
Finding the Grammar of Generative Craft

by

Shiqing He

A dissertation submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Information)

in The University of Michigan
2021

Doctoral Committee:

Professor Eytan Adar, Chair
Professor Sophia Brueckner
Professor Ron Eglash
Professor Matthew Kay

Shiqing He

heslicia@umich.edu

ORCID ID: 0000-0002-6547-8481

©Shiqing He 2021

For my sister Shiyuan He 何诗源

ii

ACKNOWLEDGEMENTS

I started my Ph.D. journey in the fall of 2015, intending to search for a way to

combine my passion for art and technology. However, I quickly realized that the

journey was far more challenging than my expectation. Without the support of

many, it would have been impossible to navigate through all the confusion, detours,

and roadblocks.

I want to thank my advisor, Eytan Adar, for being the best advisor I could

possibly imagine. I appreciate that Eytan would see potentials in my random (and

sometimes bizarre) project ideas. In the past six years, I have tried many differ-

ent research directions. The tremendous intellectual freedom that Eytan offered me

eventually led me to my current research direction. The opportunity to pursue my

ideal research direction is truly a privilege that I am grateful for. I also want to thank

my dissertation committee members, prof. Sophia Brueckner, prof. Ron Eglash, and

prof. Matthew Kay, for their support of this work. I want to thank prof. Paul

Resnick, prof. Paramveer Dhillon, prof. Ceren Budak, prof. Erin Krupka, prof.

David Jurgens, and prof. Cliff Lampe for offering me help at different stages of my

Ph.D. journey. In addition, I am honored to have received dissertation funding sup-

port from the ArtsEngine, Rackham Graduate School, and the School of Information

iii

(UMSI).

I am incredibly fortunate to become friends with a fantastic group of colleagues

from the School of Information. I want to thank Cindy Lin, Penny (Diep) Trieu,

Hariharan Subramonyam, Joey Chiao-Yin Hsiao, and the rest of my Ph.D. cohort

for all the fun memories we created together. I would also like to thank the following

friends & colleagues for their support in the past six years: Teng Ye, Youyang Hou,

Elsie Lee, John Joon Young Chung, Wei Ai, Shiyan Yan, Chuan-Che Jeff Huang,

Yingzhi Liang, and Xin Rong.

Lastly, I am grateful for all the love and support my friends and family have given

me. Particularly, I want to thank Yifan Wang, Hao Wang, Juejin Lu, Juexuan Lu,

and the rest of my fantastic gaming friends for all the laughter we shared. I thank

Qiao Mu, Vivi Zhang, Linjun Zhang, Xiaolin Wang, Hristina Milojevic, Ziyong Lin,

and Zhaoqing Shen for all the joy they have given me. I am deeply thankful for

my mother, Limei Du, and my father, Pei He. Thanks for always supporting my

decisions and believing in me. I am grateful to have Doudou and Erkuai in our lives.

Finally, I can never thank my sister Shiyuan He enough. She is my true inspiration

for life.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Overview . 1
1.2 Making Tools For Craft Designers 3

1.2.1 Creative Processes that Produce Physical Artifacts . 3
1.2.2 Design-Aid Tools for Art & Craft 5
1.2.3 Challenges in Art & Craft Design-Aid Systems . . . 14

1.3 Grammar-Driven Craft Design Tools 18
1.3.1 Primary Characteristics 18
1.3.2 Secondary Characteristics 21
1.3.3 Suitable Craft Domains 23

1.4 Domain Knowledge and Grammar of Craft 24
1.4.1 Craft Domain Knowledge 25
1.4.2 Turning Domain Knowledge into Grammar 27

1.5 Building GCDTs . 31

II. Multilayer Sculpture Design . 35

v

2.1 Introduction . 35
2.2 Related Work . 40

2.2.1 Multilayer Sculpture and Related Art 41
2.2.2 Design-Aid Tools for Multilayer Sculpture and Re-

lated Craft . 44
2.2.3 Fabrication and Procedural Generation 45

2.3 Design Multilayer Sculptures with InfiniteLayers 47
2.4 Creation Workflow . 48
2.5 Creating and Manipulating Stencils 50
2.6 Evaluation . 54

2.6.1 Fulfilling Objectives 55
2.6.2 Cognitive Support 59
2.6.3 System Limitations 63

2.7 Discussion . 64
2.7.1 Extracting and Refining Domain-specific Knowledge 65
2.7.2 Supporting the Design and Fabrication of Physical

Art & Craft with a Programming-Based Toolkit. . 66
2.7.3 Future Directions 67

2.8 Conclusion . 68

III. Creative Mark-Making Tool Design 69

3.1 Introduction . 70
3.2 Related Work . 73

3.2.1 Mark-Making Tools 74
3.2.2 Making Mark-making Tools 75
3.2.3 Digitizing Mark-Making Tools 77

3.3 Design Space . 78
3.3.1 Solidness of the Tip Section 79
3.3.2 Tip Angle . 79
3.3.3 Shape . 80
3.3.4 Base Size . 81
3.3.5 Length . 81
3.3.6 Material . 81

3.4 Designing and Fabricating Tools 82
3.4.1 Three Fabrication Modes 83
3.4.2 The Creation Pipeline 85
3.4.3 The MarkMakerSquare Interface 87

vi

3.5 Showcase . 89
3.5.1 Case 1: Fibonacci Pattern 90
3.5.2 Case 2: Keyhole Pattern 91
3.5.3 Case 3: Flower Pattern 93
3.5.4 Case 4: Six Circles 94
3.5.5 Case 5: Importing Drawings 95

3.6 Future Directions . 96
3.6.1 Conducting Tests in More Art-Making Scenarios . . 96
3.6.2 Improving Interface by Gathering User Feedback . . 97
3.6.3 Providing Digital Mark Simulation 97

3.7 Discussion . 98
3.8 Conclusion . 101

IV. Delicate Punch Needle Embroidery 102

4.1 Introduction . 102
4.2 Related Work . 107

4.2.1 The Fabrication of Punch Needle Embroidery 107
4.2.2 Repurposing Fabricators 109
4.2.3 Applications of Punch Needle Embroidery 110

4.3 Physical Setup . 111
4.3.1 Selecting the Right X-Y Plotter 111
4.3.2 Fabric and Fabric Stretcher 113
4.3.3 Thread and Thread Feeder 117
4.3.4 Punch Needle . 119

4.4 Software Control and ThreadPlotter 122
4.4.1 Determining Punch Points Locations 123
4.4.2 Stitches, Loops, and Pen Speed 126
4.4.3 Raster versus Vector Images 128
4.4.4 Thread Color Matching 131

4.5 Discussion . 132
4.5.1 Future Directions 135

4.6 Conclusion . 135

V. Reflection . 137

5.1 Development Pipeline of GCDTs 137
5.2 Future Directions . 139

vii

5.3 Conclusion . 141

BIBLIOGRAPHY . 143

viii

LIST OF FIGURES

Figure

1.1 Dissertation Overview . 1
1.2 To provide an overview of existing craft design-aid tools that fits

the scope of this dissertation, I utilize three dimensions to capture
different characteristics of craft design-aid tools 7

1.3 Two major approaches that existing studies take to support craft
design in the field of HCI. 9

1.4 An origami tessellation example. 16
1.5 Overview of Grammar-driven Craft Design Tools 18
1.6 Grammar of the craft is an organized set of information extracted

from craft domain knowledge. After a translate/refine process, the
grammar of a craft consists of three major parts: 1) programmable
structure, 2) creation pipeline, and 3) domain-specific methods. . . 24

2.1 InfiniteLayer is a Python-based toolkit that assists multilayer sculp-
ture design. It provides foundational structures and essential meth-
ods for designers to draft, import, and manipulate 2D designs (LEFT).
It aids rapid prototyping by delivering 3D simulations without re-
quiring modeling expertise. Also, it offers flexible controls over ren-
dering settings/formats to produce designs that are compatible with
a variety of fabricators (RIGHT: artwork fabricated with a laser cut-
ter). 35

ix

2.2 I describe components of multilayer sculpture using the term “layer
(a flat a sheet of material)” and “stencil (shapes to be cut).” Design
A illustrates an example that utilize three types of stencils: a base
stencil (1), a boundary stencil (2), and multiple pattern stencils (3).
Certain types of stencils can also be described as (4)“island shapes”,
and (5)“bridges” that connecting island shapes to the main struc-
ture. Design B provides an example where each layer only contains
base stencil and boundary stencil. 41

2.3 A creation workflow using InfiniteLayer 48
2.4 Overview of methods provided by InfiniteLayer 51
2.5 The TRANSIT() function generates intermediate shapes between

two input shapes. 1) Shape1 is the start shape, and Shape2 is the
target shape. 2) The algorithm temporarily aligns shapes by their
centers. 3) For every point on Shape1, it finds or adds a point on
Shape2, so that the line connecting these two points goes through the
center. Repeat for points on Shape2. 4)For every point pair (A, B),
the function translates Point A to Point B according to stepCt and
the easing function, i.e., finding intermediate points (C). Connecting
corresponding C points together to generate an intermediate shape. 53

2.6 InfiniteLayer offers flexible support for various design approaches
and goals. Design A utilizes a generative algorithm, while Design B
relies on vectorized shapes extracted from raster images. 55

2.7 A design created with InfiniteLayer and its script. I highlight syntax
and operations that are specifically supported by InfiniteLayer . I
also demonstrate various rendering options that users can adjust on
the web-based simulation tool that InfiniteLayer generates. 59

3.1 (left): The anatomy of mark-making tools. (Middle): A five-step
pipeline for designing/making mark-making instruments. Step 3 and
step 4 are closely related because different tip material choices lead
to various fabrication methods. Step 5 is optional for some mark-
making tools if tips and handles are fabricated with the same mate-
rial and process (e.g., a crayon). (Right): A subset of mark-making
tools that I collected. 73

3.2 Six major factors impact the functionalities of a mark-making in-
strument. 78

x

3.3 (Left): The design of a generic handle that features interlocking
components. (Right): MarkMakerSquare supports three fabrication
modes. The print mode generates designs that can be directly 3D
printed (top). The insert mode generates designs that need to be
printed and manually assembled. 82

3.4 The cast mode generates two major structures: the tip base (left-
most) and the tip mold (rightmost). Users can 3D print these struc-
tures and join them together for the casting process. 85

3.5 The WebGL-enabled interface generated by MarkMakerSquare lets
users experiment with different design factors. Through the inter-
face, users can 1) modify rending settings, 2) change segmentation
method and solidness, 3) adjust tip length, and 4) select the fabri-
cation method. 87

3.6 Design case 1: tools fabricated with print mode using the Fibonacci
pattern. 91

3.7 Design case 2: brushes fabricated with the insert mode using various
synthetic fibers. 92

3.8 Design case 3: a crayon fabricated with the cast mode. 93
3.9 Design case 4: the “six circles” pattern is created using a simple

algorithm. Creating patterns using a generative design approach
enables quick experimentation towards different settings. 94

3.10 Design case 5: three stamp-like tools generated with manually painted
patterns. 95

3.11 Four categories of challenges that I encountered when developing
and testing MarkMakerSquare. 99

4.1 Left: A standard X-Y plotter that we repurposed to fabricate punch
needle embroidery. Middle: Our modified plotter consisting of 1)
an Axidraw plotter, 2) a customized punch needle tool, 3) a gripper
frame, 4) a frame holder, 5) a threading station, and 6) a thread
separator; Right: One example of the many styles that we can
produce (3D embroidery). 102

xi

4.2 Materials and mechanics of punch needle embroidery: 1) the back-
ing fabric, 2) a punch needle tool with two parts: handle and needle
(also called “head”), 3) a punch needle tool punches through the
backing fabric to make a thread loop, 4) loops created by the punch
movement stay on the other side of the fabric, which is typically con-
sidered as the front side of the embroidery, 5) the thread connect-
ing adjacent loops forms stitches, 6) a punch needle tool normally
punches away from the previous loop to avoid damaging threads. . 104

4.3 Commercially available manual punch needle tools and commonly
used threads: 1-2) Oxford Punch Needle® and Ultra Punch® Nee-
dle, 3) a variety of punch needle heads and their interchangeable
handles, 4-9) examples of threads with diverse thicknesses and ma-
terial. 105

4.4 I tested six different types of fabrics. Pearlized Iridescent Organza
(1) and Organza (2) can produce stable results. Weavers Cloth (3) is
too thick for my machine to pierce. Chiffon (4) and Twinkle Organza
(5) are too fragile for the gripper frame I used. Sheer Voile (6) can
produce reasonable results but tends to have missing loops. 114

4.5 I recommend using gripper frames for plotter embroidery. They
secure and stretch fabrics with curved metal needles that grasp the
fabric. 115

4.6 Three iterations of the punch needle handle design using pre-manufactured
plastic material. Through these prototyping iterations, I locate the
optimal material (i.e., syringe), location for the threading holes (i.e.,
close to the syringe hub), and mechanism to add adjustable weight
(i.e., use the syringe flange to hold a plastic cup). 119

4.7 Pipeline for converting vector paths into plotter-compatible punch
needle patterns. 124

4.8 ThreadPlotter processes raster images into plotter-compatible em-
broidery patterns. Original artwork by Shiqing He (He (2015)). . . 129

4.9 By assigning specific loop lengths to different colors, users can create
patterns for 3D punch needle embroidery. 129

4.10 Features within images might be blurry if the embroidery size is too
small. The effect is especially observable when using a long loop
length (in 2, loop length = 6mm). Besides enlarging the embroidery
size, users can reduce this effect by using a shorter loop length (in 3,
loop length = 2.4mm), or assigning different loop lengths to specific
colors (4). Original artwork courtesy of P Mei (Mei (2019)). 130

xii

4.11 Several failed examples that demonstrate common issues. 133
5.1 The Development Pipeline of GCDTs 138

xiii

ABSTRACT

Art and craft design is challenging even with the assistance of computer-aided

design tools. Despite the increasing availability and intelligence of software and hard-

ware, artists continue to find gaps between their practices and tools when designing

physical craft artifacts. In many craft domains, artists need to acquire domain knowl-

edge and develop skills in design-aid tools separately. Despite their power and ver-

satility, generic design tools pose various challenges, such as requiring workarounds

for specific crafts and having steep learning curves. Compared to generic design-aid

tools, craft-specific systems can offer reasonable solutions to specific design tasks be-

cause they can offer domain-specific support. Nevertheless, craft-specific tools often

have limited flexibility.

In this dissertation, I introduce Grammar-driven Craft Design Tools (GCDTs),

which explicitly embed and utilize craft domain knowledge (i.e., “grammar” of the

craft) as their primary mechanisms and interfaces. Like other types of information,

craft knowledge is processable and organizable data. In this dissertation, I develop

and examine a framework to document, process, preserve, and utilize craft domain

knowledge. GCDTs are craft-specific tools. By explicitly embedding and utilizing

xiv

craft domain knowledge, GCDTs bridge the gap between design-aid tools and craft

domain knowledge. GCDTs also have additional benefits such as supporting genera-

tive design, facilitating learning, and preserving domain knowledge. This dissertation

gives an overview of how the next generation of design-aid tools can help artists find

their creative expressions. It presents the GCDT framework and introduces three

GCDTs developed for distinct domains. InfiniteLayer assists the design of multilayer

sculpture, a form of sculpture made with layers of material. Then, MarkMakerSquare

helps designers to invent unconventional and creative mark-making tools using vari-

ous fabrication strategies. Lastly, ThreadPlotter supports the design and fabrication

of plotter-based delicate punch needle embroidery.

xv

CHAPTER I

Introduction

1.1 Overview

Figure 1.1: Dissertation Overview

Physical Art & Craft design is challenging even with the assistance of computer-

aided design tools. Despite the increasing availability and intelligence of software and

hardware, artists continue to find gaps between their practices and tools. Identifying

1

artists’ needs and providing creative solutions are critical research challenges across

disciplines such as human-computer interaction, computer graphics, design, and en-

gineering. Intending to support the design and fabrication of physical creations by

augmenting creative practices with software and hardware innovation, I examine

a fundamental question in the domain of creativity support tools (CSTs):“How to

make tools for artists?” Specifically, I focus on physical art & craft domains that

are primarily designed and made by hand.

In many physical art & craft domains, designers often need to acquire domain

knowledge and develop skills in design-aid tools separately. For instance, a crochet

pattern designer not only need to learn about crochet, they also need to acquire ex-

pertise in pattern drafting tools. Despite their power and versatility, generic design

tools pose various challenges, such as requiring workarounds for specific crafts and

having steep learning curves. By leveraging theories and technological advances in

human-computer interaction, information science, and digital fabrication, this dis-

sertation examines a new direction for making craft-design tools: instead of building

generic design systems, I design, develop, and test craft-specific tools that embed

craft’s domain knowledge (i.e., “grammar” of the craft). Grammar-driven Craft

Design Tools (GCDTs) bridge the gap between design-aid tools and craft domain

knowledge. They also have additional benefits such as supporting generative design,

facilitating learning, and preserving domain knowledge.

Like other types of information, craft knowledge is processable and organizable

data. In many craft domains, this knowledge scatters among books, tutorial videos,

and online discussions. In this dissertation, I propose and examine a framework to

2

document, process, preserve, and utilize craft domain knowledge. I develop strategies

for organizing craft knowledge into human-/machine-digestible, extensible, and pro-

grammable structures through my dissertation work. With a consistent framework

for managing craft-specific domain knowledge, design tools can support artisans by

embedding craft knowledge explicitly.

In this dissertation, I present the GCDT framework by focusing on three

major characteristics that define GCDTs: grammar-driven, extendable,

and supporting fabrication-ready designs. For each of these characteristics, I

demonstrate a GCDT developed for a specific craft domain. Through these three

distinct craft domains, this dissertation investigates the potential for using the GCDT

framework to support art-making in a diverse range of Art & Craft domains (Figure

1.1).

1.2 Making Tools For Craft Designers

In this section, I provide background information and motivation for this research.

Specifically, I start by defining the target scope of this research and providing a nar-

rowed characterization for Art & Craft (Section 1.2.1). Then, I present an overview of

existing craft design-aid tools (Section 1.2.2). Lastly, I discuss challenges associated

with current craft design-aid systems in Section 1.2.3.

1.2.1 Creative Processes that Produce Physical Artifacts

While the definition of “craft” has shifted over time and differs under contexts

(Shiner (2012)), craft-making is tightly associated with the manipulation of mate-

3

rial. Among many attempts to define “craft”, art historians, anthropologists, and

human-computer interaction (HCI) researchers offer distinctive perspectives. His-

torically, “craft” was conceived as a set of disciplines (e.g., pottery, glass painting,

and metalwork) or a generic process and practice such as teaching, cooking, and

parenting (Shiner (2012)). Identifying the boundary between “art” and “craft” is a

challenging task. Instead of defining such a boundary, Shiner (2012) suggests that:“

the boundary between art and craft conceived as a set of disciplines defined by mate-

rial and techniques has not become blurred, it has all but disappeared.” Studies from

anthropology (e.g., Adamson (2010)) also suggest that “craft” should have a fluid

definition instead of considered as an art form or a fixed set of disciplines. Adam-

son (2010) examines culture contexts where the term “craft” is used and suggests

that “craft should be seen in fluid and relative, rather than limiting and categorical,

terms.”

In comparison to these perspectives, craft and craft-making in HCI research are

more connected with the practice of producing designed artifacts. Because the rise

of craft-focused research in HCI is connected with the maker-culture and fabrication

technologies (Nitsche et al. (2014); Nitsche and Weisling (2019)), many craft-related

research in HCI focus on providing design solutions for specific disciplines (see Section

1.2.2), and understanding how new technology impact traditions (e.g., Rosner and

Ryokai (2009)). Notably, Frankjær and Dalsgaard (2018) discussed four types of

craft in HCI research, and here I summarize:

• Hybrid craft: creations that combine physical and digital material.

• Digital Craft: design and fabrication of physical artifact using digital tools.

4

• Computational Craft: using computer-generated patterns for realizing hand-

craft.

• Technocraft: craft with technological objects.

Because of the vast research space associated with Art & Craft, I limit the scope

of this dissertation by providing a narrowed characterization for Art & Craft. In

this dissertation, I focus on examining Art & Craft making as creative pro-

cesses that produce physical artifacts. Using these criteria, I can target Art &

Craft domains without drawing clear boundaries using functionality, aesthetic value,

or technologies involved. For example, an embroidery piece could be a functional

artifact and a decorative object at the same time. Embedding electronics in this

embroidery piece would make this piece an example of a hybrid craft. Therefore,

this embroidery piece is an example that sits in the scope of this dissertation. In

addition, this criteria directs attention to domains strongly associated with manip-

ulating and transforming physical material. In this case, I exclude digital-focused

disciplines such as music, film-making, and digital painting from this research. In the

remainder of this dissertation, “Art & Craft” and “craft” both refer to the narrowed

scope unless otherwise noted.

1.2.2 Design-Aid Tools for Art & Craft

There exists a wide range of Art & Craft design tools and various ways to cat-

egorize them. In creativity support tools (CST) research, several studies provide

frameworks for understanding CSTs. Existing studies that analyze CST focus on

5

computer-enabled systems that support a wide range of creative processes. For ex-

ample, Frich et al. (2018, 2019) track the evolution of CSTs in the HCI research

community and synthesize patterns that emerged in these tools. Remy et al. (2020)

analyzes how CSTs are evaluated. Chung et al. (2021) surveys over a hundred CST-

related research papers to contribute a taxonomy for describing and discussing CSTs.

Specifically, Chung et al. (2021) provides a framework to “understand the intersec-

tion of technologies, interactions, roles, and users in shape art-making CSTs.” For

example, CSTs take different roles when supporting their designers. Some tools sup-

port users with artistic visions and ideas (the Vision role). Some tools assist users

by providing expertise and reducing labor (the Skill role) (Chung et al. (2021)).

1.2.2.1 Categorizing Craft Design-Aid Tools Through Three Dimensions

CST-focused survey research like Chung et al. (2021); Remy et al. (2020); Frich

et al. (2018) and Frich et al. (2019) target a much more extensive range of tools

than the Art & Craft scope I target in this dissertation. For example “art-making”

in Chung et al. (2021) is a superset of the Art & Craft domains that I defined in

Section 1.2.1 1. To provide an overview of existing craft design-aid tools that fits

the scope of this dissertation, I utilize three binary dimensions to capture different

characteristics of craft design-aid tools (see Figure 1.2).

Physical vs. Digital

In craft domains traditionally made by hand, the design tool associated with

these crafts is also physical objects. For instance, rulers, compasses, and stencils are

1They use the term “art-making” to indicate activities for making creative aesthetic artifacts.
The artifacts do not need to have physical forms.

6

Figure 1.2: To provide an overview of existing craft design-aid tools that fits the
scope of this dissertation, I utilize three dimensions to capture different
characteristics of craft design-aid tools

among the most prevalent physical design-aid tools. In addition to these “universal”

design-assist tools, many disciplines also have specialized tools to support their design

processes. For example, ceramic artists can use carving tools to shape their creations.

Printmakers use a combination of magnesium carbonate powder and black paper to

visualize mezzotint designs2. With the development of technology, computer-based

tools have become an integral part of many craft disciplines. For instance, graphic

editing software such as Adobe Illustrator3 and INKSCAPE 4 have been widely used

in many craft domains, ranging from stencil design to printmaking. 3D modeling

software such as Blender 5 and SOLIDWORKS 6 also enable a wide range of craft

creation.

Generic vs. Domain-Specific Tools

We can also categorize craft-aid tools base on their target disciplines. While draft-

ing and graphics editing tools support an extensive range of craft design tasks, some

tools are designed to help a specific craft or even a minor step in the creation pro-

2Mezzotint is an intaglio printmaking technique.
3https://www.adobe.com/products/illustrator.html
4https://inkscape.org/
5https://www.blender.org/
6https://www.solidworks.com/

7

https://www.adobe.com/products/illustrator.html
https://inkscape.org/
https://www.blender.org/
https://www.solidworks.com/

cess. For instance, PePaKuRa Designer7 is a software made for paper model design.

Given a 3D model, PePaKuRa Designer automatically unfolds the 3D polygon-mesh

model and appends additional utility structures for paper model designs. Besides

being a domain-specific software that targets paper-model building, PePaKuRa De-

signer also focuses on a specific design step within the creation pipeline. Instead of

building full-fledged modeling software, PePaKuRa Designer takes a more focused

strategy and only supports the unfolding of 3D models. Within the fields of HCI

and computer graphics, many research projects produce domain-specific systems. To

name a few, Igarashi et al. (2016b) contributes a tool to design Iris folding patterns8;

Oh et al. (2015) provides a system to design paper mechanics; Torres et al. (2016)

offers a toolkit to make molds for jewelry design. Section 1.2.2 provides a detailed

review of these systems.

Direct Output vs. Intermediate Results

The last dimension captures the approach that design-aid tools take to support

their users. Helping designers generate the final output is one strategy that many

tools/systems adopt. For example, tools like Igarashi et al. (2016a) assist their users

in making jewelry designs directly. The outputs of these tools are the target artifacts

in these cases. In contrast, tools like Iarussi et al. (2015a); Torres et al. (2016)

and Igarashi (2011) take a different strategy. Instead of supporting the design of the

final artifact, these tools support the design of intermediate results. The intermediate

results can take various forms. For example, Iarussi et al. (2015a) and Torres et al.

(2016) generate molds for jewelry design instead of jewelry pieces. Igarashi (2011)

7https://tamasoft.co.jp/pepakura-en/
8Iris folding is a paper craft that makes patterns with paper strips.

8

https://tamasoft.co.jp/pepakura-en/

and Igarashi et al. (2012) generate instruction for rhino stone patterns and bead

sculptures so that artisans can manually construct their artifacts.

These three dimensions summarize high-level design decisions that craft system

developers need to make while building their tools. For example, generic tools and

domain-specific tools assist their users in drastically different ways. From a tool

designer’s perspective, it is critical to examine how these design decisions impact

their systems, which leads to an important question: “how to support craft design?”

1.2.2.2 Craft Research in HCI

Figure 1.3: Two major approaches that existing studies take to support craft
design in the field of HCI.

To get a closer look at approaches that current research and systems take to

support Art & Craft design, I surveyed recent craft-related studies within the field

of HCI. Overall, existing work in the field support craft design using two major

approaches: 1) Understand & Preserve, and 2) Support & Assist. In addition to

these high-level approaches, there are four major aspects that existing studies focus

on: 1) Designing Process, 2) Making Process, 3) Learning, and 4) Collaboration.

9

Understand & Preserve

One way to support craft design is by investigating the craft domain and docu-

menting domain knowledge. Obtaining an understanding of a craft is an essential

requirement for supporting craft design. Formulating this understanding into a set

of rules is a common contribution of craft-related research. For example, Noel (2015)

provides a demonstrative example of craft knowledge preservation in the domain of

Trinidad Carnival wire binding sculpture. By conducting interviews, site visits, and

observations, the author presents rules that synthesize the craft.

