
Architectural Enhancements for Data Transport in
Datacenter Systems

by

Hossein Golestani

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2021

Doctoral Committee:

Professor Thomas F. Wenisch, Chair
Associate Professor Robert Dick
Assistant Professor Baris Kasikci
Professor Scott Mahlke

Hossein Golestani

hosseing@umich.edu

ORCID iD: 0000-0001-7293-6965

© Hossein Golestani 2021

To my family, the pieces of my heart...

ii

ACKNOWLEDGEMENTS

Well, I have come to the end of a journey full of invaluable experiences and wonderful

memories. Over the last five years in my PhD, I learned so many things not just in the matter

of computer science but also about many aspects of life. True growth is always accompanied

by discomfort and even pain. This was no exception for me during my PhD; I could only

survive through the support and love of many amazing people around me, both physically

and virtually. Words may not be enough to acknowledge them, but I will do my best.

First, I would like to thank my PhD adviser, Prof. Tom Wenisch. My first encounter

with him was in my first semester at Michigan, where he was the instructor of the Computer

Architecture course. I was absolutely amazed by how passionately he gave the lectures.

Later, I realized he has the same passion and devotion in all aspects of his work, particularly

in the research with his students. I started to work with Tom at one of those “in the right

place, at the right time” moments. I joined his research group a few months before he took

a sabbatical. Before leaving, he suggested a research direction to me, which eventually

resulted in the material of this dissertation. Even after he left, he was there all the time to

help me not only with my research but also with my career decisions. Tom has been an

incredible source of research insight, technical knowledge, and professional advice for me.

I would also like to thank a number of other professional researchers who assisted me

during my PhD. Profs. Robert Dick, Baris Kasikci, and Scott Mahlke kindly served in my

doctoral committee and provided valuable feedback to my proposal and to the writing of

this dissertation. Additionally, I had the chance to work directly with Prof. Scott Mahlke

along with Prof. Satish Narayanasamy at the beginning of my PhD. They helped me, an

iii

inexperienced researcher at the time, to learn how to define and approach a research problem

and find solutions for it through critical thinking. I also appreciate Drs. Gagan Gupta and

Rathijit Sen, who provided great mentorship for me during my two internships at Microsoft.

The trust they placed in me helped me build confidence in conducting research, which has

been beneficial to me ever since I worked with them.

I must also thank my colleagues in Tom’s research group, unofficially called the “Sanctu-

ary Lab”. Vaibhav Gogte, Kevin Loughlin, Amirhossein Mirhosseini, Harini Muthukrishnan,

Akshitha Sriraman, Ofir Weisse, Brendan West, and Steve Zekany are brilliant people, and I

have fond memories of working with them in a dynamic, lively lab. In particular, I thank

Amirhossein very much, who helped me hit the ground running when I joined the group. He

was easy to reach and willing to cooperate, and in fact, I co-authored the research related to

Chapters II and III jointly with him. I also particularly thank Steve for he helped me a lot

with accessing the group servers and also ordering and building new ones. Additionally, I

was lucky to be a labmate of another group of wonderful people: Jonathan Bailey, Armand

Behroozi, John Kloosterman, Salar Latifi, Shikai Li, Brandon Nguyen, Sunghyun Park,

Jiecao Yu, Babak Zamirai, Pedram Zamirai, and Ze Zhang. I truly enjoyed working and

being friends with them. Ze and I also did two internships at Microsoft at exactly the same

times and offices. I learned so much from and was inspired by such great colleagues and

friends, in both my previous and current labs.

The BBB building—that is, U of M’s Computer Science and Engineering (CSE)

Department—was the reason to build many valuable connections. I was fortunate to

interact with fabulous people other than my labmates, including Shaizeen Aga, Tanvir

Ahmed Khan, Subarno Banerjee, Daichi Fujiki, Shruti Padmanabha, Mehrzad Samadi, Arun

Subramaniyan, Shahab Tajik, and Hanyun Tao. Tanvir and I also interned in the same group

at Microsoft, working at desks right next to each other in a memorable summer. Furthermore,

I must thank the great CSE staff, who work hard to enable us to study and work smoothly. In

particular, I appreciate Ashley Andreae, Jamie Goldsmith, Karen Liska, and Stephen Reger,

iv

who were always prompt and perfect in many occasions I sought their help.

The PhD life would be too tedious without close friends. I have been fortunate enough to

have Agreen Ahmadi, Ramin Ansari, Javad Bagherzadeh, Salar Latifi, Babak Zamirai, and

Pedram Zamirai as my true friends. My friendship with Salar goes back to our undergrad

school, Sharif University of Technology. We did almost all the projects we had in the last

three years of our undergrad together. We did the same in our grad courses after we both

got admitted to U of M. Beyond that, we have been roommates in Ann Arbor for five years;

what a marvelous blessing. I also knew Babak back from Sharif, but our true friendship

began thanks to U of M. He was always there to help me in Ann Arbor in every step of life

and study. I was honored to officiate the wedding of two of my best friends, Agreen and

Pedram, in Ann Arbor. This experience was full of ineffable joy and thrill for me. Ramin

is a cool, outgoing friend, who hosted me in a one-month interval when I was switching

apartments. Javad is also an amazingly energetic friend, and we have awesome memories

of playing football (known as soccer in the U.S.) to death! In addition, I have been very

lucky to have friends like Samin Aayanifard, Mehran Amini, Omid Bahrami, Navid Barani,

Farima Fatahi, Ashkan Kazemi, Alireza Khadem, and Milad Moosavifar, happy moments

with whom will always remain in my memory.

Last but definitely not least, I must express my immense gratitude towards my family for

their everlasting, infinite love and support. Above all, my parents, Mahmoud and Fooziyeh,

are the reason I got this far. Apart from the huge love and care they always have had for me,

they provided for my education with all they had and taught me the highest levels of integrity,

dedication, and commitment. My lovely sisters—Nasim, Sahar, and Tolou—mean the world

to me, and the bond we have cannot be described by words. Moreover, I am so happy

that I have such wonderful brothers-in-law—Mehrdad, Abolfazl, and Mohammadhossein.

Specifically, I was only able to survive several mental meltdowns during my PhD through

the counseling and psychological support that Abolfazl provided for me. The brutal travel

restrictions imposed on Iranian students in the U.S. and their families outside the U.S.

v

not only deprived me from meeting my family during my PhD, but I have also never met

Mehrdad and Mohammadhossein in person. I have yet to meet and hug my cute nephew,

Karan, as well. Nevertheless, Sahar and Abolfazl have been kindly sending me videos of

Karan, so that I don’t miss the everyday growth of this adorable, little boy. All in all, my

family is the pieces of my heart and all the strength I have; I literally feel them under my

skin.

vi

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGEMENTS iii

LIST OF FIGURES x

LIST OF TABLES xiii

ABSTRACT xiv

CHAPTER

I. Introduction . 1

1.1 Characterization of Software Data Planes 2
1.2 Acceleration of the Notification Mechanism 3
1.3 Acceleration of Data Transfer . 4
1.4 Road Map . 5

II. Software Data Planes: You Can’t Always Spin to Win 7

2.1 Introduction . 7
2.2 Background . 10

2.2.1 Software Data Plane Mechanisms 10
2.2.2 Software Data Plane Applications 14

2.3 Methodology . 15
2.4 Inefficiencies of Spin-Polling . 19

2.4.1 Polling Tax . 19
2.4.2 Work Disproportionality 20

2.5 Lack of Queue Scalability . 24
2.6 Lack of Core Scalability . 28
2.7 Scale-up Queuing is Impractical 31
2.8 Discussion: Solution Directions 36
2.9 Related Work . 38

vii

2.10 Conclusion . 39

III. HyperPlane: A Scalable Low-Latency Notification Accelerator for Soft-
ware Data Planes . 41

3.1 Introduction . 41
3.2 Background and Motivation . 45

3.2.1 Software Data Planes 45
3.2.2 Software Data Plane Challenges and Goals 47
3.2.3 Case Study: DPDK Queue Scalability 48

3.3 HyperPlane Design . 50
3.3.1 Programming Model 51
3.3.2 Hardware Components 55

3.4 Detailed Microarchitecture . 59
3.4.1 Monitoring Set . 59
3.4.2 Ready Set . 61
3.4.3 Hardware Costs . 64

3.5 Evaluation . 65
3.5.1 Methodology . 65
3.5.2 Queue Scalability . 66
3.5.3 Multicore Performance 70
3.5.4 Work Proportionality 72
3.5.5 Ready Set Implementation 74

3.6 Related Work . 75
3.7 Conclusion . 77

IV. HyperData: A Data Transfer Accelerator for Software Data Planes
Based on Targeted Prefetching . 78

4.1 Introduction . 78
4.2 Background and Motivation . 80
4.3 HyperData Design . 83

4.3.1 Design Overview . 84
4.3.2 Monitoring Set . 85
4.3.3 Prefetcher Design . 88
4.3.4 Scale-up Queuing . 90

4.4 Evaluation . 92
4.4.1 Methodology . 92
4.4.2 Prefetching Performance 93
4.4.3 Effectiveness with Scale-up Queuing 96
4.4.4 Overhead Analysis . 97

4.5 Related Work . 97
4.6 Conclusion . 99

V. Conclusion . 100

viii

5.1 Summary . 100
5.2 Future Research . 102

APPENDIX 104

A. Characterization of Unnecessary Computations in Web Applications . 105

A.1 Introduction . 105
A.2 Background and Motivation . 108

A.2.1 Rendering Pipeline of Web Browsers 108
A.2.2 Unnecessary Computations in Web Browsers 109
A.2.3 Detection of Unnecessary Computations 111

A.3 Profiler Design . 112
A.3.1 Forward Pass . 113
A.3.2 Backward Pass . 114

A.4 Evaluation Methodology . 115
A.4.1 Dynamic Binary Instrumentation 116
A.4.2 Benchmarks . 117
A.4.3 Choice of Slicing Criteria for Web Applications 118

A.5 Results and Discussion . 120
A.5.1 Calculated Slice . 120
A.5.2 Categorization of Unnecessary Computations 124

A.6 Related Work . 126
A.6.1 Workload Characterization of Web Applications 126
A.6.2 Performance Optimization of Web Applications 126
A.6.3 Energy-efficient Mobile Web Applications 127
A.6.4 Architectural Support for Web Applications 127

A.7 Conclusion . 128

BIBLIOGRAPHY 129

ix

LIST OF FIGURES

Figure

2.1 (a) Kernel-based I/O processing, (b) Spin-polling–based software data
planes. 11

2.2 Data communication through RX/TX queues: (a) From a core to I/O
devices or other cores, (b) From an I/O device to cores. 16

2.3 The machine under test receives packets directly from the packet generator. 17
2.4 Configurations of cores and queues in experiments: (a) Scaling up the

number of queues in the machine under test; (b) Scaling up the number of
core-queue pairs in the machine under test; (c) A shared queue accessed
by multiple cores in the machine under test; (d) The generic setup of cores
and queues in the packet generator machine. 18

2.5 Useful cycles vs. cycles spent on polling in a core performing network
routing. 20

2.6 Instructions Per Cycle (IPC) of a spin-polling core performing network
routing. 21

2.7 The adverse effect of a spin-polling application and a regular matrix
multiplication application on each other when collocated on two SMT hy-
perthreads: (a) The IPC of the co-running matrix multiplication decreases.
(b) Packet throughput of the spin-polling application drops. 23

2.8 Idle (zero-traffic) polling rate (left axis) and LLC loads per second (right
axis) vs. number of queues. 25

2.9 Round-trip latency of packet forwarding under light traffic (< 1 Mpps),
with varying number of queues. 26

2.10 Maximum forwarding throughput and LLC load hits/misses per second as
the number of queues increases: (a) Single-flow, (b) Multi-flow 27

2.11 Setup for measuring single-core throughput. 28
2.12 Maximum throughput of a single core. 29
2.13 Packet throughput as the number of core-queue pairs increases. The RX

line is saturated in all the cases. 30
2.14 Scale-out vs. scale-up queuing organizations with k cores. (λ and µ

represent arrival and service rates.) . 32
2.15 Experimental setup of (a) scale-out, and (b) scale-up, configurations. . . . 33
2.16 Maximum throughput achieved by scale-out and scale-up configurations. . 33

x

2.17 Average round-trip latency of scale-out vs. scale-up configurations with
10 cores: (a) No hiccups, (b) 1 µs processing hiccup with 1% probability. . 34

2.18 Throughput of scale-out vs. scale-up configurations with 10 logical cores
in case of using 2-threaded SMT cores or separate physical cores. 36

3.1 I/O communication approaches: (a) conventional kernel-based, (b) user-
level library OS, (c) microkernel-based “software data planes”. 42

3.2 Software Data Plane (SDP) operations. 46
3.3 DPDK: (a) Throughput of packet encapsulation in DPDK, (b) Round-

trip latency of packet forwarding under light traffic (~0.01 Mpps), (c)
Distribution of round-trip latency. 49

3.4 High-level hardware block diagram of HyperPlane. 55
3.5 An example 2-way Cuckoo hash table insertion. 59
3.6 High-level block diagram of the ready set hardware. 62
3.7 (a) A bit-slice Programmable Priority Arbiter (PPA) cell, and (b) a multi-

bit ripple-priority PPA design. 63
3.8 Peak throughput of a spinning data plane and HyperPlane. 67
3.9 Latency under light traffic (< 1% load): (a) Average and tail latency of

a spinning data plane, (b) Average latency of HyperPlane in regular and
power-optimized modes. 69

3.10 Multicore 99% tail latency: (a) Fully balanced traffic, (b) Proportionally
concentrated traffic. 71

3.11 (a) IPC breakdown of a software data plane, (b) IPC of an application
co-running with the software data plane. 72

3.12 (a) Power consumption of a spinning data plane and HyperPlane with-
/without power optimization, (b) The effect of wake-up latency of power-
optimized HyperPlane. 73

3.13 Throughput of a software-based vs. hardware-based ready set with two
different traffic shapes. 75

4.1 Software Data Plane (SDP) architecture. We aim to prefetch data buffers
related to the items in the device- or tenant-side queues to the target data
plane or tenant cores (shown by dashed arrows). 79

4.2 Allocation of buffers from the pool to items in the queue: (a) A regular
descriptor queue, (b) A Virtio queue (Virtqueue) with a corresponding
descriptor table. 81

4.3 (a) Buffer addresses of a sequence of packets, (b) Distribution of strides
of buffer addresses. 83

4.4 Overview of HyperData design (monitoring set and prefetcher). 85
4.5 Initialization of the monitoring set. 86
4.6 HyperData’s prefetcher design: (a) Registers that enable traversing the

descriptor rings and reading the descriptors; programmable registers are
shown by the dark color. (b) States and operations for making prefetch
requests. 89

4.7 Prefetching performance in terms of packet processing latency. 94
4.8 LLC hit/miss statistics of the dequeuer core. 95

xi

4.9 The rate of prefetching to an incorrect core using the LRU mechanism
with (a) 2 cores, and (b) 4 cores. 96

A.1 Rendering pipeline of a Web browser. 108
A.2 CPU utilization by the main thread of the tab process while browsing

amazon.com. 109
A.3 Profiler design overview. 112
A.4 Changes of slicing percentage over the backward pass. x = 0 indicates the

Web page is loaded or the browsing session is done, and the last point on
the x-axis corresponds to entering the Web page URL. 123

A.5 Categorization of potentially unnecessary computations and their distribu-
tion through analysis of instructions that do not belong to the pixel-based
slice. 125

xii

LIST OF TABLES

Table

2.1 HW/SW specs of experimental machines. 17
3.1 Microarchitecture details. 65
4.1 Architectural details of the simulated SDP system. 92
A.1 Unused JavaScript and CSS code bytes. 110
A.2 Slicing statistics of pixel-based approach for all instructions and important

threads. 120

xiii

ABSTRACT

Datacenter systems run myriad applications, which frequently communicate with each

other and/or Input/Output (I/O) devices—including network adapters, storage devices, and

accelerators. Due to the growing speed of I/O devices and the emergence of microservice-

based programming models, the I/O software stacks have become a critical factor in end-to-

end communication performance. As such, I/O software stacks have been evolving rapidly

in recent years. Datacenters rely on fast, efficient “Software Data Planes”, which orchestrate

data transfer between applications and I/O devices. The goal of this dissertation is to

enhance the performance, efficiency, and scalability of software data planes by diagnosing

their existing issues and addressing them through hardware-software solutions.

In the first step, I characterize challenges of modern software data planes, which bypass

the operating system kernel to avoid associated overheads. Since traditional interrupts and

system calls cannot be delivered to user code without kernel assistance, kernel-bypass data

planes use spinning cores on I/O queues to identify work/data arrival. Spin-polling obviously

wastes CPU cycles on checking empty queues; however, I show that it entails even more

drawbacks: (1) Full-tilt spinning cores perform more (useless) polling work when there is

less work pending in the queues. (2) Spin-polling scales poorly with the number of polled

queues due to processor cache capacity constraints, especially when traffic is unbalanced.

(3) Spin-polling also scales poorly with the number of cores due to the overhead of polling

and operation rate limits. (4) Whereas shared queues can mitigate load imbalance and

head-of-line blocking, synchronization overheads of spinning on them limit their potential

benefits.

Next, I propose a notification accelerator, dubbed HyperPlane, which replaces spin-

xiv

polling in software data planes. Design principles of HyperPlane are: (1) not iterating on

empty I/O queues to find work/data in ready ones, (2) blocking/halting when all queues are

empty rather than spinning fruitlessly, and (3) allowing multiple cores to efficiently monitor

a shared set of queues. These principles lead to queue scalability, work proportionality, and

enjoying theoretical merits of shared queues. HyperPlane is realized with a programming

model front-end and a hardware microarchitecture back-end. Evaluation of HyperPlane

shows its significant advantage in terms of throughput, average/tail latency, and energy

efficiency over a state-of-the-art spin-polling–based software data plane, with very small

power and area overheads.

Finally, I focus on the data transfer aspect in software data planes. Cache misses incurred

by accessing I/O data are a major bottleneck in software data planes. Despite considerable

efforts put into delivering I/O data directly to the last-level cache, some access latency is

still exposed. Cores cannot prefetch such data to nearer caches in today’s systems because

of the complex access pattern of data buffers and the lack of an appropriate notification

mechanism that can trigger the prefetch operations. As such, I propose HyperData, a data

transfer accelerator based on targeted prefetching. HyperData prefetches exact (rather than

predicted) data buffers (or a required subset to avoid cache pollution) to the L1 cache of the

consumer core at the right time. Prefetching can be done for both core–peripheral and core–

core communications. HyperData’s prefetcher is programmable and supports various queue

formats—namely, direct (regular), indirect (Virtio), and multi-consumer queues. I show that

with a minor overhead, HyperData effectively hides data access latency in software data

planes, thereby improving both application- and system-level performance and efficiency.

xv

CHAPTER I

Introduction

Datacenters are composed of multi-tenant systems, each running a massive number

of processes. Individual users rely on datacenter systems for services like cloud com-

puting (through Virtual Machines (VMs), containers, etc.), cloud storage, Web search,

emails, and cloud-assisted applications such as video/audio streaming, social media, and

so on. Industrial and academic users leverage datacenter systems for high-performance

computing [10, 12, 15], software-defined networking [4, 16], and network function virtu-

alization [1, 3], to name but a few. Tenants of datacenter systems—i.e., host applications

and client applications/VMs—frequently interact with each other as well as Input/Output

(I/O) devices to connect to the outside world or other systems within the datacenter, or use

peripherals such as storage devices or accelerators. Datacenters aim for high-throughput,

low-latency data communication between CPUs and/or I/O devices, while being energy-

efficient and keeping the systems highly utilized.

The Operating System (OS) performs I/O coordination and processing in conventional

systems. Today’s high-speed I/O devices—such as network cards, solid state drives, per-

sistent memory, and PCIe-attached accelerators—have microsecond-scale access time, and

due to their high throughput, they demand CPU attention every few microseconds. The

OS and the underlying hardware are capable of effectively handling millisecond-scale and

nanosecond-scale stalls, respectively. Nevertheless, they fall short of covering microsecond-

1

scale stalls, also known as the “Killer Microseconds” [61]. Furthermore, modern online

data-intensive applications are shifting away from monolithic software architectures with

millisecond-scale computation time, and leverage a distributed microservice-based software

model that involves microsecond-scale computation time and much finer-grained inter-server

communication [167, 169]. At such low latencies, high throughputs, and microsecond-scale

service times, the overhead of I/O software stacks becomes absolutely critical.

Due to the shortcomings and overheads of existing operating systems in I/O processing,

I/O software stacks are being re-architected [64, 87, 113, 115, 127, 151, 174, 176, 179].

State-of-the-art I/O software stacks, “Software Data Planes”, bypass the OS kernel to avoid

corresponding overheads such as context switches, system calls, interrupts, and cross–

address-space copies. Kernel-bypass software brings the necessary OS functionalities to

the user space, such as user-level thread/task scheduling, networking/storage transport

processing, and device drivers [24, 43, 223]. In this dissertation, I show that software data

planes have their own particular inefficiencies, especially when the I/O count and the number

of tenants are scaled up. I propose hardware-software solutions to enhance the performance

and efficiency of software data planes, as will be summarized in the following sections.

1.1 Characterization of Software Data Planes *

Modern software data planes bypass the OS software stack to avoid the attendant

overheads of kernel-based I/O processing, and rely on cores spinning on user-level shared I/O

queues as a fast notification mechanism. In fact, spinning cores are notified of the arrival of

new work/data in I/O queues through cache coherence invalidation signals corresponding to

cache lines holding queue heads. Whereas spin-polling can improve latency and throughput,

it entails significant shortcomings, especially when scaling to large numbers of cores/queues.

In the first set of contributions of this dissertation, I pinpoint and quantify challenges of

spin-polling–based software data planes using Intel’s Data Plane Development Kit (DPDK),

* Published in the 2019 ACM Symposium on Cloud Computing (SoCC’19) [104]

2

as a representative infrastructure, on a real system. I characterize four scalability issues

of software data planes: (1) Spin-polling lacks work proportionality, meaning that even

more (useless) work may be performed when there is less I/O traffic. (2) Throughput

and latency are severely affected at high queue counts because a large fraction of time is

wasted interrogating empty queues, especially when reading empty queue heads incurs

cache misses, which is quite likely. (3) Operation rate limits (transactions per second) as

well as a Polling Tax (the overhead of polling, which is considerable even when operating at

saturation throughput) result in poor core scalability. (4) Multiple cores cannot efficiently

spin on shared queues, which have theoretical merits in mitigating load imbalance and

head-of-line blocking, because of coherence and synchronization costs. I identify root

causes of these issues and discuss solution directions to improve hardware and software

abstractions for better performance, efficiency, and scalability in software data planes. The

design and implementation of a promising solution is the subject of the next part.

1.2 Acceleration of the Notification Mechanism †

In the spin-polling–based software data planes, cores often poll empty queues before

finding work in non-empty ones. Interrogating empty queues hurts peak throughput, tail

latency, and energy efficiency as it often entails fruitless cache misses. The second major

contribution of this dissertation is HyperPlane, an efficient accelerator for the notification

mechanism of software data planes. The key features of HyperPlane are (1) avoiding iter-

ation over empty I/O queues, unlike software-only designs, resulting in queue scalability,

(2) halting execution when I/O queues are idle, leading to work proportionality and energy

efficiency, and (3) efficiently sharing queues across cores to enjoy strong theoretical proper-

ties of scale-up queuing. HyperPlane is realized through a hardware subsystem associated

with a familiar programming model, centering on the QWAIT instruction. QWAIT either

returns a ready queue to the calling core to be processed, or halts execution. HyperPlane’s

† Published in the 2020 IEEE/ACM Symposium on Microarchitecture (MICRO’20) [161]

3

microarchitecture consists of a monitoring set and a ready set. The monitoring set, which

is a lookup table structure with high or full associativity, watches cache coherence write

transactions that indicate new data or work item arrivals in I/O queues. The ready set, which

effectively functions as a task scheduler, tracks ready queues and distributes work to cores

based on various service policies and priority levels. I model HyperPlane in a simulator,

and show that it improves peak throughput by 4.1× and tail latency by 16.4× compared

to a state-of-the-art software data plane. Furthermore, HyperPlane reduces the core power

consumption down to only 16.2% at zero load or idle state. The monitoring and ready sets

incur only less than 1% per-core power and area overheads.

1.3 Acceleration of Data Transfer ‡

In addition to the notification mechanism, data transfer itself is another key aspect of

data communication. I aim to enhance data transfer among the software data plane, I/O

devices, and applications/VMs by designing the HyperData accelerator, the third major

contribution of this dissertation. Data items in software data plane systems, such as network

packets or storage blocks, are transferred through shared memory queues. Consumer cores

typically access the data from DRAM or, thanks to technologies like Intel DDIO [27], from

the (shared) last-level cache. Today, consumers cannot effectively prefetch such data to

nearer caches due to the lack of a proper arrival notification mechanism and the complex

access pattern of data buffers. HyperData is designed to perform targeted prefetching,

wherein the exact data items (or a required subset) are prefetched to the L1 cache of the

consumer core. Furthermore, HyperData is applicable to both core–device and core–core

data communication, and it supports complex queue formats like Virtio [185] and multi-

consumer queues. HyperData is realized with a per-core programmable prefetcher, which

issues the prefetch requests, and a system-level monitoring set, which monitors queues for

data arrival and triggers prefetch operations. I show that HyperData improves processing

‡ Under review in the 2021 IEEE International Conference on Computer Design (ICCD’21)

4

latency by 1.20-2.42× in a simulation of a state-of-the-art software data plane, with only a

few hundred bytes of per-core overhead.

1.4 Road Map

Throughout the remainder of this dissertation, I first elaborate on characterization of

software data planes in Chapter II. I then discuss acceleration of the notification mechanism

and data transfer in software data planes in Chapters III and IV, respectively. Finally, I

summarize the dissertation in Chapter V and describe how the proposed solutions can be

implemented in the near-future systems and how software data planes can be enhanced with

further hardware support.

Additionally, I describe the earliest project that I completed during my PhD studies§ in

Appendix A. While the focus of this dissertation is on enhancement of datacenter systems, I

initially concentrated on the performance and efficiency of Web applications at the client

side, i.e., user phones and computers. I briefly describe the problem and findings here; the

details are elaborated on in the appendix.

Web applications are widely used in many different daily activities—such as online

shopping, navigation through maps, and social networking—in both desktop and mobile

environments. Advances in technology, such as network connection, hardware platforms,

and software design techniques, have empowered Web developers to design Web pages that

are highly rich in content and engage users through an interactive experience. However,

the performance of Web applications is not ideal today, and many users experience poor

quality of service, including long page load times and irregular animations. One of the

contributing factors to low performance is the very design of Web applications, particularly

Web browsers. In the appendix, I argue that there are unnecessary computations in today’s

Web applications, which are completely or most likely wasted. I first describe the potential

§ Published in the 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS’19) [103]

5

unnecessary computations at a high level, and then design a profiler based on dynamic

backward program slicing that detects such computations. The profiler reveals that for four

different websites, only 45% of dynamically executed instructions are useful in rendering

the main page, on average. I then analyze and categorize the unnecessary computations. The

analysis shows that processing JavaScript codes is the most notable category of unnecessary

computations, specifically during page loading. Therefore, such computations are either

completely wasted or could be deferred to a later time, i.e., when they are actually needed,

thereby providing higher performance and better energy efficiency.

6

CHAPTER II

Software Data Planes: You Can’t Always Spin to Win *†

2.1 Introduction

Software data planes, which use shared-memory queues and spinning cores to enable

fast data transfer among application software, accelerators, and I/O subsystems, have be-

come critical to the performance of datacenter systems. Originally conceived to enable fast

network packet processing (e.g., firewalls, routing, denial-of-service protection, deep packet

inspection), software data planes are now widely used to virtualize network and storage sys-

tems [87, 218], eliminate OS overheads to I/O latency and throughput [174, 179], administer

shared I/O bandwidth [125, 211], construct virtual networks [122], enable Remote Direct

Memory Access (RDMA) [48, 125, 171], implement network switches in software [35],

facilitate high-performance computing applications [11] and microservices [200], and trans-

fer data to hardware accelerators [184] for functionalities as diverse as erasure coding,

encryption, and video transcoding [9, 44, 142].

Intel’s Data Plane Development Kit (DPDK) [24] is a representative software infrastruc-

ture for building data planes to run on conventional Intel Xeon cores. Its central abstractions

are (1) spinning cores—cores that execute a poll loop and never yield or invoke blocking

OS functionality, and (2) user-level queue pairs—shared memory structures for the data

* Published in the 2019 ACM Symposium on Cloud Computing (SoCC’19) [104]
† Joint research with Amirhossein Mirhosseini

7

plane to communicate with client software and hardware devices. These abstractions are

general enough, and they have been also used in many other software and hardware in-

frastructures, such as the Storage Performance Development Kit (SPDK) [43]. The key

enabling mechanism for the spin-polling communication model of software data planes is

that it relies on cores spinning on cacheable memory-mapped locations. The mechanism is

similar to shared memory communication between two cores; it relies on cache coherence

to propagate a write with low latency, and it generally does not produce much coherence

traffic, as cores can spin locally in their cache, unless there is work, making it fast-reacting

and low-overhead.

Software data planes improve latency and throughput of conventional systems through

(1) bypassing the OS software stacks, and (2) enabling a fast signaling and notification

mechanism by replacing hardware-managed interrupts and their associated overheads (e.g.,

switching address spaces, flushing hardware pipelines) with spin-polling. Data plane

operating systems—such as IX [64], ZygOS [179], and Shenango [174]—leverage these

mechanisms to implement low-latency and high-throughput OS-bypass I/O and networking

stacks. Nevertheless, due to the rapid growth of the number of cores on a chip and the advent

of Terabit Ethernet [8] and other high-bandwidth I/O devices [44], software data planes face

considerable scalability challenges. In this chapter, we show that whereas software data

planes provide an easy-to-use and efficient model for communication and signaling, they

are far from ideal, especially when scaled to serve numerous clients/flows or require many

cores to scale transport processing for high throughput.

Using Intel’s DPDK as an example software infrastructure, we characterize four scal-

ability challenges of software data planes, identify their root causes, and discuss solution

directions and alternative approaches. We summarize our findings as follows:

Spin-polling performs more work when there is less. Since spinning cores run full-

tilt even when they have no work, polling performs more (useless) work when there is no I/O

traffic or work items in the queue. Therefore, spin-polling lacks energy proportionality [62]

8

and speeds up core/chip aging [172], especially at low system loads. Furthermore, useless

spinning can drastically slow co-running applications on Simultaneously Multi-Threaded

(SMT) cores and result in severe quality-of-service violations.

Spin-polling is not scalable to many queues. We show that increasing the number of

queues on which a core spins increases processing latency and, depending on traffic balance,

can harm peak throughput. This lack of scalability is caused by excessive pressure on

processor caches. Moreover, we show that the performance overhead is greatest when most

command queues are empty and traffic is concentrated in only a few queues; the overhead

increases with the number of queues.

Spin-polling is not scalable to many cores. Spin-polling incurs a non-negligible

instruction overhead for iterating over the body of the poll loop, which we call the Polling

Tax. Even when operating at saturation throughput (100% load), we show that the polling

tax is non-trivial. The polling tax increases the number of cores it takes to saturate network

line rate, even for the simplest packet forwarding use case. Furthermore, various I/O devices

and interconnects on the data-path (e.g., NIC, PCIe, DDIO) are constrained by operation

rate limits (transactions per second), in addition to data rate limits. The Polling Tax and

operation rate limits result in poor core scalability of software data planes.

Spin-polling is not well-suited for scale-up queuing. For many application classes,

scale-up queuing organizations [160], wherein a single queue is shared among multiple

cores, holds promise to improve latency and throughput through better queuing behavior by

avoiding load imbalance and head-of-line blocking. However, most software data planes

are currently implemented in a scale-out fashion, wherein there is a dedicated queue per

core, to avoid the synchronization overheads of sharing a single queue across cores. We

quantify this effect and show that software data planes can greatly leverage scale-up queuing

organizations, specifically for high-disparity service distributions, but current spin-polling

mechanisms are not well-suited for such queuing organizations.

This study aims to motivate better hardware and software abstractions to overcome

9

these challenges and enable greater data plane scalability to higher data rates and larger

core counts. Future data planes should leverage advantages of spin-polling (e.g., OS

kernel bypassing, low-latency I/O signaling) while avoiding the corresponding overhead

and scalability issues. We envision a multi-address monitoring scheme, wherein multiple

memory locations are monitored (through sufficient hardware support) for work arrival,

as a promising solution direction. Moreover, data plane applications with unbalanced

service distributions might benefit from work distribution schemes based on scale-up or

hierarchical queuing. Such schemes could be enabled by wider SMT processors [159] with

hardware task scheduling [158], or I/O-managed pull-based work distribution based on core

availability [84].

We first provide a brief background on software data planes (Section 2.2) and describe

our DPDK-based measurement methodology (Section 2.3). We then present each of our four

main findings (Sections 2.4-2.7) and discuss potential solution directions to mitigate them

(Section 2.8). Finally, we discuss related work (Section 2.9) and conclude (Section 2.10).

2.2 Background

We briefly describe the operation of software data planes and outline their applications

in datacenter networking, storage systems, and I/O virtualization.

2.2.1 Software Data Plane Mechanisms

Conventional Systems. Figure 2.1 contrasts conventional kernel-based I/O stacks with

modern software data planes. In kernel-based I/O stacks (Figure 2.1(a)), a user process

signals the kernel that it wishes to perform I/O via a system call (e.g., through sockets or

file system APIs). The protocol and transport processing needed to both read and write data

is carried out by kernel threads, either by directly borrowing the CPU of the user process

(e.g., during a system call), or by using interrupt mechanisms and kernel scheduling to place

work on another core. Kernel I/O stacks are able to scale their CPU usage dynamically

10

(1) System call

User
Space

Kernel
Space

(4) Copy

Context switch

(3) Data/work
arrives

(2) (5)

(6) Processing data/work

…

User
Space

(2) Data/work
arrives

(1) Spin-polling

(3) Processing data/work

(a) (b)

Figure 2.1: (a) Kernel-based I/O processing, (b) Spin-polling–based software data planes.

with I/O load, stealing CPU from user processes as needed to perform transport work.

However, system call and interrupt-based signalling mechanisms are slow and transport

processing is disruptive (especially for incoming data) to the user processes it interrupts.

