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PREFACE

Chapters 2-5 of this dissertation were each written as separate manuscripts. Given this, there may

be some repetition between them, particularly between Chapters 3 and 4.
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ABSTRACT

Lower-limb wearable robots, such as prostheses and exoskeletons, have the potential to funda-

mentally transform the mobility of millions of able-bodied and disabled individuals during work,

recreation, and/or rehabilitation. Researchers have developed high-performance robotic devices

that are lightweight and autonomous, yet we have not seen their widespread adoption as clinical or

commercial solutions. One major factor delaying the dissemination of this technology is that our

control of these devices remains limited, especially outside controlled laboratory settings. While

many adaptive control strategies have been proposed and tested for wearable robotic systems, it is

still an open question as to how to provide users with optimal assistance. This is a challenge be-

cause a clear definition of ‘optimal assistance’ has not yet been established, due to the various goals

of assistive devices and the complex interactions between robotic assistance and human physiol-

ogy. Furthermore, it has been difficult to move these systems outside the laboratory environment

due to constraints imposed by tethered hardware and sensing equipment, as well as the difficulty

associated with quantifying non-steady-state activities.

To address this challenge, the goal of the work presented in this dissertation is to further our

understanding of how to provide users with optimal assistance from robotic exoskeletons and pros-

theses outside the laboratory environment. The first theme of this dissertation is the translation of

experimental methods (e.g., human-in-the-loop optimization) and measurement tools outside the

laboratory environment. The second theme is the evaluation of context-specific objectives for the

optimization of wearable robotic devices (e.g., metabolic cost, user preference) in clinical and

research settings. This dissertation comprises four primary projects.

First, I evaluated the impact that changing the power setting of the BiOM commercial pow-

ered ankle prosthesis has on the metabolic cost of transport of individuals with transtibial am-

xiv



putation [74]. This work informs clinical tuning and prescription practices by revealing that, to

minimize their metabolic energy consumption, individuals require a higher power setting than

the setting chosen by the prosthetist to approximate biological ankle kinetics. Second, I investi-

gated an alternative method for estimating instantaneous metabolic cost using portable wearable

sensors. The goal of this project was to accurately estimate instantaneous metabolic cost with-

out relying on indirect calorimetry, and thus enable the use of human-in-the-loop optimization

algorithms outside the laboratory environment. I utilized linear regression algorithms to predict

instantaneous metabolic cost from physiological signals, and systematically compared a large set

of signals to determine which sensor signals contain the highest predictive ability, robust to un-

known subjects or tasks [75–77]. In the third project, I built upon this work and demonstrated that

including the derivatives of physiological signals in the linear regression algorithm could improve

both the speed and accuracy of instantaneous metabolic cost prediction from portable sensors [81].

Finally, I investigated user preference as an objective for the control of lower-limb robotic ex-

oskeletons [80]. In this work, I demonstrated that exoskeleton users can quickly and precisely

identify unique preferences in the characteristics of their ankle exoskeleton assistance in two di-

mensions simultaneously, and that preference changes with speed, exposure, and prior experience.

These results provide insight into how users interact with exoskeletons, and establish important

benchmarks for researchers, designers, and future consumers. Together, these four projects evalu-

ate the notion of optimality in the control of wearable robotic systems and lay the foundation for

translating optimization protocols outside the laboratory environment.

xv



CHAPTER 1

Introduction

1.1 Research Motivation

Bionic exoskeletons and prostheses have long-been anticipated as regular installments in our

daily lives [46,62]. For able-bodied individuals, lower-limb robotic exoskeletons have the potential

to increase strength or improve walking or running endurance by augmenting the wearer’s existing

neuromotor capability [151]. This type of exoskeleton may assist individuals while lifting heavy

objects or carrying heavy loads over long distances in settings such as warehouses, construction

sites, or military excursions [185]. For individuals with disabilities, lower-limb robotic prosthe-

ses and exoskeletons have the potential to make a large impact as medical devices. In the United

States in 2019, an estimated 18.6% of adults over the age of 18 reported difficulty walking or

climbing steps [122] due to conditions such as stroke, spinal cord injury, osteoarthritis, multiple

sclerosis, or limb loss, among others [108]. Many of these individuals (an estimated 6.8 million as

of 2000) reported using some sort of assistive device to help them with mobility [85]. However,

the vast majority of assistive devices prescribed today are mechanically passive and can not add

net positive work to the wearer during ambulation, which may still result in impaired mobility.

For example, compared to non-amputees, individuals with transtibial amputation wearing passive-

elastic prosthetic feet demonstrate higher kinematic asymmetry [150, 160, 183], expend 10–30%

more energy while walking [68, 179], and develop increased incidences of chronic pain and os-

teoarthritis [97,125]. Similarly, while mechanically-passive ankle-foot orthoses (AFOs) have been
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shown to improve the energetic and spatiotemporal parameters of gait in individuals with hemiple-

gia [49] and muskuloskeletal weakness [130], gait performance may still be limited due to the lack

of positive power generation from the device [11, 134, 147]. Alternatively, robotic lower-limb as-

sistive devices use actuators to replace the work from missing or weakened musculature. As such,

many individuals with mobility challenges could greatly benefit from the use powered lower-limb

assistive robots to supplement or restore lost limb functionality.

Lower-limb wearable robots, such as powered prostheses and exoskeletons, have the potential

to fundamentally transform the mobility of millions of able-bodied and disabled individuals during

work, recreation, and/or rehabilitation. While significant strides towards this goal have been made

over the last several decades, we have not yet seen the widespread adoption of these systems as

clinical or commercial solutions. The work presented in this dissertation advances the field by

proposing new tools for the design and evaluation of controllers for wearable robotic systems that

may be used outside the laboratory environment.

1.2 Background

1.2.1 Lower-Limb Wearable Robotic Hardware

Today, there is a small, yet growing, number of commercially-available robotic lower-limb

prostheses and exoskeletons. As of this writing, there are currently two commercially-available

powered lower-limb prostheses—the Ossür Power Knee, and the Ottobock Empower Ankle (for-

merly the BiOM1). Some commercially-available powered lower-limb exoskeletons have been de-

signed to augment the performance of able bodied users during activities such as walking (Honda

Walking Assist Device), skiing (Roam Robotics Elevate), or repetitive industrial tasks (Sarcos

Guardian). However, the largest number of commercial robotic lower-limb exoskeletons are cur-

rently employed as rehabilitation devices or assistive technology solutions for individuals who

1The BiOM ankle is currently commercially available as the Ottobock Empower [128], but will henceforth be
referred to as the BiOM in this dissertation.
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have sustained a spinal cord injury (e.g., Parker Hannifin Indego, ReWalk, EksoBionics EksoNR,

SuitX Phoenix) or stroke (ReWalk ReStore). Despite the relatively sparse commercial market for

powered assistive devices, numerous research prototypes are under development. For prosthe-

ses, several robotic knees, ankles, and combined knee-ankle systems have been developed [8, 138,

144, 165, 169], with the goal of creating devices that are lighter and more compact, with longer

battery lives. In exoskeletons, researchers have developed innovative systems such as a multi-

joint, cable-driven exosuit made from flexible textiles [6], or an autonomous, lightweight ankle

exoskeleton [119–121], which have the potential to be used outside the laboratory environment.

New advents in mechatronic design have resulted in lightweight, portable, and high performance

exoskeleton and prosthetic hardware, yet these devices have not yet achieved the anticipated adop-

tion as widespread commercial solutions.

1.2.2 Lower-Limb Wearable Robotic Control

One major factor that has delayed the dissemination of robotic prosthetic and exoskeleton

technology is that our control of these devices remains limited, particularly outside controlled

laboratory settings. Control of robotic lower-limb prostheses and exoskeletons is of paramount

importance to ensure that safe and effective robotic assistance can be delivered to the user in all

environments. Across all lower-limb robotic devices, controllers often leverage the periodicity

of ambulation and generate cyclical locomotion patterns for a variety of ambulation modes (e.g.,

walking, stair ascent, ramp descent). High-level control laws often dictate the desired ambulation

mode, while mid-level control laws are defined to generate the appropriate assistance trajecto-

ries that produce coordinated locomotion as a function of time or gait phase. In robotic lower-limb

prostheses, several mid-level control paradigms have been implemented, including impedance con-

trol [79, 101, 161, 164, 165], myoelectric control [59, 71, 72], position control [138, 176], and neu-

romuscular model-based control [38], among others. These trajectories have be generated using

finite state machines [38, 79, 101, 161, 164, 165], a continuous gait phase variable [138, 176], or

the user’s biological muscle activity [59, 71, 72]. For lower-limb exoskeletons (in particular, those
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designed for able-bodied augmentation), many controllers are feedforward, with parameterized as-

sistance profiles generated as a function of time or a presumed location in the gait cycle. Examples

of various control trajectories include actuation force in Bowden cables [102, 132], or artificial

pneumatic muscles [20, 47, 94, 95, 111, 152], joint torque [82, 189], or joint power [119–121].

These assistance trajectories have been generated in a variety of ways, using time between esti-

mated gait events (e.g., heel contact, toe-off) [20, 82, 95, 111, 119–121, 189], or biological muscle

activity [20, 47, 94, 152] as triggers for assistance generation.

Within a particular control paradigm, the assistance that a user receives from the device is of-

ten defined by a set of parameters that shape the assistance trajectory. How an assistance profile

is parameterized and how the parameters are individually tuned dictate the device’s behavior. For

example, in an impedance control scheme for a knee-ankle prosthesis, joint torque (τ ) is generated

according to the mechanics of a spring-damper system (τ = k(θ − θe) + bθ̇), where θ and θ̇ are

the joint’s position and velocity, respectively. The parameters of this system are joint stiffness, k,

damping coefficient, b, and equilibrium angle, θe. Within a state machine architecture, the selection

of these three parameters can produce distinct ambulation patterns, such as level ground walking,

sit-to-stand, incline/decline walking, and stair ascent/descent—but they must be carefully config-

ured in order to achieve the desired behavior [79, 101, 161, 164, 165]. Parameters are usually both

device- and controller-specific; additional examples of parameters in assistive device controllers

include assistance timing [111] or assistance magnitude [131].

Numerous studies have demonstrated that a variety of control strategies and parameterizations

are capable of producing coordinated locomotion patterns. Yet, it is still an open question how to

design a controller that is ‘best’ for an individual user. Recent studies have demonstrated that the

tuning of control parameters not only impacts the device performance, but can also dramatically

affect the user’s physiological response to the device. In a study performed by Malcolm et al. using

bilateral pneumatic ankle exoskeletons, a simple ‘bang-bang’ control paradigm was implemented

in which the onset of the artificial muscle’s contraction occurred at a predefined percentage of the

gait cycle [111]. This study demonstrated that incrementally changing one control parameter (the
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onset of actuation) from 13% of the gait cycle to 54% produced changes in the user’s metabolic cost

on the order of 0.5 W/kg, or 35 W for an average adult. In addition, recent research has indicated

that individual subjects do not respond in the same way to the same parameter settings. Que-

sada et al. varied the net ankle work on a powered ankle prosthesis emulator, and reported unique

relationships between net prosthesis work and metabolic cost for each individual subject [131].

Thus, in the context of recent results, there is a need to forgo static, ‘one-size-fits-all’ control laws

and design optimal controllers for wearable robotic devices in order to maximize the benefits to

individual users.

1.2.3 Identifying a Need for Research

While many control strategies have been proposed and tested for wearable robotic systems, a

fundamental gap in knowledge still exists regarding how to provide users with optimal assistance,

particularly outside the laboratory environment. This is a difficult problem because a clear def-

inition of ‘optimal assistance’ has not yet been established, due to the various goals of assistive

devices and the complex interactions between robotic assistance and human physiology. Further-

more, the vast majority of prosthetic and exoskeleton research has been conducted using steady-

state activities performed under tightly-regulated experimental conditions. Thus far, it has been

challenging to move these systems outside the laboratory environment due to constraints imposed

by tethered hardware and sensing equipment, as well as the difficulty associated with accurately

quantifying non-steady-state activities.

To close this gap, in this dissertation I evaluate the notion of optimality in the control of wear-

able robotic systems by broadly asking, “what does it mean to be optimal?” and more specifically,

“how do we provide users with optimal assistance from robotic exoskeletons and prostheses out-

side the laboratory environment?” To ground my research approach, I propose a general framework

for addressing these questions, which is presented in Fig. 1.1. This framework is divided into four

stages: 1) define the objective of the robotic assistance (i.e., what is the goal of the device?),

2) robustly measure or quantify this objective (particularly outside the laboratory), 3) design and
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customize or tune a controller that achieves this objective, and 4) evaluate the human-robot sys-

tem to determine if the objective has been achieved, as well as to broadly investigate how the

assistance affects the user’s physiology and perception. Thus, in this context, optimal assistance

refers to the controller which maximizes the objective of the device or assistance. Importantly,

this framework feeds back upon itself, with results from the evaluation offering critical insight into

each preceding stage. The central tenant of this thesis is that by specifically targeting each phase

of the optimization and evaluation framework, as well as considering the framework as a whole,

we can design optimal and translational controllers for wearable robots. Evaluating optimality in

the control of wearable robotic systems is a critical step towards the translation of such systems

into viable clinical and commercial devices.

Figure 1.1: A proposed framework for the optimization and evaluation of wearable robotic devices.

1.3 State of the Art

1.3.1 Customized Control for Lower-Limb Wearable Robotic Devices

To date, many different methods have been employed to tune device controllers for individual

users or multiple ambulation modes. This section summarizes the state-of-the-art approaches for

the customization and optimization of controllers for wearable robotic systems.
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Biologically-Inspired Tuning

One intuitive method of designing a controller for a wearable robot is to reproduce a pre-defined

desired kinematic (position) or kinetic (force/torque/power) trajectory as a function of time or gait

phase. For example, in exoskeletons, Mooney et al., employed an ankle exoskeleton controller

that mimicked biological ankle power generation over the gait cycle [119–121]. Similarly, Paniz-

zolo et al. and Kim et al. developed ‘biologically-inspired’ exosuit controllers, which controlled

the force in the Bowden cables to reproduce biological hip and ankle torques throughout the gait

cycle [88,129]. In a powered knee-ankle prosthesis, Rezazadeh et al. commanded biological kine-

matic trajectories using a phase variable and virtual constraints [138]. In these implementations,

the optimal controller was that which best reproduced the desired trajectories. While commanding

scaled versions of biological joints’ kinematics and kinetics is an intuitive starting place for lower-

limb robotic controllers, it is not clear if they produce the ‘best’ assistance for an individual user,

given the static control trajectories and lack of a defined physiological objective.

Expert Tuning

In a clinical environment, the optimization and evaluation of robotic prostheses often relies

on expert tuning, in which a clinician (e.g., a prosthetist) or trained device expert is employed to

hand-tune the device parameters for an individual patient. This method has been demonstrated in

studies using the BiOM powered prosthesis [45, 52, 58, 63, 145], and a powered combined knee-

ankle prosthesis [79, 161]. In this expert tuning paradigm, the objective of device tuning is often

to enable safe and comfortable ambulation, to produce ‘satisfactory’ kinematics and kinetics for a

variety of ambulation modes, or to replicate able-bodied gait parameters (e.g., net ankle work as a

function of walking speed). These objectives are measured in the lab using a combination of patient

feedback, expert observation, and analysis of limited measurements from the prosthesis, such as

joint angles or torques. Although some methods have been proposed to streamline this empirical

process, such as the use of an intuitive clinical tuning interface [133], or parameter reduction [161],

expert tuning is time-intensive and imprecise. This method requires the expensive services of
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a trained clinician or device expert, lacks rigid tuning methodology (i.e., uses trial-and-error),

does not have clear objective metrics for tuning success, and quickly becomes infeasible with an

increasing number of parameters. Despite these drawbacks, expert tuning remains standard clinical

practice for prescribing powered prostheses, and expediting and improving the tuning process by

understanding how tuning choices impact clinical outcomes is a worthwhile avenue of study.

Parameter Studies

In a non-clinical experimental setting, researchers have leveraged new tools to investigate alter-

native objectives and controller designs for lower-limb robotic prostheses. Caputo and Collins de-

veloped a ‘universal ankle-foot prosthesis emulator,’ which enables researchers to rapidly explore

a wide range of prosthesis controllers and evaluate their effects on human subjects [24]. Using

this tool, several studies have investigated the effect of various prosthesis control architectures on

the metabolic cost of able-bodied individuals wearing an adapter [23, 112], and individuals with

transtibial amputation [131]. In these studies, the defined physiological objective of the prosthesis

controller was to reduce the metabolic cost of walking; reducing energy cost has clinical signifi-

cance as individuals with transtibial amputation spend 10-30% more energy walking compared to

able-bodied individuals [68, 179]. To achieve this objective, these studies performed a brute force

parameter sweep, measuring metabolic cost via indirect calorimetry across a range of parameter

settings (e.g., push-off work [23, 131], and push-off timing [113]). In this tuning paradigm, the

optimal parameter settings were identified post-hoc, as those which minimized the user’s energy

expenditure.

Similar brute force parameter sweep methods have been applied to robotic lower-limb ex-

oskeletons. Studies have identified parameter settings that minimize the user’s metabolic cost in

pneumatic ankle exoskeletons [50, 51, 111], a soft exosuit [112, 132], and an ankle exoskeleton

emulator [82]. Thus far, for robotic exoskeletons, metabolic cost has served as the near-universal

physiological objective to minimize—the less metabolic energy a person consumes, the longer they

can continue performing said task. A confounding factor with this method is that the measurement
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of metabolic cost via indirect calorimetry requires 3-6 minutes of steady-state data acquisition to

accurately quantify the corresponding metabolic cost2. While measurement time can be slightly re-

duced using a first-order dynamic model of respiratory kinetics [154] and more efficient parameter-

search algorithms [44,93], the brute force parameter sweep remains time-consuming and infeasible

for large numbers of parameters. Despite its drawbacks as a controller tuning method, the brute

force parameter sweep does allow for controlled scientific investigation of how one or two aspects

of controller design affect the human-robot mechanical system (e.g., center-of-mass mechanics,

joint mechanics, muscle activity, and energy consumption). This type of information is crucial to

understanding the complex interactions between control choices and human’s biomechanics and

physiology.

Automated Tuning

Instead of brute force search methods, several groups have investigated automated tuning meth-

ods for the customization of lower-limb wearable robots, in which an algorithm chooses the appro-

priate controller configuration in order to achieve a defined objective. For tuning control param-

eters of powered prostheses, methods such as adaptive dynamic programming [180], rule-based

fuzzy logic [70], and extremum-seeking control [98] have been explored. For these systems, defin-

ing an explicit cost function (i.e., objective) for automatic parameter tuning can be challenging,

and may still rely on experts to pre-define the tuning rules, as in the fuzzy logic paradigm pre-

sented by Huang et al. [70]. In [98], Kumar et al. presented a convex optimization function for

powered prosthetic legs, which incorporated both kinematic tracking error and user discomfort.

Yet, the authors acknowledged that this cost function may not capture optimal gait biomechanics

or favorable energetic conditions.

As an alternative, ‘body-in-the-loop’ or ‘human-in-the-loop’ optimization algorithms utilize

a physiologically-relevant cost function, such as metabolic energy expenditure [44]. In body-in-

the-loop optimization (illustrated in Figure 1.2), individuals walk with a robotic device providing

2For state of the art metabolic cost measurement techniques, please refer to Section 1.3.2.

9



Figure 1.2: Illustration of body-in-the-loop optimization. This figure has been adapted with permission
from Koller et al. [92].

assistance according to a parameterized actuation profile, A(p), shaped by one or more parameters

p. Once defined, the actuation profile is enforced by the device’s low-level control loop, which of-

ten incorporates device feedback in a closed-loop controller. While the user walks with the current

actuation profile, their metabolic cost is measured using indirect calorimetry (i.e., respiratory mea-

surements). Given the metabolic cost associated with the current parameter setting, x(p), an online

optimization algorithm (e.g., gradient descent [92], CMA-ES [189], or Bayesian [35]) chooses

the next parameter setting to test. This process continues, eventually converging on the optimal

actuation profile that minimizes the metabolic cost of the wearer. In the proposed general frame-

work (Fig. 1.1), body-in-the-loop optimization represents an internal feedback loop (Fig. 1.2, top);

this algorithm continuously measures the objective and updates the controller parameters until the

physiological objective has been met.

This paradigm has been successfully implemented to identify able-bodied individuals’ optimal

step frequency [44,90], as well as optimize push-off timing of pneumatic ankle exoskeletons [92],

four-torque-profile shaping parameters on an ankle exoskeleton emulator [189], and three force-
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profile-shaping parameters on a hip exosuit [35]. Utilizing human-in-the-loop optimization to de-

sign a device controller has resulted in metabolic cost reductions of 24 % (compared to wearing the

exoskeletons in a ‘zero-torque’ mode) [189] and 17 % (compared to not wearing the device) [35].

It is important to note, however, that since both these studies utilized an emulator system, in which

the actuation hardware was located off-board, the unilateral ankle exoskeleton [189] and bilateral

hip exosuit [35] hardware were very lightweight; extrapolation of the energetic savings that this

method may incur with a fully autonomous device is a challenge. One of the most promising

features of human-in-the-loop optimization techniques is the ability for the controller to automati-

cally adapt to different users, different ambulation tasks, or environmental conditions in real time.

However, current implementations of these algorithms are unable to be used outside a laboratory

environment, due to tethered experimental hardware and the challenges associated with measuring

metabolic energy cost. As with the brute force parameter sweep method, measuring metabolic cost

from respiratory measurements requires that the user wears a bulky rubber mask that covers their

nose and mouth, which renders it impractical for daily use applications. Furthermore, data col-

lected from indirect calorimetry are sparesly sampled, noisy, and dynamically delayed, and thus it

requires 3-6 minutes of constant-intensity activity in order to obtain one estimate of steady-state en-

ergetic cost. To mitigate some of these challenges, all body-in-the-loop optimization studies to date

have leveraged the work of Selinger and Donelan [154], modeling and inverting the kinetics of the

respiratory response as a first order linear system3. While this model enables researchers to predict

steady-state energy cost from non-steady-state measurements [35, 90, 189], or to directly estimate

the cost landscape (i.e., energy cost as a function of parameter setting) [44, 92], current protocols

still require 2-4 minutes to estimate steady-state energy cost at one parameter setting—this results

in optimization routines that take 40-60 minutes for one individual. For human-in-the-loop opti-

mization to reach its full potential as a real-time automatic tuning algorithm outside the laboratory,

we must be able to measure metabolic energy expenditure without using indirect calorimetry or

define a cost function that can be more easily measured.

3For state of the art metabolic cost measurement techniques, please refer to Section 1.3.2.
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Self-Tuning

As discussed previously, pre-defining an objective function that captures the user’s optimal

biomechanical and physiological state is a major challenge, since we don’t know exactly which

objectives a human optimizes for and in which situations. As a result, researchers have begun to

investigate different objectives for the customization of wearable robots, including more subjec-

tive metrics such as preference or comfort. Yet, with these subjective metrics, it is critical to be

able to robustly measure the objective you wish to evaluate. To measure preference, some studies

have utilized a two-alternative forced choice paradigm, in which subjects were presented with pair-

wise comparisons (i.e., A-B testing) [105, 168, 172, 173], or asked to compare a condition to their

own internalized preference [157, 158]. Data obtained from forced choice methods can be used to

identify or learn a user’s preference, but it may require extended experimental time to obtain a suf-

ficient number of comparisons. To mitigate this challenge and accelerate the estimation of a user’s

preference, one study implemented a coactive learning paradigm in which users not only chose be-

tween paired conditions but also directly suggested improvements for the assistance each trial (e.g.,

longer or shorter step length) [173]. As an alternative to forced choice methods, some studies have

employed a method of adjustment, in which individual users (or experimenters directed by users)

adjusted control parameters until they achieved their preferred assistance [22, 28, 155]. Such self-

tuning methods are advantageous because they can quickly yield an individual’s preference and

are intuitive to the subject—–it is easy to imagine someone using a smart phone or smart watch

to adjust their settings during activities of daily living. In his doctoral thesis, Caputo describes

a method for optimizing three parameters of a ankle prosthesis emulator (programmed to mimic

the behavior of a passive-elastic foot) based on subjective user feedback [22]; in this study, the

experimenter incrementally adjusted each parameter until the subjects became ‘dissatisfied’ with

the device behavior. Shepherd et al. gave the tuning power directly to the individual subject, and

developed a method to robustly measure subject preference in the laboratory environment [155].

Subjects wore a variable-stiffness quasi-passive ankle prosthesis [156], and were instructed to use

a dial to modify their prosthetic foot stiffness until they arrived at the stiffness they preferred; this
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was repeated multiple times from random initial conditions. In this study, participants repeatably

and precisely determined their preferred ankle stiffness, with an inter-subject mean coefficient of

variation of 14 %. Finally, while Young et al. did not directly incorporate user feedback into the

parameter tuning of a bilateral powered hip exoskeleton, they did ask individuals to indicate their

preferences between two subsequent trials with different assistance patterns [186]. Results from

this study showed that subject preference did not correspond to conditions which minimized the

user’s energetic cost, highlighting the need to explore additional metrics for exoskeleton evalua-

tion and tuning. Given the high variability between users and the difficulty in defining one specific

objective function for all situations, incorporating subject preference into tuning algorithms may

encode multiple subjective costs at once, thereby allowing us to design robust, customized assistive

device controllers.

1.3.2 Metabolic Cost Measurement

Metabolic cost (herein used interchangeably with metabolic rate, energetic cost, energy cost,

or energy expenditure) is an important physiological quantity used in the design and evaluation of

control systems for wearable robots. Most often, measurements of whole-body energetic cost are

obtained using indirect calorimetry. With indirect calorimetry, energy production is determined by

measuring oxygen (O2) consumption and carbon dioxide (CO2) production, rather than directly

measuring heat transfer (as in direct calorimetry) [162]. Modern indirect calorimetry systems

(e.g., Cosmed K5) are portable, and the individual wears the processing unit in a harness on their

chest or back (Fig. 1.3). The person also wears a rubber mask over their nose and mouth, which

contains an embedded flowmeter and oxygen/carbon dioxide sensors to measure the volumetric

flow rate of each of the respiratory gases (V̇O2 , V̇CO2) breath-by-breath [109]. Using the Brockway

equation (a weighted sum of V̇O2 and V̇CO2), respiratory gas measurements can be converted into a

measurement of whole body metabolic rate (unit: Watts) [18].

Yet, there are significant challenges associated with using indirect calorimetry to measure

metabolic cost. From a practical perspective, although modern equipment is relatively lightweight
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Figure 1.3: Cosmed K5 indirect calorimetry unit. This photo was obtained on from the Cosmed K5
brochure [31].

and portable, all indirectly calorimetry systems require that the user wear a rubber mask over their

nose and mouth (Fig. 1.3), which is unsuitable for long-term data collection outside the laboratory

environment. Furthermore, there are several challenges related to the data obtained from indi-

rect calorimetry systems. First, measurements of metabolic cost are sparsely sampled, with one

data point recorded every breath. With the typical breathing rate of 20 breaths per minute during

light exercise, this corresponds to sampling rate of just 0.3 Hz [154]. Second, measurements of

metabolic cost are extremely noisy, with a signal-to-noise ratio of approximately four [44, 99].

And finally, metabolic cost measurements obtained from the respiratory gases are dynamically

delayed from the instantaneous metabolic demands of the body. To illustrate this relationship,

consider an individual performing a step-change in activity level (e.g., changing from walking

at 1.0 m/s to 1.5 m/s). On a chemical level, the muscles instantaneously consume more energy to

meet the demands of the new task. Yet, there are a number of physiological processes (e.g., mi-

tochondrial dynamics, blood circulation from the muscles to the lungs, lung tidal volume) that
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delay measuring this change in energy expenditure at the mouth through the analysis of respiratory

gases [99, 154]. For all these reasons, metabolic cost is traditionally measured during long bouts

of constant-intensity activity.

One method to obtain an accurate measurement of the body’s instantaneous metabolic cost for

a given activity is to have an individual perform that activity for 2–3 minutes to reach a steady-state

oxygen consumption level [116,136,154]. Once steady state has been reached, another 2–3 minutes

of breath measurements are recorded and then subsequently averaged into one estimate of steady-

state (i.e., instantaneous) energetic cost for that activity (Fig. 1.4A). Averaging over the last several

minutes of steady-state data minimizes the impact of the measurement noise and thus produces

an accurate estimate of the body’s instantaneous energetic cost. As we assume the instantaneous

energy cost is constant for a given activity, this steady-state value can be extrapolated backwards

in time for the entire activity. While this traditional method has been employed for decades, it

requires 5–6 minutes to obtain one estimate of energetic cost for a particular activity, and can not

capture transient changes.

As an alternative, Selinger and Donelan proposed a method to estimate instantaneous metabolic

cost that leverages a dynamic model of respiratory kinetics [99, 154, 181]. In their work, they

demonstrated that, in response to a step-change in activity intensity, the dynamics of the breath

measurements can be characterized by a first-order linear differential equation:

ẏ(t) =
1

τ

(
x(t)− y(t)

)
(1.1)

where x(t) is the energetic cost that will be reached in steady state when the activity per-

formed at time t is continued at the current intensity, and where y(t) is the transient respiratory

measurement at time t. The subject-specific time constant τ represents the speed with which the

breath measurements can respond to a step change in activity intensity. In the study performed by

Selinger and Donelan, they experimentally determined that τ varied between individual subjects,

with a mean (SD) of 41.8 (12.1) seconds [154].
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Figure 1.4: Methods for calculating steady-state metabolic cost from breath measurements. (A) For a
given activity, the steady-state metabolic cost (solid red line) is the average of the last three minutes (shaded
red area) of breath measurements (blue dots). Because instantaneous energetic cost is constant for a given
activity, this value is extrapolated backwards in time for the entire duration of activity (red dashed line). This
approach requires 5–6 minutes to obtain an estimate of instantaneous energetic cost. (B) A first order model
(yellow line) can be fit to the breath measurements (blue dots). For this individual, the subject-specific
time constant τ was determined to be 32.3 seconds. The asymptote (i.e., steady-state value) of this model
determines the instantaneous metabolic cost for that activity. This approach requires 2–4 minutes to obtain
an estimate of instantaneous energetic cost. These metabolic cost data were obtained from the experimental
data collection presented in Chapters 3 and 4.

Given this model structure, to obtain an estimate of the steady-state value x̂(t) from transient

breath measurements y(t), one must simply rearrange the terms:

x̂(t) = y(t) + τ ẏ(t). (1.2)

Thus, the estimated steady-state value, x̂(t) corresponds to the instantaneous energetic cost

for that given activity (Fig. 1.4B). One approach for calculating x̂(t) is to fit a first-order model

to transient breath measurements and identify the asymptote of the model [35, 90, 189]. Alterna-

tively, Felt et al. developed a mathematical approach to directly determine the cost landscape (i.e.,

metabolic cost as a function of the various conditions tested) [44], and Koller et al. expanded this

approach by introducing confidence analyses of the cost landscapes [93]. Regardless of the chosen

analysis method, leveraging the first-order dynamic model allows researchers to use non-steady-
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state breaths to predict instantaneous energetic cost instead of waiting for the respiratory kinetics to

reach steady state. Therefore, current implementations of instantaneous energetic cost estimation

using the dynamic model require 2–4 minutes of data collection per activity, which is faster than

the traditional approach of averaging steady-state measurements.