Knowledge required to make the craft is undoubtedly an essential type of in-

formation to preserve. Many existing projects focus on revealing and summarizing

making processes of different craft domains. For instance, Irvine and Ruskey (2014)

identifies a mathematical model for bobbin lace, which is the traditional way to

make lace. Markande and Matsumoto (2020) documents topological structures be-

hind stitches in knitting. Research like Zhang et al. (2015) and Kryven and Fourquet

(2013) provide additional examples in the domain of bead-/block-based sculpture

design. In addition to the knowledge related to the production of artifacts, some

studies investigate how artists make a new design. Studies in this category enhance

understanding of the craft by preserving standard design practices and documenting

design strategies. For example, Noel (2015) presents a grammar for wire-binding

sculpture in the Trinidad Carnival. Kono and Watanabe (2017) documents various

sewing techniques that can alter textile shapes. Cromwell (2008) examines Celtic

interlaced ornaments, which are artifacts constructed using small knots.

In addition to revealing knowledge related to making and designing a craft,

10

projects like Tung (2012) and Mahato et al. (2019) also examine how novice practi-

tioners learn or collaborate in this craft domain. Specifically, Tung (2012) documents

the material used for teaching rush weaving. Mahato et al. (2019) focuses on how

artisans and craft designers work together to develop new metal handicraft designs.

Support & Assist

Besides enhancing our understanding of a craft domain, research projects also

produce tools that can aid in designing, making, and learning the craft. Studies that

go beyond understanding a craft domain often come with digital tools that assist the

design. More specifically, these tools normally address design challenges from the

following aspects:

• Support the designing of artifacts. E.g., Iarussi et al. (2015a) assists the design

of wire-wrapped jewelry.

– Support the designing of artifacts through programming and robots. E.g.,

Scalera et al. (2019) presents a robot for watercolor painting.

• Support the making of artifacts. E.g., Igarashi (2011) helps designers to create

stencils for rhinestone decorations, which is a pattern-making art form that

features round rhinestones.

• Support the learning of a craft. E.g., Oh et al. (2015) documents techniques in

the design of linkage-based paper toys and helps designers to learn the design

space of this craft.

Figure 1.3 summarizes these two approaches and four aspects that the current

research target. It also provides examples to illustrate how different projects/systems

11

support craft design. These approaches and aspects are not exclusive to each other,

as a tool can cover multiple aspects. Table 1.1 lists a selection of existing studies

and their approaches. I adopt both approaches in this dissertation. GCDTs provide

mechanisms to preserve and understand craft information through grammar. At the

same time, GCDTs support the design and making of physical artifacts.

12

Paper Domain
Understanding Supporting
M. D. C. L. M. D. C. L

Irvine and Ruskey
(2014)

Bobbin Lace •

Markande and Mat-
sumoto (2020)

Knotty Knits •

Noel (2015) Trinidad Carnival Wire
Binding

• •

Kono and Watanabe
(2017)

3D shape construction
using fabric

• •

Cromwell (2008) Celtic Interlaced Orna-
ment

• •

Igarashi et al. (2012) Bead Sculpture • •
Zhang et al. (2015) Mini Block Sculpture • •
Kryven and Fourquet
(2013)

Knitting • •

Tung (2012) Rush Weaving • • •
Mahato et al. (2019) Metal Handicraft • • •
Igarashi et al.
(2016b)

Iris Folding Pattern • • •

Paczkowski et al.
(2018)

Paper-based 3D model-
ing

• • •

Igarashi (2019) Band Weaving • • •
Igarashi et al.
(2016a)

Necklace Design • • •

Skouras et al. (2015) Interlocking Objects • • •
Igarashi et al. (2009) Cover Design • • •
Wu et al. (2018) Knitting • • •
Zheng and Nitsche
(2017)

Ceramics • • • •

Scalera et al. (2019) Robot-based watercolor
painting

• • • •

Iarussi et al. (2015a) Wire Wrapped Jewelry • • • •
Igarashi (2011) Rhinestone Sculpture • • • •
Torres et al. (2016) Jewelry Making • • • •
Oh et al. (2015) Paper Mechanics • • • • •

Table 1.1: Selected Craft-related Research Projects. M. is the abbreviation for
Make. D. is the abbreviation for Design. C. is the abbreviation for Collaboration.
L. is the abbreviation for Learn.

13

1.2.3 Challenges in Art & Craft Design-Aid Systems

In addition to requiring additional learning and training, digital design-aid tools

impose different types of challenges depending on their design-aid strategies. When

using generic craft design tools to make physical craft designs, the lack of

domain-specific support can bring major challenges for designers. Because

generic tools are not specifically made for a particular craft, craft designers might

need to find workarounds to accommodate their design needs. For example, crochet

designers who design with Adobe Illustrator might need to draft single stitch symbols

before drafting a full pattern. Papercut designers need to check if all parts of the

design are connected manually.

In some instances, designers can quickly identify these workarounds (e.g., find

existing plugins or tutorials). It is worth noting that some generic tools are extend-

able. When encountering design tasks unsupported by the design software, users

might have mechanisms to develop plugins or add-ons to assist their designing pro-

cesses. In addition, tools like Blender also let their users control through scripts,

which offers users more flexibility. In other cases, the limitation of the design tool

can force designers to compromise their original design directions.

Most generic design tools fail to provide targeted simulation methods because of

the lack of connection to specific craft domains. For certain craft domains, especially

those not designed through 3D modeling methods, the design tool does not provide a

default simulation function. Therefore, designers need to imagine the output or use

other means to create simulations of the design. For instance, embroidery design-

ers can use graphics editing software to draft their patterns. However, simulating

14

thread texture is not a commonly available function within graphics editing tools.

For texture-rich embroidery styles, having realistic simulations could be potentially

helpful. Nevertheless, designers either need to proceed with the execution process

without simulating the design or have to produce the simulation using other means.

The experience of using generic design-aid software for specific craft design tasks

could be similar to a supermarket shopping experience: the chef has all the ingredi-

ents they would possibly need, but they have to figure out the exact procedure by

themselves. If the dish (i.e., design task) they plan to make is popular, they might

find recipes (i.e., tutorials) to guide their creative processes. Otherwise, they need

to experiment and explore on their own.

Instead of using generic design-aid systems, designers might also have access

to domain-specific software for some craft disciplines. For example, Pepakura De-

signer 9 targets paper model designing tasks and helps designers to unfold 3D pat-

terns. StitchFiddle10 specializes in grid-based yarn pattern design. Although craft-

specific design tools support designers with domain knowledge, this set of knowledge

is often implicit. The implicit domain knowledge embedded in the tool makes it

difficult to identify a particular tool’s limitation. For example, Pepakura Designer

approximates curve lines with straight lines before unfolding a 3D model. Without

this knowledge, designers might have created 3D models with excessive curves, re-

sulting in unmanageable patterns. Ideally, the domain information used in building

a tool should be fully transparent to its users to assess the suitability between the

tool and the design task.

9https://tamasoft.co.jp/pepakura-en/
10https://www.stitchfiddle.com/en/chart/create

15

https://tamasoft.co.jp/pepakura-en/
https://www.stitchfiddle.com/en/chart/create

Figure 1.4: An origami tessellation example.

A more critical issue associated with many domain-specific tools is

the lack of flexibility. Domain-specific tools often offer viable and sophisticated

solutions to these tasks because they are designed to support a set of design tasks.

Nevertheless, when designers need to perform a relevant task that is not designed in

the original system, domain-specific tools reviewed in Section 1.2.2 often offer none

or minimal support, therefore, they require users to make workarounds. For instance,

producing fabrication-ready designs is another challenge that designers need to face

when using small and craft-specific tools. Designers are often limited by supported

exporting formats, machine-specific syntaxes, or even the design-aid tools’ operation

platforms. To illustrate, origami tessellation is the art of folding repetitive structures.

By creating unit components repetitively, origami tessellation artists transform 2D

patterns into 3D structures. Figure 1.4 displays an origami tessellation example.

16

Tess 11 is a Windows-only software for designing origami tessellation. While offering

impeccable pattern-generating functions and a useful 3D simulation module, Tess

lacks flexibility in its exporting format (only exports to pdf and png). Tessellation

artists who intend to use machines to score the creases will need additional software

to edit the design. It is possible and expected that tool developers could not foresee

users’ needs. For example, when Tess was created, making origami creases with a

machine might not be a popular method. However, a craft design tool should be

able to generate fabrication-ready designs in various formats.

Compared to the supermarket analogy for generic design-aid systems, domain-

specific design-aid tools often provide a restaurant-like experience. These tools have

“fixed menus” that offer reasonable solutions in many cases. But if users want to go

off the menu, they need to seek other solutions, such as using additional tools for

post-editing (e.g., using a file format converter).

In summary, while existing design-aid tools become increasingly powerful and

intelligent, craft designers still face various challenges. At a high level, generic tools

often lack domain-specific support. As a result, designers need to acquire craft

domain knowledge and design tool knowledge independently. Although domain-

specific tools can offer targeted support for domain-specific tasks, they often provide

limited flexibility.

17

Figure 1.5: Overview of Grammar-driven Craft Design Tools

1.3 Grammar-Driven Craft Design Tools

Intending to tackle existing challenges associated with craft design-aid systems, I

examine a new direction for making craft design-aid tools. I refer to this direction as

the Grammar-driven Craft Design Tool (GCDT) Framework. Also, I refer to systems

that adopt this framework as Grammar-driven Craft Design Tools (GCDTs). This

section provides an overview of this framework by presenting the key characteristics

that GCDTs have. Figure 1.5 provides an overview of these characteristics.

1.3.1 Primary Characteristics

Domain-Specific

GCDTs are craft-specific tools that support defined sets of design tasks (i.e.,

11http://www.papermosaics.co.uk/software.html

18

http://www.papermosaics.co.uk/software.html

Domain-Specific). Instead of supporting a wide range of design tasks like generic

design-aid tools (e.g., modeling software), GCDTs focus on solving tasks within a

scope bound by the craft discipline. A core motivation for adopting this system-

building strategy is that domain-specific tools offer more potential to bridge the gap

between craft domain knowledge and design tool knowledge.

As discussed in Section 1.2.3, generic tools are robust design-aid systems, yet they

are detached from specific design tasks because they do not have domain-specific

information. Because of the lack of domain-specific information, designers also need

to independently acquire domain knowledge and tool knowledge. For example, to

design a crochet pattern using a generic vector graphics editing software, a designer

needs to 1) learn icons associated with different stitches and 2) learn to use the

editing software. In this case, these two processes are independent of each other. If

the designer were to use software designed for crochet pattern drafting, the software

might offer a library of stitch icons. While learning the meaning behind these icons,

the designer is also familiarizing themselves with the design tool. By focusing on a

specific craft discipline, GCDTs can offer targeted support and bridge the gap.

Explicit Grammar

Like other domain-specific craft design tools, GCDTs utilize and embed domain-

specific information. For example, a crochet pattern design software contains crochet-

specific knowledge, such as stitch terminology and pattern restriction. Nevertheless,

users might not have a clear access to this set of knowledge, nor do they always

offer guidance on utilizing this set of information. How to collect, structure, and

embed this set of domain-specific knowledge into design-aid tools is entirely up to

19

the tool designers. In comparison, the GCDTs framework imposes two specific con-

straints on tool designers so that users of GCDTs have clear access to domain-specific

information.

To start, GCDTs utilize an organized set of craft domain information that I

refer to as the grammar of the craft. The grammar of the craft is an essential set

of domain knowledge that constructs a language for describing and making designs

in a craft domain. While grammars across craft disciplines differ from each other

in terms of content, they share similar structures. Namely, each set of grammars

contains three major parts: 1) Programmable Structure, 2) Creation Pipeline, and

3) Domain-specific Methods. In Section 1.4, I elaborate on the concept of grammar,

as well as the process for extracting a set of grammar.

Grammar serves as GCDTs’ primary mechanism and interface. Chapter II offers

examples and a more detailed discussion about how this is achieved. With the

combination of these two constraints, GCDTs connect domain-specific knowledge

and design-aid tool. They also offer transparency over how these connections are

built.

Extendable

As discussed in Section 1.2.3, domain-specific design-aid systems often offer lim-

ited flexibility because they are designed to support a specific set of design tasks.

GCDTs address this issue by giving users options to add additional modules. If

the current set of grammar cannot describe the design tasks that users have, they

can add additional grammar and corresponding modules to GCDTs. The grammar-

driven structure ensures that users can add additional rules as long as the additions

20

do not conflict with the existing set of grammar.

1.3.2 Secondary Characteristics

Besides these three primary characteristics, two secondary characteristics are

associated with GCDTs that I developed in this dissertation. While “generating

fabrication-ready design” and “offering control through scripting” are less critical

than the grammar-driven structure, these two characteristics have the potential to

improve users’ experience and enable a broader range of creative strategies.

Fabrication-Ready

The outputs of GCDTs should be fabrication-ready. “Fabrication-ready design”

has different meanings in different craft domains. For artifacts meant to be made with

fabricators such as 3D printers and laser cutters, fabrication-ready designs indicate

that the output format should be compatible with the associated fabricators. For

artifacts that require manual construction (e.g., crochet and cross stitch), design-aid

tools should consider how to support artisans’ manual making process.

Assisting the making of fabrication-ready design means that systems developers

will consider the physical making process of the final artifacts and provide support

for the procedure. The specific strategy, approach, and implementations that system

designers take to fulfill this requirement can differ across domains and tools. Chapter

IV provides an detailed example on this topic.

Script Control

Offering script-based control is another characteristic of GCDTs that I describe

in this dissertation. Including scripting support could lead to two major benefits.

21

It ensures that users can modify and extend the tool. As discussed in Section 1.3,

GCDTs build upon sets of editable grammar. Allowing users to add customized

scripts provides access to the grammar and gives users more control over their de-

sign outputs. For instance, users unsatisfied with certain output formats could add

additional format-adjusting scripts to the tool.

Besides, including programming supports opens up opportunities for generative

design. Generative design can have different meanings in different domains. In this

dissertation, I refer to the generative design method as using algorithms to produce

design outputs. In comparison, I consider parametric design (as described in Aish

and Woodbury (2005)) a particular case of generative design where constraints are

used to create designs. Other names, such as algorithmic design (e.g., Jacobs (2013)),

share similar ideas. Jacobs (2013) provides a comprehensive review of challenges and

advantages in incorporating a generative design approach in craft design domains.

For instance, Jacobs (2013) argues that the generative design approach can produce

precise and complex design variations. Yet, this approach adds additional challenges

for designers to specify the constraints of the design task.

Generative designs are often tied to programming because major generative art

tools supports generative design through scripting. Processing12 and OpenFrame-

works13 are popular programming language/toolkit developed for creative coding.

Other tools such as Grasshopper 3D 14 utilize block-like programming environment.

Unlike tools such as Jacobs (2017, 2013); Jacobs et al. (2018) that focus on support

12https://processing.org/
13https://openframeworks.cc/
14https://www.grasshopper3d.com/

22

https://processing.org/
https://openframeworks.cc/
 https://www.grasshopper3d.com/

novice programmers, GCDTs can support programmers of different levels.

1.3.3 Suitable Craft Domains

While the GCDTs could be suitable for a wide range of craft, craft domains with

the following characteristics might benefit more from the GCDT framework:

• Domains that have well-established rules might be more suitable than domains

that have flexible guidelines. It is challenging to develop a comprehensive

grammar for extremely flexible domains such as fluid painting15 or general

embroidery. In comparison, summarizing grammar sets for domains like paper

marbling or circular crochet is easier.

• Domains that require precise control and complex design procedures might ben-

efit more from the GCDT framework than domains with simple design proce-

dures and fewer requirements for precision. For instance, bobbin lace 16 design

might be more suitable for the GCDT framework than freeform collaging.

• Domains that benefit from the generative design method could be more suitable

than domains that do not need scripting support. For example, cyanotype art,

which is a photographic process to produce cyan-blue print, might not be an

ideal domain for the GCDT framework.

GCDTs described in this dissertation have all primary and secondary charac-

teristics. They are Python-based toolkits that require users to have expertise in

15Fluid painting is a painting method that produces images by pouring liquid paint on surfaces.
16Bobbin lace is the traditional way of making lace. It utilizes a tool called a bobbin to make

intricate knots.

23

programming. I choose to implement script-based control for all three GCDTs to

support the generative design approach. While the GCDT framework can poten-

tially support a wider range of users, GCDTs in this dissertation are designed to

support users who have expertise in creative programming. My GCDTs assist these

users in their creative experiments that involve physical artifacts building. Because

the GCDT structure is closely aligned with common concepts in object-oriented pro-

gramming, these users would find the grammar structure quite familiar.

1.4 Domain Knowledge and Grammar of Craft

Figure 1.6: Grammar of the craft is an organized set of information extracted from
craft domain knowledge. After a translate/refine process, the grammar of a craft
consists of three major parts: 1) programmable structure, 2) creation pipeline, and
3) domain-specific methods.

The usage of grammar is a defining characteristic of GCDTs. The grammar of

a craft is a set of organized information of a specific craft. There are two critical

questions that a system developer might ask when they are considering developing

a GCDT. First, what kind of information should they collect? Then, how to process

the collected information?

24

In this section, I explain the concept of grammar by discussing the motivation

behind this concept (Section 1.4.1). Then I discuss the composition of a typical

set of grammar (Section 1.4.2). Figure 1.6 provides an overview of the concept

“grammar.”

1.4.1 Craft Domain Knowledge

To produce a design in a craft discipline, artisans need to gather relevant infor-

mation and skills within that craft domain. For example, jewelry designers need

to be familiar with various material; knitters need to understand knitting patterns.

The grammar of a craft is essentially an organized version of this set of information.

While each type of craft has its unique collection of domain information, I roughly

categorize it into six categories.

• Goals & Constraints: Criteria to determine whether a design is satisfactory.

Some craft has clear design goals, whereas others have flexible goals. For

example, a functional mug design needs to hold a certain amount of liquid. In

this case, the design goal is a constraint that designers choose to follow. In

comparison, the design of a ceramic sculpture might have a much more complex

and exploratory set of goals and constraints.

• Terminogy: Languages used when constructing and describing a craft. The set

of information can include any term that has dedicated meaning in a craft. For

example, “single stitch” in crochet, “sugar lift” in printmaking, and “rocking”

in mezzotint.

25

• Material: Information related to the physical material used in making pro-

cesses. E.g., knitwear designers need to differentiate wool yarn from acrylic

yarn. With this group of information, craft designers should be able to answer

questions such as

– What kind of material are suitable for this craft?

– What are the physical properties required?

– How does the material impact the final output?

• Techniques: Actions that artisans perform during the designing and making

processes. For example, crochet artists need to know the motion of the cro-

chet hook when constructing a single stitch or a double stitch. In addition

to individual techniques, this group of information also contains procedural

knowledge related to the craft. For example, crochet artists need to know the

procedure for finishing a piece.

• Common Practices: Information related to the typical and classic designs. In

many craft disciplines, the design of artifacts has established patterns and

motifs. Some of these common practices might be associated with the charac-

teristics of the craft. For example, cross-stitch artisans sometimes do not secure

the end of their threads because they might glue their embroidery pieces dur-

ing framing processes. In some craft disciplines, these common practices might

have cultural and historical meanings. For instance, there are an extensive set

of common traditional motifs in Chinese paper cut art.

26

1.4.2 Turning Domain Knowledge into Grammar

The process and strategy for obtaining domain knowledge differ across craft dis-

ciplines. Domain knowledge is scattered and unorganized information for many craft

disciplines. There are many potential sources to acquire this knowledge. For ex-

ample, artisans can learn from instructional books such as Leaf (1984) for intaglio

printmaking, Chamberlin and Corbet (2017) for goldwork, and Birmingham (2010)

for pop up structure design.

Besides books, artisans can obtain craft-related information from articles, online

forums, and video tutorials. For instance, Ravelry17 is an online platform for thread

artists to discuss and share knitting/crochet patterns. In general forums such as

Reddit18, there are also dedicated sections where artisans share information regarding

a specific craft. Artists can learn from video content. There are many tutorial videos

that store craft domain knowledge. Artisans also have many options to access online

classes from services such as Skillshare19 besides buying these tutorial DVD sets such

as Ross (2017).

Comparing to texts/video content, workshops and in-person classes offer arti-

sans more hands-on opportunities to obtain craft domain knowledge. In some craft

disciplines, in-person teaching is the primary method for passing on craft-related

information for many reasons. For instance, metal jewelry artists might find it dif-

ficult to only learn from books and videos because of equipment training. Cultural

17https://www.ravelry.com/
18E.g., https://www.reddit.com/r/printmaking
19https://www.skillshare.com/ is an online learning community where content creators can

share project-focused instructional videos.

27

https://www.ravelry.com/
https://www.reddit.com/r/printmaking
https://www.skillshare.com/

influence and traditions might also impact how the craft knowledge is preserved

and accessed. For example, Thangka artists often learn from other painters through

apprentice training (Gamble (2001)).

After collecting domain knowledge, design-aid system designers face a more crit-

ical challenge: how to process this knowledge? In Section 1.4.1, I discussed five

categories (i.e., goals, terminology, material, techniques, and common practices) of

domain knowledge. Nevertheless, craft information that is organized into these five

categories still cannot be directly used in developing a design-aid tool because each

category of information contains mixed levels of complexity, abstraction, and pri-

ority. For instance, “a chain stitch must connect to two stitches unless it is the

beginning stitch or ending stitch of a pattern” is a specific constraint in crochet de-

sign. Without any strategy for organizing and hosting information, it is unclear how

tool designers should embed this information into their tools.

To provide tool designers more guidance over the information organizing stage,

I use the concept “grammar” as a structure to host information. The concept of

“Grammar of the Craft” is inspired by the grammar of graphics in information vi-

sualization. The Grammar of Graphics is a foundational framework in information

visualization. It consists of graphical attributes, such as position and hue, that

designers can use to encode data (Wilkinson (2012); Munzner (2014)).

The Grammar of Graphics constructs a language for describing and designing

information visualizations. In a visualization authoring process, designers provide

inputs from three aspects: 1) data, 2) a set of encoding rules (following the gram-

mar of graphics) 3) additional specifications that adjust non-data-related attributes.

28

Mainstream visualization authoring tools such as Tableau20, D3.js21, Vega22, and

Matplotlib23, all embed the Grammar of Graphics in their designs because visualiza-

tions are “written” with visual languages that follow the grammar (Bostock et al.

(2011); Satyanarayan et al. (2016)).

Many collections of craft knowledge are presented as grammar-like specifications.

Previous studies display the possibilities of extracting grammars within different

domains such as wire-binding figures (Noel (2015)), Celtic knots (Cromwell (2008)),

and bobbin lace (Irvine and Ruskey (2014)). Nevertheless, tool developers might

still find it difficult to directly adopt these grammar specifications because these sets

of grammars take various forms and are not designed for tool building.

To solve this issue, I identified structures that a set of grammar should have.

A craft’s grammar has three parts: programmable structure, creation pipeline, and

domain-specific methods. In this dissertation, I examined three unrelated craft do-

mains and experimented with various grammar structures. Through these experi-

ments, I summarize this three-part structure (see Figure 1.6).

Programmable Structure

Programmable structures are components or unit elements within a craft design.

These structures can have physical associations. For example, a sheet of material is

a unit component in multilayer sculpture. In digital systems, this sheet of material

can be represented using various forms, such as a blank canvas in graphics-based

editing tools or a class in a programming environment. The term “programmable”

20https://www.tableau.com/
21https://d3js.org/
22https://vega.github.io/vega/
23https://matplotlib.org/

29

https://www.tableau.com/
https://d3js.org/
https://vega.github.io/vega/
https://matplotlib.org/

is used here to indicate that designers can edit the properties of these structures.

In origami tessellation, each cell within the pattern is a programmable structure.

By modifying the shape and location of individual cells, designers create different

tessellation structures.

If a structure has associated constraints, these constraints become properties of

this structure. Using the example of chain stitch in crochet again, I treat one chain

stitch as a unit component. The constraint that “a chain stitch must connect to

two stitches unless it is the beginning stitch or ending stitch of a pattern” can be

organized into a validation method associated with this component. Whenever users

create a chain stitch, this associated method can test whether the creation is valid.

Creation Pipeline

The second part of the information that a set of grammar should contain is the

creation pipeline. The creation pipeline contains procedure information that users of

design-aid systems need to follow to make a design. For example, to design a paper

cut piece, a potential pipeline can include three steps: 1) draft the outline, 2) add

decorative motifs, and 3) validate the pattern.

In real-world design scenarios, the creation process is likely to be non-linear.

Studies such as Hanington and Martin (2012) and Kumar (2012) examine the design

and design-thinking processes. They suggest that designers need to iterate over their

designs. Similarly, the creation pipeline here can be non-linear. Specific steps might

depend on previous steps (e.g., create a canvas before making any mark), yet users

likely have some flexibility over the creation procedure.

Domain-specific Methods

30

Domain-specific methods are the last part of the grammar of craft. Each method

represents a technique used in the designing and making process. These techniques

can also take various forms in digital systems. For example, in origami pattern

design, mountain fold and valley fold are two primary methods that all origami

design software should have. In crochet pattern design, automatically arranging

stitches into a circle could be a helpful technique.

With these three components, the grammar of a craft constructs a language for

describing and making designs in this craft domain. GCDTs use grammar as their

primary mechanisms and interfaces so that designers can “write” using the language

constructed by the grammar. Chapter II provides a complete example for extracting

and utilizing grammar in GCDTs.

1.5 Building GCDTs

In summary, GCDTs are design-aid systems that explicitly utilize organized sets

of craft domain information (i.e., the grammar of the craft) as their primary mech-

anisms and interfaces. The design of the GCDT framework is motivated by existing

design-aid tools and research in HCI. GCDTs have unique characteristics that are

designed to tackle existing challenges associated with current craft design-aid sys-

tems. In chapters II, III, and IV, I elaborate on these characteristics and provide

examples of GCDTs developed in three different craft domains.

First, InfiniteLayer is a design-aid tool that supports multilayer sculpture design

(Chapter II) 24. Multilayer sculpture is the art of creating overlaps. By processing

24This chapter is adopted from the manuscript titled “InfiniteLayers: A Programming Toolkit for

31

and layering sheets of material such as paper, wood, and fabric in specific ways,

artists transform overlapping 2D designs into 3D forms. As computer-controlled fab-

ricators become increasingly available, creating multilayer sculptures with machine

assistance becomes viable and prevalent. However, creating fabrication-ready designs

remains a challenging task, especially for intricate artwork with many layers. Also,

existing tools often require artists to mentally translate between 2D and 3D forms,

making rapid prototyping difficult. To address the software gap in multilayer sculp-

ture creation, I present InfiniteLayer , a programming-based toolkit that supports the

design of intricate and algorithm-driven multilayer sculptures. By synthesizing com-

mon techniques and constraints of this art form, InfiniteLayer supports the creation

and manipulation of fabrication-ready designs. Furthermore, InfiniteLayer provides

3D simulation to assist rapid prototyping. I demonstrate the power of InfiniteLayer

by showcasing a wide range of designs that it enables. Through this example, I

document and discuss grammar extraction processes.