Although the kernel goes to great lengths to spread transport work and optimize for affinity

to user processes, the aggregate CPU cost for gigabit- and terabit-scale networking is

significant [113].

Key Data Plane Mechanisms. As illustrated in Figure 2.1(b), software data planes

rely on spin-polling cores and user-level queue pairs for low-latency and high-throughput

communication, enabling both faster signalling than conventional system call/interrupt-based

mechanisms and greater CPU efficiency for high throughput. In such systems, user processes

communicate with transport processing code and I/O devices via in-memory queue pairs to

schedule I/O operations and get notified of their completion. The key enabling mechanism

of this approach is that the two queues, which may be called the submission/completion

or send/receive queues, are typically in cacheable shared memory. Therefore, the two

communicating end points can quickly signal one another if each spins on the head of

its respective inbound queue. These locations are cached in a shared state within local

L1/L2 caches, and the end points may locally spin awaiting a change without triggering

any coherence transaction or on-chip network traffic [195]. In the shared state, all sharers

11

maintain a read-only copy of a memory location. Before any processor or I/O device may

write to the location (i.e., to append a new request or completion to a queue), it must

first invalidate these copies. These invalidation messages propagate rapidly (nanoseconds

within a chip; hundreds of nanoseconds across I/O interconnects) and serve as a low-latency

notification mechanism. The subsequent read of an invalidated line will obtain its new value.

The key to this mechanism is that memory traffic between the communicating end points

only occurs when the originator of a request or completion writes to a queue—a receiver

spin-polling on an idle queue produces no traffic.

Zero-Copy Data Transfer. Software data planes can further improve CPU efficiency

relative to kernel transport by using zero-copy data transfer mechanisms. With zero-copy

data transfer, two communicating end points access common buffer pools in a shared

memory space. Unlike traditional OS-based approaches, where data are copied multiple

times within main memory to traverse address spaces (frequently incurring context switches

along with each copy), zero-copy mechanisms source outgoing data directly from user-space

buffers where the data were first prepared, and land incoming data directly in the address

space of the user process that will receive them. The transport software in the data plane

arranges for data to flow directly between buffer pools in user processes and I/O devices,

without any intermediate copies into memory owned by the data plane or kernel. Zero-copy

mechanisms typically require some hardware support, and rely on user applications to

adhere to more stringent lifetime and flow control guarantees for data and buffers in shared

pools than synchronous kernel I/O interfaces (i.e., they are harder for programmers to use

correctly).

Off-Chip Devices. I/O devices on the same chip as the CPU core or connected via a

Non-Uniform Memory Access (NUMA) fabric (e.g., integrated NICs or accelerators) can

directly share memory with the user process running on the CPU through virtual memory.

For PCIe attached I/O devices, data typically must be transferred to a local buffer on the

I/O device before they can be transmitted/stored. This transfer is typically accomplished

12

in one of two ways. In a Memory-Mapped I/O (MMIO), individual CPU store instructions

trigger a PCIe transaction to update buffers on the I/O device. To reduce the number of PCIe

transactions, CPUs implement a “write combining” optimization, which combines stores

to generate cache-line–sized PCIe transactions. In a doorbell-based approach, instead of

generating PCIe transactions directly via stores, after preparing a larger chunk of data in

memory, the CPU issues a single PCIe write to a “doorbell” location, which triggers the

target device to perform a Direct Memory Access (DMA) transfer to the device’s memory.

The doorbell-based approach may use PCIe bandwidth more efficiently, but can result in

higher latency and more CPU work for the doorbell operations [118].

Bringing Data on Chip. When PCIe-attached I/O devices receive data on behalf

of a user process, the updates are propagated from device buffers to CPU-side shared

memory buffers via PCIe transactions. A hardware steering mechanism that can determine

to which user process incoming data are destined is required for zero-copy receive; high

end network cards and Solid-State Drives (SSDs) provide such flow steering mechanisms.

Conventionally, PCIe transactions write data to main memory. However, if data plane

software or the receiving user process will immediately access the data, the CPU will incur

a costly Last Level Cache (LLC) miss to retrieve the cache line. To avoid this cache miss,

prior work has investigated direct cache placement of I/O data [66, 112]. Accordingly,

Intel has introduced Data Direct I/O (DDIO) technology [27], where a bus-mastering PCIe

device can write directly into and read from the processor’s LLC. With this mechanism,

if a processor accesses incoming I/O data shortly after they are received, they will still be

present in the LLC and costly main memory reads can be avoided. Similarly, data targeted

to the I/O device do not need to be written back to memory; the device can read outbound

data directly from the LLC. To prevent the I/O device from displacing too much CPU data

from the LLC, it is restricted to write only to a limited number of LLC ways.

Steering to Multiple Queues. When multiple processes/CPUs communicate with the

same I/O device, multiple queue pairs are typically provisioned, to avoid synchronization

13

overheads on each queue. Most modern I/O devices (e.g., multi-queue NVMe SSDs [207])

readily support numerous queue pairs. When a CPU submits work to a specific submission

queue, the I/O device knows that it has to acknowledge through the corresponding completion

queue. However, directing completions to the correct queue is more challenging when

communication is not solicited by the CPU. For example, when a NIC receives packets, it

must choose to which CPU’s receive queue to append the packet. This steering is challenging

because the NIC seeks to load-balance transport work across CPUs, but also seeks to ensure

that packets sent in the same flow (between the same communicating end-user processes)

are delivered in order. The commonly used solution for this problem is Receive-Side Scaling

(RSS) [40]. In RSS, the NIC performs a hash of various fields in packet headers to identify

the flow to which a packet belongs. The result of the hash function is used as an index to an

indirection table, which specifies a set of queues/cores to which the packet should be directed.

For TCP/IP traffic, the hash function is typically a 4-tuple hash over source/destination IP

addresses and port numbers.

2.2.2 Software Data Plane Applications

We describe recent applications of software data planes.

Networking. With the advent of Software-Defined Networking (SDN), flexibility and

programmability have been brought to network backends by having a logically centralized

control plane and a data plane. In SDN, a decoupled control plane, as the network brain,

programs the data plane on how to forward packets. This approach has transformed tra-

ditional switches to programmable ones (through languages like P4 [69]), and has also

enabled implementation of network functions—such as routing, load balancing, address

translation, and firewalls—on industry standard servers. As a result, many software data

plane solutions in datacenter networks have been proposed and deployed [87, 122, 174, 179],

which benefit from cores spinning on queues tightly coupled to Network Interface Con-

trollers (NICs). Intel’s DPDK [24] is a representative open-source infrastructure for building

14

spin-polling–based network data planes.

Storage. High-speed storage devices such as SSDs and new persistent memory tech-

nologies like Intel’s Optane [29] have been explored for use in demanding applications

in databases and big data analytics. Data planes for such storage systems demand fast

mechanisms for data transfer between the CPU and the device, leading to the introduction

of new protocols, such as NVM Express (NVMe) and NVMe over Fabrics (NVMe-oF).

Consequently, the concept of spinning cores to process queues for such storage devices has

been increasingly adopted. The Storage Performance Development Kit (SPDK) [43] is the

canonical example of using CPU to spin-poll user-space queues for storage devices.

I/O Virtualization. Data centers are commonly virtualized, where multiple Virtual Ma-

chines (VMs) run on the same host. Through I/O virtualization, a single network or storage

device can be used by multiple VMs. This sharing is enabled by virtual machine managers or

hypervisors, which manage access of multiple VMs to the I/O device(s). Alternatively, VMs

can directly access I/O devices through nascent Single Root I/O Virtualization (SR-IOV)

technology, bypassing the hypervisor. These mechanisms make it feasible for the VM data

plane to take advantage of the previously described spin-polling mechanisms of network and

storage devices. A VM can therefore spin-poll an I/O device queue through the hypervisor

(e.g., DPDK’s Vhost library) or directly through SR-IOV.

2.3 Methodology

At the heart of the software data planes in software defined networking, whether in a

virtualized environment or not, CPU cores read packets from receive (RX) queues, process

them, and then send processed packets or newly generated ones to transmit (TX) queues.

Each RX or TX queue pairs a CPU core with an I/O device or another core (e.g., a client

process). In a generic scenario, a core must handle packets received from I/O devices

or cores in a number of RX queues and eventually transmit a number of packets through

TX queues back to them or to other I/O devices and cores (Figure 2.2(a)). As a result,

15

…

I/O Device

…

(a) (b)Core

… …

Figure 2.2: Data communication through RX/TX queues: (a) From a core to I/O devices or other
cores, (b) From an I/O device to cores.

each I/O device (e.g., a NIC) communicates with CPU cores through these RX/TX queues

(Figure 2.2(b)).

CPU cores and queues are points of scalability in software data planes. As in Fig-

ure 2.2(b), many queues (up to several hundred) may be introduced for a single NIC. Scaling

up the number of queues communicating with a NIC is done either for application-specific

purposes (e.g., differentiated QoS classes, each represented by a queue) or to scale transport

processing to fully utilize the line rate offered by the NIC. In the latter case, CPU cores

are also scaled up, each coupled with the NIC through one or more queues. We design

experiments to investigate the performance and scalability of modern software data planes.

We use Intel’s Data Plane Development Kit (DPDK) [24], an open-source project, as a

representative infrastructure for building spin-polling-based software data planes. DPDK

provides poll mode drivers for numerous modern NICs, which enable cores to spin on

user-level queues to communicate with the NICs. DPDK is heavily optimized to offer

high performance. For instance, DPDK pins its threads to specific cores to reduce context

switches as much as possible. NUMA-aware memory allocation, use of 2MB and 1GB huge

pages, and cache-alignment–aware data placement are among other optimizations done in

DPDK.

Our experiments primarily use DPDK’s Test Poll Mode Driver (TestPMD) and routing /

Layer 3 Forwarding (L3Fwd) applications, and we modify them as needed to implement

scalability experiments and to measure additional statistics, such as poll count and CPU

16

Core
1

Core
n

Last Level Cache (LLC)

Memory

PCIe 3.0 x16

NIC

Port
1

Port
2

…

Traffic
Generator

Figure 2.3: The machine under test receives packets directly from the packet generator.

Table 2.1: HW/SW specs of experimental machines.

Item Machine under test Packet generator
CPU Single-socket, Xeon Platinum 8160

24 physical cores @ 2.10-3.70 GHz
32 KB L1 I/D-cache (per core)
1024 KB L2-cache (per core)
33 MB LLC

Dual-socket, Xeon Gold 6138
2×20 physical cores @ 2.00-3.70 GHz
32 KB L1 I/D-cache (per core)
1024 KB L2-cache (per core)
27.5 MB LLC (per socket)

Memory 96 GB (6×16 GB) DDR4 @ 2666 MHz 96 GB (12×8 GB) DDR4 @ 2666 MHz
NIC Mellanox ConnectX-5 MCX556A-ECAT

100 GbE dual-port
PCIe 3.0 x16

Mellanox ConnectX-5 MCX556A-ECAT
100 GbE dual-port
PCIe 3.0 x16

OS Ubuntu 18.04.2 (LTS) Ubuntu 18.04.2 (LTS)
Software DPDK 18.11.1 (LTS) DPDK 18.11.1 (LTS)

Pktgen 3.6.6

cycles spent in different parts of the application. For CPU cycle classification, we read the

x86 Time Stamp Counter (TSC) register at appropriate places in the code. In the L3Fwd

application, the Longest Prefix Match (LPM) algorithm is used, and the routing table is

filled with 16K entries. We have also developed a similar application to investigate the use

of shared queues. Details of each application will be presented in the following sections

as we introduce each experimental setup. Unless otherwise specified, we use 64-byte IPv4

UDP packets (96-byte for experiments requiring timestamps for latency measurement), but

we vary packet sizes in several experiments.

Our system under test is a Skylake server equipped with a dual-port 100 GbE Mellanox

ConnectX-5 NIC. Detailed specifications of this machine appear in Table 2.1. As shown in

Figure 2.3, the NIC in the system under test receives traffic from a separate packet generator

17

Core
1

Core
m

…

Core
m+1

Core
n

…

Core
1

Core
m

……NIC
Port 1

Core
m+1

Core
n

……NIC
Port 2

Packet
Source

Packet
Sink

Core

… NIC
Port 1

… NIC
Port 2

Core
1

Core
n

…

… NIC
Port 1

… NIC
Port 2

(a) (b)

(c) (d)

Figure 2.4: Configurations of cores and queues in experiments: (a) Scaling up the number of queues
in the machine under test; (b) Scaling up the number of core-queue pairs in the machine under test;
(c) A shared queue accessed by multiple cores in the machine under test; (d) The generic setup of
cores and queues in the packet generator machine.

connected directly to the NIC ports. The setup for core/queue scalability experiments is

shown in Figure 2.4(a) and (b). DPDK does not support sharing NIC queues among multiple

cores; therefore, for queue sharing experiments, we instead investigate an application that

distributes incoming packets among a set of cores (e.g., an intra-machine virtual network)

as shown in Figure 2.4(c). Note that, unless otherwise specified, we use only a single

hyperthread on each physical core (i.e., all threads run on different physical cores). We use

the Linux Perf tool to gather microarchitectural statistics, particularly, cache hit and miss

rates.

Our packet generator is another Skylake server, which also has a dual-port 100 GbE Mel-

lanox ConnectX-5 NIC, as described in Table 2.1. Packets are generated using Pktgen [36],

an open-source DPDK-powered application. Figure 2.4(d) illustrates the generic setup we

18

use to generate packets. Ports 1 and 2 of the NIC in the packet generator are connected

directly to ports 1 and 2 of the NIC in the machine under test, respectively. For experiments

where we wish to measure round-trip latency, the packet generator appends a timestamp

to the packet when it is sent from port 1 and calculates the round-trip latency when an

echoed/response packet is received at port 2 using a local high-precision time source. We

also modify Pktgen to output a latency distribution.

2.4 Inefficiencies of Spin-Polling

Spin-polling is the key mechanism for fast signalling between software data planes and

their work sources (clients or devices). Although spin-polling typically enables lower latency

than system-call or interrupt-based mechanisms, it suffers from two general inefficiencies:

polling tax and work disproportionality.

2.4.1 Polling Tax

Spin-polling incurs a non-negligible overhead from the useless work of iterating over

the body of the poll loop. We refer to the cycles wasted on these useless instructions as

the Polling Tax as they are inherent/inevitable when polling is used. Figure 2.5 reports the

breakdown of the cycles of a single CPU core spent on polling overhead (Tax) vs. useful

work (i.e., routing packets) in an LPM-based routing application using the configuration

shown in Figure 2.4(a), under different offered loads, and varying the number of RX queues

on the first NIC port from one to eight (one TX queue for each port).

We have instrumented the application code to classify CPU cycles as “useful” and

“polling overhead”. The application body includes an infinite outer main loop, and an inner

loop that traverses the queue heads. If an RX queue is non-empty, CPU cycles spent on

reading packets from the RX queue, routing, and sending them to the TX queue are classified

as useful. The rest of CPU cycles are classified as polling overhead (including loop branch

overheads and polling of empty queues).

19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

 lo
ad

2
0

%
 lo

ad

4
0

%
 lo

ad

6
0

%
 lo

ad

8
0

%
 lo

ad

1
0

0
%

 lo
ad

C
y
cl

es

8 queues

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

 lo
ad

2
0

%
 lo

ad

4
0

%
 lo

ad

6
0

%
 lo

ad

8
0

%
 lo

ad

1
0

0
%

 lo
ad

C
y
cl

es

4 queues

█ Routing █ Polling overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0
%

 lo
ad

2
0

%
 lo

ad

4
0

%
 lo

ad

6
0

%
 lo

ad

8
0

%
 lo

ad

1
0

0
%

 lo
ad

C
yc

le
s

1 queue

Figure 2.5: Useful cycles vs. cycles spent on polling in a core performing network routing.

As shown in Figure 2.5, even at 100% load (i.e., maximum routing throughput), a

significant fraction of CPU cycles (~20-28%) are spent on spin-polling, rather than the

useful work of routing packets. Note that in each iteration of the main loop, n queue heads

are checked. Therefore, overhead is amortized over n queues. This amortization results in

overhead decreasing as the number of queues increases at a specific offered load. The high

percentage of polling tax is due to the fact that the useful work per iteration is relatively

simple (i.e., lookups in forwarding tables), highlighting the impact of poll loop overhead;

with more complicated tasks in the loop body, we expect a smaller polling tax.

2.4.2 Work Disproportionality

When polling, spinning cores run full-tilt even when they have no work. Modern cores

can spin with remarkably high Instructions Per Cycle (IPC) while the core is not doing

any useful work. To quantify this effect, we measure the IPC of a single core spin-polling

1, 4, and 8 queues for LPM routing at varying offered loads. Figure 2.6 reports the IPC

of the poller core as throughput increases. As shown in the Figure, IPC decreases up to

29% as throughput increases. As throughput increases, more time is spent on useful work,

which exhibits substantially lower IPC than spin-polling (e.g., due to cache misses). Our

measurement confirms the observations of Alameldeen and Wood [56] that IPC is a harmful

20

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

0 5 10 15 20 25 30

IP
C

 o
f

ro
u

ti
n

g
co

re

Routing throughput (Mpps)

1 queue

4 queues

8 queues

Figure 2.6: Instructions Per Cycle (IPC) of a spin-polling core performing network routing.

metric for performance evaluation of workloads that use busy spinning for communication,

as it does not necessarily represent useful work. Furthermore, our result shows that spin-

polling harms core efficiency (the lower the load, the more instructions are executed). The

high IPC of useless spin-polling has three implications:

Energy disproportionality and inefficiency. Spin-polling results in poor energy pro-

portionality [62] as the core energy consumption when spinning is higher than when per-

forming useful work. Moreover, spinning often costs turbo-boost head-room for other

(application) cores. We have observed that 8 and 16 cores spinning full-tilt on empty queues

reduce the frequency of a core running a regular application from ~3.45 GHz to ~3.25 GHz

and ~2.95 GHz in our machine under test, respectively.

Modern datacenter applications usually exhibit low IPCs (often < 1; at most 1.5) on

Xeon-class cores [57, 58, 95, 141, 198]. However, as shown in Figure 2.6, software data

planes can yield average IPCs of 2-2.6, depending on the load and the number of queues.

CPU IPC translates directly to circuit-level switching activity, which drives the switching

power of VLSI systems. As a result, we expect cores running data plane software to consume

at least 30% more switching power. These effects have also been observed in the case of

spin-locks for synchronization-heavy applications [90].

Faster aging. Spin-polling also has an adverse effect on processor aging, due to the high

21

IPC and core power consumption despite doing no useful work. Prior work has reported

a 7-10 year lifetime for server-class cores in 32nm technology [210]. We expect shorter

nominal core lifetimes in more recent technology, as the aging rate of silicon increases

substantially with smaller transistors [172]. Among various physical effects that cause

transistor aging, Negative Bias Temperature Instability (NBTI) [215] and Hot Carrier

Injection (HCI) [205] are dominant. HCI, in particular, arises from the cumulative effect

of switching activity [172], which correlates with IPC at the microarchitecture level. In

comparison to typical server applications, software data planes have higher IPC and never

enter sleep states. Given 30% or more higher total activity, spinning core lifetimes may drop

below the 5-year threshold, requiring larger supply voltage guard bands (implying higher

power) or reduced peak frequency as chips age. Both energy proportionality and server

lifetimes are particularly critical in datacenter environments, as they have significant impacts

on the Total Cost of Ownership (TCO) [62, 129, 155, 156, 186].

Co-runner interference. Spin-polling has an adverse effect on co-runner threads in

SMT cores, since fruitless polling consumes a large fraction of execution resources that could

otherwise accelerate the co-runner thread. In fact, the ICOUNT policy, which grants fetch

bandwidth to competing SMT threads in proportion to their IPC and is widely employed to

schedule execution resources among competing SMT threads [212], is counterproductive for

a mostly idle poll loop. SMT efficiency is also critical in datacenter environments because

(1) datacenter operators prefer to utilize SMT to improve overall utilization and reduce

TCO [95, 120], and (2) modern datacenter services have tight latency targets that are easily

violated due to heavy co-runner interference [143, 159].

We further investigate the co-runner interference effects of spin-polling. Figure 2.7(a)

reports the IPC of a matrix multiplication application when (1) not collocated with any other

thread, (2) collocated with the LPM routing workload at zero load (i.e., polling idle queues),

(3) collocated with the LPM routing workload at 100% load (i.e., highest possible ratio of

work to polling overhead), and (4) collocated with Geekbench 4 [46], which is a compute-

22

1.89

1.09

0

5

10

15

20

25

0.0

0.5

1.0

1.5

2.0

Not collocated Collocated

Th
ro

u
gh

p
u

t
(M

p
p

s)

IP
C

Routing IPC Routing throughput2.24

1.56 1.54

2.00

0.0

0.5

1.0

1.5

2.0

2.5

Not
collocated

Collocated
LPM-0%

Collocated
LPM-100%

Collocated
Geekbench

IP
C

 o
f

m
at

ri
x

m
u

lt
ip

lic
at

io
n

(a) (b)

Figure 2.7: The adverse effect of a spin-polling application and a regular matrix multiplication
application on each other when collocated on two SMT hyperthreads: (a) The IPC of the co-running
matrix multiplication decreases. (b) Packet throughput of the spin-polling application drops.

and memory-intensive benchmark suite of real-world applications. As shown in the Figure,

when co-running with LPM under either load condition, the matrix multiplication IPC is

substantially lower than without a co-runner (by 30% and 31% with empty and full queues,

respectively) and the case where it is collocated with Geekbench by 11%. The antagonistic

impact of the LPM code is slightly higher under load as it competes for cache capacity as

well as execution bandwidth. Nevertheless, even with no load (and hence, no useful work),

the high IPC of the idle poller thread (see Figure 2.6) drastically slows the matrix-multiply

co-runner.

Figure 2.7(b) demonstrates the co-runner antagonistic impact of the matrix multiply

on LPM routing at 100% load. The LPM routing application also experiences 42% IPC

reduction and 42% packet throughput reduction due to SMT collocation. Note that, while

both co-runners suffer lower IPC, the overall IPC of the core is about 39% better, which

confirms that SMT is desirable to improve utilization [95, 120, 159].

Note that many of the undesirable effects we characterized may be mitigated by MWAIT-

like monitoring instructions that avoid spinning by waiting on a location to change values [6],

or spin-loop detectors that are already present in some processors to reduce the IPC of a

spinning core [137]. As an example, prior work has shown that using MWAIT inside spin-

23

locks can improve energy efficiency of synchronization-heavy applications by 1.5× [90].

However, both of these mechanisms are only suitable for polling a single location; MWAIT

can only monitor a contiguous address range, and spin loop detectors usually fail to detect a

loop that iterates over multiple queues, as demonstrated by the high IPC at zero load shown

in Figure 2.6. The x86 Instruction Set Architecture (ISA) also offers a PAUSE instruction,

which is intended to slow instruction throughput in tight spin loops. However, prior work

has reported mixed effectiveness in using PAUSE in synchronization spin loops [90].

2.5 Lack of Queue Scalability

Network traffic typically consists of numerous flows, which are spread among multiple

queues by data plane applications (e.g., because they originate from multiple clients).

The application needs to take actions on each flow, such as metering, routing, filtering,

encapsulation/decapsulation, and encryption/decryption. Flows may also be associated with

priorities to provide differentiated quality of service. Since the data plane application is

provisioned a limited number of CPU cores, each core may be responsible for processing

multiple queues of traffic flows. Due to the limited size of L1/L2 and LLC caches, we expect

the time to poll a set of queues to grow non-linearly with the number of queues, thereby

reducing maximum throughput and increasing latency. In this section, we inspect caching

effects from increasing the number queues on packet processing throughput and latency.

We illustrate the experimental setup used in this section in Figure 2.4(a). Ingress traffic

flows are spread among RX queues through RSS. To focus on the effect of scaling up the

number of queues, we use a single polling thread running TestPMD’s forwarding mode,

where ingress packets on the first NIC port are forwarded to the second port.

First, we consider the case where there is no traffic and all queues are idle. We vary

the number of queues up to 512, which is the maximum allowed by the DPDK poll mode

driver for this NIC. Figure 2.8 shows that the poll rate (queue heads polled per second; left

axis) decreases as the number of queues are increased. Polling scales poorly as queue heads

24

0

2

4

6

8

10

0

5

10

15

20

25

1 64 128 192 256 320 384 448 512

M
ill

io
n

 L
LC

 lo
ad

s
p

er
 s

ec

M
ill

io
n

 p
o

lls
 p

er
 s

ec
o

n
d

Number of queues

Polls LLC loads

Figure 2.8: Idle (zero-traffic) polling rate (left axis) and LLC loads per second (right axis) vs. number
of queues.

fall out of caches. In particular, from one queue to 512 queues, there is a 33% decrease in

polling rate, even though the work is the same (i.e., spinning on empty queues). Figure 2.8

also reports the number of LLC loads per second (right axis). Above 64 queues, we observe

a gradual increase in the number of LLC loads. This trend shows that queue heads no longer

fit in the L1 and L2 caches and some must be read from the LLC each poll loop iteration.

Above 384 queues, reading any queue head results in an L1/L2 cache miss. Note that the

LLC is large enough to accommodate all queue heads, and the decrease in the polling rate

can be solely attributed to the limited L1 and L2 capacity.

Next, we examine the effect of scaling the number of queues under load. Note that in

addition to the undesirable effect of limited cache size with multiple queues, the time a core

spends spin-polling empty queues adversely affects queues that contain packets. To isolate

these effects, we analyze two cases. First, we consider the case where the traffic comprises a

single flow that passes through only one queue; therefore, only one queue has useful work

and the remainder are idle. Second, we consider a fair-share case where the traffic is spread

over multiple flows so all queues are well-utilized.

Figure 2.9 shows the average latency under light load (< 1 Mpps). The packet forwarding

latency for both single-flow and multi-flow traffic increases with the number of queues.

With 512 queues, the average latency is more than 6× worse than the single-queue case.

Since load is low in this scenario, there is minimal queuing delay in both the single-flow

25

0

5

10

15

20

25

0 64 128 192 256 320 384 448 512
A

ve
ra

ge
 la

te
n

cy
 (
μ

s)

Number of queues

Single-flow Multi-flow

Figure 2.9: Round-trip latency of packet forwarding under light traffic (< 1 Mpps), with varying
number of queues.

and multi-flow cases. Furthermore, the number of cache misses incurred between the arrival

and forwarding of a packet is about the same under both the single and multi-flow cases,

and both exhibit the same average latency.

In contrast, when we examine a high-throughput scenario, we see a substantial differ-

ence between single-flow and multi-flow performance. Figure 2.10 shows the maximum

forwarding throughput when scaling queues for single-flow (a) and multi-flow (b) traffic

alongside the rate of LLC load hits and misses per second (secondary axis). For single-flow

traffic, we observe that the forwarding throughput decreases from one queue to 8 queues and

then remains roughly constant up to 64 queues. It then gradually decreases from 64 queues

to 512 queues. There are no LLC load misses. In this case, both the queue descriptors and

packet data from the single active queue fit within the LLC (ingress packets are delivered

directly to the cache via DDIO). For 1-64 queues, all queue heads fit in L1/L2 caches, and

we see no decrease in the throughput since the core spins fast on the queues. For 64 or more

queues, although the additional queues are idle, polling their heads often incurs L1/L2 cache

misses as the queue heads are displaced by data accessed when servicing the active queue.

As such, the number of L1/L2 cache misses (to the idle queue heads) per transmit burst

grows. It takes long enough to traverse the set of empty queue heads that the NIC runs out of

work from the active queue’s transmit batch and PCIe bandwidth is underutilized. The dip

26

 LLC load hits per second LLC load misses per second Forwarding throughput

0

5

10

15

20

25

30

35

40

45

50

55

0

5

10

15

20

25

30

35

40

1 8 16 24 32 40 48 56 64

M
ill

io
n

 L
LC

 h
it

s/
m

is
se

s
p

er
 s

ec

Fo
rw

ar
d

in
g

th
ro

u
gh

p
u

t
(M

p
p

s)

Number of queues

0

5

10

15

20

25

30

35

40

45

50

55

0

5

10

15

20

25

30

35

40

1 64 128 192 256 320 384 448 512

M
ill

io
n

 L
LC

 h
it

s/
m

is
se

s
p

er
 s

ec

Fo
rw

ar
d

in
g

th
ro

u
gh

p
u

t
(M

p
p

s)

Number of queues

0

5

10

15

20

25

30

35

40

45

50

55

0

5

10

15

20

25

30

35

40

1 8 16 24 32 40 48 56 64

M
ill

io
n

 L
LC

 h
it

s/
m

is
se

s
p

er
 s

ec

Fo
rw

ar
d

in
g

th
ro

u
gh

p
u

t
(M

p
p

s)

Number of queues

0

5

10

15

20

25

30

35

40

45

50

55

0

5

10

15

20

25

30

35

40

1 64 128 192 256 320 384 448 512

M
ill

io
n

 L
LC

 h
it

s/
m

is
se

s
p

er
 s

ec

Fo
rw

ar
d

in
g

th
ro

u
gh

p
u

t
(M

p
p

s)

Number of queues

(a) (b)

Figure 2.10: Maximum forwarding throughput and LLC load hits/misses per second as the number
of queues increases: (a) Single-flow, (b) Multi-flow

in LLC load hits per second from 64 to 320 queues arises due to the interaction of slower

poll loop iterations (causing LLC load hits per second to drop) and increasing contention for

L2 capacity (causing queue heads be replaced to the LLC, increasing LLC accesses per loop

iteration).

In the multi-flow case, throughput gradually decreases from one queue to 64 queues,

and then it remains stable above 10 Mpps from 64-512 queues—substantially better than

the paltry 1.6 Mpps achievable by a single flow with 512 queues. Once the core attempts

to access packet data, it is more likely that the data have been displaced by other ingress

packets as the number of queues increases. For 64 or more queues, the number of misses

to queue heads and packet data per transmit burst is constant. With traffic spread over all

queues, each queue head miss will yield a transmit burst. As a result, the NIC pipeline and

PCIe bandwidth remain utilized throughout the poll loop. Note that throughput is much

higher than in the single-flow case even though packet data must now traverse main memory

27

Core
NIC
Port

Pktgen

Core
NIC
Port

TestPMD

Packet generator machine Machine under test

Figure 2.11: Setup for measuring single-core throughput.

(as evidenced by the large number of LLC misses per second; blue bars in Figure 2.10(b)).

Main memory provides sufficient bandwidth at these packet rates.

In summary, increasing the number of queues increases average latency and decreases

peak throughput. These effects arise because the number of L1/L2 misses to queue heads

grows due to cache pressure, and are magnified in the single-flow case because the misses

are not interleaved with transmit bursts and do not amortize, leading to underutilization of

the NIC egress pipeline—while peak throughput converges to a constant in the multi-flow

case, it continues to decrease with more queues in the single-flow case.

2.6 Lack of Core Scalability

In this section, we investigate how many cores it takes to saturate the line rate of our 100

Gbps network adapter under varying packet sizes. We first measure single-core throughput,

where only one core is used in both the packet generator and the machine under test in the

setup shown in Figure 2.11. Packets are generated in advance and are sent on the line as

fast as possible. The receiver processes the NIC descriptors for every received packet, but

does not examine the packets, which are simply discarded. Transmit (TX) and receive (RX)

packet and data rates for varying packet sizes are illustrated in Figure 2.12. A single core

is unable to saturate line rate even with the largest packets (i.e., Maximum Transmission

Unit (MTU)). Note that for smaller packets, the RX core cannot keep up with the packet

rate even though it only reaps the receive packet descriptors; the NIC ends up discarding

some packets. The RX core is unable to keep up because of polling overhead. Note that the

28

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

45

50

64 128 256 512 1024 1280 1518

D
at

a
ra

te
 (

G
b

p
s)

Pa
ck

et
 t

h
ro

u
gh

p
u

t
(M

p
p

s)

Packet size (bytes)

TX throughput RX throughput TX data rate RX data rate

Figure 2.12: Maximum throughput of a single core.

RX throughput shortfall is less than the polling tax for a single core at 100% load reflected

in Figure 2.5. As such, in the absence of this overhead, we expect the RX core would keep

pace (or exceed) TX performance. In contrast, the TX core does not perform any wasted

work. As packets get larger, packet rate becomes smaller, and the bottleneck shifts from the

CPU core to PCIe bandwidth. Thus, the RX core is able to keep up with the TX core for

256-byte and larger packets.

Next, we analyze how throughput scales when we increase the number of cores. On

the packet generator machine, we provision sufficient cores to ensure we saturate the 100

Gbps line rate. We configure the machine under test as shown in Figure 2.4(b). To avoid

any synchronization on queues, we provision a dedicated queue on each NIC port for each

core. We use TestPMD’s forwarding mode, in which packets received from the first port are

simply forwarded to the second port without examining the packet. The goal is to forward

all the (saturated) incoming traffic by increasing the number of forwarding cores. Note that

incoming packets are spread across RX queues evenly using RSS.

Figure 2.13 shows packet throughput as the number of cores increases for four different

packet sizes. The RX and TX rates in this Figure are from the machine under test. For-

warding throughput (i.e., the TX rate) does not scale linearly even though none of the cores

contend on shared memory. Even for the simplest forwarding task, we observe that line rate

can often be saturated with a large number of cores. More complex packet processing would

29

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ac

ke
t

th
ro

u
gh

p
u

t
(M

p
p

s)

Number of cores

RX - 64-byte

TX - 64-byte

RX - 128-byte

TX - 128-byte

RX - 256-byte

TX - 256-byte

RX - 512-byte

TX - 512-byte

Figure 2.13: Packet throughput as the number of core-queue pairs increases. The RX line is saturated
in all the cases.

demand even more cores to saturate line rate. The non-linearity and asymptoticity of core

scaling can be attributed partially to the polling tax, and is more visible with smaller packets.

These effects also can arise due to various operation rate limits, for example, for NIC, PCIe

MMIO, and DDIO/LLC transactions. Furthermore, we observe surprising behavior for 3-8

cores/queues. From three to seven cores, we see a plateau in the throughput for 64-, 128-,

and 256-byte packets. At eight cores, we see a sudden throughput discontinuity. Scaling

behavior beyond eight cores matches our expectations, and ultimately reaches line rate for

all packet sizes above 128 bytes. We note that, for 64-byte packets, transmit performance

cannot reach line rate. According to the vendor specifications, 100 million packets per

second is the limit of the NIC hardware capability for RX, which is insufficient to reach line

rate for small packets.