1.4 Contributions

The goal of the work presented in this dissertation is to further understand how to provide users

with optimal assistance from robotic exoskeletons and prostheses outside the laboratory environ-

ment. To achieve this goal, I experimentally evaluate context-specific objective functions for the

optimization of assistive robots in clinical, laboratory, and real-world environments. Additionally, I

develop versatile tools to measure and/or estimate relevant physiological and biomechanical quan-

tities and subjective criteria (e.g., user preference). As such, my contributions are relevant to two

main themes: first, the translation of experimental methods and measurement tools outside the lab-

oratory environment and second, the evaluation of context-specific objectives for the optimization

of wearable robotic devices. The content of this dissertation is described over four chapters.

In Chapter 2, I evaluate the impact that changing the power setting of the BiOM commer-

cial powered ankle prosthesis has on the metabolic cost of transport of individuals with transtibial

amputation. Additionally, I compare the power setting that minimizes an individual’s cost of trans-

port with the setting that was chosen by a prosthetist during a standard clinical fitting session (i.e.,

the setting that approximates biological ankle kinetics). This work experimentally demonstrates

that on average, subjects exhibit lower cost of transport with increasing power setting. Yet, the

relationship between BiOM power setting and cost of transport varies significantly between in-

dividuals and thus reinforces the need for user-specific tuning. This observed variability led us

to further investigate the relationship between the prosthetic ankle’s mechanics and individuals’

COT. Furthermore, this work informs clinical tuning and prescription practices by revealing that,

to minimize their metabolic energy consumption, individuals require a higher power setting than
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the setting chosen by the prosthetist to approximate biological ankle kinetics. This chapter has

been published in full in Scientific Reports [74].

In Chapter 3, I investigate an alternative method for estimating instantaneous metabolic cost

using portable wearable sensors. The goal of this work is to accurately estimate instantaneous

metabolic cost without relying on indirect calorimetry, and thus enable the use of body-in-the-loop

optimization algorithms outside the laboratory environment. I present a black-box approach (i.e.,

linear regression algorithms) for estimating instantaneous metabolic cost quickly and accurately

using physiological signals collected from portable, wearable sensors. In this chapter, my con-

tributions include systematically comparing a large set of physiological signals and determining

which sensor signals contain the most salient information for predicting instantaneous metabolic

energy cost, robust to unknown subjects or tasks. Additionally, I discuss the ‘best’ physiologi-

cal signals to use in a regression algorithm to maximize predictive capability when only a small

number of signals (fewer than 8) are included. Alongside the analyses presented in this chapter,

I describe the large experimental dataset that I collected for this study, which is published open-

source to enable other researchers to build their own predictive models [78]. Preliminary findings

from this work have been published as peer-reviewed conference proceedings and presented at the

2017 IEEE International Conference on Rehabilitation Robotics [76] and the 2017 IEEE Global

Conference on Signal and Information Processing [75]. Chapter 3 has been published in full in the

Journal of Applied Physiology [77].

In Chapter 4, I build upon the work presented in Chapter 3, and demonstrate that including the

derivatives of physiological signals in the linear regression algorithm can improve the speed and

accuracy of instantaneous metabolic cost predictions. In particular, I show that adding derivatives

improves predictions during the transient phase of an activity and specifically when signals with

delayed dynamics are included in the regression (e.g., heart rate). To support these analyses, a

major contribution of this work is the reinterpretation of a first-order dynamic model as a linear

regression model with a signal and its derivative and the formal comparison between the coeffi-

cients of these two models. This work is significant to the optimization of wearable robots because
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the faster we can obtain accurate estimates of instantaneous metabolic cost, the more quickly we

can iterate through control parameters in a body-in-the-loop optimization routine. This chapter has

been published in full in the IEEE Robotics and Automation Magazine [81].

In Chapter 5, I investigate user preference as an objective for the control of lower-limb robotic

exoskeletons. The goal of this work is to understand the characteristics of preference in the context

of exoskeleton control and discover how individuals perceive, interact with, and learn from the

assistance provided. To this end, I developed a novel two-dimensional self-tuning touch screen

interface to enable ankle exoskeleton users to simultaneously adjust the timing and magnitude of

peak torque delivery in real time. In this chapter, I systematically analyze the control settings users

prefer, how precisely individuals are able to identify their preferences, and how they interact with

the touch screen to find their preferred settings. I discover how these outcomes vary as a func-

tion of walking speed, as a function of time spent wearing and interacting with the robotic device,

and between users with different technical backgrounds. To my knowledge, this work is the first

to demonstrate that users have unique preferences in their robotic ankle exoskeleton assistance,

and that they can precisely and quickly identify these preferences using a two-dimensional self-

tuning interface. This work motivates new strategies for the control of lower-limb exoskeletons

in which users customize assistance according to their unique preferences, leveraging their inter-

nalized representation of optimality. Preliminary findings from this work have been published as

peer-reviewed conference proceedings and presented at the 2020 IEEE Conference on Biomedical

Robotics & Biomechatronics [80]. As of this writing, Chapter 5 has been submitted in full for

publication and is currently under review.

As a whole, this dissertation expands the notion of optimality in the control of wearable robotic

systems and lays the foundation for translating optimization protocols outside the laboratory envi-

ronment. This dissertation contributes experimental results, robust measurement tools, theoretical

framework, and scientific evaluation that each advance the field of wearable robotics closer towards

the goal of achieving clinical and commercial ubiquity in the future.
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CHAPTER 2

Choosing Appropriate Prosthetic Ankle Work to

Reduce the Metabolic Cost of Individuals with

Transtibial Amputation

2.1 Background

Individuals with transtibial amputation spend 10–30 % more metabolic energy when walking

compared to able-bodied individuals [68, 69, 171]. This observed increase in energy expenditure

may be due to the fact that most ankle prostheses are passive-elastic devices, which store and

release energy when in contact with the ground but cannot perform positive net work. In fact,

passive-elastic prostheses only produce about an eighth the power of the intact gastrocnemius

and soleus muscles [190]. This deficit has a significant impact on walking as the majority of

the total mechanical power generated during the gait cycle comes from the ankle-foot complex

[123, 183, 188]. As a result of decreased ankle power generation, people with amputation may put

forth additional muscular effort from their residual limb or compensate with their intact limb to

walk with passive prostheses [148]. Additionally, physical fitness may play an important role in

determining the metabolic demands of individuals with amputation [146].

To overcome these limitations of passive devices, various types of powered ankle prostheses

have been developed [27, 63, 65]. These powered devices use actuators to deliver positive work to

This chapter has been previously published in Nature Scientific Reports [74]
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the user during the push-off phase, and can potentially alleviate the increased energetic demand that

people with amputation experience during walking. Of these devices, only the BiOM1 powered

ankle prosthesis (BionX, Bedford, MA) is currently commercially available. Investigating the

efficacy of the BiOM in clinical trials has resulted in mixed outcomes. For walking speeds faster

than 0.75 m/s, Herr et al. [63] found a significant reduction in metabolic cost when individuals with

transtibial amputation walked with a powered ankle prosthesis compared to passive-elastic feet.

Similarly, Esposito et al. [145] found a 16 % decrease in metabolic rate in highly active individuals

using a powered ankle compared to their prescribed passive feet. In contrast, Gardinier et al. [52]

found no significant differences in metabolic cost between individuals using a powered ankle and a

non-powered prosthesis. The mixed results of studies evaluating the efficacy of powered prostheses

are likely related to a variety of factors, including different subject populations. In the study by

Gardinier et al. [52] individuals with the maximum functional classification level (K4) received

an metabolic benefit from using the BiOM, while those with a lower functional classification (K3)

did not. Correspondingly, the studies which demonstrated the largest reductions in metabolic cost

were those that tested high-functioning active-duty military members [45, 145].

Another important factor when evaluating the BiOM’s impact on reducing metabolic energy

expenditure is how the device is tuned; Esposito et al. [145] suggested that near-optimal tuning of

the BiOM is required to positively impact an individual’s metabolic cost. Of particular importance

when tuning the BiOM are the power settings, which determine the amount of ankle work delivered

by the device. The BiOM provides prothetists with a visual display to tune the power settings on the

device. The prosthetist modifies the power settings until the ankle work delivered by the prosthesis

approximates normative data of healthy ankle work at the subject’s preferred walking speed. Yet,

it is still uncertain whether that amount of prosthetic ankle work is optimal to lower the user’s

metabolic cost. In fact, a number of arguments could be made against this assumption: 1) the work

produced by a prosthesis might not be delivered in full to the user’s center of mass, 2) a uniarticular

prosthesis can never fully replicate the biarticular muscles in a human ankle, and 3) excess ankle

1The BiOM ankle is currently commercially available as the Ottobock Empower, but will henceforth be referred to
as the BiOM in this dissertation.
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work could be beneficial to compensate for other losses.

First of all, there is an open question regarding how much of the push-off work produced by a

powered prosthesis is effectively delivered to the user. Prosthetic power may be lost in transmission

due to residual limb deformation or the relative movement between the residual limb and the socket

(i.e., pistoning) [187]. Compliant characteristics of foot cosmeses and shoes may also contribute

to dissipating mechanical work of powered prostheses [110]. These additional losses might render

the power delivered to the center of mass smaller than anticipated.

Furthermore, since all currently existing powered ankle prostheses are uniarticular, they can

never fully replicate an intact human ankle. In particular, they cannot replace the function of the

gastrocnemius, a biarticular muscle, which contributes to work at both the ankle and knee. This

is important since both ankle plantarflexors (soleus and gastrocnemius) deliver energy to support

the body and propel the center of mass forward [123]. In the absence of functional plantarflexor

muscles, trunk support can be accomplished by energy return from a carbon fiber foot, but forward

propulsion requirements may not be fully met [190]. Uniarticular actuation might further lead to in-

sufficient energy transmission to initiate knee flexion during pre-swing. In order to propel the body

and leg forward, other leg or hip muscles may compensate and thereby drive up metabolic cost,

even though the supplied prosthetic plantarflexor power approximates biological norms. Thus,

walking with prosthetic push-off work in excess of biological norms may provide not only body

support but also propulsion, which more closely matches the function of intact plantarflexors.

Finally, there is some general evidence that walking with ankle work in excess of biological

norms may reduce metabolic effort. Providing ankle power greater than the biological ankle has

been shown to reduce metabolic cost in able-bodied subjects walking with exoskeletons [94, 119]

and an ankle prosthesis adapter [23]. Simplified gait models suggest that ankle push-off work from

the trailing limb can reduce the negative work performed through dissipation at heel contact by

the leading limb [37], yet recent human experiments with an ankle prosthesis adapter have not

observed this effect [23, 131]. A reduction in negative work and/or increase in push-off work may

lower metabolic cost by reducing the required hip work of the stance leg during single support
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stance phase [68,104,153]. Although the exact biological mechanisms are not yet known, supply-

ing prosthetic ankle work in excess of biological norms may be a useful strategy to compensate for

increased effort in other places.

While this prior work suggests that increasing the amount of ankle work beyond the biological

norms may be beneficial, we also believe that there may exist an upper bound with diminishing

or negative return. For example, an excessive ankle plantarflexion moment can induce knee hy-

perextension [142]. In the non-amputated limb, the gastrocnemius and Achilles tendon restrain

excessive knee extension during stance. In the amputated limb, however, the functional absence

of these restraints may result in knee hyperextension with excessive prosthetic ankle push-off,

thereby requiring other knee flexors to compensate and potentially increasing the user’s metabolic

effort [45, 145]. Additionally, the uniarticular function of the prosthesis may cause excess plan-

tarflexion power to be re-distributed to the leg via the trunk and lead to increased hip power gener-

ation and increased knee power absorption [45]. As a result, these compensatory muscular efforts

may contribute to increased metabolic cost. Due to the complexity of the human musculoskele-

tal system, there will likely be other examples of compensations that increase metabolic cost in

response to excessive ankle power.

The goal of this study was to determine the effect of the BiOM’s ankle power setting on the

metabolic cost of walking. We performed an experiment in which ten individuals with transtibial

amputation walked on a treadmill wearing the BiOM powered ankle prosthesis, tuned to six dif-

ferent power settings. The power settings ranged from no power (0 %) to the device’s maximum

power setting (100 %) in increments of 25 %, and included the power setting chosen by the pros-

thetist during a clinical fitting session. We calculated subjects’ cost of transport (COT) during the

steady-state portion of each condition. The BiOM records its net ankle work during each step, and

we averaged this value over the last 30 steps of each condition to obtain the average net work. Our

first hypothesis was that a subject’s energetically optimal power setting would be higher than the

prosthetist-chosen power setting (i.e., the power setting chosen to approximate biological ankle

kinetics). Our second hypothesis was that a subject’s energetically optimal power setting would
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not fall at 100 % power (i.e., the maximum). We expected that the highest power setting would

increase metabolic cost as the person is forced to absorb excess work with their musculoskeletal

system.

2.2 Methods

2.2.1 Participants

Ten adult males with unilateral transtibial amputation participated in this study (Table 2.1).

Subjects self reported their K-level and it was confirmed by the clinician. Potential subjects were

excluded if they had a history of serious cardiovascular, neurological, respiratory, or visual prob-

lems, or were taking medications that might interfere with walking ability. Subjects were required

to have the ability to walk for 30 minutes without a walking aid. Accordingly, all participants

had a Medicare functional classification level of K3 or K4 [26], which corresponds to a moderate

to high level of ambulatory function. Study procedures were reviewed and approved by the Uni-

versity of Michigan’s Medical School Institutional Review Board. The study was carried out in

accordance with the approved protocol. All participants provided written informed consent prior

to participation.

Age Weight† Height† Leg Length†

Participant (years) Sex (kg) (m) (m) K-Level
1 59 M 83.7 1.70 0.88 K3
2 24 M 88.2 1.81 0.97 K3
3 26 M 79.9 1.88 1.04 K4
4 60 M 123.8 1.84 0.92 K4
5 55 M 99.8 1.80 0.94 K3
6 32 M 87.3 1.85 0.98 K4
7∗ 27 M 120.2 1.78 0.96 K4
8 54 M 107.5 1.82 1.00 K4
9 53 M 73.9 1.70 0.89 K4

10 27 M 64.9 1.89 1.00 K4
Mean (SD) 41.7 (15.5) - 92.9 (19.5) 1.80 (0.07) 0.96 (0.05) -
†Measured while wearing the BiOM prosthesis.
∗Subject 7 was excluded from analysis due to prosthetic battery failures during collection.

Table 2.1: Participant demographics.
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2.2.2 Prosthetic Fitting and Tuning

At the start of each session, all participants were fitted with the BiOM powered ankle pros-

thesis (BiOM T2 Ankle, BionX Medical Technologies Inc., Cambridge, MA), except for Subject

9 who was already a regular user of the BiOM. The same certified prosthetist fit each participant

according to manufacturer’s recommendations. This process is described in detail in Gardinier et

al. [52]. Briefly, the device was attached to the patient’s existing socket and pylon using standard

attachments and then aligned. While wearing the device, we weighed each subject, and measured

their height (the distance from the floor to the crown of head), and the length of both legs (the

distance from the greater trochanter to the floor).

Next, the device was powered on and participants walked back and forth down a 20-meter-long

hallway while the prosthetist increased the amount of net ankle work delivered by the device using

a Bluetooth-enabled tablet computer. With each step, the tablet displays a dot corresponding to

the net ankle work done by the prosthesis at the participant’s chosen walking speed (Figure 2.1).

This dot is green if it falls within the 95% confidence interval of normative data for net ankle work

at that walking speed; net ankle work outside of this range is displayed as orange or red. It is

important to note that while the prosthetist is able to see the net work performed by the device with

each step, he or she does not have direct control over this parameter. Rather, the prosthetist tuning

the device can change the power setting of the device, which ranges from 0% power to 100%

power in increments of 1%. In our study, the prothetist adjusted the power setting until the net

ankle work fell within the desired range and the walking looked smooth and felt comfortable to the

participant. After the power setting, adjustments were made to other settings, such as the timing of

the power onset. Participants were given 30 minutes to acclimate to the device once initial fitting

was complete. During this time, the prosthetist fine-tuned the actuation settings to best fit the

comfort of the user as necessary. The final power setting is subsequently referred to as prosthetist-

chosen power setting. Participants’ other settings (e.g., timing) were held constant throughout the

experiment. A complete list of all the BiOM settings for each participant is provided in Table 2.2.
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Figure 2.1: BiOM tuning interface. An example of the real-time display used to tune the actuation settings
of the BiOM prosthesis (adapted from the BiOM user’s manual [14]). As the subject walks, a dot appears on
the screen that indicates the work done by the prosthesis at the user’s chosen walking speed. The prosthetist
modifies the power setting of the device until the dots fall into the 95% confidence interval for healthy
biological net ankle work (dashed lines) and the patient is satisfied with the device performance.

Power at Fast Power at Slow Power Timing at Fast Timing at Slow Cadence
Subject Stiffness (%) Cadence (%) Cadence (%) Sensitivity (%) Cadence (%) Cadence (%) Range (%)

S1 12 57 40 0 44 20 47
S2 45 42 41 0 44 44 49
S3 65 45 24 0 44 16 42
S4 50 48 25 0 44 16 81
S5 63 44 33 0 44 20 57
S6 81 35 25 0 44 16 45
S8 75 38 28 0 66 30 66
S9 0 26 26 0 44 16 36

S10 75 39 20 0 65 20 28

Table 2.2: Prosthetist-chosen BiOM settings.

2.2.3 Experimental Protocol

After the initial acclimatization period, participants completed six different conditions in a

randomized order while walking on a treadmill wearing the BiOM. Each of these conditions cor-

responded to a different ankle power setting. The conditions tested were 0 %, 25 %, 50 %, 75 %,

100 % power, and the prosthetist-chosen power setting (Figure 2.2).
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Figure 2.2: Experimental setup. In this experiment, 10 transtibial amputees walked on a treadmill wearing
the BiOM powered ankle prosthesis with 6 different power settings: 0%, 25%, 50%, 75%, 100%, and the
parameter setting chosen by the prosthetist during fitting (prosthetist-chosen, PC). We measured energy
expenditure using indirect calorimetry and calculated the cost of transport (COT) from energy expenditure
and treadmill speed. Treadmill belt speed was normalized to leg length, and determined using a Froude
number of 0.16, which corresponds to the typical preferred walking speed for individuals with transtibial
amputation [55]. In our experiment, subjects walked at a mean (SD) speed of 1.21 (0.07) m/s. We also
collected net ankle work from the BiOM for each step during all conditions.

During all treadmill walking trials, participants wore a support harness (Likorail, Hill-Rom,

Chicago, IL), which prevented them from falling in case of loss of balance, but did not provide

any upward force or body weight support. Treadmill belt speeds were normalized according to a

Froude number of 0.16 to scale belt speed to each participant’s mean leg length [54]; the mean

(SD) walking speed for all participants was 1.21 (0.07) m/s.

At the beginning of each session, subjects were fit with a lightweight portable metabolic system

(K4b2, Cosmed, Rome IT) consisting of a mask covering the nose and mouth and a portable unit

attached to a harness. The metabolic system measured the rate of oxygen consumption (V̇ O2) and

carbon dioxide production (V̇ CO2). Testing was generally performed first thing in the morning,

and all participants were instructed to fast for at least two hours prior to arriving at the laboratory, as

time of day and food consumption can affect one’s basal metabolic rate [60,135]. Participants were

initially asked to remain seated for a period of at least 10 minutes to establish a baseline metabolic
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energy cost for each individual. We subsequently recorded participants’ metabolic energy cost

during all treadmill walking trials. Additionally, we recorded net ankle work and peak ankle power

from each step of the prosthesis via the tablet computer for all walking conditions. The BiOM

calculates ankle joint work from its on-board sensors as the integral of ankle torque-angle curve;

it calculates peak ankle power by multiplying the measured ankle angular velocity with the ankle

torque [63]. Ankle torque is calculated as the combined torque of the motor and the estimated

torque of the carbon fiber foot [9].

Data were collected during one experimental session for most participants, but two participants

(S1 and S5) required two sessions to complete all six conditions due to time constraints or phys-

ical fatigue. For these two subjects, we compared seated resting V̇ O2 measurements from both

experimental sessions against the between-day minimum detectable change threshold to assess the

consistency of metabolic measurements across days. These between-day differences were less than

the minimum detectable change threshold [34], and were therefore regarded as within the expected

variation and not meaningful. As such, we combined the data collected across both days for analy-

sis. Two trials were excluded due to BiOM battery failure in the middle of the walking trial, which

cut the trials short (S2: 50 % condition, S8: 100 % condition). We were unable to re-collect these

trials due to participant fatigue and time constraints. The BiOM battery also died during Subject

4’s 75 % condition, but we were able to collect 5 steps at this power setting at the end of the session.

During the data collection session for Subject 7, both BiOM batteries became defective and would

not charge. As we were only able to collect complete data for 2 of 6 conditions, this participant’s

data was excluded from all analyses.

2.2.4 Data Analysis

Participants walked with each power setting for a minimum of five minutes in order to reach

a steady-state oxygen consumption level, and then three minutes of steady-state data were col-

lected and subsequently analyzed. We confirmed that the last three minutes of recorded breath

measurements for each walking condition were indeed at a steady state by testing that they met
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three criteria. These criteria were 1) average V̇ O2 and 2) average V̇ CO2 had less than 10 % vari-

ability between minutes [116,136], and 3) the average respiratory quotient (RER) was between 0.7

and 1.0 [30]. We estimated metabolic power from the steady-state V̇ O2 and V̇ CO2 measurements

using the Brockway equation [18].

To generalize energy expenditure across different walking velocities between participants, we

calculated the cost of transport (COT) by dividing the metabolic power by the walking velocity

and body weight while wearing the BiOM device. COT is a dimensionless quantity. We averaged

the last 30 steps of net ankle work data and peak ankle power data from the BiOM to obtain the

average net ankle work and average peak ankle power for each condition, and normalized these

quantities by body mass (including the weight of the prosthesis). In the case of Subject 4 walking

at the 75 % condition, they are the average value of the five collected strides.

2.2.5 Statistical Analysis

We use a generalized linear model to determine the effect of BiOM power setting (0 %, 25 %,

50 %, 75 %, 100 %) on COT. Power was a fixed factor, while subjects was a random factor. Post-

hoc paired t-tests were used to explore significant differences between power settings. To de-

termine a subject’s energetically optimal power setting, we fit a third order polynomial to each

subject’s cost of transport data from the six power conditions (including the prosthetist-chosen).

We then identified the minimum of each subject’s third order polynomial, and chose the tested

power setting (0 %, 25 %, 50 %, 75 %, 100 %, or prosthetist-chosen) closest to the minimum; this

power setting is called the best tested power setting. This method of identifying the best tested

power setting was chosen to minimize post-hoc selection bias, given the high level of breath-by-

breath variability in the metabolic measurements and the sparse sampling of the parameter space.

We used paired t-tests to evaluate the differences between the prosthetist-chosen and best tested

power settings. Statistical comparisons were made using SPSS (IBM, Chicago, IL) with a level of

significance of .05. Additionally, we calculated Pearson’s correlation coefficients between COT,

average net ankle work, and BiOM power setting using MATLAB (MathWorks, Natick, MA).
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2.3 Results

Overall, there was a significant main effect of BiOM power setting on cost of transport (COT)

(p < .001). On average, power settings higher than 50 % resulted in lower COT than 25 % or 0 %

(Fig. 2.3). Post-hoc pairwise t-tests revealed significant differences between 0% power and 50%

(p = .02), 75% (p < .001), and 100% (p = .01) power settings. There was also a significant

difference between 25% power and 50% (p < .001), 75% (p < .001), and 100% (p < .001) power

settings. There were no differences between the two lowest power settings (p = .16) and the three

highest power settings (p > .57).
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Figure 2.3: Average cost of transport at each BiOM power setting. On average, subjects exhibited
a lower cost of transport (COT) as power setting increased. Data points represent the group mean COT
(dark blue: n=9, light blue: n=8, error bars: ±1 standard deviation (SD)). Stars (?) indicate a statistically
significant difference between conditions (p < .05). For example, 0 % had significantly higher COT than
50 %, 75 %, and 100 % power conditions.

Examining subject-specific responses, we observed considerable variability between subjects

(Fig. 2.4). Yet, for all subjects, the best tested power setting was higher than the prosthetist-chosen

power setting. Five (5) of 9 subjects had best tested power settings at 75 %, while the remaining 4

subjects were at 100 %. Additionally, some subjects showed an increase in COT when the device

provided some power (25 %) compared to no power (0 %).
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Figure 2.4: Subject-specific relationships between cost of transport and BiOM power setting. We
observed large inter-subject variability in the relationship between power setting and the cost of transport
(COT). Yet, for all subjects, the best tested power setting (∗) was higher than the prosthetist-chosen power
setting (•). Each subject’s best tested power setting was defined as the tested power setting closest to the
minimum of the best fit cubic polynomial. This method was chosen to accommodate the noisy breath-by-
breath measurements of metabolic cost and the sparse sampling of the parameter space. The third-order
polynomials (dashed gray line) are presented for reference.

There was a significant difference in the magnitude of COT between the prosthetist-chosen

setting (0.39 (0.04) , mean (SD)) and best tested setting (0.36 (0.03) ) (Fig. 2.5). On average, this

difference in COT was 0.04 (0.02) , which corresponds to an 8.8 (4.6) % reduction. The mean

prosthetist-chosen power setting was 41.6 (8.7) % (corresponding to mean ankle work of 0.11

(0.06) J/kg) (Fig. 2.5). The mean best tested power setting was 86.1 (13.2) % (corresponding to

mean ankle work of 0.24 (0.07) J/kg). The mean participant-specific difference between prosthetist-

chosen and best tested power settings was 44.6 (16.2) % (corresponding to mean ankle work of

0.12 (0.09) J/kg).
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Figure 2.5: Comparison between cost of transport at prosthetist-chosen and best tested power set-
tings. (A) On average, subjects walking with their best tested power setting had significantly lower cost of
transport (COT) compared to walking with the prosthetist-chosen power setting (p < .001). The mean (SD)
prosthetist-chosen power setting was 41.6 (8.7) %; the mean best tested setting was 86.1 (13.2) %. The star
(?) indicates a significant difference in the magnitude of COT between the prosthetist chosen and best tested
power settings. Error bars represent ±1 standard deviation in COT (vertical) and power setting (horizontal).
(B) The corresponding mean (SD) net ankle work for the prosthetist-chosen and best tested conditions were
0.11 (0.06) J/kg and 0.24 (0.08) J/kg, respectively.

We also investigated how the power setting related to the net work performed by the BiOM.

Overall, individual subjects showed a positive correlation (r = .90 (.07), mean (SD)) between

power setting and net ankle work (Fig. 2.6). However, the relationship between power setting and

ankle work was not strictly monotonic for all participants. Several subjects exhibited a plateau

in ankle work as the power setting increased past 50 %, and some even elicited less ankle work

at higher power settings. Additionally, we observed variable responses between no power (0 %)

and a small amount of power (25 %) for different subjects. Five (5) of 9 subjects elicited con-

siderably more ankle work at the 25 % condition than at the 0 % condition (mean (SD) differ-
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ence: 0.07 (0.02) J/kg, n=5), while 4 other subjects elicited much more modest increases in ankle

work between these conditions (mean (SD) difference: 0.01 (0.00) J/kg, n=4). Similar trends were

observed in the relationship between power setting and average peak ankle power (Fig. 2.6).
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Figure 2.6: BiOM net work and peak ankle power as a function of power setting. (A) We found a linear
correlation (Pearson’s r = .90 (.07), mean (SD)) between power setting and net ankle work for individual
subjects. (B) We found a linear correlation (r = .90 (.07)) between power setting and average peak ankle
plantarflexion power for individual subjects. However, not all subjects exhibited a monotonically increasing
relationship, and we observed a plateau in ankle work past the 50% power setting for some subjects. Filled
circles (•) indicate the prosthetist-chosen power settings and corresponding net ankle work. Asterisks (∗)
indicate the subjects’ best tested power settings. Net ankle work for each condition was calculated as the
mean of the ankle work from the last 30 steps for all conditions except Subject 4’s 75 % condition, which
was the average of 5 steps.

Given that the relationship between BiOM power setting and net ankle work was not perfectly

linear, we investigated the relationship between net ankle work and COT (Fig. 2.7). With all

subjects pooled, a significant correlation between net ankle work and COT was identified (r =

−.55, p < .0001). The best fit linear model resulted in a coefficient of determination (R2) of .30.

On an individual basis, subjects exhibited a stronger correlation between net ankle work and COT,

with an mean (SD) correlation coefficient of r = −.82 (.15). Six (6) of 8 subjects (excluding S8)

had best tested power settings that corresponded to their maximum delivered ankle work (i.e., the
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Figure 2.7: Cost of transport as a function of BiOM net work and peak ankle power. (A) With all
subjects pooled, there was a moderate linear correlation between cost of transport (COT) and net ankle
work (Pearson’s r = −.55, p < .0001). The best fit linear model (dashed line) resulted in R2 = .30.
Individually, subjects exhibited a stronger linear relationship between COT and net ankle work (r = −.82
(.15), R2 = .69 (.22), mean (SD)). The majority of subjects’ best tested power settings corresponded to
their maximum net ankle work. (B) Subjects individually exhibited a moderately strong linear correlation
between cost of transport (COT) and average peak ankle power (r = −.77 (.15), mean (SD)), with large
inter-subject variability. The majority of subjects’ best tested power settings corresponded to their maximum
ankle power. Starting from the left, colored lines connect increasing power settings for individual subjects.
Filled circles (•) indicate the prosthetist-chosen power settings. Asterisks (∗) indicate the best tested power
settings. Net ankle work for each condition was calculated as the mean of the ankle work from the last 30
steps for all conditions except Subject 4’s 75 % condition, which was the average of 5 steps.

asterisks in Fig. 2.7 lie farthest to the right). This did not coincide with the 100 % power setting

for Subjects 4 and 6, whose best tested power settings were 75 %. The remaining two subjects

analyzed (S3 and S5) had best tested power settings that did not correspond to their maximum

ankle work. We do not have BiOM data from Subject 8 for the 100 % condition, so we can not

evaluate this relationship for this subject. Similar trends were observed in the relationship between

average peak ankle power and COT (Fig. 2.7).
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2.4 Discussion

In this study, we evaluated the influence of different prosthetic ankle power settings on users’

metabolic cost, using a commercially available powered prosthesis (BiOM). We hypothesized that

1) to minimize their energy cost, users would require a higher power setting than the power setting

chosen by the prosthetist, which approximated the work of the biological ankle, and 2) the highest

power setting (100 %) would not be the optimal power setting to minimize metabolic cost.

In support of our first hypothesis, we found that the best tested power setting was higher than

the prosthetist-chosen power setting for all subjects. Moreover, we found that on average, subjects

walking with their best tested power setting significantly reduced their cost of transport (COT) by

0.04 (0.02) compared to walking with the prosthetist-chosen power setting. This change is larger

than the within-day minimum detectable change (MDC) for COT reported by Davidson et al. [34],

which is 0.022. Therefore, we consider this difference a meaningful change and not likely due

to measurement variation. On an individual basis, 6 of the 9 subjects analyzed had differences

in COT greater than the MDC; the exceptions to this were Subject 1 (0.167), Subject 4 (0.012),

and Subject 8 (0.005). The cost of transport calculated here is similar to values reported in other

studies of people with transtibial amputation walking with the BiOM at similar walking speeds. In

this study, the average COT for the prosthetist-chosen setting was 0.39 (0.04) , while the average

was 0.40 (0.05) in Gardinier et al. [52] and 0.36 in Herr et al. [63].

