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ABSTRACT

This thesis presents numerical methods and modeling related to simulating neurons. Two

approaches to the simulation are taken: a population density approach and a neuronal

network approach.

The first two chapters present the results from the population density approach and its

applications. The population density approach assumes that each neuron can be identified by

its states (e.g., membrane potential, conductance of ion channels). Additionally, it assumes

the population is large such that it can be approximated by a continuous population density

distribution in the state space. By updating this population density, we can learn the

macroscopic behavior of the population, such as the average firing rate and average membrane

potential. The Population density approach avoids the need to simulate every single neuron

when the population is large. While many previous population-density methods, such as the

mean-field method, make further simplifications to the models, we developed the Asymmetric

Particle Population Density (APPD) method to simulate the population density directly

without the need to simplify the dynamics of the model. This enables us to simulate the

macroscopic properties of coupled neuronal populations as accurately as a direct simulation.

The APPD method tracks multiple asymmetric Gaussians as they advance in time due

to a convection-diffusion equation, and our main theoretical innovation is deriving this up-

date algorithm by tracking a level set. Tracking a single Gaussian is also applicable to the

Bayesian filtering for continuous-discrete systems. By adding a measurement-update step,

we reformulated our tracking method as the Level Set Kalman Filter(LSKF) method and

xvi



find that it offers greater accuracy than state-of-the-art methods.

Chapter IV presents the methods for direct simulation of a neuronal network. For this

approach, the aim is to build a high-performance and expandable framework that can be used

to simulate various neuronal networks. The implementation is done on GPUs using CUDA,

and this framework enables simulation for millions of neurons on a high-performance desktop

computer. Additionally, real-time visualization of neuron activities is implemented. Pairing

with the simulation framework, a detailed mouse cortex model with experiment-determined

morphology using the CUBIC-Atlas, and neuron connectome information from Allen’s brain

atlas is generated.
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CHAPTER I

Overview

The thesis consists of three main chapters. Each chapter presents a method or model that

is relatively self-contained. Their goal is to develop methods for the simulation of neurons,

but they can be helpful for a wide range of applications. The chapters are formulated in a

way with their target audience in mind.

I.1: Overview of Chapter II

This chapter presents the level set Kalman filter (LSKF). This chapter is based on a submit-

ted manuscript [WF21b], accompanied by additional discussions. We present a novel exten-

sion of Kalman filtering for continuous-discrete systems with nonlinear state-space models.

The LSKF assumes the probability distribution can be approximated as a Gaussian

and updates the Gaussian distribution through a time-update step and a measurement-

update step. This type of filtering method is well-established [KB61], with some rather

recent developments [JU04, AHH10, KK17]. The LSKF improves the time-update step

when compared to existing methods, such as the continuous-discrete cubature Kalman filter

(CD-CKF) [AHH10] by reformulating the underlying Fokker-Planck equation as an ordinary

differential equation for the Gaussian, thereby avoiding the need for expansion in time. With

a carefully picked measurement-update method, numerical experiments show that the LSKF

has a consistent performance improvement over CD-CKF for a range of parameters while

simplifying the implementation, as no user-defined timestep subdivision between measure-
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ments is required, and the spatial derivatives of the drift function are not explicitly needed.

I.2: Overview of Chapter III

This chapter presents the Asymmetric particle population density (APPD) method. Part of

this work is drawn from [WF21a], while some of the applications are presented here for the

first time.

The APPD method simulates a population of individual units. A common strategy to

simulate such a system is to take a population density approach, where we take the macro-

scopic limit of the number of units and consider its population density function instead of

individual units. In many of the previous applications of this approach in the context of

neuronal populations [Win67, JR95, San96, NT00, Kur03], they also require further simpli-

fications of the model. Our method uses Gaussians as particles to accurately simulate both

the dynamics and noise of the units. While the idea of using a deforming Gaussian to solve a

convection-diffusion equation is not new [Ros96, Ros05, BBH21], our method is the first that

is applied to 4-dimensional state space, whereas most previous methods are restricted to 2

dimensions. Moreover, the APPD method is well-suited for a parallel implementation. We

developed a C++ library that implemented this method in parallel, which can be adapted

to a range of models with relative ease. The library is available on github under the MIT li-

cense. To show the effectiveness and robustness of the APPD method applied to a neuronal

population, we apply this method to several examples of neuronal populations and other

biological oscillatory models. We find that our method can be used to reproduce complex

tissue-level behaviors such as bifurcations and clustering. We also extended the method to

non-identical units whose dynamics vary with a parameter. Using this extension, we studied

the synchronization of non-homogeneous neurons with varying periods.
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I.3: Overview of Chapter IV

This chapter presents a software framework for simulating a large neuronal network and its

application to simulate the cortex of a mouse. The coding and modeling is joint work with

James Hazelden, with some help from Dr. Tomoyuki Mano from Hiroki Ueda’s group. The

modeling of the mouse brain is based on the CUBIC-Atlas [MMS+18] from their group.

The computational software is implemented using CUDA to leverage the graphics process-

ing unit (GPU) for computing. We can simulate all neurons present in the mouse cortex

in the CUBIC-Atlas with approximately 13 million neurons and around 1 billion synaptic

connections on a high-end desktop computer with an NVIDIA RTX 3090 GPU. Further-

more, we generated the connectivity between neurons. We classified the neurons as exci-

tatory or inhibitory in an experimental data-driven method by integrating high-resolution

models of connectivity [OHN+14, EGKM18] and distribution of excitatory versus inhibitory

neurons [LHA+07, KYP+17] with the coordinate locations provided by the CUBIC-Atlas.

Using this software framework accompanied with a realistic connectivity and morphology

model, we examined the formation of waves, determined functional connectivity between

different cortex regions, and demonstrated the model’s ability to generate Electroencephalo-

gram (EEG) traces.

I.4: Overview of our Contribution

I.4.1: Numerical methods

Models for a single neuron ranges from the integrate-and-fire (IF) neurons to multi-compartment

models that simulate propagation along axon and dentrite [HAH+11]. There already exist

many simulation methods for neurons, each with its own tradeoffs. Be it between the com-

plexity of a single neuron versus the size of the population or balancing the performance

versus flexibility in the implementation.
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If the connectome of the network is essential in the simulation goal, then the APPD

method or any method based on the population density would not be sufficient on its own

since the assumption of a population density method discards the detailed connectivity be-

tween neurons. Many frameworks simulate a neuronal network, which could be on a super-

computer [Mar06], on a field-programmable gate array (FPGA) [YDW+19], on a workstation

with GPU [YTN16] (where we focus) or CPU [GB08]. For simulating 1 million neurons,

[YDW+19] reports real-time simulation on FPGA, whereas [YTN16] is 4 times slower than

real-time when simulated on a GPU. Our method has its performance comparable to the

latter. It should be noted that when the size of the network increases, the real-time simu-

lation property of the FPGA is retained, while the GPU will take a longer time. However,

the performance advantages come with the tradeoff of using dedicated hardware and diffi-

culties in programming. Simulation on a GPU does not have any limit in modeling when

compared to simulation on a CPU, though the performance gain is modest, [YTN16] reports

only a 4-times performance gain over a single-threaded CPU simulation when using single

precision for what they claim as a more realistic setting, and the performance gain is less

when double precision is used. It may be possible that a carefully implemented parallel

algorithm on a CPU could be faster, given the number of cores on a single desktop CPU

can be up to 16 on an AMD Ryzen 9 5950X, and the workload is close to perfectly paral-

lel. In [NSS+16], a comparison for simulation of a recurrent neural network between GPU

and CPU is conducted, and a CPU-based simulation has comparable or better performance

with a GPU-based version when both are results from optimized software for the platform

(Intel MKL for CPU, CuBLAS for GPU). However, [GB08], as an example, is implemented

in Python that takes more tradeoff in performance, and they reported two to four times

slower than a single-threaded C implementation. Our neuronal network method performs

comparably to state-of-the-art competitions that can be achieved on a desktop computer.

The APPD method serves a different purpose. If the neuron network is large and macro-

scopic properties such as the average membrane potential is of interest, then the APPD
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method can be applied. While further simplifications such as a neural field model can

still be used to simulate EEG [HSBL18], they did not simulate the ionic channels of in-

dividual neurons. We will demonstrate that the APPD method accurately simulates the

4-dimensional Hodgkin-Huxley model, whereas previous population-density-based methods

are mostly restricted to 1 or 2-dimensional oscillators [OA08, NK10, PM14]. The ability

to use a biophysically realistic model without simplification establishes the correspondence

between a change in parameters of the neuronal model to the macroscopic properties of a

population.

Additionally, the APPD method can use the same neuron model as the neuronal network

simulation, where the only difference is the morphology (locations of the neurons) and the

connectivity between neurons. By comparing the results between the models, a user can

determine if the behavior observed is likely due to the parameters chosen or the connectivity

network between the neurons, based on whether this behavior is present in both simulation

results. The APPD method can be used to quickly search through different parameters of

the neuronal model that generates a macroscopic behavior, such as a firing pattern seen

during sleep. When the appropriate parameters are determined, the additional connectivity

and morphology information can be included to allow the study of spatial patterns such as

waves and the effect of connectivity between regions.

The Chapter II discussed the LSKF, which is an extension to the Kalman filter. In [SF16],

a particle method is introduced to solve the convection-diffusion equation, which takes the

same form as a Fokker-Planck equation. We would like to improve the performance of

this particle method by using multivariate normals as the kernel function for each particle.

Searching the literature, we noticed that the convection-diffusion equation shares the same

form of the Fokker-Planck equation formulation, which is present in the time-update step of

the continuous-discrete Kalman filtering process. We first surveyed the literature in the field

of Kalman filtering, as the Kalman filtering process a local linear approximation and gave

a deterministic method to simulate noise by deforming the Gaussian; both are properties
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desired for the particle. Specifically, we considered the Unscented Kalman Filter and its

variations [JU97, JU04, Sar07] and the Continuous-Discrete Cubature Kalman filter [AH09,

AHH10], but find them not satisfactory for our application, with two primary limits. First,

they require the Jacobian of the model equations. Requiring the explicit Jacobian formula for

all models would prevent easy adaptation to more complicated models, while a quadrature

rule is numerically unstable, making the method less robust. Second, previous methods

used the Ito-Taylor expansion and a pre-determined choice of timestep discretization for the

diffusion process. We then considered this problem by tracking a level set of the Gaussian

instead to avoid the problems mentioned, as the method does not require higher derivatives

and works with standard adaptive ordinary differential equation (ODE) solvers. Since both

problems share the same underlying differential equation, we adapted our method to the

continuous-discrete Kalman filtering process and evaluated its performance against the state-

of-the-art methods. The result of this adaption and comparison is presented in Chapter II.

I.4.2: Modeling: a Data-driven High-Resolution Connectivity Model

Previously, the neuronal atlas for neurons in a mouse brain is limited to labeled regions

that do not resolve single neurons [Don08, JBB+10], and many connectivity models are

also limited to probabilistic models between those labeled regions [OHN+14, YB16], limit-

ing their spatial resolution. Consequently, existing whole cortex models [Mar06, MWJB17]

are also limited by this deficiency. In [MWJB17], their mouse brain model is based on a

macroscopic neuronal mass model, which does not resolve individual neurons. The CUBIC-

Atlas [MMS+18] is the first neuronal atlas that maps the coordinates of single cells. Using it

as the background, we created a data-driven neuronal connectivity model by integrating ad-

ditional experiment-based atlases. We constructed the neuron connectome between regions

of the mouse cortex using the voxel-based connectivity model proposed in [KHG+19] and

determined the distribution based on experimental data [EGKM18] as well.

This develops the first whole-cortex model that can resolve single neurons in the brain
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with a high-resolution experimental-based connectome.
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CHAPTER II

The Level Set Kalman Filter

II.1: Introduction

Kalman Filtering methods are used in many applications. A Bayesian filtering method

updates a state estimation of an object in its state space given knowledge of the system

and measurements[Sär13]. The goal of these methods is to estimate the state of a target

system for which the dynamics and the statistic of the noise are known, using measurements

taken at a fixed time intervals, and accounting for noise or uncertainty in the system and

measurements. There are two parts to these methods. First, a new measurement is used

to generate the best possible estimate of the system state in the measurement-update step.

Second, that estimate is propagated forward in time using the system’s dynamics till the next

measurement is available in the time-update step. Here, we present a method for accurately

implementing that second step in the presence of noise.

The general framework for these problems was first described by Kalman [KB61]. A

Kalman-Bucy type filtering consists of two steps: a measurement-update part that updates

the estimation using the measurement at, a state estimation from previous steps, and a

time-update step that updates the state estimation between consecutive measurements. The

level set Kalman filter (LSKF) method focuses on the improvement of the state estimation

in the time-update step, and the discussions that follow are restricted to the time-update

part unless we explicitly mention the measurement-update.
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Assuming that the dynamics are linear (in space), and all noise is zero-mean Gaussian,

Kalman-Bucy filtering [KB61] gives an optimal way to estimate the system state for the

time-update. However, in many cases, we would like to generalize this method to a system

for which the dynamics of interest are nonlinear. For such a nonlinear system, a Gaus-

sian probability density function (PDF) is no longer preserved even when the dynamics are

quadratic [GH11]. When the dynamics are approximately linear for the region of state space

where most of the PDF lies, Unscented Kalman filtering (UKF) [JU04] can provide a useful

method. Additionally, the UKF is easy to implement since it does not require explicit evalu-

ation of the Jacobian of the velocity field, which is not readily available in practical problems

where, for example, the velocity field is implicitly defined as a solution to an equation.

Researchers have improved how the process noise is incorporated, but so far, methods

are significantly more complicated than the UKF (e.g., requiring the explicit calculation of a

Jacobian) or only work with specific numerical solvers. For example, the continuous-discrete

Kalman filter[Sar07] (CDKF) and the continuous-discrete Cubature Kalman filter[AHH10]

(CD-CKF). (Note the latter uses the Cubature Kalman transformation as introduced in

[AH09] instead of the unscented Kalman transformation, however it can be reformulated to

use either, as explained in [KK17].) The CDKF in [Sar07] addresses the continuous nature of

the process noise; however, the derivation of their method involves approximation such that

their method is not exact even if the dynamics are linear. Moreover, the computation of the

prediction is significantly more complicated than the original UKF, eroding the advantage

the CDKF offers by removing intermediate timesteps. The CD-CKF uses a 1.5-order (order

1 strong convergence, and order 2 weak convergence) Ito-Taylor expansion of the stochastic

differential equation, which uses the Jacobian (or approximations of it) that can be difficult

to calculate. Though the explicit Jacobian can be avoided by deriving specific Runge-Kutta

methods as described in [New91], this still complicates programming and limits the type of

numerical solvers available.

Here, we propose the LSKF that addresses these issues. Our method: 1) does not require
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the Jacobian or any spatial partial derivative of the drift function explicitly, 2) allows the

use of adaptive ordinary differential equation(ODE) solvers and frees the user from choosing

the time discretization, and 3) shows performance improvements over CD-CKF, even in the

challenging test cases presented in [AHH10]. From a theory point of view, our derivation

of the method is based on the apparent velocity (Remark: the word apparent is used to

distinguish that it is the velocity of an abstract set and not the object we are tracking. )

of the level set of the probability distribution, which is a novel approach to analyze these

problems, and may enable further developments.

II.2: Problem Statement and Background

(Note on notation: we distinguish matrix or vector-valued quantities v versus scalar-valued

quantities v1 by using a bold font.)

II.2.1: Problem formulation

A continuous dynamic discrete measurement system includes a continuous-time process de-

scribed by a Fokker-Planck equation and a discrete measurement process with measurement

noise.

The discrete measurement process is defined by a transformation h from state space to

the observation space, together with a zero-mean Gaussian observation noise τ ∼ N (0,R).

Suppose at the time of measurement, the state vector is x, then the measurement y is given

by:

(II.2.1) y = h(x) + τ ,

where τ ∼ N (0,R).

In between the time where two consecutive measurements are taken, we assume that the
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process noise is Gaussian, and the system equations are described by the Itô process [Jaz07]:

(II.2.2)
∂x

∂t
= v(x) +

√
K
∂β

∂t
,

where v is the drift function, or velocity field defined by the dynamics, β is a standard d

dimension Brownian process. K is an d× d positive semi-definite continuous process noise

matrix, and K =
√

K
√

K
T

.