The discontinuity from seven to eight cores coincides with a sudden decrease in memory

bandwidth and a sudden increase in LLC bandwidth. This shift in memory behavior suggests

that the DDIO mechanism is sourcing packets from the last-level cache (as it should) above

eight cores/queues, but is sourcing packets from main memory with fewer cores. From

seven to eight cores, forwarding throughput decreases for 128- and 256-byte packets but

increases for 64-byte packets. As mentioned in Section 2.2, the DDIO mechanism uses a

30

limited number of LLC ways. Apparently, the limited size of the LLC subset used by DDIO

is insufficient for larger packets and results in a sudden performance drop upon activation of

DDIO. Furthermore, we have determined that this behavior is tied to the number of queues

rather than the number of cores interacting with the NIC. As such, we believe the anomalous

performance plateau from 3-8 cores is most likely due to the specific implementation of the

DDIO mechanism in the NIC. As a result, we discount performance over this range when

drawing conclusions.

2.7 Scale-up Queuing is Impractical

We next consider the opportunities that might arise when sharing queues across multiple

cores, rather than dedicating queues for each core. Sharing queues is often challenging in the

context of networking applications, as common implementations of higher-level networking

protocols (like TCP/IP) expect ordered delivery of packets in a single flow; shared queues

make it difficult to guarantee such ordering. Nevertheless, shared queues provide strong

theoretical properties that merit further exploration.

Figure 2.14 illustrates two different queuing models for concurrent work: scale-out

and scale-up. In the scale-out model, each core obtains work from a separate queue and

a dispatcher steers work into queues to balance the arrival rate across queues. The scale-

out model captures the typical RSS mechanism used to distribute work among cores in

networking applications. The 4-tuple hash ensures ordering within individual flows, but

distributes work irrespective of the load on each core. In the scale-up model, instead a single

queue is shared among all cores, wherein each fetches work from the central queue. This

model allows work to spread evenly over cores irrespective of the distribution of traffic

across flows. However, this model requires synchronization of the central request queue and

does not naturally ensure ordered flow delivery.

Neglecting ordering and synchronization costs, the scale-up organization always outper-

forms the scale-out organization, in terms of average response time, for two reasons [160]:

31

Scale-out Scale-up

μλ

μ

μ

……

μλ / k

μλ / k

μλ / k

…

Figure 2.14: Scale-out vs. scale-up queuing organizations with k cores. (λ and µ represent arrival
and service rates.)

First, in the scale-up organization, a core will not remain idle if there is work waiting in

the central queue (i.e., it is work conserving). However, in scale-out systems, a core may

remain idle if its own queue is empty even while work is outstanding elsewhere. Second,

when a packet takes longer to process than average in a scale-out organization, all the

packets behind it suffer from Head-of-Line (HoL) blocking delays. In contrast, in scale-up

architectures, packets may be serviced by any core; stalling at one server has less impact on

the system-wide instantaneous service rate.

Software data plane infrastructures are usually optimized for scale-out organizations

because (1) as already noted, many networking applications do not tolerate out-of-order

delivery within flows, and (2) the RSS mechanism of modern NICs already distributes the

packets almost uniformly into different queues when an application serves many similar

flows. In this section, we seek to quantify the trade-off between the performance advantages

and synchronization costs of implementing a scale-up queuing organization in software

data planes by sharing a queue across multiple cores. We do not further consider packet

ordering in this study; we consider applications where out-of-order delivery is allowed, such

as layer three routing, unordered datagrams, higher-level protocols for adaptive routing, or

non-networking applications.

We design an experiment as shown in Figure 2.15. In both the scale-out (Figure 2.15(a))

and scale-up (Figure 2.15(b)) configurations, the machine under test receives packets on

its first NIC port spread over multiple queues by RSS. Next, n “dispatcher” cores read the

packets and write them to multiple queues in the scale-out configuration or to a single shared

32

Core
1

Core
n

……NIC
Port 1

…

Core
n+1

Core
2n

… … NIC
Port 2

Core
1

Core
n

……NIC
Port 1

Core
n+1

Core
2n

… … NIC
Port 2

(a)

(b)

Figure 2.15: Experimental setup of (a) scale-out, and (b) scale-up, configurations.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(M

p
p

s)

Parallel cores

Scale-out Scale-up

Figure 2.16: Maximum throughput achieved by scale-out and scale-up configurations.

queue in the scale-up configuration. Finally, another set of n cores read the packets from the

multiple scale-out queues or the single shared queue and forward them to corresponding

transmit queues of the second NIC port. Note that we designed this relatively complex

setup to compare the scale-out and scale-up methodologies because DPDK does not support

sharing a NIC queue among multiple cores.

Figure 2.16 reports the maximum throughput achieved by different numbers of cores

forwarding packets, organized in both scale-up (sharing a single queue) and scale-out (each

core has a distinct queue) fashions. As shown in the Figure, the throughput achieved by the

scale-out organization scales with the number of cores; the lack of scalability between 3 to 7

cores is due to the NIC issue discussed in the previous section. However, with the scale-up

organization, throughput only scales up to 4 cores and then falls off due to synchronization

overhead. This overhead is caused by serialized updates to the shared queue by multiple

cores, although the shared queue is implemented in a lock-free manner in DPDK.

33

0

50

100

150

200

250

300

350

400

0 20 40 60

A
v
er

ag
e

la
te

n
cy

 (
μ

s)

Throughput (Mpps)

Scale-out

Scale-up
0

50

100

150

200

250

300

350

400

0 20 40 60

A
ve

ra
ge

 la
te

n
cy

 (
μ

s)

Throughput (Mpps)

Scale-out

Scale-up

(a) (b)

Figure 2.17: Average round-trip latency of scale-out vs. scale-up configurations with 10 cores: (a)
No hiccups, (b) 1 µs processing hiccup with 1% probability.

Figure 2.17(a) reports the average packet latency when forwarding with 10 cores using

both scale-up and scale out organizations, under various load levels. As shown in the Figure,

while the scale-up organization results in slightly lower unloaded latencies, it saturates much

earlier and results in considerably higher latency at loads above 15 Mpps. At higher load,

synchronization overheads outweigh the latency advantages of the scale-up organizations.

However, as the figure shows, the knee of the latency graph for the scale-up organization

is much steeper than the one for the scale-out organization (sudden saturation vs. gradual

latency increase before saturation). This is an inherent feature of scale-up queuing systems;

with sufficient concurrency, scale-up systems eliminate queuing delays at loads lower than

the saturation throughput, forming a perfect “hockey stick” curve.

Nonetheless, scale-up systems provide the greatest advantage for service distributions

that entail high variability, which leads to a high probability of HoL blocking. One of the

main reasons for such service distributions are system hiccups [160], wherein processing

is stalled because it is interrupted by system tasks (e.g., garbage collection [214], memory

compaction [130], power state transitions [135]), or the interference of collocated workloads,

within SMT hyperthreads [159], on-chip caches [121, 143], and memory [225]. Such inter-

ference can arise even on cores dedicated to data plane processing. Whereas such hiccups

are more apparent under large-scale deployments, to model them in our test environment,

we add a hiccup condition, wherein forwarding a packet might be delayed by 1 µs with

34

1% probability, following prior work [160]. The resulting average packet latencies for 10

cores under various offered loads are depicted in Figure 2.17(b). As shown in the Figure,

the scale-up organization now achieves considerably lower unloaded latency compared to

the scale-out organization and saturates at higher load (relative to the case with no hiccups;

Figure 2.17(a)). This advantage arises because the scale-up organization smooths service

variability and mitigates HoL blocking. However, due to synchronization costs, the scale-up

organization is still unable to match the peak throughput of the scale-out organization.

The resulting trade-off might be exploited by designing an adaptive system that switches

queuing disciplines in response to load based on the latency break-even point observed in

Figure 2.17(b).

Scale-out queuing may benefit from more sophisticated load balancing schemes than

the RSS mechanism. For example, a core may be applied as a load balancer, reading

packets from the NIC(s) and pushing them to per-core queues based on the load of each

flow. Nevertheless, scale-out queuing with better load balancing is still not equivalent to

scale-up queuing as the latter both balances the load across cores and also eliminates HoL

blocking. Load balancing is most beneficial when load is below peak and some cores

become idle. However, at near-saturation load, especially if the task size distribution is

heavy-tailed (as with the hiccups we consider in Figure 2.17(b)) and the metric of interest is

tail latency (rather than throughput), load balancing has little effect as it does not eliminate

HoL blocking. An adaptive load balancer might do better by balancing load according to

queue depth, but again, little effect is expected on latency at high load.

In summary, we observed that the scale-up organization can result in significant per-

formance gains over scale-out, in principle, especially in the presence of system hiccups

or if the distribution of packet processing time entails high variability. However, due to

synchronization costs, these advantages cannot be fully exploited. Therefore, any effort

to reduce the synchronization costs in software/hardware [190] or to alleviate the serial-

ization effect of lock-free synchronization [101] may potentially unlock the performance

35

78.5 75.9

24.5

44.5

0

10

20

30

40

50

60

70

80

Non-SMT SMT Non-SMT SMT

Scale-out Scale-up

Th
ro

u
gh

p
u

t
(M

p
p

s)

Figure 2.18: Throughput of scale-out vs. scale-up configurations with 10 logical cores in case of
using 2-threaded SMT cores or separate physical cores.

advantages of the scale-up organization. To highlight this effect, Figure 2.18 compares the

maximum throughput achieved by 10 forwarding cores under both scale-up and scale-out

organizations when (1) each logical core is mapped to a separate physical core, and (2) when

each two logical cores are mapped to the two hyperthreads of the same physical core. As

shown in the figure, while the scale-out organization experiences a slight slow-down with

hyperthreading, due to resource contention, the scale-up organization experiences significant

performance improvement (45%) when hyperthreading is enabled. This advantage arises

because both hyperthreads of each physical core share the same L1 and L2 caches, and hence,

are less sensitive to synchronization overheads. We expect further improvement in scale-up

performance may be possible in cores with a larger number of hyperthreads [158, 159].

2.8 Discussion: Solution Directions

In Sections 2.4-2.7, we discussed high-level deficiencies of software data planes, which

make it difficult to close the gap between a traditional OS/interrupt-based system and an

ideal notification mechanism as throughput demands and core counts scale. In this section,

we discuss potential solution directions.

Spin-polling induces a non-trivial polling tax, even when operating at saturation through-

put. Spinning also results in poor energy proportionality and is disruptive to SMT co-runners.

36

Future data planes require an alternative mechanism that retains the latency advantage of

spin-polling while avoiding these pitfalls. MWAIT-like mechanisms that monitor memory

locations for changes could bridge this gap, but current implementations monitor only a

single address [6]. Such mechanisms mimic the behavior of an interrupt-based system,

without the common inefficiencies (e.g., kernel crossing and switching address spaces) of

conventional implementation.

The key enabling mechanism for address-monitoring is cache coherence [195]; coher-

ence invalidation messages act as a signal that a location’s value is changing. An address

monitoring solution might compare incoming coherence invalidation messages with a set

of monitored addresses. To scale to many addresses, this address set might be maintained

in large cache-like associative structures at each core or be tracked in the on-chip cache

coherence directory, which already tracks the sharers of each cache block. Similar solutions

have been proposed to enable many watchpoints for debugging [105, 213], conflict detection

in transactional memories [163], and memory consistency violation detection [75].

We have observed that a scale-up queuing organization (shared queues) can provide

substantial performance advantages, especially in mitigating tail latency. However, syn-

chronization overheads presently prevent shared queues from being scalable and practical.

RPCValet [84] proposes a potential solution for on-chip integrated NICs. Instead of the

integrated NIC “pushing” packets into each core’s dedicated queues, which may result in

load imbalance and HoL blocking, each core “pulls” a packet from the NIC as soon as it is

done processing the previous packet. The single shared packet queue is managed in hard-

ware by the on-chip NIC and distributes packets into the cores’ local queues. RPCValet’s

solution might be generalized to non-integrated I/O through a specialized on-chip dispatcher

unit at the LLC to implement such a pull-based queuing solution for any shared-queue

application. Mechanisms like DDIO might facilitate transfer of off-chip I/O data to this

hardware dispatcher. Properly addressing concurrency and ordering constraints among

arriving work remains an open challenge in this model.

37

In summary, we believe hardware mechanisms for address monitoring and work distri-

bution may boost the performance of software data planes by replacing spin-polling and

enabling shared queues across multiple cores without their attendant synchronization costs.

2.9 Related Work

Kernel bypass and spinning cores. Frequent OS intervention is a performance an-

tagonist. Many prior works use kernel bypass to mitigate the system call and/or interrupt

overheads. MICA [139], Sandstorm [150], mTCP [113], and eRPC [117] provide user-level

networking stacks. Arrakis [176] uses SR-IOV for direct access to virtualized I/O. User-level

storage frameworks have also been proposed [126, 218]. Additionally, many works rely on

spinning cores as a low-latency notification mechanism. IX [64], ZygOS [179], Shenango

[174], Shinjuku [115], and Andromeda [87] are examples of spin-polling network data

planes, and ReFlex [127] and PASTE [111] provide polling-based network and storage data

planes for remote Flash devices and persistent main memory, respectively.

Energy inefficiency and the poor scalability of spin-polling have been explored in the

context of lock-based synchronization [90, 144]. Although spinning is the key enabler

of low-latency software data planes, its shortcomings in such a context have not been

systematically characterized and compiled into a single work before. The intuition that

fruitless spinning should be avoided has motivated introduction of user-level threading

and scheduling for spin-based software data planes [87, 174, 179]. However, in this work,

by quantifying and characterizing inefficiencies of spinning at the architecture level in

the context of software data planes, we set the ground for exploring generic notification

mechanisms that are fast-reacting, efficient, and scalable. Such generic mechanisms can

avoid complicated user-level schedulers and be deployed in the data planes of networks as

well as storage systems.

Data movement. Efficient data movement is one of the key factors in the performance

of software data planes. Prior work has proposed solutions to shorten CPU-I/O data

38

path [27, 67, 138], take the CPU out of the data path [81, 97, 201], optimize data movement

within user space [87, 117], and accelerate memory copies [114].

Shortening the path through which data travels in software data planes can improve pro-

cessing latency and throughput. For example, using Intel’s Data Direct I/O technology [27],

the CPU can immediately read incoming I/O data from PCIe directly in the LLC, avoiding

long-latency memory reads. Similarly, a PCIe device can read outgoing data directly from

the LLC. Integrated NICs have also been proposed to enable close coupling of CPUs and

network adapters [67, 138], which eliminates the need for long-latency data movement

across PCIe.

Programmable NICs have enabled rich packet processing offload capabilities, which can

completely remove the CPU from the data path (i.e., complete offload rather than partial

offload). Microsoft Azure has deployed an FPGA-based smart NIC [97], which has an

embedded programmable switch to forward packets to VMs through SR-IOV without the

intervention of hypervisor cores. Similar offloading features have been proposed for storage

systems [81, 201].

Although bypassing the kernel removes many unnecessary data movements, user-level

data movement must also be efficient in software data planes. Google’s Andromeda [87]

deploys carefully crafted fast-paths for data movement to and from VMs, done entirely

at user level. Kalia and co-authors [117] seek to minimize data movement in a user-level

RPC platform. Note that software data planes can generally benefit from memory copy

accelerators (e.g., [114]) to accelerate data movement.

2.10 Conclusion

We have presented a characterization of spin-polling software data planes, which bypass

OS I/O stacks and rely on cores spinning on user-level queues. Although these mechanisms

are known to be easy-to-use, low-latency approaches for communication and signaling, we

demonstrated that they lead to deficiencies, especially when cores or queues are scaled to

39

serve numerous clients/flows or provide high transport throughput. We designed several

experiments to reveal these deficiencies using Intel’s Data Plane Development Kit. First,

we quantified polling’s lack of work and energy proportionality and its adverse effect on

co-running applications because spinning cores run full-tilt at highest IPC. Second, we

demonstrated the poor scalability of spin-polling with the number of queues, particularly

in the case of unbalanced traffic, due to constrained processor cache capacity. Third, we

quantified that the overhead of polling, which is considerable even when operating at

saturation throughput, and operation rate limits result in poor core scalability. Finally, we

considered the use of shared queues as a mitigation of head-of-line blocking, but found that

synchronization overheads presently limit the potential benefit. In conclusion, we motivated

better hardware/software notification mechanisms that enable fast-reacting, efficient, and

scalable software data planes.

40

CHAPTER III

HyperPlane: A Scalable Low-Latency Notification

Accelerator for Software Data Planes *†

3.1 Introduction

Computer system designers are on the hunt to address “Killer Microseconds” [61, 78,

159]. The latency to access modern I/O devices—such as emerging storage-class and

disaggregated memories [51, 52, 140, 171], 100+ gigabit networking devices [68], and

high-throughput accelerators [74, 178]—is as low as single-digit microseconds. At such

low latencies and high throughputs, the I/O software stack becomes a critical factor in

end-to-end communication performance. Moreover, modern cloud applications are shifting

away from ms-scale single-binary monoliths to loosely-coupled µs-scale microservices, to

achieve better scalability, reliability, and programmablity [80, 100, 199]. With µs-scale

service times, the I/O software stack’s latency becomes comparable to computation time

and must be aggressively optimized [197, 200].

In conventional systems, sharing an I/O device among multiple applications is orches-

trated through the kernel—depicted in Figure 3.1(a). When a user process signals the kernel

that it wishes to perform I/O via a system call, the protocol and transport processing software

stack is carried out by kernel threads, either by directly borrowing the user process’s CPU,

* Published in the 2020 IEEE/ACM Symposium on Microarchitecture (MICRO’20) [161]
† Joint research with Amirhossein Mirhosseini

41

Process

Process

ProcessProcess

I/O Device

Kernel

I/O Device

Process

Library

Function
call

Process

Library

Function
call…

Microkernel Process

User-level Data Plane…

…
User-level

queues
+

Spin-polling

Kernel(a) (b)

(c)

System calls

Interrupts

I/O DeviceKernel

Shared memory communication

Figure 3.1: I/O communication approaches: (a) conventional kernel-based, (b) user-level library OS,
(c) microkernel-based “software data planes”.

or by using interrupt mechanisms and kernel scheduling to place work on another core.

Nonetheless, the mechanisms involved in such kernel-based approaches—including synchro-

nization, scheduling, inter-processor interrupts, switching address spaces, and copying data

across address spaces—impose significant performance overheads when dealing with I/O

devices that exhibit µs-scale latencies and gigabits- to terabits-per-second throughputs [113].

In contrast, as illustrated in Figure 3.1(b), modern I/O devices provide virtual user-level

queue pairs for user processes to communicate directly with them, bypassing the kernel

software stack. As such, since traditional interrupts cannot be delivered to user code without

kernel assistance, user processes often perform spin-polling on the queues to be notified

of new data/task arrivals. In these schemes, I/O software stacks are often implemented

as a library operating system loaded as part of the user process, and invoked through

function calls [64, 109, 113, 176]. Zero-copy data transfer mechanisms further improve

CPU efficiency by placing I/O buffer pools in the user process address space, enabling

incoming data items to directly land where the receiving user process can access them. The

transport software in zero-copy I/O stacks arranges for data to flow directly between buffer

pools in user processes and I/O devices, without any intermediate copies.

42

Despite all the performance benefits of kernel-bypass I/O stacks, the key shortcoming

of these systems is the lack of centralized coordination that conventional kernel-based

approaches enable. By providing a central view of all resources and the tenant process-

es/VMs that communicate with each resource, the kernel is able to deliver more efficient

scheduling, fairness, and resource accounting. As a result, a popular alternative approach

used by systems like Google’s Snap [151] is deploying the I/O stack within a user-level

software data plane microkernel module—illustrated in Figure 3.1(c)—communicating

with the application processes through user-level shared memory queues. This way, the

user-level software data plane manages all the I/O queues and exploits its centralized view to

provide better resource management and scheduling while retaining most of the performance

benefits of kernel-bypass I/O stacks. Furthermore, by decoupling and isolating the I/O stack

from both the application and the kernel, this approach provides better locality and also

enhances development and release velocity for the I/O software stack. Academic projects

like Shenango [174] have advocated similar approaches.

Nonetheless, even microkernel-based software data planes typically rely on spinning

cores and user-level queues in their transport software. Although spin-polling is an easy-

to-use, fast-reacting approach for communication and signaling, it involves a number of

inevitable drawbacks, especially when dealing with hundreds (or more) queues. First, the

traffic that passes through these queues is often unbalanced, and consequently, a large

subset of queues are empty at any given point in time. Traffic is unbalanced because

(1) some I/O devices are inherently more frequently accessed than others, and (2) tenant

applications/VMs typically experience bursty activity patterns at different times. As such, a

large fraction of time in software data planes is wasted interrogating empty queues, especially

when reading empty queue heads incurs cache misses, which is quite likely. This useless

work substantially hurts the tail latency and peak throughput of software data planes and

limits their queue scalability [104]. Furthermore, software data planes may even exhibit

“work disproportionality”; that is, they perform more fruitless spinning work in terms of

43

Instructions Per Cycle (IPC) at lower transport load, leading to energy inefficiency. Finally,

software data planes can benefit substantially from sharing queues across multiple cores to

achieve better queuing properties. However, the coherence and synchronization costs of

spinning on shared queues make such sharing impractical [84].

In this chapter, we propose HyperPlane, a hardware notification accelerator that facili-

tates fast (user-level) software data planes, which unlike software-only spinning alternatives,

exhibits queue scalability and work proportionality and enables efficient queue sharing.

HyperPlane comprises a programming model front-end and a hardware microarchitecture

back-end that together enable efficient operation. The core of its programming model is

the QWAIT instruction, which has similar semantics to the select-case construct in the Go

programming language [47]. QWAIT waits on a set of doorbell locations associated with

queues and blocks execution until a work item arrives to a queue. Once one or more queues

are ready, QWAIT returns the next Queue ID (QID) that must be serviced according to

the specified service policy—round-robin, weighted round robin, or strict priority. QWAIT

is inspired by the x86 MWAIT and ARM WFE instructions, which halt execution until the

contents of a single memory address or address range change.

The two key components of HyperPlane’s microarchitecture back-end are a monitoring

set and a ready set. The monitoring set comprises the locations of doorbells associated

with each queue. These locations are monitored in hardware for cache coherence write

transactions that indicate new work item arrivals. Once a write transaction for a doorbell

is matched to a QID in the monitoring set, the QID is moved to the ready set. The ready

set, which is HyperPlane’s key departure from prior monitoring schemes, tracks ready QIDs

and determines the next queue to service according to a service policy. QWAIT returns the

QID of the next ready queue from the ready set. The ready set effectively functions as a task

scheduler at non-trivial loads, sorting the order of ready queues to be serviced.

To the best of our knowledge, HyperPlane is the first hardware accelerator proposal

that enhances the performance and energy efficiency of software data planes. HyperPlane

44

achieves queue scalability as QWAIT always returns the next QID to be processed without

the need for checking many empty queues. It avoids work disproportionality of fruitless

spinning because it halts execution when there is no work item in any queue, avoiding

wasted energy/execution resources or harming the execution of another hyperthread on

the same core. Finally, since the monitoring and the ready set units are shared across all

cores within the chip, HyperPlane enables efficient cross-core queue sharing and enjoys

the strong properties of scale-up queuing models, providing higher performance and better

support for queue priorities. Our results show that HyperPlane improves peak throughput

by 4.1× and tail latency by 16.4×, on average, in comparison to a state-of-the-art spin-

polling–based software data plane, across a varying number of I/O queues (up to 1000).

Moreover, HyperPlane achieves up to 6.2× lower idle (zero-load) power consumption. With

1024-entry monitoring and ready sets in a 16-core CMP, HyperPlane incurs < 1% per-core

power and area overheads.

We first provide background on software data planes and motivate our work by illus-

trating challenges of software data planes (Section 3.2). Next, we describe the design

and detailed microarchitecture of HyperPlane (Sections 3.3 and 3.4). We then evaluate

HyperPlane (Section 3.5). Finally, we discuss related work (Section 3.6) and conclude

(Section 3.7).

3.2 Background and Motivation

3.2.1 Software Data Planes

Software data planes manage data communication of tenants (i.e., host applications

or client applications/VMs) with I/O devices, such as Network Interface Controllers

(NICs) [151], Solid State Drives (SSDs) [133], persistent memory devices [29, 39], and

accelerators [44]. Software data planes have two key functionalities: First, they manage I/O

queues and direct traffic to the corresponding tenant and vice versa. Each tenant uses one or

45

(1a) Batch
arrives TenantSDP

(2b) DP/transport
processing

(1b) Doorbell
triggered …

(2c*) Write

(2d) Doorbell
triggered

…

(3) Dequeue
and process

Device-side
memory-mapped queues

Tenant-side
memory-mapped queues

…

…

Tenant

DP cores …

Tenant cores
* Not needed in case of in-place Data Plane (DP) / transport processing

(2a) Notification/
queue selection

Figure 3.2: Software Data Plane (SDP) operations.

more queue pairs to communicate with particular I/O devices. Thus, software data planes

must efficiently handle a large number of queues (i.e., ~1k) corresponding to many tenants

and several I/O devices.

Second, software data planes provide low-level I/O operation services to tenants. Soft-

ware defined networks and virtual network functions demand fast packet processing, which is

enabled by software data planes through services like address translation, firewall, software

switching, and deep packet inspection [87]. Software data planes also provide services to vir-

tualize storage systems [218], administer shared I/O bandwidth [125, 211], enable Remote

Direct Memory Access (RDMA) [48, 125], facilitate high-performance computing [11],

perform erasure coding [28], and encrypt/decrypt data [24, 28].

Figure 3.2 illustrates the receive-side interactions in a software data plane (the transmit-

side diagram looks similar): (1a) a batch of one or more packets/work items arrives to one of

the device-side memory-mapped queues; (1b) the device triggers the corresponding doorbell;

(2a) the software data plane module is informed of the arrival (through the doorbell); (2b)

depending on the format/semantics of the work items in the queue, the software data

plane either performs transport processing in-place or (2c) writes/copies the transformed

packets/work items to the corresponding tenant-side queue; (2d) the software data plane

triggers the tenant-side doorbell; and finally, (3) the tenant is informed of the packet/work

item arrivals to process. Each tenant has a single or a few queues per (virtual) core. Therefore,

it can easily monitor the queue via spin-polling or different variants of the MWAIT instruction.

46

However, the software data plane has to monitor all queues simultaneously and service them

based on the predefined system policy, hence it cannot use MWAIT variants.

3.2.2 Software Data Plane Challenges and Goals

Even though software data planes rely on spin-polling to deliver high throughput and

low latency notification, they suffer from several inherent inefficiencies. First, software data

planes lack queue scalability [104]. Spinning cores iterate over all of the input queues at full

tilt even when there is no work item in any of them. Increasing the number of queues puts

excessive pressure on processor caches, which can hurt peak throughput and tail latency.

This effect is exacerbated when traffic lacks balance, i.e., when a subset of queues contain

no work items most of the time. Empty queues cost a spinning core time as it searches

for the next ready work item in a non-empty queue. This cost is particularly high when

interrogating empty queues may incur cache misses, slowing the polling loop. Since the

time required to process a work item is usually short (i.e, a few microseconds), missing on

multiple empty queue heads might take even longer than processing a ready queue.

Second, software data planes are not necessarily work-proportional. Modern cores can

spin with high IPC. Therefore, spin-polling may require a core to perform more work when

there are, in fact, fewer work items in the queues. Work disproportionality translates to

energy disproportionality [62, 104]. It also has an adverse effect on workloads co-running

on Simultaneously Multi-Threaded (SMT) cores. Useless spinning consumes execution

resources and L1 cache bandwidth that could otherwise be effectively used by a co-runner

hyperthread. Whereas spin-locks also exhibit the same drawback, the collateral damage of

a spin-lock is lower because they spin only on a single memory location. Modern cores

can easily detect such spin-loops and slow the spinning process [137]. Moreover, as shown

by prior work, variants of the MWAIT instruction may be used to put the core in halt/sleep

state until a write is performed to the lock location to prevent useless spinning and save

energy [90].

47

Finally, scale-up queuing is impractical in software data planes [104, 174]. The scale-up

queuing organization, wherein multiple cores fetch work items from a shared set of queues,

has strong theoretical advantages compared to scale-out queuing, wherein each core is

associated with a different set of queues [160]. First, scale-out designs may suffer from

load imbalance as the traffic is usually unbalanced and only a subset of queues have work

items—these queues are often non-uniformly distributed among cores [84]. In contrast,

scale-up organizations provide an inherent load balancing property as all queues are visible

to all cores in a work conserving setting. Second, scale-out organizations are prone to Head-

of-Line (HoL) blocking [158, 162]—if the work item at the head of a queue takes longer

than average to process, all work items behind it experience long queuing delays, yielding

a high tail latency. Scale-up designs, however, are not susceptible to HoL blocking as all

queues are visible to all cores—if an item takes long to process, the items queued behind it

are drained by other cores. Finally, scale-up organizations provide better support for queue

priorities. With scale-out organizations, each core can only prioritize over its own subset of

queues. Despite these theoretical merits, software data planes that leverage scale-up queuing

suffer from excessive synchronization and coherence performance overheads in practice, as

the cores must frequently synchronize to dequeue items and the corresponding cache lines

ping-pong among the cores’ L1 caches.

Our goal is to design a hardware accelerator subsystem that can efficiently address

these shortcomings and provide a scalable, low-latency, and work-proportional notification

mechanism to enable high-performance software data planes. We will quantify these

inefficiencies and how our proposed design, HyperPlane, can address them in Section 3.5.

In the next subsection, we present a case study of DPDK’s queue scalability.

3.2.3 Case Study: DPDK Queue Scalability

The Data Plane Development Kit (DPDK) [24] is a representative software infrastructure

for building spin-polling–based user-level data planes. DPDK provides highly optimized

48

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

C
D

F
(%

)

Latency (μs)

1 queue

256 queues

512 queues

(c)

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Number of queues

FB PC
NC SQ

(a)

0

10

20

30

40

0 128 256 384 512

La
te

n
cy

 (
μ

s)

Number of queues

Average latency
99% tail latency

(b)

Figure 3.3: DPDK: (a) Throughput of packet encapsulation in DPDK, (b) Round-trip latency of
packet forwarding under light traffic (~0.01 Mpps), (c) Distribution of round-trip latency.

poll mode drivers for numerous modern I/O devices—such as NICs and crypto devices—

which enable cores to spin on user-level queues to communicate with the devices. Using

DPDK, we illustrate the inherent queue scalability challenge of software data planes on a

real server with a 24-core Xeon Skylake processor and a 100 GbE Mellanox ConnectX-5

NIC.

We first consider the effect of increasing the number of queues on the maximum achiev-

able throughput of a core performing network packet encapsulation tasks with various traffic

shapes: Fully Balanced (FB), where traffic passes through all the queues; Proportionally

Concentrated (PC), where traffic passes through 20% of the queues all the time and through

the rest with a probability of 5%; Non-proportionally Concentrated (NC), where traffic

passes through 100 queues all the time and through the rest with a probability of 5%;

Single Queue (SQ), where traffic passes through only one queue. Figure 3.3(a) shows task

execution throughput at different numbers of queues for the mentioned traffic shapes. We

observe a drastic drop in throughput with SQ traffic. This drop is caused by useless spinning

on empty queues, which is exacerbated by cache misses incurred for fetching queue heads.

The throughput drop with the NC traffic is milder since the ratio of non-empty to empty

queues grows at a smaller rate by increasing the number of queues, compared to SQ. With

FB and PC, the ratio of non-empty queues to empty queues is constant (i.e., zero and four,

respectively). Therefore, the throughput stabilizes as the number of cache misses per task

becomes constant. In summary, the throughput of software data planes is adversely affected

when traffic is concentrated in a small number of queues, and the rest are usually empty,

49

which is the common case.

Next, we show how latency is affected by increasing the number of queues. Figure 3.3(b)

reports the round-trip latency of a core forwarding packets received from the machine’s

NIC at different numbers of queues. Latency is measured at a packet generator, which

sends/receives packets to/from the machine under test. To avoid queuing delays, we offer

minimal load in this test (~0.01 Million packets per second (Mpps)). Therefore, the reported

latency is composed of service time (packet forwarding by the core) plus round-trip time.

As shown in the Figure, both average and 99th percentile tail latencies grow almost linearly

with the queue count because of more cache misses due to reading empty queue heads.

Furthermore, tail latency grows with a higher slope—in the tail case, the data plane has to

poll over far more empty queues before finding work in a ready queue, compared to the

average case. This finding is further illustrated in Figure 3.3(c), which shows the Cumulative

Distribution Function (CDF) of latency at three different queue counts. With more queues,

the latency distribution spans a wider range, resulting in a larger difference between average

and tail latencies.

3.3 HyperPlane Design

In this section, we explore the design of the HyperPlane notification system. HyperPlane

seeks to enable efficient software data planes that, unlike spinning-based variants, (1) do

not need to iterate over empty queues to find work in ready ones, (2) block/halt when all

queues are empty rather than spinning fruitlessly, and (3) allow multiple cores to efficiently

monitor a shared set of queues to provide higher performance with strong support for queue

priorities and different service policies.

HyperPlane seeks to facilitate the notification/queue selection operation of software data

planes (step (2a) in Figure 3.2) in both directions (transmit and receive). It comprises a

programming model and a hardware notification subsystem. At a high level, the program-

ming model centers around the QWAIT instruction, which waits on a set of queue head

50

doorbell locations and returns the QID for the next ready queue. The hardware subsystem

relies on two key components, the monitoring set and the ready set. The monitoring set

tracks the doorbell locations associated with each queue and observes cache coherence write

transactions to these locations, which indicate that a work item has been enqueued. The

ready set tracks, orders, and prioritizes queues that are ready to be processed.

3.3.1 Programming Model

The key component of the HyperPlane programming model is the QWAIT instruction.

QWAIT is inspired by x86 MWAIT and ARM WFE instructions, which monitor a single

memory address or a contiguous address range. MWAIT halts the execution of a hardware

thread and waits until the contents of a specified address range change. Whereas MWAIT is a

privileged instruction that cannot be used in user applications, Intel has recently introduced

a user-mode variant of this instruction, called UMWAIT, which can also run in unprivileged

code [13]. Nonetheless, the MWAIT variants can at best only partially address the work

disproportionality of spin-based data planes by blocking execution when all queues are

empty and waiting for a work item to arrive in some queue. However, they cannot indicate

in which queue the work item is located, requiring the code to iterate across many (likely

empty) queues, hurting latency and throughput.