I present the development process of a GCDT in the domain of mark-making

tool design (Chapter III)25. Mark-making tools enable artists to produce their imag-

ined art in various forms. Despite the considerable variations of nibs, brush, stamp,

and marker designs, artists continue developing unique mark-making instruments.

To create ideal and unique marks with different mediums, artists modify their tools

(e.g., cut brushes to specific shapes) or find alternatives (e.g., use toothbrushes and

sponges). The availability of fabrication technologies enables a broad new class of

Multilayer Sculpture Design,” which is co-authored by Shiqing He and Eytan Adar.
25This chapter is adopted from the manuscript titled “Inventing Creative Mark-making Tools,”

which is co-authored by Shiqing He and Eytan Adar.

32

mark-making tools. However, designing and fabricating a mark-making instrument

requires many skills such as drafting, modeling, material handling, and manual as-

sembly. As a result, creating unique and intricate mark-making tools remains chal-

lenging. This chapter examines existing design and fabrication processes for mark-

making instruments such as pen nibs, brushes, and stamps. I identify opportunities

and design space for personalized mark-making tools. After testing various fabrica-

tion methods such as 3D printing, casting, and manual construction, I contribute an

open-source toolkit, MarkMakerSquare, that supports the design of creative mark-

making tools. I demonstrate the range and limitations of the fabricated mark-making

techniques. I also reflect on challenges encountered for developing design-aid systems

that leverage multiple fabrication methods and material.

Lastly, Chapter IV presents ThreadPlotter , a GCDT that supports the design and

fabrication of plotter-based delicate punch needle embroideries26. Punch needle em-

broidery is a unique type of embroidery that uses loops of threads to create designs.

Technology for punch needle embroidery ranges from popular handheld manual tools

to high-cost industrial tufting machines. Computer-controlled punch needle fabri-

cation tools remain out-of-reach for most practitioners. This work describes how a

low-cost X-Y plotter can be repurposed to support punch needle embroidery fabri-

cation. By adding easy-to-make physical accessories coupled with a novel software

toolkit, I support the production of delicate and precise punch needle embroideries

with minimal manual labor. After examining and evaluating the potential and chal-

26This chapter is adopted from the manuscript titled “Plotting with Thread: Fabricating Delicate
Punch Needle Embroidery with X-Y Plotter”, which is co-authored by Shiqing He and Eytan Adar.
It is published at DIS ’20, July 6–10, 2020, Eindhoven, Netherlands (He and Adar (2020)).

33

lenges of converting X-Y plotters into punch needle embroidery fabricators, I propose

a set of design and fabrication guidelines specific to plotter-based punch needle em-

broideries. I demonstrate how this novel fabrication approach enables the production

of a wide range of artifacts and textures.

While these three GCDTs have all primary and secondary characteristics de-

scribed in Section 1.3, each of them has a different focus. The development process

for InfiniteLayer provides insights for grammar extraction. In comparison, Mark-

MakerSquare emphasizes the importance of extendability. Because plotter-based

punch needle is an unconventional fabrication method, ThreadPlotter is an example

of GCDT that produces fabrication-ready design. Through these tools, I examine

how GCDTs’ unique characteristics assist creative activities.

34

CHAPTER II

Multilayer Sculpture Design

2.1 Introduction

Figure 2.1: InfiniteLayer is a Python-based toolkit that assists multilayer sculpture
design. It provides foundational structures and essential methods for designers to
draft, import, and manipulate 2D designs (LEFT). It aids rapid prototyping by
delivering 3D simulations without requiring modeling expertise. Also, it offers
flexible controls over rendering settings/formats to produce designs that are
compatible with a variety of fabricators (RIGHT: artwork fabricated with a laser
cutter).

The usage of grammar is a defining characteristic of GCDTs. In this chapter,

I discuss the grammar extraction processes through a GCDT developed for multi-

35

player sculpture design. Through this example, I present the process for collecting,

refining, and utilizing domain-specific information in the development process of a

GCDT. Multilayer sculpture is a category of 3D structures that consist of layers

of material. By manipulating individual layers, designers can create artifacts using

various material such as paper, wood, fabric, and acrylic sheets. Besides creating

aesthetically pleasing structures for art and decoration purposes (e.g., paper cut by

Kubo (2009)), installation art (e.g., Schama (2019)), designers also make multilayer

structures as intermediate tools for other creations (e.g., stencils for painting and

screen printing (e.g., Jain et al. (2015); Igarashi and Igarashi (2010)). In this chap-

ter, I first present the domain-specific information collected for multilayer sculpture

in section 2.2. In section 2.3, I produce a set of grammar by organizing the informa-

tion into three major components: programmable structures, creation pipeline, and

domain-specific methods.

Paper-based layer art is a common form of multilayer sculpture with a rich history

across many cultures. Artisans around the world have been using various hand-held

tools to produce delicate designs (Ryan and Avella (2011)). Manually making mul-

tilayer sculptures could be a meditative process, but it also comes with several lim-

itations. Manual fabrication could be a labor-intensive task that requires extensive

technical training. One of the most challenging aspects of manually making is the

limited range of material that one can precisely cut using hand-held tools. Artisans

can easily find tools to cut delicate designs on paper, but cutting the same design on

more rigid material such as acrylic sheets or metal by hand is considerably more chal-

lenging. Likewise, extra delicate material such as tracing paper are easily tearable

36

during the manual cutting process. As computer-controlled fabricators, such as laser

cutters, CNC mills, vinyl cutters, and die cut machines, become increasingly avail-

able, using machines to assist the making of multilayer sculptures has become more

prevalent. Besides offering precise control over how a design is cut, fabricators also

open up the range of material that designers can easily manipulate. Additionally,

designing and iterating digitally before committing to a design can save significant

prototyping time and material cost.

When creating these 3D forms digitally, it is tempting to search for 3D modeling

tools. While slicing a 3D model into layers is a viable design approach for some tasks,

it is unsuitable for all multilayer sculpture design tasks. The fundamental issue comes

from how the digital design process connects to the physical creation process. When

building a 3D model, designers typically take an additive/subtractive approach, just

like how they would shape a ball of clay or chip away a corner of the stone. This

approach is powerful for designing connected and solid objects. For example, users

can build a dinosaur model, slice it into layers, and then assemble layers back into a

solid multilayer dinosaur sculpture.

Nevertheless, specific multilayer design tasks require designers to focus on one

slice of material at a time. While shaping a ball of clay into an interlacing structure

(e.g., a simple plain weave) is challenging, building the same structure with clay

slabs is considerably more manageable. Similarly, creating a 3D model for multilayer

sculptures with interlacing structures is counter-intuitive. It requires designers to

think in 2D: they need to shape their digital “modeling clay” into fixed, flat sheets

before modeling.

37

Because the primary material for multilayer sculpture is flat, it calls for a design

process similar to how artisans play with a stack of paper. By going through the

stack layer by layer, designers can take advantage of this layering process and design

overlapping shapes that are difficult to imagine otherwise. Many commonly used

techniques in multilayer sculptures, such as creating partial overlap, combining dif-

ferent material, and intentionally covering previous layers (e.g., for lightbox design),

are easier to design using a 2D design approach. Similarly, when designing other 3D

objects intended to be fabricated with sheets of material, designers might opt for

2D design tools such as LaserOrigami (Mueller et al. (2013)) and CutCAD (Heller

et al. (2018)), because “the underlying 2D design principles are easier to understand

(Heller et al. (2018)).”

Therefore, many multilayer sculpture designers rely on 2D vector graph authoring

tools, such as Adobe Illustrator and Inkscape, to draft 2D designs. Additionally, there

are specialized software designed for making painting stencils (e.g., Jain et al. (2015);

Igarashi and Igarashi (2010)), paper cut art (e.g., Liu et al. (2018)), and iris folding

artwork (e.g., Igarashi et al. (2016b)). Designers can still find their tasks challenging

to tackle even with the assistance of existing tools. To start, when designing highly

complex and precise pieces, designers need to repeatedly perform basic actions, such

as aligning, resizing, and translating. Also, while systems developed specifically for

paper cuts design and stencil-making can help users vectorize raster images and

ensure that all parts are connected, they often offer minimal flexibility. For example,

using tools focused on extracting and processing images (e.g., Jain et al. (2015);

Igarashi and Igarashi (2010); Meng et al. (2010); Liu et al. (2018)), users need to

38

rely on additional tools for post-processing, such as adjusting file format and changing

line thickness/color. Most domain-specific tools (e.g., Igarashi and Igarashi (2010);

Meng et al. (2010); Liu et al. (2018); Higashi and Kanai (2016); Yang et al. (2019);

Xu et al. (2007); Liu et al. (2020)) also focus on supporting single-layer designs and

have limited assistance for creating multiple layers at once.

The lack of prototyping support is another challenge associated with current

design-aid tools in this domain. Although a layer-by-layer design approach is more

viable for many tasks, it does not suggest that only viewing 2D graphs is sufficient

for all design tasks. To check whether patterns on each layer “contribute” to the

desired 3D form, designers need to see how layers stack together. Currently, artists

need to rely on additional 3D modeling tools to visualize their designs accurately.

Manually constructing these 3D models is a labor-intensive task, especially when

the design contains many layers. Alternatively, designers can approximate the 3D

layering effect by digitally laying 2D designs together. For example, by showing the

residual (“onion skin”) of the previous layer, designers can imagine how two layers

overlap to create a 3D form. Figure 2.1 (bottom left) shows an example where the

designer creates four layers and digitally stack them together to visualize the finished

artwork.

To address these issues, I designed InfiniteLayer , a Python-based programming

toolkit that assists the design and fabrication of multilayer sculptures. While In-

finiteLayer supports design tasks with different complexities, it is most suitable for

intricate designs that require precise controls. Also, while InfiniteLayer does not

limit the design approach that users can take, it is designed to support the making

39

of algorithmic craft, which takes advantage of the parametric and generative de-

sign approach. By examining representative artwork in this domain, I summarize

foundational structures and core techniques in this art form. I further extract and

refine this fundamental domain knowledge and transform it into the infrastructure

and methods that InfiniteLayer provides. Using InfiniteLayer , designers can create

intricate artwork with several lines of code. In addition to supporting the creation of

elaborated and algorithm-driven designs, InfiniteLayer also provides a 3D simulation

module that assists users’ prototyping processes. Users can inspect and interact with

the web-based 3D models without having to construct these models manually.

In this chapter, I introduce a GCDT named as InfiniteLayer . It is a programming-

based solution to tackle multilayer sculpture design challenges. I develop and evaluate

InfiniteLayer , an open-source tool that supports the design and simulation of mul-

tilayer sculptures using programming. This tool offers essential infrastructure and

methods that summarize this art form’s core techniques and constraints. I display

various approaches that users can take when using the tool. I also present a collec-

tion of multilayer sculptures designed using InfiniteLayer . Through this example, I

demonstrate the grammar extraction process of a GCDT.

2.2 Related Work

In this section, I review artwork, tools, and fabrication methods related to multi-

layer sculpture design. By examining various forms of multilayer sculpture, current

design-aid tools, and the design/making methods associated with this art form, I

explain motivations for building the InfiniteLayer .

40

2.2.1 Multilayer Sculpture and Related Art

Figure 2.2: I describe components of multilayer sculpture using the term “layer (a
flat a sheet of material)” and “stencil (shapes to be cut).” Design A illustrates an
example that utilize three types of stencils: a base stencil (1), a boundary stencil
(2), and multiple pattern stencils (3). Certain types of stencils can also be
described as (4)“island shapes”, and (5)“bridges” that connecting island shapes to
the main structure. Design B provides an example where each layer only contains
base stencil and boundary stencil.

To describe and analyze multilayer sculpture, I first clarify the terms I use to

describe this art (Figure 2.2). A “layer” denotes one flat sheet of material. The layer

is the unit component of a multilayer sculpture design. In a digital design setting,

a layer can be an infinitely large canvas/plane. Practically, the dimensions of the

layer are constrained by any physical material that designers would like to produce.

I use the term “stencil” to represent a group of shapes to be cut. This definition is

inspired by physical die-cut stencils that are used to cut out shapes from paper or

metal sheets. To create a multilayer sculpture, artisans need to use different types of

stencils. For example, when creating paper cut art, an artist first trims a postcard-

sized sheet of paper from a large paper roll. The postcard-size trimming template is

an example of a base stencil that represents the shape of the unprocessed material.

Then, the artist cuts out a smaller circle that serves as the main structure of the

41

paper cut. The template used for cutting the circle is a boundary stencil. Next, the

artist cuts other shapes away from the circle to create the paper cut design, and I

refer to these shapes as pattern stencils.

Figure 2.2 provides a visual example of my definitions. Each layer of the sculpture

can contain one or more stencils. Also, each layer can have different boundary

stencils. I note that my definition of stencils differs slightly from painting stencils,

which primarily consider stencils as a sheet of material with cut-away patterns (Jain

et al. (2015)). In comparison, my definition has a closer connection to die-cut stencils,

which are intermediate tools instead of the final result.

To understand components, techniques and constraints of this art form, I re-

viewed a collection of representative multilayer artwork from notable artists such as

Maud Vantours, Charles Clary, Gabriel Schama, Eric Standley, Martin Tomsky, Julia

Ibbini, and Stephane Noyer. These artists have different styles and create for a broad

set of presentation goals. Multilayer sculptures can be installation pieces (e.g., Ibbini

and Noyer (2021); Standley (2020); Clary (2013)), graphics design components (e.g.,

Vantours (2020)), and even jewelry (e.g., Tomsky (2019)). Furthermore, the subject

matter of these creations varies dramatically. For example, artists used motifs in-

spired by nature (e.g., Vantours (2020)), figures (e.g., Tomsky (2020)), architectural

elements (e.g., Standley (2020)), and abstract/geometrical shapes (e.g., Vantours

(2019); Clary (2013); Schama (2019); Ibbini and Noyer (2021)). In addition to the

subject matter, artwork also vary by their material. Different types of papers such as

card stock, construction paper, and specialty papers create different color and tex-

tures (e.g., Vantours (2019, 2020); Clary (2013); Standley (2020); Ibbini and Noyer

42

(2021)). Wood is another popular choice that provides a large selection of texture

and finishes (e.g., Schama (2019); Tomsky (2020, 2019)).

Apart from multilayer sculptures, I also examined several related crafts. Single-

layer stencils have a wide range of applications. Besides serving as art and decora-

tions, they are used as intermediate tools for painting (e.g., Jain et al. (2015)) and

screen printing (e.g., Griffiths (1996)). Paper Cutting is a broader art category that

often overlaps with multilayer sculpture. Ryan and Avella (2011) displays a variety

of techniques that are frequently shared with multilayer sculptures design.

Paper cut art has different characteristics associated with the creators’ design

context and culture. It is a versatile form of art with a long history. For example,

Chinese paper cut (剪纸 jiǎnzȟı) is a folk art that focuses on creating two-tone

images using traditional motifs (e.g., Meng et al. (2010); Liu et al. (2020, 2018)).

In addition to cutting from flat material, jiǎnzȟı also uses paper folding techniques

to create symmetrical designs (e.g., Liu et al. (2005, 2018)). In Japan, paper cut

(Kirié, 切り絵) artists such as Kubo Shu (久保 修) focus on creating painting-

like multilayer sculptures with washi paper (Kubo (2009)). Iris folding is a unique

form of multilayer sculpture. Instead of creating multiple layers that share similar

boundary shapes, iris folding pieces include a base stencil, a top stencil with at least

one pattern (the “iris” or “aperture”), and many paper strips. By layering these

paper strips in specific order and location, artists form “a spiral pattern behind an

aperture (Igarashi et al. (2016b)).”

I designed the InfiniteLayer to support a wide range of layered structures by

focusing on providing foundational infrastructure instead of reinforcing specific styles.

43

As a result, designers can create sculptures with different motifs, purposes, and levels

of complexities. For example, while the InfiniteLayer does not automatically analyze

and validate symmetrical design like Liu et al. (2005), users can make symmetrical

stencils. Similarly, although the InfiniteLayer cannot automatically create section

suggestions for Iris rotation similar to Igarashi et al. (2016b), users can make designs

in the iris folding style.

2.2.2 Design-Aid Tools for Multilayer Sculpture and Related Craft

Artists currently have three major types of design-aid tools to create multilayer

sculptures and related crafts using a 2D design approach. First, artists can use

generic vector graph editing tools such as Adobe Illustrator and Inkscape. Despite

the lack of domain-specific supports such as 3D simulation and batch adjustments

for multiple layers, generic graphics manipulation tools are popular for multilayer

sculpture design because they provide an extensive range of powerful shape manipu-

lation functions. Also, they are likely to offer exporting formats that are compatible

with various fabricators, such as laser cutters and CNC mills.

In addition to generic software, design and research communities have developed

several systems to support the design of stencils, paper cuts, and iris folding pieces.

Some systems focus on extracting and optimizing stencil and paper cut-ready pat-

terns from raster images. There are a number of techniques and algorithms for this

type of conversion (e.g., Xu et al. (2007); Meng et al. (2010); Liu et al. (2020)). Other

approaches provide design support for paper-cut patterns that involves folding (Liu

et al. (2005, 2018)). Besides paper-cut related tools, there are algorithms and soft-

44

ware for generating single-layer stencils for paintings (e.g., Bronson et al. (2008);

Igarashi and Igarashi (2010)). Specifically, Holly is a system with an interactive in-

terface for drafting stencils (Igarashi and Igarashi (2010)). By processing individual

stroke input from users, Holly generates valid painting stencils by building “bridges”

that connect “island” shapes to the main structure (see Figure 2.2) for an illustrated

example for islands and bridges). Stencil Creator is a system that automatically

generates sets of multi-color cut-out templates (Jain et al. (2015)). It utilizes an

algorithm that generates sophisticated multilayer stencil sets from images using a

random field energy formulation. Furthermore, some tools focus on guiding design-

ers through the designing and cutting processes. They provide design guides and

step-by-step cutting instructions (e.g., Liu et al. (2018); Higashi and Kanai (2016))

or physical assistance tools for paper cut artists (Higashi and Kanai (2019)).

Some systems focus on designing 3D structures inspired by 2D stencil designs. For

instance, it is possible to transform 2D stencil designs into 3D-printed relief sculptures

(Yang et al. (2019); Jung et al. (2020)). Also, paper cut art can serve as a style

reference for animated 3D structures (Li et al. (2007)). While this group of systems

might not directly assist the building of multilayer sculpture, they demonstrate a

wide range of potential applications for stencil-related art.

2.2.3 Fabrication and Procedural Generation

While existing systems such as Igarashi and Igarashi (2010); Jain et al. (2015)

provide a solid foundation for creating stencils, there are two common limitations.

First, they focus on generating layers by extracting patterns from raster images or

45

stroke inputs, therefore having limited supports for vector graph manipulation. Al-

though supporting vector graph manipulation might be optional for manual construc-

tion, artists who use fabricators to implement their design would find it critical to

have precise control over individual paths rendering settings. For example, although

Stencil Creator (Jain et al. (2015)) provides raster-to-vector conversion automati-

cally, users need to rely on external software to perform actions such as adjusting

canvas size, updating stroke thickness, add/remove points on paths.

Second, to create complicated designs with many layers, existing systems would

repeatedly require users to perform similar actions. For example, designers need to

enlarge the circular pattern stencil and adjust these circles’ locations repeatedly to

create a simple sculpture with a circle enlarging at each layer. Actions such as “cen-

ter,” “move,” “offset,” and “union” will be performed hundreds or thousands of times

for one project. When making designs that have clear procedures, scripting-based

controls could help to increase the speed and precision. It also handles repetitions

(Jacobs (2013)).

To address these two issues, I designed my system to be a vector-focused, scripting-

based tool. InfiniteLayer gives users controls to every detail of their vector images

to ensure that results created with InfiniteLayer are fabrication-ready. For instance,

users can easily adjust settings such as size, stroke, color, thickness, and export-

ing format. In addition, although it primarily supports vector graph manipulation,

InfiniteLayer provides utility functions for vectorizing raster images.

InfiniteLayer is a programming-based tool that supports algorithm-driven designs

that are highly complex and precise. With the development of programming-based

46

visual-focused tools like Processing (Reas and Fry (2007)) and P5.js (McCarthy

et al. (2015)), constructing 2D and 3D design through programming has become

a compelling and viable design method (Levin and Brain (2021)). In addition to

generic programming-based tools that support procedural generation, the design and

research community also developed programming-based tools for specific art and

crafts forms. For example, Jacobs (2017) and Jacobs et al. (2018) focus on supporting

procedural generation in manual drawing and painting.

Because multilayer sculptures often require repeated actions and precise graphics

manipulations, I believe that a programming-based tool could help designers quickly

and precisely manipulate their designs using loops, conditions, and functions. While

users can still manually adjust individual shapes, a programming-based toolkit opens

up possibilities for procedural generation and parametric design.

2.3 Design Multilayer Sculptures with InfiniteLayers

I designed InfiniteLayer with several objectives. The most fundamental goal is

to provide an infrastructure to hold and process information related to a design

task. With such an infrastructure, the InfiniteLayer can automatically and effec-

tively handle basic and repetitive common actions. For example, with the current

vector graph editing tools (e.g., Adobe Illustrator) and programming-based design

tools (e.g., Processing), multilayer sculpture designers need to create the canvas for

individual layers manually. Ensuring that these canvases have the correct setups,

such as width, height, and margins, is a tedious yet unavoidable step that these tools

cannot help automate because they are designed for a broader set of design goals.

47

Because InfiniteLayer is explicitly designed for multilayer sculpture, it can automat-

ically handle these low-level, repetitive actions. Moreover, the InfiniteLayer needs

to assist in the generation and manipulation of vector graphs. Constructing a vector

image from scratch requires diverse expertise in vector graphics (SVG), ranging from

the composition of a <path> element to matrix transformation. The InfiniteLayer

provides convenient methods that handle these essential actions so that users can

focus on design.

Besides providing reliable infrastructure and convenient methods for designing

layered structures, objectives such as “supporting diverse design approaches” and

“assisting prototyping/fabrication” also impact the design of the InfiniteLayer . There-

fore, this section presents the core creation workflow and methods that the Infinite-

Layer supports and provides.

2.4 Creation Workflow

Figure 2.3: A creation workflow using InfiniteLayer .

To support multilayer sculpture design, InfiniteLayer offers four major classes:

LayerSculpture, Layer, Stencil, and LayerSculptureExporter. Lay-

48

erSculpture is a primary class that hosts all information and methods related to

a multilayer sculpture project. It processes users’ inputs (stored in a dictionary) as

basic settings for the project. Minimally, users need to provide two groups of infor-

mation: 1) the number of layers in this sculpture (LayerCt), and 2) The size of each

layer (e.g., the width, height, and margin settings of the base material). Users can

adjust global settings such as the unit (default = inch) and pixels per inch (default

= 96).

A LayerSculpture instance has storage for Layer instances and Stencil

instances. A Layer instance represents a sheet of material to be cut. Essentially, it

contains 1) a rectangular canvas that is defined by width, height, and margins (left,

right, top, bottom), and 2) a list of pointers to shapes that will be cut from the

canvas.

A Stencil instance contains various states of a group of shapes. In the physical

layered structure design process, artists often need to manipulate their die-cut stencils

(e.g., rotate the stencil, bend the cookie cutter) so the same stencil can create different

cuts. I model this process by designing the Stencil as a storage class that tracks a

series of shapes generated from one original shape. Each copy of the shape is called a

State. Each State instances corresponds to a <path> element in a SVG file. The

first shape (State 0) is the original shape, and all successor states are manipulated

copies of the previous states. State instances are automatically indexed so that

users can easily track their progression. Users can also add additional labels to

States instances.

Besides holding global properties, layers, and stencils, a LayerSculpture in-

49

stance automatically initiates a LayerSculptureExporter instance to handle

everything related to file export and simulation. Thus, users are likely to go through

a five-step process for designing a multilayer sculpture using InfiniteLayer (Figure

2.3).

1. Users initiate a LayerSculpture instance and input required parameters

such as LayerCt, Width, and Height.

2. The LayerSculpture instance automatically creates Layer instances ac-

cording to the settings.

3. Users create Stencil instances and manipulate these instances to create new

States of these stencils.

4. Users place Stencil on layers by specifying the stencil-state pairs and the

layer’s indexes that they will be placed on.

5. The LayerSculptureExporter exports the finished designs into SVG and/or

PDF. It can also generate a WebGL-based 3D simulation.

2.5 Creating and Manipulating Stencils

By analyzing the list of representative artwork described in Section 2.2, I ex-

tracted an essential set of commonly used techniques in multilayer sculpture design.

I refined these techniques into convenient methods of InfiniteLayer . In addition, I

grouped these methods into four categories by their purposes. Figure 2.4 provides

an overview of these methods.

A) Methods for Creating Stencils

50

Figure 2.4: Overview of methods provided by InfiniteLayer .

InfiniteLayer provides a group of functions that initiate or import path infor-

mation. This group of functions automatically creates Stencil instances to store

this information. Users can create basic shapes and lines such as rectangles, poly-

gons, straight lines, and curves. All path information needs to be processed into

straight line segments because algorithms for self-intersection detection and boolean

operations generally focus on lines and polygons. Therefore, when users create a

circle, InfiniteLayer automatically approximates the circle by generating a regular

polygon with a large number of sides. Similarly, InfiniteLayer provides functions to

approximate bézier curves with straight lines.

In addition to creating stencils from scratch, users can import stencils from exist-

ing drawings. InfiniteLayer offers an importing/processing module for SVG files. It

also provides methods for importing and vectorizing raster images. Previous studies

such as Liu et al. (2020); Xu et al. (2007); Jain et al. (2015) introduce methods

and algorithms that intend to extract, process, and stylize shapes into stencil-ready

51

shapes using these inputs. These raster image processing procedures expect the

source images to provide finalized designs. When users give an image, these systems

aim to construct a finalized painting stencil/paper cut by performing a set of actions

such as generating bridge shapes to connect island shapes. In comparison, artisans

using InfiniteLayer could have more diverse goals with images that they are import-

ing. For instance, they could import shapes and use them as bridge shapes instead

of island shapes. They might need to process these shapes further or use them as

seed shapes for their generative algorithms. Therefore, instead of building an all-

in-one vectorizing function that processes images with specific intent (i.e., to create

finalized painting stencils), InfiniteLayer ’s vectorize function focuses on extracting

shapes from two-tone images.

B) Methods for Manipulating One Stencil

After creating the first a Stencil instance, users can further process this group

of shapes by changing their graphical properties. The system provides functions to

adjust a path’s location (e.g., MOVE() / MOVETO()) and geometrical outline (e.g.,

SCALE(), ROTATE(), OFFSET(), SMOOTH(), and SIMPLIFY()). When users

manipulate a stencil using these functions, InfiniteLayer will automatically create a

new state in the stencil to store the altered copy. Therefore, users have access to a

complete history of how a shape is manipulated throughout the design process.