Then, the PDF u is described by the Fokker-Planck equation of the following form:

(II.2.3)
∂u

∂t
=

1

2
∇ ·K∇u−∇ · (vu).

II.2.2: Brief review of existing time-update methods

Under the assumption that the drift function v is linear in space and the process noise matrix

K is constant, it can be shown that a Gaussian PDF u is preserved. (A proof of this fact

using level sets is in the next section). In [KB61], the derivation of the time-update step is

based on this observation.

One often wants to generalize this method to nonlinear models even when Gaussian dis-

tributions are no longer exactly preserved. One generalization would be to use the Jacobian

of the drift function at the mean of the distribution, which is a key part of the Extended

Kalman-Bucy Filter (EKF) method. One disadvantage of the EKF is the need for an explicit

formula of the Jacobian of the drift function. The UKF is also derived based on the assump-

tion of a local linearization of velocity; however, the explicit evaluation of the Jacobian is

avoided.

In [AHH10], after their comparison between the continuous-discrete cubature Kalman

filter (CD-CKF), continuous-discrete unscented Kalman filter (CD-UKF), and continuous-

discrete extended Kalman filter (CD-EKF), they concluded that the CD-CKF is the choice
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for challenging radar problems. In [KK17], Kulikov and Kulikova presented a new filter-

ing method named the accurate continuous-discrete extended Kalman filter (ACD-EKF),

and compared it to the CD-CKF and CD-UKF. Note the implementation of the CD-UKF

in [KK17] is more sophisticated than that in [AHH10] as it uses the Ito-Taylor expansion

of order 1.5 (IT-1.5) that is the same as presented in [AHH10] for the CD-CKF. With the

improved implementation of the CD-UKF, Kulikov and Kulikova reported in [KK17] that

the CD-CKF and the CD-UKF perform similarly. In addition, while the ACD-EKF requires

less tuning than the CD-CKF, with sufficient timestep subdivision, the CD-CKF seems to

outperform the ACD-EKF, as stated in the conclusion of [KK17]: The highest accuracy is

provided by the most time-consuming filters CD-CKF256 and CD-UKF256. Therefore, we

conclude that with sufficient timestep subdivision, the CD-CKF is still a benchmark method

to compare against.

II.2.3: the time-update of CD-CKF with Ito-Taylor expansion

In [AHH10], the IT-1.5 is first introduced to the time-update step of the continuous-discrete

filtering. It is confirmed in [SS12] that the Unscented Kalman filtering with IT-1.5 achieves

similar performance to the CD-CKF. For the purpose of comparing time-update, the per-

formance of the CD-CKF should suffice for a benchmark. Additionally, we noted that while

the IT-1.5 should converge to the accurate result with a weak order of convergence 2, the

implementation in [AHH10] chooses to only discretize noise once between the measurements

and does not converge to this result, presumably as a tradeoff to improve speed. For the

sake of complete comparison, we also implemented a version with a proper IT-1.5 expansion

that discretizes noise for every timestep subdivision.

Here we restate the square-root form of the CD-CKF, as derived in [AHH10].

Time-update: For update with a timestep of ∆t, we define the function

(II.2.4) fd(x, t) := x(t) + ∆tv(x(t), t) +
1

2
∆t2(L0(v(x, t))),
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where the opertor

L0 :=
d

dt
+

d∑
i=1

vi
∂

∂xi
(II.2.5)

+
1

2

d∑
j,p,q=1

√
Kp,j

√
Kj,q

∂2

∂xp∂xq
.

We also define the operator L(v) as the square matrix defined entrywise with its (i, j)th

element being Ljvi, where

(II.2.6) Lj :=
d∑
i=1

√
Ki,j

∂

∂xi
.

Then the time-update algorithm is as follows:

Require: Guess of initial state x0 at time t0, and a factorization of a guess of covariance

matrix M. Drift velocity v, continuous process noise matrix K.

1: Find the 2d cubature points xi = x0 + (M)i,xi+d = x0 − (M)i, where i = 1, . . . , d, and

(M)i denotes the ith column of M.

2: Evaluate the propagated cubature point: x∗i = fd(xi, t0), where where i = 1, . . . , 2d.

3: Estimate the updated mean by the average of the cubature points:

(II.2.7) x∗0 :=
1

2d
x∗i .

4: Estimate the factorization of covariance matrix by the triangularization of the concate-

nated matrix:

(II.2.8) M∗ = tria

([
X∗|
√

∆t(
√

K + ∆t
2
L(v))|

√
∆t3

12
L(v)

])
,

where tria(·) denotes applying a triangularization procedure such as the Gram-Schmidt

based QR-decomposition, X∗ is a matrix with ith column being x∗i , L(v) = L(v(x∗0, t0)).
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return Estimated updated mean x∗0 and updated factorization of covariance matrix M∗

at t0 + ∆t.

II.2.4: The square root form of cubature Kalman measurement-update

Here, we discuss the measurement-update method used in the CD-CKF and the LSKF.

Since the operations from the time-update can cause M to be positive semi-definite, a

measurement-update method that can accommodate a positive semi-definite matrix is re-

quired for reliability, as pointed out in [AHH10]. We used the measurement-update method

from the square root CD-CKF method, as stated in Appendix B of [AHH10]. Since the no-

tations used are different, the measurement-update of the square root CD-CKF is restated

here for reference.

Require: Factorization of the predicted covariance matrix before measurement M, pre-

dicted mean before measurement x̄, measurement y, a factorization of the covariance of

the measurement noise matrix
√

R, measurement function h

1: Find the concatenated cubature points matrix of size d× 2d:

(II.2.9) N = x̄ +
√

2d [M| −M] ,

where the vector-matrix addition is applied as x̄ added to each column of the concate-

nated matrix [M| −M]

2: Evaluated the propagated cubature points

(II.2.10) Y = h(N),

where the measurement function h(·) is evaluated on each column.
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3: Estimate the predicted measurement

(II.2.11) ȳ =
1

2d

2d∑
i=1

Yi.

4: Compute matrices T11,T21, and T22 by the following QR-factorization:

(II.2.12)

T11 O

T21 T22

 = qr


Y

√
R

N O


 ,

where O denotes a zero matrix of appropriate size.

5: Estimate the cubature gain

(II.2.13) W = T21/T11,

where / represents solving for W in T21 = WT11 using a backward stable solver.

6: Estimate the mean of the corrected state

(II.2.14) x̂ = x̄ + W(y − ȳ).

7: Estimate a factorization of the corrected covariance matrix

(II.2.15) M̂ = T22.

return Corrected mean x̂ and a factorization of the corrected covariance matrix M̂.

II.3: Derivation of the time-update of the level set Kalman filter

In this section, we focus on deriving the time-update of the level set Kalman filter (LSKF). In

the first subsection, we show that a Gaussian is preserved by a local linear approximation to

the original Fokker-Planck equation by tracking its level set. In this process, we observe that

15



the apparent velocity of the level set is given by the drift function plus an additional term

which we name as the diffusion velocity. In the second subsection, using the apparent

velocity of the level set, we derive a numerical method that tracks such Gaussian particles

for the time-update step. In the third subsection, we state the averaged velocity version

of the time-update part of the LSKF, which turns out to give better results numerically.

II.3.1: Preservation of Gaussian for local linear approximation

Without loss of generality (WLOG), we may assume the particle of concern is centered at 0.

Moreover, since we are interested in how the dynamics and diffusion deform the distribution,

we may also set the drift function at center v(0) = 0. With these simplifications in mind,

the original Fokker-Planck equation can be restated as:

(II.3.1)
∂u

∂t
=

1

2
∇ ·K∇u−∇ · (vu),

where u = u(x, t) is the PDF, K is a constant matrix-valued continuous Gaussian pro-

cess noise, and v = v(x) is the drift velocity (field), and v(0) = 0 by our WLOG

simplification.

Then, we approximate the above (II.3.1) by taking a linear approximation of v. In

notations, we assume that v(x) ≈ Jx. (J is the Jacobian matrix.) Then:

Claim II.1. A Gaussian distribution is preserved by a Fokker-Planck equation with a linear

drift function.

Stated explicitly: For the following equation:

(II.3.2)
∂u

∂t
=

1

2
∇ ·K∇u−∇ · (Jxu),

if the initial condition u(x, 0) is given by a Gaussian function

(II.3.3) u(x, 0) =
1√

(2π)d det(Σ)
exp

(
−xTΣ−1x

2

)
,
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then u(x, t) is also a Gaussian distribution.

It should be noted that the result is not new, but our proof leads to an explicit formula

for updating the density. The rest of this subsection proves this claim.

We define the auxiliary function F by

(II.3.4) F (x, t) :=
u(x, t)

u(0, t)
.

Consider a level set of the function F at t defined as

(II.3.5) L(t) :=
{
x ∈ Rd|F (x, t) = c

}
,

where 0 < c < 1 is some fixed scalar constant. L(t) is (usually) a surface, and for a Gaussian

as defined in u(x, 0), it is an ellipsoid. As the function F varies in time, the set L propagates

in space. To describe the movement of the set L, we consider the apparent velocity the

traveling surface.

In particular, a velocity of level set vL is defined by a velocity field satisfying the

level-set equation:

(II.3.6)
∂F

∂t
+ vL · ∇F = 0.

(Note: this can be understood as the chain rule. For a more detailed explanation, refer to

equations (1) and (2) in [Set85]. Also, note the velocity of the level set is uniquely defined

up to tangential directions since tangential movements along the level set vanish since they

preserve the level set.)

To proceed to the proof, we first consider the lemma:

Lemma II.2. The velocity field

(II.3.7) vL = Jx +
1

2
KΣ−1x
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is a velocity of the level set for L(0) defined in (II.3.5). Also, this velocity of the level set is

linear in space.

Proof of Lemma II.2. First, we note the velocity field is linear in space. To check that it is

a velocity of the level set:

Since F (x, t) is defined as a quotient of u(x, t) and u(0, t), we may omit the normalizing

factor in u, and take

(II.3.8) u(x, 0) = exp

(
−xTΣ−1x

2

)

as the initial condition. Then:

∂F

∂t
|t=0 =

u′(x, 0)u(0, 0)− u′(0, 0)u(x, 0)

u2(0, 0)
.(II.3.9)

By (II.3.8), we note that u(0, 0) = 1. We simplify (II.3.9) using this substitution:

∂F

∂t
|t=0 = u′(x, 0)− exp

(
−1

2
xTΣ−1x

)
u′(0, 0).(II.3.10)

Substitute time derivatives u′ with (II.3.2):

∂F

∂t
|t=0 =

(
1

2
∇ ·K∇u−∇ · (Jxu)

)
|t=0,x=x(II.3.11)

− exp(. . . )

(
1

2
∇ ·K∇u−∇ · (Jxu)

)
|t=0,x=0,

where

(II.3.12) exp(. . . ) := exp

(
−1

2
xTΣ−1x

)
.
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continuing the computation, we find that:

∇ ·K∇u = ∇ ·
(
−K exp(. . . )Σ−1x

)
(II.3.13)

= exp(. . . )Σ−1x ·KΣ−1x− exp(. . . ) tr(KΣ−1)(II.3.14)

= exp(. . . )
(
Σ−1x ·KΣ−1x− tr(KΣ−1)

)
.(II.3.15)

And

∇ · ((Jxu)) = ∇u · Jx + u∇ · Jx(II.3.16)

= exp(. . . )(−Σ−1x) · Jx + exp(. . . ) tr(J)(II.3.17)

= exp(. . . )
(
tr(J)−Σ−1x · Jx

)
.(II.3.18)

Substitute these two terms into (II.3.11), we have

∂F

∂t
= exp(. . . )

(
1

2
Σ−1x ·KΣ−1x− 1

2
tr(KΣ−1)(II.3.19)

+ tr(J)−Σ−1x · Jx

)
− exp(. . . )

(
−1

2
tr(KΣ−1) + tr(J)

)
= exp(−1

2
xTΣ−1x)

(
1

2
Σ−1x ·KΣ−1x + Σ−1x · Jx

)
.(II.3.20)

Meanwhile, we check that

vL · ∇F = vL · ∇
(

exp(−xTΣ−1x

2
)

)
(II.3.21)

= vL ·
(
−Σ−1x exp(−1

2
xTΣ−1x)

)
.(II.3.22)
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Substitute the level set velocity term vL from (II.3.7), we get that

vL · ∇F = − exp(−1

2
xTΣ−1x)(Jx +

1

2
KΣ−1x) ·Σ−1x.(II.3.23)

Comparing the results from (II.3.23) and (II.3.20), we conclude that

(II.3.24)
∂F

∂t
+ vL · ∇F = 0.

Therefore vL is a velocity of the level set, as defined in (II.3.6).

We now proceed to the proof Claim II.1:

Proof of Claim II.1. Lemma II.2 shows that every level set is propagated by a linear velocity

field independent of the choice of level set (in other words, independent of the choice of c.)

In particular, it is propagated by a linear transformation instantaneously. Consequently,

between any fixed time 0 and ∆t, the Gaussian is mapped by a linear transformation. Since

a linear transformation maps Gaussians to Gaussians, the velocity field vL is always well-

defined as the covariance term in (II.3.7) is defined, whereas other terms are known.

Before we proceed, we should note that the claim is a corollary of equation (29) in [KB61]

by Kalman and Bucy that started the discussion of continuous-discrete Kalman filtering. The

significance of the proof is that by using a square-root factorization, the transformation is

now given by an explicit formula (II.3.7) that does not involve an integral (An example of

such a formula is (20) in [KB61]).

II.3.2: Deriving the time-update of the LSKF

We now describe the numerical algorithm inspired from the velocity of level set (II.3.7).

Tracking the movement of the Gaussian is equivalent to tracking one of its ellipsoid level

sets (as defined in (II.3.5)). If the mean of the Gaussian remains at 0, then a factorization of

the covariance matrix Σ = MMT can be used to represent the Gaussian. This factorization
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also represents the unique level set ellipsoid spanned by the columns of the factorization M.

More specifically, set

(II.3.25) M(0) =

[
x1(0) · · · xd(0)

]

as initial conditions, and let xi(t) be the solutions of (II.3.7). (One may interpret xi(t) as a

point on the level set, which travels at the apparent speed defined by a velocity of level

set.)

Then Σ(t) defined as

(II.3.26) Σ(t) := M(t)M(t)T

is the covariance matrix for the Gaussian at time t since it is a similarity transformation.

Suppose A is the linear transformation from time 0 to t, then xi(t) = Axi(0), and

Σ(t) = M(t)M(t)T

= AM(0)M(0)TA

= AΣ(0)AT .

Therefore applying linear transformation A to the ellipse is equivalent to applying it to all

column vectors in M.

The Jacobian of the velocity field J that appears in (II.3.7) is not explicitly needed.

Instead of direct evaluation of the Jacobian, we approximate the effect of the drift velocity

by applying a quadrature rule. In this section, we use the forward difference in space to

derive the method. Specifically, we notice Σ−1 = M−TM−1, (where M−T indicates the

inverse transpose) and the xis are columns of M. Therefore for all xi’ on the level set

ellipsoid, by substituting the terms in (II.3.7), we find the apparent velocity of the level set
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is approximated by

(II.3.27)
∂xi
∂t

= v(x̄ + xi)− v(x̄) +
1

2
K(MT )−1ei,

where x̄ is the mean of the Gaussian. In the case the Gaussian is centered at 0, x̄ = 0. ei

is the ith unit vector with all entries 0 except that ith entry is 1.

Recall that the xis are columns of M. In a matrix short-hand (where the matrix-vector

additions are defined entry-wise, and recall vectors are column vectors):

(II.3.28)
∂M

∂t
= v(x̄ + M)− v(x̄) +

1

2
K(MT )−1.

Whereas the velocity of the mean value is given by

(II.3.29)
∂x̄

∂t
= v(x̄).

Based on the form of the equations, the assumptions x̄ = 0 and v(x̄) = 0 can be dropped.

Concatenating x̄ and M as a variable (x̄|M) of dimension d × (d + 1), we obtained a

nonlinear ODE in this space. Any standard ODE solver can be applied to this ODE to

complete the time-update between the measurements.