In contrast, QWAIT monitors a set of queue doorbell locations and returns the QID of

the next ready queue—similar semantics to the select-case construct in the Go programming

language [47]. Each queue is associated with a doorbell in memory, which is usually a word

composed of multiple fields that specify various properties of the I/O queue. We assume

a doorbell implementation wherein a field represents an atomic counter, indicating the

number of elements in the queue, with similar semantics to a semaphore [190]—producers

atomically increment the counter after enqueuing each element and consumers decrement the

counter before dequeuing each element. A write from the producer to the doorbell location

indicates that an item has been enqueued. These writes typically either trigger interrupts

51

Algorithm 1: HyperPlane Programming Model
1 QWAIT init(doorbell addr range, service policy) // Control Plane
2

3 for all QIDs do
4 do
5 doorbell = allocate address(doorbell addr range)
6 while (QWAIT-ADD(QID, doorbell) == FAIL)
7 doorbell map[QID] = doorbell
8 end
9

10 while true do // Data Plane
11 QID = QWAIT()
12 doorbell = doorbell map[QID]
13 if QWAIT-VERIFY(doorbell) == False then
14 continue
15 end
16

17 work item = dequeue(QID)
18 QWAIT-RECONSIDER(QID, doorbell)
19 process(work item)
20 end
21 ———————————————————————————————————————–
22 QWAIT-VERIFY(doorbell): // Atomic Instruction
23 if is empty(doorbell) then
24 arm in monitoring set(doorbell)
25 end
26

27 QWAIT-RECONSIDER(QID, doorbell): // Atomic Instruction
28 if is empty(doorbell) then
29 arm in monitoring set(doorbell)
30 else
31 activate in ready set(QID)
32 end

(e.g., PCIe MSI-X mechanism) or are polled by the software data planes. By watching all

doorbell locations, HyperPlane is able to determine the next ready queue without iterating

across them and without the overheads of an interrupt. Algorithm 1 presents the high-level

programming model of the HyperPlane architecture, centered around the QWAIT instruction.

Each HyperPlane thread runs the code presented in Algorithm 1 and is pinned to a physical

core to prevent it from being context-switched.

Control plane primitives. These primitives are required to setup and configure the

HyperPlane hardware and modify the list of queue doorbells. They are privileged instructions

as they need access to physical or kernel memory. Therefore, they are only used in the kernel

driver code. QWAIT init is used to initiate the HyperPlane hardware and specify the

52

address range from which doorbells can be allocated, as well as the service policy—round-

robin, weighted round-robin, or strict priority. We will discuss service policies and their

implementations in more detail in Section 3.4.2. QWAIT-ADD associates a doorbell address

with a QID, adds it to the HyperPlane’s monitoring set, and arms the address to be watched

for work arrivals. It is used when a new tenant connects to the data plane. Conversely, when

a tenant process terminates, either the tenant itself or the kernel driver must disconnect it

from the data plane by removing its QIDs and releasing their space from the monitoring set

via QWAIT-REMOVE.

Data plane primitives. In the body of the data plane thread, the QWAIT instruction

is executed in a loop. Similar to MWAIT, the QWAIT instruction halts a hardware thread’s

execution if all queues are empty and waits for a work item to arrive in some queue. By

halting, QWAIT prevents useless spinning and the consequent work disproportionality. A

core may also enter a power-optimized mode to save more energy if all hardware threads are

halted. When work arrives, QWAIT returns the QID of the ready queue. If multiple queues

already have ready work items when QWAIT is executed, it returns the QID of the queue that

should be serviced first according to the selected service policy, specified via QWAIT init.

The returned QID can then be used to service the corresponding queue. Hence, using the

QWAIT instruction, HyperPlane does not waste time interrogating empty queues to find

work, and immediately moves on to the next ready queue to be serviced.

The two blue highlighted parts of the code in Algorithm 1 are required for the correctness

of the hardware implementation and do not impact the high-level semantics of the code. Prior

to servicing the returned QID, a QWAIT-VERIFY instruction is called to check whether

the returned QID is in fact ready. QWAIT-VERIFY atomically performs two functions:

(1) it indicates whether the queue is empty (i.e., by checking the value of the doorbell’s

atomic counter), and if it is, (2) re-arms it in the monitoring set to detect the arrival of

subsequent work items. This instruction is needed to detect potential spurious wake-ups or

QID returns—i.e., a returned QID might not necessarily correspond to a ready queue with

53

available work items (e.g., due to false sharing). After the work item has been dequeued, the

QWAIT-RECONSIDER instruction is called, which either re-arms a QID in the monitoring

set or re-activates it in the ready set (we will discuss these structures later) based on whether

additional work items are queued, and is atomic with respect to new work item arrivals.

QWAIT-VERIFY and QWAIT-RECONSIDER are both atomic instructions with memory

barrier semantics, to prevent the execution from advancing before their operation is complete.

We will explain these instructions in more detail in the next subsection.

Whereas QWAIT provides work proportionality by halting execution and avoiding

fruitless spinning when all queues are empty, it might be desirable to execute a latency-

insensitive task on the core when it is waiting for work items to arrive. This can be achieved

in two different ways: (1) QWAIT can provide a non-blocking variant, which returns a

reserved QID immediately even if there is no ready QID in the ready set. This way, the

code performing a background task might poll the entire ready set with a single QWAIT

instruction to see if any work item has arrived. (2) A background task may run on the second

hyperthread of the core, which can efficiently use the core resources while the QWAIT

thread is halted. To ensure the background task does not hurt data plane performance, the

core may prioritize its SMT threads—using mechanisms proposed by prior work [88]—and

only execute instructions from the low-priority background thread when the high-priority

foreground thread is halted. QWAIT may be used as the signaling mechanism to detect when

the data plane thread is halted, waiting for work to arrive.

Finally, we also envision two additional primitives, QWAIT-ENABLE and

QWAIT-DISABLE, which may be used by the service procedure of a queue to temporarily

inhibit a queue being serviced despite having ready work items. If a queue is disabled via

QWAIT-DISABLE, its QID will not be returned until its service procedure is re-enabled

via QWAIT-ENABLE (e.g., by timer). An example use case of these primitives is to limit

the processing rate of a queue for a period for, e.g., congestion control in networking

applications [151].

54

Monitoring
Set

Ready
Set

Core Core
②

Within reserved
address range of

doorbells?

Coherence
Directory

①
Write transaction

(e.g., GetM)

③ QID
④ QWAIT

⑤ QID

⑥ Dequeue

⑧ Process

⑦ Reconsider queue

If empty:
Re-arm If not empty:

Re-activate

QWAIT

QID

Figure 3.4: High-level hardware block diagram of HyperPlane.

3.3.2 Hardware Components

Figure 3.4 depicts the HyperPlane hardware block diagram. HyperPlane’s operation

is orchestrated by two hardware components: the monitoring set and ready set. At a high

level, the monitoring set snoops the write transactions to a reserved address range dedicated

to doorbells (steps 1 and 2). If a write transaction matches a QID in the monitoring set, it

disarms the entry and activates the QID in the ready set (step 3). At this point, when a data

plane core executes the QWAIT instruction (or has been blocked on it) (step 4), it will be able

to return the corresponding QID, according to the service policy. When a QID is returned

(step 5), the data plane core dequeues/locates a single or a batch of work items (step 6), and

signals HyperPlane to reconsider the queue by either re-arming it in the monitoring set, if

the queue is empty, or re-activating it in the ready set, if it is non-empty (step 7). Finally,

the data plane core performs transport processing for the work item (step 8) and signals the

tenant, prior to re-executing the QWAIT instruction (step 4). In the rest of this section, we

explain the detailed functionality and interactions of the monitoring and the ready sets. We

will later explore the detailed microarchitectural implementation of these components.

The monitoring set observes the doorbell memory addresses and detects work arrival

by snooping the cache coherence write transactions to a specific pinned address range,

reserved by the kernel driver for I/O queue doorbells. Any coherence transaction that

grants exclusive ownership of a cache line to the requester will cause the monitoring set

to indicate a wake-up/arrival on the corresponding queue (e.g., GetM transactions in the

generic coherence protocols described in [195]). The monitoring set is independent of the

55

coherence organization and is able to snoop messages either at a bus or directory. At a high

level, the internal structure of the monitoring set is similar to a large associative memory

that maps cache line tags to QIDs.

A monitoring set entry is composed of the following fields: tag, QID, monitoring bit,

valid bit. The monitoring bit indicates that a cache line is “armed”, being watched for write

transactions. The monitoring set snoops all incoming write transactions, and if their tag

matches an entry, it disarms the entry (i.e., sets the monitoring bit to 0, to indicate the

line is no longer being watched), and activates the associated QID in the ready set. The

QWAIT-ADD instruction is used to add a new entry to the monitoring set, e.g., when a new

tenant connects to the data plane. The entries may later be removed via the QWAIT-REMOVE

instruction. QWAIT-VERIFY and QWAIT-RECONSIDER instructions are used to re-arm

an entry in the monitoring set. When an entry is re-armed, a coherence read transaction (i.e.,

GetS) is issued to ensure the line has no owner and the writes cannot be performed locally.

Although the QWAIT-VERIFY instruction filters out spurious writes, it is desirable that

only doorbell writes performed by a producer (not the data plane thread itself) signal a QID

in the monitoring set. Due to the memory barrier semantics of the QWAIT-RECONSIDER

instruction, it is not issued before the dequeue operation (line 17 in Algorithm 1) is completed.

Therefore, potential write transactions issued by the dequeue operation (i.e., decrementing

the doorbell counter) do not trigger any QID in the monitoring set, since the corresponding

entry is not armed during the dequeue operation. Note that once an item arrives to an

armed queue, its entry in the monitoring set is disarmed, and further arrivals have no

effect in the monitoring set until the queue is armed again (via QWAIT-RECONSIDER).

When a QID is returned by the QWAIT instruction, the dequeue operation can retrieve a

batch of items provided it correspondingly decrements the doorbell counter. Furthermore,

note that Algorithm 1 seeks to deliver maximum intra-queue concurrency in multicore

data planes, to eliminate potential HoL blocking scenarios and improve tail latency (see

Section 3.2). However, in various flow-based stateful networking applications—such as

56

TCP/IP processing—packets or work items have to be processed in order [60], and intra-

queue concurrency is not allowed. In such cases, lines 18 and 19 should be swapped to

ensure a queue may only be serviced again when its previous work item has been processed.

The ready set is responsible for returning the QID of the next ready queue upon QWAIT,

according to the selected service policy. Conceptually, it is composed of a list of the QIDs

with available work items and an iterator that searches over the list and finds the next ready

QID according to the service policy. For example, in the case of round-robin policy, the

iterator searches over an unsorted list of QIDs to find the first one after the last serviced QID

in a circular order. The ready set and its iterator may in principle be implemented either in

hardware or in software. In case of a software implementation, the iterator code would be

embedded into the QWAIT function (QWAIT would no longer be a single atomic instruction).

However, in this case, in addition to the complications of providing atomicity, with fully- or

semi-balanced traffics, the iterator code may need to iterate over potentially ~1k QIDs in the

list, adding a significant runtime overhead to the data plane performance, which may even

be longer than the time required for processing an individual work item after locating it.

The QWAIT-VERIFY instruction in Algorithm 1 ensures that the returned QID indeed

corresponds to a queue with ready work items. In case the queue is empty, its QID is atomi-

cally re-armed in the monitoring set. This instruction filters spurious wake-ups/activations—

due to exclusive reads, false sharing, or doorbell writes that do not correspond to work item

arrivals—while ensuring there is no window of opportunity for actual work arrivals to be

missed. The QWAIT-RECONSIDER instruction in Algorithm 1 arranges for a QID to be

considered again for service in a future iteration if it has ready work items. It atomically

checks whether the queue is empty or already has work items available (e.g., more work

items have arrived while the QID was waiting in the ready set). If the queue is empty, its

entry is re-armed in the monitoring set. If it already has work items, the QID is directly acti-

vated in the ready set, so the iterator will select it again for service according to the service

policy. The entire QWAIT-RECONSIDER operation must be implemented atomically to

57

prevent various possible data races, including a scenario wherein the queue tests empty but

a work item arrives before the QID is re-armed in the monitoring set, leading to a missed

write transaction and consequent missed wake-up/activation.

When running the data plane software on multiple cores to distribute the load, two

options might be considered, as described in Section 3.2: scale-up and scale-out. The scale-

up organization is theoretically preferred as it achieves better throughput and latency, since

it is not susceptible to load imbalance and HoL blocking. It also provides better support for

queue priorities and weights, as it makes all queues visible to all cores. However, despite the

theoretical advantages of scale-up queuing, scale-out organizations are often implemented

in practice due to the synchronization overheads of scale-up organizations in spinning data

planes. In contrast, HyperPlane enables efficient scale-up queuing organizations as the

monitoring and ready sets are shared across the chip, accessible by all of the cores running

the data plane software. As we will show in Section 3.5, HyperPlane enjoys optimal latency

and throughput characteristics, as it relies on scale-up queuing.

In case of NUMA systems, we envision a multi-socket HyperPlane deployment to

employ separate data plane cores on each socket, with NUMA affinity between tenants and

the data plane cores (e.g., doorbells mapped to the local memory channel address space)

to avoid costly inter-socket communication. In this case, the deployment would exhibit

scale-out queuing properties across sockets, which may result in suboptimal performance

if there is heavy load imbalance across sockets. To mitigate this issue, a work-stealing

approach may be used, wherein the data plane cores fetch ready QIDs from remote ready

sets if the local ready set is empty. We defer exploration of such mechanisms to future

work.

58

Way 0 Way 1

0

1

2

X B

A C

D

(1)

(1)
(2)

(3)

Original
state

Way 0 Way 1

0

1

2

X

A B

D

After
inserting X

C

Figure 3.5: An example 2-way Cuckoo hash table insertion.

3.4 Detailed Microarchitecture

3.4.1 Monitoring Set

Conceptually, the monitoring set provides a fully associative key-value lookup func-

tionality, wherein the cache line tags for the doorbell locations of all QIDs are watched

simultaneously. However, large fully associative hardware structures are costly in terms of

area and especially energy, due to performing many comparisons in parallel. Alternatively,

serializing the comparisons significantly increases lookup latency [165]. Set-associative

structures can suffer from high conflict rates, unless associativity is high (e.g., 64 or higher),

which makes them almost as costly as fully associative structures. We propose to use a

ZCache-like structure [187] to overcome these challenges.

The key idea behind ZCache operation is Cuckoo hashing [175], which decouples ways

and associativity, enabling a highly associative structure with low lookup latency and energy.

Figure 3.5 depicts a simple Cuckoo hash table with two ways. Each key is hashed using two

hash functions, H0 and H1. When key X is looked up, it is hashed into row 1 in way 0 and

row 2 in way 1, but both of those rows are occupied by other keys (i.e., a miss). To insert

key X, way 0 is picked, and key B that is currently occupying the location where X must

be inserted is rehashed using H1 and moved to way 1. By moving B to row 0 of way 1, C

will be rehashed by H0 and moved to row 2 of way 0. The “table walk” process terminates

at this point as C is placed in an empty location. If no empty location is found, despite the

table containing empty entries, a conflict is said to have occurred.

As illustrated in the example, to look up a key, Cuckoo hashing need only check as many

locations as the number of ways. However, by walking the table and performing a chain

59

of replacements, the scheme provides a high effective associativity, and thus low conflict

rate. Even though lookup latency and energy of this scheme are low, insertions can take

substantially more time and energy than a conventional set-associative cache. However,

insertions are only performed by QWAIT-ADD instructions, which are only executed when

a new tenant is connected to the data plane (i.e., second or minute time scales). When

an entry is disarmed and then re-armed in the monitoring set, it is not evicted and then

re-inserted, but instead only its monitoring bit is set/reset. As a result, the costly hash table

walks for insertion are only performed once for each QWAIT-ADD instruction. Re-arming

a QID in the monitoring set via QWAIT-VERIFY or QWAIT-RECONSIDER instructions

only involves a single tag lookup, similar to snooping the incoming transactions.

When a new tenant wishes to connect to the data plane, it executes the QWAIT-ADD

instruction for every <QID, doorbell address> pair. Whereas Cuckoo hash tables exhibit

much lower conflict rates than typical set-associative structures, conflicts are still possible.

If QWAIT-ADD fails to insert a QID into the monitoring set due to a conflict, it returns an

error code, and invokes driver code to reallocate a different doorbell address to the QID.

Nonetheless, to minimize the conflict rate and ensure doorbell address reallocations are

rare, the monitoring set (Cuckoo hash table) may be over-provisioned with respect to the

maximum number of supported doorbells. Prior work has shown that over-provisioning

the size of a Cuckoo hash table by 5%-10% reduces the conflict rate down to 0.1% [187],

which is negligible. Note that after a new QID is added to the monitoring set, it stays there

conflict-free, and is only removed by an explicit QWAIT-REMOVE.

Because the monitoring set snoops all coherence transactions to the doorbell memory

address range, it is not subject to the conflict replacement behavior of a directory-based

coherence scheme. In most directory-based schemes, when an entry is evicted from the

directory, it sends invalidations to all the sharers of the line. However, the monitoring set is

not an explicit sharer, but rather snoops all relevant coherence transactions (i.e., conceptually

implemented as part of the directory). Therefore, it retains all the monitored doorbell tags,

60

even in case of evictions in the directory. When an external write is about to be performed on

the doorbell, the directory has be informed via a write transaction (i.e., GetM), which also

informs the monitoring set. Since doorbells are allocated from a restricted address range

(managed by the HyperPlane kernel driver), the monitoring set only need snoop addresses in

this range and the snooping bandwidth is tractable. In the case of distributed directories, the

monitoring set must also be banked, attached to individual directory banks. In such cases,

the driver must spread doorbell addresses across banks.

3.4.2 Ready Set

When the monitoring set matches a coherence transaction to a monitored doorbell, it

disarms the entry and activates the QID in the ready set. The main responsibility of the

ready set is to determine the next QID to be returned by QWAIT, according to the service

policy. Whereas the monitoring set must be implemented in hardware (since coherence

transactions are not visible to software), the ready set may in principle be implemented in

software or hardware. In a software implementation, an iterator traverses a list of ready

QIDs to find the next QID to be processed based on the service policy. However, in fully-

or semi-balanced traffic scenarios where most queues are non-empty, the code must iterate

over a large number of QIDs, imposing a substantial runtime overhead.

Instead, we propose a hardware implementation for the ready set, presented in Figure 3.6.

Our hardware implementation takes as input a bit vector representing “ready bits” that

correspond to different QIDs. That is, when a QID is returned by the monitoring set, the

corresponding ready bit is set. As shown in the Figure, there is also a “mask bits” vector,

which filters ready bits that should not be returned. These mask bits are manually set/reset

via QWAIT-ENABLE and QWAIT-DISABLE to temporarily disable queues. The ready set

hardware produces the “select bits” vector as its output, which is encoded in a “one-hot”

fashion—that is, at most one of the bits can be set, indicating the selected QID to be returned

by QWAIT. When the QWAIT instruction is executed, it is the ready set’s responsibility to

61

Current Priority (One-hot)

Mask Bits

Ready Bits

Rotate

=

Update

Counter
Update

Zero Decrement

n

n

n

Programmable Priority Arbiter (PPA)

Select Bits (One-hot) n

Priority Select

Any
Select

Weight

Figure 3.6: High-level block diagram of the ready set hardware.

compute the “select bits”, based on the the ready bits and the service policy.

The core of our ready set hardware implementation is a Programmable Priority Arbiter

(PPA)—a widely used building block in on-chip networks and switching devices to grant

access to one of the many requesters of a shared resource [85]. Besides “ready bits”, the PPA

module also takes a “current priority” one-hot bit vector as an input. The only bit position

set to one in the current-priority bit vector indicates the QID with the highest priority. If

that QID is ready, it is selected. Otherwise, its priority is propagated to the next bit position,

wrapping around, until a ready QID is found.

To explain the operation of PPA, Figure 3.7 presents the ripple-priority bit-slice imple-

mentation of the PPA module, which is one of its simplest implementations. Its operation is

similar to a ripple-carry adder. As shown in the Figure, at each bit position, the hardware

checks (1) whether the ready bit is set to one and (2) whether priority is given to that bit

position (via the one-hot Priority input or from a previous bit position via Pin). If both condi-

tions are met, the corresponding select bit is set. Otherwise, if Priority or Pin is asserted, but

the ready bit is not set, priority is propagated to the next bit position via Pout . Ripple-priority

implementation of PPA results in linear delay and hardware complexity. Furthermore, as

shown in Figure 3.7, it requires a “wrap-around” connection that results in a combinational

62

Pout

Pin

ReadyPriority

Select

Ready Bits

Rotate

Select Bits (One-hot)

Current Priority (One-hot)

…

(b)(a)

Figure 3.7: (a) A bit-slice Programmable Priority Arbiter (PPA) cell, and (b) a multi-bit ripple-priority
PPA design.

loop, making it difficult for EDA tools to synthesize and analyze the hardware.

In contrast, modern PPA implementations use thermometer coding [106] to eliminate

the wrap-around connection and Parallel Prefix Network (PPN)-based designs to reduce the

delay complexity of priority propagation to logarithmic [94]. PPNs are enhanced variants

of look-ahead designs—such as carry look-ahead adders—and are used in almost all state-

of-the-art high-speed adders [63]. PPNs provide a better hardware complexity vs. latency

trade-off, compared to naı̈ve carry look-ahead designs, making them scalable to thousands of

bits [183]. In our implementation, we employ a Brent-Kung PPN [71], which is optimized

for hardware complexity to be scalable to high bit counts—our RTL analysis shows the

latency and hardware costs of the ready set to be small. We will provide a detailed analysis

in the next subsection.

Our proposed ready set hardware design can efficiently implement the three most

common service policies. With a round-robin policy, the selected QID in each round must

exhibit the lowest priority in the next round. Thus, as shown in Figure 3.6, if the “Any

Select” signal is set to one, indicating there was a QID selected at this round, the current-

priority bit vector will be the rotated version of the select bit vector to give the highest

priority to the bit position next to the one corresponding to the currently selected QID. The

weighted round-robin policy is a generalization of round-robin, which allows each queue to

be serviced for multiple consecutive rounds once it is selected. By giving different weights

63

to different queues, weighted round-robin accommodates the differentiated arrival rates and

QoS requirements of various tenants. In this case, when the current-priority bit vector is

reloaded, the corresponding weight for the current-priority QID is loaded into a counter.

Every time the queue is serviced, the counter is decremented. When the counter reaches

zero or the current queue runs out of work items, the priority is passed to a different QID

by reloading the current-priority and the weight register. Finally, by fixing the value of

the current-priority bit vector to “10...0”, the hardware implements a strict priority policy,

wherein lower-numbered QIDs are always prioritized over higher-numbered ones. However,

this policy is usually not used in real applications as it would result in the starvation of low-

priority queues; instead, a weighted round-robin policy is often used, which differentiates

queue priorities through weights and avoids starvation.

3.4.3 Hardware Costs

We have considered a 1024-entry banked monitoring and unified ready set, shared across

16 cores. We modeled the hardware costs of the ready set via an RTL implementation in

32nm technology, and derived the area, power, and timing estimates for the core and the

monitoring set via CACTI [165] and McPAT [136] models. Note that, during normal data

plane operation, the monitoring set is similar to the tag array of a 2-way associative cache in

terms of latency and energy since arming/disarming QIDs only involves 2-way lookups—the

table walk process is performed only once for each QWAIT-ADD instruction. Synthesis of

our RTL design reports the area of a 1024-entry ready set to be 0.13 mm2. We estimate the

area of the monitoring set to be 0.21 mm2, while our baseline core occupies 8.4 mm2 of

area. Hence, the overall area overhead of the HyperPlane hardware components is within

0.26% of the total core area, for a 16-core chip. Similarly, we estimate the power costs of

HyperPlane to be within 0.4% the total core power (within 6.2% of a single core; 2.1% for

the ready set and 4.1% for the monitoring set). Note that our analysis considers 16 cores but

does not include the uncore area/power. Thus, full-chip overheads are even smaller.

64

Table 3.1: Microarchitecture details.

Core 8-wide issue OoO, 192/32-entry ROB/LSQ
L1 I/D Private, 32 KB, 64B lines, 4-way SA
LLC 1 MB per core, 64B lines, 16-way SA
CMP 16 cores, directory-based MESI coherence
HyperPlane 1024-entry monitoring and ready set

From a timing perspective, our RTL model reports the latency of the ready set to be

12.25 ns. Since processing each work item takes a few microseconds, the ready set can

easily serve QWAIT requests from O(100) cores—the number of cores needed for software

data planes is usually small (1-4 [151, 174]). We have considered the lookup latency of the

monitoring set to be within 5 CPU cycles but this latency is not on the critical path of the

QWAIT instruction, unless it is halted, waiting for arrivals. To simplify the complexities

of non-uniform access latencies of different cores to the single unified ready set, we have

conservatively considered the QWAIT instruction latency to be 50 cycles in our experiments,

which is higher than sum of all the latencies involved.

3.5 Evaluation

3.5.1 Methodology

We use the gem5 simulator [65] and augment it to model the hardware components of

HyperPlane. We model a 16-core x86-64 CMP system of which our data plane software

runs on 1-4 cores [151, 174]. We model the core power consumption using McPAT [136].

Experimental microarchitecture details are described in Table 3.1. We use an in-house

software data plane system based upon DPDK [24] that is able to be run in the simulator.

Our software data plane infrastructure closely tracks the performance characteristics of

DPDK. Producer and consumer cores communicate through lock-free task queues. Emulated

I/O sources running on “producer” cores generate traffic with different shapes and loads,

which is passed through the data plane. Traffic shapes are the same as those used in

Section 3.2: Fully Balanced (FB), Proportionally Concentrated (PC), Non-proportionally

65

Concentrated (NC), and Single Queue (SQ). We only report results for the round-robin

service policy, as we found the service policy to have minimal impact on the performance

trends. We evaluate our software data plane framework using the following tasks:

• Packet encapsulation: Network tunneling protocols leverage packet encapsulation to

enable data movement of a network (e.g., a private network) over another network (e.g.,

a public network). We use the GRE (Generic Routing Encapsulation) protocol [92] to

encapsulate IPv4 packets within IPv6 packets.

• Crypto forwarding: Network traffic is often encrypted for secure communication. In

this task, network packets are encrypted through AES-CBC-256 (Advanced Encryption

Standard in Cipher Block Chaining mode) [99].

• Packet steering: Cloud providers practice various work distribution mechanisms to avoid

datacenter network traffic congestion and scale network performance [40, 60]. We employ

a packet steerer that redirects the traffic by obtaining a session affinity from a hash table.

• Erasure coding: Erasure codes are commonly used in storage applications to detect

and/or correct errors in stored data [134]. We use Reed-Solomon erasure coding to encode

data blocks/fragments using a Cauchy matrix.

• RAID protection: RAID (Redundant Array of Independent Disks) is another mechanism

for storage fault tolerance. In this task, RAID with P+Q redundancy is used to calculate

parity bytes of input data blocks [77].

• Request dispatching: Online data-intensive applications dispatch microservices between

servers at different tiers [200]. Our dispatcher task identifies request types and prepares

the remote procedure calls to be dispatched.

3.5.2 Queue Scalability

Peak throughput. We first characterize the peak achievable throughput for different

numbers of queues to evaluate the queue scalability of HyperPlane and alternative spinning

data planes. The peak throughput of the spinning data plane at different numbers of queues

66

FB - spinning PC - spinning NC - spinning SQ - spinning
FB - HyperPlane PC - HyperPlane NC - HyperPlane SQ - HyperPlane

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

Packet encapsulation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

Crypto forwarding

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

Packet steering

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

Erasure coding

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

RAID protection

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 200 400 600 800 1000

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

as
ks

 /
 s

ec
)

Total number of queues

Request dispatching

Figure 3.8: Peak throughput of a spinning data plane and HyperPlane.

on a single core is reported in Figure 3.8 for the various workloads. Consistent with

Section 3.2, the throughput drop is the most drastic with the SQ traffic and is milder with the

NC traffic since the core needs to spin-poll a larger number of empty queues before finding

work in ready ones. With more queues, executed tasks use more data buffers in total, and

as a result, we also observe a throughput decrease with the PC and FB traffics when the

total size of task data and queue metadata exceeds the LLC size. However, since a task is

executed for every n queue head polls (n≈ 5 for PC and n = 1 for FB)—each incurring a

queue head cache miss at larger queue counts—throughput converges to a constant value

with these two traffic shapes.

Figure 3.8 also reports the peak throughput achieved by HyperPlane. HyperPlane avoids

the useless work of interrogating empty queues and the corresponding cache misses. Thus,

67

it recovers the lost throughput of the spinning data plane caused by the empty queues. In the

SQ and NC traffics, where the number of active queues is constant (1 and 100, respectively),

HyperPlane maintains its peak throughput when the total number of queues is increased. In

the case of packet encapsulation, however, we observe a slight decrease in throughput for

the NC traffic, due to an increase in the total data size of tasks and queues when the queue

count increases. HyperPlane also exhibits a slightly larger throughput decrease for the PC

and FB traffics, again due to the larger total data size of tasks and queues with more queues.

Under the FB traffic, HyperPlane achieves better peak throughput in comparison to the

spinning data plane in the case of packet encapsulation and request dispatching. Whereas

the offered load fully saturates the processing capacity of the data plane core, empty queues

are still occasionally observed, as our arrivals follow a Poisson process (memoryless inter-

arrival times), which exhibits transient load variability. Thus, HyperPlane improves the peak

throughput in the FB traffic particularly for shorter workloads, where the processing time

of work items is more comparable to missing on empty queue heads in the spinning data

plane. Overall with different traffic shapes and queue counts, HyperPlane improves the peak

throughput by 4.1×, on average, compared to the spinning data plane.

Zero-load latency. Figure 3.9 reports the zero-load latency across workloads as the

queue count is increased. Traffic is set to be very light (< 1% load) to avoid queuing

delays. With the spinning data plane (Figure 3.9(a)), both average and tail latencies grow

linearly as the number of queues is increased, because the core has to check more empty

queues (and possibly incur cache misses) before finding work in the ready queue. Consistent

with Section 3.2, the difference between tail and average latency grows with the queue

count as the latency variation is higher with more queues—tail latency represents a worst

case, wherein the iterator code has to traverse almost all queues before it reaches the ready

one. Using HyperPlane, in contrast, the core avoids additional latency of checking empty

queues. As a result, HyperPlane is perfectly queue-scalable, and neither average nor tail

latency is affected with more queues, as depicted in Figure 3.9(b) (tail latency is not shown

68

Packet encapsulation Crypto forwarding Packet steering
Erasure coding RAID protection Request dispatching

0
20

40

60
80

100

120
140

160

180

0 200 400 600 800 1000

La
te

n
cy

 (
μ

s)

Number of queues(a)

──── Average

─ ─ ─ 99% tail

0

2

4

6

8

10

12

0 200 400 600 800 1000

A
ve

ra
ge

 la
te

n
cy

 (
μ

s)

Number of queues(b)

── Regular ─ ─ Power-optimized

Figure 3.9: Latency under light traffic (< 1% load): (a) Average and tail latency of a spinning data
plane, (b) Average latency of HyperPlane in regular and power-optimized modes.

for HyperPlane as it does not differ significantly from the average latency at zero load).

Whereas tail latency can be more than 100 µs for large queue counts in the spinning data

plane, HyperPlane keeps both average and tail latencies below 10 µs even at 1000 queues.

HyperPlane improves average/tail latency by 9.1× / 16.4×, on average, at different queue

counts. Note that with one queue, the core in the spinning data plane quickly finds a task

in the queue upon its arrival. Nonetheless, due to the latency of the monitoring and ready

sets (Section 3.4.3), HyperPlane underperforms the spinning data plane by at most 3% for a

single queue. However, as the latency of the spinning data plane grows with queue count,

HyperPlane outperforms the spinning data plane with as few as two queues.

HyperPlane may enter a power-optimized mode when it is idle and all queues are empty.

Power saving in the idle state introduces an additional wake-up latency, which we will

discuss in Section 3.5.4. The spinning data plane may outperform HyperPlane because of

such a wake-up latency for small numbers of queues. Figure 3.9(b) reports the average

latency of HyperPlane at zero load with a wake-up latency of ~0.5 µs (transitioning from C1

to C0 state). Our experiments show that because of this additional latency, the spinning data

plane reacts faster to task arrival in comparison to HyperPlane for up to 6 queues on average

(nine queues in the worst case). With more than six queues, even the power-optimized

HyperPlane outperforms the spinning data plane.

69

3.5.3 Multicore Performance

In this section, we compare the performance of HyperPlane and spinning data planes

under multicore scenarios. To provide a comprehensive analysis under the entire load

spectrum, we report only results for the packet encapsulation workload. Other workloads

follow the same performance trends. Figure 3.10 reports the 99th percentile tail latency under

(a) FB and (b) PC traffics with four cores and 400 total queues. We report latency under

the following configurations: scale-out, where each core is statically assigned 100 queues

to serve; scale-up-2, where each 2-core cluster is assigned 200 queues; and scale-up-4,

where all four cores share all 400 queues. Note that in HyperPlane, there is a single ready

set shared among all serving cores. To fairly compare HyperPlane with the spinning data

plane, we assume the ready set is partitioned in the scale-out and scale-up-2 configurations

and only returns QIDs that belong to a core’s subset of queues when the core executes

QWAIT. In practice, any core can serve any ready queue in HyperPlane, as in the scale-up-4

configuration.

We make two key observations in Figure 3.10(a) for FB traffic: First, whereas a scale-out

HyperPlane system does not considerably increase the saturation throughput compared to

the spinning alternative, it significantly reduces the tail latency under pre-saturation loads

(e.g., by 3.2× under 50% load). At lower loads, the expected number of empty queues the

spinning data plane interrogates is higher, but this number reduces to zero at 100% load,

and hence the performance of both designs converge. Second, whereas scale-up designs

improve HyperPlane latency, especially at high loads, due to their queuing model advantages

(see Sections 3.2), spinning alternatives experience significant performance drops due to

(1) synchronization and cache coherence (ping-ponging of queue heads) costs, and (2) the

expected number of empty queues traversed increases with the total number of queues—that

is, each core in the scale-up-4 design iterates over 400 queues (compared to 100 in scale-out)

and is likely to interrogate 4× more queues every time it looks for work.