C) Methods for Manipulating Multiple Stencils

Besides modifying the properties of one stencil, users can create intricate de-

signs by manipulating multiple stencils simultaneously. InfiniteLayer provides three

groups of multi-stencil manipulation methods. To start, users can use ALIGN() to

52

Figure 2.5: The TRANSIT() function generates intermediate shapes between two
input shapes. 1) Shape1 is the start shape, and Shape2 is the target shape. 2) The
algorithm temporarily aligns shapes by their centers. 3) For every point on Shape1,
it finds or adds a point on Shape2, so that the line connecting these two points goes
through the center. Repeat for points on Shape2. 4)For every point pair (A, B),
the function translates Point A to Point B according to stepCt and the easing
function, i.e., finding intermediate points (C). Connecting corresponding C points
together to generate an intermediate shape.

adjust multiple stencils’ locations. Also, users can perform boolean operations (i.e.,

polygon clipping operations) on multiple stencils. In addition to these relatively

common manipulation methods, InfiniteLayer provides TRANSIT(), a function de-

signed explicitly for multilayer sculpture. In multilayer artwork such as Clary (2013);

Schama (2019); Ibbini and Noyer (2021), I observe that gradually transforming one

shape to another over many layers is a commonly used technique. When calling the

function TRANSIT(), users input three groups of information: 1) two stencils, 2)

the number of the in-between steps that they would like to generate (stepCt), and

optionally, 3) an easing function they would like to use. TRANSIT() then produces

the in-between shapes. By default, InfiniteLayer uses a linear easing function to pro-

duce in-between steps. Users can choose other easing functions such as PolyIn(),

PolyOut(), PolyInOut(). Alternatively, users can implement easing functions

53

from scratch. Figure 2.5 illustrates the algorithm I designed for TRANSIT() and

provides an example generated with the function.

D) Utility Methods

The last category of methods contains utility functions that offer quick access to

commonly performed actions. TrimByBoundary() and UnionAllPatterns()

are functions that prepare stencils for the fabrication process. When using machines

such as laser cutters and vinyl cutters, it is critical to ensure that all cutting actions

are performed on the material because cutting outside of the material can cause

serious damage to machines. TrimByBoundary() checks all layers and their cor-

responding stencils to trim off paths that exceed the boundary stencil. If there are

overlapping shapes in the design, common fabricators will cut the overlapping areas

multiple times, leading to potential damage to the material and machines. Union-

AllPatterns() ensures that all overlapping shapes are unioned into a connected

shape. Furthermore, I provide RevealAllPatterns(), a function that ensures

every single stencil is visible at the topmost layer. It addresses a design strategy

where designers first place key stencils on the individual layer, then gradually ensure

that every stencil is visible from the top layer by appending stencils in the previous

layer to the next layer. Figure 2.4 provides a sample scenario for using this function.

2.6 Evaluation

I evaluate and reflect the design of InfiniteLayer from three perspectives: first,

does InfiniteLayer fulfill the intended objectives? Second, does the design of the

system offer cognitive support for users’ creation processes? Finally, what are the

54

limitations of the tool?

2.6.1 Fulfilling Objectives

I designed InfiniteLayer to be a programming-based, vector-graph authoring

toolkit that assists the design and fabrication of multilayer sculpture. Specifically,

I want to give users control over the design process by supporting flexible design

processes and design goals, and assisting prototyping and fabrication.

Figure 2.6: InfiniteLayer offers flexible support for various design approaches and
goals. Design A utilizes a generative algorithm, while Design B relies on vectorized
shapes extracted from raster images.

Flexible Design Approaches and Goals:

InfiniteLayer focuses on offering foundational structures and utilities without

forcing a specific design approach. In the workflow illustrated in Figure 2.3, most cre-

ative tasks happen in step three when users create and manipulate stencil instances.

InfiniteLayer supports various stencil creation methods, such as SVG importing,

raster vectorizing, using shape/line generating functions, and manual authoring.

55

When manipulating these shapes, users also have different choices. Figure 2.6

displays two groups of designs generated with InfiniteLayer . Design A is designed

using a generative algorithm. Using the same algorithm, users can quickly create

design variations. In comparison, Design B focuses on vectorizing raster images

instead of constructing shapes from scratch. While these two designs vary in their

approaches and results, InfiniteLayer assists both cases by providing a solid structure

for starting the designs, interacting with shapes, and exporting these designs.

In addition to utilizing the methods that InfiniteLayer provides, users have ac-

cess to the fundamental data structures that store the path information. Because

users can directly manipulate shapes at the point level, they can freely extend In-

finiteLayer by adding new functions. One advantage that the Python-based toolkit

has is the convenient access to the extensive community-contributed library. For

users with complex design goals, the ability to import external modules could relieve

them from the burden of reinventing wheels. For instance, users who generate their

designs procedurally might need access to various random generators that use differ-

ent underlying distributions. In this case, users can import and incorporate desired

libraries into their design pipeline smoothly. Moreover, InfiniteLayer does not limit

the type of design that users can make. Although InfiniteLayer intends to support

multilayer sculpture design, users can make single-layer stencil and paper cut for

decoration or painting purposes.

Assisting Prototyping and Fabrication:

InfiniteLayer aims to support various fabrication goals. To the best of my knowl-

edge, related design-aid tools currently offer little or no simulation support. Designers

56

mostly rely on layering 2D transparent shapes to visualize the final output or seeking

additional 3D modeling tools to convert their designs to 3D. In these cases, design-

ers face additional 3D design challenges and need to handle repetitive work such as

aligning layers and adjusting thicknesses.

InfiniteLayer provides a 3D simulation module that visualizes users’ design. By

running a convenience method, exportTo3DSimulation(), InfiniteLayer packs

users design into a stand-alone WebGL-based simulator. Users can view and interact

with their designs using a web browser without installing any additional software or

library. Besides providing a 3D model of users’ designs, the simulator offers a built-in

control panel that lets users adjusting three major aspects of their design.

To start, users can adjust their models’ rendering settings by changing the hue,

opacity, rendering mode, and coloring rules. Using these parameters, users visualize

how potential material choices (e.g., transparent acrylic board vs. solid paper board)

can impact their designs’ appearance. The option to render in wireframe instead

of solid material can potentially assist users who need to troubleshoot individual

shapes. Furthermore, users can adjust the thickness of each layer. The thickness

of each layer impacts the design result significantly. With this support, users can

visualize, experiment, and control their layered sculptures’ depth easily.

Last but not least, users can select the range of layers that they want to visualize.

This function helps address the issue that designers often need to imagine and re-

member how each layer stack on the previous one when assembling the sculpture. For

designs that don’t have a uniform boundary stencil across all layers, it is essential to

have an assembly guide that records each layer’s location and orientation. With this

57

function, users can inspect the assembling process of their design in a step-by-step

fashion. Figure 2.7 provides examples of simulations generated using InfiniteLayer .

Once users finalize a design, they need to export designs for their chosen fab-

rication method. Whether they decide to make the design using a laser cutter, or

a handheld craft knife, InfiniteLayer can prepare files that suit their needs. Ex-

porting designs to SVG would support the majority of cutting-related fabricators,

such as laser cutters and die cutters. For users who wish to batch print layers for

manual cutting, InfiniteLayer provides an all-in-one pdf file. Besides exporting for-

mat, users could have specific requirements for how individual layers are rendered.

For example, a laser cutter might only recognize paths with a particular color and

thickness. Users can adjust the default rendering settings using the commend sten-

cil.assignAttr(), which takes a dictionary of style settings such as stroke, fill,

stroke-width. Moreover, InfiniteLayer provides utility functions so that designers

can adjust the basic parameters such as unit and pixel per inch.

In summary, InfiniteLayer provides language and tools for designing a multi-

layer sculpture without limiting the type of design and the design approaches. Also,

InfiniteLayer offers a convenient 3D simulation that helps users visualize their cre-

ations. By providing multiple exporting formats and access to all rendering settings,

I hope that users can create fabrication-ready designs without relying on external

simulating and format-converting tools.

58

Figure 2.7: A design created with InfiniteLayer and its script. I highlight syntax
and operations that are specifically supported by InfiniteLayer . I also demonstrate
various rendering options that users can adjust on the web-based simulation tool
that InfiniteLayer generates.

2.6.2 Cognitive Support

I use the cognitive dimensions framework introduced by Green and Petre (1996)

to evaluate how well InfiniteLayer assists users at their design task at a cognitive

level. Designed to evaluate visual programming environments by capturing cog-

nitively relevant aspects of the programming structure, this framework is a tool

to discuss “artifact-user relationships” from thirteen dimensions (Green and Petre

(1996)). Because InfiniteLayer is not a full-fledged programming language but a

programming toolkit based on Python, not all dimensions are relevant. I omit these

dimensions in my evaluation.

I first reflect how the structure of InfiniteLayer helps users tackle a design task by

59

examining the Closeness of Mapping, Diffuseness, and Role-expressiveness dimen-

sions. The Closeness of Mapping dimension reviews how users’ tasks are mapped to

the programming world. A closely mapped system is likely to lead to a smoother

transition from users’ domain tasks to operations in the programming environment

(Green and Petre (1996)). InfiniteLayer builds a mapping between the physical

structures and digital structures by ensuring that physical structures and their cor-

responding digital instances have similar names and functions. A Layer instance

corresponds to a physical layer of material in the physical design. Instead of using

“Path” or “PathList,” I use Stencil to represent the shape to be cut. When us-

ing a physical stencil to cut material (e.g., a metal die-cut stencil), designers can

move the stencil or alter the stencil to create various cuts. I model and support

this process by introducing State, a class to hold these manipulated copies of the

original shape. I also aim to name functions closely with the physical operations

that designers would use if they were to design by hand. For example, to place a

stencil on a layer, users would call layer.placeStencil(). To align two sten-

cils by their top right corner, users would call ALIGN(stencil1, stencil2,

‘‘TOP RIGHT’’).

The naming of structures and methods also connects to the Diffuseness/Terseness

dimension, a dimension that examines “the number of symbols required to express

a meaning (in the programming environment) (Green and Petre (1996)).” In gen-

eral, I try to use compact names for methods and structures, while ensuring that

they capture the intended operations (e.g., .TrimByBoundary(), UnionAllPat-

terns(), and ExportToPdf). In cases where the names tend to be over diffuse,

60

I provide shortcuts. For example, the cuttable area’s width and height are stored

in a variable called width height wo margin. The system provides a shortcut

variable wh m that links to the same value.

Role-expressiveness is another dimension that looks into how a programming envi-

ronment helps users connect and tackle their tasks. Specifically, Role-expressiveness

describes how easy it is to read and comprehend a program. Figure 2.7 shows an

example and the script used to generate the design. I highlight structures and opera-

tions that InfiniteLayer provides. Except for shortcut variables (i.e., wh m, which is a

shortcut for width height without margin), users with Python programming

experiences should find the syntax and operations easy to comprehend.

Besides examining structural support that InfiniteLayer can offer, I also reflect

the potential programming experiences that InfiniteLayer support. Specifically, I

focus on three cognitive dimensions: Hidden Dependency, Progressive Evaluation,

and Visibility. Hidden Dependency describes invisible relationships between com-

ponents, which are generally undesirable because they might cause unexpected side

effects (Green and Petre (1996)). In InfiniteLayer , I try to expose dependencies by

giving users access to inspect and modify all parameters. For instance, to convert a

value from one unit to another (e.g., inch to cm), InfiniteLayer relies on the variable

pixel per inch (PPI). By making PPI a modifiable parameter, InfiniteLayer hint

users this dependency, though a detailed explanation for the calculation still needs

to be presented through documentation and tutorials.

Visibility / Juxtaposability denotes how easy it is to access a component or to

make it visible (Green and Petre (1996)). In my system, the most relevant task is

61

the creation and retrieval of State instances. When a stencil is associated with

many states, searching through these states might be challenging depending on how

users manipulated the stencils and how well users can define the search criteria. For

example, moving a stencil to ten different locations generates ten different State

instances. Retrieving the rightmost state is an easy task, given that I can describe

the searching task clearly. Nevertheless, if users transit a triangle to a rectangle

over ten steps, searching for the most circle-like state is considerably more challeng-

ing. Aiming to increase the visibility of key States instances, InfiniteLayer has a

built-in system for labeling and retrieving states. When a State instance is cre-

ated, InfiniteLayer automatically labels it with an index that records the creation

order. The labeling system lets users associate these states with custom names (e.g.,

“right most”, “circle like”) so that they can retrieve states using these labels

(e.g., stencil.getStateByKey("circle like")).

The last dimension that I examine is Progress Evaluation, which evaluates whether

the programming tool lets users obtain feedback for partially completed programs

(Green and Petre (1996)). At any stage of the design, users can run their scripts and

display their design results by exporting their designs. Alternatively, users can also

inspect individual elements within their design. For example, users can print the

content of a Stencil instance or check the number of stencils on a layer. Therefore,

InfiniteLayer does offer partial evaluation support. However, users need to initiate

these evaluations. In contrast to a programming environment such as Processing

(Reas and Fry (2007)) that offers live rendering, InfiniteLayer does not provide real-

time, automatically updated results and simulations.

62

2.6.3 System Limitations

As a programming-based toolkit aiming to assist visual designs, InfiniteLayer

provides convenient and precise control over shapes. For example, because Infinite-

Layer offers access to all parameters and structures, users can easily adjust shape

information at point-coordination levels. While this design gives users a great de-

gree of flexibility, users with a limited understanding of data structures (e.g., array

or dictionaries) might accidentally modify these variables (e.g., changing the array’s

original content while intending to change a cloned copy). Because InfiniteLayer is

embedded in a full programming language, there are limited safeguards in the current

system. This may make the system less approachable for users with limited program-

ming experience. Future versions of InfiniteLayer may utilize a true domain-specific

language (DSL) or a graphical interface.

While InfiniteLayer supports a wide range of designs, I also acknowledge that

the programming-based vector design pipeline might be more suitable for certain de-

sign tasks. InfiniteLayer excels at supporting designs that require repetition, precise

manipulation, and generative algorithms. Users would likely find it relatively easy

to create artwork similar to the styles of Vantours (2019); Clary (2013); Ibbini and

Noyer (2021). In comparison, authoring shapes that resemble objects realistically

(e.g., Tomsky (2020); Kubo (2009); Vantours (2020)) from scratch using program-

ming can be considerably more challenging than using tools with graphical interfaces.

In these cases, designers can still use InfiniteLayer as a simulation tool that imports

and processes drawings, but creating realistic objects without image input would be

difficult.

63

The simulation method I provide also exhibits several limitations. I designed and

implemented the simulation using web-based technology because it is a cross-platform

and out-of-box solution. It also enables various simulation features to quickly alter

the 3D model (Figure 2.7). Nevertheless, rendering a large number of intricate

shapes using WebGL could take a significant time. To reduce web rendering time,

users can choose to render layers in batches. For example, users can render layers

0-20, 20-40, 40-60 instead of rendering all sixty layers at once. In the future, I hope

to add another simulation module that generates 3D models in standard formats

such as STL and OBJ. Although users would need additional software to view and

modify these models, having a fully rendered model without significant rendering

time could be desirable. Additionally, InfiniteLayer currently simulates designs using

fixed settings for lighting (direct light from above) and material (a plastic-like shining

material). In the future, I hope to offer more options so that users can render in the

material and lighting that resemble their real-world design.

2.7 Discussion

Because the InfiniteLayer is a programming-based tool that assists the design

of physical artifacts, it faces unique challenges associated with building creativity-

support tools, supporting programming-based control, and connecting digital design

and physical fabrication processes. In this section, I reflect on approaches that I took

to tackle some of these challenges and provide insights for building similar systems.

64

2.7.1 Extracting and Refining Domain-specific Knowledge

To support the design of a specific type of art & craft, tool designers need to

understand the components, opportunities, and challenges within the target craft.

Depending on the type of craft, tool designers can obtain this domain-specific knowl-

edge from previous literature, tools, current practitioners, and personal experience.

Collecting this information is challenging, but processing domain-specific information

into meaningful, organizational, and programmable structures is even more difficult.

A craft domain can contain complex components and constraints that require

a large number of notations to represent. For example, existing studies describe

many multilayer art-related techniques with different abstraction levels: “wrap”,

“wrinkle”, “expand”, “erasing”, “hollow out” are all terms and operations related

to paper cutting art (Ryan and Avella (2011); Igarashi and Igarashi (2010); Liu

et al. (2020)). Directly adopting these terms without identifying core actions and

meanings behind these terms is problematic.

I approach this challenge by identifying the “grammar” of the craft, a set of core

components and constraints that designers follow when “writing” a design in this

craft domain. The notion of grammar comes from studies in culture conservation

(e.g., the Bailey-Derek Grammar: (Noel (2015)) and information visualization (i.e.,

the Grammar of Graphics (Wilkinson (2012)). Intending to identify a set of gram-

mar for a craft, system designers need to focus on synthesizing the minimal set of

components and rules (e.g., how nouns and verbs work together) before expanding

to more detailed structures (e.g., how to choose among “a”, “an” and “the”).

In this work, I demonstrate how the set of grammar (e.g., layers and stencils)

65

becomes my tool’s core structure and interface. Additionally, this grammar-driven

structure opens opportunities for future extension and refinement of the tool.

2.7.2 Supporting the Design and Fabrication of Physical Art & Craft

with a Programming-Based Toolkit.

Designing physical artifacts through programming has become an increasingly

common design approach as designers, researchers, and tool builders gain more un-

derstanding of the opportunities and constraints associated with this approach. As

described by Jacobs (2013), computation design is a way to apply “procedural think-

ing to a design task”, which brings many potential benefits such as supporting high

levels of precision and complexity, also enabling algorithm-driven, parametric de-

signs. Besides generic programming-based tools like Processing and Openframeworks,

craft-specific such as PEmbroidery (Levin et al. (2020)), Dynamic Brushes (Jacobs

et al. (2018)) are also revolutionizing how artists can approach a design task.

While offering unprecedented opportunities, programming-based design-aid tools

also have unique challenges related to their target user, interface design, and connec-

tion to physical fabrication processes. A common concern is that programming-based

systems require their users to receive technical training (Jacobs (2013)). Tools like

Dynamic Brushes utilize block-based programming to address this issue (Jacobs et al.

(2017)). Whether to provide a visual interface and how to design these interfaces

remain to be open questions (Jacobs (2017); Jacobs et al. (2017, 2018); Li et al.

(2020)).

In addition to design suggestions and guidelines provided by previous studies

66

such as Jacobs (2013, 2017); Jacobs et al. (2017, 2018); Li et al. (2020), I want to

highlight the importance of offering fabrication support. Because users’ ultimate

design goals likely include creating physical artifacts, tool designers need to consider

how digital designs are transformed into physical objects. System designers should

review common fabrication methods within the domain to develop solutions targeting

these approaches. For example, systems might provide support for SVG exporting if

the craft is related to laser cutters. Nevertheless, design-aid tools can still struggle

to meet the constantly-changing fabrication needs because fabrication technologies

rapidly change. For instance, specific machines might only recognize files rendered a

particular way; specific file formats can go out of trend. As a result, designers might

need to develop expertise in a wide range of tools to complete one design task: e.g.,

creating shapes in tool A, adjusting color settings using tool B, and converting file

format using tool C.

Instead of aiming to solve all fabrication needs at once, I tackle this challenge

by making the InfiniteLayer an easily extendable tool. To ensure that users can

easily extend the tool, I offer a compact system infrastructure and support a core set

of techniques, and at the same time, providing users easy access to all parameters

and data structures. My choice of language (Python) also helps users to import and

implement modules quickly.

2.7.3 Future Directions

A dedicated toolkit that supports the design and fabrication of multilayer sculp-

tures through programming can facilitate innovative techniques and applications of

67

this art form. Currently, I primarily tested my design using a laser cutter and con-

struction paper. In the future, I plan to test my design outputs using a variety of

fabrication methods and material to examine additional design tasks that new com-

binations of fabrication approaches and material might bring. I also plan to expand

this study by collecting additional user feedback and designs. Moreover, I hope this

work facilitates future discussion in building programming-based art & craft design

tool, and contributes to the conversation about how the programming-based artifact

design approach connects and contributes to the research-through-design community

from a HCI perspective (e.g., Mikkonen and Fyhn (2020); Gaver (2012)).

2.8 Conclusion

In this chapter, I provide analyses and a solution to common challenges that

multilayer sculpture designers face. By examining existing studies and synthesizing

design techniques, I discuss the need for a toolkit that offers prototyping and fab-

rication assistance while supporting computational design approaches. I contribute

InfiniteLayer , an open-source toolkit that contains core structures and methods that

help users draft, manipulate, and visualize their designs. InfiniteLayer displays all

three primary characteristics of GCDTs as described in section 1.3.1. The develop-

ment process of InfiniteLayer is also a representative case that starts by gathering

domain-specific information. By showcasing the wide range of artifacts created us-

ing InfiniteLayer , I demonstrate the potential of programming-based design-aid tools

and offer insights for designing such systems.

68

CHAPTER III

Creative Mark-Making Tool Design

Predicting artists’ needs is challenging because artists’ goals can be diverse, per-

sonalized, and unquantifiable. For developers of design-aid systems, there are addi-

tional layers of system design and engineering challenges associated with the tech-

nologies they have at hand. For instance, with the rapid development of fabrication

technology, the fabrication of a particular craft might require a new set of constraints

or new ways of assistance. As artists explore the design space of their craft domains,

they might also identify innovative design directions that the current tools cannot

support. Therefore, it is difficult to treat the development of a design-aid tool as a

one-time task.

GCDTs’ grammar-driven structures assist a gradual development pattern. To

produce a functional tool, system developers need to obtain an essential set of gram-

mar. If tool developers and users identify additional tasks that they would like to

support, they can add new elements to the grammar, as long as the additions do not

conflict with the existing ones. In this chapter I present the development process of

69

a GCDT in the domain of mark-making tool design. In this project, I first identify

core grammar by analyzing a large set of mark-making tools. Then I gradually add

three different fabrication modes to support various design tasks.

3.1 Introduction

The lack of flexibility is one of the major challenges that are associated with

domain-specific tools. Because they are designed for a specific set of tasks, users

with alternative design goals would have to find workarounds. To offer support

for a variety of design tasks, GCDTs are extendable. The extendability associated

with GCDTs is twofold. To start, users can extend the grammar as long as the

additions are compatible with the existing grammar. Then, GCDTs let users add

additional modules. This chapter demonstrates a GCDT named MarkMakerSquare

that supports the design and fabrication of creative mark-making tools.

Mark-making tools are essential to visual artists regardless of their choices of the

medium. For example, painters create images with various pens, brushes, and mark-

ers. To write in different styles, calligraphers swap their copperplate nibs. When

making 3D forms, sculptors and ceramic artists shape their material and make im-

pressions using stamps, scrappers, and shapers. The creation of marks is a prevalent

activity in everyday life. Writing instruments such as pen and pencil are among the

most common tools people access daily. As a result, there are countless variations of

mark-making tools available.

Many factors, such as material, size, and even handle design, influence a mark-

making tool’s functionalities. Depending on the purpose of mark-making activities

70

and the target users, these instruments’ design prioritizes different factors. For in-

stance, markers and crayons designed for children focus on creating easy-to-grab yet

hard-to-swallow shapes while having relatively flexible requirements for making pre-

cise marks. In comparison, high-end watercolor brushes made for professional artists

focus on using fibers that hold enough water and remain in shape so that artists can

create consistent marks. While brush for painting job and brush for glazing ceramics

might share similar bristle design, they make entirely different marks because of their

material.

Despite the extensive variations of mark-making tools available, artists continue

to develop new tools. The need for personalized mark-making tools is common

for artists across many fields because artistic creation goals are highly diverse and

personalized. For example, watercolorists use toothbrushes and sponges to create

splashes and blobs (e.g., MacKenzie (2010)). Printmakers repurpose credit cards

to make customized scrappers (e.g., Ayres (2001)). Painters cut their brushes into

specific shapes to paint parallel lines.

Besides modifying existing tools and repurposing other objects, artists can also

make their tools from scratch. Although making tools from scratch enables a broader

range of design possibilities than the modify/repurpose strategy, designing and mak-

ing personalized mark-making tools can be difficult for several reasons. To start,

artists need to have relevant design skills such as drafting and modeling. Artists also

need training in physically making the instrument. For instance, to manually create

a brush, artists need to know about woodworking (to make the brush handle) and

fiber handling (to glue and shape the bristle). Most importantly, navigating through

71

a large number of potential design choices is challenging (e.g., synthetic fiber vs.

natural fiber, round tip vs. flat tip).

Computer-aided fabrication methods offer opportunities for the designing and

making of personalized mark-making tools. With the rise of maker culture and ad-

vances in fabrication research, CNC machines such as 3D printers and laser cutters

become increasingly available to individuals (Tanenbaum et al. (2013); Willis (2018)).

Besides offering relatively low-cost and efficient ways to fabricate customized arti-

facts, the computer-aided fabrication method also supports detailed and complex

designs. For example, artisans can build 3D models for pen nibs, test prototypes

using 3D printers, and finally, cast with metal. Despite these advantages, designing

mark-making tools remains difficult because designers still face a vast and undefined

design space, where they need to leverage a considerable number of factors.

To address these challenges in designing and fabricating customized creative

mark-making tools, I examine an extensive collection of mark-making instruments.

The collection includes various pens, markers, crayons, brushes, scrapers, nibs, and

paint sticks. After summarizing key factors that impact these instruments’ function-

alities, I test various fabrication methods such as 3D printing, casting, and manual

construction. Finally, intending to let users explore different design attributes and

fabrication methods without extensive training, I build a programming-based toolkit

to supports the design of creative mark-making tools and demonstrate a wide range

of marks that they enable.

In this chapter, I contribute analysis and solutions to the challenge of designing

and fabricating personalized creative mark-making tools. I contribute an open-source

72

Figure 3.1: (left): The anatomy of mark-making tools.
(Middle): A five-step pipeline for designing/making mark-making instruments.
Step 3 and step 4 are closely related because different tip material choices lead to
various fabrication methods. Step 5 is optional for some mark-making tools if tips
and handles are fabricated with the same material and process (e.g., a crayon).
(Right): A subset of mark-making tools that I collected.

toolkit, MarkMakerSquare to support the design and simulation of a wide range of

mark-making instruments. Although the toolkit can support various types of in-

strument design, it excels at designing precise, complex, and creative mark-making

instruments. Designers who are interested in experimenting with unconventional

mark-making instruments would find this toolkit particularly useful. I present a col-

lection of creative mark-making tools designed using my toolkit and examine various

marks that these instruments can support. Finally, I reflect on several challenges

I encountered while developing tool-designing systems and share my strategies for

tackling these challenges.

3.2 Related Work

I review existing research related to creative mark-making tools and associated

fabrication methods in this section to synthesize basic knowledge for designing and

fabricating mark-making instruments.