Note that to evaluate the velocity of one point xi on the level set, both the mean x̄

and all other points xj for this Gaussian kernel are needed, hence the points on a level

set cannot be updated independently (in contrast to the time-update step for both UKF

and CD-CKF). This provides intuition about the difference between our method and others:

while other methods look at the past covariance information and rely on an expansion in

time, our method uses only the current information about the covariance matrix. Except for

the purpose of numerically solving the ODE, our method does not need time-discretization.
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II.3.3: Motivating example: linear drift function

As an illustration for the time-update method, we consider the following Fokker-Planck

equation with a linear drift function:

(II.3.30)
du

∂t
= ∇ ·K∇u−∇ · (Jxu)

with parameters

K =

1
2

1
4

1
4

3
2

 J =

0 0.1

0 0

 .
We consider the solution of the initial value problem with initial condition

(II.3.31) u(x, 0) =
1√

(2π)d det(Σ0)
exp(−xTΣ−1

0 x

2
),

where the initial covariance is given by

(II.3.32) Σ0 =

2 1

1 2

 .
To verify the accuracy of our method, we check the convergence of numerical ODE solvers

for the initial value problem and find the error of the density function at t = 10 with ODE

solvers of a different order. The Σ10 is solved numerically with sufficient timesteps for

computing the convergence. We factor Σ0 = M0M
T
0 , and set the ODE (II.3.28) with the

initial condition M(0) := M0. To verify that our method is accurate for the linear Fokker-

Planck equation (II.3.30), we check that when using different numerical ODE solvers, the

solution converges to the same value, with the rate of convergence coinciding with the order

of the ODE solver.
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Figure II.1: log-log graph of the error of covariance matrix in the infinity norm with linear

Fokker-Planck equation. This shows that our method preserves the order of accuracy of the

ODE solver. The least-square fitting of the curve gives the slope 1.03 for RK1, 2.11 for RK2,

and 3.85 for RK4, which approximately matches the expected order of convergence 1, 2, and

4 respectively.

In Fig. II.1, we verify that for the Runge-Kutta methods of order 1, 2, and 4, the error

of u(·, 10) measured in the infinity norm converges at the same order of the ODE solvers,

which is expected if the reformulation (II.3.28) is exact for (II.3.30).

II.3.4: The averaged velocity level set time-update

Here we state the averaged velocity level set time-update method, which uses central

difference instead of forward difference, and shows better accuracy in numerical experiments

(See Appendix A for an example) when compared versus the version in Sec. II.3.2.

We set the velocity of the mean ∂x̄/∂t by the averaged velocity:

(II.3.33)
∂x̄

∂t
= va(x̄,M) :=

1

2d

d∑
i=1

(v(x̄ + xi) + v(x̄− xi)) .

(Recall that xi are columns of the matrix M)
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and the velocity of the matrix M:

(II.3.34)
∂M

∂t
= v(x̄ + M)− va +

1

2
K(MT )−1.

It can be easily seen that when the drift velocity field v is linear in space, equations (II.3.34)

and (II.3.28) are identical, and va(x̄,M) = v(x̄).

Using this averaged velocity, here we summarize the LSKF:

Require: Guess of initial state x̂0 at time t0, and a factorization of a guess of covariance

matrix M̂0, measurements y1 . . . ,yn at time t1, . . . , tn.

Drift velocity v, continuous process noise matrix K, measurement function h, a

factorization of the covariance matrix R of a zero-mean Gaussian measurement noise.

1: for j=1,. . . ,n do

2: Set the problem of x̄(t) and M(t) given by:

∂x̄

∂t
=

1

2d

d∑
i=1

(v(x̄ + xi) + v(x̄− xi))(II.3.35)

∂M

∂t
= v(x̄ + M)− va +

1

2
K(MT )−1,(II.3.36)

with initial condition x̄(tj−1) = x̂j−1, and M(tj−1) = M̂j−1 (Recall: va is defined in

(II.3.33), also recall that xi are columns of M, and the vector-matrix addition is applied

to each column.)

3: Time-update: solve the above equation from tj−1 to tj using a numerical ODE solver,

and approximate x̄j = x̄(tj), Mj = M(tj) with the numerical solution.

4: Measurement-update: Find the corrected mean x̂j and corrected covariance matrix

M̂j at time tj by applying the measurement-update algorithm defined in subsection

II.2.4, with input x̄j, Mj, and R.

5: end for

return Predicted corrected state x̂1, x̂n, at t1, . . . , tn, with a factorization of the
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predicted corrected covariance matrix M̂1, . . . , M̂n.

II.3.5: Comparing convergence: achieving beyond IT-1.5 without explicit higher

derivatives

In Sec. II.2.3, we introduced the CD-CKF with IT-1.5. Here, we compare the convergence

rate of the time-update of CD-CKF (as implemented in [AHH10], and with proper IT-1.5)

with that of the LSKF.

Consider the following oscillator:

(II.3.37) x(t) := [ε(t) ε̇(t) ε̈(t)]T ,

where ε, ε̇, and ε̈ are the position, velocity, and acceleration of the oscillator. Its time

derivative is given by

(II.3.38) v(x) = [ε̇ ε̈ − ε]T .

This oscillator is also subject to a continuous process noise, defined by the diagonal diffusion

matrix:

(II.3.39) K = diag[0.012 0.012 0.022].

Since the dynamics are linear, the Gaussian is preserved, and we expect the result from

LSKF and proper IT-1.5 to converge to the exact solution.

To find the order of convergence, and compare the methods, we consider the following

initial condition problem. Given initial condition

(II.3.40) x(0) = [1 0 0]T
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and initial covariance matrix

(II.3.41) Σ(0) = diag[0.012 0.012 0.032],

we would like to find the end state at t = 0.2 using the above mentioned methods. By

subdividing the timesteps, we arrive at the following convergence result:

Figure II.2: Convergence of the mean x and the covariance matrix Σ with the CD-CKF

and the LSKF. The left panel shows the error (measured in L2 norm) in mean value as a

function of timestep, whereas the right panel shows error (measured in Frobenius norm)

in the covariance matrix. In each panel, CDCKF (blue) denotes the time-update imple-

mented in [AHH10], IT 1.5 (red) denotes the CD-CKF with proper IT-1.5 expansion, LSKF-

RK2 (yellow) and LSKF-RK4 (purple) denotes time-update of LSKF with Runge-Kutta

solvers of order 2 and 4 respectively. The Runge-Kutta 4 version is cut short due to finite

precision linear algebra.

Similar to Fig. II.1, Fig. II.2 shows that the time-update of LSKF converges the same or-

der as the underlying ODE solver. Importantly, note proper IT-1.5 and LSKF-RK2 converge

to the same limit mean and covariance matrix at a weak order of convergence 2, validating

the correctness of both methods. (Note: they do not converge to the same square root of
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the covariance matrix, which is not surprising given that the matrix square roots are not

unique.) The time-update of CD-CKF as implemented in [AHH10] does not converge to the

same limit. Comparing LSKF-RK4 versus proper IT-1.5, it can be noted that much fewer

timestep subdivisions can achieve similar truncation errors. As pointed out in [SS12], IT-1.5

already requires explicit first and second derivatives of v(x), and any higher-order Ito-Taylor

expansion is necessarily more complicated. On the contrary, the time-update of LSKF, as

defined in (II.3.34) does not require the explicit expression of the derivatives of v(x), and

can achieve a higher order of convergence with the freedom to choose any ODE solver.

II.4: Numerical example: the radar tracking coordinated turn test

case

II.4.1: Problem description

Here, we follow the test case presented in [AHH10], considering the scenario where a radar

station tracks an aircraft making a coordinated turn. Since the CD-CKF in [AHH10] is

claimed to be the choice for challenging radar problems, we compare LSKF against CD-CKF

in the most challenging scenario they considered with ω = 6◦/s with sampling intervals

T = 2s, T = 4s, and T = 6s. (Note: a conversion to radians per second is required.)

Additionally, we consider the more challenging scenario with ω = 12◦/s and ω = 24◦/s. We

implemented the CD-CKF based on the square root form formulated in [AHH10], using their

implementation presented at [Ara]. The details of the test case are as follows:

The aircraft is described by a 7-dimensional state vector

(II.4.1) x(t) := [ε(t) ε̇(t) η(t) η̇(t) ζ(t) ζ̇(t) ω(t)]T ,

where ε(t), η(t), ζ(t) are the position, in meters, ε̇(t), η̇(t), ζ̇(t) are the velocity of the aircraft,

in meters per second, and the ω(t) describes the turn rate of the aircraft, in radians per

28



second. The dynamics of the aircraft is defined by the following drift equation:

(II.4.2) v(x(t)) = [ε̇ − ωη̇ η̇ ωε̇ ζ̇ 0 0]T .

The noise term is defined by the following diagonal diffusion matrix:

(II.4.3) K = diag([0 σ2
1 0 σ2

1 0 σ2
1 σ2

2]),

where σ1 =
√

0.2, and σ2 = 7 × 10−4. (Note: in [AHH10], they suggested σ2 = 7 × 10−3.

However, the accompanied code provided by Arasaratnam on his webpage [Ara] used the

parameter σ2
2 = 5× 10−7, which matches closely with σ2 = 7× 10−4. Our calculated RMSE

is similar to the results shown in Fig. 2,3 and 4 in [AHH10] if 7 × 10−4 is chosen, whereas

σ2 = 7× 10−3 does not give similar results.)

The measurement is from a single radar station located at s = [1500 10 0]. The radar

station measures the distance r, azimuth angle θ and elevation angle φ relative to the radar

station. The measurement function is therefore given by:

(II.4.4)


r

θ

φ

 =


√

(ε− 1500)2 + (η − 10)2 + ζ2

arctan( η−10
ε−1500

)

arctan( ζ√
(ε−1500)2+(η−10)2

)

+ w.

where the measurement noise τ ∼ N (0,R), with measurement noise matrix R = diag([σ2
r , σ

2
θ , σ

2
φ]),

where σr = 50, σθ = 0.1◦, σφ = 0.1◦ (Note: the standard deviations σθ and σφ are measured

in degrees, and a unit conversion is needed).

For the test scenario, the aircraft starts with the initial state

(II.4.5) x0 = [1000 0 2650 150 200 0 ω0]T ,

where ω0 is the initial turn rate, and the measurement is taken with a constant time interval
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T . The total time for simulation is chosen to be 120 seconds. The turn rate and measurement

interval vary across test cases to examine the performance of the filters. The initial covariance

is taken as

(II.4.6) Σ = diag([100 1 100 1 100 1 0.01]),

based on a physically realistic assumption: from an observer on the ground, one would have

a reasonably good guess about its position with standard deviation σ = 10 meters, and a

good guess about its velocity through differentiation with σ = 1 meters per second, but a

rather bad guess for the turn rate with σ = 0.1 radian per second, or approximately 5.73

degrees per second.

II.4.2: Numerical results

With the problem description complete, we now turn to present our numerical results. N =

100 experiments are executed for each set of parameters, and the same set of experiments is

applied to all candidate filters. The main performance metric used is the root-mean square

error (RMSE) for position, velocity and turn rate. For example, RMSE for position is defined

as:

(II.4.7)

√√√√ 1

NK

N∑
n=1

K∑
k=1

(
(εnk − ε̂nk)2 + (ηnk − η̂nk )2 + (ζnk − ζ̂nk )2

)
,

where N is the number of experiments, and K is the number of measurements in each

experiment.

Another metric we consider is the number of divergent results, which we define as any

result that has an error larger than 500 or cannot be advanced to the last timestep.

Following [AHH10], we evaluate the performance of each method at different subdivi-

sions, m, of the timestep between measurements. Since our method is defined purely as

a reformulated ODE, the subdivision of the timestep is the same as a timestep in a fixed
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timestep ODE solver, such as the widely-used Runge-Kutta 4 method. Additionally, to ver-

ify our claim that the choice of timestep subdivision can be completely passed to the ODE

solver, we also use an adaptive solver, ode113, which is integrated into the MATLAB soft-

ware package. In this sense, we introduced 2 implementations of the LSKF, which we call

the LKSF-RK4 and LSKF-adaptive respectively. In the following examples, we will verify

that the additional subdivisions do not have any effect on the numerical results from the

LSKF-adaptive.
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Figure II.3: RMSE and count of divergence results, for a fixed measurement interval T = 6s

varying m and ω0, where m is the number of timestep subdivisions between measurements,

and ω0 is the initial turn rate. Each row gives the performance metrics for the same initial

turn rate, whereas each column contrasts the same performance measurement across different

initual turn rates. Note for ω0 = 24◦/s and m = 1, all results from CD-CKF are divergent.

Our numerical results in Fig. II.3 show that our methods consistently outperform the

CD-CKF in this test case, across all choices of angular velocity and timestep subdivisions.
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Importantly, note that CD-CKF performance cannot match the LSKF-adaptive even if suf-

ficient timestep subdivisions are introduced. We suspect this is due to the fact that the

CD-CKF as introduced in [AHH10] only uses the IT-1.5 expansion at the beginning of each

time-update step but not at the subdivided timesteps, whereas our method is defined using

instantaneous information and is not subject to this limitation.

Equally importantly, note that the LSKF-adaptive version of our method gives the same

result independent of the subdivisions introduced. Additionally, the fixed-timestep LSKF-

RK4 converges to the LSKF-adaptive result, as expected for a consistent ODE solver. In

practice, a user can always use the LSKF-adaptive version with the choice of adaptive ODE

solvers that gives the best performance without needing to consider timestep subdivisions

manually.
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Figure II.4: RMSE with varying the measurement interval from 1 through 7 seconds, and

varying the initial turn rate ω0. For the CD-CKF, a timestep subdivision of m = 64 is chosen

to ensure that the CD-CKF is performing optimally. For the LSKF, an adaptive ODE solver

is used and no timestep subdivisions are manually inserted. All results from CD-CKF and

LSKF are convergent.

In Fig. II.4, we verify that even with sufficient timestep subdivision for the CD-CKF, the

LSKF still outperforms CD-CKF over all the parameters chosen, even when no intermediate

34



timesteps are manually inserted. Additionally, the difference in performance between CD-

CKF and LSKF is more significant when the measurement interval T is large, whereas the

results are similar when T = 1s. With this in mind, we proceed further into the numerical

experiments, using sufficient timestep subdivisions (m = 64) for the CD-CKF, whereas no

additional pre-defined timestep subdivisions (m = 1) for the LSKF-adaptive, and vary the

measurement interval T from 1 second to 7 seconds with an increment of 1 second.

In conclusion, for the test case picked by [AHH10], our LSKF method consistently out-

performs CD-CKF across the challenging scenarios introduced by them. In addition, our

method requires less input from an end-user, as our method only requires knowledge of

the drift function explicitly, whereas CD-CKF also requires the first and second spatial

derivatives of the drift function, as well as a user-defined timestep subdivision parameter m.

Finally, the elegance of reforming the system as an ODE without introducing expansion in

time gives more room for possible future improvement.

II.4.3: Tolerance to initial guess

In the previous numerical example, we set the initial guess x0 to be exact and overestimated

the initial covariance matrix, which is a common practice, and the initial estimation is usually

expected to have a negligible effect on the accuracy of the result with many measurements

taken [LSRJ11]. However, for this challenging scenario with a 7-dimensional state space but

a 3 dimensional measurement, it turns out that the choice of initial covariance also has an

impact on the performance of the filtering algorithms. Here, we compare the performance of

the LSKF and CD-CKF with: a) a best guess where the initial covariance is approximately

equal to the RMSE, and b) a bad guess where the initial covariance underestimates the error

in the initial guess.
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Figure II.5: RMSE with varying the measurement interval from 1 through 7 seconds, and

varying the initial turn rate ω0. The setting is the same as Fig. II.4 except that the guess for

standard deviation of the turn rate is reduced from 0.1 to 0.00349. All results from CD-CKF

and LSKF are convergent.
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Figure II.6: RMSE with varying the measurement interval from 1 through 7 seconds, and

varying the initial turn rate ω0. The setting is the same as Fig. II.5 except that the a zero

mean random error with covariance Σ0 is added, but the initial guess used for estimation is

underestimated to be 1
16

Σ0. All results from CD-CKF and LSKF are convergent.