For the PC traffic, Figure 3.10(b) compares the tail latency of the scale-out and scale-up-2

70

0

50

100

150

200

0 20 40 60 80 100
Ta

il
la

te
n

cy
 (
μ

s)
Load (%)

Spinning data plane - scale-out
Spinning data plane - scale-up-2
Spinning data plane - scale-up-4
HyperPlane - scale-out
HyperPlane - scale-up-2
HyperPlane - scale-up-4

(a)

0

50

100

150

200

0 20 40 60 80 100

Ta
il

la
te

n
cy

 (
μ

s)

Load (%)
Spinning data plane - scale-out (no imbalance)
Spinning data plane - scale-out (10% imbalance)
Spinning data plane - scale-up-2
HyperPlane - scale-out (no imbalance)
HyperPlane - scale-out (10% imbalance)
HyperPlane - scale-up-2

(b)

Figure 3.10: Multicore 99% tail latency: (a) Fully balanced traffic, (b) Proportionally concentrated
traffic.

organizations as well as a variant of scale-out with 10% static load imbalance. As explained

in Section 3.2, the scale-out organization is susceptible to load imbalance. Whereas for

FB traffic, load imbalance might occur only dynamically, depending on the instantaneous

availability of work items in queues, non–fully-balanced traffics, such as PC, are also subject

to static load imbalance, wherein active queues are not assigned to cores in a balanced

manner. Even though the runtime system may detect such load imbalance scenarios and

reassign queues to cores, it can only react to traffic and workload changes at coarse-grain

time scales—in practice, load imbalance of at least 10% is inevitable.

We make two observations in Figure 3.10(b): First, unlike FB traffic, HyperPlane

increases the saturation throughput by 23% compared to the spinning data plane, in addition

to improving tail latency under pre-saturation loads by at least 73% for PC traffic. Moreover,

load imbalance is inevitable in real scenarios. The scale-up HyperPlane is not subject to load

imbalance and improves the saturation throughput by 11% and 37% compared to scale-out

HyperPlane and scale-out spinning data plane both with 10% load imbalance, respectively.

However, the scale-up spinning data plane exhibits 54% lower saturation throughput, even

compared to its scale-out alternative with 10% load imbalance, due to synchronization

overheads.

71

Useless spinning
Useful work

0.0

0.5

1.0

1.5

2.0

0 25 50 75 100

IP
C

Load (%)

HyperPlane
Spinning data plane

0.0

0.4

0.8

1.2

1.6

2.0

2.4

0 25 50 75 100

C
o

-r
u

n
n

er
 IP

C

Data plane load (%)

Co-running with HyperPlane

Co-running with spinning data plane

(b)(a)

Figure 3.11: (a) IPC breakdown of a software data plane, (b) IPC of an application co-running with
the software data plane.

3.5.4 Work Proportionality

HyperPlane is designed to avoid the useless spinning of software data planes and only

execute when there is work in the system—that is, it halts execution when there is no work

item in any queue. We quantify work proportionality of HyperPlane with respect to the data

plane load. Figure 3.11(a) reports the Instructions Per Cycle (IPC) of a core running a packet

encapsulation data plane. In HyperPlane, IPC—which is a measure of core activity—grows

linearly with load. In contrast, when using a spinning data plane, the IPC is disproportionate

to the amount of load and decreases as the load increases. The IPC of the spinning core is

the highest at 0% load, meaning that the core spins full-tilt, desperately looking for work.

Figure 3.11(a) divides the IPC based on performing useful work or useless spinning for the

spinning data plane. At zero load, all the committed instructions are useless, and useful

instructions gradually grow by increasing the load. Whereas the IPC of the spinning data

plane generally decreases at higher loads, we observe an anomaly at loads above 50%. This

anomaly arises because queue heads start to fall out of the L1 cache at higher loads, slowing

the IPC of spinning.

The high IPC of useless spinning can harm system efficiency and restrict the performance

of other applications. In particular, it has an implication on the applications co-located with

the data plane through SMT. Scheduling execution resources among competing hyperthreads

is typically performed based on thread activity or IPC (e.g., the ICOUNT policy [212]),

72

Spinning data plane HyperPlane HyperPlane - low-power idle

1

10

100

0 50 100

Ta
il

la
te

n
cy

 (
μ

s)

Load (%)

0

20

40

60

80

100

Zero load Saturation load
N

o
rm

al
iz

e
d

p
o

w
er

 (
%

)

(b) (a)

Figure 3.12: (a) Power consumption of a spinning data plane and HyperPlane with/without power
optimization, (b) The effect of wake-up latency of power-optimized HyperPlane.

which is counterproductive for idle poll loops. We quantify interference of the spinning

data plane as well as HyperPlane with an SMT co-runner, which is a regular application

performing matrix multiplication, on a core with two hardware threads. Figure 3.11(b)

reports the IPC of the co-runner at different loads of the software data plane. Interestingly,

when the spinning data plane is used, the co-runner IPC increases with the data plane

load—spinning is a more severe antagonist than performing actual work. With HyperPlane,

however, the co-runner IPC decreases when data plane load increases. This again implies

work proportionality of HyperPlane. HyperPlane does not interfere with a co-runner when

there is no work.

Work disproportionality in spinning data planes also results in energy disproportionality

of the core. We use McPAT [136] to model the core power consumption running the software

data plane. Figure 3.12(a) reports the normalized power consumption of the core at zero

and saturation loads. Perhaps surprisingly, the spinning data plane consumes more power

at zero load compared to saturation. This is consistent with the previous observation of

the disproportional IPC at zero load due to full-tilt useless spinning (see Figure 3.11).

HyperPlane, however, exhibits higher energy proportionality. Whereas HyperPlane already

consumes much less power at zero load by halting the execution, it can also enjoy a power-

optimized mode, wherein the core enters a deeper “C state” to save power. We only consider

transitioning from C0 to C1 state, as long latencies of deeper C states may hurt data plane

performance. As shown in Figure 3.12(a), by using HyperPlane in the power-optimized

73

mode (i.e., core transitions to C1 when halted), core power consumption reduces down to

only 16.2% at zero load.

Using HyperPlane in the power-optimized mode may cost additional wake-up latency.

We consider the wake-up latency of the power-optimized HyperPlane to be ~0.5 µs to be

consistent with performance characterizations of MWAIT [90] and C1-to-C0 transitions [189].

We report the tail latency of the experimental scenario of Figure 3.10(a) for the power-

optimized HyperPlane in Figure 3.12(b). Results are reported in log-scale, so the differences

can be visible. As the Figure shows, at zero load, power-optimized HyperPlane yields 38%

higher tail latency, compared to regular HyperPlane. However, its achieved tail latency is

still 8.9× lower than the one achieved by the spinning data plane. As the load increases,

HyperPlane enters the power-optimized mode less often, and hence the gap shrinks rapidly—

only 8% higher latency at 50% load.

3.5.5 Ready Set Implementation

As discussed in Section 3.3.2, the ready set may be implemented either in hardware or

software. We now consider performance implications of a software-based ready set. In the

software implementation, QWAIT either waits or iterates over the list of ready QIDs in a

piece of code and returns one of them based on the system policy. We measure the peak

throughput of a single core in HyperPlane monitoring 1000 queues. Figure 3.13 reports

the normalized throughput of the software-based implementation over the hardware-based

implementation for different workloads with the PC and FB traffic shapes. For both shapes,

throughput of the software-based implementation is considerably lower than its hardware-

based counterpart. Throughput drop is more severe with the FB traffic (down to 50%) as the

iterator code of the ready set must choose a QID from a larger set of ready QIDs.

74

0

20

40

60

80

100

(1) PC (1) FB (2) PC (2) FB (3) PC (3) FB (4) PC (4) FB (5) PC (5) FB (6) PC (6) FB

R
el

at
iv

e
th

ro
u

gh
p

u
t

(%
)

Hardware Software

(1) Packet encapsulation (2) Crypto forwarding (3) Packet steering (4) Erasure coding (5) RAID protection (6) Request dispatching

Figure 3.13: Throughput of a software-based vs. hardware-based ready set with two different traffic
shapes.

3.6 Related Work

Memory monitoring. There are various hardware-assisted memory monitoring propos-

als for reliability and security applications [86, 168, 203, 213, 224], none of which is readily

usable for software data planes. We consider one of the most general-purpose designs for

a more detailed comparison: ECMon [168] is able to monitor various cache events (e.g.,

invalidation) for different ranges of addresses, specified in multiple entries of a per-core

event descriptor table. Each entry corresponds to a handler function. However, ECMon does

not provide any mechanism to keep certain cache lines (i.e., queue doorbells) in the caches.

Even if cache lines are assumed to be locked in the cache, the event descriptor table is a small

associative structure, which cannot efficiently support ~1k events for different doorbells.

Furthermore, almost all of these proposals only provide a scheme for monitoring memory

locations but no efficient mechanism to provide priority among ready events. In other words,

the prior mechanisms at best replace only HyperPlane’s monitoring set functionality. If

multiple events are ready, handlers are called in the order the events are received (i.e., FIFO),

or a bit-vector representing the ready events is passed to software. Similarly, HypePlane

differentiates from list/queue-based locking schemes (such as MCS [157], CLH [83, 147],

and QOLB [116]) in that they avoid spinning on a single lock location by forming a FIFO

queue of the requesting processors, whereas HyperPlane operates on multiple I/O queues,

servicing them based on a wide range of defined policies, rather than the FIFO order of

work item arrivals in the queues. In software data planes, work items arrive at a high rate

75

and the system must perform task scheduling for non-trivial loads, prioritizing the service

order among queues.

I/O software stacks. Several works enhance interrupts by reducing corresponding

overheads [110, 194], combining them with spin-polling as a hybrid notification mech-

anism [89], or bringing them to user level [70, 82, 164, 170, 202]. HyperPlane, on the

other hand, avoids the overheads of interrupts and spin-polling altogether. Kernel-bypass

software stacks enable user processes to directly communicate with I/O. In such systems,

application and transport software are integrated via a library OS. IX [64], Arrakis [176],

ZygOS [179], and Andromeda [87] are specialized networking data planes with different

features—such as task stealing [179], task preemption [115], virtualization [87, 176]—while

ReFlex [127] and PASTE [111] target storage devices. Demikernel [223] specifies I/O ab-

stractions that a library OS should provide in general. Other systems—such as Snap [151]

and Shenango [174]—deploy centralized microkernel-like software, which orchestrates data

communication of applications and I/O. HyperPlane, as a notification accelerator, can benefit

transport software implementations, especially in case of microkernel-based software data

planes like Snap [151] and Shenango [174].

Data plane optimizations. Prior works have proposed solutions to improve performance

and efficiency of software data planes. DDIO [27], CacheDirector [93], and FlexNIC [123]

optimize data transfer between I/O and CPU. Halo [222] proposes a near-cache acceler-

ator for network packet flow classification. Compute-capable I/O devices, such as smart

NICs/SSDs [38, 97, 142], and accelerators [102, 108, 132, 133, 178] are used to offload

data plane operations from CPU. Particularly, hardware-managed transport protocols by

RDMA NICs or SmartNIC-based network flow processing can ease tasks of data plane

cores [84, 97, 119, 171]. Memory copy accelerators can also be used in software data planes

for faster data movement [114, 149]. While HyperPlane, as a flexible centralized data plane,

is compatible with commodity devices and protocols, it can leverage these proposals to

further improve data plane performance.

76

3.7 Conclusion

In this chapter, we presented and evaluated HyperPlane, a hardware notification acceler-

ation subsystem and programming model, which allows software data planes to efficiently

monitor many I/O queues for work arrival. HyperPlane brings queue scalability, by avoiding

spin-polling empty I/O queues unlike software-only designs, and work proportionality, by

halting execution when I/O queues are idle. Furthermore, HyperPlane facilitates efficient

sharing of queues across cores, enabling the strong properties of scale-up queuing. Hy-

perPlane’s programming model centers on the QWAIT instruction, which either returns a

ready queue or halts execution. HyperPlane’s microarchitecture comprises a monitoring

set, which watches I/O queues for work arrival, and a ready set, the key component in

HyperPlane’s design that realizes various service policies, prioritization of ready queues,

and work distribution among cores. We showed that HyperPlane improves peak throughput,

tail latency, and idle power by 4.1×, 16.4×, and 6.2×, respectively, as compared to a modern

spinning software data plane, while the monitoring and ready sets incur only < 1% per-core

power and area overheads.

77

CHAPTER IV

HyperData: A Data Transfer Accelerator for Software

Data Planes Based on Targeted Prefetching *

4.1 Introduction

Substantial efforts over recent decades have enabled us to utilize datacenters as

warehouse-scale computers and benefit from “XaaS”—infrastructure, platform, software,

function, etc. as a Service. The quality of service offered to individual users—such as cloud

computing/storage and online applications—and industrial users—such as Software-Defined

Networking (SDN) and big data analysis—depends heavily on how datacenter systems are

architected and may necessitate rearchitecting them over time [61, 120, 186]. Tenants of

datacenter systems—i.e., host applications and client applications/VMs—frequently interact

with I/O devices like network adapters, storage devices, and accelerators. A crucial design

principle of datacenter systems is high-throughput, low-latency, power-efficient data transfer

between CPUs and I/O devices, while keeping the systems highly utilized.

Due to the growing speed of I/O devices, multi- or even hyper-tenancy [131], and the

emergence of microservice-based programming models [167, 169], I/O software stacks

have become a critical factor in end-to-end performance. Datacenters rely on fast, efficient

“Software Data Planes” (SDPs, Figure 4.1), which orchestrate data transfer between ten-

* Under review in the 2021 IEEE International Conference on Computer Design (ICCD’21)

78

…

…

Tenant

…

Tenant cores

SDP

DP/transport
processing

DP cores

Tenant

Device-side
memory-mapped queues

Tenant-side
memory-mapped queues

… …

Figure 4.1: Software Data Plane (SDP) architecture. We aim to prefetch data buffers related to the
items in the device- or tenant-side queues to the target data plane or tenant cores (shown by dashed
arrows).

ants and I/O devices. Given the gigabit- to terabit-scale throughput and µs-scale access

time of modern I/O devices as well as µs-scale processing time in the SDP and/or tenants,

data transfer within a system—between the SDP and devices or tenants—should be per-

formed smoothly. Unfortunately, data cache misses are a major bottleneck in existing SDP

systems [104, 204, 208]. Recognizing the long latency of accessing data from DRAM,

technologies like Intel’s Data Direct I/O (DDIO) [27] and Arm’s Cache Stashing [20] allow

peripherals (e.g., a PCIe-attached network card) to directly deliver data to the Last-Level

Cache (LLC). However, these mechanisms are unable to deliver data to private caches (e.g.,

L1), leaving some access latency exposed. Moreover, prior work has pinpointed additional

challenges with these technologies like system-unaware data placement and eviction of

unread data from the LLC due to restricted access to LLC ways [93, 221].

In this chapter, we propose HyperData to accelerate data transfer in SDPs through

targeted prefetching. The SDP communicates with I/O devices and tenants using shared

memory queues in the host address space (Figure 4.1), wherein the memory locations of

the data buffers associated with enqueued items are described. We note that the consumer

cores (either running the SDP or tenant software) cannot prefetch such data on their own

because: (1) They identify data arrival either through interrupt mechanisms (e.g., PCIe

MSI-X) or by explicitly checking the queue(s); the former approach is unable to trigger

prefetch operations, and the latter is untimely to so. (2) The access pattern of data buffers in

SDPs vary widely due to the highly dynamic allocation/deallocation of buffers, and thus, is

79

hard to predict (Section 4.2). HyperData takes advantage of the information available in the

queues, i.e., data item descriptors, along with how the queues couple the SDP with devices

and tenants to prefetch exact (rather than predicted) data to the right core. HyperData has

the following distinguishing features:

• Data items are prefetched to the closest proximity of target cores, i.e., L1 caches.

• Only the required subset of data items (e.g., network packet headers) are prefetched to

avoid cache pollution.

• Prefetching is done not only for SDP–device (i.e., core–peripheral) communication, but

also for SDP–tenant (i.e., core–core) communication, wherein complex queues such as

Virtio queues [185] are supported.

• In the case of scale-up queuing, where a queue is shared among multiple consumer cores,

prefetching is done to the appropriate sharer core.

HyperData’s hardware is composed of a system-level monitoring set and per-core pro-

grammable prefetchers. The monitoring set is a lookup table filled with addresses of

doorbells associated with the queues and their mapping to target cores. It tracks cache

coherence write transaction to the queue doorbell addresses, which indicate data item ar-

rivals in the queues, and triggers the appropriate core’s prefetcher. The prefetcher, which is

programmed to understand the layout of the queue and descriptor data structures, discovers

the address of related data buffers and makes the required prefetch requests to fetch data

from LLC/DRAM. Our simulation results show that HyperData improves the processing

latency of data items by up to 2.42× in a state-of-the-art SDP system, with only a 0.40-KB

per-core overhead with a 1024-entry monitoring set.

4.2 Background and Motivation

Software data planes. The conventional approach for I/O communication and process-

ing is using the OS kernel. The kernel manages access of user applications to (shared)

I/O devices—such as Network Interface Controllers (NICs), Solid State Drives (SSDs),

80

…

Descriptor Table

Virtqueue

…

Buffer Pool

…

Descriptor Queue
Buffer Pool

(a) (b)

Figure 4.2: Allocation of buffers from the pool to items in the queue: (a) A regular descriptor queue,
(b) A Virtio queue (Virtqueue) with a corresponding descriptor table.

persistent memory devices, and accelerators (GPUs, crypto modules, etc.)—and performs

transport (e.g., TCP/IP) processing. However, the overheads associated with OS mechanisms

like context switches, system calls, interrupts, and cross–address-space copies significantly

limit the performance with today’s µs-scale access time of I/O devices and their massive

throughput. Consequently, state-of-the-art I/O software stacks, “software data planes”,

bypass the OS kernel to avoid the attendant overheads [24, 43, 151, 174]. SDPs typically

rely on spin-polling cores, as a notification mechanism, and (user-level) queue pairs, as a

means of data communication with client software and hardware devices through the shared

memory (Figure 4.1).

Queue structures. Shared memory queues (or rings) in SDPs are used for exchanging

data items—such as network packets, storage blocks, and RPC requests/responses—between

processes and/or I/O devices. What pass through the queues are, in fact, data item descriptors,

which contain the information (e.g., address and size) of the corresponding data buffers.

Figure 4.2 shows the structure of a regular queue and a Virtqueue, which is commonly used

in the driver of virtual devices in VMs and hypervisors [185]. Data buffers are typically

allocated from a pre-malloc’ed pool of buffers for better performance, as depicted in the

Figure.

Whereas queues are often organized in a scale-out manner, i.e., data items of each queue

are consumed by exactly one core, the scale-up (a.k.a. shared queue) organization, wherein

data items of a queue are consumed by multiple cores, demonstrates strong theoretical

81

properties that can benefit SDPs. Scale-up queuing avoids load imbalance as the traffic

in the queue can be observed and serviced by any of the sharer cores, while in scale-out

queuing, outstanding traffic may exist in a queue while some core is free. Additionally, the

scale-up organization is less prone to head-of-line blocking, where processing an item takes

longer than usual, as compared to the scale-out organization. While synchronization and

coherence overheads of sharing a queue among multiple cores have discouraged its use in

practice, such properties have motivated designs with efficient implementation of scale-up

queuing [84, 161, 162]. We design HyperData in a way that supports both organizations.

Address correlation of data items. Making prefetch requests is predicated on knowing

what memory references are likely to be made (or will definitely be made) in the near

future. Conventional prefetchers leverage various memory access patterns that programs

exhibit—namely, strided, temporal, and spatial [59, 91]—to predict future references. The

strided address correlation, i.e., memory accesses with a constant distance, appears when

accessing the contents (consecutive cache lines) of the buffer of a single data item in an SDP

queue. Nevertheless, address correlation of data items of one or more queues, or the lack

thereof, demands deeper analysis.

We investigate the existence of the strided access pattern and temporal address correlation

(i.e., when a sequence of memory addresses, not necessarily with a constant stride, are

referenced together) across the data items of an SDP queue. As such, we perform a real-

world experiment using DPDK [24], a representative software infrastructure for building

networking SDPs. The SDP runs in a Xeon Skylake server and steers packets received from

a 100 GbE Mellanox NIC to a tenant (i.e., a QEMU VM). The buffer addresses of the packets

exchanged between the SDP and the tenant is illustrated in Figure 4.3. As Figure 4.3(a)

demonstrates, no particular correlation seems to exist in the shown 1024-packet sample

sequence. Figure 4.3(b) shows that the buffer address strides (in a 10M-packet sequence)

are distributed over a wide range. In fact, the stride distribution depends on how buffers are

allocated/deallocated from/to the buffer pool, which is subject to the implementation of the

82

0 256 512 768 1024
Packet number

0x100f80000

0x101080000

0x101180000

0x101280000

0x101380000

Bu
ffe

r a
dd

re
ss

(a)

4096 3072 2048 1024 0 1024 2048 3072 4096
Stride (kilobytes)

0.0

0.5

1.0

1.5

2.0

2.5

Di
st

rib
ut

io
n

(%
)

(b)

Figure 4.3: (a) Buffer addresses of a sequence of packets, (b) Distribution of strides of buffer
addresses.

SDP and related I/O drivers and state of the system (e.g., different packet lifetimes due to

prioritization or filtering). Such wildly distributed strides render conventional prefetchers

and those designed for irregular workloads [55, 206] ineffective.

Spatial address correlation, i.e., accessing similar locations in different regions (e.g.,

pages) of memory, is also unlikely to appear in SDPs. Spatial variation in SDPs is related to

data item buffers of different queues. SDP queues correspond to different tenants and I/O

devices. Therefore, they may have independently variable traffic shapes [161], e.g., different

bursts at different times. Thus, it is unexpected that the correlation of buffer addresses of a

queue (if any) repeats in another queue.

4.3 HyperData Design

We design HyperData to accelerate data transfer in SDPs by prefetching the contents of

data items (e.g., network packets, storage blocks) to the private cache(s) of SDP or tenant

cores at the right time. As such, HyperData’s key component is a prefetcher, which poses the

question of “when to prefetch what?” Data items are communicated through shared memory

queues between the SDP and I/O devices or tenants. Intuitively, the most effective time for

prefetching is when data items are at or near the head of the queues, i.e., when they are about

83

to be dequeued. As for what exactly to prefetch, we take advantage of the fact that what

actually passes through the queues are data item descriptors, which describe where data

item contents/buffers are located. In the following sections, we first provide an overview of

HyperData’s components and then describe their operation details and implementation.

4.3.1 Design Overview

HyperData is composed of a centralized monitoring set and programmable per-core

prefetchers. At a high level, the monitoring set watches for signals that indicate data

items have been enqueued in the monitored queues and triggers the private prefetcher of

appropriate cores to perform prefetching. The prefetcher does not predict what to prefetch

(i.e., the address of data item buffers) but rather resolves the address of data item buffers

based on the corresponding data item descriptors available in the queues.

Figure 4.4 shows the operations of HyperData. A doorbell is associated with each queue,

by which the enqueuer (i.e., an I/O device or SDP/tenant core) indicates availability of

data item(s) in the corresponding queue. Writing to queue doorbells (step 1 in Figure 4.4),

which are shared memory locations, is realized by granting exclusive ownership of the

related cache lines to the enqueuers through the cache coherence protocol (e.g., GetM

in the generic coherence protocols described in [195]). The monitoring set snoops such

coherence signals that correspond to doorbells (step 2), which are chosen from a specific

address range reserved by the SDP kernel driver. The monitoring set is agnostic to the

coherence organization and may snoop coherence signals either at a directory (as shown

in the figure) or at a bus. The internal structure of the monitoring set, as will be elaborated

on in Section 4.3.2, is similar to a large associative memory that maps each doorbell to a

<target core, queue address, prefetch type> tuple. The prefetch type specifies the queue

type (e.g., regular or Virtio) and whether the whole data buffer or a subset of it (e.g., the first

few cache lines) needs to be prefetched. The queue address along with the prefetch type is

sent to the target core (step 3) to prefetch the required cache lines. Once this is done, the

84

Monitoring
Set

②
Within reserved
address range of

doorbells?

Coherence
Directory

① Write transaction (e.g., GetM)

LLC /
DRAM

③ <queue address,
prefetch type>

④ Load descriptor

⑤ Descriptor

⑥ Prefetch buffer

Core

L1/L2
Cache

Prefetcher

⑦ Rearm
doorbell

Figure 4.4: Overview of HyperData design (monitoring set and prefetcher).

entry related to the doorbell is disarmed in the monitoring set. Meanwhile, the prefetcher

actively performs prefetching.

HyperData’s specialized prefetcher is programmed to know how to interpret the queue

and descriptor data structures. Once the prefetcher is triggered by the monitoring set, it

loads the appropriate descriptor from the queue data structure (step 4 in Figure 4.4). The

descriptor describes the related data item, e.g., the address of the buffer of a network packet

and its length. When the prefetcher receives the descriptor (step 5), it extracts the buffer

address and length and sends appropriate prefetch requests to the (shared) LLC or DRAM

for the required cache lines based on the given prefetch type (e.g., only the packet header

or the complete header and payload), as shown in step 6. Note that for complicated queue

structures like Virtio, an additional indirection step is required to obtain the buffer address.

The prefetcher may repeat steps 4-6 in Figure 4.4 if there are more data items in the queue.

Finally, the prefetcher rearms the doorbell in the monitoring set to get triggered for upcoming

data item arrivals (step 7). More details on the programming and design of the prefetcher

will be provided in Section 4.3.3.

4.3.2 Monitoring Set

Operation. The monitoring set in HyperData is, in principle, a cache-like key–value

lookup table in hardware. It enables simultaneous watching of write transactions to all

queue doorbells (Figure 4.4). The keys are the tags of the doorbell addresses, which

85

monitoring_set_addr_range(doorbell_addr_range)

for each QID in queue_IDs

 core = core_map[QID]

 queue_addr = queue_addr_map[QID]

 prefetch_type = prefetch_type_map[QID]

 do

 doorbell = allocate_addr(doorbell_addr_range)

 while (monitoring_set_add(doorbell, core,

 queue_addr, prefetch_type) == FAIL)

end

Figure 4.5: Initialization of the monitoring set.

are mapped to <target core, queue address, prefetch type> tuples. Each entry in the

monitoring set also contains a valid/invalid bit and an armed/unarmed bit. The latter is used

to temporarily disable monitoring of the related queue doorbell, as described in Section 4.3.1.

The monitoring set needs to be set up and filled with the doorbell addresses that are to

be watched. This setup is done during the initialization of the data plane or when a new

tenant connects. Figure 4.5 shows a code snippet for initializing the monitoring set. Such

initialization/configuration is performed in the SDP driver, and since it requires access to

physical or kernel memory, it is run in privileged mode.

The target core field of each entry in the monitoring set denotes to which core the

related queue’s data should be prefetched. Each queue is, in fact, coupled to a data plane

or tenant thread (or multiple threads in the case of shared queues, as will be discussed in

Section 4.3.4). However, the monitoring set needs to be configured with the physical core

to which each queue is coupled. Data plane threads are often pinned to particular cores to

prevent them from being context-switched, for their activity is critical to the performance

of the tenants and overall system. Moreover, in the traditional interrupt-based transport

processing in the kernel, interrupts are typically configured to be delivered to particular

cores [40]. On the other hand, the mapping of tenants to cores may change during their

lifetime. In those cases, the OS or hypervisor should inform the monitoring set of such a

change in the thread-to-core mapping. This also applies to data plane threads in another

traditional approach, where the kernel thread performs transport processing in the same core

as the tenant (user-level) thread [40].

86

Structure. The monitoring set must hold the address tags of all queue doorbells to

be able to monitor them simultaneously and provide a fully associative key–value lookup

functionality. However, large fully associative structures are costly in terms of area, latency,

and energy. In contrast, set-associative structures (with small associativity) are cheaper but

suffer from high conflict rates. As such, we leverage a Cuckoo hash table [175] for building

the monitoring set, as in ZCache [187] and HyperPlane [161]. Associativity and ways are

decoupled through Cuckoo hashing, thereby providing low conflict rates even with a small

number of ways (e.g., 2 or 4) [187].

Cuckoo hash tables exhibit higher insertion complexity than set-associative structures

due to the “table walk” process, which may take a number of steps equal to the number of

ways [187]. Nevertheless, insertions to the monitoring set happen only during the data plane

initialization (Figure 4.5) or when a new tenant connects to the data plane (at second or

minute time scales). Therefore, monitoring set insertions are not the common case, but their

lookups occur every few microseconds or less. A Cuckoo hash table provides faster and

more efficient lookups due to its smaller number of ways in comparison to regular fully or

highly associative structures. Note that conflicts between doorbell tags are still possible in a

Cuckoo hash table, although they are rare thanks to the table’s high “effective” associativity.

In the case of a conflict, the address of the conflicting doorbell needs to be reallocated

(as in the do-while loop in Figure 4.5), so that the doorbell can be inserted in the table

conflict-free.

For performing the lookups, the monitoring set snoops the relevant coherence signals at

a directory or at a bus (Figure 4.4). Since doorbells are allocated from a restricted address

range (Section 4.3.1), the monitoring set only need snoop addresses in this range and the

snooping bandwidth is tractable. In the case of distributed directories, the monitoring set

must also be banked, attached to individual directory banks. In such cases, the SDP driver

must spread doorbell addresses across the banks.

87

4.3.3 Prefetcher Design

Unlike common prefetchers, which predict what data or instruction blocks should be

brought to the cache next, HyperData’s prefetcher uses the information already available

in the data item descriptors in the queues. As such, it does not need to store any history

for generating prefetch requests. Rather, it is implemented using a finite-state machine that

discovers the exact memory locations that should be prefetched. To this end, the prefetcher

is programmable so that it can be instructed on the layout of the queue and descriptor data

structures.

In regular queues, the descriptors are typically stored in a circular array—the descriptor

ring—in the queue data structure. The entries between the head and tail of the ring are

available for new descriptors to be enqueued. In complex queues like Virtqueues in Virtio,

the descriptors are, in fact, written in a descriptor table, and an indirection ring includes the

indexes of the descriptors received from the source in the table. As Figure 4.6(a) shows,

HyperData’s prefetcher has two separate sets of programmable registers to store the offsets

of the head, tail, and ring/table in the queue data structure as well as the ring size. Using

these registers, the prefetcher is able to traverse the ring from the tail to the head to read

the descriptors of enqueued data items. Furthermore, for extracting the target addresses of

prefetch requests, the prefetcher has programmable registers to store the offset of the address

and length of the corresponding data item buffer in the descriptor data structure. Note

that HyperData’s prefetcher is programmed at data plane or tenant software initialization.

As the software is not expected to interact with more than one type of direct (regular) or

indirect (Virtio) queue at a time, only one instance of the programmable registers is sufficient

per queue type (the extreme case is where an SDP core interacts with a particular type of

regular queues and Virtqueues at the I/O-side or tenant-side, respectively). When tenants

are context-switched, the core’s prefetcher is reprogrammed upon resumption of the tenant

process.

Figure 4.6(b) sheds light on the functionality of the prefetcher. The prefetcher should

88

WaitingRearm doorbell
Next Index
set before?

Idx = Next Index

Idx = (Tail + 1) %
Ring Size

Read
Descriptor[Idx]

Make Prefetch
Request(s)

Idx = (Idx + 1) %
Ring Size

Idx == Head?

Next Index = Idx

Triggered

Yes

No

Yes

No

(a)

(b)

Head Index

Head Index

Offsets in the
Queue Data Structure

Indirect
(Virtio)

Direct
(Regular)

Offsets in the
Descriptor Data Structure

Tail Index

Tail Index

Descriptor
Ring

Indirection
Ring

Descriptor
Table

Buffer
Address

Buffer
Length

Miscellaneous
Registers

Buffer
Address

Buffer
Length

Ring Size

Next Index

Ring Size

Next Index

Atomic

Figure 4.6: HyperData’s prefetcher design: (a) Registers that enable traversing the descriptor rings
and reading the descriptors; programmable registers are shown by the dark color. (b) States and
operations for making prefetch requests.

prefetch data items from the tail to the head (the source enqueues items at the head and

advances it). When the prefetcher is triggered by the monitoring set due to a write to the

doorbell, it starts to make prefetch requests from the first (oldest) item that has not been

prefetched yet. The corresponding descriptor is read, and appropriate prefetch requests are

made based on the specified prefetch type, i.e., all the cache lines of the buffer or only the

buffer header. In the latter case, only the first two cache lines of the buffer are prefetched, as

they typically include all the protocol (e.g., TCP/IP) headers. To avoid making repetitive

prefetch requests—e.g., when a new batch arrives, while the previous batch has not been

dequeued despite already being prefetched—the prefetcher stores the index of the next to-be-

prefetched item of the ring in the Next Index register (Figure 4.6(a)). When all the prefetch

requests of the enqueued data item(s) are made, the prefetcher rearms the doorbell in the

monitoring sets and waits until it gets triggered again. To avoid missing updates to the queue

head, checking the head and rearming the monitoring set are performed atomically (the

89

dashed box in Figure 4.6(b)). Note that the prefetcher makes the prefetch requests through

the (private) cache controller. As such, if the cache controller puts back-pressure on the

prefetcher—e.g., due to fully occupied request queues or unavailable Miss Status Holding

Registers (MSHRs)—the prefetcher may have to stall in the related stage in Figure 4.6(b).

When a core services more than one queue simultaneously, there may be cases where

multiple queues are ready or have data items at the same time. The prefetch order must

match the service order of ready queues—which, according to the service policy, may be

round-robin or priority-based, as discussed in Section 3.3.1. As such, the prefetcher may

only prefetch one data item or batch from one ready queue (rather than prefetching all the

available items in that queue) and move on to the next ready queue. In such cases, the

prefetcher must have multiple instances of the Next Index register, one for each ready queue

whose data items have not been completely prefetched.