73

3.2.1 Mark-Making Tools

Mark-making is “the creation of a perceived anomaly, or felt difference, on or

in a surface.(Malafouris (2021))” While I consider any object that makes marks a

mark-making tool, I focus on designing mark-making tools for creative activities,

in contrast to creating tools for everyday writing or decoration purposes (e.g., Gr-

ishkoff (2020)). Also, I consider the design of tips as my main task because they

determine the marks that a tool can make. Therefore, I intentionally omit handle

design discussion from this examination.

I primarily examine tools used in painting/drawing, printmaking, and 2D/3D

surface decorating. In each of these usage scenarios, there are wide ranges of needs

for mark-making tools. For example, in watercolor painting, the choice of brushes

is critical. Watercolorists often need a collection of brushes with different fibers, tip

shapes, and sizes (MacKenzie (2010)). In printmaking, artists typically need a wider

range of tools that are made with different material. In addition to various brushes,

printmakers would need metal tools such as metal roulettes (i.e., rollable wheels with

patterns on them), silicone scrapers, and palate knives (Ayres (2001); Leaf (1984)).

Mark-making tools vary significantly across different genres of calligraphy. For in-

stance, Chinese calligraphy features long-tip brushes traditionally made with animal

hair (Chiang (1973)), whereas copperplate calligraphy is associated with metal nibs

(Winters (2014)).

Despite a wide range of existing tools in these domains, artists still need to

develop and customize their tools. Sponges, sticks, and toothbrushes are ordinary

objects that artists can repurpose as mark-making tools in painting and printmaking

74

(MacKenzie (2010); Leaf (1984)). To make creative marks, printmakers also modify

everyday objects such as plastic doilies, cloth, credit cards, and natural material such

as dried flowers and leaves (Ayres (2001)). In addition to these everyday objects,

artists find creative solutions to support specific techniques. For example, when

creating mezzotint1 plates, burnishers available on the market do not always satisfy

artists’ needs. As a result, artists use dental tools as precise burnishers (Wax (1996)).

Different tools are associated with their unique components and terminology (e.g.,

tines in nibs, bristles in brushes), I broadly consider mark-making tools to have two

major components: handle and tip (see Figure 3.1). Handles and tips can be made

with the same material (e.g., crayon, oil/pastel stick) or have detachable designs

(e.g., dip pen). Artists will primarily use the tip section to make marks. I use

the term “base shape” or “tip base shape” to describe the shape that connects the

handle section and the tip section. While many considerations go into the design of

a handle, this chapter primarily focuses on the design of tips because they determine

the final marks that a tool can make.

3.2.2 Making Mark-making Tools

The making process of mark-making instruments is often documented with the

purpose of culture/history preservation. For example, Thangka painting is a tra-

ditional Tibetian painting style that uses unique brushes. The process of making

bamboo brushes is documented so that Thangka artists can recreate these bamboo

1Mezzotint is a intaglio printmaking technique. Artists use a heavy metal tool (known as
“rocker’)’ with many sharp points known as “teeth.” They make repetitive marks by pressing
the rocker on the plate.

75

brushes following the traditional method (Jackson et al. (2006)). Work that docu-

ments the history of iconic tool manufacturers can also include the design and process

of various tools (e.g., McKinney (2018)).

There are a few early literature that document the process for contemporary brush

making. They tend to focus on developing terminologies for brushes (e.g., Dickinson

(1943)) or discussing fibers suitable for brushes (e.g., Kirby (1950)). Examples such

as Neddo (2015) serve as “cookbooks” for artists to start experiments, as they offer

tips on making tools such as charcoal sticks, simple dip pens, and twig brushes.

Because I aim to support a wide range of mark-making tools, I cannot directly

adopt creation pipelines for a specific type of mark-making tool. For example, the

process for designing a charcoal stick (as described in Neddo (2015)) is significantly

different from the fabrication pipeline for a Thangka bamboo brush (Jackson et al.

(2006)). As a result, I synthesize a high-level designing/making pipeline for mark-

making tools to be a five-step process (Figure 3.1). To start, artisans design the

base shape of the tool. Then, they decide on various attributes of the tip section.

For example, they select the shape and length of the tip. With a tip design, artists

can then decide the material of the tip. The selection of the material determines the

fabrication process. For example, to make a crayon, one needs to cast pigmented wax

using a mold. In comparison, brush making requires more manual work, as artisans

need to bundle fibers together. After creating the tip, artisans join the tip section

and the handle section together. The handle attachment might be optional for some

tools. For example, crayons’ handles and tips are often cast as one piece.

In addition to work focus on examining fabrication strategies/processes of mark-

76

making tools, I also look into computerized fabricators in the domain of art & craft

support. Overall, there are many examples where fabricators such as 3D printers and

laser cutters play central roles in supporting art & craft making (e.g., Torres et al.

(2016); Jacobs (2013); Mueller et al. (2013); Hudson (2014); Iarussi et al. (2015b)).

Fabrication-related literature and design-aid systems provide insights into the design

of my tool.

3.2.3 Digitizing Mark-Making Tools

Two categories of literature enhance my understanding of mark-making tools.

The first category of research focuses on examining the properties of physical brushes

and digital building models. For instance, by developing physical brushes and analyz-

ing how brush tips move across surfaces, previous work such as Chu and Chiew-Lan

Tai (2002); Baxter and Govindaraju (2010); DiVerdi (2013); Jeng-sheng Yeh et al.

(2002) develop algorithms for simulating brush strokes. The second category of re-

search discusses the use of brushes in robots. Aiming to create physical art pieces,

such as calligraphy work (e.g., Mueller et al. (2013); Fenghui Yao and Guifeng Shao

(2005)) and watercolor (e.g., Scalera et al. (2019)) using robots, these work document

maker-making tools and methods for precisely control these tools. Nevertheless, al-

most all work in both categories focuses on brushes and has a limited discussion for

any other type of mark-making tool.

77

Figure 3.2: Six major factors impact the functionalities of a mark-making
instrument.

3.3 Design Space

To assist the design of mark-making tools, I first need to understand critical fac-

tors that designers need to consider when approaching a design task. In other words,

I need to identify attributes that designers can modify in a tool-making process.

Existing research discussed in Section 3.2 builds a foundation for identifying key

factors that impact brush designs. However, because of the lack of existing research

that reviews tools other than brushes in detail, I cannot directly adopt these design

factors. As a result, I gathered and examined an extensive collection of mark-making

tools that include various pens, markers, crayons, brushes, scrapers, nibs, and paint

sticks.

In this analysis, I focus on examining attributes and properties that directly im-

pact the marks that a tool can make. There are important attributes that can affect

mark-making results indirectly. For instance, the choice of mark-making medium

78

certainly affects design choices significantly. A watercolor brush and an oil paint-

ing brush can differ considerably because of their designed mark-making medium.

Nevertheless, the choice of the medium is not a property of the tool but an indirect

design consideration that impacts many physical attributes of a tool.

Figure 3.1 displays a subset of tools that I collected. By analyzing this collection

of mark-making tools, I identified six factors that impact mark-making tools’ capa-

bility and performance. This section describes these six factors and discusses how

the combinations of these factors enable a wide range of mark-making tools. Figure

3.2 provides an overview of these six factors.

3.3.1 Solidness of the Tip Section

Solidness describes the number of parts that the tip section contains. Because

artists use the tip section to create marks, the number of parts that touch the surface

directly impacts a tool’s functionality. Tools like ball pens, fine liners, and crayons

typically have only one surface-contacting part, whereas pen nibs might have two

tines that can split when adding pressure. Brushes typically have many loose tips,

and each strand of fiber can leave a mark by itself.

3.3.2 Tip Angle

Tip angle is the designed holding angle of a tool. In many types of mark-making

instruments, users can create marks from any angle. For example, ball pens and

pencils can leave marks at almost any angle, as long as they touch the surface.

Brushes can also leave marks with adjustable angles, though different holding angles

79

might lead to various marks. Some tools have designed ranges of holding angles.

To create the broad and flat marks that highlighters and chisel-shaped markers are

designed for, users need to hold them at a specific angle. These tools are often

equipped with several “ideal” angles to make several different types of marks by

changing the holding angles. Last but not least, some tools only function at their

designed holding angles. Fountain pens, dip pen nibs, parallel pens, and stamps are

examples where users need to adjust their holding position to make marks.

3.3.3 Shape

The shape of the surface-contacting part determines marks that a tool can make.

To provide a more in-depth language for describing shapes within the tip section, I

consider the base shape and tip shape as two different parameters that tool designers

can adjust. The base shape describes the shape that connects the tip section to the

handle section. For example, many pens, pencils, markers, and drawing sticks use a

circle as their base shapes. Ovals and rectangles are also common shapes.

In addition to base shapes, tool designers can also alter the tip’s shape, which

describes how various surface-contacting parts are grouped together. For instance, fil-

bert, round, and flat are several common tip shapes available for watercolor brushes.

It’s worth noting that the base shape and tip shape can be completely independent.

For example, a round brush and a precise crayon can share the same base shape (i.e.,

circle) while having utterly different tip shapes.

80

3.3.4 Base Size

Base size describes the size of the base shape. In many existing tools, manufac-

turers offer a set of similar tools that only differ from each other by base size. For

instance, artists typically have various sizes to choose from when selecting calligraphy

brushes and permanent markers.

3.3.5 Length

The length of the tip also impacts the marks that a tool can make. The impact

is especially salient when the tip material is soft. For example, a long crayon might

function the same as a short crayon, whereas a long brush creates completely different

marks compared to a short brush.

3.3.6 Material

Lastly, the choice of material for the tip section is a crucial design factor that

tool designers need to consider. Depending on the purpose of the mark-making tool,

designers would choose different material. Common material such as metal, fiber,

silicone, wax, clay, sponge, and plastic are used in many tools. The selection of

material determines the fabrication method of the tool. For example, designs that

use castable material such as metal, silicone, and wax require designers to create cast

molds of the tip design. When developing tools with fibers, the primary design task

is to design structures that can hold fibers.

In summary, six factors impact the functionalities of a mark-making instrument.

However, experimenting with these factors could be challenging as tool designers

81

Figure 3.3: (Left): The design of a generic handle that features interlocking
components.
(Right): MarkMakerSquare supports three fabrication modes. The print mode
generates designs that can be directly 3D printed (top). The insert mode generates
designs that need to be printed and manually assembled.

need to modify, remake, and test their models repeatedly. Ideally, I hope there is a

design-aid tool that can let users quickly experiment with different factors.

3.4 Designing and Fabricating Tools

To support the design of mark-making tools, I developed a python-based toolkit

called MarkMakerSquare. I designed MarkMakerSquare with several objectives. The

primary goal is to provide a set of viable solutions for making customized mark-

making tools. More specifically, I focus on supporting the design of tip sections

rather than the design of handles. MarkMakerSquare lets users build and customize

the tip section’s designs and provides a simple solution to a universal handle design.

Figure 3.3 illustrates the generic holder that MarkMakerSquare offers. The holder

82

features interlocking components so that users can attach different tool heads. The

interlocking structure also makes the holder stackable, as users can print multiple

handles and join them quickly. Also, users can adjust the length of the holder by

modifying the provided 3D model directly.

In addition to focusing on tip designs, I designed MarkMakerSquare to be a toolkit

that lets users explore different tip attributes and fabrication methods. Ideally,

users can quickly play with the six design factors summarized in Figure 3.2. Also,

when users have many material choices, one fabrication method cannot satisfy all

fabrication needs. Therefore, MarkMakerSquare offers support for three fabrication

modes and is extendable. This section describes MarkMakerSquare by presenting

its fabrication mode, the creative pipeline that it supports, and the interface that it

offers.

3.4.1 Three Fabrication Modes

MarkMakerSquare offers support for three different fabrication modes. While all

fabrication modes lead to a 3D model to be fabricated with 3D printers, each mode

intends to generate designs for a subset of mark-making tools.

Print Mode:

The print mode supports the design of mark-making instruments similar to nibs,

stamps, and scrapers. This set of tools features tip designs that are the extrusions

of a base shape. Users can directly 3D print this type of instrument. Figure 3.3

illustrates various components associated with tools in this category. For example,

to build a stamp, the users will supply a base shape extruded to the target height

83

and serves as the tool’s tip. MarkMakerSquare generates supportive structures such

as the base platform and the interlocking mechanisms automatically according to

users’ settings.

Insert Mode:

When designing brush-like tools, making a structure to hold fibers is the primary

design task. The insert mode supports the design of these “fiber holders.” There

are various ways to secure fibers. Fastening fibers with a ferrule is one strategy.

Attaching fibers to a structure with a designated “root” space is another strategy.

MarkMakerSquare takes the latter strategy and offers solutions that feature a box

structure that is carved with holes for fiber insertion.

The process for making such a design includes three key steps. First, users

input the base shape. Then, MarkMakerSquare produces a 3D model that users can

adjust and print with a 3D printer. Lastly, users assemble the mark-making tool

by inserting their choices of fibers into the printed structure. Figure 3.3 displays an

example generated in this mode.

Cast Mode:

The cast mode supports tools that use castable material. If users intend to

build silicone, metal, or wax tools, the main design task is to create a mold to pour

material and cast the material into the designed form. For different casting material

and design purposes, there are various strategies for building mold (Cannon (1986);

McCreight (1994)). MarkMakerSquare implements a two-piece design that has a

base structure and a box-like mold structure (see Figure 3.4). The base structure

contains hollow spaces that serve as material pouring holes. The tip mold has the

84

Figure 3.4: The cast mode generates two major structures: the tip base (leftmost)
and the tip mold (rightmost). Users can 3D print these structures and join them
together for the casting process.

target form to cast. After printing both structures using 3D printers, users will join

the mold part with the base structure and cast the tool with their choice of material.

3.4.2 The Creation Pipeline

MarkMakerSquare is a Python-based toolkit that supports a creation pipeline

aligned with the generic creation pipeline discussed in Section 3.2 (Figure 3.1). To

start a design, users will input a base shape for the tip of the tool. Users currently

have two options for inputting the base shape. First, they can supply a list of path

information (i.e., point coordination). MarkMakerSquare offers a set of utility func-

tions to assist the modification of paths in this format. For example, users can easily

convert units, transform (i.e., rotate, scale, translate, and skew) the path, simplify

the path. MarkMakerSquare also offers a group of shape-generating methods to as-

sist the making of basic shapes and lines such as polygons and bezier curves. Users

can take advantage of a programming-based design approach and create detailed and

complex base shape designs.

85

Users might prefer manually drawing the base shapes instead of specifying shape

information through scripts. MarkMakerSquare offers a set of utility functions that

let users convert and process raster images into the ideal path format to support this

shape-generating preference. Using these utility functions, users can create their base

shape with any raster image authoring tools such as Adobe Photoshop and Procreate,

then import/modify these designs into MarkMakerSquare.

After supplying the base shape, users can input settings that modify the model’s

design details. Users can customize all parameters used to generate these 3D models

by adjusting these settings. For example, users can adjust the lock insert’s radius, the

minimal printing thickness that their 3D printers support, and the tip insert holes’

depth. Users can refer to the default values that MarkMakerSquare is providing.

With the base shape and setting inputs, users can trigger the exporting com-

mands offered by MarkMakerSquare. The primary output of MarkMakerSquare is a

standalone website that contains the design. The website provides a WebGL-enabled

simulation of the target design and interactive widgets that let users change some

design factors. Users can experiment with various settings such as trip length, solid-

ness, and rendering method. Then, they can export the 3D model and move it to

the fabrication process. In addition to generating the web interface, MarkMaker-

Square can also export a set of processed base patterns in SVG format. I offer these

processed patterns that can provide insights for troubleshooting the design.

The last step in the creation pipeline is physically fabricating the design. De-

pending on the fabrication mode that users choose, they will use digital fabrication

and manual fabrication. In the print mode, the user can directly print the model.

86

Figure 3.5: The WebGL-enabled interface generated by MarkMakerSquare lets
users experiment with different design factors. Through the interface, users can 1)
modify rending settings, 2) change segmentation method and solidness, 3) adjust
tip length, and 4) select the fabrication method.

In the insert and cast mode, the user will print the tip base or the tip mold and

manually assemble/cast the design.

3.4.3 The MarkMakerSquare Interface

MarkMakerSquare generates a standalone web interface that lets users navigate

various design factors discussed in Section 3.3. At a high level, the interface supports

the model’s modification in four ways: 1) rendering setting, 2) pattern segmentation

method and solidness, 3) tip length, and 4) fabrication method. Figure 3.5 provides

examples of these modifications. To start, users can toggle between wireframe ren-

dering and solid material rendering. Here I provide detailed documentation of the

other three modifiable areas.

Pattern Segmentation Method and Solidness Adjustment:

87

As discussed in Section 3.3, two mark-making tools that share the same base

pattern could have completely different capabilities if they have different solidness

(number of parts touching the surface). MarkMakerSquare automatically segments

the base pattern into subpatterns. A higher degree of solidness leads to less segmen-

tation (fewer parts), and a lower degree of solidness leads to more segmentation.

MarkMakerSquare currently offers three segmenting methods: segment by grid,

rectangle, and circle. The grid segmentation method essentially cut the base pattern

using horizontal and vertical lines. When the solidness setting is high, there are fewer

cutting lines. When the solidness setting is low, there may be too many cutting lines

so that the majority of the original pattern is lost. In this scenario, users can adjust

the thickness of these cutting lines.

The rectangle and circle segmenting methods are similar. Both methods essen-

tially fill the entire pattern with the target shape (i.e., rectangle/circle) with specific

sizes. A higher degree of solidness leads to larger target shapes, whereas a lower

degree of solidness utilizes smaller target shapes. These two segmenting methods are

handy when designing tools for the insert mode because segmented parts can serve

as the tip holding structures.

Tip Length Adjustment:

The interface provided by MarkMakerSquare offers a slider for adjusting the

length of the tip. By dragging the slider, users can quickly visualize how the length

of the tip impacts their designs. By default, the interface offers a ten-step adjust-

ment for this parameter with an increment of 2mm in each step. Users can adjust

the step increment in the setting input stage. In the insert mode, the slide becomes

88

inactive because the tip’s length is controlled by users manually when they prepare

their choice of fibers.

Fabrication Mode

Finally, the web-based interface generated by MarkMakerSquare lets users quickly

switch between different fabrication modes through a drop-down menu. The default

mode is the print mode. When switching to the cast mode, MarkMakerSquare gen-

erates the top mold and the tip base structure side by side.

In summary, MarkMakerSquare is a dedicated toolkit that aids the design of

creative mark-making instruments. MarkMakerSquare implements a design pipeline

aligned with the general mark-making tool creation pipeline to support multiple

fabrication methods and various material. MarkMakerSquare offers multiple utility

functions and a web-based interface that lets users create innovative designs without

extensive training.

3.5 Showcase

I demonstrate the capability of MarkMakerSquare by presenting five groups of

designs generated using this toolkit. Each group focuses on delivering or comparing

a specific set of features that MarkMakerSquare supports. I 3D printed these designs

using a hobbyist-level resin 3D printer. I used the water-washable photopolymer

resin manufactured by ELEGOO, which creates rigid structures that are difficult to

break manually if the form is thicker than 5mm.

After physically fabricating these creative mark-making tools, I also demonstrate

painting samples made with these tools. I created these painting samples using

89

calligraphy ink. The procedure for generating these painting samples is as follow:

1. Load the ink once and paint a straight line with the designed holding angle

until the ink runs out.

2. Load the ink and paint a straight line with an alternative holding angle (e.g.,

paint with the side of the tip) until the ink runs out.

3. Load the ink, then paint a scribbling line to demonstrate the marks created in

a curve-drawing scenario.

4. If the tool is a printed tool and has an interesting pattern design, load the ink

and press the tip’s top surface to test the stamp-like functionalities this tool

has.

5. Making marks in freestyle

3.5.1 Case 1: Fibonacci Pattern

In this design case, I test a group of tools made with the print mode. I examine the

differences created by adjusting that segmenting methods, solidness, and tip length.

The base pattern I used consists of a series of rectangles with the width following

the Fibonacci sequence. In addition to printing the tool with the highest degree of

solidness (without any segmentation), I also printed tools with various degrees of

solidness and segmenting methods.

Figure 3.6 displays the printed tool and the marks that they make. The tool with

the highest solidness generates large blobs of shapes at the beginning of the stroke

90

Figure 3.6: Design case 1: tools fabricated with print mode using the Fibonacci
pattern.

but quickly runs out of ink. In comparison, tools with lower solidness release the ink

more stably. This difference demonstrates that increased surface area contributes

to the ink-holding abilities in these tools. I also printed this design with multiple

tip lengths (10mm, 13mm, 23mm) but did not observe significant changes in the

marks supported. Because the resin I used creates relatively rigid and unbendable

structures, increasing the length does not significantly impact these tools’ shapes.

3.5.2 Case 2: Keyhole Pattern

In this design case, I test the insert mode to examine different material and tip

lengths. The pattern I used has a “keyhole” shape that consists of a circle and a

square. I segmented the pattern using the grid method. I tested a selection of syn-

thetic fibers that have different stiffness and sizes. Figure 3.7 displays three different

material tested. Wax thread is an unconventional material for brush-making. This

wax-coated cotton thread has several interesting properties. To start, they are bend-

able yet relatively stiff fibers. Then, they naturally stick together and form clusters.

91

Figure 3.7: Design case 2: brushes fabricated with the insert mode using various
synthetic fibers.

Also, they become softer with the increase in temperature. These characteristics

create a unique mark-making experience and lead to exciting marks.

I also tested optical fibers, which are stiff plastic rods. The 1.4mm optical fiber

creates dramatically different marks among various fiber thicknesses compared to

the marks made with the wax thread brush. In comparison, the optical fiber brush

creates a less-spread-out pattern and holds less ink, despite having a longer tip length

(42mm vs. 20mm).

Nylon fishing lines are the third type of material that I tested. They are durable

fibers that are stiffer than wax thread but softer than optical fibers. While fishing

lines are uncommon among commercially available brushes, many brushes use nylon

fibers. Figure 3.7 displays an example created with 0.52mm fishing line. After the

fiber insertion process, the tips are spread out because the fishing lines are originally

rolled around a rack. Users can potentially shape these tips under a heated condition,

but I did not apply any treatment that adjusts the tip shape. As a result, the

92

Figure 3.8: Design case 3: a crayon fabricated with the cast mode.

brush created a spread-out pattern that has exciting details. This brush is originally

fabricated with fishing lines that are 75mm long. I trimmed the tips in half (37mm)

and repainted samples to demonstrate the difference between tools with varied tip

lengths. In comparison, the marks created with the short brush are much more

concentrated.

3.5.3 Case 3: Flower Pattern

In the third design case, I tested a design using the cast mode. I used a pattern

that features sharp edges of two different sizes. The mini edges were less than 1mm

thick and were mostly lost during the 3D printing process. I cast the tool with

pigmented wax, which preserved most of the large sharp edges. Figure 3.8 displays

the side view and top view of the finished tool. Because crayon does not create dense

and clear marks in one pass, I needed to repeatedly press the tool on the surface to

leave a dense impression. Therefore, the pattern of the tool is mostly lost in the

straight-line test. In the scribbling test, I made marks with the tip’s edge instead of

the top of the tip. The edge design makes it possible to create parallel lines in one

stroke. Overall, the casting process was smooth. Users can reuse the printed molds

93

Figure 3.9: Design case 4: the “six circles” pattern is created using a simple
algorithm. Creating patterns using a generative design approach enables quick
experimentation towards different settings.

for multiple casts.

3.5.4 Case 4: Six Circles

In this design case, I examine patterns that are generated using an algorithm. I

refer to this pattern as the “Six Circles” pattern. I generate this pattern by drawing

six circles, rotating them, and remove all overlapping edges. Making patterns by

defining the generative process rather than defining the output makes it easy to test

different pattern settings. Figure 3.9 displays two designs (5mm vs. 6mm) with

different circle and edge sizes. The smaller tool (5mm with 1mm edge) creates more

condensed marks than marks made with the larger tool.

Besides varying the pattern design, I also tested this design with different tip

angles. Tip angles are created by slicing the tip extrusion. As a result, tools with

varying angles of tip have different touching surfaces.

94

Figure 3.10: Design case 5: three stamp-like tools generated with manually painted
patterns.

3.5.5 Case 5: Importing Drawings

The last design case consists of three tools made by importing raster images.

I created these two-color drawings using an iPad and an Apple pencil. After con-

verting, scaling, and simplifying these patterns using MarkMakerSquare, I fabricated

these stamp-like tools. Figure 3.10 displays the painting/stamping samples of these

tools. The marks made by stamping the tool on the surface preserved these draw-

ings well, demonstrating that MarkMakerSquare offers a viable solution for making

stamps-like tools.

To summarize, I present five groups of instruments designed using MarkMak-

erSquare. I think these instruments and the collection of marks that they enable

provide good coverage of the features that MarkMakerSquare currently supports.

These examples also present how the six key design factors summarized in Section

3.3 impact the functionalities of mark-making tools.

Although it is potentially possible to use MarkMakerSquare to replicate com-

monly available mark-making tools, MarkMakerSquare is more suitable for designing

95

unconventional tools. MarkMakerSquare enables the creation of highly specialized

and customized tools. Tools presented in these showcases are dramatically differ-

ent from commonly available tools in terms of shape and material. For instance, a

Fibonacci-patterned dip pen is unlikely to be mass-produced because it has a highly

specialized purpose: making Fibonacci-related marks. The Fibonacci-patterned pen

is far less versatile compared to a general dip pen. Nevertheless, its unique charac-

teristics make it excels at creating a specific range of marks.

3.6 Future Directions

Having a toolkit dedicated to the design and fabrication of creative mark-making

tools can facilitate innovative experiments and spark creative applications in the

physical art & craft tool design domain. In the future, I hope to enhance this

work from three major directions that include conducting additional material testing,

gathering user feedback, and providing simulation support.

3.6.1 Conducting Tests in More Art-Making Scenarios

Currently, I conducted all tool tests using one art-making scenario: users are

painting on a 2D surface using water-based ink. While this scenario is among the

most common art-making scenarios that visual artists have, the tools I designed can

perform entirely differently under other scenarios. For example, making marks with

calligraphy ink is a drastically different experience than moving thick oil or acrylic

paint. While I did not observe any difference made by the varying length in design

case 1 (Figure 3.6), painting with acrylic instead of ink might display more salient

96

differences. Similarly, some of the tools I examined might create more exciting marks

when they are paired with different painting techniques. Currently, I only tested

addictive mark-making, which adds paint to the surface. In the future, I could test

how these tools function when they are used with deductive paintings, where they

remove paint from surfaces.

I only tested the usage of these tools on flat surfaces, whereas these tools might

function differently when used on non-flat surfaces. For example, creating marks on

pottery pieces can highlight the differences caused by varying holding angles in design

case 4 (Figure 3.9). Using examples displayed in case 5 (Figure 3.10) as shapers in

clay sculpting could create exciting mark-making experiences.