In the best guess scenario, we keep the settings the same as presented in Sec. II.4.2, except

that the standard deviation of the turn rate is reduced from 0.1 radian to 0.00349 radian,

or approximately 0.2 degree. Comparing Fig. II.4 and Fig. II.5, we conclude that the LSKF

still outperforms the CD-CKF if the initial guess of covariance is close to the average RMSE.
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Additionally, the LSKF is less impacted by an initial covariance overestimation than the CD-

CKF. This also explains that the poor performance for both filtering methods in predicting

the turn rate, as shown in Fig. II.4, is caused by the overestimated variance in turn rate.

Since the dynamics are highly nonlinear in the turn rate, and the limited information on the

initial turn rate impacts the performance of the filter even with frequent measurements.

In the bad guess scenario, we further add an error to the initial guess, generated by a

zero-mean normal distribution N (0,Σ0) as defined in the best guess scenario, but feed the

system with an initial guess for the covariance matrix 1
16

Σ0, which underestimates the error

in the initial condition. Comparing Fig. II.6 with Fig. II.5, we note that the performance

advantage of LSKF over CD-CKF is larger with an underestimated initial covariance.

II.5: Conclusion

Herein, we derived a novel Level Set Kalman Filter method for nonlinear continuous-discrete

systems. From a theory standpoint, our derivation is based on the movement of a level set

instead of the moments of a distribution. Our method reformulates the time-update of the

filtering as an ODE. As a consequence of this formulation, our description is instantaneous, in

contrast to existing methods that use some expansion in time to approximate the continuous

process noise.

From a practical point, for the radar tracking coordinated turn test case, our method

consistently outperforms the CD-CKF over a range of challenging scenarios. Additionally,

our method requires less explicit information about the model, and our instantaneous for-

mulation allows a user to easily pass the task of choosing a timestep to the well-established

field of adaptive ODE solvers. It is also more tolerant to varying initial guesses. The numer-

ical results indicate that our method is a good candidate for challenging tracking problems,

especially if an appropriate timestep cannot be determined a priori.
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Appendix A: Comparison of the standard, averaged and partially

averaged time-update of the LSKF

In equations (II.3.28) and (II.3.34), we defined the (standard) time-update and the aver-

aged velocity time-update equations. Here we use a numerical example to illustrate the

difference in behavior between these methods. Additionally, we introduce the partially av-

eraged velocity time-update equations as a trade-off option between the standard and the

averaged velocity version.

Using the same notations as in (II.3.28) and (II.3.34), the partially averaged velocity

is defined as

(II.5.1) vp :=
1

2d

(
d∑
i=1

(v(x + xi)) + d× v(x− x1)

)
.

Correspondingly, in matrix form, the time-update ODE using partially averaged velocity is

defined by

(II.5.2)
∂M

∂t
= v(x + M)− vp +

1

2
K(MT )−1.

As an illustrative example to show the effects of using an averaged velocity or partially

averaged velocity versus evaluating the velocity at the center when a nonlinear drift velocity

is present, we consider the following system:

∂u

∂t
= −∇ · (vu),

where a, b are positive constants, and

v(x, y, 0) = (0, x2)

u(x, y, 0) =
1

2πab
exp(−

x2

a2
+ y2

b2

2
).
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(Note x, y in the following equation are not in bold, and are scalars) The analytic solution

to this transport equation is given by

u(x, y, 0) =
1

2πab
exp(−

x2

a2
+ (y−xt)2

b2

2
).

To compare the performance of the three LSKF methods, we compute the averaged L2 error

of the results with the analytical result, with randomly chosen matrix square root MMT = Σ.

As can be observed from Fig. II.7, the partially averaged velocity and averaged velocity

version has less RMSE than the standard method. The averaged velocity method is less

sensitive than the partially averaged method in that the covariance entries are less dependent

on the choice of matrix square root. However, since the partially averaged method requires

d+ 1 evaluations of the drift velocity whereas averaged method requires 2d evaluations, the

partially averaged method is still useful as it can be considered as an efficient improvement

from the standard version.

Appendix B: Computational cost of the LSKF

A count of FLOPs would be misleading for this method, as the main function reformulates

the function as an ordinary differential equation, and the number of steps used is highly

dependent on the choice of the numerical ODE solver and the numerical properties of the

problem when an adaptive solver is used. When using an ODE solver, most of the compu-

tational cost is associated with evaluating the derivative. Therefore, we find the number of

evaluation of the drift velocity v, and FLOPs needed for a single derivative evaluation in

(II.3.34). The cost for computation for the time-update is then mainly decided by the number

of derivative evaluations needed and the length of the timestep. The measurement-update is

identical to that of CD-CKF, which is listed in Table V of [AHH10] and is omitted here.

Computations needed for (II.3.34):
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1. Evaluate averaged velocity:

(II.5.3)
∂x̄

∂t
= va(x̄,M) :=

1

2d

d∑
i=1

(v(x̄ + xi) + v(x̄− xi)).

2d drift velocity evaluations and O(d2) FLOPs.

2. Find K(MT )−1: if solved by LU factorization, forward substitution, and back substi-

tution: 8
3
d3 +O(d2) FLOPs.

3. Evaluate (II.3.34): O(d2) FLOPs.

In total, 2d drift velocity evaluations and 8
3
d3 + O(d2) FLOPs are needed for evaluating

(II.3.34). When using a fixed Runge-Kutta 4 method, 4 such evaluations are needed per

timestep, which results in 8d drift velocity evaluations and 32
3
d3 +O(d2) FLOPs per time-

update. If the measurement interval is short, then a fixed Runge-Kutta 2 method can be used,

with half derivative evaluations needed. For most scenarios, we suggest using an adaptive

solver to automatically determine the appropriate timestep given a target error bound.
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A

B C

Figure II.7: comparison between the partially averaged (red), averaged (green), and standard
(blue) LSKF applied to a nonlinear system. A shows the trajectories of the center and level
set. B shows the averaged L2-norm of error over 1024 trials. C shows the averaged standard
deviation of covariance entries over those trials. Quantities in this figure are unitless.
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CHAPTER III

The Asymmetric Particle Population Density Method

III.1: Introduction

Many biological behaviors can be modeled by coupled oscillating elements. Examples on

various scales include the rhythmic flashing of fireflies [Buc88], neurons [HHK52], and cir-

cadian rhythms [THHDI07]. Understanding the macroscopic behavior (e.g., synchronization

of the population) for a large population without calculating the dynamics of all oscillators

individually is of great value. A common approach to this problem is to consider the pop-

ulation density distribution [Win67, JR95, San96, NT00, Kur03]. However, most existing

methods also have severe constraints on the oscillator model, such as requiring the oscillator

to closely follow a limit cycle or that the coupling is weak. These constraints and simplifica-

tions can leave some important applications behind, such as performing a parameter search

to tune the parameters that generate desired macroscopic properties. Additionally, since

noise can also generate macroscopic patterns [GSB11, KYW+10], it needs to be accounted

for accurately. The goal of our proposed method is to form a middle ground between the

direct simulation of all oscillators and existing population density-based methods, such that:

1) the full dynamics of the oscillator are retained; 2) the method accurately accounts for

the noise; 3) the method accommodates complicated coupling between the oscillators, and;

4) the method is faster than the direct simulation.

Here, we present the asymmetrical particle population density (APPD) method to sim-
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ulate such a population of noisy all-to-all-coupled oscillators. Our method relies on a popu-

lation density approach, which tracks the probability that any element is in any particular

state at a time. While such methods are widely considered computationally prohibitive for

biologically realistic models, Stinchcombe and Forger [SF16] note that most of the models

are dissipative. Therefore, only a fraction of the possible system states have a non-negligible

number of oscillators at any given time. Additionally, coupling between the oscillators can

concentrate the distribution. As demonstrated in [SF16], these distributions can be simu-

lated using particle methods without any further mathematical simplifications. However, the

particle method presented in [SF16] is still limited by two factors: 1) Particles are symmetric

in space, which covers a trajectory inefficiently. 2) The computation of the noise term is

based on the interaction between particles [MG02], thus requiring more computation and

being more difficult to parallel than a method where particles can be updated independently.

We address these issues to create a fast and efficient method.

While the APPD method is inspired by the previous work [SF16] using a particle method

in a similar setting, it is novel in that the particles are asymmetric, allowing them to change

their shape with the flow. This allows the population density to be very narrow in some

dimensions. In practice, we find this true in neuronal simulations, which greatly reduces

the number of particles needed and increases these methods’ accuracy. Additionally, the

particles can be updated individually except for coupling, allowing a much easier and more

efficient parallel implementation of the algorithm.

The practice of using an asymmetric deforming kernel to solve a convection-diffusion

equation or a Fokker-Planck equation is not new, either in the context of convection-diffusion

equation [Ros96, Ros05], or in a very different context of Kalman-Bucy filtering [Sar07,

AHH10, GH11, KK17, WF21b]. The concept of splitting and combining such particles

is also known [XPP+14, ABD14, BBH21]. But our main innovation is as follows: First,

the derivation of our method is based on tracking movement of a level set, which is very

different from existing methods based on a direct computation of terms in the covariance
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matrix. As a result, our method naturally tracks a square-root of the covariance, which gives

improved numerical stability, as known in the Kalman filter community [Sar07, AHH10]

but has not been introduced to this context. This improved stability is needed as previous

particle methods are restricted to 2-dimensional scenarios, whereas the Hodgkin-Huxley

model [HHK52] has a 4-dimensional state space. Additionally, our method does not require

a Taylor expansion in time with an a priori timestep to represent diffusion, which enables an

adaptive timestep method to be directly applied. Also, the splitting of a single particle into

three particles with optimized weight and distance introduces less error than a 2-particle

split, as in [BBH21], for example. For the sake of simplicity, in the following discussion, we

will refer to elements as oscillators, a key target application. However, this method would

also apply to systems that are not strictly oscillators, such as if they are quasiperiodic.

III.2: Method

III.2.1: Overview of the method:

For simulating a large population of coupled noisy oscillators, we consider the direct Monte-

Carlo simulation as the baseline method that we compare against. In the direct Monte-

Carlo method, each oscillator is updated individually based on its dynamics, noise, and

coupling. In our proposed APPD, the intuition for the method is simple: a particle not

only represents oscillators exactly at this state but also nearby oscillators with some locally

linear approximation. In the following parts, we present how such intuition is implemented,

namely: how the dynamics and noise of the system are updated for a single particle in a

deterministic algorithm, how the local linearity is preserved by splitting the particle, and

other technicalities that arise.

In the APPD, a single particle is a weighted multivariate Gaussian. Simulating the prob-

ability distribution function (PDF) of a similar stochastic process using a single multivariate

Gaussian is a well-studied topic, in the context of Kalman-Bucy filtering [KB61] and its gen-
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eralizations [Sar07, AHH10, GH11, KK17]. These methods utilize the fact that a Gaussian

function is preserved if the dynamics of the system are linear in space. Therefore, when the

PDF is concentrated in a small region, it can be considered approximately locally linear, and

the Gaussian is preserved. However, these existing methods [Sar07, AHH10, GH11, KK17]

are based on Itô-Taylor expansion of the underlying equation; thus, the representation of

noise is dependent on the choice of the timestep size. In Cha. II, we proposed the Level Set

Kalman Filter (LSKF), whose representation is independent of the time discretization and

has superior accuracy than the Continuous-Discrete Cubature Kalman Filter. Therefore we

base the particle in our purposed method on the time-update of the LSKF.

While the Fokker-Planck equation for the LSKF and the convection-diffusion equation

for the population takes the same form, the challenges for porting the LSKF or similar

multivariate-Gaussian-based methods to the context of coupled noisy oscillators are non-

trivial. First, oscillators can have a limit cycle with strong contraction, resulting in the

PDF being very thin in certain directions, corresponding to a close-to-singular covariance

matrix in a multivariate-Gaussian approximation. Therefore the method has to be robust

with respect to singular covariance. For the LSKF, since it works with a square root of the

covariance matrix and is robust for semi-positive definite covariances, it is stable as long

as a backward-stable linear equation solver is used and the near-singular eigenvectors are

dropped. The next challenge is that the approximately linear condition for the dynamics

is not valid for oscillators; additionally, we are interested in more complicated distributions

than what can be described by a single multivariate Gaussian. This challenge is resolved by

introducing a scheme to split and combine particles.

III.2.2: Problem formulation

The subject of the simulation is a population consisting of identical oscillators subject to

dynamics described by a velocity field v, and a noise that can be described by a Wiener

process. We assume that an oscillator can be described by a d-dimensional state variable.
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Suppose that the oscillators are also subject to noise, then this probability density u is

evolved according to the following convection-diffusion equation:

(III.2.1)
∂u

∂t
= ∇ ·K∇u−∇ · (vu),

in which K is a constant diffusion matrix, and v = v(x, u) is the convection velocity

that corresponds to the ordinary differential equation of the oscillator, and the coupling

effect between oscillators.

We further assume that the population is large (in fact, infinitely large) such that indi-

vidual fluctuations will not affect the population. Hence the probability distribution and the

population distribution are the same. This assumption is essential as the coupling would be

more complex otherwise.

To accommodate coupling, we assume the velocity field takes the following form:

(III.2.2) v = vd(x) + vc(u,x),

in which vd is the dynamic velocity corresponding to the dynamics that are determined

by the state variable x only. vc is the coupling velocity corresponding to the coupling

term that depends on the state variable x, and the population distribution u at the same

time. Moreover, we assume the coupling velocity vc is of the following form:

(III.2.3) vc(u,x) = wc(x) · L[u],

in which wc(·) is a vector-valued function, L[·] is a linear functional on the PDF u.

In principle, the dependence of coupling velocity on the density makes (III.2.1) a nonlinear

differential equation, which gives rise to complex behaviors. However, since the coupling

velocity vc as defined in (III.2.3) depends on global quantities of u over the domain and

can be assumed to change rather slowly for our applications. Therefore, we approximate
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vc = vc(x) to be independent of u during the update, except when the velocity function vc

is updated at some fixed timesteps. This approximation keeps (III.2.1) linear in the following

derivations.

To numerically simulate the population density, a discretization is required. In a particle

method, the population density is discretized by approximating the population density as

a linear combination of particles:

(III.2.4) u(x) ≈
∑
i∈I

wiKi(x− xi),

where for each particle with index i, Ki(x) is the kernel function of the particle, wi is the

weight of the particle, and xi is the center location of the particle.

In our method, each particle is a weighted multivariate Gaussian. In particular, each

Gaussian particle is represented by its weight wi, center location xi and covariance

matrix Σi, and its kernel function Ki is given by:

(III.2.5) Ki(x) =
1√

(2π)d det(Σi)
exp

(
−1

2
xTΣ−1

i x

)
.

To improve the numerical stability and derive a simpler update algorithm, we track and

store a square root of the covariance matrix Σ = MMT instead, and only evaluate the

covariance matrix when needed.

III.2.3: Single particle update

This section describes the particle update algorithm, which is a special case of the Level Set

Kalman Filter method as derived in Cha. II. Only the description is included here. Therefore

readers interested in the derivation and proof should refer to Cha. II.

Recall (III.2.1):

(III.2.6)
∂u

∂t
= ∇ ·K∇u−∇ · (vu).
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For a single particle centered at x0, the probability density function is given by

(III.2.7) u(x, 0) =
1√

(2π)d det(Σ)
exp

(
−(x− x0)TΣ−1(x− x0)

2

)
.

Consider the level set of the function F :

(III.2.8)

{
x|F (x, t) :=

u(x, t)

u(0, t)
= c

}
(0 < c < 1).

For u being a Gaussian particle, all level sets are ellipsoids. Tracking the movement of the

Gaussian particle is equivalent to tracking one of its ellipsoid level sets as defined in (III.2.8).

A factorization of the covariance matrix Σ = MMT (where M is called a square root of

Σ) represents a level set in the sense that the column vectors lie on the same ellipsoid. We

represent the columns of the matrix M as Mi, and advance them in time. The ordinary

differential equation is given by:

(III.2.9)
∂Mi

∂t
=

1

2
(v(x0 + Mi)− v(x0 −Mi)) + K(MT )−1ei,

where x0 is the center location of the Gaussian particle, and the matrix inverse shall be

understood as solve the equation with a backward-stable solver.