Since the prosthetist-chosen power setting was chosen to approximate the work done by a

biological ankle during walking, our results suggest that individuals with transtibial amputation

may require ankle work in excess of biological norms in order to reduce their metabolic effort. The

biological net ankle work for non-amputee subjects walking at 1.25 m/s is approximately 0.1 J/kg [63,

64]. On average, the best tested power setting in our study corresponded to net ankle work of 0.24

(0.07) J/kg, which is roughly double that of non-amputee subjects. As aforementioned, this finding

is supported in studies conducted with able-bodied individuals wearing both exoskeletons [94,119]

and an ankle prosthesis emulator [23]. In contrast, a recent study by Quesada et al. [131] did not

show an effect of prosthesis work on the metabolic work rate of amputee subjects. Differences
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between our study and the study by Quesada et al. could have arisen from a variety of factors,

including the functional level of the subject population and/or different prosthesis controllers. The

subject cohort analyzed in our study comprised six K4 and three K3 individuals, while the cohort

tested by Quesada et al. included six K3 and no K4 individuals. Gardinier et al. [52] found that

individuals with K4 functional level were significantly more likely to receive an metabolic benefit

from the BiOM than those with a K3 level, which may partially explain the different outcomes of

these studies. Additionally, the various prosthesis emulator work conditions tested in by Quesada

et al. were generated by modifying the torque-angle relationship, and as such, the prosthesis

work remained mostly constant between steps. In contrast, the BiOM device is controlled using

a reflexive controller, which utilizes a neuromuscular model to command a torque at each step,

and varies depending on how the user loads the prosthesis [38, 63, 114]. The reflexive controller

and powered plantarflexion on the BiOM device are hypothesized to help users maintain balance,

especially on variable terrain [38, 53]. Similarly, Kim et al. [89] demonstrated that a stabilizing

controller which modulates ankle push-off work each step reduced metabolic cost and step width

variability in able bodied-users walking with an ankle prosthesis emulator. The reflexive nature of

the BiOM’s controller may have played an important role in the observed reduction of metabolic

cost in the amputee subjects in our study, perhaps by reducing balance-related compensation efforts

or allowing users to explore different assistance strategies by changing how they load the device

step-to-step. Further studies will be required to determine the exact role that the reflex controller

plays in reducing energy cost in prosthesis users.

The results of this study did not fully support our hypothesis that we would see an increase in

COT at the highest power setting, indicative of too much ankle power. In fact, no significant group

differences in COT were found between the 50 %, 75 %, and 100 % conditions (corresponding to

mean net ankle work of 0.19 (0.08) J/kg, 0.22 (0.05) J/kg, and 0.24 (0.07) J/kg respectively). When

examining the data on a subject-specific basis, we saw that 5 of the 9 subjects analyzed had the

best tested power setting at 75 %. Yet, of these subjects, only Subjects 5 and 6 exhibited the

anticipated trend of increased COT at 100 % (both S5 and S6 increased their COT by 0.049 from
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75 % to 100 %; the minimum detectable change (MDC) is 0.022). The other three subjects (S3,

S4, S8) had changes in COT smaller than the MDC between 75 % and 100 %. The remaining

three participants had their best tested settings located at the maximum (100 %), which did not

support our hypothesis. It is possible that these findings are also tied to the reflexive controller of

the BiOM. Many subjects exhibited a plateau or a decrease in net ankle work past the 50 % power

setting, which also corresponded to little change in COT past this power setting. Accordingly, it

appears that some subjects down-regulated the amount of work they received from the device at

the higher power settings, most likely by not loading the device with their full body weight and

exploiting the reflexive nature of the controller. As our experimental setup did not include force

plates, we were unable to experimentally confirm this in the current study.

When we examined the relationship between net ankle work and COT (with all subjects pooled),

we found a moderate linear correlation (r = −0.55). Yet, the best fit linear model only resulted

in R2 = 0.30, which highlights the variability between subjects. On an individual basis, we found

much stronger linear relationships between net ankle work and COT (r = −0.82 (0.15); R2 =0.69

(0.22)). Accordingly, most of the subjects tested (6 of 8, excluding Subject 8) had best tested

conditions that corresponded to their maximum ankle work (see Figure 2.7). For Subject 3, the

difference in COT between the best tested condition (75 %) and the condition with the maximum

net ankle work (50 %) was well below the minimum detectable change for COT (< 0.01) [34]; this

difference was much larger in Subject 6 (0.04). We could not complete this analysis for Subject

8, because we were unable to collect BiOM ankle work data during the 100 % condition. There-

fore, the power setting that maximized the ankle work delivered by the device was energetically

optimal (or very close to energetically optimal) for nearly all participants in this study. Given this

trend, however, it is also interesting to note that the net ankle work that corresponded to the best

tested condition was quite variable between subjects, ranging from approximately 1.5 times (min:

0.14 J/kg) to 3.5 times (max: 0.36 J/kg) the work of a typical biological ankle.

The reflexive controller and corresponding variability in net ankle work that users produced

between 0 % and 25 % power conditions could also explain why we saw an increase in COT for
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some subjects between these conditions. Although there were no significant group differences

between these conditions, we observed an increase in COT between the 0 % and 25 % power con-

ditions greater than the MDC for Subjects 1, 2, and 5 (mean (SD) difference: 0.04 (0.02), n=3,

see Figure 2.4). Qualitatively, we noticed that these same subjects were those who elicited only

a modest increase in net ankle work between 0 % and 25 % power conditions (mean (SD) differ-

ence: 0.01 (0.01) J/kg, n=3, see Figure 2.6). Similarly, those five subjects (S3, S4, S6, S8, S10) who

elicited substantially more ankle work at 25 % than at 0 % (mean (SD) difference: 0.07 (0.02) J/kg,

n=5) exhibited a decrease or very small increase in COT between these conditions (mean (SD)

difference: 0.00 (0.01)). The final subject (S9), exhibited very little change in ankle work or COT

between the 0 % and 25 % power conditions. These results seem to classify our subject cohort into

two groups when a small amount of power was provided: those who took advantage of the power,

and those who appeared to modify their behavior to avoid receiving power from the device and

correspondingly increased their COT. If the work the device performed at this power setting was

disruptive to the natural walking dynamics or balance of the subject, it is possible that they were

“fighting” the device by increasing muscular co-contraction or adopting atypical compensatory

gait mechanisms, which may have driven up metabolic cost for those participants [48]. Given our

small sample size and the high level of breath-by-breath variability in the metabolic measurements,

further analysis of additional biomechanical quantities (e.g., electromyography, inverse kinemat-

ics, spatiotemporal parameters) will be conducted to investigate these mechanisms in detail and to

determine quantitative relationships, if any.

This study presents quantitative evidence regarding how users respond differently to various

ankle power settings and exploit the BiOM’s reflexive controller in order to reduce their metabolic

cost. There are several hypothetical reasons that users might adapt their gait to reduce the plan-

tarflexion power they receive from the device at various power settings. Users could be actively

off-loading the device at higher power settings because they feel uncomfortable or unstable, and

resultant compensatory gait strategies or “fighting” the device could lead to higher energy con-

sumption. However, it is also possible that users are subconsciously or passively adapting their
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interaction with the device in order to optimize a physiological objective function, such as min-

imal metabolic cost [36], minimal impact forces [42], or maximal stability [66], among others.

Further detailed analyses of additional biomechanical measures (e.g., electromyography, ground

reaction forces) are required to elucidate the underlying causes for these observations. The results

of this study provide some insight into additional elements of prosthetic control that may be neces-

sary to reduce metabolic cost, beyond only the magnitude of ankle power delivered. The complex

interactions between prosthetic control, metabolic cost, muscle activity, joint kinetics, stability,

and patient satisfaction remain a hugely important topic for continued future research in order to

inform powered prosthetic ankle prescription and improve patient outcomes.

Our study is not without its limitations. First, there was a limited sample of participants, and

due to the walking stamina necessary to complete the experiment, we only tested active, healthy

individuals. People with higher levels of ambulatory function (K3-K4) are capable of walking

with variable cadence and performing advanced ambulation tasks, and may be able to better adapt

their gait in order to take advantage of power from the device. Additional studies with a modified

protocol will be necessary to determine how these results extend to individuals with lower levels

of ambulatory function. Second, it is possible that the five-minute acclimation time was insuffi-

cient for some participants to adjust to each power setting. Compared to other studies in which

the users had hours [63], multiple sessions [131], or even weeks [145] to acclimatize to a powered

device and its conditions, the users in our study received less time to familiarize themselves with

the power settings. Although the results from our study suggest that some participants were able

to adapt to the power delivered from the device in this short amount of time, it is possible that

some subjects may have required more time and/or specific training to fully adapt to each setting.

Third, to prevent physical fatigue and respect time constraints, we tested participants in increments

of 25 %, which is a very coarse sampling of the parameter space, and may have limited our ability

to identify the true energetically optimal power setting for all users. Due to device limitations, we

could not test users past 100 % power (0.24 (0.07) J/kg), so it is also possible that a more energeti-

cally favorable setting exists outside our tested range. As we do not know the exact physiological
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relationship between power setting and COT, we can not currently extrapolate these results outside

the tested range. Fourth, our experimental setup did not include an instrumented force treadmill

so we were not able to experimentally validate the agreement between the BiOM’s step-by-step

calculations of net ankle work and average peak ankle power and those values obtained through

inverse dynamics. Future studies with the BiOM prosthesis that include an instrumented treadmill

will further improve the generalizability of this study’s results. Finally, it is important to point out

that our study was limited to evaluating the best power setting while participants walked on a level

treadmill at a constant speed. It is likely that the optimal power setting would change when users

walked at different speeds, at an incline or decline, or over variable terrain, so this study can not

make universal claims about the optimal power setting for all tasks.

In conclusion, to minimize their metabolic energy consumption, subjects in this study required

a higher power setting than the setting chosen by the prosthetist to approximate biological ankle

kinetics. On average, the power setting setting which minimized energy cost corresponded to ap-

proximately double the net ankle work of the biological ankle. Furthermore, subjects walking at

their best tested power setting exhibited a meaningful decrease in cost of transport compared to

walking with their prosthetist-chosen power setting, which suggests that individuals may benefit

metabolically from prescribed ankle power that exceeds biological norms. However, the varied

responses between subjects also point to the need for subject-specific parameter tuning. As one

solution, recent work has demonstrated the feasibility of automatically tuning assistive device pa-

rameters to minimize metabolic cost (i.e., body-in-the-loop optimization) [35, 44, 92, 189], and

continued research in this area has the potential to impact clinical device prescription. Finally,

subjects’ net ankle work was highly variable at different power settings, likely due to the reflexive

controller of the BiOM and the user’s adaptation to the device. As such, future work should focus

on quantifying the mutual adaptation of the human user and the device to inform the design of

optimal powered prosthesis controllers for individuals with transtibial amputation.
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CHAPTER 3

Evaluating Physiological Signal Salience for

Estimating Metabolic Energy Cost from Wearable

Sensors

3.1 Background

Wearable assistive robotic devices, such as powered prostheses or exoskeletons, have the po-

tential to aid and restore mobility in users who suffer from conditions such as stroke, spinal cord

injury, or amputation. They can also augment performance in able-bodied individuals. Some of

these devices are specifically developed to reduce the energy cost of ambulation tasks such as

walking, running, or climbing stairs [7, 9, 43, 100, 120]. From a human-augmentation perspective,

the less energy a person uses, the longer they can perform a particular activity. This reduction

in energy cost also has clinical relevance, as individuals with movement disabilities often have a

higher energetic cost of transport than able-bodied individuals, which further limits their activity

level [96, 171].

The assistive devices employed for this purpose often have a large number of tunable controller

settings that dictate their behavior and their interaction with the user. Such settings might include

stiffness, actuation power, or actuation timing. In the clinic, these settings are tuned heuristically,

often relying on visual inspection by a trained clinician and verbal feedback from the patient. This

This chapter has been previously published in full in the Journal of Applied Physiology [77].
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approach is time consuming and subjective—two issues that are amplified for research prototypes

that often have an even higher number of settings and tunable controller parameters. Identifying the

best parameters for each individual is a challenge. As one proposed solution, “body-in-the-loop”

optimization algorithms have been successfully employed as a method to quickly tune assistive

device parameters on a subject-specific basis and in real time [35, 44, 90, 92, 189]. Body-in-the-

loop optimization is the process of iteratively and automatically tuning parameters of assistive

robotic devices to minimize a physiological cost function while an individual is using the device.

While the aforementioned studies have differed in their optimization algorithms, assistive device

hardware, and tuning parameters of interest, all of them used metabolic energy cost (i.e., how much

energy the body requires on a cellular level) as the physiological objective to minimize.

The automatic evaluation of energetic cost that is required for this method is currently one of

the rate-limiting factors in the translation of these algorithms to real-world assistive devices. The

state-of-the-art experimental measurement system for energy cost is indirect calorimetry, a method

which estimates energetic cost using measurements of oxygen consumption and carbon dioxide

production [18]. commercially available indirect calorimetry systems comprise a flowmeter em-

bedded in a rubber mask that covers the nose and mouth of the user, and one or more processing

units and battery packs typically secured to the user’s body with a harness. While these systems

are widely used, they are ill-suited for continuous use or long-term data collections because of the

obtrustiveness of the mask and processing units. In addition to the bulky equipment, the data ob-

tained from indirect calorimetry are extremely noisy, sparsely sampled, and dynamically delayed.

As such, to obtain an accurate estimate of energy cost for a given activity, it is common practice to

have individuals walk for 2–3 minutes to reach a steady-state oxygen consumption level [116,154].

Once steady state has been reached, another 2–3 minutes of breath data are recorded and subse-

quently averaged into one estimate of energy cost for that activity. To mitigate some of these

challenges, all body-in-the-loop optimization studies to date have leveraged the work of Selinger

and Donelan [154], modeling and inverting the kinetics of the respiratory response as a first order

linear system. While this approach enables researchers to use non steady-state breaths to estimate
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energy cost, current body-in-the-loop optimization protocols still require 2–4 minutes to estimate

the energy cost at a particular parameter setting [35, 44, 90, 92, 189]. These challenges prevent

body-in-the-loop optimization algorithms from being used outside the lab during clinical fitting

sessions and/or integrated into devices that individuals wear in their daily lives.

To realize the full potential of body-in-the-loop optimization algorithms, our estimates of en-

ergy cost need to be accurate, fast, comfortable (i.e., no mask), and portable; current indirect

calorimetry equipment cannot provide these properties. As such, the long-term goal of our work is

to predict energy cost quickly and accurately using physiological signals from portable, wearable

sensors, which can then be integrated into an online optimization of assistive device parameters.

In this paper, we aim to quantify individual signal salience (i.e., predictive capability) and discover

which signals, or groups of signals, have the best predictive power for our application of body-

in-the-loop optimization. In particular, we are interested in how well signals or groups of signals

can predict steady-state energetic cost (i.e., the amount of energy required to perform a particular

activity), as well as generalize across different subjects and tasks.

This approach is enabled by recent developments in wearable sensor technology, that have

resulted in devices that are capable of providing quick and accurate estimates of physiological

quantities (e.g., heart rate (HR), skin temperature) and information about movement (e.g., accel-

eration). All these quantities relate to how much energy a person is expending. Several previous

studies have utilized various types of sensors, signal pre-processing techniques (i.e., filtering and

feature extraction), and final predictive algorithms to estimate energy cost during a variety of ac-

tivities. Commercial accelerometers placed on the chest, hip, feet, and/or wrists are historically

the most common sensor used to predict energy cost, due to their simplicity and the inherent re-

lationship between movement and energy expenditure [32, 33, 39, 61, 143, 163, 166, 167]. Heart

rate is another common physiological signal used to estimate energy cost, and a linear relation-

ship between heart rate and energy expenditure during sub-maximal physical activity has been

established [86, 118, 137]. However, given that heart rate is tightly controlled by the nervous sys-

tem, changes in heart rate can also be attributed to changes in emotional arousal and may require
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individual calibration [2, 16, 86, 106]. Some of these factors have been mitigated by combining

heart rate monitors with accelerometers [16, 17, 41], or biological parameters (e.g., gender, age,

weight) [86] in predictive algorithms. Some more recent studies have incorporated autonomic

nervous system signals, such as skin temperature, humidity, and electrodermal activity into their

estimates of energy cost [2, 3, 177]. Electrodermal activity (also called galvanic skin response), is

a measure of skin conductance, which changes when an individual begins to sweat. While elec-

trodermal activity has primarily been used as an indicator of emotional arousal or stress, changes

in this signal have also been linked to changes in physical workload [126]. Skin temperature also

has been widely used as a measurement tool for cognitive workload; decreasing skin tempera-

ture is associated with increased mental workload [126], but its relationship with metabolic work

rate has not yet been well defined. Finally, muscle activity (i.e., electromyography, EMG) and

joint kinematics have been used to predict energy cost both in simulation [159], and experimen-

tally [15, 67, 178]. Most often, EMG signals are processed in the time domain by calculating a

linear envelope or mean activation to correlate with energetic cost [67], but frequency domain pro-

cessing methods have also been utilized to resolve EMG signals into intensities to estimate energy

cost during cycling [15, 178].

Many studies have concluded that predicting energy cost using a combination of sensors im-

proves estimates of energy cost across participants and across physical activities [3,16,17,41,75,76,

143]. Recent work has thus utilized multi-sensor arrays embedded in textile clothing, such as EMG

shorts [170] and the Hexoskin smart shirt (containing a waist-mounted accelerometer, heart rate

monitor, and respiratory bands to measure breath frequency and minute ventilation) [13]. These

systems enable high-fidelity measurement of physiological signals outside the laboratory setting.

For example, the Hexoskin smart shirt uses two strain gauge bands positioned around the chest

and abdomen to measure breathing frequency and minute ventilation; the physiological signals ob-

tained using the Hexoskin smart shirt have been experimentally validated [175]. With these combi-

nations of sensors, the most common predictive algorithm is multiple linear regression, which has

been successful in predicting energy cost across multiple users and tasks. However, linear regres-
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sion algorithms can produce large task-specific or subject-specific errors, so more sophisticated

machine learning algorithms such as neural networks [12, 118, 143], and random forests [13, 39]

have also been explored.

Most studies to date have investigated the predictive capability of only a small subset of sen-

sors, which makes it challenging to compare which signals or groups of signals contain the most

salient information for predicting energy cost across a variety of tasks and subjects. To design the

best predictive algorithms for energetic cost, there is a need to understand the potential that indi-

vidual signals and groups of signals hold for predicting energy cost. Altini et al. [3] compared the

predictive power of a relatively large set of signals (two accelerometers, heart rate, electrodermal

activity, skin humidity and respiration rate) across a range of physical activities, but only evaluated

the performance of two groups of signals. Preliminary studies performed by our group investigated

the predictive power of a large group of signals (including EMG, accelerometers, electrodermal ac-

tivity, skin temperature, oxygen saturation, heart rate, and respiratory rate) during a small subset of

activities [76], as well as the predictive power of different combinations of these signals [75]. The

goal of the present work is to expand on previous methods and quantify individual signal salience

for estimating energetic cost as well as characterize the ability of these signals to generalize to

unknown subjects and unknown tasks. In this study, we focused on using simple signal process-

ing techniques and prediction algorithms to stay as close as possible to the original sensor signals.

This study is an important step toward the goal of improving the clinical viability and translation of

body-in-the-loop optimization algorithms. Furthermore, the dataset made available in conjunction

with this article [78] will enable researchers and clinicians across many fields to develop novel

algorithms to predict energy cost from wearable sensors for a variety of applications.
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3.2 Methods

3.2.1 Experimental Data Collection

Ten healthy subjects—8 male, 2 female, age: 27.4 (SD 4.5) years, height: 1.76 (SD 0.09)

m, weight: 69.1 (SD 9.9 kg)—participated in this experiment, after giving informed consent to

protocol approved by the University of Michigan Institutional Review Board. Each subject com-

pleted two experimental sessions in which they performed a variety of physical activities at various

speeds and/or intensities (Table 3.1). The first experimental session consisted of sitting, standing,

level walking, incline walking, and backwards walking on a treadmill (Bertec Corp., Columbus,

OH); the second session consisted of sitting, standing, running on a treadmill, cycling on a sta-

tionary bike (Matrix Fitness, Cottage Grove, WI), and stair-climbing on a stairmill (Matrix Fit-

ness, Cottage Grove, WI). For each activity, subjects stood quietly for 6 minutes, performed each

speed/resistance condition for 6 minutes in a random order, and then sat quietly for 6 minutes.

All changes between speeds or intensities were performed as instantaneous step changes. Subjects

rested for approximately 10 minutes between activities.

During data collection, subjects wore a variety of sensors, detailed below and in Fig. 3.1. Oxy-

gen consumption (V̇O2), carbon dioxide production (V̇CO2), breath frequency, and minute ventila-

tion were recorded breath-by-breath using a portable respirometer (Oxycon Mobile, CareFusion,

San Diego, CA). Breath frequency was defined as the number of breaths per minute (units: min−1),

and minute ventilation was defined as liters of expired air per minute (units: L/min). Heart rate

(HR) was measured using a wireless heart rate monitor strapped around the chest (Polar Electro,

Inc., Bethpage, NY). Blood oxygen saturation (SpO2), defined as the percentage of oxygenated

hemoglobin, was measured using a pulse oximeter (Oxycon Mobile, CareFusion, San Diego, CA)

secured to the subject’s left earlobe. The heart rate monitor and pulse oximeter were synchronized

with the respirometer, so HR and SpO2 were recorded breath-by-breath. Subjects wore 4 commer-

cial tri-axial accelerometers (Opal, APDM Inc., Portland, OR) affixed to the left and right lateral

ankle, the left hip, and the center of the chest using elastic velcro straps; these accelerometers mea-
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Task Speed Intensity
Sitting - -

Standing - -

Level Walking
0.6 m/s -
0.9 m/s -
1.2 m/s -

Incline Walking

0.6 m/s 4◦

1.2 m/s 4◦

0.6 m/s 9◦

1.2 m/s 9◦

Backwards Walking
0.4 m/s -
0.7 m/s -

Running
1.8 m/s -
2.2 m/s -
2.7 m/s -

Cycling

70 rpm Resistance 1
70 rpm Resistance 3
70 rpm Resistance 5

100 rpm Resistance 1

Stair Climbing
- 60 W
- 75 W
- 90 W

Table 3.1: Experimental activities.

sured accelerations in the x, y, and z axes at 128 Hz. Subjects also wore 2 bilateral wristbands (E4,

Empatica, Milan, Italy) containing tri-axial accelerometers that recorded x, y, and z accelerations

of the left and right wrist at 32 Hz. The Empatica wristbands also recorded electrodermal activity

(EDA) and skin temperature at 4 Hz. Surface EMG electrodes (Biometrics Ltd., Ladysmith, VA)

recorded muscle activity from 8 bilateral lower limb muscles: gluteus maximus (GMAX), biceps

femoris (BF), semitendinosis (ST), rectus femoris (RF), vastus lateralis (VL), medial gastrocne-

mius (MGAS), soleus (SOL), and tibialis anterior (TA); EMG data were collected at 1kHz. All

sensor signals were time-synchronized during collection.
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Respirometer (Oxycon Mobile, CareFusion)

V CO2

Figure 3.1: Physiological signals. Oxygen consumption (V̇O2), carbon dioxide production (V̇CO2), breath
frequency and minute ventilation were measured breath-by-breath using a portable respirometer. Heart rate
(HR) was measured using a wireless heart rate monitor strapped around the chest. Surface electromyography
(EMG) electrodes recorded bilateral muscle activity from 8 lower limb muscles: gluteus maximus (GMAX),
biceps femoris (BF), semitendinosis (ST), rectus femoris (RF), vastus lateralis (VL), medial gastrocnemius
(MGAS), soleus (SOL), and tibialis anterior (TA). Skin temperature, electrodermal activity (EDA), and
accelerations of the wrist were recorded using bilateral wrist sensors. An inertial measurement unit (IMU)
placed on the chest, left hip, and ankles measured 3-axis limb acceleration. Blood oxygen saturation (SpO2),
was measured by a pulse oximeter secured to the subject’s left earlobe.

Missing Data

Due to equipment malfunction, we were not able to collect complete data sets from all subjects.

Subject 1 did not complete the stair-climbing activity. The right wristband worn by Subject 6 did

not record data during Session 2 so their right wrist accelerometry, electrodermal activity, and

skin temperature for running, cycling and stair climbing tasks were excluded from analysis. In

addition, the following signals were excluded from analysis for the given task due to electrode

disconnection: Subject 5’s left gluteus maximus (walking), Subject 3’s right gluteus maximus

(cycling), and Subject 3’s left semitendinosis (walking).
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3.2.2 Ground Truth Energy Cost

We calculated whole-body metabolic energy cost from unfiltered V̇O2 and V̇CO2 using the

Brockway equation [18], and normalized the data to subject body mass. We assumed that en-

ergetic cost was constant for a given 6-minute condition, and this value was obtained by averaging

the final 3 minutes of steady-state energetic cost measurements for that condition. Henceforth, this

value is referred to as the ‘ground truth’ energy cost for each condition. When the conditions were

concatenated in time, the ground truth energy cost formed a stair-step function, with steps that are

6 minutes long. These data served as our target data (i.e., the energy cost we aimed to predict). For

each activity, the ground truth energy cost from the standing bout at the beginning of the trial was

subtracted off to yield net energetic cost.

For this experiment, we used a portable metabolic system (Oxycon Mobile) to establish our

ground truth energy cost, as opposed to a tethered system (e.g., the Douglas bag method). The

manufacturer’s specifications for the Oxycon Mobile system report an accuracy of 0.05 L/min (3%)

for measuring both V̇O2 and V̇CO2; the accuracy for measuring minute ventilation is reported as

0.05 L/min (2%). Some previous studies have also investigated the reliability of portable metabolic

systems and found generally good measurement accuracy compared to other established methods

(e.g., [1, 141]).

3.2.3 Signal Processing

The total acceleration was calculated for each of the 6 accelerometers as the vector magnitude

of the 3 axes (
√
x2 + y2 + z2). We generated EMG linear envelopes by bandpass filtering the

raw EMG signals between 30–350 Hz, full-wave rectifying, and low-pass filtering with a cutoff

frequency of 5 Hz. Each subject’s EMG linear envelopes were normalized to peak activation level

of each muscle obtained across all activities performed during the same session. We calculated a

composite sum of normalized linear envelope EMG signals (Mi) to provide an overall estimate of

muscle activity for the left and right legs (8 muscles per leg):

49



Mtotal(j) =

√√√√ 8∑
i=1

M2
i j = left, right

Minute ventilation, breath frequency, V̇O2 , electrodermal activity, skin temperature, SpO2, and

heart rate were smoothed using a 1-minute Gaussian kernel with a cutoff frequency of 0.01 Hz

(as in [13, 140]). Individual EMG linear envelopes, EMG composite sums, and vector magnitude

accelerations were filtered using a 1-minute Gaussian kernel with a cutoff frequency of 0.1 Hz.

EMG and acceleration signals were filtered more aggressively to account for the higher frequency

content in these signals due to their fluctuation within the gait cycle.

3.2.4 Data Analysis

We employed two statistical methods to quantify the predictive capability of individual signals

or groups of signals: 1) Pearson’s correlation coefficients and 2) linear regression models. We

evaluated the linear regression models using leave-one-task-out and leave-one-subject-out cross

validation. We also found the best possible linear regression models from our data set (across all

subjects) containing up to eight signals.

Pearson’s Correlation Coefficients

The Pearson’s correlation coefficient (−1 < r < 1) is a measure of the linear relationship

between two variables, where 1 is perfect positive linear correlation, 0 is no linear correlation, and

-1 is perfect negative linear correlation. We pooled data across all activities for one subject and one

individual signal, and calculated the correlation coefficient between ground truth energy cost and

the individual signal. We repeated this analysis for all 10 subjects, and calculated the mean and

standard error across subjects. We then performed these calculations for all 16 individual signals

both before and after filtering.

Although no formal cutoff exists to define ‘good’ correlation, in this study, we define a cor-

relation greater than 0.7 as a strong linear correlation; this value agrees with other studies which
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have investigated the relationship between physiological signals and energy cost (e.g., [3, 167]).

We also calculated the correlation of V̇ O2 with ground truth energy cost to serve as a ‘benchmark’

for comparison; since V̇ O2 is included in the calculation of ground truth energy cost, we expect

this correlation to be very high. Yet, this correlation will not be perfect because breath-by-breath

V̇ O2 is a noisy signal with a dynamic delay, and only the final three minutes of V̇ O2 measurements

were included in the calculation of ground truth energy cost.

Linear Regression Models

We calculated single and multiple linear regression models of the following form,

ŷ = b0 +
k∑
i=1

bixi = Xb (3.1)

where k is the number of signals included in the regression model andm is the number of samples;

ŷ ∈ Rm is the vector of predicted energy cost; X = [1 x1 ... xk] ∈ Rm×(k+1), where xi ∈ Rm

are the signals included in the regression model, each interpolated and re-sampled at 1Hz, and

1 ∈ Rm is a vector of ones; b = [b0 b1 ... bk]
T ∈ Rk+1 is the vector of signal weights,

including an offset term.

We calculated 17 cross-validated single linear regression models with each of a smaller subset

of signals, including 6 vector magnitude accelerations, 2 EMG composite sums, left/right electro-

dermal activity, left/right skin temperature, heart rate, oxygen saturation, breath frequency, minute

ventilation, and V̇ O2 (to serve as a benchmark for performance). In addition, we trained and

evaluated 4 cross-validated multiple linear regression models (Table 3.2). For the multiple linear

regression analysis, we divided the signals into two broad categories: the global signals, which

give information about the state of the body as a whole (e.g., heart rate, electrodermal activity,

skin temperature), and the local signals, which give information about one particular limb segment

(e.g., accelerations, EMG). The first three multiple linear regression models contained 1) the local

signals alone, 2) the global signals alone, and 3) the combination of global and local signals (see
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Table 3.2 for a complete list of signals included in each model). For comparison to a commer-

cially available portable sensor system (i.e., the Hexoskin smart shirt [25]), the fourth multiple

linear regression model contained the group of signals that can be obtained using the Hexoskin

smart shirt (i.e., breathing frequency, minute ventilation, heart rate, and waist accelerometry). This

fourth group will henceforth be referred to as the ‘Hexoskin signals.’ All cross-validated single

and multiple linear regression models were calculated using pre-processed and filtered signals.

Vec. Comp. Electro-
Mag. Sum dermal Skin Breath Minute Heart Oxygen
Accel. EMG Act. Temp. Freq. Vent. Rate Sat.

Local × ×
Global × × × × × ×
Local + Global × × × × × × × ×
Hexoskin signals Hip only × × ×

Table 3.2: Signal groups included in linear regression models.

Cross Validation

We utilized two evaluation methods to examine the effect of task- and subject-specificity on the

predictive capability of each signal or group of signals: 1) leave-one-task-out cross validation, and

2) leave-one-subject-out cross validation. For each evaluation method, the data were partitioned

into two sets, a training set (including training data, X̄, and training targets, ȳ) and a testing set

(including test data X′, and test targets, y′), according to Table 3.3. The cross validation was

repeated until each task or subject had been left out once; therefore we conducted 6-fold leave-

one-task-out cross validation and 10-fold leave-one-subject-out cross validation (Table 3.3).