3.6.2 Improving Interface by Gathering User Feedback

In the future, I plan to gather more user feedback, especially towards the web-

based interface that MarkMakerSquare is generating. Due to the challenges imposed

by COVID-19, I am currently unable to host in-person design workshops where users

can share insights regarding their interaction with the tool. I plan to open-source

MarkMakerSquare and gather user feedback online. By making the toolkit publicly

available, I plan to follow up with users who design, construct and use their designs

outside a lab setting.

3.6.3 Providing Digital Mark Simulation

The current MarkMakerSquare provides an adjustable 3D model of users’ design.

Based on the simulation, users can make predictions of marks that a printed tool can

97

potentially make. For example, seeing the Fibonacci (Figure 3.6), users can roughly

guess marks that the tool can create (i.e., rectangular streaks). Nevertheless, it is

much harder to predict marks for tools made with the insert mode and the cast

mode. For instance, design case 2 (Figure 3.7) demonstrates how fiber choice leads

to a drastically different range of marks. Similarly, if I were to fabricate the flower

pattern brush (Figure 3.8) with silicone instead of wax, the marks I could create

with the silicone tool are likely to be completely different from the wax tool.

I currently did not provide a digital simulation for the range of marks that a tool

can create because of challenges associated with vast material options and various

painting techniques. To the best of our knowledge, there is no stroke-simulating

model that can capture the complex range of make-making tools that MarkMaker-

Square supports. Nevertheless, offering such simulation would effectively connect

digital prototyping practices with the physical building so that users can experiment

and modify their designs digitally before committing to a final plan. With the rapid

development of digital simulation research, I plan to enhance MarkMakerSquare by

adding a digital simulation that predicts the potential marks that a tool can create.

3.7 Discussion

In this section, I reflect on challenges that I encountered when designing and

testing MarkMakerSquare. They may be helpful to those who develop design-aid

systems for creative physical objects that leverage multiple fabrication methods and

material. I also share high-level strategies that I took to tackle these challenges.

Many specific challenges are due to the restrictions imposed by fabrication meth-

98

Figure 3.11: Four categories of challenges that I encountered when developing and
testing MarkMakerSquare.

ods and material. For instance, while the maximum XY-axis resolution that my

printer support is 0.047 mm, I cannot print detailed designs that are finer than

1.5mm. Group 1 in Figure 3.11 demonstrates two designs that have fabrication is-

sues. Restrictions associated with fabricators are sometimes hidden knowledge that

can only be obtained through practice. Depending on the specific material and fabri-

cator combination, users might not be able to adopt my default settings directly. In

addition to fabricator-associated challenges, different material also require users to

adjust and iterate on their designs. For instance, I encountered many failed designs

that are created using the cast mode. When casting with rigid foam, I discovered

that it is almost impossible to release the mold, as the foam would stick to the resin

mold tightly. Casting with wax is comparatively more straightforward, but releasing

fine details from the mold is still tricky.

Because MarkMakerSquare aims to support a wide range of material and fab-

rication methods, it is challenging to offer a “universal” set of settings or design

guidelines for all users. They might face completely different sets of challenges im-

posed by their fabricators and material. To tackle this issue, I provide easy access to

99

all parameters used for generating a design. As discussed in Section 3.4, users can

input or modify settings for generating the 3D model. By making all parameters vis-

ible and editable, users can easily adjust their designs to fit their unique fabrication

processes/goals.

Another issue that surfaces repeatedly is the difficulty in predicting fabrication

needs. Initially, MarkMakerSquare only contains one fabrication mode: the print

mode because I assumed that 3D printers could print brush-like tools. I could directly

print brush-like structures (Figure 3.11, group 3) indeed. Nevertheless, the delicate

tips of these tools gradually fall out as I make marks with these tools. This is an

example where the material (resin) and the fabrication goal (make brush-like tool) are

misaligned. While there are opportunities to test unconventional material-fabrication

goal combinations, aligning the optimal material with the right fabrication goals

could make the designing/making process much more productive.

Also, I acknowledge that there are design goals that MarkMakerSquare can fail

to support. For instance, I tested extra-fine fishing lines using the keyhole insert

design (Design Case 3) described in Section 3.5. Although it is possible to create a

brush using this fine nylon fiber, the manual fiber assembly process is quite tedious. I

manually bundled strands of fibers together and inserted these fiber bundles into the

tip holes. However, because the fiber is too soft, I made many failed attempts before

finishing a brush. In this case, using a ferrule to fasten soft fibers could be much

easier than inserting these fibers into tip holes. Because it is almost impossible to

address all design goals and fabrication needs, I think it is crucial to make design-aid

systems extendable. MarkMakerSquare is fully extendable and customizable so that

100

users can potentially add a fourth fabrication mode that supports ferrule designs.

3.8 Conclusion

In this chapter, I examine existing design and fabrication processes for mark-

making instruments. After discussing challenges in making customized creative

mark-making tools, I identified six key factors that mark-making instrument de-

signers can consider. I contribute an open-source, Python-based toolkit called Mark-

MakerSquare that supports designing and making creative mark-making instruments

using different material and fabrication methods. I demonstrate a collection of in-

struments designed with MarkMakerSquare and various marks that these instruments

enable. Hoping this work could facilitate innovative experiments in the physical art

& craft design, I reflect on challenges encountered during the development process

and share high-level strategies for tackling these challenges.

Creative goals are too diverse to predict. Although I limited the scope of this

research by focusing on six factors regarding tip designs, it is still challenging to

produce a tool that covers all design possibilities and considerations. Therefore, I

gradually extend MarkMakerSquare with different fabrication modes and methods

to support additional design tasks. The development process of MarkMakerSquare

demonstrates how extendability is crucial for GCDTs. By making design software

easy to extend, developers of GCDTs ensure that their tools stay relevant.

101

CHAPTER IV

Delicate Punch Needle Embroidery

Figure 4.1: Left: A standard X-Y plotter that we repurposed to fabricate punch
needle embroidery. Middle: Our modified plotter consisting of 1) an Axidraw
plotter, 2) a customized punch needle tool, 3) a gripper frame, 4) a frame holder, 5)
a threading station, and 6) a thread separator; Right: One example of the many
styles that we can produce (3D embroidery).

4.1 Introduction

The implementation of craft designs defines the final results of these creative

processes. Therefore, design-aid tools should consider the fabrication processes that

102

artisans use and offer support for these processes. As mentioned in Section 1.4.2,

“fabrication-ready” design have different meanings under different context. Although

the term “fabrication” is often associated with industrialized and machine-enabled

processes, design-aid system designers should not limit their support to digital fabri-

cator supports. For many craft, artisans might prefer to implement designs manually.

There are opportunities to create design software for non-computer-controlled fabri-

cation processes.

This chapter provides an example where design-aid tools can support manual con-

struction by generating designs of intermediate results. In this section, I present a

GCDT designed for punch needle embroidery. The GCDT called ThreadPlotter sup-

ports the design and fabrication of plotter-based delicate punch needle embroideries.

Because the fabrication method is previously unexplored, this chapter examines a

large combination of material and hardware options. As a result, the ThreadPlotter

contains a hardware solution in addition to design software.

Punch needle embroidery is a traditional embroidery method where loops of

threads are punched into backing fabrics using a tubular needle (Figure 4.2). As

with other embroideries, punch needle pieces can function as decoration and textile

art. However, punch needle embroidery is also commonly seen in rug production

because of the unique textures it can create (Oxford (2016)).

There are a variety of punch needle embroidery tools. Manual punch needles are

the most popular and accessible options (Figure 4.3). While the designs of these

tools vary, they mostly feature two main parts: a tubular, sharp-head needle with

a threading eye and a handle to attach the needle. For rug making and large-scale

103

Figure 4.2: Materials and mechanics of punch needle embroidery: 1) the backing
fabric, 2) a punch needle tool with two parts: handle and needle (also called
“head”), 3) a punch needle tool punches through the backing fabric to make a
thread loop, 4) loops created by the punch movement stay on the other side of the
fabric, which is typically considered as the front side of the embroidery, 5) the
thread connecting adjacent loops forms stitches, 6) a punch needle tool normally
punches away from the previous loop to avoid damaging threads.

pieces, thick yarns are paired with large-sized needles. In contrast, delicate punch

needle embroideries are made with thin embroidery floss (see Figure 4.3 for com-

monly used threads). These delicate embroideries are called “miniature punch nee-

dle embroidery,” regardless of the dimensions of the finished pieces (Stewart (2009)).

Mechanically, punch needle embroidery only requires three types of movement (Fig-

ure 4.2): a threaded needle punches through the backing fabric; the needle is pulled

out, leaving a loop of “unpulled” thread underneath the backing fabric; and finally,

the needle is moved to the next position (Oxford (2016); Stewart (2009)). Despite

its simplicity, punch needle embroidery is “fragile” as it depends on the friction be-

tween fabric and thread to hold the material in place. Thus, delicate punch needle

104

Figure 4.3: Commercially available manual punch needle tools and commonly used
threads: 1-2) Oxford Punch Needle® and Ultra Punch® Needle, 3) a variety of
punch needle heads and their interchangeable handles, 4-9) examples of threads
with diverse thicknesses and material.

embroidery is a labor-intensive and time-consuming craft that may not be as easily

automated as other styles. Automated solutions tend to be either industrial tools or

solutions that only partially automate this embroidery practice. The former include

heavy-duty rug-making systems that work with thick material. The latter include

tufting guns – handheld electrical tools that accelerate punch needle embroidery pro-

duction by executing the punching and pulling actions with motors. While a tufting

gun dramatically increases the embroidery speed, practitioners still need to “drive”

the power-tool-like tufting gun manually to create desired patterns. The cost of these

machines and the limited material they work with (heavy yarn) make them imprac-

tical for more delicate work. Delicate punch needle embroidery is present across a

diverse set of cultures but is always done manually. Examples include the fine hand-

held needles such as the Russian Igolochkoy™ punch needle and the Japanese Bunka

105

needle (Stewart (2009)).

Because of the considerable manual labor involved and the lack of economical

digital tools, delicate punch needle embroideries are often small in size. Large em-

broidery pieces require significant labor investment in addition to the material costs.

Because they are often hard to produce, delicate punch needle embroideries are not

necessarily attractive as design or rapid prototyping mediums, which is unfortunate,

as they are texturally interesting and potentially adaptable for wearable (e.g., Mc-

Cann and Bryson (2009)) and embroidery-related research (e.g., Tsolis et al. (2014)).

I demonstrate how a low-cost X-Y plotter can be repurposed into a delicate

punch needle embroidery fabricator to address this challenge. By adding easy-to-

make physical accessories and a software toolkit, I support the production of delicate

punch needle embroideries in a precise and efficient fashion. I demonstrate how this

novel and accessible fabrication approach enables the production of various artifacts

and textures.

I contribute analysis (and solution) to the challenge of converting a plotter into

a delicate punch needle embroidery fabricator. Additionally, I identify the specific

constraints of automated punch needle fabrication where hardware, software, and

material interact uniquely. I describe an open-source toolkit, ThreadPlotter , that

supports the designing, editing, and printing of images as punch needle embroidery.1

Finally, I reflect on how crafting experience and practice with 1) the manual form

of punch needle and 2) the automated form of plotting translate (or not) to new

fabrication technologies.

1ThreadPlotter is available at http://eyesofpanda.com/projects/thread_plotter.

106

http://eyesofpanda.com/projects/thread_plotter

4.2 Related Work

4.2.1 The Fabrication of Punch Needle Embroidery

Although the origin of punch needle embroidery is unknown (Stewart (2009)),

this versatile craft technique is widely used across many different applications. Rug-

making is likely the most well-known. In the late 1800s, a variety of punch needle

tools designed for the making of “New England Style” rug hookings became available

in the United States (Oxford (2016)). However, punch needle embroidery is neither

fixed geographically nor in how it is applied. For example, Igolochkoy embroidery

(also called Russian punch needle embroidery) and Japanese Bunka embroidery uti-

lize thin embroidery floss to create much more delicate patterns (Stewart (2009)).

Both approaches share a similar type of fine needle but use different types of thread.

The Igolochkoy embroidery is found as decorations for the Russian Old Believers’

traditional costumes, whereas Bunka embroidery utilizes special curly rayon thread

to create textured wall hangings (Stewart (2009)).

Punch needle embroidery excels at creating textures because of several defining

characteristics:

1. In contrast to embroidery techniques that tie the thread to the fabric, punch

needle does not secure threads to the fabric – allowing for faster motion. The

tension within the fabric holds the threads in place (Figure 4.2). The simple

punch-pull movement makes punch needle embroidery an easy technique for

beginners and professionals alike.

2. Punch needle embroidery is a “backward” embroidery. Instead of working from

107

the front side, a horizontally reversed image is punched from the backside of the

fabric. Two sides of a punch needle embroidery piece have drastically different

textures (Figure 4.2). Typically, the side with thread loops is the front side of

the embroidery. The flat stitches are the backside of the embroidery (though

some techniques reverse this).

3. Punch needle embroidery is a 3D embroidery technique where practitioners can

easily incorporate depth into the design. Punch needles typically come with

gauges (also called stoppers) that fix the loop length by limiting the depth

that the needle can be punched into the fabric. Practitioners change the gauge

location to adjust loop length, thereby creating thick or thin embroideries. The

use of thread trimming can create additional 3D forms.

Fully automatic industrial tufting machines make it possible to produce punch

needle embroidery rugs at a speed and precision that handheld tools cannot compete

with. However, automatic tufting machines are generally inaccessible to most punch

needle practitioners because they are often large and expensive. Examples range

from the AutoTuft to the Mtuft machines (with prices ranging from $15k to $1.5M

USD). Moreover, these automatic machines and more affordable handheld tufting

guns are primarily designed for rug production. Therefore, they tend to support

thick rug yarn only. My goal is to produce an approachable, automated solution

that maintains the advantages and uniqueness of delicate punch needle embroidery.

108

4.2.2 Repurposing Fabricators

With the rise of the maker culture (Tanenbaum et al. (2013)) and advances in fab-

rication research, I came across various projects that develop custom CNC machines

for specific fabrication projects. Laser cutters, 3D printers, and CNC mills have

become increasingly available to hobbyists and individuals (Willis (2018)). As the

material and technology for CNC machines mature, designers and researchers have

also developed specialized CNC machines to support the fabrication of craft objects.

For example, Hudson (2014) demonstrates how a customized 3-axis machine can

print needle felting sculpture. Others have found ways of adapting existing fabrica-

tors (e.g., salt and coffee-based 3D printers shown in Rael and San Fratello (2018)).

Given the ability to customize computerized fabricators, unconventional material

such as food can now be digitally enhanced (Schoning et al. (2012)).

Developing and assembling 3-axis CNC machines has become significantly easier

as many open-source projects become available (e.g., the Maslow CNC). Nevertheless,

producing a functioning and precise CNC machine remains to be a technically chal-

lenging and labor-intensive task. Instead of designing a new machine from scratch,

I aim to convert an existing machine. Doing so allowed us to focus on finding the

fundamental fabrication requirements rather than solving machine-specific design is-

sues. I demonstrate how a broad type of machine intended for one task can fabricate

delicate punch needle embroidery. More practically, repurposing existing machines

can relieve the technical challenges of developing and calibrating physical and soft-

ware components. If existing machines can be repurposed to produce delicate punch

needle embroidery at a desirable quality and efficiency, it would likely make the fab-

109

ricator more accessible, as users might already be familiar with the hardware and

the software that come with the machine. In this chapter, I aim to impose mini-

mal physical changes to the existing machines and ensure that the machine can still

operate for its original functions.

4.2.3 Applications of Punch Needle Embroidery

A specific motivation for this chapter was to enable novel applications of punch

needle embroidery. In addition to rug making and fabric decoration, I have also

seen punch needle embroidery being used as a way to produce customized fabrics.

These fabrics can be further processed into decorative and functioning artifacts.

There are examples of using this unique texture in customized plush toys, mini 3D

floral sculptures, furniture covers, and bedding covers (Oxford (2016); Stewart (2009,

2013)).

With recent developments in personal fabrication (e.g., Mota (2011)) wearable

technology (e.g., McCann and Bryson (2009)), and algorithmic craft (e.g., Jacobs

(2013)), there are many craft-based research projects that explore the design and

application of traditional fiber crafts (e.g., Frankjær and Dalsgaard (2018)). An

entry-level sewing and embroidery machine makes it possible for designers and re-

searchers to develop and test the possibility of using traditional embroidery to em-

bedded electronics (Hamdan et al. (2018); Nabil et al. (2019)). Accessible knitting

machines enable a vibrant group of studies that specializes in the design, simulation,

and execution of knitting patterns (e.g., Igarashi et al. (2008); Leaf et al. (2018); Wu

et al. (2019, 2018)). In addition to technologies that are related to the fabrication

110

process, the existence of efficient knitting fabricators makes it possible to utilize knit-

ted artifacts as mediums for wearable and sensing studies such asGuo et al. (2011)

and Raji et al. (2019).

Compared to other thread-related crafts such as traditional embroidery and knit-

ting, punch needle embroidery pieces are less likely to be used as design and proto-

typing material despite their unique textures. An accessible automated punch needle

embroidery fabricator can enable a greater variety of punch needle embroidery ap-

plications.

4.3 Physical Setup

A standard punch needle embroidery set-up requires fabric, fabric stretcher,

thread, and needles. As any practitioner would attest to, any specific choice of

one element will restrict (and inform) the choices of the others. To these elements,

I must factor in the constraints of the mechanical fabricator–the plotter.

4.3.1 Selecting the Right X-Y Plotter

X-Y plotters are computer numerical control (CNC) machines that guide plotting

tools (such as pens and markers) along vector paths. Although the name “X-Y

plotter” might suggest a 2-axis machine, they are often movable along a third axis to

allow the pen to move off the drawing surface. This lift provides for z-axis movement.

Today, X-Y pen plotters are accessible machines. Models range from consumer-

friendly self-assembling kits such as mini processor-powered Makeblock® robot kit

to heavy-duty HP® vintage plotters.

111

3-axis movement is a minimum criterion for a punch needle fabricator. Other

basic criteria include:

1. The distance between the plotting tool and the plotting surface is adjustable

and sufficient for holding a fabric stretching frame. Different types of plotters

control the x– and y-axis movement with different mechanisms. For example,

a movable arm can control one or both axes. Here, the plotting surface is fixed

while the arm travels. Alternatively, the plotting tool itself might be fixed

while the plotting surface travels. While both approaches are viable for punch

needle embroidery production, the later design might have less flexibility in the

distance between the plotting tool and the plotting surface. For example, the

HP7550 plotter, which utilizes a paper-feeder to control the y–axis movement,

cannot hold a fabric stretcher without significant modification.

2. The z–axis movement is large enough to create a minimal stitch. The distance

traveled in the z direction controls the size of the thread loop. Furthermore,

if z–axis movement is controllable, I can fabricate punch needle embroideries

with various loop sizes.

3. Sufficient downward force can be applied in the z–axis to punch through the

tightened fabric. The force required to punch through the backing fabric varies

due to fabric thickness, needle size, and stitch density. Some X-Y plotters do

not provide any downward force along the z–axis at all. Instead, they rely on

gravity to lower the plotting tool and only sufficient upward force to counteract

lightweights. While I can add weight to the drawing tool, the mechanism to

raise it may no longer work. It is also worth noting that some plotters are

112

designed to plot on a non-horizontal surface. Therefore the weight-adding

approach might not be applicable to these machines.

Based on the criteria above, I chose to convert the commercially available AxiDraw

Pen Plotter. The AxiDraw is a high-precision 1-arm X-Y plotter designed for plotting

on flat surfaces. It utilizes step motors to control the movement along the x– and

y–axis. It does not provide a downward force along the z–axis but utilizes gravity

to lower the pen (or needle). In addition to meeting my technical requirements, the

AxiDraw is also economical and has accessible operating software. It provides two

control interfaces: an Inkscape plugin where end-users can import and plot vector

graph and a Python API to control the machine programmatically. Various AxiDraw

models support different plotting sizes. For my work, I used the V3/A3 model that

comes with a plotting area of 11 × 17 inches.

4.3.2 Fabric and Fabric Stretcher

The backing fabric is an essential part of the punch needle embroidery because the

tension between the weaves of the fabric is the only thing that holds the thread loops

in place. The fabric and thread need to be matched. For example, a loose-weave

fabric will not provide enough force to hold thin thread but might work with thicker

thread. Conversely, punching through a tight-weave fabric with a large needle (for a

thick thread) will require significant force and likely damage the weave.

Thick yarn punch needle embroidery is mostly done on monk’s cloth, an even-

weave cotton fabric that contains tiny holes formed by the warp and weft threads

(Oxford (2016)). When making delicate punch needle embroidery, the most popular

113

Figure 4.4: I tested six different types of fabrics. Pearlized Iridescent Organza (1)
and Organza (2) can produce stable results. Weavers Cloth (3) is too thick for my
machine to pierce. Chiffon (4) and Twinkle Organza (5) are too fragile for the
gripper frame I used. Sheer Voile (6) can produce reasonable results but tends to
have missing loops.

fabric is weavers cloth, a polyester-cotton blend fabric. In addition to weavers cloth,

a variety of fabrics such as muslin, cotton chambray, wool flannel, silk noil, and linen

might also work with particular combinations of needle and thread (Stewart (2009)).

The choice of plotter constrains my choice of fabric. For example, the AxiDraw

does not provide enough downward force to punch through most fabrics. This issue

can be partially solved by increasing the weight of the punch needle. However, in my

experiments, I discovered that increasing this weight too much would quickly wear

out the servo motor controlling the pen lifter. In experimenting with various fabrics,

I found that thin fabrics, such as organza and voile, were pierceable without much

change to the stock AxiDraw. Additional modifications (e.g., a heavy-duty servo on

the pen lifter) would allow for thicker fabrics.

In addition to fabric choice, I found that the choice of fabric stretching mecha-

114

nisms was critical for smooth operations. Unlike traditional embroidery, where the

stretching of the fabric might be optional, punch needle embroidery requires tightly

stretched fabric. It is crucial to stretch the fabric “drum-tight” because loosely

stretched fabric requires considerable piercing force (Oxford (2016)). Stretching the

fabric also reduces the damage to the fabric during the punching process. A vari-

Figure 4.5: I recommend using gripper frames for plotter embroidery. They secure
and stretch fabrics with curved metal needles that grasp the fabric.

ety of embroidery hoops and gripper frames can be used for manual punch needle

embroidery. Embroidery hoops are circular stretchers that secure and tighten the

fabric by clasping the fabric between the inner hoop and the outer hoop. They are

economical, lightweight, and adjustable stretchers that would work for manual punch

needle embroideries. However, the embroidery hoops I tested could not stretch the

fabric to be tight enough for machine-based embroidery. A loose stretch that may

work for manual crafting will fail when I use the more delicate servo motors of the

115

plotter. Additionally, the unevenly stretched fabric will also cause uneven piercing,

impacting both loop height and density.

Given this, I found gripper frames to be ideal for plotter-based punch needle

embroideries. Gripper frames are non-adjustable solid frames covered with metal

gripper strips that are made with bent metal needles (called “teeth”) (Figure 4.5).

Gripper frames are more secure than general embroidery hoops because these sharp

needles prevent any slipping. It is important to note, however, that it is possible to

overstretch some fabrics. Large teeth might also tear the delicate fabric. It is crucial

to pair the right fabric with the right teeth size and avoid overstretching. In my

experiments, I used a 10 × 10 inch wooden frame covered with EH4 gripper strips

manufactured by Howard Brush.

Finally, I found that it is critical to secure the frame to a stable surface to

prevent unintentional movement. Even a heavy frame may move enough during the

fabrication process to ruin a piece. To prevent this, I designed a simple wooden

holder to secure the frame. The holder also works as a registration tool that ensures

I place the frame at the same location every time (Figure 4.1).

Figure 4.4 displays a variety of material that I have tested–with organza being

my primary choice. Voile, cotton, and chiffon might also be viable options if paired

with the right thread and gripper teeth size. All examples shown in this chapter

were fabricated with organza.

116

4.3.3 Thread and Thread Feeder

Theoretically, any thread that “flows easily through the needle and leaves even,

consistent loops in the fabric will work (Stewart (2009)).” For delicate punch needle

embroidery, the most frequently used thread is cotton embroidery floss. Embroidery

flosses are widely available threads manufactured for embroidery-making that come in

a variety of colors and fibers. Six-strand pre-cut cotton embroidery floss is one of the

most popular embroidery threads (Stewart (2009)). However, pre-cut embroidery

thread requires practitioners to re-thread the needle quite frequently. Therefore,

continuous spools are preferable.

I tested wool, cotton, polyester embroidery thread, and polyester metallic thread

(Figure 4.3). I identified the following three factors to be considered when selecting

threads:

1. Thread thickness: Pairing fine thread with loosely-weaved fabric cannot

work because the tension within the fabric weave cannot hold the thread loops.

Pairing thick thread with fine needles cannot work either because the thread

cannot pass through the needle freely. Additionally, a larger needle requires

more piercing force, and the piercing force provided by my plotter is limited

by the maximum weight the plotter pen lifter can hold.

2. Thread Smoothness: In order to form thread loops, the thread needs to flow

freely through the needle. Natural fiber such as cotton and wool thread might

come with tiny strands of fiber that increase the friction. Additionally, it is

common to use multiple strands of threads to increase thread thickness and to

blend color. In these cases, natural fibers can tangle if they have fuzzy finishes.

117

Similarly, metallic threads that tangle easily might not work with plotter-based

punch needle embroidery.

3. Thread strength: When making manual punch needle embroidery, the punch

needle is angled so that it always punches away from the thread, ensuring that

the sharp head of the needle does not damage the thread. X-Y plotters are

generally not equipped with a pen rotation mechanism. Varying holding angle

dynamically is rarely needed for general plotting activities, so most plotters fix

the pen angle. The fixed angle might lead to cuts in weaker threads. To avoid

this problem, I choose to use strong threads that are less likely to break or

become fuzzy even when pressed by the punch needle.

Among the threads tested, polyester embroidery threads produced the most sta-

ble results. Polyester embroidery threads are strong and smooth synthetic threads

that are manufactured for machine embroidery. A variety of sizes and colors are

available. I used 120 deniers, two-ply 100% polyester embroidery threads that are

widely available on the market. I tested punching one, two, and three strands of

this embroidery thread through organza. Three strands of thread produce the most

stable result.

A thread feeder is necessary because I rely on continuous thread spools. Standard

embroidery machines usually have a thread tension adjustment system to ensure the

thread is tightened. In contrast, punch needle embroidery requires that there exists

no tension on the thread. Even the slightest tension would cause the thread loops

to pull out of the fabric along with the punch needle. Fortunately, most embroidery

spools are designed to unwind from the top. As long as the force to unwind the

118

Figure 4.6: Three iterations of the punch needle handle design using
pre-manufactured plastic material. Through these prototyping iterations, I locate
the optimal material (i.e., syringe), location for the threading holes (i.e., close to
the syringe hub), and mechanism to add adjustable weight (i.e., use the syringe
flange to hold a plastic cup).

thread is directly above the thread, it is effortless to unwind. To ensure that the

force unwinding the thread is directly above the spool, I designed a simple thread

unwind station where individual spools are pulled and passed to the punch needle.