A matrix short-hand form is as follows (where the matrix-vector additions are defined

entrywise):

(III.2.10)
∂M

∂t
=

1

2
(v(x0 + M)− v(x0 −M)) + K(MT )−1,

and the velocity for center is given by:

(III.2.11)
∂x0

∂t
=

1

2d

d∑
i=1

v(x0 + Mi) + v(x0 −Mi).

Notice that to evaluate the velocity for one point xi on the level set, the center location, and
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all other points xj for this Gaussian kernel are needed, hence the points on a level set cannot

be updated independently, and the dimension for the ODE solver is d × (d + 1). However,

the updates of different Gaussian particles are independent.

As a summary, a particle is updated as follows:

Algorithm 2 summary of particle update

Require: center x, and a square root M of the covariance matrix at previous time step.

Pass M and x as the state variable to an ODE solver with derivative defined by (III.2.10).

return center x′, and a square root M′ of the covariance matrix.

III.2.4: Splitting a particle

Since updating the center location and the square root of the covariance matrix for a single

particle uses a linear approximation of the convection velocity, we need a method to control

the size of the Gaussian particle that would otherwise expand due to diffusion. Though the

Gaussian particles have infinite support, most of the density is within 2 standard deviations

in each eigenvector direction, and we consider this region to be its effective support. The

criterion we use for checking the linear approximation is as follows: we check the soundness

of the linear approximation in the direction of the off-center points used in the particle

update. We decide if the particle needs to be split if this particular relative error for any of

the off-center points is larger than a threshold chosen by the user:

(III.2.12) ε =
‖(v(x + 2∆x)− v(x))− 2(v(x + ∆x− v(x)))‖

2‖v(x)‖
,

where x is the center of the particle, and ∆x is the offset of the off-center point. For the

numerical examples that follow, the value is chosen as 0.05.

Once the velocity field v in the effective support deviates from the linear approximation

larger than this tolerance, we need a method to reduce the covariance, thereby reducing the

effective support of the particle. We achieve this by splitting the particle into three thinner

particles in the corresponding direction with half the variance in that direction.
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Up to some rotation, the kernel function (III.2.5) can be reformulated as:

(III.2.13) Ki(x) =
1

(2π)d/2
√
σ1σ2 . . . σd

exp

(
−1

2

(
x2

1

σ1

+
x2

2

σ2

+ · · ·+ x2
d

σd

))
,

in which σ1 ≥ σ2 ≥ · · · ≥ σd are the eigenvalues of Σ. We here consider a method to reduce

the width of the population in the x1 direction by representing the original population as a

summation of three particles with variance in the x1 direction reduced by half. The particle

in the center would weigh 1− 2ω, and have its location the same as what it replaced, while

the two off-center particles would both weigh ω, and have its center location shift by a and

−a in the direction of x1 respectively. Note the weight of the three children particles add up

to 1, and the total weight of the particle is conserved after the operation.

We would like to minimize the error introduced measured in the infinity norm, subject

to the constraint that the total weight is constant. This reduces this problem to a simple

minimization that is independent of the other dimensions of the state space:

(III.2.14) min
a,ω

max
x
|K2d(x)− ((1− 2ω)Kd(x) + ωKd(x− a) + ωKd(x+ a))|

Where Kd(x) is the probability density function of the normal distribution with variance

d. Using numerical optimization, we find a = 1.03332
√
d1, and ω = 0.21921. The process

is then repeated to other directions, until variance in all directions are sufficiently small.

This process introduces a maximum relative error of 0.73%. This is enough to bias a careful

analysis of convergence as the size of particles is reduced (and thus, we do not provide

convergence results). However, it does offer sufficient accuracy in our simulations since the

error introduced has little effect on the linear coupling velocity term. Therefore, the error

introduced does not significantly affect the global behavior of the population, as will be shown

in the examples below. If higher accuracy is required, one needs to reduce the difference

between the variance of the particles. A demonstration of the split is shown in Fig. III.1.
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Figure III.1: Optimal particle split along an eigen-direction. The left figure plots 3 compo-

nents of the split particle. The yellow curve is the new particle in the center, while the green

and red curve are the shifted particles. All three have half the variance as the density they

approximate. The middle figure gives a comparison between a normal distribution (blue)

and its approximation (yellow) with 3 distributions with half the variance. The right figure

shows the absolute error introduced.

Algorithm 3 Particle Split (Eigen-decomposition)

Require: Particle with weight 1 centered at origin with a Diagonal covariance matrix Σ =

diag ([σ1, . . . , σd])

Define the new Diagonal covariance matrix Σ′ = diag ([σ1/2, σ2, . . . , σd])

Find center locations of the off-center particles given by xc =
[
1.03332

√
σ1, 0, . . . , 0

]T
Construct center particle centered at origin, with weight 1− 2ω and covariance Σ′

Construct left and right particle centered at ±xc, with weight ω and covariance Σ′

Apply this method to the new particles until all variance are sufficiently small

The above derivation uses the eigendecomposition of the covariance matrix, which could

be expensive and undesirable in some applications. While the choice of a and w may not be

necessarily optimal for the split, the particle split can be applied to any (non-eigen) direction

similarly by substracting appropriate orthogonal projections detailed as follows:

Given a particle centered at origin with weight 1, and a covariance matrix given by its
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square root decomposition Σ = MMT , suppose split is needed along direction M1, then the

children particles are computed as follows:

� Center particle: centered at the origin, weight 1 − 2ω, covariance matrix defined by

the square root decomposition NNT

� Left particle: centered at 1.03332M1, weight ω, covariance matrix defined by the square

root decomposition NNT

� Right particle: centered at −1.03332M1, weight ω, covariance matrix defined by the

square root decomposition NNT

in which w = 0.21921, and the matrix N defined column-wise by:

(III.2.15) Ni = Mi −
(

1− 1√
2

)
< M1,Mi >

< M1,M1 >
M1

in which < ·, · > denotes the inner product.

Algorithm 4 Particle Split (square root)

Require: A particle with weight 1 centered at origin and a square root decomposition MMT

of the Covariance matrix

Find new square root decomposition N define in (III.2.15)

Find center locations of the off-center particles xc = 1.03332M1

Construct center particle centered at origin, with weight 1− 2ω and decomposition N

Construct left and right particle centered at ±xc, with weight ω and decomposition N

Apply this method to the new particles until all variance are sufficiently small
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Figure III.2: Particle split along arbitrary direction.The left figures shows the PDF of a

particle with covariance

16 2

2 3

. The middle figure and right figure shows the three particle

approximation, and absolute error introduced when the particle is split along [0, 1]T direction,

which is not an eigenvector.

It can be seen in Fig. III.2 that while the absolute error introduced is larger than along

eigen-direction, the split particles still closely approximate the particle they replaced. This

split works with the square root representation and avoids the costly eigendecomposition.

III.2.5: Combining particles

The previous method introduces new particles to the system. Therefore, a method to remove

particles is required since otherwise, the number of particles can grow geometrically, which

would render this method impossible to use.

The description of the method for combining the particles can be divided into two parts:

first, given a set of particles, a method to combine these particles to a single one optimally;

second, a strategy to determine which particles should be merged into a single one.

First, consider the method for combining particles. Except that the total weight does

not add to 1, we are finding a multivariate normal distribution that best approximates the
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PDF of the old population. Therefore we choose the new particle such that it has the same

mean (center location) and covariance matrix of the distribution, and the weight to be the

sum of all the particles to be combined, conserving the total weight.

Consider a probability distribution with PDF, note in the following part: µi is the

expectation vector of ith particle, whereas µi is the ith component of a vector µ:

(III.2.16) p(x) =
∑
i

wi
√

det(Σi)

(4π)d/2
exp

(
−(x− µi)

TΣ−1
i (x− µi)

2

)
.

Then the expectation of the new distribution µ is the weighted average of µn:

(III.2.17) µ =

∑
nwnµn∑
nwn

.

The ijth entry of the covariance matrix Σ is given by

(III.2.18) Σij = E[(Xi − µi)(Xj − µj)] =
∑
n

wn∑
mwm

E[(Yni − µi)(Ynj − µj)],

where Yn is a multivariate normal random variable subject with expectation µn and covari-

ance matrix Σn. Hence the expectation in III.2.18 can be evaluated as:

E[(Yni − µi)(Ynj − µj)] = E[(Yni − µni + (µni − µi))(Ynj − µnj + (µnj − µj))](III.2.19)

= E[(Yni − µni)(Ynj − µnj)] + (µni − µi)E(Ynj − µnj)

+ (µnj − µj)E(Yni − µni) + (µni − µi)(µnj − µj)(III.2.20)

= (Σn)ij + (µni − µi)(µnj − µj),(III.2.21)

in which µnj is the jth component of µn, and (Σn)ij is the ijth entry of Σn. Therefore, we

find the covariance matrix M is given by

(III.2.22) Σij =
1∑
mwm

∑
n

wn ((Σn)ij + (µni − µi)(µnj − µj)) .
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In matrix form:

(III.2.23) Σ =
1∑
mwm

∑
n

wn
(
Σn + (µn − µ)(µn − µ)T

)
.

Then we describe the method to determine which particles should be combined. We

choose criteria for combining particles based on their distance being sufficiently close. Since

we are more concerned about the computation time for finding combinations rather than

have the minimum count of new particles, here we describe a method that scales linearly in

the count of particles.

To try combining a particle with others, one can first find all neighbors within a fixed

radius, then combine with these neighbors, and iterate through all particles. While appar-

ently finding all particles within a radius threshold needs to compute pairwise distance, it

turns out that this fixed-radius near neighbors problem achieves linear scaling in the number

of particles [BSW77]. Unfortunately, there is a lack of implementation for these algorithms

for dimensions higher than 3. Here we describe a much-simplified version that only finds a

subset of all neighbors within a fixed radius since we are only interested in reducing particles

quickly, not optimally.

Let the radius threshold for combining particles be r. First, we divide the state space

into cubic-shaped buckets with a set radius less than r. Then, we iterate through particles

to find which buckets they are in. After that, we iterate through each nonempty bucket and

combine particles inside into a single particle. Since the particles are only present in a tiny

subset of the buckets, the buckets are initialized in a hash table to take advantage of this

sparsity, with their bucket index as keys. While the length of the keys grows linearly with

the spatial dimension d, the time taken to evaluate the hash function can be considered as

a constant. Under this assumption, the average case writes and access time for a hash table

of the occupied bins are practically constant. Hence we achieve practically linear scaling in

the number of particles and constant scaling in the number of dimensions if the number of
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particles is fixed.

Algorithm 5 Particle Combine

Divide the state space into sufficiently small grids, and find which grid block each particle
have its center located (using some Hash function)
for each grid block containing more than one particle do

combine particles with center location defined as (III.2.17), and covariance matrix
defined as (III.2.23)
end for

III.2.6: Adaptive timestep particle update and split

When simulating the tissue-level models, it would be ideal if one would not need to worry

about the choice of simulation details such as choice of timestep size and focus on the

modeling aspect only. This is especially helpful for some biological models, as they can switch

between maintaining homeostasis and an abrupt transient behavior, meaning the governing

equation is stiff. When solving an ODE, an adaptive timestep solver picks the needed

timestep automatically, and we would like to generalize the adaptive solver to the APPD.

We notice that in (III.2.10), the equations are ODE. Moreover, the updates of particles are

independent, meaning each particle can be updated at a different timestep. Finally, notice

that the split of particles is also independent. If we restrict the particle combining and

coupling process to some large common timestep τ0, then in between the common timesteps,

all the particles can be updated in parallel, and each particle can be updated with different

timesteps that is suitable for it. This section describes how a single particle can be updated

between the large timesteps with such an adaptive timestep and splitting.

First, we note that (III.2.10) already formulates the update of a single particle as an

ODE, and a standard adaptive ODE solver can be applied if the particle remains small such

that the local linear approximation is accurate. Since the method involves a local linear

approximation, using a high-order ODE method will not bring any benefit, and we use the

Bogacki-Shampine method [BS89] of order 3(2) as the adaptive ODE solver of choice.
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set stepsize
to coupling
timesteps,
needsplit

to false

update by
stepsize

linear ap-
proximation

within
tolerance?

set needsplit
to true

reduce stepsize

find coupling
over stepsize

needsplit

flag?

particle(s) at end of coupling
timestep, return the sum

of coupling over stepsize
and coupling of all children

split particle

set stepsize to
time remaining,

needsplit

to false

yes

no

false

true

for each child from split

Figure III.3: flow chart for updating a particle, and finding coupling contributed by this

particle over a large common timestep τ0. The red rectangle box suggests a region to factor

out if load balancing at particle level is a concern.

It remains to maintain the accuracy of the local linear approximation through large the

timestep τ0. Similar to an adaptive timestep method, we start with a potentially oversized

timestep τ = τ0. If the timestep τ turns out to be too large, then τ is reduced recursively
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until the linear approximation is within the desired tolerance. We update the particle until

τ and note that a particle split is needed before the particle can be updated to time τ0.

Consequently, we split the particle in the direction needed, which results in three children

particles, as defined in (III.2.15). For each of the children particles, they needed to be

updated by τ0 − τ . This process is continued recursively until all resulting particles are

updated to the common large timestep τ0. The process of the update is illustrated in the

flow chart Fig. III.3.

From the description of the method, we notice that the particles can be updated inde-

pendently, which gives an embarrassingly parallel problem that can be easily implemented

on either a shared memory or a distributed memory system. Since our simulation aims to

be executed on a desktop computer or a workstation, we used the Intel TBB library to

implement this algorithm, which uses a shared memory model.

III.2.7: Extension to nonhomogeneous populations

In a population density method, one constraint for the underlying model is that the ele-

ments are assumed to be identical, in that all elements are subject to the same equations.

This constraint leaves many interesting scenarios behind, such for a population of neurons

with varying intrinsic period. However, we can put the varying property as an additional

dimension in the state space, and adjust the formulation correspondingly to accommodate

such models for APPD. Specifically, suppose the dynamic velocity of a single element vd is

defined by both its state variable x and a constant scalar z:

(III.2.24) vd = vd(x, z)
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and an additive noise with diffusion coefficient K. Then, we can include z as an entry in the

state space, and define the new state variable

(III.2.25) x′ =

x

z

 ,
with new diffusion coefficient

(III.2.26) K′ =

K O

O 0

 ,
in which O are zero matrices with appropriate size, and new dynamic velocity

(III.2.27) v′d =

v

0

 .
Then we find x′, K′ and v′d satisfies (III.2.1):

(III.2.28)
∂u

∂t
= ∇ ·K′∇u−∇ · (v′u),

and we can apply the APPD method if a corresponding initial condition is defined. For

example, if we assume z follows a normal distribution Z ∼ N (µ, σ2), and initially x follows

a multivariate normal distribution X ∼ N (x0,Σ0) that is independent with Z, then the

initial condition can be described by a single particle with : weight 1, center location

(III.2.29) x′ :=

x0

µ

 ,
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and covariance matrix

(III.2.30) Σ′ :=

Σ0 O

O σ2

 .

III.3: Simulation results

III.3.1: Motivating example: Van der Pol oscillators

First consider a motivating example of a population of Van der Pol oscillators, as an illus-

tration of the method. Recall (III.2.1):

(III.3.1)
∂u

∂t
= ∇ ·K∇u−∇ · (vu),

where, v = vd + vc. In the case of the Van der Pol model, the oscillator dynamic velocity

field vd = ∂x/∂t is defined by:

(III.3.2)

v1

v2

 =

µ(x1 − 1
3
x3

1 − x2)

1
µ
x1

 .
The coupling velocity vc = vc(u) is defined by

(III.3.3) vc(u) = α

∫
R2

y1u(y)dy,

in which α is a coupling coefficient. This is commonly referred as a mean-field coupling. We

set up the initial population along the limit cycle of this oscillator without coupling. The

results from a sample simulation are shown in Fig. III.4 , which serves as an illustrative

example of how the APPD method represents the population and noise over the process of

simulation.
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Figure III.4: Motivating example: The population Van der Pol oscillator with µ = 1.5, α =

0.5 and diffusion coefficient k = 0.1 (top two) and k = 0.05 (bottom two). In the 2 graphs to

the right: the red circles indicate the weight of individual particles, the magenta and green

lines are the eigenvectors of the covariance matrix with corresponding eigenvalues, while

the heat map is the population density at t = 100. Note that the color scales of the two

right graphs are different. The 2 graphs to the left plot the number of particles versus time.