4.3.4 Scale-up Queuing

Load balancing in SDPs is an important challenge. In many modern systems, the load of

an I/O source (e.g., a NIC) is distributed through multiple queues to the consumer cores using

Receive-Side Scaling (RSS) [40] by applying a hash function on the traffic. Nevertheless,

better load balancing can be enabled by scale-up queuing, i.e., sharing a queue (or a set

of queues) among multiple cores, thereby improving the overall latency and throughput in

SDPs (Section 4.2). In this section, we describe how the baseline design of HyperData can

be enhanced to support prefetching for scale-up queuing.

As explained in Section 4.3.2, HyperData’s monitoring set maintains a mapping of queue

doorbells to cores. In scale-up queuing, a queue is serviced by more than one core. Thus,

the monitoring set must be enhanced in two ways: (1) support mapping of a doorbell to

multiple cores, and (2) choose an appropriate core’s prefetcher to trigger when data items

are enqueued in the shared queue. As for the first requirement, the monitoring set entries are

enhanced to store multiple cores (i.e., doorbell→ <target cores, queue address, prefetch

90

type> mappings). To keep the size of the monitoring set tractable, only a limited number

of entries may be designated for queues shared by a maximum number of cores (e.g., 2

or 4 [151, 161]). As for the second requirement, a complex “next-core predictor” may be

leveraged, which predicts the next target core based on the patterns of inter-arrival and

processing times of data items. However, we note that in the generic context of symmetric

multiprocessing [188], the work of a shared queue is distributed to the associated cores in a

regular fashion, wherein the first core that becomes available (after processing a previous

data item) is the first one that takes care of processing the next data item in the queue.

Therefore, we propose to use the Least Recently Used (LRU) approach for determining

the target core. We also note that in the context of networking applications, higher level

protocols (like TCP/IP) expect ordered delivery of packets in a flow. RSS guarantees such

ordering by applying a 4-tuple hash function over source/destination IP addresses and port

numbers. While such hashing can be built in the monitoring set to identify the target core

responsible for processing a particular flow (which also requires a hardware parser to extract

the various packet header fields [69]), we keep the design generic with the LRU approach.

To realize the LRU implementation, the target cores related to a doorbell entry in

the monitoring set need to be sorted based on the last time they dequeued an item from

the corresponding shared queue. The monitoring set triggers the prefetcher of the least

recent core. Note that once a core’s prefetcher is triggered, unlike the non-shared case

(Figure 4.6(b)), it only prefetches one or a fixed batch of data items as the next data item or

batch should be processed by a different core. Variability in the processing times of data

items, i.e., service times, may result in triggering the prefetcher of a wrong core. However,

we will show in Section 4.4.3 that the rate of inaccurate triggering through the LRU approach

is low with typical variations in the service time.

The monitoring set requires a mechanism by which it should update the order of the

target cores associated with a doorbell. We employ a mechanism wherein whenever a

core dequeues an item from a shared queue, it notifies the monitoring set accordingly.

91

Table 4.1: Architectural details of the simulated SDP system.

Core 8-wide issue OoO, 192/32-entry ROB/LSQ
L1 I/D Private, 32 KB, 64B lines, 4-way SA, 16 MSHRs
LLC 1 MB per core, 64B lines, 16-way SA, 128 MSHRs
CMP 16 cores, directory-based MESI coherence

HyperData 1024-entry, 2-way monitoring set

We propose a new (atomic) CPU instruction, MON-SET-NOTIFY, to implement this

mechanism. A core dequeuing an item from a shared queue is responsible for execut-

ing MON-SET-NOTIFY(doorbell). By executing this instruction, if the Next Index

register (Figure 4.6(a)) equals the queue head, meaning no more data items need to be

prefetched, the monitoring set is instructed to rearm the doorbell. Otherwise, the monitoring

set is instructed to trigger the next core’s prefetcher.

4.4 Evaluation

4.4.1 Methodology

We use the gem5 simulator [65] and augment it to model the hardware components of

HyperData. We model a 16-core x86-64 CMP system with architectural details as described

in Table 4.1. We use an in-house user-level SDP system based upon DPDK [24] that is able

to run in the simulator. Our SDP infrastructure closely tracks the performance characteristics

of DPDK. The simulated cores run the data plane and tenant software in addition to emulated

I/O devices (i.e., I/O sources or sinks).

We evaluate HyperData on both the SDP and tenant cores. The SDP is a dispatching

application [161] (SDP Dispatcher), which monitors the queues where network traffic

is generated by the I/O sources or tenants. The SDP dispatches the network packets

to appropriate tenants or I/O sinks, as in Figure 4.1. We also consider a variant (SDP

Vhost), wherein the SDP runs a simplified Virtio driver to dispatch network packets to/from

(virtual) tenants. The tenants run an in-memory key–value store application (Tenant KV-

store), wherein the requests—i.e., sets and gets of keys [98]—dispatched by the SDP

92

(encapsulated in network packets) are processed.

The addresses of data buffers (i.e., network packets) in the generated traffic are both

spatially and temporally varied. We define three spatial variations: Tenant-Concentrated

(TC), Tenant-Device-Balanced (TDB), and Device-Concentrated (DC). 75%, 50%, and

25% of the generated traffic is sourced from tenants in the TC, TDB, and DC patterns,

respectively, and the rest is sourced from the emulated I/O. The tenant-sourced traffic is

likely accessed from the LLC by the SDP as the corresponding data buffers have been

recently prepared by the tenants. Nevertheless, we pre-prepare data buffers corresponding to

the I/O-sourced traffic in order to be accessed from DRAM by the SDP to mimic real-world

I/O behavior. The temporal pattern of buffer addresses within each source is set to resemble

DPDK in a real system. We extract the address stride distribution of accessed buffers from

DPDK (e.g., Figure 4.3(b)) and generate the traffic with similar strides in the emulated I/O

or tenants.

4.4.2 Prefetching Performance

We evaluate HyperData by comparing it against the baseline (without any prefetchers)

and a stride data prefetcher. Both the HyperData and stride prefetchers are built in the cores’

L1 D-caches. We take latency as an application-level performance metric [128]. Latency is

measured from the time a packet is enqueued (to either SDP-I/O or SDP-tenant queues) until

it is processed by the SDP or tenant. Load is set to be near saturation (i.e., ~100%). Average

latency is reported in Figure 4.7 for the different workloads. The stride prefetcher improves

the performance by up to 1.23×. HyperData achieves significantly larger performance

improvements, i.e., 1.20-2.42×. The stride prefetcher can capture the access pattern within

packets (e.g., consecutive cache lines), but it falls short of learning the temporal/spatial

access pattern of packets within/across the queues. Nevertheless, HyperData is able to

prefetch packets in a timely manner thanks to the notification mechanism of the monitoring

set and the already available geometry information of buffers in the descriptors.

93

0

1

2

3

4

5

6

7

8

9

10

SDP Dispatcher
(TC)

SDP Dispatcher
(TDB)

SDP Dispatcher
(DC)

SDP Vhost Tenant KV-store

A
ve

ra
ge

 la
te

n
cy

 (
μ

s)

Baseline
Stride prefetcher
HyperData

Figure 4.7: Prefetching performance in terms of packet processing latency.

In Figure 4.7, we observe that prefetching brings larger performance improvements in

the SDP Dispatcher workloads as compared to the others. This is because computations per

packet in SDP Vhost and Tenant KV-store are relatively more complicated than those in the

SDP Dispatcher variants; thus, stalls associated with cache misses incurred by accessing

packets make up a larger fraction of packet processing time in SDP Dispatcher. Moreover,

in SDP Dispatcher, we observe that while the access pattern affects the performance in the

baseline and baseline + stride prefetcher configurations (i.e., TC being better than TDB

and TDB being better than DC due to more frequent accesses to buffers “warmed” by

the tenants), HyperData achieves an almost similar performance with all the patterns as it

performs effective prefetching in all three cases.

Figure 4.8 illustrates statistics of LLC accesses by the dequeuer core with the different

configurations (normalized over the baseline) and workloads. LLC hits (i.e., L1 misses)

and LLC misses are made through program execution in the baseline, whereas with the

HyperData and stride prefetchers, prefetching can also result in LLC hits/misses. The

ultimate goal of prefetching is that the necessary LLC hits/misses—for accessing the data

buffers, in particular—are made by the prefetcher right before the execution. In the baseline,

the SDP workloads incur considerable LLC misses. Particularly, LLC misses increase from

the TC to TDB to DC patterns in SDP Dispatcher in that a larger portion of the traffic is

sourced from I/O (Section 4.4.1). There are no LLC misses in Tenant KV-store because

the packets that the tenants process have been recently dispatched and brought to the LLC

94

0

20

40

60

80

100

120

140

B
as

el
in

e

St
ri

d
e

p
re

fe
tc

h
e

r

H
yp

er
D

at
a

B
as

el
in

e

St
ri

d
e

p
re

fe
tc

h
e

r

H
yp

er
D

at
a

B
as

el
in

e

St
ri

d
e

p
re

fe
tc

h
er

H
yp

er
D

at
a

B
as

el
in

e

St
ri

d
e

p
re

fe
tc

h
e

r

H
yp

er
D

at
a

B
as

el
in

e

St
ri

d
e

p
re

fe
tc

h
e

r

H
yp

er
D

at
a

SDP Dispatcher
(TC)

SDP Dispatcher
(TDB)

SDP Dispatcher
(DC)

SDP Vhost Tenant KV-store

N
o

rm
al

iz
ed

 a
cc

es
se

s
(%

)

Execution LLC hits - Buffers Execution LLC hits - Other

Prefecher LLC hits - Buffers Prefecher LLC hits - Other

Execution LLC misses - Buffers Execution LLC misses - Others

Prefecher LLC misses - Buffers Prefecher LLC misses - Others

Figure 4.8: LLC hit/miss statistics of the dequeuer core.

(if not already) by the SDP. We observe that HyperData is able to resolve almost all the

LLC misses and L1 misses that correspond to accessing the packets in the SDP workloads,

whereas the stride prefetcher fails to do so. Note that in the case of Tenant KV-store, while

HyperData performs the required prefetches, a portion of data buffers are still accessed from

the LLC. This happens because the prefetching rate is high due to LLC-resident (rather than

DRAM-resident) buffers, which results in eviction of some of the prefetched buffers from

the L1 cache before being accessed. Although HyperData performs targeted prefetching, the

overall LLC accesses are more with HyperData in comparison to the baseline because some

other useful cache blocks are displaced by the prefetched data buffers, which are brought

back to the L1 cache again later. With the stride prefetcher, the overall LLC accesses are

even more, but the performance improvements are much smaller as compared to HyperData.

We also observe that the stride prefetcher is almost ineffective for Tenant KV-store and does

not resolve the execution LLC hits much. This is due to the limited size of the reference

prediction table [91], highlighting the limitation of prediction-based prefetchers. On the

other hand, HyperData accomplishes effective prefetching with small hardware structures

(Section 4.4.4).

95

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

LR
U

 v
io

la
ti

o
n

 (
%

)

Load (%)

5% service variability
10% service variability
15% service variability
20% service variability

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

LR
U

 v
io

la
ti

o
n

 (
%

)
Load (%)

5% service variability
10% service variability
15% service variability
20% service variability

(a) (b)

Figure 4.9: The rate of prefetching to an incorrect core using the LRU mechanism with (a) 2 cores,
and (b) 4 cores.

4.4.3 Effectiveness with Scale-up Queuing

In this section, we evaluate the effectiveness of the LRU mechanism in determining

the appropriate core’s prefetcher to trigger when HyperData is used with shared queues, as

specified in Section 4.3.4. Variability in processing times of data items (or service times)

may result in cores completing the service in an order different from the one they started.

This leads to triggering an incorrect core’s prefetcher in HyperData.

To quantify LRU violations, we employ discrete-event simulations wherein data items

arrive with a Poisson distribution and service rate has a uniform distribution with various

deviations. Figure 4.9 shows the LRU violation rate at different loads and service variabilities.

Service variability is defined as the range-to-mean ratio of service times. Note that shared

queues are aimed for the SDP due to their load balancing merits. Since the SDP needs

a small number of cores (e.g., 1-4 [151, 161, 174]), we consider a maximum of 4 sharer

cores. As we see in the figure, LRU violations increase by having larger service variabilities

or more sharer cores. However, while we mainly observed service variabilities of up to

15% in our experiments (Section 4.4.2), LRU violations are below 10% even with 20%

service variability. Thus, the LRU mechanism can retain most of the performance benefits

of prefetching when HyperData is used in the scale-up queuing organization.

96

4.4.4 Overhead Analysis

The hardware components of HyperData consist of a monitoring set and per-core

prefetchers (Section 4.3). The area overhead of HyperData is dominated by the monitoring

set. The overhead is, in fact, directly proportional to the maximum number of queues that

HyperData may monitor. State-of-the-art SDPs and hyper-tenant systems should effectively

handle ~1k I/O or tenant queues [161]. Therefore, we consider a 1024-entry monitoring set

in our overhead analysis.

Assuming a 2-way monitoring set, 48-bit physical addresses, 128-byte doorbells, and

allocating doorbells and queues from a restricted 1-GB address range, total overhead of

the monitoring set is 6.25KB. Note that the monitoring set is a centralized structure, and

the amortized per-core overhead is even smaller. For example, the area overhead for a

16-core chip (as in Section 4.4.1) is only 0.39KB per core. If all the 1024 queues can be

shared among a maximum of 4 cores, the area overhead is 0.58KB per core, considering the

expanded monitoring set entries and LRU circuitry (Section 4.3.4). Nevertheless, we can

decrease this overhead by designating a limited number of entries for shared queues. If, for

instance, 64 queues out of the 1024 queues can be shared among at most 4 cores, the area

overhead would be just 0.40KB per core.

4.5 Related Work

Data locality in SDPs. Effective data movement in SDPs, i.e., bringing data to the

locality where they are processed with the smallest/fewest transfers as possible, is key to the

efficiency and performance of SDPs. With compute-capable I/O devices—such as smart

NICs/SSDs [97, 152] and accelerators [133, 178]—data processing can be done at the device.

As such, data plane operations can be completely/partially offloaded from the CPU, and

unnecessary trips of data to/from DRAM over the I/O interconnect (e.g., the PCIe bus) are

avoided. However, when data plane operations are onloaded to the CPU (Figure 4.1), data

97

should be within easy reach of the cores. In multi-socket servers, NUMA-aware memory

allocation [192], particularly for I/O devices, prevents costly cross-socket data movements.

Furthermore, data caching, which is our focus in designing HyperData, can significantly

affect the processing latency and throughput. Datacenter applications [95, 120, 198], in

general, and SDPs [104, 204, 208], in particular, have large data footprints and incur

numerous misses at different layers of the cache hierarchy. As such, cache locality is an

important concern in the development of data plane software [64, 87, 113]. Additionally,

designs like DDIO [27] and NeBula [204] leverage hardware support for steering I/O

data directly into the cache hierarchy. In contrast, HyperData takes a system-level (rather

than I/O-driven) approach and is compatible with commodity I/O devices. HyperData can

prefetch the data to the L1 caches in both core–device and core–core data communications,

and supports complex queue structures such as Virtqueues and scaled-up (shared) queues.

Prefetching techniques. Prefetching is an essential practice in hiding the long latency

of memory accesses. A large class of prefetchers seek to predict future memory refer-

ences based on a program’s memory access pattern—e.g., strided, temporal, and spatial

patterns [59, 91]. Many modern workloads, such as graph traversal and sparse-matrix

linear algebra, demonstrate irregular access patterns. Prior work has proposed prefetchers

for such workloads using programmer or compiler assistance [55, 206] or other hardware

solutions [217, 220]. Nevertheless, dynamic allocation/deallocation of data buffers in

SDPs—which depends on various factors like the load of the system and implementation of

transport protocols and I/O drivers—makes predicting the corresponding memory references

extremely difficult (Section 4.2). Likewise, software prefetching [73] is unlikely to be

effective due to issuing prefetch requests in a static, load-agnostic manner. On the other

hand, HyperData explores exact data buffers that need to be prefetched by reading data

item descriptors (Section 4.3), similar to run-ahead prefetchers [76, 145, 166]. This class of

prefetchers leverage spare core resources or a helper thread to discover long-latency memory

accesses ahead of execution. In contrast, HyperData relies on a simple finite-state machine

98

for address discovery (Section 4.3.3).

4.6 Conclusion

In this chapter, we were motivated by the fact that accessing I/O or tenant data from

the L1 cache is key to the performance of SDP systems. Prediction-based prefetching is

not suitable for SDPs because consumer cores lack an appropriate data arrival notification

mechanism. Moreover, the access pattern of data buffers is highly complex and varies with

system conditions as well as the implementation of the SDP and I/O drivers. We proposed

HyperData to tackle these issues and accelerate data transfer in SDPs. HyperData performs

targeted prefetching, i.e., bringing exact cache lines of corresponding data buffers to an

appropriate cores’ L1 cache, using the data item descriptors in the SDP–I/O or SDP–tenant

queues. HyperData is designed to support complex queues used in Virtio and scale-up

organizations. Our evaluation results show that HyperData improves processing latency by

up to 2.42× in a simulated state-of-the-art SDP system with small area overhead. We also

showed that with scale-up queuing, wherein one of the sharer cores needs to be selected to

perform prefetching, at least 90% of performance improvements of the single-core cases

can be retained using the LRU mechanism.

99

CHAPTER V

Conclusion

5.1 Summary

Software data planes coordinate data communication of tenants of a datacenter system

with each other and/or I/O devices. State-of-the-art software data planes leverage shared-

memory queues and spin-polling cores for transport processing and data transfer. In this

dissertation, I discussed the issues of current software data planes and provided hardware-

software solutions for them, as summarized below.

First, I started with characterization of software data planes in a real system in Chapter II.

I pinpointed inefficiencies of spin-polling (overheads, useless work, adverse effect on co-

running hyperthreads, etc.). I also demonstrated that spin-polling lacks queue scalability—

due to processor cache capacity constraints—and core scalability—due to operations rate

limits of PCIe and LLC. Furthermore, I illustrated inefficiencies of spin-polling in the

scale-up queuing organization (i.e., sharing one or more queues among multiple cores),

which render such an organization impractical in spite of its theoretical merits.

Next, I proposed the HyperPlane accelerator in Chapter III, which replaces spin-polling

as a notification mechanism in software data planes. HyperPlane allows a core to not iterate

on empty queues, halt when all queues are empty, and efficiently share a queue with other

cores. HyperPlane comprises a programming model, based on the QWAIT instruction, and a

microarchitecture, composed of a monitoring set and a ready set. Thanks to the monitoring

100

set, which watches for work/data arrival in the queues, QWAIT acts like a “multi-address

MWAIT”. The ready set tracks the ready queues and enables QWAIT to return the ID of a

ready queue based on a particular service policy. Despite incurring minor power and area

overheads, I showed that HyperPlane significantly improves the performance and energy

efficiency over a spin-polling–based counterpart. I also illustrated that the strong potentials

of scale-up queuing are unleashed through HyperPlane.

Finally, in Chapter IV, I proposed the HyperData accelerator, which enhances data

transfer in software data planes based on prefetching. The goal of designing HyperData

is to prefetch the necessary part of data items to the closest proximity of target data plane

or tenant cores, i.e., L1 caches, at the right time and support various queues formats (i.e.,

regular, Virtio, and scale-up). Because the access pattern is too complicated—hence, hard

to predict—in software data planes (due to the highly dynamic allocation/deallocation

of corresponding data buffers), HyperData is designed to discover the “exact” memory

locations that must be prefetched. HyperData is composed of a specialized prefetcher, which

performs address discovery and issues prefetch requests, and a system-level monitoring

set, which tracks data arrival and triggers the prefetcher of an appropriate core. I showed

that, with a small area overhead, HyperData substantially improves the performance and

efficiency of a modern software data plane.

All in all, HyperPlane and HyperData compose a full-fledged suite of accelerators for

software data planes. Note that the basic functionality and structure of the monitoring

set—i.e., watching write transactions to queues and looking up address tags in a table—

are essentially the same in both these accelerators. Therefore, deploying HyperPlane and

HyperData together not only brings their combined benefits but also amortizes their (yet

small) overheads.

101

5.2 Future Research

Deployment of the accelerators. The use of the accelerators introduced in this disserta-

tion, i.e., HyperPlane and HyperData, can be explored further. While these accelerators were

originally designed to be deployed at the Chip Multi-Processor (CMP), they may also be

deployed as peripherals, making them easier to be incorporated in the near-future systems.

HyperPlane’s components, i.e., the monitoring and ready sets, can be fully deployed

as a peripheral. However, although HyperData’s monitoring set can be similarly deployed

as a peripheral, the logic of the per-core prefetchers in HyperData must be built in the

cores’ private caches. In addition to not consuming the CMP area, deploying HyperData’s

monitoring set as a peripheral enables more complex designs for the logic used for choosing

which core’s prefetcher must be triggered in the case of multi-consumer queues, e.g., based

on inter-arrival/service time prediction or network flow calculation (Section 4.3.4).

The monitoring set in both HyperPlane and HyperData must be able to observe the

relevant cache coherence signals. As such, for its deployment as a peripheral, the peripheral

interconnect needs to be cache-coherent. Technologies like Intel QPI/UPI [30, 31] and Arm

AMBA ACE [18] have long since enabled cache-coherent multi-CMP products. Recently,

cache-coherent interconnects for accelerators have received significant attention through

standards like CCIX [22] and CXL [23]. This holds promise of faster deployment of

prototypes of accelerators, including HyperPlane and HyperData.

This deployment scenario needs to be investigated in detail in future work. Additionally,

questions regarding core–accelerator communication must be addressed, for example: How

would the proposed instructions in this dissertation (like QWAIT) change? How much would

the performance benefits, i.e., speed-ups, get affected by the physical distance of the core

and the accelerator?

Specialized data plane cores. Data plane software is, in fact, a tax that has to be paid

because there is still no hardware-transport system that provides comparable generality,

flexibility, and centralization to operational data planes (Section 3.6). Cloud providers

102

wish to allocate as much chip area as possible for running customer workloads (such as

VMs). Therefore, designing a specialized data plane core that might replace two (or more)

server-class cores (like Intel Xeon) or require less area than a conventional core while

achieving the same I/O throughput/latency or better performance/memory isolation is an

appealing direction for future work.

The specialized data plane core should incorporate the features introduced in this disser-

tation, i.e., accelerated notification and data buffer prefetching. Furthermore, it should be

optimized for operations heavily used in data planes, such as encryption/decryption, flow

table lookup, data (e.g., network packet) encapsulation/decapsulation. Data planes also

demand efficient ways of performing memory copies because: (1) they do more memcpy()

than other software, (2) they copy across protection domains/address spaces, and (3) they

often move scatter-gather buffers in addition to contiguous buffers. Interestingly, one of the

ideas we were considering at the beginning of the projects of this dissertation was a tightly

integrated, asynchronous, virtual-memory–aware memcpy() engine. A bit later, the Intel

Data Streaming Accelerator (DSA) [14] was introduced, which has the mentioned features.

Future work may incorporate such optimized data movement features in the specialized data

plane core, or enhance existing software data planes using accelerators like the Intel DSA.

103

APPENDIX

104

APPENDIX A

Characterization of Unnecessary Computations in Web

Applications *

A.1 Introduction

Web applications play an important role in the daily life of many people, and they are

widely used in both desktop and mobile environments for various purposes such as online

shopping, navigation, and video streaming. In the main body of this dissertation, we focused

on enhancing data transport in datacenter systems, which in turn benefits the users of Web

applications. However, user experience also depends largely on client-side computations

of Web applications, which we discuss in this chapter. Web pages are getting more and

more complicated in order to provide content with a visually rich user experience. Although

desktop and mobile processors have been constantly advancing in recent years, the quality

of service delivered to Web users, especially in the mobile platform, is not satisfying yet

as they may experience delays in showing the content of Web pages [7]. This is due to the

fact that Web browsers are complex programs, which must process multiple languages (i.e.,

HTML, CSS, and JavaScript) and manage a wide variety of network transactions.

The quality of user experience depends on how fast the content of a Web page is

displayed and how smooth one view transitions to another. In particular, both application

* Published in the 2019 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS’19) [103]

105

designers (e.g., designers of Web browsers) and Web developers (i.e., Web page designers)

should be aware that users’ satisfaction relies on three distinct metrics: page load time,

response time to user input, and animation smoothness [17]. Among these metrics, page

load time is the most important one. In a study on more than 10,000 mobile Web domains

[7], it was found that mobile websites load in 19 seconds on average with a 3G network

and in 14 seconds on average with a 4G network. It was also observed that 53% of users

left their browsing sessions if pages took longer than 3 seconds to load. This shows how

deeply Web page load time affects user experience and highlights the need for performance

improvement of Web applications.

Considerable effort has been put into improving the performance of Web applications

both in academia and industry. Commercial Web browsers are continuously improved by

leveraging complicated algorithms [5, 34, 41] and utilizing GPUs as accelerators [25, 26].

Web developers are also provided with advanced libraries and design tools [49, 50] for

carefully managing services and ordering the resources. Prior academic work has tried

to optimize Web browsers in different ways. [173] and [216] target Web page load time

by prefetching and caching of resources and reordering of resources, respectively. Other

proposals include enhancing or parallelizing the JavaScript engine [53, 124, 153, 154],

proper scheduling of CPU cores [177, 193, 226, 227, 229], and designing specialized

hardware [76, 79, 228].

In this chapter, we argue that in current Web applications—Web browsers in particular—

there exists unnecessary computations, which are completely or most likely wasted. These

unnecessary computations are caused by processing codes that are never used, pitfalls in

the design of Web applications, or producing output that is never or most likely not noticed

or used by the user. More details regarding potential sources of unnecessary computations

are provided in Section A.2. Next, we develop a profiler that effectively identifies portions

of Web browser computations that are important to the user (e.g., generating display pixels

and network outputs), and analyzes the computations that do not belong to this portion

106

(e.g., the unnecessary computations). The unnecessary computations are either completely

useless, or done at improper time, so that they could be deferred to a later time when they are

actually needed. Therefore, the designed profiler could be leveraged to both identify wasted

computations and also reveal opportunities to optimize performance and energy efficiency

of Web applications.

Our profiler is based on dynamic backward program slicing, and it works on the in-

struction and memory traces collected while a Web browser renders a Web page. The

main slicing criteria are the pixels buffer at points where it contains the final values of

pixels that are going to be put on the device display. While going backwards, the profiler

identifies instructions whose execution has any effect on the values stored in the pixels buffer.

Therefore, the instructions that do not belong to the calculated slice do not have anything to

do with what is shown to the user. As an alternative to pixels buffer, system calls could be

leveraged to define broader slicing criteria (Section A.4.3), so that the profiler determines

what instructions have any impact on the values communicated with I/O, including the

network, display monitor, and audio device.

The profiling results show that only 45% of dynamically executed instructions on average

contribute to the value of pixels in the process of rendering the Web pages in our benchmarks.

We provide details of slicing percentage in important threads of the rendering process of

the browser under test (Google Chromium). Moreover, by analyzing the the instructions

which do not belong to the pixel-based slice (i.e., 55% of all instructions), we categorize

potentially unnecessary computations and show that the most notable category is processing

of JavaScript codes.

In the remaining sections of this chapter, we first provide background on how Web

browsers render Web pages and what the potential sources of unnecessary computations

are. Next, in Section A.3, the design of the backward-slicing–based profiler is presented.

We introduce the evaluation methodology in Section A.4 and describe how we leverage the

profiler to identify unnecessary computations of different benchmarks. Then, we present

107

HTML

CSS

JavaScript

DOM

CSSOM

Render
Tree PaintingLayout Compositing

Figure A.1: Rendering pipeline of a Web browser.

and discuss the results in Section A.5. Finally, the chapter is concluded in Section A.7.

A.2 Background and Motivation

A.2.1 Rendering Pipeline of Web Browsers

For rendering a Web page, browsers follow a number of steps called the rendering

pipeline. Figure A.1 shows an overview of this pipeline, which is described below:

• First, the browser starts parsing an HTML file and generates a tree named the Document

Object Model (DOM). This tree defines the hierarchical relationship between all the

different elements available in the HTML file.

• Next, CSS files are parsed and a tree called CSS Object Model (CSSOM) is constructed.

CSS files are complementary to the HTML file and define the exact style of the different

elements in the HTML file.

• In the next step, the required JavaScript codes are executed which can arbitrarily modify

or update the object model trees.

• After running JavaScript codes, the browser merges the updated DOM and CSSOM and

generates a new tree which then gets trimmed down to only contain objects that include

visual context to the user. The resulting tree is called the Render Tree.

• Next, the exact position and size of different elements, which may be grouped in different

layers, are computed in the layout stage. Then, the required graphical commands are

generated in the paint stage, and according to the relative order of the layers computed in

108

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

C
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (s)
Loaded

Figure A.2: CPU utilization by the main thread of the tab process while browsing amazon.com.

the compositing stage, the final view of the Web page is rendered in the user’s display.

Note that the pipeline outlined above describes how a Web page is rendered during

both load time and also the time when the page is modified based on user interactions (e.g.,

opening a menu) or dynamics of the page (e.g., an animation). However, the computations

of load time are much more intensive because the whole page is rendered from the ground

up, while once it is completely loaded, changes made to the page by user interactions

or dynamics only affect a few elements of the page. To illustrate this behavior, Figure

A.2 shows the percentage of CPU utilization in a fairly short browsing session, where the

amazon.com website is loaded, the user scrolls down and up a little bit, clicks to see the next

two photos in a photo roll, and finally opens a menu. The utilization percentage corresponds

to the main thread of the tab process, in which the most critical computations, such as

calculation of styles and execution of JavaScript code, are performed. Note that compositing

is done in a separate thread (more details about the architecture of the Chromium browser

are provided in Section A.5).

A.2.2 Unnecessary Computations in Web Browsers

In the rendering pipeline of Web browsers, there may be unnecessary computations. We

categorize them into three main groups:

Unused JavaScript and CSS codes. There are various JavaScript and CSS libraries

109

Table A.1: Unused JavaScript and CSS code bytes.

Website Amazon Bing Google Maps

Only
Load

Unused bytes 955 KB 103 KB 1.9 MB
Total bytes 1.6 MB 199 KB 3.9 MB
Percentage 58% 52% 49%

Load
and

Browse

Unused bytes 882 KB 82.5 KB 2.0 MB
Total bytes 1.6 MB 206 KB 4.6 MB
Percentage 54% 40% 43%

that Web developers tend to use—such as jQuery [33], Bootstrap [21], and React [37]—in

order to reduce development time. Not all these codes, when imported, are really used,

meaning that processing them is a useless computation. Table A.1 shows the percentage

of unused JavaScript and CSS code bytes after loading three different websites–that is,

Amazon, Bing, and Google Maps–and also after browsing them for 30 seconds in a typical

way. As can be seen, about 40-60% of JavaScript and CSS codes are unused, and even

by browsing the websites, not all these codes are used. Moreover, in the case of Bing and

Google Maps, more code bytes are downloaded while browsing, which adds to the total

bytes, and may add to the number of unused bytes, as compared to the load time.

Browser design pitfalls. Web browser designers have been constantly trying to improve

the performance of Web browsers by leveraging complicated methods and algorithms.

Although the improvement in the performance of Web browsers could be easily observed

by comparing their earlier versions to their state-of-the-art ones, there are a number of

optimizations, some of which are done speculatively, that have not been fully verified to

work all the time or in the common case. For example, in the compositing algorithm of the

Chrome browser [2], multiple elements of the page are grouped together as different layers,

and to avoid repainting their contents, each layer has its own backing store/cache. However,

this is expensive in terms of memory requirements; moreover, the computations and memory

space related to the layers that are only rendered once and will not be required to be repainted

(e.g., because they are always on top of other layers or they are always invisible) are wasted.

The compositing algorithm of Chrome blindly accepts these overheads and potentially

unnecessary computations. Other examples include multi-threaded rasterization, which may

110

invalidate some pixel-based optimizations done at the early stages of the rendering pipeline

[34], and the JavaScript JIT compiler deoptimizations, which are done because of wrong

assumptions of the compiler about object types [196].

Imperceptible computations. A Web page consists of many layers, which may overlap

each other, and elements, which may never be noticed or utilized by the users. For example,

a layer that is overlapped by another layer may most likely remain invisible while the user

interacts with the Web page. Similarly, a button element that is placed at the bottom of the

page may never be clicked by the user. Therefore, the calculation of their styles and layouts,

or compilation of the JavaScript code that corresponds to their event handlers (e.g., the code

for handling the onclick event) is imperceptible to the user. Existence of Web analytics tools

that could even track user clicks and scrolls enlightens the fact that not all the elements in

the Web page have the same importance level.

A.2.3 Detection of Unnecessary Computations

A program slice contains instructions whose execution affects the values of a set of

variables at a specific point in the program execution. The pair (program point, set of

variables) is called slicing criterion [209]. Program slicing is typically done by starting

from the program point given by the slicing criterion and going backwards toward the

beginning of the program. Hence, this is called backward program slicing. Program slicing

could be done either statically or dynamically. In static program slicing, no assumption is

made on program inputs, while in the dynamic approach, slicing is done on the dynamic

instruction trace of a sample execution. Static program slicing is less precise in that it has

to make conservative assumptions on program inputs. Thus, our choice for the profiler is

dynamic program slicing.

A profiler based on dynamic backward program slicing can theoretically identify all

wasted computations mentioned in Section A.2.2. If the slicing criteria are defined in a

way to include all the “necessary” variables at exact program points, execution of whatever

111

Backward Pass

- Data Flow Analysis

- Slicing

Forward Pass

- Building CFG*

- Building CDG**

Profiler Instruction Trace

Slicing

Criteria

Statistics

* Control Flow Graph

** Control Dependence Graph

Figure A.3: Profiler design overview.

instructions that are not part of the calculated slice is unnecessary. However, these necessary

variables should be carefully specified, which may not be practical or even possible. If such

criteria intuitively cover what the user cares about—that is, visual contents shown to them

and page objects with which they interact—the computations related to processing unused

JavaScript and CSS codes, layers that are invisible, and page elements that are not important

to the user will be discovered.

In the next section, we describe our slicing-based profiler, and then in Section A.4, we

explain how slicing criteria are chosen to effectively identify unnecessary computations.