4.3.4 Punch Needle

The last physical component I designed is the punch needle. For plotters that

provide piercing force, it is theoretically possible to use any commercially available

punch needles. However, the handles on these needles are often difficult to modify

(e.g., for adding weight). All punch needles I examined accept thread at the end of

the handle, making it impossible to add weight directly above the needle (see the

threaded tools in Figure 4.2 and Figure 4.3). Adding weight to the side of the handle

or the pen lifter is less effective.

119

In addition to the weight issue, some fine punch needles have very short handles

that are not long enough for AxiDraw to hold. Because of these constraints, I

designed my own punch needle handle that can: 1) holds commercially-available

punch needle heads, 2) holds an adjustable amount of weight directly above the

needle, and 3) allows for thread feeding without tangles.

To make my design as accessible as possible, I searched for economical material

that can be easily converted into the handle. I selected pre-manufactured plastic and

tubular material (e.g., syringes and pen casings) as the primary material for rapid

prototyping. These were cheap, easily available, and could be modified without

specialized equipment. I designed and tested three different handles using syringes,

plastic pens, coins (as the weight), and plastic cups. In my progress towards my final

design, I identified several key constraints.

First, I need to make the threading process as simple as possible. In existing

handle designs, threads are normally fed into the needle using metal wire threaders.

However, straight threaders are less effective when the threading pass is not straight.

In the first design iteration, I made a curve threader to pass the thread from the side.

Nevertheless, operating a curved threader requires end-users to aim for the needle,

which complicates the threading process significantly. In the second iteration, I

place a tubular insert made from an empty gel pen lead inside of a 2-part twist

pen. Threading the gel pen lead is easier than using the curved threader. However,

because the diameter of the insert is small, threading multiple strands is still a time-

consuming activity that also requires a fine crochet needle to pull the thread.

As a result, I separated the threading into two parts in the third iteration. I

120

placed the threading holes close to the hub, which makes it possible to pass the

thread through the hub without a threader. After passing the thread through the

hub, I use a straight wire threader to thread the needle. Then, I attach the needle to

the syringe. Besides adjusting the location of the threading hole, I also noticed that

multiple thread holes are necessary if multiple strands of threads are used. Feeding

individual strands of thread to dedicated thread holes reduces the chance of thread

tangling dramatically. Consequently, I designed three threading holes on the barrel

of the syringe.

Second, I needed to design a platform to hold adjustable weight. I chose to use

coins as weight in my prototypes because they are accessible “heavy” metals. In the

first iteration, I taped coins to the syringe flange. This worked well with the caveat

that it was difficult to adjust the number of coins. In the second iteration, where I

re-purposed a pen, I laser cut a flat wooden square and taped coins to it.

I noticed that the syringe flange and hub are handy structures for the punch

needle handle when comparing the first two iterations. The syringe hub fits most of

the fine needles I examined. Therefore it automatically holds the needles vertically.

The flange of the syringe is flat, making it easy to add weight on top. To make a

platform that can hold an adjustable number of coins, I combined a cylinder-shaped

pen cap and a small plastic cup. The glued-together platform sits directly on top of

the flange. End-users can place any number of coins inside the cup. The cylinder-

shaped pen cap ensures that the platform stays on top of the syringe without the

need for adhesives.

The final punch needle design is economical and straightforward. In comparison

121

to the first variants, it features easy threading processes and an effortless weight

adjustment system. An optional component to add is a gauge/stopper that indicates

the location where the needle should be held. End-users can use the existing volume

markings on the syringe as guidelines for placing the punch needle tool. End-users

can also use tapes and markers to indicate the desired punch needle location. Figure

4.6 illustrates the design of my customized punch needles.

4.4 Software Control and ThreadPlotter

The AxiDraw offers two control interfaces: an Inkscape plugin where end-users

can plot vector images (in the SVG format) and a Python scripting interface. The lat-

ter provides low-level controls such as pen up and pen up speed. The graphical SVG

interface can be used for many punch needle embroidery fabrications. However, I

found that having access to low-level controls opens up more fabrication possibilities.

Some design patterns that involve different loop and stitch sizes have complex set-

ting changes. This can be “hacked” by creating various layers and fabricating them

one at a time. However, because not all controls can be adjusted by inputting the

images, the end-user must pause the machine to adjust the plotter settings. Access

to low-level functions significantly reduces the manual labor involved.

To control my physical setup, I developed ThreadPlotter , a Python-based API

that supports the design of X-Y plotter compatible embroidery patterns. The API

primarily helps end-users address the problem: Given a vector path to be fabricated

into punch needle embroidery, where and how should the machine punch? Thread-

Plotter answers these questions by processing path information and translating con-

122

tinuous paths into a set of punch point locations. Additionally, ThreadPlotter will

determine effective settings for the depth and speed of the punch. While translating

vector information into vector-based punch needle embroidery patterns is the pri-

mary function of ThreadPlotter , the system also provides utility functions (e.g., for

converting raster images to acceptable vector formats).

ThreadPlotter can produce two kinds of outputs. First, ThreadPlotter produces

SVG files that can be fabricated through the graphical Inkscape environment. my

focus on vector formats is due to the observation that these are the most widely

accepted by X-Y plotters. Second, ThreadPlotter produces Python scripts that can

be directly executed by Axidraw. While these scripts may not directly execute on

other plotters, I utilize ‘simple’ calls that are likely to be supported by most devices.

Thus, I believe ThreadPlotter -output scripts can be readily adapted.

4.4.1 Determining Punch Points Locations

ThreadPlotter converts vector images into punch needle embroidery patterns in

three steps. To start, ThreadPlotter extracts vector elements such as ¡line¿ and

¡polygon¿ (in SVG syntax). For each vector element, ThreadPlotter identifies and

processes the location information of the element. It also converts curves into straight

lines in preparation for later path segmentation (Figure 4.7). For example, Thread-

Plotter will approximate cubic Bézier curves with lines. At the end of this step, I

have a list of polylines: continuous paths that consist of only straight line segments.

ThreadPlotter divides line segments within the polylines into equal-length sec-

tions. The unit length used in the dividing algorithm controls the density of the

123

Figure 4.7: Pipeline for converting vector paths into plotter-compatible punch
needle patterns.

thread loop and the size of the stitches. I refer to this length as segment length.

Setting a suitable segment length is important for a good weave. For example, the

finished piece will not have a firm, rug-like texture if the segment length is too long.

If the segment length is too short, the needle will pierce a section of the fabric repet-

itively and damage the fabric. Different combinations of fabric and thread require

different segment lengths. For my combination of fabric and thread, I found 1.05

mm to be optimal.

At the end of each line segment, ThreadPlotter generates a punch point. Each

punch point represents a location where the needle will pierce the fabric. After

annotating the end of each line segment, I obtain polylines consisting of a series of

punch points. I refer to punch points within one polyline as a punch point group.

Finally, ThreadPlotter connects different punch point groups with trail points. Be-

cause punch needle embroidery uses a continuous, untied thread, pulling the thread

124

can revert the previous stitches. In other words, a threaded punch needle cannot

travel a long distance without pulling the previous loops out. Due to this charac-

teristic, a punch needle cannot directly move to the start of the next punch group

after finishing one group of punch points. ThreadPlotter adds piercing points as

supporting trails to avoid pulling previous loops.

The additional loops created on trail points ensure that the loops in the previous

punch points stay in place. The segment length and loop height in the trails should

be different from that of the polyline for a couple of reasons. First, as long as the

punch needle touches the fabric and forms a minimal loop, the previous loop will not

be pulled. Therefore, it is not necessary to punch long loops in trail points. Second,

trail lines are supporting structures that need to be removed after the fabrication

process because they are not part of the original pattern. Making dense trail stitches

wastes material and increases the difficulty during the removing process. When

punch points of the same color are scattered around the image, there might be many

trail points. However, as long as the loop length of the trail points is less than that

of the punch point, longer loops can cover up the shorter loops. Thus, not all trail

stitches need to be removed (as they are covered up).

If the end-user opts to output an SVG file (rather than code), they can use the

Inkscape interface to print. There is a tradeoff in doing so. On the one hand, the

end-user can intervene to inspect and control the output properly. On the other

hand, end-users must pause the plotting process to adjust the loop length (i.e., the

lowest position that the needle can travel along the z–axis). An alternative to manual

pausing is to separate punch point groups into different layers so that Axidraw can

125

stop before the transition between punch point and trail point. However, the time

and labor involved in the setting adjusting process outweigh the potential benefits.

To balance this, trail points in the SVG mode share the same loop length as punch

points but use a longer segment length (2.64mm). In the script mode, the needle

position can be adjusted automatically. Hence, trail loops have a minimal loop length

of 2.2 mm. When operating using the SVG interface, the plotter will automatically

return the arm to its origin. The returning path also needs to be covered with trail

points to avoid pulling previous loops.

If a design has multiple colors, ThreadPlotter preprocesses vector paths by group-

ing them according to their colors. Then, ThreadPlotter processes individual color

groups separately, generating files for each color. In both the SVG and scripted

forms, some manual work is required. When users finish plotting one color, they can

remove trails, re-thread the needle, and proceed to the next color.

4.4.2 Stitches, Loops, and Pen Speed

With more sophisticated embroideries, such as those with a 3D effect or the

inverted Bunka stitching (where the stitch side becomes the front), the scripted

output of ThreadPlotter shines. Without it, end-users must constantly adjust loop

length and other elements. However, even the scripted interface does not offer infinite

flexibility. The properties of the material and their interaction constrain what is

feasible.

To understand the relationship between loop length and stitch size, I experi-

mented with several combinations to find workable settings. I started by measuring

126

the maximum and minimal loop length that AxiDraw can create, then conducted

several tests using different loop sizes within the range.

I found that I can approximate the relationship between loop depth (loop depth),

punch depth (needle depth – the depth of the needle below the fabric), and stitch

length (stitch length) using a simple formula:

loop depth =
needle depth− stitch length

2

Additionally, I observed that if the needle moves too fast, the thread might follow

the needle and get pulled out of the fabric because of inertia. Short loops are espe-

cially vulnerable as they can be pulled out easily. As a result, when punching short

loops, the needle needs to have a slower lifting speed compared to the speed used

for long loops. With this observation, I measured the optimal needle lifting speed

associated with the minimal and maximum loop length. ThreadPlotter can suggest

the optimal needle lifting speed given the loop size using a simple linear mapping

calculation.

Given the desired stitch size, I can also calculate the loop length and lifting speed

that ensures the creation of a minimal loop. I used this calculation when processing

trail points in the scripted mode so that I can use the maximum stitch size and

the minimal loop length. Moreover, this insight enables the pattern generation for

Bunka-style punch needle embroideries, where stitches of different sizes are treated

as the front side of the embroidery.

127

4.4.3 Raster versus Vector Images

Thus far, I have focused my attention on converting a vector image into a plotter-

compatible embroidery pattern. Using drafting tools such as Inkscape and Adobe

Illustrator™, designers can produce precise and scalable vector images. Many tools

also offer the ability to convert raster images into vector formats. ThreadPlotter offers

direct creation and manipulation of SVG files through scripting. It also implements

an alternative raster-to-vector conversion module that considers the intended target

(the punch needle embroidery) in the conversion. ThreadPlotter uses the following

conversion pipeline.

1. ThreadPlotter loads an image in the format of JPG or PNG, then adjusts the

number of colors in the image. I experimented with multiple color-reducing

algorithms, including quantization (Gray and Neuhoff (1998)), k-means clus-

tering (Likas et al. (2003)), and grouping colors that have short Euclidean

distances. All three methods produce usable results.

2. ThreadPlotter groups pixels into squares whose width and height equal to the

segment length. This process adjusts the unit pixel size to be equal to the

segment length. At the end of this step, I obtain a copy of the image that has

a limited palette and a specific Pixels Per Inch (PPI) controlled by the segment

length. At the center of each adjusted pixel, ThreadPlotter produces a punch

point using a random color selected from this group of original pixels.

3. ThreadPlotter then links punch points that share the same color using trails.

The trail generating process is identical to that within the SVG mode.

Using this conversion module, users can generate punch needle embroidery pat-

128

Figure 4.8: ThreadPlotter processes raster images into plotter-compatible
embroidery patterns. Original artwork by Shiqing He (He (2015)).

terns directly from raster images (e.g., paintings or photos). Figure 4.8 exhibits a

finished punch needle embroidery piece designed and fabricated using this approach.

Figure 4.9: By assigning specific loop lengths to different colors, users can create
patterns for 3D punch needle embroidery.

In addition to the basic pipeline described above, I built a few additional exten-

sions to the vector production system. For example, ThreadPlotter can treat colors

within the images as indicators for loop size. For example, it will map punch points

with darker colors into longer loops. By adjusting the loop size dynamically, users

129

can produce 3D embroideries with one color of thread. Figure 4.9 provides a 3D

example fabricated with one color.

Figure 4.10: Features within images might be blurry if the embroidery size is too
small. The effect is especially observable when using a long loop length (in 2, loop
length = 6mm). Besides enlarging the embroidery size, users can reduce this effect
by using a shorter loop length (in 3, loop length = 2.4mm), or assigning different
loop lengths to specific colors (4). Original artwork courtesy of P Mei (Mei (2019)).

While I can convert fine details in the raster image (e.g., a thin line) to a vector,

this detail may not correctly render when embroidered. Punch needle-produced

loops can intertwine, making colors appear blended, and the image appears blurry.

In manual punch needle embroidery, practitioners address this using sharp tools to

separate these intertwine loops after all stitches are made (Oxford (2016)). End-users

can certainly do this additional step after the machine fabrication process.

In building ThreadPlotter , I have identified three alternative approaches to sup-

port printing detailed images without manual intervention (Figure 4.10). The most

straightforward and effective approach is to scale up the embroidery size. Scaling

up will increase the “resolution” of the finished piece, therefore making the finished

piece more recognizable. Users can also consider using a short loop length. When

130

the length of the loop is short, loops are less likely to blend. However, the short-

est loops should still be longer than the trail loops. Otherwise, punch loops cannot

hide trail points completely. Finally, users can assign individual colors with different

loop sizes. Figure 4.10 shows an example fabricated with this approach. The piece

with mixed loop length better preserves the image’s original feature compared to the

untreated design.

4.4.4 Thread Color Matching

Selecting the closest thread color might be a tedious task when plotting a mul-

ticolor embroidery, especially if there are multiple similar colors within the palette.

The last function of ThreadPlotter is to provide a simple thread color matching tool.

In my experiments, I gathered embroidery threads in more than sixty colors. I col-

lected the RGB value of each thread from the official color chart provided by the

manufacturer (other threads can be added). ThreadPlotter finds the closest color

match to the color in the embroidery pattern by calculating the euclidean distance

between two colors.

Because the number of shades I can gather is limited, there are cases where

my closest match is still drastically different from the desired color. In these cases, I

provide an experimental feature that suggests potential threads that “blend” into the

desired color. The blending is possible because I can use three strands of embroidery

thread in different colors for my punch needle. When looking from a distance, the

distinct colors of these three strands of threads will appear as if they blend into one

color. Because physical color blending is very different from digital color blending, the

131

blending suggestions I generated might not always function correctly in the physical

world. Nevertheless, users can use these thread color suggestions as starting points

for finding the ideal thread color.

I briefly summarize the overall experience of using ThreadPlotter . When end-

users input an image (vector or raster), ThreadPlotter processes the image into

plotter-compatible punch points and trail points. For every color within the image,

ThreadPlotter generates an SVG file and a Python script. The SVG file contains

location information of punch points and trail points. The Python script contains

both the location information and machine settings, such as needle raise speed and

needle position along the z–axis. Additionally, ThreadPlotter produces another SVG

file that displays the suggested color of the thread to use. Using this toolkit, I can

create a wide range of artifacts.

4.5 Discussion

Adapting an X-Y plotter – a tool intended for one type of “fabrication” – to an

entirely new form, presented many challenges. While I could address a number of

these challenges in my hardware and software implementation, my default settings

might not entirely account for the complex interactions between material . A mis-

take can unravel the entire image or break the material (see Figure 4.11 for some

examples). I reflect on these not only because they may be useful to those using

my approach but also to describe the challenges of adapting manual techniques and

expertise–specifically around troubleshooting–to the automated infrastructure.

Many specific challenges are due to the lack of human monitoring. Automation

132

Figure 4.11: Several failed examples that demonstrate common issues.

invites one to “set-it-and-forget-it,” walking away from the machine as it works. As

a specific example, I found that it is necessary to be cautious when fabricating long

stitches with short loop length because they are more likely to fall out of the fabric

even when produced at a low speed. When loops fall out of the fabric, the extra

thread hanging on the stitch side can also trigger additional tangling or even seize

the moving needle.

Practitioners of manual punch needle embroidery can react, troubleshoot, and

correct problems dynamically, which is only possible due to their engagement with

the process and their extensive experiences with the craft. What was notable to us

in building this platform were the places where these experiences could or could not

help in the automated scenario.

A specific example of this relates to difficulties for the needle to pierce the fabric–

a rare issue in the manual form. Reasons for this may include the obvious: a dull

needle (which can be resolved with sharpening). The needle piercing problem also

133

includes subtle differences in how the fabric is stretched. While insufficient or uneven

stretching does not present a problem for a person embroidering, this is critical for a

successful automated plot. Trouble piercing the fabric can also be resolved with more

“elbow grease” – simply applying more force (or, equivalently, weight). However,

simply adding weight to the needle will not work if the weight exceeds AxiDraw’s

lifting limit.

Another issue relates to the specific problem of converting a device that fabricates

one material to another. There was not always a direct translation from my under-

standing and experience with the X-Y plotter to the X-Y needle punch machine.

For example, the AxiDraw is sufficiently heavy and robust to work with light pens.

Pens tend not to “drift” up or down. While needle-punch is in some ways delicate, it

invariably pushes the limits of the plotter and required adaptation. For example, I

found that securing the AxiDraw down using clamps was necessary to avoid drift or

shake. I also found that some plotters’ arms bend when they are extended, especially

when they are holding a heavy-weight needle. In this case, it is helpful to angle the

gripper frame slightly to create a slanted surface parallel to the plotter arm.

In some cases, I also made trade-offs in what I supported in printing. For exam-

ple, in manual embroidery, the needle should be as close to the fabric as possible.

However, if a needle is caught under the fabric and it is not resolved immediately, the

needle will likely tear the fabric because the plotter cannot detect this issue. There-

fore, I lift my needle 3mm above the fabric. The extra distance reduces the chance

of getting caught but also reduces the maximum loop length that I can fabricate.

134

4.5.1 Future Directions

Having an accessible punch needle embroidery fabricator can encourage innovative

applications of this unique and versatile craft. The ability to fabricate customized

textiles at a low cost gives practitioners the freedom to explore and experiment.

Besides producing aesthetically pleasing textile art, this technique and the produced

artifacts have the potential to bring a unique touch to wearable technologies and the

fabrication of soft IoT devices. For example, I can imagine custom-made bathroom

rugs that embed health-measuring sensors. I am also excited about the potential of

using this textile as a material for building soft computing devices (e.g., Berzowska

and Bromley (2007)). In the future, I hope to expand this study by collecting

additional user feedback and analyzing the performance of the ThreadPlotter on

other platforms such as DIY X-Y plotters. Last but not least, I hope this work spurs

conversations in designing accessible craft fabricators.

4.6 Conclusion

This chapter demonstrated how a repurposed low-cost X-Y plotter could produce

delicate punch needle embroideries in a precise and efficient fashion. I examined

the opportunities and challenges of this novel fabrication method. Hoping to make

this fabricator economical and accessible, I used easy-to-source material for build-

ing physical accessories and imposed minimal change to the plotter (ensuring that

it can still be used for its original purpose). I presented ThreadPlotter , a toolkit

that contains all physical and digital tools needed for the fabrication process. It is

135

publicly available at http://eyesofpanda.com/projects/thread_plotter. I hope

this work could support unconventional applications of this versatile fiber-based craft

and spurs discussion on designing accessible craft fabricators. Because plotter-based

punch needle embroidery is a novel fabrication method, the GCDT developed for this

craft contains a hardware part and a software part. Through this example, I demon-

strate that GCDT designers should analyze potential fabrication methods associated

with the craft to support users’ fabrication processes.

136

http://eyesofpanda.com/projects/thread_plotter

CHAPTER V

Reflection

In this concluding chapter, I revisit the GCDT framework. The development

of the GCDT framework is motivated by current challenges associated with exist-

ing design-aid systems. It is a promising way to develop design-aid software for

craft disciplines that have certain characteristics (see Section 1.3.3 for a detailed

discussion). By designing, developing, and testing three GCDTs in different craft

domains, I demonstrate GCDTs’ unique characteristics and how they support cre-

ative activities. I discuss various project-specific insights in Chapter III, Chapter II,

and Chapter IV. In this chapter, I discuss overall findings and insights for developing

GCDTs. I also present challenges and future directions of the GCDT framework.

5.1 Development Pipeline of GCDTs

Through developing three distinct GCDTs, I discussed opportunities and chal-

lenges associated with these individual GCDTs in the previous chapters. This sec-

tion provides a summary of generalized insights associated with GCDTs development

137

Figure 5.1: The Development Pipeline of GCDTs

processes. Overall, GCDTs are developed in three stages. Figure 5.1 summarizes

this development process. To start, system designers need to collect and organize

domain-specific information. Then, designers need to organize the information into

a set of grammar, which constructs the language for describing and making a design.

The refining process is often the most challenging step at this stage. Overall, system

designers should focus on extracting core information before expanding the grammar

with detailed rules and techniques. Chapter II presents an example for this insight.

The second stage of the development process is system implementation. System

developers can use this opportunity to test and refine the grammar because they are

likely to encounter discrepancies and inconsistencies within the initial implementa-

tion. Also, developers might discover the need for new content in grammar during

this stage.

In the last stage of the GCDT development process, developers test their GCDTs.

In all three examples presented in this dissertation, GCDTs are tested through ex-

amples. By showcasing various artifacts produced using GCDTs, I demonstrate the

potential sets of design tasks these GCDTs can support. Also, it is essential to pro-

138

duce material testing reports and troubleshooting guides at this stage (see Chapter

III for a detailed discussion).

5.2 Future Directions

Grammar Extraction

Collecting and organizing domain-specific information is undoubtedly the most

critical challenge across all three projects. As discussed in Section 1.4, domain-

specific knowledge for some craft disciplines is likely to be fuzzy, unorganized, and

limited. For instance, it’s possible to find textbook-like material for the art of punch

needle embroidery. However, it is much more challenging to locate information for

multilayer sculpture, partially because multilayer sculpture is used across many types

of applications, such as installation art, lightbox design, and card design. In these

cases, system designers might need to collect information in related craft (e.g., find

paper cut information) or extract information by analyzing artifacts.

Besides these difficulties associated with collecting domain information, struc-

turing domain information into sets of grammar can also be challenging. In this

dissertation, I primarily focus on identifying types of information that system de-

signers should collect. There are still many open questions regarding the extraction

and refining process. Existing studies in software development and API design offer

a potential collection of strategies. For example, Vernon (2013) discuss a pipeline

for designing systems that involve domain experts. Studies like Bloch (2006); Sty-

los and Myers (2007); Henning (2009) also offer general suggestions for designing

API. Currently, I take an iterative approach to organize the grammar. Chapter II

139

describes this process. In the future, I hope to examine the extraction processes and

provide in-depth analysis for these processes.

Machine, Art, and Culture

When developing technology related to art and craft, it is critical to discuss the

potential impact of these technologies. Mass production certainly changed the de-

signing and making paradigm of many craft domains. For example, Fisher and Botti-

cello (2018) discusses the production of machine-made lace and how craft knowledge

changes because of machines. Eglash et al. (2020) discusses how mass production

could damage artisanal traditions.

I believe that GCDTs should support new ways of designing and making instead

of replacing manual processes. It is essential to acknowledge that machine-made

artifacts can never replace handmade craft artifacts. When developing new craft

technology, developers should examine how the technology broadens the design space

of a craft domain rather than substitute traditional practices. For example, the

development of digital cameras should not be advertised as replacements for manual

cameras. Instead, digital cameras are offering new ways of making images. In this

case, it is also crucial to preserve manual photography practices.

Besides examining the differences between machine-made artifacts and handmade

artifacts, developers should also facilitate human-machine collaboration. Studies

such as Eglash et al. (2020); Devendorf (2016) and Albaugh et al. (2020) offer insights

over human-machine collaboration in craft and art-making. The central takeaway is

to offer artists choices. Devendorf (2016) outlines relationship:

“Supporting a variety of practices in making is not a question of building

140

better tools or finding the ‘killer’ tool that subsumes all the others, but

creating multiple pathways that honor the complexity, nonlinearity, and

individuality of creative practices.”

In the future, I hope to expand this study by examining the impact of GCDTs

in low-resource art and craft domains. I refer to low-resource art and craft domains

as craft disciplines with a small practitioner base and limited technological support.

Because of the grammar-driven structure, GCDTs can potentially preserve craft

knowledge. Particularly, I plan to adopt research methods similar to the ethnocom-

puting research process outlined in Eglash et al. (2006), which describes a pipeline

for building Culturally Situated Design Tools (CSDTs). While craft domains ana-

lyzed in this dissertation do not have strong associations with specific culture and

practitioner groups, I hope to explore the potential cultural impact of GCDTs in the

future.

5.3 Conclusion

In this dissertation, I introduce Grammar-driven Craft Design Tools (GCDTs),

which explicitly embed and utilize craft domain knowledge as their primary mech-

anisms and interfaces. Motivated by common challenges associated with computer-

aided craft design tools, the GCDT framework bridge the gap between domain knowl-

edge and design tool knowledge.

To provide an overview of how GCDTs can help artists find their creative ex-

pressions, I discuss three GCDTs developed in distinct craft domains. InfiniteLayer

assists the design of multilayer sculpture by offering a set of grammar for describing

141

multilayer structures. MarkMakerSquare enables the creation of customized mark-

making tools such as brushes and stamps using various materials. Lastly, Thread-

Plotter combines hardware and software innovation to support plotter-made punch

needle embroidery design and fabrication. I hope the GCDT framework will be-

come a useful direction for building design-aid tools and supporting diverse artistic

expressions in different craft domains.

142

BIBLIOGRAPHY

143

BIBLIOGRAPHY

Adamson, G. (2010), The craft reader, english ed. ed., Berg Publishers.

Aish, R., and R. Woodbury (2005), Multi-level interaction in parametric design, in
International symposium on smart graphics, pp. 151–162, Springer.

Albaugh, L., S. E. Hudson, L. Yao, and L. Devendorf (2020), Investigating un-
derdetermination through interactive computational handweaving, in Proceed-
ings of the 2020 ACM Designing Interactive Systems Conference, DIS ’20, p.
1033–1046, Association for Computing Machinery, New York, NY, USA, doi:
10.1145/3357236.3395538.