Movies are provided in the supplement.

We choose the Van der Pol oscillator to serve as an illustrative example for the usage

of our algorithm, as the state space is 2-dimension and can be plotted without projection.

In the example used in Fig. III.4, we select an uncoupled initial condition along the limit

cycle and observe the effects of coupling. It can be seen that both populations are coupled;
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however, there is a slight phase difference due to the noise level difference. It started at

a high value since the population is set to start in an uncoupled state. As the coupling

synchronizes the population, the population density is concentrated in a smaller region, and

the number of particles drops accordingly. Since the computational cost is proportional to

particle count, our method is more efficient if there is stronger coupling and weaker diffusion.

Additionally, we note that synchronization occurs unevenly and that once enough par-

ticles start to synchronize, many of the other particles quickly follow suit. This occurs in

a similar way to the phase transitions seen in coupled oscillator theory [For17]. As the

population synchronizes, the number of particles shrinks.

III.3.2: Kim-Forger circadian model

There is currently much controversy about the role of BMAL1 in the mammalian circadian

clock [RVS+20, NCAB21, AGNR21]. BMAL1 is a key activator that binds tightly with

repressors to regulate timekeeping. In its absence, BMAL2 has a lower affinity for the

repressors, and intracellular rhythms are lost. However, within the network, coupling and

noise are thought to interact to still generate rhythms. There is some ongoing controversy

about whether these rhythms persist.

To test the role of coupling and noise in mammalian circadian timekeeping, we consider

the Kim-Forger circadian model as described in [KF12]. The dynamics of a single oscillator

is described by the following equations:

dM

dt
= α1f(P,A,Kd)− β1M(III.3.4)

dPc
dt

= α2M − β2Pc(III.3.5)

dP

dt
= α3Pc − β3P(III.3.6)

f(P,A,Kd) =
(
A− P −Kd +

√
(A− P −Kd)2 + 4AKd

)
/(2A)(III.3.7)

We consider a population of these oscillators coupled by their mean value in the repressor
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protein Pc, and is also subject to Gaussian noise. Specifically, (III.3.5) is replced by:

(III.3.8)
dPc
dt

= α2M − β2Pc + cc(P̄c − Pc),

where cc is the coupling coefficient, and P̄c denotes the average Pc in the population.

In [KF12], the dissociation constant Kd was investigated in detail for an individual oscillator.

It was found that Kd affects both the amplitude and the stability of the oscillation. This

is likely a parameter affected by the knockout of BMAL1 as indicated by Fig. 3 in [KF12].

Here, we check how changing this parameterKd affects the macroscopic behavior of a coupled

population.
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Figure III.5: Predictions of how noise and coupling can generate rhythms in the mammalian

circadian clock. A shows the average value in Pc, P and M with varying dissociation

constant, with Kd = 1 × 10−6, Kd = 1 × 10−4, and Kd = 1 × 10−3 respectively. B shows a

representative distribution, projected into the Pc−M plane. Other parameters are identical

for the 3 instances.

In Fig. III.5, we notice that three patterns emerges from the population as Kd is varied.

For a small Kd = 1×10−6, [KF12] predicts that the amplitude of the oscillation is large, and

65



the oscillation is robust. For the coupled population, the average coupling in Pc is sufficient to

synchronize the population. For a large Kd = 1×10−3, the population stays at a fixed point,

which is also consistent with the finding in [KF12] that sustained oscillations do not occur

under this condition. For an intermediate Kd = 1× 10−4, the population behaves differently

than an individual oscillator: while individual oscillators are in a sustained oscillating state,

the coupling is too weak to keep the population synchronized, and the average value for the

population reaches a steady state. These simulations teach us two things about the role

of BMAL1 in the SCN. First, the nonlinear nature of the coupling is responsible for the

BMAL1 KO oscillations in the SCN tissue. This nonlinear neuronal coupling can generate

rhythms directly from cells that do not show sustained coupling. Second, the population level

rhythms in the SCN are irregular, whereas the rhythms from our simulations are regular.

This inconsistency is likely due to the finite-size effect in the SCN, whereas a population

density approach assumes an infinite number of elements.

III.3.3: Hodgkin-Huxley model: benchmark

The Hodgkin-Huxley model is a model that describes the electrical activity of a neuron

based on ionic currents. Coupled neurons form the basis of computational neuroscience.

These models are highly nonlinear and have multiple attractors, which creates challenges for

simulation. Additionally, the model exhibits complex behaviors that are highly dependent on

the noise level, such as noise-induced synchronization [WCW00, BH06], and a noise-induced

coexistence of firing and resting neurons [BNR15]. These interesting macroscopic phenomena

require an accurate simulation of noise to reproduce. We use the Hodgkin-Huxley model in

two ways. First, we show that the APPD method accurately reproduces the mentioned

phenomena, which can be further separated into two cases. Then, we compare it against

direct Monte Carlo simulation to show that the method is accurate and fast.

The Hodgkin-Huxley model used here is described as follows: We take x = [0.01V,m, n, h]T ,

where V is the membrane potential in millivolts, m,h are proportion(for each cell) of activat-
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ing and inactivating subunits of the sodium channel, and n corresponds to that of potassium

channel subunits. Here V is scaled by 0.01 such that all the values have the same order of

magnitude, where our method is most efficient.

The model equations are as follows:

C
∂

∂t
V = −GNam

3h(V − VNa)−GKn
4(V − VK)(III.3.9)

−GL(V − VL)−Gcoupling(V − Vcoupling)− Iapp

∂m

∂t
= αm(V )(1−m)− βm(V )m(III.3.10)

∂h

∂t
= αh(V )(1− h)− βh(V )h(III.3.11)

∂n

∂t
= αn(V )(1− n)− βn(V )n.(III.3.12)

With the following equations for the subunit dynamics:

αm(V ) = 0.1
V − 25

1− exp(−V−25
10

)
(III.3.13)

βm(V ) = 4 exp(− V
18

)(III.3.14)

αh(V ) = 0.07 exp(− V
20

)(III.3.15)

βh(V ) =
1

1 + exp(−V−30
10

)
(III.3.16)

αn(V ) = 0.01
V − 10

1− exp(−V−10
10

)
(III.3.17)

βn(V ) = 0.125 exp(− V
80

).(III.3.18)

in which Gcoupling is conductance due to coupling, as explained below.

In a neuron population, it is usually assumed that individual neurons are independent,

except when a neuron firing occurs, and post-synaptic neurons are coupled with the firing

neuron. In a population density model, the neurons are indistinguishable except for their

state. Therefore an all-to-all coupling (or probabilistic coupling) between neurons is assumed.
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However, contrary to a neural mass model where coupling strength is determined from the

average membrane potential [NT00, DF03], the more realistic threshold coupling can be

implemented. Specifically, Gcoupling is proportional to the flow rate across the hyperplane

V = Vthreshold from V < Vthreshold to V > Vthreshold side. Since the threshold value is chosen

where the transition is fast, the contribution of diffusion to coupling can be ignored, and the

flow rate is given by the velocity of particles multiplied by the marginal density along V . In

the actual implementation, we used the averaged flow rate over the previous timestep as the

flow rate for the current step, which, considering that actual coupling is not instantaneous, is

still a reasonable assumption. The threshold firing potential is chosen at Vthreshold = 45mV.

It should be noted that the conductance-based coupling is modeled differently than the

average-value coupling as introduced in Sec. III.3.2.

Since the subunit variables are proportions of some quantity, their domain is restricted

in [0, 1]. The dynamics have inward-pointing velocity on the boundary. Therefore the center

of particles will not leave the domain without splitting. However, as the particles have

volume, the support of centers can be outside this domain due to the effects of Gaussian

noise. [AB02] and [KDPN06] discuss more detailed handling of the noise near boundary

conditions. Nonetheless, we find that the following alternative method can still produce

sufficiently accurate results.

The noise can result in off-domain points in two ways: When a split occurs and when

checking an off-center point of a particle in the LSKF method. If a split result in the center of

a particle outside the domain, the center is shifted to the closest location inside the domain.

If an off-center point is outside the domain while the center is inside, we choose the offset of

the point from the particle’s center to be its negative, which will be inside the domain and

on the level set.

The value of the constants are listed as follows: C = 1µF cm−2, GNa = 120µA mV−1 cm−2,

ENa = 115mV, GK = 36µA mV−1 cm−2, EK = −12mV, GL = 0.3µA mV−1 cm−2, EL =

10.613mV, and Iapp = 10mA. The coupling potential Vcoupling = −35mV for the inhibitory
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case, and Vcoupling = 50mV for the excitatory case, keeping in mind that in this original

Hodgkin-Huxley model, the neuron rests near 0mV. We choose the diffusion to be homoge-

neous after V is scaled, with a diffusion matrix K = kId.

The coupling is defined analogously to neuron firing: that is, when a neuron reaches a

threshold membrane potential from below, the neuron sends a signal to all post-synaptic

neurons. Consequently, Gcoupling in (III.3.9) is defined by Gcoupling = 20Qc, where constant c

is the coupling coefficient, Q is the flow rate of neurons as a proportion of total population

per millisecond. (Therefore, Q has the unit ms−1.)
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Figure III.6: Testing the accuracy and efficiency of the method. This figure compares the

APPD method (blue) result against a Monte Carlo method (orange) with 41080 neurons for

excitatory neurons over a range of parameters. The top panel plots the Average membrane

potential V (left 5 columns) versus time in microseconds. There are 25 different instances with

varying levels of diffusion and coupling strength: From left to right, the coupling coefficient c

increases from 0.1 to 0.3 with a stepsize of 0.05. From top to bottom, the diffusion coefficient

increases, with k = 0.5, 1, 2, 3, 4× 10−5 respectively. The lower panel plots the computation

time taken for the computation: the left panel shows the computation time, whereas the

right panel shows the relative performance improvement over the Monte Carlo method

We compare our simulations to direct Monte Carlo simulations. Note we choose the

number of elements N = 41080 for the Monte Carlo simulation, and the improvement in
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performance would be more significant if a larger number of elements is used. For the

range of parameters chosen and our implementation of the Monte Carlo method, the APPD

method is faster than the direct Monte Carlo method, as shown in Fig. III.6. It is important

to note that while the Monte Carlo method takes about a constant amount of time for all

simulation cases, there are large variations for the APPD. At a high noise, low coupling

scenario (k = 4 × 10−5, c = 0.1) where the population is asynchronous at the end of the

simulation, the APPD method is faster than the Monte Carlo simulation by 20%. Whereas

for a low noise strong coupling scenario (k = 0.5 × 10−5, c = 0.3), the population remains

synchronized, and the APPD method is 200% faster, as shown in the lower-right panel of

Fig. III.6. This again shows that the APPD method is most suitable to simulate neurons

with strong coupling at a lower noise level and that the APPD method can adapt to create

computational efficiencies.

III.3.4: Hodgkin-Huxley model: macroscopic behavior

The dynamics of the Hodgkin-Huxley model are highly nonlinear and have multiple attrac-

tors, which creates challenges for simulation. Additionally, the model exhibits complex be-

haviors that are highly dependent on the noise level, such as noise-induced synchornization[WCW00,

BH06], and a noise-induced coexistence of firing and resting neurons[BNR15]. These inter-

esting macroscopic phenomena require an accurate simulation of both dynamics and noise

to reproduce. We show that the APPD method accurately reproduces the mentioned phe-

nomena, which can be further separated into two cases:

1. The applied-current-firing case: Such networks have been predicted to form clusters of

neurons that fire together and out of phase with other neurons[TJ00, BH06]. It can

be seen in Fig. III.7A - C that the neurons split into 3 subpopulations.

2. The noise-induced-firing case: It is predicted[BNR15] and verified with direct simulation[Row07]

that the neurons would split into a firing and a resting subpopulation due to the noise
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and inhibitory coupling. In the simulation result Fig. III.7D, we notice that the aver-

age membrane potential increases as the noise level increase, indicating the existence

of noise-induced firing of neurons. Whereas in Fig. III.7E, we noticed that only a pro-

portion of neurons have fired over a period, which implies that the existence of resting

neurons. Additionally, the proportion of firing neurons increases as the noise level is

increased.
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Figure III.7: Population of Hodgkin-Huxley neurons. A - C show the applied-current-driven

case. A shows the averaged membrane potential and the number of particles needed for this

simulation versus time. B shows that about 70% of the neuron fires per interval. C shows

the population density projected into the V h plane at t = 50ms where the neurons split into

three subpopulations. D - F show the noise-induced firing case under different noise levels,

increasing from 3 × 10−6(blue), to 1 × 10−5(orange) and 2 × 10−5 . D shows the averaged

membrane potential, and E shows the proportion of firing neurons over the last period for

various noise levels. F shows that the distribution of particles in the state space.
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III.3.5: Hodgkin-Huxley model: non-homogeneous population

Here, we consider a population of identical Hodgkin-Huxley neurons that are otherwise

identical except that they are subject to different applied currents, and consequently, dif-

ferent intrinsic periods. This model can be considered as a generalization of the Kuramoto

model [Kur03] with much more detailed dynamics and coupling. The equations and param-

eters are identical to the previous example, except that the applied current is not identical,

but given by a normal distribution N (6.0µA, σ2). Starting with a completely synchronized

initial population, we would like to observe how the synchronization varies as the standard

deviation and coupling coefficient change.
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Figure III.8: Retention of synchronization of Hodgkin-Huxley neurons with varying applied

currents. Applied current follows the normal distributionN (6.0µA, σ2). From top to bottom,

the coupling increases from 0.2 to 0.4. Inside each panel, the standard deviation of the applied

current varies from 0µA to 2µA with a stepsize of 0.5µA. The left panels shows the averaged

membrane potential, while the right panels shows the proportion of firing neurons at a given

time.

In Fig. III.8, we noted that across all the choice of coupling coefficients, the strength of
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the synchronization reduces faster as the variance in applied current increases. As expected,

an increased difference in applied current implies a larger variation in intrinsic periods, and

the synchronization is harder to maintain. We also notice that the average firing frequency

increases as the variance in applied current increases.

III.4: Conclusions

The APPD method provides a fast and accurate method to study population-level behaviors

while accounting for noise and coupling in biologically realistic models. We compared our

method against direct Monte Carlo simulation and tested its ability to reproduce complex

macroscopic phenomena across a range of parameters.

While the APPD method is conceptually inspired by the particle method by Stinchcombe

and Forger [SF16], the method presented here has two significant improvements: 1) particles

are asymmetric, allowing it to better track the population; 2) computation of the noise term

is computed by modifying a single particle instead of interactions between nearby particles,

which reduces computation, and allows almost perfect parallel implementation. When com-

pared against existing asymmetric particle methods [Ros96, Ros05, XPP+14, BBH21], our

method is the first to be applied to a 4-dimensional problem instead of the typically consid-

ered 2-dimensional problems. Such an extension is nontrivial as it depends on the improved

numerical stability of our method by tracking a square-root instead of the covariance.

Looking at the examples, we checked whether we achieved the goal to develop a mid-

dle ground between the direct simulation and existing population density-based methods.

From the form of (III.2.10), it is evident that the dynamics of the oscillator are retained,

and no manual dimension reduction is required. The choice of the kernel (III.2.5) enabled

an accurate representation of the effect of noise. Through the examples, we implemented

both all-to-all-coupled oscillators and threshold-coupled oscillators; both resemble the direct

simulation.

The advantages of the APPD method are the versatility through different models and a
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range of parameters without any model-specific simplifications, and the robustness that the

macroscopic behavior matches the direct simulation (Fig. III.6). These observations lead

us to conclude that the APPD method can be applied to analyze the complex macroscopic

behaviors of a population of coupled noisy oscillators, which is in contrast to many popu-

lation density approaches that require a model-specific understanding of its behavior to be

implemented.
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CHAPTER IV

The Mouse Cortex Neuronal Network Model

This chapter is a result of joint work with James Hazelden and Daniel Forger. My con-

tribution includes the generation of connectivities, writing some of the codes used in the

simulation, and writing part of the introduction and the methods section of this chapter.