A.3 Profiler Design

The profiler implemented and used in this chapter is based on dynamic backward

program slicing. Figure A.3 shows an overview of the profiler design and how it works. The

profiler performs dynamic backward program slicing on a trace of dynamically executed

machine instructions. In other words, it does not do slicing at the C/C++ source code level;

rather, it tracks back machine-level instructions from the end of the instruction trace to the

beginning and marks each instruction as being part of the slice or not based on the slicing

criteria as it goes backwards. The slicing criteria essentially determine what the target

112

variables (i.e., memory locations) are at what points in the instruction trace. The output of

the profiler includes statistics about the calculated slice, such as distribution of instructions

of the slice among all instructions at function-level or thread-level. Note that unlike other

slicers that only focus on a specific aspect of a Web application, such as JavaScript [219],

our profiler treats the browser as a whole program rendering a page.

Traditionally, program slicers perform slicing on a program dependence graph, which

is a combination of the data dependence graph and control dependence graph [209]. In

our profiler, we construct the control dependence graph in a forward pass, as displayed in

Figure A.3. However, we do not explicitly construct a data dependence graph. As will be

explained in Section A.3.2, data dependencies are discovered through a liveness analysis

meanwhile the profiler goes backwards and performs slicing. Since the input trace contains

exact memory addresses accessed by the browser, the profiler does not suffer from the

memory aliasing problem in capturing data dependencies.

In the rest of this section, we go over the details of the forward and backward passes.

Then in Section A.4, we describe how the slicing criteria should be chosen so that the

unnecessary computations of a trace collected while a Web browser renders a Web page are

effectively identified.

A.3.1 Forward Pass

In a single forward pass, the profiler first builds a Control Flow Graph (CFG) for each

function/procedure from the trace of dynamically executed instructions. Boundaries of

functions/procedures are identified through matching call and return instructions. Note that

since the profiler works on machine-level instructions, it is necessary to build the CFGs

from the trace of dynamic instructions in that the target(s) of indirect branches could not be

found statically (i.e., from the instruction opcode). Also, all CFGs have their own specific

entry and exit nodes.

In the next step, the Control Dependence Graph (CDG) of the instructions is built. CDG

113

shows on what branches each instruction is dependent. For building the CDG, we first need

to determine the postdominators of each instruction. In a CFG, a node n postdominates

a node m if and only if every directed path from m to exit contains n. Algorithms for

computing postdominators of each node in a CFG and subsequently, computing the CDG are

not very complicated, and could be derived from basic compiler books and articles [54, 96].

Note that the calculated CDG could be stored in stable storage, so that it can be re-used

multiple times in the backward pass for different slicing criteria.

A.3.2 Backward Pass

In the backward pass, data dependence analysis and slicing are done concurrently through

liveness analysis. Conceptually, in our slicing method, there is a set of live variables, which

is updated based on two distinct factors: slicing criteria and operation of instructions. As

Figure A.3 illustrates, slicing criteria—which are pairs of (program point, set of variables)

(Section A.2.2)—are given to the backward pass analyzer of the profiler as input. When the

profiler reaches to any program point specified in a slicing criterion, it puts the corresponding

set of variables into the live set.

The second factor, based on which the live variables set may be updated, is operation of

instructions, which also determines whether or not instructions should be part of the slice. If

an instruction writes into a variable that is a member of the live variables set, that variable is

taken out of the live variables set, and variables which are read by the instruction, if any, are

put into the live variables set. Moreover, the instruction becomes part of the slice. As an

example, if the slicer reaches the pseudo-instruction c = a + b, and c is a member of

live variables set, it removes c from it, puts a and b into it, and finally puts this instruction

into the slice.

Control dependencies also play an important role in putting instructions into the slice or

not. When an instruction becomes part of the slice based on the described liveness analysis

above, all branches on which this instruction is dependent should also be put into the slice.

114

Therefore, these branches are put into a pending list, so that when the backward pass reaches

a branch in the pending list, it is put into the slice. Moreover, the way branches update the

live variables set differs from how regular instructions do so in the way described in the

previous paragraph: when a branch must become part of the slice, its condition variable is

put into the live variables set. For example, when the profiler reaches the pseudo-instruction

if (c) (c is the condition variable) which is in the pending branch list, c is put into the

live variables set, and the branch is put into the slice and removed from the pending branch

list.

In practice and at machine-level instructions, variables are, in fact, registers and memory

locations. Therefore, in a single-threaded program, the live variables set actually consists

of a live memory set and a live registers set. On the other hand, Web applications are

typically multi-threaded programs, and thus, it is required that our profiler also works for

multi-threaded programs. The profiler assumes that even for a multi-threaded program, it

is given a single instruction trace, which means that it requires that different threads are

executed sequentially during the instruction trace collection phase. This makes the design of

the profiler simpler because there is no need to handle synchronization between threads, and

data dependence of instructions of different threads through shared memory can be easily

identified by the liveness analysis described above. Finally, since the architectural context

of the CPU changes when it switches the execution between threads, the profiler needs to

keep a separate live registers set for each thread. Note that we should not have separate live

memory sets for different threads because each thread has a distinct address space for local

memory (i.e., heap and stack).

A.4 Evaluation Methodology

In this section, we utilize the proposed profiler to identify unnecessary computations

in rendering real websites. We implemented the profiler in C++ based on the descriptions

in the previous section. Our test Web browser is Google Chromium, which is an open-

115

source program [45]. For collecting instruction traces, we attach Intel’s dynamic binary

instrumentation tool, that is, Pin [32], to a specific tab of Chromium (each Chromium tab has

its own separate process). Using a Pin tool written by us, we obtain the required information

about the execution of instructions and store it in stable storage. In the rest of this section,

we first explain the details of our Pin tool. Then, we describe the benchmarks and how

slicing criteria are designated.

A.4.1 Dynamic Binary Instrumentation

Pin [32] is Intel’s dynamic binary instrumentation tool, which can inspect and even

manipulate dynamically executed instructions using only the program binary. The task of

instrumentation and inspection/manipulation could be customized through writing Pin tools.

We wrote a Pin tool that collects static and dynamic information about the executed

instructions. Static information includes the required data that could be extracted from

the instruction opcodes, such as whether an instruction is a call, return, or direct/indirect

conditional/unconditional branch, and which registers it accesses. Dynamic information

includes data that are available at runtime, such as the addresses of memory locations

accessed by an instruction, the ID of the thread where it is executed, and the system call

number if the instruction is syscall.

System calls need special attention. Pin only instruments user-level code and does not

inspect operating system instructions. System calls may change the value stored in registers

and memory, thereby affecting the procedure of our liveness analysis. In order to solve this

issue, we determined the record of all system calls that Chromium executes. We looked in

the Linux kernel manual to understand how each of these system calls manipulate memory.

For example, the syntax of sendto system call is as follows:

ssize t sendto(int sockfd, const void *buf,

size t len, int flags,

const struct sockaddr *dest addr,

116

socklen t addrlen);

When our Pin tool reaches a sendto system call, it indicates in the trace file that memory

locations pointed by buf and dest addr are read accesses. How registers are manipulated

by a system call is specified in a CPU’s ABI (Application Binary Interface). Our profiler

takes care of this issue based on the standard specified in the Intel’s x86-64 (i.e., AMD64)

ABI, which is the processor architecture used in our experiments.

A.4.2 Benchmarks

We use the Chromium browser, as was briefly mentioned earlier, to generate real-world

benchmarks. We collected four instruction trace sets from different websites: Amazon

in desktop view, Amazon in emulated mobile view, Google Maps, and Bing. We chose

these three websites because their appearance and user interface totally differ from each

other. Moreover, the desktop and mobile views of Amazon are considerably different. The

instruction traces of the first three benchmarks include the load time of the corresponding

websites (i.e., Amazon and Google Maps); that is, the trace is collected from entering the

URL to when the Web page is completely loaded. However, the last benchmark, i.e., Bing,

includes the instructions of loading the Web page and browsing it in a typical way. The

browsing is composed of several user actions: opening and closing the top right menu,

clicking on a button to roll the news pane in the bottom of the page, and typing a term in the

search bar.

In Chromium, each tab is actually a separate process composed of multiple threads.

Before starting to collect the instruction trace of a tab of Chromium, we set affinity of the

corresponding process to one, so that all the threads of that process are sequentially executed

on only one CPU core. This requirement, as explained in Section A.3.2, is imposed by our

profiler. Next, we attach our Pin tool to the tab’s process to start collecting the trace of

instructions, and we enter the URL of a website. Benchmarks are generated using Chromium

v58 that was run on an Ubuntu 14.04 desktop with 8 GB of RAM and an Intel Xeon E31230

117

CPU; note that Pin only supports Intel CPUs.

As will be explained later in this section, for the slicing criteria that we use, we need

to know the address of pixels buffer and the points in the trace at which they contain

values that are going to be put on the screen. In order to achieve this knowledge, we

studied the source code of Chromium and found the point in the code (which is inside the

RasterBufferProvider::PlaybackToMemory function) where the final value of

pixels (i.e., bitmaps) are written into a special buffer which corresponds to a tile of the

screen (tiles are typically squares of 256×256 pixels). We put a unique instruction marker,

that is, “xchg %r13w, %r13w”, in a proper point in this function. We also modified the

code of this function so that whenever Chromium executes it, the address of the tile buffer

and its size are stored in an external file. This file and also the special instruction marker are,

in fact, a set of slicing criteria provided to the profiler.

A.4.3 Choice of Slicing Criteria for Web Applications

As mentioned in Section A.2.2, in order for our profiler to effectively discover unnec-

essary computations of a Web application, slicing criteria should be carefully designated.

Ideally, slicing criteria should contain all variables at exact program points that are somehow

valuable and important to the user. Defining such criteria is a difficult task because relating

user satisfaction in all possible executions to machine-level variables may not be practical

or even possible. Therefore, we try to designate slicing criteria that closely match the ideal

case. In this work, we use two types of slicing criteria: pixels buffer and system calls.

Pixels buffer. We define our first set of slicing criteria as the values of the pixels buffer

that are shown to the user during rendering the page. The values of pixels of the display

containing the Web page are actually the endpoint result of the application computations.

Therefore, whatever that does not have any visible effect by no means—such as unused

JavaScript and CSS codes, invisible layers, and page elements located at the very end of the

page that are not shown on the first view of the Web page—will not be part of the calculated

118

slice.

System calls. System calls are, in fact, means by which a process communicates with

the outside world, including the network and display monitor. Therefore, we define our

second set of slicing criteria as the values used by any system calls. Note that the slice

computed by this set of slicing criteria must be inclusive of that of the pixel-based criteria,

and the reason that we also use such criteria is to capture important computations to the user

that do not have any visual effect, such as bank transactions through the network or audio

playback.

Both types of slicing criteria described above are browser-independent. Particularly, in

the case of pixels buffer, we only need to locate in the browser’s source code where this

buffer is filled with the final value of the pixels. In other words, how the values stored in the

pixels buffer are calculated, which may differ from one browser to another, does not affect

the way the profiler performs slicing.

For the benchmark related to a complete browsing session—that is, loading and browsing

the Web page for a while—the instructions that do not belong to the calculated slice through

either of the mentioned types of slicing criteria specify computations that were not necessary

for rendering the page in that particular session. On the other hand, such instructions for

the benchmarks that only contain loading a Web page denote either computations that are

unnecessary (similar to the complete browsing session case), or computations that would

be useful if the user started browsing the page, e.g., computations that are responsible for

preparing the state of the application for the interactions of the user with the page which do

not have any visible effect at load time (such as pre-compiling JavaScript code that would be

fired as soon as the user starts interacting with the page). Our results, however, show that the

latter item includes a very small percentage of instructions, and almost all the instructions

that do not belong to the calculated slice in the benchmarks that only contain the load time

could be treated in a similar way to the benchmark containing both loading and browsing

the page.

119

Table A.2: Slicing statistics of pixel-based approach for all instructions and important threads.

Threads

Amazon (desktop view)

Load

Amazon (mobile view)

Load

Google Maps

Load

Bing

Load + Browse

Pixels

slice

Total

instructions

Pixels

slice

Total

instructions

Pixels

slice

Total

instructions

Pixels

slice

Total

instructions

All

Main

Compositor

Rasterizer 1

Rasterizer 2

Rasterizer 3

46%

52%

34%

55%

60%

54%

6,217 M

2,173 M

1,711 M

199 M

66 M

191 M

43%

59%

35%

14%

13%

-

2,861 M

764 M

1,135 M

76 M

88 M

-

47%

61%

35%

78%

74%

-

4,238 M

1,382 M

1,698 M

32 M

29 M

-

43%

44%

34%

71%

52%

-

10,494 M

3,499 M

3,702 M

617 M

345 M

-

A.5 Results and Discussion

In this section, we present the output results of our profiler regarding doing pixel-based

slicing on the collected instruction traces from different websites. Our results show that

slicing based on either pixels buffer or system calls leads to almost the same slice. Hence,

only results of pixel-based slicing are presented and discussed.

A.5.1 Calculated Slice

Table A.2 contains the statistics of the pixel-based slicing approach. The results show

that the pixels slice is, on average, composed of 45% of dynamically executed instructions

in the four different benchmarks, which is an interestingly small percentage number. This

implies that there is a good opportunity to identify useless computations in more than 50%

of instructions. Note that in the Amazon benchmarks, the length of the trace in the mobile

view (2.9 billion instructions) is so much smaller than that of the trace in the desktop view

(6.2 billion instructions), which is because the first view of the Amazon Web page is much

simpler in mobile displays as compared to desktop displays.

For the Bing benchmark, we also performed backward slicing starting from the time

when the page was completely loaded back to the beginning time, which is composed of 1.7

billion instructions. The total slicing percentage for this experiment is 49.8%. On the other

hand, when slicing is done starting from the end of the full trace, i.e., when the browsing

session is complete, 50.6% of instructions that correspond to the load time are part of the

calculated slice. This implies that browsing the Web page only makes about 1% more

120

instructions of load time become useful.

Table A.2 also includes statistics of three important thread types: main thread, compos-

itor, and rasterizers. The main thread is mainly responsible for processing HTML, CSS,

and JavaScript codes. The compositor thread handles the order of the layers containing

the elements of the Web page and is also in charge of handling user inputs and animations.

User inputs that do not cause any major change to the rendered page, such as scrolling,

are handled in the compositor thread, but for other inputs, such as a mouse click to open

a menu, the compositor thread notifies the main thread to render the changes. Moreover,

the compositor thread also notifies the main thread when a new animation frame must be

rendered. Chromium might launch a different number of rasterizer threads for each website.

These light-weight threads translate graphical objects (e.g., lines and circles) into pixels.

In our benchmarks, Amazon with desktop view had three rasterizer threads, while other

benchmarks had only two rasterizers.

The slicing percentage of the compositor thread is almost the same across all the

benchmarks, while that of the main and rasterizer threads varies and is website-specific.

This is reasonable because HTML, CSS, and JavaScript codes of different websites, which

are processed by the main thread, are not the same, and what will finally be rasterized and

displayed on the screen completely depends on the website content. On the other hand, the

responsibilities of the compositor thread are not dependent on the details of the website

content. Calculating the correct order of the layers and determining whether or not they

are visible; handling user inputs and forwarding them to the main thread if necessary; and

notifying the main thread to render a new animation frame are generic, website-independent

tasks performed by the compositor thread.

In the Amazon benchmark with mobile view, the slicing percentage of the rasterizer

threads is very small. Note that for this benchmark, we emulated a mobile display using the

Developers Tool of Chromium. The emulated display has a 360×640 resolution, which does

not actually contain a large number of pixels. Therefore, these threads’ effort to rasterize the

121

content seems to be not quite useful as it is reflected on a few pixels.

The slicing percentage of the compositor thread in all the benchmarks is also small. As

mentioned in Section A.2.2, in the compositing algorithm of Chrome/Chromium, a backing

store/cache is specified to each layer, either when the layer is visible or not, so that if the

order of layers changes and some layers become visible, the correct content is displayed

quickly. While this idea may bring performance, it may also lead to useless computations

in case of the backing stores whose contents are never used because some layers are fully

or partially overlapped during the whole browsing session. The low slicing percentage of

the compositor thread indicates that more smart compositing algorithms could provide both

performance and energy efficiency.

Figure A.4 shows how the slicing percentage changes in the backward pass for the

pixel-based slicing criteria on different benchmarks. The x-axis in these charts shows the

progress in the backward pass; therefore, the starting point on the x-axis corresponds to

the time when the Web page is loaded or the browsing session is done, and the last point is

related to the time when the Web page URL is entered. The y-axis shows the percentage

of instructions of the slice for a specific point on the x-axis (aggregated from the starting

point) in the instructions analyzed up to that point. The results are shown both for the

instructions of all threads and also for the instructions of only the main thread. We can

see that the changes in the overall slicing percentage of all threads in the backward pass is

almost constant in large intervals. This implies that the distribution of instructions of the

slices among all instructions is fairly even overall. However, the range of changes in the

slicing percentage of the main thread is more in contrast to all threads. This means that

computation regions that do or do not contribute to the pixel values are more conspicuous

in the main thread as compared to other threads. It is also interesting to notice that for the

main thread in the Bing benchmark (Figure A.4h), there are some points where the slicing

percentage suddenly increases (i.e., x = 400, x = 1100, and x = 1800), and then there is a

gradual decrease in it. These points correspond to the user interactions that make the main

122

thread render the imposed changes, such as rolling the news pane. Moreover, near the end

of the chart (i.e., x = 3000), there is another considerable increase in the slicing percentage,

which is related to loading the page. All in all, whenever rendering or re-rendering happens,

the overall slicing percentage increases in that it leads to changes in the pixel values.

(a) Loading Amazon (desktop view): all threads (b) Loading Amazon (desktop view): main thread

(c) Loading Amazon (mobile view): all threads (d) Loading Amazon (mobile view): main thread

(e) Loading Google Maps: all threads (f) Loading Google Maps: main thread

(g) Loading and browsing Bing: all threads (h) Loading and browsing Bing: main thread

Figure A.4: Changes of slicing percentage over the backward pass. x = 0 indicates the Web page is
loaded or the browsing session is done, and the last point on the x-axis corresponds to entering the
Web page URL.

123

A.5.2 Categorization of Unnecessary Computations

Now that the slice of instructions that determine the value of pixels is calculated, we

categorize unnecessary computations by analyzing the instructions that are not part of the

calculated slice (~55% of all instructions). We closely examined the functions that each

dynamically executed instruction belongs to using the symbol table stored in the application

binary and used the namespace of the functions as the basis for categorization.

The categories of potentially unnecessary instructions by this namespace analysis are:

JavaScript, Debugging, Inter-Process Communication (IPC), Multi-threading, Compositing,

Graphics, CSS, and Other. Note that when compiling the Chromium source code, all debug-

ging options were turned off, and the Debugging category reflects the default debugging

mechanisms built in Chromium. IPC corresponds to the communication of the tab process

with browser’s main process. In Chromium, there is a single main process which manages

the views of different tabs and other things such as browser extensions. Each process in

Chromium is multi-threaded, and the Multi-threading category mainly consists of PThread

code, which enables thread communication and synchronization. The Compositing category

relates to the operations of the compositor thread, which is also the last stage shown in

Figure A.1. The Graphics category basically corresponds to the Paint stage of the rendering

pipeline (Figure A.1), and the CSS category is related to style and layout calculation in the

rendering pipeline. The Other category mainly consists of event scheduling; note that all

threads in Chromium are event-driven in nature, and event scheduling deals with managing

an event queue, which holds events that should be executed.

Distribution of the categories of potentially unnecessary instructions through the names-

pace analysis is illustrated in Figure A.5. Note that through this methodology, not all

instructions could be categorized because not all functions have a specific namespace. The

results shown in this figure include 74%, 59%, 53%, and 61% of the Amazon in desktop

view, Amazon in mobile view, Google Maps, and Bing benchmarks, respectively.

Figure A.5 shows that most of the potentially unnecessary instructions belong to the first

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amazon
(desktop view)

Amazon
(mobile view)

Google Maps Bing

R
el

at
iv

e
Sh

ar
e

Other

CSS

Graphics

Compositing

Multi-threading

IPC

Debugging

JavaScript

Figure A.5: Categorization of potentially unnecessary computations and their distribution through
analysis of instructions that do not belong to the pixel-based slice.

three categories, which are JavaScript, Debugging, and IPC. Presence of JavaScript in this

list is not surprising. Also, it is reasonable that debugging codes are detected as unnecessary

in that their execution has nothing to do with what is displayed on the screen. However,

the IPC category needs more inspection because execution of instructions belonging to this

category might have useful effect on the browser’s main process; this is left as future work.

It is interesting that in the Bing benchmark, which includes both loading and browsing the

page, the JavaScript category has a smaller share as compared to other benchmarks, which

only include loading the page. This implies that, generally, loading is the most intensive

time in terms of processing JavaScript codes, not all of which are useful in a browsing

session. Therefore, deferring processing of JavaScript codes to a time when they are really

needed could provide better performance in Web applications. It is also worth mentioning

that because of the noticeable presence of the Multi-threading category in Figure A.5, and

also because the share of the Other category, which mainly has to do with event scheduling,

increases by browsing the page, assignment of tasks to different threads and scheduling

mechanism of Chromium need reconsideration.

125

A.6 Related Work

A.6.1 Workload Characterization of Web Applications

Prior work on characterization of Web applications mainly focused on JavaScript [180,

182, 191]. In contrast, in this work, we essentially characterize the whole JavaScript and

rendering engines and determine computations that are useful for users. [180] and [182]

characterize dynamic behavior of JavaScript workloads in terms of functions and objects,

events and event handlers, and memory allocation. [180] concludes that JavaScript behavior

of real Web applications and available benchmarks differ, and the benchmarks are not

representative of real-world websites. [182] points out common misunderstandings of the

behavior of JavaScript programs mainly caused by the available benchmarks. As a result,

benchmarks inspired by real user actions have been developed [42, 181].

A.6.2 Performance Optimization of Web Applications

Many techniques have been proposed in prior work to improve performance of Web

applications targeting various components of them. These techniques mainly enhance the

JavaScript engine or improve the load time of Web pages.

JavaScript. Much prior work has focused on improving the JavaScript JIT compiler and

execution engine. [53] enhances object type prediction of a JavaScript compiler by decou-

pling prototypes and method bindings from the object type. [124] uses server-side profiling

to reduce deoptimizations done at client-side JavaScript engines. WebAssembly [107] is

low-level, high-performance code compiled from C/C++ which could be utilized in Web

applications through specific JavaScript APIs. Prior work also tried to bring parallelization

to the JavaScript engine. [154] proposes offloading runtime checks of the JavaScript JIT

compiler to a separate thread. [153] tries to parallelize loops in compute-intensive JavaScript

applications.

Web page load time. The load time of Web pages has also received lots of attention in

126

prior work due to its high impact on user experience. [148] proposes a coupled design of a

server, which decomposes Web pages into sub pages on-the-fly, and a Web browser, that

processes the sub pages in parallel. [146] leverages a machine learning model to predict

future Web accesses of a user and prefetch the Web content. [173] decreases the load time

of Web pages by caching and re-using JavaScript objects across browsing sessions. [72] and

[216] dynamically reprioritize the content of a Web page to improve the load time of the

Web page and sooner deliver resources that are critical to user experience.

A.6.3 Energy-efficient Mobile Web Applications

Energy efficiency of Web applications is a critical matter in mobile devices such as

smartphones. Prior work mainly focused on frequency/voltage scaling of heterogeneous mul-

tiprocessors [177, 193, 226, 227, 229]. In [227], statistical models are achieved to estimate

the time and energy consumption of loading Web pages based on their characteristics—such

as, number of HTML tags, number of CSS rules, and content size. Based on these models,

proper frequency/voltage of Arm big.LITTLE cores [19] are found after parsing the Web

page. [177] characterizes the energy consumed in different processes and threads of a Web

browser and proposes several power management policies on heterogeneous multiprocessor

platforms. [226] and [229] propose energy-efficient schedulers of a heterogeneous mobile

architecture based on the QoS requirements of users, which is, respectively, determined by

automatic reasoning based on intensity and latency, and two novel CSS language extensions

provided for Web developers.

A.6.4 Architectural Support for Web Applications

Due to widespread use of Web applications, prior work also proposed specialized

hardware and architectures for them. [228] identifies fine-grained parallelism in applying

styles to HTML elements and proposes a specialized hardware unit for it. It also proposes a

specific cache for the document object model tree since its content is heavily re-used while

127

rendering a Web page. In [76], a specialized prefetcher is designed that takes advantage of

long latency cache misses to bring to cache data and instructions required for future events

that are in the event queue. [79] accelerates JavaScript object accesses through a hardware

table similar to a branch target buffer.

A.7 Conclusion

The performance of today’s Web applications is often unsatisfactory to users, and in

this chapter, we argued one of the reasons for it is that there are unnecessary computations

occurring in Web applications which could be avoided or scheduled in a better way. We

designed a profiler that effectively identifies computations that are important to the user. To

the best of our knowledge, this is the first work that quantitatively characterizes unnecessary

computations of Web applications. The profiler detects instructions contributing to what is

shown to the user on the device display during rendering a Web page. We showed that only

45% of dynamically executed instructions in the rendering process of the browser under

test are useful for calculating the value of the pixels displayed to the user on average. By

analyzing the rest of the instructions, we revealed inefficiencies of the Web browser (e.g.,

the compositing algorithm) and provided a categorization of computations that are either

completely wasted or could be deferred to a more appropriate time (e.g., compiling a piece

of JavaScript code when it is really needed), thereby providing opportunities for higher

performance or reduced energy consumption.

128

BIBLIOGRAPHY

129

BIBLIOGRAPHY

[1] Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges
& Call for Action. https://portal.etsi.org/NFV/NFV_White_Paper.
pdf, 2012.

[2] Compositing in Blink/Webcore. https://bit.ly/3g5orcv, 2014.

[3] Network Functions Virtualization. http://www.hp.com/hpinfo/
newsroom/press_kits/2014/MWC/White_Paper_NFV.pdf, 2014.

[4] Integrating SDN into the Data Center. https://www.juniper.net/assets/
es/es/local/pdf/whitepapers/2000542-en.pdf, 2015.

[5] Using Request Idle Callback. https://tinyurl.com/ybyseoo5, 2015.

[6] Intel 64 and IA-32 Architectures Software Developer’s Manual, September 2016.
Volume 3A: System programming guide, part 2.

[7] The need for mobile speed (DoubleClick by Google). https://bit.ly/
3peqkb4, 2016.

[8] IEEE 802.3bs-2017: 200 Gbps and 400 Gbps Ethernet. http://www.ieee802.
org/3/bs/, 2017.

[9] Powering 8K Video for Next-Generation IP Broadcasting. https://www.
mellanox.com/related-docs/whitepapers/WP_Mellanox_VMA.
pdf, 2017.

[10] High Performance Computing on AWS Redefines What is Possible. https://d1.
awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf, 2018.

[11] Reaching the Summit with InifiBand. https://www.mellanox.com/
related-docs/solutions/hpc/CS_ORNL_Summit_InfiniBand.
pdf, 2018.

[12] Cloud-Ready High Performance Computing. https://www.suse.
com/media/white-paper/cloud_ready_high_performance_
computing_taking_hpc_to_the_clouds_wp.pdf, 2019.

[13] Intel 64 and IA-32 Architectures Software Developer’s Manual, October 2019. Vol-
ume 2B: Instruction Set Reference.

130

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://bit.ly/3g5orcv
http://www.hp.com/hpinfo/newsroom/press_kits/2014/MWC/White_Paper_NFV.pdf
http://www.hp.com/hpinfo/newsroom/press_kits/2014/MWC/White_Paper_NFV.pdf
https://www.juniper.net/assets/es/es/local/pdf/whitepapers/2000542-en.pdf
https://www.juniper.net/assets/es/es/local/pdf/whitepapers/2000542-en.pdf
https://tinyurl.com/ybyseoo5
https://bit.ly/3peqkb4
https://bit.ly/3peqkb4
http://www.ieee802.org/3/bs/
http://www.ieee802.org/3/bs/
https://www.mellanox.com/related-docs/whitepapers/WP_Mellanox_VMA.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Mellanox_VMA.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_Mellanox_VMA.pdf
https://d1.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://d1.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://www.mellanox.com/related-docs/solutions/hpc/CS_ORNL_Summit_InfiniBand.pdf
https://www.mellanox.com/related-docs/solutions/hpc/CS_ORNL_Summit_InfiniBand.pdf
https://www.mellanox.com/related-docs/solutions/hpc/CS_ORNL_Summit_InfiniBand.pdf
https://www.suse.com/media/white-paper/cloud_ready_high_performance_computing_taking_hpc_to_the_clouds_wp.pdf
https://www.suse.com/media/white-paper/cloud_ready_high_performance_computing_taking_hpc_to_the_clouds_wp.pdf
https://www.suse.com/media/white-paper/cloud_ready_high_performance_computing_taking_hpc_to_the_clouds_wp.pdf

[14] Intel Data Streaming Accelerator (DSA). https://01.org/blogs/2019/
introducing-intel-data-streaming-accelerator, 2019.

[15] The Future of HPC Cloud Computing. https://services.google.com/
fh/files/misc/gcp_hyperion_tech_spotlight_aug_2019.pdf,
2019.

[16] Cloud-Native Networking for a 5G Era. https://www.abiresearch.com/
blogs/2020/04/06/cloud-native-networking-5g-era/, 2020.

[17] Measure Performance with the RAIL Model. https://web.dev/rail/, 2020.

[18] Arm AMBA AXI and ACE Protocol Specification. https://developer.arm.
com/documentation/ihi0022/e/ACE-Protocol-Specification,
2021.

[19] Arm big.LITTLE Technology. https://www.arm.com/why-arm/
technologies/big-little, 2021.

[20] Arm Cache Stashing. https://bit.ly/3e3a3Ak, 2021.

[21] Bootstrap. http://getbootstrap.com/, 2021.

[22] Cache Coherent Interconnect for Accelerators (CCIX). https://www.
ccixconsortium.com/, 2021.

[23] Compute Express Link (CXL). https://www.computeexpresslink.org/,
2021.

[24] Data Plane Development Kit (DPDK). https://www.dpdk.org/, 2021.

[25] Firefox’s Hardware Acceleration. https://support.mozilla.org/
en-US/kb/performance-settings, 2021.

[26] GPU Accelerated Compositing in Chrome. https://tinyurl.com/no64sem,
2021.

[27] Intel Data Direct I/O (DDIO) Technology. https://www.intel.com/
content/www/us/en/io/data-direct-i-o-technology.html/,
2021.

[28] Intel Intelligent Storage Acceleration Library (ISA-L). https://software.
intel.com/en-us/isa-l, 2021.

[29] Intel Optane Technology. http://www.intel.com/optane/, 2021.

[30] Intel QuickPath Interconnect (QPI). https://www.intel.
com/content/www/us/en/io/quickpath-technology/
quickpath-technology-general.html, 2021.

131

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://services.google.com/fh/files/misc/gcp_hyperion_tech_spotlight_aug_2019.pdf
https://services.google.com/fh/files/misc/gcp_hyperion_tech_spotlight_aug_2019.pdf
https://www.abiresearch.com/blogs/2020/04/06/cloud-native-networking-5g-era/
https://www.abiresearch.com/blogs/2020/04/06/cloud-native-networking-5g-era/
https://web.dev/rail/
https://developer.arm.com/documentation/ihi0022/e/ACE-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/ACE-Protocol-Specification
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little
https://bit.ly/3e3a3Ak
http://getbootstrap.com/
https://www.ccixconsortium.com/
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.dpdk.org/
https://support.mozilla.org/en-US/kb/performance-settings
https://support.mozilla.org/en-US/kb/performance-settings
https://tinyurl.com/no64sem
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html/
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html/
https://software.intel.com/en-us/isa-l
https://software.intel.com/en-us/isa-l
http://www.intel.com/optane/
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html

[31] Intel Ultra Path Interconnect (UPI). https://software.
intel.com/content/www/us/en/develop/articles/
intel-xeon-processor-scalable-family-technical-overview.
html, 2021.

[32] Intel’s Pin. https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool, 2021.

[33] jQuery. https://jquery.com/, 2021.

[34] Multi-threaded Rasterization in Chrome. https://tinyurl.com/yaksfwz8,
2021.

[35] Open vSwitch with DPDK. http://docs.openvswitch.org/en/latest/
intro/install/dpdk/, 2021.

[36] Pktgen: Traffic Generator Powered by DPDK. http://git.dpdk.org/apps/
pktgen-dpdk/, 2021.

[37] React. https://reactjs.org/, 2021.

[38] Samsung SmartSSD Computational Storage Drive. https://samsungatfirst.
com/smartssd/, 2021.

[39] Samsung Z-SSD. https://www.samsung.com/semiconductor/ssd/
z-ssd/, 2021.

[40] Scaling in the Linux Networking Stack. https://www.kernel.org/doc/
Documentation/networking/scaling.txt, 2021.

[41] Speculative Parsing. https://tinyurl.com/yxta9zyu, 2021.

[42] Speedometer 2.0. https://browserbench.org/Speedometer2.0/,
2021.

[43] Storage Performance Development Kit (SPDK). https://spdk.io/, 2021.

[44] T6 Crypto Offload. https://www.chelsio.com/crypto-offload/,
2021.

[45] The Chromium Web Browser. https://www.chromium.org/, 2021.

[46] The Geekbench Benchmark Suite. https://www.geekbench.com/, 2021.

[47] The Go Programming Language. https://golang.org/, 2021.

[48] urdma: User-space Software RDMA. https://github.com/zrlio/urdma/,
2021.

[49] Vue.js: The Progressive JavaScript Framework. https://vuejs.org/, 2021.

132

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://jquery.com/
https://tinyurl.com/yaksfwz8
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://git.dpdk.org/apps/pktgen-dpdk/
http://git.dpdk.org/apps/pktgen-dpdk/
https://reactjs.org/
https://samsungatfirst.com/smartssd/
https://samsungatfirst.com/smartssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://tinyurl.com/yxta9zyu
https://browserbench.org/Speedometer2.0/
https://spdk.io/
https://www.chelsio.com/crypto-offload/
https://www.chromium.org/
https://www.geekbench.com/
https://golang.org/
https://github.com/zrlio/urdma/
https://vuejs.org/

[50] Webpack: Build System and Module Bundler. https://webpack.js.org/,
2021.

[51] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-Transparent Page
Management for Two-Tiered Main Memory. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, page 631–644, New York, NY, USA, 2017.
Association for Computing Machinery.

[52] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote Memory in the Age of Fast Networks, page 121–127. Associa-
tion for Computing Machinery, New York, NY, USA, 2017.

[53] Wonsun Ahn, Jiho Choi, Thomas Shull, Marı́a J Garzarán, and Josep Torrellas. Im-
proving JavaScript Performance by Deconstructing the Type System. ACM SIGPLAN
Notices, 49(6):496–507, 2014.