For each fold (indexed by f ), we used the training data (X̄f ) and training targets (ȳf ) to calcu-

late the regression weights (bf ) using the pseudoinverse,

bf = (X̄T
f X̄f )

−1X̄T
f ȳf (3.2)
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Train Test Repeat # of Folds (F )
Leave-one Subject = S Subject = S

t ∈ T 6
task-out Task = T\{t} Task = t

Leave-one Subject = S\{s} Subject = s
s ∈ S 10

subject-out Task = T Task = T

S = {1, 2, ...10} is the set of all subjects. If s = {1}, then S\{s} = {2, 3, ...10}
T = {1, 2, ...6} is the set of all tasks.

Table 3.3: Cross-validation methods for linear regression models.

We then used the identified signal weights (bf ) to predict the energy cost (ŷ′f ) from the test

data (X′f ),

ŷ′f = X′fbf (3.3)

We compared the predicted energy cost (ŷ′f ∈ Rm) to the ground truth energy cost (i.e., the

test targets, y′f ∈ Rm) by calculating the root mean squared error (RMSEf ∈ R) between the two

time-series signals,

RMSEf =

√
1

m
(y′f − ŷ′f )

T (y′f − ŷ′f ) (3.4)

We then computed the mean and standard deviation of the RMSE across all folds.

Best Possible Models

Finally, we determined the best possible combinations of signals from our data set. The goal of

this analysis was to determine the best combinations of signals to use if an experimenter only chose

to use a small number of sensors (here: fewer than eight). To achieve this, we pooled data across

all subjects and all activities and trained every possible linear regression model using 1–8 of the

16 signals mentioned in the previous section. The number of tested models was calculated using

the binomial coefficient (nCk, or “n choose k”), which calculates the number of ways to choose an

unordered set of k elements from a fixed set of n elements,
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nCk =
n!

k!(n− k)!
(3.5)

In this experiment, n = 16 and k = [1, 2, .., 8] so the number of tested models were,

16Ck = [16, 120, 560, 1820, 4368, 8008, 11440, 12870], k = [1, 2, .., 8]

For each k, we calculated the RMSE for all models, and then sorted the 16Ck models based on

their RMSE. We considered the model with the smallest RMSE the best model for a given k.

3.3 Results

To illustrate the general characteristics of the signals, time-series data and correlation coef-

ficients for eight pre-processed and filtered signals are presented for one representative subject,

along with ground truth energy cost (Fig. 3.2). Local signals (i.e., acceleration and EMG) changed

nearly instantaneously with a step change in energy cost, while global signals (e.g., heart rate,

electrodermal activity) demonstrated time-delayed responses to the same step change. Signals that

were strongly correlated with ground truth energy cost (e.g., heart rate and minute ventilation) were

sensitive to small changes in energy cost. On the contrary, signals such as electrodermal activity,

skin temperature, and oxygen saturation (SpO2) had a coarser relationship with ground truth en-

ergy cost, and seemed to capture information about general increases or decreases in energy cost,

while being unable to discern between individual steps.

The diverse set of tasks tested in this experiment resulted in a wide range of intensity levels be-

tween tasks. Across subjects, the activity that required the lowest net metabolic energy expenditure

was level ground walking at 0.6 m/s; the mean ground truth energy cost for this activity was 3.33

(SD 0.48) W/kg. The activity that required the highest net metabolic energy expenditure was running

at 2.7 m/s; the mean ground truth energy cost for this activity was 13.33 (SD 1.64) W/kg. Therefore,

on average, the range of ground truth energy cost experienced by subjects across tasks was 10 W/kg.
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Figure 3.2: Time-series plots for filtered signals. Time-series plots for 8 filtered signals from one represen-
tative subject (Subject 4) for all 6 physical activities. Depicted ankle acceleration, EMG sum, electrodermal
activity (EDA), and skin temperature are taken from the left side of the body. Left-hand axes measure the
physiological signal (shown in blue); right-hand axes measure ground truth energy cost (shown in yellow).
Pearson’s correlation coefficient (r) between the signal and ground truth energy cost is written at the top left
of each graph. For those signals with negative correlations (SpO2 and skin temperature), the left-hand axis
is reversed (i.e., smaller values are at the top) to allow for visual overlay.

Effect of Filtering on Correlation with Ground Truth Energy Cost

Filtering dramatically improved the correlation of vector magnitude accelerations and linear

envelope EMG signals, which are highly periodic with the gait cycle (Fig. 3.3). The filtered

composite sum EMG signals had higher correlations than individual muscle signals, except for

bilateral biceps femoris (Table 3.4). Filtering only slightly improved the average correlation of

electrodermal activity, skin temperature, and heart rate, but improved correlation more substan-

tially for breath frequency, minute ventilation, and oxygen saturation (Fig. 3.3). Unfiltered/filtered
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V̇ O2 had higher mean correlations than any of the other individual unfiltered/filtered signals tested.

As aforementioned, we expected the correlation between ground truth energy cost and V̇ O2 to be

very high. Therefore, we use this correlation as a ‘benchmark’ to compare the correlation of other

signals to.

Unfiltered Filtered
Mean (SEM) Mean (SEM)

Left Right Left Right

Vector Magnitude Accelerations
Chest .11 (.03) .70 (.12)
Waist .15 (.04) .68 (.13)
Ankle .30 (.07) .30 (.07) .69 (.14) .68 (.14)
Wrist .22 (.09) .23 (.10) .68 (.13) .63 (.19)

Linear Envelope EMG
Gluteus maximus .20 (.03) .10 (.04) .47 (.07) .23 (.09)
Rectus femoris .12 (.03) .12 (.03) .33 (.09) .29 (.06)
Vastus lateralis .11 (.03) .12 (.03) .41 (.11) .41 (.10)
Semitendinosis .20 (.03) .18 (.04) .55 (.06) .46 (.09)
Biceps femoris .25 (.03) .27 (.02) .66 (.06) .67 (.05)
Medial gastrocnemius .09 (.03) .12 (.02) .33 (.09) .44 (.07)
Soleus .15 (.02) .11 (.03) .47 (.06) .34 (.08)
Tibialis anterior .08 (.04) .06 (.03) .19 (.10) .17 (.08)
Composite sum .27 (.03) .25 (.03) .61 (.07) .51 (.07)

Respiratory and Physiological Signals
V̇ O2 .88 (.01) .95 (.00)
Breath Frequency .52 (.04) .68 (.04)
Minute Ventilation .86 (.01) .91 (.01)
SpO2 -.36 (.10) -.39 (.10)
Heart Rate .86 (.02) .86 (.02)
Electrodermal Activity .42 (.04) .42 (.06) .42 (.04) .43 (.06)
Skin Temperature -.16 (.08) -.20 (.08) -.16 (.08) -.20 (.08)

Mean (SEM) of Pearson’s correlation coefficient was calculated across subjects
(N=10). For signals collected bilaterally, results from left and right sides are pre-
sented in left and right columns, respectively.

Table 3.4: Effect of filtering on predictive capability of signals.
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Effect of Task and Subject Specificity on Prediction of Ground Truth Energy Cost

For the 17 cross-validated single linear regression models, evaluated using all six tasks, leave-

one-task-out cross validation resulted in higher average root mean squared error (RMSE) than

leave-one-subject-out cross validation, and we observed considerable variability between folds

(Fig. 3.4A). For leave-one-task-out cross validation, the signal with the highest RMSE (i.e., worst

performance) was the chest accelerometer (4.56 (SD 5.76) W/kg); for leave-one-subject-out cross

validation, the signal with the highest RMSE was left electrodermal activity (2.93 (SD 0.69) W/kg).

minute ventilation had the lowest RMSE (i.e., best performance) of any signals tested, for both

leave-one-task-out (1.22 (SD 0.49) W/kg) and leave-one-subject-out (1.24 (SD 0.14) W/kg) evaluation

methods (Fig. 3.4A). For comparison, the RMSE of filtered V̇O2 was 0.88 (SD 0.42) W/kg for task-

left-out and 0.93 (SD 0.16) W/kg for subject-left-out cross validation (Fig. 3.4A). We examined the

results of each fold of leave-one-task-out cross validation individually; the mean RMSE (across all

signals) was 1.5–3 times higher when running was left out of the cross validation than any other

task (Table 3.5).
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Left Out Task Walking Incline Backwards Running Cycling Stairs

RMSE, Mean (SD) (W/kg) 2.24 (0.81) 2.97 (0.75) 1.89 (0.53) 4.45 (1.40) 1.67 (0.94) 1.92 (0.60)

Table 3.5: Root mean squared error (RMSE) from individual folds of 6-fold leave-one-task-out cross vali-
dation.

Given these findings, we also performed a 5-fold leave-one-task-out cross validation, including

level walking, incline walking, backwards walking, cycling, and stair climbing (i.e., excluding

running) (Fig. 3.4B). Across all signals, excluding running from the cross validation (Fig. 3.4B)

resulted in a 31.1 (SD 9.6) % reduction in RMSE compared to the 6-fold leave-one-task-out cross

validation (Fig. 3.4A). The signals with the largest differences were chest acceleration and left and

right EMG composite sums; the signal with the smallest difference was waist acceleration.

Effect of Signal Groups on Prediction of Ground Truth Energy Cost

Regression groups that included the local signals (Local, Local+Global) performed worse when

using leave-one-task-out cross validation than leave-one-subject-out cross validation (Fig. 3.5);

regression groups which included mostly global signals (Global, Hexoskin) did not exhibit such a

discrepancy in performance between evaluation methods. For leave-one-task-out cross validation,

both the Global (1.23 (SD 0.54) W/kg) and Hexoskin (1.28 (SD 0.56) W/kg) models predicted energy

cost almost as well as simply using filtered and scaled V̇ O2 measurements (0.88 (SD 0.42) W/kg).

For leave-one-subject-out cross validation, the Global (1.25 (SD 0.34) W/kg), Local+Global (1.28

(SD 0.34) W/kg), and Hexoskin (1.24 (SD 0.25) W/kg) groups were within 0.4 W/kg of filtered and

scaled V̇ O2 (0.93 (SD 0.16) W/kg).

Effect of Using Best Possible Models on Prediction of Ground Truth Energy Cost

As the number of predictors increased, so did the performance of the regression models, but

with diminishing return. The RMSE and signals included in the best-performing regression models

(trained and tested on data pooled across all subjects and tasks) with k = [1, 2, ... 8] predictors are

shown in Fig. 3.6. This sequence of best predictor combinations exhibited an incremental structure:
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the best combination of k predictors simply amended the best combination of k−1 predictors with

an additional predictor. For example, for k = 2, we found minute ventilation and EMG composite

sum (left) to be the best predictors, and for k = 3, minute ventilation, EMG composite sum (left),

and waist acceleration. This structure was not enforced as we tested every possible combination

of predictors independently for each k. In order, the signals found were minute ventilation, EMG

composite sum (left), waist acceleration, electrodermal activity (right), breath frequency, heart

rate, wrist acceleration (left), and ankle acceleration (right). With k = 1 predictor, the RMSE was

1.24 W/kg; With k = 8 predictors, the RMSE improved to 1.03 W/kg.
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3.4 Discussion

In this study, we systematically evaluated the predictive capability of multiple physiological

signals, alone and in combination with others, to predict metabolic energy cost. We focused on

simple signal processing techniques and prediction algorithms to investigate the ‘baseline’ perfor-

mance for each signal. The study is intended to inform the design and development of algorithms

to estimate energy cost from physiological data acquired from wearable sensors in order to improve

the speed, accuracy, and portability of body-in-the-loop optimization algorithms. These findings,

as well as the large accompanying dataset [78], also have broad applications for any researchers or

clinicians interested in predicting energy cost using portable sensors. These applications include,

but are not limited to, the fields of exercise science, athletic training and performance, pediatric

medicine, geriatric medicine, personal fitness, and rehabilitation. Using portable sensors to predict

energy cost not only eliminates the need to use the bulky and cumbersome respiratory mask, but

also enables researchers and clinicians to obtain estimates of energy cost outside the laboratory

environment, for long or short periods of time, and from people across ages and ability levels.

We found that various combinations of physiological signals can predict steady-state energy

cost quite well, even for unknown subjects and unknown activities. To illustrate this point, the

overall predictive error obtained using the Global or Hexoskin signals groups represented only

∼1.25% of the total range of energy cost experienced across the tasks (which was approximately

10 W/kg), and the error obtained using V̇ O2 as a predictor was∼0.9%. Therefore, the error obtained

using the Global and Hexoskin signal groups comprised only a small fraction of the natural varia-

tion in energy cost across tasks, and was very close to the predictive power of V̇ O2 itself. It is very

difficult to compare predictive performance across studies due to the large number of confounding

variables (e.g., subjects, tasks, sensors, algorithms, units of metabolic power used), but our pre-

dictive performance falls into the range of previously reported performance using linear regression

algorithms across a variety of tasks. For example, Altini et al. [3] reported an RMSE of 1.59 kcal/min

(∼1.5 W/kg for a 70-kg subject) across a set of tasks similar to those tested in our study. These

findings demonstrated that without any advanced signal processing methods or machine learning
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algorithms, it was possible to predict energy cost using portable, wearable sensors, without the use

of the cumbersome respiratory mask.

In order to not bias our findings, we stayed as close as possible to the original sensor signals.

Still, some basic data processing was required to improve the predictive capability of certain types

of sensors. Filtering, for example, dramatically improved the correlations of ground truth energy

cost with the accelerometers and the linear envelope EMG signals (Fig. 3.3). These filters effec-

tively removed any periodic fluctuations associated with a gait cycle or other repetitive pattern,

and generated a broader estimate of motion intensity. For signals that did not show such periodic

fluctuations, including heart rate, electrodermal activity, or skin temperature, filtering did not im-

prove the correlation. Yet, in a real-time application, it may still be beneficial to filter these noisy

physiological signals to yield smoother estimates.

We also found a benefit to calculating the total EMG activity for one leg (i.e., composite sum),

as opposed to using individual muscle signals to predict energy cost (Table 3.4). Intuitively, differ-

ent tasks require different muscle activation patterns, and therefore it is unlikely that one individ-

ual muscle would be able to capture the energetic requirements accurately across multiple tasks.

Moreover, the composite sum EMG signals are more robust for real-time applications. EMG from

individual muscles are highly sensitive to sensor placement, and can be affected by donning/doffing

the sensors, sweat, and general sensor placement shifts. This effect was observed in this data set,

considering the difference in mean correlations between filtered left and right gluteus maximus

activity and ground truth energy cost (r=0.47 and r=0.23, respectively) (Table 3.4). Since the tasks

tested in this experiment were all symmetrical tasks, these discrepancies were most likely due to

differences in sensor placement between the left and right sides.

After filtering, the signals that correlated best with ground truth energy cost were minute ven-

tilation, heart rate, and the accelerometers; the signal that was least correlated with ground truth

energy cost was skin temperature. These results agree with a number of previous studies that have

demonstrated good predictive ability with accelerations and heart rate (e.g., [143]).

In terms of signal salience for body-in-the-loop optimization algorithms, these correlations can
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only serve as a starting point. They were calculated on a subject-specific basis including data from

all tasks; that is, they can explain how well a certain signal can predict the energy cost of a known

subject doing a known task. Wearing adaptive assistive robotic devices, such as prostheses and

exoskeletons, however, might very well constitute an unknown task and might lead to changes in

an individual subject’s physiology. This is particularly likely for body-in-the-loop optimization

algorithms, which have the declared goal of continuously adapting and optimizing the behavior of

assistive robotic devices. This adaptation leads to an ever changing ‘task’ for the user which will,

in turn, influence the user’s biomechanics (e.g., gait kinematics, muscle activity) [20, 119]. Since

the device is designed to assist with the motion, the changes in the task might be quite subtle. An

exoskeleton, for example, might adapt to provide more torque during an activity without changing

the kinematics of the motion. The user would adapt [91, 152], for example, by reducing muscle

activation. Yet, from an outside perspective, it will appear as if the task remained the same while

the physiological response of the subject has changed. Thus, for body-in-the-loop optimization

algorithms to be successful, we need to incorporate signals that are robust to potentially unknown

tasks and to unknown subjects. To identify these signals, we tested a broad range of different ac-

tivities, and conducted leave-one-task/subject-out cross validations to explicitly test the predictive

capability of the different signals for unknown tasks and subjects.

When all six activities were included in the analysis, every signal tested in this experiment

had higher root mean squared error (RMSE) when evaluated with leave-one-task-out cross vali-

dation than with leave-one-subject-out cross validation (Fig. 3.4A). Broadly, this implied that all

the signals evaluated in this study were more sensitive to unknown tasks than unknown subjects.

The standard deviation between folds of the cross validation was very high, particularly for leave-

one-task-out cross validation. Examining these results on a fold-by-fold-basis, we noticed that

when the regression model was trained on walking, incline walking, backwards walking, cycling,

and stair-climbing data and tested on running data, the resultant RMSE was 1.5–3 times higher

than any other fold (Table 3.5). This indicated that the signal data collected during running were

drastically different than the signal data collected during the other tasks. Since the running task
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dominated the error of the leave-one-task-out evaluation, we believed it was masking some of the

trends, particularly between different types of sensors.

As such, we performed a secondary analysis in which all running data were removed from

the data set (Fig. 3.4B), and we performed a 5-fold leave-one-task-out cross validation with the

remaining tasks. In this evaluation, we saw a dramatic reduction in RMSE compared to the 6-fold

leave-one-task-out cross validation. Moreover, valuable insights emerged regarding how differ-

ent types of signals were affected by unknown tasks and unknown subjects. As a broad signal

class, the accelerometers were most affected by unknown tasks, with high variability between

folds of the validation. We believe this is likely because the accelerometers provide information

about the kinematics and the motion pattern of an activity, and therefore may be more sensitive

to new patterns of activity. On the contrary, EMG and the global signals were more sensitive to

an unknown subject than an unknown task. For EMG, this is potentially a result of differences

in electrode placement between subjects. For the global sensors, this might be a result of the fact

that they measure quantities related to the user’s physiological responses, and may be affected

by subject-specific factors like cardiovascular health [174] or individual differences in sweat and

body temperature responses [139, 149]. To mitigate some of these factors, previous studies have

proposed the personalization of energy expenditure estimates using normalization factors for phys-

iological quantities, such as heart rate or electrodermal activity [2,4], which could be useful for our

future implementations. For our study, we defined EMG activity as local signal, since it provides

information about a specific muscle. However, shown in Fig. 3.4B, the composite sums of EMG

signals are more robust to an unknown task than an unknown subject. Despite the fact that EMG

activity is related to the kinematics of a task, individual subject differences may play a larger role

in the generalizability of EMG signals for predicting energy cost. The difference in performance

between the leave-one-task-out cross validations when the running task was included/excluded

also highlights that a single algorithm may not be able to appropriately capture the energy cost

requirements across all tasks. In this case, more sophisticated task-classification algorithms may

be necessary to appropriately identify the task and apply the correct prediction algorithm based on
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that task, a method which has been proposed by previous groups (e.g., [4]).

In general, combining the signals into groups improved their predictive capability. As with the

individual sensors, the groups that contained local signals (Local, Local+Global) performed worse

when predicting an unknown task than an unknown subject. The Global and Hexoskin groups were

the best performing groups for both leave-one-subject-out and leave-one-task-out cross validations,

and both were able to predict energy cost almost as well as V̇ O2 (within 0.4 W/kg). Although both

groups performed similarly, the Hexoskin group (including the waist accelerometer, heart rate,

breath frequency, and minute ventilation) may be a more robust predictor of energy expenditure

when the user is wearing an assistive device because it combines information from both local

and global sensors. The waist accelerometer has the potential to be a good predictor of energy

expenditure across multiple tasks because it is located close to the body’s center of mass (COM),

and is therefore correlated with whole body energetic cost during ambulatory activities [4, 32, 33].

Other accelerometers on the ankles and wrists may be more affected by specific kinematic patterns,

and less robust to unknown tasks, which could explain the larger error in the Local+Global group.

According to the results of this study, with only one signal (minute ventilation), we could

achieve an RMSE of 1.24 W/kg. Adding additional predictors improved performance (up to RMSE

= 1.03 W/kg for k = 8), but with diminishing return. These errors correspond to approximately 1–

1.2% of the total range of energy cost measured in this experiment (10 W/kg); this error is quite small

compared to the possible range of energy cost experienced during different activities. In particular,

the signals able to be collected by the Hexoskin smart shirt were among the 6 best predictors of

energy cost, which suggested that even with very simple signal processing and regression algo-

rithms, a fully portable device could be used to accurately predict energy cost across a wide variety

of tasks. Success using the Hexoskin smart shirt and a random forest regression algorithm to pre-

dict oxygen uptake kinetics has recently been demonstrated by Beltrame et al. [13] during activities

of daily living and a pseudo-random walking sequence. In our study, the Hexoskin signals showed

similar performance when predicting steady-state energy cost. Analysis of the best performing

models demonstrated that adding more predictors improves performance up to a point, but with
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the right choice of signals, good predictive performance can be achieved using fewer sensors. It

would be up to an individual experimenter to decide the acceptable trade-off between regression

performance and number and/or simplicity of sensors.

In this context, it is important to note that the differences between the top performing models

that we identified were rather small. In particular, swapping out one signal for a related one (such

as swapping left and right wrist accelerations or left and right EMG) resulted in similar perfor-

mance. For example, using the right EMG instead of the left EMG increased the RSME only by

0.07 W/kg (<1 % of the total range of metabolic cost) for k = 2. At the same time, it is interesting

to note that none of the best performing models included bilateral signals (i.e., both left EMG and

right EMG). These analyses suggested that a more robust prediction can be made by combining

information from multiple sensor modalities (e.g., combine EMG and electrodermal activity), not

simply adding additional examples of the same highly-correlated signals (e.g., left EMG and right

EMG). Along the same lines, we observed a mix of local and global sensors when we determined

the best possible combinations of k signals. Furthermore, the order of signals added to the best

combinations (with increasing k) was neither determined by the signals individual Pearson’s cor-

relation coefficients nor by their indiviudal RMSE values. This further highlights that it pays to

have different types of sensor modalities when combining multiple signals, rather than just using

the strongest individual sensors.

The goal of this study was to systematically evaluate the predictive power of physiological

signals and groups of signals in order to draw conclusions about which types of signals are useful

for our application of body-in-the-loop optimization. To keep our results general, we did so for

multiple subjects and using a very broad range of activities. Yet, our choice of activities is not

without drawbacks; we chose a broad set of activities with very different kinematics and dynamics,

and some of which were novel for subjects (e.g., backwards walking). Subjects’ habituation to

these activities may have changed their kinematics, kinetics, and energy consumption, and the

current analysis did not account for these changes. Our current study is also limited by its small

sample size and homogeneous, able-bodied subject population. One could argue that an algorithm
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specifically designed to estimate the cost of using a particular assistive device should be more

hand-tailored to that specific device and based on data that are specific to this device. That is,

subsequent studies should investigate how well the predictive algorithms can work with data from

individuals using assistive devices. However, such an approach might overly restrict the available

data and consequently bias the estimation process. This would limit the applicability of body-in-

the-loop optimization algorithms, which should ideally be unbiased in their search for the optimal

device setting.

It is important to note that our study was not an attempt to find the best possible way to predict

steady-state metabolic effort, and the models discussed in this study are not intended to be complete

predictive models. In reality, many of the signals discussed could be cross-correlated, and more

rigorous statistical methodology would be required to build an optimal model with the fewest

number of predictors. For the current study, we prioritized simplicity over optimal algorithmic

performance, and we used linear regression as a common algorithm to compare the predictive

power across signals. In the future, other machine learning algorithms (such as random forest or

neural networks) that may produce higher prediction accuracy and be more robust to unknown

subjects and tasks should be explored. Additionally, more advanced feature extraction and signal

processing techniques (e.g., different filters or normalization) may improve predictive capability

of various signals. To facilitate the collaborative development of such advanced techniques and

algorithms, we decided to publish our complete dataset together with this paper [78]. Our hope is

that it can be used to compare different approaches that predict energy cost from portable sensors

for a wide variety of applications. Although the sensors we used in this study were not fully

portable (e.g., EMG, minute ventilation/breath frequency), fully portable versions of these sensors

are commercially available, such as the BioStampRC® [115] and the Hexoskin® smart shirt [13,25,

175]. Future work should involve testing these algorithms in real time using fully portable sensors.

From our analyses of a broad set of physiological signals, we concluded that 1) filtering the

accelerations and EMG linear envelopes to remove the periodicity from the gait cycle improved

their ability to predict ground truth energy cost; 2) when the physical activities were diverse (i.e.,
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including running), all the signals were more sensitive to unknown tasks than unknown subjects;

3) when the tasks were more similar (i.e., excluding running), physiological signals (e.g., heart rate

or electrodermal activity) were more sensitive to unknown subjects than unknown tasks; 4) groups

of signals could improve predictive capability over individual signals, but the errors were similarly

affected by task and subject specificity; and 5) good predictive performance could be achieved

using a small number of sensors. Given these conclusions, for body-in-the-loop optimization and

other applications which require predicting energy cost from portable sensors, we recommend

combining accelerometers (ideally located close to the center of mass) with heart rate, breath

frequency, and/or minute ventilation to provide the most robust prediction of energy expenditure.
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CHAPTER 4

Accelerating the Estimation of Metabolic Cost using

Signal Derivatives: Implications for Optimization

and Evaluation of Wearable Robots

4.1 Background

A chief goal for lower-limb wearable robots (e.g., exoskeletons) is to augment the user’s

natural motion in a helpful, intuitive way. Accordingly, a common evaluation metric for such

systems is the effect of the robotic assistance on the metabolic cost of the wearer. Recent hardware

and control advancements have enabled researchers to achieve the challenging task of reducing the

metabolic cost of walking below that of walking without an exoskeleton, using autonomous [119–

121], tethered [111], and even passive [29] devices. While energy expenditure has long been used

as an evaluation metric for device efficacy, it has also been proposed as a design specification (i.e.,

the Augmentation Factor [121]), and, recently, used as a physiological cost function for the real-

time control of wearable robotic devices—a strategy known as body-in-the-loop or human-in-the-

loop optimization. These algorithms use real-time estimates of metabolic cost to iteratively tune the

actuation profile of an assistive device to minimize the wearer’s energetic cost [35,44,90,92,189].

The implementation of body-in-the-loop optimization algorithms, illustrated in Fig. 4.1, re-

quires that the user wear a robotic assistive device (e.g., a prosthesis or exoskeleton) which is

This chapter has been previously published in full in the IEEE Robotics & Automation Magazine [81].
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Figure 4.1: Schematic of body-in-the-loop optimization with estimation of metabolic cost from wear-
able sensors. Body-in-the-loop optimization is the process of iteratively and automatically tuning the actu-
ation profile of wearable robotic devices (e.g., prostheses and exoskeletons) to minimize the metabolic cost
of the wearer. In the example depicted here, the individual wears robotic devices (bottom left), which are
programmed to provide assistance. The parameterized actuation profile in this illustration (A(p), bottom
right) is a square pulse with an onset at p% of the gait cycle. This actuation profile is enforced by the closed-
loop low-level device controller, with feedback from the robotic device (Control Loop, bottom left). While
the user walks with the current actuation profile, their instantaneous energetic cost is measured or estimated
(top left). The metabolic cost associated with the current parameter setting (x(p), top right), is used in an
online optimization algorithm, which chooses the next parameter setting to test. This loop continues until
the optimizer converges to the optimal actuation profile to minimize the metabolic cost of the user.

programmed to provide assistance. The actuation profile of the device, A(p), is shaped by one or

more parameters p; A(p) can be any parameterized assistance trajectory, but is commonly defined

as joint torque or power as a function of time or gait phase (%). Once defined, the actuation profile

is enforced by the device’s low-level control loop, which often incorporates device feedback in

a closed-loop controller. While the user walks with the current actuation profile, their metabolic

cost is measured or estimated. Given the metabolic cost associated with the current parameter

setting, x(p), an online optimization algorithm (e.g., gradient descent [93], CMA-ES [189], or

Bayesian [35]) chooses the next parameter setting to test. This process continues, eventually con-

verging on the optimal actuation profile that minimizes the cost of the wearer. Although body-in-
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the-loop optimization experiments have shown promising results for real-time control of wearable

robots, these algorithms have not yet gained adoption outside the laboratory environment.

One major factor delaying the widespread use of body-in-the-loop methodology is obtaining

the required estimates of metabolic cost quickly, accurately, and with unobtrusive equipment. Con-

sider the scenario in which an individual wears a robotic ankle exoskeleton that supplements 20 %

of the biological ankle’s work, and the device instantaneously changes to providing 40 % of bio-

logical ankle’s work. This step change in device parameter setting results in a physiological step

change in energetic demand—the body instantaneously requires a different amount of energy to

accommodate the new conditions. The instantaneous energetic demand associated with a new set

of experimental conditions is called the instantaneous metabolic cost. This quantity is utilized in

body-in-the-loop optimization algorithms to automatically tune device parameters in real time to

accommodate different users, different ambulation tasks, or changing environmental conditions.

Measurements of instantaneous metabolic cost are also widely utilized across many fields for as-

sessing outcomes of experiments, rehabilitation protocols, or athletic training, to name only a few.

Obtaining estimates of instantaneous metabolic cost is difficult because the measurements of

metabolic cost collected from state-of-the-art systems are significantly delayed from the instanta-

neous metabolic demands of the body. To date, indirect calorimetry has been the method of choice

for body-in-the-loop optimization and wearable robotics evaluations because portable measure-

ment units (e.g., Cosmed or Oxycon Mobile) allow the subjects to move freely about the labora-

tory environment while the system measures their respiratory gas exchange. Yet, the measurements

obtained through indirect calorimetry exhibit high measurement noise, a low sampling rate, and

require that the user wears a bulky rubber mask that covers his or her nose and mouth; these chal-

lenges make indirect calorimetry unsuitable for real-world applications. As an alternative, many

researchers in the fields of physiology, exercise science, and clinical nutrition have focused on

obtaining estimates of energy cost using portable wearable sensors. Most commonly, sensor sig-

nals are used as inputs to a black-box algorithm (e.g., multiple linear regression, neural network,

or random forest) which is then used to predict instantaneous metabolic cost [77], the metabolic
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equivalent of a task (MET) (e.g., [19, 32, 33]), or the dynamic response of energy expenditure or

oxygen uptake (e.g., [3, 13, 143]). While it is possible to obtain reliable estimates of metabolic

cost using unobtrusive portable sensors and black-box machine learning algorithms, the speed of

this prediction is still limited by the dynamics of the physiological input signals—a drawback that

these signals share with indirect calorimetry.

The speed of estimating instantaneous metabolic cost is critical for the implementation of body-

in-the-loop optimization outside the laboratory. During typical activities, it is rare that individuals

perform long bouts of constant-intensity activity, and the device must quickly adapt actuation pro-

files accordingly, without waiting multiple minutes for each assessment. To understand the impact

of signal dynamics on the speed of prediction, let us consider respiratory gas measurements, as well

as measurements of minute ventilation (L/min) and heart rate (min−1)1. Individually, the dynamics

of each of these signals have been characterized as a linear first order system, with time constants

of 40–42 s for respiratory gas measurements [154], 53–54 s for minute ventilation [99, 181], and

58 s for heart rate [73]. That means for a given step change in intensity level (e.g., changing from

walking at 1 m/s to 1.4 m/s) the individual must perform 2–3 minutes of constant-intensity activity

before these signals reach steady state, and, depending on measurement noise, an additional 2–3

minutes are required to accurately estimate the steady state value. So while each of these signals

is highly correlated with energy expenditure, their dynamics limit how quickly we can obtain esti-

mates of instantaneous metabolic cost. For indirect calorimetry, model-based approaches [93,154]

have mitigated this issue, but in order to improve the real-time evaluation and control of wear-

able robots outside of the lab, we need to apply similar techniques to obtain faster predictions of

instantaneous metabolic cost from portable, wearable sensors.