James implemented the majority of code in the current version of the software and generated

the figures in the result section of this chapter. Daniel supervised our work and helped with

the writing of this chapter.

IV.1: Introduction

Perhaps the central question in neuroscience is to understand the mammalian brain at scale.

There is a growing consensus that computational methods are an important tool in un-

derstanding this multi-scale system. The widely used Hodgkin-Huxley model [HHK52] es-

tablished the correspondence between the electrical activity and ionic channels of a single

neuron [HC97, GB08, YTN16]. This model shows that individual neurons can be capable

of surprisingly sophisticated computation. On a higher level, the spatial structure of the

mammalian brain is intricate and also important for computation. There is a great need to

understand how changes in biophysics at the level of an individual neuron affect whole cor-

tex behavior, especially as genetic, siRNA, or experimental pharmacological techniques can

target individual ion channels to determine changes in whole-brain behavior, as measured,

for example, by EEG or fMRI [MMK+21, MSS+19].
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However, simulating large regions of the brain is computationally intensive. Many

existing methods either use a mean-field method that does not resolve individual neu-

rons [SLKW+13, MWJB17], or use a simplified single-neuron model that does not resolve the

ionic channels [Mar06]. These simplifications limit the predictions made with such a model,

particularly how changes in ionic conductances of individual neurons affect overall behavior.

A detailed survey of neurons inside the mouse brain has become a requirement for a con-

vincing cortical model. While previous simulations of whole mouse-cortex [MWJB17] used

a probabilistic model, the CUBIC-Atlas [MMS+18] is the first to map the coordinate of all

neurons inside a mouse brain and provides the foundation to develop the first whole mouse-

cortex model that resolves single neurons. Integrating the CUBIC-Atlas with an existing

high-resolution data-driven connectivity model [KHG+19] and the distribution of inhibitory

and excitatory neurons [EGKM18], we established a neuronal connectome model with up to

all 13× 106 neurons [MMS+18] inside the mouse cortex based on experimental results.

To efficiently simulate this large-scale network with up to 13×106 neurons, we developed

our simulation framework in CUDA to take advantage of the efficiency of GPU in computing

highly parallel workloads. We have carefully optimized our implementation such that we

can achieve comparable performance or exceed the performance of state-of-the-art software

such as Brian [GB08], NEURON [HC97] and GeNN [YTN16] on a single desktop GPU.

As important as an efficient simulation method is a versatile data visualization tool. Data

visualization is designed as an integral part of our software framework. We implemented

a real-time visualization of individual neurons using OpenGL, allowing the observation of

propagation of neuronal waves on the CUBIC-Atlas-mapped neurons while the simulation

is running. Running on a desktop computer is a feature rather than a compromise as such

a real-time visualization would not be possible via SSH, which is popular with computer

clusters. Alongside the real-time visualization, we can also give realistic simulated event-

related potential (ERP), and electroencephalography (ERG) traces measured from used-

defined regions with the detailed spatial information provided in the CUBIC-Atlas.
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With the aid of the software framework and the data-driven model, we demonstrate

that how factors in the model such as connectivity, neuron count, individual neuron ionic

dynamics, and mixing different neuron types can change properties of the system, such

as cortical rhythms, formation of oscillations, and traveling planar or spiral waves. Taken

together, we find that the interplay between the detailed structure of the mammalian brain

and sophistical information processing by a single neuron generates behavior that cannot be

predicted at a single scale.
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IV.2: Methodology

Figure IV.1: This figure shows information related to the connectivity. A - D

illustrate the connectivity used in our mouse brain model by plotting all downstream con-

nections for 1000 randomly chosen neurons. Panel A and B show the AMPA long-range

”white matter” connections. Panel C shows the inhibitory GABA connectivity. As can be

seen, it is sparser than the AMPA connectivity. Panel D shows an example of a generated

short-range ”grey matter” connectivity. Panel E through G color 106 neurons based on the

region to which they belong. The neurons are visualized from the front, back, and top of

the mouse brain, respectively. We used intracranial electrodes from a clinical study and

projected these onto the brain by voxelizing the point cloud to make the projection.

IV.2.1: The model for a single neuron

The Hodgkin-Huxley model [HHK52] is a model that describes the activity of a neuron

based on the dynamics of individual ionic currents. In the implementation that follows,

we use the Hodgkin-Huxley model with parameters fitted for cortical models, as presented
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in [For17]. We take x = (V,m, n, h), where V is the membrane potential in millivolts, m,h

are proportion(for each cell) of activating and inactivating subunits of the sodium channel,

and n corresponds to that of potassium channel subunits.

The model is described by the following ordinary differential equations (ODE):

C
∂

∂t
V = −GNam

3h(V − VNa)−GKn
4(V − VK)(IV.2.1)

−GL(V − VL)−GAMPA(V − VAMPA)−GGABA(V − VGABA)− Iapp

∂m

∂t
= αm(V )(1−m)− βm(V )m(IV.2.2)

∂h

∂t
= αh(V )(1− h)− βh(V )h(IV.2.3)

∂n

∂t
= αn(V )(1− n)− βn(V )n.(IV.2.4)

in which GAMPA and GGABA are conductance due to coupling input from other neurons.

With the following equations for the subunit dynamics:

αm(V ) = 0.1
V − 25

1− exp(−V−25
10

)
(IV.2.5)

βm(V ) = 4 exp(− V
18

)(IV.2.6)

αh(V ) = 0.07 exp(− V
20

)(IV.2.7)

βh(V ) =
1

1 + exp(−V−30
10

)
(IV.2.8)

αn(V ) = 0.01
V − 10

1− exp(−V−10
10

)
(IV.2.9)

βn(V ) = 0.125 exp(− V
80

).(IV.2.10)

The value of the constants are listed as follows: C = 1µF cm−2, GNa = 120µA mV−1 cm−2, ENa =

115mV, GK = 36µA mV−1 cm−2, EK = −12mV, GL = 0.3µA mV−1 cm−2, EL = 10.613mV, Iapp =

10mA. The coupling potential VGABA = −70mV for the inhibitory case, and VAMPA = 0mV
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IV.2.2: Synaptic coupling between neurons

In our model, the synaptic connections between neurons are assumed to be fixed. To rep-

resent the connections between neurons for a neurotransmitter (in our model, AMPA and

GABA are considered), we index the neurons by an integer. Then, we can represent the

connectivities between neurons as a connectivity matrix Mc, where (Mc)ij is 1 if there is a

connection from the presynaptic neuron i to the postsynaptic neuron j, and is 0 if other-

wise. Since each neuron has about 10 to 1000 postsynaptic neurons depending on the model

assumption (detailed in Sec. IV.2.4), the matrix is sparse. To address the sparsity, it is

expressed in the compressed row format. We assume that a presynaptic neuron fires after

its membrane potential V increases above a threshold potential and that the time taken for

the postsynaptic neuron to receive this firing signal can be neglected.

IV.2.3: Updating neurons in time

To update the states of the neurons in a network in time, both the dynamics of the neuron

and the synaptic coupling need to be computed. To separate these two operations, we update

the neurons by the dynamics for a small timestep and assume that all synaptic couplings

occur at the end of the timestep.

For the update between the timesteps, note that the Hodgkin-Huxley model is described

by ODEs; therefore, they can be updated by a variety of numerical integration methods. In

our implementation, we used the leapfrog method. Since the neurons are independent, this

update is embarrassingly parallel.

For the synaptic coupling at the end of the timestep, we can record the firing neurons

using a vector vc: (vc)i is 1 if the neuron i fired during this timestep, and 0 otherwise. vc is

sparse most of the time, as the timestep taken is small. Then, the effect on the postsynaptic

neurons can be founded by the matrix-vector multiplication vTc Mc.

To ultilize the sparsity in both Mc and vc, the matrix-vector multiplication is computed

as follows:
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� Collect the index of nonzero terms in vc, store the indices as a vector Ic

� Then vTc Mc is found by adding rows with indices Ic in Mc.

� Since Mc is represented in the compressed row format, collecting all the corresponding

rows in Mc, we get a sequence of indices (that can be repetitive) where each index

corresponds to a firing at the postsynaptic neuron indexed.

� Starting with a 0 vector of length the number of neurons, adding 1 to each of the

indices results in the effect on the postsynaptic neuron. This process can be done in

parallel, as long as a concurrent data structure for the vector is used to avoid racing

conditions caused by the repetition of indices.

IV.2.4: Generating a realistic connectome from the Allen Brain Atlas and the

CUBIC-Atlas

We consider two types of synaptic connections: the local connectivity that models the major-

ity of connections ( 90%), and the global connectivity that generates long-range connectivity

between different regions of the brain. The local connectivity is generated statistically by

assuming the probability of connectivity between pairs of neurons decays exponentially as

a function of the distance between the neurons. Additionally, we only consider local pairs

of neurons that are closer than a threshold distance since they exclude a negligible number

of connections but greatly saves on computation time. Global connectivity is based on a

high-resolution model of the mouse connectome [KHG+19], which is a further development

from [OHN+14] and is based on stereotaxic injection.

In generation of global connectivity, we used the voxel-based connectivity model proposed

in [KHG+19]. This connectivity model divides the mouse brain into small cubes, called

voxels, that form a three-dimensional grid. [KHG+19] experimentally finds the density of

connectivity between voxels. To generate the global connectivity, we start with the coordi-

nates of neurons in CUBIC-Atlas [MMS+18], perform a coordinate transformation to CCF
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v3 [all], then find the voxel that contains this neuron. The CCF v3 is a standard coordi-

nate system for mouse brains that accommodates the difference in shape between individual

mouse brains. To determine postsynaptic neurons, we treat the density of connectivity from

source voxel to target voxel as the probability of connections and that the neuron has an

equal probability of connecting every neuron within the same target voxel. A detailed de-

scription of global connectivity generation is included in the appendix. Both local and global

connections are shown in Fig. IV.1

IV.2.5: Identifying excitatory and inhibitory neurons

We consider excitatory and inhibitory neurons, depending on the type of neurotransmitters

released. The distribution of excitatory and inhibitory neurons is heterogeneous in space, and

the expression level of certain genes such as NRN1 (excitatory) and GAD67 (inhibitory) can

be used as a proxy to approximate this distribution [EGKM18]. In their work, a distribution

of inhibitory neurons in different regions of the brain is derived from a gene-expression

atlas [LHA+07] under the assumption that 7.94% of the neurons are inhibitory [KYP+17].

From the CUBIC-atlas [MMS+18], we determine the brain region each neuron belongs to

and randomly decide whether the neuron is inhibitory based on this conditional probability

for its brain region.
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IV.3: Results

IV.3.1: Emergence of Travelling Cortical Oscillations

Figure IV.2: Spatial behavior of the whole cortex model with varied periodic input stimuli.

The left plot shows the normalized firing rate of the whole cortex model over a continuous

simulation timeframe. The blue trace shows the incremented input that was applied in

this case to the visual regions of the mouse cortex model. In particular, all regions of

the mouse cortex were provided with base stimuli, and the visual region was given extra

input stimulation based on this blue plot. As can be seen, the input is periodically applied

every second and alternates on-off with a frequency of 50Hz. On the right of the figure,

screenshots of our visualization of each individual neuron’s voltage are shown, demonstrating

the evolution of the model during each timeframe highlighted.
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The mammalian brain exhibits a number of important oscillations of different frequencies

that can emerge in a variety of situations. For example, during sleep, delta waves travel across

the mouse cortex; the reason for such waves and their impact on a variety of phenomena

such as memory, synaptic plasticity, and regulation of concentrations of different chemicals

in the brain is a topic of much research. To exhibit spatial dynamics in the brain, individual

dynamics of many neurons or small populations of neurons must be simulated. A number of

papers have done such simulation, usually using some combination of short-range connections

and uniform random connections on a collection of grids. One downside to this approach,

however, is that morphology of the brain is not realistically accounted for. It is clear that

waves will travel differently through a population of neurons placed on a uniform grid versus

on a realistic model of the mouse brain morphology. Factors such as wave speed and size

are determined by the morphology. Our model of the mouse brain thus simulates individual

neurons with realistic brain morphology.

Fig. IV.2 demonstrates the emergence of three types of whole-brain phenomena as a

consequence of varied input stimuli applied to the visual regions of the mouse cortex. In this

case, the Hodgkin-Huxley model was used to model neurons in the sleeping state. Stimulation

was modeled simply as an input current added to the voltage derivative. In the simulation

shown, the localized connections in the mouse grey matter were given a high conductance

versus the long-range connections, and thus large-scale waves can be observed. It should be

noted, however, that when the long-range connection conductance is made, larger spatial

patterns are more local and more disrupted (see Section IV.3.2 below for more analysis of

this relationship).

Chaotic desynchronized firing with no clear noticeable patterns, as shown in the top right

of Fig. IV.2 is typical in our simulations and for real brain dynamics. Such firing will persist

in a steady cycle behavior unless input current or the dynamics of the brain are modified

during simulation. In this desynchronized case, approximate fMRI of the whole brain takes

the form of an almost constant line, as can be seen on the top left of Fig. IV.2.
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A more complex situation emerges when the brain is provided with non-uniform input

stimuli. Such a situation is shown in the middle right part of Fig. IV.2, demonstrating

traveling waves in our cortical model. These waves originate at the point of stimulation–in

this case, the visual regions which reside in the anterior, dorsal regions of the mouse cortex.

The frequency of these waves is high (f > 30Hz gamma waking oscillations), as is expected

for neurons during the wake.

Even more non-trivial spatial dynamics can be observed in our model when neurons

are provided with a high level of stimulation. In particular, when we increase the input

current to our model to high levels, spiral radiating waves emerge in the regions of high

stimulation, as shown in the bottom right of Fig. IV.2. The spiral wave pattern is an area

of experimental investigation, and it has been found that input current can be used as a

”switching” mechanism between desynchronized firing, planar waves, and spiral waves, as is

consistent with our results [Jal03, HXL+10]. A number of authors have attempted to model

spiral waves in the cortex by PDEs, such as [BLS95]. Because of the difficulty involved in

attaining experimental data exhibiting such spiral waves, computational models such as ours

that allow one to easily exhibit such waves and investigate the role of individual ion channels

and other factors in their emergence are suitable for aiding in the analysis of spiral waves in

the cortex.
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IV.3.2: Impact of Gray and White Matter Connectivity and Number of Neurons

on Oscillations and Synchrony

Figure IV.3: Gray and white matter parameter sweeps with varied numbers of neurons.

Pairs AD, BE, and CF show results for simulations using 104, 105, and 106 neurons, re-

spectively. White and gray matter synaptic strengths were uniformly varied logarithmically

from 10−2 to 100 in each case. A - C show the frequency power spectra of simulated EEG

using our mouse brain model simulated for an 8-second time frame with an initial transient

simulation of 4 seconds. 1000 neurons were sampled from the whole cortex randomly to

generate the ERP used to measure power spectral density. D - F plot the corresponding

synchrony for the parameter each parameter sweep shown in A - C. 4096 neurons were

sampled to measure synchrony.

Two large-scale measures of brain activity are power spectral density, computed using the

fast Fourier transform of an ERP signal in a certain part of the brain, and whole-brain

synchrony, as described in Section IV.3.4. We used these metrics to evaluate how changing

global synaptic strength for long-range connections passing through the brain white matter
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versus short-range connections passing through the brain gray matter affects whole-brain

activity. Furthermore, we performed these experiments with a varied number of neurons with

a fixed spatial extent of the localized short-range gray matter connections and by selecting

a subset of the total white matter connectome. We performed a parameter sweep varying

white and gray matter synaptic strengths logarithmically from 10−2 to 100 and computed

the whole brain synchrony using 4096 randomly chosen neurons from the cortex and broke

down the power spectral density into six groups.

Fig. IV.3A - C show the frequency power spectra of simulated EEG using our mouse

brain model. As can be seen, the power spectra vary significantly based on the number of

neurons used and do not exhibit any simple patterns. In each case, most of the power is in

the gamma through ultra-fast frequency ranges, as is expected because the Hodgkin-Huxley

model was used. From these plots, it is clear that both long and short-range connections have

a non-trivial effect on oscillation formation in the cortex and that as a number of neurons

are varied because realistic connectivity was used, this relationship changes. Furthermore, it

has been found experimentally that lower frequency oscillations should be more significant

than higher frequency oscillations, but we do not see this in many cases in the above plots.