[54] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[55] Sam Ainsworth and Timothy M. Jones. An Event-Triggered Programmable Prefetcher
for Irregular Workloads. In Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’18, page 578–592, New York, NY, USA, 2018. Association for Computing
Machinery.

[56] Alaa R. Alameldeen and David A. Wood. IPC Considered Harmful for Multiprocessor
Workloads. IEEE Micro, 26(4):8–17, July 2006.

[57] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan. Memory Hierarchy for Web
Search. In 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 643–656, Feb 2018.

[58] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley, and
Parthasarathy Ranganathan. AsmDB: Understanding and Mitigating Front-end Stalls
in Warehouse-scale Computers. In Proceedings of the 46th International Symposium
on Computer Architecture, ISCA ’19, pages 462–473, New York, NY, USA, 2019.
ACM.

[59] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. Evaluation of Hardware Data Prefetchers on Server Processors.
ACM Comput. Surv., 52(3), June 2019.

[60] Tom Barbette, Georgios P. Katsikas, Gerald Q. Maguire, and Dejan Kostić. RSS++:
Load and State-Aware Receive Side Scaling. In Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies, CoNEXT ’19,
page 318–333, New York, NY, USA, 2019. Association for Computing Machinery.

133

https://webpack.js.org/

[61] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack
of the Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017.

[62] Luiz André Barroso and Urs Hölzle. The Case for Energy-Proportional Computing.
Computer, 40(12):33–37, December 2007.

[63] Andrew Beaumont-Smith and Cheng-Chew Lim. Parallel Prefix Adder Design. In
Proceedings of the 15th IEEE Symposium on Computer Arithmetic, ARITH ’01, page
218, USA, 2001. IEEE Computer Society.

[64] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 49–65, Broomfield, CO, October 2014.
USENIX Association.

[65] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
and et al. The Gem5 Simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August
2011.

[66] Nathan L. Binkert, Lisa R. Hsu, Ali G. Saidi, Ronald G. Dreslinski, Andrew L.
Schultz, and Steven K. Reinhardt. Performance Analysis of System Overheads in
TCP/IP Workloads. In Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’05, pages 218–230, Washington,
DC, USA, 2005. IEEE Computer Society.

[67] Nathan L. Binkert, Ali G. Saidi, and Steven K. Reinhardt. Integrated Network
Interfaces for High-bandwidth TCP/IP. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XII, pages 315–324, New York, NY, USA, 2006. ACM.

[68] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zama-
nian. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow.,
9(7):528–539, March 2016.

[69] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[70] Anne Bracy, Kshitij Doshi, and Quinn Jacobson. Disintermediated Active Communi-
cation. IEEE Computer Architecture Letters, 5(2):15–15, 2006.

[71] Richard P Brent and Hsiang T Kung. A Regular Layout for Parallel Adders. IEEE
transactions on Computers, (3):260–264, 1982.

134

[72] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. Klotski: Reprioritizing Web Content to Improve User Experience on Mobile
Devices. In 12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 439–453, Oakland, CA, May 2015. USENIX Association.

[73] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. In
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS IV, page 40–52, New
York, NY, USA, 1991. Association for Computing Machinery.

[74] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods,
Sitaram Lanka, Derek Chiou, and Doug Burger. A Cloud-Scale Acceleration Architec-
ture. In The 49th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-49. IEEE Press, 2016.

[75] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Disambiguation
of Speculative Threads in Multiprocessors. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture, ISCA ’06, pages 227–238,
Washington, DC, USA, 2006. IEEE Computer Society.

[76] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. Accelerating Asynchronous
Programs through Event Sneak Peek. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 642–654, 2015.

[77] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patterson.
RAID: High-Performance, Reliable Secondary Storage. ACM Computing Surveys
(CSUR), 26(2):145–185, 1994.

[78] Shenghsun Cho, Amoghavarsha Suresh, Tapti Palit, Michael Ferdman, and Nima
Honarmand. Taming the Killer Microsecond. In Proceedings of the 51st An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-51, page
627–640. IEEE Press, 2018.

[79] Jiho Choi, Thomas Shull, Maria J Garzaran, and Josep Torrellas. Shortcut: Archi-
tectural Support for Fast Object Access in Scripting Languages. ACM SIGARCH
Computer Architecture News, 45(2):494–506, 2017.

[80] Shihabur Rahman Chowdhury, Mohammad A Salahuddin, Noura Limam, and Raouf
Boutaba. Re-Architecting NFV Ecosystem with Microservices: State of the Art and
Research Challenges. IEEE Network, 33(3):168–176, 2019.

[81] Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and Sungjin Lee. LightStore:
Software-defined Network-attached Key-value Drives. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’19, pages 939–953, New York, NY, USA,
2019. ACM.

135

[82] Jaewoong Chung and Karin Strauss. User-Level Interrupt Mechanism for Multi-Core
Architectures, August 28 2012. US Patent 8,255,603.

[83] Travis Craig. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap.
Technical report, 1993.

[84] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. RPCValet: NI-Driven
Tail-Aware Balancing of µs-Scale RPCs. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 35–48, New York, NY, USA, 2019. ACM.

[85] William James Dally and Brian Patrick Towles. Principles and Practices of Intercon-
nection Networks. Elsevier, 2004.

[86] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Raksha: A Flexible Infor-
mation Flow Architecture for Software Security. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, page 482–493, New
York, NY, USA, 2007. Association for Computing Machinery.

[87] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta,
Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow, James Alexan-
der Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc de Kruijf,
Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi, Srinivas Krishnan,
Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vahdat. Andromeda: Per-
formance, Isolation, and Velocity at Scale in Cloud Network Virtualization. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 373–387, Renton, WA, April 2018. USENIX Association.

[88] Gautham K. Dorai and Donald Yeung. Transparent Threads: Resource Sharing in
SMT Processors for High Single-Thread Performance. In Proceedings of the 2002
International Conference on Parallel Architectures and Compilation Techniques,
PACT ’02, page 30, USA, 2002. IEEE Computer Society.

[89] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. HIP: Hybrid
Interrupt-Polling for the Network Interface. SIGOPS Oper. Syst. Rev., 35(4):50–60,
October 2001.

[90] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. Unlocking
Energy. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages
393–406, Denver, CO, June 2016. USENIX Association.

[91] Babak Falsafi and Thomas F Wenisch. A Primer on Hardware Prefetching. Synthesis
Lectures on Computer Architecture, 9(1):1–67, 2014.

[92] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic Routing
Encapsulation (GRE). Technical report, RFC 2784, March, 2000.

136

[93] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, and Dejan Kostić. Make the
Most out of Last Level Cache in Intel Processors. In Proceedings of the Fourteenth
EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019. Association for
Computing Machinery.

[94] H. Fatih Ugurdag and Onur Baskirt. Fast Parallel Prefix Logic Circuits for n2n
Round-Robin Arbitration. Microelectron. J., 43(8):573–581, August 2012.

[95] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads
on Modern Hardware. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XVII, pages 37–48, New York, NY, USA, 2012. ACM.

[96] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence
Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[97] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure Accelerated Network-
ing: SmartNICs in the Public Cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 51–66, Renton, WA, April
2018. USENIX Association.

[98] Brad Fitzpatrick. Distributed Caching with Memcached. Linux journal, 124, 2004.

[99] Sheila Frankel, R Glenn, and S Kelly. The AES-CBC Cipher Algorithm and Its Use
with IPsec. 2003.

[100] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan
Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and
Christina Delimitrou. An Open-Source Benchmark Suite for Microservices and Their
Hardware-Software Implications for Cloud Edge Systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 3–18, New York, NY, USA,
2019. Association for Computing Machinery.

[101] Tanmay Gangwani, Adam Morrison, and Josep Torrellas. CASPAR: Breaking Serial-
ization in Lock-Free Multicore Synchronization. In Proceedings of the Twenty-First

137

International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, pages 789–804, New York, NY, USA, 2016. ACM.

[102] Younghwan Go, Muhammad Jamshed, YoungGyoun Moon, Changho Hwang, and
KyoungSoo Park. APUNet: Revitalizing GPU as Packet Processing Accelerator.
In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation, NSDI’17, page 83–96, USA, 2017. USENIX Association.

[103] Hossein Golestani, Scott Mahlke, and Satish Narayanasamy. Characterization of
Unnecessary Computations in Web Applications. In 2019 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages 11–21,
2019.

[104] Hossein Golestani, Amirhossein Mirhosseini, and Thomas F. Wenisch. Software Data
Planes: You Can’t Always Spin to Win. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC ’19, page 337–350, New York, NY, USA, 2019. Association
for Computing Machinery.

[105] Joseph L. Greathouse, Hongyi Xin, Yixin Luo, and Todd Austin. A Case for Unlim-
ited Watchpoints. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XVII, pages 159–172, New York, NY, USA, 2012. ACM.

[106] Pankaj Gupta and Nick McKeown. Designing and Implementing a Fast Crossbar
Scheduler. IEEE Micro, 19(1):20–28, January 1999.

[107] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the Web up to
Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 185–200, 2017.

[108] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: A GPU-
Accelerated Software Router. In Proceedings of the ACM SIGCOMM 2010 Confer-
ence, SIGCOMM ’10, page 195–206, New York, NY, USA, 2010. Association for
Computing Machinery.

[109] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell, Michael L.
Scott, Kai Shen, and Mike Marty. Hodor: Intra-Process Isolation for High-Throughput
Data Plane Libraries. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 489–504, Renton, WA, July 2019. USENIX Association.

[110] Wanja Hofer, Daniel Lohmann, and Wolfgang Schroder-Preikschat. Sleepy Sloth:
Threads as Interrupts as Threads. In Proceedings of the 2011 IEEE 32nd Real-Time
Systems Symposium, RTSS ’11, page 67–77, USA, 2011. IEEE Computer Society.

[111] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. PASTE: A
Network Programming Interface for Non-Volatile Main Memory. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), pages
17–33, Renton, WA, April 2018. USENIX Association.

138

[112] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct Cache Access for High Band-
width Network I/O. In Proceedings of the 32Nd Annual International Symposium on
Computer Architecture, ISCA ’05, pages 50–59, Washington, DC, USA, 2005. IEEE
Computer Society.

[113] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. mTCP: a Highly Scalable User-level TCP
Stack for Multicore Systems. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 489–502, Seattle, WA, 2014. USENIX
Association.

[114] Xiaowei Jiang, Yan Solihin, Li Zhao, and Ravishankar Iyer. Architecture Support for
Improving Bulk Memory Copying and Initialization Performance. In Proceedings of
the 2009 18th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’09, pages 169–180, Washington, DC, USA, 2009. IEEE Computer
Society.

[115] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières,
and Christos Kozyrakis. Shinjuku: Preemptive Scheduling for µsecond-scale Tail La-
tency. In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 345–360, Boston, MA, February 2019. USENIX Association.

[116] Alain Kägi, Doug Burger, and James R. Goodman. Efficient Synchronization: Let
Them Eat QOLB. In Proceedings of the 24th Annual International Symposium
on Computer Architecture, ISCA ’97, page 170–180, New York, NY, USA, 1997.
Association for Computing Machinery.

[117] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be
General and Fast. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 1–16, Boston, MA, February 2019. USENIX
Association.

[118] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guidelines for
High Performance RDMA Systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, Denver, CO, June 2016. USENIX Association.

[119] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 185–201, Savannah, GA, November 2016. USENIX Association.

[120] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a Warehouse-scale Computer. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 158–169, New York, NY, USA, 2015. ACM.

139

[121] Harshad Kasture and Daniel Sanchez. Ubik: Efficient Cache Sharing with Strict Qos
for Latency-critical Workloads. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, pages 729–742, New York, NY, USA, 2014. ACM.

[122] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald
Q. Maguire Jr. Metron: NFV Service Chains at the True Speed of the Underlying
Hardware. In 15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18), pages 171–186, Renton, WA, April 2018. USENIX Association.

[123] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and Arvind
Krishnamurthy. High Performance Packet Processing with FlexNIC. In Proceedings
of the Twenty-First International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’16, page 67–81, New York, NY,
USA, 2016. Association for Computing Machinery.

[124] Madhukar N Kedlaya, Behnam Robatmili, and Ben Hardekopf. Server-Side Type
Profiling for Optimizing Client-Side JavaScript Engines. ACM SIGPLAN Notices,
51(2):140–153, 2015.

[125] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Shachar
Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. FreeFlow: Software-
based Virtual RDMA Networking for Containerized Clouds. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 19), pages 113–126,
Boston, MA, February 2019. USENIX Association.

[126] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDirect: A User-space
I/O Framework for Application-specific Optimization on NVMe SSDs. In Proceed-
ings of the 8th USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’16, pages 41–45, Berkeley, CA, USA, 2016. USENIX Association.

[127] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex: Remote Flash ≈
Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’17, pages 345–359, New York, NY, USA, 2017. ACM.

[128] Maciek Konstantynowicz, Patrick Lu, and Shrikant M Shah. Benchmarking and
Analysis of Software Data Planes, 2017.

[129] Christos Kozyrakis, Aman Kansal, Sriram Sankar, and Kushagra Vaid. Server
Engineering Insights for Large-Scale Online Services. IEEE Micro, 30(4):8–19, July
2010.

[130] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. Ingens: Huge Page Support for the OS and Hypervisor. SIGOPS Oper. Syst.
Rev., 51(1):83–93, September 2017.

140

[131] Alexey Lavrov and David Wentzlaff. HyperTRIO: Hyper-Tenant Translation of I/O
Addresses. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 487–500, 2020.

[132] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. ClickNP: Highly Flexible and
High Performance Network Processing with Reconfigurable Hardware. In Proceed-
ings of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, page 1–14, New
York, NY, USA, 2016. Association for Computing Machinery.

[133] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh
Badam. LeapIO: Efficient and Portable Virtual NVMe Storage on ARM SoCs. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’20, page 591–605,
New York, NY, USA, 2020. Association for Computing Machinery.

[134] J. Li and B. Li. Erasure Coding for Cloud Storage Systems: A Survey. Tsinghua
Science and Technology, 18(3):259–272, June 2013.

[135] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC ’14, pages 9:1–9:14, New York,
NY, USA, 2014. ACM.

[136] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, page
469–480, New York, NY, USA, 2009. Association for Computing Machinery.

[137] Tong Li, Alvin R. Lebeck, and Daniel J. Sorin. Spin Detection Hardware for Im-
proved Management of Multithreaded Systems. IEEE Trans. Parallel Distrib. Syst.,
17(6):508–521, June 2006.

[138] Guangdeng Liao and Laxmi Bhuyan. Performance Measurement of an Integrated
NIC Architecture with 10GbE. In Proceedings of the 2009 17th IEEE Symposium on
High Performance Interconnects, HOTI ’09, pages 52–59, Washington, DC, USA,
2009. IEEE Computer Society.

[139] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA: A
Holistic Approach to Fast In-Memory Key-Value Storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 14), pages 429–444,
Seattle, WA, 2014. USENIX Association.

[140] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. Disaggregated Memory for Expansion and
Sharing in Blade Servers. In Proceedings of the 36th Annual International Symposium

141

on Computer Architecture, ISCA ’09, page 267–278, New York, NY, USA, 2009.
Association for Computing Machinery.

[141] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F.
Wenisch. Thin Servers with Smart Pipes: Designing SoC Accelerators for Mem-
cached. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 36–47, New York, NY, USA, 2013. ACM.

[142] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan
Gupta. Offloading Distributed Applications onto SmartNICs using iPipe. In Proceed-
ings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19,
pages 318–333, New York, NY, USA, 2019. ACM.

[143] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos
Kozyrakis. Improving Resource Efficiency at Scale with Heracles. ACM Trans.
Comput. Syst., 34(2):6:1–6:33, May 2016.

[144] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller.
Remote Core Locking: Migrating Critical-Section Execution to Improve the Perfor-
mance of Multithreaded Applications. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 65–76, Boston, MA, 2012.
USENIX.

[145] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Santosh G. Abraham.
Dynamic Helper Threaded Prefetching on the Sun UltraSPARC® CMP Processor. In
Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 38, page 93–104, USA, 2005. IEEE Computer Society.

[146] Dimitrios Lymberopoulos, Oriana Riva, Karin Strauss, Akshay Mittal, and Alexan-
dros Ntoulas. PocketWeb: Instant Web Browsing for Mobile Devices. ACM SIGARCH
Computer Architecture News, 40(1):1–12, 2012.

[147] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache
Coherent Multiprocessors. In Proceedings of the 8th International Symposium on
Parallel Processing, page 165–171, USA, 1994. IEEE Computer Society.

[148] HaoHui Mai, Shuo Tang, Samuel T. King, Calin Cascaval, and Pablo Montesinos.
A Case for Parallelizing Web Pages. In 4th USENIX Workshop on Hot Topics in
Parallelism (HotPar 12), Berkeley, CA, June 2012. USENIX Association.

[149] Howard Mao. Hardware Acceleration for Memory to Memory Copies. Master’s
thesis, EECS Department, University of California, Berkeley, Jan 2017.

[150] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network Stack Specialization
for Performance. SIGCOMM Comput. Commun. Rev., 44(4):175–186, August 2014.

[151] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve

142

Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,
Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, page 399–413, New York, NY, USA, 2019. Association for
Computing Machinery.

[152] Pankaj Mehra. Samsung smartSSD: Accelerating Data-Rich Applications. Proceed-
ings of the Flash Memory Summit, 2019.

[153] Mojtaba Mehrara, Po-Chun Hsu, Mehrzad Samadi, and Scott Mahlke. Dynamic
Parallelization of JavaScript Applications Using an Ultra-lightweight Speculation
Mechanism. In 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, pages 87–98, 2011.

[154] Mojtaba Mehrara and Scott Mahlke. Dynamically Accelerating Client-side Web
Applications through Decoupled Execution. In International Symposium on Code
Generation and Optimization (CGO 2011), pages 74–84, 2011.

[155] David Meisner, Brian T. Gold, and Thomas F. Wenisch. PowerNap: Eliminating
Server Idle Power. In Proceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS XIV,
pages 205–216, New York, NY, USA, 2009. ACM.

[156] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F. Wenisch. Power Management of Online Data-intensive Services. In
Proceedings of the 38th Annual International Symposium on Computer Architecture,
ISCA ’11, pages 319–330, New York, NY, USA, 2011. ACM.

[157] John M. Mellor-Crummey and Michael L. Scott. Scalable Reader-Writer Synchroniza-
tion for Shared-Memory Multiprocessors. In Proceedings of the Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPOPP ’91, page
106–113, New York, NY, USA, 1991. Association for Computing Machinery.

[158] A. Mirhosseini, B. L. West, G. W. Blake, and T. F. Wenisch. Express-Lane Scheduling
and Multithreading to Minimize the Tail Latency of Microservices. In 2019 IEEE
International Conference on Autonomic Computing (ICAC), pages 194–199, June
2019.

[159] A. Mirhosseini, A. Sriraman, and T. F. Wenisch. Enhancing Server Efficiency in
the Face of Killer Microseconds. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 185–198, Feb 2019.

[160] A. Mirhosseini and T. F. Wenisch. The Queuing-First Approach for Tail Management
of Interactive Services. IEEE Micro, 39(4):55–64, July 2019.

[161] Amirhossein Mirhosseini, Hossein Golestani, and Thomas F. Wenisch. HyperPlane:
A Scalable Low-Latency Notification Accelerator for Software Data Planes. In 2020

143

53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 852–867, 2020.

[162] Amirhossein Mirhosseini, Brendan L West, Geoffrey W Blake, and Thomas F
Wenisch. Q-Zilla: A Scheduling Framework and Core Microarchitecture for Tail-
Tolerant Microservices. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 207–219. IEEE, 2020.

[163] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM:
Log-based Transactional Memory. In The Twelfth International Symposium on
High-Performance Computer Architecture, 2006., pages 254–265, Feb 2006.

[164] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and David A. Wood. Coherent
Network Interfaces for Fine-Grain Communication. In Proceedings of the 23rd
Annual International Symposium on Computer Architecture, ISCA ’96, page 247–258,
New York, NY, USA, 1996. Association for Computing Machinery.

[165] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. CACTI
6.0: A Tool to Model Large Caches. HP laboratories, 27:28, 2009.

[166] O. Mutlu, J. Stark, C. Wilkerson, and Y.N. Patt. Runahead Execution: An Alternative
to Very Large Instruction Windows for Out-of-order Processors. In The Ninth Inter-
national Symposium on High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings., pages 129–140, 2003.

[167] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. Microservice
Architecture: Aligning Principles, Practices, and Culture. ” O’Reilly Media, Inc.”,
2016.

[168] Vijay Nagarajan and Rajiv Gupta. ECMon: Exposing Cache Events for Monitoring. In
Proceedings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, page 349–360, New York, NY, USA, 2009. Association for Computing
Machinery.

[169] Dmitry Namiot and Manfred Sneps-Sneppe. On Micro-services Architecture. Inter-
national Journal of Open Information Technologies, 2(9):24–27, 2014.

[170] Gilbert Neiger and Rajesh M Sankaran. Delivering Interrupts to User-Level Applica-
tions, March 20 2018. US Patent 9,921,984.

[171] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Scale-out NUMA. ASPLOS ’14, page 3–18, New York, NY, USA, 2014.
Association for Computing Machinery.

[172] Fabian Oboril and Mehdi B. Tahoori. ExtraTime: Modeling and Analysis of Wearout
Due to Transistor Aging at Microarchitecture-level. In Proceedings of the 2012 42Nd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), DSN ’12, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Society.

144

[173] JinSeok Oh and Soo-Mook Moon. Snapshot-based Loading-Time Acceleration for
Web Applications. In 2015 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 179–189, 2015.

[174] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrish-
nan. Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter
Workloads. In 16th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 19), pages 361–378, Boston, MA, February 2019. USENIX
Association.

[175] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In European Sympo-
sium on Algorithms, pages 121–133. Springer, 2001.

[176] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System is
the Control Plane. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 1–16, Broomfield, CO, October 2014. USENIX
Association.

[177] Nadja Peters, Sangyoung Park, Samarjit Chakraborty, Benedikt Meurer, Hannes
Payer, and Daniel Clifford. Web Browser Workload Characterization for Power Man-
agement on HMP Platforms. In 2016 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 1–10, 2016.

[178] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus Prime: Ac-
celerating Data Transformation in Servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 1203–1216, New York, NY, USA, 2020.
Association for Computing Machinery.

[179] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achieving Low
Tail Latency for Microsecond-scale Networked Tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, pages 325–341, New York,
NY, USA, 2017. ACM.

[180] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. JSMeter: Compar-
ing the Behavior of JavaScript Benchmarks with Real Web Applications. In USENIX
Conference on Web Application Development (WebApps 10). USENIX Association,
June 2010.

[181] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated Construction
of JavaScript Benchmarks. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications, pages 677–694,
2011.

[182] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An Analysis of
the Dynamic Behavior of JavaScript Programs. In Proceedings of the 31st ACM

145

SIGPLAN Conference on Programming Language Design and Implementation, pages
1–12, 2010.

[183] Marcin Rogawski, Ekawat Homsirikamol, and Kris Gaj. A Novel Modular Adder
for One Thousand Bits and More Using Fast Carry Chains of Modern FPGAs. In
2014 24th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–8. IEEE, 2014.

[184] P. Rogers. Heterogeneous System Architecture Overview. In 2013 IEEE Hot Chips
25 Symposium (HCS), pages 1–41, Aug 2013.

[185] Rusty Russell. Virtio: Towards a de-Facto Standard for Virtual I/O Devices. SIGOPS
Oper. Syst. Rev., 42(5):95–103, July 2008.

[186] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. Trends in Server Energy
Proportionality. Computer, 44(9):69–72, September 2011.

[187] Daniel Sanchez and Christos Kozyrakis. The ZCache: Decoupling Ways and Associa-
tivity. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’43, page 187–198, USA, 2010. IEEE Computer
Society.

[188] Curt Schimmel. UNIX Systems for Modern Architectures: Symmetric Multiprocessing
and Caching for Kernel Programmers. Addison-Wesley Reading, 1994.

[189] Robert Schöne, Daniel Molka, and Michael Werner. Wake-up Latencies for Processor
Idle States on Current x86 Processors. Computer Science-Research and Development,
30(2):219–227, 2015.

[190] Michael L. Scott. Shared-Memory Synchronization. Morgan & Claypool Publishers,
2013.

[191] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:
A Selective Record-Replay and Dynamic Analysis Framework for JavaScript. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 488–498, 2013.

[192] Lance Shelton. High Performance I/O with NUMA Systems in Linux. Linux
Foundation Event, 2013.

[193] Davesh Shingari, Akhil Arunkumar, Benjamin Gaudette, Sarma Vrudhula, and Carole-
Jean Wu. DORA: Optimizing Smartphone Energy Efficiency and Web Browser Per-
formance under Interference. In 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 64–75, 2018.

[194] Robert T Short, John M Parchem, and David N Cutler. Method and Apparatus for
Reducing the Rate of Interrupts by Generating a Single Interrupt for a Group of
Events, January 13 1998. US Patent 5,708,814.

146

[195] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency
and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[196] Gabriel Southern and Jose Renau. Overhead of Deoptimization Checks in the V8
JavaScript Engine. In 2016 IEEE International Symposium on Workload Characteri-
zation (IISWC), pages 1–10, 2016.

[197] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understanding Accelera-
tion Opportunities for Data Center Overheads at Hyperscale. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 733–750, New York, NY,
USA, 2020. Association for Computing Machinery.

[198] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. SoftSKU: Optimiz-
ing Server Architectures for Microservice Diversity @Scale. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19, pages 513–526,
New York, NY, USA, 2019. ACM.

[199] Akshitha Sriraman and Thomas F Wenisch. µSuite: A Benchmark Suite for Mi-
croservices. In 2018 IEEE International Symposium on Workload Characterization
(IISWC), pages 1–12. IEEE, 2018.

[200] Akshitha Sriraman and Thomas F. Wenisch. µTune: Auto-Tuned Threading for
OLDI Microservices. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 177–194, Carlsbad, CA, October 2018. USENIX
Association.

[201] A. Stratikopoulos, C. Kotselidis, J. Goodacre, and M. Luján. FastPath: Towards Wire-
Speed NVMe SSDs. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 170–1707, Aug 2018.

[202] Karin Strauss and Jaewoong Chung. Flexible Notification Mechanism for User-Level
Interrupts, October 9 2012. US Patent 8,285,904.

[203] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XI, page 85–96, New York, NY, USA, 2004.
Association for Computing Machinery.

[204] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and A. Daglis.
The NEBULA RPC-Optimized Architecture. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 199–212, Los
Alamitos, CA, USA, jun 2020. IEEE Computer Society.

[205] E. Takeda, Y. Nakagome, H. Kume, and S. Asai. New hot-carrier injection and device
degradation in submicron MOSFETs. IEE Proceedings I - Solid-State and Electron
Devices, 130(3):144–150, June 1983.

147

[206] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, John Magnus
Morton, Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott Mahlke, Trevor
Mudge, and Ronald Dreslinski. Prodigy: Improving the Memory Latency of Data-
Indirect Irregular Workloads Using Hardware-Software Co-Design. In 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pages 654–667, 2021.

[207] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and
Onur Mutlu. MQSim: A Framework for Enabling Realistic Studies of Modern Multi-
Queue SSD Devices. In 16th USENIX Conference on File and Storage Technologies
(FAST 18), pages 49–66, Oakland, CA, February 2018. USENIX Association.

[208] Shelby Thomas, Geoffrey M. Voelker, and George Porter. CacheCloud: Towards
Speed-of-light Datacenter Communication. In 10th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 18), Boston, MA, July 2018. USENIX Association.

[209] Frank Tip. A Survey of Program Slicing Techniques. Technical report, Amsterdam,
The Netherlands, 1994.

[210] Abhishek Tiwari and Josep Torrellas. Facelift: Hiding and Slowing Down Aging in
Multicores. In Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 41, pages 129–140, Washington, DC, USA, 2008.
IEEE Computer Society.

[211] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki,
Sylvia Ratnasamy, and Scott Shenker. ResQ: Enabling SLOs in Network Function
Virtualization. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 283–297, Renton, WA, April 2018. USENIX
Association.

[212] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and
Rebecca L. Stamm. Exploiting Choice: Instruction Fetch and Issue on an Imple-
mentable Simultaneous Multithreading Processor. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, ISCA ’96, pages 191–202, New
York, NY, USA, 1996. ACM.

[213] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. Mem-
Tracker: Efficient and Programmable Support for Memory Access Monitoring and
Debugging. In Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture, HPCA ’07, pages 273–284, Washington, DC,
USA, 2007. IEEE Computer Society.

[214] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro Shimizu,
Masazumi Matsubara, Motoyuki Kawaba, and Calton Pu. Detecting Transient Bot-
tlenecks in n-Tier Applications Through Fine-Grained Analysis. In Proceedings of
the 2013 IEEE 33rd International Conference on Distributed Computing Systems,
ICDCS ’13, pages 31–40, Washington, DC, USA, 2013. IEEE Computer Society.

148

[215] Wenping Wang, Shengqi Yang, Sarvesh Bhardwaj, Sarma Vrudhula, Frank Liu, and
Yu Cao. The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation,
and Analysis. IEEE Trans. Very Large Scale Integr. Syst., 18(2):173–183, February
2010.

[216] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. Speeding up Web
Page Loads with Shandian. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 109–122, Santa Clara, CA, March
2016. USENIX Association.

[217] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.
Efficient Metadata Management for Irregular Data Prefetching. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19, page 449–461,
New York, NY, USA, 2019. Association for Computing Machinery.

[218] Z. Yang, C. Liu, Y. Zhou, X. Liu, and G. Cao. SPDK Vhost-NVMe: Accelerating
I/Os in Virtual Machines on NVMe SSDs via User Space Vhost Target. In 2018 IEEE
8th International Symposium on Cloud and Service Computing (SC2), pages 67–76,
Nov 2018.

[219] Jiabin Ye, Cheng Zhang, Lei Ma, Haibo Yu, and Jianjun Zhao. Efficient and Precise
Dynamic Slicing for Client-Side JavaScript Programs. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 449–459, 2016.

[220] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. IMP:
Indirect Memory Prefetcher. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, page 178–190, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[221] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren Wang, Ilia Kurakin, Charlie Tai,
and Nam Sung Kim. Don’t Forget the I/O When Allocating Your LLC. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pages 112–125, 2021.

[222] Yifan Yuan, Yipeng Wang, Ren Wang, and Jian Huang. HALO: Accelerating Flow
Classification for Scalable Packet Processing in NFV. In Proceedings of the 46th
International Symposium on Computer Architecture, ISCA ’19, page 601–614, New
York, NY, USA, 2019. Association for Computing Machinery.

[223] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and Anirudh Badam.
I’m Not Dead Yet! The Role of the Operating System in a Kernel-Bypass Era. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19, page
73–80, New York, NY, USA, 2019. Association for Computing Machinery.

[224] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. IWatcher:
Efficient Architectural Support for Software Debugging. In Proceedings of the 31st

149

Annual International Symposium on Computer Architecture, ISCA ’04, page 224,
USA, 2004. IEEE Computer Society.

[225] Yanqi Zhou and David Wentzlaff. MITTS: Memory Inter-arrival Time Traffic Shaping.
In Proceedings of the 43rd International Symposium on Computer Architecture, ISCA
’16, pages 532–544, Piscataway, NJ, USA, 2016. IEEE Press.

[226] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. Event-Based Scheduling
for Energy-Efficient QoS (eQoS) in Mobile Web Applications. In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA),
pages 137–149, 2015.

[227] Yuhao Zhu and Vijay Janapa Reddi. High-Performance and Energy-Efficient Mobile
Web Browsing on Big/Little Systems. In 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), pages 13–24, 2013.

[228] Yuhao Zhu and Vijay Janapa Reddi. WebCore: Architectural Support for Mobile
Web Browsing. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 541–552, 2014.

[229] Yuhao Zhu and Vijay Janapa Reddi. GreenWeb: Language Extensions for Energy-
Efficient Mobile Web Computing. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 145–160,
2016.

150

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Characterization of Software Data Planes
	Acceleration of the Notification Mechanism
	Acceleration of Data Transfer
	Road Map

	Software Data Planes: You Can't Always Spin to Win
	Introduction
	Background
	Software Data Plane Mechanisms
	Software Data Plane Applications

	Methodology
	Inefficiencies of Spin-Polling
	Polling Tax
	Work Disproportionality

	Lack of Queue Scalability
	Lack of Core Scalability
	Scale-up Queuing is Impractical
	Discussion: Solution Directions
	Related Work
	Conclusion

	HyperPlane: A Scalable Low-Latency Notification Accelerator for Software Data Planes
	Introduction
	Background and Motivation
	Software Data Planes
	Software Data Plane Challenges and Goals
	Case Study: DPDK Queue Scalability

	HyperPlane Design
	Programming Model
	Hardware Components

	Detailed Microarchitecture
	Monitoring Set
	Ready Set
	Hardware Costs

	Evaluation
	Methodology
	Queue Scalability
	Multicore Performance
	Work Proportionality
	Ready Set Implementation

	Related Work
	Conclusion

	HyperData: A Data Transfer Accelerator for Software Data Planes Based on Targeted Prefetching
	Introduction
	Background and Motivation
	HyperData Design
	Design Overview
	Monitoring Set
	Prefetcher Design
	Scale-up Queuing

	Evaluation
	Methodology
	Prefetching Performance
	Effectiveness with Scale-up Queuing
	Overhead Analysis

	Related Work
	Conclusion

	Conclusion
	Summary
	Future Research

	APPENDIX
	Characterization of Unnecessary Computations in Web Applications
	Introduction
	Background and Motivation
	Rendering Pipeline of Web Browsers
	Unnecessary Computations in Web Browsers
	Detection of Unnecessary Computations

	Profiler Design
	Forward Pass
	Backward Pass

	Evaluation Methodology
	Dynamic Binary Instrumentation
	Benchmarks
	Choice of Slicing Criteria for Web Applications

	Results and Discussion
	Calculated Slice
	Categorization of Unnecessary Computations

	Related Work
	Workload Characterization of Web Applications
	Performance Optimization of Web Applications
	Energy-efficient Mobile Web Applications
	Architectural Support for Web Applications

	Conclusion

	BIBLIOGRAPHY