To improve the speed of instantaneous metabolic cost predictions using wearable sensors, we

propose including the time derivatives of physiological signals in a black-box estimation process.

We expect that this information is useful because a linear regression performed on a signal and

its derivative has the same mathematical structure as an explicit first order dynamic model. Yet in

1In a previous study, we found that these physiological signals contained the most salient information for predicting
energy cost [77], which agreed with many previous findings [3, 13]
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contrast to such an explicit model, a data-driven approach takes into account the relative quality

and information content of the signal and its derivative. In this context, one would expect that the

various signals included in these estimators have different dynamic properties [77]. A signal such

as limb acceleration provides local information about one segment and changes instantaneously

with a step change in activity, yet it is a less direct measurement of total physiological energy

expenditure. In contrast, signals such as heart rate or breath volume provide global information

about the physiological state of the user—which is more closely related to physiological energy

expenditure—but their response is dynamically delayed. For such dynamically delayed signals,

we expect that the inclusion of derivative information can improve the overall prediction quality.

To test our theory, we evaluated the effect of including signals’ derivatives on the predictive

accuracy of multiple linear regressions trained to predict instantaneous metabolic cost. In this arti-

cle, we show that including the derivatives of signals with known first order dynamics (e.g., heart

rate, minute ventilation) in the regressions improves the predictive accuracy during the transient

phase of an activity (i.e., before the signals have reached steady state) without deteriorating the

prediction during the steady state phase. For certain signal groups, including derivatives in the re-

gressions resulted in accurate estimates of instantaneous metabolic cost (here defined as error less

than 1 W/kg) more than three times faster than regressions without derivatives. The demonstrated

error reductions and increased prediction speeds during the transient phase of an activity highlight

the potential for this approach to improve the estimation of metabolic effort, and in particular, to

advance the translation of body-in-the-loop optimization algorithms into real-world applications.

4.2 Methods

4.2.1 Derivation

By identifying explicit dynamic models of physiological responses, it has been shown that

the transient behavior of many physiological signals, including energy cost measurements [154],

minute ventilation [99, 181], and heart rate [73] can be described by a first order linear differential
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equation. These linear input-output models take the form:

ẏ(t) =
1

τ

(
x(t)− y(t)

)
(4.1)

where x(t) is the signal value that will eventually be reached in steady state when the activity

performed at time t is continued at the current level, and where y(t) is the transient signal mea-

surement at time t. The subject-specific time constant τ represents the speed with which a signal

can respond to a step change in intensity. This dynamic representation might prove similarly use-

ful when trying to approximate the transient behavior of other physiological signals or groups of

signals.

Employing (4.1) to predict the steady state values x̂(t) of a physiological signal from its current

transient measurements y(t) just requires a simple rearrangement of terms:

x̂(t) = y(t) + τ ẏ(t). (4.2)

Unfortunately, using this equation suffers from some severe practical limitations. Subject-

specific time constants τ need to be determined, and the measurements y(t) are typically quite

noisy, which is further amplified in the process of obtaining the derivatives ẏ(t). To minimize

the error in the prediction of x̂(t), one has to filter the signal while carefully trading noise for

signal attenuation and phase delay, especially if the activity and corresponding target value x(t)

are changing rapidly.

Here, we instead focus on the linear nature of (4.2) and restate the output as weighted sum of the

measurement and its derivative x̂(t) = y(t) + τ ẏ(t) =
[
y(t) ẏ(t)

][
1
τ

]
, in which the vector [1 τ ]T

can be thought of as a coefficient vector applied to two individual signals y(t) and ẏ(t). When

using experimental data of n sampled pairs of ground truth steady state x(ti) and measurements

y(ti), such a coefficient vector (β) can be obtained via linear regression2, minimizing the predictive

2Please note that in standard regression notation, the dependent variable would be labeled y and the independent
variable x. Here we have switched this convention to be consistent with the input-output notation of the related work.
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error of the model:

x̂(t) =
[
y(t) ẏ(t)

]
β, (4.3)

with the coefficients:

β =
(
YTY

)−1
YTx, where Y =



y(t1) ẏ(t1)

...
...

y(ti) ẏ(ti)

...
...

y(tn) ẏ(tn)


and x =



x(t1)

...

x(ti)

...

x(tn)


. (4.4)

In the presence of measurement noise, the identified coefficients of β will not match the co-

efficients [1 τ ]T of the theoretical model. Depending on the signal-to-noise ratio (SNR) of the

individual signals y(t) and ẏ(t), the regression will be biased towards one or the other. Typically

the SNR of ẏ(t) is much lower than that of y(t), resulting in a ẏ coefficient in β that is considerably

smaller than the time constant τ . A more detailed derivation of this phenomenon can be found in

the appendix.

With (4.3) and (4.4), we can predict the steady state values x(t) of different physiological

sensor signals without waiting until steady state is actually reached. This ability is particularly

useful if we try to estimate the energetic cost E(t) of a time-varying activity or try to rapidly

optimize the parameters of an assistive device. In practice, one might want to fuse the steady

state estimate of multiple sensor signals x̂j , j ∈ [1 · · ·m] into an aggregated estimate of Ê(t) =

f(t, x̂1(t), · · · , x̂j(t), · · · , x̂m(t)); expressed here as the function f . A very basic version of this

approach is to let f be a linear function of the individual estimates x̂j . In this case, one can

actually skip the intermediate step of predicting an individual signal’s steady state response with

(4.3) and (4.4), and instead directly perform a linear regression using all the raw signals yj and

their derivatives ẏj to predict steady state energy cost, E(t). While this approach is likely not the

most effective estimator, we chose it deliberately as a simple means to experimentally evaluate the

concept of including derivative information in a data-driven approach.
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4.2.2 Experiment

The details of this experimental protocol have been previously published in Ingraham et al.

[77] and are described in Chapter 3. For brevity, we summarize the most relevant information

here. Additional information, including the equipment used, sensor placement, signal filtering,

and missing data, can be found in Section 3.2 of this dissertation.

Subjects

Ten healthy participants (8 male, 2 female, mean (SD) age: 27.4 (4.5) years, height: 1.78 (0.08)

m, weight: 69.0 (9.9) kg), participated in our experiment, after providing informed consent to a

protocol approved by the University of Michigan Institutional Review Board.

Protocol

Each subject performed six physical activities at a variety of speeds and/or intensities: level

walking (0.6, 0.9, 1.2 m/s), incline walking (0.6, 1.2 m/s at 4◦ incline; 0.6, 1.2 m/s at 9◦ incline), back-

wards walking (0.4, 0.7 m/s), and running (1.8, 2.2, 2.7 m/s) on a treadmill, cycling on a stationary

bike (Resistance 1, 3, 5 at 70 rpm; Resistance 1 at 100 rpm), and stair climbing on a stairmill

(60, 75, 90 W). In total, subjects completed 20 conditions divided between two sessions (subjects

performed level walking at 1.2 m/s during both session 1 and session 2). For each physical activity

(i.e., level walking), subjects stood quietly for 6 minutes, performed each speed/resistance condi-

tion for 6 minutes in a random order, and then sat quietly for 6 minutes. The changes between

the six minute intervals thus constituted instantaneous step changes, from rest to activity, from

one speed/resistance condition to another, and from activity to rest. Between different physical

activities, subjects rested for at least 10 minutes.

Wearable Sensor Recordings

During data collection, we instrumented subjects with a suite of wearable sensors, listed in

Table 4.1. We recorded oxygen consumption (V̇O2), carbon dioxide production (V̇CO2), breath
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frequency, and minute ventilation breath-by-breath using a portable respirometer (Oxycon Mo-

bile, CareFusion, San Diego, CA). Heart rate was measured using a wireless heart rate monitor

strapped around the chest (Polar Electro, Inc., Bethpage, NY). Blood oxygen saturation (SpO2)

was measured using a pulse oximeter (Oxycon Mobile, CareFusion, San Diego, CA) affixed to the

subject’s left earlobe. Since the recording of heart rate and oxygen saturation was synchronized

with the respirometer, these signals were also recorded breath-by-breath. Subjects wore 4 tri-axial

accelerometers (Opal, APDM Inc., Portland, OR) at the center of the chest, on the left hip, and on

the left and right lateral ankle; these accelerometers measured accelerations in the sensor x, y, and

z axes at 128 Hz. Subjects also wore bilateral wristbands (E4, Empatica, Milan, Italy) containing

tri-axial accelerometers that recorded x, y, and z accelerations of the left and right wrist at 32 Hz.

The Empatica wristbands also contained sensors to measure electrodermal activity (EDA) and skin

temperature at 4 Hz. Surface EMG electrodes (Biometrics Ltd., Ladysmith, VA) recorded muscle

activity at 1kHz from 8 bilateral leg muscles: gluteus maximus, biceps femoris, semitendinosis,

rectus femoris, vastus lateralis, medial gastrocnemius, soleus, and tibialis anterior. All sensor sig-

nals were time-synchronized during collection.

Filter
Signal Sampling Cutoff Sensor
Group Signal(s) Freq. (Hz) Freq. (Hz) Sensor Location§

Local
Total acceleration (x4) 128 0.1 3-axis accelerometer (APDM) Chest, hip, L/R ankle
Total acceleration (x2) 32 0.1 3-axis accelerometer (Empatica) L/R wrist
Total EMG activity (x2) 1000 0.1 Surface EMG (Biometrics) L/R legs

Global

Electrodermal activity (x2) 4 0.01 E4 wristband (Empatica) L/R wrist
Skin temperature (x2) 4 0.01 E4 wristband (Empatica) L/R wrist
Heart rate ∗ 0.01 Heart rate monitor (Polar) Chest
Breath frequency ∗ 0.01 Respirometer (Oxycon Mobile) Mask
Minute ventilation ∗ 0.01 Respirometer (Oxycon Mobile) Mask
Oxygen saturation, SpO2 ∗ 0.01 Respirometer (Oxycon Mobile) L earlobe

Ground O2 consumption, V̇O2 ∗ - Respirometer (Oxycon Mobile) Mask
Truth CO2 production, V̇CO2 ∗ - Respirometer (Oxycon Mobile) Mask

*These signals were sampled one measurement per breath. Each signal was linearly interpolated to 10Hz before filtering.
§L = left, R = right

Table 4.1: Physiological signal collection and processing.
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Signal Processing

For each accelerometer, we calculated the total acceleration by calculating the vector magni-

tude (
√
ax(t)2 + ay(t)2 + az(t)2). We derived the linear envelope for all individual EMG signals,

then calculated total EMG activity for each leg as the norm of all 8 individual muscle signals

(
√
M1(t)2 + ...+M8(t)2). Each of the 16 signals was filtered using a 1-minute Gaussian filter ker-

nel with appropriate cutoff frequencies derived from the literature (Table 4.1). Breath frequency,

minute ventilation, heart rate, oxygen saturation, left/right electrodermal activity and left/right

skin temperature were filtered using a cutoff frequency of 0.01 Hz; the 6 limb accelerations and

left/right muscle activity were filtered using a cutoff frequency of 0.1 Hz. To compute each filtered

signal derivative, the raw signal was convolved with the derivative of each Gaussian filter kernel.

All signals were filtered and re-sampled to 1 Hz.

We divided the 16 filtered signals into two categories: the local signals and the global sig-

nals [77]. The 8 local signals (6 vector magnitude accelerations and the left/right total EMG)

provide information about an individual muscle or limb segment and vary with the periodicity of

the activity. In contrast, the 8 global signals (heart rate, left/right electrodermal activity, left/right

skin temperature, breathing frequency, oxygen saturation, and minute ventilation) provide infor-

mation about the state of the whole body.

Ground Truth Instantaneous Metabolic Cost

We used the Brockway equation [18] to calculate metabolic rate from unfiltered oxygen con-

sumption (V̇O2) and carbon dioxide production (V̇CO2); we normalized this value to the subject’s

body mass. We assumed that the instantaneous metabolic cost was constant for a given condition,

and we obtained this value by averaging the final 3 minutes of breath measurements for that con-

dition (assuming that the measurements have reached steady state). The instantaneous metabolic

cost forms a stair-step function that changes every time the activity level changes; this quantity

represents the instantaneous metabolic demands of the body that correspond to a step-change in

activity, and will henceforth be referred to as the ‘ground truth’ energy cost for a given condition.
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In the regressions, ground truth energy cost served as our target data (the energy cost we aimed to

predict). For each activity, the average energy cost from the standing bout at the beginning of the

trial was subtracted off to yield net metabolic rate.

4.2.3 Linear Regression Analysis

In total, we trained 6 cross-validated multiple linear regression models, containing: 1) the 8

local signals, 2) the 8 global signals, 3) the 16 combined signals (i.e., local + global), 4) the 8 local

signals plus their 8 derivatives, 5) the 8 global signals plus their 8 derivatives, and 6) the 16 com-

bined signals plus their 16 derivatives. Regression models 1–3 provided a baseline for comparison

of model performance without derivatives (as done in [77]). Regression models 4–6 were designed

to evaluate how the addition of derivatives can improve the prediction of instantaneous metabolic

cost.

All 6 linear regression models have the form:

Ê(t) = y(t)b, (4.5)

where Ê(t) is the estimate of the steady state energy cost that will eventually be reached if the
activity performed at time t were to be continued at the current intensity (i.e., the instantaneous

metabolic cost). The vector y(t) contains a constant offset term and either m sensor signals,

y(t) = [1, y1(t), . . . ym(t)] ∈ Rm+1 (regressions 1–3) or a constant offset term, m sensor signals,

and m derivatives, y(t) = [1, y1(t), . . . ym(t), ẏ1(t), . . . ẏm(t)] ∈ R2m+1 (regressions 4–6). The

vector b contains the m+ 1 or 2m+ 1 regression coefficients.

For this analysis, we considered each condition an individual trial; although subjects performed

each condition for 6 minutes, we excluded the last minute and only included the first 5 minutes in

our regressions to eliminate any inconsistencies from switching between tasks. In total, the data

set analyzed in this study comprised 1873 5-minute trials. We performed a 5-fold cross validation

in which we randomly divided the 187 trials into a training set (80%, 149 trials), and a testing set
3Note that this number is smaller than 200, as not all 10 subjects successfully performed all 20 conditions. Please

see [77] for details.
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(20%, 38 trials)—this process was repeated 5 times until each trial had been left out of training

once. For each cross validation fold, we used the training data to identify the model coefficients b

from n pairs of sensor signals ȳ(ti) and associated ground truth energy cost values E(ti), with all

training trials concatenated:

b =
(
ȲT Ȳ

)−1
ȲTE, (4.6)

where the matrix Ȳ = [ȳT (t1), . . . , ȳ
T (tn)]T contains the signal vectors of all n data points in the

training set, and the vector E = [E(t1), . . . E(tn)]T is the associated ground truth energy cost.

Using the testing data, y′(t), we used the identified model coefficients from Eq. 4.6 and cal-

culated the predicted energy cost, Ê(t), associated with the testing conditions using Eq. 4.5. We

repeated this process 5 times, once for each fold of the cross validation, until we obtained Ê(t) for

each condition.

To compare the predicted energy cost Ê(t) to the ground truth energy cost E(t), we considered

each 5-minute condition as an individual trial. For each trial (with index k), we computed the

absolute error ek(t) =
∣∣∣Êk(t)− Ek(t)∣∣∣ as a function of trial time. This trial time was measured

from the onset of the step change at the beginning of the trial and thus ran from 0 to 5 minutes. The

mean absolute error (MAE) ē(t) was obtained as the average of all 187 individual trials. We further

averaged this error metric over the entire trial (i.e., minutes 0–5), and over individual minutes (i.e.,

minutes 0–1, 1–2, ..., 4–5). We then calculated the reduction in MAE between models trained with

and without derivatives for the whole trial and per minute. For example, we calculated the change

in MAE between regression model 1 (local signals only), and regression model 4 (local signals and

their derivatives) for each of the 5 individual minutes and the entire trial. We repeated this analysis

for the global signals (regressions 2 and 5), and the combined signals (regressions 3 and 6).

Finally, we computed four additional metrics for each regression: the initial error ē(0), the

steady state error (the average MAE over the last two minutes), the error decay time (the time at

which ē(t) decrekgased to 36.8% of the range from initial value to steady state value), and the time

to 1 W/kg (the time at which ē(t) decreased below 1 W/kg). We chose the threshold of 1 W/kg because

it is 10 % of the total range of metabolic cost experienced by all subjects across all activities [77].
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4.2.4 Statistical Analysis

We statistically analyzed the average MAE of the entire 5-minute trial (i.e, the average of

minutes 0–5). We performed three paired t-tests in MATLAB (one for each signal group, α =

.05) comparing the average MAE of all 187 conditions between regressions with and without

derivatives. Using this paired t-test, we generated 95% confidence intervals around the difference

between regressions trained with and without derivatives, for a given signal group. We did not

perform statistical tests on the average MAE from individual minutes.

4.3 Results

Including derivatives in regressions that contained the global signals (i.e., global, combined)

visibly improved their performance, especially during the first 2 minutes (Fig. 4.2). Over the

entire 5-minute trial, the average mean absolute error (MAE) was significantly reduced for all sig-

nal groups with the inclusion of derivatives (Fig. 4.3A). The difference in average MAE between

regressions with and without derivatives was 0.004 W/kg for local signals (95% confidence inter-

val: CI95% = [0.001, 0.006] W/kg, p-value: p = .004), 0.088 W/kg for the global signals (CI95% =

[0.052, 0.123] W/kg, p = 1.8× 10−6), and 0.081 W/kg for the combined signals (CI95% = [0.052,

0.109] W/kg, p = 1.7× 10−7) (Fig. 4.3B).

On average, in the first minute (minute 0–1), including derivatives in the regression with global

signals resulted in a 0.48 W/kg (32.5 %) reduction in prediction error compared to the regression

containing global signals only (Figs. 4.4, 4.5). The performance of the combined signals improved

by 0.31 W/kg (25.4 %) in the first minute with the inclusion of derivatives, while the local signals

exhibited less than a 0.02 W/kg (1 %) difference. In minutes 2–5, the difference between regressions

with and without derivatives was less than 0.06 W/kg for the global signals, less than 0.05 W/kg for the

combined signals, and less than 0.001 W/kg for the local signals.

For regressions without derivatives, the initial error ē(0) was between 2–2.3 W/kg for all sig-

nal groups (Table 4.2). With the addition of derivatives, the initial error of the local, global and
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Figure 4.2: Mean absolute error (MAE) as a function of trial time for all linear regression models. The
performance of the global and combined signal groups visibly benefited from the inclusion of derivatives.
Mean absolute error (MAE) was calculated between predicted energy cost and ground truth energy cost as
a function of trial time, and averaged over 187 5-minute trials. The solid lines depict performance of the
regression models trained with the local (blue), global (red), and combined (yellow) signals only; the dashed
lines of the same color depict performance of the models trained with the signals and signal derivatives. The
gray dotted line indicates the threshold of 1 W/kg, which corresponds to 10% of the total range of metabolic
cost over all conditions (10 W/kg).

combined regressions dropped by 0.14 W/kg, 0.63 W/kg and 0.77 W/kg, respectively. The difference

in steady state error with the inclusion of derivatives was less than 0.03 W/kg for all signal groups

(Table 4.2). The mean absolute error (MAE) ē(t) (Fig. 4.2) of the local signals (with and without

derivatives) decayed faster than any of the regressions trained with global or combined signals

(Table 4.2). Adding derivatives to the regressions shortened the decay time by 12 s for the global

signals, and by 3 s for the local signals; the decay time for the local signals did not change with the

addition of derivatives.

When derivative information was included, the MAE from the global and combined regressions

reached 1 W/kg in 23 s and 15 s, respectively (Table 4.2); in contrast, without derivatives, the MAE

from the global and combined regressions required 63 s and 44 s, respectively. Neither regression

trained with just local signals (with or without derivatives) crossed the 1 W/kg threshold.
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Figure 4.3: Comparison of mean absolute error (MAE) between models with and without derivatives.
(A) Paired t-tests revealed significant differences in average mean absolute error (MAE) between regressions
trained with and without derivatives for all 3 signal groups (∗ indicates p < .05). The average MAE was
calculated as the mean across all 5 minutes of MAE for each trial (as depicted in Fig. 4.2). Colored error
bars indicate the standard deviation across 187 trials. (B) The reduction in average MAE with the addition
of derivatives was much smaller for the local signals (0.004 W/kg) than for the global signals (0.088 W/kg) or
combined signals (0.081 W/kg). These reductions were calculated as the difference between dark and light
bars in Fig. 4.3A; black error bars indicate the 95% confidence interval around the difference, generated
from the paired t-test.

Initial Error∗ (W/kg) Steady State Error§ (W/kg) Decay Time† (s) Time to 1 W/kg‡ (s)
Signals +Derivatives Signals +Derivatives Signals +Derivatives Signals +Derivatives

Local 2.30 2.16 1.39 1.39 7 7 - -
Global 2.06 1.43 0.63 0.65 49 37 63 23

Combined 2.25 1.48 0.65 0.63 24 21 44 15

∗Initial error, ē(0) (Fig. 4.2).
§Steady state error defined as the average of the error, ē(t) (Fig. 4.2) for the last 2 minutes (minutes 4 and 5).
†Decay time defined as the time at which ē(t) decreased to 36.8% of the range from its initial value to its steady state value.
‡Time to 1 W/kg defined as the time at which ē(t) decreased below 1 W/kg.

Table 4.2: Error metrics.

4.4 Discussion

In this study, we investigated how including signals’ derivatives affected the predictive accu-

racy of multiple linear regression models trained to predict instantaneous metabolic cost. As we

expected, the groups containing global signals (such as heart rate and minute ventilation) signifi-

cantly benefited from the inclusion of derivatives (Fig. 4.3). Adding derivatives to the regression

trained with local signals alone also significantly reduced its predictive error, although the mag-
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Figure 4.4: Minute-by-minute comparisons of mean absolute error (MAE) between models with and
without derivatives. In the first minute, including derivatives resulted in a 32.5 % reduction in error for the
global signals and a 25.4 % reduction for the combined signals. Mean absolute error (MAE) from Fig. 4.2
was averaged over individual minutes; error bars indicate the standard deviation over 187 trials. Dark colors
indicate regressions trained with local (blue), global (red) and combined (yellow) signals only; light colors
indicate regressions trained with signals and their derivatives. We did not perform statistical analyses for
each minute separately.

nitude of this reduction was very small (0.004 W/kg). Examining these data minute-by-minute, we

observed that the difference in performance between regressions with and without derivatives was

most evident during the first minute of the trial (Figs. 4.4, 4.5). In the first minute, regressions

trained with the global and combined signal groups demonstrated reductions in mean absolute

error (MAE) of 0.48 W/kg (32.5 %) and 0.31 W/kg (25.4 %), respectively, with the addition of deriva-

tives. The initial error for the global and combined regressions also decreased dramatically (by

0.63 W/kg and 0.77 W/kg, respectively) with the inclusion of derivatives. For context, the inter-subject

mean metabolic difference between walking at 0.6 m/s (cost: 3.33 W/kg) and walking at 0.9 m/s (cost:

3.74 W/kg) was only 0.41 W/kg. These error reductions are thus quite substantial, especially consider-

ing the need to discriminate small changes between similar activities. The results of this analysis

suggest that with dynamically delayed signals, the magnitude of the error associated with pre-

dicting instantaneous energetic cost during the transient phase of an activity can be meaningfully

reduced with the inclusion of derivatives.
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Figure 4.5: Percent reduction in mean absolute error (MAE) with the addition of derivatives. Adding
derivative information to the regressions trained with global (red) and combined (yellow) signal groups
substantially improved their predictive performance in the first minute of the trial (by 0.48 W/kg and 0.31 W/kg,
respectively), compared to regressions trained without derivatives. These reductions were calculated for
each signal group and each minute as the difference between dark and light bars in Fig. 4.4. We did not
perform statistical analyses for each minute separately.

The reduction in error magnitude obtained from the inclusion of derivatives can also be in-

terpreted as an increase in the speed of prediction. This speed is crucially important for many

wearable robotics applications, in particular for body-in-the-loop optimization. For this applica-

tion, the faster we can obtain an accurate estimate of the instantaneous energetic cost for a given

activity or set of device parameters, the more conditions we can test in a fixed amount of time,

both increasing the efficiency and speed of the optimization routine. Furthermore, during typical

activities of daily living, the tasks are highly dynamic and non-steady-state, which means minimiz-

ing the time required to obtain an accurate estimate of instantaneous metabolic cost for the current

activity is critical for the translation of these algorithms. For other clinical or research evaluations,

decreasing the speed associated with obtaining an accurate estimate of instantaneous energetic cost

can reduce the experimental time and physical burden on participants.
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In this study, we quantified prediction speed using both decay time and the time for the MAE

to decrease below 1 W/kg. Both the global and combined signal groups obtained slightly faster de-

cay times with the addition of derivatives (12 s faster for the global signals, and 3 s faster for the

combined signals) (Table 4.2). However, it is important to note here that the initial error ē(0) is

already much smaller when derivatives are included. So even though the decay time is not much

faster, the absolute magnitude of the error diminishes much more quickly. This effect becomes

most evident when we look at a constant error threshold (that is, a metric of an ‘acceptable’ pre-

diction accuracy) to quantify the speed of the prediction. The MAE from the regression trained

with global signals and their derivatives reached 1 W/kg in only 23 s, compared to the 63 s required

when no derivatives were included. Similarly, the error from the regression with combined signals

and their derivatives reached 1 W/kg in 15 s, compared to 44 s with no derivatives. Therefore, simply

including derivatives in the multiple linear regressions can be responsible for large time savings

(roughly 30–40 s) when trying to achieve some acceptable error threshold. In this analysis, the

error threshold of 1 W/kg was chosen because it represents 10 % of the total range of metabolic cost

experienced by all subjects across all tasks [77], and was a common threshold to compare all re-

gressions against. In practice, the acceptable error threshold for a particular application would be

determined by individual experimenters.

Importantly, the observed performance improvement in the transient phase did not diminish

the performance of the steady state prediction. For all signal groups, the steady state error did not

appreciably change between regressions trained with or without derivatives (Table 4.2), and the

differences in the MAE in minutes 3, 4, and 5 were smaller than 0.04 W/kg for all signal groups

(Figs. 4.4, 4.5). When a signal has reached steady state, its derivative is essentially zero and con-

tains mostly noise, not salient information. The regressions in our study were trained on five minute

conditions that included both transient and steady state phases, so the algorithm automatically bal-

anced the relative weights of the signal and derivative terms to use derivative information during

the transient phases and reject noise during the steady state phases. In practical implementations,

to optimize the trade-off between transient and steady state predictive accuracy, the training data
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should be dynamically representative of the data that the estimator will be used on.

Although the motivation for including derivatives in the regressions came from models of linear

first order systems, the black-box nature of the linear regression algorithm does not require that the

signals fit this form; in fact, this approach extends to other signals whose dynamics have not been

explicitly quantified. The other physiological signals included in the global signals group—breath

frequency, oxygen saturation, skin temperature, and electrodermal activity—do not have explic-

itly defined first order dynamics, but are still dynamically delayed in response to a step change

in metabolic effort, as documented in [77]. Regardless of the explicit dynamics of an individual

signal, the derivative encodes rate of change information, which can be thought of as an additional

feature to improve the predictive accuracy during the transient phase if the signal is changing sig-

nificantly. The regression coefficients will be scaled optimally to exploit this information. The

mathematical framework we developed (outlined in Appendix A), allows us to compare the coef-

ficients of a regression model with those identified from an explicit model. However, at this time,

it is very difficult to make a one-to-one comparison between the predictive performance of a re-

gression model and an explicit model. Signal filtering, system identification methods, and signals

with higher-order or undefined dynamics are all likely to strongly affect this comparison. Although

it is outside the scope of the current study, expanding the mathematical framework to systemati-

cally compare the predictive performance of explicit dynamic models and regression models is a

worthwhile and valuable avenue for future work.

It is important to state that this study was not an attempt to build the best algorithm to predict

instantaneous metabolic cost and minimize steady state error. Rather, the purpose of this study was

to use multiple linear regression as a common platform to demonstrate the potential that deriva-

tives have to reduce both the magnitude and delay of predicting instantaneous metabolic cost. This

goal motivated several practical choices in our study, which each have limitations. To facilitate

comparisons between models with and without derivatives, we sought to keep the signals as close

to their raw form as possible. In reality, many of the signals are highly cross-correlated with one

another and have standard feature sets that we did not explore in this work. All the regressions we
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tested in this study were trained using signal groups, and we did not evaluate the relative impor-

tance of individual signals and their derivatives within these groups, which would be interesting

to explore in future studies. The cross validation technique we used in this study (i.e., training

on 80 % and testing on 20 % of the conditions) allowed us to evaluate the performance of our al-

gorithms when predicting novel conditions, but does not allow us to make inferences about how

these methods perform when we specifically test them on unknown subjects or unknown tasks. A

detailed analysis of how the signal groups we studied generalize to unknown subjects or tasks can

be found in [77]. Finally, we chose to use the multiple linear regression algorithm deliberately,

because it could be formulated as the corollary to the first order linear model. However, we be-

lieve this theory can be applied to many different predictive algorithms in order to further increase

predictive capability. For example, Beltrame et al. included a feature they called ∆HR (i.e., the

difference between the current heart rate value and the previous value by a 1 s lag operator) in their

random forest algorithm trained to predict oxygen uptake dynamics [13]. Although they did not

evaluate the algorithm with and without the derivative information, using ∆HR in combination

with heart rate, minute ventilation, breathing frequency, and hip acceleration resulted in good pre-

dictive performance of oxygen uptake kinetics, which highlights that derivative information can be

useful in other machine learning algorithms. In future work, it will be important to tune the predic-

tive algorithm and improve steady state error by exploring different feature sets, signal processing

techniques, and regression algorithms. We hope to enable other researchers to explore these future

avenues by accessing our full open source dataset online [77, 78].

The results of this study indicate that simply including derivative information in the training

data has the potential to improve predictive performance, with all other factors held constant. We

believe these methods are useful for wearable robotics and body-in-the-loop optimization appli-

cations because they may reduce the time needed to evaluate the metabolic cost associated with

a robotic device or a particular set of conditions. The dataset we used in this study comprised a

diverse set of tasks and intensities that provided substantial metabolic cost variability over a range

of 10 W/kg. However, this range is likely greater than that experienced by subjects during a typical
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body-in-the-loop optimization routine, so we do not yet know the exact timing or error improve-

ments that may be realized for this particular application. In the future, it would be beneficial

to apply these methods to a more specific dataset in order to fully answer this question. These

methods can also be applied across a broad spectrum of fields (e.g., rehabilitation medicine, ex-

ercise science), and may be useful for any researcher or clinician who relies on measurements of

metabolic cost for outcomes. Regardless of the application, to maximize predictive performance,

we recommend using training data that is not only representative of the activities one aims to

predict, but also captures the desired ratio between transient and steady state behavior.