Ayres, J. (2001), Monotype, Watson-Guptill.

Baxter, W., and N. Govindaraju (2010), Simple data-driven modeling of brushes, in
Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, I3D ’10, p. 135–142, Association for Computing Machinery, New York,
NY, USA, doi: 10.1145/1730804.1730826.

Berzowska, J., and M. Bromley (2007), Soft computation through conductive textiles,
in Proceedings of the International Foundation of Fashion Technology Institutes
Conference, pp. 12–15.

Birmingham, D. (2010), Pop-up Design and Paper Mechanics: How to Make Folding
Paper Sculpture, Guild of Master Craftsman.

Bloch, J. (2006), How to design a good api and why it matters, in Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, pp. 506–507.

Bostock, M., V. Ogievetsky, and J. Heer (2011), D3 data-driven documents, IEEE
transactions on visualization and computer graphics, 17 (12), 2301–2309.

144

Bronson, J., P. Rheingans, and M. Olano (2008), Semi-automatic stencil creation
through error minimization, in Proceedings of the 6th international symposium on
Non-photorealistic animation and rendering, pp. 31–37.

Cannon, W. (1986), How to Cast Small Metal and Rubber Parts, McGraw-Hill Edu-
cation.

Chamberlin, R., and M. Corbet (2017), Beginner’s Guide to Goldwork, Search Press
Classics, Search Press, Limited.

Chiang, Y. (1973), Chinese calligraphy: An introduction to its aesthetic and tech-
nique, vol. 60, Harvard University Press.

Chu, N. S. ., and Chiew-Lan Tai (2002), An efficient brush model for physically-based
3d painting, in 10th Pacific Conference on Computer Graphics and Applications,
2002. Proceedings., pp. 413–421, doi: 10.1109/PCCGA.2002.1167885.

Chung, J. J. Y., S. He, and E. Adar (2021), The intersection of users, roles, interac-
tions, and technologies in creativity support tools, in Proceedings of the 2021 DIS
Conference on Designing Interactive Systems.

Clary, C. (2013), Necro-diddlitis movement #1, https://charlesclary.com/

boxes/, [Online; accessed 7-Feb-2021].

Cromwell, P. R. (2008), The distribution of knot types in celtic interlaced ornament,
Journal of Mathematics and the Arts, 2 (2), 61–68.

Devendorf, L. K. (2016), Strange and unstable fabrication.

Dickinson, H. (1943), Besoms, brooms, brushes and pencils: The handicraft period,
Transactions of the Newcomen Society, 24 (1), 99–108.

DiVerdi, S. (2013), A brush stroke synthesis toolbox, in Image and Video-Based
Artistic Stylisation, pp. 23–44, Springer.

Eglash, R., A. Bennett, C. O’donnell, S. Jennings, and M. Cintorino (2006), Cultur-
ally situated design tools: Ethnocomputing from field site to classroom, American
anthropologist, 108 (2), 347–362.

Eglash, R., L. Robert, A. Bennett, K. P. Robinson, M. Lachney, and W. Babbitt
(2020), Automation for the artisanal economy: Enhancing the economic and en-
vironmental sustainability of crafting professions with human–machine collabora-
tion, AI & SOCIETY, 35 (3), 595–609.

145

https://charlesclary.com/boxes/
https://charlesclary.com/boxes/

Fenghui Yao, and Guifeng Shao (2005), Painting brush control techniques in chinese
painting robot, in ROMAN 2005. IEEE International Workshop on Robot and
Human Interactive Communication, 2005., pp. 462–467, doi: 10.1109/ROMAN.
2005.1513822.

Fisher, T., and J. Botticello (2018), Machine-made lace, the spaces of skilled practices
and the paradoxes of contemporary craft production, cultural geographies, 25 (1),
49–69.

Frankjær, R., and P. Dalsgaard (2018), Understanding craft-based inquiry in hci, in
Proceedings of the 2018 Designing Interactive Systems Conference, pp. 473–484.

Frich, J., M. Mose Biskjaer, and P. Dalsgaard (2018), Twenty years of creativity
research in human-computer interaction: Current state and future directions, in
Proceedings of the 2018 Designing Interactive Systems Conference, pp. 1235–1257.

Frich, J., L. MacDonald Vermeulen, C. Remy, M. M. Biskjaer, and P. Dalsgaard
(2019), Mapping the landscape of creativity support tools in hci, in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–18.

Gamble, J. (2001), Modelling the invisible: The pedagogy of craft apprenticeship,
Studies in continuing education, 23 (2), 185–200.

Gaver, W. (2012), What should we expect from research through design?, in Pro-
ceedings of the SIGCHI conference on human factors in computing systems, pp.
937–946.

Gray, R. M., and D. L. Neuhoff (1998), Quantization, IEEE transactions on infor-
mation theory, 44 (6), 2325–2383.

Green, T. R. G., and M. Petre (1996), Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework, Journal of Visual Languages
& Computing, 7 (2), 131–174.

Griffiths, A. (1996), Prints and Printmaking: An Introduction to the History and
Techniques, University of California Press.

Grishkoff, G. (2020), Mix media brushes & electrolux vacuum brushes, https://

www.glenngrishkoff.com/, [Online; accessed 7-April-2021].

Guo, L., J. Peterson, W. Qureshi, A. Kalantar Mehrjerdi, M. Skrifvars, and L. Berglin
(2011), Knitted wearable stretch sensor for breathing monitoring application, in
Ambience’11, Bor̊as, Sweden, 2011.

146

https://www.glenngrishkoff.com/
https://www.glenngrishkoff.com/

Hamdan, N. A.-h., S. Voelker, and J. Borchers (2018), Sketch&stitch: Interactive
embroidery for e-textiles, in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pp. 1–13.

Hanington, B., and B. Martin (2012), Universal methods of design: 100 ways to
research complex problems, develop innovative ideas, and design effective solutions,
Rockport Publishers.

He, S. (2015), Fruit study, watercolor painting. Artist’s personal collection.

He, S., and E. Adar (2020), Plotting with thread: Fabricating delicate punch needle
embroidery with x-y plotters, in Proceedings of the 2020 ACM Designing Inter-
active Systems Conference, DIS ’20, p. 1047–1057, Association for Computing
Machinery, New York, NY, USA, doi: 10.1145/3357236.3395540.

Heller, F., J. Thar, D. Lewandowski, M. Hartmann, P. Schoonbrood, S. Stönner,
S. Voelker, and J. Borchers (2018), Cutcad-an open-source tool to design 3d objects
in 2d, in Proceedings of the 2018 Designing Interactive Systems Conference, pp.
1135–1139.

Henning, M. (2009), Api design matters, Communications of the ACM, 52 (5), 46–56.

Higashi, T., and H. Kanai (2016), Instruction for paper-cutting: A system for learn-
ing experts’ skills, in Proceedings of the 2016 ACM International Conference on
Interactive Surfaces and Spaces, pp. 457–460.

Higashi, T., and H. Kanai (2019), Stylus knife: improving cutting skill in
paper-cutting by implementing pressure control, in Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pp. 714–721.

Hudson, S. E. (2014), Printing teddy bears: a technique for 3d printing of soft
interactive objects, in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 459–468.

Iarussi, E., W. Li, and A. Bousseau (2015a), Wrapit: Computer-assisted crafting of
wire wrapped jewelry, ACM Trans. Graph., 34 (6), doi: 10.1145/2816795.2818118.

Iarussi, E., W. Li, and A. Bousseau (2015b), Wrapit: Computer-assisted crafting of
wire wrapped jewelry, ACM Trans. Graph., 34 (6), doi: 10.1145/2816795.2818118.

Ibbini, J., and S. Noyer (2021), Symbio vessels, http://www.ibbini.com/vessels,
[Online; accessed 7-Feb-2021].

147

http://www.ibbini.com/vessels

Igarashi, Y. (2011), Deco: A design editor for rhinestone decorations, IEEE Com-
puter Graphics and Applications, 31 (5), 90–94.

Igarashi, Y. (2019), Bandweavy: interactive modeling for craft band design, IEEE
computer graphics and applications, 39 (5), 96–103.

Igarashi, Y., and T. Igarashi (2010), Holly: A drawing editor for designing stencils,
IEEE Computer Graphics and Applications, 30 (4), 8–14.

Igarashi, Y., T. Igarashi, and H. Suzuki (2008), Knitting a 3d model, in Computer
Graphics Forum, vol. 27, pp. 1737–1743, Wiley Online Library.

Igarashi, Y., T. Igarashi, and H. Suzuki (2009), Interactive cover design considering
physical constraints, in Computer Graphics Forum, vol. 28, pp. 1965–1973, Wiley
Online Library.

Igarashi, Y., T. Igarashi, and J. Mitani (2012), Beady: interactive beadwork design
and construction, ACM Transactions on Graphics (TOG), 31 (4), 49.

Igarashi, Y., T. Hiyama, and K. Arakawa (2016a), An interactive system for original
necklace design, in ACM SIGGRAPH 2016 Posters, pp. 1–2.

Igarashi, Y., T. Igarashi, and J. Mitani (2016b), Computational design of iris folding
patterns, Computational Visual Media, 2 (4), 321–327.

Irvine, V., and F. Ruskey (2014), Developing a mathematical model for bobbin lace,
Journal of Mathematics and the Arts, 8 (3-4), 95–110.

Jackson, D., J. Jackson, and R. Beer (2006), Tibetan Thangka Painting: Methods &
Materials, Snow Lion Publications.

Jacobs, J., S. Gogia, R. Mundefinedch, and J. R. Brandt (2017), Supporting ex-
pressive procedural art creation through direct manipulation, in Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17,
p. 6330–6341, Association for Computing Machinery, New York, NY, USA, doi:
10.1145/3025453.3025927.

Jacobs, J., J. Brandt, R. Mech, and M. Resnick (2018), Extending manual drawing
practices with artist-centric programming tools, in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pp. 1–13.

148

Jacobs, J. J. M. (2013), Algorithmic craft: the synthesis of computational design,
digital fabrication, and hand craft, Ph.D. thesis, Massachusetts Institute of Tech-
nology.

Jacobs, J. J. M. (2017), Dynamic drawing: Broadening practice and participation in
procedural art, Ph.D. thesis, Massachusetts Institute of Technology.

Jain, A., C. Chen, T. Thormählen, D. Metaxas, and H.-P. Seidel (2015), Multi-layer
stencil creation from images, Comput. Graph., 48 (C), 11–22, doi: 10.1016/j.cag.
2015.02.003.

Jeng-sheng Yeh, Ting-yu Lien, and Ming Ouhyoung (2002), On the effects of haptic
display in brush and ink simulation for chinese painting and calligraphy, in 10th
Pacific Conference on Computer Graphics and Applications, 2002. Proceedings.,
pp. 439–441, doi: 10.1109/PCCGA.2002.1167892.

Jung, S., Y.-S. Choi, and J.-S. Kim (2020), Stencil-based 3d facial relief creation
from rgbd images for 3d printing, ETRI Journal, 42 (2), 272–281.

Kirby, R. (1950), Brush-making fibres, Economic Botany, 4 (3), 243–252.

Kono, T., and K. Watanabe (2017), Filum: A sewing technique to alter textile
shapes, in Adjunct Publication of the 30th Annual ACM Symposium on User In-
terface Software and Technology, pp. 39–41.

Kryven, M., and E. Fourquet (2013), Generating knitting patterns from a sketch: a
csp approach, in Proceedings of the Symposium on Computational Aesthetics, pp.
53–61, ACM.

Kubo, S. (2009), Kami no japonisumu Kirié, Tsuchiya Shoten.

Kumar, V. (2012), 101 design methods: A structured approach for driving innovation
in your organization, John Wiley & Sons.

Leaf, J., R. Wu, E. Schweickart, D. L. James, and S. Marschner (2018), Interactive
design of periodic yarn-level cloth patterns, in SIGGRAPH Asia 2018 Technical
Papers, p. 202, ACM.

Leaf, R. (1984), Etching, engraving, and other intaglio printmaking techniques, Dover
Publications.

Levin, G., and T. Brain (2021), Code as Creative Medium: A Handbook for Compu-
tational Art and Design, MIT Press.

149

Levin, G., L. Huang, and T. Mustakos (2020), Pembroider, https://github.com/
CreativeInquiry/PEmbroider, [Online; accessed 7-Feb-2021].

Li, J., J. Brandt, R. Mech, M. Agrawala, and J. Jacobs (2020), Supporting visual
artists in programming through direct inspection and control of program execu-
tion, in Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–12.

Li, Y., J. Yu, K.-l. Ma, and J. Shi (2007), 3d paper-cut modeling and animation,
Computer Animation and Virtual Worlds, 18 (4-5), 395–403.

Likas, A., N. Vlassis, and J. J. Verbeek (2003), The global k-means clustering algo-
rithm, Pattern recognition, 36 (2), 451–461.

Liu, E., L. Liu, J. Wang, Q. Jin, C. Yao, and F. Ying (2020), Int-papercut: An
intelligent pattern generation with papercut style based on convolutional neural
network, in 2020 15th IEEE Conference on Industrial Electronics and Applications
(ICIEA), pp. 59–67, IEEE.

Liu, L., Y. Chen, P. Wang, Y. Liu, C. Zhang, X. Li, C. Yao, and F. Ying (2018),
Papercut: Digital fabrication and design for paper cutting, in Extended Abstracts
of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–6.

Liu, Y., J. Hays, Y.-Q. Xu, and H.-Y. Shum (2005), Digital papercutting, in ACM
SIGGRAPH 2005 Sketches, pp. 99–es.

MacKenzie, G. (2010), The watercolorist’s essential notebook, North Light Books.

Mahato, K. K., P. C. Kalita, and A. K. Das (2019), Design and development of af-
fordable tool for metal handicraft, in Research into Design for a Connected World,
pp. 357–367, Springer.

Malafouris, L. (2021), Mark making and human becoming, Journal of Archaeological
Method and Theory, 28 (1), 95–119.

Markande, S. G., and E. A. Matsumoto (2020), Knotty knits are tangles on tori,
arXiv preprint arXiv:2002.01497.

McCann, J., and D. Bryson (2009), Smart clothes and wearable technology, Elsevier.

McCarthy, L., C. Reas, and B. Fry (2015), Getting started with P5. js: Making
interactive graphics in JavaScript and processing, Maker Media, Inc.

150

https://github.com/CreativeInquiry/PEmbroider
https://github.com/CreativeInquiry/PEmbroider

McCreight, T. (1994), Practical Casting: A Studio Reference, Jewelry Crafts, Bryn-
morgen Press.

McKinney, B. (2018), ESTERBROOK a Dip Pen Legacy, White Apple Multimedia.

Mei, P. (2019), Daily life, digital painting. Artist’s personal collection.

Meng, M., M. Zhao, and S.-C. Zhu (2010), Artistic paper-cut of human portraits, in
Proceedings of the 18th ACM international conference on Multimedia, pp. 931–934.

Mikkonen, J., and C. Fyhn (2020), Storycoding - Programming Physical Artefacts
for Research Through Design, p. 441–455, Association for Computing Machinery,
New York, NY, USA.

Mota, C. (2011), The rise of personal fabrication, in Proceedings of the 8th ACM
conference on Creativity and cognition, pp. 279–288.

Mueller, S., N. Huebel, M. Waibel, and R. D’Andrea (2013), Robotic calligraphy —
learning how to write single strokes of chinese and japanese characters, in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1734–
1739, doi: 10.1109/IROS.2013.6696583.

Mueller, S., B. Kruck, and P. Baudisch (2013), LaserOrigami: Laser-Cutting 3D
Objects, p. 2585–2592, Association for Computing Machinery, New York, NY,
USA.

Munzner, T. (2014), Visualization analysis and design, CRC press.

Nabil, S., J. Kučera, N. Karastathi, D. S. Kirk, and P. Wright (2019), Seamless
seams: Crafting techniques for embedding fabrics with interactive actuation, in
Proceedings of the 2019 on Designing Interactive Systems Conference, pp. 987–
999.

Neddo, N. (2015), The Organic Artist: Make Your Own Paint, Paper, Pigments,
Prints and More from Nature, Quarry Books.

Nitsche, M., and A. Weisling (2019), When is it not craft? materiality and me-
diation when craft and computing meet, in Proceedings of the Thirteenth Inter-
national Conference on Tangible, Embedded, and Embodied Interaction, TEI ’19,
p. 683–689, Association for Computing Machinery, New York, NY, USA, doi:
10.1145/3294109.3295651.

151

Nitsche, M., A. Quitmeyer, K. Farina, S. Zwaan, and H. Y. Nam (2014), Teaching
digital craft, in CHI ’14 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’14, p. 719–730, Association for Computing Machinery, New
York, NY, USA, doi: 10.1145/2559206.2578872.

Noel, V. A. (2015), The bailey-derek grammar: recording the craft of wire-bending
in the trinidad carnival, Leonardo, 48 (4), 357–365.

Oh, H., M. D. Gross, and M. Eisenberg (2015), Foldmecha: Design for linkage-based
paper toys, in Adjunct Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, UIST ’15 Adjunct, p. 91–92, Association for
Computing Machinery, New York, NY, USA, doi: 10.1145/2815585.2815734.

Oxford, A. (2016), Punch needle rug hooking: techniques and designs, Schiffer Pub-
lishing.

Paczkowski, P., J. Dorsey, H. Rushmeier, and M. H. Kim (2018), Papercraft3d:
paper-based 3d modeling and scene fabrication, IEEE transactions on visualization
and computer graphics, 25 (4), 1717–1731.

Rael, R., and V. San Fratello (2018), Printing architecture: Innovative recipes for
3D printing, Chronicle Books.

Raji, R. K., X. Miao, S. Zhang, Y. Li, A. Wan, and A. Boakye (2019), Knitted
piezoresistive strain sensor performance, impact of conductive area and profile
design, Journal of Industrial Textiles, p. 1528083719837732.

Reas, C., and B. Fry (2007), Processing: a programming handbook for visual designers
and artists, Mit Press.

Remy, C., L. MacDonald Vermeulen, J. Frich, M. M. Biskjaer, and P. Dalsgaard
(2020), Evaluating creativity support tools in hci research, in Proceedings of the
2020 ACM Designing Interactive Systems Conference, pp. 457–476.

Rosner, D. K., and K. Ryokai (2009), Reflections on craft: Probing the creative
process of everyday knitters, in Proceedings of the Seventh ACM Conference on
Creativity and Cognition, C&C ’09, p. 195–204, Association for Computing Ma-
chinery, New York, NY, USA, doi: 10.1145/1640233.1640264.

Ross, B. (2017), Bob Ross: The Joy of Painting, Universe Publishing.

152

Ryan, R., and N. Avella (2011), Paper Cutting Book: Contemporary Artists, Timeless
Craft, Chronicle Books.

Satyanarayan, A., D. Moritz, K. Wongsuphasawat, and J. Heer (2016), Vega-lite: A
grammar of interactive graphics, IEEE transactions on visualization and computer
graphics, 23 (1), 341–350.

Scalera, L., S. Seriani, A. Gasparetto, and P. Gallina (2019), Watercolour robotic
painting: a novel automatic system for artistic rendering, Journal of Intelligent &
Robotic Systems, 95 (3-4), 871–886.

Schama, G. (2019), Autophagocytosis, https://www.gabrielschama.com/

2018-2019/2019/4/22/autophagocytosis, [Online; accessed 7-Feb-2021].

Schoning, J., Y. Rogers, and A. Kruger (2012), Digitally enhanced food, IEEE Per-
vasive Computing, 11 (3), 4–6.

Shiner, L. (2012), “blurred boundaries”? rethinking the concept of craft and its
relation to art and design, Philosophy Compass, 7 (4), 230–244.

Skouras, M., S. Coros, E. Grinspun, and B. Thomaszewski (2015), Interactive surface
design with interlocking elements, ACM Transactions on Graphics (TOG), 34 (6),
224.

Standley, E. (2020), Llull, http://www.eric-standley.com/#/llull/, [Online; ac-
cessed 7-Feb-2021].

Stewart, M. (2009), Punchneedle The Complete Guide, Penguin.

Stewart, M. (2013), Easy, elegant punchneedle, Stackpole Books.

Stylos, J., and B. Myers (2007), Mapping the space of api design decisions, in IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007),
pp. 50–60, IEEE.

Tanenbaum, J. G., A. M. Williams, A. Desjardins, and K. Tanenbaum (2013), De-
mocratizing technology: pleasure, utility and expressiveness in diy and maker
practice, in Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, pp. 2603–2612.

Tomsky, M. (2019), Fox and hare earrings - woodland collection, https://www.

martintomsky.com/woodland-collection/ujgd76ik3gsq49t00kr6zw0sqo4xrz,
[Online; accessed 7-Feb-2021].

153

https://www.gabrielschama.com/2018-2019/2019/4/22/autophagocytosis
https://www.gabrielschama.com/2018-2019/2019/4/22/autophagocytosis
http://www.eric-standley.com/#/llull/
https://www.martintomsky.com/woodland-collection/ujgd76ik3gsq49t00kr6zw0sqo4xrz
https://www.martintomsky.com/woodland-collection/ujgd76ik3gsq49t00kr6zw0sqo4xrz

Tomsky, M. (2020), Haunted house, https://www.martintomsky.com/

fantastical/p40bqt4y7mjdcfo8ujuwps2ab0rwnk, [Online; accessed 7-Feb-
2021].

Torres, C., W. Li, and E. Paulos (2016), Proxyprint: Supporting crafting practice
through physical computational proxies, in Proceedings of the 2016 ACM Confer-
ence on Designing Interactive Systems, pp. 158–169, ACM.

Tsolis, A., W. G. Whittow, A. A. Alexandridis, and J. Vardaxoglou (2014), Embroi-
dery and related manufacturing techniques for wearable antennas: challenges and
opportunities, Electronics, 3 (2), 314–338.

Tung, F.-W. (2012), Weaving with rush: Exploring craft-design collaborations in
revitalizing a local craft, International Journal of Design, 6 (3).

Vantours, M. (2019), Spirales, https://maudvantours.com/portfolio-item/

spirales/, [Online; accessed 7-Feb-2021].

Vantours, M. (2020), Hetch x formica, https://maudvantours.com/

portfolio-item/hetch-x-formica/, [Online; accessed 7-Feb-2021].

Vernon, V. (2013), Implementing domain-driven design, Addison-Wesley.

Wax, C. (1996), The mezzotint: history and technique, H.N. Abrams.

Wilkinson, L. (2012), The grammar of graphics, in Handbook of Computational
Statistics, pp. 375–414, Springer.

Willis, S. (2018), The maker revolution, Computer, 51 (3), 62–65.

Winters, E. (2014), Mastering copperplate calligraphy: a step-by-step manual, Dover
Publications.

Wu, K., X. Gao, Z. Ferguson, D. Panozzo, and C. Yuksel (2018), Stitch meshing,
ACM Transactions on Graphics (TOG), 37 (4), 130.

Wu, K., H. Swan, and C. Yuksel (2019), Knittable stitch meshes, ACM Transactions
on Graphics (TOG), 38 (1), 1–13.

Xu, J., C. S. Kaplan, and X. Mi (2007), Computer-generated papercutting, in 15th
Pacific Conference on Computer Graphics and Applications (PG’07), pp. 343–350,
IEEE.

154

https://www.martintomsky.com/fantastical/p40bqt4y7mjdcfo8ujuwps2ab0rwnk
https://www.martintomsky.com/fantastical/p40bqt4y7mjdcfo8ujuwps2ab0rwnk
https://maudvantours.com/portfolio-item/spirales/
https://maudvantours.com/portfolio-item/spirales/
https://maudvantours.com/portfolio-item/hetch-x-formica/
https://maudvantours.com/portfolio-item/hetch-x-formica/

Yang, J., S. He, and L. Lu (2019), Binary image carving for 3d printing, Computer-
Aided Design, 114, 191–201.

Zhang, M., Y. Igarashi, Y. Kanamori, and J. Mitani (2015), Designing mini block
artwork from colored mesh, in International Symposium on Smart Graphics, pp.
3–15, Springer.

Zheng, C., and M. Nitsche (2017), Combining practices in craft and design, in Pro-
ceedings of the Eleventh International Conference on Tangible, Embedded, and
Embodied Interaction, TEI ’17, p. 331–340, Association for Computing Machinery,
New York, NY, USA, doi: 10.1145/3024969.3024973.

155

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Overview
	Making Tools For Craft Designers
	Creative Processes that Produce Physical Artifacts
	Design-Aid Tools for Art & Craft
	Categorizing Craft Design-Aid Tools Through Three Dimensions
	Craft Research in HCI

	Challenges in Art & Craft Design-Aid Systems

	Grammar-Driven Craft Design Tools
	Primary Characteristics
	Secondary Characteristics
	Suitable Craft Domains

	Domain Knowledge and Grammar of Craft
	Craft Domain Knowledge
	Turning Domain Knowledge into Grammar

	Building GCDTs

	Multilayer Sculpture Design
	Introduction
	Related Work
	Multilayer Sculpture and Related Art
	Design-Aid Tools for Multilayer Sculpture and Related Craft
	Fabrication and Procedural Generation

	Design Multilayer Sculptures with InfiniteLayers
	Creation Workflow
	Creating and Manipulating Stencils
	Evaluation
	Fulfilling Objectives
	Cognitive Support
	System Limitations

	Discussion
	Extracting and Refining Domain-specific Knowledge
	 Supporting the Design and Fabrication of Physical Art & Craft with a Programming-Based Toolkit.
	Future Directions

	Conclusion

	Creative Mark-Making Tool Design
	Introduction
	Related Work
	Mark-Making Tools
	Making Mark-making Tools
	Digitizing Mark-Making Tools

	Design Space
	Solidness of the Tip Section
	Tip Angle
	Shape
	Base Size
	Length
	Material

	Designing and Fabricating Tools
	Three Fabrication Modes
	The Creation Pipeline
	The MarkMakerSquare Interface

	Showcase
	Case 1: Fibonacci Pattern
	Case 2: Keyhole Pattern
	Case 3: Flower Pattern
	Case 4: Six Circles
	Case 5: Importing Drawings

	Future Directions
	Conducting Tests in More Art-Making Scenarios
	Improving Interface by Gathering User Feedback
	Providing Digital Mark Simulation

	Discussion
	Conclusion

	Delicate Punch Needle Embroidery
	Introduction
	Related Work
	The Fabrication of Punch Needle Embroidery
	Repurposing Fabricators
	Applications of Punch Needle Embroidery

	Physical Setup
	Selecting the Right X-Y Plotter
	Fabric and Fabric Stretcher
	Thread and Thread Feeder
	Punch Needle

	Software Control and ThreadPlotter
	Determining Punch Points Locations
	Stitches, Loops, and Pen Speed
	Raster versus Vector Images
	Thread Color Matching

	Discussion
	Future Directions

	Conclusion

	Reflection
	Development Pipeline of GCDTs
	Future Directions
	Conclusion

	BIBLIOGRAPHY