Thus, we can also conclude that there are other mechanisms in the brain other than synaptic

structure and strength that generate such low-frequency oscillations.

Fig. IV.3D - F plot the synchrony of 4096 randomly chosen neurons according to the pa-

rameter sweep and with varied N for each individual panel. In contrast to the power spectra,

although the maximum synchrony changes based on the number of neurons, the dependence

on the gray and white matter is almost the exact same. From the latter three plots, we

conclude that synchrony is not significantly impacted by the number of neurons and that as

the strength of long-range connections increases, the synchrony of the whole waking brain

also increases. Furthermore, short-range connections have little impact on the whole-brain

synchrony. This agrees with the synchrony plots in Fig. IV.5: removing localized connections

had little impact on synchrony, but replacing the long-range connections drastically affected
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synchrony.

IV.3.3: Emergence of Functional Connectivity from Physical Connectivity

A

B

C

D

E

F

Figure IV.4: Evaluation of the functional connectivity of the network. A shows the percent-

age of neurons in each region of the cortex. B shows the number of synapses between regions.

C - D and E - F shows results from two distinct simulations. In both simulations, the visual

regions were stimulated more than all other regions, which were stimulated uniformly. C

and E show result from simulated fMRI, whereas D and F show the functional connectivity

between regions.

One avenue of use for our simulation framework is the evaluation of functional connectivity

of the mouse cerebral cortex. Such connectivity is measured as the temporal correlation
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between activity in different regions of the mouse cortex. Functional connectivity is different

from physical connectivity, which is simply the physical synaptic connections in the network

of neurons. This physical connectivity between regions is plotted in Fig. IV.4A - B. C - D,

E - F shows results of functional connectivity with 2 random distinct initial conditions for

neurons.

Most commonly, to measure experimental functional connectivity, fMRI is used to mea-

sure activity. To measure the correlation between two fMRI traces, it is common to first filter

the fMRI signals to a low-frequency band, and then the correlation between two regions is

computed as the Pearson correlation between the two corresponding filtered fRMI traces. In

the simulated fMRI, the average membrane potential is first measured over a 5-minute time-

frame, then bandpass filtered in the range 0.008 Hz to 0.8 Hz. We reproduced this approach

with the Allen brain primary subregions of the isocortex. First, activity approximating fMRI

was measured by measuring the firing rate for each region over a 5 minute time interval. 106

neurons overall were used. The firing rate traces were then low-pass filtered to the 0.8 Hz

frequency band using a Butterworth filter. The resulting fMRI approximation and the low-

pass filtered fMRI are shown in Fig. IV.4C and E. As can be seen, although the fMRI and

functional connections are similar, there are clear differences. This suggests that functional

connectivity will naturally vary somewhat between experiments on the same specimen. One

issue yet to quantify is how much functional connectivity can vary with the same setup but

random initial conditions. This is an important question because we would like to distin-

guish between variations resultant from large-scale differences in functional connectivity and

variations resulting simply from different initial conditions.
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IV.3.4: Realistic Connectivity Significantly Impacts Simulated ERP

Figure IV.5: Three different connectivities were used to demonstrate the importance of

realistic connectivity for EEG and synchrony. A - C show simulated ERP (event-related

potential) for every five CUBIC regions. D shows the plots of the synchrony of the whole

network by sampling Ns neurons uniformly from the cortex and computing the variance of

the network average divided by the average individual variances. Multiple choices of Ns are

shown to demonstrate the trend as the sample size is increased.

To evaluate the importance of realistic physical connectivity based on a real physical mor-

phology, we compared three different scenarios with different excitatory AMPA connectivities

(with the same fixed long-range GABA connectivity generated from the Allen brain atlas).
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In particular, in the first scenario, the realistic whole-cortex connectivity generated from the

Allen brain atlas with short-range ”gray matter” connections was used. In the second sce-

nario, the long-range AMPA connections were replaced by uniformly randomly distributed

connections between all the neurons. Finally, in the last scenario, the short-range connec-

tions were removed, and only the uniform random connections were used to simulate AMPA

dynamics.

Fig. IV.5A - C show the ERP signals of simulations run in each of these three scenarios,

respectively. In particular, for each region in the CUBIC atlas with at least 100 neurons,

the average voltage of 100 uniformly chosen neurons was measured. Every five such traces

is plotted for each connectivity scenario. Simulations were performed with fixed initial

conditions for all neurons and no noise. Furthermore, all neurons in the particular CUBIC

region with the highest number of neurons were stimulated with a fixed input current to

induce firing. Finally, the cortex was simulated for a full transient second before making

measurements.

As can be seen, Fig. IV.5A demonstrates complex dynamics resembling observable ex-

perimental ERP traces during the wake for the mouse brain. Fig. IV.5B, on the other hand,

lacks much of these complex traces. However, some of the traces from A are almost the

same in B such as trace 65 and 15, suggesting that these traces were mostly influenced

by short-range gray matter connections. Finally, C demonstrates that in the case of just

uniform random connectivity, there are almost the exact same firing patterns for the ERP

average voltage for each region. Thus, these simulated ERP traces suggest that uniform

random connections cannot be used to accurately capture the nuanced behavior of the real

mouse brain across regions, even when short-range connections are introduced.

This conclusion is further supported by Fig. IV.5D, which plots synchrony of the whole

mouse cortex for each of the three connectivity scenarios. Fig. IV.5A shows the EEG trace

with both realistic gray and white matter connections. In case Fig. IV.5B, the realistic long

range white matter connections were replaced with uniform random connections. As can
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be seen, some patterns from A are preserved, but most of the signals are more uniform.

Finally, in case Fig. IV.5C, the short range localized connections were removed from B, so

only uniform random connections were used. As can be seen, the traces are almost exactly

the same between regions. Synchrony was computed for Ns uniform chosen neurons from

the whole brain as:

χ =
σ2
Vavg

1
Ns

∑Ns

i=1 σ
2
Vi

,

where

Vavg =
1

Ns

Ns∑
i=1

Vi

is the average voltage of the Ns sampled neurons and σ2
Vj

measures variance:

σ2
Vj

= 〈V (t)2〉t − 〈V (t)〉2t ,

where 〈·〉t denotes average over t. The synchrony was measure forNs = 2n for n = 6 . . . 15. As

can be seen from D, although in all cases the whole-cortex synchrony was low, synchrony was

an order of magnitude lower in the case of the fully realistic connnectivity. Furthermore, the

synchrony was slightly lower when localized connections were added to the uniform random

connectivity. In other words, as realism of connections increased, synchrony decreased,

suggesting again that realistic connectivity plays an important role in whole-cortex dynamics

of the mouse brain.

IV.4: Conclusions

In this work, we combine the most accurate description of the connectivity of all neurons

in the mouse cortex to date by merging the CUBIC-Atlas, the connectome of the Allen

Brain Atlas, and a large-scale study of the percentage of excitatory and inhibitory neurons

in each region. We then develop a simulational framework that can simulate each of these

approximately 13× 106 neurons using a Hodgkin-Huxley type model and their connections
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via standard models of synaptic transmission. The behaviors that emerge rely on the details

of the connectivity and neuronal ionic, but are much richer than could be predicted based

on connectivity or single-cell properties.

One interesting property of our simulated mouse cortex is that it is dynamic. Both the

functional connectivity as well as patterns of traveling waves depend on initial conditions

or previous stimuli. This property, known to exist in vivo based on fMRI, emerges because

of the complex interplay between non-trivial single-cell dynamics and a remarkably rich

connectivity structure. Detailed connectivity plays a very important role in cortical dynamics

(e.g., See Fig. IV.5). Even simplifying the network to 104 or 105 neurons greatly affects

cortical behavior (e.g., Fig. IV.5).

While we show that a framework like ours is needed to understand many cortical behav-

iors, further work is needed to determine whether our framework itself, which is much more

detailed than has previously been used, is itself too simplistic. Our hope is that finer details

of single-cell neuronal structure, for example, the transition time of synaptic signals, will

not be critical for our goals of studying synchrony across the brain. The effects of paracrine

signals and glia also vary but may operate on longer timescales that we study. Likewise,

characterizing the heterogeneity of single-cell dynamics between different regions is an im-

portant next step. However, it is our hope that focusing on the detailed connections between

neurons at scale as well as using the conductance-based single-cell models that have tradi-

tionally been used to explain neuronal excitability will capture many phenomena currently

measured by EEG or fMRI.

Much of our work focused on creating a platform where this framework could be simulated

on desktop computers used by millions of individuals. We hope this will further provide

mechanistic explanations for patterns of synchrony across the mouse brain. This is an

important step before we pivot to the much more complex dynamics seen in the human

brain.
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CHAPTER V

Connecting Chapters via a Case Study

V.1: Conclusion

In this part, we attempt to give a high-level summary of the usage and features of our

numerical methods and modeling in the form of a case study.

V.1.1: Model Description

The Simplified averaged neuron (SAN) model [YSUT+18, TSS+16] gives a neuronal model

where a single neuron can exhibit both a wake-like neuronal firing pattern and a slow-wave-

sleep(SWS) neuronal firing pattern depending on the choice of parameters. The SAN model

is a particularly interesting example for numerical simulation in that it can display different

firing patterns as parameters vary.

The model and parameters here are identical to those in the supplementary information

of [YSUT+18]. For reference, they are included here:

We take x = (0.01V, nk, 0.1[Ca2+], Y ), where V , nk, [Ca2+] are variables in the SAN

model, and Y is a coupling variable that represents both the excitatory and the inhibitory
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coupling in the [YSUT+18], as a way to slightly simplify the analysis that follows.

C
dV

dt
= −IL(V )− IK(V, nk)− ICa(V )− IKCa(V, [Ca2+])− INaP (V )− Ic(V, Y )(V.1.1)

dnk
dt

= 4(αn(V )(1− nk)− βn(V )nk)(V.1.2)

d[Ca2+]

dt
= −αCaAICa(V )− [Ca2+]

τCa
(V.1.3)

dY

dt
= −Y

τe
(V.1.4)

Where the intermediate functions are defined as

IL(V ) = gL(V − VL)(V.1.5)

IK(V, nk) = gkn
4
k(V − VK)(V.1.6)

αn(V ) = 0.01
V + 34

1− exp(−V+34
10

)
(V.1.7)

βn(V ) =
1

8
exp(−V + 44

25
)(V.1.8)

ICa(V ) = gCam
2
Ca∞(V )(V − VCa)(V.1.9)

mCa∞(V ) =
1

1 + exp(−V+20
9

)
(V.1.10)

IKCa(V, [Ca
2+]) = gKCamKCa∞([Ca2+])(V − VK)(V.1.11)

MKCa∞([Ca2+]) =
1

1 + ( KD

[Ca2+]
)3.5

(V.1.12)

INaP (V ) = gNaPm
3
NaP∞(V )(V − VNa)(V.1.13)

mNaP∞(V ) =
1

1 + exp(−V+55.7
7.7

)
(V.1.14)

Ic(V, Y ) = geY (V − Ve) + giY
τi
τe

(V − Vi)(V.1.15)

(V.1.16)

and the constants are given as
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C = 1 A = 0.02 kD = 30

VL = −60.95 gL = 0.015915

VNa = 55 gNa = 12.2438 gNaP = 0.63314

VK = −100 gK = 19.20436 gKCa = 0.7506

VCa = 120 gCa = 0.1624 τCa = 739.09 αCa = 0.5

Ve = 0.0 ge = 0.513425 τe = 2

Vi = −70 gi = 0.252916 τi = 10

Table V.1: Constants used in the SAN model.

V.1.2: Applications Using LSKF: Tracking a Single Neuron by Periodic Mea-

surement of Membrane Potential

Figure V.1: Estimate status of a single noisy SAN with varying interval between measure-

ments.

Suppose one has a periodic measurement of the membrane potential of a single noisy SAN

and wants to infer the other quantities from this measurement. The LSKF can be used

for this state estimation problem. In Fig. V.1, it can be noted that even if only membrane

potential is measured, the LSKF gives a reasonably good estimation for the other variables:
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at a sampling interval of 0.5ms, the RMSE for the nk variable, which ranges between 0 and

1, is less than 0.01 despite the fact that no direct measurement of this variable is obtained.

The accuracy of the approximation decreases as the sampling interval increases, as expected.

V.1.3: Applications Using APPD: Macroscopic Behaviors of a Coupled SAN

Population

The SAN model is assumed to have a threshold-type coupling with Vthreshold = −30, with

the strength of coupling being a variate over different instances.
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Figure V.2: An example of complex dynamics seen with a cortical model. A shows the

average membrane potential of the population, for a weak coupling(blue) and strong cou-

pling(orange) instance respectively. B - F explains the distinction of behavior. B shows

the limit cycle trajectory without coupling(orange) and a trajectory under constant cou-

pling input (blue). C - F depicts the population density at 500ms under weaker (E-F) and

stronger (C-D) coupling. C and E show the pdf projected to V − nk plane, whereas D and

F show the distribution of particles in phase space, where the size of the particle represents

its weight.
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Figure V.3: The averaged membrane potential of SAN populations versus time over a range

of parameters.

In the absence of coupling, it has a long limit cycle, with two stages. One stage has

frequent firing with increasing intracellular calcium ion concentration and a resting stage

with decreasing calcium concentration. However, when the coupling is sufficiently strong,

then the neuron will enter a resting state, which is also not stable since coupling would

disappear if the entire population is resting. We would like to show that with the APPD,

the bifurcation of the model under a population density setting can be reproduced.

From Fig. V.2A, it can be observed that the weak coupling case has a shorter and very

regular pattern, whereas the strong coupling case has a longer period and more variation

between peaks. The different behavior is explained by B - F from Fig. V.2. Constant

coupling input blocks the firing of neurons, which in turn would reduce coupling input to the

population. When the coupling is weak, then neurons follow the behavior closely without
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coupling, and the coupling solely synchronizes the neurons. When the coupling is strong,

coupling pushes a sub-population to the trajectory under constant coupling input. However,

the entire population cannot enter that trajectory since neurons would not be firing in that

state, causing the coupling input to disappear. Therefore, it is reasonable to predict that

the population would split into groups following the no-coupling trajectory and constant

coupling trajectory, which is the result we find. This SAN example deviates greatly from

a one-dimensional phase-based population density model; therefore, any method based on

a phase-response curve would struggle to accurately represent this system. However, our

method can adapt to the bifurcation since it does not assume the population follows a pre-

defined limit cycle. Fig. V.3 shows how the coupling coefficient c as well as noise level d

affects the population’s behavior. As expected, an increased coupling coefficient induces the

strong coupling behavior shown in Fig. V.2C and E. With the coupling coefficient fixed.

Moreover, it shows how small noise on the level of individual neurons can lead to large

changes in population behavior. Thus, the SAN model shows that the APPD method can

capture complicated behaviors.

The above numerical examples used SAN neurons that display a stable SWS pattern.

We now turn our focus to the transition between the SWS and wake state for a population

of neurons. In [YSUT+18], the Calcium decay rate is the main factor used to control the

transition between the wake and the SWS state: as the Calcium decay time τCa is decreased,

the Calcium concentration in the cell decays faster, and the neuron transitions into the wake

state that fires continuously. The transition to the wake state for a single neuron happens

when τCa is reduced to about 0.5 of the initial value of 739.09. To check the effect of coupling,

we consider such populations of wake SAN coupled together.

103



A B

Figure V.4: The average membrane potential of SAN populations as a function of time. In

A, the first row shows the trajectory of a single SAN, whereas the following rows shows the

average membrane potential of a population. From left to right, the Calcium decay time is

taken at 0.3, 0.4, and 0.5 of the original value. B shows the magnified part in A indicated

by the red box.

In Fig. V.4, it can be noticed that while the single neuron displays a wake firing pattern,

the coupled populations still retains the SWS pattern. Moreover, as shown in panel B

of Fig. V.4, a rather weak coupling that does not synchronize the neurons is sufficient to

stabilize the SWS pattern. This result indicates that the Calcium decay rate and coupling

strength among a population may be sufficient to regulate the sleep-wake transition in a

neuronal population.
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