Incorporating physiological information from the human body into control algorithms for wear-

able robots can help advance the design and evaluation of these devices for a variety of applica-

tions. One such physiological quantity is the user’s metabolic energy expenditure, which can

provide valuable real-time information about the state of the user. As such, quick, reliable, and

portable estimates of instantaneous metabolic cost are required for translating our wearable robots

beyond the laboratory environment. Inspired by model-based estimation techniques, in this article

we showed that including signal derivatives in a black-box estimation process improves both the

magnitude and speed of predicting instantaneous metabolic cost from wearable sensors when the

input signals are dynamically delayed. These performance improvements were observed during

the transient phase of an activity, while steady state performance remained unchanged. To some

extent, signal derivative information can be included in prediction models ‘for free,’ since it re-

quires no additional sensor hardware and minimal signal processing, yet it has the potential to

enhance the predictive capability of the model during transient phases of an activity. This article

provides a practical foundation for improving the speed of predicting metabolic energy cost for

wearable robotics applications.
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CHAPTER 5

User Preference as a Holistic Objective for the

Control of Robotic Exoskeletons

5.1 Background

The newest generation of lower-body exoskeletons are high-performance, untethered, and

lightweight [88, 107, 120, 151], but have not yet achieved widespread adoption as devices to aug-

ment able-bodied ambulation. One major barrier to translation is that designing effective control

systems for such devices is challenging due to the added complexity of interfacing directly with the

human body. For lower-limb exoskeletons to achieve their full potential as augmentative devices,

the robotic assistance must provide a benefit to the user while also synergistically integrating with

the user’s intact neuromotor system. Fundamental to the realization of this vision is the definition

of appropriate efficacy criteria, or objectives, for exoskeleton assistance (i.e., how should robotic

assistance impact the wearer?). This is currently a rich field of study, and a universally agreed-

upon objective for optimal able-bodied augmentation has not yet been identified. To accelerate

the translation of robotic exoskeleton systems, it is imperative that control system designers an-

alytically investigate metrics that capture a broad spectrum of relevant outcomes associated with

exoskeleton use. Furthermore, to enable synergistic human-robot interaction, we must expand

our definition of optimality and consider not only how robotic assistance affects biomechanical

elements of gait, but also how individuals perceive, interact with, and learn from the assistance.

As of this writing, this chapter has been submitted as a manuscript for publication and is currently under review.
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In many state-of-the-art exoskeleton control systems, the desired objective is maximized through

the tuning–or optimization–of the controller architecture and associated parameters. Commonly,

controllers for lower-limb exoskeletons command parameterized assistance (e.g., joint torque or

power) as a function of time [120], presumed location in the gait cycle [50, 82, 95, 111, 132], or

muscle activity [94], among others. The choice of the controller parameterization and subsequent

tuning of these parameters not only govern the behavior of the robot but also dramatically im-

pact the wearer’s walking mechanics and energetics [50, 82, 111, 132] and experience wearing the

device [186]. While various objectives for lower-limb exoskeleton assistance have been explored

(e.g., [83]), by far the most common physiological objective for able-bodied augmentation has been

to reduce the metabolic cost of the user [151]. A promising technique to minimize the user’s energy

cost is known as human-in-the-loop optimization [35, 44, 90, 189]. In this paradigm, the user per-

forms a continuous activity, such as walking on a treadmill, while an online optimization algorithm

iteratively modifies characteristics of the exoskeleton’s assistance profile to arrive at the optimal

settings. A real-time estimate of the user’s metabolic cost serves as the cost function that the al-

gorithm seeks to minimize [154]. Recent experiments have demonstrated that human-in-the-loop

optimization has the potential to yield large energetic savings while wearing an exoskeleton with

optimized control settings compared to unassisted walking [35, 189]. However, current human-in-

the-loop optimization methods are fundamentally limited due to their reliance on one, predefined,

measurable physiological objective as a metric of device efficacy.

In reality, it is likely that users prioritize many different metrics simultaneously while wearing

a robotic exoskeleton, such as comfort, stability, pain, symmetry, or perceived effort. Thus, current

controller optimization techniques based solely on minimizing energy expenditure omit valuable

information. Yet, it is challenging to design a control system based upon subjective quantities.

Even if it were possible to robustly measure such metrics, we would not know how to properly as-

sign weights to the discrete metrics to meet an individual user’s needs. Alternatively, asking users

about their preference may inherently encode relevant information from multiple sources related to

the user’s experience. With user preference as a holistic objective function for exoskeleton control
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optimization, the potential emerges for individuals to customize the device assistance according

to their own criteria for optimality. In this paradigm, the user performs their own individual op-

timization internally, which eliminates the burden on researchers to identify, measure, and assign

individual weights to the myriad unknown elements that comprise optimal exoskeleton assistance.

In addition to its role as a target for control parameter optimization, user preference may also be

used to promote synergistic human-robot interaction. While current exoskeleton controllers with

the human ’in the loop’ measure physiological signals (e.g., muscle activity, metabolic cost) to

inform the assistance generation, this type of shared-control paradigm is unidirectional–the wearer

has no conscious control over the assistance provided by the device. Researchers across many fields

of assistive and rehabilitation robotics have demonstrated that bidirectional interaction (i.e., control

sharing) is generally preferred by users, and that high levels of user satisfaction are required for the

acceptance of autonomous robotic assistance [10,40,56,84,87]. Yet, control sharing is a relatively

nascent field when applied to robotic exoskeleton technology, especially in systems designed for

able-bodied augmentation. It is not yet known which types of control sharing paradigms may be

appropriate for lower-limb exoskeleton control systems. To address this challenge, it is important

that we understand the characteristics and temporal features of an individual’s preference, like how

quickly and reliably users can identify their preferences or how their preference changes over time.

Understanding these facets of user preference may provide practical benchmarks for implementing

future shared-control frameworks.

To utilize preference as an optimization criterion for lower-limb exoskeletons, it must be ro-

bustly measured, and we need to understand how it changes based on adaptation, learning, and

interaction with the device. Recent studies have investigated users’ preferences in characteristics

of the assistance provided by lower-limb prostheses [22, 28, 155, 157, 158, 168] and exoskele-

tons [80, 105, 172, 173, 186]. To measure preference, some studies utilized a two-alternative

forced choice paradigm, in which subjects were presented with pairwise comparisons (i.e., A-B

testing) [105, 168, 172, 173], or asked to compare a condition to their own internalized prefer-

ence [157, 158]. Data obtained from forced choice methods can be used to identify or learn a

92



user’s preference, but it may require extended experimental time to obtain a sufficient number of

comparisons. To mitigate this challenge and accelerate the estimation of a user’s preference, one

study implemented a coactive learning paradigm in which users not only chose between paired

conditions but also directly suggested improvements for the assistance each trial (e.g., longer or

shorter step length) [173]. As an alternative to forced choice methods, some studies employed a

method of adjustment, in which individual users (or experimenters directed by users) adjusted con-

trol parameters until they achieved their preferred assistance [22, 28, 80, 155]. Such ‘self-tuning’

methods are advantageous because they can quickly yield an individual’s preference and are intu-

itive to the subject–it is easy to imagine someone using a smart phone or smart watch to adjust their

settings during activities of daily living. Previous studies have demonstrated success using self-

tuning to identify individual preferences in one dimension [28,155], yet it is an open question how

to generalize these methods to multiple dimensions. One option is to perform one-dimensional

sweeps through each parameter simultaneously (as in [22]), but this method is time consuming

and does not allow subjects to assess how interactions between parameters affects their preference.

Prior studies have laid the foundation for the robust measurement of user preference, yet to our

knowledge, no studies have investigated how user preference changes as individuals adapt to and

learn from robotic assistance.

Incorporating user preference into exoskeleton control systems has the potential to increase

user satisfaction, promote acceptance, and add a rich source of holistic information that cannot

be easily measured using standard biometric sensors. To inform future preference-based control

frameworks, the goal of this study was to measure and analyze users’ preferences of the applied

torque characteristics of bilateral robotic ankle exoskeletons. Furthermore, we sought to char-

acterize how preference varies with walking speed, how preference differs between individuals

with different technical backgrounds, and how preference changes as individuals learn and adapt

to robotic assistance. To this end, we developed a two-dimensional grid interface that allowed

users to explore in two dimensions simultaneously to identify their preferred assistance [80]. Im-

portantly, individuals adjusted their assistance using a blank grid, and they were not given any
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information about the control system parameters—the only instruction they were given was to

‘find your preference’. Within this paradigm, users had to identify the assistance that satisfied their

internal criteria by relying on their perception of the robotic assistance to guide their tuning.

In this study, 24 individuals wearing bilateral robotic ankle exoskeletons self-tuned two pa-

rameters of the device’s assistive torque profile to identify their preferred settings (Fig. 5.1A).

Participants were presented with a blank two-dimensional grid displayed on a touch screen tablet

(Fig. 5.1B), and touching the grid instantaneously changed the torque profile the user experienced

by commanding the magnitude and the timing of peak torque delivery (Fig. 5.1C). Subjects were

instructed to explore the grid before deciding on their preference (Fig. 5.1D). Of the 24 partici-

pants, twelve were naive users (no prior exoskeleton experience) and twelve were knowledgeable

users (researchers in the field of wearable robotics with prior exoskeleton knowledge or experi-

ence). The naive cohort completed three blocks of eight preference-identification trials, where the

first trial block comprised trials 1–8, the second comprised trials 9–16, and the third comprised tri-

als 17–24. The participant’s walking speed (1.0, 1.2, or 1.4 m/s) varied between trial blocks and we

block randomized the presentation of speeds within the subject pool. The knowledgeable cohort

performed a shortened version of the protocol and performed eight preference-identification trials

while walking at 1.2 m/s. To characterize user preferences, we statistically analyzed eight outcome

measures related to subjects’ preferences, precision, and exploration strategy. These outcomes

were subjects’ preferred settings (magnitude and timing), the standard deviation of subjects’ pref-

erences across repeated trials (magnitude and timing), the total number of settings explored per

trial, the total exploration time per trial, the average number of strides taken per setting, and the

average time spent per setting. For the naive cohort, we used linear mixed effects models to evalu-

ate the effects of walking speed and trial block (i.e., time spent interacting with the device) on each

outcome. For the knowledgeable cohort, we used two-tailed t-tests to compare the preference and

precision outcomes to the naive cohort during the speed-matched condition.
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Figure 5.1: Bilateral ankle exoskeletons and preference-identification protocol. (A) Bilateral ankle
exoskeletons (Dephy Inc., Maynard, MA) (B) Participants self-tuned their exoskeleton control system using
a blank 2-dimensional grid displayed on a touch screen tablet mounted to the treadmill. (C) Touching
the grid instantaneously changed the torque profile the user experienced by commanding the peak torque
magnitude and timing. The axes of the grid were hidden from the subject but are depicted here to illustrate
the mapping between the parameter coordinates and their corresponding torque profiles. The black dashed
line encompasses the approximate bounds of torque profiles the user could experience within the limits of
the grid. (D) A representative preference-identification trial. Subjects explored a blank 2-dimensional grid,
beginning at a random initial condition (red circle), and ending at their preferred settings (green circle).
Black circles indicate the settings the participant sampled. Black lines connect settings in the order they
were explored; these lines were added for visualization and did not appear on the subject’s screen. The
corresponding time-series representation of the participant’s exploration is shown to the right.
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Figure 5.2: Experimental setup and touch screen interface. (A) (1) Subjects wore bilateral ankle ex-
oskeletons (Dephy Inc.) as they walked on a treadmill (Bertec). (2) The two lithium polymer batteries and
the control microprocessor (Raspberry Pi) were carried in a hip sack. (3) Subjects interacted with a touch
screen tablet (Microsoft Surface) mounted to the treadmill in front of them to self-tune their exoskeleton
control system. The subject’s selections from the touch screen were transmitted wirelessly to the Raspberry
Pi. An emergency stop button was located to the left of the touch screen. (B) The touch screen tablet
(Microsoft Surface Pro 4) was mounted to the treadmill. The screen measured 26×17 cm. (C) The tablet
displayed a 2-dimensional grid. The displayed grid was 10×10 squares and measured 15.5×15.5 cm. When
the subject touched the screen, a small red crosshair (1×1 cm) appeared to indicate the current setting;
previous settings remained on the screen as black crosshairs.

5.2 Methods

5.2.1 Study Design

The objective of this study was to quantify individual users’ preferences in their bilateral an-

kle exoskeleton assistance settings. This study utilized a crossover design, in which twelve naive

exoskeleton users self-tuned the magnitude and timing of the assistive torque burst using a touch
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screen tablet (Fig. 5.1). We conducted repeated preference-identification trials at each of three

walking speeds, presented in a block-randomized order. With this design, we sought to quantify

how individual preferences varied with both walking speed and time spent interacting with the

device (i.e., trial block). Within this paradigm, we characterized how individuals searched for

and identified their preferences and learned to use the exoskeleton assistance and tuning interface.

Finally, we investigated how prior knowledge of exoskeleton control systems affected user pref-

erence. We repeated a shortened version of the self-tuning protocol at one speed with a group of

twelve knowledgeable subjects (researchers in the field of wearable robotics) and compared their

preferences to those of the naive subjects.

5.2.2 Participants

We recruited a naive cohort of twelve able-bodied subjects (6 male, 6 female; mean (SD) age:

32.1 (8.3) years, height: 1.77 (0.08) m, weight: 78.6 (12.5) kg) who had no prior experience

walking using a robotic exoskeleton and were not researchers in the field of wearable robotics; this

information was self-reported by subjects on a post-experiment questionnaire. We also recruited

a knowledgeable cohort of twelve able-bodied subjects (9 male, 3 female; mean (SD) age: 27.3

(3.5) years, height: 1.77 (0.11) m, weight: 69.0 (10.3) kg) who self-identified on the questionnaire

as researchers in the field of wearable robotics and reported from 0–100+ hours of walking using

a robotic exoskeleton. Prior to data collection, all participants provided informed consent to a

protocol approved by the University of Michigan Institutional Review Board. Individuals recruited

for this study had no history of serious lower limb injury, no neurological diseases affecting their

movement or balance, and were not pregnant. Before beginning the experiment, subjects self-

reported their gender, height, and age, and we measured their weight (Table 5.1).
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Naive cohort Knowledgeable cohort
Age Prior time walking Age Prior time walking

Subject Gender (years) Height† (m) Weight∗ (kg) with exo† (hours) Subject Gender (years) Height† (m)) Weight∗ (kg) with exo† (hours)
S01 F 25 1.80 100.0 0 S13 F 30 1.63 70.4 5
S02 F 30 1.63 67.1 0 S14 M 26 1.70 86.3 0
S03 M 33 1.85 86.4 0 S15 M 22 1.83 62.0 1
S04 M 40 1.71 67.9 0 S16 M 27 1.83 61.0 0
S05 M 35 1.85 92.8 0 S17 M 22 1.80 85.7 >100
S06 M 37 1.83 86.0 0 S18 M 32 1.73 73.5 0
S07 F 31 1.78 85.9 0 S19 M 30 1.75 72.5 7
S08 F 19 1.63 60.6 0 S20 F 26 1.70 58.7 8
S09 M 24 1.80 76.0 0 S21 M 26 1.68 57.7 >100
S10 M 51 1.83 76.3 0 S22 M 26 2.06 64.6 0
S11 F 32 1.68 61.8 0 S23 F 27 1.69 58.3 1
S12 F 28 1.80 82.9 0 S24 M 33 1.79 77.3 25

Mean (SD) - 32.1 (8.3) 1.77 (0.08) 78.6 (12.5) 0 (0) Mean (SD) - 27.3 (3.5) 1.77 (0.11) 69.0 (10.3) 20.6 (37.8)
(Min, Max) - (19, 51) (1.63, 1.85) (60.6, 100.0) (0, 0) (Min, Max) - (22, 33) (1.63, 2.06) (57.7, 86.3) (0, 100)
∗Subjects were weighed while wearing the exoskeleton. The weights presented here have had the weight of the exoskeleton (5 kg) subtracted.
†Self-reported.

Table 5.1: Subject characteristics of naive and knowledgeable cohorts.

5.2.3 Ankle Exoskeleton Hardware

Subjects wore bilateral ankle exoskeletons (Dephy Inc., Maynard, MA) (Figs. 5.1, 5.2). Each

exoskeleton consists of an actuator, a boot, and a strut. The actuator (T-motor U8-KV100, Nan-

chang, Jiangxi, China) is a brushless motor that provides plantarflexion torque about the ankle joint

by spooling an inelastic cable that is rigidly attached to a short lever arm on the boot. The lever

arm is rigidly connected to a footplate embedded in the sole of the boot. The actuator is mounted

to a strut, which is connected to the boot via the ankle hinge joint and affixed to the wearer’s shank

with an adjustable calf strap. Each exoskeleton is equipped with onboard sensors: an absolute en-

coder at the ankle joint that measures ankle joint angle and velocity, an incremental encoder on the

motor that measures motor angle and velocity, a current sensor that measures motor current, and

an inertial measurement unit (IMU) that measures acceleration and angular velocity of the shank.

The exoskeleton geometry creates a nonlinear transmission ratio, which varies as a function

of ankle angle (as measured by the absolute encoder). Using a benchtop test, we empirically

characterized the exoskeleton’s transmission ratio curve (i.e., transmission ratio as a function of

ankle angle) and represented this function as a fourth-order polynomial. Over the ankle angle’s

normative range of motion (40 degrees plantarflexion to 20 degrees dorsiflexion) the transmission

ratio varies from 17:1 to 7:1, with a mean of 15:1. A detailed description of the characterization

procedure is provided in Section 5.2.5.
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Subjects wore a hip sack that contained the exoskeleton lithium polymer batteries and the

control microprocessor (Raspberry Pi 4, Cambridge, UK). In total, the bilateral device weighed 5

kg (boots: 1.1 kg; bilateral exoskeletons: 2.7 kg; battery and control pack: 1.2 kg). Before data

collection, we fit each subject with the exoskeletons by selecting the properly sized boot (US men’s

sizes 7, 9, 10, or 12), securing the calf straps and hip sack, and adjusting the posterior wires so

they did not hinder the subject’s movement.

5.2.4 Ankle Exoskeleton Control

The exoskeleton controller employed in this study prescribed exoskeleton torque as a function

of stride percentage. The torque profiles exerted by the device were characterized by two shap-

ing parameters: the magnitude of peak torque (in Nm) and the timing of peak torque (in percent

gait cycle) (Fig. 5.1C). These torque profiles were produced using the methodology established

by Zhang et al. [189], which generates polynomial coefficients that define the rising and falling

portions of the exoskeleton torque burst as a function of stride percentage. A finite state machine

governed the exoskeleton torque generation during each stride. The state machine consisted of five

states, and transitions between states occurred at set percentages of the stride (Fig. 5.3). The total

stride time used to calculate the current stride percentage was the average of the past three stride

times, where stride time was measured from left heel contact to left heel contact. We identified

heel contact using shank angular velocity measurements from the on-board gyroscope. During

states when the exoskeleton produced plantarflexion torque, we controlled the device using current

control. At each time step, we calculated the current stride percentage and used the torque profile’s

polynomial coefficients to calculate the desired exoskeleton torque [189]. Desired exoskeleton

torque was then converted to desired motor torque using the instantaneous transmission ratio (ob-

tained using the transmission ratio curve and instantaneous measured ankle angle). Desired motor

torque (Tm) was translated into desired current (i) using i = Tm/kt, where kt is the q-axis torque

constant; for this motor, the torque constant was empirically determined to be 0.14 Nm/A [103]. The

commanded current was enforced on the motor through a closed-loop current controller.
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During the remaining states, which included early stance and swing phases, the desired ex-

oskeleton torque was zero. In these states, the exoskeleton behaved ‘transparently’ and exerted

zero torque on the user, while keeping the cable nearly taught so the actuator was prepared to pro-

duce torque with minimal lag time. This was accomplished using position control to enforce the

desired motor position that maintained enough tension in the cable, while also exerting no torque

on the user. Further details about the implementation of the transparent controller can be found in

Section 5.2.5.

Figure 5.3: Parameterized torque profile as defined by the finite state machine. The exoskeleton pro-
duced torque as a function of percent gait cycle. The torque profile was parameterized by four shaping
parameters, as in [189]: the magnitude of peak torque (Tpeak, Nm), the timing of peak torque (tpeak, %
gait cycle), the rise time of the torque (trise, % gait cycle), and the fall time of the torque (tfall, % gait
cycle). The magnitude and timing of peak torque were commanded by the subject in real time using the
touch screen, while the rise time (15 % gait cycle) and fall time (5 % gait cycle) were held constant. We
commanded exoskeleton torque using a finite state machine with five states. Early stance (orange) was de-
fined from (A) heel contact (0 % gait cycle) to (B) tpeak − trise, or the time when the exoskeleton began to
produce torque. Ascending push-off (yellow) was defined from (B) tpeak − trise to (C) tpeak. Descending
push-off (teal) was defined from (C) tpeak to (D) tpeak + tfall. Late stance (blue) was defined from (D)
tpeak + tfall to (E) toe-off (dashed black line, fixed at 65 % gait cycle). Swing (purple) was defined from
(E) toe-off to (A) the subsequent heel strike. During early stance, late stance, and swing phases, the desired
exoskeleton torque was 0 Nm. During ascending and descending push-off, desired exoskeleton torque was
defined as a cubic spline; polynomial coefficients for each ascending and descending portion of the curve
were generated according to the methodology established in [189].
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5.2.5 Ankle Exoskeleton Benchtop Characterization

We characterized the mechanics of the exoskeleton using a benchtop test. With the boot fixed

to the table, we held the shank of the exoskeleton vertically. We provided the motor with a very low

amount of current (∼0.5 A), enough to spool the cable into tension but not enough to provide ap-

preciable torque. We slowly moved the exoskeleton shank through the ankle’s full range of motion

(from 60 degrees plantarflexion to 40 degrees dorsiflexion) and repeated this sweep 4 times over

20 seconds. With data recorded from the absolute encoder at the ankle joint and the incremental

encoder on the motor, we determined the relationship between motor angle and ankle angle, with

the cable taught but exerting no torque. We represented this function as a fourth-order polynomial,

and it is referred to as the motor-ankle curve (Fig. 5.4A). We then numerically differentiated the

motor-ankle curve to produce the transmission ratio as a function of ankle angle and represented

this using another fourth-order polynomial. This function is referred to as the transmission ratio

curve (Fig. 5.4B).

Figure 5.4: Benchtop characterization of exoskeleton mechanics. (A) Motor-ankle curve used to deter-
mine the required motor position to keep the cable taught but exert no torque on the user at a given ankle
angle. (B) Transmission ratio curve used to determine the instantaneous transmission ratio at a given ankle
angle. A positive ankle angle indicates dorsiflexion and a negative ankle angle indicates plantarflexion. The
motor-ankle curve and transmission ratio curve are shown over the normative range of ankle angle observed
during walking, and are both characterized as fourth-order polynomials.
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In our control system, during states when the exoskeleton produced plantarflexion torque, we

required the instantaneous transmission ratio to convert desired ankle torque into desired motor

torque at each time step. We calculated the instantaneous transmission ratio using the transmission

ratio curve as a lookup function, given the instantaneous ankle angle measured by the absolute en-

coder. During states in which the exoskeleton behaved transparently (i.e., the desired ankle torque

was zero), we utilized the motor-ankle curve. We used this function to calculate the motor position

required to keep the cable taught but exert no torque on the user, given the instantaneous ankle

angle measured by the absolute encoder. We added approximately 40 degrees (0.1 revolutions) to

the calculated taught motor position to introduce enough slack in the cable for the user to com-

fortably move their ankle through its range of motion during walking. This method ensured that

the exoskeleton exerted no torque on the user, yet the cable was nearly taught so the device could

generate plantarflexion torque with minimal lag time.

5.2.6 Touch Screen Interface

To enable subjects to manually tune their exoskeleton assistance settings in real time, we

utilized a touch screen tablet (Microsoft Surface Pro 4, Microsoft Corporation, Redmond, WA)

mounted to the treadmill (Fig. 5.1B). The touch screen displayed a blank 2-dimensional grid

(Fig. 5.2). When the subject touched the screen, a small red crosshair appeared to indicate the

current setting; previous settings remained on the screen as black crosshairs. Touching the screen

changed the assistance settings that the user experienced, beginning at the following left heel

contact. Behind the scenes, the unlabeled Cartesian coordinates of the 2-dimensional grid were

mapped to the parameter coordinates (i.e., magnitude and timing of peak torque) (Fig. 5.1C). To

prevent the subjects from returning to the same (x, y) location each trial, we created eight different

maps, in which the x- and y-axes either corresponded to peak torque magnitude or peak torque

timing. Then, each axis was either oriented smallest-to-largest or largest-to-smallest, with respect

to the origin. All combinations of axis parameters and orientations resulted in eight unique maps,

which were hidden from the subjects and randomized between trials.
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For the peak torque magnitude parameter, subjects could explore from approximately 7.8–

20.7 Nm. For the lower limit of torque magnitude, we chose 7.8 Nm instead of 0 Nm to maximize

the resolution of the grid. Based on pilot testing [80], we determined that this was the approximate

inflection point at which subjects could begin to feel the exoskeleton assistance. Therefore, by

setting the lower limit to 7.8 Nm, we ensured that users could feel the exoskeleton assisting them

at all locations of the grid. Because the peak commanded exoskeleton torque was not always

the same as the peak measured exoskeleton torque, subjects did not always experience the exact

same boundaries of the grid. Across all subjects and strides, the mean error between the peak

commanded torque and the peak measured torque was 3.9 %. Therefore, we expect that the lower

bound of subjects’ exploration was within 7.5–8.1 Nm, and the upper bound was within 19.9–

21.5 Nm. In this study, we report each subject’s preferred magnitude in measured peak torque to

capture what users experienced when they chose their preferred settings.

For peak torque timing, the full range of assistance settings available to the subjects to explore

was 48–60 % gait cycle. The bounds for the timing parameter were selected from empirical testing

and informed by the literature. For our exoskeleton and control system, timings earlier than 48

% gait cycle were very uncomfortable for users and decreased their ability to walk normally. Yet,

48 % gait cycle was low enough to capture the metabolically-optimal exoskeleton push-off timing

reported in previous studies [119, 189]. For both parameters, the grid was linearly interpolated on

both axes between the minimum and maximum values over 74 points, resulting in a resolution of

0.174 Nm for torque magnitude and 0.162 % gait cycle for torque timing.

5.2.7 Preference-Identification Protocol

In this experiment, subjects identified their preferred settings by self-tuning the magnitude and

timing of their peak exoskeleton assistance in real time using the touch screen interface. During

a single preference-identification trial, participants began with a random assignment of one of the

eight maps described in Section 5.2.6, and a randomized initial condition between 50–57 % gait

cycle for torque timing and 10.3–19.4 Nm for torque magnitude. All subjects were read an identical

103



short script at the beginning of each experiment to communicate the goals of the study. Subjects

were told, “The goal of this device is to assist you while you walk. This device can help you move

your ankle by pushing your toes down. Try to let it assist you. The setting on the screen changes

the way it assists you and may change how it feels. Your goal is to find the setting you prefer. We

are going to do this many times under different conditions, but your goal is always the same—find

the setting you prefer. Each new condition is different, so the same (x, y) location on the grid may

not feel the same between conditions. You should explore the grid to find the setting you like the

best. Try to walk for at least 3 steps before changing the setting.” Subjects explored the grid to

find their preferred settings (as depicted in Fig. 5.1D). When they found their preferred settings,

they informed the experimenter, who stopped the trial. We verbally reminded subjects to explore

the space until they were confident in their preference but did not enforce any time limit on subject

exploration.

Participants in the naive cohort performed three blocks of eight preference-identification trials,

for a total of 24 trials. During each trial block, subjects walked on a treadmill (Bertec, Columbus,

OH) at 1.0 m/s (slow), 1.2 m/s(nominal), or 1.4 m/s (fast). The order of speeds presented was block-

randomized within the subject pool to ensure even distribution, and two subjects performed each

of the six possible orders of speeds. Participants in the knowledgeable cohort performed one block

of eight preference-identification trials at the nominal speed (1.2 m/s).

Before beginning the preference-identification trials, all subjects performed a practice trial,

during which they were allowed to explore the grid for as long as they wished to get used to the

exoskeleton assistance. We encouraged subjects to explore out to the edges of the grid to famil-

iarize themselves with possible assistance settings they might experience during the experimental

trials. On average, naive subjects practiced walking with the exoskeletons for 4.6 (2.1) minutes

(mean (SD) across ten naive subjects; we were unable to save the practice trials from Subjects 2 or

3). Knowledgeable subjects practiced walking with the exoskeletons for 3.5 (1.4) minutes (mean

(SD) across twelve knowledgeable subjects).
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5.2.8 Data Analysis

During each preference-identification trial, we recorded time series of all assistance settings

and (x, y) coordinates that participants experienced (e.g., Fig. 5.1D). We simultaneously recorded

data from the exoskeleton, including motor angle, velocity, voltage, and current, ankle angle and

velocity, and shank angular velocity (Figs. 5.5, 5.6). At the termination of each trial, we noted the

final settings and coordinates corresponding to the subject’s preference. We assessed eight out-

comes in this study, divided into three categories: 1) preference outcomes, 2) precision outcomes,

and 3) exploration strategy outcomes. The two preference outcomes were preferred peak torque

magnitude (Nm) and preferred peak torque timing (% gait cycle), which corresponded to the final

settings the participant chose. The two precision outcomes were designed to assess subjects’ re-

peatability in identifying their preferred settings across trials. They were the standard deviation of

preferred peak torque magnitude (Nm) and the standard deviation of preferred peak torque timing

(% gait cycle). The four exploration strategy outcomes described how the participants performed

the experiment and interacted with the touch screen. They included the number of settings an in-

dividual sampled before confirming their preference, the total exploration time before confirming

their preference (seconds), the average number of strides (left heel contact to left heel contact)

taken per setting before changing to a new setting, and the average time spent per setting before

changing to a new setting (seconds).
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Figure 5.5: Signals collected from the exoskeleton. The signals depicted here were collected from the last
five steps at the preferred setting from a representative trial (Subject 9, nominal speed). The traces begin
and end at heel strike. (A) Ankle joint angle (dorsiflexion is positive). (B) Ankle joint velocity. (C) Motor
angle. (D) Motor velocity. (E) Motor q-axis current. (F) Motor q-axis voltage. (G) Shank angular velocity.
(H) Transmission ratio. For this figure, ankle velocity, motor angle, motor current, shank angular velocity,
and transmission ratio trajectories were smoothed using a zero-lag low-pass filter with a cutoff frequency of
25 Hz. Motor voltage and motor velocity trajectories were smoothed using a zero-lag low-pass filter with a
cutoff frequency of 50 Hz. The sampling frequency was approximately 500 Hz.
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Figure 5.6: Mean exoskeleton signals at each walking speed. Mean signal traces were generated for Sub-
ject 5 as the average of all the steps taken at the preferred setting, concatenated across each trial performed
at a particular speed. The slow speed is shown in red (N = 71 steps), the nominal speed is shown in blue
(N = 68 steps), and the fast speed is shown in yellow (N = 65 steps). Heel strike corresponds to 0 % gait
cycle. (A) Mean ankle joint angle (dorsiflexion is positive). (B) Mean ankle joint velocity. (C) Mean motor
angle. (D) Mean motor velocity. (E) Mean motor q-axis current. (F) Mean motor q-axis voltage. (G) Mean
shank angular velocity. (H) Mean transmission ratio. Signals were filtered before averaging, as in Fig. 5.5.
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5.2.9 Statistics

All statistical analyses were performed using MATLAB (MathWorks, Natick, MA). To compare

preference and precision outcomes between the knowledgeable cohort and the naive cohort (during

the speed-matched condition of 1.2 m/s), we utilized two-tailed t-tests (α = .05).

