,E) P2's decoder used larger processing windows and a filter length of four consecutive decodes 
for real-time control. (F) Cumulative latency comparison for P2 (n = 168 trials, 114 shown). 
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Figure A.2.2 HMM and Naïve Bayes comparison on the grasps posture set. (A) Offline classifier accuracy simulated on P1's 
training data. (B) An output filter of three consecutive decodes was again used for real-time control. (C) Cumulative latency 
comparison for P1 (n = 26 trials, 20 shown). Results compared to the HMM from Fig. 4.2. (D,E) P2's decoder again used larger 
processing windows and a filter length of four consecutive decodes for real-time control. (F) Cumulative latency comparison for 
P2 (n = 144 trials, 102 shown). 
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Figure A.2.3 P1 EMG envelopes during 1 of 10 calibration. Mean absolute value (MAV) traces of P1's EMG during the 1 of 10 
posture set used for classifier training and clustering analysis. EMG was rectified and averaged in non-overlapping 50ms time bins 
from electrodes targeting flexor digitorum profundus, index section (FDPI), flexor pollicis longus (FPL), Median RPNI, Ulnar 
RPNI, flexor digitorum profundus, small section (FDPS), flexor carpi radialis (FCR), extensor pollicis longus (EPL), and extensor 
digitorum communis (EDC). Trials were time aligned to the start of the hold period and then averaged (mean±s.t.d. n = 5-6 trials). 

 

Figure A.2.4 P2 EMG envelopes during 1 of 10 calibration. Mean absolute value (MAV) traces of P2's EMG during the 1 of 10 
posture set from the experiment session used for offline and clustering analysis. EMG was rectified and averaged in 200ms time 
bins with a 50ms update rate. Electrodes targeted flexor digitorum profundus, index section (FDPI), flexor pollicis longus (FPL), 
Median RPNI (Med.), Ulnar RPNI 1 (Uln. 1), Ulnar RPNI 2 (Uln. 2), flexor carpi radialis (FCR), extensor pollicis longus (EPL), 
and extensor digitorum communis (EDC). Trials were time aligned to the start of the hold period and then averaged (mean±s.t.d, n 
= five trials). 
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Study Participants EMG 
Channels 

Hand 
Classes 

Completion 
Delay (s) 

Completion 
Rate (%) 

Kuiken et 
al., 2009 3 SD, 2 TR 12 surface 

gelled 4 0.54±0.27 86.9±13.9 

Li et al., 
2010 5 TR 12 surface 

gelled 6 0.45±0.35 53.9±14.2 

Cipriani et 
al., 2011 5 TR 8 surface 

gelled 7 0.86* 77* 

Vaskov et 
al. 2020 2 TR 8 intra-

muscular 

8 0.26±0.09 96.3±5.3 

4 0.14±0.06 100±0.0 

Table A.2.1 Comparison of the high-speed pattern recognition system to previous work. Three earlier studies quantified real-time 
classification including multiple hand (finger or grasp) movements for persons with shoulder disarticulations (SD), transhumeral 
(TH), or transradial (TR) amputations using similar randomized control tasks. Movement completion metrics for hand postures 
were calculated consistent with previous work. The task in those studies differed from the posture switching task in two ways: a 
rest period was presented in between cues and the requirement for completion was a cumulative selection rather than a continuous 
hold. Completion rate and time were defined as the percentage of trials and median time in which one second of the correct posture 
was cumulatively matched. Completion delay is presented as the difference between the reported completion time and the 
cumulative selection length, which differed amongst earlier studies. By nature, completion rate is greater than or equal to success 
rate and completion delay is less than or equal to latency. Metrics were averaged across subjects (mean±s.t.d.) *variance across 
subjects not reported. 

Posture 
Set 

No. of 
Classes Classes 

1 of 10 10 
Thumb, Index, Middle, Ring, and Small Finger Flexion 

(T,I,M,R,S) 
Wrist Flexion (WF), Finger Abduction (Ab), Finger Adduction 

(Ad), Thumb Opposition (TO), Rest (Re) 
Grasps 5 Fist (F), Pinch (Pi), Point (Po), 

Finger Abduction (Ab), Rest (Re) 
Functional 4 Fist (F), Pinch (Pi), Point (Po), Rest (Re) 

Table A.2.2 Posture sets used for virtual and physical tasks in Chapter 4. P2 performed three experiment sessions of the virtual 
task with the 1 of 10 and grasps posture sets, while P1 performed one session with each set. The functional posture set was used 
by both participants to control robotic prostheses and for the static arm position test performed by P2 

Participant Task Decoder Time 
History (ms) 

Update 
Rate (ms) 

Filter 
Length 

P1 
1 of 10 HMM 50 10 5 

NB 50 50 3 
Grasps HMM 50 10 5 

NB 50 50 3 

P2 
1 of 10 HMM 50 50 1 

NB 200 50 4 
Grasps HMM 50 50 1 

NB 200 50 4 
Table A.2.3 Processing window and filtering parameters for decoders in Chapter 4. Time history refers to the length of the 
processing window to extract MAV from all eight bipolar electrode pairs, while update rate refers to the timestep features and 
decoders were updated. The filter length is the number of consecutive decodes required for a change to be sent to the virtual 
prostheses. 
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