Using data collected from the naive cohort, we built eight linear mixed effects model (LMEM),

one for each outcome. Each LMEM built in this study had the following form:

y = Xβ + Zb+ ε (5.1)

where y ∈ RN×1 was the response vector of outcome measurements, and N was the number of

total observations. X ∈ RN×m was the fixed-effects design matrix and β ∈ Rm×1 was the fixed-

effects vector, where m was the number of fixed effects plus an intercept. Z ∈ RN×qK was the

random-effects design matrix, and b ∈ RqK×1 was the random-effects vector, where q was the

number of random effects and K was the number of levels. ε ∈ RN×1 was the error vector.

For all outcomes, the base model included speed and trial block as fixed effects (m = 3)

and included a random intercept per subject (q = 1, K = 12). Starting at this base model, we

optimized each model using a manual forward selection process based on the Akaike information

criterion (AIC). We iteratively added random effects of subject-specific slopes for speed and trial

block. When the difference in AIC was not significant between models with additional terms (as

determined using MATLAB’s compare() function), we chose the model with the fewer number

of predictors. Through this process, we determined which combinations of fixed and random

effects produced the model with the lowest AIC for each outcome. For the two precision outcomes,

the best model was the base model. For the two preference outcomes and the four exploration

strategy outcomes we selected the base model plus an additional subject-specific slope for trial

block (q = 2, K = 12). For the number of strides per setting, adding an additional subject-specific

slope for speed to the chosen model slightly improved the AIC from 762 to 758 (p = .01), but we

opted for the simpler model to be consistent with the other exploration strategy outcomes.
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The linear mixed effects models were constructed using data collected from twelve naive sub-

jects who performed eight preference-identification trials at each of three speeds (24 trials per

subject). For each preference outcome, we analyzed N = 285 observations. Please note this num-

ber is less than 288 because we were only able to analyze seven trials for Subjects 4 and 8 during

the slow condition and Subject 6 during the nominal condition. For the exploration strategy out-

comes, we analyzed the same N = 285 observations as with the preference outcomes. For each

precision outcome, we analyzed N = 36 observations—the standard deviation across all trials at

each of three speeds for twelve participants.

Each LMEM with two fixed effects produced a 2-D surface that best fit the outcome data, with

walking speed on the x-axis and trial block on the y-axis (as depicted in Fig. 5.8). The surface

was defined by the model coefficients for each fixed effect (i.e., slopes), each with an associated

p-value. If the LMEM p-value for a fixed effect coefficient was less than the significance threshold

of .05, we considered that slope to be significantly different from zero, and thus concluded there

was a significant effect of that fixed effect on the given outcome.

5.3 Results

Individuals Reliably Identified Unique Preferences in Characteristics of their Robotic

Exoskeleton Assistance

Across all trials, naive subjects’ preferred peak torque magnitude ranged from 7.94 Nm (95%

confidence interval, CI95% = [7.68, 8.19] Nm) to 19.42 Nm (CI95% = [18.91, 19.92] Nm) (Fig. 5.7).

As a metric of subjects’ precision across trials, the mean within-subject standard deviation of pre-

ferred magnitude was 1.72 Nm, with a minimum of 0.60 Nm and a maximum of 2.92 Nm. As a

metric of the variability between subjects’ preferences, the between-subject standard deviation of

preferred magnitude was 3.66 Nm (2.1 times the within-subject standard deviation). There was no

correlation between preferred magnitude and body mass (Pearson’s correlation coefficient, r = .13)

or height (r = .31).
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Naive subjects’ minimum preferred timing was 54.08 % gait cycle (CI95% = [53.32, 54.85]

% gait cycle), and the maximum was 59.24 % gait cycle (CI95% = [59.0, 59.47] % gait cycle)

(Fig. 5.7). The mean within-subject standard deviation of preferred timing was 1.53 % gait cycle,

with a minimum of 0.50 % gait cycle and a maximum of 2.82 % gait cycle. The between-subject

standard deviation of preferred timing was 1.47 % gait cycle (0.96 times the within-subject standard

deviation). There was no correlation between preferred timing and body mass (r = -0.21) or height

(r = -0.08).

Naive participants sampled 21.5 (between-subject SD: 6.0) settings and explored for 104.9

(34.2) seconds before confirming their preference. On average, subjects took 4.3 (1.0) strides per

setting and spent 4.8 (1.3) seconds per setting before changing to a new setting.

Figure 5.7: Naive subjects’ preferred exoskeleton assistance. (A) Subjects’ mean preferred magnitude
and timing settings across all 24 preference-identification trials. Colored squares and error bars depict the
mean and 95% confidence intervals for each parameter. The black dashed lines indicate the approximate
bounds of torque magnitude individuals could explore using the touch screen. (B) Subjects’ preferred torque
profiles corresponding to their mean preferred magnitude and timing parameters. The black dashed lines
encompass the approximate area that individuals could explore using the touch screen.
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Individuals’ Preferred Torque Magnitude Increased as the Experiment Progressed

There was a significant effect of trial block on preferred magnitude (LMEM, p = .01) (Fig. 5.8B).

According to the slope of the model, we would expect a subject’s preferred magnitude to increase

by 1.54 Nm (CI95% = [0.41, 2.66] Nm) from the first to the last trial block (Table 5.2). We addi-

tionally observed a mild positive relationship between preferred magnitude and walking speed, but

it was not statistically significant (LMEM, p = .06) (Fig. 5.8A). Subjects’ preferred timing did not

vary with speed (LMEM, p = .44) (Fig. 5.9A), or trial block (LMEM, p = .56) (Fig. 5.9B).

Figure 5.8: Preferred peak torque magnitude as a function of speed and trial block. (A) Preferred
magnitude as a function of walking speed. (B) Preferred magnitude as a function of trial block. Black
squares represent the inter-subject mean, and black error bars denote 1 standard error of the mean (SEM).
Gray lines connect individual subjects’ means. Each linear mixed effects model (LMEM) generates a surface
that characterizes the relationship between the outcome and the two fixed effects (speed and trial block); a
cartoon example of an LMEM surface is illustrated on the far right. Left and right panels are 2-dimensional
views of the same LMEM surface. Purple lines (left) show the slope of the model with respect to walking
speed and represent slices of the LMEM surface at trial block 1 (dark), trial block 2 (medium), and trial
block 3 (light). Teal lines (right) show the slope of the model with respect to trial block and represent slices
of the LMEM surface at 1.0 m/s (dark), 1.2 m/s (medium), and 1.4 m/s (light). The LMEM p-value for each
fixed effect’s slope is depicted at the top right of each panel; a significant effect is denoted with a black star.
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Figure 5.9: Preferred peak torque timing as a function of speed and trial block. (A) Preferred timing as
a function of walking speed. (B) Preferred timing as a function of trial block. For a complete figure legend
please refer to Fig. 5.8.

Individuals Were More Precise Identifying Their Preferred Torque Magnitude at Faster

Walking Speeds

The standard deviation of subjects’ preferred magnitude significantly decreased (i.e., subjects

became more precise) as walking speed increased (LMEM, p = .01) (Fig. 5.10A). According

to the slope of the model, we would expect a subject’s standard deviation of preferred magni-

tude to decrease by 0.50 Nm (CI95% = [0.15, 0.86] Nm) as walking speed increased from 1.0

to 1.4 m/s (Table 5.2). With respect to trial block, the standard deviation of subjects’ preferred

magnitude exhibited a moderate decreasing trend, but the slope did not surpass the threshold for

significance (LMEM, p = .05) (Fig. 5.10B). The standard deviation of preferred timing did not

significantly vary with speed, but we observed a trend toward increased precision with increasing

speed (LMEM, p = .07) (Fig. 5.10C). The standard deviation of preferred timing did not vary with

trial block (LMEM, p = .98) (Fig. 5.10D).
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Figure 5.10: Precision outcomes as a function of speed and trial block. (A) Standard deviation of
preferred magnitude as a function of walking speed. (B) Standard deviation of preferred magnitude as a
function of trial block. (C) Standard deviation of preferred timing as a function of walking speed. (D) Stan-
dard deviation of preferred timing as a function of trial block. For a complete figure legend please refer to
Fig. 5.8.

Individuals Became More Efficient Identifying Their Preferences as the Experiment

Progressed

Trial block had a significant effect on all four exploration strategy outcomes (Table 5.2). The

models predicted that from the first to the last trial block, subjects would explore 6.6 (CI95% = [1.9,

11.3]) fewer settings (LMEM, p = .01) (Fig. 5.11B), reduce total exploration time by 57.4 seconds

(CI95% = [32.5, 82.2] seconds) (LMEM, p < .0001) (Fig. 5.11D), take 0.85 (CI95% = [0.4, 1.3])

fewer strides per setting (LMEM, p = .0002) (Fig. 5.11F), and reduce time per setting by 1.0

seconds (CI95% = [0.6, 1.5] seconds) (LMEM, p < .0001) (Fig. 5.11H).

Walking speed had a significant effect on three of the four exploration strategy outcomes

(Table 5.2). The models predicted that increasing speed from 1.0 to 1.4 m/s corresponded to 3.0

(CI95% = [0.4, 5.6]) fewer settings explored (LMEM, p = .03) (Fig. 5.11A), 15.3 seconds (CI95% =

[1.1, 29.4] seconds) less total exploration time (LMEM, p = .03) (Fig. 5.11C), and 0.6 (CI95% =
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[0.3, 0.9]) more strides per setting (LMEM, p < .0001) (Fig. 5.11E). Increasing speed did not

affect the time spent per setting (LMEM, p = .60) (Fig. 5.11G).

Figure 5.11: Exploration strategy outcomes as a function of speed and trial block. (A) Total number of
settings explored as a function of walking speed. (B) Total number of settings explored as a function of trial
block. (C) Total exploration time as a function of walking speed. (D) Total exploration time as a function
of trial block. (E) Number of strides taken per setting as a function of walking speed. (F) Number of strides
taken per setting as a function of trial block. (G) Time spent per setting as a function of walking speed.
(H) Time spent per setting as a function of trial block. For a complete figure legend please refer to Fig. 5.8.
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Individuals With Prior Exoskeleton Knowledge Preferred Higher Torque Magnitude

The knowledgeable cohort self-identified as researchers in the field of wearable robotics, yet

not all knowledgeable subjects had prior experience walking using a powered exoskeleton. Of the

twelve knowledgeable subjects, four reported they had never walked using a robotic exoskeleton

before, five estimated 1–10 hours, one estimated 25 hours, and two estimated more than 100 hours

(Table B.1). There was no correlation between hours of prior walking experience and preferred

magnitude (Pearson’s correlation coefficient, r = .30), or preferred timing (r = .10).

Knowledgeable subjects preferred significantly higher torque magnitude than naive subjects

(t-test, p = .02, Cohen’s d = 0.95) (Fig. 5.12A). We did not detect differences between groups

in their preferred timing (t-test, p = .71, d = 0.16) (Fig. 5.12B), standard deviation of preferred

magnitude (t-test, p = .29, d = 0.44) (Fig. 5.12C), or standard deviation of preferred timing (t-test,

p = .49, d = 0.29) (Fig. 5.12D).

Figure 5.12: Comparison of outcomes between naive and knowledgeable users. (A) Preferred mag-
nitude. (B) Preferred timing. (C) Standard deviation of preferred magnitude. (D) Standard deviation of
preferred timing. Orange bars indicate the inter-subject mean of the outcome for naive subjects walking
at 1.2 m/s. Gray bars indicate the inter-subject mean of the outcome for knowledgeable subjects walking at
1.2 m/s. Black error bars show 1 standard error of the mean (SEM). A black bracket with a star indicates a
significant difference between the means, as calculated by a two-tailed t-test.
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Fixed effect = speed (tested range 1-1.4 m/s) Fixed effect = trial block (tested range 1-3)
Expected change Expected change

LMEM slope estimate p-value over tested range LMEM slope estimate p-value over tested range
Outcome [95% CI] of slope (0.4 m/s) [95% CI] of slope (2 blocks)
Preferred

1.33 [-0.07, 2.72] .06 0.53 0.77 [0.21, 1.33] .01 1.54
Preference magnitude (Nm)
outcomes Preferred timing

-0.54 [-1.90, 0.82] .44 -0.21 -0.11 [-0.48, 0.26] .56 -0.22
(% gait cycle)

Std. dev. of preferred -1.26 [-2.14, -0.38] .01 -0.50 -0.17 [-0.35, 0.003] .05 -0.35
Precision magnitude (Nm)
outcomes Std. dev. of preferred

-1.26 [-2.62, 0.1] .07 -0.50 0 [-0.28, 0.27] .98 -0.01
timing (% gait cycle)
Number of settings -7.51 [-14.07, -0.94] .03 -3.00 -3.30 [-5.67, -0.93] .01 -6.60

explored (# settings)
Exploration

Exploration time (s) -38.17 [-73.57, -2.78] .03 -15.30 -28.68 [-41.11, -16.26] < .0001 -57.36
strategy

outcomes Number of strides per 1.48 [0.76, 2.20] < .0001 0.60 -0.42 [-0.64, -0.20] .0002 -0.85
setting (# strides)

Time per setting (s) 0.21 [-0.58, 1.00] .60 0.10 -0.51 [-0.75, -0.28] < .0001 -1.03

Bold text indicates a significant slope with p < .05.

Table 5.2: Results from linear mixed effects models (LMEM) for each outcome with speed and trial block
as fixed effects.

5.4 Discussion

Participants in this study identified unique preferences (Fig. 5.7B), which corroborates mount-

ing scientific evidence that optimal exoskeleton assistance is subject-specific and requires individ-

ualized tuning. We observed that subjects’ magnitude preferences were distributed over the range

of explorable settings (Fig. 5.7A), illuminating several important factors related to the preferred

characteristics of ankle exoskeleton assistance. First, most subjects preferred to feel the exoskele-

ton assisting them to some degree and did not tune the controller to eliminate the assistive torque.

Similarly, individuals did not repeatedly seek the maximum device assistance, which indicates that

for this device, the range of exoskeleton torque provided in this study was inclusive of most sub-

jects’ preferences. Finally, subjects’ preferred magnitude did not scale with body mass or height,

suggesting that the choices were based on internalized criteria and not determined by anthropo-

metric constraints. Unlike magnitude, subjects’ timing preferences fell closely together, within a

narrow band of the explorable grid (Fig. 5.7A). Most subjects’ preferences were concentrated be-

tween 56–59 % gait cycle. The 3 % gait cycle range that encompassed most subjects’ preferences

corresponds to a 33 ms time window, or only 6 % of stance phase. These results demonstrate that
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users have a unique internalized representation of how they wish to receive exoskeleton assistance.

In this study, individuals precisely identified their preferences in two dimensions simultane-

ously, thus demonstrating the efficacy of a two-dimensional self-tuning paradigm for preference-

based exoskeleton control design. Moreover, as subjects were blinded to the parameters and axes

of the gird, this shows that individuals can successfully navigate a two-dimensional interface to

identify their preference relying solely on their perception of device assistance. As a metric for

precision (i.e., repeatability), we analyzed the standard deviation of a user’s preferences across

repeated trials. Across naive subjects, the mean standard deviation of preferred timing was 1.53

% gait cycle, which corresponds to just 17 ms for the average stride time observed in this study.

The mean standard deviation of preferred magnitude was 1.47 Nm, which represents 1.5 % of

the average peak biological ankle torque observed during walking [21]. For comparison to exist-

ing literature, it is helpful to consider the coefficient of variation (CV) for preferred magnitude,

which represents the subject’s standard deviation of preferences as a percentage of their mean.

Across naive subjects, the mean (SD) CV was 13.5% (4.1%); this is comparable to the CV for in-

dividuals using a one-dimensional dial to self-tune their prosthetic foot stiffness, which was 14.2%

(1.7%) [155]. While it is difficult to directly compare the CV between studies because of the differ-

ent hardware and parameters of interest, these results suggest that adding an additional dimension

to a self-tuning interface may not diminish subjects’ precision. As subjects were blinded to both

the parameters of interest and the axes were randomized between trials, these results may represent

the lower bound of subjects’ precision.

Subjects were also able to identify their preferred settings quickly. On average, naive users

found their preferred settings in only 105 seconds (1.8 minutes). Even if subjects needed to per-

form 3–5 repeated trials to obtain an average preference, the entire tuning procedure would take be-

tween five and ten minutes. This is faster than the pairwise comparison method employed in [173],

which required 20 trials for the algorithm to build an approximation of the subject’s preference

in one dimension. It is also considerably faster than existing human-in-the-loop optimization rou-

tines, which take approximately 20–60 minutes to converge on an individual’s energetically op-
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timal settings in three or four dimensions [35, 189]. Taken together, the speed and precision of

subjects’ preference identification demonstrate that users are a reliable source of information and

that the two-dimensional self-tuning paradigm may be a valuable and efficient method for design-

ing preference-based exoskeleton control systems.

Participants in this study did not prefer exoskeleton assistance that replicated trends in the

biological ankle’s torque production. We observed only a mild relationship (p = .06) between pre-

ferred magnitude and walking speed (Fig. 5.8A), and the effect was small; our analyses predicted

that preferred magnitude may increase by 0.53 Nm (CI95% = [-0.03, 1.09] Nm) as walking speed

increases from 1.0 to 1.4 m/s (Table 5.2). From the literature, we estimate that the biological ankle’s

peak torque production increases by approximately 0.12 Nm/kg (8.4 Nm for a 70 kg human) as speed

increases from 0.9 to 1.45 m/s [21]. Therefore, the increase in preferred peak torque magnitude

observed in this study represents only 6% of the expected increase in biological ankle torque over

a similar range of speeds. With regards to the timing of peak exoskeleton assistance, the peak

timing that individuals preferred in this study (56–59 % gait cycle) is considerably later in the gait

cycle than the peak of the biological ankle torque production, which falls in the range of (45–49 %

gait cycle) [21, 182]. Preferred timing also remained constant with respect to speed (Fig. 5.9A).

This is in contrast to a recently published dataset that shows the timing of peak biological torque

production occurs approximately 2 % gait cycle earlier as walking speed increases over a simi-

lar range [21]. While an intuitive starting place for designing ankle exoskeleton assistance is to

supplement the biological ankle by replicating its mechanics during walking [119,129], the obser-

vations from our study indicate that this strategy may not be preferred by users. These findings

suggest that there are complex and potentially counterintuitive mechanisms driving user preference

and future studies are required to elucidate these elements.

One of our key findings is that user preference is not a static quantity. In this study, naive users

preferred 1.54 Nm higher torque magnitude after they interacted with the device throughout the du-

ration of the experiment (Fig. 5.8B). There are numerous potential explanations for this result, and

we elaborate here on only some of the possibilities. Since our subjects were healthy young adults
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and walked for just 22–77 cumulative minutes (similar to [35, 189]), with breaks every 1–3 min-

utes, we strongly believe the effect is not a result of fatigue. Another possibility is that individuals

discovered strategies to adapt their gait biomechanics to comfortably accept higher exoskeleton

assistance. As one example, if users were initially de-stabilized by the exoskeleton assistance (as

proposed in [124] and [5]) and thus preferred lower torque, they may have subsequently discovered

gait strategies to accommodate higher torques while maintaining dynamic stability. Finally, it is

possible that a naive user’s neuromotor system requires a certain duration of time and/or practice

to adapt to exoskeleton assistance, and this adaptation manifests as changes in preferred torque

magnitude. Support for this explanation may be found in previous studies that demonstrated that

biomechanical quantities (e.g., ankle kinematics, muscle activity) required 20–30 minutes to reach

steady state in response to powered exoskeleton assistance [20,57]. However, Cain et al. also con-

cluded that users’ neuromotor adaptation changes depending on the control strategy employed, so

we cannot definitively extrapolate these results to the exoskeleton and control strategy used in our

experiment. To our knowledge, this is the first study to systematically evaluate user preferences

over multiple walking conditions, so the timescale for preference adaptation has yet to be deter-

mined. An additional study will be required to assess if (or when) a new user’s preference reaches

steady state. The current study demonstrates that users’ preferred torque magnitude increases by

1.54 Nm over the course of 24 self-tuning trials (or 22–77 minutes of active exoskeleton use).

These data may be used as a benchmark to determine how often a user might need to re-tune a

preference-based exoskeleton controller, or, alternatively, as motivation to design controllers with

user preference continuously evaluated in the loop.

As the experiment progressed, in addition to preferring higher torque magnitude, subjects also

became more precise and efficient identifying their preferred magnitude. Examining these changes

in the users’ interaction with the self-tuning interface elucidates important elements related to how

naive exoskeleton users learn to navigate the grid and identify their preferences. We observed a

moderate downward trend in subjects’ standard deviation of preferred magnitude (i.e., increased

precision) with respect to trial block (p = .05) (Fig. 5.10B). Simultaneously, subjects’ efficiency
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increased as trial block increased, as quantified by all four exploration strategy metrics (Fig. 5.11,

right column). From a practical standpoint, participants likely developed strategies to navigate the

grid interface more effectively with practice. Anecdotally, we observed that many subjects stream-

lined their exploration strategy as the experiment progressed and converged to a ‘quadrant-based’

strategy; participants would sample 1–2 settings from each quadrant of the grid, select the quad-

rant that felt best, and then fine-tune within the chosen quadrant (Fig. 5.13). Our models revealed

that, over the course of the experiment, subjects would sample 6.6 fewer settings and explore for

57 fewer seconds before confirming their preference (Table 5.2), and we believe it is reasonable to

attribute these results to subjects adopting a more efficient exploration strategy. However, subjects’

increased precision and efficiency in identifying their preferences could also point to adaptation in

the subjects’ perception of the exoskeleton assistance. Subjects’ increased precision identifying

their preferred magnitude may suggest that their ability to differentiate between similar magnitude

settings improved, or that they developed a more specific internal definition of their preference.

An increased perceptual awareness may also be illustrated by examining the average number of

strides individuals took at a given setting before selecting a new setting. Our analyses demonstrate

that we would expect subjects to take 0.85 fewer strides (and spend 1 less second) per setting in

the third trial block compared to the first (Table 5.2). Therefore, as the experiment progressed,

subjects were able to make the same determination (i.e., “how does this feel, and do I like it?”)

at a particular setting more quickly, and in approximately one fewer stride. At this time, we have

not quantified the human’s perceptual ability to distinguish between characteristics of exoskeleton

assistance (i.e., the just noticeable difference), but we believe this would be a valuable avenue for

future research and aid in the interpretation of these results. From a control design perspective,

these findings demonstrate that subjects become an even more reliable source of data as they gain

experience using the device. With increased exposure, users become more confident in searching

for, and deciding upon, their preferred exoskeleton assistance.

An unexpected finding was that as walking speed increased, subjects were more precise in

identifying their preferred magnitude (Fig. 5.10A). Based on the model, we would expect sub-
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Figure 5.13: Evolution of exploration strategies. As the experiment progressed, many subjects adopted
more efficient ‘quadrant-based’ exploration strategies, as shown here for two subjects, (A) Subject 3 and
(B) Subject 5. Grids in the left column depict representative trials from the first trial block. Grids in the
right column depict representative trials from the third trial block. Subjects began at a randomized initial
condition (red circle) and explored the grid until they decided upon their preference (green circle). Black
circles indicate the settings the participant sampled. Black lines connect settings in the order they were
explored; these lines were added for visualization and did not appear on the subject’s screen.

jects’ standard deviation of preferred magnitude to decrease by 32 % (0.5 Nm) as speed increases

from 1.0–1.4 m/s (Table 5.2). We additionally observed a moderate downward trend in the standard

deviation of subjects’ preferred timing (p = .07) (Fig. 5.10C). These results are intriguing, espe-

cially considering that participants also became more efficient as speed increased—our analyses

predict that, at faster speeds, we would expect subjects to explore 3 fewer total settings and spend

15 seconds less time exploring (Figs. 5.11A, 5.11C) (Table 5.2). As the order the speeds a sub-

ject performed was block-randomized (and evenly distributed within the subject pool), we do not

believe these are order effects. One explanation for the increased precision is that subjects simply

took more strides at faster speeds and therefore had increased exposure to the exoskeleton assis-

tance. Subjects did, in fact, take slightly more strides per setting at faster speeds (Fig. 5.11E), but
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did not spend more time per setting (Fig. 5.11G), which indicates that the increased stride count

per setting is likely a result of faster treadmill belt speed. However, subjects did not take more

total strides per trial as speed increased. In fact, the average total number of strides taken per trial

decreased monotonically with increasing walking speed, which also corresponds to the decreased

total exploration time. Therefore, it does not seem plausible that subjects’ increased precision with

increased walking speed is attributable to more time spent walking or more total strides taken at

faster speeds. An interesting hypothesis to explain these results is that an individual’s “prefer-

ence gradient” is steeper at faster walking speeds. In essence, this would mean that subjects are

more sensitive to the settings that feel good to them, and therefore select a more concentrated set

of preferred settings. It could be that, at faster walking speeds, subjects feel less stable or less

comfortable at settings farther away from their preference. Alternatively, if individuals were more

sensitive to the power delivered by the exoskeleton than the torque, they may be more precise in

identifying their preferences in conditions with higher exoskeleton power (i.e., the same torque

burst applied in concert with faster ankle angular velocity [117]). The observed increase in preci-

sion at faster walking speeds is surprising because the assistive torque burst (with a fixed width of

20 % gait cycle) occurs over a shorter duration of time as walking speed increases and stride time

decreases. This suggests that users are not only sensing the torque burst itself to decide on their

preference, but that they are actually evaluating the impact of the assistance over the entire gait

cycle.

As discussed so far, user satisfaction and comfort are likely key elements that will affect the

adoption of augmentation-focused robotic exoskeleton technology in the future. Another critical

piece, however, may be user education surrounding the potential benefits of such devices. In this

study, we observed that preferences differed between knowledgeable subjects (i.e., researchers

in the field of wearable robotics), and naive subjects. During the nominal speed condition, the

knowledgeable cohort preferred 30 % (3.8 Nm) higher peak torque magnitude than the naive cohort

(Fig. 5.12A). Naive and knowledgeable users were both read an identical script at the beginning

of the experiment, so initial subject education did not bias our results. It is interesting that not

122



all members of the knowledgeable cohort actually had prior experience walking using a powered

exoskeleton, and there was no correlation between the previous number of hours spent walking

using a powered exoskeleton and preferred assistance settings. Therefore, we would not expect the

knowledgeable users’ preferences to represent an asymptote of the naive users’ preferences as they

gained walking experience. Rather, it appears that knowledgeable subjects’ personal experiences

as researchers in the field primed them to prefer higher assistance from the robotic exoskeleton.

One possibility is that knowledgeable users were more aware of the potential benefits of robotic

assistance (e.g., energy cost reduction) and thus preferred higher magnitudes. These findings speak

to the importance of educating new users about the potential benefits of exoskeleton technology,

as this knowledge may change the way the user interacts with the device and the assistance they

prefer. For exoskeleton researchers, the preference differences between the knowledge and naive

cohorts also expose the critical need to expand our subject recruitment pools beyond members of

our lab or research community—if we only perform experiments on knowledgeable individuals,

we will likely miss out on important data that will inform how naive users learn to use exoskeletons

for able-bodied augmentation.

In this study, we were limited to providing approximately 22 Nm of exoskeleton torque, which

was the maximum our controller could reliably provide step-to-step without saturating the current

limits of the device. Compared to similar studies (e.g., [119, 189]), this is a relatively low amount

of torque (equivalent to roughly 0.31 Nm/kg for a 70 kg subject). As discussed earlier, however, the

maximum torque limit was high enough to capture all the naive subjects’ preferences. Because we

were limited by the total maximum torque we could provide, we chose to allow subjects to self-

tune their exoskeleton magnitude in Nm, as opposed to the more common body-mass-normalized

Nm/kg. This choice ensured that all subjects could explore roughly the same limits of the grid, and we

did not need to reduce the maximum limit for heavier subjects. We performed the same analyses

presented in this study using subjects’ magnitude preferences normalized by body mass (post-

processed), and this did not impact the interpretation of any of our observed results (Appendix B).

For comparisons between naive and knowledgeable cohorts, we designed this experiment to com-
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pare knowledgeable subjects’ preferences (walking at nominal speed) to naive subjects’ prefer-

ences as they performed the speed-matched condition. Alternatively, we could have compared the

knowledgeable subjects’ preferences (as they performed eight trials) to the naive subjects’ prefer-

ences as they performed the first trial block (i.e., trials 1–8). We performed this additional analysis,

and it did not change the observed differences between groups (Appendix B). In this study, sub-

jects only performed one, self-directed practice session (approximately 5 minutes long) before

performing the experimental trials. We intentionally chose naive subjects for this experiment to

assess how preferences change as individuals learn to use the exoskeleton, but at this time, we

cannot draw conclusions about how the results might be different if these individuals had been

given longer familiarization periods. The demographics of our naive cohort were well-distributed

for gender (6 men, 6 women), and age (19–51 years), but our study was limited by homogeneity

in subjects’ body mass index (BMI: 22–30). The demographics of the knowledgeable cohort were

less well-distributed than the naive cohort in gender (9 men, 3 women) and age (22–33 years) and

were similarly distributed for BMI (15–31).

In this study, we demonstrated that users have unique preferences in their robotic ankle ex-

oskeleton assistance, and that they can precisely and quickly identify these preferences using a

two-dimensional self-tuning interface. Because users were blinded to the parameters they were

tuning, this novel paradigm encouraged participants to customize the device assistance using their

own perception and internalized representation of optimal device assistance. This study is the first

of its kind to rigorously analyze the characteristics of user preference, including how preference

changes with walking speed, time, and exposure to the device, as well as how preferences differ

between groups with different levels of prior technical knowledge and expertise. In conclusion, the

results from this study demonstrate that robotic exoskeleton users are a rich and reliable source of

information related to their experience wearing the device. We advocate for the incorporation of

user preference into the design of future control systems in order to promote synergistic human-

robot interaction and accelerate the translation of augmentative exoskeleton systems.
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CHAPTER 6

Conclusions and Future Directions

As a whole, this dissertation evaluates the notion of optimality in the control of wearable robotic

systems and lays the foundation for translating optimization protocols outside the laboratory en-

vironment. The work described in the preceding chapters explored different cost functions for the

optimization of wearable robots and presented robust measurement tools to obtain accurate esti-

mates of necessary physiological and subjective quantities. This dissertation presented the results

of three full experiments conducted with human subjects, and also contributed detailed scientific

evaluation regarding how interaction with wearable robotic systems affects individuals’ energet-

ics, biomechanics, and subjective preferences. By addressing key challenges in the design and

assessment of optimal controllers for wearable robots, this research advances the field closer to the

translation of these devices outside the laboratory environment.

In the context of the generalized framework for the optimization and evaluation of wearable

robots I presented in Chapter 1 (Fig. 1.1), each chapter of this dissertation contributed to specific

phases of the pipeline (Fig. 6.1). In Chapter 2, I investigated how changing the design of the

BiOM’s controller (i.e., modifying the power setting parameter) impacts individuals wearing the

device. This experiment was designed as a parameter study, and this structure allowed us to evalu-

ate the relationship between the BiOM’s power setting and the wearer’s energetics by constructing

full cost landscapes for each individual. In Chapters 3 and 4, I described a new way to measure

metabolic energy expenditure using physiological signals collected from portable wearable sen-

sors. This work was targeted towards predicting instantaneous metabolic energy cost outside the
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laboratory environment for body-in-the-loop optimization algorithms, which iteratively update the

design of the controller in response to real-time measurements of energy cost. And finally, in

Chapter 5, I assessed a novel objective for the optimization of wearable robots—user preference.

I developed a touch-screen tablet interface to measure individuals’ preferences as they self-tuned

two parameters of the assistive torque provided by bilateral ankle exoskeletons. The work pre-

sented in this dissertation contributes to each phase of the optimization and evaluation pipeline,

and paves the way for future research advances in each of these areas.

Figure 6.1: Contributions of this dissertation in the context of the general optimization framework.
Each chapter of this dissertation contributes to individual phases of the optimization and evaluation frame-
work. This framework is described in detail in Chapter 1 (Fig. 1.1).

6.1 Discussion of Contributions

The following sections summarize the most significant contributions from each of the previous

chapters, as well as describe how the work fills a gap in the field’s current body of knowledge.

Chapter 2: Significance and Contributions

In Chapter 2, I described the experimental study we conducted that investigated the relationship

between power setting and the cost of transport (COT) of individuals with transtibial amputation

walking wearing the BiOM powered ankle prosthesis. This work has been published in Scientific

Reports [74]. At the time of publication, previous studies had investigated how metabolic cost and
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walking mechanics differed when wearing the BiOM (tuned by an expert) compared to wearing

a passive elastic foot (e.g., [52, 63, 145]). Previous studies had also characterized the relationship

between prosthetic net ankle work and metabolic cost, but used a tethered prosthetic ankle emu-

lator system, which can not fully replicate the experience of wearing a powered device [23, 131].

Therefore, this study filled a gap that existed in the literature; to our knowledge, this was the first

parameter study to be conducted using the clinically and commercially available BiOM ankle. All

around the country, prosthetists are actively prescribing and fitting patients with this device, yet

there is very little information regarding how their tuning choices affect the patients’ biomechan-

ics, physiology, and experience wearing the BiOM.

This study directly informs clinical tuning and prescription practices in two main ways. The

first contribution of this work is that it demonstrates that changing the BiOM power setting impacts

individuals’ cost of transport. On average, subjects exhibited a lower COT at higher power settings,

yet this relationship varied considerably between individual subjects. The second contribution of

this work is that it shows that, in order to minimize their COT, all individuals required higher

power settings than the setting chosen by the prosthetist (i.e., the setting that approximated biolog-

ical ankle kinetics). While replicating biological ankle kinetics is a reasonable place to start for

the control of a powered prosthetic ankle, our results show that this strategy does not produce the

prosthetic ankle mechanics necessary to reduce or minimize a user’s energy expenditure. The clin-

ical tuning of powered prostheses is a complicated and time-consuming process that relies heavily

on the expertise of the prosthetist and the communication between patient and clinician. For this

reason, the field of wearable robotics is moving away from expert tuning and towards more objec-

tive, physiologically-informed, or human-in-the-loop tuning practices. As this exciting research

area is relatively new, there are still many open questions related to how to choose the ‘best’ tuning

objective for a particular device or individual, and relevant candidate objectives must be carefully

considered. In this study, we evaluate only one possibility—minimizing cost of transport. This

objective has clinical significance because individuals with amputation expend more energy dur-

ing walking than non-amputees, and therefore it is plausible that researchers and/or prosthetists
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may wish to tune a powered device to reduce this energetic burden. The work described in this

Chapter 2 presents several practical takeaways to inform the design of control systems for powered

ankle prostheses that reduce or minimize an individual’s cost of transport.

Chapters 3 and 4: Significance and Contributions

In Chapters 3 and 4, I described a method to estimate instantaneous metabolic cost using phys-

iological signals collected from portable wearable sensors. Chapter 3 has been published in the

Journal of Applied Physiology [77], and Chapter 4 has been published in the IEEE Robotics and

Automation Magazine [81]. In itself, the idea to estimate energy expenditure from wearable sen-

sors is not new—researchers and scientists from the fields of physiology, exercise science, clinical

nutrition, and pediatric medicine have been developing such algorithms for decades. However,

estimation algorithms are discipline-specific, and thus have focused on predicting different forms

of energy expenditure, depending on the goal. For example, prior studies used black-box algo-

rithms to predict the metabolic equivalent of a task (MET) (e.g., [19, 32]) or the breath-by-breath

response of energy expenditure or oxygen uptake (e.g., [3, 13, 143]). To our knowledge, the two

studies presented here in Chapters 3 and 4 were the first to use physiological signals to predict

instantaneous or steady-state metabolic cost. We chose to estimate instantaneous metabolic cost

because it is the quantity that is required for body-in-the-loop or human-in-the-loop optimization

algorithms that minimize energy expenditure. There is a major gap to be filled in the develop-

ment of body-in-the-loop optimization algorithms because current techniques are fundamentally

limited by their reliance on indirect calorimetry for estimates of instantaneous metabolic cost. In

addition to the data-related challenges, indirect calorimetry is unsuitable for long-term data col-

lections outside the laboratory environment because of the obtrusive rubber mask. Therefore, by

estimating instantaneous metabolic cost without the use of the mask, this work represents the first

step towards bridging the gap between human-in-the-loop optimization performed in the confined

laboratory setting and translating these algorithms into real-world situations.

In Chapter 3, I described the experiment I performed to collect the necessary dataset for build-
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ing predictive algorithms, which is a major contribution of this work. In designing this experiment,

we took great care to choose combinations of tasks that would give any predictive algorithm the

best chance at predicting metabolic energy expenditure, and not an intermediate biomechanical or

physiological correlate. For example, in a dataset that contains only walking at different speeds,

we know that walking speed is highly correlated with metabolic energy expenditure. Given that

many of the sensors (e.g., accelerometers) are designed to measure changes in walking speed or

kinematics, a predictive algorithm may erroneously associate such patterns with actual changes in

energy cost. For this reason, we chose to include tasks such as backwards walking in our dataset,

which have a similar metabolic cost to forward walking, but very distinct kinematics. Conversely,

we chose to include tasks such as incline walking, which have similar kinematics to level ground

walking, but higher energetic demands. The cycling task (performed on a stationary exercise bike)

also presented an opportunity to include redundancy in the dataset. We collected data from indi-

viduals cycling at 70 rpm, but under three different resistance conditions, which means that the

kinematics of the task were identical, but the energetic demands changed. I believe that the careful

consideration of tasks and built-in redundancy (coupled with the number of physiological signals

included) make this dataset a unique and valuable resource to the research community. For this

reason, the dataset is available open-source [78], and it is my hope that other researchers will utilize

it to build their own predictive algorithms for a variety of applications.

Chapter 3 also presents the systematic evaluation of the ‘salience’, or predictive capability,

of physiological signals used in a linear regression algorithm to predict instantaneous metabolic

cost. In this chapter, I documented the detailed analyses comparing the predictive capability of

raw vs. processed signals, filtered vs. unfiltered signals, and individual vs. groups of signals.

For this study, we prioritized simplicity over optimal performance and used linear regression as a

common algorithm to compare predictive power across signals. A key contribution of this work

is the evaluation of signal performance using leave-one-subject-out or leave-one-task-out cross

validation. While an 80%–20% or 90%–10% cross validation is a common approach for validating

machine learning algorithms, we specifically chose leave-one-subject-out and leave-one-task-out
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validations because of their potential to inform body-in-the-loop optimization methods. Wearing

adaptive assistive robotic devices might very well constitute an unknown task and might lead to

changes in an individual subject’s physiology, yet we still need to obtain accurate estimates of

metabolic cost. Thus, for body-in-the-loop optimization algorithms to be successful, we need to

incorporate signals that are robust to potentially “unknown” tasks and subjects. In this work, we

found that accelerometer signals were particularly affected by unknown tasks, while EMG and

global signals (e.g., heart rate, electrodermal activity) were more sensitive to unknown subjects.

Another contribution of this work is the evaluation of the ‘best’ signals to include in a multiple

linear regression model when only a small number of signals (fewer than 8) are included. This

analysis is crucial for the practical implementation of these algorithms because it is unlikely that

researchers will have access to or wish to use the large number of sensors included in this study.

In fact, our results demonstrated that with only one signal (minute ventilation) we could achieve

a reasonably low prediction error. Adding additional sensors improved performance, but with

diminishing return. Based on the results of this study, for body-in-the-loop optimization and other

applications that require predicting energy cost from portable sensors, we recommend combining

accelerometers (ideally located close to the center of mass) with heart rate, breath frequency, and/or

minute ventilation to provide the most robust prediction of instantaneous energy cost.

The work presented in Chapter 4 builds upon the work presented in Chapter 3 by improving

both the speed and accuracy of predicting instantaneous metabolic cost from physiological signals

collected from portable sensors. This work presented in this chapter is significant to the opti-

mization of wearable robots because the faster we can obtain accurate estimates of instantaneous

metabolic cost, the more quickly we can iterate through control parameters in a human-in-the-loop

optimization routine. The work described in Chapter 3 showed that filtered signals like heart rate,

minute ventilation, and limb accelerations were highly correlated with instantaneous metabolic

cost. However, we noticed that using dynamically delayed input signals (e.g., heart rate, minute

ventilation) in a linear regression algorithm produced dynamically delayed predictions of instanta-

neous energy cost. To improve the speed of instantaneous metabolic cost predictions using wear-
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able sensors, we included the time derivatives of physiological signals the black-box estimation al-

gorithm. We expected that this information would be useful because a linear regression performed

on a signal and its derivative has the same mathematical structure as an explicit first-order dynamic

model. One of the contributions of this work is that we demonstrated that including derivatives

in the linear regression models improved both the speed and accuracy of predicting instantaneous

energetic cost, especially when the input signals were dynamically delayed. Furthermore, the sig-

nal derivative information can be included essentially “for free”, because it requires no additional

sensor hardware and minimal signal processing, yet it can enhance the predictive capability of the

regression model. An additional contribution of this work is the mathematical framework we de-

veloped that allows us to compare the coefficients of a regression model with those identified from

an explicit first-order model. This analysis showed that, in the absence of noise, the coefficients

of the linear regression model are the same as the explicit model, but in the presence of noise, the

coefficients differ. At this time, it is very difficult to make a one-to-one comparison between the

predictive performance of a regression model and an explicit model, but expanding the mathemat-

ical framework to systematically compare the predictive performance of explicit dynamic models

and regression models is a worthwhile and valuable avenue for future work.

Chapter 5: Significance and Contributions

In Chapter 5, I presented a study that evaluated user preference as a holistic objective for the

control of robotic exoskeletons. At the time of this writing, the pilot experiment I conducted

has been published in the conference proceedings for the 2020 IEEE Conference on Biomedical

Robotics & Biomechatronics [80], and the manuscript presented in Chapter 5 is currently under re-

view. To date, metabolic cost has been the near-universal objective for the optimization and tuning

of control systems, particularly for augmentative robotic exoskeletons [151]. Human-in-the-loop

optimization methods have emerged as promising techniques to automatically tune the parameters

of a control system to minimize the user’s energy cost (e.g., [35, 92, 184, 189]). However, current

human-in-the-loop optimization methods are fundamentally limited due to their reliance on one,
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predefined, measurable physiological objective as a metric of device efficacy. In reality, it is likely

that users prioritize many different metrics simultaneously while wearing a robotic exoskeleton,

such as comfort, stability, pain, symmetry, or perceived effort. This observation brings to light

two gaps in our current knowledge: 1) how do we define a cost function that has relevance during

all activities the user performs during their daily lives? and 2) how do we robustly measure the

relevant user-specific and subjective quantities? As a starting place to fill these gaps, researchers

have recently begun to investigate user preference as an alternative metric for the control of wear-

able robots, because it may encode the multi-factorial nature of exoskeleton use. Particularly, prior

work in lower-limb prostheses established robust self-tuning methods for determining a patient’s

preferred prosthetic characteristics using a one-dimensional dial [28, 156] or three dials that were

adjusted independently [22].

The work presented in Chapter 5 advances this foundational work in three key ways. First, to

our knowledge, this is the first study to demonstrate that users can quickly and precisely identify

unique preferences in the characteristics of their ankle exoskeleton assistance in two dimensions

simultaneously. This result has major implications for the field because it motivates new strate-

gies for the control of lower-limb exoskeletons in which users customize assistance according to

their unique preferences, leveraging their internalized representation of optimality. Additionally,

the two-dimensional self-tuning interface I designed for this study is a generalizable tool that may

be used with different assistive device hardware and any desired control parameters. Second, this

study evaluated user preference in autonomous (i.e., untethered) robotic ankle exoskeletons, which

were designed for able-bodied augmentation during walking or running. This is novel because

prior studies have evaluated preference in users wearing lower-limb prostheses (e.g., [22, 155]),

or fully-actuated 12-DOF exoskeletons (e.g., [172, 173])—devices that serve very different pur-

poses than augmentative ankle exoskeletons. Therefore, this study defines a reference point for

user preference in augmentation-focused exoskeletons, which may be used in the future to asses

the impact of exoskeleton hardware (and assistance goals) on users’ preferred control character-

istics. The third contribution of this work is that it is the first study of its kind to rigorously ana-
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lyze the characteristics of user preference, including how preference changes with walking speed,

time, and exposure to the device, as well as how preferences differ between groups with different

levels of prior technical knowledge and expertise. We found that, as the experiment progressed

and participants gained experience, naive users (with no prior exoskeleton experience) preferred

higher torque magnitude and became more precise identifying their preferences. At faster walking

speeds, these individuals were more precise identifying both the magnitude and timing of their

preferred assistance. Knowledgeable users (with prior exoskeleton experience) preferred higher

torque magnitude than naive users. These results highlight that while user preference is a complex

and dynamic quantity, individuals can repeatably and reliably identify their preferences. This study

is a first step towards understanding the characteristics of preference in the context of exoskeleton

control and discovering how individuals perceive, interact with, and learn from the assistance pro-

vided. The results from this study provide insight into how users interact with exoskeletons, and

establish important benchmarks for researchers, designers, and future consumers.

6.2 Recommendations for Future Work

This dissertation presents key developments in the field of optimizing controllers for wearable

robotic systems, yet there are an infinite number of exciting research paths to continue exploring in

this field. In this section, I will discuss my recommendations for future work surrounding the two

main themes in this dissertation: first, the translation of experimental methods and measurement

tools outside the laboratory environment and second, the evaluation of context-specific objectives

for the optimization of wearable robotic devices.

Translation Outside the Laboratory Environment

From my perspective, one of the most important directions for future research is moving be-

yond the confines of constrained laboratory testing. The vast majority of experimental research

conducted over the last two decades (including the work presented in this dissertation) has fea-

tured individuals wearing lower limb assistive robotic devices walking on a treadmill or perform-
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ing long bouts of steady-state activities in a laboratory setting. These past research efforts have

resulted in a mountain of groundbreaking research that has answered many fundamental questions

about the interactions between human users and wearable robots. Yet, we know that most activities

that individuals perform during their jobs or daily lives are highly transient and non-steady-state

(e.g., [127]). High-performance experimental hardware continues to become untethered, lighter,

and more compact, which is a crucial step towards translation. Thus, the next big hurdle for the

field is the translation of experimental techniques and measurement tools from the laboratory en-

vironment into non-steady-state and “real world” conditions.

This dissertation (Chapters 3 and 4) presents initial steps towards the translation of body-in-

the-loop optimization algorithms, by predicting instantaneous metabolic cost from physiological

signals collected from portable, wearable sensors. In this context, I recommend several future

directions for this work. First, we must improve the accuracy in which we can predict instantaneous

metabolic cost using wearable sensors thorough model optimization (e.g., feature selection and

exploring a variety of sensor fusion algorithms). One possible route for this research would be to

leverage state-of-the-art tools in machine learning and utilize black-box or deep learning models

to predict energy cost from physiological signals. The benefit to a data-driven approach is that

it may identify a variety of undetectable nonlinear relationships in the data that improve model

performance; the downside to this approach is that it is fundamentally black-box, and does not

provide us with and intuitive understanding of the physiological processes involved. Alternatively,

one could explore model-based approaches, and determine dynamic relationships between key

physiological signals (e.g., heart rate, electrodermal activity, EMG, etc.) and energetic cost. The

intersection of these approaches provides and interesting avenue for future research it itself—we

began to explore the relationship between a black-box linear regression algorithm and an explicit

first order model in Chapter 4, but future work is needed. In reality, it is likely a combination

of data-driven and physiological model-based approaches that will yield the most informative and

accurate algorithms for estimating instantaneous metabolic cost from wearable sensors.

Second, we must build algorithms that enable us to predict changes in metabolic cost more
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quickly. From an algorithmic perspective, many of the same recommendations from the previ-

ous paragraph also apply here. For example, in Chapter 4 of this dissertation, I demonstrated

that including a particular feature (i.e., the signal derivative) improved the speed of instantaneous

metabolic cost predictions using linear regression algorithms. If we also prioritize the speed of

prediction when optimizing the predictive model structures, it is likely that similar algorithmic im-

provements (e.g., feature selection) will result in better accuracy and faster predictions. To inform

the prediction algorithms, we must also answer the question, “how fast is fast enough?” The an-

swer to this question is likely closely tied to the specific application of the device. For an assistive

device worn at home, the required speed of metabolic cost estimation is probably quite fast be-

cause the controller must continuously adapt to rapid and transient changes in activities performed

throughout the day. For an application such as in-clinic device prescription, the necessary speed

of estimation may determined by how many iterations of the optimization algorithm are required

within a certain duration of time, which may also be dictated by the physical abilities of the patient.

Third, for maximum acceptance and translational potential, the future implementation of such

algorithms should ideally only rely on an individual wearing a smart watch or smart textile (e.g.,

the Hexoskin [25]). As such, future researchers in this space should always be looking for op-

portunities to use widely-accepted commercial products or develop miniaturized, unobtrusive, and

portable versions of the necessary sensors. Finally, achieving these goals will inherently require

large, diverse, and carefully-collected datasets in order to build and evaluate predictive algorithms.

As such, I advocate for researchers and scientists to share their collected datasets open-source, to

foster collaboration and accelerate the speed of translation.

Evaluation of Context-Specific Objectives

The work presented in this dissertation seeks to answer the question, “how do we provide

optimal assistance from robotic exoskeletons and prostheses outside the laboratory environment?”

The interpretation of this question is necessarily predicated on the definition of the word optimal.

As I have discussed, in my work, I define the optimal controller as the one that maximizes the
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objective of the device or assistance. This means that there is no one all-encompassing definition,

and instead, optimality is context-specific. To this end, I advocate for the evaluation of context-

specific objectives for the optimization of wearable robots as a future research direction.

In a practical sense, this future research path may look like critically evaluating different cost

functions for wearable robots, with the goals of the task in mind. For certain applications, such as

augmenting walking and running performance or increasing stamina and load-carrying potential

for industrial workers or military personnel, minimizing the user’s energetic cost using a robotic

exoskeleton is an intuitive and valuable objective. For the elderly population or individuals with

muskuloskeletal weakness, perhaps a more appropriate objective for exoskeleton assistance is to

increase walking speed or support upright joint biomechanics during walking. In Chapter 5, I dis-

cuss one such potential objective for the optimization of robotic exoskeletons—user preference.

While our work demonstrated that exoskeleton users have distinct preferences, we have not yet

evaluated how the control settings that individuals prefer relate to those that optimize other physi-

ological cost functions. Therefore, in addition to evaluating new outcomes, future research should

also seek to compare control strategies that achieve different objectives. This research direction

would provide fundamental scientific information regarding the impact that robotic assistance has

on the entire human-robot system. Choosing appropriate cost functions is an exceptionally chal-

lenging task, and the individuals who will be using the exoskeleton or prosthesis should always

be included in the design process. Continued research into the desired goals of end-users and the

complex biomechanical and physiological impacts of robotic assistance will help inform future

objectives to explore.

While the first phase of the general framework I proposed (Fig. 1.1) is define objective, the

second is measure objective. We can define almost any goal imaginable as the objective of the

robotic assistance, but without being able to robustly measure the objective (particularly outside the

lab or clinic), it is very challenging to design controllers to meet the stated objective. Therefore, as

we work to evaluate different context-specific objectives, we must simultaneously design accurate

sensing and measurement tools. This may look like improving the design of existing sensors by
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making them smaller and more robust (e.g., EMG sensors). It may also look like developing new

ways to measure or estimate the quantities of interest (e.g., using wearable sensors and machine-

learning approaches to build predictive algorithms). The only objectives we can use in our control

systems are those we can reliably measure (or approximate), and so improved measurement tools

are necessary for the furtherance of this research.

Finally, as optimization methods continue to evolve, we will be able to explore multi-objective

optimization. Given the complexities of human locomotion and neuromotor control, it is likely

that the best assistive robotic controller considers multiple objectives simultaneously, and these

objectives may change in certain situations. As a long-term vision, the culmination of this research

path will result in control systems for wearable robots that use high-level intent recognition or clas-

sification systems to identify the user’s task, and seamlessly switch between the optimization of

context-specific multi-objective cost functions. To achieve this goal, an exciting path for research

is the mathematical representation of physiologically-based (e.g., metabolic cost) and socially-

motivated (e.g., user comfort) criteria as multi-objective cost functions for use in optimization

algorithms. As an example of this type of work, Kumar et al. recently described a convex objec-

tive function for continuous-phase control of powered prosthetic legs, which prioritizes kinematic

tracking error while incorporating the patient’s comfort level [98]. Multi-objective optimization

may not always require the definition of one convex cost function, and instead may take the form

of coactive feedback. Recently, Tucker et al. implemented an optimization algorithm to maximize

subject comfort in a 12-DOF lower-body exoskeleton, and after every iteration, subjects were able

to directly suggest improvements to the controller (i.e., 10% longer step length). This type of coac-

tive feedback could be utilized to allow the user to choose the exoskeleton assistance profile they

prefer from a set of choices that produce similar metabolic economy.
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6.3 Concluding Remarks

Wearable robotic devices, like prostheses and exoskeletons, have the potential to be life-changing

technologies for millions of people who may use them for work, recreation, and rehabilitation. It is

my hope that the contributions described herein will pave the way for future translational research

related to the optimization and evaluation of control systems for wearable robotic systems.
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Appendix A

Comparison of Coefficients: Regression Model vs.

Explicit Dynamic Model

Let x(t) and y(t) be two zero-mean signals which are subject to the dynamic constraint ẏ(t) =

1
τ

(x(t)− y(t)). That is, x(t) =
[
y(t) ẏ(t)

][
1
τ

]
. Now let ŷ(ti) be a series of n measurements

of y(t) that have been taken at times ti and that are subject to a zero-mean additive noise w(t):

ŷ(ti) = y(ti) + w(ti). The vector of regression coefficients that optimally approximate x(ti) from

these measurements is given by:

b =
(
ŶT Ŷ

)−1
ŶTX

where

Ŷ = Y + W =


y(t1) ẏ(t1)

...
...

y(tn) ẏ(tn)

+


w(t1) ẇ(t1)

...
...

w(tn) ẇ(tn)


and

X =


x(t1)

...

x(tn)

 =


y(t1) ẏ(t1)

...
...

y(tn) ẏ(tn)


[
1
τ

]
= Y

[
1
τ

]
.
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This leads to:

b =
(
YTY + YTW + WTY + WTW

)−1 (
YTY + WTY

) [
1
τ

]
≈ (cov(Y) + cov(W))−1 cov(Y)

[
1
τ

]
,

as the signals y and w have zero mean (cov(Y) = 1
n
YTY, cov(W) = 1

n
WTW) and are uncor-

related (YTW ≈ WTY ≈ 0). In the absence of noise, that is, for cov(W) = 0, this equation

simplifies to b =
[
1
τ

]
, but in the presence of noise, the coefficients b determined through the

regression will differ from the theoretical model
[
1
τ

]
.
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Appendix B

Chapter 5 Supplementary Analyses

B.1 Analyses Performed Using Preferred Magnitude Normal-

ized to Body Mass

In the experiment presented in Chapter 5, we chose to have subjects self-tune their peak torque

magnitude setting in Nm so that each subject explored the same range of settings. After data

collection, we performed post-hoc analyses using preferred magnitude normalized by body mass

(Nm/kg). For this normalization, we used subjects’ measured weight while wearing the exoskeletons.

Please note that the weights presented in Table 5.1 have had the mass of the exoskeleton (5 kg)

removed. Using normalized preferred magnitude did not influence the interpretation of the results

observed in this study. For comparison to the un-normalized analyses, please refer to Figs. 5.7–

5.10, Fig. 5.12, and Table 5.2.

Across naive subjects, the minimum normalized preferred magnitude was 0.085 Nm/kg (CI95% =

[0.08, 0.09] Nm/kg) (Fig. B.1); this minimum corresponded to the heaviest subject in our study

(Subject 1) and was not the same subject with the lowest preference in un-normalized magnitude

(Subject 4). The maximum normalized preferred magnitude was 0.221 Nm/kg (CI95% = [0.215, 0.22]

Nm/kg) (Fig. B.1); this subject (Subject 12) preferred the highest magnitude in both normalized and

un-normalized analyses.

The optimized linear mixed effects model (LMEM) structures for normalized preferred mag-

nitude and standard deviation of normalized preferred magnitude were the same as their un-
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Figure B.1: User preference of normalized peak torque magnitude. Colored squares depict a subject’s
mean preferred timing and normalized magnitude across all 24 preference-identification trials. Colored error
bars represent the 95% confidence interval about the mean

normalized versions. The optimized LMEM for normalized preferred magnitude had fixed effects

of speed and trial block (m = 3) and included a subject-specific slope for trial block and a subject-

specific intercept (q = 2, K = 12). The optimized LMEM for standard deviation of normalized

preferred magnitude was the base model with fixed effects of speed and trial block (m = 3) and

included a subject-specific intercept (q = 1, K = 12).

There was a significant effect of trial block on normalized preferred magnitude (LMEM, p =

.01) (Fig. B.2B). According to the slope of the model, we would expect a subject’s normalized

preferred magnitude to increase by 0.02 Nm/kg (CI95% = [0.005, 0.034] Nm/kg) from the first to the

third trial block (Table B.1). We did not observe a relationship between normalized preferred

magnitude and walking speed (LMEM, p = .10) (Fig. B.2A).

The standard deviation of normalized preferred magnitude decreased significantly with increas-

ing walking speed (LMEM, p = .01) (Fig. B.2C). According to the slope of the model, we would

expect a subject’s standard deviation of normalized preferred magnitude to decrease by 0.006 Nm/kg
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Figure B.2: Normalized peak torque magnitude preference and standard deviation as a function of
speed and trial block. (A) Normalized preferred magnitude as a function of walking speed. (B) Normalized
preferred magnitude as a function of trial block. (C) Standard deviation of normalized preferred magnitude
as a function of walking speed. (D) Standard deviation of normalized preferred magnitude as a function of
trial block. Black squares represent the inter-subject mean, and black error bars denote 1 standard error of
the mean (SEM). Gray lines connect individual subjects’ means. Each linear mixed effects model (LMEM)
generates a surface that characterizes the relationship between the outcome and the two fixed effects (speed
and trial block); a cartoon example of an LMEM surface is illustrated in Fig. 5.8. Left and right individual
panels are 2-dimensional views of the same LMEM surface. Purple lines (left) show the slope of the model
with respect to walking speed and represent slices of the LMEM surface at trial block 1 (dark), trial block 2
(medium), and trial block 3 (light). Teal lines (right) show the slope of the model with respect to trial block
and represent slices of the LMEM surface at 1.0 m/s (dark), 1.2 m/s (medium), and 1.4 m/s (light). The
LMEM p-value for each fixed effect’s slope is depicted at the top right of each panel; a significant effect is
denoted with a black star.

(CI95% = [0.002, 0.01] Nm/kg) as speed increases from 1–1.4 m/s. Additionally, the standard devia-

tion of subjects’ normalized preferred magnitude significantly decreased as trial block increased

(LMEM, p = .04) (Fig. B.2D). According to the slope of the model, we would expect a subject’s

standard deviation of normalized preferred magnitude to decrease by 0.004 Nm/kg (CI95% = [0.0003,

0.008] Nm/kg) from the first to the third trial block (Table B.1). The only difference between the nor-
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malized and un-normalized analyses was that this relationship was statistically significant while the

relationship between un-normalized preferred magnitude and trial block did not quite surpass the

threshold for significance (LMEM, p = .05); yet given the moderate downward trend we observed,

this difference did not influence the interpretation of our results.

Knowledgeable subjects preferred significantly higher normalized peak torque magnitude (t-

test, p = .002) than naive subjects (Fig. B.3A). There was no difference between groups in the

standard deviation of normalized preferred magnitude (t-test, p = .77) (Fig. B.3B).

Figure B.3: Comparison of normalized peak torque magnitude and standard deviation between naive
and knowledgeable users. (A) Normalized preferred magnitude. (B) Standard deviation of normalized
preferred magnitude. Orange bars indicate the inter-subject mean of the outcome for naive subjects walking
at 1.2 m/s. Gray bars indicate the inter-subject mean of the outcome for knowledgeable subjects walking at
1.2 m/s. Black error bars show 1 standard error of the mean (SEM). The black bracket with the star indicates
a significant difference between the means, as calculated by a two-tailed t-test.

Fixed effect = speed (tested range 1-1.4 m/s) Fixed effect = trial block (tested range 1-3)
Expected change Expected change

LMEM slope estimate p-value over tested range LMEM slope estimate p-value over tested range
Outcome [95% CI] of slope (0.4 m/s) [95% CI] of slope (2 blocks)

Normalized preferred
0.014 [-0.003, 0.031] .10 0.01 0.01 [0.003, 0.017] .01 0.02

magnitude (Nm/kg)
Std. dev. of normalized -0.014 [-0.024, -0.004] .01 -0.006 -0.002 [-0.004,-0.0002] .04 -0.004

preferred magnitude (Nm/kg)

Bold text indicates a significant slope with p < .05.

Table B.1: Results from linear mixed effects models (LMEM) for normalized preference and precision
outcomes with speed and trial block as fixed effects.
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B.2 Comparisons Between Knowledgeable and Naive Cohorts

During the Trial-Matched Condition

In the study presented in Chapter 5, we compared the preferences of the knowledgeable cohort

(who performed one trial block while walking at 1.2 m/s), to the preferences of the naive cohort dur-

ing the speed-matched condition of 1.2 m/s. These results are presented in Fig. 5.12. Alternatively,

we analyzed comparisons between the knowledgeable cohort and the naive cohort during the trial-

matched condition of trial block 1 (i.e., trials 1–8). Compared to the analysis performed with data

from naive subjects’ speed-matched condition, all statistical relationships remained the same. Our

main finding that knowledgeable subjects preferred higher magnitude than naive subjects remained

unchanged as a result of this analysis (Fig. B.4A).

Figure B.4: Comparison of outcomes between knowledgeable users and naive users during speed-
matched or trial-matched conditions. (A) Preferred magnitude. (B) Preferred timing. (C) Standard
deviation of preferred magnitude. (D) Standard deviation of preferred timing. Orange bars indicate the
inter-subject mean of the outcome for naive subjects during the speed-matched condition (1.2 m/s). Blue bars
indicate the inter-subject mean of the outcome for naive subjects during the trial-matched condition (trial
block 1, trials 1–8). Gray bars indicate the inter-subject mean of the outcome for knowledgeable subjects
walking at 1.2 m/s. Black error bars show 1 standard error of the mean (SEM). A black bracket with an orange
star indicates a significant difference between the knowledgeable (K) and naive speed-matched (Nspeed)
groups. A black bracket with a blue star indicates a significant difference between the knowledgeable (K)
and naive trial-matched (Ntrial) groups. Significance was determined using two-tailed t-tests.
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